
CONSTRUCTIVIST ARTIFICIAL INTELLIGENCE
WITH

GENETIC PROGRAMMING

by

Kalyani Govinda Char

A Dissertation Presented to the

Department of Electronics and Electrical Engineering

University of Glasgow, United Kingdom

In Partial Fulfillment of the
Requirement for the Degree

DOCTOR OF PHILOSOPHY

October 1998
(Revised)

copyright © 1998 Kalyani Govinda Char

ProQuest Number: 13815581

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13815581

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
flNIVERSITrubrary

GLASGOW UNIVERSITY
LIBRARY

t i^l (cop^

Dedication

To my parents.

' Whatever way they come to Me,
wherever they may be,
it is always in My path they go,
and I return their love just so. ’

The Bhagavad Gita

A Thought!

‘Knowledge is extremely pure and humble.
Access it straight instead o f filtering it out
through a dirty filter. ’

Kalyani Govinda Char

Acknowledgments

First and foremost, my thoughts go to my parents who gave me the education and the

encouragement throughout my career. My dad, being a scientist, has always believed in a

scientific outlook and approach. I am indebted to my parents for everything they gave me.

They have been my constant source of inspiration and motivation to continue with research

while my coming across several hurdles. I strongly believe that parent’s blessings are the

greatest wealth that anyone can posses and are the best references to come up in life. I am

extremely fortunate to be bom in an excellent family that taught me the values of tmth,

kindness, dignity and love for animals and of course to the mankind. My brother

Dr. Dwaraka Nath Char and my sister Dr. Malathi Char are real doctors in life. They wanted

me to be different. I chose computing and I am happy with my choice. I am grateful to my

brother and his family and my sister for giving me the support and the encouragement to

continue in the path that I have chosen.

I am also very fortunate to meet and know excellent people in the research community. I

have great appreciation for Dr. Daniel Polani from the university of Informatik-Mathematik,

Germany for his interesting discussions on self-organizing neural networks and systems.

He is dedicated to science and has been extremely keen on my work. His encouragement

made me very strong and gave me the confidence to put new ideas with clarity on paper.

Dr. Walter Alden Tackett not only gave me the motivation and the strength to reach my

goal but also an opportunity to be a co-author to one of his excellent publications in the

Handbook of Evolutionary Computation, OUP, US. I will always remember his help and

advice. In my opinion he belongs to the category of brilliant people who would strive to

help anyone, anywhere.

My sincere thanks to Professor. John Koza for providing student’s travel grants that enabled

me to attend the GP-97 conference. I got excellent feedback from many researchers that in

turn helped me a lot although it was a hurried preparation for presentation on my

part.

iii

I also appreciate the encouragement for my research work from Professor. Koza

Dr. Fogel, Dr. Tom Ray, Dr. Hugo de Garis, Dr. Riccardo Poli, Professor. Goldberg, and

from many others whom I met at the conference.

Although I have not met Dr. Gruau I should say that he is highly innovative and an

extremely broad-minded person who would do anything to promote research. Earlier I

missed an opportunity to go to France when I was given an offer to work with him for

three months.

My sincere thanks to Dr. Adam Fraser for his patience in discussing the GP kernel to great

depths. This in turn helped me implement my own kernel with neural networks and GP.

Doctorate, I think, is a difficult endeavor though it could be extremely interesting. I was

thinking of a project in the field of artificial intelligence but was not sure as to where and

how to start. Luckily I came across the genetic programming (GP) paradigm. I was excited

and introduced GP to the department. I am happy to say that my efforts have brought in a

whole body of research to this department. Various groups have been thriving since then.

Unfortunately I could initiate my project only in March 96 after the facilities became

available to me. I decided to use GP in the context of AI. I have been very lucky to get good

feedback from my own publications to guide me further. Professor. Vaario’s work on

constructivist AI fascinated me and I thought that GP could be a potential tool for building

such systems. I have suggested the basic approach. I am sure this work and also research

in AI will be pursued from this department in the future. I appreciate the help given by

Professor. Shimohara and Professor. Vaario from ATR laboratories, Japan in sending me

their valuable papers and also for their encouragement.

I am grateful to Dr. Roger Waterfall at the university of Manchester, UK and to

Dr. Mervyn Curtis at the university of Nottingham, UK, for their help and encouragement

before I took up research.

I sincerely acknowledge the help given by Dr. Muir in providing PCs for running my

simulation programs.

iv

Thanks to Dr. Davie and also to the technical staff Sam-Kilgour, Raymond McCall, Jon-

Trinder, Bridget Sweeney and Stephen Gallaghar for their help.

Coming to the thesis, I would like to thank Professor. Murray-Smith for going through the

chapters and providing useful comments in improving the presentation.

Glasgow had some attractions for me most notably, the smart blue-tits and squirrels asking

for nuts in the park, their soft touch and the friendly doggies, Sheila, Poppy, Kerry, and

Prince.

My landlord Tom Dickson and his family have been a great help in providing a very decent

accommodation and an atmosphere for my research work.

Finally, my friends especially Mary, George and Sheila, Manu Ahluwalia, Tassos Fragos,

John Moxey, Wye Teoh, John Parle, Scott Ray and my well-wishers deserve

appreciation.

Kalyani Govinda Char

UK, October 1998

List of Publications

1. K. Govinda Char, Constructive Learning with Genetic Programming, EuroGP-98, France.

2. K. Govinda Char, Constructivist AI with GP (Late-breaking paper), the Genetic-

Programming Conference, GP-97, Stanford, USA.

3. K. Govinda Char, Constructivist AI with GP, IJCAI97, the International Joint

Conference on Artificial Intelligence, Nagoya, Japan.

4. K. Govinda Char, AI-Revisited, S0C097, the ICSC Symposium on Soft Computing,

France.

5. K. Govinda Char, A Novel Approach to Artificial Intelligence, Tainn’97, the Sixth

Turkish Symposium on Artificial Intelligence and Neural Networks, Baskent University,

Turkey.

6. K. Govinda Char, Modeling Self-organization - Approaches and a Comparison with

Evolutionary Methods, BCEC97, the International Conference on Bio-Computing and

Emergent Computation, Skovde, Sweden, published by World Scientific Publishing.

7. K. Govinda Char, Evolution of Structure and Learning with Genetic Programming,

IWANN’97, the International Workshop on Artificial Neural Networks, Canary Islands,

Spain, published in the Lecture Notes in Computer Science.

8. K. Govinda Char, Modeling Self-Organization- a Comparison, GWAL’97, the Second

German Workshop on Artificial Life, University of Dortmund, Hans Bommerholz,

Germany.

9. K. Govinda Char and Walter Alden Tackett, Pattern Recognition (section F I .6) in the

Handbook of Evolutionary Computation, 1997, Oxford University Press, USA.

10. Walter Alden Tackett and K. Govinda Char, Genetic Programming Applied to Image

Discrimination (section G8.2) in the Handbook of Evolutionary Computation, 1997,

Oxford University Press, USA.

11. K.G. Char, Self-organization with Adaptive Learning, ICML’96, the International

Conference on Machine Learning, Bari, Italy.

12. K.G. Char, A Learning Rule for Emerging Structures, WCNN96, the World Congress on

Neural Networks, San Diego, USA.

13. K.G. Char, Emergence of Structures in Self-organizing Neural networks using Genetic

Programming and Cellular Encoding techniques, Tainn96, the National Conference on

Artificial Neural Networks, Istanbul, Turkey.

TABLE OF CONTENTS

Dedication.. i

A Thought!.. ii

Acknowledgments..iii

List of Publications... vi

List of Figures and Tables... xii

Abstract.. xiii

CHAPTER 1 CONSTRUCTIVISM AND AI 1

1.1 Introduction 1

1.1.1 Genetic algorithms 3

1.1.2 Genetic programming 4

1.1.3 Artificial Life 4

1.2 Contributions of the research 5

1.3 Outline of the research 8

CHAPTER 2 BACKGROUND AND THE NEW

PERSPECTIVE OF AI 11

2.1 A brief history of Artificial Intelligence 11

2.2 The new perspective of AI 13

2.2.1 The Credit Assignment Problem 13

2.2.2 The Knowledge Acquisition B ottleneck 14

2.2.3 Memory Indexing Problem 14

2.2.4 The Problem of Scaling 14

2.2.5 The Representation Design 15

2.2.6 The Software Crisis 15

2.3 Artificial Intelligence seen as Emergent Intelligence 15

2.3.1 Evolutionary Algorithms 16

2.3.2 Reactive Systems 17

2.3.3 Eclectic Hybrids 17

2.3.4 Automatic Programming

2.3.5 Constructivist Systems

18

19

CHAPTER 3 EVOLUTIONARY COMPUTATION 21

3.1 An overview 21

3.1.1 Genetic Algorithms 24

3.1.1.1 Population 26

3.1.1.2 Fitness Evaluation 26

3.1.1.3 Selection 27

3.1.1.4 Trait Inheritance and Recombination 29

3.1.1.5 Mutation 30

3.1.1.6 The Schema Theorem and the Building Block Hypothesis 30

3.1.1.7 Deception and Royal Road 32

3.1.1.8 Hybrid Algorithms 32

3.1.1.9 Parallelism in the Genetic Algorithm 32

3.1.2 Genetic Programming 33

3.1.2.1 Population 33

3.1.2.2 Fitness Evaluation 35

3.1.2.3 Selection 36

3.1.2.4 Trait Inheritance and Recombination 36

3.1.2.5 Mutation 37

3.1.2.6 The search mechanism 37

3.1.2.7 The Schema Theorem and the Building Block Hypothesis: the

GP analogy 39

3.1.2.8 Deception and Royal Road: the GP analogy 41

3.1.2.9 Hybrid Algorithms 41

3.1.2.10 Parallelism in Genetic Programming 41

CHAPTER 4 EVOLUTION OF STRUCTURE

AND LEARNING

4.1 Introduction

43

43

4.2 Connectionist Networks 45

4.3 The role of evolutionary algorithms in connectionism 46

4.3.1 The Genetic Algorithm approach 47

4.3.1.1 N etwork Induction 4 8

4.3.1.2 Induction of Learning 53

4.3.2 The Genetic Programming approach 59

4.3.2.1 Network Induction 59

4.3.2.2 Induction of Learning 60

4.4 Discussions 63

CHAPTER 5 SELF-ORGANIZING NEURAL NETWORKS 67

5.1 Introduction 67

5.1.1 The Kohonen Self-organizing Feature Map: the

characteristics and the Learning Rule 67

5.1.1.1 Performance Criteria 69

5.1.1.2 The Problems and Limitations 70

5.1.2 The Growing Cell Structures 71

5.1.3 The Enhanced Feature Map: Modeling Lateral Interactions 71

5.1.4 Incremental Grid Growing 72

5.2 The Evolutionary Approach 72

5.2.1 The Genetic Algorithm Approach 73

5.2.1.1 The Genotype-Phenotype Mapping 73

5.2.1.2 The fitness function 76

5.2.2 The Genetic Programming Approach 77

CHAPTER 6 SIMULATION RESULTS 80

6.1 The Framework 80

6.2 The Problem 80

6.2.1 The environment 80

6.2.2 The task 81

6.2.3 The basic steps 81

X

6.3 The Genetic Programming Approach 82

6.3.1 The General Approach 83

6.3.1.1 Sample Programs 85

6.3.1.2 The issues 86

6.3.2 The Modular Approach 89

6.3.2.1 Advantages of Modularity in the context of learning 91

6.3.2.2 Sample Programs 93

6.3.2.3 The Fitness criterion 94

6.3.2.4 Co-evolution of Structure 103

6.5 A Comparison: GA vs. GP 104

6.6 Discussions 106

CHAPTER 7 CONSTRUCTIVIST AI WITH GENETIC-

PROGRAMMING 108

7.1 The B ackground 108

7.2 The GP Approach 111

7.3 A Comparison between the two Approaches 113

7.4 Discussions 114

CHAPTER 8 SUMMARY, CONCLUSIONS AND

DIRECTIONS FOR FURTHER RESEARCH 116

8.1 Summary and Conclusions 116

8.2 Possible Applications with the proposed Approach 118

APPENDICES

A Two different models for the pattern recognition task.

B The initialization file for the GP run.

C The graphs of GP run for various parameters.

BIBLIOGRAPHY

xi

List of Figures and Tables

Figures and Tables Description

3.1 An evolutionary cycle.
3.2 A population of genotypes.
3.3 The decoding of the genotypes.
3.4 The Roulett wheel selection scheme.
3.5 Single-point crossover.
3.6 Mutation of a genotype.
3.7 The Lisp expression and the Parse tree.
3.8 A sample genetic program.
3.9 Crossover in GP.
5.1 The Kohonen Feature Map.
5.2 Neural network encoded in a connection matrix.
5.3 Interaction between the GA and the Feature Map.
5.4 A transcription rule.
5.5 A chromosome evolving a network connections.
6.1 The two models used for the evolution of learning.
6.2 Self-organization for the signals drawn from a

circular model with the standard Kohonen rule
(Appendix-A).

6.3 Self-organization for a square model with the Kohonen
rule (Appendix-A).

6.4 An illustration of the ADFs.
6.5 An example of the types of ADFs for evolving a Kohonen-

type of learning.
7.1 The life cycle of an adaptive system.
7.2 The hierarchical representation of computational models.
7.3 Cellular operators for neural network creation.
7.4 A comparison between the Rule-based and the GP

approaches.

Abstract

Learning is an essential attribute of an intelligent system. A proper understanding of the

process of learning in terms of knowledge-acquisition, processing and its effective use has

been one of the main goals of artificial intelligence (AI). AI, in order to achieve the desired

flexibility, performance levels and wide applicability should explore and exploit a variety of

learning techniques and representations. Evolutionary algorithms, in recent years, have

emerged as powerful learning methods employing task-independent approaches to problem

solving and are potential candidates for implementing adaptive computational models.

These algorithms, due to their attractive features such as implicit and explicit parallelism,

can also be powerful meta-learning tools for other learning systems such as connectionist

networks. These networks, also known as artificial neural networks, offer a paradigm for

learning at an individual level that provide an extremely rich landscape of learning

mechanisms which AI should exploit.

The research proposed in this thesis investigates the role of genetic programming (GP) in

connectionism, a learning paradigm that, despite being extremely powerful has a number

of limitations. The thesis, by systematically identifying the reasons for these limitations

has argued as to why connectionism should be approached with a new perspective in order

to realize its true potentialities. With genetic-based designs the key issue has been the

encoding strategy. That is, how to encode a neural network within a genotype so as to

achieve an optimum network structure and/ or an efficient learning that can best solve a

given problem. This in turn raises a number of key questions such as:

1. Is the representation (that is the genotype) that the algorithms employ sufficient to express

and explore the vast space of network architectures and learning mechanisms?

2. Is the representation capable of capturing the concepts of hierarchy and modularity that

are vital and so naturally employed by humans in problem-solving?

3. Are some representations better in expressing these? If so, how to exploit the strengths that

are inherent to these representations?

4. If the aim is really to automate the design process what strategies should be employed so

as to minimize the involvement of a designer in the design loop?

5. Is the methodology or the approach able to overcome at least some of the limitations that

are commonly seen in connectionist networks?

6. Most importantly, how effective is the approach in problem-solving?

These issues are investigated through a novel approach that combines genetic programming

and a self-organizing neural network which provides a framework for the simulations.

Through the powerful notions of constructivism and micro-macro dynamics the approach

provides a way of exploiting the potential features (such as the hierarchy and modularity)

that are inherent to the representation that GP employs.

By providing a general definition for learning and by imposing a single potential

constraint within the representation the approach demonstrates that genetic programming,

if used for construction and optimization, could be extremely creative. The method also

combines the bottom-up and top-down strategies that are key to evolve ALife-like systems.

A comparison with earlier methods is drawn to identify the merits of the proposed

approach.

A pattern recognition task is considered for illustration. Simulations suggest that genetic-

programming can be a powerful meta-leaming tool for implementing useful network

architectures and flexible learning mechanisms for self-organizing neural networks while

interacting with a given task environment. It appears that it is possible to extend the novel

approach further to other types of networks.

Finally the role of flexible learning in implementing adaptive AI systems is discussed. A

number of potential applications domain is identified.

XIV

Chapter 1

Constructivism and AI

Constructivism, as applied to artificial intelligence (AI), is the notion that adaptive

behavior can be constructed through the interaction of primitive elements and processes.

Whether an evolutionary algorithm such as genetic programming offers a way to extend

this notion to construct flexible learning mechanisms that are vital to building adaptive AI

systems is the focus of this research. This chapter will outline the contributions of the

proposed research.

1.1 Introduction

Learning- the process through which knowledge is acquired, organized, refined and

effectively used is an essential attribute of an intelligent system. The aim of machine

learning (ML) has been to understand the nature of learning and to implement learning

capabilities in machines. These goals are central to the research in artificial intelligence in

building adaptive and flexible computational models capable of working in complex task

environments. Conventional AI systems, in particular, knowledge-based systems, had

almost no learning capabilities as these employed knowledge representation and search

techniques that relied on explicit knowledge (Angelene, 1993). Generally, the methods

encoded the domain knowledge and also the problem solving knowledge within the

problem-solver explicitly rather than having the problem-solver learn these. This led to two

major issues. Firstly, to find good representations for representing knowledge accurately is

an extremely difficult task due to the nature of the knowledge itself. Knowledge, in

general, is voluminous, and hard to characterize and represent accurately. Also it constantly

changes and it is difficult to infer how much knowledge is needed to solve a given

problem (Rich and Knight, 1991). Secondly, to find effective techniques capable of

dealing with the knowledge having the above characteristics. As a result, these

computational models, despite being successful in well-defined task domains failed to

perform effectively in unpredictable and non-static task environments. It was realized that in

order to be flexible and adaptive the models should have the capability to acquire knowledge

during the process of problem solving and use it effectively. In other words, the need for

1

learning became evident. Over the years a number of new machine learning paradigms

emerged. These include ID3 (Quinlan, 1986) which is a method of inducing decision trees

from the contents of a given data set, rule induction software CN2 (Clark and Niblett, 1989;

Greab and Narayanan, 1998) used for symbolic data mining, neural network data mining

methods, other inductive learning techniques (Someren and Verdenius, 1998) and the

evolutionary algorithms (EAs) that are based on Darwinian principles of natural selection.

Evolutionary algorithms such as genetic algorithms (GAs) (Holland, 1975; 1992; Goldberg,

1989), evolutionary programming (EP) (Fogel, 1992; 1994) and genetic programming (GP)

(Koza, 1993) became very popular for the reasons that these employ a different approach to

problem solving. Their powerful features mainly include their ability:

1. to solve problems using representations and operators that are task-independent

allowing the task-specific knowledge to emerge during the course of problem solving.

This approach to problem solving avoids the reliance on explicit knowledge.

2. to conduct parallel searching over a large complex search space due to their implicit and

explicit parallelisms.

These features along with expedience make the algorithms generally applicable to a

variety of problems over a wide range of domains. A further advantage with evolutionary

algorithms are that these can be hybridized with other machine learning methods such as ID3

complementing each other in their performance (Carter and Narayanan, 1998).

As learning paradigms evolutionary algorithms are potential candidates for implementing

adaptive AI systems. On the other hand, these algorithms on their own are not powerful

enough to solve all types and classes of problems. A few examples include hard learning

problems (also known as type-2 learning problems) (Clark and Thornton, 1993; Thornton,

1994) and those that can only be learnt incrementally such as in language learning (Elman,

1991). In hard learning problems the learning refers to possible ‘relationships’ among the

input variables instead of the variables themselves. This makes the learning extremely

difficult. In language learning with neural networks it has been observed that the network

fails to leam complex grammar when both the network and the input remain unchanging.

However, when either the input is presented incrementally, or the network begins with

2

limited memory that gradually increases, the network is able to learn the grammar. AI

models, therefore, should explore a wide variety of learning methods in order to be

applicable over a wide range of problem solving environments. Connectionist networks, for

example, provide powerful ways of solving certain classes of problems (Clark and Lutz,

1992). The network models are taught rather than programmed and they solve a problem by

learning a set of internal representations. However, connectionism has shown limitations

that mainly appear to stem from a number of rigid assumptions and inflexible approaches

through which the networks and their learning rules are implemented (Govinda Char,

1998). The space of network architectures and learning being extremely large, evolutionary

algorithms have been very successfully employed for network induction and learning for a

number of complex task domains.

AI, in order to achieve real flexibility and performance levels, should exploit the strengths

of various representations and strategies and the potentialities of integrating these.

The subsections ahead will provide a brief introduction to genetic algorithms, genetic

programming and Artificial Life (Langton, 1989) as these relate to the work in this thesis.

Chapter four discusses connectionist networks in detail.

1.1.1 Genetic algorithms

Genetic algorithms encode solutions to a problem through a representation, typically a string

of symbols, the genotype. Generally the length of the string is fixed. Each genotype

represents a point in the search space. A number of genotypes are randomly produced to

form a population. Each of the corresponding points in the search space is evaluated by an

appropriate evaluation function that gives a higher scores to those nearest the solution

sought. The next generation is generated from the present population by selection and

reproduction. The fitter individuals are selected and a new generation of genotypes is

derived using crossover and mutation. The crossover operator works by choosing two parent

genotypes, selecting a crossover point along the length of the genotype at random and

swapping parts of the genotypes. The offspring inherits the genetic material from both

parents. The mutation operator changes some symbols on the genotype at random. These

operations generate new points in the search space and the fitness is expected to improve over

the course of a number of generations.

1.1.2 Genetic programming

The notion behind genetic programming (GP) is that a great variety of problems from

different field can be reformulated as problems of program induction. Genetic programming

provides a way of searching through genetic algorithms the space of possible computer

programs. GP uses a population of programs that are expressed as LISP S-expressions. These

in turn can be depicted as rooted point-labelled trees with ordered branches. The genotype

is a tree of variable length, size and complexity that is composed of the function and

terminal sets for the problem domain. The recombination of trees is by crossover where

complete subtrees of two parent trees are swapped to exchange genetic material. This also

results in syntactically correct offspring. The output of the program is the value returned by

the S-expression composed of the whole tree. To initiate the GP run, a set of function and

terminal sets appropriate to problem domain are chosen and used to create the random

trees. Usually the depth of the trees is controlled. Each of the S-expression is evaluated

based on a certain fitness measure that is appropriate to the problem in hand. The parents for

the next generation is selected based on their fitness.

The tree representation has several advantages: the search space is not limited as in the case

of a fixed-length string representation. When the size and the complexity of the solutions are

not known in advance a tree representation is highly desirable. Also it allows any hierarchy

in the problem solving process to be expressed naturally. Further the representation can

be extended to incorporate modularity with automatically defined functions (ADFs)

(Koza, 1994).

1.1.3 Artificial Life (AL)

Artificial-Life is the study of man-made systems that exhibits behavioral characteristics of

natural living systems. It attempts to synthesize life-like behaviors within computers and

artificial media. Artificial intelligence (AI) tends to simulate high-level problem solving

behavior through computational models. AL, in contrast start from the bottom-up to

understand how primitive low level processes can produce emergent complex behavior.

4

Researchers have attempted to define emergence in different ways. As an example, Harvey

(1993), tries to give a general definition for emergence. Something can be characterised as

emergent relative to an initial given description if:

1. a system can be set up which corresponds completely to this initial given description.

2. a new description of the behavior of the system can be made which ‘is useful’ or ‘makes

sense’ to an observer, and makes use of concepts outside those originally given.

Some (Chalmers, 1990; Vaario, 1993 and others) conceptualize emergence in terms of

achieving a high-level complex behavior through the interactions of low-level elements and

processes. The notion of emergence is key to AL work. Typically, the behaviors are

simulated through robots in different environments. Evolutionary approaches are a common

theme.

1.2 Contributions of the research

Evolutionary algorithms have proven to be powerful search and optimization methods due to

their attractive properties such as the implicit and explicit parallelism, and robustness.

However, it is argued that these algorithms lack the creativity needed to build adaptive

systems that are endowed with properties such as adaptation, self-replication, and self­

organization (Vaario, 1993) that are characteristics of ALife-like systems.

Constructivism is the notion that adaptive behavior can be constructed through primitive

elements and processes. The proposed research through a novel approach illustrates how

this notion can be extended to evolve flexible learning with genetic-programming. The

approach involves two phases.

1. Integrating GP with a powerful learning paradigm such as the connectionist networks.

In hybridizing, it is vital to understand the limitations of each of the paradigms (the

components) that constitute the hybrid in order to implement a computational model that is

highly effective in problem solving in known/unknown environments. It is crucial that the

components of the hybrid need to be appropriately chosen and also combined in ways

5

such that they complement each other in the task of problem solving. Connectionist

networks and evolutionary algorithms offer a paradigm for emergence at two different

levels, viz., at an individual and at the population level. Connectionist networks support

synchronic emergence or emergence over levels. At a given time a host of low-level

computations take place and can be interpreted as a complex high-level functioning when

observed from another level. Evolutionary algorithms support diachronic emergence, that is

emergence over time. Primitive computational systems, over time, gradually evolve towards

greater complexity. The hybrid has to support emergence at both levels in order to be

effective. The proposed research through a novel approach shows how genetic

programming can naturally be combined with connectionist networks. Whether such a

combination can enable evolution of flexible learning mechanisms is investigated (Govinda

Char, 1997a).

2. Understanding the role of genetic programming as a meta-leaming system for

connectionist networks.

Recently, optimal network topologies have been evolved with GP (Zhang and Miihlenbein,

1993; Poli, 1997). So far there have been very few attempts to evolve network learning rules

(Radi and Poli, 1998). Radi and Poli have succeeded in evolving rules that are faster and

more effective as compared to the standard back-propagation learning. The novel method

that is proposed in this thesis employs an entirely different approach and a strategy that

allows the network and learning to evolve during the process of problem solving. This

strategy in turn raises a number of important questions such as:

a. Should there be a general definition for a connectionist learning rule?

b. Should there be any constraints involved in implementing a learning rule? If so, how and

where should these be imposed?

c. Does the implementation entail other potential strategies?

The current research has systematically addressed these issues to illustrate how flexible

learning rules can evolve while interacting with a given task environment. The approach

involves providing a very general definition for a connectionist learning rule (irrespective

6

of the type of network architecture), imposing a single potential constraint within the GP’s

representational structure and employing a potential strategy for constructing and

combining the components of the learning rule. The single potential constraint in concert

with the proposed strategy creates a paradox for the GP to be creative and enables flexible

learning rules to emerge. This approach offers the evolutionary paradigm an open-endedness

in terms of the architecture and also the node activation function that can be made to evolve

through appropriate primitives. Although a self-organizing neural network is used as a

framework it appears that the approach has a potential to be extended to other types of

networks. The key aspects are: first, it attempts to exploit the powerful features (that is

hierarchy and modularity) of GP’s representation. Second, by providing a general

definition for learning and imposing a single potential constraint within the representation the

method creates a paradox for GP to be creative. Third, it combines the bottom-up and top-

down strategies that are vital to generate complex behavior. Fourth, it offers a way to

interpret the evolved rules through modular elements.

The simulations suggest that GP can be a powerful meta-learning tool capable of exploring

an extremely rich landscape of learning techniques.

The aim, finally, is to understand/investigate the potentialities of the proposed hybrid in

adaptive AI systems. As discussed in section 1.1 the reliance of conventional AI systems on

explicit knowledge led to a number of problems limiting their applicability. Intelligence, if

conceptualized as an adaptive behavior, can be constructed through primitive elements and

processes (Vaario, 93). Such an assumption allows one to explore a wide range of paradigms

and techniques that can work in task-independent ways. A recent model of an adaptive AI

system employing constructivist strategy has been discussed. This model incorporates

adaptation in the form of development, neural plasticity, natural selection and genetic changes

and has been highly successful in implementing powerful autonomous systems. How GP

can naturally incorporate all these forms of adaptation and how the notion of constructivism

can be extended to implement adaptive AI systems through flexible learning are discussed.

7

1.3 Outline of the research

The chapters are organized as follows.

Chapter two provides background information on conventional artificial intelligence. In

particular, the focus is on the knowledge-based systems that rely on explicit knowledge for

problem solving. The problems associated with the reliance on explicit knowledge are

highlighted and the importance of learning is emphasized. How AI, in its new perspective,

has been successful in avoiding such reliance through new paradigms and techniques is

discussed. A few such models that include evolutionary algorithms, reactive systems, eclectic

hybrids, automatic programming techniques and finally constructive systems are briefly

described to illustrate the notion of emergence.

Chapter three first provides a brief overview of the field of evolutionary computation. The

advantages of using evolutionary algorithms over conventional techniques are briefly

discussed. Genetic algorithms and genetic programming are discussed in greater detail for

two main reasons. First, to provide good background information to those who are new to

this field. Secondly, due to its relevance to the proposed research where the focus has been to

investigate the role of genetic programming as a meta-leaming system.

Chapter four emphasizes the role of connectionist networks in implementing powerful

learning mechanisms for complex problem solving tasks. The learning at an individual level

is vital to a system whether natural or artificial. The learning at sub-symbolic levels provide

an extremely rich landscape that has not been fully explored. The recent methods in neuro­

evolution and genetic-connectionism seem to provide an answer in searching this large,

complex space of possible network architectures and learning rules. After providing a

general introduction to connectionist networks, the problems associated with their design are

discussed in detail. Induction of network architecture and learning are considered in the

contexts of genetic algorithm and genetic programming. A comparison with other recent

methods is drawn. The advantages of GP approach are identified. The key assumptions

and the approach for induction of learning are briefly stated.

Chapter five discusses self-organizing neural network that provides a framework for

subsequent simulations. The characteristics and the performance criteria of the network and

learning rule are discussed. Evolutionary and non-evolutionary methods for achieving self­

organization are described to highlight the advantages of the latter approach. How genetic

programming can be used to implement similar learning rules and its advantages are

explained.

Chapter six demonstrates the evolution of learning rules for self-organizing neural

networks with genetic programming. The key assumptions, the issues and the implications

are stated. How flexible learning rules can be evolved while interacting with a task-

environment is illustrated. The approach provides a general definition for learning, imposes

a single potential constraint within the GP’s representational structure and employs a

potential strategy. Due to the general definition for learning and the general approach, it

appears that the method can be extended to other networks such as feed-forward and the

recurrent networks. Further, the node activation function can evolve allowing learning for

non-homogenous networks. A sample program illustrates how the network architecture can

be evolved with a compatible grammar such as the cellular encoding (Gruau, 1993). The

simulations emphasize the importance of automatically defined functions (ADFs) in

implementing flexible network architecture and learning rules and also in achieving the

comprehensibility of the rules that evolve. Finally the advantages are summarised.

Chapter seven aims at illustrating the role of flexible learning in implementing

computational models of adaptive AI systems. To understand the underlying principles a

recent computational model (Vaario, 1993) that employs the idea of emergent behavior is

described. The global behavior is achieved through the interaction of local behavioral rules.

The model consists of a neural network that grows in a dynamic environment and

incorporates adaptations through development, neural plasticity, natural selection and

genetic variations. A set of production rules describe the interactions at different hierarchical

levels. This model could implement potential autonomous systems. How the above forms of

adaptations can naturally be realized with GP is discussed. The flexible learning

mechanisms that evolve with the GP-hybrid might replace the production rules. A

comparison is drawn. These suggest that GP if used for construction and optimization can

be extremely creative.

Chapter eight finally provides a summary of the research and conclusions and discusses

potential application areas for the GP-hybrid.

Conclusions

Learning is crucial for achieving adaptive behavior. AI should explore and exploit the

strengths of various learning methods and strategies to build adaptive computational models.

The work in this thesis focuses on employing genetic programming as a meta-leaming tool

for implementing flexible networks and learning rules for self-organizing neural networks.

The aim is to understand how the powerful notion of constructivism can be effectively

extended to such domains. The need to exploit the strengths of GP’s representation is

stressed. The role of such hybrids in AI should be investigated by applying these to

complex task environments.

Chapter two will discuss conventional AI and the associated problems in detail.

Chapter 2

BACKGROUND AND THE NEW PERSPECTIVE OF AI

This chapter provides background information relating to conventional Artificial

Intelligence (AI) and discusses some of the issues that have imposed limitations in

achieving the broad goals of AI. The advantages of employing recent paradigms in

overcoming the above limitations and the new perspective of AI are discussed.

2.1 A brief history of Artificial Intelligence

The ability to learn being fundamental to any intelligent behavior, the goal of Artificial

Intelligence (AI) research (Schank, 1987) has been to create computational models to study

human intelligence in terms of learning and problem solving (Newell and Simon, 1963 and

many others). Conventional symbolic AI systems typically employed top-down strategies

and had very limited learning capabilities as the entire knowledge for problem solving along

with the domain knowledge were programmed into the systems. These models, being

deductive by nature were too rigid and specialized though these were very successful in

tackling well-defined problems. It was realized that flexible systems with capabilities of

learning were needed to solve a wide range of problems in complex and non-static

environments. Accordingly, such systems should posses the abilities to acquire new

knowledge, to automatically generate their algorithms, to develop new solutions by drawing

analogies to old ones or through discovery and to improve with experience. That is, to

acquire the ability to draw inductive inferences from the information given to them

(Michalski, Carbonell and Mitchell, 1986). Hence to understand the nature of learning and

to implement learning capabilities in machines also became the goals of AI research.

With some learning capabilities the later versions of AI systems overcame some of the

earlier limitations and brittleness through the creation of inductive AI systems.

Connectionism, the subsymbolic approach, seemed to offer an alternative to symbolic AI

in terms of providing a fundamentally new view for knowledge representation and

inference. Connectionist networks are massively parallel interconnected networks of simple

(usually adaptive) elements which mimic the biological nervous systems (Lippmann,

1987). Working on a bottom-up strategy, these networks constitute a radically different

11

approach to computation and exhibit some of the important properties such as association,

generalization, parallel searching, adaptation to changing environments that are common

characteristics of natural systems. One of the most important properties of these networks is

their ability to learn from examples. These networks were capable of solving problems

where the algorithmic approach was infeasible because of the difficulty in expressing and

specifying the sequence of steps (hard-to-write-algorithms). Nevertheless, these networks

had their own limitations such as the inability to express the problem solving process in

symbolic natural language for humans to interpret. Symbolic systems, on the other hand,

were more successful in mimicking high-level human thinking. Novel symbolic learning

systems such as ID4 (an extension of ID3), C4.5 (Quinlan, 1993) and CN2 capable of

displaying learning characteristics similar to connectionist networks emerged over the

years. It was realized and argued (Minsky, 1990) that Artificial Intelligence must employ

hybrid approaches that combine different paradigms to take advantage of the strengths of

each of the paradigms, each with its own justification. That is, to combine the expressiveness

and versatility of symbolic representations with the fuzziness and the adaptive capability of

connectionist representations overcoming the constraints that were inherent to either of these

paradigms. Towards this goal the symbolic and subsymbolic paradigms were integrated and

the hybridized models (Honavar and Uhr, 1994 and many others) were able to successfully

tackle a number of difficult problems. These suggested that the two paradigms could

complement each other in the process of problem solving.

The implications are that the potentialities of these paradigms need to be fully exploited and

combined with other related paradigms to achieve the broad goals of AI. That is, to create

computational systems that can not only exhibit intelligence similar to those seen in natural

systems but can out-perform these systems in the task of problem solving from a wide range

of domains. The research in the subtopics of AI and in Machine Learning in recent years

along with the development of new computer architectures indicate a tremendous progress

in the field of AI.

The section ahead will discuss some of the key issues with the conventional AI systems

and focus on the new perspective of AI through the current trends.

12

2.2 The new perspective of AI

Conventional AI assumes intelligence to be a combination of knowledge in symbolic form

and techniques that can manipulate this knowledge. As a consequence of this assumption the

AI models rely on explicit knowledge requiring the problem solving knowledge to be

placed within the problem solver using some representation (Angelene, 1993). These

methods, generally known as strong methods, are rich in task-specific knowledge and

have been efficient in solving problems in well-defined domains. Explicit knowledge guides

the search mechanism during problem solving. This reliance on explicit knowledge,

however, has resulted in a number of issues that, in turn, have imposed limitations on the

model’s capabilities in tackling problems that are complex and non-static in nature (Brooks,

1986; Vaario, 1993). The issues are discussed in the following subsections.

2.2.1 The Credit Assignment Problem

Knowledge-based AI systems typically employ a representation, that is some kind of data-

structure to explicitly represent knowledge and the goals and an algorithm that can

effectively manipulate this knowledge. The algorithm that performs the problem solving is

referred to as a problem solver. The credit assignment problem (Minsky, 1967) highlights the

issue of how to convert the feedback of problem-solving into information about how to

manipulate a knowledge structure internal to the problem solver. The two forms of credit

assignments are: the global and the local credit assignments. The global credit assignment

problem is to determine the fact that there is an error in the internal knowledge structure.

Typically this is determined by explicit goals or an evaluation function within the problem

solver. In the case of explicit knowledge global credit assignment is determined by the

inability of the problem solver to correctly solve the problem at hand. The local credit

assignment problem is the identification of the components of the internal structure that are

erroneous. In conventional AI systems the explicit knowledge of how to identify the faulty

structure is also added to the knowledge base (Schank and Leake, 1989). This knowledge

is often task-specific and relates the feedback from the task environment directly to the faulty

components. The subsection ahead on evolutionary algorithms explains the problem of credit

assignment more clearly in terms of a representational structure and the fitness function .

13

2.2.2 The Knowledge Acquisition Bottleneck

The difficulty in determining how a program should interact with an expert to extract the

expert’s knowledge to incorporate it into the problem solver (Hayes Roth et al. 1983) is

known as the ‘knowledge acquisition bottleneck’. In general terms, the problem of

extracting sufficient knowledge from the task environment external to the problem solver and

incorporating them into the problem solver is the bottleneck. The expert’s knowledge needs

to be properly represented within the format of the representational structure in order to be

effective. With knowledge-based AI techniques the knowledge of ‘how to acquire’ the task-

specific knowledge is also needed to be supplied explicitly to the problem solver. (Davis,

1979).

2.2.3 Memory Indexing Problem

For task-specific applications knowledge is stored in memory as ‘experience’ in terms of the

instances of problem solving. This knowledge-base as a result is quite large. A particular

piece of knowledge (as experience) is retrieved whenever it is appropriate for problem

solving through some task-specific memory indexing scheme. These methods include Case-

Based Reasoning (CBR) (Kolodner, 1989) and Explanation-Based Learning (EBL) (De Jong

and Mooney, 1986 and others). The problem with a large knowledge-base is that at any

instant only a small percentage of the knowledge is relevant for problem-solving but this

knowledge has to be accessed by searching a large space each time the need arises. The

memory indexing schemes take up a prohibitive time for searching a large knowledge base.

This time can be reduced to some extent by allowing the possibility of retrieving similar

knowledge with a specific index. Also when the task changes, the knowledge-base will have

to be re-indexed suggesting the inflexibility of such memory indexing schemes.

2.2.4 The Problem of Scaling

The accuracy of the problem solver depends entirely on the accuracy of the explicit

knowledge in the knowledge base. The need for the quantity of explicit knowledge

increases exponentially to meet the accuracy even by an order of magnitude. Moreover, for

complex problems the quantity of knowledge to represent the task environment may be

prohibitive. The necessary level of accuracy of explicit knowledge may be unachievable.

14

The knowledge-base for ‘common-sense’ internal to a problem solver could be enormous

even for simple problems (Lenat, Prakash and Shepard, 1986).

2.2.5 The Representation Design

It is required to represent a task in ways that not only reduce the explicit knowledge to a

manageable level but provide maximal computational benefits. To achieve this goal various

representations were developed. These include production systems (Newel and Simon,

1981), Predicate calculus (Nilson, 1980), fuzzy logic (Zadeh, 1965), connectionist networks

(Rumelhart and McClelland, 1986), semantic networks (Brachman, 1979), frames (Minsky,

1975), conceptual structures (Sowa, 1984), scripts (Schank and Ableson, 1977), the multiple

representation of generic tasks (Chandrashekharan, 1986) and others. The directed design of

the representations implies a priori knowledge of the task and the algorithmic ways of

tackling it forcing a human to remain in the problem solving loop.

(See Angelene, P., (1993) for the rest of the references for the above subsections).

2.2.6 The Software Crisis

Computer science is based on assumptions that everything could be predefined and then

executed by following a predefined set of instructions. That is, the program does not change

once it has been written. Software comprises a set of instructions designed to perform a

particular task and the instructions are executed blindly. This principle has lead to the so-

called software crisis (Vaario, 1994): “The more complex software becomes, the exponential

more time it takes to finish”. The recently developed Genetic Programming based on the

principle of evolution has been successful in tackling the crisis.

2.3 Artificial Intelligence seen as Emergent Intelligence

New AI models have approached AI with a different perspective by avoiding the model’s

reliance on explicit knowledge. These models are typically based on the notion of

emergence. Traditionally, the notion of emergence involves the idea of a system behaving in

a way which cannot be predicted through some simpler linear combination of low level units.

15

In the context of evolutionary algorithms, based on the abilities of empirical credit

assignment, the emergent intelligence relies on two main assumptions about computational

problemsolving (Angelene, 1993).

1. The task environment itself is often a more concise representation for knowledge specific

to the task than any internal representation of the explicit knowledge.

2. Direct interaction of a simple problem solver with the task environment permits the task

environment’s inherent constraints to be expressed naturally in the problem solver during the

problem solving process. As a result, pertinent task-specific knowledge emerges from the

interaction of the problem solver with the innate constraints of the task environment.

Emergent intelligence thus avoids the problems associated with explicit knowledge by

removing explicit knowledge.

The next section will briefly discuss few recent models that differ from conventional AI in

their problem solving approach.

2.3.1 Evolutionary Algorithms

Evolutionary algorithms such as genetic algorithms (Holland, 1975; Goldberg, 1989),

evolutionary programming (Fogel, Owens, Walsh, 1966; Fogel, 1992) and evolution-

strategies (Rechenberg, 1973; Schwefel, 1981; Back, Hoffmeister and Schwefel, 1991) are

population based search and optimization techniques inspired by natural evolution. These

algorithms belong to a class of weak methods that use task-independent representations

and operation. Being population based, they are capable of simultaneously searching a

large space of potential solutions. Task-specific knowledge is acquired while solving a

problem (Angelene, 1993). The important characteristics of evolutionary algorithms that

enable task-independent way of problem solving are: firstly they model the task

environment in terms of a ‘fitness function’ that maps an individual of a population into a real

number which is then fed back to the problem solver. This minimal feedback provides a

strong separation between task environment and the problem solver, avoiding reliance of the

problem solver on explicit knowledge. Secondly the operators that manipulate the

representational structures in evolutionary algorithms are representation-specific rather than

task-specific enabling the evolutionary algorithms to be applicable to a wide range and type

16

of problems. Most importantly, the evolutionary algorithms employ an ‘empirical credit

assignment’ for local credit assignment by creating variations in the representational

structure through the representation-specific operators. Over time the fitness of individuals

in the population improves and the search becomes constrained towards the regions of

individuals that have higher fitness in tackling the problem at hand. The empirical credit

assignment allows the evolutionary algorithm to adapt its search dynamically in the problem

space allowing the task-specific knowledge to emerge from the interaction of problem

solver with the task environment.

2.3.2 Reactive Systems

Brooks (1991) has proposed a new approach to AI known as behavior-based AI to

demonstrate that complex intelligent behavior can be easily produced by systems which

have simple ‘reactive’ behaviors with regard to the environmental events. The key idea is that

the world is its own best model and the representations are formed through interactions with

the world. By introducing the notions of situatedness and embodiment Brooks has

demonstrated how mobile robots can be made to generate robust behavior in uncertain and

unpredictable environments. Situatedness means that the robots are situated in the physical

world directly influencing the behavior of the system. Embodiment refers to the fact that the

robot has a body and experiences the world directly. The result of their actions are fed back

on their own sensory inputs. Intelligent behavior stems from the situation in the world, the

signal transformation within the sensors, and the physical coupling of the robot with the

world. The intelligence emerges through the system’s interaction with the environment and

also interactions among its own components.

2.3.3 Eclectic Hybrids

The conventional AI typically employed representations that were neat. That is, the

solutions to a problem could be expressed in terms of data-structures that were easily

interpretable and modifiable. This enabled easier modification of the representational

structures and the methods were well suited in the context of Engineering-oriented AI

applications. Cognition, on the other hand, is a result of a blend of representations. In its

new perspective, AI combines various representations such as geneticism, connectionism,

reactivism and hybridism, all capable of mimicking the processes in natural systems to

17

realize the notion of emergence. AI is thus characterised in terms of the ‘representational

eclecticism ’ (Thornton, 1993) which is simply the idea that effective cognition may involve

mixing and matching representational strategies in an opportunistic fashion. Representational

eclecticism implies a rejection of the idea that cognitive representations will necessarily be

‘neatly structured’ and/or ‘elegant’. Recent methods typically combine a number of

paradigms that employ various representations to build complex AI systems that can

adapt to unpredictable environments.

2.3.4 Automatic Programming

In recent years, automatic programming techniques have been developed with the goal of

overcoming the software crisis. To make computers learn to solve problems without being

told how to solve a problem through a set of instructions has been one of the main goals of

Machine Learning. The recently developed Genetic Programming (GP) paradigm has been

successful in achieving this goal. In the context of problem solving the approach recasts or

reformulates a given problem as requiring the discovery of a computer program that

produces some desired output when presented with particular inputs. That is, GP stresses the

fact that many seemingly different problems can be reformulated as problems of program

induction. Genetic programming provides a way to do program induction by searching the

space of possible computer programs for an individual program that is highly fit in solving

the problem at hand using the fitness information. The search process is domain-independent

and employs the Darwinian selection mechanism. GP in essence uses genetic algorithms to

search the space of computer programs. The representational structures that undergo

adaptation in GP are hierarchically structured computer programs, typically expressed as

LISP S-expressions built in terms of the function and terminal sets (that is the variables) of

the problem domain. The size, shape and the contents of the programs can change

dynamically during the process of problem solving. The hierarchy enables a hierarchical

problem solving process similar to the top-down approach. Also, the computational effort

and complexity could be reduced with automatically defined functions (ADFs) that enable

reuse of code through modularity. Apart from solving a variety of interesting, non-trivial

problems GP has been successful in evolving programs that generate complex behaviors.

The question that naturally arises is whether GP is a viable tool for combining other

paradigms to create hybrids that are more effective in solving complex problems. Research in

18

recent years has suggested that GP can successfully evolve neural network structures and

weights (Zhang and Miihlenben, 1993; Poli, 1996). Recently GP has been applied to the

evolution of connectionist learning rules for feed-forward networks (Radi and Poli, 1998).

These rules are found to perform better in terms of speed and generalization. The work that

is suggested in this thesis employs a different approach to evolve network and learning for

self-organizing neural networks. Because of its general approach it might be possible to

extend it to other types of neural networks. The approach emphasizes on exploiting the

strengths of the representation and applying a few clever strategies. The role of GP in

evolving flexible learning rules and their implications in the context of artificial intelligence

need to be understood (Govinda Char, 1997b; 1997c).

2.3.5 Constructivist Systems

The reactive systems approach where a human is included in the design loop has its

limitations in terms of the complexity of the design process and also in providing solutions to

predefined tasks (Vaario, 1992). When the number of possible behaviors increases the

complexity of the system increases exponentially. The predefined solutions will not suffice.

Instead the system should itself find solutions through adaptation to a given environment.

Intelligence in this context is viewed just as an adaptive behavior (Vaario, 1994). How to

model intelligence as an adaptive behavior becomes the obvious issue. This assumption

through which intelligence is viewed as an adaptive behavior adds a new dimension to AI

and paves a way to a plethora of new approaches for building intelligent systems for

uncertain and unpredictable environments. Also, an adaptive behavior can be constructed

gradually from primitive components through the processes of development and evolution.

The AI in this new context is known as ‘constructivist’ AI. The computational model is

based on the Artificial Life approach (Langton, 1989; Langton, Taylor, Farmer and

Rasmussen, 1992). The behavior of an individual (an agent) is based on neuron-like

computational elements and emerges as a result of local interactions among similar elements

and with the environment. The interesting aspect of the modelling method is in its approach

to construct artificial neural networks that resemble biological morphogenesis and

phylogenesis of nervous system. The networks are non-homogeneous in the sense that the

neurons have different characteristic properties depending on the development process. The

19

computational model is production-rule-based and does not employ any traditional neural

network learning algorithm to realize a complex behavior.

Conclusion

The reliance on explicit knowledge and the associated problems suggest that there is a need

to identify new techniques that are task-independent and have the ability to acquire the

task-specific knowledge during problem solving. AI, in its new perspective is based on the

notion of emergence in some form (an organism or some form of learning or a complex

behavior). It clearly rejects the idea of a predefined set of instructions capable of evolving

systems that can exhibit intelligence similar to natural systems and possibly capable of

out-performing these. Instead it proffers a wide range of techniques and models

employing paradigms that mimic natural processes to create systems that are based on

natural processes. In general, these systems are endowed with properties such as self­

replication, adaptation and self-organization that are characteristics of Artificial Life.

The next chapter will focus on evolutionary computation.

20

Chapter 3

Evolutionary Computation

This chapter provides a short overview of the field of evolutionary computation. The

genetic algorithm and the genetic programming paradigms will be discussed to a greater

detail and compared in terms of the representations they use and their approach to problem

solving.

3.1. An overview

The term ‘evolutionary computation’ (EC) refers to computation and problem solving with

evolutionary algorithms that offer a number of advantages over traditional techniques.

These advantages are multifold (Fogel, 1997) including the simplicity of the approach, its

robust response to changing environments, its flexibility and its applicability to a wide range

of problems in various domains. Evolutionary algorithms employing different

representations with a variety of representation-specific operators and selection methods

have been successfully applied to a wide range of difficult problems (where the variables

typically interact in a nonlinear way). However it has been established that a particular

algorithm or a representation would not hold across all problems. Some of the

representations could be more effective as compared to others depending the type of problem

that is being addressed.

The most important aspect of evolutionary approach to problem solving is their simplicity

and expedience. Evolutionary algorithms typically encode solutions to a given problem

through various representations which form the population for the search mechanism. These

representations include fixed-length or variable-length strings, hierarchical trees, and others.

The solutions evolve over time through effective manipulation of these representations via

genetic operators that mimic the mechanisms of selection, crossover and variation. Being

population based algorithms, these explore many different possibilities simultaneously (that

is in parallel) during the search in the space of solutions. In addition, evolutionary

methods due to their ability to perform credit assignment have the following advantages

over the traditional techniques and the standard weak methods. Firstly, evolutionary

21

algorithms model the task environment as a fitness function that maps each individual in a

population into a real number. The search mechanism sees only this number to guide the

search. These algorithms employ ‘empirical credit assignment’ (Angeline, 1993) that

works by creating novel structural variations in the population through probabilistic

application of representation-specific operators and maintains the best solutions (local

maxima/and or minima) as the search progresses. Secondly, the genetic operators are

representation-specific rather than task-specific, allowing the task-specific knowledge to

emerge from the interaction of the algorithms with the task environment.

Together, the representation, the genetic operators and the fitness function dictate the ultimate

success of any evolutionary model. Based on different representations, types of genetic

operators, and problem solving approaches, various evolutionary models have been

developed. Some of these models are briefly discussed.

Evolution strategies (ESs) were first introduced by Rechenberg (1973) and was further

developed (Schwefel, 1981; Back, Hoffmeister, and Schwefel, 1991). The emphasis in these

techniques is on the set of behaviors of an individual in the population rather than on the

acquisition of structures with high fitness. The search space is a space of potential

behaviors. An individual is composed of a set of behaviors and the fitness function rates the

behavior, each of which is a feature, of the individual, and the interaction between the

features is unknown. ES systems use a fixed-length real-valued string as representation and

employ both crossover and mutation operators (see, sections ahead) to manipulate the

string. These systems have proved to be quite effective in solving parameter optimization

problems.

Evolutionary programming (EP) was independently developed by Fogel, Owens and Walsh

(1966). EP models reproductive relationship between a species behavior in successive

generations. Although Fogel (1992) used a form of mutation as the reproductive operator,

generally EP systems are not committed to any specific representation or operators. Fogel has

given an excellent exposition on aspects of evolution that are important to model to achieve

computational effects. EP remains an active area of research.

22

Genetic algorithms (GAs), one of the most popular and widely used search and optimization

methods was developed by John Henry Holland of the University of Michigan, in the 1960s

and 1970s. The idea behind genetic algorithms was to identify and model mechanisms of

natural adaptation and apply these computational models for solving engineering problems.

Genetic algorithms emphasise structure and its manipulation for modelling adaptation and

evolution. These algorithms typically use a binary-valued, fixed-string representation and

use crossover and mutation as reproduction operators. A mathematical basis was provided

later by Holland for understanding the importance of genetic recombination to evolution and

adaptation, through the Schema Theorem and the Building Block Hypothesis (Holland,

1975; Goldberg, 1989). This work led to his landmark book, Adaptation in Natural and

Artificial Systems. Much work has been done on the theoretical foundations of genetic

algorithms (see, e.g., Holland, 1975; Goldberg, 1989a; Rawlins, 1991; Whitley, 1993a;

Whitley and Vose, 1995).

Genetic Programming (GP) has recently been introduced by Koza and Rice (1993). GP is

basically a genetic algorithm for evolving computer programs that can solve problems.

Genetic programming uses programs, in the form of recursive tree structures, as the basic

representation. The genetic programs are subsets of LISP program tailored to particular

domains and employ syntax preserving crossover for reproduction. This paradigm has

proved to be highly successful in tackling many difficult problems (Kinnear, 1994). As with

genetic algorithms, efforts have been made to explain genetic programming in terms of the

Schema Theorem and Building Block Hypothesis (Angeline, 1993; Tackett, 1994; O’Reilly

and Oppacher, 1994).

Other adaptive programming paradigms include Tierra (Ray, 1991) and FOIL (Quinlan,

1990). Ray pioneered a unique programming paradigm through the creation of Tierra system,

a world which consists of assembly language programs that represents the organisms. Tierra

breeds digital organisms which vie for memory and CPU time as metaphor for food and

sunlight. It loosely emulates a shared memory MIMD computer with a 5-bit zero-operand

instruction set. Each organism, that is an assembly language program has its own virtual

CPU with registers, stack, program counter, and flags. The system is initialized with a single

self-replicating ‘ancestor’ program residing in memory. This program copies itself into a

23

block of free memory and executes a special instruction which write-protects the new ‘child’

copy and allocates to it a virtual processor. The reproductive cycle then begins anew. As

memory runs out organisms that are oldest or most defective are deleted to make room.

Mutation helps to maintain diversity in the population as the generations progress.

Organisms that finally survive adapt a variety of survival and competition mechanisms.

These include code optimizations and biological properties such as parasitism and immunity.

FOIL system generates declarative code in the form of Prolog programs using nested loop

that perform hill climbing. The outer loop generates the clauses, that is, lines of program

code whereas the inner loop generates the literals for each clause. The program generation

process is driven by a heuristic measure during the construction of a clause. The heuristic

examines the mutual information gained due to the repartitioning of the training data through

addition of a literal. If this addition does not change partitioning then it conveys no

information whereas if it creates a more accurate partition then it increases mutual

information. FOIL has been successfully tried on a number of machine learning problems.

Together, evolution strategies, evolutionary programming, genetic algorithms and genetic

programming form the backbone of evolutionary computation. The potential advantages of

evolutionary computation over the standard computational mechanisms are highlighted in the

article by Forrest (1991). The following section describes genetic algorithms.

3.1.1. Genetic Algorithms

Genetic algorithms basically encode the solutions to a problem on a simple chromosome-like

data structure which forms the individuals in the population. This population of chromosomes

representing the genotypes is decoded into phenotypes that are evaluated for their fitness.

Typically, fitness proportionate selection is used to select parents from this population. A

genetic recombination (crossover) operator is applied to the selected pair of parents to

produce offspring that form the next generation. An excellent introduction to genetic

algorithms is given by Whitely (1990), Mechalewicz (1992), Srinivas (1994), and Mitchell

(1996).

24

An evolutionary cycle consisting of ‘evaluation-selection-recombination-creation’, running

on a population (having a fixed sized N) of genotypes, is shown in figure 3.1. Parents

are selected based on their fitness from the population of individuals. Genetic recombination

(crossover) is applied to pairs to create offspring which will be inserted into the new

population forming the next generation of individuals. The evolutionary cycle corresponds to

a search through a space of potential solutions and repeats for a number of generations. Each

genotype represents a point in the search space. Such a search requires balancing objectives

that are conflicting: exploiting the best solutions and exploring promising regions of the

search space. The flow diagram explains the process.

Size of new
population

N ? ^ '

NoYes

Combine traits of parents
to produce two offspring

Create an initial random
population of size N

Evaluate fitness of each
individual

Select parents based on
their fitness

Insert offspring into the
new population

Figure 3.1: An evolutionary cycle.

The various stages of the evolutionary cycle are now explained in detail.

25

3.1.1.1. Population

The first step in implementing a genetic algorithm is to create a random population of

genotypes. The size N of this population is fixed. In a canonical genetic algorithm, a

genotype is typically a binary string of fixed length, though other representations abound. The

size of the search space is related to the number of bits in the problem encoding. As an

example, for bit string encoding with length I the search space is 2l and forms a hypercube

whose comers are sampled by the genetic algorithm. It is essential to maintain the diversity in

the population, as this diversity is the driving force for the search mechanism. Some of the

recent versions of genetic algorithms (Whitley and Starkweather, 1990) use a smaller

distributed population in place of a single large population. A distributed search has been

shown to improve the search mechanism and has provided better performance in terms of

accuracy and consistency on a large range of problems including a set of deceptive

problems (Baker and Grefenstette, 1989). A sample population of four genotypes is shown

in figure 3.2.

Genotype label Genotype

1 0 0 0 0 1 0 0 0
2 0 0 1 0 0 0 1 0
3 1 1 0 0 0 0 1 0
4 0 0 1 1 0 1 1 0

Figure 3.2: A population of genotypes

3.1.1.2. Fitness Evaluation

The genotype is decoded into a phenotype. The genotype in natural systems is the genetic

blueprint, that is, strings of DNA. The genotype when decoded gives rise to the phenotype,

that is, the individual with the characteristics (such as height) dictated by the genetic

blueprint. The fitness of the individual is measured in terms of the ability and the strength of

the individual to survive under a set of extremely diverse conditions and still compete for the

goal. In engineering problems, depending on the nature of the optimization problem to be

solved, the phenotype can represent any parameter and hence is totally problem dependent.

Further, the phenotypic representation can be direct such as a real-valued parameter of a

26

function, control parameters for a process control application, strategies in a game, etc., or

indirect such as a neural network architecture or a learning rule which are further evaluated

for their fitness in solving particular tasks. As an example (from Mechalewicz, 1992),

consider an optimization of a simple function of a real variable ‘x ’, defined as:

f(x) = x. sin(10n .x) + 1.0 (3.1)

The genotype, in the form of a binary string, when decoded, yields the phenotype V of the

above function, which is further evaluated for its fitness in solving the given function. In this

particular problem, the aim was to find ‘x ’ from the range [-1..2] which maximizes the

function f(x). The fitness of the phenotype in maximizing f(x), in turn, decides the chances

of the particular genotype to reproduce and survive to compete in further generations. Genetic

algorithms interchangeably use the notion of the evaluation function and the fitness function.

These are very well explained in Whitley (1990). The fitness can be defined in terms of

maximizing or minimizing a function. In the former case, the goal is to reach a higher value

whereas in the latter case it is to reach the lowest possible value, as in the case of

minimizing an error function. Figure 3.3 shows a sample population of four genotypes, for

a problem which has an integer-valued optimization parameter. Each genotype is 8-bits

long and is decoded into its phenotype. The fitness values for an arbitrary task are shown.

Genotype label Genotype Phenotype Fitness

1 0 0 0 0 1 0 0 0 8 10
2 0 0 1 0 0 0 1 0 34 20
3 1 1 0 0 0 0 1 0 194 60
4 0 0 1 1 0 1 1 0 54 30

Figure 3.3: The genotypes are decoded to form integer phenotypes
with given fitness values.

3.1.1.3. Selection

A variety of selection schemes can be used to select individuals from the given population.

Some of the selection schemes are superior to others. A canonical genetic algorithm uses a

fitness proportionate selection scheme. Figure 3.4 illustrates a roulette wheel selection

scheme.

27

Figure 3.4: Mapping individuals onto the slots of a
roulette wheel.

In this scheme, the population is viewed as a mapping on to a roulette wheel, where each

individual is allocated a space in proportion to its fitness. Thus individuals with higher fitness

are allocated wider slots and have a greater chance of being selected during the spin of the

wheel. By repeatedly spinning the roulette wheel individuals in proportion to their fitness are

chosen to form the new generation. The number of times an individual is expected to

reproduce is given by: f/fav, where / is the fitness of the individual and f av is the average

fitness of the individuals in the population. As an example, individual 3 will be selected for

reproduction with a probability Pind of:

Pind = 60/ (10+20+60+30) = 60/120 = 50% (3.2)

Fitness can also be assigned based on a genotype’s rank in the population (Baker,

1985), (Whitley, 1989) or by sampling methods such as tournament selection (Goldberg,

1990b). One of the popular methods used recently is the k-tournament selection originally

introduced by (Wetzel, 1979). In this selection scheme k individuals are drawn from the

population for replacement. The most fit individual among these are chosen as the ‘winner’

of the tournament and becomes a parent for the next generation. This process is repeated for

the population size. The tournament selection method has been shown to out-perform the

roulette wheel selection method by maintaining the diversity in the population. Also,

tournament selection is more amenable when implementing parallel genetic algorithms

(Miihlenbein, 1987) and (Tanese, 1989). Rank based selection schemes, along with

distributed populations, have shown very promising results for a broad range of problems.

Another selection scheme is the steady-state selection where only a few individuals are

28

replaced in each generation, usually least fit individuals being replaced by offspring

resulting from crossover and mutation of fittest individuals.

3.1.1.4. Trait Inheritance and Recombination

After selection the parents are crossed over to form two offspring. As an example, consider

two genotypes, representing the parents. The fragments between the two parents are

swapped. The parents and the offspring are shown in figure 3.5 along with a 1-point

crossover. The crossover operator randomly chooses a point on each of the parents and

crosses over the parts of strings to produce the offspring. This operation, in effect, mimics

sexual reproduction in natural systems. The offspring when decoded inherit the traits of the

parents. The effect of crossover is to generate new sample points in the search space

and thus maintain the diversity in the population. The strength of genetic algorithm lies in

the crossover operator and how effective is this operator in exchanging structural information

between the parents and also in exploiting problem-specific information.

Parent-1 0 0 0 0 0 0 0 0
-------- X--------

Parent-2 1 1 1 1 1 1 1 1

Offspring-1 0 0 0 0 1 1 1 1

Offspring-2 1 1 1 1 0 0 0 0

Figure 3.5: Crossing over the parents to produce
offspring-1 and offspring-2.

The crossover operator is applied with a probability of typically 0.6. The effects of a

variety of other types of crossover operators such as a 2-point crossover (Schulze-Kremer,

1992) and uniform crossover (Ackley, 1987; Syswarda, 1989) have been studied and

seemed to perform very well in some problem domains providing further insights into the

GA search mechanism.

29

3.1.1.5. Mutation

After recombination, the mutation operator, a unary operator, can be applied to the offspring.

The mutation operator will flip some of the bits on a chromosome rarely. Mutation not only

introduces new traits into the population but also can prevent the possible loss of diversity

at given bit positions in a string.

Offspring 0 0 0 0 0 0 0 0
Offspring 0 0 0 0 1 0 0 0
(Mutated) P

Figure 3.6: Mutating an offspring at locus 5.

Figure 3.6 illustrates an offspring mutated at locus 5. Unlike crossover, the probability of

applying mutation to the population is very low, of the order of 1%. DeJong (1988), through

extensive experimental studies, has proved that such a minimal mutation during the mating

stage can avoid the search from getting trapped into ‘local optima’, that is, on to solutions

that are only locally optimal rather than globally optimal.

3.1.1.6. The Schema Theorem and the Building Block Hypothesis

According to the Schema Theorem, genetic algorithms work by discovering and combining

good building blocks, known as schemata (the substrings) that contribute a high fitness to

the genotypes that contain these blocks. A schema is a string of the alphabet of genes with

the wild cards (or ‘don’t cares’) at certain positions. As an example, the 10-bit string

11 ***1***1 is a schema. There are 210 different instances of this schema. Thus a schema

represents a hyperplane or subset of the search space. A schema is characterised by an order

and a defining length. The order is the number of bits that are defined in a schema. The order

defines the unique characteristics of a schema. The defining length is the distance between

the first and the last string positions and defines the compactness of information contained in

a schema. The above schema has an order of 4 and a defining length of 9. The schema has

a fitness at the time of evaluation which is defined as the average fitness of all strings in the

population matched by the particular schema. A schema with an ‘above average’ fitness

survives and propagates in larger numbers to the next generation in comparison with those

30

that have a fitness ‘below average’. This is decided during the process of selection. The

genetic algorithm seeks optimal performance through short, low order and high fitness

schemas, the hypothesis known as the Building Block Hypothesis. Short low-order schemas

are less susceptible to crossover disruptions and more likely to maintain and transmit the

valuable information in the population. Forrest (1993) explains the notion underlying this

hypothesis. The genetic algorithm initially detects biases toward higher fitness in some low-

order schema and converges on this part of the search space. Over time, it detects biases in

higher order schemas by combining information from low-order schemas by means of

crossover and eventually converges on a small region of the search space that has high

fitness. In the context of search, Holland has shown that for a population of the size N the

number of schemas or the traits that are simultaneously searched for is around N and has

referred to this property as implicit parallelism. Although the genetic algorithm would seem

to be explicitly evaluating the number of strings or chromosomes in the population, it is

actually estimating the average fitness of a much larger number of schemas. Consequently,

Holland argues that a genetic algorithm assigns credit not to the strings in the population but

to schemata of the population. These concepts are well explained in Whitley (1990), Rawlins

(1991), Mechalewicz (1992), and Mitchell (1996). Crossover and mutation can also destroy

and create instances of schemas as explained below:

• The effects of crossover on schema: Consider two schemas:

| cind

B = ^

Assume a population that contains these schemas. The crossover places the two portions of

each of the schemas in different offspring. By choosing a crossover site at locus ‘6’, schema

‘A’ survives the crossover and propagates to the next generation whereas the schema ‘B ’ does

not survive the crossover. Thus short, low order schemas are less likely to be disrupted by

the crossover operator.

The effects of mutation on schema:

Consider the schema A = (***l i *****) mutation operator flips Os to Is and vice-versa.

A flipping at locus 4 or at locus 5 can destroy the schema. A mutation can also recreate the

lost schema, for the same reasons.

3.1.1.7. Deception and Royal Road

Epistasis is a term that refers to non-linear interactions of genes. Recent work has shown

that the schema theorem does not apply to problems with epistasis, suggesting that the

structure of some problems can mislead the genetic algorithm. These problems are called

deceptive. Goldberg (1989c) has introduced this concept in terms of the notion of hardness.

To study deception, synthetic problems were constructed which assign specific fitness values

to specific bit patterns to exercise precise control over the problem structure. The idea was to

investigate the formation of a high fitness string from building blocks with a low average

fitness. Such Royal Road functions are the opposite of deceptive functions. They are

constructed in such a way as to be easy for the genetic algorithm to solve and compare the

best performance of the genetic algorithm with the theoretical predictions. Forrest and

Mitchell (1993), while analysing such problems, noticed that highly fit building blocks get

attached, by coincidence, to adjacent unfit building blocks which propagate throughout the

population, a property known as hitch-hiking. The effect was that the genetic algorithm failed

to converge as expected in probability to theoretical predictions. This problem was overcome

by the insertion of introns in the genetic algorithm (Forrest and Mitchell, 1993a).

3.1.1.8. Hybrid Algorithms

Hybridizing genetic algorithms with the other optimization techniques has yielded better

results in many optimization problems. These hybrid algorithms can be computationally

more expensive. Such an approach combines local hill-climbing with global hyperplane

sampling. Davis (1991) and Miihlenbein (1991) have studied hybrid algorithms and have

shown that these can outperform the standard genetic algorithm.

3.1.1.9. Parallelism in the Genetic Algorithm

In natural systems millions of individuals exist and work in parallel. In principle, such a

parallelism can exist in any population based computational systems. Different models have

been tried to exploit parallelism in different ways. Further, with a proper selection scheme

32

such as a tournament selection scheme, the evaluation and crossover operations can be

shown to occur in parallel. Whitley (1993b), Goldberg and Deb (1991), Tanese (1989)

have described the various parallel models. The parallel genetic algorithms combine the

hardware speed of parallel processors and the software speed of intelligent parallel searching

and have been successfully applied for function optimization and combinatorial optimization

problems (Miihlenbein, 1992).

3.1.2. Genetic Programming

Automatic programming, that is, computer programs automatically writing computer

programs, has been an active area of research in the field of artificial intelligence.

Evolutionary computation techniques have been tried with limited success to automate

program induction. Evolutionary programming was applied (Fogel, Owens, Walsh, 1966) to

evolve computer programs in the form of finite-state machines. Cramer (1985), Fujiki and

Dickinson (1987) succeeded in evolving computer programs with genetic algorithms.

Recently, Koza and Rice (1993, 1994) have successfully applied genetic algorithms for

program induction, that is, for breeding computer programs for solving problems. In this

context, genetic programming is also referred to as a genetic algorithm for program

discovery. The notion that any task can be recast or reformulated as the problem of requiring

the discovery of a computer program that can solve the given task led to the genetic

programming paradigm. Furthermore, computer programs being universal can be applied to

solve problems in any domain. Thus the GP paradigm is applicable to a wide variety of

problems in diverse areas. The following sections give a background of genetic programming.

3.1.2.1. Population

Genetic programming employs almost the same evolutionary cycle as in Figure 2.1 for

evolving computer programs. The individuals (the genotypes) in the population, that is, the

genetic programs are composed of a set of domain-specific functions and terminals known as

‘primitives’ that are effective in solving the problem. The programs are represented as trees

that are recursively composed of all possible combinations of these primitives. Koza evolves

LISP programs, that is, LISP S-expressions, that can be expressed as ‘parse trees’ (Pagan,

1981). Lisp is chosen for its simplicity and convenience as all operations in this programming

language can be implemented as function calls. These expressions while ensuring

33

syntactically correct programs, can be evaluated on-the-fly. A simple Lisp expression (for

the equation E = me , where m is the mass of a particle and c is the velocity of light) and its

parse tree, with one function (*) and two terminals (c and m), is shown below.

Lisp expression Parse tree

m(* (m (* c c)))

Figure 3.7: The Lisp expression (*(m(* c c)))
and its Parse tree.

In LISP, the operators (that is, the functions) precede their arguments. The arguments can

themselves be functions again, calling other functions depthwise, recursively. The phenotype,

depending on the context, is the behavior, or semantics, of the computer program. The

concept of program induction is explained through an example. Consider the ‘symbolic

regression’ problem, where the aim is to evolve a program that represents an equation for

fitting a curve for a given set of data points. With genetic programming, the first step is to

define the primitives, that is, the set of appropriate functions and terminals for the problem

domain. The function set and the terminal sets for this problem are defined as:

F[s]={+, -, *, % }; T[s] = { X};

where the functions in the function set F[s] are the arithmetic operators, each taking two

arguments. The division operator is a protected division operator (Koza, 1993). The terminal

is a global variable that can be assigned the data values. The role of designer expertise is

crucial, as a propitious choice of the primitives and the test suite greatly influence the

performance of GP (see, Kinnear, 1994; O’Reilly and Oppacher, 1995). Once the primitives

are defined, the next step is to create a population of trees with the function set as the

internal nodes and the terminal set as the leaf nodes. Depending on the problem domain,

various problem-specific functions can also be defined (Koza 1993, 1994). Angeline (1993)

refers to these as “different languages” for solving different set of problems. The primitives

can also include a variety of functions for iteration and recursion. A sample program

34

composed with the above primitives, is shown in figure 3.8. This program represents an

individual in the population.

Figure 3.8: A sample genetic program

Because the trees are recursive, their depths and the complexity vary. This makes the GP

paradigm very interesting as the complexity of the solutions increase over time instead of

remaining constant as in the case of the genetic algorithm. The search space is a hyperspace

consisting of all possible compositions of functions that can be recursively composed of the

set of functions and terminals. As with the genetic algorithms, the diversity and the size of the

population are important factors that contribute to successful program induction. Genetic

programming typically uses a steady state model (Reynolds, 1992) instead of a generational

model, maximizing the diversity in the population and also minimizing memory resource.

3.1.2.2 Fitness Evaluation

In the course of the search for a correct program, many such candidate programs will have to

be executed in a simulated environment and assessed for their fitnesses. If the simulated

environment happens to be the representative environment, it should enable the programs to

work correctly for unseen data as well, that is, to leam to generalize from the simulated

environment. The fitness is the only information that the algorithm has to search for

potential solutions and is exceptionally important for successful program discovery. The

evolutionary mechanism, through its individuals, will ruthlessly exploit the fitness function.

Any bugs in the fitness function can be recognized only by examining the individuals as they

evolve. These concepts are discussed in detail in Koza (1993, 94) and in Kinnear (1994). For

the symbolic regression problem, each program is run on a number of fitness cases (a set of

inputs for which the correct output is known). The program is assessed for its fitness

depending on how well it performs on each of the fitness cases it encounters.

35

3.1.2.3 Selection

Genetic programming typically uses a tournament selection scheme for selecting the parents

for reproduction. The selection is fitness proportionate as the programs evolve according to

their fitness in solving the given problem and are generally evaluated directly. Other

selection methods stated earlier in the GA context can also be employed.

3.1.2.4. Trait Inheritance and Recombination

The genotypes, that is the genetic programs are manipulated by crossover to produce

offspring that inherit the traits from the parent programs points as shown in figure 3.9. The

programs are rooted, point-labelled trees with ordered branches. Genetic programming

employs syntax preserving crossover to retain the validity of the programs. The crossover

operator is ‘blind’ in the sense that it uses a probabilistic bias to choose the crossover point.

Typically, an internal node (with a probability of 90%) on each of the parent programs is

selected at random. The subtrees of the two programs are swapped over at the crossover

point resulting in two offspring. Also, the crossover operator does not contain the problem

specific knowledge thus reflecting the power of the GP in evolving potential solutions. A

variety of crossover operators such as ‘hoist’ (Kinnear, 1994) and ‘greedy recombination

operator’ (Tackett, 1994) have been shown to improve GP performance. Altenberg (1994) has

discussed self-crossover and modular crossover operators in an attempt to generate structural

regularity in the programs. O’Reilly (1995) has described a variety of crossover operators

and their effects on the performance of GP.

Offspring-2Offspring-1

Figure 3.9: Crossing over the parents to produce two offspring.

36

3.1.2.5. Mutation

Mutation in genetic programming involves introducing a new subtree in an existing

individual program. This is done by removing a subtree of the program and replacing the

same with a newly created random tree. Koza (1993), through empirical demonstration,

argues that the role of mutation is insignificant in genetic programming. By choosing a very

large population, Koza stresses that the recombination operator is sufficient in maintaining

the diversity in the population. Tackett (1994) explains this in the context of the genetic

algorithm. Considering a fixed location on a fixed-length genotype, if this location

contained the same value for all the individuals in the population, then mutation is the only

way to change the value. In the case of GP, there is no concept of a ‘fixed locus’ in the

genotype as programs of new sizes, shapes and complexity are generated continuously. The

only way of losing the values would be if a member of the function set or the terminal set

were to disappear completely from the population. This is extremely unlikely with a large

population, where there will be hundreds of each type of nodes. Hence the canonical GP does

not use the mutation operator. Currently a variety of mutation operators are being

investigated along with the recombination operator (O’Reilly, 1995).

The cannonical GP employs only the crossover operator to introduce diversity in the

population. Most of the individuals in the initial population will normally have poor fitness

values. Over time, through selection and crossover, the average fitness of the population will

increase and the GP is likely to converge to a solution with the maximum fitness. The

performance of GP should be assessed over a number of runs to see any changes in

parameters.

The non-cannonical GP includes innovative ideas in devising new operators, finding new

applications and strategies and extended research in the cannonical GP.

3.1.2.6 The search mechanism

Genetic programming being a genetic algorithm for program discovery, the search is for a

program in a large space of computer programs. The search mechanism is again a directed

search with fitness function (acting as a heuristics) guiding the search. In contrast, hill-

climbing is a memoryless, local search method where the successors of current state are

37

generated and evaluated according to the heuristics (a function). If the successor state having

the best heuristic value (closer to the goal) is better than the current state, that successor state

is chosen to become the new current state, and the process is reapplied. Otherwise the process

terminates. Thus the algorithm converges to the top of the nearest hill in the fitness landscape

(for maximization) or seeks the bottom of the closest valley (minimization). There is no

guarantee that the local extremum is global extremum. Simulated annealing (Kirkpatrick,

Gelatt and Vecchi, 1983) is an extension of hill-climbing. The idea of simulated annealing

comes from physics where a temperature is initialized to a predetermined starting value and

reduced gradually according to a cooling schedule, to zero eventually. Inferior moves are

given chances of being accepted. When the temperature is zero the search behaves in the

same way as that of the hill-climbing, the difference being that a neighbour is accepted under

a probability which is related to the temperature. If it is rejected then another unexamined

neighbour is tried. This strategy increases the probabillity of locating the highest point in the

search space. The effectiveness of simulated annealing depends on the definition of the

domain-dependent neighbourhood function. The cooling schedule plays an important role in

convergence. An alternative method is to store all states which have been heuristically

evaluated but not expanded in a priority queue. These states are ordered according to their

heuristic value, with the best being first, and the resulting algorithm is called ‘best-first-

search’. Although the algorithm is guaranteed to find the globally optimum value, the

priority queue can grow exponentially with the depth of the search performed. Beam search

(Lowerre and Reddy, 1980) is very much like best-first-search with the exception that the

priority queue (memory) is set at some size limit. Thus there is a limit to which states the

search can be backed up to. Tackett (1994) argues that there is a strong correlation between

‘beam search’ and genetic programming with a fixed population serving as memory and

fitness to stochastically assign priority. In this context, Tackett explains that the states of the

genetic ‘search tree’ are the expression. Rather than being the successors of a single initial

state, the initial population of N expressions are N randomly generated states each of which is

visited by being created and evaluated, as an expression for fitness. A cloning operator is

employed which maps a state of the search tree into itself. This is important as it enables the

search to ‘remember’ a state from generation to generation allowing search to back up to that

state. The selection operator along with the recombination, cloning and possibly the mutation

operator creates the successors of expressions in batches of N new states called a generation

38

replacing the previous generation gap (De Jong 1975; 1993). The population of N expressions

is analogous to a beam search priority queue with limited size N, ordered by fitness (Tackett,

1994).

3.1.2.7 The Schema Theorem and the Building Block Hypothesis: the GP analogy

Genetic programming evolves programs in the form of LISP S-expressions. These

expressions are represented hierarchically as their parse tree. Does this hierarchy in the

structure of a program (that is, the solution) represent the hierarchy in problem solving as

well? Is there a hierarchical process in GP? If so, does the search mechanism exploit this

hierarchy while searching the space of potential candidate programs? O’Reilly (1995)

addressed these issues by first providing a clear distinction between a hierarchical process and

hierarchical solutions and argues that GP may be proceeding in a manner of a hierarchical

process for a number of reasons. O’Reilly defines the hierarchical process as a process that

identifies and promotes useful primary elements, combines them into composite, modular,

reusable, and successfully higher-level components of a hierarchy and guides high- level

component assembly into a hierarchical solution. This approach is analogous to an efficient

bottom-up design method. A hierarchical solution has a combination of hierarchical structures

and control. The hierarchical control is the execution of the task through the accomplishment

of a series of subtasks. The subtasks can themselves be recursively subdivided. This approach

in essence reflects a top-down strategy. In programs, hierarchical structure is the existence of

nested levels of procedures and functions. O’Reilly suggests the following reasons to

conjecture that GP might be proceeding in a hierarchical way.

• Because GP’s solutions are hierarchical, the process that produced these solutions may

also be hierarchical.

• A hierarchical process, by introducing efficiency in the search mechanism, may enable

finding solutions. It is easier to correctly complete a simple subtask than a complex task.

Also, the same subtask if needed, can be reused.

• GP crossover depends on a hierarchical representation of programs. If swapping over of

subtrees can be assumed as swapping subtasks, the crossover mechanism may be

responsible for the exploration and combination of sub-control.

39

• GP may be employing the human design approach which in turn requires a hierarchical

process.

• Hierarchical processes are ubiquitous in evolution. GP being a simplified model of

evolution, is a hierarchical process.

• Because GP is a specialized GA, one can speculate that a building block behavior may

occur in GP as well. If so, it may be possible to develop a schema theorem and a building

block hypothesis for GP.

It is argued that GP in its canonical form does not exploit a hierarchical process to obtain

hierarchical solutions. The solution may be hierarchical because the primitive chosen for the

problem may implicitly encode the knowledge about the task decomposition and execution. It

is questioned whether GP, on its own, is able to evolve high-level primitives by successful

combination of low-level primitives and proceed to combine these high-level primitives to

obtain a hierarchical solution. Defining these primitives as ‘general purpose’ primitives and

through empirical demonstration O’Reilly proves that GP on its own lacks the power of a

hierarchical process. By developing a Scheme theorem for GP (GPST) and Building Block

Hypothesis (BBH) she concludes that GP may not be conducting its search exploiting a true

hierarchical process. Earlier Koza (1993) attempted building new primitives by extracting and

encapsulating a portion of the program and defined these as ‘define-building-blocks’ which

are given a name on-the-fly. When a program containing this module is evaluated, the

definition of the module in the module library is used. Angeline (1993) creates such

primitives through the ‘compression’ operator and extends his system as ‘GLIB’, for Genetic

Library Builder. These operators dynamically modify the representations during the run.

Tackett (1994), while applying GP to a complex real-world problem on automatic target

recognition, has demonstrated the evolution of successful building blocks that duplicate in the

population at higher frequencies. Koza (1994) has introduced an extension to the Canonical

GP and defines these representations as ‘Automatically Defined Functions’ (ADFs). These

functions coevolve dynamically during a run enabling the GP to solve complex problems

efficiently. That is, the primitives for the ADFs are defined initially by the designer but the

ADFs evolve in terms of these primitives during the run. This approach is similar to the

hierarchical decomposition of task into subtasks, though ADFs explicitly do not control a

40

hierarchical process. Unlike the ‘compression’ and ‘define-building-block’ operators, ADFs

maintain the representation structure static.

3.1.2.8 Deception and Royal Road: the GP analogy

By formulating a class of constructional problems, Tackett (1994) tries to create simple GP

analogies to ‘Royal Road’ and ‘Deception’ problems common to the studies of classical

genetic algorithm. In these constructional problems, the fitness is based on the syntactic form

of the expression rather than semantic evaluation. The reason is to allow a precise control

over the fitness structure in the space of expressions. A particular target expression is

assigned a ‘perfect’ fitness while the sub-expression resulting from the hierarchical

decomposition will have intermediate fitness. If the intermediate fitness values increase

monotonically with the complexity of the sub-expression, such problems are defined as

‘Royal Road’. Alternatively, if some intermediate expressions have lower fitness than the

sub-expressions they contain, they are defined as ‘Deceptive’. Thus, the credit for partial

solutions is precisely controlled to control the problem complexity. Through a special

recombination operator, and different selection schemes, Tackett has empirically

demonstrated the effects of these on building blocks and search.

3.1.2.9 Hybrid Algorithms

O’Reilly (1995) has compared GP to alternative algorithms by solving exactly the same class

of problems. Stochastic Iterated Hill Climbing (SIHC) and Simulated Annealing (SA) were

found to out-perform GP in some cases, suggesting that synthesising a localised search

strategy into GP will complement its global, population-based search and improve it.

3.1.2.10 Parallelism in Genetic Programming

As with the genetic algorithms, there have been efforts to parallelize GP (Koza, 1993; Poli,

1996). The advantages sought are in terms of massively parallel evaluation as the evaluation

function can be distributed over a number of processors and also in linear speed up. Poli, in

a recent work describes a new form of genetic programming which is suitable for the

development of fine-grained parallel programs. Known as PDGP (Parallel Distributed

Genetic Programming) that is based on graph-like representation for parallel programs which

is manipulated by crossover and mutation operators which guarantee syntactic correctness of

41

the offspring. The advantage is that PDGP can be seen as a paradigm to optimize acyclic

graphs which need not be interpreted as programs but as designs, semantic nets, neural

network topologies and so on.

(Some of the references are available at the bibliography section. See Tackett (1994),

Angelene (1993), Whitley (1993) and Mitchell (1996) for the rest of the references).

Conclusion

Evolutionary computation (EC) through its population based approach offers a different

method of problem solving with a number of advantages as compared to conventional

techniques. Whether evolutionary algorithms can be effectively hybridized with other

paradigms such as connectionist networks and the role of such models in the domain of AI

need to be investigated. The next chapter discusses few possible approaches.

42

Chapter 4

Evolution of Structure and Learning

Evolutionary algorithms in recent years have been shown to be quite successful as learning

systems on their own and also as meta-learning systems for other paradigms such as

connectionist networks. A novel approach is proposed to demonstrate how the genetic

programming paradigm can naturally be combined with connectionist networks to synthesize

potential connectionist learning while interacting with a given environment. The

assumptions, the justifications and the approach are discussed.

4.1 Introduction

As the ability to learn is entwined with intelligent behavior, learning is desirable for

both natural and artificial systems. Artificial systems typically aim at forms of learning that

resemble human learning through a variety of computational models some of which are

inspired by nature. These include models of connectionist networks that mimic, in some

respects, the information processing mechanisms in natural systems through the

implementation of brain-like structures, associated learning algorithms and evolutionary

methods that work on Darwinian principles. The success in learning to solve a given problem

depends primarily on two factors: firstly, on the type and the complexity of the problem itself

and secondly, on the efficiency of the learning mechanisms in tackling the given level of

complexity. Certain types of problem are easily amenable to conventional algorithms

whereas some preclude an algorithmic approach for a solution. Typically, the process of

problem-solving is considered as a search in the solution space. This space can be small,

easily understood and interpretable. Alternatively it can be very large, poorly understood

and highly complex. Evolutionary algorithms such as genetic algorithms, being population

based search methods, are capable of simultaneously searching large, complex spaces and

have been successfully applied to machine learning problems (Michalski, 1986; De Jong,

1988). The reasons for opting to use evolutionary paradigms as learning systems are due to

their attractive properties such as the implicit and explicit parallelisms, robustness as well

as the expedience (Goldberg, 1988). Also, the processes of natural evolution and natural

43

genetics are well known for centuries. In contrast, the fundamental mechanisms in the brain

are still unknown.

The learning at an individual level (phenotypic learning) is vital to any system, whether

natural or artificial, and the learning mechanisms at subsymbolic levels provide an

extremely rich landscape that needs to be explored and exploited for complex machine

learning tasks. Connectionist networks offer an approach to learning at an individual level

and have proven to be good at simulating different features of human-like learning, memory,

detection of analogies or handling of similarities (Heistermann, 1990). They can learn to

perform tasks for which computational algorithms may not exist (Turing, 1950) and are

capable of learning from examples. The incorporation of connectionist networks and other

machine learning paradigms offer flexibility to conventional AI systems in terms of

knowledge acquisition and processing as the knowledge can be acquired during the process

of problem-solving. However, the space of possible network topologies and network learning

algorithms is extremely large and there are no standard design methodologies to implement

the optimum network or the best learning algorithm for a given problem. Evolutionary

algorithms due to their ability for parallel search in complex spaces are good candidates for

neural network design (Branke, 1990; Yao, 1990; Schiffmann, Joost and Werner, 1992;

Kuscu and Thornton, 1994; Balakrishnan and Honavar, 1995). Genetic Algorithms (GAs),

Genetic Programming (GP), Evolutionary Strategies (ESs) and Evolutionary Programming

(EP) have been shown to be quite successful in evolving optimum network architectures and

also the network weights (Montana and Davies, 1989; Harp, Samad and Guha, 1989;

Mtihlenbein, 1990; Whitley and Bogart, 1990; Belew, Mclnemey and Schraudolph,

1990; Fogel, 1992; Degaris, 1993; Angelene, 1993; Zhang, 1995 and others). However,

their role as meta-learning system for connectionist networks would be extremely

interesting and is worth investigating. Two major approaches, namely, the neuro-evolution

and the genetic-connectionism have emerged in this particular direction of research in

recent years. Neuro-evolution (Whitley and Bogart, 1990; Belew, Mclnemey and

Schraudolph, 1990; Fullmer and Miikkulainen, 1991; Torreele, 1991; Harvey, 1993;

Moriarty and Miikkulainen, 1996) employ genetic algorithms for evolving and training

neural networks. The chromosomes encoding neural network parameters such as connection

weights, thresholds and connectivity are recombined based on principles of natural selection.

44

The selection process is guided by certain fitness measure for the problem in hand. The

result is the evolution of network(s) capable of solving a given problem. Genetic algorithm,

by evolving appropriate network weights replaces the standard network learning methods.

Neuro-evolution is extendible to genetic programming as well. Genetic-connectionism

(Chalmers, 1990; Baxter, 1992; Dasdan and Oflazar, 1993; Radi and Poli, 1997; Govinda

Char, 1997, 1997a) uses evolutionary algorithms (such as genetic algorithms/ genetic

programming) to search the space of network learning algorithms themselves. Further the

methods offer ways of implementing useful network topologies.

The need for discovery of potential connectionist learning algorithms, new architectures,

compatible grammars and encoding techniques cannot be over-emphasised as these will not

only enable us to understand the neuromorphic systems to greater depths but also further the

progress in artificial intelligence through their use in various domains. Evolutionary

paradigms as meta-learning systems might prove to be potential tools for this endeavour.

The sections ahead will discuss some of the recent work in neuro-evolution and genetic-

connectionism after providing a brief introduction to connectionist networks.

4.2 Connectionist networks

Connectionist networks, invariably known as artificial neural networks (ANNs), offer a

radically different approach to computation through a network of processing elements that

are often presented as a simplified version of the human neuron in the brain. These

networks, inspired by the structure of the brain, are massively parallel systems that rely on

dense arrangements of interconnections of these surprisingly simple processing elements.

Parallelism, a distributed representation and distributed control are the key features of

these networks. The network models have been used to address problems that are

intractable and cumbersome with traditional methods (Dayhoff, 1990). The models being

rule-implicit have the greatest potential in a number of areas such as speech and image

recognition and in natural language understanding. The underlying processes require high

computational rates and the current systems are far from equalling human performance.

Also, they offer a framework that provides insight into how biological neural

45

processing may work. They are unique in their ability to adapt to changing environments and

to operate on distributed fault-tolerant hardware. The networks typically consist of:

• A directed graph with a number of nodes (processing units) and a number of links

connecting the nodes in different ways providing a variety of network topologies.

• A state variable associated with each node.

• A real-valued bias associated with each node.

• A real-valued weight associated with each link.

• A transfer function or node activation function for each node determining the state of the

node as a function of its bias, the weights of the incoming links and the input variables

associated with the input links.

The nodes sum their inputs via a set of synaptic weights (sum of the product of input

variable and the associated weights) and pass on the resultant via the node activation

function to yield an output. The networks are generally characterised by the architecture

(that is, the number of neurones, the way they are arranged and connected via the synaptic

weights) and the learning algorithms (that is, the learning rules that modify the weights)

based on particular topologies.

4.3 The role of evolutionary algorithms in connectionism

Designing neural networks is a complicated task as it involves many variables, discrete

and continuous, interacting in a complex manner and there are no heuristics to guide the

design phase. Recent methods in which the networks can learn to configure themselves

have gained prominence (Honavar, 1988; Ash, 1989; Falhman, 1990; Hall, 1990; Hirose,

1991; Smotroff, 1991; Sanger, 1991; Romaniuk, 1992). Two general approaches were

identified: the destructive and the constructive methods. The destructive methods for

network design start with a larger network and then prune off the excessive nodes and

connections (nodes that are not actively used) to arrive at the optimal network size. The

method is computationally expensive (Seitma and Dow, 1988). The constructive methods

(Ash, 1989) start off with a small number of nodes and add nodes until the required

performance is achieved. The method also has limitations in terms of computational time.

These suggest a need for techniques that can automatically generate the optimal network

46

architecture (and optimal learning rules) in a short time and allow testing on a number of

possible solutions. The search space of the possible connectionist network architectures is

vast, deceptive and multimodal. Deceptive means that similar network architectures can have

different performance. It is also possible that different network architectures can exhibit

similar performance making the search space multimodal. The enumerative and random

methods are highly inefficient in exploring such complex spaces. Also, the space of

possible learning algorithms is extremely large to be explored by standard methods.

Evolutionary algorithms have been employed to automate the design process mainly for two

reasons. Firstly, due to their capability for parallel search in large, complex spaces and

secondly, with the hope that the evolutionary approach might yield networks and learning

mechanisms that are more flexible. Genetic methods definitely provide a robust and faster

search procedure and are found to be excellent tools to automate the design process. Further

these methods are amenable to parallel processing.

The major issue in genetic-based design of artificial neural networks is that of the encoding

strategy or the mapping scheme. How should one encode the neural network architecture or

the learning mechanism effectively in the genotype in order to achieve an optimal

solution? In the context of network induction (the architecture) the encoding strategy should

enable one to capture potentially useful designs for the given task and also provide the

capability for generalization. In the context of learning it should enable evolution of

efficient learning rules for a given task environment. Moreover, the evolutionary

algorithms employ different genotype representations. Certain representations might help

effective encoding strategies when compared to others.

A few encoding schemes with genetic algorithm and genetic programming in contexts of

neuro-evolution and genetic-connectionism will be discussed in this chapter.

4.3.1 The Genetic Algorithm approach

Over the years genetic algorithms have been applied to connectionist networks in several

ways:

• Given the architecture (that is, the number of layers, the number of nodes in each layer and

the connectivity pattern) genetic algorithms have been used to determine the connection

47

weights (Whitley and Hanson, 1989; Montana and Davies, 1989; Muhlenbein 1989;

Heistermann, 1989; 1990; Wilson, 1990; Whitely, Starkweather and Bogart, 1990;

Belew, Mclnemey and Schraudolph, 1991; Karunanithi, Das and Whitley, 1992). Genetic

learning is compared with other standard learning algorithms such as the back-propagation

(BP) (Rumelhart, Hinton and Williams, 1986) that are susceptible to the problems of

local minima (Muhlenbein, 1989).

• Given a standard learning rule for training the network, genetic algorithms have been

successful in finding the architecture of the network (Harp, Samad and Guha, 1989;

Miller, Todd and Hegde, 1989; Whitley and Bogart, 1990; Muhlenbein, 1990; Bomholdt

and Graudenz, 1992; Romaniuk, 1993; Jacob and Rehder, 1993; Jones, 1993a; 1993b).

• Given both the architecture and the learning rule of the network, optimal parameters for

the learning mle are found with the genetic algorithms (Belew, Mclnemey and

Schraudolph, 1991).

• Given a standard learning algorithm, optimal training sets have been evolved with the

genetic algorithm during structure evolution (Romaniuk, 1993).

• Given the architecture of the network, genetic algorithms are employed to find the fittest

learning mle based on certain fitness measures (Chalmers, 1990; Dasdan and Oflazar,

1994).

4.3.1.1 Network induction (Neuro-Evolution)

Optimization of neural network architectures or finding a minimal network for a particular

application is important as the complexity of a network will dictate the speed and accuracy

of the learning and its overall performance. Generally the size of the network should be as

small as possible but sufficiently large to ensure the sufficient fitting of the training set along

with a capability for generalization.

With genetic methods the encoding mechanism that encodes the neural network (the

phenotype) into a string (the genotype) is cmcial. The way in which the coding should be

realized is not straightforward (Nolfi and Parisi, 1994). In most models the representations

of the genotype and phenotypic forms coincide. That is, the inherited genotype directly and

literally describes the phenotypic neural network. These direct encoding methods, also

known as strong specification schemes are good at capturing the connectivity patterns within

48

small networks very precisely facilitating rapid evolution of finely optimized, compact

architectures (Miller, Todd and Hegde, 1989). However, the scheme has led to the

problem of scalability as the number of bits of information to encode a neural network

increases exponentially with the number of neurons. For larger networks the direct

encoding scheme increases the search space exponentially for the evolutionary process to be

effective (Kitano, 1990). Also, the direct genotype-phenotype mapping scheme is

biologically implausible. In biological mapping the phenotypic behavior emerges as a result

of non-linear interactions among the genes. Indirect mapping schemes, typically encode a

set of instructions in the genotype for network development. The network architecture can

be specified by growth rules (Mjolsness and Sharp, 1987), by sentences of a formal

language (Muhlenbein and Kindermann, 1989) or by a graph generation grammar (Kitano,

1990) and grammar based encoding, such as cellular encoding (Gruau, 1993). The latter

mapping schemes have yielded better network architectures with shorter and compact

genotypes overcoming the problem of scalability. The evolved neural networks have been

shown to outperform networks with fixed architectures (Schiffmann, Joost and Werner,

1992; Kitano, 1990; Whitley, Starkweather and Bogart, 1990; Wong, 1994; Maniezzo,

1994; Nolfi and Parisi, 1994).

A number of novel neuro-evolution techniques have emerged recently. These employ a

variety of potential encoding strategies for evolving neural networks capable of dealing

with complex problem domains. A few of these will be described and discussed briefly.

a. Fullmer and Miikkulainen (1991) have proposed an encoding mechanism that is loosely

based on marker structure of biological DNA. The advantage of this mechanism is that it

allows all aspects of network structure including the number of nodes and their connectivity

to be evolved through genetic algorithm. Thus every aspect of network architecture is

controlled by evolution. Previous approaches were rigid in this respect yielding networks

that were either inefficient or incapable of performing the required task. The marker-based

encoding represents a chromosome as a homogenous string of integer values that is

manipulated by the genetic algorithm. Similar to biological DNA markers separate individual

node definitions. Each definition contains all the information that the nodes need to carry

out the computations. The number of layers or the degree of connectivity emerge from

49

individual node functions instead of being specified a priori. The number of nodes in the

network depends solely on the number of start/end marker pairs found in the chromosome.

Each node definition contains the identification of the node, its initial activation value, and a

list specifying its input sources and weights. A neuron may receive input from other nodes,

from the sensors and from its own output. The number of connections are determined by the

distance between the start and the end markers, allowing each node to use as many or as few

inputs as it requires. The chromosome is implemented as a linear list but is treated as a

continuous circular entity, that is a node definition may begin near the end of the list and

continue at the beginning of the list. Node definitions are not allowed to overlap. Also, the

method avoids disruption due to crossover that might yield invalid phenotypes. The

effect of mutation depends on where it takes place. It is smooth if mutation occurs on

the weights while resulting in significant changes on the markers. The nodes are evaluated

in the order in which they are read off the chromosome.

It is demonstrated that the networks are capable of evolving high-level behavior similar to

that of finite-state automata. In addition the networks are able to develop an internal world

model by evolving an understanding of their sensory inputs and actions.

b. Moriarty and Miikkulainen (1996) have developed an efficient neuro-evolution system

called SANE (Symbiotic, Adaptive, Neuro-Evolution) with good scaling properties. Unlike

most approaches to neuro-evolution where each individual is a complete network, SANE’s

individuals are single neurons (hidden neurons in a three-layered network). Each neuron acts

as a subcomponent with specialized features and is an object of evolution. The authors

argue that evolution at the neuron level promotes population diversity and allows SANE to

better evaluate these subcomponents as parts of the final solution. Neurons are defined

in bitwise chromosomes that encode a series of connection definitions, each consisting of an

8-bit label and a 16-bit weight field. The absolute value of the label determines where the

connection is to be made. The neurons connect only to the input and the output layer. If the

decimal value of the label, D, is greater than 127, then the connection is made to output unit

D mod O, where O is the total number of output units. Similarly if D is less than 127, then

the connection is made to the input unit D mod I, where I is the total number of input units.

The weight field encodes a floating point weight. Once each neuron has participated in a

50

sufficient number of networks, the population is ranked to the average fitness values. It is

argued that SANE could be implemented with a variety of different neuron encodings and

architectures that allow recurrence.

c. SANE is found to be suitable in solving simpler tasks in just a few generations. The

reason is that evolving individual neurons often produces a more efficient genetic search. In

complicated tasks and those requiring high precision SANE has been found to be inefficient

and slow. This problem is addressed by implementing a hierarchical SANE that integrates

both the neuron level and network level of evolution in a single framework (Moriarty and

Mikkulainen, 1996a). An outer-loop network-level evolution is incorporated on top of

SANE neuron population. Thus two separate populations are maintained: a population of

neurons and a population of network blueprints. The neuron population provides efficient

evaluation of the building blocks, while the population of network blueprints learns effective

combinations of these building blocks. Initially the population of blueprints is random

resulting in a similar random combinations as performed in SANE. As the blueprint

population is evolved, the neuron combinations become more focused towards the best

networks. The hierarchical approach thus combines the early efficient exploration of SANE

with the late exploitation of the network-level approaches. The hierarchical SANE employs

an encoding mechanism that is an extended version of that of the SANE.

d. Another interesting approach is the incremental design of neural networks through

artificial evolution (Harvey, 1993). Harvey presents a novel methodology for the design of

complex systems through genetic algorithm. Through a framework known as SAGA (Species

Adaptation Genetic Algorithm), Harvey has demonstrated that genetic algorithms can be

made to work in ill-defined task domains where the search space can increase in complexity

indefinitely. The key aspect of this approach is the evolution of real-time recurrent neural

networks through variable-length genotypes. The networks are considered as dynamical

systems rather than tools to perform computations from input to output. Also, the evolution

takes place in a genetically converged population. The framework is applied to evolution of

control systems for mobile robots engaged in navigational tasks using low-bandwidth

sensors. The encoding mechanism employs two chromosomes. One of these is a fixed-length

bit string encoding the position and size of visual receptive patches. Three 8-bit fields per

51

patch are used to encode the radii and polar co-ordinates of the camera’s circular field of

view. The other chromosome is a variable-length character string encoding the network

topology which is interpreted sequentially. First the inputs units are coded for, each preceded

by a marker. For each node the first part of its gene can encode node properties such as

threshold values. This is followed by a variable number of character groups, each

representing a connection from that node. Each group specifies whether it is an excitatory or

a veto connection and then the target node indicated by a jump type and jump size. The jump

type allow for both absolute and relative addressing to avoid invalid phenotypes. The internal

and the output nodes are handled in a similar way with their own identifying genetic markers.

The scheme allows for a variable number of hidden nodes. The crossover operator is

designed carefully to cope with the variable-length genotype.

In the above methods both the network architecture and the connection weights are

genetically determined. It has been argued that these methods can only yield a network

that is entirely innate and there is no learning (Parisi, Cecconi and Nolfi, 1989). The

alternative approach has been to train the evolved networks with a standard network

learning algorithm such as the back-propagation algorithm. However, back-propagation has

a number of drawbacks. Firstly, it has a scaling problem. Although it is highly suitable for

simple training problems its performance falls off with problem complexity and makes it

unfeasible for many real-world applications. Secondly, it tends to become stuck at local

minima (opting to choose local rather than the global solutions). Thirdly, it fails to handle

discontinuous node transfer functions. This precludes its use on common node types and

simple optimality criteria (Montana and Davies, 1990). Genetic algorithms are employed to

evolve weights in these cases. In some cases, they are used to evolve a good set of initial

weights that can be further modified by a standard learning algorithm (Miller, Todd and

Hegde, 1989). The problem of scaling has been overcome by using modular networks

consisting of a number of independently trained sub-networks (Muhlenbein, 1990; Happel

and Murre, 1994, and others).

Modularity is an important aspect in problem solving and especially, in the design of

neural networks as it offers a number of advantages (Muhlenbein, 1990; Ossen, 1990; Nadi,

1991; Smieja and Muhlenbein, 1992; Happel and Murre, 1994, and others). Firstly, it allows

52

a complex problem to be expressed in terms of simpler sub-problems as modular

components. Secondly, the modules and their interactions are easily interpretable. Thirdly, it

offers a natural way of dealing with scalability and finally the learning time can be reduced

considerably when compared to that in flat (non-modular) networks. It has been shown

experimentally that the global learning algorithms such as the backpropogation algorithm fail

to converge when applied to modular networks (Muhlenbein, 1990) suggesting that the

algorithm could not make use of the structural information. This is a drawback as the

application-specific information can be coded in the structure but the algorithm fails to use

this. Also, for larger networks the learning time grows exponentially. With modular

networks each of the modules can be trained quickly for a specialized task. It is possible that

the modular elements can learn separately in a hierarchical way (Nadi, 1990). The recent

work by Happel and Murre (1994) suggest a number of design principles for designing

modular networks with genetic algorithm and investigates the relations between structure and

function. The results suggest better learning and generalization capabilities of evolved

modular network architectures. How effective is an encoding scheme in implementing

modularity is an important question. The schemes described above (a, b, c, d) do not seem to

address the issue of modularity nor alternative learning methods.

The question that naturally arises is whether there are better connectionist learning rules that

can replace the evolutionary algorithm while providing a greater insight into the space of

learning mechanisms and how effective are the evolutionary algorithms in searching the

space of these rules?

4.3.1.2 Induction of Learning (Genetic-Connectionism)

Genetic-connectionism (Chalmers, 1990) is the idea of using evolutionary algorithms such

as genetic algorithm to search the space of potential connectionist learning rules. Learning

and evolution are the two fundamental forms of adaptation where the notion of emergence

plays a key role. This notion has been expressed in a number of ways through a variety of

definitions by various researchers (Harvey, 1993), (see chapter two). Others (Chalmers,

1990; Vaario, 1993) conceptualise emergence in terms of achieving a complex high-level

behavior as a result of combining simple low-level computational mechanisms in simple

ways. In the context of this definition both evolutionary methods and connectionist

53

systems offer a paradigm of emergence. The kinds of emergence found in genetically based

systems differ from those found in connections systems (Chalmers, 1990). Connections

systems support synchronic emergence or emergence over levels: at a given time a host of

low-level computations takes place which when looked at from another level can be

interpreted as a complex high-level functioning. By contrast, the genetic-based systems

support diachronic emergence, that is emergence over time; primitive computational systems

gradually evolve towards greater complexity. The road to achieving synchronic emergence

through evolutionary methods is to loosen the connection between the genotype and the

phenotype. When the genotype encodes high-level features directly and symbolically there is

no room for synchronic emergence. To achieve synchronic emergence the phenotypic

characteristics need to emerge indirectly from the genetic information. This also enables an

open-ended search as the relationship between the genotype and the phenotype is indirect and

emergent.

When a process of learning evolves through the process of evolution, the evolution is seen

as a second-order adaptation that produces individual systems that are not immediately

adapted to their environment but that have the ability to adapt themselves to many

environments by the first-order adaptive process of learning. Thus the learning mechanisms

themselves are the objects of evolution. Based on the encoding strategy the synchronic and

diachronic levels may be distinct or may merge.

Further, recent studies on the effect of learning on evolution (Hinton and Nowlan, 1987;

Belew, 1990) suggest that learning that is acquired during a lifetime (individual learning)

alters the shape of the search space in which evolution operates. That is, learning can be very

effective in guiding the search, even when the specific adaptations that are learned are not

communicated to the genotype. In the context of connectionist learning it is necessary to

investigate its effect on evolution in order to understand how learning and evolution interact.

The following sections will discuss how genetic algorithms were used in evolving a

number of neural network learning rules by encoding the dynamic parameters of the network

in the genotype and subjecting these to selection pressures.

54

A few cases are discussed. In the first case, a supervised learning rule is evolved for a single

layer feed-forward architecture. The evolved learning rule needs to associate specific input

patterns with specific output patterns. The desired output patterns are presented to the

network as a training signal. In the second case a supervised learning is evolved for local

binary neural networks. The architecture is flexible. In the third case an unsupervised learning

rule is evolved for a fixed architecture. The desired output is not known in this case. The

evolved learning rules need to induce this information.

• The supervised learning rule

Chalmers (Chalmers, 1990) employed a fully connected single-layer feed-forward network

with sigmoid output units and with a built-in biasing input to allow for the learning of the

thresholds. A maximum connection strength of twenty was imposed, to prevent possible

combinatorial explosion under some learning procedures. The network is known to have

powerful learning rules such as the delta rule for supervised learning tasks. The aim was to

see whether such rules could be evolved. As it is not possible to express all kinds of weight-

space dynamics under a single encoding the dynamics are constrained. The constraints

imposed in these experiments are that: the changes in the weight of a given connection

should be a function of only information local to that connection, and the same function

should be employed for every connection. For a given connection from input unit j to output

unit i, local information includes four items:

cij - the activation of the input unit j\

Oj - the activation of the output unit z;

tt - the training signal on the output unit z;

wtJ - the current value of the connection weight from input j to output z.

The genotype encodes a function F given by:

AWy = F (^ , oit tif Wjj) (4.1)

A genotype of 35 bits was employed. This assumes that the function F to be a linear

function of the four dependent variables and their six pair-wise products. The genotype

55

specifies the ten coefficients with the help of an eleventh scaling parameter. With this

approach Chalmers succeeded in evolving a number of potential learning rules that included

the well-known delta rule. The rules that evolved were evaluated for their fitness by testing

them on a number of various linearly separable (Minsky, 1988) leamable tasks on different

networks. The fitness of the learning rule is obtained by evaluating its performance on each of

the tasks (environment) and taking the mean fitness error over all tasks. Whether the learning

rules that evolve are specifically adapted for the tasks that are present during the

evolutionary process or whether they are capable of learning a wide range of tasks that were

not present during the evolutionary process depends on the diversity of the environment.

A more recent method (Baxter, 1992) based on a similar approach evolves local binary

neural networks (LBNNs) consisting of interconnected binary nodes operating in a discrete

time, synchronous fashion. The nodes are divided into three classes, that is input, hidden and

output nodes. However, the architecture, that is which nodes are connected, is completely

unrestricted, rather than layered as in the back-propagation networks. The network operates

in two phases, the training and the testing. During the training phase the input and the output

nodes are clamped by the environment, whereas during the testing phase only the input nodes

are clamped. The network weights include fixed and leamable weights. The leamable

weights are adapted according to a local learning mle. The networks are represented as bit

strings. It is assumed that each network in the population has the same number of nodes, n,

which is fixed for the whole evolutionary run. The network architecture is specified by

determining which nodes are connected by non-zero weights, whether those weights are

leamable or fixed, and for the fixed weights, their values. This information is coded using

three bits for each pair of node in the network. The method allows to employ a uniform length

bit strings avoiding problems due to crossover that are typically seen in variable-length

strings. The learning mle is a Boolean function of two variables and the training of the

network is totally supervised. The network is evaluated based on its ability to learn a number

of Boolean functions. The aim of this work is basically to demonstrate that a network’s

learning ability must primarily be a property of its architecture, and not some sophisticated

method of setting its weight. The work is in contrast to the back-propagation networks that

have a complex algorithm to set weights, but limited architectures.

56

• The unsupervised learning rule

These experiments employ the Self-Organizing-Map (SOM) architecture (Kohonen, 1990).

Kohonen raises a number of questions on the process of self-organization: firstly, are there

possibly many optimal algorithms that lead to similar organization produced by the

Kohonen rule? Secondly, does the Kohonen algorithm ensue from some more general

principles? Thirdly, can the principle also be expressed for a more general structure?

Dasdan (1993) uses a genetic algorithm to evolve a number of unsupervised learning rules

such as a Kohonen learning rule (Please refer to Chapter 5 for details). In this case the target

value of the exemplars is not known. These experiments suggest that there exists a number

of potential unsupervised learning algorithms that are capable of enforcing topological

ordering similar to that achieved by the Kohonen learning rule. The equation for the weight

adaptation is given by:

-̂Wij = Y (Wij.xj, t,yj) (4.2)

where:

Wy - the current value of the connection weight;

Xj - the signal on the input node;

t - the training iteration number;

yj - the correlation between the signal x and m, m being the weight associated

with the output neuron.

The final equation that evolved included a scaling parameter and fifteen other coefficients.

A number of potential learning rules similar to those of the Kohonen rule were evolved along

with the Kohonen rule. With the SOM architecture, the definition of the optimal mapping is

still unclear. A mean error of the Euclidean distances between input patterns and the weight

vectors of their winning cells at the output was used as a criterion for the optimal mapping. A

map with the smallest error value was the best map with highest fitness.

57

In all these cases the evolved learning rule(s) are subsequently applied to adapt the network

weights in order to evaluate their fitness (that is the fitness of the learning rules). The rules

that adapt the weights effectively survive. It is to be noted here that the synchronic and the

diachronic levels are distinct.

An excerpt from Chalmers (Chalmers, 1990) that emphasizes the criticality of the coding

strategy is included here:” The encoding strategy is crucial. Whether it should allow for

many possible weight-space dynamics or should the space be constrained using a priori

knowledge? How could we possibly find a coding of possible dynamics that includes as

possibilities all the diverse learning algorithms proposed by humans today? The above

experiments employed small networks and the relevant information was known in advance

that a simple quadratic formula can provide a good learning mechanism. The encoding of

more ambitious mechanisms such as the back-propagation may not be so simple but would

need highly complex genetic coding or else a simple but very specific coding that is rigged

in advance to allow back-propagation as a possibility. When we do not know the form of a

plausible learning algorithm in advance- and this is the most interesting and potentially

fruitful application of these methods- the problem of coding strategy becomes vital. Only so

much can be coded into a fmite-length bit string. One way around the limitation of pre­

specified coding of dynamic possibilities would be to move away from the encoding of

learning algorithms as bit-strings, and instead encode algorithms directly as function trees.

In recent report, Koza (1990) has demonstrated the potential of performing genetic-style

recombination upon function-tree specification of algorithms. This method of “genetic

programming” uses recombination and selection in a fashion very similar to traditional

genetic methods, but with the advantage that under evolutionary pressures such function-

trees may become arbitrarily complex if necessary. This open-endedness may be a good way

of getting around the limitations inherent in fixed genetic coding. Furthermore, the method is

a very natural way of encoding dynamic, algorithmic processes of the kind we are

investigating here..”

The following sections will investigate the role of genetic programming in contexts of

neuro-evolution and genetic-connectionism.

4.3.2 The Genetic Programming approach

Genetic Programming (GP) encode possible solutions to a problem as programs that, when

executed are the candidate solutions to the problem. These programs are expressed as parse

trees and consists the terminal and the function sets of a given problem environment. The

search algorithm that is used in GP is the classical genetic algorithm. With appropriate

terminals, functions and/ or interpreters standard GP can go beyond the production of tree­

like programs (Poli, 1996). Its role in connectionism has yielded powerful insights into the

design and learning aspects of neural networks and will be the focus of the next few

subsections.

4.3.2.1 Network induction (Neuro-Evolution)

GP has been successfully applied to evolving neural network architectures along with

network weights (Koza, 1993). However, the method does not provide a general approach to

implement standard networks nor a mechanism for finding networks with minimum

complexity (Zhang and Muhlenbein, 1993). Recently alternative methods have emerged

and a few will be discussed.

a. The individual structures that undergo adaptation in genetic programming are

hierarchically structured computer programs. These programs can be expressed as LISP S-

expressions that can be graphically depicted as rooted, point-labelled trees with ordered

branches. With such a representation for the genotype a variety of encoding schemes is

possible. For instance, the representation can indirectly encode a rewriting grammar such as

the cellular encoding (CE) (Gruau, 1993). This grammar is interpreted in a recursive manner

generating a family of related networks. The advantage of this approach is that larger

networks can be evolved with a very compact code providing a wide range of possible

network architectures. The method, being highly successful in the evolution of Boolean

networks (both standard and modular types), has recently been applied for designing

network architectures with real-valued weights (Friedrich and Moraga, 1996).

b. Network architecture and weights have been optimized simultaneously with an

evolutionary approach known as the Breeder Genetic Programming (BGP) (Zhang and

Muhlenbein, 1993). The genotype of each network is represented as a tree whose depth and

59

width are dynamically adapted to the particular application by specifically defined genetic

operators. The weights are trained by next-ascent hillclimbing search and employs a fitness

function that quantifies the principles of Occam’s razor. Occam’s razor states that

unnecessarily complex models should not be preferred to simpler ones. Hence the method

prefers a simple architecture to a complex one. However scaling problems were observed

due to the direct encoding scheme employed. That is, the genotype directly encodes the

network architecture. The problem of scaling can be overcome by grammar encoding.

Again the disadvantage with grammar encoding is that the genotype must be converted to

phenotype every time the weights are trained. Direct encoding schemes are preferable in this

context. The recent trend has been towards more compact representation schemes which

can exploit the advantages of both direct and indirect encoding strategies.

c. Recently, an extended version of genetic programming known as Parallel Distributed

Genetic Programming (PDGP) is claimed to be highly suitable for development of parallel

programs (Poli, 1996). The method allows symbolic and neural processing to be combined

in a natural way through a graph-like representation. PDGP uses a direct representation of

graphs which, although not completely general, allows the definition of crossover operators

which always produces valid offspring in an efficient way. Each node on the graph is

assigned a physical location on a multi-dimensional grid with a pre-fixed shape and limiting

the connections between the nodes to be upwards. Also connections can only be established

belonging to adjacent rows, like the connections in a standard feed-forward multi-layer

network. The limitations of this method has been the increased computational effort to

develop programs with weighted links as the operators used by PDGP are ineffective in

optimizing the network weights. However it is successful in optimizing the topology and

also in discovering a variety of complex network architectures.

4.3.2.2 Induction of Learning (Genetic-Connectionism)

The existing connectionist learning algorithms despite being quite effective in tackling a

wide range of problems have a number of limitations. It appears that the limitations are

due to different types of rigidity. The rigidity could be in terms of:

• the architecture where the connectivity of most of the networks is fixed in advance or in a

mental rigidity. That is, the assumption that the node’s activation function must be a real

60

number and that activation should be combined using weighted sums and sigmoid

functions. These assumptions limit the universality of the learning algorithms (Fletcher,

1990). Fletcher has shown that nodes in the networks can contain any (bounded) data-

structure and any processing function appropriate to the problem at hand.

• the way in which the learning algorithms are defined or in the approach through which

they are implemented. Should there be a general definition for a learning algorithm

(Govinda Char, 1997a)?

• the constraints. Is the rigidity due to the type of constraints imposed (Govinda Char,

1997b)?

• the convenience. Is the required flexibility not achievable because of a tendency to use

simple methods in order to avoid complexity instead of trying to tackle it (Ciff, Harvey

and Husbands 1992)?

In addition, most of the connectionist learning algorithms hardly resemble learning in

natural systems. Should this problem be again attributed to the above facts? Also, whenever

the learning algorithm is known a priori, the designer implicitly has a notion about the way

the algorithm is going to behave and also sometimes the likely outcomes. In the context of

artificial intelligence such a strategy cannot be very fruitful when it comes to situations

where the learning algorithm has to deal with unpredictable environments. These clearly

suggest that learning algorithms need to evolve to suit the situation.

Genetic algorithm though was successful in evolving a variety of potential connectionist

learning rules mostly had the architecture and the type of node activation function fixed a

priori. The approach limits the potential of evolutionary algorithm in searching a much larger

space of learning rules. Certain strategies, if employed appropriately might allow the

desired flexibility and open-endedness.

So far a few researchers (Bengio et al., 1994; Radi and Poli, 1998) have attempted

evolution of learning with genetic programming. Radi and Poli (1998) have used GP to

discover new supervised learning algorithms. GP allows direct evolution of symbolic learning

rules with their coefficients (if any) rather than the simpler evolution of parameters of a fixed

learning rule. A feed-forward network with input, hidden and output layers is used to

6 1

explore a larger space of rules using different parameters and different rules for the hidden

and the output layers. The results suggest that the evolved rules are faster (converge in a few

epochs) and have better generalisation capability than the standard back-propagation learning

when tested on a number of sample problems.

The method proposed in this thesis uses an entirely different approach. It is based on

combining two potential strategies: the bottom-up and the top-down. Also, the method

attempts to exploit the strengths that are inherent to the representation that GP employs, that

is the aspects of hierarchy and modularity that the representation offers. Most importantly,

it is based on providing a very general definition for learning and on the imposition of a

single potential constraint within the representation. The framework that is used is a self-

organizing neural network. The assumptions and the justifications will be stated first.

• The assumptions

1. A learning rule is defined simply as a sequence o f interacting concepts such as

association, competition, co-ordination and adaptation. This definition is necessary to proceed

further.

2. The network weight adaptation is an integral part of the representational structure, that is

the genetic programs and hence the evolutionary process. This strategy is indeed a potential

constraint and is the key to the simulations. In the context of the first assumption, the

network weight adaptation can be thought of as an abstract symbolic concept.

These assumptions are justified based on the facts that learning in natural systems also

entails evolution of symbolic concepts and their proper sequencing. Also, the neural

structures in the brain adapt while forming concepts, that is, while interacting with the

environment.

• Why Genetic Programming?

The first assumption entails evolution and sequencing of concepts appropriately so as to

yield potential learning rules. Genetic programs are tree-structured symbolic expressions.

That is, the programs are hierarchical LISP S-expressions. This hierarchy should enable the

62

sequence that is needed in the above definition of a learning rule. The interactions of the

concepts could be as a result of the above hierarchy itself and also due to the effects of the

recombination of genetic programs. The recombination basically swaps the subtrees.

Genetic programming is the mechanism that is required to evolve the macro-concepts such as

the concept of winning, competition, co-ordination and adaptation through its primitives. The

primitives are the function and the terminal sets for the GP run. These primitives implicitly

represent the micro-concepts that GP will employ to form the macro concepts and sequence

them appropriately to yield a potential learning rule. The approach thus employs the notion of

micro-macro dynamics in realizing emergence.

The second assumption is vital to the simulation work. In earlier approaches with genetic

algorithms (Chalmers, 1990; Dasdan, 1993), learning rules were evolved and subsequently

adapt the network weights. The two levels of adaptation, that is, the synchronic and the

diachronic levels were distinct. With the proposed approach the concepts evolve while

interacting with the environment. The two levels of adaptation merge as the weight

adaptation is an integral part of the representational structure itself. The learning rules in this

case need to adapt the weights effectively in order to evolve. Although this is a new

constraint the paradox is that it will force GP to evolve potential concepts. Thus the

constraint provides an implicit motivation for the evolutionary paradigm to be creative.

This leads us to a key question: In the context of problem solving should a learning rule

evolve to adapt the network weights effectively? or should it adapt the network weights

effectively in order to evolve? The subtleties need to be understood to appreciate the depth

and the consequences.

4.4 Discussions

The sections discussed the role of evolutionary algorithms, in particular, genetic algorithms

and genetic programming in connectionist networks. The focus was on neuro-evolution and

genetic-connectionism, the two main approaches that have emerged in recent years. The

strength of the DNA based encoding (Fullmer and Miikkulainen, 1991) is that it allows all

aspects of network structure including the number of nodes and their connectivity, to be

63

controlled by evolution. The number of layers and their connectivity are not defined a priori

but emerge from the node definition. The designer has to carefully craft the definition of the

node and appears to have some implicit notion about the way the networks might evolve.

Also, it is not clear whether the encoding scheme is applicable to all types of networks such

as recurrent networks. SANE (Moriarty and Miikkulainen, 1996) evolves a population of

neurons with specialized features and combine them to form a network. The advantages are

the quick evolution of networks and good scale-up properties. However, the type of network

is fixed in advance. Again the node definitions are carefully crafted by the designer. It is

slow in dealing with complex problems. This problem is overcome in hierarchical SANE

(Moriarty and Miikkulainen, 1996a). The hierarchy and its implementation has to be decided

by the designer. The methods employ a fixed length chromosome. The incremental design

suggested (Harvey, 1993) has the advantage of having a variable-length chromosome and

applicable to recurrent networks. It also allows a flexibility in architecture. The

chromosomes are again carefully designed. It is not clear whether the networks that evolve

are optimum.

None of the above methods have addressed the modular aspects in network design that is

vital.

In the context of genetic-connectionism, Chalmers (1990) employs a known architecture to

evolve learning mechanisms. Baxter (1992) has managed to remove the restriction in fixing

the architecture by an efficient encoding scheme. The constraint though is that each network

in the population should have the same number of nodes. Dasdan (1993) employs a similar

approach as that of Chalmers for evolving unsupervised learning for a fixed architecture.

All the above approaches employ fixed-length chromosomes limiting the search space.

With genetic programming, grammar-encoding (Gruau, 1993) is highly suitable for network

design in general and modular networks in particular. The chromosome is compact allowing

good scale-up properties. It is not clear whether the networks are optimum in terms of the

weights. Breeder Genetic Programming (Zhang and Muhlenbein, 1993) evolve optimised

networks and weights simultaneously. However, the grammar encoding used in these

methods are extremely time-consuming. The graph-based approach (Poli, 1996) seems to

64

overcome the problems associated with grammar encoding. Again, the crossover operator has

to be carefully designed to yield valid networks. Whether modularity can be implemented

remains to be seen.

Coming to the learning aspect of the networks, the type of network architecture is fixed in

advance in the approach suggested by Radi and Poli (1998). Despite, the advantages of this

method are faster convergence time and better rules as compared to the standard back-

propagation learning rule. It is not clear whether the approach could be extended to other

types of neural networks.

The novel approach proposed in this thesis (Govinda Char, 1997a) has several advantages.

The representation structure (the genotype) can be varied in shape, size and the complexity

allowing for an open-ended search. The approach is based on providing a general definition

for learning and involves a single potential constraint within the representation. The

evolutionary paradigm has all the options open to it in terms of the network architecture, the

node activation function and the type of learning it can evolve. The flexibility in network

architecture can be achieved by incorporating a technique for morphogenesis allowing GP to

induce a variety of network architectures. The grammar of cellular encoding (Gruau, 1993) is

highly compatible with genetic programming and flexible in implementing any type of neural

network. Although the focus in this thesis is on using a self-organizing neural network as

a framework for the purpose of demonstration, it appears that the approach can be extended

to other types of networks. The reasons being, firstly, a general definition for learning is

provided irrespective of the type of network. Secondly, the grammar is flexible enough to

generate different types of network architecture. Also, it allows a possibility of evolving the

node activation functions through appropriate primitives. It is unlikely that natural

systems employ the same type of node activation function at various subsymbolic levels.

These advantages offer a flexibility that allows for an open-ended search for the

evolutionary paradigm. The aim is to see how one can extract maximum information from

the paradigm (in terms of learning and problem-solving) just by imposing a single potential

constraint while leaving every other option open to the paradigm to choose. Further,

learning in natural systems involves logical primitives. Connectionist learning should have

the freedom to choose for logical primitives based on a given situation. Such primitives can

65

be easily included with the proposed approach. Finally, the learning rules that evolve should

be interpretable in symbolic terms. A standard connectionist learning rule can be easily

expressed (and explained) in terms of few statements in natural language. This can be

achieved through automatically defined functions (ADFs) (Koza, 1994) in genetic

programming as demonstrated in the next two chapters. Finally, the hierarchy and

modularity (through ADFs) are inherent features of the representation. Given an appropriate

grammar for network generation, the designer need not craft the genotypes carefully nor

worry about the effects of crossover disruption. If the aim is to really automate the design

process the human involvement in the design loop has to be minimized. The greatest

advantage as compared to other methods is that the network and the learning can evolve

simultaneously while interacting with a given environment. Grammar encoding is slow

which, of course, is a disadvantage.

Conclusion

It seems that the rigidity in connectionist learning algorithms can be avoided in a number of

ways. The first of these involves providing a very general definition for a learning rule, for

instance, as a sequence of interacting concepts. Secondly, by imposing a potential

constraint and leaving most of the options such as the network architecture, node

activation function and the type of learning open to the evolutionary paradigm. The novel

approach suggested in this thesis has several advantages when compared to other

evolutionary approaches. It exploits maximally the strengths that are inherent to the

representation that the evolutionary paradigm (GP) employs. These are: the hierarchy and

modularity which are very important in problem solving. Further, it is based on powerful

notions such as micro-macro dynamics and constructivism and offer a way of combining

bottom-up and top-down strategies.

Chapter 5 will discuss a self-organizing neural network that is used as a framework for

further simulations.

66

Chapter 5

Self-organizing Neural Networks

Topological feature maps are ubiquitous in the brain. These maps are formed as a result of the

process of self-organization that involves the basic principles of competition and co­

ordination among the cells in the brain and have been successfully modelled by artificial

neural networks. This chapter provides an overview of some of the computational models

that have been effective in capturing and simulating the process of self-organization

accurately. The role of evolutionary paradigms in the evolution of such models and the

advantages of evolutionary approach are discussed.

5.1 Introduction

Topological feature maps are ubiquitous in the brain (Knudsen et al. 1987) and show up in a

localization of cortical activity by sensory stimuli (Tavan et al. 1990). These maps are

characterised by the fact that sensory signals that are closer will cause excitations in the

nearby regions of the cortical plane. An example of a topological map is the retinotopic map

in the visual cortex. The basic principles for the self-organization of topological feature

maps from sensory input have been established (Malsburg and Wilshaw, 1977; Malsburg,

1976) and involve competition among the neurons of the map for maximal response and co­

operation of the neighbouring neurons. Later a simple algorithm demonstrating these

principles was developed (Kohonen, 1982a, b; 1984) and was successfully applied to a

variety of problems that included vector quantization (Schweizer et al. 1991), biological

modelling (Obermayer, Ritter and Shulten, 1990), combinatorial optimization (Favata and

Walker, 1991), processing of symbolic information (Ritter and Kohonen, 1989) and for motor

control in robotics (Ritter and Shculten, 1988a, b; Ritter and Kohonen, 1989). A few models

that have been successful in simulating the process of self-organization will be discussed.

5.1.1 The Kohonen Self-organizing Feature Map: the Characteristics and the Learning

Rule

The Kohonen feature map is a two-layered network as shown in Figure 5.1. The first layer

is the input layer consists of a number of cells (neurons) each taking on a

67

corresponding value from the input pattern. The second layer, the competitive layer is

typically organised as a two-dimensional grid of cells. The two layers are fully

interconnected as each input unit is connected to all of the units in the competitive layer

through an associated reference vector (Dayhoff, 1990).

The grid o f cells (Layer-2)

The neighborhood radius

The winning cell

The reference vector

J The input cells (Layer-1)

xn The input signals

Figure 5.1 The Kohonen Feature Map

That is, an n-dimensional reference vector associates each of the cells on the competitive

layer with an n-dimensional input signal. Other cells on the competitive layers are also

associated in a similar manner. When an input pattern is presented, each unit in the first

layer takes on the value of the corresponding entry in the input pattern. The units on the

second layer then sum their inputs and compete to find a single winning unit (the winner).

The reference vector determines the cell that is maximally sensitive to a particular input

signal based on the Euclidean distance of the signal from the reference vector. The learning

algorithm organizes the cells on the second layer into local neighborhoods that act as feature

classifiers on the input data. Thus the reference vectors of neighboring units are near each

other if the signals are close. In essence, a given set of reference vectors divides the input

vector space into regions with a common nearest reference vector. These regions are

commonly known as Voronoi regions and the corresponding partition of the input vector

space is denoted Vornoi partition. The network learns in an unsupervised manner from a

stream of input signals. The n-dimensional input vector is denoted by x = (xl5 x2,xn) with

real-valued components taking values in the subspace VeiRn. Exemplars of such vectors are

repeatedly presented to the network. The values of x are drawn randomly according to a given

probability distribution. For each presentation the best matching cell (the winner) is

determined according to the minimum value of the Euclidean distance || x - wn\\ where

68

represents the n-dimensional reference vector. The weights are then adapted according to the

rule:

wH(t+l) = wn(t) + r |(t)g(n- n 0,t)(x-wn(t)) V n (5.1)

where ‘t ’ is the update time. The parameter r\(t) is the learning rate. The function g(n- Hq)

is typically a Gaussian given by:

g (n-no) = exp(-p), p= \\n-n0\\2/2A2 (5.2)

and is essential for the success of the algorithm. Equation (5.2) has a maximum value

(normalized to unity) when n coincides with n0 (the winner cell) and decays to zero at

larger distances. The steepness of the decay is characterized by the width parameter A. Thus

the winner cell on the network is maximally adapted and the surrounding cells are adapted

to a lesser extent depending on the distance ||/i-«o||. The function g induces a lateral inhibition

among the neurons. The learning rate r\(t) and A(t) are initially large but reduce

monotonically as the learning progresses according to some cooling schedule. The learning

(“winner takes most”) is distinguished from a competitive learning where only the winner is

adapted (“winner takes all”). Such networks are capable of generating interesting low­

dimensional representations of high-dimensional input data.

5.1.1.1 Performance Criteria

Self-organizing networks have mainly three performance criteria. The importance of each

criterion may vary based on the application (Fritzke, 1993).

• Topology preservation

The mapping from input space to the output space is said to be topology-preserving if similar

inputs are matched to identical or neighboring cells and neighboring cells have similar

reference vectors. The first property ensures that small changes in the input vector will cause

correspondingly small changes in the position of the winner unit. Such a mapping is robust

against distortions of inputs and highly desirable while dealing with noisy data. The second

property ensures the robustness of the inverse mapping. That is, when the dimension of the

input mapping is higher than the dimension of the network the mapping reduces the data

dimension but usually preserves the important similarity relations among the input data.

69

• Modelling of probability distribution

A set of reference vectors is said to model the probability distribution, if the local density of

the reference vectors in the input vector space approaches the probability density of the input

vector distribution. This property is desirable for two reasons. First, it is possible to get an

implicit model of the unknown probability distribution underlying the input signals and

second, the network becomes fault-tolerant against damage as every cell is only responsible

for a small fraction of all input vectors.

• Minimization of quantization error

The quantization error for a given input signal is the distance between the signal and the

reference vector of the winning cell. A set of reference vectors are said to be error

minimizing for a given probability distribution if the mean quantization error is minimized.

This property is important if the original signal needs to be reconstructed from the reference

vector which is common to vector quantization. This error needs to be small for efficient

self-organization.

5.1.1.2 The Problems and the Limitations

The specific architecture (the two-dimensional rectangular grid) that the Kohonen network

employs imposes limitations on the process of self-organization (Ervin et al. 1995; Polani,

1995; Zavrel, 1996) due to a number of reasons. Firstly, the convergence of the self­

organizing process to a stable state is only guaranteed if the learning parameter and the

neighborhood radius are slowly decreased during learning. Otherwise the network weights

may perpetually change when patterns are presented. There is no guarantee that the imposed

schedule for the decrease of the adaptation is optimally organized despite a stable state.

Secondly, during the adaptation the grid may get tangled or collapse into a single point

depending on the combination of data and initial parameters, resulting in a severe distortion

of distances in the map. Thirdly, the rectangular grid structure does not allow proper

adaptation to the input signal spaces that have non-rectangular distributions. Finally, the

convergence of Kohonen networks is slow and they easily get stuck at local minima. The

remedy to these problems lies in the creation of network structures that can better adapt to

the structures of the input space.

70

5.1.2. The Growing Cell Structures

To overcome the limitations imposed on the resulting mappings by the predetermined

structure and size of the Kohonen’s model the Growing Cell Structures method (Fritzke,

1991) was introduced. This model differs from the Kohonen’s model in some respects.

Firstly, new cells can be added or removed during the process of self-organization. Secondly,

the weight adaptation rule, although almost the same as that proposed by Kohonen, has two

important differences. The adaptation strength is constant over time and two different

adaptation parameters are used for the winning cell and the neighboring cells respectively.

Only the winning cell and its direct neighbors are adapted. These choices eliminate the need

to define a cooling schedule for any of the model parameters. The advantages of this

approach are that the size as well as the structure of the final neural network are determined

automatically from the input data. The network size is not pre-defined but grows until a

performance criterion is met. As the cells are grown based on the pattern space, the method

enables many clusters to cover the dense regions of the input space and a few at the sparsely

occupied regions. The true structure of the data set will be reflected in the cluster structure

more accurately including cluster boundaries and hence allows for data visualization. The

Kohonen’s models do not provide such information as there are no cluster boundaries on the

map.

5.1.3. The Enhanced Feature Map: Modelling Lateral Interactions

Both the above approaches rely on an external supervisor to find the maximally active unit,

that is, the winning cell. To be biologically realistic the algorithm should be reduced to local

computations and interactions among the cells. The lateral interaction weights between the

cells can also be made to self-organize along with the external input weights (Miikkulainen,

1991; Sirosh and Miikkulainen, 1995). Each cell in the neural network is assumed to have

three sets of inputs: the excitatory input connections that supply external inputs to the cell;

short-range lateral excitatory connections from close neighbors on the map; and long-range

inhibitory connections from within the map. Also it is possible that the external and the

lateral connections of the same cell follow two different rules of weight modification. The

lateral weights are modified by a Hebb rule keeping the sum of the weights constant whereas

the external input weights are modified according to the normalized Hebbian rule. This

71

enables the computations to be localized to each cell and its connections. Such a map can

autonomously self-organize without a global supervisor.

5.1.4 Incremental Grid Growing

The usefulness of a map depends on how accurate it is in representing the input space. This

space may be arbitrarily non-convex and discontinuous and may contain high-dimensional

clusters. Further the real world data sets often contain distinct but non-obvious subsets of

data. The standard learning algorithm fails to delineate the boundaries of such groupings.

The incremental grid-growing algorithm (Blackmore, 1993) is based on an incremental

approach, but avoids the difficulties of an arbitrarily connected graph structure as it retains a

regular 2-dimensional grid at all times. The algorithm is briefly explained. Initially the feature

map grid consists of four connected nodes with weight vectors chosen at random from the

input. Each main iteration of the algorithm consists of three main steps:

1. Adapting the current grid to the input distribution through the usual feature map self­

organizing process.

2. Adding nodes to those areas in the perimeter of the grid that inadequately represent their

corresponding input area.

3. Examining the weight vectors of neighbouring nodes and determining whether a

connection between the nodes should be deleted from the map, or whether a new connection

should be added.

The new structure is re-organised, and the process continues until a predetermined maximum

number of nodes has been reached. Thus the algorithm by employing effective heuristics

enables the non-convexities, discontinuities and clusters in the data set to be represented

explicitly on the two-dimensional structure of the map during the process of organization.

5.2 The Evolutionary Approach

The above models employed non-evolutionary, standard programming techniques. In general,

the space of possible neural network architectures and learning for a given problem domain

could be very large. As discussed in chapter four, evolutionary algorithms have been

successfully applied in neural network design in several ways. Genetic algorithms have

72

yielded improved topologies of self-organizing neural networks capable of better

adaptation characteristics (Polani and Uthmann, 1992; Hamalainen, 1995). Novel learning

algorithms for the self-organizing process providing better performance measures have also

been synthesised using genetic algorithms (Dasdan and Oflazar, 1994).

The following sub-sections will briefly describe the genetic algorithm approach for

optimizing the Kohonen feature map. The advantages of employing the genetic programming

paradigm in designing such networks is outlined.

5.2.1 The Genetic Algorithm approach

The sequence of steps for modelling the self-organization process with the genetic

algorithm will be discussed first.

5.2.1.1 The Genotype-Phenotype Mapping

The genotype-phenotype mapping scheme is crucial for evolving optimal topological

structures. The mapping schemes dictate the convergence time in terms of the search space

and also the scalability of the evolving neural networks. Two different mapping schemes for

evolving an optimum topological structure for a self-organizing neural network through

genetic algorithms are illustrated and discussed briefly.

• The approach (Hamalainen, 1995) employs a connection matrix for encoding the

network connections (direct encoding).

2 1 1 1 0 1 0

1 2 3 4 5 6

1 1 0 1 0 0

3 0 1 1 0 0 1
c

4 1 0 0 1 1 0

5 0 1 0 1 1 1

6 0 0 1 0 1 1

c 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1

Figure 5.2: The Connection matrix C

73

Figure 5.2 shows the matrix. The network has six nodes (two rows and three columns). A 1

implies a connection between the nodes (every node is connected to itself). The upper (right)

triangle of the matrix is used as the chromosome.

The genetic operations were crossover and mutation. The fitness of the individuals were

tested using the following function for the trained network given by:

f = X X ||Xj - im ||2 * (1 + M) (5.3)
j = l , X 6 F

i J

If the measure of the disorder M=0 then Fj is the Voronoi region of mJ5 that is, for every

x e Fj nij is the nearest of all mr s. The maps that broke into several parts were penalised.

Other fitness measures can also be employed. The problem with direct encoding of the

network matrix into a chromosome has limitations in terms of its length, requiring longer

chromosomes to encode larger networks (Kitano, 1990). As discussed earlier in chapter four,

this will not only increase the search space but degrade the performance of the networks

with their size. Also, the method assumes that the connectivity information encoded in the

DNA to be in almost one-to-one correspondence. Indirect methods either apply simple

rules to chromosomes or encode certain types of grammar that are compact and more

suitable in overcoming the above limitations. Kitano’s approach encodes a graph generation

grammar that defines the growth of graphs. The grammar is an augmentation of

Lindenmayer’s L-system (Prusinkiewicz and Lindenmayer, 1990) that is designed to describe

morphogenesis, that is the growth and migration of cells.

The next sub-section will discuss an indirect method.

• In this method (Polani and Uthman, 1993) the neural network is assumed to be an

undirected graph that is optimized with a genetic algorithm. This results in optimizing the

network topology. The interaction between the genetic algorithm and the Kohonen map is

shown in figure 5.3. Every genotype defines the topology of a Kohonen net via a

transcription rule. The network is trained with the standard algorithm and then subjected

to a quality test which serves as a fitness function for the genetic algorithm.

74

Mutation/
Recombination

Fitness
function

Phenotype Genotype

TranscriptionTraining

Genetic
Algorithm

Trained
Kohonen net

Chromosome

Kohonen net

Figure 5.3: Interaction between the Genetic Algorithm and the Kohonen Feature Map.

The feature map is regarded as an undirected graph G where a weight vector e [0,l]m= Im

is associated with every vertex. The transcription rule is described in figure 5.4. The rule

yields a valid neural network with a unique topology for every chromosome.

k-1 maxsteps/16 ao bo a n-l bn-i

Figure 5.4: A transcription rule.

The transcription rule requires the chromosome to consist of 2 bytes + n double-bytes. The

parameters a and b are the constants of the transcription process. The number k of vertices in

the graph is given by the first byte +1 guaranteeing the net to have at least one vertex. The

second byte multiplied by 16 yields the maximum number of transcription steps that may be

done before the procedure stops (maxsteps). These two header bytes are followed by n

double bytes each of which defines one transcription step. In every transcription step a vertex

is connected with a different one. Whenever the rule tries to connect two vertices that are

already connected or tries to connect a vertex with itself, the algorithm stops. The links

determine the topological neighbourhood. An example showing the transcription algorithm

and the resulting connectivity is illustrated in figure 5.5.

/*transcription: k, n and maxsteps as defined above */

from :=0; to :=0; step :=0; i :=0;

while step < maxsteps do /*transcription step */

from := (to + a[i]) mod k

to :=(from + b[i]) mod k

75

if (from = to)or (vertexffrom] is connected with vertex[to])

then exit while loop

connect vertex[ffom] with vertex[to]

step := step + 1

i :=(i + l)m o d n

endwhile

Global specifications | Connections

First two bytes 1st double byte 2nd double byte

14 7 3 2 5 6
#neurons-1 maxsteps/16 move connect move connect

forward +3 with +2 forward +5 w ith+6

Figure 5.5: A two bytes + two double-bytes chromosome.

The topology resulting from the transcription rule is then trained with the standard Kohonen

learning rule until a termination condition is satisfied. The genotype-phenotype mapping thus

consisted of two phases: firstly, applying the transcription rule to the chromosome to yield a

network topology. Secondly training this network with the standard learning rule. The trained

net can then be regarded as the phenotypic expression.

5.2.1.2 The fitness function

The domain of the experiment chosen was for input signal spaces of a square [0,1] and

extended to torroidal and Mobius topology. For the sake of simplicity, a quality function

which gives an estimate of the average distance from an arbitrary signal x e Im to the

nearest weight vectors of one of the vertices of G is chosen. For a sample of points x j e I m,

i=l to i=q the quality function is given by:

Q(G) = 1/ (I w *(X j)- x f (5.4)
i=l

* *
where, w (X j):= w v* if V vertices v: d, (Xj , w v*) - di (Xj , w v) holds. The vertex v is

activated by sample Xj . Q(G) is essentially a measure of the average distance from an input

76

vector to the vertex it activates. A smaller average distance yields a higher quality function,

indicating a better adaptation to the input signal space. The weight adaptation in effect

reflects the process of self-organization. The method yielded improved topologies with a

simple fitness function.

The next subsection briefly describes the novel approach with genetic programming (GP).

It combines both the bottom-up and top-down strategies for the evolution of network

structure and flexible learning that effectively adapt the network weights. Chapter six will

discuss the GP approach in detail through the simulation results.

5.2.2 The Genetic Programming Approach

The learning rule for a self-organizing neural network is based on a number of concepts

such as competition, co-ordination, adaptation and so on. These concepts can be evolved

(and represented) through different ADFs and be appropriately sequenced so as to enforce a

topological ordering (Govinda Char 1997a; 1997b). Genetic programming has to evolve

these ADFs (macros) through the supplied primitives (micros) and sequence them

appropriately using the fitness function. Further, the network architecture can be made to

evolve simultaneously with an additional ADF as terminal that might encode simple rules

or a grammar. The result is the evolution of dynamic network structures while interacting

with the task environment (the given signal space). The learning rules to adapt the network

weights are evolved on-the-fly.

The advantages of GP approach over other approaches can be summarised under two

different contexts.

1. GP vs. the non-evolutionary methods.

As discussed in chapter four, the space of possible neural network architectures and learning

is extremely large. GP, being an evolutionary paradigm is capable of searching this space

for optimality whereas the non-evolutionary methods (standard methods) have limited

options. Moreover, standard methods do not allow the possibility of evolving potential

learning rules while interacting with the task environment. GP offers a way that enables

evolution of a variety of network architecture and learning for a given task environment

77

using only the fitness information. A learning rule is expressed in terms of a number of

concepts. Each of these concepts can be implemented in terms of a module that can easily

be implemented through an automatically defined function (ADF). Although the basic

primitives are supplied to GP in terms of the function and terminal sets, it is not known a

priori how these primitives will form an ADF or how the ADFs will combine to yield

effective learning rules. Also, the designer has an option to define and include additional

primitives that are employed in standard methods and observe their effects on the process of

self-organization.

2. GP vs. GA

Genetic programming offers a number of advantages over the genetic algorithm in terms

of the representation. The representational structure in the genetic programming is a

variable length hierarchical tree structure. This offers a large search space for the network

architecture and learning mechanisms to be explored by the evolutionary paradigm.

Combined with automatically defined functions it allows the possibility of implementing

hierarchical, modular elements capable of dealing effectively with the problem domain. The

modularity allows the interpretability of the results as symbolic entities. When GP is

employed for evolving an optimum neural network topology, the hierarchical representation

itself, in some cases, might express the process of problem solving at a subsymbolic level

(Koza, 1993). The tree representation is also highly suitable for certain types of grammar

encoding to incorporate a biologically plausible developmental process. The encoding will

enable overcome the problem of scalability through shorter genotypes.

In contrast, the genetic algorithm approach employed chromosomes of fixed length and the

standard Kohonen learning rule for the weight adaptation phase. It is to be noted here that a

variable length chromosome can be employed with the genetic algorithm approach as well.

So far, there has been no attempts to co-evolve network structures along with learning.

Because of the representation of the genotype, typically as a string it is difficult to achieve/

implement the notions of hierarchy and modularity that are vital not only to problem

solving but also in expressing the solutions. These features are inherent to GP due to the

representation it employs suggesting GP has definite advantages when compared to the

standard and the genetic algorithm approaches.

Conclusion

The chapter mainly focused on the process of self-organization and discussed a few

computational models that are highly effective in capturing the process. The limitations of

the Kohonen’s feature map and the attempts to overcome those limitations through various

models were discussed in detail. Finally the role of evolutionary algorithms was emphasised

by introducing the genetic algorithm and the genetic programming methods. Being

population based and due to their implicit parallelism evolutionary algorithms are capable

of searching an extremely large space of neural network architectures and learning for any

task environment. In addition, evolutionary methods allow the network structures and the

learning to emerge during the course of problem solving rather than being defined a

priori. The standard methods have limited options in this context. A comparison with other

methods highlights the potential of the GP approach in terms of achieving flexible network

architecture and learning. The representation that GP employs has definite advantages in

expressing solutions in terms of hierarchical modular elements.

Chapter six, through simulations, will demonstrate the role of GP in the evolution of

flexible learning for self-organizing neural networks.

79

Chapter 6

Simulation Results

This chapter will demonstrate the role of genetic programming (GP) as a meta-leaming

paradigm for a self-organizing neural network. The detailed approach, the issues and the

implications will be discussed. A pattern recognition task is considered to illustrate how

learning mechanisms can evolve dynamically while interacting with a given environment.

6.1 The Framework

The simulations employ a self-organizing feature-map (Kohonen, 1990) as a framework to

implement unsupervised connectionist learning algorithms. The Kohonen rule, belonging to

the category of unsupervised learning rules, is expressed in terms of a number of concepts

such as competition, co-ordination and adaptation. The feature map essentially consists of

a number of cells (in a competitive layer) competing for a particular signal component from

a given input signal space. The winner cell in the network is determined according to the

minimum value of the Euclidean distance \\x -w n ||, where x and wn are the input and the

reference vectors respectively. The learning rule, typically employs an external supervisor

to find the winner and adapts its weights for maximal response. The result of the training is

described as a process of self-organization that is capable of enforcing a topological

ordering. Please refer to chapter five for details.

6.2 The Problem

6.2.1 The environment

The sample vectors are drawn from a two-dimensional signal space with real-valued

components, taking on a value in a subspace V with an unknown probability

distribution. For the simulations, the sensory input stimuli are provided by a vector (xyO

with components distributed in a chosen subset of a square [-1,+1] . Two models as

described in figure 6.1 are implemented. The first model consists of a circular ring with an

inner radius 0.5 cm. and an outer radius 1.0 cm.. The second model consists of two disjoint

squares from the first and the third quadrants of the square.

80

Figure 6.1: The input vectors are drawn from the dashed
areas of the figures representing the two models.

6.2.2 The task

It is important to distinguish between the evolutionary task and the learning task (Hinton and

Nowlan, 1987; Nolfi, Elman and Parisi, 1994; Harvey, 1996). These tasks occur over

different time scales. Whereas an evolutionary task occurs from one generation to the next

generation, learning is a change during the lifetime of a single individual (lifetime learning).

To investigate how evolution influences learning and learning influences evolution it is

necessary to identify whether the two tasks are same or different.

In the present work, the evolutionary task is to evolve effective components of learning

rules (that is, the macros) and to sequence them appropriately. The learning task is to learn

the correct mapping of the real-valued input vectors on to the space of reference

vectors through the evolved rules. Thus, a behavior ‘B’ can be represented as a mapping
*

B: jc->W , where, x is the real-valued input vectors and ‘W’ is the winner. If B = space of
, ★ ♦

possible behaviors and w = space of weights associated with B , then the task T is a
, * *

reinforcement function represented as: T: B -> % T \w ->9t.

In these simulations, the fitness of a learning rule depends on its performance in inducing

the correct mapping that minimizes the quantization error and also in enforcing an effective

topological ordering. The fitness of the evolutionary task is defined in terms of the fitness

of the learning rule. A better learning rule will have a higher fitness to survive and reproduce.

6.2.3 The basic steps

The learning rule mainly consists of the following steps:

• Apply exemplars from the given input signal space for a number of epochs.

• Find the winning cell.

81

• Adapt the network weights according to the equations (5.1) and (5.2) (refer to chapter 5).

The learning rule, in essence, moves the two-dimensional reference vector towards the two-

dimensional input signal so as to minimize the quantization error. The quantization error for

a given input signal is the distance between the signal and the reference vector of the winning

cell over a number of epochs. The training enforces a topological ordering where adjacent

vectors in 91" are mapped on adjacent (or identical) cells in the competitive layer. Further,

adjacent cells in the layer will have similar position vectors in 91”. Figures 6.2 and 6.3 (see

Appendix-A) illustrate the topological ordering resulting from the standard Kohonen

learning rule for the above two models.

The simulations ahead aim at evolving a Kohonen type of learning rule with the genetic

programming (GP) paradigm. Whether GP is able to evolve the variety of concepts and

sequence them appropriately is to be investigated.

6.3 The Genetic Programming approach

The key aspects of the simulation include

• providing a general definition for a connectionist learning rule as a sequence o f interacting

concepts.

• imposing a single potential constraint that the network weight adaptation should be an

integral part of the representational structure, that is the genotype that the GP employs.

In this context, the weight adaptation is seen as a symbolic concept, the adaptation process

itself being subsymbolic.

• employing a potential strategy such as micro-macro dynamics that enables GP to realize

the notion of emergence through its primitives. GP’s primitives are the micro concepts

that should enable it to form macro concepts.

Under these assumptions, GP is required to evolve the concept of a winning cell, induce

the appropriate direction of weight adaptation for the given signal components and evolve a

neighbourhood strategy such as a Gaussian to adapt this cell maximally compared with the

rest of the cells in the network. Further, the concepts need to be appropriately sequenced.

82

The simulations initially use a network that has a fixed number of cells to investigate

whether GP is capable of evolving any valid learning mechanism.

The major steps involved in preparing to apply genetic programming to a given problem

(Koza, 1993) include determining the

1. set of terminals,

2. set of primitive functions,

3. fitness measure,

4. parameters for controlling the run,

5. method for designating a result and the criterion for terminating a run.

The first major step in preparing to use genetic programming is to identify the appropriate

set of terminals and functions that construct computer programs that can be expressed in

terms of LISP S-expressions. The search space is a space of possible programs which the

genetic programming system will search. This space can become extremely large as the

number of terminals increases. A rich enough set of functions and terminals will have to be

chosen for the best performance (Kinnear, 1994). Further, as a meta-leaming system for

connectionist networks, genetic programs provide an extremely large landscape of

potential concepts. Genetic programming, in this context, has an additional onus of

evolving the needed concepts through its primitives and of sequencing them in ways that

can yield valid learning mechanisms. Next, the fitness function that scores how well an

individual performs on a given problem needs to be defined very carefully. Again, in the

context of the evolution of connectionist learning rules, a valid learning rule will have a

higher fitness. The population size and diversity are equally important to allow for a rich

combination of possible concepts.

Two possible approaches (Govinda Char, 1997a; and 1997b) for the above mentioned task-

domain have been attempted and will be described.

6.3.1 The General approach

The primitives for the GP run are:

Function set = { + ,- , *, %, IFLTE, ABST, Adapt-x, Adapt-y};

83

The function set consists of the standard mathematical operators along with the protected

division operator;

IFLTE (IF LESS THAN ELSE) is a comparison operator that can be employed by the GP to

evolve the concept of a winning cell.

ABST returns an absolute value of an expression. GP might use this primitive to induce the

direction of weight adaptation.

Adapt-x and Adapt-y adapt the network weights that are associated with the two-

dimensional signal vector (x,y). For instance, Adapt-x and Adapt-y might look like:

{ w[0][ix][iy] = } and { w[l][ix][iy] = } respectively. GP has to induce the values to be

substituted onto the right side of these expressions.

Terminal set = { x, y, w[0][ix][iy], w[l][ix][iy], ix, iy, delta, eps};

where x and y refer to the components of the two-dimensional signal vector (x,y);

w[0][ix][iy] and w[l][ix][iy] represent the two-dimensional reference vector associated with

each of the cells. The location of a cell is crucial for evolving the concept of the winner cell

and is to be accessed via the co-ordinate variables ix and iy respectively. The parameters

‘delta’ and ‘eps’ represent the width parameter and the learning rate as stated in equations

(5.1) and (5.2). No other information is provided. As the network weight adaptation is

assumed to be an integral part of the genetic programs, GP will have to evolve the right

concepts in the right sequence to adapt the weights effectively in order to minimize the

quantization error.

The Fitness:

The fitness is a quality function G(x,y) given in terms of:

Error = X ABS(x- wixwiJ + ABS(y- wiywir)

for the winning cells over a number of epochs.

(6.1)

The quantization error — Error / (number of cells) (6 .2)

The Fitness = G(x,y) = 1 / (The quantization error) (6.3)

84

The smaller the error the higher is the fitness of the genetic program. It is realized that

although through equation (6.3) the quantization error can be minimized it does not help in

topological ordering as it does not include any distance information either in terms of the

weights of other cells with reference to the signal components (Euclidean distance) or the

actual distance from the winner cell which is crucial for the process of self-organization. The

fitness function as defined by equation (6.3) cannot be effective as such.

6.3.1.1 Sample programs

The initialization file for the GP run has to be created as a first step. This file contains the

information about the various parameter settings for the GP run and is discussed in

Appendix-B.

Population size: 500

Number of Generations: 50

Number of ADFs: 0

Creation Type: Variable

Maximum Depth at Creation: 6

Maximum Depth at Crossover: 17

Maximum Fitness: 1000

Number to Mutate: 0

The preliminary programs are shown.

Generation^

((Adapt-x (x))

Fitness : 9

Structural Complexity : 2

Generation: 4

((IFLTE (Adapt-x (x) (y (wty (* (veps=0.1 (+ (Adapt-y (y) (% (% (Adapt-x (x) (-

(ix (delta=0.5)) (x)))))

Fitness : 15

Structural Complexity : 18

85

Generation: 6

((+ (+ (- (wix (ABS (Adapt-x (x))) (% (wty (ix)) (- (wix (Adapt-y (y))))

Fitness : 23

Structural Complexity : 14

Although the combination ((Adapt-x (x)) and ((Adapt-y((y)) is good for minimizing the

quantization error, it does not guarantee a topological ordering. GP was not given any bias

to form these combinations either. The fitness function was the only feedback that the GP

had to induce this information.

6.3.1.2 The issues

• The primitives

1. When GP has abstract primitives such as ‘Adapt-x’ and ‘Adapt-y’ how should one

decide the number of arguments for these?

2. How effective could such primitives be in adapting the network weights and in enforcing

a topological ordering?

3. Should these primitives be functions or terminals?

4. Does the hierarchical tree representation that GP employs enable these primitives to be

effective at all?

• The winner

The attempt is to evolve a Kohonen-type of learning rule. This rule typically employs an

external supervisor to evolve the concept of the winner.

1. Will GP through its primitives evolve the concept of winner as such?

2. Will GP evolve the distance information that is needed to form a neighbourhood strategy

for the winning and its surrounding cells, given just the above fitness function?

• The fitness measure

The definition for an effective fitness measure is crucial. Equation (6.3) does not include any

distance information which is crucial for the process of self-organization. GP on its own will

not be able to induce this information.

86

• The search space

What will be the effect of the random combination of all the primitives on the search

space?

• The comprehensibility, interpretability and the translatability.

Finally, will the learning rules that evolve be comprehensible, interpretable and translatable?

In the above experiment some of the programs managed to model the input signal

distributions with a modified fitness function as defined by the equation (6.4) to some extent.

This could be observed graphically. The difficulty was in comprehending and interpreting

the programs. A possible explanation is that the above fitness measure may not be

optimum. Kohonen’s rule can be easily stated (and explained) in terms of a few statements in

natural language. How could the same be achieved with the proposed approach? Also with

the weight adaptations embedded within the representational structure itself (and hence

within the evolutionary process) how should an expression such as:

IFLTE((Adapt-x (x((Adapt-y(y(wx (*((wy(iy))))))))))) be conceptualised ?

The macros adapt the network weights as and when they are invoked. The evolutionary

process through its only feedback (that is the fitness) has to decide to evolve the right

macros at the appropriate instances.

The above issues will be addressed before proceeding further.

The primitives:

The reason for including the primitives ‘Adapt-x’ and ‘Adapt-y’ is to enforce the network

weight adaptation within the evolutionary mechanism. This constraint is imposed to

make the evolutionary paradigm creative. It is indeed a paradox that will provide an implicit

motivation to the evolutionary process to form and combine potential concepts. These

concepts in turn need to adapt the network weights appropriately so as to enforce a

topological ordering through the process of self-organization.

1. The arguments for the primitives are based on the dimensionality of the signal in these

simulations.

87

2. The abstract primitives for network weight adaptation are not effective in enforcing the

desired topological ordering as they are components of the complete tree (that is the

genotype). Different subtrees might have the same abstract primitive with a totally

different combination of concepts in the hierarchy below. The concepts associated with a

certain subtree might adapt the network weights in ways that help the process of self-

organization whereas with other subtrees they may nullify the effects and vice versa. A

genetic program as a whole has only one fitness. The fitness in this case is due to effective

network weight adaptation. There is no way GP can find the best program due to the lack

of fitness information and as a result the approach precludes topological ordering.

3. The primitives as terminals will be totally ineffective.

4. As discussed (in point 2) the GP hierarchy does not support such primitives to be effective

at all.

The winner:

1. GP might avoid the concept of the winner and opt for some local strategy that can still

enforce topological ordering. This can happen despite providing all the necessary micros for

evolving the concept of the winner. It is to be noted that this option cannot be enforced on

GP as such. With an explicit fitness function (for the winner) GP should evolve the concept

of the winner.

2. The primitive ‘IFLTE’ was supplied to evolve the concept of the winner cell. GP, instead,

employs this primitive in other contexts. The search space could become extremely large

for GP to be effective.

3. Again the notion of distance from the winner cell to other cells can be evolved only via an

explicit fitness function.

The fitness measure:

The expression does not have enough information for GP to be effective. GP is unable to

induce this information. The fitness measure needs to be cleverly defined.

The search space:

The search space can become extremely large for the evolutionary mechanism to be effective.

The comprehensibility and translatability:

With the weight adaptations as an integral part of the representational structure itself, it

becomes extremely difficult to conceptualise and interpret the rules that evolve. Hence there

is no question of translatability.

However, it is realized that this can be a potential approach that needs to be refined in order

to appreciate the depths and the implications. The refinement in terms of modularity of

concepts greatly enhances the interpretability of the learning mechanisms. Such

modularity can be achieved with automatically defined functions (ADFs) (Koza, 1994) and is

discussed in the next subsection.

6.3.2 The Modular approach

As the size and the complexity of the problems increase, decomposition of a problem

becomes increasingly important. Problem decomposition not only enables efficient problem­

solving but enhances the understandability of the process involved. In the context of

genetic programming, automatically defined functions enable such problem decomposition

through the definition of a number of potential functions and the hierarchy. Each of these

automatically defined functions, known as the building blocks, have their own set of

functions and terminals. These building blocks evolve during the run and can be used

many times from any part of a computer program. Also, in hierarchical form any building

block can call upon any other already-defined block. Figure 6.4 illustrates a program with

ADFs.

Root of the
_ tree

value-
Returning
Branch „

ADF1
Function
Definitio:

Function
Definitio:

Figure 6.4: An S-expression with two function-defining branches
and one value-returning branch

89

The S-expression with two function-defining branches and a value-returning branch is

shown. GP will evolve function definition in the two function-defining branches ADFO and

ADF1 and will use one, two or none of the defined functions in the value-returning branch.

Also, an S-expression with ADFs can have a number of value-returning branches. ADFs, in

general, have shown to enhance the performance of the genetic programming in terms of

the speed and the population size.

The role of ADFs is illustrated, as an example for an even-4 parity problem (Koza, 1993).

The function and the terminal sets are:

Fb = { AND, OR, NAND, NOR } (four functions, each taking

two arguments).

Tb= {D0,D1,D2,D3} (four terminals).

A2 = {ARGO, ARG1} (two dummy variables).

A3 = {ARGO, ARG1, ARG2} (three dummy variables).

The S-expression will contain both function definitions and calls to the functions so defined.

The terminals from the sets A2 and A3 are used to define functions of two and three

arguments respectively. These arguments serve as formal parameters to the defined

functions. ADFO branch in figure 6.4 will compose functions that will include the functions

from the function set and the terminals from the set A2 . The ADF1 branch will similarly

compose functions that include the functions from the function set and the terminals from the

set A3. The value-returning branch will consist of terminals from the actual terminal set Tb

and the functions from the function set Fb and ADFO, and ADF1. Over the course of the run

the ADFO branch will evolve an XOR function. The ADF1 branch will also evolve some

arbitrary function. The value-returning branch will however call the ADFO branch (that is

sufficient) to solve the even-4-parity problem with the result (the value-returning branch):

(ADFO (ADFO DO D2) (NAND (OR D3 D l) (NAND D1 D3))). ADFO is actually an

XOR function that evolves during the run as:

(OR (AND ARGO ARG1) (AND (NOT ARGO) (NOT ARG1)))).

Thus the ADFs are defined once but can be instantiated as many times as needed to solve the

problem in hand. Also, the defined blocks can be used to solve problems of higher

complexity. The blocks that evolve are interpretable and reusable. Koza’s simulations used

a popualtion size of 4000 and 51 generations over 10 runs. One of the runs yielded the

correct solution in generation 3. The number of individuals that are processed is shown to be

less than half (Koza, 1994) when compared to the approach without ADFs for the same

problem.

6.3.2.1 Advantages of modularity in the context of learning

As a meta-learning system, GP again seems to be more powerful with the ADF approach

due to the following reasons.

1. Given the general definition for a learning rule as a sequence of interacting concepts, it is

possible to modularise each of the macro concepts and make them interact through ADFs.

For instance, one of the ADFs can be employed to evolve the concept of the winner while

another can adapt the network weights. GP’s primitives as micro-concepts form macro­

concepts that, in turn, can be represented in terms of ADFS.

2. The approach enables the tractability and interpretability of the rules that evolve. The

formation of concepts and their sequencing can be interpreted easily with the GP hierarchy.

3. As an expression with ADFs can have a number of value-returning branches, each of the

ADFs can be assigned an explicit fitness function if needed.

4. The weight adaptation can still be an integral part of the representational structure.

5. The ADFs, as terminals can evolve, unlike in the case of the general approach. With a

good strategy the abstract primitives can be quite effective in network weight adaptation.

For instance, the abstract primitive while being a terminal ADF to the main function can

act as a function to the rest of the terminal ADFs. This strategy will allow the abstract

primitive to access the global variables (returned values) from each of the terminal ADFs to

form a strategy for weight adaptation. In addition, the disruption due to the effects of

crossover will be minimised and can be totally eliminated as the abstract primitive is a

terminal in the context of the main program. Figure 6.5 illustrates this notion.

The main program
 (Root) __ ^

ADF1 for>
the weight
adaptation

ADF3 for
the

Gaussian

ADF2 for
the

winner

Figure 6.5: ADF1 is a terminal for the main function and can
access global variables from ADF2 and ADF3.

ADF1 is an actual terminal to the main function while acting as a function (at the same

time) to the rest of the terminal ADFs to form a strategy for the weight adaptation.

6. The search space becomes more focused (towards the regions of potential concepts)

through the use of automatically defined functions enabling the evolution of valid learning

mechanisms. This is vital if one expects to achieve a good performance in a reasonable

amount of time with the evolutionary paradigm. It was discussed earlier in the general

approach how GP can use the same primitives in different contexts making the search space

very large and also yield learning rules that are incomprehensible.

7. Co-evolution of neural network structures along with the learning (Govinda Char 1996a;

1996c; 1997d) is essential for a variety of problem environments. Co-evolution in this

particular context means the evolution of neural network architecture along with the evolution

of learning mechanisms for the evolved architecture. The advantage with co-evolution is that

an optimum architecture (and topology) might evolve for the task in hand. Also, the network

size can be optimized and the learning for an optimized architecture is likely to be more

efficient. In recent years, a number of approaches have been tried for designing the network

architectures using genetic algorithms and genetic programming. These include encoding

simple rules as well as a variety of complex grammars into the genotype. For instance,

cellular encoding (CE, Gruau 1994) offers a context-free grammar that is compatible with

the LISP S-expression and includes a variety of structure creating primitives for feed­

forward and recurrent neural networks. The network creation is based on the process of

morphogenesis. Genetic programming by employing such grammar might induce the type

of network for particular type of inputs/signals including the temporal signals. In the latter

92

context, GP may have to opt for the primitives with recursive connections on the

primitive elements, that is the cells. The cellular operators can be defined in terms of a

terminal ADF. This strategy will allow the network structure to evolve first before

proceeding to the evolution of learning at a higher level of hierarchy in the genetic program.

Also, with the proposed approach applications that incorporate different types of

architectures and learning at various hierarchical levels are feasible.

63.2.2 Sample programs

The initialization file for the GP run (see Appendix-B for details) is:

Population size: 500

Number of Generations: 50

Number of ADFs: 6

Creation Type: Ramped Half and Half

Maximum Depth at Creation: 4

Maximum Depth at Crossover: 4

Maximum Fitness: 1000

Number to Mutate: 0

The population size needs to be large enough to avoid the possibilities of missing any of

the pre-defined ADFs in each generation and especially in the initial generation. It is to be

noted here that each of the ADFs is predefined in terms of the different primitives. How­

ever these ADFs evolve in terms of the combination of the primitives during the run using

the fitness information. That is, how the primitives will combine within a given ADF is

not known a priori.

Initially the winner and the distance information, that is the distance of a cell from the

winner, is provided in order to see whether GP is able to evolve the right adaptation strategy.

The weight adaptation is through ADFs that is actually a function at a higher level of

hierarchy allowing other strategies to evolve as terminal ADFs. As there is no standard

measure for the process of self-organization, a maximum fitness of 1000 is assumed. This is

based on the fact that the minimum quantization error that can be achieved with a given

number of cells reaches a saturation point beyond which it cannot be reduced further. Only

93

further addition of cells can reduce the error. In other words, the network will have to grow

dynamically in order to reduce the quantization error. In such cases, the parameters for the

learning rule need to adapt dynamically as the structures grow (Govinda Char, 1996b;

1996e).

The details of the approach will be discussed now. The global variables are represented by

glbADFl, glbADF2, glbADF3, glbADF4, glbADF5 and glbADF6. These variables return

the value of the ADFs to the main program through the respective value-returning branches.

Some of the ADFs can access the global variables associated with other ADFs. This enables

interaction among the various ADF modules. GP has to choose the appropriate modules in

the correct order for an effective self-organization. The ADF(s) for the weight adaptation, in

particular, have a crucial role in terms of their number and the hierarchy. The designer

has to decide the number of ADFs and their hierarchy in terms of defining them as

functional or terminal ADFs whereas their hierarchy during problem-solving will be decided

by the GP. The fitness criterion will be discussed first.

The Fitness criterion

The definition for the fitness measure needs to include the distance information. As GP is

unable to induce this information on its own, it has to be accessed through a clever

strategy. For a topological ordering, the weights associated with each of the cells need to

move towards the weights of the winner. This difference can be checked and included in the

fitness measure.

A few possible fitness measures and their effects will be investigated.

Consider the equation (6.4) for fitness measure.

The Fitness = G(x,y) = 1 / ((The quantization error)1 *diff)) (6.4)

where the expression for the quantization error is the same as in the earlier case. The

Eucledian distance is minimum for the winner cell when compared to the rest of the cells.

The term ‘d iff represents the (absolute value of the) average of the difference in the weights

from that of the winner cell.

94

Reducing this difference enables the weight vectors to move towards the weights associated

with the winning cell. GP should have the right information in terms of its fitness measure in

order to induce and construct the valid components for the learning mechanism that it

evolves. Further, the simulations with a fitness measure as expressed by the equation (6.3)

show that the GP can totally avoid the weight adaptation phase which is crucial. One way of

overcoming this problem is by forcing GP to enter this phase. This can be achieved by

having a large quantization error (initially) that will reduce only if the weight adaptation

phase is entered. A more natural way is to define the fitness itself in such a way that GP

should naturally opt for the weight adaptation. This is possible through a fitness expression as

defined by the equation (6.4). However, this expression does not always guarantee a

topological ordering. The first term in the expression can become zero even in the initial

generations if the signal components are assigned directly to the weight vectors as discussed

earlier (see equation 6.3). Another possibility for the fitness measure is the equation (6.5).

The Fitness = G(x,y) = 1/ ((The quantization error)2 + (diff)2) (6.5)

The above equation * although was effective in enforcing a topological ordering did not

seem to be optimum. Moreover, the fitness definition yielded programs whose structural

complexity was quite high.

Finally the following expression for the fitness measure is tried.

The Fitness = G(x,y) = 1/ ((The quantization error)2 + (diff)) (6.6)

Equation (6.6) is found to be the optimum fitness function capable of enforcing a

topological ordering with shorter programs and has been used throughout the simulations.

Further, the results are consistent over several runs.

The ADFs can be combined in several ways. A few possibilities will be discussed now.

Case 1: The abstract primitive is defined as a function in ADF1. The ADFs are:

95

1. ADF1 (defined as a function) - contains a function ‘Adapt’ as one of its primitives along

with the other global variables. This function takes two arguments in order to adapt the two-

dimensional weight vector.

2. ADF2 and ADF3 (both defined as functions) evolve a strategy for network weight

adaptation.

3. ADF4 (defined as a terminal) - evolves a strategy for the Gaussian.

4. ADF5 and ADF6 (both defined as terminals) evolve a strategy with the two-

dimensional signal components and the corresponding weights.

A sample program:

Generation : 1

Best Of Generation was :

Main: ((ADF3 (ADF2 (ADF6 (ADF5) (ADF1 (ADF6 (ADF5)))

ADF1: ((Adapt (Adapt (Adapt (glbADF3 (glbADF5) (Adapt (glbADF4 (glbADF6))

(Adapt (glbADF2 (glbADF4)))

ADF2: ((* (+ (eps (eps) (* (glbADF4 (eps)))

ADF3: ((* (* (wiy (wiy) (+ (glbADF6 (wiy)))

ADF4: ((Exp ((dist))

ADF5: ((- (ABS (wix) (- (x (x)))

ADF6: ((- (ABS (wi y) (ABS (y)))

Fitness : 12

Structural Complexity : 44

For an effective self-organization, the x-components (ADF2, ADF5) need to combine with

ADF4, the Gaussian function appropriately. Similarly the y-components (ADF3 and ADF6)

need to combine and co-ordinate with ADF4. In this particular part of the simulation the

value of ‘delta’, that is the width parameter is included in the variable ‘dist’. It is observed

that the components of the Kohonen rule are nearly evolved but they have not been

combined properly. Further, it can be seen that the strategy with the ‘Adapt’ primitive

cannot be effective at all. The ‘Adapt’ primitive adapts the two-dimensional weights in

different ways in different parts of the same tree. The fitness information is lost. Also, it is

observed that the programs become extremely large with a structural complexity in the

96

range of 500 and with a fitness of 30. This happens because GP has no clear direction or

fitness information to guide it to be effective in the evolutionary mechanism.

Case 2: The simulation in this part employs five ADFs. The weight adaptation phase is

implemented through two ADFs, ADF1 and ADF2. That is, the values returned by the

global variables gib ADF 1 and glbADF2 get assigned to the x and y-directional weights

respectively. The programs use a network of sixteen neurons (arranged on a 4*4 grid).

The simulations are carried out to investigate the effects of various parameters on the fitness

of the genetic programs and include the following graphs.

1. The number of epochs vs. the fitness.

2. The population size vs. the fitness.

3. The population diversity vs. the fitness.

4. The variation of the depth parameter vs. the fitness.

5. The number of epochs and the network size vs. the fitness evaluation time, that is, the

time complexity.

The initialization file for the GP run (see Appendix-B for details) is shown.

Population Size : 500

Number of Generations: 50

Number of ADFs : 5

Creation Type: Ramped Half and Half

Maximum Depth at creation : 4

Maximum Depth at Crossover: 4

Maximum Fitness : 1000

Number to Mutate : 0

The population sizes in the initialization file were 300, 500, and 1000 respectively for various

simulations. Please refer to Appendix-C for the graphs. The graphs are for:

1. The number of epochs vs. the fitness.

Refer to figure. 1 (Appendix-C). The simulations were run for varying epochs. The results

suggest that for a network the fitness improves with epochs. The effects of varying the

epochs from 500 to 2000 are shown. This suggest that the number of epochs is key to achieve

97

good solutions. A larger number of epochs enables better sampling of the signal space from

which the components are drawn at random. Also, the weight adaptation is much more

effective in minimizing the quantization error and improving the fitness.

2. The population size vs. the fitness.

Refer to figures. 2a and 2b (Appendix-C) Four sets of experiments were conducted. The

simulations were run for population sizes of 300 and 500 (figure 2a) for 1500 epochs and

for population sizes of 500 and 1000 (figure 2b) for 1000 epochs. The results were averaged

over ten runs. The graphs suggest that a larger population size will result in a better fitness

measure.

3. The population diversity vs. the fitness.

Refer to figures. 3a and 3b (Appendix-C). Four sets of experiments were conducted. The

population was created with the variable and ramped half and half methods to investigate the

effects of diversity on the fitness measure. For Figure. 3a the simulations used a population

size of 500 and the number of epochs being 1500. For figure. 3b the population size was

1000 and the number of epochs were 1000. The results, averaged over ten runs, suggest that

with the ADF approach the population diversity does seem to have a marginal effect on

the fitness measure. It is likely that this effect is observable to a larger scale with the

general approach where the depth parameter can be varied to a greater range.

4. The variation of the depth parameter vs. the fitness.

Refer to figures. 4a and 4b (Appendix-C). Two different sets of experiments were run for a

population size of 500 for 1500 epochs and a population of 1000 for 1000 epochs

respectively. Starting with an initial depth of 3 the depth at crossover was increased by 1 to

investigate the effects of the depth parameter on the fitness measure. The results suggest that

with the ADF approach an optimum depth of 3(creation)/4(crossover) and

3(creation)/5(crossover) gives the best results. Increasing the depth further decreases the

fitness and have an adverse effect on the fitness measure.

5. The number of epochs and the network size vs. the fitness evaluation time, that is, the

98

time complexity. Refer to figure. 5 (Appendix-C) shows the amount of time (in minutes)

required for evaluating a single individual for varying epochs. The same network, that is a

network with sixteen neurons was used. The population size chosen was 500. The results

although look almost linear need not be so if the depth at creation and at crossover are

different. Also the evaluation time will increase considerably if the network size is increased.

The sample programs:

Generation 0

Initial random population

Average Fitness : 33.914

Best of Generation was :

Main: ((ADF1 (ADF1 (ADF2 (ADF3 (ADF3) (ADF1 (ADF3 (ADF3)) (ADF2

(ADF2 (ADF5 (ADF3) (ADF2 (ADF5 (ADF5))))

ADF1: ((* (+ (* (eps (glbADF3) (* (glbADF3 (wix)) (+ (* (eps (glbADF3) (+ (eps

(glbADF3))))

ADF2: ((* (+ (+ (eps (glbADF3) (+ (gibADF5 (glbADF3)) (* (+ (wiy (eps) (+

(glbADF3 (e p s))))

ADF3: ((Div (Div (Exp(Delta) (Div (Dist(Delta)) (Exp (Div (Dist(Delta))))

ADF4: ((ABS (ABS (- (wix (wix))))

ADF5: ((- (ABS (ABS (wi y)) (ABS (- (y (w i y))))

Fitness : 480

Structural Complexity : 69

The program illustrates how the primitives are combining to form the ADFs. The

combinations seem to be quite effective. ADF4 is not seen in the main program. However,

in this particular case the role of ADF4 as such is not clear. Also, ADF3 suggests that the

GP is trying to evolve a Gaussian sort of function involving the distance and the width

parameters.

99

Generation : 50

Average Fitness : 937.72

Best of Generation was :

Main: ((ADF1 (ADF3 (ADF1 (ADF2 (ADF3 (ADF5) (ADF4)))

ADF1: ((+ (+ (+ (+ (glbADF4 (glbADF3) (+ (glbADF3 (glbADF3)) (+ (eps (glbADF4))

(+ (glbADF3 (glbADF3)))

ADF2: ((+ (+ (glbADF3 (glbADF3) (+ (glbADF5 (glbADF3)))

ADF3: (Exp(Div (Div (Dist (Delta)))

ADF4: ((ABS (ABS (wi x)))

ADF5: ((ABS (- (y (w i y)))

Fitness : 959

Structural Complexity : 41

The program has been successful in evolving all the ADFs and sequencing them

appropriately. GP opts for the weight adaptation phase naturally and succeeds in enforcing a

topological ordering eventually.

It is to be noted that the possibility of multiple weight adaptation (that is, adapting a weight

more than once in a single iteration) exists. It depends on the modules that evolve. GP can

eventually enforce topological ordering either by employing multiple adaptations or it may,

over the course of evolution, avoid the multiple instances of weight adaptation over a single

iteration.

In the above simulations the information on the winner cell and the distance parameter

were provided. In actual practice, these co-evolve. These can be evolved as follows.

1. The winner

The winner can be evolved with the following primitives.

The function set: { IFLTE, ABS, +,-};

The terminal set: { x,y,w[0][ix][iy], w[l][ix][iy], temp};

100

and with an explicit fitness function that is a minimum of equation (6.1). A sample program

that uses two ADFs, ADF1 and ADF2 for evolving the concept of winner is shown.

The function and the terminal sets for ADF1 are:

Function set = { IFLTE}. //A single function taking four arguments.

Termianl set = { mismatch, minimum, minimum=mismatch, glbADF2}.

The variables:

mismatch = ABS(x-w[0][p][q]) + ABS (y-w[l][p][q]). (a)

minimum = lelO; //A variable (to that holds the value of the winner) has a large value

initilally that will get replaced based on the comparison (with expression (a) for other cells)

during the run.

minimum=mismatch is the replacement operator.

glbADF2 is the value returned from ADF2.

The function ‘IFLTE’ will compare the expressions for different cells and find the minimum

value of the expression (a) that is a winner.

ADF2 is used basically to create the expression (a) itself and uses a kind of symbolic

regression till the output of ADF2 matches that of expression (a).

The function and the terminal sets for ADF2 are:

Function set = { ADD, SUB, ABS} taking 2, 2, 1 arguments respectively.

Termunal set = { x,y, w[0][p][q], w[l][p][q]).

The initialization file is:

Population Size : 300

Number Of Generations : 50

Number Of ADFs : 2

Creation Type : Ramped Half and Half

Maximum Depth at creation : 3

Maximum Depth at Crossover: 4

Maximum Fitness : 1000

Number To Mutate : 0

101

The depth parameter is held small. The TFLTE’ primitive taking four arguments can make

the programs extremely large otherwise.

Sample programs:

Generation 2:

Best of Generation was :

Main: ((ADF1 (ADF1 (ADF1 (ADF2))))

ADF1: ((IF(minimum = mismatch (IF(minimum=mismatch (mismatch (IF (minimum=

mismatch (minimum= mismatch (glbADF2 (glbADF2) (minimum) (IF (minimum (

glbADF2 (IF (glbADF2 (glbADF2 (min (glbADF2) (IF (mismatch (glbADF2 (

minimum= mismatch (mismatch)) (glbADF2)).

ADF2: ((- (+ (ABS (wi x) (ABS (y)) (- (w i y (x)))

Fitness : 300

Structural Complexity : 38

Generation : 21

Best Of Generation was :

Main: ((ADF1 (ADF2))

ADF1: ((minimum))

ADF2: ((- (+ (ABS (wi x) (ABS (y)) (- (w i y (x)))

Fitness: 786

Structural Complexity : 12

The final expression for the fitness measure that is equation (6.6) should incorporate the

fitness information for the winner either implicitely or explicitely.

2. The distance parameter

The function set: { SQR,

The terminal set: { ix, ixmin, iy, iymin};

where the terms ix, iy, ixmin, iymin, represent the location (the co-ordinates) of any cell

and that of the winner cell. It should be noted that ‘ixmin’ and ‘iymin’ are also in the

102

process of evolution. Again, an explicit fitness function will have to be defined for evolving

the correct distance parameter and included in equation (6.6).

6.3.2.3 Co-evolution of structure

A sample program is shown to demonstrate the evolution of structure along with learning.

The program uses cellular operators (Gruau, 1994). Two basic operators tried are the

‘PAR’ and the ‘SEQ’ (refer chapter seven) for creating cells (neurons). These operators are

defined as primitives in an ADF, that is ADF6. The simulations start with a single cell and

grow cells dynamically using the operators during the run. It is essential that the width

parameter has to be adapted accordingly. The task domain is the same as discussed earlier.

Generation : 1

Average Fitness : 21.33

Best Of Generation was :

Main: ((ADF2 (ADF1 (ADF3 (ADF4) (ADF1 (ADF3 (ADF6)))

ADF1: ((+ (+ (glbADF4 (+ (glbADF4 (wix)) (+ (wix (glbADF4)))

ADF2: ((+ (+ (glbADF3 (eps) (* (gibADF5 (glbADF3)))

ADF3: ((Exp (Exp (dis t)))

ADF4: ((- (ABS (x) (ABS (wix)))

ADF5: ((- (- (y (wiy) (ABS (wiy)))

ADF6: ((Seq2 (Pari (END)))

Fitness : 30

Structural Complexity : 40

The simulation program for the meta-leaming system has been developed in the C++

programming language with object oriented programming techniques. A steady state GP

employing a tournament selection scheme is used. A tournament selection randomly

selects a number of genetic programs from the population. The fitness value of each

member of this group are compared with each other and the best replaces the worst. The

tournament size is set to five. Adam Fraser’s (Fraser, 1993) kernel is taken as a base on

which the meta-leaming kernel has been designed and implemented. The programs use a

Windows 95 environment. A Pentium 233/300 has been found to be too slow for the

103

fitness evaluation even for a medium sized network. The reason being that each fitness

evaluation requires the network weights to be adapted over a large number of epochs for a

good performance (please refer to Appendix-C, figure. 1). For larger networks the fitness

evaluations could be extremely time-consuming (as the number of neurons and the

associated weights will also increase). However, it is to be noted that the learning rule that

evolves for a smaller network has to be applicable for larger networks as well. A good

strategy is to start with smaller networks (with an optimum number of cells) that can enforce

a good topological ordering and apply the evolved rules to larger networks to achieve the

desired performance.

The indications are that a parallel processing environment will be highly desirable to achieve

the required performance with larger (optimum sized) networks. The fitness evaluation time

can be considerably reduced based on the number of processors.

The graphics interface has to be dynamic to enable observation of the weight changes and

their effects on the input/output mapping. The interesting point about this simulation is that

the effects of various fitness measures can be observed graphically. Also it is impressive to

observe GP opting for the Gaussian (the distance function) and its effects on the process of

self-organization. Reducing the number of ADFs again leads to the problem of

incomprehensibility of the evolved rules.

6.4 A comparison: GA vs. GP

Genetic algorithm, as discussed in chapter four, was employed to evolve learning rules for a

feed-forward type of neural network capable of dealing with a different class of problems.

The present work has mainly focused on unsupervised learning that are applicable to an

entirely different class of problem domain. However, some comparison between the two

approaches can be made in terms of a number of factors such as:

• The topology and the node activation function

With the GA implementation the network topology and the node activation function are

specified a priori. The GP implementation is flexible. Although these simulations assumed

104

a fixed structure variable topology can be incorporated through a process of morphogenesis.

The node activation functions might be allowed to evolve with the GP approach. Hence the

networks can be non-homogenous where each cell can employ a different node activation

function. Although a possible approach is suggested (in the co-evolution part) the

simulations in the current work do not attempt these. It is likely that the GA approach also

might allow for such a flexibility. It is not known whether any such work has been done so

far.

• The levels of adaptation

The two levels of adaptation are distinct in the GA implementation. The learning rules evolve

and subsequently adapt the network weights whereas with the GP, the learning level is

embedded within the evolutionary level. That is, the weight adaptation is a part of the

representational structure itself and hence an integral part of the evolutionary process. The

key difference between the GA and the GP approaches is that in the case of GP the macro

concepts including the concept of adaptation evolve while interacting with the given

environment. The implications of the GP approach are profound. I f the linear chromosome

in the GA is also able to encode the concept of network weight adaptation the two

approaches might then have some similarity and possibly the same implications.

• The difference

With GA, a learning rule is applied to different tasks to assess the fitness of the learning rule.

A number of different networks with the assumed topology are set up to test the evolved

rule for its fitness (that is, the fitness of the learning rule) on a number of leamable tasks.

With the GP approach a variety of learning rules in terms of the node activation function

and structure can evolve for a given task, although this has not been attempted as a part of

the current work. As discussed earlier these might be possible with the GA approach also.

It seems further work needs to be done in this direction as well.

The simulations with GP are based on a general definition for a connectionist learning

rule as a sequence of interacting concepts. Encoding and decoding the genotype seems to be

easier with the GP approach. The size and the complexity of the genotype is flexible. The

learning mechanism can be evolved in terms of a number of potential modules and can be

interpreted easily. The purpose of the experiments was to investigate whether the notions

105

of constructivism and micro-macro dynamics could be extended to the evolution of valid

connectionist learning mechanisms. The simulation results have demonstrated that flexible

learning mechanisms can be evolved with a general definition for learning and with a single

potential constraint imposed within the representation that the GP employs.

6.5 Discussions

The attempts were aimed at evolving a Kohonen type of learning rule and to observe

whether a topological ordering can emerge with the evolved learning rule. The simulations

suggest that GP, as a meta-leaming paradigm can be a potential tool. A number of issues

were identified and addressed. The modular approach seems to be more powerful for the

reasons discussed. To summarise, the proposed approach has the following advantages. The

approach

1. suggests a way of naturally combining connectionist networks with the evolutionary

paradigm.

2. by providing a general definition for a learning mle as a sequence of interacting concepts

and by imposing a single potential constraint within the genotype is successful in

implementing flexible learning rules for a self-organizing neural network. The constraint

creates a paradox for the evolutionary paradigm to be creative. Further, the learning rules

evolve while interacting with a given task environment.

3. allows for flexibility in terms of modularity and the mles are easily interpretable (and

hence translatable) through the ADF modules.

4. suggests the possibility of co-evolution of structures and learning.

It would be interesting to investigate whether the proposed approach can be extended to feed­

forward networks that employ a supervised learning mle. The fitness function definition

should be easier as the target solution will be known a priori for a supervised learning mle.

Also, learning for recurrent networks can be attempted as a part of the future work.

The representation that GP employs suggests that a hierarchical learning (different types

at different levels) is feasible.

106

Whether the method allows designing non-homogenous networks, that is networks where

different cells/neurons in the same network having different node activation functions can

also be investigated further.

Recent work in GP has shown that most interesting problems need a sort of internal

memory (Teller and Andre, 1995). The incorporation of memory into GP have shown

performance improvements. The proposed method seems to be a natural way of

incorporating memory into the GP paradigm.

The learning rules can evolve while interacting with a task environment. The system,

nevertheless cannot be defined as purely reactive as it incorporates a network structure

with adaptive weights forming some sort of memory and a representational structure. On the

other hand it can safely be termed as an eclectic hybrid.

(See references, Govinda Char, 1996 a, b, c also in the context of evolution of learning).

Conclusion

The proposed approach, by providing a very general definition for a connectionist learning

rule and imposing a single potential constraint offers a novel way to evolve flexible learning

rules for a self-organizing neural network. The simulations demonstrated how such rules can

be evolved while interacting with a given environment through the powerful notions of

constructivism and micro-macro dynamics. Genetic Programming seems to be an excellent

tool as a meta-leaming system as it offers a natural way of combining connectionist

networks, employing both bottom-up and top-down strategies.

The role of such flexible learning mechanisms in constmctivist AI systems will be discussed

in the next chapter.

107

Chapter 7

Constructivist AI with Genetic Programming

Constructivist AI conceptualizes intelligence as an adaptive behavior that can be constructed

through primitive elements and processes. These co-ordinate effectively to achieve a global

behavior, typically employing a bottom-up strategy. This chapter briefly describes a recent

modelling method for constructing adaptive systems and explains how such systems can

be evolved with the genetic programming technique by extending the notion of

constructivism to the evolution of neural structures and learning. A comparison between the

two approaches is drawn highlighting the merits of the latter approach.

7.1 The Background

Traditional Artificial Intelligence (AI) understands intelligence to be explicitly definable.

Thus AI is seen as a combination of knowledge in symbolic form and techniques that can

manipulate this knowledge. This view of AI, as discussed in earlier chapters, has led to a

number of limitations in terms of its range of applicability. The new AI approaches,

typically, view intelligence in terms of emergence. In this context, intelligence can be

conceptualized as an adaptive behavior and can be constructed from primitive elements and

processes that involve interactions with the environment. These primitive processes may be

in the form of a set of rules that evolve structures and/or concepts. For instance, the rules

may specify a sequence of operations such as cell division, differentiation, interactions

among the cells to create a structure, or the interaction of the cell/the structure with the

environment. Alternatively the rules may simply represent a sequence of macro-concepts

that evolve to solve a given problem. Each of these macro-concepts in turn might be in

terms of a combination of potential micro-concepts. The final complexity of the systems

that evolve is unpredictable. Such models are known as constructivist AI systems (Vaario,

1994a) and possess a number of characteristic properties seen in ALife-like (Langton,

1993) paradigms. Vaario in his recent work (Vaario, 1994b; 1994c) has demonstrated how

such adaptive systems can evolve with a constructivist approach and argues that

intelligence cannot be taken as a describable fact but is a result of gradual evolutionary and

developmental processes. The approach is briefly discussed. Figure 7.1 shows the life cycle

108

of an adaptive system, typically a nervous system illustrating the four forms of adaptation:

Development, Neural Plasticity, Natural Selection and Genetic Changes.

Environment
Genotype

Reproduction

Genetic Variations

Natural Selection

Development

Phenotype

Plasticity
Behaviour

Figure 7.1: The life cycle of an adaptive system

The development of the neural network within the adaptive system and the information

processing mechanism of the mature network are not separated from each other. The

development process is important as:

• explicit design of complex systems is difficult suggesting a need for an ‘intrinsic design’

method to create complex systems such as neural networks.

• the development by itself is a form of adaptation filling the gap between the fast synaptic

plasticity adaptation and the slow genetic-based adaptation.

• genetic code requires the development process to describe a complex structure.

• development implements the anatomical plasticity that can implement long-term memory.

The method employs the idea of emergent behavior where the complexity is reached without

any global definition but using several local behavior rules that together reveal the global

behavior. The neural network is grown towards a mature state gradually through a set of

production rules. The fitness of the system as a whole is not just a function but the survival

capability defined by a collection of selection processes which are functions of the current

environment. The evolution is thus open-ended. With these four forms of adaptation Vaario

has demonstrated how emergent phenomena can be realized based on atomic interactions.

Figure 7.2 illustrates the hierarchical representation of computational levels. The

computational model is based on a set of production rules inspired by the Lindenmayer

system (Lindenmayer, 1970). The rules however are not a string of letters. Instead a set of

109

abstract objects which have their own production rules are defined. Each of these objects

can have sub-objects within them executing a different set of production rules.

Organism level
Sensoric and effector model

Emergenci ____________________

Cell (Neuron) level

Network level
Interconnectivity between neurons

Neurons interactions

Figure 7.2: The hierarchical representation of computational levels.

The objects and their interactions can be seen at three different levels. The basic cell level,

the neural network level and finally the organism level. A set of production rules describes at

each level the local interactions between objects at the upper, lower or the same level. The

production rule consists of a conditional part that switches the production rule on and off. The

result of evaluation of a production rule can be the creation of a new object or the

modification of its own attributes (a tuple of a key and a value). The rules are also expressed

as attributes enabling them to change themselves. Eventually the behavior emerges. The key

aspect of this approach was to model environmental adaptation using a Multilevel

Interaction Simulation language (MLIS) which simulates the interactions at different

organizational levels. The MLIS is different from traditional object oriented systems in the

following aspects. In traditional systems an object is passive unless it receives a message for

an action implying that the control mechanism for messages needs to be synchronized in the

sense that the sender must know to whom and when to send the messages. In MLIS language

the sent messages are broadcast to the environment where each object can check and act

accordingly. There is no central control as each object is autonomously executing its own set

of instructions in parallel with the rest of the objects. From these interactions the organism

and the plasticity resulting in the behavior emerge. As an example assuming two organisms

in an environment the production rule looks like:

Environment(Constraints,.....

Organism 1(Genetic Code, Neurons (attributes))

Organism2(Genetic Code, Neurons (attributes)))

110

Constraints - define the environment depending on the production rules that are common for

each organism.

Genetic Code- defines the organism depending on the production rules for cell divisions,

axon-dendrite growth, etc.

Neurons- defines the initial cell for the growth process.

The execution of the Genetic Code production rule is done without an explicit definition for

it. Eventually the desired behavior emerges through the interactions of the productions at

various levels.

In the above hierarchy some of the cells can act as sensors, the others as effectors and the rest

as the neurons in between the two layers. The sensors and effectors also adapt to the

environment. The final structure not only is genetically predetermined but can be affected by

the environment suggesting that the approach allows for the intelligent adaptation of the

organism to its environment.

7.2 The GP approach

It is argued that evolutionary algorithms, despite being powerful search methods lack

the creativity to evolve ALife-like systems (Vaario, 94c). The reasons seem to lie basically

in the type of problem environment, in the approaches that are employed, and mainly due

to the failure in imposing proper constraints within the evolutionary paradigms. In the

preceding chapter, through simulations, it has been demonstrated how flexible

connectionist learning mechanisms can evolve just by:

• providing a very general definition for learning as a sequence o f interacting concepts and

• through the imposition of a single potential constraint that the neural network weight

adaptation should be an integral part of the hierarchical tree representation that the GP

employs.

The constraint creates a paradox for the evolutionary algorithm to evolve potential

concepts capable of tackling the task environment. This suggest that a right constraint can

111

make evolutionary algorithms extremely creative. The type of constraints and their effects can

be established by experimentation.

It was also illustrated through the simulations that the notion of constructivism could be

easily extended to the genetic programming for the evolution of building blocks representing

the components of connectionist learning rule(s). It is to be seen whether flexible AI

systems can be constructed and realized through the proposed approach.

The four forms of adaptation shown in figure 7.1 can easily be implemented with genetic

programming as well. The aim is to realize the notion of emergence in terms of the neural

network structure and also the type of learning that evolve for a given task environment.

These will be explained.

1. The development stage of the neural network can be implemented either through simple

rules or through a process for morphogenesis such as cellular encoding (CE) (Gruau, 1994).

The latter case, being a grammar-based encoding the cellular operators for cell division can

be easily defined and included as the GP primitives. The representational structure in CE

is compatible with that of GP. The neural network structures can emerge while in constant

interaction with a given environment. GP will have to induce the network architecture for a

given signal/input space by choosing the appropriate primitives and construct the network

architecture. Three types of primitives for cell/neuron growth and the connectivity patterns

are shown in figure 7.3.

A Recursive ConnectionSequential Division Parallel Division

Parent Cell Child-1
Child-2Child-1

Child-2 Child-1 Child-2

Output Cell Output CellOutput Cell

□ □

Figure 7.3: Sequential and Parallel Division of cells and two cells recursively connected

Cellular encoding basically employs three types of primitives. These are the SEQ, PAR and

the REC primitives. SEQ divides a parent cell into two cells and connects them in sequence.

112

PAR divides the cells in parallel and inherits parallel links from the parent cell. The REC

primitive provides a recursive connection between the two child cells, each with two output

links. The first two figures show a feed-forward type of connection whereas the last figure

illustrates a recursive connection. Based on the signals/ inputs GP will have to induce the

right primitive to create the appropriate network structure for the task environment.

2. The simulations in the preceding chapter demonstrated how a network and learning can

evolve while interacting with the task environment. The genetic programming system

provides a paradigm to realize the notion of emergence at the levels of network creation and

also the learning. The phenotypic characteristics emerge indirectly as a result of the genetic

information (for the development) and also due to learning. The key point to note is that

learning can evolve during the development.

3. The recombination of the genetic programs in terms of the swapping of sub-trees will

yield the required genetic changes as a natural part of the evolutionary cycle.

4. The evolution itself will be at the highest level of adaptation incorporating natural

selection.

7.3 A comparison between the two approaches

Models 1 and 2 in figure. 7.4 represent two different approaches to constructivist AI,

and compare Vaario’s and the GP approaches.

Characteristics Model-1 Model-2 (GP)
Structure Artificial neural network Artificial neural network
Creation Production Rules-based Grammer based encoding
Learning Production Rules-based Evolve network learning
Type of Learning Dynamic with the environment Dynamic with the environment

Evolution Open-ended Based on a fitness value
Simulation language MLIS GP and ADFs (in LISP form)
Emergence the structure as an organism the structure and learning
Constructivism mainly applied to structures applied to structure/ learning

Figure 7.4: A comparison between the two computational models

7.4 Discussions

Model-1 has been successfully employed in implementing potential constructive AI systems

(Vaario, 1993). It is observed from figure 7.4 that the four forms of adaptation can be

easily incorporated within the genetic programming system. In addition, emergence is

realized at the levels of both the network structure and learning. The final complexity of the

system(s) that evolve is unpredictable. It is to be noted that the evolution in the case of

model-2 is not open-ended but is bound by the fitness criteria that the user specifies.

However, the proposed approach, by providing a general definition for learning and by

imposing a single potential constraint within the representational structure provides an

extremely large space (possible combinations) in terms of the type of network architecture,

the node activation function and the type of learning that can be implemented. The

advantage when compared with the reactive systems is that it can incorporate the

development phase enabling the system to grow autonomously based on the need.

Model-2 with genetic programming has a potential for implementing constructivist AI

systems that can be effectively employed in unpredictable/unknown situations.

Further, it has been argued that evolutionary paradigms are good at optimization but not

creative enough to realize Alife-like systems. The reasons for these limitations need to be

addressed. It basically seems to lie in the way evolutionary algorithms are employed, that is,

in using these algorithms for optimization only rather than for construction and optimization.

It is to be realized that evolutionary algorithms could be extremely creative if appropriately

combined with other paradigms such as connectionist networks.

The simulations employed a self-organizing neural network as a framework to attempt the

evolution of valid learning rules in a dynamic environment. However, the goal should be to

realize potential self-organizing systems that can adapt to the environment through individual

and evolutionary adaptations. It should be possible to realize autonomous, self-organizing

systems in terms of eclectic hybrids with proper constraints imposed within the hybrid in

some form.

114

Conclusion

The aim was to investigate whether the proposed approach has the potential to realize

constructivist AI systems in the form of an eclectic hybrid. Simulation results with genetic

programming suggest that the notion of constructivism are easily extended to the

evolution of neural network structure and learning. The advantage with this approach is that

the learning rules will replace the production rules used in the first model. Further, the

four forms of adaptation shown in the life cycle of an adaptive system are incorporated

naturally within genetic programming. These suggest that GP, if used for construction and

optimization, will yield powerful adaptive AI systems through hybrids.

The next chapter provides the concluding remarks and suggests some applications for

the proposed approach.

115

Chapter 8

Summary, Conclusions and Directions for Further Research

This chapter provides a summary of the research with conclusions, suggests a few potential

application domains and indicates directions for further research.

8.1 Summary and Conclusions

The research described in this dissertation has three main objectives.

First, to understand traditional knowledge-based systems and their limitations. The role

of learning in problem solving and the need to investigate various representations and

strategies are discussed in chapter one. In particular, the focus is on evolutionary algorithms

that employ task-independent representations and operators to solve a wide range of

problems in flexible ways. Constructivism, a powerful notion is introduced. It has been

argued that AI, if seen as an adaptive behavior can be constructed through the interaction of

primitive elements and processes. How an evolutionary algorithm such as genetic

programming (GP) can be used to extend this notion to construct flexible learning is briefly

discussed. Chapters two and three provide a background information on AI, its new

perspective and on evolutionary computation.

Second, to investigate the role of genetic programming in connectionism. That is, how

effective is genetic programming as a meta-leaming tool in evolving connectionist

network architectures and learning rules. A self-orgaizing neural network is chosen as a

framework to focus on various aspects of network architecture and learning. The approach

firstly involves identifying key issues in connectionism that have led to its limitations.

How evolutionary algorithms offer a way to overcome these limitations is discussed in

detail. In genetic-based design the encoding strategy is crucial. In the context of network

induction, the strategy should not only capture useful architectures that are optimum for

solving a problem in hand but allow for further generalisation. In the context of learning it

should be able to discover a variety of potential learning mechanisms for the given task

environment. The proposed research by focusing on earlier approaches and also on most

116

of the recent work in genetic-based design has systematically raised a number of key

questions such as:

1. Is the representation (genotype) that the algorithms employ sufficient to express and

explore the vast space of network architectures and learning mechanisms?

2. Is the representation capable of capturing the concepts of hierarchy and modularity that

are vital and naturally employed by humans in problem solving?

3. Are some representations better in expressing these? If so, how to exploit the strengths that

are inherent to these representations?

4. If the aim is really to automate the design process what strategies should be employed so

that the involvement of a human in the design loop is minimum?

5. Is the methodology or the approach able to overcome at least some of the limitations of

connectionist networks?

6. Most importantly, how effective is the approach in solving problems?

Chapter four has attempted to address these through detailed discussions and also through

comparisons to most of the recent work with genetic algorithms and genetic programming.

The merits of the novel approach that is proposed in this thesis are identified in terms of the

representation and the strategy employed. The importance of modularity and hierarchy in

problem solving and the need for potential strategies to exploit these are stressed. How

genetic programming offers these through the representation and automatically defined

functions is demonstrated through simulations in chapter six.

The experimental results demonstrate that genetic programming, if used for construction

and optimization could be extremely creative in implementing potential learning mechanisms

and also network architectures for self-organizing neural networks. Further, the proposed

method combines the bottom-up and top-down strategies through the powerful notions of

constructivism and micro-macro dynamics. The network architecture and the learning

evolve while interacting with the task environment. As the approach involves a general

definition for learning (irrespective of the type of network) and a single potential constraint

within the representation (that is the genotype), it appears that it could be extended to other

117

types of networks as well. These suggest that connectionism has to be approached with a

new perspective to realize its true potentialities.

Third, the aim is to identify the role of flexible learning in implementing adaptive AI

systems. Chapter seven has discussed a recent model of a constructivist AI system that

incorporates four forms of adaptation such as development, neural plasticity, natural

selection and genetic changes. The novel method that is proposed in this thesis, can easily

incorporate these within GP to build adaptive AI systems. A comparison is drawn between

the two approaches.

The next subsection will discuss few applications with the GP hybrid.

8.2 Possible applications with the proposed approach

This concluding section suggests few applications. These include:

1. An extension to GP

Genetic programming is not Turing complete. That is, GP is not powerful enough to

recognise all possible algorithms. The reason is attributed to the fact that GP has no inherent

mechanism to implement a state or an internal memory. A number of interesting problems

require a memory to be solved effectively. Indexed memory (Teller, 1994; Andre, 1994)

is a simple way of implementing memory by adding few non-terminals such as ‘Read’ and

‘Write’ to GP. Adding these non-terminals result in a system that is Turing complete. Using

indexed memory, a GP function can save past inputs and then use them appropriately as

needed to tackle a given problem. It is argued that indexed memory helps GP in solving

memory-critical problems.

The proposed approach might be extended to implement internal memory as it

incorporates neural networks within the GP paradigm.

2. Self-organizing systems

The simulations attempted evolution of learning rules for self-organizing neural networks.

The goal should be to evolve self-organizing systems for information processing and for

118

real-time applications. It should be possible to extend the notions of constructivism and

micro-macro dynamics to the evolution of building blocks in terms of structure and learning

that can self-organize at the systems level. The co-ordination of the building blocks

based on various fitness criteria can be investigated.

3. Robotics

The approach can also be applied to the design of autonomous mobile robots that adapt to a

given environment through automatic learning mechanisms (Zimmer and Puttkamer, 1994;

Vaario, 1994; Balakrishna and Honavar, 1997). Robots, typically employ neural networks

for learning. Networks that grow (or shrink) dynamically based on the environment have

been shown to be more suitable than those with fixed architectures. The proposed approach

allows for network development through a process for morphogenesis. It is possible to

design autonomous system(s) where a few of the network modules can be made to act as

sensors and some as effectors with the rest of the modules implementing the learning. The

effects of modularity and hierarchy in network creation and learning can be investigated

for different task-environments. Also, the learning in dynamic environments might be

attempted as a part of the future work.

4. Adaptive pattern recognition

Pattern recognition (PR) is one of the most important components of an intelligent system.

The traditional methods in pattern recognition have been inadequate to provide optimal

solutions to a number of complex pattern recognition and classification tasks. Evolutionary

algorithms, being powerful search and optimization methods, have been more successful

in tackling complex problems (Tackett, 1994). PR, typically employs a number of

techniques that use a variety of representations (Govinda Char and Tackett, 1996). The

proposed approach provides a potential hybrid for adaptive pattern recognition and

classification tasks. Initially the hybrid can be tried with difficult bench-mark problems.

5. Modular and hierarchical learning

Distributed artificial neural networks have found applications in natural language processing

(NLP) (Miikkulainen 1991; Elman, 1993). The architecture (Miikkulainen, 1991) employs

hierarchically-organized back-propagation modules (for processing words) communicating

119

through a central lexicon of word representations which is implemented as a feature map.

The proposed method offers modularity in terms of network architectures and learning

and has a potential in implementing NLP systems. The hierarchy is inherent to the

representation that GP employs.

6. Reinforcement learning and learning for recurrent networks

A variant of supervised learning is the reinforcement learning that has been extensively used

in many potential applications. Rather than giving the network the entire correct output

some measure of how well the system is doing is presented. Recurrent networks, on the other

hand model dynamical systems and employ a number of algorithms such as the recurrent

back-propagation (Pineda, 1989) and back-propagation through time (Werbos, 1990).

Evolution of architecture(s) and learning mechanism(s) for the above types of networks

could be attempted in the future with the proposed method. GP, based on the environment

and the fitness criteria might induce appropriate network architecture(s) and learning.

7. Incremental learning

Incremental learning techniques seem to be highly suitable in a number of applications.

Connectionist networks and genetic programming offer ways of implementing incremental

learning. Considering an example in language processing, it has been shown that neural

network models are incapable of learning complex grammars when both the network and

the input remain unchanging (Elman, 1991; 1993). However, when either the input was

presented incrementally or the network begins with limited memory that gradually increases,

the network was able to learn grammar and represent complex sentences. Further, the

existing learning algorithms, in general, are inadequate for tackling a number of problems

known as the hard-to-leam problems or the type-2 problems (Clark and Thornton, 1993).

The components of the input data tend to relate in some way and the learning algorithms as

such fail to identify the relationship. These problems can be solved if the data is re-coded to

discover the regularities. GP has successfully solved these problems through incremental

learning (Thornton and Kuscu, 1994). The proposed method allows for incremental learning

and can be tried on type-2 problems.

120

8. Integrating hardware and software

Connectionist networks and evolutionary algorithms are potential candidates for parallelism.

Recently Hardware Description Languages (HDL) (Hemmi, Mizoguchi, and Shimohara,

1994; Higuchi, 1994) have been innovated and successfully applied for evolving hardware

(Ray, 1994; Hugo de Garis, 1993). GP might be a powerful tool in building integrated

system(s) that combine neural hardware and software through an effective interface with

HDL. Network structures can be implemented in hardware with HDL. GP’s role will be in

evolving the learning mechanisms. The approach is amenable to parallel implementation.

121

Appendix-A

I t e r a t i n g <End=e)

sweep 93

d e l t a 0.030

0 .004

I t e r a t in g <End=e)

3 .527
0.284

Figures: 6.2 and 6.3 above show the process of self-organization
with the standard Kohonen rule for the models shown in
figure. 6.1. The networks grow starting from a single cell.

Appendix-B

Initialization File for the GP Run

Consider the file shown below:

Population size: 500

Number of Generations: 50

Number of ADFs: 6

Creation Type: Ramped Half and Half

Maximum Depth at Creation: 4

Maximum Depth at Crossover: 4

Maximum Fitness: 1000

Number to Mutate: 0

The aim is to create a random population of trees of different sizes and shapes and to have a

diversity in the population. The random trees can be created basically by two methods, the

‘full* and the ‘grow’ methods (Koza, 1993). The ‘ramped half-and-half generative method

combines the two. In full method all the trees will have the same shape whereas in the grow

method the shapes will vary. The mixed approach enables maintain the diversity of the

population minimizing the chances of duplicating individuals. These duplicate individuals

also waste the computational resources.

Please refer to pp. 92-94 (Koza, 1993) for the details.

Appendix-C

Fi
tn

es
s

Figure 1 : Fitness Vs Epochs

Epochs = 500 Epochs = 1000 — x— Epochs = 1500 - - -o- - - Epochs = 2000

680

580

480

a e q a

Population size = 500

380

x-x X X X X X,X x x x x x x x x x^
y

X X X X X X X X X X X X X X X X X X -X
x x x x x

280

180

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Generation

Fi
tn

es
s

Figure 2a : Fitness Vs Population Size(Ramped half and half)

Population = 500 Population = 300

450

400

350

Epochs = 1500

300

250

200
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Generation

Fi
tn

es
s

Figure 2b : Fitness Vs Population Size (Ramped half and half)

Population = 1000 Population = 500

380

330

280

Epochs = 1000

230

180

130
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Generation

Fi
tn

es
s

Figure 3a : Fitness Vs Population Diversity

Ramped hald and h a lf Variable

500

450

400

350

Population size = 500
Epochs =1500

300

250

200

150
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

G eneration

Fi
tn

es
s

Figure 3b : Fitness Vs Population Diversity

Ramped half and h a lf Variable

400

350

300

Population size = 1000
Epochs = 1000

250

200

150
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

G eneration

Fi
tn

es
s

Figure 4a : Fitness Vs Depth

Depth = 3(Creation) / 3(Crossover) - ■ «- - Depth = 3(Creation) / 4(Crossover)
Depth = 3(Creation) / 5(Crossover) — *— Depth = 3(Creation) / 6(Crossover)

450

400

350

300

Population size = 500
Epochs = 1500

250

200

150
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Generation

Fi
tn

es
s

Figure 4b : Fitness Vs Depth

 Depth = 3(Creation) / 4(Crossover) Depth = 3(Creation) / 5(Crossover)
«— Depth = 3(Creation) / 6(Crossover) — *— Depth = 3(Creation) / 7(Crossover)

450

400

e e

-9—B-

350

300

Population size = 1000
Epochs =1000

250

200

150
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Generation

Figure 5 : Time Vs Epochs

Time (min)

25

20

Population size = 500

15

10

5

0
500 1000 2000 2500 30001500

Epochs

Bibliography

Angelene, P. (1993), Evolutionary Algorithms and Emergent Intelligence. Doctoral
Dissertation, The Ohio State University.

Ash, T. (1989), Dynamic Node Creation in Backpropagation Networks, ICS Report 8901,
University of California, La Jolla.

Back,, T., F. Hofftneister and H.P. Schwefel (1991). A suurvey of evolution strategies. In
Proceedings o f the fourth International Conference on Genetic Algorithms, R.K. Belew and
L.B. Booker (eds.), San Mateo, CA: Morgan Kaufinann, pages 2-9.

Belew, R. K., J. Mclnemey and N. Schraudolph (1991), Evolving Networks: Using the
Genetic Algorithm with Connectionist Networks, CSE Technical Report #CS90-174,
University of California, San Diego.

Belew, R.K. (1989). When both individuals and populations search: Adding simple learning
to Genetic Algorithm. Cognitive Computer Science Research Group. University of
California, San Diego, La Jolla, CA.

Balakrisnan, K., and V. Honavar (1995), Evolutionary Design of Neural Architectures, A
Preliminary Taxonomy and Guide to Literature, Technical Report CS TR #95-01, Artificial
Intelligence Group, Iowa State University.

Balakrishnan, K. and V. Honavar (1997), Spatial Learning for Robot Localization, the
Genetic Programming Conference, GP-97, Stanford, USA.

Baxter, J. (1992). The Evolution of Learning Algorithms for Artificial Neural Networks, in:
Green D. and Bossomair T. (eds.) Complex systems, IOS Press.

Blackmore, J. and R. Miikkulainen (1993), Incremental Grid Growing: Encoding High-
Dimensional Structure into a Two-Dimensional Feature Map. In Proceedings o f the IEEE
International Conference on Neural Networks, San Fransisco, CA.

Branke, J. (1995), Evolutionary Algorithms for Neural Network Design and Training. In,
Proceedings o f the First Nordic Workshop on Genetic Algorithms and its Applications,
Vaasa, Finland, 1995.

Brooks, R., A. (1986), Achieving Intelligence through Building Robots, AI memo 899, May
1986, MIT.

Brooks, R.A.(1991), Intelligence without representation. Artificial Intelligence, 47: pages
139-159.

Clark , P. and Niblett, T. (1989). The CN2 Induction Algorithm. In Machine Learning
Journal, 3(4), pages 261-283, Netherlands, Kluwer, 1989.

Clark, A. and Lutz, R. (1992), Connectionism in Context, Chapter 1.

Carter, D.B. and Narayanan, A. (1998). Genetic algorithms for knowledge discovery in
continuous data. Research report R374, Department of Computer Science, University of
Exeter, UK.

Chalmers D.J. (1990), The Evolution of Learning: An experiment on Genetic Connectionism.
In: Proceedings o f the 1990 Connectionist Models Summer School, CA: Morgan-
Kaufmann.

Clark. A., and C. Thornton (1993), Trading Spaces: Computation, Representation and the
Limits of Learning, Cognitive and Computing Sciences, University of Sussex, Brighton, UK.

Cliff, D., I. Hravey and P. Husbands (1992). Incremental Evolution of Neural Network
Architectures for Adaptive Behaviour, CSRP 256, School of Cognitive and Computing
Sciences, University of Sussex, Brighton, UK.

Dasdan A., and K. Oflazar, Genetic Synthesis of Unsupervised Learning Algorithms In:
Proceedings o f the Second Turkish Symposium on Artificial Intelligence and
Artificial Neural Networks, Istanbul, June 1993.

Davis, R. (1979). Interactive transfer of expertise: Acquisition of new inference rules.
Artificial Intelligence, 12, pages 121-157.

Dayhoff, J. E. (1990), Neural Network Architectures, An Introduction, Van Nostrand
Reinhold, New York.

De Jong, K. (1988), Learning with Genetic Algorithms: An Overview, Machine Learning 3
pages 121-138, Kluwer Academic Publishers.

De Garis, H. (1992), Exploring GenNet Behaviours, Using Genetic Programming to Explore
Qualitatively New Behaviours in Recurrent Neural Networks, ETL Laboratories, Japan.

Elman, J.L. (1992), Distributed representations, simple recurrent networks, and grammatical
structure, Department of Cognitive Science and Linguistics, University of California, San-
Diego.

Elman, J.L. (1991), Incremental learning, or The importance of starting small, CRL Technical
Report 9101, University of California, San Diego.

Erwin, E, K. Obeermayer and K. Shulten (1991). Convergence Properties of Self-Organizing
Maps. Artificial Neural Networks, pages 409-414,

Fogel, L., A. Owens and M. Walsh (1966). Artificial Intelligence through simulated
evolution. New York: Johmn Wiley & Sons.

Fogel, D.B. (1992). Evolving artificial intelligence. Doctoral Dissertation, University of
California, San Diego.

Fogel, D. B.(1994). An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks.

Fogel, D.B. (1997), The Advantages of Evolutionary Computation. In Proceedings o f
BCEC97, Sweden.

Forrest, S. (1993), Genetic Algorithms: Principles of Natural Selection Applied to
Computation, Science, Volume 261, August, 1993.

Friedrich, M, C. Moraga (1996), An Evolutionary Method to Find Good Building -Blocks
for Architectures of Artificial Neural Networks. In Proceedings o f IPMU’96, pages 951-956,
Granada, Spain.

Fritzke, B. (1991), Unsupervised Clustering with Growing Cell Structures, IJCNN’91,
Seattle, US.

Fritzke, B. (1993), Kohonen Feature Maps and Growing Cell Structures- a Performance
Comparison. In Advances in Neural Information Processing Systems 5, C.L. Giles, S.J.
Hanson, J.D. Cowan (Eds.), Morgan Kaufmann, San Mteo, CA.

Fritzke, B. (1993), Growing Cell Structures- A Self- organizing Network for Unsupervised
and Supervised Learning, TR-93-026, May 1993, International Science Institute,
Berkeley, CA.

Fullmer, B. and Miikkulainen. R (1991). Using Marker-Based Genetic Encoding of Neural
Networks To Evolve Finite-State Behaviour, in: Proceedings o f the First European
Conference on Atificial Life (ECAL-91), Paris.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning.
Reading MA: Addison Wesley.

Govinda Char, K. (1998), Constructive Learning with Genetic Programming, EuroGP-98,
France.

Govinda Char, K. (1997a), Constructivist AI with GP (Late-breaking paper), the Genetic
Programming Conference, GP-97, Stanford, USA.

Govinda Char, K. (1997b), AI-Revisited, S0C097, the ICSC Symposium on Soft
Computing, France.

Govinda Char, K. (1997c), A Novel Approach to Artificial Intelligence, Tainn '97, the Sixth
Turkish Symposium on Artificial Intelligence and Neural Networks, Baskent University,
Turkey.

Govinda Char, K. (1997d), Evolution of Structure and Learning with Genetic Programming.
IWANN’97, the International Workshop on Artificial Neural Networks, Canary Islands,
Spain, published in the Lecture Notes in Computer Science.

Govinda Char, K. (1997e), A Novel Approach to Artificial Intelligence, Tainn ’97, the Sixth
Turkish Symposium on Artificial Intelligence and Neural Networks, Baskent University,
Turkey.

Govinda Char, K. (1997f), Modeling Self-organization - Approaches and a Comparison with
Evolutionary Methods, BCEC97, the International Conference on Bio-Computing and
Emergent Computation, Skovde, Sweden, published by World Scientific Publishing.

Govinda Char, K. (1997g), Modeling Self-Organization- a Comparison, GWAL’97, the
Second German Workshop on Artificial Life, University of Dortmund, Hans Bommerholz,
Germany.

Govinda Char and Walter Alden Tackett (1997h), Pattern Recognition (section F I.6) in the
Handbook o f Evolutionary Computation, 1997, Oxford University Press, USA.

Govinda Char, K. (1996a),, Self-organization with Adaptive Learning, ICML ’96, the
International Conference on Machine Learning, Bari, Italy.

Govinda Char, K. (1996b), A Learning Rule for Emerging Structures, WCNN96, the World
Congress on Neural Networks, San Diego, USA.

Govinda Char, K. (1996c), Emergence of Structures in Self-organizing Neural networks
using Genetic Programming and Cellular Encoding techniques, Tainn96, the National
Conference on Artificial Neural Networks, Istanbul, Turkey.

Greab, R. and Narayanan, A. (1998). A comparison between symbolic and nonsymbolic data-
mining techniques. Research report R377, Department of Computer Science, University of
Exeter, UK.

Gruau, F.(1993), The cellular development of neural networks: the interaction of learning and
evolution, Research Report 93-04, Ecole Normale Superiure de Lyon, Cedex, France.

Gruau, F. (1994), Efficient Computer Morphogenesis: A Pictorial Demonstration, Report
No. 94-04-027, Santa Fe Institute, April 29, 1994.

Hamalainen, A. (1995). Using Genetic Algorithms in Self-organizing map Design. In
Proceedings o f ICANNGA ’95, Ales, France.

Happel, B.L.M. and Murre, J.M.J. (1994). Design and Evolution of Modular Neural Network
Architectures. Neural Networks, vol 7, Nos. 6/7 pages 985-1004.

Harvey, I. (1993). The Artificial Evolution o f Adaptive Behaviour. Doctoral Dissertation, The
University of Sussex, UK.

Hayes-Roth, F., D. A. Waterman and D.B. Lenat (Eds.) (1983), Building Expert systems.
Reading, Mass: Addison-Wesley.

IV

Heistermann, J. (1990), Learning in Neural Nets by Genetic Algorithms, Parallel Processing
in Neural Systems and Computers, (Eds.), R. Eckmiller, G. Hartmann and G. Hauske, Elsivier
Science Publishing B.V, North Holland.

Hinton, G.E. and Nowlan, S. J. (1987). How learning can guide evolution. Complex systems,
1: pages 495-502.

Holland, J., H. (1975; 1992) Adaptation in Natural and Artificial Systems. Cambridge, MA:
MIT Press.

Honavar, V., and Uhr, L. (1994), Symbolic Artificial Intelligence, Connectionist Networks
and Beyond, TR-96-16, Iowa State University, Ames.

Kinnear, K.E. (1994), Advances o f Genetic Programming, MIT Press.

Kitano, H., (1990), Designing Neural Networks Using Genetic Algorithms with Graph
Generation System, Complex Systems 4, (1990) pages 461-476.

Kohonen, T. (1989), Self-organization and Associative Memory, volume 8 of Springer
Series in Information Sciences. Springer-Verlag, Berlin, Heidelberg, New York, third
edition, May 1989.

Kohonen, T. (1995), The Self-organizing Maps. Springer-Verlag, Heidelberg, 1995.

Koza, J., R. (1993), Genetic Programming, On the programming o f computers by means o f
natural selection, MIT Press.

Koza, J., R. (1994), Genetic Programming II, Automatic Discovery o f Reusable Programs,
MIT Press.

Kuscu. I., and C. Thornton (1994). Design of Artificial Neural Networks Using Genetic
Algorithms: review and prospect, University of Sussex, UK.

Langton, C.G., (1989). Artificial Life. Addison-Wesley.

Langton, C.G., C. Taylor, J.D. Farmer, S. Rasmussen (1992). Artificial Life II. Addison-
Wesley.

Lippman, R. P. (1987). An Introduction to Computing with Neural Networks, IEEE ASSP
Magazine, April, 1987.

Mechalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag.

Michalski, S., Carbonell, G., Mitchell, M. (1986). Machine Learning, Volume II, Morgan
Kaufmann Publishers, Inc.

Minsky, M. (1990). Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs.
Scruffy, in Artificial Intelligence at MIT., Expanding Frontiers, Patrick, H. Winston (Ed.),
Volume 1, MIT Press 1990.

Minsky, M. (1963). Steps towards artificial intelligence. In Computers and Thought, E.
Feigenbaum and J. Feldman (eds.), New York: McGraw Hill.

Mitchell, M. (1996). An Introduction to Genetic Algorithms, MIT Press.

Miikkulainen. R. and Sirosh, J. (1995). A Unified Neural Network Model for the Self­
organization of Topographic Receptive Fields and Lateral Interaction. In Proceedings o f
ICANNGA ’95, Ales, France.

Moriarty, D.E. and Miikkulainen. R (1994). Efficient Reinforcement Learning through
Symbiotic Evolution. Department of Computer Sciences, The University of Texas at Austin,
Austin.

Moriarty, D.E. and Miikkulainen. R (1996). Hierarchical Evolution of Neural Networks.
Technical Report AI96-242, Department of Computer Sciences, The University of Texas at
Austin, Austin.

Miihlenbein, H.(1990). Limitations of multi-layer perceptron networks- steps towards genetic
neural networks, Parallel Computing 14 (1990), pages 249-260.

Nadi, F. (1991). Topological Design of Modular Neural Networks. Artificial Neural
Networks, T. Kohonen, K. Makisara, O. Simula and J. Kangas (Eds.) Elsivier Science
Publishers B. V. (North Holland).

Newell, A. and H.A. Simon (1963). ‘GPS: A program that simulates thought’, In Computers
and Thought. E.A. Feigenbaum and J. Feldman (eds.), New York: McGraw-Hill, pages 279-
293.

Nolfi, S. and D. Parisi (1994). Genotypes for Neural Networks, Technical Report 94-06,
Institute of Psychology, National Research Council, Rome, Italy.

O’Reilly, and U., F. Oppacher (1995). An Analysis o f Genetic Programming, Doctoral-
Dissertation, Carleton, University of Ottawa.

Ossen, A. (1990). Top-Down Learning in Modular Feed-Forward Networks. Parallel
Processing in Neural Systems and Computers. R. Eckmiller, G. Hartmann and G. Hauske
(eds.). Elsevier Science Publishers B.V. (North Holland).

Polani, D. and T. Uthman, Training Kohonen Feature Maps in different
Topologies: An Analysis using Genetic Algorithms, in: Proceedings o f the Fifth
International Conference on Genetic-Algorithms, 1993.

vi

Poli, R.(1997), Discovery of Symbolic, Neuro-Symbolic and Neural Networks with Parallel
Distributed Genetic Programming, Technical Report, CSRP-96-14, School of Computer
Science, University of Birmingham, UK.

Puttkamer. E and U. R. Zimmer (1994), Realtime -learning on an Autonomous Mobile Robot
with Neural Networks, Euromicro ’94 , Vaesteraas, Sweden.

Quinlan, J. Ross. (1986). The induction of decision trees. Machine Learning, 1, pages 81-
106.

Radi, A.M., and Poli, R. (1997), Discovery of Neural Network Learning Rules Using Genetic
Programming, Technical Report, CSRP-97-21, School of Computer Science, University of
Birmingham, UK.

Rechenberg, 1.(1973). Evoultinsstrategie: Optimierung Tecechnischer Systeme nach
Prinzipien der Biologischen Evolution, Frommann-Holzboog Verlag, Stuttgart.

Rich, E., and Knight, K. (1991). Artificial Intelligence, Second Edition, McGraw-Hill, Inc.

Ritter, H. (1991). Learning with the Self-Organizing Map, Artificial Neural Networks,
T. Kohonen, K. Makisara, O. Simula and J. Kangas (Eds)., Elsivier Science Publishers,
North Holland.

Ritter, H., T. Martinetz, K. Schulten (1992). Neural Computation and Self-Organizing Maps,
An Introduction. Addison Wesley.

Romaniuk, S. (1993). Evolutionary growth perceptrons. In Genetic Algorithms: Proceedings
of the Fifth International Conference (GA93)., S. Forrest (ed.), San Mateo, CA: Morgan
Kauffmann, pages 334-341.

Schank, R.C. (1987). What is AI anyway? The AImagazine, 8 (4), pages 59-65.

Schank, R.C., and D.B. Leake (1989). Creativity and learning in case-based explainer: in
Machine Learning: Paradigms and Methods, J. Carbonell (ed.), Cambridge, MA: MIT Press,
pages 353-386.

Schiffmann, W., M. Joost, R. Wemwer (1992). Synthesis and Performance Analysis of
Multilayer Neural Network Architectures, Technical Report 16/1992, University of Koblenz,
Germany.

Schwefel, H.P.(1981). Numerical optimization o f Computer Models, John Wiley and Sons,
Chichester.

Smieja, F. (1994). The Pandemonium System of Reflective Agents. Report number: 1994/2.
German National Research Center for Computer Science (GMD), Sankt Augustin, Germany.

Someren, M. and Verdenius (1998). Introducing inductive methods in knowledge acquisition
by divide-and-conquer in: D. Aha, R. Engels and F. Verdenius (eds.): AAAI-ICML

Workshop Developing Machine Learning Applications: problem definition, task-
decomposition and technique selection, AAAI Technical Report.

Srinivas, M., and L. Patnaik (1994). Genetic Algorithms, A Survey, an IEEE, Computer.

Tavan, P., H, Grumuller, and H. Kiihnel (1990). Self-organization of associative memory and
pattern classification: recurrent signal processing on topological feature maps, Biological-
Cybemetics 64, pages 95-105,

Tackett, W.A. (1994), Recombination, Selection and the Genetic Construction o f Computer
Programs. Doctoral Dissertation, University of Southern California.

Teller, A. and D. Andre (1995). Turing Completeness in the Language of Genetic
Programming with Indexed Memory, Department of Computer Science, Carnegie Mellon-
University, Pittsburgh.

Thornton, C. (1993). Representational Eclecticism A Foundation Stone for the New AI?
School of Cognitive Science, University of Sussex, UK.

Thornton, C. (1994). Measuring the Difficulty of Specific Learning Problems, Cognitive and
Computing Sciences, University of Sussex, Brighton, UK.

Vaario, J. (1993). Artificial Life as Constructivist AI, University of Tokyo.

Vaario, J. (1994). From Evolutionary Computation to Computational Evolution, ATR
Laboratories, Japan.

Whitley, D. (1993). A Genetic Algorithm Tutorial, Technical Report CS-93-103, Colorado
State University.

Whitley. D., T. Starkweather and C. Bogart (1990). Genetic algorithms and neural networks:
optimizing connections and connectivity, Parallel Computing 14 (1990), pages 347-361.

Zhang, B., and Miihlenben, H. (1993). Genetic Programming of Minimal Neural Nets
Using Occam’s Razor. In Proceedings o f the Fifth International Conference on Genetic
Algorithms, (Ed.), Stefanie Forrest, Morgan Kaufmann.

Zaverel, J. (1996). Neural Navigation Interfaces for Information Retrieval: Are They More
than an Appealing Idea?. Artificial Intelligence Review 10, pages 477-504, Kluwer
Academic Publishers, Netherlands.

GfcASoow*
university
UBRAST

.14-D E C -99 TUE 1 1 :14
FAX NO. 01412222201

D undas
& W ilson

Privileged/Confidential information
may be contained in this facsimile and is intended only far the use of the addressee. If
you arc not the addressee, or the person responsible for delivering it to the person
addressed, you may not copy or deliver this to anyone else. If you receive this facsimile
by mistake, please notify us immediately by telephone. Thank you.

Dundas & Wilson CS

191 West George Street,
Glasgow G2 2LB
0141 222 2200 Telephone
0141 222 2201 Facsimile (Central)
DX GW345

Date:

To:

cc:

From:

Subject:

14 December 1999

D e b r a M a d d e r n - University of Glasgow Fax no:

: no.

3304920

Mark Morton

Dr K C Shar

Pages to Follow: 7

If unreadable p lease contact Anne N>

Our Ref: M ACM /KM C

Please see attached letter and end

r \fvtat . I/O

G /vf , rvdr^ .

VXONLY

Regards

A. C. Morton
associate

►

f lirUL IaT Y C &

s Qp - e) f f t — .

J I f ► J'Zs

f -

Dundas 6c Wilson CS if a m em ber of the Andersen
W orldwide international network of U w firm s

J:\LitiKat\AMHughes\MACM\D90204FX.DOC

Authorised to conduct investment business under
the Financial Services Act 19S6 by the Law Society
of Scotland. A list of the names of the partners is
open to inspection 4t the above office

Offices In : Edinburgh C lasgow London
Associate firm in England and W ales: Carretts

.14-D EC -99 TUE 1 1 :14
FAX NO. 01412222201

D undas
& W ilson

Privileged/Confidential information
may be contained in this facsimile and is intended only for the use of the addressee. If
you arc not the addressee, o r the person responsible for delivering it to the person
addressed, you may not copy or deliver this tn anyone else. If you receive this facsimile
by mistake, please notify us immediately by telephone. Thank you.

Dundas <fe Wilson CS

191 West George Street,
Glasgow G2 2LB
0141 222 2200 Telephone
0141 222 2201 Facsimile (Central)
DX GW345

Date:

To:

cc:

From:

Subject:

14 December 1999

D e b r a M a d d e m - University of Glasgow Fax no: 330 4920

cc fax no.

Mark Morton

Dr K C Shar

Pages to Follow: 7

If unreadable p lease contact Anne Marie H ughes on 0141 304 6112 BY FAX ONLY

Our Ref: M ACM /KM C

Please see attached letter and enclosures for your attention.

Regards

MadTA. C. Morton
associate

C L c —

(/(s~ t IaT Y lx>-d£.

/ L f- / £ /

Dundas St Wilson CS is a mem ber of the Andersen Authorised to conduct investment business under
W orldwide international network of law firms

I:\LitiKat\AMHughes\MACM\D90204FX.DOC

the Financial Services Act 19S6 by the Law Society
of Scotland. A list of the names of the partners is
open to inspection at the above office

Offices in : Edinburgh C lasgow London
Associate firm in England and W ales: Garretts

14-DEC-99 TUE 11:14
FAX NO. 01412222201 P. 02

D undas
& W ilson

O ur ref M A C M /K M G
Your ref Duruias & Wilson CS

Ms Deborah Maddern
Administrative Assistant
University of Glasgow
Main Building
Glasgow
G12 8QQ

0141 222 2200 Telephone
0141 222 2201 Facsimile
DX 561475
GLASGOW 16

191 West George Street
Glasgow 0 2 2LD

14 December 1999

Dear Deborah

Dr KC Shar

Thank you for your letter of 9th December and enclosures.

For the purpose of this letter I have assumed that the panel was charged with the
responsibility of investigating the matter; coming to a decision on what tire facts are,
where possible, and making recommendations, if appropriate, if this is not the case please
let me know.

As ever this is quite a difficult matter - the panel and the Clerk of the Senate have an
unenviable task! I do think the draft letter needs to be revised for the reasons set out
below.

Generally I think the response to Kathleen Bolt ("KB") from the University should be in
fairly "conciliator/' terms and that the panel should be seen to use her questions as a
helpful way of re-expressing or adding to the report to provide greater clarity. To start
with I will use the letter from KB as a point of reference and my comments on the points
she makes (which I have numbered on a copy of her letter which I enclose) are as
follows:-

1 KB claims the introduction is misleading. It is not necessary to agree with her on
this but arguably every thing in the first paragraph with the exception of the first
sentence is strictly not essential to the report and could be deleted.

2 What is the position here?

3 1 would reply by confirming that in light of the interpretation KB has put on this, it
is recognised that that use of the words "on the whole" was inappropriate and
misleading given the panel's findings.

Uuftdas it Wilso/i CS is a member of ’’\e Anderson
Worldwide inU-Hvittonnl network « f law firms

A uthoris 'd to conduct investm ent business undtv
the Financial Services Act 1986 by ilie Law Society
c>< Scotland, A U>i of the nam es of (be partners is
open to inspection at the above office

O ffices in i td inbu rgh Glasgow London
Associate firm in England and Wales: Ganvfls

J: \ litigat\ amhughes\ englct\ letter, doc

14-DEC-99 TUE 1 1 :1 5 FAX NO. 01412222201

4 I think KB wants to know exactly why the panel felt successive heads of department
failed to grasp the nettle of "adequate supervision" -because of resources...pressure
of business or for some other reason? Was Dr Char asked what the consequences of
this were or alternatively did she volunteer this information? I would respond by
confirming the position.

5 You can see why KB is anxious to establish whether the panel formed a view on
whether Dr Char told Dr Sharman about the proposal. You would ordinarily have
expected her to do so. Equally though if it was lost what was to stop Dr Char
getting a copy of the letter from its author? I anticipate KB would like to know
whether the panel asked Dr Sharman if he was positive that he did not get a copy of
the letter? Did he speak with Dr Char with this on a number of occasions? Did the
panel make enquiries with the "senior staff" that Dr Char claimed she spoke with?
Did these assist the panel? I think the response the University has prepared is the
right way forward at this stage subject to clarification of the above questions.

6 Provided Dr Char's position to the Panel was that she was that she was never
unwilling to use the UNIX facilities then I suggest the report should start by
confirming this and by confirming that the facility was available to all. The report
should probably confirm who gave evidence that she was unwilling to use the
UNIX now that this seems to be relevant. KB's question is very much a loaded one
and the issue is really whether the panel were satisfied that Dr Char had been given
adequate facilities. I note the report does give its finding in this regard. Is it the case
that there was a similarity of facilities and, if so, should the report be amended to
show that this was a factor the panel took into account in reaching their decision on
adequacy?

7 I think the response to this query should reflect carefully what Dr Char's position to
the Panel was. In addition I would be tempted to expand the report accordingly to
deal with this. I would refrain from inviting KB to respond by asking her the
question about computing capabilities.

8 I think the point KB is trying to make is that the findings in the report state that
there is no evidence when there is of course, Dr Char's evidence. However I feel
that the general position is not irrelevant as KB perhaps seeks to suggest. It might
be a factor one could legitimately look at when determining what was actually said.
I think KB is looking to ascertain what the panel felt had been said to Dr Char about
grants and I too would be interested to know what they found as it will help us
understand their position. The report needs to be amended in my opinion.

9 The report states that the department should have acted more decisively and KB
has extrapolated from this that the panel also found that there was inadequate
supervision. I think it is important for the panel to set the record straight on the
issue of adequate supervision. Dr Char is looking for compensation and from a
purely legal perspective the main issues are therefore (1) whether there was a
breach of contract and (2) if so, what the loss is. I assume the University has no
proposals but I do think they should go into a bit more detail about why they feel
this should be die case.

JAWgat\amhugKes\cngUrt\lctter.doc 2

14-DEC-99 TUE 1 1 :16
(FAX NO. 01412222201

10 I note that Dr Char made no direct claim of racial harassment. Whilst Dr Char may
have not used the word /ydiscrimination" it is clearly KB's intention to now raise
this as one of her arguments. What are the reasons for not allowing the racial
harassment issue to be dealt with as part of the complaint procedure as KB
suggests? Is it die case that the panel did not consider that the issue of her status as
an overseas student or her ethnic origin was a relevant factor in what took place in
this case, or did they just not consider these issues at all?

11 I think it is important for the University to explain the position in a bit more detail
given KB's desire to know whether efforts were made to trace these people and if
not why? Did Dr Char make anything of this at the oral hearings? Was the position
explained to her then?

12 My reading of the report is that Dr Char received adequate supervision and
facilities (see finding 9) but in light of KB's comments I wonder whether the report
at section 2 and 5 needs to be clarified or expanded.

13 Again should the report be amended to deal with these points?

I think it would be helpful for the letter to KB to be redrafted in light of my above comments
and would be delighted to look over the final version before it goes. I am on holiday on 16 th-
20th -28th and SÔ -Sl*' December. T am also off from 1st -3rd January 2000.

Yours sincerely

Morton

J:\Ii tigjtr\3mhughtis\ englet\letter.doc 3

. I4-DEC-99 TUF 11:if i
FAX NO. 01412222201 p 05

ETHNIC MINORITIES LAW CENTRE
41 s t V i n c e n t P la c e

ATHLEHN BOLT GLASGOW TEL: 0141 204 2888
r i n c i p a l S o l i c i t o r G i 2ER f a x : o h i 2042006

Our Ref: KB/AS/HKY21

Professor R R Whitehead
Clerk of Senate
Senate Office
University of Glasgow

8 July 1999

SENATE OFFICE

sec'd-9 JUL 1999university oi oiasgow :
Glasgow |

Dear Professor Whitehead

Dr K G Char - University Complaint

I refer to your letter of 28th April to Dr Char enclosing the Report of the Panel set up
to investigate her complaint to the Senate and your request for her comments
regarding the factual accuracy of the Report. Dr Char has prepared a summary of the
points she wishes to raise and I enclose this document.

I note that following consideration of Dr. Char’s comments a final Report will go to
the Senate itself. Given your findings on a number of issues I would ask that the
following points be addressed by yourselves and/or by the Senate.

Firstly it is my opinion that your introduction is slightly misleading. Dr Char was
advised by the Principal to take the complaint about which she had written to him to
the Senate Appeals procedure. As you are aware there was no complaints procedure
in place at that time and her complaint was not against an academic matter, given
that she had been awarded her PhD. There appears therefore to have been no
appropriate remedy available at that time and she merely followed the advice of the
Principal in approaching the Senate Cleric who after considering her case
advised/allowed her to proceed by way of your draft complaints procedures. Indeed
one of the difficulties which Dr Char appears to have encountered is the lack of any
appropriate procedures either at Departmental or Senate level for dealing with her
complaints at a much earlier stage. This point arises in your findings and is
discussed again below.

SC

ETHNIC MINORITIES LAW CENTRE (a company limited by guarantee) rc5î .»r-<i s^dandt 134099
Registered Office: 41 St ^ncent Place, Glugo-v, Gt 2ER

ETHNIC MINORITIES LAW CENTRE IS A CHARITY
Its legal v o rk ii undertaken by the independent legal practice of Kathleen Bolt, Principal Solicitor it the above address.

A:\HKV21 U 7 a .d o a

m * m v a a m ,

Secondly your Report fails to mention Dr Char’s request for other Departmental
members and others to be present at the third meeting of the Panel and your reasons
for refusing this request.

I would like to raise some points arising from the findings:-

1. You say that ‘on the whole’ Dr Char was dealt with honourably by members of
the Department. Tliis suggest exceptions - what are these?

2. You say that successive Heads of Department ‘failed to fully grasp the nettle'
What does this mean and what were the consequences for Dr Char? Further you
think that a ‘pastoral’ supervisor have alerted the Department to the
breakdown between Dr Char and Dr Sharman. Whilst this may well have
assisted, it seems that this breakdown should nonetheless have been apparently
obvious to the Departmental Heads.

4. Is there any reason to disbelieve Dr Char that she showed Dr Sharman the
proposal from BT and that he failed to do the necessary work to allow her to
process this matter?

5. As stated in Dr Char’s summary she denies that she was unwilling to use tlv
UNIX facilities. These findings also do not address the issues of whether llu
facilities available to Dr Char were the same or similar to those available to others
in the Department at her level.

7. There seems to be some confusion here. Dr Char is adamant that she did h«-i
write a GP kernel count and did not want to write one. She advises that this u ;i
beyond her computing capabilities and that to have written such a count would
have taken an enormous amount of time which she could not have allocated to h i
PhD. She advises that the software was available on the Adam Fraser Kauri
and her-intention was to use genetic programming to write an enginca utr
application and to combine neural networks with it which she ultimately did Sin
advises that she repeatedly told the panel that she did not write a GP kernel.

8. Your findings seem to state the general position rather than address the specifies
of Dr Char’s position. Whilst it may be the case that a Head has no author!iy <o
propose more than consideration of a position, that does not deal with the ismh- «»f
whether on this occasion the impression of being able to promise more wa- ■.•iwn.

TUE 31:17
FAX NO. 01412222201

Conclusion. You refer to ‘accepted norms’. What are these, and upon what arc
they based?

Given your findings at number 1 and 2, what remedy do you propose for Dr Char in
relation to this matter. I note your recommendations regarding the workings of the
Department, however this will be of little consequence to Dr Char herself. The
failure of the Department to consider her complaints timeously or seriously has
clearly exacerbated the problems she was facing, not least the difficulties o f
establishing events at this stage.

Secondly, Dr Char has a number of times, in correspondence and in her detailed
complaint, made reference to the fact that she believes she was discriminated againsi
i.e. treated differently or less favourably by virtue of her ethnic origin and status as
on overseas student. Her main concerns have been failure to change her supervisor,
the lack of facilities and indeed the complete deprivation of suitable facilities for a
considerable period of time and the failure of the department/university to
investigate her complaints about harassment and other incidents despite repeated
requests, all of which she believes may have been discriminatory. At no point is this
issue addressed. Whilst I understand that there is a separate code relating to racial
harassment, the issues arising for Dr Char appear to relate as much to unfavourable
or differential treatment as to racial harassment as such and therefore I see no reason
why they cannot be dealt with as part of the complaints procedure. Further no one
has suggested to her that she pursue the alternative remedy of racial harassment.

Thirdly Dr Char has given the names and contacts for a number of other students
who she believes also had difficulties with Dr Sharman. It would appear that no
efforts have been made to contact these other students and investigate the matter. Ii
would certainly put a different perspective on matters if it was established that Dr
Char was not the only student who felt that she had been mistreated by Dr Sharman
and may well change the panel’s view.

Fourthly the crux of her complaint is really why the Department did not change her
supervisor and provide appropriate facilities at a much earlier stage. Once again the
panel does not appear to have resolved the failure of the Department to do either of
these.

Finally the question arises as to why Dr Char was assigned a supervisor with no
background in neural networks or artificial intelligence. If there was no such
supervisor available within the Department then this begs the question as to why she
was invited to complete her PhD. within the department in the first place.

I H E C - 9 9 TUE 11:17
FAX NO. 01412222201 P. 08

W e h o p e t h a t t h e p a n e l c a n a d d r e s s t h e s e v a r i o u s i s s u e s i n r e - d t > ; u s s i n g t h e r e p n n
a n d l o o k f o r w a r d t o y o u r c o m m e n t s i n r e l a t i o n t o t h e s e m a t t e r s .

S i n c e r e l y y o u r s
o n b e h a l f o f E M L C

iP Katlileen Bolt
PRINCIPAL SOLICITOR

3 ' i . l 7 . »00C

