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A Thought!

‘Knowledge is extremely pure and humble. 
Access it straight instead o f filtering it out 
through a dirty filter. ’

Kalyani Govinda Char
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Abstract

Learning is an essential attribute of an intelligent system. A proper understanding of the 

process of learning in terms of knowledge-acquisition, processing and its effective use has 

been one of the main goals of artificial intelligence (AI). AI, in order to achieve the desired 

flexibility, performance levels and wide applicability should explore and exploit a variety of 

learning techniques and representations. Evolutionary algorithms, in recent years, have 

emerged as powerful learning methods employing task-independent approaches to problem 

solving and are potential candidates for implementing adaptive computational models. 

These algorithms, due to their attractive features such as implicit and explicit parallelism, 

can also be powerful meta-learning tools for other learning systems such as connectionist 

networks. These networks, also known as artificial neural networks, offer a paradigm for 

learning at an individual level that provide an extremely rich landscape of learning 

mechanisms which AI should exploit.

The research proposed in this thesis investigates the role of genetic programming (GP) in 

connectionism, a learning paradigm that, despite being extremely powerful has a number 

of limitations. The thesis, by systematically identifying the reasons for these limitations 

has argued as to why connectionism should be approached with a new perspective in order 

to realize its true potentialities. With genetic-based designs the key issue has been the 

encoding strategy. That is, how to encode a neural network within a genotype so as to 

achieve an optimum network structure and/ or an efficient learning that can best solve a 

given problem. This in turn raises a number of key questions such as:

1. Is the representation (that is the genotype) that the algorithms employ sufficient to express 

and explore the vast space of network architectures and learning mechanisms?

2. Is the representation capable of capturing the concepts of hierarchy and modularity that 

are vital and so naturally employed by humans in problem-solving?

3. Are some representations better in expressing these? If so, how to exploit the strengths that 

are inherent to these representations?

4. If the aim is really to automate the design process what strategies should be employed so 

as to minimize the involvement of a designer in the design loop?



5. Is the methodology or the approach able to overcome at least some of the limitations that 

are commonly seen in connectionist networks?

6. Most importantly, how effective is the approach in problem-solving?

These issues are investigated through a novel approach that combines genetic programming 

and a self-organizing neural network which provides a framework for the simulations. 

Through the powerful notions of constructivism and micro-macro dynamics the approach 

provides a way of exploiting the potential features (such as the hierarchy and modularity) 

that are inherent to the representation that GP employs.

By providing a general definition for learning and by imposing a single potential 

constraint within the representation the approach demonstrates that genetic programming, 

if used for construction and optimization, could be extremely creative. The method also 

combines the bottom-up and top-down strategies that are key to evolve ALife-like systems.

A comparison with earlier methods is drawn to identify the merits of the proposed 

approach.

A pattern recognition task is considered for illustration. Simulations suggest that genetic- 

programming can be a powerful meta-leaming tool for implementing useful network 

architectures and flexible learning mechanisms for self-organizing neural networks while 

interacting with a given task environment. It appears that it is possible to extend the novel 

approach further to other types of networks.

Finally the role of flexible learning in implementing adaptive AI systems is discussed. A 

number of potential applications domain is identified.
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Chapter 1

Constructivism and AI

Constructivism, as applied to artificial intelligence (AI), is the notion that adaptive 

behavior can be constructed through the interaction of primitive elements and processes. 

Whether an evolutionary algorithm such as genetic programming offers a way to extend 

this notion to construct flexible learning mechanisms that are vital to building adaptive AI 

systems is the focus of this research. This chapter will outline the contributions of the 

proposed research.

1.1 Introduction

Learning- the process through which knowledge is acquired, organized, refined and 

effectively used is an essential attribute of an intelligent system. The aim of machine 

learning (ML) has been to understand the nature of learning and to implement learning 

capabilities in machines. These goals are central to the research in artificial intelligence in 

building adaptive and flexible computational models capable of working in complex task 

environments. Conventional AI systems, in particular, knowledge-based systems, had 

almost no learning capabilities as these employed knowledge representation and search 

techniques that relied on explicit knowledge (Angelene, 1993). Generally, the methods 

encoded the domain knowledge and also the problem solving knowledge within the 

problem-solver explicitly rather than having the problem-solver learn these. This led to two 

major issues. Firstly, to find good representations for representing knowledge accurately is 

an extremely difficult task due to the nature of the knowledge itself. Knowledge, in 

general, is voluminous, and hard to characterize and represent accurately. Also it constantly 

changes and it is difficult to infer how much knowledge is needed to solve a given 

problem (Rich and Knight, 1991). Secondly, to find effective techniques capable of 

dealing with the knowledge having the above characteristics. As a result, these 

computational models, despite being successful in well-defined task domains failed to 

perform effectively in unpredictable and non-static task environments. It was realized that in 

order to be flexible and adaptive the models should have the capability to acquire knowledge 

during the process of problem solving and use it effectively. In other words, the need for

1



learning became evident. Over the years a number of new machine learning paradigms 

emerged. These include ID3 (Quinlan, 1986) which is a method of inducing decision trees 

from the contents of a given data set, rule induction software CN2 (Clark and Niblett, 1989; 

Greab and Narayanan, 1998) used for symbolic data mining, neural network data mining 

methods, other inductive learning techniques (Someren and Verdenius, 1998) and the 

evolutionary algorithms (EAs) that are based on Darwinian principles of natural selection. 

Evolutionary algorithms such as genetic algorithms (GAs) (Holland, 1975; 1992; Goldberg, 

1989), evolutionary programming (EP) (Fogel, 1992; 1994) and genetic programming (GP) 

(Koza, 1993) became very popular for the reasons that these employ a different approach to 

problem solving. Their powerful features mainly include their ability:

1. to solve problems using representations and operators that are task-independent 

allowing the task-specific knowledge to emerge during the course of problem solving. 

This approach to problem solving avoids the reliance on explicit knowledge.

2. to conduct parallel searching over a large complex search space due to their implicit and 

explicit parallelisms.

These features along with expedience make the algorithms generally applicable to a 

variety of problems over a wide range of domains. A further advantage with evolutionary 

algorithms are that these can be hybridized with other machine learning methods such as ID3 

complementing each other in their performance (Carter and Narayanan, 1998).

As learning paradigms evolutionary algorithms are potential candidates for implementing 

adaptive AI systems. On the other hand, these algorithms on their own are not powerful 

enough to solve all types and classes of problems. A few examples include hard learning 

problems (also known as type-2 learning problems) (Clark and Thornton, 1993; Thornton, 

1994) and those that can only be learnt incrementally such as in language learning (Elman,

1991). In hard learning problems the learning refers to possible ‘relationships’ among the 

input variables instead of the variables themselves. This makes the learning extremely 

difficult. In language learning with neural networks it has been observed that the network 

fails to leam complex grammar when both the network and the input remain unchanging. 

However, when either the input is presented incrementally, or the network begins with
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limited memory that gradually increases, the network is able to learn the grammar. AI 

models, therefore, should explore a wide variety of learning methods in order to be 

applicable over a wide range of problem solving environments. Connectionist networks, for 

example, provide powerful ways of solving certain classes of problems (Clark and Lutz,

1992). The network models are taught rather than programmed and they solve a problem by 

learning a set of internal representations. However, connectionism has shown limitations 

that mainly appear to stem from a number of rigid assumptions and inflexible approaches 

through which the networks and their learning rules are implemented (Govinda Char, 

1998). The space of network architectures and learning being extremely large, evolutionary 

algorithms have been very successfully employed for network induction and learning for a 

number of complex task domains.

AI, in order to achieve real flexibility and performance levels, should exploit the strengths 

of various representations and strategies and the potentialities of integrating these.

The subsections ahead will provide a brief introduction to genetic algorithms, genetic 

programming and Artificial Life (Langton, 1989) as these relate to the work in this thesis. 

Chapter four discusses connectionist networks in detail.

1.1.1 Genetic algorithms

Genetic algorithms encode solutions to a problem through a representation, typically a string 

of symbols, the genotype. Generally the length of the string is fixed. Each genotype 

represents a point in the search space. A number of genotypes are randomly produced to 

form a population. Each of the corresponding points in the search space is evaluated by an 

appropriate evaluation function that gives a higher scores to those nearest the solution 

sought. The next generation is generated from the present population by selection and 

reproduction. The fitter individuals are selected and a new generation of genotypes is 

derived using crossover and mutation. The crossover operator works by choosing two parent 

genotypes, selecting a crossover point along the length of the genotype at random and 

swapping parts of the genotypes. The offspring inherits the genetic material from both 

parents. The mutation operator changes some symbols on the genotype at random. These



operations generate new points in the search space and the fitness is expected to improve over 

the course of a number of generations.

1.1.2 Genetic programming

The notion behind genetic programming (GP) is that a great variety of problems from 

different field can be reformulated as problems of program induction. Genetic programming 

provides a way of searching through genetic algorithms the space of possible computer 

programs. GP uses a population of programs that are expressed as LISP S-expressions. These 

in turn can be depicted as rooted point-labelled trees with ordered branches. The genotype 

is a tree of variable length, size and complexity that is composed of the function and 

terminal sets for the problem domain. The recombination of trees is by crossover where 

complete subtrees of two parent trees are swapped to exchange genetic material. This also 

results in syntactically correct offspring. The output of the program is the value returned by 

the S-expression composed of the whole tree. To initiate the GP run, a set of function and 

terminal sets appropriate to problem domain are chosen and used to create the random 

trees. Usually the depth of the trees is controlled. Each of the S-expression is evaluated 

based on a certain fitness measure that is appropriate to the problem in hand. The parents for 

the next generation is selected based on their fitness.

The tree representation has several advantages: the search space is not limited as in the case 

of a fixed-length string representation. When the size and the complexity of the solutions are 

not known in advance a tree representation is highly desirable. Also it allows any hierarchy 

in the problem solving process to be expressed naturally. Further the representation can 

be extended to incorporate modularity with automatically defined functions (ADFs) 

(Koza, 1994).

1.1.3 Artificial Life (AL)

Artificial-Life is the study of man-made systems that exhibits behavioral characteristics of 

natural living systems. It attempts to synthesize life-like behaviors within computers and 

artificial media. Artificial intelligence (AI) tends to simulate high-level problem solving 

behavior through computational models. AL, in contrast start from the bottom-up to 

understand how primitive low level processes can produce emergent complex behavior.
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Researchers have attempted to define emergence in different ways. As an example, Harvey 

(1993), tries to give a general definition for emergence. Something can be characterised as 

emergent relative to an initial given description if:

1. a system can be set up which corresponds completely to this initial given description.

2. a new description of the behavior of the system can be made which ‘is useful’ or ‘makes 

sense’ to an observer, and makes use of concepts outside those originally given.

Some (Chalmers, 1990; Vaario, 1993 and others) conceptualize emergence in terms of 

achieving a high-level complex behavior through the interactions of low-level elements and 

processes. The notion of emergence is key to AL work. Typically, the behaviors are 

simulated through robots in different environments. Evolutionary approaches are a common 

theme.

1.2 Contributions of the research

Evolutionary algorithms have proven to be powerful search and optimization methods due to 

their attractive properties such as the implicit and explicit parallelism, and robustness. 

However, it is argued that these algorithms lack the creativity needed to build adaptive 

systems that are endowed with properties such as adaptation, self-replication, and self

organization (Vaario, 1993) that are characteristics of ALife-like systems.

Constructivism is the notion that adaptive behavior can be constructed through primitive 

elements and processes. The proposed research through a novel approach illustrates how 

this notion can be extended to evolve flexible learning with genetic-programming. The 

approach involves two phases.

1. Integrating GP with a powerful learning paradigm such as the connectionist networks.

In hybridizing, it is vital to understand the limitations of each of the paradigms (the 

components) that constitute the hybrid in order to implement a computational model that is 

highly effective in problem solving in known/unknown environments. It is crucial that the 

components of the hybrid need to be appropriately chosen and also combined in ways

5



such that they complement each other in the task of problem solving. Connectionist 

networks and evolutionary algorithms offer a paradigm for emergence at two different 

levels, viz., at an individual and at the population level. Connectionist networks support 

synchronic emergence or emergence over levels. At a given time a host of low-level 

computations take place and can be interpreted as a complex high-level functioning when 

observed from another level. Evolutionary algorithms support diachronic emergence, that is 

emergence over time. Primitive computational systems, over time, gradually evolve towards 

greater complexity. The hybrid has to support emergence at both levels in order to be 

effective. The proposed research through a novel approach shows how genetic 

programming can naturally be combined with connectionist networks. Whether such a 

combination can enable evolution of flexible learning mechanisms is investigated (Govinda 

Char, 1997a).

2. Understanding the role of genetic programming as a meta-leaming system for 

connectionist networks.

Recently, optimal network topologies have been evolved with GP (Zhang and Miihlenbein, 

1993; Poli, 1997). So far there have been very few attempts to evolve network learning rules 

(Radi and Poli, 1998). Radi and Poli have succeeded in evolving rules that are faster and 

more effective as compared to the standard back-propagation learning. The novel method 

that is proposed in this thesis employs an entirely different approach and a strategy that 

allows the network and learning to evolve during the process of problem solving. This 

strategy in turn raises a number of important questions such as:

a. Should there be a general definition for a connectionist learning rule?

b. Should there be any constraints involved in implementing a learning rule? If so, how and 

where should these be imposed?

c. Does the implementation entail other potential strategies?

The current research has systematically addressed these issues to illustrate how flexible 

learning rules can evolve while interacting with a given task environment. The approach 

involves providing a very general definition for a connectionist learning rule (irrespective
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of the type of network architecture), imposing a single potential constraint within the GP’s 

representational structure and employing a potential strategy for constructing and 

combining the components of the learning rule. The single potential constraint in concert 

with the proposed strategy creates a paradox for the GP to be creative and enables flexible 

learning rules to emerge. This approach offers the evolutionary paradigm an open-endedness 

in terms of the architecture and also the node activation function that can be made to evolve 

through appropriate primitives. Although a self-organizing neural network is used as a 

framework it appears that the approach has a potential to be extended to other types of 

networks. The key aspects are: first, it attempts to exploit the powerful features (that is 

hierarchy and modularity) of GP’s representation. Second, by providing a general 

definition for learning and imposing a single potential constraint within the representation the 

method creates a paradox for GP to be creative. Third, it combines the bottom-up and top- 

down strategies that are vital to generate complex behavior. Fourth, it offers a way to 

interpret the evolved rules through modular elements.

The simulations suggest that GP can be a powerful meta-learning tool capable of exploring 

an extremely rich landscape of learning techniques.

The aim, finally, is to understand/investigate the potentialities of the proposed hybrid in 

adaptive AI systems. As discussed in section 1.1 the reliance of conventional AI systems on 

explicit knowledge led to a number of problems limiting their applicability. Intelligence, if 

conceptualized as an adaptive behavior, can be constructed through primitive elements and 

processes (Vaario, 93). Such an assumption allows one to explore a wide range of paradigms 

and techniques that can work in task-independent ways. A recent model of an adaptive AI 

system employing constructivist strategy has been discussed. This model incorporates 

adaptation in the form of development, neural plasticity, natural selection and genetic changes 

and has been highly successful in implementing powerful autonomous systems. How GP 

can naturally incorporate all these forms of adaptation and how the notion of constructivism 

can be extended to implement adaptive AI systems through flexible learning are discussed.
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1.3 Outline of the research

The chapters are organized as follows.

Chapter two provides background information on conventional artificial intelligence. In 

particular, the focus is on the knowledge-based systems that rely on explicit knowledge for 

problem solving. The problems associated with the reliance on explicit knowledge are 

highlighted and the importance of learning is emphasized. How AI, in its new perspective, 

has been successful in avoiding such reliance through new paradigms and techniques is 

discussed. A few such models that include evolutionary algorithms, reactive systems, eclectic 

hybrids, automatic programming techniques and finally constructive systems are briefly 

described to illustrate the notion of emergence.

Chapter three first provides a brief overview of the field of evolutionary computation. The 

advantages of using evolutionary algorithms over conventional techniques are briefly 

discussed. Genetic algorithms and genetic programming are discussed in greater detail for 

two main reasons. First, to provide good background information to those who are new to 

this field. Secondly, due to its relevance to the proposed research where the focus has been to 

investigate the role of genetic programming as a meta-leaming system.

Chapter four emphasizes the role of connectionist networks in implementing powerful 

learning mechanisms for complex problem solving tasks. The learning at an individual level 

is vital to a system whether natural or artificial. The learning at sub-symbolic levels provide 

an extremely rich landscape that has not been fully explored. The recent methods in neuro

evolution and genetic-connectionism seem to provide an answer in searching this large, 

complex space of possible network architectures and learning rules. After providing a 

general introduction to connectionist networks, the problems associated with their design are 

discussed in detail. Induction of network architecture and learning are considered in the 

contexts of genetic algorithm and genetic programming. A comparison with other recent 

methods is drawn. The advantages of GP approach are identified. The key assumptions 

and the approach for induction of learning are briefly stated.



Chapter five discusses self-organizing neural network that provides a framework for 

subsequent simulations. The characteristics and the performance criteria of the network and 

learning rule are discussed. Evolutionary and non-evolutionary methods for achieving self

organization are described to highlight the advantages of the latter approach. How genetic 

programming can be used to implement similar learning rules and its advantages are 

explained.

Chapter six demonstrates the evolution of learning rules for self-organizing neural 

networks with genetic programming. The key assumptions, the issues and the implications 

are stated. How flexible learning rules can be evolved while interacting with a task- 

environment is illustrated. The approach provides a general definition for learning, imposes 

a single potential constraint within the GP’s representational structure and employs a 

potential strategy. Due to the general definition for learning and the general approach, it 

appears that the method can be extended to other networks such as feed-forward and the 

recurrent networks. Further, the node activation function can evolve allowing learning for 

non-homogenous networks. A sample program illustrates how the network architecture can 

be evolved with a compatible grammar such as the cellular encoding (Gruau, 1993). The 

simulations emphasize the importance of automatically defined functions (ADFs) in 

implementing flexible network architecture and learning rules and also in achieving the 

comprehensibility of the rules that evolve. Finally the advantages are summarised.

Chapter seven aims at illustrating the role of flexible learning in implementing 

computational models of adaptive AI systems. To understand the underlying principles a 

recent computational model (Vaario, 1993) that employs the idea of emergent behavior is 

described. The global behavior is achieved through the interaction of local behavioral rules. 

The model consists of a neural network that grows in a dynamic environment and 

incorporates adaptations through development, neural plasticity, natural selection and 

genetic variations. A set of production rules describe the interactions at different hierarchical 

levels. This model could implement potential autonomous systems. How the above forms of 

adaptations can naturally be realized with GP is discussed. The flexible learning 

mechanisms that evolve with the GP-hybrid might replace the production rules. A



comparison is drawn. These suggest that GP if used for construction and optimization can 

be extremely creative.

Chapter eight finally provides a summary of the research and conclusions and discusses 

potential application areas for the GP-hybrid.

Conclusions

Learning is crucial for achieving adaptive behavior. AI should explore and exploit the 

strengths of various learning methods and strategies to build adaptive computational models. 

The work in this thesis focuses on employing genetic programming as a meta-leaming tool 

for implementing flexible networks and learning rules for self-organizing neural networks. 

The aim is to understand how the powerful notion of constructivism can be effectively 

extended to such domains. The need to exploit the strengths of GP’s representation is 

stressed. The role of such hybrids in AI should be investigated by applying these to 

complex task environments.

Chapter two will discuss conventional AI and the associated problems in detail.



Chapter 2

BACKGROUND AND THE NEW PERSPECTIVE OF AI

This chapter provides background information relating to conventional Artificial 

Intelligence (AI) and discusses some of the issues that have imposed limitations in 

achieving the broad goals of AI. The advantages of employing recent paradigms in 

overcoming the above limitations and the new perspective of AI are discussed.

2.1 A brief history of Artificial Intelligence

The ability to learn being fundamental to any intelligent behavior, the goal of Artificial 

Intelligence (AI) research (Schank, 1987) has been to create computational models to study 

human intelligence in terms of learning and problem solving (Newell and Simon, 1963 and 

many others). Conventional symbolic AI systems typically employed top-down strategies 

and had very limited learning capabilities as the entire knowledge for problem solving along 

with the domain knowledge were programmed into the systems. These models, being 

deductive by nature were too rigid and specialized though these were very successful in 

tackling well-defined problems. It was realized that flexible systems with capabilities of 

learning were needed to solve a wide range of problems in complex and non-static 

environments. Accordingly, such systems should posses the abilities to acquire new 

knowledge, to automatically generate their algorithms, to develop new solutions by drawing 

analogies to old ones or through discovery and to improve with experience. That is, to 

acquire the ability to draw inductive inferences from the information given to them 

(Michalski, Carbonell and Mitchell, 1986). Hence to understand the nature of learning and 

to implement learning capabilities in machines also became the goals of AI research. 

With some learning capabilities the later versions of AI systems overcame some of the 

earlier limitations and brittleness through the creation of inductive AI systems. 

Connectionism, the subsymbolic approach, seemed to offer an alternative to symbolic AI 

in terms of providing a fundamentally new view for knowledge representation and 

inference. Connectionist networks are massively parallel interconnected networks of simple 

(usually adaptive) elements which mimic the biological nervous systems (Lippmann, 

1987). Working on a bottom-up strategy, these networks constitute a radically different
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approach to computation and exhibit some of the important properties such as association, 

generalization, parallel searching, adaptation to changing environments that are common 

characteristics of natural systems. One of the most important properties of these networks is 

their ability to learn from examples. These networks were capable of solving problems 

where the algorithmic approach was infeasible because of the difficulty in expressing and 

specifying the sequence of steps (hard-to-write-algorithms). Nevertheless, these networks 

had their own limitations such as the inability to express the problem solving process in 

symbolic natural language for humans to interpret. Symbolic systems, on the other hand, 

were more successful in mimicking high-level human thinking. Novel symbolic learning 

systems such as ID4 (an extension of ID3), C4.5 (Quinlan, 1993) and CN2 capable of 

displaying learning characteristics similar to connectionist networks emerged over the 

years. It was realized and argued (Minsky, 1990) that Artificial Intelligence must employ 

hybrid approaches that combine different paradigms to take advantage of the strengths of 

each of the paradigms, each with its own justification. That is, to combine the expressiveness 

and versatility of symbolic representations with the fuzziness and the adaptive capability of 

connectionist representations overcoming the constraints that were inherent to either of these 

paradigms. Towards this goal the symbolic and subsymbolic paradigms were integrated and 

the hybridized models (Honavar and Uhr, 1994 and many others) were able to successfully 

tackle a number of difficult problems. These suggested that the two paradigms could 

complement each other in the process of problem solving.

The implications are that the potentialities of these paradigms need to be fully exploited and 

combined with other related paradigms to achieve the broad goals of AI. That is, to create 

computational systems that can not only exhibit intelligence similar to those seen in natural 

systems but can out-perform these systems in the task of problem solving from a wide range 

of domains. The research in the subtopics of AI and in Machine Learning in recent years 

along with the development of new computer architectures indicate a tremendous progress 

in the field of AI.

The section ahead will discuss some of the key issues with the conventional AI systems 

and focus on the new perspective of AI through the current trends.
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2.2 The new perspective of AI

Conventional AI assumes intelligence to be a combination of knowledge in symbolic form 

and techniques that can manipulate this knowledge. As a consequence of this assumption the 

AI models rely on explicit knowledge requiring the problem solving knowledge to be 

placed within the problem solver using some representation (Angelene, 1993). These 

methods, generally known as strong methods, are rich in task-specific knowledge and 

have been efficient in solving problems in well-defined domains. Explicit knowledge guides 

the search mechanism during problem solving. This reliance on explicit knowledge, 

however, has resulted in a number of issues that, in turn, have imposed limitations on the 

model’s capabilities in tackling problems that are complex and non-static in nature (Brooks, 

1986; Vaario, 1993). The issues are discussed in the following subsections.

2.2.1 The Credit Assignment Problem

Knowledge-based AI systems typically employ a representation, that is some kind of data- 

structure to explicitly represent knowledge and the goals and an algorithm that can 

effectively manipulate this knowledge. The algorithm that performs the problem solving is 

referred to as a problem solver. The credit assignment problem (Minsky, 1967) highlights the 

issue of how to convert the feedback of problem-solving into information about how to 

manipulate a knowledge structure internal to the problem solver. The two forms of credit 

assignments are: the global and the local credit assignments. The global credit assignment 

problem is to determine the fact that there is an error in the internal knowledge structure. 

Typically this is determined by explicit goals or an evaluation function within the problem 

solver. In the case of explicit knowledge global credit assignment is determined by the 

inability of the problem solver to correctly solve the problem at hand. The local credit 

assignment problem is the identification of the components of the internal structure that are 

erroneous. In conventional AI systems the explicit knowledge of how to identify the faulty 

structure is also added to the knowledge base (Schank and Leake, 1989). This knowledge 

is often task-specific and relates the feedback from the task environment directly to the faulty 

components. The subsection ahead on evolutionary algorithms explains the problem of credit 

assignment more clearly in terms of a representational structure and the fitness function .
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2.2.2 The Knowledge Acquisition Bottleneck

The difficulty in determining how a program should interact with an expert to extract the 

expert’s knowledge to incorporate it into the problem solver (Hayes Roth et al. 1983) is 

known as the ‘knowledge acquisition bottleneck’. In general terms, the problem of 

extracting sufficient knowledge from the task environment external to the problem solver and 

incorporating them into the problem solver is the bottleneck. The expert’s knowledge needs 

to be properly represented within the format of the representational structure in order to be 

effective. With knowledge-based AI techniques the knowledge of ‘how to acquire’ the task- 

specific knowledge is also needed to be supplied explicitly to the problem solver. (Davis, 

1979).

2.2.3 Memory Indexing Problem

For task-specific applications knowledge is stored in memory as ‘experience’ in terms of the 

instances of problem solving. This knowledge-base as a result is quite large. A particular 

piece of knowledge (as experience) is retrieved whenever it is appropriate for problem 

solving through some task-specific memory indexing scheme. These methods include Case- 

Based Reasoning (CBR) (Kolodner, 1989) and Explanation-Based Learning (EBL) (De Jong 

and Mooney, 1986 and others). The problem with a large knowledge-base is that at any 

instant only a small percentage of the knowledge is relevant for problem-solving but this 

knowledge has to be accessed by searching a large space each time the need arises. The 

memory indexing schemes take up a prohibitive time for searching a large knowledge base. 

This time can be reduced to some extent by allowing the possibility of retrieving similar 

knowledge with a specific index. Also when the task changes, the knowledge-base will have 

to be re-indexed suggesting the inflexibility of such memory indexing schemes.

2.2.4 The Problem of Scaling

The accuracy of the problem solver depends entirely on the accuracy of the explicit 

knowledge in the knowledge base. The need for the quantity of explicit knowledge 

increases exponentially to meet the accuracy even by an order of magnitude. Moreover, for 

complex problems the quantity of knowledge to represent the task environment may be 

prohibitive. The necessary level of accuracy of explicit knowledge may be unachievable.
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The knowledge-base for ‘common-sense’ internal to a problem solver could be enormous 

even for simple problems (Lenat, Prakash and Shepard, 1986).

2.2.5 The Representation Design

It is required to represent a task in ways that not only reduce the explicit knowledge to a 

manageable level but provide maximal computational benefits. To achieve this goal various 

representations were developed. These include production systems (Newel and Simon, 

1981), Predicate calculus (Nilson, 1980), fuzzy logic (Zadeh, 1965), connectionist networks 

(Rumelhart and McClelland, 1986), semantic networks (Brachman, 1979), frames (Minsky, 

1975), conceptual structures (Sowa, 1984), scripts (Schank and Ableson, 1977), the multiple 

representation of generic tasks (Chandrashekharan, 1986) and others. The directed design of 

the representations implies a priori knowledge of the task and the algorithmic ways of 

tackling it forcing a human to remain in the problem solving loop.

(See Angelene, P., (1993) for the rest of the references for the above subsections).

2.2.6 The Software Crisis

Computer science is based on assumptions that everything could be predefined and then 

executed by following a predefined set of instructions. That is, the program does not change 

once it has been written. Software comprises a set of instructions designed to perform a 

particular task and the instructions are executed blindly. This principle has lead to the so- 

called software crisis (Vaario, 1994): “The more complex software becomes, the exponential 

more time it takes to finish”. The recently developed Genetic Programming based on the 

principle of evolution has been successful in tackling the crisis.

2.3 Artificial Intelligence seen as Emergent Intelligence

New AI models have approached AI with a different perspective by avoiding the model’s 

reliance on explicit knowledge. These models are typically based on the notion of 

emergence. Traditionally, the notion of emergence involves the idea of a system behaving in 

a way which cannot be predicted through some simpler linear combination of low level units.
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In the context of evolutionary algorithms, based on the abilities of empirical credit 

assignment, the emergent intelligence relies on two main assumptions about computational 

problemsolving (Angelene, 1993).

1. The task environment itself is often a more concise representation for knowledge specific 

to the task than any internal representation of the explicit knowledge.

2. Direct interaction of a simple problem solver with the task environment permits the task 

environment’s inherent constraints to be expressed naturally in the problem solver during the 

problem solving process. As a result, pertinent task-specific knowledge emerges from the 

interaction of the problem solver with the innate constraints of the task environment. 

Emergent intelligence thus avoids the problems associated with explicit knowledge by 

removing explicit knowledge.

The next section will briefly discuss few recent models that differ from conventional AI in 

their problem solving approach.

2.3.1 Evolutionary Algorithms

Evolutionary algorithms such as genetic algorithms (Holland, 1975; Goldberg, 1989), 

evolutionary programming (Fogel, Owens, Walsh, 1966; Fogel, 1992) and evolution- 

strategies (Rechenberg, 1973; Schwefel, 1981; Back, Hoffmeister and Schwefel, 1991) are 

population based search and optimization techniques inspired by natural evolution. These 

algorithms belong to a class of weak methods that use task-independent representations 

and operation. Being population based, they are capable of simultaneously searching a 

large space of potential solutions. Task-specific knowledge is acquired while solving a 

problem (Angelene, 1993). The important characteristics of evolutionary algorithms that 

enable task-independent way of problem solving are: firstly they model the task

environment in terms of a ‘fitness function’ that maps an individual of a population into a real 

number which is then fed back to the problem solver. This minimal feedback provides a 

strong separation between task environment and the problem solver, avoiding reliance of the 

problem solver on explicit knowledge. Secondly the operators that manipulate the 

representational structures in evolutionary algorithms are representation-specific rather than 

task-specific enabling the evolutionary algorithms to be applicable to a wide range and type
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of problems. Most importantly, the evolutionary algorithms employ an ‘empirical credit 

assignment’ for local credit assignment by creating variations in the representational 

structure through the representation-specific operators. Over time the fitness of individuals 

in the population improves and the search becomes constrained towards the regions of 

individuals that have higher fitness in tackling the problem at hand. The empirical credit 

assignment allows the evolutionary algorithm to adapt its search dynamically in the problem 

space allowing the task-specific knowledge to emerge from the interaction of problem 

solver with the task environment.

2.3.2 Reactive Systems

Brooks (1991) has proposed a new approach to AI known as behavior-based AI to 

demonstrate that complex intelligent behavior can be easily produced by systems which 

have simple ‘reactive’ behaviors with regard to the environmental events. The key idea is that 

the world is its own best model and the representations are formed through interactions with 

the world. By introducing the notions of situatedness and embodiment Brooks has 

demonstrated how mobile robots can be made to generate robust behavior in uncertain and 

unpredictable environments. Situatedness means that the robots are situated in the physical 

world directly influencing the behavior of the system. Embodiment refers to the fact that the 

robot has a body and experiences the world directly. The result of their actions are fed back 

on their own sensory inputs. Intelligent behavior stems from the situation in the world, the 

signal transformation within the sensors, and the physical coupling of the robot with the 

world. The intelligence emerges through the system’s interaction with the environment and 

also interactions among its own components.

2.3.3 Eclectic Hybrids

The conventional AI typically employed representations that were neat. That is, the 

solutions to a problem could be expressed in terms of data-structures that were easily 

interpretable and modifiable. This enabled easier modification of the representational 

structures and the methods were well suited in the context of Engineering-oriented AI 

applications. Cognition, on the other hand, is a result of a blend of representations. In its 

new perspective, AI combines various representations such as geneticism, connectionism, 

reactivism and hybridism, all capable of mimicking the processes in natural systems to
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realize the notion of emergence. AI is thus characterised in terms of the ‘representational 

eclecticism ’ (Thornton, 1993) which is simply the idea that effective cognition may involve 

mixing and matching representational strategies in an opportunistic fashion. Representational 

eclecticism implies a rejection of the idea that cognitive representations will necessarily be 

‘neatly structured’ and/or ‘elegant’. Recent methods typically combine a number of 

paradigms that employ various representations to build complex AI systems that can 

adapt to unpredictable environments.

2.3.4 Automatic Programming

In recent years, automatic programming techniques have been developed with the goal of 

overcoming the software crisis. To make computers learn to solve problems without being 

told how to solve a problem through a set of instructions has been one of the main goals of 

Machine Learning. The recently developed Genetic Programming (GP) paradigm has been 

successful in achieving this goal. In the context of problem solving the approach recasts or 

reformulates a given problem as requiring the discovery of a computer program that 

produces some desired output when presented with particular inputs. That is, GP stresses the 

fact that many seemingly different problems can be reformulated as problems of program 

induction. Genetic programming provides a way to do program induction by searching the 

space of possible computer programs for an individual program that is highly fit in solving 

the problem at hand using the fitness information. The search process is domain-independent 

and employs the Darwinian selection mechanism. GP in essence uses genetic algorithms to 

search the space of computer programs. The representational structures that undergo 

adaptation in GP are hierarchically structured computer programs, typically expressed as 

LISP S-expressions built in terms of the function and terminal sets (that is the variables) of 

the problem domain. The size, shape and the contents of the programs can change 

dynamically during the process of problem solving. The hierarchy enables a hierarchical 

problem solving process similar to the top-down approach. Also, the computational effort 

and complexity could be reduced with automatically defined functions (ADFs) that enable 

reuse of code through modularity. Apart from solving a variety of interesting, non-trivial 

problems GP has been successful in evolving programs that generate complex behaviors. 

The question that naturally arises is whether GP is a viable tool for combining other 

paradigms to create hybrids that are more effective in solving complex problems. Research in
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recent years has suggested that GP can successfully evolve neural network structures and 

weights (Zhang and Miihlenben, 1993; Poli, 1996). Recently GP has been applied to the 

evolution of connectionist learning rules for feed-forward networks (Radi and Poli, 1998). 

These rules are found to perform better in terms of speed and generalization. The work that 

is suggested in this thesis employs a different approach to evolve network and learning for 

self-organizing neural networks. Because of its general approach it might be possible to 

extend it to other types of neural networks. The approach emphasizes on exploiting the 

strengths of the representation and applying a few clever strategies. The role of GP in 

evolving flexible learning rules and their implications in the context of artificial intelligence 

need to be understood (Govinda Char, 1997b; 1997c).

2.3.5 Constructivist Systems

The reactive systems approach where a human is included in the design loop has its 

limitations in terms of the complexity of the design process and also in providing solutions to 

predefined tasks (Vaario, 1992). When the number of possible behaviors increases the 

complexity of the system increases exponentially. The predefined solutions will not suffice. 

Instead the system should itself find solutions through adaptation to a given environment. 

Intelligence in this context is viewed just as an adaptive behavior (Vaario, 1994). How to 

model intelligence as an adaptive behavior becomes the obvious issue. This assumption 

through which intelligence is viewed as an adaptive behavior adds a new dimension to AI 

and paves a way to a plethora of new approaches for building intelligent systems for 

uncertain and unpredictable environments. Also, an adaptive behavior can be constructed 

gradually from primitive components through the processes of development and evolution. 

The AI in this new context is known as ‘constructivist’ AI. The computational model is 

based on the Artificial Life approach (Langton, 1989; Langton, Taylor, Farmer and 

Rasmussen, 1992). The behavior of an individual (an agent) is based on neuron-like 

computational elements and emerges as a result of local interactions among similar elements 

and with the environment. The interesting aspect of the modelling method is in its approach 

to construct artificial neural networks that resemble biological morphogenesis and 

phylogenesis of nervous system. The networks are non-homogeneous in the sense that the 

neurons have different characteristic properties depending on the development process. The
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computational model is production-rule-based and does not employ any traditional neural 

network learning algorithm to realize a complex behavior.

Conclusion

The reliance on explicit knowledge and the associated problems suggest that there is a need 

to identify new techniques that are task-independent and have the ability to acquire the 

task-specific knowledge during problem solving. AI, in its new perspective is based on the 

notion of emergence in some form (an organism or some form of learning or a complex 

behavior). It clearly rejects the idea of a predefined set of instructions capable of evolving 

systems that can exhibit intelligence similar to natural systems and possibly capable of 

out-performing these. Instead it proffers a wide range of techniques and models 

employing paradigms that mimic natural processes to create systems that are based on 

natural processes. In general, these systems are endowed with properties such as self

replication, adaptation and self-organization that are characteristics of Artificial Life.

The next chapter will focus on evolutionary computation.
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Chapter 3

Evolutionary Computation

This chapter provides a short overview of the field of evolutionary computation. The 

genetic algorithm and the genetic programming paradigms will be discussed to a greater 

detail and compared in terms of the representations they use and their approach to problem 

solving.

3.1. An overview

The term ‘evolutionary computation’ (EC) refers to computation and problem solving with 

evolutionary algorithms that offer a number of advantages over traditional techniques. 

These advantages are multifold (Fogel, 1997) including the simplicity of the approach, its 

robust response to changing environments, its flexibility and its applicability to a wide range 

of problems in various domains. Evolutionary algorithms employing different 

representations with a variety of representation-specific operators and selection methods 

have been successfully applied to a wide range of difficult problems (where the variables 

typically interact in a nonlinear way). However it has been established that a particular 

algorithm or a representation would not hold across all problems. Some of the 

representations could be more effective as compared to others depending the type of problem 

that is being addressed.

The most important aspect of evolutionary approach to problem solving is their simplicity 

and expedience. Evolutionary algorithms typically encode solutions to a given problem 

through various representations which form the population for the search mechanism. These 

representations include fixed-length or variable-length strings, hierarchical trees, and others. 

The solutions evolve over time through effective manipulation of these representations via 

genetic operators that mimic the mechanisms of selection, crossover and variation. Being 

population based algorithms, these explore many different possibilities simultaneously (that 

is in parallel) during the search in the space of solutions. In addition, evolutionary 

methods due to their ability to perform credit assignment have the following advantages 

over the traditional techniques and the standard weak methods. Firstly, evolutionary
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algorithms model the task environment as a fitness function that maps each individual in a 

population into a real number. The search mechanism sees only this number to guide the 

search. These algorithms employ ‘empirical credit assignment’ (Angeline, 1993) that 

works by creating novel structural variations in the population through probabilistic 

application of representation-specific operators and maintains the best solutions (local 

maxima/and or minima) as the search progresses. Secondly, the genetic operators are 

representation-specific rather than task-specific, allowing the task-specific knowledge to 

emerge from the interaction of the algorithms with the task environment.

Together, the representation, the genetic operators and the fitness function dictate the ultimate 

success of any evolutionary model. Based on different representations, types of genetic 

operators, and problem solving approaches, various evolutionary models have been 

developed. Some of these models are briefly discussed.

Evolution strategies (ESs) were first introduced by Rechenberg (1973) and was further 

developed (Schwefel, 1981; Back, Hoffmeister, and Schwefel, 1991). The emphasis in these 

techniques is on the set of behaviors of an individual in the population rather than on the 

acquisition of structures with high fitness. The search space is a space of potential 

behaviors. An individual is composed of a set of behaviors and the fitness function rates the 

behavior, each of which is a feature, of the individual, and the interaction between the 

features is unknown. ES systems use a fixed-length real-valued string as representation and 

employ both crossover and mutation operators (see, sections ahead) to manipulate the 

string. These systems have proved to be quite effective in solving parameter optimization 

problems.

Evolutionary programming (EP) was independently developed by Fogel, Owens and Walsh 

(1966). EP models reproductive relationship between a species behavior in successive 

generations. Although Fogel (1992) used a form of mutation as the reproductive operator, 

generally EP systems are not committed to any specific representation or operators. Fogel has 

given an excellent exposition on aspects of evolution that are important to model to achieve 

computational effects. EP remains an active area of research.
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Genetic algorithms (GAs), one of the most popular and widely used search and optimization 

methods was developed by John Henry Holland of the University of Michigan, in the 1960s 

and 1970s. The idea behind genetic algorithms was to identify and model mechanisms of 

natural adaptation and apply these computational models for solving engineering problems. 

Genetic algorithms emphasise structure and its manipulation for modelling adaptation and 

evolution. These algorithms typically use a binary-valued, fixed-string representation and 

use crossover and mutation as reproduction operators. A mathematical basis was provided 

later by Holland for understanding the importance of genetic recombination to evolution and 

adaptation, through the Schema Theorem and the Building Block Hypothesis (Holland, 

1975; Goldberg, 1989). This work led to his landmark book, Adaptation in Natural and 

Artificial Systems. Much work has been done on the theoretical foundations of genetic 

algorithms (see, e.g., Holland, 1975; Goldberg, 1989a; Rawlins, 1991; Whitley, 1993a; 

Whitley and Vose, 1995).

Genetic Programming (GP) has recently been introduced by Koza and Rice (1993). GP is 

basically a genetic algorithm for evolving computer programs that can solve problems. 

Genetic programming uses programs, in the form of recursive tree structures, as the basic 

representation. The genetic programs are subsets of LISP program tailored to particular 

domains and employ syntax preserving crossover for reproduction. This paradigm has 

proved to be highly successful in tackling many difficult problems (Kinnear, 1994). As with 

genetic algorithms, efforts have been made to explain genetic programming in terms of the 

Schema Theorem and Building Block Hypothesis (Angeline, 1993; Tackett, 1994; O’Reilly 

and Oppacher, 1994).

Other adaptive programming paradigms include Tierra (Ray, 1991) and FOIL (Quinlan, 

1990). Ray pioneered a unique programming paradigm through the creation of Tierra system, 

a world which consists of assembly language programs that represents the organisms. Tierra 

breeds digital organisms which vie for memory and CPU time as metaphor for food and 

sunlight. It loosely emulates a shared memory MIMD computer with a 5-bit zero-operand 

instruction set. Each organism, that is an assembly language program has its own virtual 

CPU with registers, stack, program counter, and flags. The system is initialized with a single 

self-replicating ‘ancestor’ program residing in memory. This program copies itself into a
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block of free memory and executes a special instruction which write-protects the new ‘child’ 

copy and allocates to it a virtual processor. The reproductive cycle then begins anew. As 

memory runs out organisms that are oldest or most defective are deleted to make room. 

Mutation helps to maintain diversity in the population as the generations progress. 

Organisms that finally survive adapt a variety of survival and competition mechanisms. 

These include code optimizations and biological properties such as parasitism and immunity.

FOIL system generates declarative code in the form of Prolog programs using nested loop 

that perform hill climbing. The outer loop generates the clauses, that is, lines of program 

code whereas the inner loop generates the literals for each clause. The program generation 

process is driven by a heuristic measure during the construction of a clause. The heuristic 

examines the mutual information gained due to the repartitioning of the training data through 

addition of a literal. If this addition does not change partitioning then it conveys no 

information whereas if it creates a more accurate partition then it increases mutual 

information. FOIL has been successfully tried on a number of machine learning problems.

Together, evolution strategies, evolutionary programming, genetic algorithms and genetic 

programming form the backbone of evolutionary computation. The potential advantages of 

evolutionary computation over the standard computational mechanisms are highlighted in the 

article by Forrest (1991). The following section describes genetic algorithms.

3.1.1. Genetic Algorithms

Genetic algorithms basically encode the solutions to a problem on a simple chromosome-like 

data structure which forms the individuals in the population. This population of chromosomes 

representing the genotypes is decoded into phenotypes that are evaluated for their fitness. 

Typically, fitness proportionate selection is used to select parents from this population. A 

genetic recombination (crossover) operator is applied to the selected pair of parents to 

produce offspring that form the next generation. An excellent introduction to genetic 

algorithms is given by Whitely (1990), Mechalewicz (1992), Srinivas (1994), and Mitchell 

(1996).
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An evolutionary cycle consisting of ‘evaluation-selection-recombination-creation’, running 

on a population (having a fixed sized N) of genotypes, is shown in figure 3.1. Parents 

are selected based on their fitness from the population of individuals. Genetic recombination 

(crossover) is applied to pairs to create offspring which will be inserted into the new 

population forming the next generation of individuals. The evolutionary cycle corresponds to 

a search through a space of potential solutions and repeats for a number of generations. Each 

genotype represents a point in the search space. Such a search requires balancing objectives 

that are conflicting: exploiting the best solutions and exploring promising regions of the 

search space. The flow diagram explains the process.

Size of new 
population 

N ? ^ '

NoYes

Combine traits of parents 
to produce two offspring

Create an initial random 
population of size N

Evaluate fitness of each 
individual

Select parents based on 
their fitness

Insert offspring into the 
new population

Figure 3.1: An evolutionary cycle.

The various stages of the evolutionary cycle are now explained in detail.
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3.1.1.1. Population

The first step in implementing a genetic algorithm is to create a random population of 

genotypes. The size N of this population is fixed. In a canonical genetic algorithm, a 

genotype is typically a binary string of fixed length, though other representations abound. The 

size of the search space is related to the number of bits in the problem encoding. As an 

example, for bit string encoding with length I the search space is 2l and forms a hypercube 

whose comers are sampled by the genetic algorithm. It is essential to maintain the diversity in 

the population, as this diversity is the driving force for the search mechanism. Some of the 

recent versions of genetic algorithms (Whitley and Starkweather, 1990) use a smaller 

distributed population in place of a single large population. A distributed search has been 

shown to improve the search mechanism and has provided better performance in terms of 

accuracy and consistency on a large range of problems including a set of deceptive 

problems (Baker and Grefenstette, 1989). A sample population of four genotypes is shown 

in figure 3.2.

Genotype label Genotype

1 0 0 0 0 1 0 0 0
2 0 0 1 0 0 0 1 0
3 1 1 0 0 0 0 1 0
4 0 0 1 1 0 1 1 0

Figure 3.2: A population of genotypes

3.1.1.2. Fitness Evaluation

The genotype is decoded into a phenotype. The genotype in natural systems is the genetic 

blueprint, that is, strings of DNA. The genotype when decoded gives rise to the phenotype, 

that is, the individual with the characteristics (such as height) dictated by the genetic 

blueprint. The fitness of the individual is measured in terms of the ability and the strength of 

the individual to survive under a set of extremely diverse conditions and still compete for the 

goal. In engineering problems, depending on the nature of the optimization problem to be 

solved, the phenotype can represent any parameter and hence is totally problem dependent. 

Further, the phenotypic representation can be direct such as a real-valued parameter of a
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function, control parameters for a process control application, strategies in a game, etc., or 

indirect such as a neural network architecture or a learning rule which are further evaluated 

for their fitness in solving particular tasks. As an example (from Mechalewicz, 1992), 

consider an optimization of a simple function of a real variable ‘x ’, defined as:

f(x) = x. sin(10n .x) + 1.0 (3.1)

The genotype, in the form of a binary string, when decoded, yields the phenotype V  of the 

above function, which is further evaluated for its fitness in solving the given function. In this 

particular problem, the aim was to find ‘x ’ from the range [-1..2] which maximizes the 

function f(x). The fitness of the phenotype in maximizing f(x), in turn, decides the chances 

of the particular genotype to reproduce and survive to compete in further generations. Genetic 

algorithms interchangeably use the notion of the evaluation function and the fitness function. 

These are very well explained in Whitley (1990). The fitness can be defined in terms of 

maximizing or minimizing a function. In the former case, the goal is to reach a higher value 

whereas in the latter case it is to reach the lowest possible value, as in the case of 

minimizing an error function. Figure 3.3 shows a sample population of four genotypes, for 

a problem which has an integer-valued optimization parameter. Each genotype is 8-bits 

long and is decoded into its phenotype. The fitness values for an arbitrary task are shown.

Genotype label Genotype Phenotype Fitness

1 0 0 0 0  1 0 0 0 8 10
2 0 0 1 0 0 0 1 0 34 20
3 1 1 0 0 0 0 1 0 194 60
4 0 0 1 1 0 1 1 0 54 30

Figure 3.3: The genotypes are decoded to form integer phenotypes 
with given fitness values.

3.1.1.3. Selection

A variety of selection schemes can be used to select individuals from the given population. 

Some of the selection schemes are superior to others. A canonical genetic algorithm uses a 

fitness proportionate selection scheme. Figure 3.4 illustrates a roulette wheel selection 

scheme.
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Figure 3.4: Mapping individuals onto the slots of a 
roulette wheel.

In this scheme, the population is viewed as a mapping on to a roulette wheel, where each 

individual is allocated a space in proportion to its fitness. Thus individuals with higher fitness 

are allocated wider slots and have a greater chance of being selected during the spin of the 

wheel. By repeatedly spinning the roulette wheel individuals in proportion to their fitness are 

chosen to form the new generation. The number of times an individual is expected to 

reproduce is given by: f/fav, where /  is the fitness of the individual and f av is the average 

fitness of the individuals in the population. As an example, individual 3 will be selected for 

reproduction with a probability Pind of:

Pind = 60/ (10+20+60+30) = 60/120 = 50% (3.2)

Fitness can also be assigned based on a genotype’s rank in the population (Baker, 

1985), (Whitley, 1989) or by sampling methods such as tournament selection (Goldberg, 

1990b). One of the popular methods used recently is the k-tournament selection originally 

introduced by (Wetzel, 1979). In this selection scheme k individuals are drawn from the 

population for replacement. The most fit individual among these are chosen as the ‘winner’ 

of the tournament and becomes a parent for the next generation. This process is repeated for 

the population size. The tournament selection method has been shown to out-perform the 

roulette wheel selection method by maintaining the diversity in the population. Also, 

tournament selection is more amenable when implementing parallel genetic algorithms 

(Miihlenbein, 1987) and (Tanese, 1989). Rank based selection schemes, along with 

distributed populations, have shown very promising results for a broad range of problems. 

Another selection scheme is the steady-state selection where only a few individuals are

28



replaced in each generation, usually least fit individuals being replaced by offspring 

resulting from crossover and mutation of fittest individuals.

3.1.1.4. Trait Inheritance and Recombination

After selection the parents are crossed over to form two offspring. As an example, consider 

two genotypes, representing the parents. The fragments between the two parents are 

swapped. The parents and the offspring are shown in figure 3.5 along with a 1-point 

crossover. The crossover operator randomly chooses a point on each of the parents and 

crosses over the parts of strings to produce the offspring. This operation, in effect, mimics 

sexual reproduction in natural systems. The offspring when decoded inherit the traits of the 

parents. The effect of crossover is to generate new sample points in the search space 

and thus maintain the diversity in the population. The strength of genetic algorithm lies in 

the crossover operator and how effective is this operator in exchanging structural information 

between the parents and also in exploiting problem-specific information.

Parent-1 0 0 0 0 0 0 0 0
-------- X--------

Parent-2 1 1 1 1 1 1 1 1

Offspring-1 0 0 0 0 1 1 1 1

Offspring-2 1 1 1 1 0 0 0 0

Figure 3.5: Crossing over the parents to produce 
offspring-1 and offspring-2.

The crossover operator is applied with a probability of typically 0.6. The effects of a 

variety of other types of crossover operators such as a 2-point crossover (Schulze-Kremer, 

1992) and uniform crossover (Ackley, 1987; Syswarda, 1989) have been studied and 

seemed to perform very well in some problem domains providing further insights into the 

GA search mechanism.
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3.1.1.5. Mutation

After recombination, the mutation operator, a unary operator, can be applied to the offspring. 

The mutation operator will flip some of the bits on a chromosome rarely. Mutation not only 

introduces new traits into the population but also can prevent the possible loss of diversity 

at given bit positions in a string.

Offspring 0 0 0 0 0 0 0 0  
Offspring 0 0 0 0 1 0 0 0  
(Mutated) P

Figure 3.6: Mutating an offspring at locus 5.

Figure 3.6 illustrates an offspring mutated at locus 5. Unlike crossover, the probability of 

applying mutation to the population is very low, of the order of 1%. DeJong (1988), through 

extensive experimental studies, has proved that such a minimal mutation during the mating 

stage can avoid the search from getting trapped into ‘local optima’, that is, on to solutions 

that are only locally optimal rather than globally optimal.

3.1.1.6. The Schema Theorem and the Building Block Hypothesis

According to the Schema Theorem, genetic algorithms work by discovering and combining 

good building blocks, known as schemata (the substrings) that contribute a high fitness to 

the genotypes that contain these blocks. A schema is a string of the alphabet of genes with 

the wild cards (or ‘don’t cares’) at certain positions. As an example, the 10-bit string 

11 ***1***1 is a schema. There are 210 different instances of this schema. Thus a schema 

represents a hyperplane or subset of the search space. A schema is characterised by an order 

and a defining length. The order is the number of bits that are defined in a schema. The order 

defines the unique characteristics of a schema. The defining length is the distance between 

the first and the last string positions and defines the compactness of information contained in 

a schema. The above schema has an order of 4 and a defining length of 9. The schema has 

a fitness at the time of evaluation which is defined as the average fitness of all strings in the 

population matched by the particular schema. A schema with an ‘above average’ fitness 

survives and propagates in larger numbers to the next generation in comparison with those
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that have a fitness ‘below average’. This is decided during the process of selection. The 

genetic algorithm seeks optimal performance through short, low order and high fitness 

schemas, the hypothesis known as the Building Block Hypothesis. Short low-order schemas 

are less susceptible to crossover disruptions and more likely to maintain and transmit the 

valuable information in the population. Forrest (1993) explains the notion underlying this 

hypothesis. The genetic algorithm initially detects biases toward higher fitness in some low- 

order schema and converges on this part of the search space. Over time, it detects biases in 

higher order schemas by combining information from low-order schemas by means of 

crossover and eventually converges on a small region of the search space that has high 

fitness. In the context of search, Holland has shown that for a population of the size N the 

number of schemas or the traits that are simultaneously searched for is around N and has 

referred to this property as implicit parallelism. Although the genetic algorithm would seem 

to be explicitly evaluating the number of strings or chromosomes in the population, it is 

actually estimating the average fitness of a much larger number of schemas. Consequently, 

Holland argues that a genetic algorithm assigns credit not to the strings in the population but 

to schemata of the population. These concepts are well explained in Whitley (1990), Rawlins 

(1991), Mechalewicz (1992), and Mitchell (1996). Crossover and mutation can also destroy 

and create instances of schemas as explained below:

• The effects of crossover on schema: Consider two schemas:

|  cind

B = ^

Assume a population that contains these schemas. The crossover places the two portions of 

each of the schemas in different offspring. By choosing a crossover site at locus ‘6’, schema 

‘A’ survives the crossover and propagates to the next generation whereas the schema ‘B ’ does 

not survive the crossover. Thus short, low order schemas are less likely to be disrupted by 

the crossover operator.

The effects of mutation on schema:



Consider the schema A = (***l i *****) mutation operator flips Os to Is and vice-versa.

A flipping at locus 4 or at locus 5 can destroy the schema. A mutation can also recreate the 

lost schema, for the same reasons.

3.1.1.7. Deception and Royal Road

Epistasis is a term that refers to non-linear interactions of genes. Recent work has shown 

that the schema theorem does not apply to problems with epistasis, suggesting that the 

structure of some problems can mislead the genetic algorithm. These problems are called 

deceptive. Goldberg (1989c) has introduced this concept in terms of the notion of hardness. 

To study deception, synthetic problems were constructed which assign specific fitness values 

to specific bit patterns to exercise precise control over the problem structure. The idea was to 

investigate the formation of a high fitness string from building blocks with a low average 

fitness. Such Royal Road functions are the opposite of deceptive functions. They are 

constructed in such a way as to be easy for the genetic algorithm to solve and compare the 

best performance of the genetic algorithm with the theoretical predictions. Forrest and 

Mitchell (1993), while analysing such problems, noticed that highly fit building blocks get 

attached, by coincidence, to adjacent unfit building blocks which propagate throughout the 

population, a property known as hitch-hiking. The effect was that the genetic algorithm failed 

to converge as expected in probability to theoretical predictions. This problem was overcome 

by the insertion of introns in the genetic algorithm (Forrest and Mitchell, 1993a).

3.1.1.8. Hybrid Algorithms

Hybridizing genetic algorithms with the other optimization techniques has yielded better 

results in many optimization problems. These hybrid algorithms can be computationally 

more expensive. Such an approach combines local hill-climbing with global hyperplane 

sampling. Davis (1991) and Miihlenbein (1991) have studied hybrid algorithms and have 

shown that these can outperform the standard genetic algorithm.

3.1.1.9. Parallelism in the Genetic Algorithm

In natural systems millions of individuals exist and work in parallel. In principle, such a 

parallelism can exist in any population based computational systems. Different models have 

been tried to exploit parallelism in different ways. Further, with a proper selection scheme
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such as a tournament selection scheme, the evaluation and crossover operations can be 

shown to occur in parallel. Whitley (1993b ), Goldberg and Deb (1991), Tanese (1989) 

have described the various parallel models. The parallel genetic algorithms combine the 

hardware speed of parallel processors and the software speed of intelligent parallel searching 

and have been successfully applied for function optimization and combinatorial optimization 

problems (Miihlenbein, 1992).

3.1.2. Genetic Programming

Automatic programming, that is, computer programs automatically writing computer 

programs, has been an active area of research in the field of artificial intelligence. 

Evolutionary computation techniques have been tried with limited success to automate 

program induction. Evolutionary programming was applied (Fogel, Owens, Walsh, 1966) to 

evolve computer programs in the form of finite-state machines. Cramer (1985), Fujiki and 

Dickinson (1987) succeeded in evolving computer programs with genetic algorithms. 

Recently, Koza and Rice (1993, 1994) have successfully applied genetic algorithms for 

program induction, that is, for breeding computer programs for solving problems. In this 

context, genetic programming is also referred to as a genetic algorithm for program 

discovery. The notion that any task can be recast or reformulated as the problem of requiring 

the discovery of a computer program that can solve the given task led to the genetic 

programming paradigm. Furthermore, computer programs being universal can be applied to 

solve problems in any domain. Thus the GP paradigm is applicable to a wide variety of 

problems in diverse areas. The following sections give a background of genetic programming.

3.1.2.1. Population

Genetic programming employs almost the same evolutionary cycle as in Figure 2.1 for 

evolving computer programs. The individuals (the genotypes) in the population, that is, the 

genetic programs are composed of a set of domain-specific functions and terminals known as 

‘primitives’ that are effective in solving the problem. The programs are represented as trees 

that are recursively composed of all possible combinations of these primitives. Koza evolves 

LISP programs, that is, LISP S-expressions, that can be expressed as ‘parse trees’ (Pagan, 

1981). Lisp is chosen for its simplicity and convenience as all operations in this programming 

language can be implemented as function calls. These expressions while ensuring
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syntactically correct programs, can be evaluated on-the-fly. A simple Lisp expression (for 

the equation E = me , where m is the mass of a particle and c is the velocity of light) and its 

parse tree, with one function (*) and two terminals (c and m), is shown below.

Lisp expression Parse tree

m(* (m (* c c ) ) )

Figure 3.7: The Lisp expression (*(m(* c c))) 
and its Parse tree.

In LISP, the operators (that is, the functions) precede their arguments. The arguments can 

themselves be functions again, calling other functions depthwise, recursively. The phenotype, 

depending on the context, is the behavior, or semantics, of the computer program. The 

concept of program induction is explained through an example. Consider the ‘symbolic 

regression’ problem, where the aim is to evolve a program that represents an equation for 

fitting a curve for a given set of data points. With genetic programming, the first step is to 

define the primitives, that is, the set of appropriate functions and terminals for the problem 

domain. The function set and the terminal sets for this problem are defined as:

F[s]={+, -, *, % }; T[s] = { X}; 

where the functions in the function set F[s] are the arithmetic operators, each taking two 

arguments. The division operator is a protected division operator (Koza, 1993). The terminal 

is a global variable that can be assigned the data values. The role of designer expertise is 

crucial, as a propitious choice of the primitives and the test suite greatly influence the 

performance of GP (see, Kinnear, 1994; O’Reilly and Oppacher, 1995). Once the primitives 

are defined, the next step is to create a population of trees with the function set as the 

internal nodes and the terminal set as the leaf nodes. Depending on the problem domain, 

various problem-specific functions can also be defined (Koza 1993, 1994). Angeline (1993) 

refers to these as “different languages” for solving different set of problems. The primitives 

can also include a variety of functions for iteration and recursion. A sample program
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composed with the above primitives, is shown in figure 3.8. This program represents an 

individual in the population.

Figure 3.8: A sample genetic program

Because the trees are recursive, their depths and the complexity vary. This makes the GP 

paradigm very interesting as the complexity of the solutions increase over time instead of 

remaining constant as in the case of the genetic algorithm. The search space is a hyperspace 

consisting of all possible compositions of functions that can be recursively composed of the 

set of functions and terminals. As with the genetic algorithms, the diversity and the size of the 

population are important factors that contribute to successful program induction. Genetic 

programming typically uses a steady state model (Reynolds, 1992) instead of a generational 

model, maximizing the diversity in the population and also minimizing memory resource.

3.1.2.2 Fitness Evaluation

In the course of the search for a correct program, many such candidate programs will have to 

be executed in a simulated environment and assessed for their fitnesses. If the simulated 

environment happens to be the representative environment, it should enable the programs to 

work correctly for unseen data as well, that is, to leam to generalize from the simulated 

environment. The fitness is the only information that the algorithm has to search for 

potential solutions and is exceptionally important for successful program discovery. The 

evolutionary mechanism, through its individuals, will ruthlessly exploit the fitness function. 

Any bugs in the fitness function can be recognized only by examining the individuals as they 

evolve. These concepts are discussed in detail in Koza (1993, 94) and in Kinnear (1994). For 

the symbolic regression problem, each program is run on a number of fitness cases (a set of 

inputs for which the correct output is known). The program is assessed for its fitness 

depending on how well it performs on each of the fitness cases it encounters.
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3.1.2.3 Selection

Genetic programming typically uses a tournament selection scheme for selecting the parents 

for reproduction. The selection is fitness proportionate as the programs evolve according to 

their fitness in solving the given problem and are generally evaluated directly. Other 

selection methods stated earlier in the GA context can also be employed.

3.1.2.4. Trait Inheritance and Recombination

The genotypes, that is the genetic programs are manipulated by crossover to produce 

offspring that inherit the traits from the parent programs points as shown in figure 3.9. The 

programs are rooted, point-labelled trees with ordered branches. Genetic programming 

employs syntax preserving crossover to retain the validity of the programs. The crossover 

operator is ‘blind’ in the sense that it uses a probabilistic bias to choose the crossover point. 

Typically, an internal node (with a probability of 90%) on each of the parent programs is 

selected at random. The subtrees of the two programs are swapped over at the crossover 

point resulting in two offspring. Also, the crossover operator does not contain the problem 

specific knowledge thus reflecting the power of the GP in evolving potential solutions. A 

variety of crossover operators such as ‘hoist’ (Kinnear, 1994) and ‘greedy recombination 

operator’ (Tackett, 1994) have been shown to improve GP performance. Altenberg (1994) has 

discussed self-crossover and modular crossover operators in an attempt to generate structural 

regularity in the programs. O’Reilly (1995) has described a variety of crossover operators 

and their effects on the performance of GP.

Offspring-2Offspring-1

Figure 3.9: Crossing over the parents to produce two offspring.
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3.1.2.5. Mutation

Mutation in genetic programming involves introducing a new subtree in an existing 

individual program. This is done by removing a subtree of the program and replacing the 

same with a newly created random tree. Koza (1993), through empirical demonstration, 

argues that the role of mutation is insignificant in genetic programming. By choosing a very 

large population, Koza stresses that the recombination operator is sufficient in maintaining 

the diversity in the population. Tackett (1994) explains this in the context of the genetic 

algorithm. Considering a fixed location on a fixed-length genotype, if this location 

contained the same value for all the individuals in the population, then mutation is the only 

way to change the value. In the case of GP, there is no concept of a ‘fixed locus’ in the 

genotype as programs of new sizes, shapes and complexity are generated continuously. The 

only way of losing the values would be if a member of the function set or the terminal set 

were to disappear completely from the population. This is extremely unlikely with a large 

population, where there will be hundreds of each type of nodes. Hence the canonical GP does 

not use the mutation operator. Currently a variety of mutation operators are being 

investigated along with the recombination operator (O’Reilly, 1995).

The cannonical GP employs only the crossover operator to introduce diversity in the 

population. Most of the individuals in the initial population will normally have poor fitness 

values. Over time, through selection and crossover, the average fitness of the population will 

increase and the GP is likely to converge to a solution with the maximum fitness. The 

performance of GP should be assessed over a number of runs to see any changes in 

parameters.

The non-cannonical GP includes innovative ideas in devising new operators, finding new 

applications and strategies and extended research in the cannonical GP.

3.1.2.6 The search mechanism

Genetic programming being a genetic algorithm for program discovery, the search is for a 

program in a large space of computer programs. The search mechanism is again a directed 

search with fitness function (acting as a heuristics) guiding the search. In contrast, hill- 

climbing is a memoryless, local search method where the successors of current state are
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generated and evaluated according to the heuristics (a function). If the successor state having 

the best heuristic value (closer to the goal) is better than the current state, that successor state 

is chosen to become the new current state, and the process is reapplied. Otherwise the process 

terminates. Thus the algorithm converges to the top of the nearest hill in the fitness landscape 

(for maximization) or seeks the bottom of the closest valley (minimization). There is no 

guarantee that the local extremum is global extremum. Simulated annealing (Kirkpatrick, 

Gelatt and Vecchi, 1983) is an extension of hill-climbing. The idea of simulated annealing 

comes from physics where a temperature is initialized to a predetermined starting value and 

reduced gradually according to a cooling schedule, to zero eventually. Inferior moves are 

given chances of being accepted. When the temperature is zero the search behaves in the 

same way as that of the hill-climbing, the difference being that a neighbour is accepted under 

a probability which is related to the temperature. If it is rejected then another unexamined 

neighbour is tried. This strategy increases the probabillity of locating the highest point in the 

search space. The effectiveness of simulated annealing depends on the definition of the 

domain-dependent neighbourhood function. The cooling schedule plays an important role in 

convergence. An alternative method is to store all states which have been heuristically 

evaluated but not expanded in a priority queue. These states are ordered according to their 

heuristic value, with the best being first, and the resulting algorithm is called ‘best-first- 

search’. Although the algorithm is guaranteed to find the globally optimum value, the 

priority queue can grow exponentially with the depth of the search performed. Beam search 

(Lowerre and Reddy, 1980) is very much like best-first-search with the exception that the 

priority queue (memory) is set at some size limit. Thus there is a limit to which states the 

search can be backed up to. Tackett (1994) argues that there is a strong correlation between 

‘beam search’ and genetic programming with a fixed population serving as memory and 

fitness to stochastically assign priority. In this context, Tackett explains that the states of the 

genetic ‘search tree’ are the expression. Rather than being the successors of a single initial 

state, the initial population of N expressions are N randomly generated states each of which is 

visited by being created and evaluated, as an expression for fitness. A cloning operator is 

employed which maps a state of the search tree into itself. This is important as it enables the 

search to ‘remember’ a state from generation to generation allowing search to back up to that 

state. The selection operator along with the recombination, cloning and possibly the mutation 

operator creates the successors of expressions in batches of N new states called a generation
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replacing the previous generation gap ( De Jong 1975; 1993). The population of N expressions 

is analogous to a beam search priority queue with limited size N, ordered by fitness (Tackett, 

1994).

3.1.2.7 The Schema Theorem and the Building Block Hypothesis: the GP analogy

Genetic programming evolves programs in the form of LISP S-expressions. These 

expressions are represented hierarchically as their parse tree. Does this hierarchy in the 

structure of a program (that is, the solution) represent the hierarchy in problem solving as 

well? Is there a hierarchical process in GP? If so, does the search mechanism exploit this 

hierarchy while searching the space of potential candidate programs? O’Reilly (1995) 

addressed these issues by first providing a clear distinction between a hierarchical process and 

hierarchical solutions and argues that GP may be proceeding in a manner of a hierarchical 

process for a number of reasons. O’Reilly defines the hierarchical process as a process that 

identifies and promotes useful primary elements, combines them into composite, modular, 

reusable, and successfully higher-level components of a hierarchy and guides high- level 

component assembly into a hierarchical solution. This approach is analogous to an efficient 

bottom-up design method. A hierarchical solution has a combination of hierarchical structures 

and control. The hierarchical control is the execution of the task through the accomplishment 

of a series of subtasks. The subtasks can themselves be recursively subdivided. This approach 

in essence reflects a top-down strategy. In programs, hierarchical structure is the existence of 

nested levels of procedures and functions. O’Reilly suggests the following reasons to 

conjecture that GP might be proceeding in a hierarchical way.

• Because GP’s solutions are hierarchical, the process that produced these solutions may 

also be hierarchical.

• A hierarchical process, by introducing efficiency in the search mechanism, may enable 

finding solutions. It is easier to correctly complete a simple subtask than a complex task. 

Also, the same subtask if needed, can be reused.

• GP crossover depends on a hierarchical representation of programs. If swapping over of 

subtrees can be assumed as swapping subtasks, the crossover mechanism may be 

responsible for the exploration and combination of sub-control.
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• GP may be employing the human design approach which in turn requires a hierarchical 

process.

• Hierarchical processes are ubiquitous in evolution. GP being a simplified model of 

evolution, is a hierarchical process.

• Because GP is a specialized GA, one can speculate that a building block behavior may 

occur in GP as well. If so, it may be possible to develop a schema theorem and a building 

block hypothesis for GP.

It is argued that GP in its canonical form does not exploit a hierarchical process to obtain 

hierarchical solutions. The solution may be hierarchical because the primitive chosen for the 

problem may implicitly encode the knowledge about the task decomposition and execution. It 

is questioned whether GP, on its own, is able to evolve high-level primitives by successful 

combination of low-level primitives and proceed to combine these high-level primitives to 

obtain a hierarchical solution. Defining these primitives as ‘general purpose’ primitives and 

through empirical demonstration O’Reilly proves that GP on its own lacks the power of a 

hierarchical process. By developing a Scheme theorem for GP (GPST) and Building Block 

Hypothesis (BBH) she concludes that GP may not be conducting its search exploiting a true 

hierarchical process. Earlier Koza (1993) attempted building new primitives by extracting and 

encapsulating a portion of the program and defined these as ‘define-building-blocks’ which 

are given a name on-the-fly. When a program containing this module is evaluated, the 

definition of the module in the module library is used. Angeline (1993) creates such 

primitives through the ‘compression’ operator and extends his system as ‘GLIB’, for Genetic 

Library Builder. These operators dynamically modify the representations during the run. 

Tackett (1994), while applying GP to a complex real-world problem on automatic target 

recognition, has demonstrated the evolution of successful building blocks that duplicate in the 

population at higher frequencies. Koza (1994) has introduced an extension to the Canonical 

GP and defines these representations as ‘Automatically Defined Functions’ (ADFs). These 

functions coevolve dynamically during a run enabling the GP to solve complex problems 

efficiently. That is, the primitives for the ADFs are defined initially by the designer but the 

ADFs evolve in terms of these primitives during the run. This approach is similar to the 

hierarchical decomposition of task into subtasks, though ADFs explicitly do not control a

40



hierarchical process. Unlike the ‘compression’ and ‘define-building-block’ operators, ADFs 

maintain the representation structure static.

3.1.2.8 Deception and Royal Road: the GP analogy

By formulating a class of constructional problems, Tackett (1994) tries to create simple GP 

analogies to ‘Royal Road’ and ‘Deception’ problems common to the studies of classical 

genetic algorithm. In these constructional problems, the fitness is based on the syntactic form 

of the expression rather than semantic evaluation. The reason is to allow a precise control 

over the fitness structure in the space of expressions. A particular target expression is 

assigned a ‘perfect’ fitness while the sub-expression resulting from the hierarchical 

decomposition will have intermediate fitness. If the intermediate fitness values increase 

monotonically with the complexity of the sub-expression, such problems are defined as 

‘Royal Road’. Alternatively, if some intermediate expressions have lower fitness than the 

sub-expressions they contain, they are defined as ‘Deceptive’. Thus, the credit for partial 

solutions is precisely controlled to control the problem complexity. Through a special 

recombination operator, and different selection schemes, Tackett has empirically 

demonstrated the effects of these on building blocks and search.

3.1.2.9 Hybrid Algorithms

O’Reilly (1995) has compared GP to alternative algorithms by solving exactly the same class 

of problems. Stochastic Iterated Hill Climbing (SIHC) and Simulated Annealing (SA) were 

found to out-perform GP in some cases, suggesting that synthesising a localised search 

strategy into GP will complement its global, population-based search and improve it.

3.1.2.10 Parallelism in Genetic Programming

As with the genetic algorithms, there have been efforts to parallelize GP (Koza, 1993; Poli, 

1996). The advantages sought are in terms of massively parallel evaluation as the evaluation 

function can be distributed over a number of processors and also in linear speed up. Poli, in 

a recent work describes a new form of genetic programming which is suitable for the 

development of fine-grained parallel programs. Known as PDGP (Parallel Distributed 

Genetic Programming) that is based on graph-like representation for parallel programs which 

is manipulated by crossover and mutation operators which guarantee syntactic correctness of
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the offspring. The advantage is that PDGP can be seen as a paradigm to optimize acyclic 

graphs which need not be interpreted as programs but as designs, semantic nets, neural 

network topologies and so on.

(Some of the references are available at the bibliography section. See Tackett (1994), 

Angelene (1993), Whitley (1993) and Mitchell (1996) for the rest of the references).

Conclusion

Evolutionary computation (EC) through its population based approach offers a different 

method of problem solving with a number of advantages as compared to conventional 

techniques. Whether evolutionary algorithms can be effectively hybridized with other 

paradigms such as connectionist networks and the role of such models in the domain of AI 

need to be investigated. The next chapter discusses few possible approaches.
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Chapter 4

Evolution of Structure and Learning

Evolutionary algorithms in recent years have been shown to be quite successful as learning 

systems on their own and also as meta-learning systems for other paradigms such as 

connectionist networks. A novel approach is proposed to demonstrate how the genetic 

programming paradigm can naturally be combined with connectionist networks to synthesize 

potential connectionist learning while interacting with a given environment. The 

assumptions, the justifications and the approach are discussed.

4.1 Introduction

As the ability to learn is entwined with intelligent behavior, learning is desirable for 

both natural and artificial systems. Artificial systems typically aim at forms of learning that 

resemble human learning through a variety of computational models some of which are 

inspired by nature. These include models of connectionist networks that mimic, in some 

respects, the information processing mechanisms in natural systems through the 

implementation of brain-like structures, associated learning algorithms and evolutionary 

methods that work on Darwinian principles. The success in learning to solve a given problem 

depends primarily on two factors: firstly, on the type and the complexity of the problem itself 

and secondly, on the efficiency of the learning mechanisms in tackling the given level of 

complexity. Certain types of problem are easily amenable to conventional algorithms 

whereas some preclude an algorithmic approach for a solution. Typically, the process of 

problem-solving is considered as a search in the solution space. This space can be small, 

easily understood and interpretable. Alternatively it can be very large, poorly understood 

and highly complex. Evolutionary algorithms such as genetic algorithms, being population 

based search methods, are capable of simultaneously searching large, complex spaces and 

have been successfully applied to machine learning problems (Michalski, 1986; De Jong, 

1988). The reasons for opting to use evolutionary paradigms as learning systems are due to 

their attractive properties such as the implicit and explicit parallelisms, robustness as well 

as the expedience (Goldberg, 1988). Also, the processes of natural evolution and natural
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genetics are well known for centuries. In contrast, the fundamental mechanisms in the brain 

are still unknown.

The learning at an individual level (phenotypic learning) is vital to any system, whether 

natural or artificial, and the learning mechanisms at subsymbolic levels provide an 

extremely rich landscape that needs to be explored and exploited for complex machine 

learning tasks. Connectionist networks offer an approach to learning at an individual level 

and have proven to be good at simulating different features of human-like learning, memory, 

detection of analogies or handling of similarities (Heistermann, 1990). They can learn to 

perform tasks for which computational algorithms may not exist (Turing, 1950) and are 

capable of learning from examples. The incorporation of connectionist networks and other 

machine learning paradigms offer flexibility to conventional AI systems in terms of 

knowledge acquisition and processing as the knowledge can be acquired during the process 

of problem-solving. However, the space of possible network topologies and network learning 

algorithms is extremely large and there are no standard design methodologies to implement 

the optimum network or the best learning algorithm for a given problem. Evolutionary 

algorithms due to their ability for parallel search in complex spaces are good candidates for 

neural network design (Branke, 1990; Yao, 1990; Schiffmann, Joost and Werner, 1992; 

Kuscu and Thornton, 1994; Balakrishnan and Honavar, 1995). Genetic Algorithms (GAs), 

Genetic Programming (GP), Evolutionary Strategies (ESs) and Evolutionary Programming 

(EP) have been shown to be quite successful in evolving optimum network architectures and 

also the network weights (Montana and Davies, 1989; Harp, Samad and Guha, 1989; 

Mtihlenbein, 1990; Whitley and Bogart, 1990; Belew, Mclnemey and Schraudolph, 

1990; Fogel, 1992; Degaris, 1993; Angelene, 1993; Zhang, 1995 and others). However, 

their role as meta-learning system for connectionist networks would be extremely 

interesting and is worth investigating. Two major approaches, namely, the neuro-evolution 

and the genetic-connectionism have emerged in this particular direction of research in 

recent years. Neuro-evolution (Whitley and Bogart, 1990; Belew, Mclnemey and 

Schraudolph, 1990; Fullmer and Miikkulainen, 1991; Torreele, 1991; Harvey, 1993; 

Moriarty and Miikkulainen, 1996) employ genetic algorithms for evolving and training 

neural networks. The chromosomes encoding neural network parameters such as connection 

weights, thresholds and connectivity are recombined based on principles of natural selection.
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The selection process is guided by certain fitness measure for the problem in hand. The 

result is the evolution of network(s) capable of solving a given problem. Genetic algorithm, 

by evolving appropriate network weights replaces the standard network learning methods. 

Neuro-evolution is extendible to genetic programming as well. Genetic-connectionism 

(Chalmers, 1990; Baxter, 1992; Dasdan and Oflazar, 1993; Radi and Poli, 1997; Govinda 

Char, 1997, 1997a) uses evolutionary algorithms (such as genetic algorithms/ genetic 

programming) to search the space of network learning algorithms themselves. Further the 

methods offer ways of implementing useful network topologies.

The need for discovery of potential connectionist learning algorithms, new architectures, 

compatible grammars and encoding techniques cannot be over-emphasised as these will not 

only enable us to understand the neuromorphic systems to greater depths but also further the 

progress in artificial intelligence through their use in various domains. Evolutionary 

paradigms as meta-learning systems might prove to be potential tools for this endeavour.

The sections ahead will discuss some of the recent work in neuro-evolution and genetic- 

connectionism after providing a brief introduction to connectionist networks.

4.2 Connectionist networks

Connectionist networks, invariably known as artificial neural networks (ANNs), offer a 

radically different approach to computation through a network of processing elements that 

are often presented as a simplified version of the human neuron in the brain. These 

networks, inspired by the structure of the brain, are massively parallel systems that rely on 

dense arrangements of interconnections of these surprisingly simple processing elements. 

Parallelism, a distributed representation and distributed control are the key features of 

these networks. The network models have been used to address problems that are 

intractable and cumbersome with traditional methods (Dayhoff, 1990). The models being 

rule-implicit have the greatest potential in a number of areas such as speech and image 

recognition and in natural language understanding. The underlying processes require high 

computational rates and the current systems are far from equalling human performance. 

Also, they offer a framework that provides insight into how biological neural
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processing may work. They are unique in their ability to adapt to changing environments and 

to operate on distributed fault-tolerant hardware. The networks typically consist of:

• A directed graph with a number of nodes (processing units) and a number of links 

connecting the nodes in different ways providing a variety of network topologies.

• A state variable associated with each node.

• A real-valued bias associated with each node.

• A real-valued weight associated with each link.

• A transfer function or node activation function for each node determining the state of the 

node as a function of its bias, the weights of the incoming links and the input variables 

associated with the input links.

The nodes sum their inputs via a set of synaptic weights (sum of the product of input 

variable and the associated weights) and pass on the resultant via the node activation 

function to yield an output. The networks are generally characterised by the architecture 

(that is, the number of neurones, the way they are arranged and connected via the synaptic 

weights) and the learning algorithms (that is, the learning rules that modify the weights) 

based on particular topologies.

4.3 The role of evolutionary algorithms in connectionism

Designing neural networks is a complicated task as it involves many variables, discrete 

and continuous, interacting in a complex manner and there are no heuristics to guide the 

design phase. Recent methods in which the networks can learn to configure themselves 

have gained prominence (Honavar, 1988; Ash, 1989; Falhman, 1990; Hall, 1990; Hirose, 

1991; Smotroff, 1991; Sanger, 1991; Romaniuk, 1992). Two general approaches were 

identified: the destructive and the constructive methods. The destructive methods for 

network design start with a larger network and then prune off the excessive nodes and 

connections (nodes that are not actively used) to arrive at the optimal network size. The 

method is computationally expensive (Seitma and Dow, 1988). The constructive methods 

(Ash, 1989) start off with a small number of nodes and add nodes until the required 

performance is achieved. The method also has limitations in terms of computational time. 

These suggest a need for techniques that can automatically generate the optimal network
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architecture (and optimal learning rules) in a short time and allow testing on a number of 

possible solutions. The search space of the possible connectionist network architectures is 

vast, deceptive and multimodal. Deceptive means that similar network architectures can have 

different performance. It is also possible that different network architectures can exhibit 

similar performance making the search space multimodal. The enumerative and random 

methods are highly inefficient in exploring such complex spaces. Also, the space of 

possible learning algorithms is extremely large to be explored by standard methods. 

Evolutionary algorithms have been employed to automate the design process mainly for two 

reasons. Firstly, due to their capability for parallel search in large, complex spaces and 

secondly, with the hope that the evolutionary approach might yield networks and learning 

mechanisms that are more flexible. Genetic methods definitely provide a robust and faster 

search procedure and are found to be excellent tools to automate the design process. Further 

these methods are amenable to parallel processing.

The major issue in genetic-based design of artificial neural networks is that of the encoding 

strategy or the mapping scheme. How should one encode the neural network architecture or 

the learning mechanism effectively in the genotype in order to achieve an optimal 

solution? In the context of network induction (the architecture) the encoding strategy should 

enable one to capture potentially useful designs for the given task and also provide the 

capability for generalization. In the context of learning it should enable evolution of 

efficient learning rules for a given task environment. Moreover, the evolutionary 

algorithms employ different genotype representations. Certain representations might help 

effective encoding strategies when compared to others.

A few encoding schemes with genetic algorithm and genetic programming in contexts of 

neuro-evolution and genetic-connectionism will be discussed in this chapter.

4.3.1 The Genetic Algorithm approach

Over the years genetic algorithms have been applied to connectionist networks in several 

ways:

• Given the architecture (that is, the number of layers, the number of nodes in each layer and 

the connectivity pattern) genetic algorithms have been used to determine the connection
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weights (Whitley and Hanson, 1989; Montana and Davies, 1989; Muhlenbein 1989; 

Heistermann, 1989; 1990; Wilson, 1990; Whitely, Starkweather and Bogart, 1990; 

Belew, Mclnemey and Schraudolph, 1991; Karunanithi, Das and Whitley, 1992). Genetic 

learning is compared with other standard learning algorithms such as the back-propagation 

(BP) (Rumelhart, Hinton and Williams, 1986) that are susceptible to the problems of 

local minima (Muhlenbein, 1989).

• Given a standard learning rule for training the network, genetic algorithms have been 

successful in finding the architecture of the network (Harp, Samad and Guha, 1989; 

Miller, Todd and Hegde, 1989; Whitley and Bogart, 1990; Muhlenbein, 1990; Bomholdt 

and Graudenz, 1992; Romaniuk, 1993; Jacob and Rehder, 1993; Jones, 1993a; 1993b).

• Given both the architecture and the learning rule of the network, optimal parameters for 

the learning mle are found with the genetic algorithms (Belew, Mclnemey and 

Schraudolph, 1991).

• Given a standard learning algorithm, optimal training sets have been evolved with the 

genetic algorithm during structure evolution (Romaniuk, 1993).

• Given the architecture of the network, genetic algorithms are employed to find the fittest 

learning mle based on certain fitness measures (Chalmers, 1990; Dasdan and Oflazar, 

1994).

4.3.1.1 Network induction (Neuro-Evolution)

Optimization of neural network architectures or finding a minimal network for a particular 

application is important as the complexity of a network will dictate the speed and accuracy 

of the learning and its overall performance. Generally the size of the network should be as 

small as possible but sufficiently large to ensure the sufficient fitting of the training set along 

with a capability for generalization.

With genetic methods the encoding mechanism that encodes the neural network (the 

phenotype) into a string (the genotype) is cmcial. The way in which the coding should be 

realized is not straightforward (Nolfi and Parisi, 1994). In most models the representations 

of the genotype and phenotypic forms coincide. That is, the inherited genotype directly and 

literally describes the phenotypic neural network. These direct encoding methods, also 

known as strong specification schemes are good at capturing the connectivity patterns within
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small networks very precisely facilitating rapid evolution of finely optimized, compact 

architectures (Miller, Todd and Hegde, 1989). However, the scheme has led to the 

problem of scalability as the number of bits of information to encode a neural network 

increases exponentially with the number of neurons. For larger networks the direct 

encoding scheme increases the search space exponentially for the evolutionary process to be 

effective (Kitano, 1990). Also, the direct genotype-phenotype mapping scheme is 

biologically implausible. In biological mapping the phenotypic behavior emerges as a result 

of non-linear interactions among the genes. Indirect mapping schemes, typically encode a 

set of instructions in the genotype for network development. The network architecture can 

be specified by growth rules (Mjolsness and Sharp, 1987), by sentences of a formal 

language (Muhlenbein and Kindermann, 1989) or by a graph generation grammar (Kitano, 

1990) and grammar based encoding, such as cellular encoding (Gruau, 1993). The latter 

mapping schemes have yielded better network architectures with shorter and compact 

genotypes overcoming the problem of scalability. The evolved neural networks have been 

shown to outperform networks with fixed architectures (Schiffmann, Joost and Werner, 

1992; Kitano, 1990; Whitley, Starkweather and Bogart, 1990; Wong, 1994; Maniezzo, 

1994; Nolfi and Parisi, 1994).

A number of novel neuro-evolution techniques have emerged recently. These employ a 

variety of potential encoding strategies for evolving neural networks capable of dealing 

with complex problem domains. A few of these will be described and discussed briefly.

a. Fullmer and Miikkulainen (1991) have proposed an encoding mechanism that is loosely 

based on marker structure of biological DNA. The advantage of this mechanism is that it 

allows all aspects of network structure including the number of nodes and their connectivity 

to be evolved through genetic algorithm. Thus every aspect of network architecture is 

controlled by evolution. Previous approaches were rigid in this respect yielding networks 

that were either inefficient or incapable of performing the required task. The marker-based 

encoding represents a chromosome as a homogenous string of integer values that is 

manipulated by the genetic algorithm. Similar to biological DNA markers separate individual 

node definitions. Each definition contains all the information that the nodes need to carry 

out the computations. The number of layers or the degree of connectivity emerge from
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individual node functions instead of being specified a priori. The number of nodes in the 

network depends solely on the number of start/end marker pairs found in the chromosome. 

Each node definition contains the identification of the node, its initial activation value, and a 

list specifying its input sources and weights. A neuron may receive input from other nodes, 

from the sensors and from its own output. The number of connections are determined by the 

distance between the start and the end markers, allowing each node to use as many or as few 

inputs as it requires. The chromosome is implemented as a linear list but is treated as a 

continuous circular entity, that is a node definition may begin near the end of the list and 

continue at the beginning of the list. Node definitions are not allowed to overlap. Also, the 

method avoids disruption due to crossover that might yield invalid phenotypes. The 

effect of mutation depends on where it takes place. It is smooth if mutation occurs on 

the weights while resulting in significant changes on the markers. The nodes are evaluated 

in the order in which they are read off the chromosome.

It is demonstrated that the networks are capable of evolving high-level behavior similar to 

that of finite-state automata. In addition the networks are able to develop an internal world 

model by evolving an understanding of their sensory inputs and actions.

b. Moriarty and Miikkulainen (1996) have developed an efficient neuro-evolution system 

called SANE (Symbiotic, Adaptive, Neuro-Evolution) with good scaling properties. Unlike 

most approaches to neuro-evolution where each individual is a complete network, SANE’s 

individuals are single neurons (hidden neurons in a three-layered network). Each neuron acts 

as a subcomponent with specialized features and is an object of evolution. The authors 

argue that evolution at the neuron level promotes population diversity and allows SANE to 

better evaluate these subcomponents as parts of the final solution. Neurons are defined 

in bitwise chromosomes that encode a series of connection definitions, each consisting of an 

8-bit label and a 16-bit weight field. The absolute value of the label determines where the 

connection is to be made. The neurons connect only to the input and the output layer. If the 

decimal value of the label, D, is greater than 127, then the connection is made to output unit 

D mod O, where O is the total number of output units. Similarly if D is less than 127, then 

the connection is made to the input unit D mod I, where I is the total number of input units. 

The weight field encodes a floating point weight. Once each neuron has participated in a
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sufficient number of networks, the population is ranked to the average fitness values. It is 

argued that SANE could be implemented with a variety of different neuron encodings and 

architectures that allow recurrence.

c. SANE is found to be suitable in solving simpler tasks in just a few generations. The 

reason is that evolving individual neurons often produces a more efficient genetic search. In 

complicated tasks and those requiring high precision SANE has been found to be inefficient 

and slow. This problem is addressed by implementing a hierarchical SANE that integrates 

both the neuron level and network level of evolution in a single framework (Moriarty and 

Mikkulainen, 1996a). An outer-loop network-level evolution is incorporated on top of 

SANE neuron population. Thus two separate populations are maintained: a population of 

neurons and a population of network blueprints. The neuron population provides efficient 

evaluation of the building blocks, while the population of network blueprints learns effective 

combinations of these building blocks. Initially the population of blueprints is random 

resulting in a similar random combinations as performed in SANE. As the blueprint 

population is evolved, the neuron combinations become more focused towards the best 

networks. The hierarchical approach thus combines the early efficient exploration of SANE 

with the late exploitation of the network-level approaches. The hierarchical SANE employs 

an encoding mechanism that is an extended version of that of the SANE.

d. Another interesting approach is the incremental design of neural networks through 

artificial evolution (Harvey, 1993). Harvey presents a novel methodology for the design of 

complex systems through genetic algorithm. Through a framework known as SAGA (Species 

Adaptation Genetic Algorithm), Harvey has demonstrated that genetic algorithms can be 

made to work in ill-defined task domains where the search space can increase in complexity 

indefinitely. The key aspect of this approach is the evolution of real-time recurrent neural 

networks through variable-length genotypes. The networks are considered as dynamical 

systems rather than tools to perform computations from input to output. Also, the evolution 

takes place in a genetically converged population. The framework is applied to evolution of 

control systems for mobile robots engaged in navigational tasks using low-bandwidth 

sensors. The encoding mechanism employs two chromosomes. One of these is a fixed-length 

bit string encoding the position and size of visual receptive patches. Three 8-bit fields per
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patch are used to encode the radii and polar co-ordinates of the camera’s circular field of 

view. The other chromosome is a variable-length character string encoding the network 

topology which is interpreted sequentially. First the inputs units are coded for, each preceded 

by a marker. For each node the first part of its gene can encode node properties such as 

threshold values. This is followed by a variable number of character groups, each 

representing a connection from that node. Each group specifies whether it is an excitatory or 

a veto connection and then the target node indicated by a jump type and jump size. The jump 

type allow for both absolute and relative addressing to avoid invalid phenotypes. The internal 

and the output nodes are handled in a similar way with their own identifying genetic markers. 

The scheme allows for a variable number of hidden nodes. The crossover operator is 

designed carefully to cope with the variable-length genotype.

In the above methods both the network architecture and the connection weights are 

genetically determined. It has been argued that these methods can only yield a network 

that is entirely innate and there is no learning (Parisi, Cecconi and Nolfi, 1989). The 

alternative approach has been to train the evolved networks with a standard network 

learning algorithm such as the back-propagation algorithm. However, back-propagation has 

a number of drawbacks. Firstly, it has a scaling problem. Although it is highly suitable for 

simple training problems its performance falls off with problem complexity and makes it 

unfeasible for many real-world applications. Secondly, it tends to become stuck at local 

minima (opting to choose local rather than the global solutions). Thirdly, it fails to handle 

discontinuous node transfer functions. This precludes its use on common node types and 

simple optimality criteria (Montana and Davies, 1990). Genetic algorithms are employed to 

evolve weights in these cases. In some cases, they are used to evolve a good set of initial 

weights that can be further modified by a standard learning algorithm (Miller, Todd and 

Hegde, 1989). The problem of scaling has been overcome by using modular networks 

consisting of a number of independently trained sub-networks (Muhlenbein, 1990; Happel 

and Murre, 1994, and others).

Modularity is an important aspect in problem solving and especially, in the design of 

neural networks as it offers a number of advantages (Muhlenbein, 1990; Ossen, 1990; Nadi, 

1991; Smieja and Muhlenbein, 1992; Happel and Murre, 1994, and others). Firstly, it allows
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a complex problem to be expressed in terms of simpler sub-problems as modular 

components. Secondly, the modules and their interactions are easily interpretable. Thirdly, it 

offers a natural way of dealing with scalability and finally the learning time can be reduced 

considerably when compared to that in flat (non-modular) networks. It has been shown 

experimentally that the global learning algorithms such as the backpropogation algorithm fail 

to converge when applied to modular networks (Muhlenbein, 1990) suggesting that the 

algorithm could not make use of the structural information. This is a drawback as the 

application-specific information can be coded in the structure but the algorithm fails to use 

this. Also, for larger networks the learning time grows exponentially. With modular 

networks each of the modules can be trained quickly for a specialized task. It is possible that 

the modular elements can learn separately in a hierarchical way (Nadi, 1990). The recent 

work by Happel and Murre (1994) suggest a number of design principles for designing 

modular networks with genetic algorithm and investigates the relations between structure and 

function. The results suggest better learning and generalization capabilities of evolved 

modular network architectures. How effective is an encoding scheme in implementing 

modularity is an important question. The schemes described above (a, b, c, d) do not seem to 

address the issue of modularity nor alternative learning methods.

The question that naturally arises is whether there are better connectionist learning rules that 

can replace the evolutionary algorithm while providing a greater insight into the space of 

learning mechanisms and how effective are the evolutionary algorithms in searching the 

space of these rules?

4.3.1.2 Induction of Learning (Genetic-Connectionism)

Genetic-connectionism (Chalmers, 1990) is the idea of using evolutionary algorithms such 

as genetic algorithm to search the space of potential connectionist learning rules. Learning 

and evolution are the two fundamental forms of adaptation where the notion of emergence 

plays a key role. This notion has been expressed in a number of ways through a variety of 

definitions by various researchers (Harvey, 1993), (see chapter two). Others (Chalmers, 

1990; Vaario, 1993) conceptualise emergence in terms of achieving a complex high-level 

behavior as a result of combining simple low-level computational mechanisms in simple 

ways. In the context of this definition both evolutionary methods and connectionist
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systems offer a paradigm of emergence. The kinds of emergence found in genetically based 

systems differ from those found in connections systems (Chalmers, 1990). Connections 

systems support synchronic emergence or emergence over levels: at a given time a host of 

low-level computations takes place which when looked at from another level can be 

interpreted as a complex high-level functioning. By contrast, the genetic-based systems 

support diachronic emergence, that is emergence over time; primitive computational systems 

gradually evolve towards greater complexity. The road to achieving synchronic emergence 

through evolutionary methods is to loosen the connection between the genotype and the 

phenotype. When the genotype encodes high-level features directly and symbolically there is 

no room for synchronic emergence. To achieve synchronic emergence the phenotypic 

characteristics need to emerge indirectly from the genetic information. This also enables an 

open-ended search as the relationship between the genotype and the phenotype is indirect and 

emergent.

When a process of learning evolves through the process of evolution, the evolution is seen 

as a second-order adaptation that produces individual systems that are not immediately 

adapted to their environment but that have the ability to adapt themselves to many 

environments by the first-order adaptive process of learning. Thus the learning mechanisms 

themselves are the objects of evolution. Based on the encoding strategy the synchronic and 

diachronic levels may be distinct or may merge.

Further, recent studies on the effect of learning on evolution (Hinton and Nowlan, 1987; 

Belew, 1990) suggest that learning that is acquired during a lifetime (individual learning) 

alters the shape of the search space in which evolution operates. That is, learning can be very 

effective in guiding the search, even when the specific adaptations that are learned are not 

communicated to the genotype. In the context of connectionist learning it is necessary to 

investigate its effect on evolution in order to understand how learning and evolution interact.

The following sections will discuss how genetic algorithms were used in evolving a 

number of neural network learning rules by encoding the dynamic parameters of the network 

in the genotype and subjecting these to selection pressures.
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A few cases are discussed. In the first case, a supervised learning rule is evolved for a single 

layer feed-forward architecture. The evolved learning rule needs to associate specific input 

patterns with specific output patterns. The desired output patterns are presented to the 

network as a training signal. In the second case a supervised learning is evolved for local 

binary neural networks. The architecture is flexible. In the third case an unsupervised learning 

rule is evolved for a fixed architecture. The desired output is not known in this case. The 

evolved learning rules need to induce this information.

• The supervised learning rule

Chalmers (Chalmers, 1990) employed a fully connected single-layer feed-forward network 

with sigmoid output units and with a built-in biasing input to allow for the learning of the 

thresholds. A maximum connection strength of twenty was imposed, to prevent possible 

combinatorial explosion under some learning procedures. The network is known to have 

powerful learning rules such as the delta rule for supervised learning tasks. The aim was to 

see whether such rules could be evolved. As it is not possible to express all kinds of weight- 

space dynamics under a single encoding the dynamics are constrained. The constraints 

imposed in these experiments are that: the changes in the weight of a given connection 

should be a function of only information local to that connection, and the same function 

should be employed for every connection. For a given connection from input unit j  to output 

unit i, local information includes four items:

cij - the activation of the input unit j\

Oj - the activation of the output unit z; 

tt - the training signal on the output unit z;

wtJ - the current value of the connection weight from input j  to output z.

The genotype encodes a function F given by:

AWy = F ( ^ ,  oit tif Wjj) (4.1)

A genotype of 35 bits was employed. This assumes that the function F to be a linear 

function of the four dependent variables and their six pair-wise products. The genotype

55



specifies the ten coefficients with the help of an eleventh scaling parameter. With this 

approach Chalmers succeeded in evolving a number of potential learning rules that included 

the well-known delta rule. The rules that evolved were evaluated for their fitness by testing 

them on a number of various linearly separable (Minsky, 1988) leamable tasks on different 

networks. The fitness of the learning rule is obtained by evaluating its performance on each of 

the tasks (environment) and taking the mean fitness error over all tasks. Whether the learning 

rules that evolve are specifically adapted for the tasks that are present during the 

evolutionary process or whether they are capable of learning a wide range of tasks that were 

not present during the evolutionary process depends on the diversity of the environment.

A more recent method (Baxter, 1992) based on a similar approach evolves local binary 

neural networks (LBNNs) consisting of interconnected binary nodes operating in a discrete 

time, synchronous fashion. The nodes are divided into three classes, that is input, hidden and 

output nodes. However, the architecture, that is which nodes are connected, is completely 

unrestricted, rather than layered as in the back-propagation networks. The network operates 

in two phases, the training and the testing. During the training phase the input and the output 

nodes are clamped by the environment, whereas during the testing phase only the input nodes 

are clamped. The network weights include fixed and leamable weights. The leamable 

weights are adapted according to a local learning mle. The networks are represented as bit 

strings. It is assumed that each network in the population has the same number of nodes, n, 

which is fixed for the whole evolutionary run. The network architecture is specified by 

determining which nodes are connected by non-zero weights, whether those weights are 

leamable or fixed, and for the fixed weights, their values. This information is coded using 

three bits for each pair of node in the network. The method allows to employ a uniform length 

bit strings avoiding problems due to crossover that are typically seen in variable-length 

strings. The learning mle is a Boolean function of two variables and the training of the 

network is totally supervised. The network is evaluated based on its ability to learn a number 

of Boolean functions. The aim of this work is basically to demonstrate that a network’s 

learning ability must primarily be a property of its architecture, and not some sophisticated 

method of setting its weight. The work is in contrast to the back-propagation networks that 

have a complex algorithm to set weights, but limited architectures.
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• The unsupervised learning rule

These experiments employ the Self-Organizing-Map (SOM) architecture (Kohonen, 1990). 

Kohonen raises a number of questions on the process of self-organization: firstly, are there 

possibly many optimal algorithms that lead to similar organization produced by the 

Kohonen rule? Secondly, does the Kohonen algorithm ensue from some more general 

principles? Thirdly, can the principle also be expressed for a more general structure?

Dasdan (1993) uses a genetic algorithm to evolve a number of unsupervised learning rules 

such as a Kohonen learning rule (Please refer to Chapter 5 for details). In this case the target 

value of the exemplars is not known. These experiments suggest that there exists a number 

of potential unsupervised learning algorithms that are capable of enforcing topological 

ordering similar to that achieved by the Kohonen learning rule. The equation for the weight 

adaptation is given by:

-̂Wij = Y (Wij.xj, t,yj ) (4.2)

where:

Wy - the current value of the connection weight;

Xj - the signal on the input node; 

t - the training iteration number;

yj - the correlation between the signal x and m, m being the weight associated 

with the output neuron.

The final equation that evolved included a scaling parameter and fifteen other coefficients. 

A number of potential learning rules similar to those of the Kohonen rule were evolved along 

with the Kohonen rule. With the SOM architecture, the definition of the optimal mapping is 

still unclear. A mean error of the Euclidean distances between input patterns and the weight 

vectors of their winning cells at the output was used as a criterion for the optimal mapping. A 

map with the smallest error value was the best map with highest fitness.
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In all these cases the evolved learning rule(s) are subsequently applied to adapt the network 

weights in order to evaluate their fitness (that is the fitness of the learning rules). The rules 

that adapt the weights effectively survive. It is to be noted here that the synchronic and the 

diachronic levels are distinct.

An excerpt from Chalmers (Chalmers, 1990) that emphasizes the criticality of the coding 

strategy is included here:” The encoding strategy is crucial. Whether it should allow for 

many possible weight-space dynamics or should the space be constrained using a priori 

knowledge? How could we possibly find a coding of possible dynamics that includes as 

possibilities all the diverse learning algorithms proposed by humans today? The above 

experiments employed small networks and the relevant information was known in advance 

that a simple quadratic formula can provide a good learning mechanism. The encoding of 

more ambitious mechanisms such as the back-propagation may not be so simple but would 

need highly complex genetic coding or else a simple but very specific coding that is rigged 

in advance to allow back-propagation as a possibility. When we do not know the form of a 

plausible learning algorithm in advance- and this is the most interesting and potentially 

fruitful application of these methods- the problem of coding strategy becomes vital. Only so 

much can be coded into a fmite-length bit string. One way around the limitation of pre

specified coding of dynamic possibilities would be to move away from the encoding of 

learning algorithms as bit-strings, and instead encode algorithms directly as function trees. 

In recent report, Koza (1990) has demonstrated the potential of performing genetic-style 

recombination upon function-tree specification of algorithms. This method of “genetic 

programming” uses recombination and selection in a fashion very similar to traditional 

genetic methods, but with the advantage that under evolutionary pressures such function- 

trees may become arbitrarily complex if necessary. This open-endedness may be a good way 

of getting around the limitations inherent in fixed genetic coding. Furthermore, the method is 

a very natural way of encoding dynamic, algorithmic processes of the kind we are 

investigating here..”

The following sections will investigate the role of genetic programming in contexts of 

neuro-evolution and genetic-connectionism.



4.3.2 The Genetic Programming approach

Genetic Programming (GP) encode possible solutions to a problem as programs that, when 

executed are the candidate solutions to the problem. These programs are expressed as parse 

trees and consists the terminal and the function sets of a given problem environment. The 

search algorithm that is used in GP is the classical genetic algorithm. With appropriate 

terminals, functions and/ or interpreters standard GP can go beyond the production of tree

like programs (Poli, 1996). Its role in connectionism has yielded powerful insights into the 

design and learning aspects of neural networks and will be the focus of the next few 

subsections.

4.3.2.1 Network induction (Neuro-Evolution)

GP has been successfully applied to evolving neural network architectures along with 

network weights (Koza, 1993). However, the method does not provide a general approach to 

implement standard networks nor a mechanism for finding networks with minimum 

complexity (Zhang and Muhlenbein, 1993). Recently alternative methods have emerged 

and a few will be discussed.

a. The individual structures that undergo adaptation in genetic programming are 

hierarchically structured computer programs. These programs can be expressed as LISP S- 

expressions that can be graphically depicted as rooted, point-labelled trees with ordered 

branches. With such a representation for the genotype a variety of encoding schemes is 

possible. For instance, the representation can indirectly encode a rewriting grammar such as 

the cellular encoding (CE) (Gruau, 1993). This grammar is interpreted in a recursive manner 

generating a family of related networks. The advantage of this approach is that larger 

networks can be evolved with a very compact code providing a wide range of possible 

network architectures. The method, being highly successful in the evolution of Boolean 

networks (both standard and modular types), has recently been applied for designing 

network architectures with real-valued weights (Friedrich and Moraga, 1996).

b. Network architecture and weights have been optimized simultaneously with an 

evolutionary approach known as the Breeder Genetic Programming (BGP) (Zhang and 

Muhlenbein, 1993). The genotype of each network is represented as a tree whose depth and
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width are dynamically adapted to the particular application by specifically defined genetic 

operators. The weights are trained by next-ascent hillclimbing search and employs a fitness 

function that quantifies the principles of Occam’s razor. Occam’s razor states that 

unnecessarily complex models should not be preferred to simpler ones. Hence the method 

prefers a simple architecture to a complex one. However scaling problems were observed 

due to the direct encoding scheme employed. That is, the genotype directly encodes the 

network architecture. The problem of scaling can be overcome by grammar encoding. 

Again the disadvantage with grammar encoding is that the genotype must be converted to 

phenotype every time the weights are trained. Direct encoding schemes are preferable in this 

context. The recent trend has been towards more compact representation schemes which 

can exploit the advantages of both direct and indirect encoding strategies.

c. Recently, an extended version of genetic programming known as Parallel Distributed 

Genetic Programming (PDGP) is claimed to be highly suitable for development of parallel 

programs (Poli, 1996). The method allows symbolic and neural processing to be combined 

in a natural way through a graph-like representation. PDGP uses a direct representation of 

graphs which, although not completely general, allows the definition of crossover operators 

which always produces valid offspring in an efficient way. Each node on the graph is 

assigned a physical location on a multi-dimensional grid with a pre-fixed shape and limiting 

the connections between the nodes to be upwards. Also connections can only be established 

belonging to adjacent rows, like the connections in a standard feed-forward multi-layer 

network. The limitations of this method has been the increased computational effort to 

develop programs with weighted links as the operators used by PDGP are ineffective in 

optimizing the network weights. However it is successful in optimizing the topology and 

also in discovering a variety of complex network architectures.

4.3.2.2 Induction of Learning (Genetic-Connectionism)

The existing connectionist learning algorithms despite being quite effective in tackling a 

wide range of problems have a number of limitations. It appears that the limitations are 

due to different types of rigidity. The rigidity could be in terms of:

• the architecture where the connectivity of most of the networks is fixed in advance or in a 

mental rigidity. That is, the assumption that the node’s activation function must be a real
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number and that activation should be combined using weighted sums and sigmoid 

functions. These assumptions limit the universality of the learning algorithms (Fletcher, 

1990). Fletcher has shown that nodes in the networks can contain any (bounded) data- 

structure and any processing function appropriate to the problem at hand.

• the way in which the learning algorithms are defined or in the approach through which 

they are implemented. Should there be a general definition for a learning algorithm 

(Govinda Char, 1997a)?

• the constraints. Is the rigidity due to the type of constraints imposed (Govinda Char, 

1997b)?

• the convenience. Is the required flexibility not achievable because of a tendency to use 

simple methods in order to avoid complexity instead of trying to tackle it (Ciff, Harvey 

and Husbands 1992)?

In addition, most of the connectionist learning algorithms hardly resemble learning in 

natural systems. Should this problem be again attributed to the above facts? Also, whenever 

the learning algorithm is known a priori, the designer implicitly has a notion about the way 

the algorithm is going to behave and also sometimes the likely outcomes. In the context of 

artificial intelligence such a strategy cannot be very fruitful when it comes to situations

where the learning algorithm has to deal with unpredictable environments. These clearly

suggest that learning algorithms need to evolve to suit the situation.

Genetic algorithm though was successful in evolving a variety of potential connectionist 

learning rules mostly had the architecture and the type of node activation function fixed a 

priori. The approach limits the potential of evolutionary algorithm in searching a much larger 

space of learning rules. Certain strategies, if employed appropriately might allow the 

desired flexibility and open-endedness.

So far a few researchers (Bengio et al., 1994; Radi and Poli, 1998) have attempted

evolution of learning with genetic programming. Radi and Poli (1998) have used GP to 

discover new supervised learning algorithms. GP allows direct evolution of symbolic learning 

rules with their coefficients (if any) rather than the simpler evolution of parameters of a fixed 

learning rule. A feed-forward network with input, hidden and output layers is used to
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explore a larger space of rules using different parameters and different rules for the hidden 

and the output layers. The results suggest that the evolved rules are faster (converge in a few 

epochs) and have better generalisation capability than the standard back-propagation learning 

when tested on a number of sample problems.

The method proposed in this thesis uses an entirely different approach. It is based on 

combining two potential strategies: the bottom-up and the top-down. Also, the method 

attempts to exploit the strengths that are inherent to the representation that GP employs, that 

is the aspects of hierarchy and modularity that the representation offers. Most importantly, 

it is based on providing a very general definition for learning and on the imposition of a 

single potential constraint within the representation. The framework that is used is a self- 

organizing neural network. The assumptions and the justifications will be stated first.

• The assumptions

1. A learning rule is defined simply as a sequence o f interacting concepts such as 

association, competition, co-ordination and adaptation. This definition is necessary to proceed 

further.

2. The network weight adaptation is an integral part of the representational structure, that is 

the genetic programs and hence the evolutionary process. This strategy is indeed a potential 

constraint and is the key to the simulations. In the context of the first assumption, the 

network weight adaptation can be thought of as an abstract symbolic concept.

These assumptions are justified based on the facts that learning in natural systems also 

entails evolution of symbolic concepts and their proper sequencing. Also, the neural 

structures in the brain adapt while forming concepts, that is, while interacting with the 

environment.

• Why Genetic Programming?

The first assumption entails evolution and sequencing of concepts appropriately so as to 

yield potential learning rules. Genetic programs are tree-structured symbolic expressions. 

That is, the programs are hierarchical LISP S-expressions. This hierarchy should enable the
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sequence that is needed in the above definition of a learning rule. The interactions of the 

concepts could be as a result of the above hierarchy itself and also due to the effects of the 

recombination of genetic programs. The recombination basically swaps the subtrees.

Genetic programming is the mechanism that is required to evolve the macro-concepts such as 

the concept of winning, competition, co-ordination and adaptation through its primitives. The 

primitives are the function and the terminal sets for the GP run. These primitives implicitly 

represent the micro-concepts that GP will employ to form the macro concepts and sequence 

them appropriately to yield a potential learning rule. The approach thus employs the notion of 

micro-macro dynamics in realizing emergence.

The second assumption is vital to the simulation work. In earlier approaches with genetic 

algorithms (Chalmers, 1990; Dasdan, 1993), learning rules were evolved and subsequently 

adapt the network weights. The two levels of adaptation, that is, the synchronic and the 

diachronic levels were distinct. With the proposed approach the concepts evolve while 

interacting with the environment. The two levels of adaptation merge as the weight 

adaptation is an integral part of the representational structure itself. The learning rules in this 

case need to adapt the weights effectively in order to evolve. Although this is a new 

constraint the paradox is that it will force GP to evolve potential concepts. Thus the 

constraint provides an implicit motivation for the evolutionary paradigm to be creative.

This leads us to a key question: In the context of problem solving should a learning rule 

evolve to adapt the network weights effectively? or should it adapt the network weights 

effectively in order to evolve? The subtleties need to be understood to appreciate the depth 

and the consequences.

4.4 Discussions

The sections discussed the role of evolutionary algorithms, in particular, genetic algorithms 

and genetic programming in connectionist networks. The focus was on neuro-evolution and 

genetic-connectionism, the two main approaches that have emerged in recent years. The 

strength of the DNA based encoding (Fullmer and Miikkulainen, 1991) is that it allows all 

aspects of network structure including the number of nodes and their connectivity, to be
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controlled by evolution. The number of layers and their connectivity are not defined a priori 

but emerge from the node definition. The designer has to carefully craft the definition of the 

node and appears to have some implicit notion about the way the networks might evolve. 

Also, it is not clear whether the encoding scheme is applicable to all types of networks such 

as recurrent networks. SANE (Moriarty and Miikkulainen, 1996) evolves a population of 

neurons with specialized features and combine them to form a network. The advantages are 

the quick evolution of networks and good scale-up properties. However, the type of network 

is fixed in advance. Again the node definitions are carefully crafted by the designer. It is 

slow in dealing with complex problems. This problem is overcome in hierarchical SANE 

(Moriarty and Miikkulainen, 1996a). The hierarchy and its implementation has to be decided 

by the designer. The methods employ a fixed length chromosome. The incremental design 

suggested (Harvey, 1993) has the advantage of having a variable-length chromosome and 

applicable to recurrent networks. It also allows a flexibility in architecture. The 

chromosomes are again carefully designed. It is not clear whether the networks that evolve 

are optimum.

None of the above methods have addressed the modular aspects in network design that is 

vital.

In the context of genetic-connectionism, Chalmers (1990) employs a known architecture to 

evolve learning mechanisms. Baxter (1992) has managed to remove the restriction in fixing 

the architecture by an efficient encoding scheme. The constraint though is that each network 

in the population should have the same number of nodes. Dasdan (1993) employs a similar 

approach as that of Chalmers for evolving unsupervised learning for a fixed architecture. 

All the above approaches employ fixed-length chromosomes limiting the search space.

With genetic programming, grammar-encoding (Gruau, 1993) is highly suitable for network 

design in general and modular networks in particular. The chromosome is compact allowing 

good scale-up properties. It is not clear whether the networks are optimum in terms of the 

weights. Breeder Genetic Programming (Zhang and Muhlenbein, 1993) evolve optimised 

networks and weights simultaneously. However, the grammar encoding used in these 

methods are extremely time-consuming. The graph-based approach (Poli, 1996) seems to
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overcome the problems associated with grammar encoding. Again, the crossover operator has 

to be carefully designed to yield valid networks. Whether modularity can be implemented 

remains to be seen.

Coming to the learning aspect of the networks, the type of network architecture is fixed in 

advance in the approach suggested by Radi and Poli (1998). Despite, the advantages of this 

method are faster convergence time and better rules as compared to the standard back- 

propagation learning rule. It is not clear whether the approach could be extended to other 

types of neural networks.

The novel approach proposed in this thesis (Govinda Char, 1997a) has several advantages. 

The representation structure (the genotype) can be varied in shape, size and the complexity 

allowing for an open-ended search. The approach is based on providing a general definition 

for learning and involves a single potential constraint within the representation. The 

evolutionary paradigm has all the options open to it in terms of the network architecture, the 

node activation function and the type of learning it can evolve. The flexibility in network 

architecture can be achieved by incorporating a technique for morphogenesis allowing GP to 

induce a variety of network architectures. The grammar of cellular encoding (Gruau, 1993) is 

highly compatible with genetic programming and flexible in implementing any type of neural 

network. Although the focus in this thesis is on using a self-organizing neural network as 

a framework for the purpose of demonstration, it appears that the approach can be extended 

to other types of networks. The reasons being, firstly, a general definition for learning is 

provided irrespective of the type of network. Secondly, the grammar is flexible enough to 

generate different types of network architecture. Also, it allows a possibility of evolving the 

node activation functions through appropriate primitives. It is unlikely that natural 

systems employ the same type of node activation function at various subsymbolic levels. 

These advantages offer a flexibility that allows for an open-ended search for the 

evolutionary paradigm. The aim is to see how one can extract maximum information from 

the paradigm (in terms of learning and problem-solving) just by imposing a single potential 

constraint while leaving every other option open to the paradigm to choose. Further, 

learning in natural systems involves logical primitives. Connectionist learning should have 

the freedom to choose for logical primitives based on a given situation. Such primitives can
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be easily included with the proposed approach. Finally, the learning rules that evolve should 

be interpretable in symbolic terms. A standard connectionist learning rule can be easily 

expressed (and explained) in terms of few statements in natural language. This can be 

achieved through automatically defined functions (ADFs) (Koza, 1994) in genetic 

programming as demonstrated in the next two chapters. Finally, the hierarchy and 

modularity (through ADFs) are inherent features of the representation. Given an appropriate 

grammar for network generation, the designer need not craft the genotypes carefully nor 

worry about the effects of crossover disruption. If the aim is to really automate the design 

process the human involvement in the design loop has to be minimized. The greatest 

advantage as compared to other methods is that the network and the learning can evolve 

simultaneously while interacting with a given environment. Grammar encoding is slow 

which, of course, is a disadvantage.

Conclusion

It seems that the rigidity in connectionist learning algorithms can be avoided in a number of 

ways. The first of these involves providing a very general definition for a learning rule, for 

instance, as a sequence of interacting concepts. Secondly, by imposing a potential 

constraint and leaving most of the options such as the network architecture, node 

activation function and the type of learning open to the evolutionary paradigm. The novel 

approach suggested in this thesis has several advantages when compared to other 

evolutionary approaches. It exploits maximally the strengths that are inherent to the 

representation that the evolutionary paradigm (GP) employs. These are: the hierarchy and 

modularity which are very important in problem solving. Further, it is based on powerful 

notions such as micro-macro dynamics and constructivism and offer a way of combining 

bottom-up and top-down strategies.

Chapter 5 will discuss a self-organizing neural network that is used as a framework for 

further simulations.
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Chapter 5

Self-organizing Neural Networks

Topological feature maps are ubiquitous in the brain. These maps are formed as a result of the 

process of self-organization that involves the basic principles of competition and co

ordination among the cells in the brain and have been successfully modelled by artificial 

neural networks. This chapter provides an overview of some of the computational models 

that have been effective in capturing and simulating the process of self-organization 

accurately. The role of evolutionary paradigms in the evolution of such models and the 

advantages of evolutionary approach are discussed.

5.1 Introduction

Topological feature maps are ubiquitous in the brain (Knudsen et al. 1987) and show up in a 

localization of cortical activity by sensory stimuli (Tavan et al. 1990). These maps are 

characterised by the fact that sensory signals that are closer will cause excitations in the 

nearby regions of the cortical plane. An example of a topological map is the retinotopic map 

in the visual cortex. The basic principles for the self-organization of topological feature 

maps from sensory input have been established (Malsburg and Wilshaw, 1977; Malsburg, 

1976) and involve competition among the neurons of the map for maximal response and co

operation of the neighbouring neurons. Later a simple algorithm demonstrating these 

principles was developed (Kohonen, 1982a, b; 1984) and was successfully applied to a 

variety of problems that included vector quantization (Schweizer et al. 1991), biological 

modelling (Obermayer, Ritter and Shulten, 1990), combinatorial optimization (Favata and 

Walker, 1991), processing of symbolic information (Ritter and Kohonen, 1989) and for motor 

control in robotics (Ritter and Shculten, 1988a, b; Ritter and Kohonen, 1989). A few models 

that have been successful in simulating the process of self-organization will be discussed.

5.1.1 The Kohonen Self-organizing Feature Map: the Characteristics and the Learning 

Rule

The Kohonen feature map is a two-layered network as shown in Figure 5.1. The first layer 

is the input layer consists of a number of cells (neurons) each taking on a
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corresponding value from the input pattern. The second layer, the competitive layer is 

typically organised as a two-dimensional grid of cells. The two layers are fully 

interconnected as each input unit is connected to all of the units in the competitive layer 

through an associated reference vector (Dayhoff, 1990).

The grid o f  cells (Layer-2)

The neighborhood radius

The winning cell

The reference vector

J  The input cells (Layer-1)

xn The input signals

Figure 5.1 The Kohonen Feature Map 

That is, an n-dimensional reference vector associates each of the cells on the competitive 

layer with an n-dimensional input signal. Other cells on the competitive layers are also 

associated in a similar manner. When an input pattern is presented, each unit in the first 

layer takes on the value of the corresponding entry in the input pattern. The units on the 

second layer then sum their inputs and compete to find a single winning unit (the winner). 

The reference vector determines the cell that is maximally sensitive to a particular input 

signal based on the Euclidean distance of the signal from the reference vector. The learning 

algorithm organizes the cells on the second layer into local neighborhoods that act as feature 

classifiers on the input data. Thus the reference vectors of neighboring units are near each 

other if  the signals are close. In essence, a given set of reference vectors divides the input 

vector space into regions with a common nearest reference vector. These regions are 

commonly known as Voronoi regions and the corresponding partition of the input vector 

space is denoted Vornoi partition. The network learns in an unsupervised manner from a 

stream of input signals. The n-dimensional input vector is denoted by x = (xl5 x2, ....xn) with 

real-valued components taking values in the subspace VeiRn. Exemplars of such vectors are 

repeatedly presented to the network. The values of x are drawn randomly according to a given 

probability distribution. For each presentation the best matching cell (the winner) is 

determined according to the minimum value of the Euclidean distance || x  - wn\\ where
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represents the n-dimensional reference vector. The weights are then adapted according to the 

rule:

wH(t+l) = wn(t) + r |(t)g(n- n 0,t)(x-wn(t)) V n (5.1)

where ‘t ’ is the update time. The parameter r\(t) is the learning rate. The function g(n- Hq) 

is typically a Gaussian given by:

g (n-no) = exp(-p), p= \\n-n0\\2/2A2 (5.2)

and is essential for the success of the algorithm. Equation (5.2) has a maximum value 

(normalized to unity) when n coincides with n0 (the winner cell) and decays to zero at 

larger distances. The steepness of the decay is characterized by the width parameter A. Thus 

the winner cell on the network is maximally adapted and the surrounding cells are adapted 

to a lesser extent depending on the distance ||/i-«o||. The function g  induces a lateral inhibition 

among the neurons. The learning rate r\(t) and A(t) are initially large but reduce 

monotonically as the learning progresses according to some cooling schedule. The learning 

(“winner takes most”) is distinguished from a competitive learning where only the winner is 

adapted (“winner takes all”). Such networks are capable of generating interesting low

dimensional representations of high-dimensional input data.

5.1.1.1 Performance Criteria

Self-organizing networks have mainly three performance criteria. The importance of each 

criterion may vary based on the application (Fritzke, 1993).

• Topology preservation

The mapping from input space to the output space is said to be topology-preserving if similar 

inputs are matched to identical or neighboring cells and neighboring cells have similar 

reference vectors. The first property ensures that small changes in the input vector will cause 

correspondingly small changes in the position of the winner unit. Such a mapping is robust 

against distortions of inputs and highly desirable while dealing with noisy data. The second 

property ensures the robustness of the inverse mapping. That is, when the dimension of the 

input mapping is higher than the dimension of the network the mapping reduces the data 

dimension but usually preserves the important similarity relations among the input data.
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• Modelling of probability distribution

A set of reference vectors is said to model the probability distribution, if the local density of 

the reference vectors in the input vector space approaches the probability density of the input 

vector distribution. This property is desirable for two reasons. First, it is possible to get an 

implicit model of the unknown probability distribution underlying the input signals and 

second, the network becomes fault-tolerant against damage as every cell is only responsible 

for a small fraction of all input vectors.

• Minimization of quantization error

The quantization error for a given input signal is the distance between the signal and the 

reference vector of the winning cell. A set of reference vectors are said to be error 

minimizing for a given probability distribution if the mean quantization error is minimized. 

This property is important if the original signal needs to be reconstructed from the reference 

vector which is common to vector quantization. This error needs to be small for efficient 

self-organization.

5.1.1.2 The Problems and the Limitations

The specific architecture (the two-dimensional rectangular grid) that the Kohonen network 

employs imposes limitations on the process of self-organization (Ervin et al. 1995; Polani, 

1995; Zavrel, 1996) due to a number of reasons. Firstly, the convergence of the self

organizing process to a stable state is only guaranteed if the learning parameter and the 

neighborhood radius are slowly decreased during learning. Otherwise the network weights 

may perpetually change when patterns are presented. There is no guarantee that the imposed 

schedule for the decrease of the adaptation is optimally organized despite a stable state. 

Secondly, during the adaptation the grid may get tangled or collapse into a single point 

depending on the combination of data and initial parameters, resulting in a severe distortion 

of distances in the map. Thirdly, the rectangular grid structure does not allow proper 

adaptation to the input signal spaces that have non-rectangular distributions. Finally, the 

convergence of Kohonen networks is slow and they easily get stuck at local minima. The 

remedy to these problems lies in the creation of network structures that can better adapt to 

the structures of the input space.
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5.1.2. The Growing Cell Structures

To overcome the limitations imposed on the resulting mappings by the predetermined 

structure and size of the Kohonen’s model the Growing Cell Structures method (Fritzke, 

1991) was introduced. This model differs from the Kohonen’s model in some respects. 

Firstly, new cells can be added or removed during the process of self-organization. Secondly, 

the weight adaptation rule, although almost the same as that proposed by Kohonen, has two 

important differences. The adaptation strength is constant over time and two different 

adaptation parameters are used for the winning cell and the neighboring cells respectively. 

Only the winning cell and its direct neighbors are adapted. These choices eliminate the need 

to define a cooling schedule for any of the model parameters. The advantages of this 

approach are that the size as well as the structure of the final neural network are determined 

automatically from the input data. The network size is not pre-defined but grows until a 

performance criterion is met. As the cells are grown based on the pattern space, the method 

enables many clusters to cover the dense regions of the input space and a few at the sparsely 

occupied regions. The true structure of the data set will be reflected in the cluster structure 

more accurately including cluster boundaries and hence allows for data visualization. The 

Kohonen’s models do not provide such information as there are no cluster boundaries on the 

map.

5.1.3. The Enhanced Feature Map: Modelling Lateral Interactions

Both the above approaches rely on an external supervisor to find the maximally active unit, 

that is, the winning cell. To be biologically realistic the algorithm should be reduced to local 

computations and interactions among the cells. The lateral interaction weights between the 

cells can also be made to self-organize along with the external input weights (Miikkulainen, 

1991; Sirosh and Miikkulainen, 1995). Each cell in the neural network is assumed to have 

three sets of inputs: the excitatory input connections that supply external inputs to the cell; 

short-range lateral excitatory connections from close neighbors on the map; and long-range 

inhibitory connections from within the map. Also it is possible that the external and the 

lateral connections of the same cell follow two different rules of weight modification. The 

lateral weights are modified by a Hebb rule keeping the sum of the weights constant whereas 

the external input weights are modified according to the normalized Hebbian rule. This
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enables the computations to be localized to each cell and its connections. Such a map can 

autonomously self-organize without a global supervisor.

5.1.4 Incremental Grid Growing

The usefulness of a map depends on how accurate it is in representing the input space. This 

space may be arbitrarily non-convex and discontinuous and may contain high-dimensional 

clusters. Further the real world data sets often contain distinct but non-obvious subsets of 

data. The standard learning algorithm fails to delineate the boundaries of such groupings. 

The incremental grid-growing algorithm (Blackmore, 1993) is based on an incremental 

approach, but avoids the difficulties of an arbitrarily connected graph structure as it retains a 

regular 2-dimensional grid at all times. The algorithm is briefly explained. Initially the feature 

map grid consists of four connected nodes with weight vectors chosen at random from the 

input. Each main iteration of the algorithm consists of three main steps:

1. Adapting the current grid to the input distribution through the usual feature map self

organizing process.

2. Adding nodes to those areas in the perimeter of the grid that inadequately represent their 

corresponding input area.

3. Examining the weight vectors of neighbouring nodes and determining whether a 

connection between the nodes should be deleted from the map, or whether a new connection 

should be added.

The new structure is re-organised, and the process continues until a predetermined maximum 

number of nodes has been reached. Thus the algorithm by employing effective heuristics 

enables the non-convexities, discontinuities and clusters in the data set to be represented 

explicitly on the two-dimensional structure of the map during the process of organization.

5.2 The Evolutionary Approach

The above models employed non-evolutionary, standard programming techniques. In general, 

the space of possible neural network architectures and learning for a given problem domain 

could be very large. As discussed in chapter four, evolutionary algorithms have been 

successfully applied in neural network design in several ways. Genetic algorithms have
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yielded improved topologies of self-organizing neural networks capable of better 

adaptation characteristics (Polani and Uthmann, 1992; Hamalainen, 1995). Novel learning 

algorithms for the self-organizing process providing better performance measures have also 

been synthesised using genetic algorithms (Dasdan and Oflazar, 1994).

The following sub-sections will briefly describe the genetic algorithm approach for 

optimizing the Kohonen feature map. The advantages of employing the genetic programming 

paradigm in designing such networks is outlined.

5.2.1 The Genetic Algorithm approach

The sequence of steps for modelling the self-organization process with the genetic 

algorithm will be discussed first.

5.2.1.1 The Genotype-Phenotype Mapping

The genotype-phenotype mapping scheme is crucial for evolving optimal topological 

structures. The mapping schemes dictate the convergence time in terms of the search space 

and also the scalability of the evolving neural networks. Two different mapping schemes for 

evolving an optimum topological structure for a self-organizing neural network through 

genetic algorithms are illustrated and discussed briefly.

• The approach (Hamalainen, 1995) employs a connection matrix for encoding the 

network connections (direct encoding).

2 1 1 1 0  1 0

1 2 3 4 5 6

1 1 0  1 0  0

3 0 1 1 0 0 1
c

4  1 0  0 1 1 0

5 0 1 0  1 1 1

6 0 0 1 0 1 1

c 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1

Figure 5.2: The Connection matrix C
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Figure 5.2 shows the matrix. The network has six nodes (two rows and three columns). A 1 

implies a connection between the nodes (every node is connected to itself). The upper (right) 

triangle of the matrix is used as the chromosome.

The genetic operations were crossover and mutation. The fitness of the individuals were 

tested using the following function for the trained network given by:

f  = X X ||Xj - im ||2 * (1 + M) (5.3)
j = l , X 6  F

i J

If the measure of the disorder M=0 then Fj is the Voronoi region of mJ5 that is, for every 

x e  Fj nij is the nearest of all mr s. The maps that broke into several parts were penalised. 

Other fitness measures can also be employed. The problem with direct encoding of the 

network matrix into a chromosome has limitations in terms of its length, requiring longer 

chromosomes to encode larger networks (Kitano, 1990). As discussed earlier in chapter four, 

this will not only increase the search space but degrade the performance of the networks 

with their size. Also, the method assumes that the connectivity information encoded in the 

DNA to be in almost one-to-one correspondence. Indirect methods either apply simple 

rules to chromosomes or encode certain types of grammar that are compact and more 

suitable in overcoming the above limitations. Kitano’s approach encodes a graph generation 

grammar that defines the growth of graphs. The grammar is an augmentation of 

Lindenmayer’s L-system (Prusinkiewicz and Lindenmayer, 1990) that is designed to describe 

morphogenesis, that is the growth and migration of cells.

The next sub-section will discuss an indirect method.

• In this method (Polani and Uthman, 1993) the neural network is assumed to be an 

undirected graph that is optimized with a genetic algorithm. This results in optimizing the 

network topology. The interaction between the genetic algorithm and the Kohonen map is 

shown in figure 5.3. Every genotype defines the topology of a Kohonen net via a 

transcription rule. The network is trained with the standard algorithm and then subjected 

to a quality test which serves as a fitness function for the genetic algorithm.
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Mutation/
Recombination

Fitness
function

Phenotype Genotype

TranscriptionTraining

Genetic
Algorithm

Trained 
Kohonen net

Chromosome

Kohonen net

Figure 5.3: Interaction between the Genetic Algorithm and the Kohonen Feature Map.

The feature map is regarded as an undirected graph G where a weight vector e [0,l]m= Im 

is associated with every vertex. The transcription rule is described in figure 5.4. The rule 

yields a valid neural network with a unique topology for every chromosome.

k-1 maxsteps/16 ao bo a n-l bn-i

Figure 5.4: A transcription rule.

The transcription rule requires the chromosome to consist of 2 bytes + n double-bytes. The 

parameters a and b are the constants of the transcription process. The number k of vertices in 

the graph is given by the first byte +1 guaranteeing the net to have at least one vertex. The 

second byte multiplied by 16 yields the maximum number of transcription steps that may be 

done before the procedure stops (maxsteps). These two header bytes are followed by n 

double bytes each of which defines one transcription step. In every transcription step a vertex 

is connected with a different one. Whenever the rule tries to connect two vertices that are 

already connected or tries to connect a vertex with itself, the algorithm stops. The links 

determine the topological neighbourhood. An example showing the transcription algorithm 

and the resulting connectivity is illustrated in figure 5.5.

/*transcription: k, n and maxsteps as defined above */ 

from :=0; to :=0; step :=0; i :=0; 

while step < maxsteps do /*transcription step */ 

from := (to + a[i]) mod k 

to :=(from + b[i]) mod k

75



if (from = to )or (vertexffrom] is connected with vertex[to]) 

then exit while loop 

connect vertex[ffom] with vertex[to] 

step := step + 1

i :=(i + l)m o d n

endwhile

Global specifications | Connections

First two bytes 1st double byte 2nd double byte

14 7 3 2 5 6
#neurons-1 maxsteps/16 move connect move connect

forward +3 with +2 forward +5 w ith+6

Figure 5.5: A two bytes + two double-bytes chromosome.

The topology resulting from the transcription rule is then trained with the standard Kohonen 

learning rule until a termination condition is satisfied. The genotype-phenotype mapping thus 

consisted of two phases: firstly, applying the transcription rule to the chromosome to yield a 

network topology. Secondly training this network with the standard learning rule. The trained 

net can then be regarded as the phenotypic expression.

5.2.1.2 The fitness function

The domain of the experiment chosen was for input signal spaces of a square [0,1] and 

extended to torroidal and Mobius topology. For the sake of simplicity, a quality function 

which gives an estimate of the average distance from an arbitrary signal x e Im to the 

nearest weight vectors of one of the vertices of G is chosen. For a sample of points x j e I m, 

i=l to i=q the quality function is given by:

Q(G) = 1/ ( I  w *(X j)- x f  (5.4)
i=l

* * 
where, w (X j):=  w v* if V vertices v: d, (Xj , w v* ) -  di (Xj , w v) holds. The vertex v is

activated by sample Xj . Q(G) is essentially a measure of the average distance from an input
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vector to the vertex it activates. A smaller average distance yields a higher quality function, 

indicating a better adaptation to the input signal space. The weight adaptation in effect 

reflects the process of self-organization. The method yielded improved topologies with a 

simple fitness function.

The next subsection briefly describes the novel approach with genetic programming (GP). 

It combines both the bottom-up and top-down strategies for the evolution of network 

structure and flexible learning that effectively adapt the network weights. Chapter six will 

discuss the GP approach in detail through the simulation results.

5.2.2 The Genetic Programming Approach

The learning rule for a self-organizing neural network is based on a number of concepts 

such as competition, co-ordination, adaptation and so on. These concepts can be evolved 

(and represented) through different ADFs and be appropriately sequenced so as to enforce a 

topological ordering (Govinda Char 1997a; 1997b). Genetic programming has to evolve 

these ADFs (macros) through the supplied primitives (micros) and sequence them 

appropriately using the fitness function. Further, the network architecture can be made to 

evolve simultaneously with an additional ADF as terminal that might encode simple rules 

or a grammar. The result is the evolution of dynamic network structures while interacting 

with the task environment (the given signal space). The learning rules to adapt the network 

weights are evolved on-the-fly.

The advantages of GP approach over other approaches can be summarised under two 

different contexts.

1. GP vs. the non-evolutionary methods.

As discussed in chapter four, the space of possible neural network architectures and learning 

is extremely large. GP, being an evolutionary paradigm is capable of searching this space 

for optimality whereas the non-evolutionary methods (standard methods) have limited 

options. Moreover, standard methods do not allow the possibility of evolving potential 

learning rules while interacting with the task environment. GP offers a way that enables 

evolution of a variety of network architecture and learning for a given task environment
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using only the fitness information. A learning rule is expressed in terms of a number of 

concepts. Each of these concepts can be implemented in terms of a module that can easily 

be implemented through an automatically defined function (ADF). Although the basic 

primitives are supplied to GP in terms of the function and terminal sets, it is not known a 

priori how these primitives will form an ADF or how the ADFs will combine to yield 

effective learning rules. Also, the designer has an option to define and include additional 

primitives that are employed in standard methods and observe their effects on the process of 

self-organization.

2. GP vs. GA

Genetic programming offers a number of advantages over the genetic algorithm in terms 

of the representation. The representational structure in the genetic programming is a 

variable length hierarchical tree structure. This offers a large search space for the network 

architecture and learning mechanisms to be explored by the evolutionary paradigm. 

Combined with automatically defined functions it allows the possibility of implementing 

hierarchical, modular elements capable of dealing effectively with the problem domain. The 

modularity allows the interpretability of the results as symbolic entities. When GP is 

employed for evolving an optimum neural network topology, the hierarchical representation 

itself, in some cases, might express the process of problem solving at a subsymbolic level 

(Koza, 1993). The tree representation is also highly suitable for certain types of grammar 

encoding to incorporate a biologically plausible developmental process. The encoding will 

enable overcome the problem of scalability through shorter genotypes.

In contrast, the genetic algorithm approach employed chromosomes of fixed length and the 

standard Kohonen learning rule for the weight adaptation phase. It is to be noted here that a 

variable length chromosome can be employed with the genetic algorithm approach as well. 

So far, there has been no attempts to co-evolve network structures along with learning.

Because of the representation of the genotype, typically as a string it is difficult to achieve/ 

implement the notions of hierarchy and modularity that are vital not only to problem 

solving but also in expressing the solutions. These features are inherent to GP due to the



representation it employs suggesting GP has definite advantages when compared to the 

standard and the genetic algorithm approaches.

Conclusion

The chapter mainly focused on the process of self-organization and discussed a few 

computational models that are highly effective in capturing the process. The limitations of 

the Kohonen’s feature map and the attempts to overcome those limitations through various 

models were discussed in detail. Finally the role of evolutionary algorithms was emphasised 

by introducing the genetic algorithm and the genetic programming methods. Being 

population based and due to their implicit parallelism evolutionary algorithms are capable 

of searching an extremely large space of neural network architectures and learning for any 

task environment. In addition, evolutionary methods allow the network structures and the 

learning to emerge during the course of problem solving rather than being defined a 

priori. The standard methods have limited options in this context. A comparison with other 

methods highlights the potential of the GP approach in terms of achieving flexible network 

architecture and learning. The representation that GP employs has definite advantages in 

expressing solutions in terms of hierarchical modular elements.

Chapter six, through simulations, will demonstrate the role of GP in the evolution of 

flexible learning for self-organizing neural networks.
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Chapter 6

Simulation Results

This chapter will demonstrate the role of genetic programming (GP) as a meta-leaming 

paradigm for a self-organizing neural network. The detailed approach, the issues and the 

implications will be discussed. A pattern recognition task is considered to illustrate how 

learning mechanisms can evolve dynamically while interacting with a given environment.

6.1 The Framework

The simulations employ a self-organizing feature-map (Kohonen, 1990) as a framework to 

implement unsupervised connectionist learning algorithms. The Kohonen rule, belonging to 

the category of unsupervised learning rules, is expressed in terms of a number of concepts 

such as competition, co-ordination and adaptation. The feature map essentially consists of 

a number of cells (in a competitive layer) competing for a particular signal component from 

a given input signal space. The winner cell in the network is determined according to the 

minimum value of the Euclidean distance \\x -w n ||, where x  and wn are the input and the 

reference vectors respectively. The learning rule, typically employs an external supervisor 

to find the winner and adapts its weights for maximal response. The result of the training is 

described as a process of self-organization that is capable of enforcing a topological 

ordering. Please refer to chapter five for details.

6.2 The Problem

6.2.1 The environment

The sample vectors are drawn from a two-dimensional signal space with real-valued 

components, taking on a value in a subspace V  with an unknown probability

distribution. For the simulations, the sensory input stimuli are provided by a vector (xyO 

with components distributed in a chosen subset of a square [-1,+1] . Two models as 

described in figure 6.1 are implemented. The first model consists of a circular ring with an 

inner radius 0.5 cm. and an outer radius 1.0 cm.. The second model consists of two disjoint 

squares from the first and the third quadrants of the square.
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Figure 6.1: The input vectors are drawn from the dashed 
areas of the figures representing the two models.

6.2.2 The task

It is important to distinguish between the evolutionary task and the learning task (Hinton and 

Nowlan, 1987; Nolfi, Elman and Parisi, 1994; Harvey, 1996). These tasks occur over 

different time scales. Whereas an evolutionary task occurs from one generation to the next 

generation, learning is a change during the lifetime of a single individual (lifetime learning). 

To investigate how evolution influences learning and learning influences evolution it is

necessary to identify whether the two tasks are same or different.

In the present work, the evolutionary task is to evolve effective components of learning

rules (that is, the macros) and to sequence them appropriately. The learning task is to learn

the correct mapping of the real-valued input vectors on to the space of reference

vectors through the evolved rules. Thus, a behavior ‘B’ can be represented as a mapping
*

B: jc->W , where, x  is the real-valued input vectors and ‘W’ is the winner. If B = space of
, ★ ♦ 

possible behaviors and w = space of weights associated with B , then the task T is a
, * * 

reinforcement function represented as: T: B -> %  T \w  ->9t.

In these simulations, the fitness of a learning rule depends on its performance in inducing

the correct mapping that minimizes the quantization error and also in enforcing an effective 

topological ordering. The fitness of the evolutionary task is defined in terms of the fitness 

of the learning rule. A better learning rule will have a higher fitness to survive and reproduce.

6.2.3 The basic steps

The learning rule mainly consists of the following steps:

• Apply exemplars from the given input signal space for a number of epochs.

• Find the winning cell.
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• Adapt the network weights according to the equations (5.1) and (5.2) (refer to chapter 5).

The learning rule, in essence, moves the two-dimensional reference vector towards the two- 

dimensional input signal so as to minimize the quantization error. The quantization error for 

a given input signal is the distance between the signal and the reference vector of the winning 

cell over a number of epochs. The training enforces a topological ordering where adjacent 

vectors in 91" are mapped on adjacent (or identical) cells in the competitive layer. Further, 

adjacent cells in the layer will have similar position vectors in 91”. Figures 6.2 and 6.3 (see 

Appendix-A) illustrate the topological ordering resulting from the standard Kohonen 

learning rule for the above two models.

The simulations ahead aim at evolving a Kohonen type of learning rule with the genetic 

programming (GP) paradigm. Whether GP is able to evolve the variety of concepts and 

sequence them appropriately is to be investigated.

6.3 The Genetic Programming approach

The key aspects of the simulation include

• providing a general definition for a connectionist learning rule as a sequence o f interacting 

concepts.

• imposing a single potential constraint that the network weight adaptation should be an 

integral part of the representational structure, that is the genotype that the GP employs. 

In this context, the weight adaptation is seen as a symbolic concept, the adaptation process 

itself being subsymbolic.

• employing a potential strategy such as micro-macro dynamics that enables GP to realize 

the notion of emergence through its primitives. GP’s primitives are the micro concepts 

that should enable it to form macro concepts.

Under these assumptions, GP is required to evolve the concept of a winning cell, induce 

the appropriate direction of weight adaptation for the given signal components and evolve a 

neighbourhood strategy such as a Gaussian to adapt this cell maximally compared with the 

rest of the cells in the network. Further, the concepts need to be appropriately sequenced.
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The simulations initially use a network that has a fixed number of cells to investigate 

whether GP is capable of evolving any valid learning mechanism.

The major steps involved in preparing to apply genetic programming to a given problem 

(Koza, 1993) include determining the

1. set of terminals,

2. set of primitive functions,

3. fitness measure,

4. parameters for controlling the run,

5. method for designating a result and the criterion for terminating a run.

The first major step in preparing to use genetic programming is to identify the appropriate 

set of terminals and functions that construct computer programs that can be expressed in 

terms of LISP S-expressions. The search space is a space of possible programs which the 

genetic programming system will search. This space can become extremely large as the 

number of terminals increases. A rich enough set of functions and terminals will have to be 

chosen for the best performance (Kinnear, 1994). Further, as a meta-leaming system for 

connectionist networks, genetic programs provide an extremely large landscape of 

potential concepts. Genetic programming, in this context, has an additional onus of 

evolving the needed concepts through its primitives and of sequencing them in ways that 

can yield valid learning mechanisms. Next, the fitness function that scores how well an 

individual performs on a given problem needs to be defined very carefully. Again, in the 

context of the evolution of connectionist learning rules, a valid learning rule will have a 

higher fitness. The population size and diversity are equally important to allow for a rich 

combination of possible concepts.

Two possible approaches (Govinda Char, 1997a; and 1997b) for the above mentioned task- 

domain have been attempted and will be described.

6.3.1 The General approach

The primitives for the GP run are:

Function set = { + ,- ,  *, %, IFLTE, ABST, Adapt-x, Adapt-y};
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The function set consists of the standard mathematical operators along with the protected 

division operator;

IFLTE (IF LESS THAN ELSE) is a comparison operator that can be employed by the GP to 

evolve the concept of a winning cell.

ABST returns an absolute value of an expression. GP might use this primitive to induce the 

direction of weight adaptation.

Adapt-x and Adapt-y adapt the network weights that are associated with the two- 

dimensional signal vector (x,y). For instance, Adapt-x and Adapt-y might look like:

{ w[0][ix][iy] = } and { w[l][ix][iy] = } respectively. GP has to induce the values to be 

substituted onto the right side of these expressions.

Terminal set = { x, y, w[0][ix][iy], w[l][ix][iy], ix, iy, delta, eps};

where x and y refer to the components of the two-dimensional signal vector (x,y); 

w[0][ix][iy] and w[l][ix][iy] represent the two-dimensional reference vector associated with 

each of the cells. The location of a cell is crucial for evolving the concept of the winner cell 

and is to be accessed via the co-ordinate variables ix and iy respectively. The parameters 

‘delta’ and ‘eps’ represent the width parameter and the learning rate as stated in equations 

(5.1) and (5.2). No other information is provided. As the network weight adaptation is 

assumed to be an integral part of the genetic programs, GP will have to evolve the right 

concepts in the right sequence to adapt the weights effectively in order to minimize the 

quantization error.

The Fitness:

The fitness is a quality function G(x,y) given in terms of:

Error = X ABS( x- wixwiJ  + ABS(y- wiywir)  

for the winning cells over a number of epochs.

(6.1)

The quantization error — Error / (number of cells) (6 .2)

The Fitness = G(x,y) = 1 / (The quantization error) (6.3)
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The smaller the error the higher is the fitness of the genetic program. It is realized that 

although through equation (6.3) the quantization error can be minimized it does not help in 

topological ordering as it does not include any distance information either in terms of the 

weights of other cells with reference to the signal components (Euclidean distance) or the 

actual distance from the winner cell which is crucial for the process of self-organization. The 

fitness function as defined by equation (6.3) cannot be effective as such.

6.3.1.1 Sample programs

The initialization file for the GP run has to be created as a first step. This file contains the 

information about the various parameter settings for the GP run and is discussed in 

Appendix-B.

Population size: 500 

Number of Generations: 50 

Number of ADFs: 0 

Creation Type: Variable 

Maximum Depth at Creation: 6 

Maximum Depth at Crossover: 17 

Maximum Fitness: 1000 

Number to Mutate: 0

The preliminary programs are shown.

Generation^

( ( Adapt-x ( x ) )

Fitness : 9

Structural Complexity : 2 

Generation: 4

( ( IFLTE ( Adapt-x ( x ) (y ( wty ( * (veps=0.1 ( + ( Adapt-y (y ) ( % ( % ( Adapt-x ( x ) ( -  

(ix ( delta=0.5 ) )  ( x ) ) ) ) )

Fitness : 15

Structural Complexity : 18

85



Generation: 6

( (  + ( + ( -  (wix ( ABS ( Adapt-x ( x ) ) ) ( % ( wty (ix ) ) ( - (wix ( Adapt-y (y ) ) )  )

Fitness : 23

Structural Complexity : 14

Although the combination ((Adapt-x (x)) and ((Adapt-y((y)) is good for minimizing the 

quantization error, it does not guarantee a topological ordering. GP was not given any bias 

to form these combinations either. The fitness function was the only feedback that the GP 

had to induce this information.

6.3.1.2 The issues

• The primitives

1. When GP has abstract primitives such as ‘Adapt-x’ and ‘Adapt-y’ how should one 

decide the number of arguments for these?

2. How effective could such primitives be in adapting the network weights and in enforcing 

a topological ordering?

3. Should these primitives be functions or terminals?

4. Does the hierarchical tree representation that GP employs enable these primitives to be 

effective at all?

• The winner

The attempt is to evolve a Kohonen-type of learning rule. This rule typically employs an 

external supervisor to evolve the concept of the winner.

1. Will GP through its primitives evolve the concept of winner as such?

2. Will GP evolve the distance information that is needed to form a neighbourhood strategy 

for the winning and its surrounding cells, given just the above fitness function?

• The fitness measure

The definition for an effective fitness measure is crucial. Equation (6.3) does not include any 

distance information which is crucial for the process of self-organization. GP on its own will 

not be able to induce this information.
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• The search space

What will be the effect of the random combination of all the primitives on the search 

space?

• The comprehensibility, interpretability and the translatability.

Finally, will the learning rules that evolve be comprehensible, interpretable and translatable? 

In the above experiment some of the programs managed to model the input signal 

distributions with a modified fitness function as defined by the equation (6.4) to some extent. 

This could be observed graphically. The difficulty was in comprehending and interpreting 

the programs. A possible explanation is that the above fitness measure may not be 

optimum. Kohonen’s rule can be easily stated (and explained) in terms of a few statements in 

natural language. How could the same be achieved with the proposed approach? Also with 

the weight adaptations embedded within the representational structure itself (and hence 

within the evolutionary process) how should an expression such as:

IFLTE( ( Adapt-x (x(( Adapt-y(y( wx (*( ( wy(iy))) ) ) ) ) ) ) ) )  be conceptualised ?

The macros adapt the network weights as and when they are invoked. The evolutionary 

process through its only feedback (that is the fitness) has to decide to evolve the right 

macros at the appropriate instances.

The above issues will be addressed before proceeding further.

The primitives:

The reason for including the primitives ‘Adapt-x’ and ‘Adapt-y’ is to enforce the network 

weight adaptation within the evolutionary mechanism. This constraint is imposed to 

make the evolutionary paradigm creative. It is indeed a paradox that will provide an implicit 

motivation to the evolutionary process to form and combine potential concepts. These 

concepts in turn need to adapt the network weights appropriately so as to enforce a 

topological ordering through the process of self-organization.

1. The arguments for the primitives are based on the dimensionality of the signal in these 

simulations.
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2. The abstract primitives for network weight adaptation are not effective in enforcing the 

desired topological ordering as they are components of the complete tree (that is the 

genotype). Different subtrees might have the same abstract primitive with a totally 

different combination of concepts in the hierarchy below. The concepts associated with a 

certain subtree might adapt the network weights in ways that help the process of self- 

organization whereas with other subtrees they may nullify the effects and vice versa. A 

genetic program as a whole has only one fitness. The fitness in this case is due to effective 

network weight adaptation. There is no way GP can find the best program due to the lack 

of fitness information and as a result the approach precludes topological ordering.

3. The primitives as terminals will be totally ineffective.

4. As discussed (in point 2) the GP hierarchy does not support such primitives to be effective 

at all.

The winner:

1. GP might avoid the concept of the winner and opt for some local strategy that can still 

enforce topological ordering. This can happen despite providing all the necessary micros for 

evolving the concept of the winner. It is to be noted that this option cannot be enforced on 

GP as such. With an explicit fitness function (for the winner) GP should evolve the concept 

of the winner.

2. The primitive ‘IFLTE’ was supplied to evolve the concept of the winner cell. GP, instead, 

employs this primitive in other contexts. The search space could become extremely large 

for GP to be effective.

3. Again the notion of distance from the winner cell to other cells can be evolved only via an 

explicit fitness function.

The fitness measure:

The expression does not have enough information for GP to be effective. GP is unable to 

induce this information. The fitness measure needs to be cleverly defined.

The search space:

The search space can become extremely large for the evolutionary mechanism to be effective.



The comprehensibility and translatability:

With the weight adaptations as an integral part of the representational structure itself, it 

becomes extremely difficult to conceptualise and interpret the rules that evolve. Hence there 

is no question of translatability.

However, it is realized that this can be a potential approach that needs to be refined in order 

to appreciate the depths and the implications. The refinement in terms of modularity of 

concepts greatly enhances the interpretability of the learning mechanisms. Such 

modularity can be achieved with automatically defined functions (ADFs) (Koza, 1994) and is 

discussed in the next subsection.

6.3.2 The Modular approach

As the size and the complexity of the problems increase, decomposition of a problem 

becomes increasingly important. Problem decomposition not only enables efficient problem

solving but enhances the understandability of the process involved. In the context of 

genetic programming, automatically defined functions enable such problem decomposition 

through the definition of a number of potential functions and the hierarchy. Each of these 

automatically defined functions, known as the building blocks, have their own set of 

functions and terminals. These building blocks evolve during the run and can be used 

many times from any part of a computer program. Also, in hierarchical form any building 

block can call upon any other already-defined block. Figure 6.4 illustrates a program with 

ADFs.

Root of the 
_  tree

value- 
Returning 
Branch „

ADF1
Function
Definitio:

Function
Definitio:

Figure 6.4: An S-expression with two function-defining branches 
and one value-returning branch
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The S-expression with two function-defining branches and a value-returning branch is 

shown. GP will evolve function definition in the two function-defining branches ADFO and 

ADF1 and will use one, two or none of the defined functions in the value-returning branch. 

Also, an S-expression with ADFs can have a number of value-returning branches. ADFs, in 

general, have shown to enhance the performance of the genetic programming in terms of 

the speed and the population size.

The role of ADFs is illustrated, as an example for an even-4 parity problem (Koza, 1993). 

The function and the terminal sets are:

Fb = { AND, OR, NAND, NOR } ( four functions, each taking 

two arguments).

Tb= {D0,D1,D2,D3} (four terminals).

A2 = {ARGO, ARG1} (two dummy variables).

A3 = {ARGO, ARG1, ARG2} (three dummy variables).

The S-expression will contain both function definitions and calls to the functions so defined. 

The terminals from the sets A2 and A3 are used to define functions of two and three 

arguments respectively. These arguments serve as formal parameters to the defined 

functions. ADFO branch in figure 6.4 will compose functions that will include the functions 

from the function set and the terminals from the set A2 . The ADF1 branch will similarly 

compose functions that include the functions from the function set and the terminals from the 

set A3. The value-returning branch will consist of terminals from the actual terminal set Tb 

and the functions from the function set Fb and ADFO, and ADF1. Over the course of the run 

the ADFO branch will evolve an XOR function. The ADF1 branch will also evolve some 

arbitrary function. The value-returning branch will however call the ADFO branch (that is 

sufficient) to solve the even-4-parity problem with the result (the value-returning branch):

(ADFO (ADFO DO D2) (NAND (OR D3 D l) (NAND D1 D3 ))). ADFO is actually an 

XOR function that evolves during the run as:

( OR (AND ARGO ARG1) (AND (NOT ARGO) (NOT ARG1)))).



Thus the ADFs are defined once but can be instantiated as many times as needed to solve the 

problem in hand. Also, the defined blocks can be used to solve problems of higher 

complexity. The blocks that evolve are interpretable and reusable. Koza’s simulations used 

a popualtion size of 4000 and 51 generations over 10 runs. One of the runs yielded the 

correct solution in generation 3. The number of individuals that are processed is shown to be 

less than half (Koza, 1994) when compared to the approach without ADFs for the same 

problem.

6.3.2.1 Advantages of modularity in the context of learning

As a meta-learning system, GP again seems to be more powerful with the ADF approach 

due to the following reasons.

1. Given the general definition for a learning rule as a sequence of interacting concepts, it is 

possible to modularise each of the macro concepts and make them interact through ADFs. 

For instance, one of the ADFs can be employed to evolve the concept of the winner while 

another can adapt the network weights. GP’s primitives as micro-concepts form macro

concepts that, in turn, can be represented in terms of ADFS.

2. The approach enables the tractability and interpretability of the rules that evolve. The 

formation of concepts and their sequencing can be interpreted easily with the GP hierarchy.

3. As an expression with ADFs can have a number of value-returning branches, each of the 

ADFs can be assigned an explicit fitness function if needed.

4. The weight adaptation can still be an integral part of the representational structure.

5. The ADFs, as terminals can evolve, unlike in the case of the general approach. With a 

good strategy the abstract primitives can be quite effective in network weight adaptation. 

For instance, the abstract primitive while being a terminal ADF to the main function can 

act as a function to the rest of the terminal ADFs. This strategy will allow the abstract 

primitive to access the global variables (returned values) from each of the terminal ADFs to 

form a strategy for weight adaptation. In addition, the disruption due to the effects of 

crossover will be minimised and can be totally eliminated as the abstract primitive is a 

terminal in the context of the main program. Figure 6.5 illustrates this notion.



The main program 
 (Root) __ ^

ADF1 for> 
the weight 
adaptation

ADF3 for 
the 

Gaussian

ADF2 for 
the 

winner

Figure 6.5: ADF1 is a terminal for the main function and can 
access global variables from ADF2 and ADF3.

ADF1 is an actual terminal to the main function while acting as a function (at the same 

time) to the rest of the terminal ADFs to form a strategy for the weight adaptation.

6. The search space becomes more focused (towards the regions of potential concepts) 

through the use of automatically defined functions enabling the evolution of valid learning 

mechanisms. This is vital if one expects to achieve a good performance in a reasonable 

amount of time with the evolutionary paradigm. It was discussed earlier in the general 

approach how GP can use the same primitives in different contexts making the search space 

very large and also yield learning rules that are incomprehensible.

7. Co-evolution of neural network structures along with the learning (Govinda Char 1996a; 

1996c; 1997d) is essential for a variety of problem environments. Co-evolution in this 

particular context means the evolution of neural network architecture along with the evolution 

of learning mechanisms for the evolved architecture. The advantage with co-evolution is that 

an optimum architecture (and topology) might evolve for the task in hand. Also, the network 

size can be optimized and the learning for an optimized architecture is likely to be more 

efficient. In recent years, a number of approaches have been tried for designing the network 

architectures using genetic algorithms and genetic programming. These include encoding 

simple rules as well as a variety of complex grammars into the genotype. For instance, 

cellular encoding (CE, Gruau 1994) offers a context-free grammar that is compatible with 

the LISP S-expression and includes a variety of structure creating primitives for feed

forward and recurrent neural networks. The network creation is based on the process of 

morphogenesis. Genetic programming by employing such grammar might induce the type 

of network for particular type of inputs/signals including the temporal signals. In the latter
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context, GP may have to opt for the primitives with recursive connections on the 

primitive elements, that is the cells. The cellular operators can be defined in terms of a 

terminal ADF. This strategy will allow the network structure to evolve first before 

proceeding to the evolution of learning at a higher level of hierarchy in the genetic program. 

Also, with the proposed approach applications that incorporate different types of 

architectures and learning at various hierarchical levels are feasible.

63.2.2 Sample programs

The initialization file for the GP run (see Appendix-B for details) is:

Population size: 500 

Number of Generations: 50 

Number of ADFs: 6 

Creation Type: Ramped Half and Half 

Maximum Depth at Creation: 4 

Maximum Depth at Crossover: 4 

Maximum Fitness: 1000 

Number to Mutate: 0

The population size needs to be large enough to avoid the possibilities of missing any of 

the pre-defined ADFs in each generation and especially in the initial generation. It is to be 

noted here that each of the ADFs is predefined in terms of the different primitives. How

ever these ADFs evolve in terms of the combination of the primitives during the run using 

the fitness information. That is, how the primitives will combine within a given ADF is 

not known a priori.

Initially the winner and the distance information, that is the distance of a cell from the 

winner, is provided in order to see whether GP is able to evolve the right adaptation strategy. 

The weight adaptation is through ADFs that is actually a function at a higher level of 

hierarchy allowing other strategies to evolve as terminal ADFs. As there is no standard 

measure for the process of self-organization, a maximum fitness of 1000 is assumed. This is 

based on the fact that the minimum quantization error that can be achieved with a given 

number of cells reaches a saturation point beyond which it cannot be reduced further. Only
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further addition of cells can reduce the error. In other words, the network will have to grow 

dynamically in order to reduce the quantization error. In such cases, the parameters for the 

learning rule need to adapt dynamically as the structures grow (Govinda Char, 1996b; 

1996e).

The details of the approach will be discussed now. The global variables are represented by 

glbADFl, glbADF2, glbADF3, glbADF4, glbADF5 and glbADF6. These variables return 

the value of the ADFs to the main program through the respective value-returning branches. 

Some of the ADFs can access the global variables associated with other ADFs. This enables 

interaction among the various ADF modules. GP has to choose the appropriate modules in 

the correct order for an effective self-organization. The ADF(s) for the weight adaptation, in 

particular, have a crucial role in terms of their number and the hierarchy. The designer 

has to decide the number of ADFs and their hierarchy in terms of defining them as 

functional or terminal ADFs whereas their hierarchy during problem-solving will be decided 

by the GP. The fitness criterion will be discussed first.

The Fitness criterion

The definition for the fitness measure needs to include the distance information. As GP is 

unable to induce this information on its own, it has to be accessed through a clever 

strategy. For a topological ordering, the weights associated with each of the cells need to 

move towards the weights of the winner. This difference can be checked and included in the 

fitness measure.

A few possible fitness measures and their effects will be investigated.

Consider the equation (6.4) for fitness measure.

The Fitness = G(x,y) = 1 /  ((The quantization error)1 *diff)) (6.4)

where the expression for the quantization error is the same as in the earlier case. The 

Eucledian distance is minimum for the winner cell when compared to the rest of the cells. 

The term ‘d iff represents the (absolute value of the) average of the difference in the weights 

from that of the winner cell.
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Reducing this difference enables the weight vectors to move towards the weights associated 

with the winning cell. GP should have the right information in terms of its fitness measure in 

order to induce and construct the valid components for the learning mechanism that it 

evolves. Further, the simulations with a fitness measure as expressed by the equation (6.3) 

show that the GP can totally avoid the weight adaptation phase which is crucial. One way of 

overcoming this problem is by forcing GP to enter this phase. This can be achieved by 

having a large quantization error (initially) that will reduce only if the weight adaptation 

phase is entered. A more natural way is to define the fitness itself in such a way that GP

should naturally opt for the weight adaptation. This is possible through a fitness expression as

defined by the equation (6.4). However, this expression does not always guarantee a 

topological ordering. The first term in the expression can become zero even in the initial 

generations if the signal components are assigned directly to the weight vectors as discussed 

earlier (see equation 6.3). Another possibility for the fitness measure is the equation (6.5).

The Fitness = G(x,y) = 1/ ((The quantization error)2 + (diff)2) (6.5)

The above equation * although was effective in enforcing a topological ordering did not 

seem to be optimum. Moreover, the fitness definition yielded programs whose structural 

complexity was quite high.

Finally the following expression for the fitness measure is tried.

The Fitness = G(x,y) = 1/ ((The quantization error)2 + (diff)) (6.6)

Equation (6.6) is found to be the optimum fitness function capable of enforcing a 

topological ordering with shorter programs and has been used throughout the simulations. 

Further, the results are consistent over several runs.

The ADFs can be combined in several ways. A few possibilities will be discussed now.

Case 1: The abstract primitive is defined as a function in ADF1. The ADFs are:
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1. ADF1 (defined as a function) - contains a function ‘Adapt’ as one of its primitives along 

with the other global variables. This function takes two arguments in order to adapt the two- 

dimensional weight vector.

2. ADF2 and ADF3 (both defined as functions) evolve a strategy for network weight 

adaptation.

3. ADF4 (defined as a terminal) - evolves a strategy for the Gaussian.

4. ADF5 and ADF6 (both defined as terminals) evolve a strategy with the two- 

dimensional signal components and the corresponding weights.

A sample program:

Generation : 1

Best Of Generation was :

Main: ( ( ADF3 ( ADF2 ( ADF6 ( ADF5 ) ( ADF1 ( ADF6 ( ADF5 ) ) )

ADF1: ( (Adapt (Adapt (Adapt (glbADF3 (glbADF5 ) (Adapt (glbADF4 (glbADF6 ) ) 

(Adapt (glbADF2 (glbADF4) ) )

ADF2: ((* (+ (eps (eps ) (* (glbADF4 (eps ) ) )

ADF3: ((* (* (wiy (wiy) (+ (glbADF6 (wiy) ) )

ADF4: ( (Exp ( (dist) )

ADF5: ( ( -  (ABS ( wix ) ( -  ( x ( x ) ) )

ADF6: ( ( -  (ABS ( wi y) (ABS ( y ) ) )

Fitness : 12

Structural Complexity : 44

For an effective self-organization, the x-components (ADF2, ADF5) need to combine with 

ADF4, the Gaussian function appropriately. Similarly the y-components (ADF3 and ADF6) 

need to combine and co-ordinate with ADF4. In this particular part of the simulation the 

value of ‘delta’, that is the width parameter is included in the variable ‘dist’. It is observed 

that the components of the Kohonen rule are nearly evolved but they have not been 

combined properly. Further, it can be seen that the strategy with the ‘Adapt’ primitive 

cannot be effective at all. The ‘Adapt’ primitive adapts the two-dimensional weights in 

different ways in different parts of the same tree. The fitness information is lost. Also, it is 

observed that the programs become extremely large with a structural complexity in the
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range of 500 and with a fitness of 30. This happens because GP has no clear direction or 

fitness information to guide it to be effective in the evolutionary mechanism.

Case 2: The simulation in this part employs five ADFs. The weight adaptation phase is 

implemented through two ADFs, ADF1 and ADF2. That is, the values returned by the 

global variables gib ADF 1 and glbADF2 get assigned to the x and y-directional weights 

respectively. The programs use a network of sixteen neurons (arranged on a 4*4 grid). 

The simulations are carried out to investigate the effects of various parameters on the fitness 

of the genetic programs and include the following graphs.

1. The number of epochs vs. the fitness.

2. The population size vs. the fitness.

3. The population diversity vs. the fitness.

4. The variation of the depth parameter vs. the fitness.

5. The number of epochs and the network size vs. the fitness evaluation time, that is, the 

time complexity.

The initialization file for the GP run (see Appendix-B for details) is shown.

Population Size : 500 

Number of Generations: 50 

Number of ADFs : 5 

Creation Type: Ramped Half and Half 

Maximum Depth at creation : 4 

Maximum Depth at Crossover: 4 

Maximum Fitness : 1000 

Number to Mutate : 0

The population sizes in the initialization file were 300, 500, and 1000 respectively for various 

simulations. Please refer to Appendix-C for the graphs. The graphs are for:

1. The number of epochs vs. the fitness.

Refer to figure. 1 (Appendix-C). The simulations were run for varying epochs. The results 

suggest that for a network the fitness improves with epochs. The effects of varying the 

epochs from 500 to 2000 are shown. This suggest that the number of epochs is key to achieve
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good solutions. A larger number of epochs enables better sampling of the signal space from 

which the components are drawn at random. Also, the weight adaptation is much more 

effective in minimizing the quantization error and improving the fitness.

2. The population size vs. the fitness.

Refer to figures. 2a and 2b (Appendix-C) Four sets of experiments were conducted. The 

simulations were run for population sizes of 300 and 500 (figure 2a) for 1500 epochs and 

for population sizes of 500 and 1000 (figure 2b) for 1000 epochs. The results were averaged 

over ten runs. The graphs suggest that a larger population size will result in a better fitness 

measure.

3. The population diversity vs. the fitness.

Refer to figures. 3a and 3b (Appendix-C). Four sets of experiments were conducted. The 

population was created with the variable and ramped half and half methods to investigate the 

effects of diversity on the fitness measure. For Figure. 3a the simulations used a population 

size of 500 and the number of epochs being 1500. For figure. 3b the population size was 

1000 and the number of epochs were 1000. The results, averaged over ten runs, suggest that 

with the ADF approach the population diversity does seem to have a marginal effect on 

the fitness measure. It is likely that this effect is observable to a larger scale with the 

general approach where the depth parameter can be varied to a greater range.

4. The variation of the depth parameter vs. the fitness.

Refer to figures. 4a and 4b (Appendix-C). Two different sets of experiments were run for a 

population size of 500 for 1500 epochs and a population of 1000 for 1000 epochs 

respectively. Starting with an initial depth of 3 the depth at crossover was increased by 1 to 

investigate the effects of the depth parameter on the fitness measure. The results suggest that 

with the ADF approach an optimum depth of 3(creation)/4(crossover) and 

3(creation)/5(crossover) gives the best results. Increasing the depth further decreases the 

fitness and have an adverse effect on the fitness measure.

5. The number of epochs and the network size vs. the fitness evaluation time, that is, the
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time complexity. Refer to figure. 5 (Appendix-C) shows the amount of time (in minutes) 

required for evaluating a single individual for varying epochs. The same network, that is a 

network with sixteen neurons was used. The population size chosen was 500. The results 

although look almost linear need not be so if the depth at creation and at crossover are 

different. Also the evaluation time will increase considerably if the network size is increased.

The sample programs:

Generation 0 

Initial random population 

Average Fitness : 33.914 

Best of Generation was :

Main: ( ( ADF1 ( ADF1 ( ADF2 ( ADF3 ( ADF3 ) ( ADF1 ( ADF3 ( ADF3 ) ) ( ADF2

( ADF2 ( ADF5 ( ADF3 ) ( ADF2 ( ADF5 ( ADF5 ) ) ) )

ADF1: ( (* (+ (* (eps (glbADF3 ) (* (glbADF3 (wix ) ) ( + ( *  (eps (glbADF3 ) (+ (eps

(glbADF3 ) ) ) )

ADF2: ( (* (+ (+ (eps (glbADF3 ) (+ (gibADF5 (glbADF3 ) ) ( * ( +  (wiy (eps ) (+ 

(glbADF3 ( e p s ) ) ) )

ADF3: ( (Div (Div (Exp(Delta) (Div (Dist(Delta ) ) (Exp (Div (Dist(Delta) )  ) )

ADF4: ( (ABS (ABS ( -  ( wix ( wix ) ) ) )

ADF5: ( ( -  (ABS (ABS ( wi y ) )  (ABS ( -  ( y ( w i y ) ) ) )

Fitness : 480

Structural Complexity : 69

The program illustrates how the primitives are combining to form the ADFs. The 

combinations seem to be quite effective. ADF4 is not seen in the main program. However, 

in this particular case the role of ADF4 as such is not clear. Also, ADF3 suggests that the 

GP is trying to evolve a Gaussian sort of function involving the distance and the width 

parameters.
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Generation : 50 

Average Fitness : 937.72 

Best of Generation was :

Main: ( ( ADF1 ( ADF3 ( ADF1 ( ADF2 ( ADF3 ( ADF5) ( ADF4 ) ) )

ADF1: ((+  (+ (+ (+ (glbADF4 (glbADF3 ) (+ (glbADF3 (glbADF3 ) )  (+ (eps (glbADF4 ) )  

(+ (glbADF3 (glbADF3 ) ) )

ADF2: ((+  (+ (glbADF3 (glbADF3 ) (+ (glbADF5 (glbADF3 ) ) )

ADF3: ( Exp(Div ( Div (Dist (Delta)) )

ADF4: ( (ABS (ABS ( wi x) ) )

ADF5: ( (ABS ( - ( y ( w i y ) ) )

Fitness : 959

Structural Complexity : 41

The program has been successful in evolving all the ADFs and sequencing them 

appropriately. GP opts for the weight adaptation phase naturally and succeeds in enforcing a 

topological ordering eventually.

It is to be noted that the possibility of multiple weight adaptation (that is, adapting a weight 

more than once in a single iteration ) exists. It depends on the modules that evolve. GP can 

eventually enforce topological ordering either by employing multiple adaptations or it may, 

over the course of evolution, avoid the multiple instances of weight adaptation over a single 

iteration.

In the above simulations the information on the winner cell and the distance parameter 

were provided. In actual practice, these co-evolve. These can be evolved as follows.

1. The winner

The winner can be evolved with the following primitives.

The function set: { IFLTE, ABS, +,-};

The terminal set: { x,y,w[0][ix][iy], w[l][ix][iy], temp};
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and with an explicit fitness function that is a minimum of equation (6.1). A sample program 

that uses two ADFs, ADF1 and ADF2 for evolving the concept of winner is shown.

The function and the terminal sets for ADF1 are:

Function set = { IFLTE}. //A single function taking four arguments.

Termianl set = { mismatch, minimum, minimum=mismatch, glbADF2}.

The variables:

mismatch = ABS(x-w[0][p][q]) + ABS (y-w[l][p][q]). (a)

minimum = lelO; //A variable (to that holds the value of the winner) has a large value 

initilally that will get replaced based on the comparison (with expression (a) for other cells) 

during the run.

minimum=mismatch is the replacement operator. 

glbADF2 is the value returned from ADF2.

The function ‘IFLTE’ will compare the expressions for different cells and find the minimum 

value of the expression (a) that is a winner.

ADF2 is used basically to create the expression (a) itself and uses a kind of symbolic 

regression till the output of ADF2 matches that of expression (a).

The function and the terminal sets for ADF2 are:

Function set = { ADD, SUB, ABS} taking 2, 2, 1 arguments respectively.

Termunal set = { x,y, w[0][p][q], w[l][p][q]).

The initialization file is:

Population Size : 300 

Number Of Generations : 50 

Number Of ADFs : 2 

Creation Type : Ramped Half and Half 

Maximum Depth at creation : 3 

Maximum Depth at Crossover: 4 

Maximum Fitness : 1000 

Number To Mutate : 0
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The depth parameter is held small. The TFLTE’ primitive taking four arguments can make 

the programs extremely large otherwise.

Sample programs:

Generation 2:

Best of Generation was :

Main: ( ( ADF1 ( ADF1 ( ADF1 ( ADF2 ) ) ) )

ADF1: ( ( IF( minimum = mismatch (IF( minimum=mismatch (mismatch ( IF ( minimum= 

mismatch ( minimum= mismatch ( glbADF2 ( glbADF2 ) ( minimum ) ( IF ( minimum ( 

glbADF2 ( IF ( glbADF2 ( glbADF2 ( min ( glbADF2) ( IF ( mismatch ( glbADF2 ( 

minimum= mismatch ( mismatch) )  ( glbADF2 )).

ADF2: ( ( - (  + ( ABS ( wi x ) ( ABS ( y ) ) ( - ( w i y ( x  ) ) )

Fitness : 300

Structural Complexity : 38

Generation : 21

Best Of Generation was :

Main: ( ( ADF1 ( ADF2 ) )

ADF1: ( ( minimum) )

ADF2: ( ( - (  + ( ABS ( wi x ) ( ABS ( y ) ) ( - ( w i y ( x  ) ) )

Fitness: 786

Structural Complexity : 12

The final expression for the fitness measure that is equation (6.6) should incorporate the 

fitness information for the winner either implicitely or explicitely.

2. The distance parameter 

The function set: { SQR,

The terminal set: { ix, ixmin, iy, iymin};

where the terms ix, iy, ixmin, iymin, represent the location (the co-ordinates) of any cell 

and that of the winner cell. It should be noted that ‘ixmin’ and ‘iymin’ are also in the

102



process of evolution. Again, an explicit fitness function will have to be defined for evolving 

the correct distance parameter and included in equation (6.6).

6.3.2.3 Co-evolution of structure

A sample program is shown to demonstrate the evolution of structure along with learning. 

The program uses cellular operators (Gruau, 1994). Two basic operators tried are the 

‘PAR’ and the ‘SEQ’ (refer chapter seven) for creating cells (neurons). These operators are 

defined as primitives in an ADF, that is ADF6. The simulations start with a single cell and 

grow cells dynamically using the operators during the run. It is essential that the width 

parameter has to be adapted accordingly. The task domain is the same as discussed earlier.

Generation : 1 

Average Fitness : 21.33 

Best Of Generation was :

Main: ( ( ADF2 ( ADF1 ( ADF3 ( ADF4) ( ADF1 ( ADF3 ( ADF6 ) ) )

ADF1: ((+  (+ (glbADF4 (+ (glbADF4 (wix ) )  (+ (wix (glbADF4) ) )

ADF2: ((+  (+ (glbADF3 (eps ) (* (gibADF5 (glbADF3 ) ) )

ADF3: ((Exp (Exp (dis t ) ) )

ADF4: ( ( -  (ABS ( x ) (ABS ( wix ) ) )

ADF5: ( ( -  ( - ( y ( wiy ) (ABS ( wiy ) ) )

ADF6: ( (Seq2 ( Pari (END ) ) )

Fitness : 30

Structural Complexity : 40

The simulation program for the meta-leaming system has been developed in the C++ 

programming language with object oriented programming techniques. A steady state GP 

employing a tournament selection scheme is used. A tournament selection randomly 

selects a number of genetic programs from the population. The fitness value of each 

member of this group are compared with each other and the best replaces the worst. The 

tournament size is set to five. Adam Fraser’s (Fraser, 1993) kernel is taken as a base on 

which the meta-leaming kernel has been designed and implemented. The programs use a 

Windows 95 environment. A Pentium 233/300 has been found to be too slow for the
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fitness evaluation even for a medium sized network. The reason being that each fitness 

evaluation requires the network weights to be adapted over a large number of epochs for a 

good performance (please refer to Appendix-C, figure. 1). For larger networks the fitness 

evaluations could be extremely time-consuming (as the number of neurons and the 

associated weights will also increase). However, it is to be noted that the learning rule that 

evolves for a smaller network has to be applicable for larger networks as well. A good 

strategy is to start with smaller networks (with an optimum number of cells) that can enforce 

a good topological ordering and apply the evolved rules to larger networks to achieve the 

desired performance.

The indications are that a parallel processing environment will be highly desirable to achieve 

the required performance with larger (optimum sized) networks. The fitness evaluation time 

can be considerably reduced based on the number of processors.

The graphics interface has to be dynamic to enable observation of the weight changes and 

their effects on the input/output mapping. The interesting point about this simulation is that 

the effects of various fitness measures can be observed graphically. Also it is impressive to 

observe GP opting for the Gaussian (the distance function) and its effects on the process of 

self-organization. Reducing the number of ADFs again leads to the problem of 

incomprehensibility of the evolved rules.

6.4 A comparison: GA vs. GP

Genetic algorithm, as discussed in chapter four, was employed to evolve learning rules for a 

feed-forward type of neural network capable of dealing with a different class of problems. 

The present work has mainly focused on unsupervised learning that are applicable to an 

entirely different class of problem domain. However, some comparison between the two 

approaches can be made in terms of a number of factors such as:

• The topology and the node activation function

With the GA implementation the network topology and the node activation function are 

specified a priori. The GP implementation is flexible. Although these simulations assumed

104



a fixed structure variable topology can be incorporated through a process of morphogenesis. 

The node activation functions might be allowed to evolve with the GP approach. Hence the 

networks can be non-homogenous where each cell can employ a different node activation 

function. Although a possible approach is suggested (in the co-evolution part) the 

simulations in the current work do not attempt these. It is likely that the GA approach also 

might allow for such a flexibility. It is not known whether any such work has been done so 

far.

• The levels of adaptation

The two levels of adaptation are distinct in the GA implementation. The learning rules evolve 

and subsequently adapt the network weights whereas with the GP, the learning level is 

embedded within the evolutionary level. That is, the weight adaptation is a part of the 

representational structure itself and hence an integral part of the evolutionary process. The 

key difference between the GA and the GP approaches is that in the case of GP the macro 

concepts including the concept of adaptation evolve while interacting with the given 

environment. The implications of the GP approach are profound. I f  the linear chromosome 

in the GA is also able to encode the concept of network weight adaptation the two 

approaches might then have some similarity and possibly the same implications.

• The difference

With GA, a learning rule is applied to different tasks to assess the fitness of the learning rule. 

A number of different networks with the assumed topology are set up to test the evolved 

rule for its fitness (that is, the fitness of the learning rule) on a number of leamable tasks. 

With the GP approach a variety of learning rules in terms of the node activation function 

and structure can evolve for a given task, although this has not been attempted as a part of 

the current work. As discussed earlier these might be possible with the GA approach also. 

It seems further work needs to be done in this direction as well.

The simulations with GP are based on a general definition for a connectionist learning 

rule as a sequence of interacting concepts. Encoding and decoding the genotype seems to be 

easier with the GP approach. The size and the complexity of the genotype is flexible. The 

learning mechanism can be evolved in terms of a number of potential modules and can be 

interpreted easily. The purpose of the experiments was to investigate whether the notions
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of constructivism and micro-macro dynamics could be extended to the evolution of valid 

connectionist learning mechanisms. The simulation results have demonstrated that flexible 

learning mechanisms can be evolved with a general definition for learning and with a single 

potential constraint imposed within the representation that the GP employs.

6.5 Discussions

The attempts were aimed at evolving a Kohonen type of learning rule and to observe 

whether a topological ordering can emerge with the evolved learning rule. The simulations 

suggest that GP, as a meta-leaming paradigm can be a potential tool. A number of issues 

were identified and addressed. The modular approach seems to be more powerful for the 

reasons discussed. To summarise, the proposed approach has the following advantages. The 

approach

1. suggests a way of naturally combining connectionist networks with the evolutionary 

paradigm.

2. by providing a general definition for a learning mle as a sequence of interacting concepts 

and by imposing a single potential constraint within the genotype is successful in 

implementing flexible learning rules for a self-organizing neural network. The constraint 

creates a paradox for the evolutionary paradigm to be creative. Further, the learning rules 

evolve while interacting with a given task environment.

3. allows for flexibility in terms of modularity and the mles are easily interpretable (and 

hence translatable) through the ADF modules.

4. suggests the possibility of co-evolution of structures and learning.

It would be interesting to investigate whether the proposed approach can be extended to feed

forward networks that employ a supervised learning mle. The fitness function definition 

should be easier as the target solution will be known a priori for a supervised learning mle. 

Also, learning for recurrent networks can be attempted as a part of the future work.

The representation that GP employs suggests that a hierarchical learning (different types 

at different levels) is feasible.
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Whether the method allows designing non-homogenous networks, that is networks where 

different cells/neurons in the same network having different node activation functions can 

also be investigated further.

Recent work in GP has shown that most interesting problems need a sort of internal 

memory (Teller and Andre, 1995). The incorporation of memory into GP have shown 

performance improvements. The proposed method seems to be a natural way of 

incorporating memory into the GP paradigm.

The learning rules can evolve while interacting with a task environment. The system, 

nevertheless cannot be defined as purely reactive as it incorporates a network structure 

with adaptive weights forming some sort of memory and a representational structure. On the 

other hand it can safely be termed as an eclectic hybrid.

(See references, Govinda Char, 1996 a, b, c also in the context of evolution of learning). 

Conclusion

The proposed approach, by providing a very general definition for a connectionist learning 

rule and imposing a single potential constraint offers a novel way to evolve flexible learning 

rules for a self-organizing neural network. The simulations demonstrated how such rules can 

be evolved while interacting with a given environment through the powerful notions of 

constructivism and micro-macro dynamics. Genetic Programming seems to be an excellent 

tool as a meta-leaming system as it offers a natural way of combining connectionist 

networks, employing both bottom-up and top-down strategies.

The role of such flexible learning mechanisms in constmctivist AI systems will be discussed 

in the next chapter.
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Chapter 7

Constructivist AI with Genetic Programming

Constructivist AI conceptualizes intelligence as an adaptive behavior that can be constructed 

through primitive elements and processes. These co-ordinate effectively to achieve a global 

behavior, typically employing a bottom-up strategy. This chapter briefly describes a recent 

modelling method for constructing adaptive systems and explains how such systems can 

be evolved with the genetic programming technique by extending the notion of 

constructivism to the evolution of neural structures and learning. A comparison between the 

two approaches is drawn highlighting the merits of the latter approach.

7.1 The Background

Traditional Artificial Intelligence (AI) understands intelligence to be explicitly definable. 

Thus AI is seen as a combination of knowledge in symbolic form and techniques that can 

manipulate this knowledge. This view of AI, as discussed in earlier chapters, has led to a 

number of limitations in terms of its range of applicability. The new AI approaches, 

typically, view intelligence in terms of emergence. In this context, intelligence can be 

conceptualized as an adaptive behavior and can be constructed from primitive elements and 

processes that involve interactions with the environment. These primitive processes may be 

in the form of a set of rules that evolve structures and/or concepts. For instance, the rules 

may specify a sequence of operations such as cell division, differentiation, interactions 

among the cells to create a structure, or the interaction of the cell/the structure with the 

environment. Alternatively the rules may simply represent a sequence of macro-concepts 

that evolve to solve a given problem. Each of these macro-concepts in turn might be in 

terms of a combination of potential micro-concepts. The final complexity of the systems 

that evolve is unpredictable. Such models are known as constructivist AI systems (Vaario, 

1994a) and possess a number of characteristic properties seen in ALife-like (Langton, 

1993) paradigms. Vaario in his recent work (Vaario, 1994b; 1994c) has demonstrated how 

such adaptive systems can evolve with a constructivist approach and argues that 

intelligence cannot be taken as a describable fact but is a result of gradual evolutionary and 

developmental processes. The approach is briefly discussed. Figure 7.1 shows the life cycle
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of an adaptive system, typically a nervous system illustrating the four forms of adaptation: 

Development, Neural Plasticity, Natural Selection and Genetic Changes.

Environment
Genotype

Reproduction

Genetic Variations

Natural Selection

Development

Phenotype

Plasticity
Behaviour

Figure 7.1: The life cycle of an adaptive system

The development of the neural network within the adaptive system and the information 

processing mechanism of the mature network are not separated from each other. The 

development process is important as:

• explicit design of complex systems is difficult suggesting a need for an ‘intrinsic design’ 

method to create complex systems such as neural networks.

• the development by itself is a form of adaptation filling the gap between the fast synaptic 

plasticity adaptation and the slow genetic-based adaptation.

• genetic code requires the development process to describe a complex structure.

• development implements the anatomical plasticity that can implement long-term memory.

The method employs the idea of emergent behavior where the complexity is reached without 

any global definition but using several local behavior rules that together reveal the global 

behavior. The neural network is grown towards a mature state gradually through a set of 

production rules. The fitness of the system as a whole is not just a function but the survival 

capability defined by a collection of selection processes which are functions of the current 

environment. The evolution is thus open-ended. With these four forms of adaptation Vaario 

has demonstrated how emergent phenomena can be realized based on atomic interactions. 

Figure 7.2 illustrates the hierarchical representation of computational levels. The 

computational model is based on a set of production rules inspired by the Lindenmayer 

system (Lindenmayer, 1970). The rules however are not a string of letters. Instead a set of
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abstract objects which have their own production rules are defined. Each of these objects 

can have sub-objects within them executing a different set of production rules.

Organism level 
Sensoric and effector model 

Emergenci ____________________

Cell (Neuron) level

Network level 
Interconnectivity between neurons

Neurons interactions

Figure 7.2: The hierarchical representation of computational levels.

The objects and their interactions can be seen at three different levels. The basic cell level, 

the neural network level and finally the organism level. A set of production rules describes at 

each level the local interactions between objects at the upper, lower or the same level. The 

production rule consists of a conditional part that switches the production rule on and off. The 

result of evaluation of a production rule can be the creation of a new object or the 

modification of its own attributes (a tuple of a key and a value). The rules are also expressed 

as attributes enabling them to change themselves. Eventually the behavior emerges. The key 

aspect of this approach was to model environmental adaptation using a Multilevel 

Interaction Simulation language (MLIS) which simulates the interactions at different 

organizational levels. The MLIS is different from traditional object oriented systems in the 

following aspects. In traditional systems an object is passive unless it receives a message for 

an action implying that the control mechanism for messages needs to be synchronized in the 

sense that the sender must know to whom and when to send the messages. In MLIS language 

the sent messages are broadcast to the environment where each object can check and act 

accordingly. There is no central control as each object is autonomously executing its own set 

of instructions in parallel with the rest of the objects. From these interactions the organism 

and the plasticity resulting in the behavior emerge. As an example assuming two organisms 

in an environment the production rule looks like:

Environment(Constraints,.....

Organism 1( Genetic Code, Neurons (attributes))

Organism2( Genetic Code, Neurons (attributes)) )
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Constraints - define the environment depending on the production rules that are common for 

each organism.

Genetic Code- defines the organism depending on the production rules for cell divisions, 

axon-dendrite growth, etc.

Neurons- defines the initial cell for the growth process.

The execution of the Genetic Code production rule is done without an explicit definition for 

it. Eventually the desired behavior emerges through the interactions of the productions at 

various levels.

In the above hierarchy some of the cells can act as sensors, the others as effectors and the rest 

as the neurons in between the two layers. The sensors and effectors also adapt to the 

environment. The final structure not only is genetically predetermined but can be affected by 

the environment suggesting that the approach allows for the intelligent adaptation of the 

organism to its environment.

7.2 The GP approach

It is argued that evolutionary algorithms, despite being powerful search methods lack 

the creativity to evolve ALife-like systems (Vaario, 94c). The reasons seem to lie basically 

in the type of problem environment, in the approaches that are employed, and mainly due 

to the failure in imposing proper constraints within the evolutionary paradigms. In the 

preceding chapter, through simulations, it has been demonstrated how flexible 

connectionist learning mechanisms can evolve just by:

• providing a very general definition for learning as a sequence o f interacting concepts and

• through the imposition of a single potential constraint that the neural network weight 

adaptation should be an integral part of the hierarchical tree representation that the GP 

employs.

The constraint creates a paradox for the evolutionary algorithm to evolve potential 

concepts capable of tackling the task environment. This suggest that a right constraint can
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make evolutionary algorithms extremely creative. The type of constraints and their effects can 

be established by experimentation.

It was also illustrated through the simulations that the notion of constructivism could be 

easily extended to the genetic programming for the evolution of building blocks representing 

the components of connectionist learning rule(s). It is to be seen whether flexible AI 

systems can be constructed and realized through the proposed approach.

The four forms of adaptation shown in figure 7.1 can easily be implemented with genetic 

programming as well. The aim is to realize the notion of emergence in terms of the neural 

network structure and also the type of learning that evolve for a given task environment. 

These will be explained.

1. The development stage of the neural network can be implemented either through simple 

rules or through a process for morphogenesis such as cellular encoding (CE) (Gruau, 1994). 

The latter case, being a grammar-based encoding the cellular operators for cell division can 

be easily defined and included as the GP primitives. The representational structure in CE 

is compatible with that of GP. The neural network structures can emerge while in constant 

interaction with a given environment. GP will have to induce the network architecture for a 

given signal/input space by choosing the appropriate primitives and construct the network 

architecture. Three types of primitives for cell/neuron growth and the connectivity patterns 

are shown in figure 7.3.

A Recursive ConnectionSequential Division Parallel Division

Parent Cell Child-1
Child-2Child-1

Child-2 Child-1 Child-2

Output Cell Output CellOutput Cell

□ □

Figure 7.3: Sequential and Parallel Division of cells and two cells recursively connected

Cellular encoding basically employs three types of primitives. These are the SEQ, PAR and 

the REC primitives. SEQ divides a parent cell into two cells and connects them in sequence.
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PAR divides the cells in parallel and inherits parallel links from the parent cell. The REC 

primitive provides a recursive connection between the two child cells, each with two output 

links. The first two figures show a feed-forward type of connection whereas the last figure 

illustrates a recursive connection. Based on the signals/ inputs GP will have to induce the 

right primitive to create the appropriate network structure for the task environment.

2. The simulations in the preceding chapter demonstrated how a network and learning can 

evolve while interacting with the task environment. The genetic programming system 

provides a paradigm to realize the notion of emergence at the levels of network creation and 

also the learning. The phenotypic characteristics emerge indirectly as a result of the genetic 

information (for the development) and also due to learning. The key point to note is that 

learning can evolve during the development.

3. The recombination of the genetic programs in terms of the swapping of sub-trees will 

yield the required genetic changes as a natural part of the evolutionary cycle.

4. The evolution itself will be at the highest level of adaptation incorporating natural 

selection.

7.3 A comparison between the two approaches

Models 1 and 2 in figure. 7.4 represent two different approaches to constructivist AI, 

and compare Vaario’s and the GP approaches.

Characteristics Model-1 Model-2 (GP)
Structure Artificial neural network Artificial neural network
Creation Production Rules-based Grammer based encoding
Learning Production Rules-based Evolve network learning
Type of Learning Dynamic with the environment Dynamic with the environment

Evolution Open-ended Based on a fitness value
Simulation language MLIS GP and ADFs (in LISP form)
Emergence the structure as an organism the structure and learning
Constructivism mainly applied to structures applied to structure/ learning

Figure 7.4: A comparison between the two computational models



7.4 Discussions

Model-1 has been successfully employed in implementing potential constructive AI systems 

(Vaario, 1993). It is observed from figure 7.4 that the four forms of adaptation can be 

easily incorporated within the genetic programming system. In addition, emergence is 

realized at the levels of both the network structure and learning. The final complexity of the 

system(s) that evolve is unpredictable. It is to be noted that the evolution in the case of 

model-2 is not open-ended but is bound by the fitness criteria that the user specifies. 

However, the proposed approach, by providing a general definition for learning and by 

imposing a single potential constraint within the representational structure provides an 

extremely large space (possible combinations) in terms of the type of network architecture, 

the node activation function and the type of learning that can be implemented. The 

advantage when compared with the reactive systems is that it can incorporate the 

development phase enabling the system to grow autonomously based on the need.

Model-2 with genetic programming has a potential for implementing constructivist AI 

systems that can be effectively employed in unpredictable/unknown situations.

Further, it has been argued that evolutionary paradigms are good at optimization but not 

creative enough to realize Alife-like systems. The reasons for these limitations need to be 

addressed. It basically seems to lie in the way evolutionary algorithms are employed, that is, 

in using these algorithms for optimization only rather than for construction and optimization.

It is to be realized that evolutionary algorithms could be extremely creative if appropriately 

combined with other paradigms such as connectionist networks.

The simulations employed a self-organizing neural network as a framework to attempt the 

evolution of valid learning rules in a dynamic environment. However, the goal should be to 

realize potential self-organizing systems that can adapt to the environment through individual 

and evolutionary adaptations. It should be possible to realize autonomous, self-organizing 

systems in terms of eclectic hybrids with proper constraints imposed within the hybrid in 

some form.

114



Conclusion

The aim was to investigate whether the proposed approach has the potential to realize 

constructivist AI systems in the form of an eclectic hybrid. Simulation results with genetic 

programming suggest that the notion of constructivism are easily extended to the 

evolution of neural network structure and learning. The advantage with this approach is that 

the learning rules will replace the production rules used in the first model. Further, the 

four forms of adaptation shown in the life cycle of an adaptive system are incorporated 

naturally within genetic programming. These suggest that GP, if used for construction and 

optimization, will yield powerful adaptive AI systems through hybrids.

The next chapter provides the concluding remarks and suggests some applications for 

the proposed approach.

115



Chapter 8

Summary, Conclusions and Directions for Further Research

This chapter provides a summary of the research with conclusions, suggests a few potential 

application domains and indicates directions for further research.

8.1 Summary and Conclusions

The research described in this dissertation has three main objectives.

First, to understand traditional knowledge-based systems and their limitations. The role 

of learning in problem solving and the need to investigate various representations and 

strategies are discussed in chapter one. In particular, the focus is on evolutionary algorithms 

that employ task-independent representations and operators to solve a wide range of 

problems in flexible ways. Constructivism, a powerful notion is introduced. It has been 

argued that AI, if seen as an adaptive behavior can be constructed through the interaction of 

primitive elements and processes. How an evolutionary algorithm such as genetic 

programming (GP) can be used to extend this notion to construct flexible learning is briefly 

discussed. Chapters two and three provide a background information on AI, its new 

perspective and on evolutionary computation.

Second, to investigate the role of genetic programming in connectionism. That is, how 

effective is genetic programming as a meta-leaming tool in evolving connectionist 

network architectures and learning rules. A self-orgaizing neural network is chosen as a 

framework to focus on various aspects of network architecture and learning. The approach 

firstly involves identifying key issues in connectionism that have led to its limitations. 

How evolutionary algorithms offer a way to overcome these limitations is discussed in 

detail. In genetic-based design the encoding strategy is crucial. In the context of network 

induction, the strategy should not only capture useful architectures that are optimum for 

solving a problem in hand but allow for further generalisation. In the context of learning it 

should be able to discover a variety of potential learning mechanisms for the given task 

environment. The proposed research by focusing on earlier approaches and also on most

116



of the recent work in genetic-based design has systematically raised a number of key 

questions such as:

1. Is the representation (genotype) that the algorithms employ sufficient to express and 

explore the vast space of network architectures and learning mechanisms?

2. Is the representation capable of capturing the concepts of hierarchy and modularity that 

are vital and naturally employed by humans in problem solving?

3. Are some representations better in expressing these? If so, how to exploit the strengths that 

are inherent to these representations?

4. If the aim is really to automate the design process what strategies should be employed so 

that the involvement of a human in the design loop is minimum?

5. Is the methodology or the approach able to overcome at least some of the limitations of 

connectionist networks?

6. Most importantly, how effective is the approach in solving problems?

Chapter four has attempted to address these through detailed discussions and also through 

comparisons to most of the recent work with genetic algorithms and genetic programming. 

The merits of the novel approach that is proposed in this thesis are identified in terms of the 

representation and the strategy employed. The importance of modularity and hierarchy in 

problem solving and the need for potential strategies to exploit these are stressed. How 

genetic programming offers these through the representation and automatically defined 

functions is demonstrated through simulations in chapter six.

The experimental results demonstrate that genetic programming, if used for construction 

and optimization could be extremely creative in implementing potential learning mechanisms 

and also network architectures for self-organizing neural networks. Further, the proposed 

method combines the bottom-up and top-down strategies through the powerful notions of 

constructivism and micro-macro dynamics. The network architecture and the learning 

evolve while interacting with the task environment. As the approach involves a general 

definition for learning (irrespective of the type of network) and a single potential constraint 

within the representation (that is the genotype), it appears that it could be extended to other
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types of networks as well. These suggest that connectionism has to be approached with a 

new perspective to realize its true potentialities.

Third, the aim is to identify the role of flexible learning in implementing adaptive AI 

systems. Chapter seven has discussed a recent model of a constructivist AI system that 

incorporates four forms of adaptation such as development, neural plasticity, natural 

selection and genetic changes. The novel method that is proposed in this thesis, can easily 

incorporate these within GP to build adaptive AI systems. A comparison is drawn between 

the two approaches.

The next subsection will discuss few applications with the GP hybrid.

8.2 Possible applications with the proposed approach

This concluding section suggests few applications. These include:

1. An extension to GP

Genetic programming is not Turing complete. That is, GP is not powerful enough to 

recognise all possible algorithms. The reason is attributed to the fact that GP has no inherent 

mechanism to implement a state or an internal memory. A number of interesting problems 

require a memory to be solved effectively. Indexed memory (Teller, 1994; Andre, 1994) 

is a simple way of implementing memory by adding few non-terminals such as ‘Read’ and 

‘Write’ to GP. Adding these non-terminals result in a system that is Turing complete. Using 

indexed memory, a GP function can save past inputs and then use them appropriately as 

needed to tackle a given problem. It is argued that indexed memory helps GP in solving 

memory-critical problems.

The proposed approach might be extended to implement internal memory as it 

incorporates neural networks within the GP paradigm.

2. Self-organizing systems

The simulations attempted evolution of learning rules for self-organizing neural networks. 

The goal should be to evolve self-organizing systems for information processing and for
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real-time applications. It should be possible to extend the notions of constructivism and 

micro-macro dynamics to the evolution of building blocks in terms of structure and learning 

that can self-organize at the systems level. The co-ordination of the building blocks 

based on various fitness criteria can be investigated.

3. Robotics

The approach can also be applied to the design of autonomous mobile robots that adapt to a 

given environment through automatic learning mechanisms (Zimmer and Puttkamer, 1994; 

Vaario, 1994; Balakrishna and Honavar, 1997). Robots, typically employ neural networks 

for learning. Networks that grow (or shrink) dynamically based on the environment have 

been shown to be more suitable than those with fixed architectures. The proposed approach 

allows for network development through a process for morphogenesis. It is possible to 

design autonomous system(s) where a few of the network modules can be made to act as 

sensors and some as effectors with the rest of the modules implementing the learning. The 

effects of modularity and hierarchy in network creation and learning can be investigated 

for different task-environments. Also, the learning in dynamic environments might be 

attempted as a part of the future work.

4. Adaptive pattern recognition

Pattern recognition (PR) is one of the most important components of an intelligent system. 

The traditional methods in pattern recognition have been inadequate to provide optimal 

solutions to a number of complex pattern recognition and classification tasks. Evolutionary 

algorithms, being powerful search and optimization methods, have been more successful 

in tackling complex problems (Tackett, 1994). PR, typically employs a number of 

techniques that use a variety of representations (Govinda Char and Tackett, 1996). The

proposed approach provides a potential hybrid for adaptive pattern recognition and 

classification tasks. Initially the hybrid can be tried with difficult bench-mark problems.

5. Modular and hierarchical learning

Distributed artificial neural networks have found applications in natural language processing 

(NLP) (Miikkulainen 1991; Elman, 1993). The architecture (Miikkulainen, 1991) employs 

hierarchically-organized back-propagation modules (for processing words) communicating
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through a central lexicon of word representations which is implemented as a feature map. 

The proposed method offers modularity in terms of network architectures and learning 

and has a potential in implementing NLP systems. The hierarchy is inherent to the 

representation that GP employs.

6. Reinforcement learning and learning for recurrent networks

A variant of supervised learning is the reinforcement learning that has been extensively used 

in many potential applications. Rather than giving the network the entire correct output 

some measure of how well the system is doing is presented. Recurrent networks, on the other 

hand model dynamical systems and employ a number of algorithms such as the recurrent 

back-propagation (Pineda, 1989) and back-propagation through time (Werbos, 1990). 

Evolution of architecture(s) and learning mechanism(s) for the above types of networks 

could be attempted in the future with the proposed method. GP, based on the environment 

and the fitness criteria might induce appropriate network architecture(s) and learning.

7. Incremental learning

Incremental learning techniques seem to be highly suitable in a number of applications. 

Connectionist networks and genetic programming offer ways of implementing incremental 

learning. Considering an example in language processing, it has been shown that neural 

network models are incapable of learning complex grammars when both the network and 

the input remain unchanging (Elman, 1991; 1993). However, when either the input was 

presented incrementally or the network begins with limited memory that gradually increases, 

the network was able to learn grammar and represent complex sentences. Further, the 

existing learning algorithms, in general, are inadequate for tackling a number of problems 

known as the hard-to-leam problems or the type-2 problems (Clark and Thornton, 1993 ). 

The components of the input data tend to relate in some way and the learning algorithms as 

such fail to identify the relationship. These problems can be solved if the data is re-coded to 

discover the regularities. GP has successfully solved these problems through incremental 

learning (Thornton and Kuscu, 1994). The proposed method allows for incremental learning 

and can be tried on type-2 problems.
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8. Integrating hardware and software

Connectionist networks and evolutionary algorithms are potential candidates for parallelism. 

Recently Hardware Description Languages (HDL) (Hemmi, Mizoguchi, and Shimohara, 

1994; Higuchi, 1994) have been innovated and successfully applied for evolving hardware 

(Ray, 1994; Hugo de Garis, 1993). GP might be a powerful tool in building integrated 

system(s) that combine neural hardware and software through an effective interface with 

HDL. Network structures can be implemented in hardware with HDL. GP’s role will be in 

evolving the learning mechanisms. The approach is amenable to parallel implementation.
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Appendix-A

I t e r a t i n g  <End=e)

sweep 93 

d e l t a  0.030

0 .004

I t e r a t in g  <End=e)

3 .527
0.284

Figures: 6.2 and 6.3 above show the process of self-organization 
with the standard Kohonen rule for the models shown in 
figure. 6.1. The networks grow starting from a single cell.



Appendix-B

Initialization File for the GP Run

Consider the file shown below:

Population size: 500 

Number of Generations: 50 

Number of ADFs: 6 

Creation Type: Ramped Half and Half 

Maximum Depth at Creation: 4 

Maximum Depth at Crossover: 4 

Maximum Fitness: 1000 

Number to Mutate: 0

The aim is to create a random population of trees of different sizes and shapes and to have a 

diversity in the population. The random trees can be created basically by two methods, the 

‘full* and the ‘grow’ methods (Koza, 1993). The ‘ramped half-and-half generative method 

combines the two. In full method all the trees will have the same shape whereas in the grow 

method the shapes will vary. The mixed approach enables maintain the diversity of the 

population minimizing the chances of duplicating individuals. These duplicate individuals 

also waste the computational resources.

Please refer to pp. 92-94 (Koza, 1993) for the details.
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Figure 2a : Fitness Vs Population Size(Ramped half and half)
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Figure 2b : Fitness Vs Population Size (Ramped half and half)
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Figure 3a : Fitness Vs Population Diversity
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Figure 3b : Fitness Vs Population Diversity
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Figure 4a : Fitness Vs Depth
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Figure 4b : Fitness Vs Depth
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Figure 5 : Time Vs Epochs
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14 December 1999

Dear Deborah 

Dr KC Shar

Thank you for your letter of 9th December and enclosures.

For the purpose of this letter I have assumed that the panel was charged with the 
responsibility of investigating the matter; coming to a decision on what tire facts are, 
where possible, and making recommendations, if appropriate, if this is not the case please 
let me know.

As ever this is quite a difficult matter - the panel and the Clerk of the Senate have an 
unenviable task! I do think the draft letter needs to be revised for the reasons set out 
below.

Generally I think the response to Kathleen Bolt ("KB") from the University should be in 
fairly "conciliator/' terms and that the panel should be seen to use her questions as a 
helpful way of re-expressing or adding to the report to provide greater clarity. To start 
with I will use the letter from KB as a point of reference and my comments on the points 
she makes (which I have numbered on a copy of her letter which I enclose) are as 
follows:-

1 KB claims the introduction is misleading. It is not necessary to agree with her on 
this but arguably every thing in the first paragraph with the exception of the first 
sentence is strictly not essential to the report and could be deleted.

2 What is the position here?

3 1 would reply by confirming that in light of the interpretation KB has put on this, it
is recognised that that use of the words "on the whole" was inappropriate and 
misleading given the panel's findings.
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4 I think KB wants to know exactly why the panel felt successive heads of department 
failed to grasp the nettle of "adequate supervision" -because of resources...pressure 
of business or for some other reason? Was Dr Char asked what the consequences of 
this were or alternatively did she volunteer this information? I would respond by 
confirming the position.

5 You can see why KB is anxious to establish whether the panel formed a view on 
whether Dr Char told Dr Sharman about the proposal. You would ordinarily have 
expected her to do so. Equally though if it was lost what was to stop Dr Char 
getting a copy of the letter from its author? I anticipate KB would like to know 
whether the panel asked Dr Sharman if he was positive that he did not get a copy of 
the letter? Did he speak with Dr Char with this on a number of occasions? Did the 
panel make enquiries with the "senior staff" that Dr Char claimed she spoke with? 
Did these assist the panel? I think the response the University has prepared is the 
right way forward at this stage subject to clarification of the above questions.

6 Provided Dr Char's position to the Panel was that she was that she was never 
unwilling to use the UNIX facilities then I suggest the report should start by 
confirming this and by confirming that the facility was available to all. The report 
should probably confirm who gave evidence that she was unwilling to use the 
UNIX now that this seems to be relevant. KB's question is very much a loaded one 
and the issue is really whether the panel were satisfied that Dr Char had been given 
adequate facilities. I note the report does give its finding in this regard. Is it the case 
that there was a similarity of facilities and, if so, should the report be amended to 
show that this was a factor the panel took into account in reaching their decision on 
adequacy?

7 I think the response to this query should reflect carefully what Dr Char's position to 
the Panel was. In addition I would be tempted to expand the report accordingly to 
deal with this. I would refrain from inviting KB to respond by asking her the 
question about computing capabilities.

8 I think the point KB is trying to make is that the findings in the report state that 
there is no evidence when there is of course, Dr Char's evidence. However I feel 
that the general position is not irrelevant as KB perhaps seeks to suggest. It might 
be a factor one could legitimately look at when determining what was actually said.
I think KB is looking to ascertain what the panel felt had been said to Dr Char about 
grants and I too would be interested to know what they found as it will help us 
understand their position. The report needs to be amended in my opinion.

9 The report states that the department should have acted more decisively and KB 
has extrapolated from this that the panel also found that there was inadequate 
supervision. I think it is important for the panel to set the record straight on the 
issue of adequate supervision. Dr Char is looking for compensation and from a 
purely legal perspective the main issues are therefore (1) whether there was a 
breach of contract and (2) if so, what the loss is. I assume the University has no 
proposals but I do think they should go into a bit more detail about why they feel 
this should be die case.
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10 I note that Dr Char made no direct claim of racial harassment. Whilst Dr Char may 
have not used the word /ydiscrimination" it is clearly KB's intention to now raise 
this as one of her arguments. What are the reasons for not allowing the racial 
harassment issue to be dealt with as part of the complaint procedure as KB 
suggests? Is it die case that the panel did not consider that the issue of her status as 
an overseas student or her ethnic origin was a relevant factor in what took place in 
this case, or did they just not consider these issues at all?

11 I think it is important for the University to explain the position in a bit more detail 
given KB's desire to know whether efforts were made to trace these people and if 
not why? Did Dr Char make anything of this at the oral hearings? Was the position 
explained to her then?

12 My reading of the report is that Dr Char received adequate supervision and 
facilities (see finding 9) but in light of KB's comments I wonder whether the report 
at section 2 and 5 needs to be clarified or expanded.

13 Again should the report be amended to deal with these points?

I think it would be helpful for the letter to KB to be redrafted in light of my above comments
and would be delighted to look over the final version before it goes. I am on holiday on 16 th-
20th -28th and SÔ -Sl*' December. T am also off from 1st -3rd January 2000.

Yours sincerely

Morton
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University of Glasgow

8 July 1999 

SENATE OFFICE
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Glasgow |

Dear Professor Whitehead

Dr K G Char - University Complaint

I refer to your letter of 28th April to Dr Char enclosing the Report of the Panel set up 
to investigate her complaint to the Senate and your request for her comments 
regarding the factual accuracy of the Report. Dr Char has prepared a summary of the 
points she wishes to raise and I enclose this document.

I note that following consideration of Dr. Char’s comments a final Report will go to 
the Senate itself. Given your findings on a number of issues I would ask that the 
following points be addressed by yourselves and/or by the Senate.

Firstly it is my opinion that your introduction is slightly misleading. Dr Char was 
advised by the Principal to take the complaint about which she had written to him to 
the Senate Appeals procedure. As you are aware there was no complaints procedure 
in place at that time and her complaint was not against an academic matter, given 
that she had been awarded her PhD. There appears therefore to have been no 
appropriate remedy available at that time and she merely followed the advice of the 
Principal in approaching the Senate Cleric who after considering her case 
advised/allowed her to proceed by way of your draft complaints procedures. Indeed 
one of the difficulties which Dr Char appears to have encountered is the lack of any 
appropriate procedures either at Departmental or Senate level for dealing with her 
complaints at a much earlier stage. This point arises in your findings and is 
discussed again below.

SC
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Secondly your Report fails to mention Dr Char’s request for other Departmental
members and others to be present at the third meeting of the Panel and your reasons
for refusing this request.

I would like to raise some points arising from the findings:-

1. You say that ‘on the whole’ Dr Char was dealt with honourably by members of 
the Department. Tliis suggest exceptions - what are these?

2. You say that successive Heads of Department ‘failed to fully grasp the nettle' 
What does this mean and what were the consequences for Dr Char? Further you 
think that a ‘pastoral’ supervisor have alerted the Department to the
breakdown between Dr Char and Dr Sharman. Whilst this may well have 
assisted, it seems that this breakdown should nonetheless have been apparently 
obvious to the Departmental Heads.

4. Is there any reason to disbelieve Dr Char that she showed Dr Sharman the 
proposal from BT and that he failed to do the necessary work to allow her to 
process this matter?

5. As stated in Dr Char’s summary she denies that she was unwilling to use tlv 
UNIX facilities. These findings also do not address the issues of whether llu 
facilities available to Dr Char were the same or similar to those available to others 
in the Department at her level.

7. There seems to be some confusion here. Dr Char is adamant that she did h«-i 
write a GP kernel count and did not want to write one. She advises that this u ;i 
beyond her computing capabilities and that to have written such a count would 
have taken an enormous amount of time which she could not have allocated to h i 
PhD. She advises that the software was available on the Adam Fraser Kauri 
and her-intention was to use genetic programming to write an enginca utr 
application and to combine neural networks with it which she ultimately did Sin 
advises that she repeatedly told the panel that she did not write a GP kernel.

8. Your findings seem to state the general position rather than address the specifies 
of Dr Char’s position. Whilst it may be the case that a Head has no author!iy <o 
propose more than consideration of a position, that does not deal with the ismh- «»f 
whether on this occasion the impression of being able to promise more wa- ■.•iwn.
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Conclusion. You refer to ‘accepted norms’. What are these, and upon what arc 
they based?

Given your findings at number 1 and 2, what remedy do you propose for Dr Char in 
relation to this matter. I note your recommendations regarding the workings of the 
Department, however this will be of little consequence to Dr Char herself. The 
failure of the Department to consider her complaints timeously or seriously has 
clearly exacerbated the problems she was facing, not least the difficulties o f  
establishing events at this stage.

Secondly, Dr Char has a number of times, in correspondence and in her detailed 
complaint, made reference to the fact that she believes she was discriminated againsi 
i.e. treated differently or less favourably by virtue of her ethnic origin and status as 
on overseas student. Her main concerns have been failure to change her supervisor, 
the lack of facilities and indeed the complete deprivation of suitable facilities for a 
considerable period of time and the failure of the department/university to 
investigate her complaints about harassment and other incidents despite repeated 
requests, all of which she believes may have been discriminatory. At no point is this 
issue addressed. Whilst I understand that there is a separate code relating to racial 
harassment, the issues arising for Dr Char appear to relate as much to unfavourable 
or differential treatment as to racial harassment as such and therefore I see no reason 
why they cannot be dealt with as part of the complaints procedure. Further no one 
has suggested to her that she pursue the alternative remedy of racial harassment.

Thirdly Dr Char has given the names and contacts for a number of other students 
who she believes also had difficulties with Dr Sharman. It would appear that no 
efforts have been made to contact these other students and investigate the matter. Ii 
would certainly put a different perspective on matters if it was established that Dr 
Char was not the only student who felt that she had been mistreated by Dr Sharman 
and may well change the panel’s view.

Fourthly the crux of her complaint is really why the Department did not change her 
supervisor and provide appropriate facilities at a much earlier stage. Once again the 
panel does not appear to have resolved the failure of the Department to do either of 
these.

Finally the question arises as to why Dr Char was assigned a supervisor with no 
background in neural networks or artificial intelligence. If there was no such 
supervisor available within the Department then this begs the question as to why she 
was invited to complete her PhD. within the department in the first place.
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W e  h o p e  t h a t  t h e  p a n e l  c a n  a d d r e s s  t h e s e  v a r i o u s  i s s u e s  i n  r e - d t > ;  u s s i n g  t h e  r e p n n  
a n d  l o o k  f o r w a r d  t o  y o u r  c o m m e n t s  i n  r e l a t i o n  t o  t h e s e  m a t t e r s .

S i n c e r e l y  y o u r s  
o n  b e h a l f  o f  E M L C

iP Katlileen Bolt
PRINCIPAL SOLICITOR
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