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SUMMARY

Heart disease is an important cause of morbidity and mortality in the canine population, 

with the two most common causes of acquired heart disease being dilated 

cardiomyopathy and endocardiosis.

In human patients with heart disease, it has been noted that the clinical signs and 

symptoms are often of greater severity than expected from the degree of left ventricular 

dysfunction, suggesting that additional factors contribute to the syndrome. It has now 

been shown in several human and experimental animal studies, that blood flow to 

exercising skeletal muscle is reduced in heart failure and that this is not due to an 

inability to increase cardiac output. This suggests an inability of the vasculature to 

accommodate the increased blood flow required by the exercising muscle, leading to an 

early switch over to anaerobic metabolism and premature fatigue.

While the neurohumoral aspects of cardiac failure have been well characterised at a 

systemic level, the local vascular effects have not.

To gain further knowledge of the local effects and their role in the pathophysiology of 

cardiac disease, it is necessary to characterise normal vessels, in addition to examining 

vessels from heart failure animals.

With these goals in mind, the primary aim of this project was to characterise both the 

dog saphenous vein and the dog subcutaneous resistance arteries, in relation to their 

functional a,-adrenoceptor population. Findings are discussed in detail in Chapter 3 and 

Chapter 4. The functional effects of five competitive reversible antagonists and the 

irreversible alkylating agent CEC, on noradrenaline mediated contractions of dog 

saphenous vein and dog subcutaneous resistance arteries, were analyzed.



In both vessels the a,-adrenoceptors appeared to have a low affinity for the a,- 

adrenergic antagonist prazosin, necessitating their classification as a 1L-adrenoceptors. 

In addition, in both vessels, there was evidence for the involvement of another subtype 

in the noradrenaline response. This receptor, despite a low affinity for prazosin had 

some characteristics of the a 1B-adrenoceptor.

Chapter 5 describes the cloning and sequencing of an 891 bp fragment of the canine a la- 

adrenergic receptor cDNA. This subtype was chosen because of the mounting evidence 

that it is responsible for the a 1L- pharmacology. The fragment was initially isolated 

using reverse-transcription polymerase chain reaction (RT-PCR) and primers designed 

from areas of high homology in the a la-adrenoceptor of the human and bovine a la- 

adrenergic sequence. This fragment, together with a canine partial a ]b- sequence was 

used to probe cell lines expressing the human a ]a- and a ,b-adrenergic receptors, as well 

as canine prostate and brain RNA. The canine a la- probe failed to detect message in any 

of the samples and while the a ]b- probe hybridized to the a ]b- expressing cell line RNA, 

there was evidence for a lack of subtype specificity of this probe.

Finally, Chapter 6 describes experiments comparing isolated femoral artery, saphenous 

vein and subcutaneous resistance arteries from dogs with naturally occurring heart 

failure, and controls. The findings suggest that in heart failure there is a decrease in 

sensitivity to exogenous noradrenaline in both the saphenous vein and the femoral 

artery, but not in the resistance arteries. In addition, vasorelaxations to acetylcholine 

were examined in all vessels and no significant differences were found between vessels 

from control and heart failure dogs. Interestingly, on examination of the case details 

from the heart failure dogs used, it was found that in the cohort of patients used for the 

large vessel studies, the majority of animals had received no treatment, (seven out of 

eight animals were not treated). This was in contrast to the cohort used in the resistance



artery group, where four out of five animals had received treatment for their cardiac 

disease. The relevance of this and possible effects are discussed in this chapter.
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1.0 aj-ADRENOCEPTORS

1.0.1 Historical perspective

Oliver and Schaffer (1895) showed that adrenal gland extract increased blood pressure 

when administered in vivo, thereby introducing the concept of the adrenoceptor system. 

Subsequent to this it was thought that the reason for variation in effects brought about 

by adrenotropic receptors (in some cases depressor and in others pressor), was due to the 

release of different endogenous catecholamines called sympathins, (sympathin I for 

inhibitory and sympathin E for excitatory), each one causing a different effect at the 

same receptor, (Cannon and Rosenbleuth, 1933).

This theory became obsolete when Ahlquist (1948) used five different catecholamines 

on eight different systems, in order to examine their rank order of potency for 

contraction and relaxation responses. Rank orders differed between pressor and 

depressor responses, suggesting that the receptors involved in each of these activities 

were in fact different. He named these two types of receptors a  and p, with a- receptors 

being involved in excitatory responses, with the exception of the gut, and P- receptors 

being responsible for inhibitory responses, with the exception of the myocardium. 

Ahlquist’s theory was later confirmed with the advent of a P-adrenoceptor antagonist 

(Moran and Perkins, 1958; Powell and Slater, 1958). Until this time only an a- 

adrenoceptor antagonist had been available.

Langer (1974) then discovered the existence of pre-junctional a-adrenoceptors which 

modulated the release of endogenous noradrenaline. These receptors differed 

pharmacologically from post-junctional receptors. An example of this was demonstrated 

by the relative potency of phenoxybenzamine at both sites. Phenoxybenzamine was 30 

times more potent at post-junctional adrenoceptors. Due to these differences he decided
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to classify the pre-junctional receptors as a 2-, and the post-junctional as a r  

adrenoceptors, based on anatomical and pharmacological properties.

In 1979, Drew and Whiting found that hypertension induced by the administration of 

phenylephrine, was more readily antagonized by prazosin, than hypertension induced by 

noradrenaline. Conversely, yohimbine antagonized the effects of noradrenaline to a 

greater extent This was one of several papers showing evidence of post-junctional a 2- 

adrenoceptors (Timmermans et al. 1979; Docherty et al. 1979). From this time onward 

a ,- and a 2-adrenoceptors were classified purely on pharmacological properties (Starke 

and Langer, 1979; Berthelsen and Pettinger, 1977). The presence of post-junctional a 2- 

as well as a r  adrenoceptors, which mediate vascular smooth muscle contraction, is now 

well documented in a variety of vessels (Simonsen et al. 1997; Elliott, 1997; Wright et 

al. 1995; Nielsen et al. 1989), including the dog saphenous vein (MacLennan et al. 

1997; De Mey and Vanhoutte, 1981).

1.0.2 a  1-adrenergic subtypes

Role of the a ,-adrenoceptors and relevance of multiple subtypes

The a,-adrenoceptors are mediators of the sympathetic nervous system and as such, 

these receptors interact with the endogenous ligands noradrenaline and adrenaline. Due 

to this interaction and because of their wide distribution, these receptors have many 

important functions.

Receptors on vascular smooth muscle and in myocardium have a key role in the control 

of peripheral resistance and myocardial contractility (Minneman and Esbenshade, 1994; 

Minneman, 1988; Graham et al. 1996). Not only do these receptors have an important 

physiological role, but they have been implicated in certain pathological processes. 

Alterations in both the a r  and a 2-adrenoceptor population on vascular smooth muscle
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have been reported in heart failure (Forster and Armstrong, 1990; Forster et al. 1989; 

Stassen et al. 1997a; Stassen et al. 1997b). More recently, certain subtypes have been 

implicated in myocardial and smooth muscle hypertrophy (Xin et al. 1997; Milano et al. 

1994a; Yamazaki et al. 1997; Milano et al. 1994b), as well as being involved in the 

phenomenon of ischaemic preconditioning of the myocardium (Kariya et al. 1997; Li et 

al. 1997). Their role in the dynamic component of benign prostatic hypertrophy has 

been well documented (Chappie, 1997; Hieble and Ruffolo, 1996). The importance of 

a ,-  adrenoceptors is also reflected in the fact that currently they are targets for the drug 

treatment of a variety of conditions such as hypertension, benign prostatic hypertrophy, 

nasal congestion and angina pectoris (Hieble and Ruffolo, 1996; Minneman et al. 1993). 

It is clear from this, that an understanding of the contribution of individual subtypes to 

both physiological and pathological processes, will not only extend our knowledge of 

the pathways involved, but will open up the possibility for the development of subtype 

selective antagonists and agonists, which can be used more effectively and with fewer 

side effects.

The evidence supporting the existence of more than one subtype of a } -adrenoceptor 

began to surface in the early 1980s. Since then the evolving sub-classification of these 

receptors has followed a tortuous and often confusing path.

Evidence based on agonist studies

The initial proposal for the sub-classification of these receptors into two populations 

came from agonist studies. Ruffolo et al (1977), made the initial observation that the 

imidazoline agonists and the phenethylamine agonists seemed to either have different 

modes of action at the same receptor population, or they acted on different types of a,- 

adrenoceptor, since if desensitization was induced with an agonist from one group, the
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tissue was not subsequently desensitized to agonist from the other group, but responses 

were reduced if a different agonist from within the same group were used. Godfraind et 

al (1982), while working on rat thoracic aorta, showed that the responses to the 

phenethylamine agonists were relatively less sensitive to calcium channel blockers when 

compared to the imidazolines. Further evidence for heterogeneity of the a r  

adrenoceptor population came from work on a variety of tissues, the responses of which, 

on the basis of antagonist profiles, were a,-mediated, but which showed different 

responses to different classes of agonists. For example, in the rat anoccocygeus muscle, 

phenethylamine agonists produced a dose response curve with a definite shoulder, with 

the lower component of the curve demonstrating a phasic response. In comparison, 

imidazoline agonists, produced a monophasic concentration response curve in the same 

tissue, and the response was also phasic except at the highest concentrations of agonist. 

This led McGrath (1982) to suggest that the adrenoceptors mediating these responses be 

classified as a la- and a ]b-. In this classification, the phenethylamine agonists activated 

both the subtypes, thus accounting for the biphasic response, whereas the imidazoline 

agonists activated only the a ]a- subtype which were contributing to the lower phasic part 

of the phenethylamine concentration response curve. In addition, it was thought that the 

two proposed subtypes could be further distinguished by their second messenger 

activation pathways, with the a la- utilizing extracellular calcium and the a lb- utilizing 

intracellular calcium. Usage of this classification scheme did not continue mainly due 

to the failure to identify antagonists which could distinguish the two subtypes.

Evidence from radioligand binding and functional experiments

Throughout the course of this introduction, native receptors will be referred to with 

uppercase letters and recombinant receptors will be referred to with lowercase letters, as
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recommended by the committee for the nomenclature of a,-adrenoceptors (Hieble et al. 

1995).

In the case of functional and radioligand binding studies, receptors are classified with 

the use of selective antagonists. In the case of radioligand binding, the receptors are 

labelled using a radioactive drug, which is then competed off the receptor using a non

radioactive competitive congener (Starke, 1981). In functional studies the concentration 

of the antagonist which causes the concentration response curve to shift to the right by a 

factor of two is the antagonist’s receptor dissociation constant (pA2), and if two 

receptors are the same, then a given antagonist should have the same pA2 value at both 

sites (Flavahan and Vanhoutte, 1986a). A more detailed description of the derivation of 

pA2 values is given in the materials and methods section of this thesis.

Morrow et al (1985) and Morrow and Creese (1986) showed evidence for receptor 

heterogeneity in rat brain. They found that the antagonists WB4101 and phentolamine 

competed for [3H] prazosin labelled sites with high and low affinities, suggesting that 

the prazosin was labelling a heterogeneous population of receptors. The high affinity 

sites were termed a 1A-, while the low affinity sites were termed a )B-.

In 1987, Han and colleagues published a number of papers which followed on from this. 

A Nature publication (Han et al. 1987a), also distinguished subtypes based on the 

affinity for WB4101 at rat hippocampus, vas deferens, liver and spleen. Their results 

showed that in rat liver and spleen, the affinity for WB 4101 was low and the pattern of 

antagonism monophasic, suggesting the presence of only the a 1B- subtype. In contrast, 

both the vas deferens and the hippocampus displayed biphasic inhibition curves for WB 

4101, suggesting the presence of both the a 1A- and the a 1B- subtypes. From this study 

they also concluded that the contraction induced by the a 1B-adrenoceptor was 

independent of extracellular calcium while that induced by the a ]A-adrenoceptor relied
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on the opening of dihydropyridone sensitive calcium channels. Interestingly this tied in 

with the proposed classification of McGrath (1982). However, by the authors’ own 

admission, the ability to distinguish the two subtypes, by sensitivity to calcium channel 

blockers, while possible for the tissues which they examined, did not hold true for all 

tissues and thus while the division based on differing affinity for WB 4101 gained 

credence, the source of calcium as a subtype distinguishing feature, did not. In fact, in a 

later publication (Han et al. 1990), it was demonstrated from cells in culture that both 

a ]A- and a 1B- adrenergic receptors could stimulate inositol phosphate accumulation to a 

similar extent and it has since been shown that all the cloned receptors can induce the 

accumulation of inositol phosphate (Cotecchia et al. 1995; Schwinn et al. 1991; Theroux 

et al. 1996; Minneman and Esbenshade, 1994).

Han et al (1987b), went on to use both the alkylating agent chloroethylclonidine (CEC) 

and WB4101. In this instance, they found that again there were high and low affinity 

sites in rat brain for WB4101 competition against [125I] BE 2254 binding, and that CEC 

seemed to inactivate only the low affinity WB4101 sites, although quantitatively the 

number of sites inactivated by CEC compared to the low affinity WB4101 sites did not 

correlate well. In a paper the following year they showed that this discrepancy was 

probably due to incomplete access of the CEC to sensitive sites, since when the 

experimental conditions were altered and the CEC inactivation carried out in hypotonic 

as opposed to isotonic solution, the proportion of sites inactivated increased and was 

more compatible with the proportion of WB4101 low affinity sites(Minneman et al. 

1988).

In the late 1980s the advent of further subtype selective antagonists lent support to the 

proposed a 1A- and a ]B- classification. In particular, both a urapidil derivative, 5 

methylurapidil and a 1,4-dihydropyridine, niguldipine, were found to be selective for



the a 1A- subtype (Graziadei et al. 1989; Hanft and Gross, 1989; Gross et al. 1988), with 

5 methylurapidil having an «70 fold selectivity for the a 1A- subtype as opposed to only a 

20-30 fold selectivity exhibited by WB 4101 in radioligand binding experiments (Hanft 

and Gross, 1989).

Evidence from molecular studies

Although the a IA- and a 1B- classification had met with a certain amount of scepticism 

and uncertainty, the existence of these subtypes, in addition to a third, ( a ID-), was 

confirmed from 1988 onwards with the successive cloning and sequencing of these 

receptors, and their identification as different gene products (Smiley et al. 1998). Due, 

in the beginning, to a limited number of subtype-selective antagonists, there was some 

confusion as to the identity of the cloned receptors in relation to their native 

counterparts. The following paragraphs aim to summarise the sequence of events 

without, hopefully, causing too much additional confusion.

The first of these receptors to be cloned, sequenced and expressed was the hamster a ]b- 

(Cotecchia et al. 1988). This was isolated from DDT|MF-2 cells, which are a hamster 

derived smooth muscle cell line. When this 2Kb cDNA clone was expressed in COS-7 

cells, it was shown to have a low affinity for WB 4101 and phentolamine, and to be 

associated with the accumulation of inositol phosphate. From these findings and based 

on the information from functional and radioligand binding studies already discussed 

above, it was decided that this clone represented the hamster a 1B- adrenergic receptor. 

A second receptor was identified by the same group and the results published the 

following year (Schwinn et al. 1990). This time a clone was derived from a bovine 

brain cDNA library using a probe derived from the hamster a lb- adrenoceptor. This 

receptor was « 70% homologous to the hamster a ]b- sequence, supporting the fact that



this was an a r  adrenoceptor. The new clone was mapped to a different human 

chromosome to the hamster a lb- and when this clone was expressed in COS-7 cells, 

unlike the a ]b-, it showed a 10 fold higher affinity for the antagonists WB 4101 and 

phentolamine, together with a high affinity for the agonist oxymetazoline. Although 

this profile supported the classification of this receptor as an a la-, the sensitivity of the 

receptor to CEC, (generally associated with the a lb-), together with an inability to detect 

expression of mRNA in rat tissues described as possessing a 1A- adrenoceptors from 

binding studies, led the authors to believe that this was a novel adrenoceptor not 

identified from radioligand or functional studies, and it was named the a lc-adrenoceptor. 

A third clone was identified from a rat cerebral cortex library (Lomasney et al. 1991). 

Due to the high affinity of this clone for WB 4101 and a distribution in rat tissues 

corresponding to the native a 1A-adrenoceptor from radioligand binding studies, it was 

assumed that this clone represented the a 1A-adrenoceptor. At roughly the same time 

another group had identified an a,-adrenoceptor using solution-phase library screening 

of a rat brain library (Perez et al. 1991). This clone did not convincingly fall into either 

the a 1A- or a 1B- classification, since despite a high affinity for WB 4101, the affinity for 

5 methylurapidil and niguldipine was much lower than at a 1A- adrenoceptors and the 

sensitivity to CEC was lower than expected at a 1B- adrenoceptors. Based on this 

evidence, the clone was considered to be a novel a,-adrenoceptor and was named the 

a ld-. It soon became clear that the a ]d- was identical in sequence to the a la clone 

(Lomasney et al. 1991), with the exception of two codons, and that these were in fact 

encoding for the same receptor, generally now accepted to be the a ]d- (Minneman and 

Esbenshade, 1994).
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At this point it seemed that while the cloned a ]b- corresponded to and encoded for the 

native a 1B-, the cloned a ]d- had no functionally defined counterpart, the native a ]A- had 

no cloned counterpart and the cloned a ]c- had no functional counterpart.

Despite this all was not lost. From about 1994 onwards it became generally accepted 

that the cloned a lc- should be renamed the a la- and that this cloned receptor 

corresponded to and encoded for the native a ]A-adrenoceptor (Hieble et al. 1995). 

Evidence for this came from a number of observations. It was demonstrated that 

alterations in the experimental conditions under which sensitivity to CEC was 

examined, could influence the results, and subsequently sensitivities approximately 20% 

lower than expected were derived for the human and bovine a lc- clones (Schwinn et al. 

1995). A decrease in the sensitivity to CEC was also seen in the rat homologue (Laz et 

al. 1994). Another study reported a higher sensitivity to niguldipine in the rat 

homologue of the receptor compared to the bovine clone (Forray et al. 1994a), and with 

the use of more sensitive techniques such as RNase protection assays and in situ 

hybridization studies, the mRNA for this subtype had a wider tissue distribution than 

originally shown with Northern analysis (Price et al. 1994; Price et al. 1993). In 

addition, a functional study of the a,-adrenoceptors mediating smooth muscle 

contraction, in the isolated perfused kidney of the rat, showed a high degree of 

correlation in the functional potency of the antagonists used with the affinity of the 

same ligands for the cloned a ]c- receptor (Blue et al. 1995). This type of correlation was 

mirrored in a number of other studies, for example, Testa et al (1995), Ford et al (1994) 

and Faure et al (1994a).

With the advent of the a ]D- selective ligand BMY 7378 (Goetz et al. 1995), it became 

apparent that the cloned a ld-adrenoceptor did have a functional counterpart. Since then 

it has been identified as playing a role in a variety of tissue types including rat renal
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artery (VillalobosMolina et al. 1997), rat aorta (Kenny et al. 1995), rat aorta and iliac 

artery (Piascik et al. 1995) and rat myocardium, aorta, vas deferens and spleen (Deng et 

al. 1996).

In summary therefore, there are currently three native subtypes of aj-adrenoceptor, 

namely a 1A-, a ]B- and a 1D-. These would appear to correspond to, and be encoded by, 

the three cloned a!-adrenoceptors namely, the a ]a-, a lb- and a ld- . The term a lc- is no 

longer to be used. To date one or more of the three cloned receptors have been 

identified in a variety of species including human, rat, murine, bovine and rabbit. With 

particular relevance to this thesis, as far as I am aware the only canine sequence 

currently known is a partial sequence for the canine a lb-adrenoceptor (Libert et al.

1989).

From functional, radioligand or mRNA expression studies, although often more than 

one subtype is expressed or appears to have a functional role, frequently a particular 

subtype seems to predominate in a particular tissue. Some examples are listed. The 

a 1A-adrenoceptor has been identified in rat resistance arteries (Kong et al. 1994; Ibarra 

et al. 1997), rat renal artery (Piascik et al. 1997; VillalobosMolina et al. 1997), vas 

deferens (Moriyama et al. 1997; Burt et al. 1995), rat renal vascular bed (Blue et al. 

1995) and rabbit ear artery (Fagura et al. 1997), from functional studies. Expression of 

the a la- subtype mRNA has been demonstrated in human heart, liver, cerebellum and 

cerebral cortex (Faure et al. 1995; Hirasawa et al. 1995; Price et al. 1994), rat, monkey 

and human bladder and prostate (Nasu et al. 1996; Walden et al. 1997) and rabbit and 

guinea pig liver (GarciaSainz et al. 1995). The a 1B- subtype has been demonstrated in 

rat mesenteric resistance artery (Piascik et al. 1997), rat spleen (Burt et al. 1995) and 

rabbit cutaneous resistance arteries (Smith et al. 1997) from functional studies. 

Expression of the a ]b- subtype has been identified in human spleen, kidney and fetal
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brain (Price et al. 1994), rat liver (GarciaSainz et al. 1995; Faure et al. 1995) and rat 

pineal (Sugden et al. 1996). As already mentioned the a ]D- subtype has been identified 

in rat aorta and rat iliac artery (Fagura et al. 1997; Kenny et al. 1995; Piascik et al. 1995; 

Deng et al. 1996) from functional studies. Expression studies have identified the a ld- 

subtype in human aorta and cerebral cortex (Price et al. 1994), rabbit aorta, prostate, vas 

deferens and cerebral cortex (Suzuki et al. 1997) and guinea pig liver (Faure et al. 

1995).

It is important to highlight at this point, that in functional studies, the classical oc]A- 

adrenoceptor subtype would appear to only have been identified in rat tissues. By 

classical a 1A-, I mean a functional receptor with a high affinity for prazosin (>9), as well 

as a high affinity for the a ]A- subtype-selective ligands. The relevance of this becomes 

clear in the next section, where the a ]L-adrenoceptor is discussed. Although in the 

previous paragraph I mentioned that the rabbit ear artery a,-adrenoceptor was classified 

as a 1A-, it is interesting to note that values for the affinity of prazosin were not quoted 

in this study (Fagura et al. 1997).

oc1L-adrenoceptor pharmacology

While the sub-classification of the a,-adrenoceptors into a 1A-, a 1B-, and a 1D- was being 

resolved, an additional purely functional classification was coming to light.

A characteristic of all the subtypes mentioned so far, is that in radioligand binding and 

functional experiments, these receptors all have a high affinity for the a,- ligand 

prazosin.

From examination of functional experiments, it became clear that there was a 

considerable spread in the pA2 values for prazosin at a ,-adrenoceptors (Drew, 1985). 

The variability in the potency of this antagonist was taken as evidence for receptor
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heterogeneity. This was supported by a study of rabbit pulmonary artery which showed 

that prazosin antagonised the agonist clonidine in a non-competitive way, revealing both 

a high and a low affinity site (Hoick et al.l 983). Flavahan and Vanhoutte (1986a) 

reviewed the literature and suggested that receptors could be classified as a 1H- if the 

affinities for prazosin and yohimbine were greater than 9 and 6.4 respectively, and oc1L- 

if  the affinities for prazosin and yohimbine were less than 9 and 6.2 respectively. 

Muramatsu et al (1990b) evolved this suggested classification scheme, and based on 

functional experiments using prazosin, HV 723, WB 4101, yohimbine, phentolamine 

and CEC on a selection of blood vessels, they divided the a,-adrenoceptors into three 

groups. The a ]H-receptors had a high affinity for prazosin (pA2 > 9.5), that was greater 

than the affinity for either HV 723 or WB 4101, and they were sensitive to CEC. The 

a 1L- adrenoceptors had a similar pA2 value for prazosin and HV 723 and the affinity for 

prazosin was generally <9. The a ]N-adrenoceptors had a low affinity for prazosin 

(pA2<9) and a higher affinity for HV 723 (pA2>9). Both the a 1L- and the a ]N- 

adrenoceptors were insensitive to CEC. Other ligands which appear to distinguish the 

low affinity prazosin sites by having a low affinity at these receptors relative to that for 

the a 1A-adrenoceptor are, RS-17053 (Leonardi et al. 1997; Testa et al. 1997; Marshall et 

al. 1996; Ford et al. 1996a), SNAP 5089 and REC 15/2627 (Testa et al. 1997; Leonardi 

et al. 1997).

It was unclear as to how this classification scheme could be reconciled with the a 1A-, 

a 1B- and a 1D- classification, which was evolving in parallel and whose subtypes could 

not be distinguished by prazosin. Oshita et al (1992) suggested that the a 1A-, a ]B- and 

a 1D- were subtypes of the a 1H- receptors, but this still meant that there was no cloned 

counterpart for the prazosin insensitive receptors (a ]L/N-).
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Although the identity of the gene encoding the oc]L-adrenoceptor is still not completely 

clear, there is now some convincing evidence that the a 1A-adrenoceptor is responsible 

for the a 1L- pharmacology. This idea initially came from experiments looking at the 

human a la-adrenoceptor expressed in cell lines (Ford et al. 1997a; Ford et al. 1996a). 

Radioligand binding experiments revealed a profile typical of the classical a ]A- 

pharmacology, with a high affinity for prazosin, WB 4101, 5 methylurapidil, 

niguldipine and RS-17053. When these results were compared to experiments 

measuring inositol phosphate accumulation, it was shown that the pA2 values for these 

antagonists fell, and values were more typical of those seen at the a ]L-adrenoceptor in 

functional studies. The fall in the pA2 values could not be explained by an overall 

lowering of the values, since affinity estimates for tamsulosin, indoramin and REC 

15/2739 remained high and comparable to radioligand binding values. In addition, 

similar experiments carried out using the a lb- and oc)d- cloned subtypes did not exhibit 

such changes in affinity estimates between the two types of experiment. It was also 

shown that if the conditions of radioligand binding were altered and whole cells rather 

than membranes used, together with a change in the media, results from radioligand 

binding at the cloned a la- could be altered to more closely mirror the a 1L-adrenoceptor 

pharmacology (Williams et al. 1996).

To date four isoforms of the human a la-adrenoceptor have been identified. These have 

been named a ,^ ,  a la_2, a la_3, a ]a_4 and they all diverge in sequence at their carboxy 

termini (Chang et al. 1998; Hirasawa et al. 1995). It has been shown that when all four 

isoforms are expressed in cell lines and inositol phosphate accumulation measured, all 

the isoforms display the a 1L-adrenoceptor pharmacology (Ford et al. 1997b; Chang et al. 

1998). Figure 1.1 shows a diagram summarising the current subdivisions of the oq- 

adrenoceptors.
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The a ]L-adrenoceptor is mainly associated with mediating noradrenaline induced 

contraction of the lower urinary tract tissue of man (Muramatsu et al. 1995; Muramatsu 

et al. 1994; Ford et al. 1996a) and animals, including the dog (Leonardi et al. 1997; 

Testa et al. 1997), and the rabbit (Leonardi et al. 1997; Shannon Kava et al. 1998; 

Deplanne and Galzin, 1996). In addition, a pharmacological profile consistent with this 

subtype has been identified in a variety of blood vessels including, rabbit cutaneous 

resistance arteries (Smith et al. 1997), rat small mesenteric artery (Van der Graaf et al. 

1996a), dog saphenous vein, mesenteric vein and artery (Muramatsu et al. 1995), and 

rabbit thoracic aorta (Muramatsu et al. 1990a).
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Figure 1.1. Chart summarising the classification of the a r adrenoceptors.
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1.0.3 Structure and genomic organization of the a ,-adrenoceptors

a!-adrenoceptors are part of a larger family of cell receptors that are coupled to guanine 

nucleotide regulatory proteins (G proteins) (Gilman, 1986). Hydropathicity analysis of 

the cloned receptors has shown a similarity to rhodopsin and bacteriorhodopsin and 

indicates a putative structure consisting of a single polypeptide chain ranging in length 

from 429-561 amino acid residues, comprising seven transmembrane spanning domains 

interspersed with alternate hydrophilic intra and extracellular loops, an extracellular 

amino terminus and a cytoplasmic carboxy terminus (Graham et al. 1996; Schwinn et al. 

1990; Cotecchia et al. 1988). A theoretical diagram of this is illustrated in Figure 1.2. 

The exact three dimensional structure and orientation of the a,-adrenoceptors is still 

being resolved.

Homology between the subtypes is highest in the transmembrane spanning domains 

with homology in the order of 65-75% at the amino acid level when the subtypes are 

compared (Cotecchia et al. 1995). Homologies are even higher between species for a 

particular subtype as can be seen from sequence comparisons in Chapter 6, where for 

example it is shown that homology between the a la-adrenoceptor sequences for different 

species is in the order of « 90% .

The different subtypes are encoded by different genes with the a lb- being located on 

human chromosome 5 and the a ]a- being located on human chromosome 8 (Smiley et al. 

1998; Schwinn et al. 1990). Unlike most of the other G protein coupled receptors, the 

a!-adrenoceptors have a single large intron located at the end of the putative VI 

transmembrane spanning domain (Cotecchia et al. 1995; Perez et al. 1994; Ramarao et 

al. 1992). A recent study also examined the genomic organization of the exon cassettes 

encoding the four isoforms of the human a la-adrenoceptor (a la_„ a la_2, ot]a_3, a la,4). In 

this study, workers were unable to locate the exon encoding for the <x]a_2 isoform but
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showed that the exon for the a la_, isoform lay beside the VII transmembrane domain 

region with no intron gap, the a ]a_4 isoform lay 1.4Kb downstream and the a ]a_3 exon lay 

approximately another 7Kb downstream (Chang et al. 1998).

A number of studies using mutated and chimeric a,-adrenoceptors have been able to 

identify regions of the receptor responsible for G protein interactions, homologous 

desensitization and ligand binding.

Zhao et al (1996) found that three residues lying side by side on the extracellular loop of 

the fifth transmembrane spanning domain could alter the antagonist affinity of WB 4101 

and phentolamine. Therefore if these sites on an a ]b-adrenoceptor were mutated to the 

residues found in the a ]a-adrenoceptor, this changed the antagonist profile from oc]b- to 

a la- in relation to WB 4101 and phentolamine. If the residues were mutated back the 

antagonist affinity could be reversed back to that for the a lb-.

Lattion et al (1994), using truncated forms of the a lb-adrenergic receptor, demonstrated 

that the carboxy terminal portion of the receptor was important in phosphorylation and 

homologous desensitization. Taking things a step further, (Diviani et al. 1997) it was 

shown that in fact 21 amino acids in the carboxy terminal portion of the receptor 

contained the phosphorylation sites associated with desensitization.

Using a chimeric receptor (p2-/oclb-), it was shown that the third intracellular loop of the 

a,-adrenoceptor was important in the coupling of the receptor to the G protein. Further 

analysis revealed that 27 residues contained in the amino end of the third intracellular 

loop were sufficient to allow G protein coupling (Cotecchia et al. 1992). In addition, 

the same group were able to demonstrate that point mutations in the carboxy end of the 

third intracellular loop could produce constitutively active receptors (Kjelsberg et al. 

1992).
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Figure 1.2. Schematic diagram of the proposed structure of an aj-adrenoceptor.

This diagram is a modified version of a diagram shown by Strosberg (1991). The 

diagram illustrates the seven transmembrane spanning domains lying within the cell 

membrane. These are connected by alternate intracellular and extracellular loops. An 

amino terminus lies extracellularly and a carboxy terminus lies within the cell.
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1.0.4 Signal transduction

As already discussed above, it was previously thought that the a ]A- and a 1B- subtypes of 

adrenoceptor could be distinguished on the basis of their signal transduction 

mechanisms, with the a 1B- subtype depending on intracellular calcium and the a 1A- 

depending on extracellular calcium (Han et al. 1987a; McGrath, 1982). It has since 

been demonstrated that due to exceptions to the rule, this was not a reliable 

differentiating feature.

Although the pathways leading to an increase in intracellular calcium concentration are 

still not clear, it is generally accepted that a,-adrenoceptors couple to G proteins usually 

of the pertussis toxin-insensitive family. G proteins are heterotrimeric structures made 

up of a , (3 and y subunits. The a  subunits are divided into several families. Examples of 

some of these families are, and G0, which are pertussis toxin-sensitive, Gs which are 

pertussis toxin-insensitive, G]2 about which little is known and Gq which are pertussis 

toxin-insensitive. The Gq family is the one which is associated with a,-adrenoceptor 

mediated phosphatidylinositol metabolism and the family comprises Gaq, Gall, GaU and 

Ga]6 (Wu et al. 1992, Guarino et al. 1996). Coupling to the G protein leads to activation 

of a membrane phospholipid, generally phospholipase C, which in turn catalyzes the 

breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2), releasing diacylglycerol 

and Ins (1,4,5) P3. Ins (1,4,5) P3 induces the release of calcium from intracellular stores. 

Diacylglycerol activates Protein Kinase C which phosphorylates a number of 

intracellular proteins including calcium channels (Minneman and Esbenshade, 1994; 

Minneman, 1988).

A number of studies have aimed to identify differences in signal transduction pathways 

utilized by different subtypes of a r-adrenoceptor, but again, if differences exist, they 

remain to be fully elucidated. Since the cloning of the a r  subtypes, expression of the
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receptors in cell lines has allowed the study of a particular subtype in isolation. 

Interpretation of the findings of these types of studies should, however, be treated with 

caution. Generally in transfection studies, the level of receptor expression is extremely 

high. Under these conditions, the amount of G protein and second messengers become 

limiting to the response. Under such circumstances, receptors may couple to and 

activate G proteins and second messenger systems that the native receptors would not. 

This can lead to errors in conclusions regarding signalling pathways and ligand 

affinities (Kenakin, 1997; Minneman and Esbenshade, 1994).

Bearing this in mind, from transfection studies it would seem that all the cloned 

receptors can induce inositol phosphate accumulation (Cotecchia et al. 1995; Schwinn et 

al. 1991; Theroux et al. 1996; Minneman and Esbenshade, 1994), although the a ]a- 

adrenoceptor seems to couple to phospholipase C with the greatest affinity (Theroux et 

al. 1996; Schwinn et al. 1991). These differences could be explained by the different 

subtypes interacting with different G proteins. Wu et al (1992), showed that all three 

subtypes of cloned receptor could couple to both Gaq and Gall. In contrast only a la- and 

a lb- coupled to Gal4, and only a lb- coupled to Ga]6.

While the above Gq family proteins are all pertussis toxin-insensitive, there is also 

eviden;e that aj-adrenoceptors do interact with pertussis toxin-sensitive G proteins. 

Boonei and DeMey (1990), demonstrated that the contractile responses of o^-agonists 

in the :at mesenteric resistance artery were abolished by treatment with pertussis toxin 

and Gurdal et al (1997), were able to demonstrate that in rat aorta, although part of the 

phenylephrine mediated response was pertussis toxin-insensitive and associated with 

Gaq, a proportion of the response was sensitive to the application of pertussis toxin, and 

seemed to be associated with an interaction of the a ]B-adrenergic receptor with the 

pertussis toxin-sensitive Gao.
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As well as activation of phospholipase C, a,-adrenoceptors can activate phospholipase 

D and phospholipase A2 (Balbao and Insel, 1998; Graham et al. 1996). In addition, the 

a ,-  adrenoceptors can increase intracellular cAMP (Chang et al. 1998; Schwinn et al. 

1991; Cotecchia et al. 1990). This latter effect has been most studied in the ot]b- 

adrenoceptor and it would seem that in transfected cells, this receptor can couple to Gs 

(Horie et al. 1995).

It has recently been shown that the a ]d-adrenoceptor can induce smooth muscle cell 

hypertrophy through activation of the mitogen-activated protein kinase (MAP kinase) 

cascade (Xin et al. 1997), which has been identified as an important pathway involved 

in regulating the growth and differentiation of cells. As this study examined native 

receptors in smooth muscle cells, the pathway allowing activation of the MAP kinase 

cascade is likely to be a real event. Another study using neonatal myocytes showed that 

both a r  and P- adrenoceptors were involved in MAP kinase and raf-1 kinase activation 

and that the action of both receptor types appeared to be synergistic (Yamazaki et al. 

1997).

1.1 Heart Failure

1.1.1 Definition

The aim of the body is to maintain cardiac output, which is defined as the volume of 

blood pumped out of the ventricles per minute. When for some reason the body fails to 

circulate enough blood to meet the metabolic demands of the body or the blood backs 

up within the venous or capillary bed, this is termed heart failure (Hamlin, 1988). The 

main factors controlling cardiac output are outlined in Figure 1.3.
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1.1.2 Aetiology

Causes of heart failure may be primarily cardiac or vascular and aetiologies differ with 

the species involved. In man the main causes of heart failure are hypertension and 

coronary artery disease. In the domestic canine population there are two main causes of 

acquired cardiac disease, namely endocardiosis and idiopathic dilated cardiomyopathy.

Endocardiosis

This is the most common acquired cardiac disease in the canine population. One study 

suggested that 58% of dogs over the age of 9 years had evidence of severe valvular 

disease at postmortem (Whitney, 1974). Endocardiosis of the atrioventricular valves is 

the most common finding with the mitral valve being affected in about 60% of cases. 

Involvement of both mitral and tricuspid valves is found frequently but involvement of 

the tricuspid valve alone is much less likely. In general smaller breeds of dog are more 

commonly affected and males are 1.5 times more likely than females to develop the 

condition (Keene, 1988). The condition has also been reported in pigs (Guarda et al. 

1993; Castagnaro et al. 1997).

The aetiology is still not understood. Certainly some breeds have a much higher 

incidence, for example the cavalier King Charles Spaniel (Haggstrom et al. 1992), 

suggesting a genetic component to the condition.

Grossly the valves become thickened and irregular in outline and this is thought to be 

due to defective or degenerative alterations in the collagen or glycosaminoglycan 

content of the valve leaflets. In effect the atrioventricular valve becomes leaky so that 

during ventricular systole, blood jets back into the atria instead of being ejected out into 

the aorta and pulmonary artery. Stroke volume is therefore reduced (Keene, 1988).
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Dilated cardiomyopathy

The aetiology of dilated cardiomyopathy is also unknown. This is the most common 

myocardial disease of dogs. The mean age of affected animals is 4-6 years. Male 

animals and especially the “giant breeds” are more commonly affected (Tidholm and 

Jonsson, 1997). Common breeds involved are Great Danes, Wolfhounds, Dobermann 

Pinschers, Boxers, Springer Spaniels and Cocker Spaniels. On postmortem the heart is 

large and dilated. There may be concurrent endocardiosis but even if the valve leaflets 

are normal there has often been valvular regurgitation due to dilation of the valve 

annulus. Focal endocardial fibrosis is often present and histologically there is 

myocardial cellular degeneration (Tidholm and Jonsson, 1997; Tidholm, 1996; Cobb, 

1992).

A number of less common conditions can also cause acquired cardiac disease in dogs 

such as, endocarditis, cardiac tamponade, intracardiac neoplasia and hypertrophic 

cardiomyopathy (although this latter condition is prevalent in the feline population (Luis 

Fuentes, 1992)).

Congenital cardiac anomalies can also precipitate the syndrome of cardiac failure and 

occur not uncommonly in the canine population. Some examples of these would be 

pulmonic stenosis, aortic stenosis, ventricular septal defects, atrioventricular valve 

dysplasias and patent ductus arteriosis (Olivier, 1988).

1.1.3 Pathophysiology of heart failure

In respect of the pathophysiology, the sequence of events resulting in the syndrome of 

cardiac failure are similar irrespective of the initiating cause.

When there is a fall in the cardiac output, this causes a fall in blood pressure, since 

blood pressure is the sum of cardiac output times total peripheral resistance (Levick,
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1992). The body aims to maintain the blood pressure through a number of reflex arcs 

which involve baroreceptors, cardiopulmonary receptors, arterial chemoreceptors and 

muscle receptors. These receptors send messages to the nucleus tractus solitarus in the 

brain. This in turn leads to neurohumoral activation. In the short term these 

mechanisms may well be beneficial to the body, but in the longer term they can actually 

contribute to and worsen the syndrome of heart failure (Francis et al. 1984). Figure 1.3 

summarises the factors which influence cardiac output and Figure 1.4 summarises the 

factors involved in the genesis of heart failure. In Figure 1.3, Starling’s law describes 

the phenomenon whereby, within certain limits, an increase in preload (end diastolic 

volume), causes an increase in stroke volume. The relationship is not linear, since 

above a certain limit, further increases in preload are associated with a plateau and then 

a decline in stroke volume (Levick, 1992). Laplace’s law S=Pr/2W, links the 

dimensions of the ventricle to wall stress. The main determinant of afterload (the force 

against which the ventricle contracts), is the total peripheral resistance and this is 

directly proportional to wall stress on the ventricle. However, chamber dimensions will 

also have an effect on wall stress and the force of contraction of the ventricle. In the 

equation S = Pr/2W, S is the wall stress or afterload, P is the pressure, r is the chamber 

radius and W is the wall thickness. From this it can be seen that in dilated 

cardiomyopathy for example, where the chamber is dilated and the wall is thin, S will be 

bigger leading to increased wall stress and a reduction in force production. (Hamlin, 

1988).
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Figure 1.3. Flow diagram representing the main factors that contribute to the 

control of cardiac output.
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renin angiotensin aldosterone system and BP is blood pressure.
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1.1.4 Neurohumoral systems

Neurohumoral activation comprises several important components. These include, the 

sympathetic nervous system, the renin angiotensin aldosterone system, endothelin, 

vasopressin and the natriuretic peptides.

Sympathetic nervous system

Activation of the sympathetic nervous system occurs very early in the course of disease 

and elevation in circulating catecholamines has been well documented. (Francis et al. 

1984; Grassi et al. 1995; Hasking et al. 1986; Leimbach et al. 1986; Cohn et al. 1984; 

Thomas and Marks, 1978). Increased sympathetic activity leads to increases in heart 

rate through p-adrenoceptors in the myocardium and peripheral vasoconstriction 

primarily through a ,- but also a 2-adrenoceptors in vascular smooth muscle. The exact 

mechanism of elevated circulating catecholamines has been the subject of some debate. 

Several papers suggested that the increased levels are simply due to increased release 

from the nerve terminal and the adrenal gland (Meredith et al. 1993; Hasking et al. 

1986). However, more recent publications suggest, not only that an increased release of 

catecholamine is involved, but also that there appears to be an impairment in the 

reuptake of noradrenaline by nerve terminals in the myocardium (Bohm et al. 1995; 

Beau and Saffitz, 1994), which contributes to local elevation and leads to spillover into 

the plasma.

The overall effect of sympathetic activation is to increase heart rate, force of contraction 

and increase total peripheral resistance. While in the short term these effects may be 

beneficial in maintaining the blood pressure, in the longer term they are almost certainly 

detrimental (Francis et al. 1984). An obvious adverse effect is the increased total 

peripheral resistance which increases the afterload on the myocardium. This in turn



increases myocardial wall stress which is directly proportional to myocardial oxygen 

consumption. In addition, it now seems clear that a ] -adrenoceptors can mediate 

vascular smooth muscle and myocyte growth and hypertrophy (Xin et al. 1997; Milano 

et al. 1994; Yamazaki et al. 1997; Milano et al. 1994). This will also contribute to the 

raised peripheral resistance and to ventricular remodelling. The ventricular remodelling 

is characterised by lengthening of the myocytes, slippage of the myocytes and 

interstitial growth. The net effect of all these changes is to alter the shape and lower the 

efficiency of the ventricle thereby having a deleterious effect on the patient (Cohn,

1995).

In fact, it has been shown that plasma levels of noradrenaline have an inverse 

relationship to prognosis, i.e. the higher the levels of circulating catecholamines, the 

poorer the prognosis for the patient (Cohn et al. 1984).

Another feature of increased sympathetic activity is a decrease in p-adrenoceptor 

sensitivity and receptor number, due to homologous desensitization and downregulation 

of these receptors. The effects can be seen in the myocardium and vascular smooth 

muscle. In the canine pacing induced model of heart failure it has been shown that there 

is a decrease in density of p-adrenoceptors in the myocardium, but this effect can be 

reversed on cessation of pacing (Larosa et al. 1993). Decreased P-adrenoceptor density 

can also be demonstrated in human myocardium from heart failure patients (Bristow et 

al. 1982; Bristow et al. 1986). Downregulation of peripheral vascular p-adrenoceptor 

function has also been demonstrated in dogs with pacing induced heart failure (Kiuchi et 

al. 1993). There would also appear to be a role for alteration in the G protein 

composition of cells contributing to the decreased p-adrenoceptor function. This can be 

demonstrated by a decrease in G(s) (stimulatory), without alteration in G(i) (inhibitory) 

content (Vatner et al. 1996; Lai et al. 1996).
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Renin angiotensin aldosterone system (RAAS)

Renin is released from the juxtaglomerular apparatus in the kidney. The release of 

renin is triggered by a fall in local perfusion and sympathetic activity. Renin converts 

angiotensinogen into angiotensin I. Angiotensin I is in turn converted to angiotensin II 

by angiotensin converting enzyme (ACE) (Levick, 1992). Originally this conversion 

was thought to occur primarily in the lung, but it now seems clear that ACE activity is 

more widely distributed throughout the endothelium in the vascular system and that 

local renin release from tissues other than the kidney plays an important role 

(Timmermans et al. 1993; Diet et al. 1996). Angiotensin II has numerous effects. It 

causes the release of aldosterone from the adrenal gland which in turn is responsible for 

the retention of sodium and water (Hall, 1986). It has also been shown that chronic 

administration of aldosterone can induce a reduction in baroreceptor sensitivity in dogs 

(Wang, 1994), a phenomenon which is well described in heart failure (Dibnerdunlap and 

Thames, 1992; Wang et al. 1996). Angiotensin II is a potent vasoconstrictor by direct 

activity on AT, receptors on the vascular smooth muscle (Timmermans et al. 1993). 

Angiotensin II also modulates a ,-adrenoceptor function and has been shown to enhance 

noradrenergic neurotransmission (Minatoguchi and Majewski, 1994; Cox et al. 1996), 

as well as increasing the transcription and expression of a,-adrenoceptors in vascular 

smooth muscle (Hu et al. 1995). Conversely, the use of angiotensin converting enzyme 

inhibitors has been shown to decrease a, -adrenoceptor sensitivity in human vessels 

(Kimura et al. 1997). ACE enhances the breakdown of the vasodilator bradykinin, 

thereby having an indirect vasoconstrictor effect (Warren and Loi, 1995). Activation of 

the RAAS is associated with elevations in levels of endothelin (Clavell et al. 1996) and 

angiotensin II has been shown to have a direct depressant effect on myocytes which 

appears to be mediated through the AT, receptor. The growth effects of angiotensin II
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have been well documented and angiotensin II can promote hypertrophy of cardiac 

myocytes through actions mediated primarily through ATj receptors (Booz and Baker,

1996), as well as hypertrophic (Berk et al. 1989; Geistefer et al. 1988), and hyperplastic 

(Dubey et al. 1992), responses in vascular smooth muscle.

Endothelin

Endothelin is a 21-amino acid peptide, and was first described in 1988 (Yanagisawa et 

al. 1988). It is synthesized by the endothelium. Three endothelins have been described 

but endothelin-1 is the most important. The actions of endothelin are mediated by ETA 

and ETb receptors (Cannan et al. 1996). ETA receptors are located on vascular smooth 

muscle where they mediate vasoconstriction and ETB receptors are located on the 

endothelium where they mediate vasodilation. ETB receptors have also been localized 

to smooth muscle where they can mediate vasoconstriction (Rubanyi and Polokoff, 

1994).

Endothelin can also mediate hypertrophic and mitogenic responses (Gwathmey and 

Paige, 1994; Booz and Baker, 1996). Levels of endothelin are elevated during cardiac 

failure in both experimental models (Margulies et al. 1990), and in human heart failure 

patients (Stewart et al. 1992). During experimental heart failure the inotropic response 

to endothelin is enhanced (Li and Rouleau, 1996), as is coronary artery contraction 

(Cannan et al. 1996). The pulmonary circulation is thought to be important in the 

clearance of endothelin, and ETB receptors may be especially important in this role 

(Dupuis et al. 1996).

There are numerous interactions with endothelin and the other factors involved in 

neurohumoral activation. For example, in experimental heart failure the RAAS appears 

to increase the levels of endothelin (Clavell et al. 1996), atrial natriuretic peptide
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decreases the release of endothelin-1 secretion (Wada et al. 1996), and a r adrenoceptors 

may be involved in the activity of endothelin (Todorov et al. 1995).

Vasopressin

Vasopressin is released from the posterior pituitary gland and has antidiuretic actions as 

well as being a powerful vasoconstrictor (Levick, 1992). During heart failure levels of 

this hormone are elevated (Francis et al. 1984).

Natriuretic peptides

There are three natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic 

peptide (BNP) and C-type natriuretic peptide (CNP) (Winaver et al. 1995). Levels of 

BNP and ANP are elevated in heart failure.

Atrial nariuretic peptide is produced by atrial myocytes in response to stretch (Brenner 

et al. 1990). ANP is also produced by ventricular myocyctes, but only when ventricular 

hypertrophy is present (Lee et al. 1988). Levels of ANP are elevated during heart failure 

and have been shown to correlate positively with mortality in patients with cardiac 

disease (Swedberg et al. 1990). ANP induces diuresis and vasodilation (Swedberg et al.

1990). It also decreases the activity of the RAAS (Fett et al. 1993), endothelin-1 

production (Wada et al. 1996) and, it can modulate the release of vasopressin (Winaver 

et al. 1995). ANP has also been shown to have anti-growth and anti-proliferative effects 

on vascular smooth muscle cells (Winaver et al. 1995).

BNP is also elevated in cardiac disease and is produced predominantly by ventricular 

myocytes (Yasue et al. 1994). There is evidence that BNP is a superior marker of 

ventricular dysfunction compared to ANP (Yamamoto et al. 1996).
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1.1.5 Treatment of cardiac failure

The mainstays of treatment of cardiac disease in the canine population comprise the use 

of diuretics, vasodilators and cardiac glycosides.

Diuretics are used in an attempt to control the congestion seen in heart failure which is 

most often exhibited as pulmonary oedema. Frusemide is the diuretic of choice. This is 

a high ceiling loop diuretic which reduces the resorption of sodium and chloride in the 

loop of Henle (Kittleson, 1988). Often if the diuresis induced by frusemide is 

insufficient then it may be combined with another class of diuretic such as 

spironolactone. This latter drug is a potassium sparing diuretic and has been shown to 

be effective in the management of human patients refractory to frusemide alone 

(Vanvliet et al. 1993).

Digoxin is a cardiac glycoside which is used frequently in canine heart failure. It has a 

variety of actions which include positive inotropy, resetting of the baroreceptor reflex, 

reduction in the release of renin from the juxtaglomerular apparatus and vagomimetic 

activity, for example, slowing of conduction through the atrioventricular junction 

(Kittleson, 1988). One of the main indications of digoxin is in the management of atrial 

fibrillation. This dysrhythmia is commonly found in dogs with atrial enlargement often 

associated with the common cardiac diseases such as dilated cardiomyopathy and 

endocardiosis. In this case, digoxin helps to slow down the ventricular response to the 

atrial fibrillation (Keene, 1996).

One of the most successful treatments in recent years has been the angiotensin 

converting enzyme inhibitors (ACEI). These drugs prevent the formation of angiotensin 

II from angiotensin I, by inhibiting the angiotensin converting enzyme. This results in a 

blockade of the effects of both ACE and angiotensin II which have been described in the 

section titled renin angiotensin aldosterone system. They are now used extensively in
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the management of heart disease in the human population. An increasing number of 

studies has shown that these drugs have significant benefits and increase longevity, 

quality of life and haemodynamic parameters both in the human population 

(CONSENSUS trial study group, 1987) and in the canine population (Woodfield et al. 

1995; Hamlin et al. 1996; The IMPROVE study group, 1995).

1.1.6 The role of the vasculature in heart failure

For several decades it has been clear that exercise intolerance is an important component 

of cardiac disease. Not only this, but the degree of exercise intolerance exhibited by 

patients is often disproportionate to their degree of left ventricular dysfunction (Francis 

et al. 1984). This has led to the belief that there must be an additional factor 

contributing to the syndrome in addition to the myocardial dysfunction itself. One 

theory is that there is an alteration in skeletal muscle metabolism, preventing the 

exercising muscle from working efficiently (Coats, 1996).

The other factor which is considered to be important and which is relevant in this study, 

is that there is an alteration in the peripheral vasculature which contributes to increased 

total peripheral resistance and prevents normal dilation of the vasculature, which would 

normally increase blood flow to the exercising skeletal muscle. Indeed, a number of 

studies both on human patients and animal models of disease have confirmed that blood 

flow to exercising skeletal muscle is reduced in heart failure (Zelis et al. 1969; Musch 

and Terrell, 1992; Higgins et al. 1972). Wilson et al (1984), found a reduction in limb 

blood flow and an increased 0 2 extraction, together with early lactate production, in 

heart failure patients when compared to normal controls. LeJemtel et al (1986) 

described similar findings, but this time compared single and two limb exercise. In 

normal patients, cardiac output reached a maximum and oxygen uptake reached a
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plateau during two limb exercise. In contrast, during single limb exercise, maximal 

cardiac output was not achieved prior to fatigue, although vascular flow was greater in 

the limb during single leg exercise compared to two limb exercise. In the heart failure 

group, patients had a reduced limb blood flow and did not show an increased blood flow 

to the limb when only single leg exercise was performed, suggesting an impaired blood 

flow. Taking things a step further, Jondeau et al (1995), demonstrated that normal 

patients asked to perform leg exercise to exhaustion achieved maximal cardiac output, 

and oxygen consumption reached a plateau. In contrast, heart failure patients did not 

achieve maximal cardiac output during leg exercise, since additional arm exercise in the 

failure group induced a further increase in their cardiac output. This suggested that 

blood flow to the lower limb and not cardiac output was the limiting factor for the heart 

failure patients.

This led to an increasing interest in the peripheral vasculature, both in relation to 

characterisation of normal vessels and in relation to the identification of alterations in 

the heart failure state.

To date a number of studies have looked at the vasculature in vivo and in vitro. Results 

have often been conflicting but findings fall into two main categories. 1. Alteration in 

vasorelaxation. 2. Alteration in smooth muscle contraction.

Vasorelaxation

Two important pathways are involved in mediation of vascular smooth muscle 

relaxation, namely pathways involving the formation of guanosine 3’-5’-cyclic 

monophosphate (cGMP) or those involving adenosine 3’-5’-cyclic monophosphate 

(cAMP), (Vanhoutte, 1996; Nasa et al. 1996). The three main relaxing factors released 

from the endothelium are nitric oxide, prostacyclin and endothelium-derived
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hyperpolarizing factor (EDHF). The release of these factors from the endothelium can 

be triggered by a number of substances. Acetylcholine, for example, induces the release 

of nitric oxide and also EDHF (Vanhoutte, 1996). Nitric oxide is also released under 

basal conditions and release can be triggered due to shear stress on the vascular wall 

(Hayoz et al. 1993). Adenosine can also stimulate or inhibit the formation of cAMP 

depending on the subtype of receptor involved. This substance is released from cells by 

facilitated diffusion and also from the degradation of released ATP. It has been shown 

that mice lacking the adenosine A2a receptor demonstrate hypertension, suggesting that 

the action of adenosine at this receptor subtype is important in mediating a degree of 

basal vasorelaxation (Ledent et al. 1997).

A growing number of human and animal studies have now demonstrated alterations in 

relaxation responses in vessels from heart failure patients and animals.

A consistent finding is that acetylcholine mediated, endothelium-dependent relaxation 

responses, are attenuated in heart failure. This has been demonstrated in forearm blood 

flow studies (FBF) in human heart failure patients (Katz et al. 1992; Drexler et al. 1992; 

Kubo et al. 1991; Hirooka et al. 1994), in isolated resistance sized gluteal arteries from 

heart failure patients (Angus et al. 1993), in the femoral artery and coronary arteries of 

dogs with experimentally induced heart failure (Wang et al. 1994; Kaiser et al. 1989), 

and in rats with experimentally induced heart failure, both in isolated vessels and in 

intact hindquarter resistance vessels (Nasa et al. 1996; Drexler and Wenyan, 1992). 

This finding is unlikely to be due to an inability of the vascular smooth muscle to relax 

to the nitric oxide released from the endothelium, since most studies have shown, that 

unlike the relaxation to acetylcholine, the relaxation to sodium nitroprusside or 

nitroglycerine, which are endothelium-independent vasorelaxing agents, using the 

cGMP pathway, is not attenuated in heart failure, both in vivo, (Drexler et al. 1992;
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Drexler and Wenyan, 1992; Wang et al. 1994; Kaiser et al. 1989; Hirooka et al. 1994), 

and in isolated vessels, (Nasa et al. 1996; Angus et al. 1993). It therefore seems more 

likely that the endothelium is defective in heart failure. Interestingly, from the point of 

view of this study, one group failed to show alteration in acetylcholine induced 

vasorelaxation, where isolated dorsal pedal artery and saphenous vein segments from 

dogs with experimentally induced heart failure were examined, (Forster et al. 1989). 

Several studies have also reported a reduced cAMP mediated vasodilation in heart 

failure. For example, Mathew et al (1993), examined isolated canine pulmonary arteries 

from dogs with experimental heart failure and showed, that while vasorelaxations to 

acetylcholine and bradykinin were comparable to controls (cGMP mediated), 

vasorelaxations to isoproterenol, arachidonic acid and prostacyclin, were all attenuated 

in the failure group (cAMP mediated). Nasa et al (1996), also demonstrated a reduction 

in isoproterenol mediated vasorelaxation in thoracic artery and pulmonary artery in rats 

with experimental heart failure.

Results regarding alterations in basal nitric oxide production in heart failure are less 

conclusive. Some workers report no change in basal nitric oxide production, as 

estimated by vasoconstrictor response to nitric oxide synthase inhibitors (Drexler and 

Wenyan, 1992; Kubo et al. 1994). In contrast, Eisner et al (1991), found that there was 

a decreased vasoconstrictor response to NG-nitro-L-arginine (NNA) in dogs with 

experimental heart failure, suggestive of reduced basal nitric oxide and Teerlink et al 

(1994), found that the enhanced response of intact isolated aortic rings from rats with 

heart failure was due to a reduced basal nitric oxide production in the heart failure 

versus the control animals. Finally, several studies report evidence for enhanced nitric 

oxide production in heart failure, the three studies cited all being in human heart failure 

patients (Drexler et al. 1992; Habib and Oakley, 1994; Winlaw et al. 1994).
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Vasoconstrictor responses

Fewer studies have examined agonist responses in heart failure and the results from 

these studies are inconsistent. Obviously factors such as the species, the stage and 

severity of disease, the blood vessels examined, the experimental design and drug 

treatment will all have an influence and can contribute to the findings for individual 

studies.

A number of studies by Forster et al, have demonstrated an enhanced sensitivity and 

maximal response to noradrenaline in isolated dorsal pedal artery and saphenous vein 

segments from pacing induced heart failure dogs when compared to controls (Forster et 

al. 1989; Forster and Armstrong, 1990). On further examination, it appeared that the 

response to a,-agonists was enhanced while response to a 2-agonists was decreased. 

Stassen et al (1997a; 1997b) also found an increased sensitivity to phenylephrine in 

isolated vessels from rats with experimental heart failure, although maximal response 

was reduced. The difference appeared to be related to calcium influx and not to protein 

kinase C or the IP3 mediated release of intracellular calcium. Teerlink et al (1994), in 

endothelium denuded aortic rings from heart failure rats, found a reduction in maximal 

response to both noradrenaline and potassium chloride. This was similar to findings of 

Angus et al (1993), who also found a reduction in maximal response in gluteal 

resistance arteries from human heart failure patients, when a variety of agonists were 

used including noradrenaline, angiotensin I and angiotensin II.

In vivo studies have been similarly conflicting with Feng et al (1994), demonstrating 

reduced responses to both a r  and a 2-adrenoceptor agonists in forearm blood flow 

studies. Meanwhile, Indolfi et al (1994), also in forearm blood flow studies in human 

patients, reported no change in a ,- and a 2- adrenoceptor agonist responses. Kubo et al

(1989), showed a similar response to the a 2-antagonist yohimbine in control and heart
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failure patients in forearm blood flow studies also supportive of the finding that there 

was no alteration in the a 2-adrenoceptor population.

1.2 Aims of this thesis

As outlined in the introduction, the resistance artery component of the peripheral 

vasculature plays an important role in maintenance of total peripheral resistance. There 

is now convincing evidence that vascular alterations contribute to the syndrome of heart 

failure, but as yet the exact mechanisms involved have not been fully elucidated. It is a 

prerequisite that before pathophysiological changes can be characterised, the “normal” 

characteristics of in this case, blood vessels, must be understood. On this basis, this 

thesis has three main aims.

1. Since a,-adrenoceptors are important mediators of vascular smooth muscle 

contraction, the primary aim of this project was to characterise the dog saphenous vein 

and subcutaneous resistance arteries, in relation to a!-adrenoceptors mediating 

contraction to exogenous noradrenaline. The dog saphenous vein has been used in 

pharmacological studies before, therefore some characterisitics of this vessel were 

already known. In contrast, to my knowledge, isolated canine subcutaneous resistance 

arteries have not been studied.

2. In addition to functional characterisation of the a,-adrenoceptors, another aim of this 

project was to clone and sequence the canine a ]a- adrenoceptor. This subtype was 

selected because of the mounting evidence from the literature that the a la- subtype is 

responsible for the a ]L- adrenoceptor pharmacology. This latter subtype appears to play 

a functional role in both of the vessels that were examined.
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3. Although studies on isolated vessels from experimental models of heart failure have 

been conducted, studies using isolated vessels from dogs with naturally occurring heart 

failure have not been carried out. For this reason, segments of femoral artery, 

saphenous vein, and subcutaneous resistance arteries were collected from clinical heart 

failure cases which were euthanased because of their heart disease. Experiments were 

designed to identify alterations in vasoconstriction and vasorelaxation responses 

between control and heart failure animals, taking into account the aetiology of the heart 

failure and treatment if any.
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MATERIALS AND METHODS FOR FUNCTIONAL STUDIES

2.0 Materials

2.0.1 Solutions

Krebs-Henseleit solution (KS) was of the following composition (mM): NaCl 112, KC1 

5.9, MgCl2 1.2, CaCl2 2, NaHC03 25, NaHP04 1.2 and glucose 11.5. Na2EDTA 

0.023mM was also included in the KS solution at all times to prevent degradative 

oxidation of noradrenaline.

For the antagonist studies, in both the saphenous vein and subcutaneous resistance 

arteries, certain drugs were included in the KS solution. This modified KS was termed 

blockers Krebs’ (BKS) and had an identical composition as Krebs’ solution but in 

addition, cocaine (3pM) (Aboud et al. 1993), corticosteroid (30pM) (Blue et al. 1995) 

and propranolol (lpM ) (Forster, 1996) were added to block neuronal uptake, non

neuronal uptake and (3-adrenoceptors respectively.

Potassium Chloride solution (KPSS), was a 125mM potassium chloride solution which 

had the same composition as KS except that the NaCl was replaced with KC1.

2.0.2 Drugs

The following compounds were used:

(R) A-61603 (Abbott laboratories); (-)-noradrenaline bitartrate (Sigma); delequamine 

(RS-15385-197, Roche Bioscience formerly Syntex, gift of Dr. Whiting); rauwolscine 

(Roth); WB4101 (2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane

hydrochloride), Research Biochemicals International); HV723 (a-ethyl-3,4,5-

trimethoxy-a-3-((2-(2-methoxyphenoxy)ethyl))-amino)propyl)benzeneacetonitrile 

fumarate, a gift from I. Muramatsu; 5 methylurapidil (Research Biochemical
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International); chloroethylclonidine (Research Biochemicals International); prazosin 

HC1 (Pfizer); cocaine HC1 (MacCarthy’s); propranolol HC1 (Sigma); corticosterone-2 

acetate (Sigma); BMY 7378 (dihydrochloride 8-[2-[4-(2-Methoxyphenyl)-l- 

piperozynl] ethyl] - 8 -azaspiro [4.5] decone-7,9-dione, Research B iochemicals

International); (-)- phenylephrine HC1 (Sigma); UK-14304 (Research Biochemicals 

International); L-NAME (N“-Nitro-L-Arginine Methyl ester hydrochloride, Sigma); 

Acetylcholine Chloride (Sigma).

All drugs were made up daily from salts in deionised water, with the exception of 

noradrenaline which was initially dissolved in 23 pM Na^DTA. Further dilutions were 

then made using deionised water.

2.0.3 Animals used

Dogs were euthanased at the local dog and cat home using pentobarbitone sodium 

(Euthatal 200mg/ml Rhone Merieux) at a dose of 150mg/Kg bodyweight, administered 

by intravenous injection. Dogs of all breeds, ages, sexes and weights were utilised. 

Animals were given a clinical examination in order to exclude any with obvious clinical 

abnormalities. For the heart failure study, animals used were those diagnosed and 

treated at Glasgow University Veterinary School. These animals were euthanased 

because of failure to respond to treatment or because of worsening of their disease.

2.1 Vessel Removal

2.1.1 Saphenous vein removal

Vessels were removed immediately after euthanasia by careful dissection, ensuring as 

little connective tissue remained attached to the vessel as was possible. The
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intermediate section of the lateral saphenous vein was consistently removed each time 

(Figure 2.1). Vessels were then placed in ice cold KS and used within 24 hours.

2.1.2 Femoral artery removal

The artery was dissected from the femoral triangle. This is located anatomically at the 

proximal medial aspect of the hindlimb and is bounded by the sartorius muscle cranially 

and the pectineus and adductor muscles laterally. The medial femoral fascia and 

adipose tissue were dissected to reveal the femoral artery and vein running together with 

the artery in a cranial location (Figure 2.1). After removal the artery was treated in an 

identical fashion to the saphenous vein.

2.1.3 Subcutaneous resistance artery removal

A patch of skin overlying the gluteal muscles was removed and placed directly into ice 

cold KS. This was transported back to the laboratory and resistance sized arteries were 

removed with the aid of a dissecting microscope. As for the larger vessels, resistance 

vessels were used within 24 hours of removal.

2.2 METHODS

2.2.1 Mulvanv Halpern wire myograph

Functional experiments of resistance arteries were carried out using a four chamber 

Mulvany Halpern wire myograph (J.P. Trading. Aarhus, Denmark.) (Mulvany and 

Halpem, 1976).

Resistance arteries were cut into approximately 2mm lengths and mounted between two 

40pm wires. One wire was attached to a fixed head while the other was attached to a 

head which in turn was connected to a force transducer. The force transducer was in
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turn connected to a Linseis (TYP 2066) four channel pen recorder to allow recordings of 

force production (Figure 2.2).

2.2.2 Organ bath apparatus

Functional experiments of the saphenous vein (S.V.) and femoral artery (F.A.) were 

performed in 10ml organ baths. Vessels were cut into 5mm ring sections and mounted 

between two wires both 0.35mm in diameter. One wire was fixed to a perspex post 

while the other was suspended by cotton thread and attached to a Grass FT03 force 

transducer and micrometer (Figure 2.3.). Measurements were recorded on a Linseis 

(TYP 7208) eight channel pen recorder. Vessels were bathed in Krebs’ solution (K.S.) 

and maintained at 37°C. KS was bubbled with 95%02/5%CO2 at all times.

2.2.3 Normalisation procedure

The process of normalisation was first described by Mulvany and Halpern (1977), for 

small resistance sized arteries and since then has become an accepted procedure when 

studying resistance arteries using the Mulvany Halpern wire myograph.

The basis of the normalisation procedure is the generation of a circumference/tension 

relationship for each vessel, which when fitted to an exponential equation, allows the 

calculation of the diameter at which the vessel should be set in order to be equivalent to 

a given transmural pressure if that vessel were relaxed. Generally for resistance arteries, 

vessels are set at 0.9 of L I00 which means 90% of the diameter due to a transmural 

pressure of lOOmmHg.

The actual procedure is carried out by starting with the wires suspending the vessel 

touching and putting the vessel through a number of stretches at one minute intervals. 

Each time the vessel is stretched, the micrometer reading is recorded together with the
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force at the end of the minute interval. This allows calculation of the vessel 

circumference by this:

L = (ti + 2) d + 2f EQUATION 1.

where L is the circumference, d the diameter of the wires and f  the distance between the 

two wires.

Tension produced by the vessel is calculated by this:

T = F/2g EQUATION 2.

where F = the force produced in mN, g is the length of the vessel and tension is defined 

as the circumferential wall force per unit length.

In this study the resistance arteries were normalised to 0.9 of L I00 as described. The 

same procedure was adapted for the saphenous vein and femoral artery in a similar way 

to Angus et al (1986). The main reason for this decision was the wide variety of dogs 

involved in the study, leading to considerable variation in the size of vessels being used. 

It therefore seemed more desirable to adopt a procedure which would take vessel length 

and diameter into consideration rather than simply setting vessels at a given resting 

tension. In addition, looking at the literature there seemed to be a wide range of optimal 

resting tensions given for these particular vessels. For example Constantine et al (1982) 

quote a value of 0.6g for saphenous vein compared to a value of 3g given by Guan et al

(1990). In the case of the saphenous vein the vessel was set at 0.9 of L20 which means 

90% of the diameter if the transmural pressure were 20mmHg. This was a more 

appropriate pressure for a vein (Levick, 1992). The same setting was also used for the
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femoral artery. While in vivo pressures in this artery would be considerably higher, it 

was not possible to achieve the force required to normalise these arteries to 0.9 of L I00 

and this method still took into account variations in vessel dimensions and vessels 

produced consistently good reproducible contractions.

All calculations were performed using a computer iterative fitting technique where the 

computer then gives the micrometer setting in order to achieve 0.9 of L20 or L I00 and 

calculates the equivalent transmural pressure at this setting using the Laplace 

relationship, assuming that the vessel wall is sufficiently thin for the relationship to 

apply and that the curvature caused by the wires has no effect. The Laplace equation is 

as follows:

P = 2tiT/L. EQUATION 3.

2.3 Starting procedure used prior to all protocols

After mounting in KS solution all vessels were allowed to equilibrate for a thirty minute 

period. Vessels were then normalised and again allowed a further thirty minute rest 

period. After normalisation, vessels were washed several times and if BKS solution was 

required for the experiment it would replace the KS from this point onwards. A siting 

concentration of noradrenaline (10pM) was added to the bath. When the contraction 

had reached a plateau, vessels were washed back down to baseline. Twenty minutes 

later the KS was replaced by a 125mM KC1 solution. As before when the contraction 

reached a plateau, vessels were washed down to baseline. The KC1 contraction was
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repeated ten minutes later. This routine made up the starting protocol for all 

experiments, as it was found that subsequent to this protocol, there was good 

reproducibility of up to four concentration response curves for all vessels.

After a further thirty minutes the protocol would start. Concentration response curves 

were constructed in a cumulative manner using half log increments. All responses were 

allowed to plateau before the next concentration of agonist was added to the bath.

Details of the specific protocols used are discussed in the relevant sections.

2.4 Data analysis

2.4.1 Analysis of agonist concentration response curves

Responses to agonists were calculated as active effective pressure (KPa) and these 

responses were expressed as such, or as a percentage of maximum of the first curve for 

that particular ring unless otherwise stated.

All concentration response curve (CRC) data for individual experiments was curve 

fitted using the computer software GraphPad Prism 2.01 (Institute for Scientific 

Information, San Diego, California, U.S.A.). Where data could not be fitted to the 

models described below, data was analyzed on Microsoft excel spreadsheets and pEC50 

values derived by interpolation, not from a model. The mean of the raw data was 

calculated and data presented as mean ± standard error of the mean (s.e.mean). This 

was then graphed in logarithmic space.

2.4.2 One Site model

The interaction between a ligand and a receptor is governed by the Law of Mass Action 

(Clark, 1937). The relationship between the ligand concentration and the ligand
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receptor complex is rectangular hyperbolic when plotted in arithmetic space, and 

sigmoidal when plotted in logarithmic space. Concentration response curves when 

plotted in a similar fashion follow the same pattern, leading to the conclusion that tissue 

response must be a linear function of receptor occupancy (Clark, 1937). Since the 

concentration response curve conforms to a sigmoid it can be defined by a logistic 

equation which generally takes the form of the Hill equation used by GraphPad software 

and given in the equation below.

a  . [A]nH
E = _______________

[A]50nH+ [A]nH

Where E is the response, a  is the maximal response, [A] is the agonist concentration, 

nH is the midpoint slope and [A]50 is the concentration of agonist required to generate 

50% of a , (Roberts et al. 1996; Black et al. 1985).

This allowed the derivation of a number of parameters for each curve namely, upper 

asymptote, Hill slope (midpoint slope) and pEC50 (negative log of [A]50) values.

Curves could then be compared by performing Students’ t test (two groups), or one way 

analysis of variance (ANOVA) (more than two groups), comparing these parameters. In 

all cases P < 0.05 was taken as indicating a significant difference. In the case of 

ANOVA a Bonferroni post test allowing multiple comparisons was employed to 

determine the origin of any significant differences (Wallenstein et al. 1980).

For illustrative purposes, mean curves were generated by meaning the curve fit 

parameters from individual experiments and generating a curve upon which the raw 

mean data ± s.e.mean could be superimposed.
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Judgment of how well the data fitted the equations used in the curve fitting procedure 

was determined in a number of ways. Simply looking at the graphs and how well the 

data seemed to fit the curve played a large part. In addition to this, the program 

provided a number of parameters which were also taken into consideration. These were 

as follows.

(1). The Sum-of-Squares which is the sum of the vertical distances of the points from 

the curve and is expressed in the same units as the Y values.

(2). R2 value which represents the goodness of fit. This is the fraction of the variability 

in the Y values which can be explained by the equation. Therefore if R2 is 0 then the 

line fits the data no better than a horizontal line going through the mean Y values. If R2 

is equal to 1.0 then there is no scatter and all the data points lie exactly on the line.

(3) Runs test. This measures the number of runs which is a cluster of data points lying 

above or below the line. If the number of runs is lower than the program expects then 

this suggests that the fit is not good.

(4). 95% confidence intervals for the parameters defined by the curve fit (upper 

asymptote, EC50 and Hill slope). If the intervals are very wide this again may suggest 

that the fit is not good.

2.4.3 Two site model

In some instances the data did not appear to fit the one site model as judged by the 

points discussed above. In this case the data was fitted to a two site model described by 

the following equation:

E = al/(l+10((LogEC501-x),nH1))+a2/(l+10(LogEC502-X)*nH2))
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where X is the logarithm of the agonist concentration, E is the response, nH is the 

midpoint slope and a  is the upper asymptote. Numbers 1 and 2 denote the two sites. 

The two site model was first described by Furchgott (1981), and further developed by 

Lemoine and Kaumann (1983) and Kenakin (1992). Dr Gillian Watt (James Black 

Institute), kindly assisted in the programming of the GraphPad Prism software with the 

two site model (personal communication). In order to assess which model fitted best 

(the one site Hill equation or the two site described above) an F test was performed. 

Simply comparing the Sum-of Squares for the two equations can be misleading. The 

more complex equation, because it has more parameters, will tend to appear as a better 

fit (Van der Graaf et al. 1996b). What the F test does, is to compare the relative increase 

in the Sum-of-Squares to the relative increase in the degrees of freedom when going 

from the complex (two site), to the simple (one site), model. If the complex model is 

the better fit, the relative increase in the Sum-of-Squares will be greater than the relative 

increase in the degrees of freedom. Alternatively, if the more simple model is correct, 

the relative increase in both parameters would be about equal. GraphPad automatically 

performs this test when asked to fit two equations simultaneously.

2.4.4 Analysis of antagonist studies

The aim of antagonist studies is to derive a value that is a measure of the potency of a 

particular antagonist. The two values used are pA2 and pKB values. The derivation of 

these is described shortly. In general, if two receptors are the same they should have the 

same pA2 or pKB values for a given antagonist regardless of the tissue or the agonist 

used (Kenakin, 1982).

For the antagonist studies, potency of the competitive antagonists used was calculated 

by performing Schild regression (Arunlakshana and Schild, 1959). A range of
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concentrations was employed for each antagonist used. DR values were then calculated 

for individual experiments. The DR is the dose ratio and is the ratio of the EC50 in the 

presence and absence of the antagonist. The EC50 values used for the Schild analysis 

were derived from the curve fitting procedure for individual experiments. In the cases 

where curve fitting was not applicable then EC50 values were derived by interpolation 

from Microsoft Excel spreadsheets.

The log (DR-1) was then plotted against the concentration of antagonist (log [B]) and 

linear regression performed through the points. Certain requirements must be fulfilled 

for Schild analysis to be a realistic measure of antagonist potency, namely the 

measurements must be made under equilibrium conditions, a range of antagonist 

concentrations must be used and the shift in the concentration response curves caused 

by increasing concentrations of the antagonist must produce parallel rightward 

displacements with no significant decrease in the upper asymptotes (Kenakin, 1992; 

Kenakin et al. 1992; Arunlakshana and Schild, 1959). Where the linear regression line 

intercepts the X axis is termed the pA2 value. This is the concentration of antagonist 

that causes a two fold shift in the pEC50 of the agonist CRC. If the slope of the linear 

regression line is not significantly different from unity, then the pA2 value is a good 

measure of antagonist potency and will be close to the pKB. A pKB value is defined as 

the antagonist equilibrium dissociation constant (Roberts et al. 1996; Furchgott, 1981). 

It can be calculated from a single antagonist concentration using the Schild equation 

(Jenkinson, 1991; Kenakin, 1982; Arunlakshana and Schild, 1959).

log (DR-1) = log[B] + log Kb

This calculation assumes a slope of 1.
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If Schild regression under equilibrium conditions, produces a slope not significantly 

different from unity, this suggests a competitive interaction with a single receptor 

population and it is reasonable to derive a pKB value from a single concentration. If the 

Schild regression slope is significantly different from unity, then if pKB values are 

calculated from each of the concentrations used, generally there is a significant 

difference in the pKB values over the range of concentrations and thus it can be seen that 

calculation based on a single concentration would be unreliable. This finding suggests a 

non-competitive interaction possibly indicating a non-homogeneous population of 

receptors. In summary, the pA2 value is derived from the Schild plot where the slope is 

not constrained. The pKB value is derived from the Schild equation and assumes a slope 

of unity.

2.4.5 Analysis of relaxation studies

As for the agonist studies data was converted into active effective pressure and this in 

turn was expressed as a percentage relaxation.
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Figure 2.1. Anatomical location of the femoral artery and the saphenous vein.

Panel one illustrates the medial aspect of the pelvic limb, demonstrating the femoral 

triangle. The femoral artery can be seen lying caudal to the sartorius muscle after 

arising from the external iliac artery. Panel 2 illustrates the path followed by the 

saphenous vein. The diagram illustrates the lateral aspect of the pelvic limb. The 

section of vessel used lies in between the two bold black lines and comprises the cranial 

ramus of the vessel as it runs superficially over the lateral aspect of the hindlimb above 

the hock joint.
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Figure 2.2 Schematic representation of a Mulvany Halpern wire myograph.
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Figure 2.3. Schematic representation of an organ bath.
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2.5 Microscopy

Specimens of saphenous vein, femoral artery and subcutaneous resistance artery, which 

had been fixed for 24 hours in 10% neutral buffered formalin and dehydrated with 

graded alcohol, were embedded in paraffin wax. Sections, cut at 5pm using a Leitz 

1212 rotary microtome, and mounted on poly-l-lysine (Sigma) coated slides were dried 

for 12-18 hours at 36°C. The dried sections were then stained by Haemalum and Eosin, 

or immunocytochemically for the presence of neuropeptide Y and tyrosine hydroxylase. 

A Zeiss Axiophot microscope was used to examine the stained sections and Kodak 

Ektachrome 64 used for colour photography. Details of the staining techniques can be 

found in Appendix 1. All microscopy was performed by Dr. I. Montgomery.

MATERIALS AND METHODS FOR MOLECULAR BIOLOGY 

STUDIES 

2.6 Handling of nucleotides

2.6.1 RNA Isolation

All glassware and solutions used in the handling of RNA were pre-treated with a 0.1% 

v/v solution of diethylamine pyrocarbonate (DEPC), to destroy RNAses and minimize 

degradation of RNA. The solutions and glassware were then autoclaved to remove 

traces of DEPC.

Gloves were worn at all times and all pipette tips and polypropylene tubes were 

autoclaved to minimize exposure of RNA to RNAses.
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Tissue was collected immediately after euthanasia and snap frozen in liquid nitrogen. 

RNA isolation was carried out using RNAzolB (Biogenesis Ltd.) according to the 

manufacturer’s instructions.

Briefly, frozen tissue was added to RNAzol B (2mls per lOOmg of tissue) and 

homogenised using a polytron homogeniser. Homogenate was then transferred to a 

sterile eppendorf. In the case of cells in culture, culture media was removed and 1ml of 

RNAzolB added per 106 cells. Lysate was then transferred to a sterile eppendorf.

0.1 mis of chloroform was added to the homogenate/lysate and tubes were shaken 

vigorously for 15 seconds before being placed on ice for 5 minutes. Tubes were then 

centrifuged at 12000g, for 15 minutes at 4°C.

The upper aqueous phase was removed to a fresh tube and an equal volume of 

isopropanol added. Tubes were incubated on ice for 15 minutes and then centrifuged at 

12000g for 15 minutes at 4°C.

Supernatant was carefully removed and the RNA pellet washed in 800pl of 75% ethanol 

by vortexing and subsequent centrifugation at 7800g for 8 minutes at 4°C. Ethanol was 

carefully removed and the pellet allowed to air dry for several minutes before being 

resuspended in DEPC-treated water or TE buffer (lOmM Tris pH 8.0, ImM 

ethylenediamine tetracetic acid), made with DEPC-treated water.

Aliquots of RNA were removed for quantitation by spectrophotometry as described 

below. Aliquots of samples were also separated electrophoretically using agarose gel 

electrophoresis allowing visualisation of the 28S and 18S ribosomal bands indicative of 

good quality RNA (Dolnick and Pink, 1983). RNA was stored at -70°C until required.
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2.6.2 RNA and DNA quantitation

RNA was diluted in DEPC-treated water or TE buffer made with DEPC-treated water. 

Usually a 1:500 dilution was used. The optical density was then measured at 260nm 

and 280nm. An RNA concentration of 40p.g/ml has an absorbance at 260nm of 1. 

Therefore the concentration is 40 X O.D. 260nm X dilution factor = pg/ml. The quality 

of the RNA sample as regards degradation and protein contamination was determined 

by estimating the 260 : 280nm ratio. Pure RNA has a ratio of 2.0. (Sambrook et al. 

1989; Chomczynski and Sacchi, 1987). In the case of DNA, the sample was again 

diluted in TE buffer or water and the optical density measured. A concentration of 

50pg/ml gives a 260nm absorbance of 1. Pure DNA has a 260 : 280nm ratio of 1.8 

(Sambrook et al. 1989).

2.6.3 Agarose gel electrophoresis

Unless otherwise stated 1% agarose gels were used. In general, the percentage agarose 

used will depend on the molecular weight of the fragments being separated. Small 

fragments (< 400bp) would require a higher percentage gel whereas larger fragments, (> 

3Kb) would require a lower percentage gel. Agarose was dissolved in 0.5X TBE buffer 

and the gels were also run in this buffer at between 50 - lOOVolts. 1 X TBE buffer is 

made up of 89mM Tris (pH 8.0), 89mM Boric acid and 2mM EDTA. Ethidium 

bromide (0.5pg/ml) was used to stain gels in order to visualise the DNA on a UV 

transilluminator. 1Kb size markers from Gibco-BRL were used at all times and samples 

were loaded with one tenth volume of 10X loading buffer (0.25% bromophenol blue and 

40% v/v glycerol in water).
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2.6.4 Isolation of DNA from agarose gels

Bands were cut out of agarose gels taking as little excess agarose as possible. Supelco 

GenElute™ spin columns or Supelco GenElute™ spin columns minus ethidium 

bromide, from Sigma, were used according to the manufacturer’s instructions. The 

eluted DNA was either used directly or ethanol precipitated and resuspended in the 

appropriate buffer prior to use.

2.6.5 Ethanol precipitation

RNA and DNA were precipitated by the addition of one tenth the volume of 3M sodium 

acetate (pH 5.4) and 2 volumes of 100 % ethanol. Samples were then stored at -20°C 

for 30 minutes followed by centrifugation at 12,000g for 30 minutes at 4°C. The pellet 

was then washed in 70% ethanol by vortexing and subsequent centrifugation at 12,000g 

for 5 minutes. The ethanol was then removed and the pellet allowed to air dry for 

several minutes (on ice if RNA) before being resuspended in an appropriate volume of 

water or TE buffer.

2.7 Amplification of sequence of interest

2.7.1 cDNA synthesis

First strand cDNA synthesis from RNA was made using the Pharmacia Biotech First- 

Strand cDNA synthesis kit according to the manufacturer’s instmctions.

Briefly, 5pg of total RNA in a 20 j l x 1 volume is denatured at 65°C for 10 minutes and 

then chilled on ice. This is then added to a reaction mix containing the Moloney Murine 

Leukaemia virus-reverse transcriptase enzyme, bovine serum albumin (0.08 mg/ml), 

dATP (1.8 mM), dCTP (1.8mM), dGTP (1.8mM) and dTTP (1.8mM), DTT solution (15 

mM) and one of a choice of primers. In this study either a random hexadeoxynucleotide
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primer (0.2pg) or a gene specific primer (20pm) was used. The final volume of the 

reaction was 33pi. This was incubated at 37°C for one hour. The cDNA was then used 

immediately for polymerase chain reaction or stored at -70°C until required.

2.7.2 Polymerase chain reaction

Experiments were carried out using a Hybaid “omnigene” thermal cycler.

Unless otherwise stated the reaction was carried out in a 50pl volume using the 

following: IX PCR buffer (Gibco-BRL), 10pm of each primer, 200pM of each dATP, 

dTTP, dCTP, dGTP, 1.5mM MgCl2, 5pl of cDNA from cDNA synthesis 33jul reaction 

and 0.5pi of Taq Polymerase enzyme (5 units/pl Gibco-BRL). This was made up to 

50pl with sterile deionised water. For each primer set used, negative controls were run 

in parallel. These contained identical ingredients except that the cDNA template was 

replaced with sterile water.

Unless otherwise stated, the cycle programme used was as follows: 95°C for 3 minutes 

followed by 30 cycles comprising denaturation (95°C for 30 seconds), annealing (48°C 

for 30 seconds) and extension (72°C for 30 seconds). This was followed by a 5 minute 

extension period at 72°C.

At the end of the reaction aliquots of the PCR reactions were electrophoresed on 1% 

agarose gels as described in section 2.5.3, to allow visualisation of the PCR products.

2.7.3 Primers

With the exception of the primers included in the cDNA synthesis kit and the human 

GAPDH primer (Glyceraldehyde-3-phosphate dehydrogenase, Clontech) used as a 

control for the polymerase chain reaction, all primers were custom made by Cruachem 

and on arrival resuspended in sterile water to give 200mM stock solutions. These were
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stored at -20°C until required, when they were further diluted for either polymerase 

chain reaction or sequencing.

2.8 Cloning of DNA fragments

Cloning of PCR products was carried out using Invitrogen’s Original TA Cloning® Kit 

according to the manufacturer’s instructions. This relies on the fact that Taq polymerase 

adds a single deoxyadenosine to the 3’ end of PCR products. The vector used in the kit 

has 3’ deoxythymidine overhangs which allows the PCR product to ligate into the 

vector. Figure 2.4 represents the pCR® 2.1 plasmid used in the kit.
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EcoRl EcoRl

GAATTCGGCTT 
CTTAAGCCGA

PCR product AGCCGAA
TTCGGCTT

Figure 2.4. Diagram of the pCR® 2.1 plasmid. The PCR product can be 

inserted into the lac Z a  fragment and is then flanked by EcoR 1 restriction

sites.
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2.8.1 LB (Luria-Bertanif plates and LB broth

LB broth was made using the following ingredients. 1% w/v bacto-tryptone; 0.5% w/v 

bacto-yeast extract; 1% NaCl; 1.5% w/v bacto-agar. 950mls of deionised water was 

added and the pH adjusted to 7.0. The mixture was then made up to a final volume of 

1 litre, autoclaved and subsequently stored at room temperature until required. LB plates 

were prepared using the same recipe except that 15g/l of agar was added prior to 

autoclaving. The LB agar was cooled and ampicillin added to a concentration of 

50pg/ml. Agar was then poured into 100mm plates and allowed to set. These plates 

were then used for the growth of bacteria containing plasmids carrying an ampicillin 

resistance gene. Plates were streaked with bacteria using an inoculating loop which was 

sterilised by flaming and cooling.

2.8.2 Ligations

A ligation reaction was set up using the following: 3-5pl of fresh PCR product (if kept 

too long the A overhangs can be degraded), 1 jul of 10X ligation buffer, 2pl of pCR®2.1 

vector (50ng), lp l of T4 DNA ligase, made up to a total volume of lOpl. This was 

incubated overnight at 14°C.

2.8.3 Transformations

LB plates containing 50pg/ml of ampicillin were spread with 40p.l of 40mg/ml of X-gal 

(5-bromo-4-chloro-3-indolyl-P-D-galactoside) dissolved in dimethylformamide, and 

allowed to dry.

Meanwhile the ligation mixture was centrifuged and stored on ice. One vial of INVaF’ 

competent cells was carefully thawed on ice and 2pl of 0.5M P-Mercaptoethanol gently 

stirred into the cells with the pipette tip. 2pl of ligation mix was also stirred into the
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thawed cells and the mixture then incubated for 30 minutes on ice. Cells were then 

heat-shocked at 42°C for 30 seconds and placed back on ice. 250pl of SOC media was 

added to each vial of cells and placed in a horizontal shaker at 37°C for 1 hour at 

225rpm. Two previously prepared LB plates, streaked with X-gal, were used per 

transformation. One plate was spread with 50pl of the transformation mix while the 

other was spread with 200pil of the same transformation mix. Plates were left at room 

temperature for 15 minutes, then inverted and placed in an incubator overnight at 37°C. 

The following morning plates were removed from the incubator and placed in the cold 

room (4°C) for several hours after which colonies were selected for further growth and 

analysis.

2.8.4 Analysis of colonies

The pCR®2.1 vector contains the lac promoter and the lacZa cDNA which produces 0- 

galactosidase and in the presence of X-gal, will give blue colonies. If the insert has 

been succesfully cloned into the plasmid, this will disrupt the lacZa cDNA and the 

colonies will be white.

Between 15 and 20 colonies were selected from each transformation. Each colony was 

inoculated into 3mls of LB broth containing 50pg/ml of ampicillin and grown up 

overnight at 37°C in a horizontal shaker at 225rpm. Plasmids were then isolated and 

restriction digested to screen for the presence of the insert.

Colonies which did contain plasmid with the desired insert were re-plated and stored in 

the cold room for up to 3 months. Glycerol stock solutions were also made and stored 

at -70°C.



69

2.9 Plasmid isolation

Plasmids were purified using the Wizard® Plus SV Minipreps DNA purification system 

from Promega.

2mls of bacterial culture were centrifuged at 10,000g for 1 minute to pellet the bacterial 

cells. Cells were then resuspended in 250pl of cell resuspension solution (50mM Tris- 

HC1 and lOmM EDTA). 250pl of cell lysis solution was then added (0.2M NaOH and 

1%SDS) and mixed by inversion. 5 minutes later 10pl of Alkaline protease solution 

was added and again mixed by inversion. 350pl of neutralisation solution was added 

(4.09M guanidine hydrochloride; 0.759M potassium acetate; 2.12M glacial acetic acid; 

pH 4.2.) and again mixed by inversion.

The lysate was then centrifuged at 14,000g for 10 minutes at room temperature. Clear 

lysate was then transferred by decanting into a spin column and centrifuged at 14,000g 

for 1 minute at room temperature. The column was then washed twice with column 

wash solution (60mM potassium acetate, lOmM Tris-HCl, pH 7.5; 60%ethanol) by 

spinning the wash through the column in the centrifuge.

The DNA was then eluted using lOOpl of nuclease-free water. Aliquots of the plasmid 

prep could be used for restriction digest and the rest of the prep was stored at -20°C.

2.10 Restriction digests

Restriction digests were carried out using Gibco-BRL restriction enzymes in 

conjunction with the appropriate reaction buffer. Digests were usually carried out in 

20pl volumes using about lpg of DNA, 2pl of 10X reaction buffer and 5-10 units of
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enzyme. Samples were mixed and incubated at 37°C for one hour. Amounts were 

scaled up for larger volume digests.

2.11 Sequencing

2.11.1 Cycle sequencing

Sequencing was performed using the Thermo Sequenase cycle sequencing kit from 

Amersham incorporating 33P labelled dideoxynucleotides. A reaction mix was set up 

containing 2pl reaction buffer, 50-500ng of DNA, 2pm of primer and 8 units of thermo 

sequenase DNA polymerase. The reaction was made up to a final volume of 20pl with 

sterile water. Four termination reactions were set up for each sample containing 2pl of 

termination master mix and 0.5pl of each labelled ddNTP. 4.5pl of the reaction mix 

was added to each of the termination mixes and these were subjected to 30 cycles of 

95°C for 30 seconds, 55°C for 30 seconds and 72°C for 1 minute. 4pl of stop solution 

was then added to terminate the reaction.

2.11.2 Sequencing gel

A 6% acrylamide gel was used of the following composition. For lOOmls of gel 

solution, 19:1 acrylamide : bis-acrylamide 20mls, 42g of Urea, lOmls of 10X glycerol- 

tolerant gel buffer made up to lOOmls with water. Before pouring, 1ml of 10% 

ammonium persulphate was added together with 25pl of TEMED (N, N, N ’, N ’- 

tetramethylethylenediamine). The glycerol-tolerant gel buffer (TTE buffer) was made 

up as follows. For 20X buffer, 216g Tris base, 72g Taurine, 4g Na^DTA* 2H20 made 

up to 1 litre in water.

Gels were cast in vertical Bio-Rad sequencing gel kits, run in IX TTE buffer and the 

temperature maintained at 50°C.
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Once run, gels were transferred onto 3MM Whatman paper, covered in Saran wrap and 

dried on a vacuum operated gel drier. Once dry, gels were exposed overnight to 

radiographic film and subsequently film was developed on an X -OGRAPH Compact 

X2 film developer.

2.12 Northern analysis

2.12.1 Solutions used for northern analysis

DEPC-treated water: 50pl DEPC per 500mls of water, left for 12 hours and then 

autoclaved.

20 X SSC: 3M NaCl, 0.3M Na3 citrate. DEPC treated and autoclaved.

10 X MOPS buffer: 0.2M 3-[N-Morpholino]-propane-sulphonic acid, 0.05M Na 

acetate pH 7.0, 0.01M Na^DTA. Made up with DEPC-treated water and filter 

sterilised. Stored at 4°C in a light-proof bottle.

100 X Denhardt’s solution: 2% w/v bovine serum albumin, 2%w/v Ficoll™, 2% w/v 

polyvinylpyrolidone (PVP). Filter sterilised and stored at -20°C.

10% SDS: 10% w/v lauryl sulfate sodium salt made up with DEPC-treated water.

2.12.2 Formaldehyde gels

A 1% denaturing agarose gel was used. This was made by dissolving 3g of agarose in 

219mls of DEPC-treated water and 30mls of 10 X MOPS. Once the agarose had 

dissolved the solution was cooled to 50°C and 51mls of 37% formaldehyde added. The 

gel was then immediately poured into a horizontal Bio-Rad gel casting kit. All this was 

performed in a fume hood to avoid inhalation of formaldehyde fumes. The gel was 

allowed to set for one hour. Gels were mn in 1 X MOPS buffer at 100 Volts.
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2.12.3 Sample preparation

20jj,g of total RNA was ethanol precipitated and resuspended in 6 j l x 1 of DEPC-treated 

water. The RNA was then added to a solution containing 12.5pi of deionised 

formamide, 2.5pl of 10 X MOPS and 4pl of 37% formaldehyde. RNA was then heated 

to 65°C for several minutes and chilled on ice. 2.5pl of loading buffer was added (50% 

v/v glycerol and 0.1 mg/ml bromophenol blue), and samples loaded into the gel. 

Formamide was deionised using Bio-Rad analytical grade mixed bed resin AG 501-XB 

(D) resin 20-50 mesh. lOOmls of formamide was added to the resin in the fume hood 

and stirred for one hour. The blue resin turned yellow once the process was complete. 

The formamide was then filtered twice through Whatman Nol paper, aliquoted and 

stored frozen until required.

2.12.4 Blotting procedure

Once the gel had been run, the ladder and any excess gel was trimmed. The ladder was 

stained with ethidium bromide and photographed with a fluorescent ruler to allow 

subsequent judging of RNA species sizes.

A thick glass plate was placed on a stand and covered with 3 MM Whatman paper which 

dipped on all four sides into a tray containing 10 X SSC solution. The gel was inverted 

and placed directly on top of the paper. Hybond-N+ membrane (Amersham), was cut to 

fit the gel exactly and placed gently on top of the gel. A plastic pipette was gently 

rolled over the membrane to remove any air bubbles. Three layers of 3MM Whatman 

paper were placed over the membrane and finally several layers of paper towel were 

placed over this. Old radiographic film was placed around the gel to prevent the 

capillary action bypassing the gel itself. A weight of approximately 800g was placed on 

top of the paper towels ensuring even weight distribution, and the blot was left
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overnight. The following morning the membrane was carefully peeled off the gel and 

fixed in an ultraviolet stratalinker. Membranes were wrapped in Saran wrap and stored 

in the fridge until required.

2.12.5 Preparation of probes

cDNA probes were labelled with [a-32P] dCTP using Ready-To-Go® DNA labeling 

beads from Pharmacia Biotech. The principals of the labelling procedure are based on 

the use of random oligodeoxyribonucleotides which anneal to the DNA template. The 

Klenow fragment enzyme then allows incorporation of dNTPS which are present 

including the radiolabelled dCTP. Briefly, 25-50ng of linearized DNA dissolved in TE 

buffer, made up to a volume of 45 j l x 1 with water and denatured at 95°C for 5 minutes. 

The DNA was then added to the tube containing the bead along with 5 pi of [a-32P] 

dCTP (3000Ci/mmol). The reaction tube was then incubated at 37°C for 30 minutes. 

Following this, the probe was run through a Nick™ column (Pharmacia Biotech), 

which is a sephadex column containing sephadex® G-50 DNA grade. This removed 

unincorporated isotope. Labelled DNA was then eluted from the column in TE buffer 

and was ready for use.

Oligonucleotide probes were end-labelled with [y-32P] ATP. 200ng of oligonucleotide 

were made up to 6pl in water. The following were then added to the tube: 1 pi of 10X 

Kinase buffer (Promega); lp l of T4 polynucleotide kinase (Promega); 2pl of [y 

32P]ATP. The tube was then incubated at 37°C for 30-60 minutes. The reaction was 

stopped by the addition of lpl of 0.2M EDTA. The following were then added in order 

to precipitate the labelled probe: 170pl of water; transfer RNA ( lp l of lOmg/ml 

solution); 20pl of 3M sodium acetate, pH 5.7; 600pl of 100% ethanol. The tube was
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placed on dry ice for 2 minutes followed by a 5 minute spin at 12,000g. The ethanol 

was removed and the pellet resuspended in 20 p,l of TE buffer. lOpl was used for each 

hybridization.

All isotope handling was carried out with the use of protective screens, and everything 

carefully monitored for 32P contamination.

2.12.6 Hybridization

Blots were placed inside hybridization tubes and prehybridization solution added. The 

tube was then placed in a revolving incubator at 65°C for one hour. The 

prehybridization solution was made up as follows: 2.5mls 20 X SSC, 0.5mls 100X 

Denhardt’s, 0.5mls 10% SDS, 0.02mls salmon sperm DNA (heat denatured at 95°C first 

and then placed on ice) and 6.48mls of water.

After one hour the labelled probe was added to the prehybridization buffer and the blot 

hybridized overnight at 65°C.

2.12.7 Washing of membranes

Membranes were washed in 2 X SSC/ 0.1%SDS for 10 minutes at 65°C. This wash was 

repeated. If the blot was still hot then it was washed in 1 X SSC/ 0.1%SDS for 10 

minutes at 65°C. A final high stringency wash of 0.1 X SSC / 0.1% SDS for 10 minutes 

at 65°C may be used, but is only recommended if the probe is specific and not for 

related sequences.

Membranes were then wrapped in Saran-wrap and exposed to radiographic film for 12 

hours to one week (depending on the strength of the signal) at -70°C. Film was 

developed on an X -OGRAPH Compact X2 film developer.
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3.0 Abstract

The aim of this study was to functionally classify the subtype(s) of a,-adrenoceptor 

mediating contraction of the dog saphenous vein to exogenous noradrenaline.

Agonist profiles to noradrenaline, phenylephrine, (R) A-61603 and UK14304 confirmed 

the presence of post-junctional a ,- and a 2- adrenoceptors, with a rank order of potency 

of (R) A-61603 > noradrenaline > UK14304 > phenylephrine.

To assess antagonism of the a r  mediated responses, the reversible competitive 

antagonists prazosin, WB 4101, HV 723, BMY 7378 and 5 methylurapidil were used in 

the presence of an a 2-antagonist (either lpM  rauwolscine or 0.1 pM delequamine). The 

low potency of prazosin and HV723 suggested the presence of the a ]L-adrenoceptor 

subtype. The non-competitive nature of 5 methylurapidil and BMY 7378, and the 

baseline contraction and rightward shift in the concentration response curves in the 

presence of the highest concentration of the irreversible antagonist chloroethylclonidine, 

are highly suggestive of the presence of a second receptor subtype. Despite the low 

affinity for prazosin, the additional receptor subtype most closely resembles the a 1D- 

adrenoceptor.
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3.1 Methods

5mm sections of saphenous vein were set up in 10ml organ baths, normalised and the 

starting protocol completed, as described in the materials and methods section of this 

thesis. After normalisation vessels were maintained in blockers Krebs’ solution. The 

experimental protocols employed in this section fell into two categories outlined below. 

All comparisons were made using one way analysis of variance (ANOVA), followed by 

a Bonferroni post test, unless stated otherwise. A P value < 0.05 was deemed 

statistically significant unless stated otherwise.

3.1.1 Agonist profiles

An agonist profile was performed in order to ascertain the contribution of both a r  and 

a 2-adrenoceptors in mediating contraction in this vessel. Hence, noradrenaline was used 

since it is the endogenous agonist and will act via both a r  and a 2-adrenoceptors, 

phenylephrine was used as an aj-agonist and UK 14304 was used as an a 2-agonist. In 

addition the Abbott compound was used since it is an a 1A-selective agonist which has a 

potency of a 1A->a]B->a]D-, (Knepper et al. 1995). Vessels were allowed a forty minute 

recovery period after the starting protocol (section 2.3 materials and methods) and 

between subsequent concentration response curves. Cumulative concentration response 

curves were then constmcted to the following agonists, using half log increments. 

Noradrenaline (NA) and phenylephrine (PE), starting at a concentration of InM and 

increasing up to a maximum of ImM if required. (R) A-61603 (Abbott compound) 

starting with a concentration of 0.3nM and increasing up to a concentration of 30pM if 

required. UK14304 starting with a concentration of InM and increasing up to a 

concentration of 0.1 pM if required. Adequate time was allowed between additions of 

agonist for the previous response to have reached a plateau. Three concentration
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response curves (CRC) were carried out on each ring using a different agonist each time. 

Results were expressed as a percentage of the response to the lOpM siting concentration 

of noradrenaline, and plotted in logarithmic space. Experiments were curve fitted using 

GraphPad prism software and fitted to a one site model unless otherwise stated as 

described in section 2.4 of materials and methods.

3.1.2 Antagonist studies

Four to seven saphenous vein rings were set up in parallel. For each experiment one 

ring was designated as a time control and no antagonist used. Each other ring was 

assigned one of five competitive reversible antagonists, or the irreversible alkylating 

agent chloroethylclonidine (CEC). In addition to the blocking agents already present in 

the blockers Krebs’ solution, either 0.1 pM of the a 2-adrenoceptor antagonist RS-15385- 

197 (delequamine), or 1 pM of the a 2-antagonist rauwolscine, were present in the baths 

at all times. An initial cumulative control CRC to noradrenaline was performed in each 

ring. After this, vessels were washed until they returned to baseline and a concentration 

of antagonist added to the bath. A forty minute period for equilibration was allowed 

before a second CRC to noradrenaline was performed. Up to four curves, but more 

often two, were performed on each ring, each time using an increasing concentration of 

the antagonist that had been assigned to that ring. Experiments where there was a 

significant change in the maximum, pEC50 or Hill slope of the time control curve, were 

excluded from the study. Comparisons of these parameters were made using one way 

ANOVA followed by a Bonferroni post test. Time control data is shown in Figure 3.6. 

The antagonists used according to this protocol were prazosin, 5 methylurapidil, 

BMY7378, WB4101 and HV723. Analysis of antagonist action was performed by 

Schild analysis (pA2) as described in the materials and methods section 2.4 of this
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thesis. Estimation of antagonist affinity was also calculated using single antagonist 

concentrations again as described in section 2.4.

The protocol used for CEC was different. After the control curve, a concentration of 

CEC was added to the bath and left for one hour. The vessel was then washed ten times 

over a forty minute period. A second curve to NA was then performed, (Williams and 

Clarke, 1995; O'Rourke et al. 1995). Due to the irreversible nature of this antagonist 

only one concentration of CEC was used on each ring.

3.2 Results

All results are given as mean ± s.e. mean and n = the number of experiments unless 

otherwise stated.

3.2.1 Agonist profile

Values were derived from at least six different animals. Experiments were performed in 

the absence of an a 2-adrenoceptor antagonist. All the agonists used in this study caused 

concentration-dependent increases in tension of the dog saphenous vein. The pEC50 

values of the agonists used were as follows: NA 6.7 ± 0.08, n = 7; PE 5.94 ± 0.07, n = 

11; Abbott compound 7.57 ± 0.50, n = 6; UK14304 6.35 ± 0.28, n = 5. This resulted in 

a rank order of potency of Abbott > NA > UK14304 > PE, with the Abbott compound 

being 7.39X more potent than NA, 42.8X more potent than PE and 16X more potent 

than UK14304. The results are summarised in Table 3.1. All curves fitted to the one 

site model (Figure 3.1) with the exception of a single UK14304 experiment, which fitted 

better to the two site model of receptor activation (Figure 3.2). This two site curve was 

not included in the calculation of agonist potency. One way ANOVA revealed a 

significant difference in the maximum values for the agonists used. A Bonferroni post
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test showed that this was due to the maximum achieved by UK14304 being significantly 

lower than the other three agonists used. In fact, the upper asymptote for UK14304 was 

approximately 50% of that for the other agonists. There was also a significant 

difference in the Hill slope parameters for the different agonists, most noticeably due to 

the shallowness of the curves to UK14304.
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Mean concentration response curves 
for agonists in the Dog Saphenous Vein

120-

1  100.
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Figure 3.1. Mean concentration response curve data for the agonist profiles in the 

dog saphenous vein. Noradrenaline (□), n = 7; phenylephrine (A), n = 11; Abbott 

compound (T), n = 6; UK14304 (♦ ) ,  n = 5. Curves were generated by meaning the 

curve parameters obtained from the individual curve fits. The raw mean data ± s.e. 

mean was superimposed on the mean curves.
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A single agonist profile experiment in 
the Dog Saphenous Vein
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Figure 3.2. Agonist profile for a single experiment demonstrating the two site fit 

for the UK14304 curve in dog saphenous vein. Noradrenaline (□), phenylephrine (A) 

and UK14304 (♦ ) .  The other two agonist curves fit to a one site model.
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3.2.2 Competitive antagonists

A range of five competitive reversible antagonists was used. Values were derived from 

experiments carried out using at least four different animals. pA2 values were derived as 

described in materials and methods in Chapter 2. The first set of antagonist studies was 

conducted in the presence of lpM  of the putative a 2-antagonist rauwolscine. The same 

experiments were then repeated in the presence of 0.1 pM of the a 2-antagonist 

delequamine. The reasons for repeating the experiments in the presence of delequamine 

are explained as follows.

The presence of a 2-adrenoceptors necessitated the use of an a 2-antagonist. 

Unfortunately there is no satisfactory irreversible blocking agent for these receptors. 

Phenoxybenzamine is an irreversible antagonist at a-adrenoceptors. It has been used 

successfully to isolate a 2-adrenoceptors in a mixed population of a r  and a 2- 

adrenoceptors in both the rabbit saphenous vein (Daly et al. 1988b) and the dog 

saphenous vein (MacLennan et al. 1997). However, in the rabbit saphenous vein it was 

not possible to satisfactorily isolate the a]-adrenoceptor population using receptor 

protection with prazosin (Daly et al. 1988b), and in the dog saphenous vein, 

phenoxybenzamine selectively blocked the a,-adrenoceptor population in the absence of 

receptor protection (Constantine et al. 1982), tying in with the findings of Dubovich and 

Langer (1974), that phenoxybenzamine has a much higher affinity for a ,- versus a 2- 

adrenoceptors. The only other option was to use a selective reversible a 2-adrenoceptor 

antagonist. Initially, the putative a 2- antagonist rauwolscine (lpM ) was used, based on 

a study by Leech and Faber (1996), who used this antagonist for the same purpose. In 

another study, when used in rabbit blood vessels, it appeared to be a 2-selective up to a 

concentration of 2.5pM (Daly et al. 1988a). However, on analysis of the data, the 

profound effect that this antagonist had on the concentration response curves to



noradrenaline (Figure 3.3), suggested the possibility that rauwolscine was also affecting 

the a !-adrenoceptor population. Fishing experiments were then performed using 0.1 pM 

of the a 2-antagonist RS-15385-197 (delequamine) for comparison (Figure 3.3). This 

latter antagonist is thought to be highly a 2-selective, and up to a concentration of lOpM 

has been reported to have no effect on a,-adrenoceptor agonist curves in the DSV 

(Brown et al. 1993). The present study showed that lpM  rauwolscine shifted the CRC 

of phenylephrine to the right and suppressed the maximum, unlike 0.1 pM delequamine 

which had no effect (Figure 3.4). On the other hand, delequamine at concentrations of 

both 0.1 pM and lpM, shifted the concentration response curve of the a 2-agonist UK 

14304, as can be seen in Figure 3.5. Incidentally, in this particular experiment as in one 

other, UK 14304 concentration response curves fitted to the two site model. The 

addition of delequamine seemed to shift only the lower part of the curve which, as 

previously mentioned, may indicate that UK 14304 is acting at the a!-adrenoceptor 

population also, and that while the lower part of the curve is a 2-mediated, the upper part 

of the curve may be a]-mediated. This finding was not addressed in the present study 

but it would be of interest to investigate this further.

Observations of the effect of rauwolscine were in agreement with a paper by Daniel et al 

(1996), which suggested that rauwolscine antagonized an unusual subtype of a r  

adrenoceptor in the DSV when phenylephrine was the agonist. At this point, all the 

antagonist studies were repeated in the presence of 0.1 pM delequamine. This was done 

in order to prevent the problem outlined by Kenakin (1982), of “frame shifting” pA2 

values derived when an antagonist has been used that also affects the population of 

interest in addition to the population of receptors which the experimenter wishes to 

exclude.
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Mean concentration response curve data for the antagonists used both in the presence of 

rauwolscine and delequamine are shown in Figures 3.7 to 3.17. Schild regressions are 

shown in Figures 3.18 to 3.19. Table 3.2 summarises slope and pA2 values for the 

competitive antagonists. The pA2 values calculated from individual antagonist 

concentrations in the presence of rauwolscine or delequamine are listed in Tables 3.3 

and 3.4 respectively. Each antagonist is discussed separately giving results in the 

presence of rauwolscine first and then comparing this to results in the presence of 

delequamine.

The a r antagonist prazosin, was used at concentrations of InM, lOnM and 0.1 pM (n = 4 

for each concentration). In the presence of rauwolscine, increasing concentrations of the 

antagonist caused parallel rightward displacements of the concentration response curves 

to noradrenaline, with no significant alteration in maximum values (P of .05). One way 

ANOVA of the Hill slopes showed a significant difference (P of 0.0059), with a 

Bonferroni post test revealing that this was due to a decrease in the slope in the presence 

of 0.1 pM prazosin. pEC50 values in the presence of prazosin were also significantly 

different from controls (P< 0.0001), but from the post test this was due only to the 

highest concentration of the antagonist. Schild regression yielded a pA2 value of 7.36, 

with a slope significantly different from negative unity (-0.8 to -0.30, 95% confidence 

intervals (C.I.)). When pA2 values were calculated for each antagonist concentration, 

they were found to be significantly different due to a higher value with the InM 

concentration of prazosin. A pA2 value of 7.35 ± 0.03 (n = 4) was obtained with 0.1 pM 

piazosin.

In contrast, in the presence of delequamine, prazosin, while also causing concentration- 

dependent rightward shifts in the concentration response curves, caused no significant 

change in either the maximum or Hill slope parameters (P of 0.17 and 0.10
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respectively). pEC50 values were significantly changed (P<0.0001), this time due to 

both the lOnM and 0.1 pM concentrations of prazosin. Schild regression yielded a 

higher pA2 value of 8.31, with a slope not significantly different from negative unity (-

1.01 to -0.64, 95% C.I.). pA2 values calculated from single antagonist concentrations 

were not significantly different over the range of antagonist used and a pA2 value of 

8.09 ± 0.07 (n = 4) was calculated in the presence of 0.1 pM prazosin.

The a ]D- selective antagonist, BMY 7378 was used at concentrations of InM, lOnM and 

0.1 pM (n = 4 for each concentration). In the presence of rauwolscine, none of the 

concentrations used caused a significant change in the pEC50, or Hill slopes of the 

curves to NA (P of 0.25 and 0.40 respectively). Maximum values were significantly 

altered (P of 0.045). Although not large, the difference was due to a reduction in the 

maximum in the presence of 0.1 pM BMY 7378. As none of the concentrations of 

antagonist caused a significant shift in the concentration response curves and the effect 

was not concentration-dependent (Figure 3.9), a meaningful Schild regression was not 

possible, since the regression line would have been almost horizontal. PA2 values 

calculated from each antagonist concentration were significantly different, with a value 

of 6.54 ± 0.17 ( n = 4) in the presence of 0.1 pM BMY 7378. This suggested that the 

interaction was not competitive.

Results in the presence of delequamine were similar. This time maximum values as 

well as pEC50, and Hill slopes were not significantly different (P of 0.15, 0.19 and 0.75 

respectively). When Schild regression was performed, a slope significantly different 

from negative unity was obtained (-0.52 to -0.09, 95% C.I.) with an X axis intercept of

7.2 (pA2). Again, pA2 values calculated from single antagonist concentrations were 

significantly different. A pA2 of 7.04 ± 0.12 (n = 4) was calculated from 0.1 pM BMY 

7378.
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The a ]A/D-selective antagonist WB4101 was used at concentrations of InM, lOnM and 

0.1 pM (n = 4-5 for each concentration). In the presence of rauwolscine, WB 4101 

produced parallel dextral displacements of the NA concentration response curves, with 

no significant alterations in maximum or Hill slope values (P of 0.12 and 0.28 

respectively). pEC50 values were significantly different (PO.OOOl), but from the post 

test this appeared to be due only to the highest concentration of the antagonist. Schild 

regression yielded a pA2 value of 8.06 and a slope not significantly different from 

negative unity (-1 to -0.23, 95% C.I). PA2 values calculated for lOnM and 0.1 pM WB 

4101 were not significantly different as judged by a t test. The InM concentration was 

not included since only one pA2 value was obtained. This was due to negative values 

being derived from the other three experiments because of the low potency of WB 4101 

at this concentration. A pA2 value of 7.7 ±0.11 (n = 4), was derived from 0.1 pM WB 

4101.

In the presence of delequamine, WB 4101 also produced parallel rightward 

displacements of the concentration response curves to NA, with the exception of the 

highest concentration used. This concentration of WB4101 caused a significant 

decrease in the maximum value and a significant lowering of the Hill slope parameter (P 

of 0.0012 and 0.0006 respectively). This time both lOnM and 0.1 pM WB 4101 

contributed to the significant change in the pEC50 values (P < 0.0001). Schild regression 

analysis gave a slope not significantly different from negative unity (-1.22 to -0.57, 95% 

C.I.) and a higher pA2 value of 8.86. pA2 values calculated over the range of antagonist 

concentrations used were not significantly different and a pA2 value calculated using the 

intermediate concentration of WB4101, which caused no slope or maximum value 

change, yielded a value of 8.88 ± 0.15 ( n = 4).



HV723 was used at concentrations of InM, lOnM and 0.1 pM (n = 4-5 for each 

concentration). In the presence of rauwolscine, increasing concentrations of the 

antagonist caused parallel rightward displacements in the concentration response curves 

to NA, with no significant change in maximum or Hill slope parameters (P of 0.41 and 

0.82 respectively). Both lOnM and 0.1 pM HV 723 contributed to the significant change 

in the pEC50 values (P< 0.0001). Schild regression yielded a pA2 value of 8.16 with a 

slope not significantly different from negative unity (-1.15 to -0.35, 95% C.I). pA2 

values were not significantly different over the range of antagonist concentrations and 

0.1 pM HV 723 gave a pA2 value of 7.8 ± 0.02 (n = 4).

In the presence of delequamine, HV 723 in increasing concentrations caused rightward 

shifts in the concentration response curves to noradrenaline with no significant 

alteration in maximum values (P of 0.35). There was however a significant lowering in 

the Hill slope parameter for all concentrations of the antagonist used ( P < 0.0001). 

Schild regression for this antagonist yielded a slope not significantly different from 

negative unity (-1.18 to -0.66, 95% C.I.), and a higher pA2 value of 8.98. pA2 values 

were not significantly different over the range of antagonist concentrations used and a 

pA2 estimation from the highest concentration of antagonist gave a value of 8.77 ± 0.25 

(* = 4).

The a 1A-selective antagonist, 5 methylurapidil, was used at concentrations of lOnM, 

0.1 pM and lpM  (n = 4-1 for each concentration used). In the presence of rauwolscine, 

increasing concentrations of 5 methylurapidil caused no significant alterations in either 

the maximum, Hill slope or pEC50 parameters (P of 0.15, 0.82 and 0.05 respectively). 

Schild regression, as for BMY 7378, in the presence of rauwolscine, was not possible 

because of the lack of effect of the antagonist. A pA2 of 6.00 ± 0.77 was derived from 

lpM  5 methylurapidil.
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Results for 5 methylurapidil in the presence of delequamine were quite dissimilar. The 

two highest concentrations of the antagonist caused rightward shifts in the concentration 

response curves to noradrenaline with no significant alteration in the maximum value (P 

of 0.06). 0.1 pM did however cause a significant decrease in the Hill slope parameter. 

The effect of 1 pM 5 methylurapidil was more complex. Three out of five experiments 

fitted better to a two site model. The two out of five experiments that fitted to a one site 

model caused a significant decrease in the maximum from control, (Figures 3.16 and 

3.17).

Schild analysis performed using only the experiments that fitted to the one site model in 

the calculation, gave a slope not significantly different from negative unity (-1.34 to - 

0.83, 95% C.I.) and a pA2 value of 8.35. A Schild regression using the high affinity site 

in the two site fits for the lpM  concentration, produced an almost identical Schild 

regression with a slope o f -1.42 to -0.89 (95% C.I.) and apA 2 of 8.31.

It was not possible to produce a Schild plot using the low affinity site from the lpM  

concentration as the plot deviated significantly from the model. Instead a pA2 value 

calculated from this low affinity site gave a value of 6.29 ± 0.28 (n = 3).
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Control curves to noradrenaline in the 
presence of delequamine or 

rauwolscine
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Figure 3.3. Graph illustrating the effect of either lpM  rauwolscine or O.lpM 

delequamine on NA concentration response curves in DSV. Mean curves were 

generated from mean parameters derived from curve fitting. The mean raw data ± s.e. 

mean has been superimposed. Noradrenaline (■), n = 6; noradrenaline plus lpM 

rauwolscine (□),« = 4; noradrenaline plus 0.1 pM delequamine (A), n = 4.
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Effect of delequamine and rauwolscine 
on contractions to phenylephrine in 

dog saphenous vein
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log [phenylephrine], M.

Figure 3.4. Graph showing data from a single experiment in the DSV, comparing 

the effect of O.lpM delequamine and lpM rauwolscine on a response curve to 

phenylephrine. PE (□); PE plus 0.1 pM delequamine (■), PE plus lpM  rauwolscine 

(▼)•



92

UK 14304 in the dog saphenous
vein
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Figure 3.5. Graph showing data from a single experiment in the DSV, comparing 

the effect of O.lpM delequamine and lpM  delequamine on a response curve to UK 

14304. All curves are fitted to the two site model for receptor activation. Control UK 

14304 for O.lpM delequamine (□); UK 14304 plus 0.1 pM delequamine (■), Control 

UK 14304 for lpM  delequamine (A); UK 14304 plus lpM  delequamine (A).
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Time control data for Dog Saphenous 
Vein rings
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Figure 3.6. Mean time control concentration response curves for dog saphenous 

vein. Curves were created by meaning the parameters derived from the curve fitting and 

generating mean curves. Mean raw data ± s.e. mean, was then superimposed on the 

mean curves. Curve 1 (□), n = 13; curve 2 (A), n = 13; curve 3 (T), n = 4; curve 4 

( ♦ ) ,«  = 3.
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Prazosin versus noradrenaline in dog
saphenous vein in the presence o f  

rauwolscine125-

S 100-
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log [noradrenaline], M.

Figure 3.7. Mean concentration response data for prazosin in DSV in the presence 

of rauwolscine. Mean curves were generated from mean parameters derived from 

curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□), n = 

12; InM prazosin (▼), n = 4; lOnM prazosin (A), n = 4 ; O.lpM prazosin (♦ ) ,  n — 4.
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Prazosin versus noradrenaline in dog
saphenous vein in the presence of 

delequamine125-

S 100-

75-

25-

-10

log[noradrenaline], M.

Figure 3.8. Mean concentration response data for prazosin in DSV in the presence 

of delequamine. Mean curves were generated from mean parameters derived from 

curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□), n = 

12; InM prazosin (T), n = 4; lOnM prazosin (A), n = 4; O.lpM prazosin (♦ ) ,  n = 4.
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BM Y 7378 versus noradrenaline in dog
saphenous vein in the presence of

125- rauwolscine
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log [noradrenaline], M.

Figure 3.9. Mean concentration response data for BMY 7378 in DSV in the 

presence of rauwolscine. Mean curves were generated from mean parameters derived 

from curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□), 

n = 12; InM BMY 7378 (T), n = 4; lOnM BMY 7378 (A), n = 4 ; O.lpM BMY 7378 

( ♦ M  = 4.
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BM Y7378 versus noradrenaline in dog
saphenous vein in the presence o f

delequamine

a 100.

log[noradrenaline], M.

Figure 3.10. Mean concentration response data for BMY 7378 in DSV in the 

presence of delequamine. Mean curves were generated from mean parameters derived 

from curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□), 

« = 6; InM BMY 7378 (▼), n = 4; lOnM BMY 7378 (A), n = 4 ; O.lpM BMY 7378 

( ♦ ) ,«  = 4.
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WB 4101 versus noradrenaline in dog
saphenous vein in the presence of 

rauwolscine
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Figure 3.11. Mean concentration response data for WB4101 in DSV in the 

presence of rauwolscine. Mean curves were generated from mean parameters derived 

from curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□), 

n = 12; InM WB 4101 (▼), n = 4; lOnM WB 4101 (A), n = 4 ; O.lpM WB 4101 (♦ ) ,
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W B4101 versus noradrenaline in dog
saphenous vein in the presence o f

delequamine
125-

a 100.

75-

50-

25-

-10

log[noradrenaline], M.

Figure 3.12. Mean concentration response data for WB4101 in DSV in the 

presence of delequamine. Mean curves were generated from mean parameters derived 

from curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□) 

, n  = 7; InM WB 4101 (▼), n = 4; lOnM WB 4101 (A), n = 4 ; O.lpM WB 4101 (♦ ) ,
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HV 723 versus noradrenaline in dog
saphenous vein in the presence o f

rauwolscine125-

a ioo-
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50-

25-

log [noradrenaline], M.

Figure 3.13. Mean concentration response data for HV723 in DSV in the presence 

of rauwolscine. Mean curves were generated from mean parameters derived from 

curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□), n = 

12; InM HV 723 (▼), n = 4; lOnM HV 723 (A), n = 4 ; O.lpM HV 723 (♦ ) ,  n = 4.
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HV723 versus noradrenaline in  dog 
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Figure 3.14. Mean concentration response data for HV723 in DSV in the presence 

of delequamine. Mean curves were generated from mean parameters derived from 

curve fitting. The mean raw data ± s.e. mean has been superimposed. Control (□), n = 

12; InM HV 723 (T), n = 4; lOnM HV 723 (A), n = 4;  O.ljaM HV 723 (♦ ) ,  n = 4
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5 m ethylurapidil versus noradrenaline
in dog saphenous vein in  the presence

125- o f rauw olscine
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Figure 3.15. Mean concentration response data for 5 methylurapidil (5 MeU) in 

DSV in the presence of rauwolscine. Mean curves were generated from mean 

parameters derived from curve fitting. The mean raw data ± s.e. mean has been 

superimposed. Control (□), n=  12; lOnM 5 MeU (▼), n = 4; O.lpM 5 MeU (A), n = 

4; 1 pM 5 MeU (♦ ) ,  n = 4.
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5 methylurapidl versus noradrenaline
in dog saphenous vein in the presence

of delequamine
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Figure 3.16. Mean concentration response data for 5 methylurapidil (5 MeU) in 

DSV in the presence of delequamine. Graph showing the one site curves only for lpM 

5MeU. Mean curves were generated from mean parameters derived from curve fitting. 

The mean raw data ± s.e. mean has been superimposed. Control (□), w = 7; lOnM 5 

MeU (T), n = 4; O.lpM 5 MeU (A), « = 4 ; l p M 5 M e U  (♦ ) ,  « = 2 .
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5 methylurapidil versus noradrenaline 
in dog saphenous vein in the presence 

of delequamine
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a loo.

75-

50-

a

-10
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Figure 3.17. Mean concentration response data for 5 methylurapidil (5 MeU) in 

DSV in the presence of delequamine showing the two site curves only for lpM  

5MeU. Mean curves were generated from mean parameters derived from curve fitting. 

The mean raw data ± s.e. mean has been superimposed. Control (□), n = l \  lOnM 5 

MeU (▼), n = 4; 0.1 pM 5 MeU (A), n = 4;  lpM  5 MeU (♦ ) ,  n = 3.
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-log [prazosin], M. -log [WB 4101], M.
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-log [HV 723], M.

Figure 3.18. Schild plots for prazosin, WB4101 and HV723 in the dog saphenous 

vein in the presence of rauwolscine. Graph A, prazosin; graph B, WB 4101; graph C, 

HV 723.
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Figure 3.19. Schild plots for prazosin, BMY 7378, WB4101 and HV723 in the dog 

saphenous vein in the presence of delequamine. Graph A, prazosin; graph B, BMY 

7378; graph C, WB 4101; graph D, HV 723.
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2 -

-log [5 methylurapidil], M.

Figure 3.20. Schild plot for 5 methylurapidil in the dog saphenous vein in the 

presence of delequamine. DR-1 values for both the one site (□) and the high affinity 

two site fit (A) are displayed for luM 5 methylurapidil.



108

>V 
0 O 0 4JAa
0VI
bx>o-0
<uA

'V<uV0
VI•P+
0O
bX)0
u

z
VI

a>

B0
U
0a
a>Oho

w
-0
0
0

a
0
a

'3
0a

u
w
a<f-lo
0O
Vi• PM
U
0aao

U

r̂ i
- -
2
0

H



109

<N<
Q-

3• p*
3
3
3

—13
T3

O m 00p <N p p 00 Osoo 00 00 00 00

-C

£fS
a

*3cn
'o
£
3
3J-

VO < < < voo VO

£ £ z 00 00

<W
aJ3

O
E• mm
E
3
3
a*a>

13T3

vn ov m ov vovo o oo oo lO voo1 o1 oi oi o1 oio o o o o o'(-> +-> 4-> s-> +-> +->r- < <N (N (N oop in p p CN 1—H
o >—3 i—H 1—H *—!

£ jso
ao

55

H
C/5HH
£o
o
<<
H
£

a>
t3
’3t/3
o
£
3
35-

mo m<N
inpoio < < C o1 1o+->00o1

£ z 0 +->H1
in1—H r-H

50
o
N
3i-

3h

00
l>
m

PQ

o
’(»
a>
3
o

a
3!-

J3
-E
0>
3

IT)

<Ds-»• PNCM
o
£
a
3

J3

a>
3
in

3
(3
3

p3
OX)

TT
P P
£

r>
n
r-
>
B



110

ANTAGONIST pA2 from concentration pA2 ± s.e.mean'

Schild of antagonist (n)

prazosin InM 8.17 + 0.23 (4)

7.36 lOnM 7.51 ±0.11 (4)

0.1 pM 7.35 ± 0.04 (4)

BMY 7378 InM 8.54 ±0.17  (4)

NA lOnM 7.26 ±0.1 (4)

0.1 pM 6.54 ±0.17  (4)

HV 723 InM 8.21 (2)

8.16 lOnM 8.27 ±0.14  (4)

0.1 pM 7.8 ± 0.03 (4)

WB 4101 InM 8.59(1)

8.059 lOnM 7.84 ±0.12  (4)

0.1 pM 7.7 ±0.11 (4)

5 MeU lOnM 8 ± 0.33 (3)

NA 0.1 pM 6.8 ± 0.42 (3)

lpM 6 ± 0.77 (4)

Table 3.3. Comparison of pA2 values from Schild analysis with values calculated 

from individual antagonist concentrations3 in the dog saphenous vein in the 

presence of rauwolscine. Noradrenaline was the agonist used. NA shows where it was 

not possible to perform Schild analysis.



I l l

ANTAGONIST pA2 from 

Schild

concentration 

of antagonist

pA2 ± s.e.mean3 

(n)

prazosin

8.31

InM 

lOnM 

0.1 gM

8.44 ±0.19  (4) 

8.23 ±0.1 (4) 

8.09 ± 0.08 (4)

BMY 7378 InM 8.43 ± 0.2 (4)

7.20 lOnM 7.80 ± 0.08 (4)

0.1 gM 7.04 ± 0 .12  (4)

HV 723 InM 8.93 ± 0 .1 2 (4 )

8.98 lOnM 9.01 ±0.1 (4)

0.1 gM 8.77 ± 0.25 (4)

WB 4101 InM 8.81 ± 0 .1 8 (4 )

8.85 lOnM 8.88 ±0.15 (4)

0.1 gM 8.62 ± 0.34 (4)

5 MeU lOnM 8.39 ±0.13

8.35 0.1 gM 8.46 ± 0.28

1 gM one site 8.56 ±0.26

1 gM two site, low 6.29 ±0.28

affinity

1 gM two site, high 8.71 ±0.25

affinity

Table 3.4. Comparison of pA2 values from Schild analysis with values calculated 

for each antagonist concentration3 in the dog saphenous vein in the presence of 

delequamine (noradrenaline was the agonist used).
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3.2.3 Irreversible antagonists

CEC in the presence of lpM  rauwolscine, was used at concentrations of 0.1 pM, lpM  and 

lOOpM. Values are the results of experiments derived from four different animals. The two 

highest concentrations used had no effect on the NA concentration response curves. lOOpM 

CEC caused an irreversible baseline contraction of 12.92 ±4.1 % (n = 4). In addition, this 

concentration significantly depressed the maximum, lowered the Hill slope and shifted the 

pEC50 value compared to control. pEC50 values were as follows: Control 5.36 ± 0.04, (n = 

12); 0.1 pM CEC 5.35 ± 0.08, (n = 4); lpM  CEC 5.45 ± 0.08, {n = 4); lOOpM CEC 4.83 ± 

0.05 ( n = 4).

CEC in the presence of delequamine, was used at concentrations of, lpM, lOpM and lOOpM 

(n = 4 for each concentration). The two lowest concentrations used caused no significant 

change in the maximum or pEC50 values. pEC50 values of 6.50 ± 0.07, 6.31 ± 0.09 and 6.19 ± 

0.05 were obtained for the control curve, lpM  and lOpM respectively. lpM  and lOpM did 

however significantly lower the Hill slope parameter and lOpM CEC caused a baseline 

contraction. lOOpM CEC did significantly reduce the curve maximum and significantly 

shifted the pEC50 value to 5.37 ±0.12. This highest concentration also caused an irreversible 

baseline contraction in the vessels averaging 37.86 ± 6.38% (n = 4) of the maximum 

response in the control curve. This was significantly higher than that seen in the presence of 

rauwolscine. Mean concentration response curves in the presence of rauwolscine or 

delequamine are represented in Figures 3.21 and 3.22 respectively.
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C hloroethylclonidine versus
noradrenaline in dog saphenous vein in

the presence o f rauw olscine
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Figure 3.21. Mean concentration response curves in the DSV, to noradrenaline in 

the presence of CEC and rauwolscine. Control (□), n=  12; 0.1 pM CEC (▼), n = 4;

lpM  CEC (A), n = 4; lOOpM CEC (♦ ) ,  n = 4. Mean curves were generated from 

mean parameters derived from curve fitting. The mean raw data ± s.e. mean has been 

superimposed.
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C hloroethylclon id ine versus 
noradrenaline in  dog saphenous vein  in  

the presence o f delequam ine
125-,

S
a 100.
Rcs
a
©
5-
ao
o
o 50.

25 .

-10

log[noradrenaline], M.

Figure 3.22. Mean concentration response curves in the DSV, to noradrenaline in 

the presence of CEC and delequamine. Control (□), n — 12; lpM  CEC (T), n — 4; 

lOpM CEC (A), n = 4; lOOpM CEC (♦ ) , n = 4. Mean curves were generated from 

mean parameters derived from curve fitting. The mean raw data ± s.e. mean has been 

superimposed.
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3.3 Discussion

The dog saphenous vein (DSV) has been used extensively in a wide variety of vascular 

research studies and thus within certain limits it has been well characterised. This made 

it a good choice of vessel for this study.

It is now well accepted that the DSV has both a r  and a 2- post-junctional adrenoceptors, 

which mediate contraction to exogenous noradrenaline. Evidence for this first came 

from in vivo studies by Drew and Whiting (1979). Later a number of studies looked at 

isolated rings of vein and compared responses to a number of agonists and antagonists 

(Flavahan and Vanhoutte, 1986b; Alabaster et al. 1985; Flavahan et al. 1984; 

Constantine et al. 1982; Sullivan and Drew, 1980; De Mey and Vanhoutte, 1981). 

These studies found that exogenous noradrenaline activated post-junctional a ,- and a 2- 

adrenoceptors and that the lower half of the curve was predominantly a 2- mediated 

while the upper portion of the curve was primarily a ,- mediated. In general, all these 

studies found that the aj-agonist phenylephrine was less potent than noradrenaline, 

while there was some variation seen between studies in the rank order of the a 2-agonists 

used. De Mey and Vanhoutte (1981) used the a 2-agonist clonidine and found it only 

slightly less potent than noradrenaline. In contrast, Alabaster at al (1985) found the a 2- 

agonist they chose (UK14304) to be more potent than either noradrenaline or 

phenylephrine.

In agreement with the studies mentioned above, I also found noradrenaline to be more 

potent than phenylephrine. The a 2-agonist UK14304 was of intermediate potency to 

phenylephrine and noradrenaline, being more potent than the former and less potent 

than the latter. As for the other studies cited, phenylephrine and noradrenaline were full 

agonists in this tissue, while UK14304 only achieved about 50% of the response 

produced by these two agonists. Another interesting finding was the significant
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difference in the Hill slope parameters between agonists. A Bonferroni post test showed 

that this was due to the shallowness of the UK14304 curve. The phenylephrine curve 

was also significantly steeper than the noradrenaline curve. This has previously been 

observed by Guimaraes and Paiva (1987). The steepness of the curves to both the 

Abbott compound and phenylephrine may indicate that these agonists are more likely to 

be activating a single population of receptors as opposed to either noradrenaline or UK 

14304 (Table 3.1), since shallower curves can be due to an interaction of the agonist 

with more than one receptor population.

In addition to the agonists already mentioned, the Abbott compound (R) A-61603 was 

used. A-61603 was developed a number of years ago, but only since the recent 

discovery of a,-adrenoceptor subtypes, has its potential as a subtype-selective agonist 

come to light.

Most currently available information on this substance has been published in a paper by 

Knepper (1995). Sensitivity (EC50 values) of this agonist was compared in a variety of 

tissue types (native subtypes) and cell lines, transfected with the three cloned oq- 

subtypes ( a la-, a ]b- and a ld-). Included in the tissues selected were rat vas deferens and 

canine prostate. Although in the paper these were both classified as having a ]A- 

adrenoceptors, these tissues have both been described elsewhere in the literature as 

containing a 1L-adrenoceptors (Muramatsu et al. 1995). This is relevant to the vessels 

used in this study because of their low affinity to prazosin which is discussed later. 

Knepper shows A-61603 to be 35-150 fold more potent at a 1A-adrenoceptors compared 

to either oc1B- or a ]D-.

Comparisons were also made between A-61603 and different agonists at the three native 

subtypes. At canine prostate strips A-61603 was 165 fold more potent than 

phenylephrine and 128 fold more potent than noradrenaline. At the a ]B-adrenoceptor in
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rat spleen, A-61603 was 40 fold more potent than phenylephrine. In contrast, at a 1D- 

adrenoceptor sites in rat aorta, the compound was less potent than phenylephrine. It 

should however be noted, that in the present study, the R-enantiomer rather than the 

racemic mix was used. The R-enantiomer appears to confer potency to the compound. 

Knepper also quotes figures for (R) A-61603 at the canine prostate, showing a 590 fold 

greater potency than phenylephrine and a 460 fold greater potency than noradrenaline. 

These figures are considerably higher than those obtained in this study. Unfortunately, 

no values are available for (R) A-61603 at the other oq-subtypes.

To summarise the results of the agonist studies, the rank order of potency of the agonists 

used would support the presence of both post-junctional cq- and a 2-adrenoceptors 

(Wright et al. 1995). The Abbott compound was the most potent of the agonists used. 

This would support the view that the oq ̂ -adrenoceptor is involved. Its relative 

potency in relation to phenylephrine, while much lower when compared to Knepper’s 

study, for a ]AyL- adrenoceptors, could be explained by the coexistence of another 

receptor subtype where the compound does not show the same order of magnitude in the 

increased sensitivity over phenylephrine. The discrepancies between studies, of the 

potency of UK14304 compared to noradrenaline could be due to the relative proportion 

of a ,- and a 2- adrenoceptors. It has been demonstrated that the density of a 2- 

adrenoceptors increases from the distal to the proximal portion of the DSV (Guimaraes 

and Nunes, 1990; Guimaraes et al. 1991; Pereira et al. 1991). According to the 

diagrams drawn by Guimaraes and Nunes (1990), the section of DSV used in this study 

was intermediate. In many of the other studies the exact region of vein used is not clear, 

thus anatomical location of the segment of vessel used may explain some of the 

variations seen between studies.
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Although not addressed in this study, it is worth mentioning, that it has been suggested 

that in some vessels, UK 14304 may act as an agonist at a,-adrenoceptors (Nagadeh et 

al. 1994). This could explain the two site fit seen for UK 14304 in several of the DSV 

rings (Figures 3.2 and 3.4.) and the shallowness of the Hill slopes seen in this study 

(Table 3.1).

In addition to agonists, a selection of aj -adrenoceptor antagonists was used in order to 

functionally classify the subtype of a,-adrenoceptor responsible for contraction of this 

vessel to exogenous noradrenaline. The current concepts and nomenclature for 

classification of a  j-adrenoceptors have already been discussed in the introduction in 

Chapter 1. The a  j-antagonist prazosin, was used in addition to the following putative 

subtype-selective antagonists: The a 1A-selective 5 methylurapidil (Hanft and Gross, 

1989; Graziadei et al. 1989; Gross et al. 1989; Gross et al. 1988); the a ,D-selective 

BMY 7378 (Goetz et al. 1995); HV 723 to distinguish a ]L- and a ]N- (Oshita et al. 1988; 

Muramatsu et al. 1995); the a,^-selective WB 4101 (Kenny et al. 1995; Morrow and 

Creese, 1986). In addition, the irreversible alkylating agent CEC was used to determine 

the presence of a 1B-adrenoceptors (Michel et al. 1993; Gross et al. 1989; Minneman et 

al. 1988; Minneman, 1988; Han et al. 1987b).

A number of studies have already tried to classify a,-adrenoceptors in the DSV. From 

functional studies the one common finding has been the low affinity for prazosin (pKB 

or pA2 values less than 9), (Alabaster et al. 1985; Sullivan and Drew, 1980; De Mey and 

Vanhoutte, 1981; Guimaraes and Nunes, 1990; Flavahan and Vanhoutte, 1986b; 

Flavahan et al. 1984). Beyond this, the subtype(s) involved are still unresolved. 

Guimaraes et al (1991), suggested that there was more than one subtype, with the 

proximal part of the vessel being a ]A- due to the high potency of WB4101, and distally 

a ]B-, because WB4101 was less potent in this region but the effect of the agonist
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phenylephrine was greater. Hicks et al (1991) concluded on the presence of the a 1A- in 

the DSV, again based on the high affinity to WB4101. They also felt that there was an 

additional subtype because of the non-competitive action of some of the antagonists on 

contractions to phenylephrine. Although it has been suggested that phenylephrine, 

especially at high agonist concentrations, may mediate its action through ot2- 

adrenoceptors in the DSV and human vessels (Hair et al. 1988; Hicks et al. 1991; 

Guimaraes et al. 1987), the relative insensitivity of phenylephrine contractions to 

calcium channel blockers compared to the a 2-agonist BHT 920 and the lower potency of 

rauwolscine against phenylephrine induced contractions compared to other a 2- 

adrenoceptor agonists, has been used to argue that this is unlikely. The lack of effect of 

the selective a 2-antagonist delequamine, on contractions to phenylephrine in this study 

would support this latter view.

Daniel et al (1996) also found a high potency for WB4101 (pKB 8.3), but because of the 

low affinity for 5 methylurapidil (pKB 6.2), concluded that this indicated the presence of 

an a 1D- rather than an a 1A- receptor subtype. Both these antagonists seemed to act 

competitively. However, only a narrow concentration range was explored. Potency of 

prazosin was also low and varied depending on the concentration used from a pKB of 

6.69 to 7.76. It was concluded that the subtype involved was similar to the a 1D-, but 

was atypical, because the sites seemed to be somewhat sensitive to CEC and 

rauwolscine.

Findings from this study are summarised in Tables 3.2 to 3.4 and were somewhat 

interesting when comparisons were made between experiments carried out in the 

presence of rauwolscine with those conducted in the presence of delequamine. In 

general, there appeared to be a lowering of antagonist affinities when rauwolscine rather 

than delequamine was used (as already mentioned, Kenakin (1982) describes this effect
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this, the antagonists most dramatically affected by the use of one or other a 2-antagonist 

were prazosin, 5 methylurapidil and WB 4101. Prazosin in the presence of rauwolscine 

had a very low affinity and Schild regression was suggestive of a non-competitive 

interaction due to a slope significantly different from negative unity. In contrast, the 

interaction became competitive and the affinity much higher when delequamine was 

used. It is not clear as to why the interaction should have been non-competitive with 

rauwolscine, but this is possibly just a reflection of the very low affinity of this ligand 

for the receptors remaining unaffected by rauwolscine. What is clear, is that 

rauwolscine is interacting at prazosin sensitive sites in DSV. 5 methylurapidil also had 

a very low affinity in the presence of rauwolscine. When delequamine was used, 5 

methylurapidil became much more potent and the highest concentration used appeared 

to unmask a high and a low affinity site. Interestingly, the low affinity site yielded a 

pA2 of 6.29 ± 0.28 which was similar to a pA2 obtained with the same concentration in 

the presence of rauwolscine (6.00 ± 0.77). This would seem to suggest that 

rauwolscine, in addition to interacting with prazosin sensitive sites, also interacts with 

high affinity sites identified by 5 methylurapidil, but not with 5 methylurapidil low 

affinity sites in the DSV. Finally, WB 4101 in the presence of rauwolscine, had a low 

potency and fulfilled the criteria for a competitive interaction. In the presence of 

delequamine, the interaction was not strictly competitive due to a decrease in maximum 

with the highest concentration of antagonist. To summarise, rauwolscine would appear 

to interact with a  j-adrenoceptors which are prazosin-sensitive, 5 methylurapidil- 

sensitive and WB 4101 - sensitive.

Focusing solely on results obtained in the presence of delequamine, prazosin interacted 

in a competitive fashion with a low affinity (pA2 of 8.31) as seen in other studies. The
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interaction with HV723 was not strictly competitive as the antagonist altered the slope 

of the concentration response curves. However, Schild analysis produced a pA2 of 8.98. 

From these two antagonists alone, the subtype of adrenoceptor could be classified 

according to Muramatsu’s scheme (Muramatsu et al. 1990b; Muramatsu et al. 1995) as 

an oc,L-. The interaction with WB4101 was not strictly competitive as the highest 

concentration caused a decrease in the maximum value. PA2 values calculated from 

individual antagonist concentrations ranged from 8.81 ± 0.18 with the lowest 

concentration, to 8.62 ± 0.34 with the highest concentration but were not significantly 

different across the range of antagonist concentrations used. The lower figure was 

comparable to data from Muramatsu et al (1990b) (pA2 8.58 ± 0.10) and the higher 

value similar to a pA2 of 8.9 ±0.1 from human lower urinary tract classified as ot]L- 

(Ford et al. 1996b).

The a 1D-antagonist BMY 7378 (Goetz et al. 1995) interacted non-competitively. A pA2 

value calculated from the lowest concentration used was 8.43 ± 0.2. This could support 

the presence of the a ]D-adrenoceptor since in rat aorta, now generally accepted to 

possess this subtype, values of 8.9 ± 0.1 have been obtained (Goetz et al. 1995). With 

increasing concentrations of this antagonist the pA2 values fell significantly giving a pA2 

of 7.04 ±0.12 with the antagonist concentration of 0.1 pM, which would be more in 

line with the affinity of this antagonist at either the a 1A- or a ]B-adrenoceptor.

Finally, 5 methylurapidil had the most complex effect in this vessel. The interaction 

was non-competitive. Experiments using the highest concentration either caused a 

decrease in the maximum and fitted to a one site model, or fitted to a two site model. 

PA2 values calculated from individual concentrations were not significantly different 

with the exception of the low affinity site identified with 1 pM 5MeU. Interestingly the
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pA2 value of 6.29 ± 0.28 from this low affinity site was similar to the low affinity 

obtained in the DSV by Daniel et al. (1996).

Interpretation of the results from CEC was also complicated as this antagonist, at the 

highest concentrations used, caused an irreversible baseline contraction in the presence 

of rauwolscine and delequamine. CEC normally has been considered as an irreversible 

antagonist which has some affinity for all subtypes of a  j-adrenoceptor but most strongly 

irreversibly alkylates the a 1B- subtype (Muramatsu et al. 1995; Schwinn et al. 1995; 

Forray et al. 1994a; Perez et al. 1991) and has least effect on the a ]A- and a 1L- subtypes. 

It has also been suggested that in the rat aorta, CEC acts as an agonist at a 2- 

adrenoceptors, although in this case no direct contractile action of CEC is seen 

(Docherty and O’Rourke, 1997; O'Rourke et al. 1995). The contraction caused by CEC 

in the DSV has been well documented. Nunes and Guimaraes (1993) thought that this 

action was mediated by a 2-adrenoceptors because of the sensitivity of this action to 

rauwolscine. Low et al (1994) also studied this effect of CEC on the DSV. They too 

found that CEC acted through rauwolscine sensitive sites and to a lesser extent prazosin 

sensitive sites. Nunes and Mota (1994) showed that this action was mediated via a 

protein kinase C-dependent mechanism which would fit in with the findings of Low et 

al (1994) where rauwolscine blocked the release of internal stores of calcium and 

calcium influx induced by CEC. These latter findings were therefore interpreted as 

suggesting that the rauwolscine sensitive sites involved in the baseline contraction seen 

with CEC were oq- rather than a 2-adrenoceptors, a conclusion that ties in well with the 

findings from the present study and that of Daniel (1996). The sensitivity of CEC’s 

baseline contraction to rauwolscine is also supported in part by findings in the present 

study. When the antagonist studies were performed in the presence of lpM  

rauwolscine, a baseline contraction of 12.92 ± 4.09% (n = 4) was observed. This was
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significantly lower when compared to a baseline contraction of 37.86 ± 6.38% (n = 4), 

seen when delequamine was the a 2-antagonist used. This suggests that in effect, 

rauwolscine is protecting the receptor sites that contribute to the CEC induced 

contraction in this vessel. Only the highest concentration of CEC (lOOpM) caused a 

significant shift in the pEC50 value and a decrease in the maximum of the NA CRC. 

From the literature, interpretation of our findings with CEC is difficult because of the 

subjectivity involved and the wide variety of protocols used. My feeling is that the 

interaction of CEC with this vessel is two fold. The baseline contraction seems, in part 

at least, to be caused by rauwolscine sensitive a]-adrenoceptors. Looking at the 

difference in the competitive antagonists when either rauwolscine or delequamine was 

used, these rauwolscine sensitive sites are a 1A- or a ]L- like receptors. Secondly, the shift 

to the right with depression of the maximum seen with the highest concentration of CEC 

would support the presence of a 1B-, or a 1D-adrenoceptors.

To summarise, the findings from this study confirm the presence of a r  and a 2- 

adrenoceptors. The Abbott compound was the most potent of the agonists used. 

Although the Abbott compound’s relative potency was lower than that stated for a ]A- 

\ a ]L-adrenoceptors in Knepper’s study (1995), the possible existence of a heterogeneous 

population of a,-adrenoceptors, which may include the a ]A-\aiL- adrenoceptor subtype, 

could account for a lowering of the potency of this agonist.

The potencies of prazosin and HV723 were compatible with the presence of the a ]L- 

subtype. The potencies of WB4101 and 5 methylurapidil were also comparable to 

values obtained at tissues thought to possess both the oc]L-subtype and the a ]A- subtype 

(Table 3.5). In a number of vessels, lpM  5 methylurapidil seemed to uncover a low and 

a high affinity site. This together with the sensitivity to CEC and the non-competitive 

interaction of BMY 7378, may indicate the presence of a second a,- subtype. The
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additional subtype has similarities to the a 1D-adrenoceptor due to the relatively high 

affinity of InM BMY 7378 and due to the sensitivity to lOOpM CEC.

It therefore seems fairly clear that the a ]L-adrenoceptor is involved in vascular smooth 

muscle contraction of this vessel. The results are also convincing with regards 

involvement of an additional subtype. Due to the low affinity of prazosin and since 

currently there are no further subdivisions of the a 1L-subtype, while it can be said that 

the additional subtype has some characteristics of the a 1D-adrenoceptor, at present it can 

not be satisfactorily classified. Since all the antagonist studies were performed in the 

presence of noradrenaline it would be of value to repeat these experiments using the 

subtype selective agonist (R) A-61603 in an attempt to obtain pA2 values for these 

antagonists at a pure receptor population.
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4.0 Abstract

The aim of this study was to functionally classify the subtype(s) of a  j-adrenoceptor 

mediating contraction of dog resistance arteries to exogenous noradrenaline.

Agonist profiles to noradrenaline, phenylephrine, (R) A-61603 and UK143 04, suggested 

that the responses were predominantly mediated by a population of post-junctional a,- 

adrenoceptors.

The reversible competitive antagonists prazosin, WB 4101, HV 723, BMY 7378 and 5 

methylurapidil were used. As for the DSV, the low potency of prazosin and HV723 

suggested the presence of the a 1L- adrenoceptor subtype.

The actions of chloroethylclonidine in the resistance arteries, were dissimilar to those in 

the dog saphenous vein, in that the baseline contraction caused by chloroethylclonidine 

was not a consistent feature in resistance vessels. However, the highest concentration 

used, although causing no significant shift in the pEC50 value compared to control, did 

cause a decrease in the maximum.

The sensitivity to lOOpM chloroethylclonidine, together with significant decreases in 

the upper asymptotes of concentration response curve data, in the presence of all 

competitive antagonists, with the exception of BMY 7378, may indicate the presence of 

additional a!-adrenoceptor subtypes. The degree of sensitivity to CEC could support the 

involvement of an a 1B- or an a ]D-like receptor. The declining pA2 values for BMY 

7378, seen with increasing antagonist concentration, would further support the 

involvement of the a ]D-adrenoceptor. However, the low potency of prazosin, within the 

current classification scheme, makes it impossible to classify additional subtypes 

involved in the response.
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4.1 Methods

Canine subcutaneous resistance arteries, approximately 2mm in length and 255 ± 7 pm 

in diameter (n = 89) were dissected and mounted in Mulvany Halpem wire myographs 

and normalised to 0.9 of L I00 as described in materials and methods, section 2.2.3. 

After normalisation, vessels were maintained in blockers Krebs’ solution for the rest of 

the experiment. Following the normalisation procedure, vessels were allowed a forty 

minute equilibration period, followed by the starting protocol as outlined in materials 

and methods section 2.3. Agonist profiles and antagonist studies were performed in 

these vessels as for the dog saphenous vein, n = the number of experiments unless 

otherwise stated.

4.1.1 Agonist studies

Three consecutive concentration response curves (CRC), each to a different agonist, 

were performed on each ring. The agonists used were noradrenaline (NA), 

phenylephrine (PE) and either (R) A-61603 or UK143 04. A forty minute recovery 

period was allowed between each concentration response curve. Cumulative 

concentration response curves were performed using half log increments with the 

following concentration ranges: Noradrenaline (NA) and phenylephrine (PE), starting 

at a concentration of InM and increasing up to a maximum of ImM if required. (R) A- 

61603 (Abbott compound) starting with a concentration of 0.3nM and increasing up to a 

concentration of 30pM if required. UK14304 starting with a concentration of InM and 

increasing up to a concentration of 0.1 pM if required. Responses were allowed to reach 

a plateau before subsequent concentrations of agonist were added to the bath. 

Responses were expressed as a percentage of the lOpM NA siting concentration and
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photted in logarithmic space. No a 2-antagonists were present during the agonist profile 

experiments.

4.1.2 Competitive antagonists

In addition to the blocking agents already present in the blockers Krebs’, 0.1 pM of the 

a^-adrenoceptor antagonist, RS-15385-197 (delequamine) was present in the Krebs’ 

solution at all times. For each experiment four vessel rings were set up in parallel. One 

ring was assigned as a time control and each other ring was assigned one of five 

antagonists. Up to four consecutive cumulative concentration response curves to NA 

were performed in each ring. For curve one, no antagonist was added to the bath. For 

each subsequent curve, an increasing concentration of the antagonist assigned to each 

ring was added to the bath, with the exception of the time control. Antagonists were 

allowed a forty minute incubation period with the vessel before the next concentration 

response curve was performed. Experiments where there was a significant change in the 

maximum or pEC50 of the time control, as judged by one way ANOVA, were excluded 

from the study. A P value < 0.05 was judged to be statistically significant. Time 

control data is shown in Figure 4.1 where data was expressed as a percentage of the 

maximum achieved in the first curve. The antagonists used were prazosin, BMY 7378, 

5 methylurapidil, WB 4101 and HV 723.

4.1.3 Irreversible antagonists

Again four rings were mounted in parallel with one ring assigned as a time control. 

0.1 pM delequamine was present in the bath at all times. A CRC to noradrenaline was 

performed in all rings. With the exception of the time control, either 0.1 pM, lpM  or 

lOOpM of the irreversible antagonist chloroethylclonidine (CEC) was added to the bath.
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CEC was incubated for one hour and then vessels were washed out 10 times over a 

forty minute period. A second CRC to NA was then performed in all rings.

4.2 Results

Initially, as for the dog saphenous vein, individual concentration response curve data 

was analysed using the graph fitting program GraphPad Prism 2.1. It soon became clear 

that much of the CRC curve data did not conform consistently to either the one or two 

site model described in Chapter 2, section 2.4. and that there seemed to be no pattern 

regarding the ability to place data into the category of one site fit, two site fit or no 

appropriate fit. One obvious problem seemed to be the lack of data points in the lower 

half of the curve. An attempt to solve this problem was made by using quarter log, 

instead of half log increments for the concentration response curves. This did not 

improve the fitting. A number of figures have been inserted to try and demonstrate the 

problem. Figure 4.2 illustrates two concentration response curves from single vessels, 

one to PE and the other to NA in the presence of blockers Krebs’, without RS-15385- 

197. Both are fitted to the one site model and it can be seen that the points on the upper 

part of both curves do not fit satisfactorily. Figure 4.3 again illustrates data from a 

single experiment, this time with increasing concentrations of prazosin. Experiments 

were conducted in blockers Krebs’ and RS-15385-197. As for Figure 4.2, it is clear that 

the curves are not described by the model. Figure 4.4 illustrates data from a single 

experiment this time in the presence of WB4101. The curve in the presence of 0.1 pM 

WB 4101 did fit to the two site model, but the control and the other concentrations of 

WB 4101 fitted to neither the one or two site models.
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Data was therefore analysed on Microsoft Excel spreadsheets and the pEC50 values 

derived by interpolation rather than curve fitting. The result of this was, that while it 

was possible to obtain maximum and pEC50 data for each experiment, it was not 

possible to assess midpoint slope parameters.
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Figure 4.1. Time control concentration response curves to noradrenaline in canine 

resistance arteries. Data points represent mean ± s.e. mean and are expressed as a 

percentage of curve one. Curve 1 (□), n = 21 ; curve 2 (A), n = 21 ; curve 3 (▼), n = 

12 ; curve 4 (♦ ) ,  « = 10.
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Figure 4.2. Graphs illustrating individual experiments in dog resistance arteries 

fitted to a one site model. Graph A shows a CRC curve to NA from a single 

experiment. Graph B shows a CRC curve to PE from a single experiment.
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Prazosin versus noradrenaline in
dog resistance arteries1 2 5 -
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Figure 4.3. Increasing concentrations of prazosin versus noradrenaline from a 

single dog resistance artery fitted to the one site model. Control (□) ; InM prazosin 

(A); lOnM prazosin (▼) ; 0.1 pM prazosin (♦ ) . Results are expressed as a percentage 

of the control curve maximum.
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W B 4101  versus noradrenaline in
dog resistance arteries
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Figure 4.4. Increasing concentrations of WB 4101 versus noradrenaline from a 

single dog resistance artery. Control (□) ; InM WB 4101 one site fit (A); lOnM WB 

4101 one site fit (▼); 0.1 pM WB 4101 two site fit (♦ ) .  Results are expressed as a 

percentage of the control curve maximum.
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4.2.1 Agonist profile

Data for each agonist was derived from at least six different animals with the exception 

of UK14304 where four were used. Results are expressed as a percentage of the lOpM 

siting concentration of noradrenaline. PE, NA and the Abbott compound caused 

concentration-dependent increases in tension in the resistance arteries. The response to 

UK14304 was variable, with one vessel not responding to this agonist at all. This latter 

point should be noted since the results from UK 14304 are derived only from the other 

three vessels which responded within the range of agonist concentrations used. The 

pEC50 values of the agonists used were as follows: Noradrenaline 6.46 ± 0.1, n = 8; 

phenylephrine 5.83 ± 0.09, n = 10; Abbott 7.88 ± 0.11, n = 6 ; UK 14304 7.29 ± 0.22, 

n = 3. This gave a rank order of potency of Abbott > UK 14304 > NA > PE, with the 

Abbott compound being 27X more potent than NA and 112X more potent than PE. One 

way ANOVA of the maximum values from individual experiments showed that they 

were significantly different (P< 0.0001). A Bonferroni post test showed that the 

difference was due to the maximum for UK14304 being significantly lower (42.33 ± 

11.3%). In other words, NA, PE and the Abbott compound acted as full agonists, while 

UK 14304 was only a partial agonist. Results for the agonist studies are summarised in 

Figure 4.5 and Table 4.1.
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Agonist profile in dog resistance
arteries
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Figure 4.5. Agonist profile for canine resistance arteries. NA (□) n = 8; PE (A) n

= 10; Abbott ( ♦ )  n=  6 ;  UK14304 (T ) n = 3. Points represent mean raw data ± 

s.e. mean. Raw data was derived by expressing the response as a percentage of the 

response tolOpM noradrenaline.
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Agonist pEC50 ± s.e.mean (n) maximum (%) ± s.e.mean

Noradrenaline 6.46 ±0.1 (8) 114.9 ±2.48 (8)

Abbott 7.88 ±0.1 (6) 106.4 ±4.52 (6)

Phenylephrine 5.83 ±0.09 (10) 99.82 ±4.71 (10)

UK14304 7.29 ± 0.22 (3) 42.33 ±11.3 (3)

Table 4.1. Summary of agonist results in canine resistance arteries. Values are 

shown as means ± s.e. mean. Values in brackets represent the number of experiments. 

Maximum values are expressed as a percentage of the 1 OpM NA siting concentration 

response.
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4.2.2 Competitive antagonists

Graphs illustrating the mean CRC data for the antagonists below are shown in Figures 

4.6 to 4.10. Schild regressions are illustrated in Figures 4.11 to 4.14. Tables 4.2 and

4.3 summarise Schild regression parameters and pA2 values.

The a,-adrenoceptor antagonist prazosin, was used at concentrations of InM, lOnM and 

0.1 pM. Values for each concentration were derived from 6-8 different animals. This 

antagonist caused a concentration-dependent dextral shift in the noradrenaline 

concentration response curves. One way ANOVA showed that the pEC50 values were 

significantly different (P of 0.0005), while a Bonferroni post test showed that this was 

due only to the highest concentration of antagonist used. Maximum values were also 

(just) significantly different (P of 0.0419). The post test again showed that this was due 

to a significant decrease in the maximum only for the highest concentration of 

antagonist used. Schild regression yielded a slope not significantly different from 

negative unity and a pA2 value of 8.36. pA2 values calculated from single 

concentrations were not significantly different over the range of antagonist 

concentrations used. The pA2 value calculated from the intermediate concentration was 

8.21 ±0.24 (w = 8).

The a ]D-selective antagonist BMY 7378, was used at concentrations of InM, lOnM and 

0.1 pM. Values were derived from 4-5 animals for each concentration. Increasing 

concentrations caused only marginal shifting of the concentration response curves to 

NA with no significant changes occurring in either the pEC50 or maximum values (P of 

0.99 and 0.22 respectively). Due to the lack of effect of BMY 7378, many of the DR-1 

values derived from the lowest concentration used were negative, not allowing log (DR- 

1) values to be derived for the Schild plot, and when Schild analysis was performed 

with the points obtained, the slope was significantly different from negative unity. PA2
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values derived over the range of antagonist concentrations used were significantly 

different, with a decline in the pA2 value seen with increasing antagonist concentrations, 

supporting the findings from the Schild analysis. A pA2 value derived from the highest 

concentration of antagonist used yielded a value of 6.51 ± 0.47 (n = 4).

The ot1A/D- selective antagonist WB 4101 was used at concentrations of InM, lOnM and 

0.1 pM. Values for each concentration were derived from 5-6 animals. Increasing 

concentrations of antagonist caused concentration-dependent dextral shifts in the 

concentration response curves to NA. Maximum values were significantly different (P 

of 0.0018) and a post test showed that this was due to a significant decrease only in the 

highest concentration of antagonist used. pEC50 values were significantly different (P of 

<0.0001). A post test showed that this was due to a significant shift in the curves for 

lOnM and 0.1 pM but not InM concentrations of antagonist. Schild regression yielded a 

slope not significantly different from negative unity, and a pA2 value of 8.42. pA2 

values calculated for the three different antagonist concentrations were not significantly 

different and a pA2 value of 8.82 ± 0.19 (n = 6) was derived from the lOnM 

concentration of WB 4101.

The antagonist HV 723, was used at concentrations of InM, lOnM and lpM. Values 

were derived from 6-9 animals. The antagonist caused a concentration-dependent 

rightward displacement of the NA concentration response curves with a significant 

difference in the pEC50 values (P<0.0001). A post test showed that this difference was 

due to the two highest concentrations of antagonist only. Maximum values were also 

significantly different (P of 0.0051). This was due to a decrease in the maximum in the 

presence of 0.1 pM HV 723 only. Schild regression produced a slope not significantly 

different from negative unity and a pA2 value of 8.81. pA2 values calculated for the
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three concentrations used were not significantly different and a pA2 value of 8.86 ± 0.29 

(n = 9), was derived from the lOnM concentration of HV 723.

The a 1A-selective antagonist 5 methylurapidil (5 MeU), was used at concentrations of 

lOnM, 0.1 pM and lpM. Values were derived from 7-9 animals for each concentration. 

There was a concentration-dependent rightward displacement of the noradrenaline 

concentration response curves with a significant difference in the pEC50 values (P of < 

0.0001) due to the two highest concentrations of antagonist used. Maximum values 

were also significantly different (P of < 0.0001), again due to a significant depression in 

the maximum in the presence of lpM  5MeU. Schild regression yielded a slope not 

significantly different from negative unity and a pA2 value of 8.08. pA2 values 

calculated from each concentration used were not significantly different and a pA2 value 

of 8.01 ±0.18 (t? = 9) was calculated from 0.1 pM 5 methylurapidil.
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Prazosin versus noradrenaline in dog
resistan ce  arter ies

a loo.

lo g  [noradrenaline], M.

Figure 4.6. Mean CRC data for noradrenaline in the presence of prazosin in 

canine resistance arteries. Data points represent mean data ± s.e. mean. Responses are 

expressed as a percentage of the control curve maximum. Control (□), n = 10; InM 

prazosin (A),  n = 6; lOnM prazosin (T), n = 8; O.lpM prazosin (♦ ) ,  n — 1.



143

BMY 7378 versus noradrenaline in dog
resistance arteries125_

a loo-

7 5 -

5 0 .

2 5 -

-10

log  [noradrenaline], M.

Figure 4.7. Mean CRC data for noradrenaline in the presence of BMY 7378 in 

canine resistance arteries. Data points represent mean data ± s.e. mean. Responses are 

expressed as a percentage of the control curve maximum. Control (□), n = 7; InM 

BMY 7378 (A), n = 5; lOnM BMY 7378 (T), n = 5; 0.1 pM BMY 7378 (♦ ) ,  n = 

4.
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Figure 4.8. Mean CRC data for noradrenaline in the presence of WB 4101 in 

canine resistance arteries. Data points represent mean data ± s.e. mean. Responses are 

expressed as a percentage of the control curve maximum. Control (□), n = 9; InM WB 

4101 (A), n =5; lOnM WB 4101 (T), 12 = 6; 0.1pMWB4101 (♦ ) ,  n = 6.
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HV 723 versus noradrenaline in dog
resistance arteries
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Figure 4.9. Mean CRC data for noradrenaline in the presence of HV 723 in canine 

resistance arteries. Data points represent mean data ± s.e. mean. Responses are 

expressed as a percentage of the control curve maximum. Control (□), n = 11; InM HV 

723 (A), n = 6; lOnM HV 723 (▼), n = 9; 0.1pMHV723 (♦ ) , n = 7.
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5 Methylurapidil versus noradrenaline
in  dog resistance arteries
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Figure 4.10. Mean CRC data for noradrenaline in the presence of 5 methylurapidil 

in canine resistance arteries. Data points represent mean data ± s.e. mean. Responses 

are expressed as a percentage of the control curve maximum. Control (□), n -  14; InM 

5 MeU (A), n = l\  lOnM 5 MeU (▼), n = 9; 0.1pM 5M eU (♦ ) ,  n = 9.
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Figure 4.11 Schild plot for prazosin versus noradrenaline in canine resistance

arteries. Points represent log (DR-1) values from individual experiments. The plot is

composed of 21 data points in total.
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Figure 4.12. Schild plot for WB 4101 versus noradrenaline in canine resistance

arteries. Points represent log (DR-1) values from individual experiments. The plot is

composed of 15 data points in total.



log
 

(D
R

-1
)

149

2

-log [HV 723], M

Figure 4.13. Schild plot for HV 723 versus noradrenaline in canine resistance

arteries. Points represent log (DR-1) values from individual experiments. The plot is

composed of 20 data points in total.
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Figure 4.14. Schild plot for 5 methylurapidil versus noradrenaline in canine

resistance arteries. Points represent log (DR-1) values from individual experiments.

The plot is composed of 25 data points in total.
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4.2.3 Irreversible antagonists

Chloroethylclonidine (CEC) was used at concentrations of 0.1 pM, lpM  and 100pM. 

Values for each concentration were derived from 5-6 animals. None of the 

concentrations used caused a significant change in the pEC50 values for the NA 

concentration response curves (P of 0.975). 0.1 pM and lpM  CEC caused no change in 

the maximum values, and in fact these curves were superimposible on the control curve. 

lOOpM CEC caused a baseline contraction in only 2/5 experiments of 4% and 50%. A 

significant reduction in the maximum value was also seen with this concentration giving 

a mean maximum of 50.8 ± 8% (n = 5) of control. Figure 4.15 illustrates the mean 

CRC data for CEC.
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Chloroethylclonidine versus
noradrenaline in dog resistance
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Figure 4.15. Mean CRC data for chloroethylclonidine in canine resistance arteries.

Data points represent mean ± s.e. mean and are expressed as a percentage of the control 

curve maximum. Control (□), n = 6; 0.1 pM CEC (▼), n = 6 ; lpM  (A) CEC, n = 6 

; lOOpM CEC (♦ ) , n = 5.
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ANTAGONIST SLOPE ( 95% confidence 

intervals)

pA2

Prazosin -1.172 to -0.4365 8.36

BMY 7378 -0.8429 to 0.5064 4.82

5 Methylurapidil -1.077 to -0.5106 8.08

WB 4101 -1.633 to -0.7132 8.42

HV723 -1.480 to -0.4608 8.81

Table 4.2. Table summarising Schild plot slope and pA2 parameters for 

competitive antagonists in dog resistance arteries. Noradrenaline was the agonist 

used. Slope values are given as 95% confidence intervals.
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ANTAGONIST pA2 from 

Schild

concentration 

of antagonist

pA2 ± s.e.mean3 (n)

prazosin InM 8.54 ±0.31 (6)

8.36 lOnM 8.21 ±0 .24 (8)

0.1 pM 8.14 ±0.18 (7)

BMY 7378 InM 8.04 (2)

4.82 lOnM 7.72 ± 0.25 (4)

0.1 pM 6.51 ± 0 .4 7 (4 )

HV 723 InM 8.72 ± 0.33 (4)

8.81 lOnM 8.86 ±0.28 (9)

0.1 gM 8.70 ± 0.3 (7)

WB 4101 InM 8.07 ± 0.50 (4)

8.42 lOnM 8.82 ±0 .19 (6)

0.1 (iM 8.47 ± 0.05 (5)

5 MeU lOnM 7.96 ±0.18 (7)

8.08 0.1 pM 8.01 ± 0 .1 8 (9 )

\ \ iM 7.57 ±0 .2  (9)

Table 4.3. Table summarising pA2 values derived from Schild analysis and from 

individual antagonist concentrations, calculated for the competitive antagonists in 

the dog resistance arteries. PA2 values derived from individual concentrations3 are 

given as mean ± s.e. mean. Values in brackets represent the number of experiments. 

Noradrenaline was the antagonist used.
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4.3 Discussion

Resistance arteries, because of their small size, and the relation of vessel radius to 

resistance to blood flow, (inversely related to the radius to the fourth power, according 

to Poiseuille’s law (Levick, 1992)), play the most important role in regulation of total 

peripheral resistance. Despite the importance of resistance arteries, few studies have 

looked at these vessels in relation to adrenoceptor subtype and instead the majority of 

studies have focused on the large conduit vessels. One of the main reasons for this has 

been the comparatively recent advent of techniques such as perfusion and wire 

myography, allowing the study of isolated resistance sized vessels.

To my knowledge, at the time of writing this thesis, no studies have been published, 

examining a]-adrenoceptors in canine peripheral resistance arteries and therefore 

comparisons can only be made with studies from other species and large vessel studies. 

From the literature, a  {-adrenoceptors would seem to be the predominant receptor type 

involved in vascular smooth muscle contraction of resistance arteries to noradrenaline, 

although a 2-adrenoceptors have also been implicated. Studies by Nielsen et al (1989), 

Parkinson and Hughes (1995) and Stephens et al (1992), all involving human resistance 

sized arteries, confirm the presence of both a,- and a 2- post-junctional adrenoceptors. 

Leech and Faber (1996) also found evidence for both a,- and a 2-adrenoceptors in rat 

cremaster resistance artery. In contrast, Macmillan et al (1994) found a very low 

sensitivity for the a 2-agonist UK14304, compared to phenylephrine, in rabbit 

subcutaneous resistance arteries, suggesting that a 2-adrenoceptors are not involved in 

vascular smooth muscle contraction of this vessel.

In this study, the rank order of agonist potency was Abbott > UK14304 > NA > PE. 

Despite UK14304 appearing quite potent in this ranking, it should be noted that one out 

of the four vessels examined, failed to respond to this agonist, thus in reality UK 14304



157

was relatively less potent in this vessel than in the DSV, where it was more potent than 

phenylephrine. This would suggest that although there may be some a 2-adrenoceptor 

function, aj-adrenoceptors are the main mediators of the response in this vessel. This 

conclusion would be supported by work in porcine vascular tissues (Wright et al. 1995), 

comparing agonist potencies to binding and antagonist studies, where relative potencies 

of NA, PE and UK14304 were correlated with the relative binding distribution of a r  

and a 2- adrenoceptors. In addition, it has also been reported in the literature that in 

certain vessels, UK 14304 may act as a partial agonist at a!-adrenoceptors (Nagadeh et 

al. 1994). To rule this out in canine vessels, it would be of value to examine the effect 

of a.]-antagonists on the contractile responses to UK 14304. Despite this, to avoid 

complications which may arise from the activation of putative a 2-adrenoceptors, the a 2- 

antagonist delequamine was present at all times during the antagonist studies. The 

reasons for the use of delequamine, as opposed to the use of rauwolscine, have been 

discussed in Chapter 3.

As for the DSV, (R) A-61603 was the most potent of the agonists used (this is discussed 

in Chapter 3). In the case of the dog resistance artery, (R) A-61603 was 112X more 

potent than PE compared to only 43X more potent in the DSV. Although this does not 

completely support the presence of an a 1A-adrenoceptor subtype, (Knepper’s paper 

(Knepper et al. 1995) quotes a 590 fold greater potency using the R- enantiomer of A- 

61603 in canine prostatic strips), it would be unreasonable to rule out the presence of 

this subtype based on a single previous study, as for example the presence of more than 

one subtype may alter the sensitivity to the agonist. In summary, the agonist profile 

would suggest that a,-adrenoceptors predominantly mediate contraction to 

noradrenaline in dog resistance artery, although there may be some a 2-adrenoceptor



158

function. The relative potency of the Abbott compound may suggest the presence of the 

a 1A- subtype.

For all the competitive antagonists used, with the exception of BMY 7378, the highest 

antagonist concentration caused a significant decrease in the maximum, from the control 

curve. It could be assumed that this was a time-dependent change but the factors which 

support this being a true finding are as follows:

1. Time control curves were run in parallel with all experiments and maximums, as 

judged by one way ANOVA were not significantly different;

2. Although up to four consecutive curves were performed in some vessels, in the 

majority of experiments only two or three concentration response curves were 

performed, and for WB 4101, 5 methylurapidil and HV 723, experiments were 

performed using only the highest concentration of the antagonists (i.e. only two CRC 

curves were performed in total), specifically to exclude a time-dependent phenomenon.

3. Concentration response curves, in the presence of BMY 7378, showed no significant 

alterations in upper asymptotes over the range of antagonist concentrations used. 

Concentration response curve data therefore, from WB 4101, HV 723 and 5 

methylurapidil was not supportive of a strictly competitive interaction, as all three 

antagonists displayed insurmountable antagonism at the highest concentration. The 

significant difference for prazosin was marginal with P just less than 0.05 which was not 

as convincing of a non-competitive interaction.

Despite the fact that not all the concentration response curves strictly fulfilled the 

criteria for Schild analysis (i.e. parallel rightward displacements with no decrease in the 

upper asymptote), Schild regression and pA2 value estimates from individual 

concentrations were performed for all antagonists and are summarised in Tables 4.3 and 

4.4. With the exception of BMY 7378, all slope 95% confidence intervals encompassed
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negative unity and none of the pA2 values calculated for individual concentrations were 

significantly different over the range of antagonist concentrations studied. It would 

seem therefore, that while CRC data may suggest non-competitive interactions with 

some of the antagonists, this was not identified by subsequent Schild analysis. pA2 

values for prazosin and HV 723 are similar to those obtained in the DSV and would 

support the presence of the a ]L- receptor subtype. (Muramatsu et al. 1995; Muramatsu et 

al. 1990b). All the pA2 values are shown in Table 4.4 where they can be compared to 

the results from the DSV in this study and different subtypes from other studies. It can 

clearly be seen that values are similar to the DSV and that both of these compare most 

closely with the a ]a- clone and the a 1L- of lower urinary tract.

The actions of chloroethylclonidine were dissimilar in some respects, to the effects of 

this antagonist in the DSV. The main difference was that only 2/5 dog resistance artery 

vessels developed a baseline contraction to lOOpM CEC, whereas the baseline 

contraction was a consistent finding in all the DSV rings. In Chapter 3, it was discussed 

that a population of rauwolscine-sensitive receptors contributed to the baseline 

contraction to CEC seen in the DSV. In addition, these rauwolscine-sensitive receptors 

appeared to be a!-adrenoceptors, which were a 1A/L- like, in that they were sensitive to 5 

methylurapidil, WB 4101 and relatively sensitive to prazosin, although the affinity for 

the latter antagonist was still < 9.

lOOpM CEC caused a significant decrease in the maximum in both vessels, but only a 

significant shift in the pEC50 in the DSV. Due to the decrease in maximum it would not 

be possible to rule out the presence of a 1B-adrenoceptors.

Comparing the findings of the present study with those of other studies which have 

examined resistance arteries, it would appear that the rat mesenteric resistance artery has 

received most attention. Van der Graaf (1996a) found similar results in this vessel to



160

results from this study and concluded on the presence of the a 1L-adrenoceptor. Smith 

and McGrath also investigated rat mesenteric resistance artery and concluded on the 

presence of the a ]A- subtype and /or the a ]B- subtype. Interestingly, this study found 

that the affinity for prazosin significantly decreased from 5 to 52 weeks of age so that at 

52 weeks the receptors could have been classified as a 1L- on the basis of affinity for 

prazosin and HV 723 (Smith and McGrath, 1996). A study by Simonsen et al (1997) in 

horse penile resistance arteries also found that prazosin had a low affinity (pA2 8.03 ± 

0.09) and rabbit subcutaneous resistance arteries, (Smith et al. 1997) have been shown 

to have a low affinity prazosin site classified as a ]L-, but in addition seem to possess a 

high affinity prazosin site most closely resembling the cx1B-adrenoceptor.

To summarise, the antagonist findings support the presence of an a ]A- or a 1L- 

adrenoceptor. Due to the low affinity for prazosin, within the current classification 

scheme, this would strictly be referred to as an a ]L-adrenceptor. If in the DSV, the 

baseline contraction caused by CEC is genuinely contributed to by the receptors that 

also appeared to be a 1L- adrenoceptors in this vessel, then although on the basis of the 

antagonist affinities, the receptors in both vessels would be classified as the same 

subtype, the lack of ability to consistently cause a contraction in the presence of CEC, 

could suggest that the receptors in the dog subcutaneous resistance arteries are somehow 

different to those in the DSV.

The insurmountable nature of the antagonism to the highest concentrations of 5 

methylurapidil, HV 723 and WB 4101, provide some evidence for the presence of more 

than one a  j-adrenoceptor subtype. If another subtype were present it could be similar to 

the a 1B-, because of the depression in maximum seen with CEC. There is also some 

evidence supporting the role of the a ]D-, since the interaction with BMY 7378 was not 

strictly competitive, evidenced by the declining pA2 values seen with increasing



concentrations of the antagonist. A pA2 of 8.04 derived in the presence of InM BMY 

7378 would be supportive of involvement of the a 1D- subtype. The sensitivity to CEC 

could also be accounted for by the presence of the a ]D-adrenoceptor since this subtype is 

reported to have an intermediate susceptibility to alkylinization by this compound 

(Michel et al. 1993).

Any other subtype which is involved must also have a low affinity for prazosin. At this 

time no satisfactory classification scheme exists for the discrimination of low affinity 

prazosin sites other than their division into a 1L- or a 1N- (Muramatsu et al. 1995), 

However, evidence from this study, in both the DSV and the subcutaneous resistance 

arteries suggests that a further subdivision of a,-adrenoceptors with a low affinity for 

prazosin must exist.
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Cloning and sequencing of the canine a la-adrenoceptor
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5.0 Abstract

The aim of this study was to amplify the canine a ]a-adrenoceptor cDNA from dog tissue 

RNA, using reverse-transcription polymerase chain reaction (RT-PCR), and primers 

based on areas of high homology between a la-adrenoceptors from human and bovine 

published sequences. Although it was not possible to amplify the full length coding 

region, an 891 bp fragment was amplified, which encoded the putative amino terminus 

through to the sixth transmembrane spanning domain of the receptor. This sequence 

was found to be over 90% homologous to published human and bovine a la- sequences. 

The sequence was submitted directly to the GenBank and given Accession No 

AF068283.

A clone encoding part of the canine a lb-adrenoceptor, together with the a ]a- clone from 

this study, were used to probe two cell lines each over-expressing either the human a ]a- 

or a lb- adrenoceptor. With equal loading of RNA from both cell lines, the a lb- probe, 

while showing some cross-reactivity, produced a much stronger signal with the a ]b- cell 

line. In contrast, the a la- probe showed no reactivity with either cell line. Northern 

analysis was repeated using RNA extracted from canine prostate and brain tissue. The 

a lb- probe identified message in both tissues, but again the a la- probe did not identify 

transcripts. Several possibilities exist that could explain the failure of the a ]a- probe to 

identify transcripts. These are discussed in section 5.2.
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5.1 Results

All materials and methods have been discussed in the materials and methods.

5.1.1 RT-PCR

In order to amplify the canine oc]a-adrenoceptor, a number of primers were designed 

based on areas of high homology existing between the human and bovine published 

sequences.

Figure 5.1 is a schematic diagram representing the proposed structure of the a ,- 

adrenoceptor. The picture illustrates the presence of the seven putative transmembrane 

spanning domains and the amino and carboxy termini of the receptor.

The primer design proved particularly problematic and in fact, three different sets of 

primers were tested before a product of the right size and sequence was obtained. 

Initially, a selection of oligonucleotide primers were designed, based on the human a  ,3- 

adrenoceptor sequence. Three isoforms had been described for this subtype (Hirasawa 

et al. 1995), each one diverging in the sequence of the putative carboxy terminus. The 

isoforms are named a 1A_,, a 1A_2 and a 1A„3. Primers were designed such that the 

upstream (sense or 5’) primer was common to all isoforms and overlapped the start 

codon (ATG). A different downstream (antisense or 3’) primer was designed for each 

of the three different isoforms, each one overlapping the stop codon for that particular 

isoform. In addition, a downstream primer common to all three isoforms was designed. 

The primers were as follows: Upstream primer, 5’ gaccatggtgtttctctc 3’ (bases 433-450 

(Hirasawa et al. 1995)); a ]A_, downstream primer 5’ ctagacttcctccccgttc 3’ (bases 1383- 

1401 (Hirasawa et al. 1995)); a ]A_2 downstream primer 5’ caggcagatcatgaggtc 3’ (bases 

1927-1940 (Hirasawa et al. 1995)); a 1A_3 downstream primer 5’ gctggcttcatgtcatgg



165

3’(bases 1716-1733 (Hirasawa et al. 1995)); Common downstream primer 5’ 

ctgtggtacaggaggattg 3’ (bases 1682-1700 of a  1A_3 (Hirasawa et al. 1995)).

Dog tissue was collected immediately after euthanasia, snap frozen, and stored in liquid 

nitrogen until required. Total RNA was isolated using the RNazolB method as 

described in materials and methods. cDNA was synthesised from total RNA (as 

described in materials and methods), from dog brain and heart using both the random 

hexamer primers and oligo(dt) primers. Polymerase chain reactions were set up using 

the following: IX PCR buffer, 10pm of each primer, 200pM of each dNTP (dATP, 

dTTP, dCTP, dGTP), 3mM MgCl2, 5pi of cDNA and 2.5 units of Taq polymerase. The 

reaction was made up to 50pl with distilled autoclaved water in 0.5ml polypropylene 

tubes. The conditions used for the PCR were, 95°C for 45 seconds (denaturation), 55°C 

for 45 seconds (annealing), 72°C for 3 minutes (extension) for a total of 35 cycles. This 

was followed by a 10 minute extension period at 72°C. The upstream primer was used 

in conjunction with one of each of the downstream primers giving rise to four primer 

pairs in total. The primer pair consisting of the upstream primer and the a 1A_3 

downstream primer, produced a band of the expected size («1.3Kb), when used with 

cDNA made from dog heart generated with random hexamer primers (Figure 5.2). 

Unfortunately, when this was subsequently sequenced, it was found to have little 

similarity to any of the published a,-adrenoceptor sequences, but was highly 

homologous to a myocardial structural protein called titin.

A second set of primers was then designed, again based on both the human otla- 

sequence and the bovine a ]a- sequence. These were as follows: a ]a- upstream primer 5’ 

ggaccatggtgtttctctccggaaatgc 3’, corresponding to bases 92-119 of the bovine clone 

(Schwinn et al. 1990) and bases 432-459 of the human isoform 3 clone (Hirasawa et al. 

1995), where there was 100% homology between the two species; a ]a- bovine



166

downstream primer 5’ cctttagacttcctccccattttcactgaggg 3’ corresponding to bases 1469- 

1500 of the bovine clone (Schwinn et al. 1990); a ]a- human downstream primer 5’ 

ctagacttcctccccgttctcactgaggg 3’ corresponding to bases 1373-1401 of the human clone 

(Hirasawa et al. 1995). On this occasion no products were produced with any 

combination of the primer pairs. During this time annealing temperature was varied 

between 50°C and 60°C, the length of each step in the cycle was altered between 45 and 

60 seconds, between 10 and 50pm of primer was used and a variety of tissue cDNAs 

were used including, canine heart, brain and prostate and human prostate.

A slightly different approach was then adopted. This time a primer was designed for the 

synthesis of cDNA. 20pm of this was used in place of the random hexamer or oligo(dt) 

primer. The sequence of this primer was 5’ atggggttgatgcagctgtt 3’. In addition a new 

downstream primer was used in conjunction with the previous a la- upstream primer. 

The sequence of the downstream primer was 5’ acccaatgggcatcactaaga 3’. The 

sequence of the three primers and the bases that they correspond to from published 

sequences is shown in Figure 5.3. The new primer combination did produce a band of 

the expected size (891 base pairs), when used with cDNA made from dog prostate RNA, 

where the cDNA had been synthesised using the gene-specific primer. Figure 5.4 shows 

a photograph of a representative PCR reaction, which has been run out on a 1% agarose 

gel and stained with ethidium bromide to visualize the DNA. Optimum concentrations 

of the components of the PCR reaction were as follows: 2 0 0 jliM  of each dNTP ; IX 

PCR buffer; 1.5mM MgCl2; 10pm of each primer; 2.5U Taq polymerase; 5pl of cDNA 

from a 33 pi reaction.

Optimum PCR cycle conditions were, a denaturation step for 3 minutes at 95°C, 

followed by 30 cycles of denaturation (95°C for 30 seconds), annealing (48°C for 30
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seconds) and extension (72°C for 30 seconds). The process was concluded with a final 

5 minute extension at 72°C. Samples were then stored at -20°C until required.
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Figure 5.1. Theoretical two dimensional representation of an a,-adrenoceptor. The

putative transmembrane spanning domains are numbered I, II, III, IV, V, VI, VII.
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Figure 5.2. Representative gel showing PCR product with 

high homology to titin. Lane 1, 1 kb ladder; lane 2, GAPDH; 

lane 3, negative control; lanes 4 and 5, PCR product from canine 

heart. The figures on the left hand side show the size markers 

in Kb.



170

5’ ATG GGG TTG ATG CAG CTG TT 3’ bases 951-972 human a,,., *
5’ ATG GGG TTG ATG CAG CTG TT 3’ bases 1387-1407 human a la.2b 
5’ ATG GGG TTG ATG CAG CTG TT 3’ bases 1387-1407 human a ,a.3 c 
5’ ATG GGG TTG ATG CAG CTG TT 3’ bases 1048-1067 bovine a ,ad 
5’ ATG GGG TTG AGG CAG CTG TT 3’ bases 729-748 canine a ,„ '

5’ ATG GGG TTG ATG CAG CTG TT 3’ primer for reverse transcription

5 ’ ---------- a  TGG TGT TTC TCT CGG GAA ATG C 3’ human a ,„ ,3 base 1-23
5’ GGA CCA TGG TGT TTC TCT CGG GAA ATG C 3’ human a la.2 b base 432-459 
5’ GGA CCA TGG TGT TTC TCT CGG GAA ATG C 3’ human a la.3'  base 432-459 
5’ GGA CCA TGG TGT TTC TCT CCG GAA ATG C 3’ bovine a lad base 92-119

5’ GGA CCA TGG TGT TTC TCT CCG GAA ATG C 3’ Upstream primer

5’ ACC CAA TGG GCA TCA CTA AGA 3’ human base 866-886“
5’ ACC CAA TGG GCA TCA CTA AGA 3’ human a ,a.2 base 1302-1322b 
5’ ACC CAA TGG GCA TCA CTA AGA 3’ human a ,a.3 base 1302-1322'
5’ ACC CAA TGG GCA TCA CTA AGA 3’ bovine a la-clone base 962-982d 
5’ AGC CAA GCG GJA GAG CAA TGA 3’ canine a ]b- clone base 643-663'

5’ ACC CAA TGG GCA TCA CTA AGA 3’ downstream primer

Figure 5.3. The three primers used to amplify the canine a la-sequence, lined up 

with the sequences from the bovine and human a la- and the canine a lb- sequence.a

(Hirasawa et al. 1995) Accession no L31774; b (Hirasawa et al. 1995) Accession no 

D32202; c (Hirasawa et al. 1995) Accession no D32201; d (Schwinn et al. 1990) 

Accession no J05426; e (Libert et al. 1989) Accession no X14050. Bases that are not 

homologous to the primer are underlined and ~ denotes where the sequence is not 

known.
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1Kb ladder -ve . a , -

1 I I I

891 bp PCR 
product

Figure 5.4. Representative gel showing the PCR product 

corresponding to the canine a , a- partial sequence. Lane 1,

1 KB ladder; lane 2, negative control; lanes 3 and 4, canine 

a la- PCR product. Figures on the left show size markers in Kb.
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5.1.2 Cloning

The PCR product was cloned using Invitrogen’s Original TA Cloning® Kit as described 

in the materials and methods. Ligations were carried out using fresh PCR product to 

prevent loss of the A’ overhangs which enable the product to insert into the plasmid. 

Thirty white colonies were selected from the transformation and grown up overnight in 

3ml volumes of LB broth. Wizard® Plus SV Minipreps DNA purification system from 

Promega, was used to purify the plasmids from the cultures grown.

Minipreps were digested using the restriction enzyme EcoRl, as this site flanks the 

insertion site in the Invitrogen plasmid (pCR® 2.1). Digests were run out on a 1% 

agarose gel. Figure 5.5 shows a photograph of the gel identifying three of the selected 

colonies containing an insert of the correct size. The positive colonies were re-plated on 

ampicillin-containing agarose plates and stored at 4°C. In addition, the remainder of the 

cultures from the positive colonies were placed in vials containing 40% glycerol and 2% 

peptone, and stored at -70°C. The purified plasmid DNA from the three colonies was 

then used for sequencing.



1 7 3
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0.517

2.036
1.636 m

Figure 5.5. Photograph of gel showing the three colonies containing the canine 

a la- insert. Plasmid was purified from bacterial colonies and the purified plasmid 

digested with EcoRl. The resultant digest was run out on an agarose gel. The three 

plasmid preps containing an insert of the correct size (891 bp), are indicated by arrows 

Figures on the left are size markers in Kb.
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5.1.3 Sequencing

The miniprep DNA, corresponding to one of the positive colonies, was sequenced using 

the Thermo Sequenase cycle sequencing kit from Amersham, incorporating 33P labelled 

dideoxynucleotides as described in the materials and methods. 5pi of miniprep DNA 

was used in the sequencing reactions, which was equivalent to approximately 500ng of 

DNA. For the first sequencing reaction, the M l3 reverse primer from Invitrogen was 

used (5’caggaaacagctatgac 3’). This primer is homologous to the pCR®2.1 plasmid 

sequence upstream of the insert and allowed the sequence to be read from the plasmid 

into the insert. For the subsequent sequencing reactions, primers were custom made 

(Figure 5.6). Conditions for sequencing were as follows: Denaturation (95°C for 30 

seconds), annealing (55°C for 30 seconds), extension (72°C for 30 seconds), for a total 

of 40 cycles. Reactions were run on a 6% polyacrylamide gel, exposed to radiographic 

film and developed as described in materials and methods .

The entire 891 bases of the upstream strand of the insert were sequenced. In addition, in 

order to obtain a consensus sequence, direct sequencing of PCR products was performed 

for both strands. This was done by excising the PCR product from an agarose gel and 

spinning the block of agarose through a Supelco GenElute™ spin column, as described 

in materials and methods. The DNA, when recovered was ethanol precipitated and 

resuspended in lOpl of TE buffer. For sequencing, the entire lOpl was used for a single 

reaction. This meant that several different PCR reactions were required to sequence the 

full length of the product. For the first reaction, the upstream and downstream primers 

that had been used for the RT-PCR were employed (Figure 5.3). Subsequent to this, 

custom primers were designed based on the sequence obtained from the previous 

sequencing, (Figure 5.6). The sequence of the clone was identical to the sequence 

obtained from the PCR sequencing, with the exception of a single base, where the clone
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contained a guanine residue instead of an adenosine residue at base number 272 

counting from the beginning of the ATG start codon. This was found to alter the amino 

acid encoded in this region from a tyrosine, in the case of the clone, to a cystine. At this 

point, another two clones were sequenced in this region and also found to have an 

adenosine residue, therefore adenosine was considered the consensus base and was used 

when determining the predicted amino acid sequence of the clone.
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Primers for sequencing of the clone.

M13 reverse primer 5’ CAGGAAACAGCTATGAC 3’ 

Upstream 1 5’ GCAACATCCTGGTGATCCTC 35 

Upstream 2 5’ ATAGGTGTGAGCTACCCGCT 3’ 

Upstream 3 5’ TCATCCTGGTC ATGTCTG 3 ’ 

Upstream 4 5’ TCTGCGGCTGCCTTTTCTTA 3’

Primers for direct sequencing of the PCR product 

Upstream 1 5’ TCGAGATCCTGGGCTACT 3 ’ 

Upstream 2 5’ TCGTCATCTCCATCGGGCCT 3’ 

Upstream 3 5’ ATCGGAAGAACGCCCCAGTA 35 

Downstream 1 5’ AGAAGTGCGTCTTGTTCTTG 3’ 

Downstream 2 5’ AGCGCCGAGAAGAGCACGTA 3’ 

Downstream 3 5’ ATGATGGACGCGGTGCAGCA 3’ 

Downstream 4 5’ AAGATCACCCCGAGCAGAAT 3 ’

Figure 5.6. Primers used for sequencing from the clone and for direct PCR 

sequencing.



177

5.1.4 Sequence analysis

The nucleotide and predicted amino acid sequence of the clone are given in Figure 5.7. 

Sequence analysis was carried out using the University of Wisconsin Genetics 

Computer Group (G.C.G.) sequence analysis software programmes.

Using the BESTFIT programme (which employs the local homology algorithm of Smith 

and Waterman (1981)), it was determined that the canine clone had the following 

homologies at the nucleotide level with existing clones: 93% homology to the bovine 

a la- clone (Schwinn et al. 1990), accession number J05426; 93% homology to the three 

isoforms of the human a ]a- clone (Hirasawa et al. 1995); 93% homology to a novel 

fourth human a la- clone (Chang et al. 1998), accession number AFO13261; 78%

homology to the human a lb- clone (Ramarao et al. 1992), accession number L31773; 

85% homology to the canine partial a lb- sequence (Libert et al. 1989), accession number 

X I4050; 81% homology to the human and rat a ]d- clones (Schwinn et al. 1995), 

accession numbers L31772 and L31771. Figure 5.8 illustrates the amino acid sequence 

of the clone determined in this study and compares it to the amino acid sequence of both 

the bovine and human a la-adrenoceptor sequences.



178

M V F L S G N A s D s S N c
gga.cc a tg g tg t t t e tc tcc 993- aat gee tee gac agt tcc aac tgc
T H P P A p V N I s K A I L L G
acc cac ccg ccg gca ccg gtg aac ata tcc aag gcc att ctg etc gggTM1
V I L G G L i I F G V L G N I L
gtg ate ttg ggg ggc etc ate att ttt ggt gtg ctg ggc aac ate Ctg
V I L s V A C H R H L H s V T H
gtg ate etc tcc gtg gcc tgc cac egg cat ctg cac teg gtc act cac

TM2
Y Y I V N L A V A D L L L T S T
tac tac ate gtc aac ctg geg gtg gee gac etc ctg etc acc tcc acc
V L P F S A i F E I L G Y W A F
gtg ctg ccc ttc teg get ate ttc gag ate ctg ggc tac tgg gcc ttt
G R V F C N I w A A V D V L C C
ggc agg gtc ttc tgc aat ate tgg geg geg gtg gac gtc ctg tgc tgc

TM3
T A s I M G L C 1 I s I D R Y I
acc geg tcc ate atg gga etc tgc ate ate tee ate gac ege tac ata
G V S Y P L R Y P T I V T Q K R
ggt gtg age tac ccg ctg ege tac ccc acc ate gtc acc cag aag aggTM4
G L M A L L C V W A L S L V I s
ggt etc atg get ctg etc tgt gtc tgg geg ctg tcc etc gtc ate tcc
i G P L F G W R Q p A P E D E T
ate ggg cct etc ttt ggc tgg agg cag ccg gee ccc gag gac gag acc
I c Q I T E E p G Y V L F S A L
ate tgt cag ate acc gag gag ccg ggc tac gtg etc ttc teg geg ctg

TM5
G s F Y V p L T I I L V M Y c R
ggc tec ttc tac gtg cca ctg acc ate ate ctg gtc atg tac tgc eggV Y V V A K R E S R G L K S G L
gtc tac gtg gtg gcc aag agg gag age agg ggc etc aag tct ggc etc
K T D K S D s E Q V T L R I H R
aag act gac aag teg gac teg gag cag gtg acg etc ege ate cat eggK N A P V G G T G V S S A K N K
aag aac gcc cca gta gga ggc acc ggg gtg tcc age gee aag aac aag
T H F S V R L L K F S R E K K A
acg cac ttc teg gtg agg etc etc aag ttc tcc egg gag aag aaa gegTM6
A K T L G I V V G C F V L C W L
gcc aaa acg ctg ggc ate gtg gtc ggc tgc ttc gtc etc tgc tgg ctg
P F F L V M p I G
cct ttt t t c t ta g tg a tg ccc a t t ggg t

Figure 5.7. Nucleotide sequence of the canine a la- clone together with the 

predicted amino acid sequence. The amino acid sequence is shown to start at the first 

methionine. Underlined sequence represents the putative transmembrane spanning 

domains which are designated TM1 through to TM6, and primer sequence is shown in 

italics.
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D1 M V F L S G N A S D S S N C T
*
H P P

*
A P V N I s K A I L L G

B1 M V F L S G N A S D S S N C T H P P P P V N I s K A I L L G
HI M V F L S G N A S D S S N C T Q P P A P V N I s K A I L L G
D31 V I L G G L I I F G V L G N I L V I L S V A C H R H L H S V
B31 V I L G G L I L F G V L G N I L V I L S V A c H R H L H S V
H31 V I L G G L I L F G V L G N I L V I L S V A c H R H L H S V

*

D61 T H Y Y I V N L A V A D L L L T S T V L p F S A I F E I L G
B61 T H Y Y I V N L A V A D L L L T S T V L p F S A I F E I L G
H61 T H Y Y I V N L A V A D L L L T S T V L p F S A I F E V L G

D91 Y W A F G R V F C N
*
I W A A V D V L C C T A S I M G L C I

B91 Y W A F G R V F C N V W A A V D V L C C T A S I M G L c I
H91 Y W A F G R V F C N I W A A V D V L C C T A S I M G L c I
D120 I S I D R Y I G V S Y P L R Y P T I V T Q K R G L M A L L C
B120 I S I D R Y I G V S Y P L R Y P T I V T Q K R G L M A L L C
H120 I S I D R Y I G V S Y P L R Y P T I V T Q R R G L M A L L C

D150 V W A L S L V I S I G P L F G W R Q P A P E D E T I C Q I
*
TB150 V W A L S L V I S I G P L F G W R Q P A P E D E T I C Q I N

H150 V W A L S L V I S I G P L F G W R Q P A P E D E T I C Q I N

D180 E E P G Y V L F S A L G S F Y
*
V P L

*
T I I L V M Y C R V Y V

B180 E E P G Y V L F S A L G S F Y V P L T I I L V M Y C R V Y V
H180 E E P G Y V L F S A L G S F Y L P L A I I L V M Y c R V Y V
D210 V A K R E S R G L K S G L K T D K S D S E Q V T L R I H R K
B210 V A K R E S R G L K S G L K T D K S D S E Q V T L R I H R K
H210 V A K R E S R G L K S G L K T D K S D s E Q V T L R I H R K

* * * * * *
D240 N A P V G G T G V S S A K N K T H F S V R L L K F S R E K K
B240 N A Q V G G S G V T S A K N K T H F S V R L L K F s R E K K
H240 N A P A G G S G M A S A K T K T H F S V R L L K F s R E K K

D270 A A K T L G I V V G C F V L C W L P F F L V M P I G
B270 A A K T L G I V V G C F V L C W L P F F L V M P I G
H270 A A K T L G I V V G C F V L C W L P F F L V M P I G

Figure 5.8. Comparison of predicted amino acid sequence from the canine, bovine 

and human a la- adrenoceptors. Non-homologous areas are underlined and marked

with *. D = dog, B = bovine and H = human.
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5.1.5 Northern blotting

Two probes were generated for Northern analysis. The first was termed the a la- probe 

and this was the partial canine a la-adrenoceptor sequence (Figure 5.7) that had been 

cloned and sequenced in this study (891 bp). The second probe was termed the a lb- 

probe. This was kindly donated by Libert et al (1989), and comprised a clone encoding 

a partial sequence for the canine a lb-adrenoceptor (accession number X I4050). This 

clone was received as a 1.8Kb fragment inserted into the EcoRl restriction site of the 

pBlueskript SK+ plasmid (2958bp plasmid from Stratagene). On receipt, INVaF’ 

competent cells from the TA cloning kit, were transformed with the pBlueskript SK+ 

plasmid. Twelve colonies were selected and grown up in 3ml volumes of LB broth 

overnight. Plasmid DNA was purified from the colonies using the Wizard® Plus SV 

Minipreps DNA purification system from Promega. 8 pi of each miniprep was digested 

with EcoRl and run out on a 1% agarose gel. All of the colonies contained the insert 

(Figure 5.9). The inserts were excised from the gel and the DNA purified from the 

agarose using Supelco GenElute™ spin column minus ethidium bromide. Plasmid 

containing the a la- clone was also digested with EcoRl, and the insert band purified in 

the same way.

Total RNA was prepared from two cell lines of rat-1 fibroblasts, each stably expressing 

either the human a ]a-adrenoceptor or the human a lb-adrenoceptor, (accession numbers 

L31774 and L31773 respectively), at high levels. These cells were kindly donated by 

Dr Janet MacKenzie. From radioligand binding experiments using [3H]-prazosin, she 

had shown a Bmax of 912 ± 38 fmol mg"1 protein and a Kd of 0.477 ± 0.1 InM for the a la- 

cell line, and a Bmax of 954 ± 55 fmol mg'1 protein and a Kd of 0.433 ±0.14 nM for the 

a ]b- cell line (all values represent mean ± s.e. mean). Bmax is the maximum density of 

binding sites and Kd is the equilibrium dissociation constant.
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20pg of RNA from each cell line was run on a formaldehyde gel and subsequently 

transferred to a Hybond-N+ membrane (Amersham), as described in the materials and 

methods. The a ]b- probe was random labelled with [a-32P] dCTP using Ready-To-Go® 

DNA labeling beads from Pharmacia Biotech, using «50ng of the probe DNA. This was 

hybridized overnight with the membrane. The following morning, the membrane was 

washed at low stringency using two washes with 2X SSC/0.1% SDS. The membrane 

was then exposed to radiographic film for 24 hours and Figure 5.10 illustrates the 

hybridization of the probe. The probe had hybridized to both cell lines to a single size 

RNA species of » 5 Kb. The intensity of labelling was much stronger for the a lb- cell 

line.

The filter was then stripped by placing the membrane in boiling 0.1% SDS. The 

hybridization was repeated using the a la- probe labelled in the same way as the a lb- 

probe. The filter was again washed at low stringency, but this time no hybridization of 

the probe was seen despite exposure to film for 72 hours. In order to assess loading of 

the RNA, an 18S human ribosomal 49mer oligonucleotide probe corresponding to bases 

364 to 413, was end-labelled with [y-32P] ATP as described in materials and methods. 

The sequence of the probe was 5’ cgtggtcaccatggtaggcacggcgactaccatcgaaagttgatagggc 

3’. This probe was hybridized overnight and washed the following morning at high 

stringency using two washes of 2X SSC/0.1%SDS, one wash of 1XSSC/0.1% SDS and 

one wash of 0.1XSSC/0.1%SDS. The filter was exposed to radiographic film for 6 

hours and the resultant hybridization pattern is shown in Figure 5.10. This indicated 

that there was equal loading of RNA from both cell lines and therefore, that the a ]b- 

probe hybridized more strongly to the a lb- expressing cell line rather than the a ]a- cell 

line, although some cross-reactivity was demonstrated.



A second membrane was prepared, this time using 20pg of RNA from both dog brain 

and dog prostate. Again the a ]a- probe did not hybridize to either lane. Figure 5.11 

shows the results after a 72 hour exposure, when the a ]b- probe was used. In this case, 

the blots were washed to moderate stringency using two washes of 2X SSC/0.1%SDS 

and one wash of 1XSSC/0.1% SDS. The a lb- probe hybridized to both lanes but with 

greater intensity for the dog prostate RNA. This time two different size transcripts of 

«5Kb and «3Kb, were seen on the film. The membrane was stripped using boiling

0.1%SDS, and this time a GAPDH cDNA was random-labelled and hybridized 

overnight to assess loading of RNA. Results of a 72 hour exposure are illustrated in 

Figure 5.11. In this case, the general intensity of the hybridization is low but the band 

for the dog prostate does appear stronger which may account for the increased intensity 

of labelling seen with the a ]b- probe at the prostate tissue.
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Figure 5.9. Photograph of gel showing the colonies containing the 

a lb- insert. Plasmid was purified from the colonies and subsequently 

digested with Eco R1. Digests were then run on a gel and it can be seen 

that all plasmid preps contain the insert. The 1Kb ladder has been run in 

lane 1 of both the top and bottom row, and figures on the left show size 

markers in Kb.
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a i a "  a i b "

Figure 5.10. Northern blot of human a la- and a lb- expressing cell line 

RNA, hybridized to the a lb-, and ribosomal probes. Panel 1 shows the 

pattern of hybridization of the a lb- probe after a 24 hour exposure. Panel 2 

shows the subsequent hybridization pattern of an 18S ribosomal oligonucleotide 

probe after a 6 hour exposure.
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Figure 5.11. Northern blot of canine RNA hybridized to the a lb- and 

GAPDH probes. P = prostate, B = brain. Panel 1 shows the pattern of 

hybridization with the a lb- probe after a 72 hour exsposure. Panel 2 shows 

the pattern of hybridization with the GAPDH probe after a 72 hour exposure.

P B
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5.2 Discussion

In this study, native receptors are identified with uppercase letters and cloned receptors 

with lower case letters in accordance with the suggestions of the a,-adrenoceptor 

nomenclature committee (Hieble et al. 1995). To reiterate from Chapter 1, three 

subtypes of native a } -adrenoceptor have been identified by functional and radioligand 

binding studies. These are named a ]A-, a ]B-, and a ]D- (Hieble et al. 1995). These 

correspond to the three cloned a,- adrenoceptors, a la-, a ]b-, and a ld-. To date, the cloned 

receptors have been identified and sequenced in a number of species. However, with the 

exception of the partial a lb- adrenergic sequence isolated by Libert et al (1989), none of 

the canine a r  adrenergic sequences have been determined.

From the functional studies carried out on both the DSV and the subcutaneous 

resistance arteries in this study, there appeared to be a role for the a ]L-adrenoceptor in 

functional responses of both these vessels. The a 1L-adrenoceptor (Muramatsu et al. 

1995; Flavahan and Vanhoutte, 1986a) does not fall neatly into the classification 

outlined above and although it has been identified functionally in a number of tissues, 

its relation to the cloned receptors is not clear. Despite this, there is convincing 

evidence to suggest that the a la-adrenoceptor is responsible for the functional a 1L-. Ford 

et al (1997a; 1996b), showed that while binding experiments on CHO-K1 cells 

expressing the human a la-adrenoceptor, gave a binding pattern characteristic of the 

classical a 1A-adrenoceptor (high affinity for prazosin, RS 17053, WB 4101, niguldipine 

and 5 methylurapidil), assays measuring inositol phosphate accumulation, with the same 

range of antagonists in the same cell line, revealed that the profile changed to that more 

characteristic of the a  1L-adrenoceptor, (low affinity for prazosin, RS 17053, niguldipine 

and WB 4101). In addition, it has been shown that by altering the media and using 

whole cells rather than membranes, it is possible to alter the binding characteristics of



187

CH0-K1 cells expressing the human a la-adrenoceptor, to give a profile more closely 

resembling that seen for functional studies at the so called a 1L-adrenoceptor (Williams et 

al. 1996). This alteration could not simply be explained by a lowering of all values 

since the effect was not seen with other subtypes of a,-adrenoceptors and only certain 

antagonists showed lower values under the changed conditions. In addition, a novel 

fourth isoform of the human a la-adrenoceptor (a ]A_4), has recently been identified 

(Chang et al. 1998). This isoform together with the other three isoforms previously 

described, (Hirasawa et al. 1995), have been transfected into cell lines. When antagonist 

experiments were carried out measuring inositol phosphate accumulation, all isoforms 

displayed the a 1L-adrenoceptor profile, with a low affinity for prazosin, RS-17053 and 

WB 4101 (Ford et al. 1997b; Chang et al. 1998).

With this in mind and with the results of the functional experiments, it seemed logical to 

investigate expression and functional characteristics of the canine a 1A-adrenoceptor in 

more detail. The first step was to identify and determine the sequence of this receptor 

from canine tissue.

The sequence homology, even at the nucleotide level, is very highly conserved among 

the a,-adrenoceptor subtypes for different species (Graham et al. 1996). Based on this 

fact, it seemed reasonable to attempt to amplify the a ]A-adrenoceptor from canine tissue 

cDNA, using primers based on human and bovine sequences.

Unfortunately, when primers were designed to amplify the entire coding region for the 

receptor, a product corresponding to an adrenergic receptor sequence was not obtained. 

The reason for this is not clear but several possibilities exist.

1. The fact that the initial primer sets amplified titin, and the second set of primers failed 

to amplify anything, may indicate very low levels of expression or complex secondary 

structures preventing primer annealing and extension. With the second sets of primers,
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in addition to altering many of the parameters such as cycle number, time and 

temperature as already detailed, reactions were carried out in the presence of varying 

concentrations of dimethylsulphoxide (DMSO), which should have helped to disrupt 

secondary structures if present (personal communication from Dr Robert Heeley).

2. Hirasawa et al (1995) and Chang et al (1998) have identified isoforms of the human 

a la-adrenergic receptor. These isoforms are identical apart from their carboxy termini, 

where the sequence diverges. If a similar situation exists for the canine receptor, then 

this could have contributed to the failure to amplify the entire sequence and may explain 

the fact that it was possible to amplify a partial sequence, once a new downstream 

primer had been designed, which corresponded to an area within the putative VI 

transmembrane spanning domain, rather than one where the downstream primer lay 

within the carboxy terminal region.

3. Another reason for failure to amplify the full length clone may have been in the 

primer design. In polymerase chain reactions the most important aspect contributing to 

the success of the reaction is the design and choice of the primers. In the design of 

primers for this study, several recommendations were followed (Sharrocks, 1994). 

Primers were designed from areas of high homology, length of the primers was kept 

between 18 and 30 bases, the AT to GC ratio was kept roughly 1:1 to maintain a similar 

melting temperature (Tm) for all the primers and where possible, primers were designed 

such that there was a “GC clamp” on the 3’ end of the primer. In addition, all primers 

were checked for the absence of self homology and homology with their downstream 

counterpart, using a primer checking programme.

When the partial receptor was sequenced it was found to be over 90% homologous, at 

the nucleotide level, to the human and bovine a la-adrenergic sequences, compared to 

only approximately 70-80% homologous to either published a ]b- or a ld- adrenergic
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receptor sequences. This provided strong evidence that the sequence amplified did 

represent the canine a la-adrenergic receptor.

Rat-1 fibroblasts stably expressing the human a ]a- and a ]b-adrenergic receptors were 

available, and because of the high interspecies homology between the subtypes of 

adrenergic receptor, it was decided to use these cell lines to test the suitability of the ot]a- 

clone and the a lb- clone, as probes for the identification and quantification of these two 

subtypes in tissue, since the cell lines could act as positive and negative controls. 

Unfortunately, the a la-probe failed to hybridize to either cell line and also failed to 

hybridize to RNA prepared from canine prostate and canine brain, despite the fact that 

the clone had originated from RNA prepared from canine prostatic tissue. On the other 

hand, the a lb- probe hybridized to both canine prostatic and brain tissue. However, 

despite the fact that hybridization was markedly greater at the a ]b- cell line versus the 

a la- cell line, the fact that the probe did hybridize to the a la- cell line would indicate that 

this probe is not subtype specific.

Some possible explanations for the failure of the a la- probe to identify transcripts are:

1. Northern blotting has been used to examine expression of a,-adrenoceptor subtypes 

in other studies (Stewart et al. 1994; Schwinn et al. 1991; McGehee et al. 1990; 

Lomasney et al. 1991; Laz et al. 1994; Deng and Cornett, 1998; Alonzo-Llamazares et 

al. 1995; Beaulieu et al. 1997). Despite this, the levels of expression of these receptors 

is known to be low. Graham et al (1996) and Schwinn et al (1990), failed to identify 

a 1A- expression in tissues with functional a ]A- characteristics using the same technique. 

More sensitive methods are available and have been used, such as RNAse protection 

assays (Nasu et al. 1996; Moriyama et al. 1997; Price et al. 1994) and competitive RT- 

PCR (Chang et al. 1998; Faure et al. 1995). Even the use of polyA+ enriched mRNA
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rather than total RNA may be useful. Although these techniques were out with the 

scope of this study, they may be investigated in the future.

2. From verbal communication with Dr Janet MacKenzie, problems were encountered 

with the rat-1 fibroblast cell lines as regards loss of expression of the adrenergic 

receptors, subsequent to the Northern blotting experiments. If the levels of expression 

in the cell lines had been falling this may have explained the inability of the a la- probe 

to identify transcripts in the RNA from these cells.

3. The a la- probe itself may have been the problem. Lack of homology would be the 

most likely reason for a probe to fail to work. This is an unlikely explanation in this 

case due to the homology of > 90% between the probe sequence and the human otla- 

sequence.

4. Expression of the a la-adrenoceptor may be very low in the canine tissues that were 

used for the Northern analysis. Prostate was used because this was the tissue from 

which the clone was derived and from binding and functional studies, the canine 

prostate has been characterised as having primarily either a 1A- or a ]L-adrenergic 

receptors (Testa et al. 1997; Knepper et al. 1995; Goetz et al. 1994). Brain was also 

included since human brain tissue has been shown to have a 1A-adrenoceptors (Price et 

al. 1994; Faure et al. 1995; Hirasawa et al. 1995), and while species differences do exist 

in distribution of receptor subtypes, often there are similarities.

In the case of the a ]b- probe, in the cell lines the probe only identified a single size of 

mRNA transcript («5Kb), whereas in the canine tissue the probe hybridized to two 

different sized mRNAs, namely a band «5Kb and a second band ~3Kb. Different sizes 

of mRNA transcripts for a 5-adrenoceptors have been reported previously. In a study by 

Beaulieu et al (1997), four transcript sizes were observed for the a 1D-adrenergic receptor
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in hamster hearts and Stewart et al (1994) identified three transcript sizes for the ot]A- 

adrenoceptor in rat heart and brain.

Libert et al (1989) used the same canine a ]b- probe that was used in this study, in a 

variety of canine tissues. They observed a tissue specific variation in the size of the 

transcripts identified with two transcripts of 4.8 and 2.6Kb in canine lung, two 

transcripts of 4.1 and 2.6Kb in canine heart and only a single transcript of 4.8Kb in 

canine stomach. As suggested by Libert et al, in the paper cited, and as already 

suggested in this discussion, this pattern may be due to lack of subtype specificity of the 

probe and thus, the probe may be identifying the presence of more than one subtype in 

the canine tissues. This could explain why only a single band was seen in the cell lines 

where only a single subtype is being expressed. Another explanation is, that it has been 

shown that in the 5’ untranslated region of the a 1B-adrenoceptor, there are a number of 

translation initiation sites. In addition, an intron in the 5’ untranslated region of the rat

a ]b-adrenergic receptor also gives rise to alternative splicing (Jones et al. 1997; Graham 

et al. 1996). This would give rise to a 1B- transcripts of varying size.

In conclusion, from this study, part of the canine a la- adrenergic receptor has been 

identified and sequenced. The homology to both the human and bovine a la-adrenergic 

receptors is high (> 90%). Using Northern analysis, this probe was unsuccessful in 

identifying expression of a 1A-adrenergic receptor transcripts. The most likely 

explanation for this is probably due to low expression levels and lack of sensitivity of 

the technique. While hybridization with the a lb- probe was achieved, the subtype 

selectivity of this probe was unconvincing due to cross-reactivity with the a ]a- cell line. 

With high homology even between different subtypes this will always be a potential 

problem.
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For the future it will be desirable to isolate the full receptor. The partial sequence may 

be used as a probe to screen a canine cDNA library. Using this method it will be 

interesting to see if isoforms of this receptor exist as they do for the human a la-. In 

addition, a more sensitive method of detection will be adopted to examine tissue 

expression of the subtypes, such as semi-quantitative RT-PCR or RNase protection. 

The former may be particularly useful where small amounts of tissue (particularly blood 

vessels) are being used. With the full length sequence information it will be possible to 

generate more subtype-selective primers and probes in an attempt eliminate the problem 

of non-subtype selectivity.
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CHAPTER 6

Functional characteristics of dog saphenous vein, dog femoral 
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6.0 Abstract

The objective of this study was to carry out a preliminary investigation into the 

functional characteristics of several isolated blood vessels from control and heart failure 

dogs. The literature concerning changes occurring in heart failure is conflicting 

probably due to species variation, drug treatment in some of the human studies and 

variation in the severity and duration of the heart failure.

To my knowledge, this is the first study to have examined isolated blood vessels from 

dogs with naturally occurring heart failure. The main findings of this study were as 

follows. There was a decreased sensitivity to noradrenaline in both the saphenous vein 

and femoral artery, but not the subcutaneous resistance artery, in heart failure animals. 

There was a significant increase in maximal response to potassium chloride in femoral 

arteries and resistance arteries from failure animals, while the maximal response to 

noradrenaline was only significantly greater in the femoral artery. There was no 

impairment of acetylcholine mediated relaxations in heart failure in any of the vessels 

studied, and neuronal reuptake of noradrenaline was most marked in the saphenous vein 

where it was not impaired in heart failure.
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6.1 Methods

6.1.1 Saphenous vein (PSV) and femoral artery (FA)

5mm sections of vessel were taken from control and heart failure animals, mounted in 

10ml organ baths, normalised and the starting protocol completed as described in 

materials and methods. Vessels were maintained in Krebs’ solution and no blocking 

agents used unless otherwise stated.

Two rings were mounted from each vessel. After a forty minute equilibration period, a 

cumulative concentration response curve to noradrenaline was performed in all rings, 

starting with a concentration of InM and increasing up to a concentration of ImM if 

required. Once a maximal contraction had been achieved, vessels were washed until 

they returned to baseline. At this point lpM  of the uptake-1 blocking agent cocaine, 

was added to the bath of one of the rings. Forty minutes later a second concentration 

response curve to noradrenaline was performed in this ring. The second ring was also 

allowed a forty minute recovery period. Subsequent to this, the vessel was 

precontracted with lpM  noradrenaline. Once the contraction had reached a steady state, 

a cumulative concentration response curve was performed to acetylcholine using a 

concentration range of InM to lOpM acetylcholine.

6.1.2 Subcutaneous resistance arteries (PSCRA!

Sections of resistance artery approximately 2mm in length and approximately 260 ±11 

microns in diameter (n = 40), were mounted in Mulvany Halpem wire myographs, 

normalised to 0.9 of L I00 and the starting protocol completed as described in the 

materials and methods. From this time on vessels were maintained in Krebs’ solution 

and no blocking agents used unless stated otherwise. Four vessels were set up in 

parallel from each animal. An initial concentration response curve to noradrenaline was
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performed in all vessels starting with a concentration of InM and increasing up to a 

concentration of ImM if required. Once a maximal contraction had been achieved, 

vessels were washed until they returned to baseline. At this point, vessel one was 

assigned as a time control, lfiM cocaine was added to the bath of vessel two, lOOpM L- 

NAME (N“-Nitro-L-Arginine Methyl ester hydrochloride) was added to the bath of 

vessel three, and a combination of lpM  cocaine and lOOpM L-NAME was added to the 

bath of vessel four. After a forty minute period a second concentration response curve 

to noradrenaline was performed. Vessels were again washed until baseline was reached. 

Finally, forty minutes after the second curve, the time control and the cocaine assigned 

vessel were precontracted with lpM  noradrenaline and once a steady state had been 

attained, a concentration response curve to acetylcholine was performed as for the DSV 

and FA.

In the DSV and the FA, concentration response curves to noradrenaline were curve 

fitted using GraphPad Prism as described in Chapter 2, allowing the derivation of 

maximum, pEC50 and Hill slope parameters from the curve fitting. Results were 

expressed as a percentage of the first concentration response curve maximum.

As discussed in Chapter 4, DSCRA were not amenable to curve fitting and therefore all 

data were analysed on Microsoft Excel spreadsheets and parameters derived by 

interpolation. Results were again expressed as a percentage of the first curve maximum. 

Concentration response curves to acetylcholine for all vessels were analysed on 

Microsoft Excel spreadsheets and pEC10, pEC25 and pEC50 values derived from 

interpolation. Results were expressed as a percentage of the contraction to lpM  

noradrenaline.
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All parameters were compared using paired or unpaired Students t test. A P< 0.05 was 

taken to be statistically significant and n = the number of experiments unless otherwise 

stated.

6.1.3 Histology and Immunohistochemistrv

In order to assess the sympathetic innervation of the vessels being studied, 

immunohistochemistry was performed using anti-neuropeptide Y (NPY) and anti

tyrosine hydroxylase antibodies. The materials and methods for this are given in section 

2.5 of materials and methods.

6.2 Results

6.2.1 Saphenous Vein

Values were derived from eight control animals and seven heart failure animals. Firstly, 

in the control group, noradrenaline caused a concentration-dependent increase in tone 

with a pEC50 of 5.93 ± 0.07 (n = 8). In the presence of lpM  cocaine, there was a left 

shift and a lowering of the maximum of the concentration response curve (Figure 6.1). 

This resulted in a significant shift in the pEC50 value ( P of < 0.001) to 6.35 ± 0.07 (n =

8) and a significant decrease in the maximum ( P of 0.0025) from 102.6 ± 0.56% to 

87.56 ± 3.4%. Hill slope parameters did not alter significantly (0.94 ± 0.03, n = 8 with 

and without cocaine).

In the case of the heart failure group, a mean pEC50 value of 5.69 ± 0.12 (n = 7) was 

obtained for noradrenaline. As in the control group, cocaine caused a left shift in the 

concentration response curve, giving a mean pEC50 of 6.03 ± 0.12 (n = 7) which was 

significantly different ( P of 0.015). From the mean graphs (Figure 6.2), there also 

appeared to be a depression in the maximum, but this was not statistically significant.
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When the control and heart failure group were compared, the curves from the failure 

group appeared to be shifted to the right when compared to the controls (Figure 6.3). 

Curves were compared at the pEC10, pEC25, pEC50 and pEC75 values. The difference 

between the two groups was only significant at the pEC10 and pEC25 levels (P of 0.03 

and 0.04 respectively). When the two groups were again compared after the addition of 

cocaine (Figure 6.4), their relative relationship had not changed except that the 

difference between the two groups was now only significant at the pEC]0 value and no 

longer significant at the pEC25 value (P of 0.049 and 0.068 respectively).

Maximum responses to noradrenaline and 125mM potassium chloride were not 

significantly different between the two groups (P of 0.473 and 0.598 respectively). 

Responses to acetylcholine were quite variable in both groups but overall acetylcholine 

only induced slight relaxations in the saphenous vein, with tone on maximal relaxation 

still comprising 69.9 ± 10.5 % (n = 7) of the tone produced by lpM  noradrenaline in the 

control group and 71.3 ± 11.4 % (n = 6) in the failure group. These were not 

significantly different. The two groups were also compared at the pEC10 value and 

again there was no significant difference. Due to the poor response to acetylcholine in 

this vessel, pEC25 and pEC50 values could not be derived for the majority of vessels. 

Graphs for acetylcholine concentration response curves are shown in Figure 6.5.

Cross sections of the saphenous vein were stained for the presence of the noradrenergic 

co-transmitter, neuropeptide Y (NPY), and the enzyme tyrosine hydroxylase (TH), 

which is involved in the enzymatic synthesis of noradrenaline from tyrosine. From the 

panels in Figure 6.6, it can be seen that the staining for NPY and TH is abundant and 

extends right into the media of the vessel. This indicates that the saphenous vein has a 

rich sympathetic innervation.
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Saphenous vein rings from control dogs 
with and without cocaine
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Figure 6.1. Concentration response curve data to noradrenaline in the dog 

saphenous vein from control animals. Graphs were generated from mean parameters 

derived from curve fitting. Mean raw data ± s.e. mean was superimposed on mean

curves. Noradrenaline (□), n = 8; noradrenaline + lpM  cocaine (■), n = 8. The inset

graph serves to highlight the pEC10, pEC25, pEC50 and pEC75 values and the comparison 

before and after the addition of cocaine. The symbol *** denotes a P value of < 0.001 

and the symbol ** denotes a P value <0.01.



200

Saphenous vein rings from heart 
failure dogs with and without cocaine
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Figure 6.2. Concentration response curve data to noradrenaline in the dog 

saphenous vein from heart failure animals. Graphs were generated from mean 

parameters derived from curve fitting. Mean raw data ± s.e. mean was superimposed on

mean curves. Noradrenaline (□), n = l; noradrenaline + lpM  cocaine (■), n — 1. The 

inset graph serves to highlight the pEC]0, pEC25, pEC50 and pEC75 values and the 

comparison before and after the addition of cocaine. The symbol * denotes a P value < 

0.05.
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Saphenous vein rings from control and
heart Mlure dogs
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Figure 6.3. Concentration response curve data to noradrenaline in saphenous vein 

rings from control and heart failure animals. Curves were generated from mean 

parameters derived from curve fitting. Mean raw data ± s.e. mean was superimposed

onto the mean curves. Control animals (□), n = 8; heart failure animals (■), n = 7. The 

inset graph serves to highlight the pEC10, pEC25, pEC50 and pEC75 values and the 

comparison between the two groups. The symbol * denotes a P value < 0.05.
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Saphenous vein rings from control and 
heart failure dogs in the presence of

cocaine
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Figure 6.4. Concentration response curve data to noradrenaline in saphenous vein 

rings from control and heart failure animals after the addition of lpM  cocaine.

Curves were generated from mean parameters derived from curve fitting. Mean raw data 

± s.e. mean was superimposed onto the mean curves. Control animals (□), n = 8; heart 

failure animals (■), n = 7. The inset graph serves to highlight the pEC]0, pEC25, pEC50 

and pEC75 values and the comparison between the two groups. The symbol * denotes a 

P value < 0.05.
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Saphenous vein rings control versus
heart failure120 -
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Figure 6.5. Concentration response curve data to acetylcholine from control and 

heart failure dogs. Results are expressed as a percentage of the tone produced by 1 pM 

noradrenaline. Data points represent mean ± s.e. mean. Control animals (□), n = l \  heart

failure animals (■), n = 6.



2 0 4

lumen

media

T.H.

adventitia
144jLim

T.H

Figure 6.6. See next page for text ►



Figure 6.6. Saphenous vein immunohistochemistry. Panel 1 shows a cross section of 

the saphenous vein, showing areas of tyrosine hydroxylase (TH) staining seen as red. 

Panel 2 also shows tyrosine hydroxylase staining but under higher magnification . The 

area shown in this section comprises the media of the vessel. Panel 3 shows a cross 

sectional area of the saphenous vein showing areas containing NPY, again seen as areas 

of red staining which occur right throughout the media of the vessel. These panels 

illustrate that the saphenous vein is richly innervated. The distribution of nerves in this 

vessel is also unusual in that generally innervation only extends as far as the 

adventitial/medial border.
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6.2.2 Femoral artery

Values were derived from eight control and seven heart failure animals.

In the femoral artery from the control group, the mean pEC50 for the noradrenaline 

concentration response curves was 6.05 ± 0.07 (n = 10). After the addition of lpM  

cocaine the concentration response curve shifted to the right with a pEC50 of 5.82 ± 0.04 

(n= 10) and there was a reduction in the maximum from 100.4 ± 0.3 % to 82.94 ± 4.35 

% ( n =  10). Both parameters were significantly different before, versus after the addition 

of cocaine, with P values of 0.02 and 0.003 for pEC50 and maximum values respectively. 

Mean Hill slope values before and after the addition of cocaine were also significantly 

different (P of 0.0001), with a Hill slope of 1.02 ± 0.03 without cocaine and 1.28 ± 0.02 

with cocaine (n = 10). Mean data are illustrated in Figure 6.7.

In the heart failure group, noradrenaline caused contraction of the femoral artery with a 

pEC50 value of 5.54 ±0.13 ( n = 8). The addition of lpM  cocaine had no significant 

effect on the maximum, pEC50 or Hill slope of the noradrenaline curve (Figure 6.8). 

When a comparison was made of the noradrenaline CRC data between the control and 

heart failure groups, the curve from the heart failure animals appeared to be noticeably 

shifted to the right. The difference between the two curves was significant at the level 

of the pEC10, pEC25, pEC50 and pEC75 values with P values in all cases of 0.002. When 

active effective pressures were compared for maximal response to both noradrenaline 

and 125mM potassium chloride, these were found to be significantly different in both 

groups (P of 0.0042 and < 0.001 respectively), with the following values: Maximum 

noradrenaline response in the control group of 3.64 ± 0.31 KPa, (n =10); maximum 

noradrenaline response in the failure group of 5.11 ± 0.35 KPa, ( n = 8); maximum 

potassium chloride response in the control group of 2.18 ± 0.26 KPa, (n = 10); 

maximum potassium chloride response in the failure group of 4.46 ± 0.25 KPa, (n = 8).
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Graphs are illustrated in Figure 6.9. Maximum values only appear different in the lower 

graph (B), since these values are expressed as active effective pressure, whereas the 

upper graph results (A) are expressed as a percentage of the noradrenaline CRC 

maximum.

After the addition of cocaine, there was no longer a significant difference between the 

groups at the pEC10, pEC25, pEC50 or pEC75 values. However, the difference between the 

maximum values was accentuated because of the reduction in maximum seen only in 

the control group in the presence of cocaine (Figure 6.10). Again the bottom graph (B) 

illustrates results expressed as active effective pressure, while the top graph illustrates 

results expressed as a percentage of the noradrenaline CRC maximum (A).

In the femoral artery, acetylcholine caused a maximal relaxation of 70.93 ± 6.6% (n =

9) of the response to lpM  noradrenaline in the control group, and 68.14 ± 13.13% (n =

6) in the failure group. These values were not significantly different when values from 

individual experiments were compared by Students t test. In addition, there was no 

significant difference for pEC10, pEC25 and pEC50 values between the two groups. 

Acetylcholine had a pEC50 value of 6.58 ± 0.4 (n = 6) in the control group, and 6.71 ± 

0.56 (n = 4) in the failure group. Mean CRC data is illustrated in Figure 6.11.

In contrast to the DSV, when immunohistochemistry was performed on sections of the 

femoral artery, for the presence of tyrosine hydroxylase and NPY, little staining was 

seen. This is illustrated by panels 1 and 2 in Figure 6.12. This indicates that the femoral 

artery has poor sympathetic innnervation.
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Femoral artery rings from control
dogs with and without cocaine120.
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Figure 6.7. Concentration response curve data to noradrenaline in the dog femoral 

artery from control animals. Graphs were generated from mean parameters derived 

from curve fitting. Mean raw data ± s.e. mean was superimposed on mean curves.

Noradrenaline (□), n — 10; noradrenaline + lpM  cocaine (■), n =10. The inset graph 

serves to highlight the pEC10, pEC25, pEC50 and pEC75 values and the comparison before 

and after the addition of cocaine. The symbol ** denotes a P value < 0.01 and the 

symbol * denotes a P value <0.5.
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Femoral artery rings from heart failure
dogs with and without cocaine
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Figure 6.8. Concentration response curve data to noradrenaline in the dog femoral 

artery from heart failure animals. Graphs were generated from mean parameters 

derived from curve fitting. Mean raw data ± s.e. mean was superimposed on mean

curves. Noradrenaline (□), n = 8; noradrenaline + lpM  cocaine (■), n =8. The inset

graph serves to highlight the pEC10, pEC25, pEC50 and pEC75 values and the comparison 

before and after the addition of cocaine.



210

Femoral artery rings from control and 
heart failure dogsE
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Figure 6.9. Concentration response curve data to noradrenaline in the dog femoral 

artery from control and heart failure animals. Graphs were generated from mean 

parameters derived from curve fitting. Mean raw data ± s.e. mean was superimposed on

mean curves. Control animals (□), n = 10; heart failure animals (■), n =8. In graph A, 

the inset graph serves to highlight the pEC]0, pEC25, pEC50 and pEC75 values and the 

comparison between the two groups. The symbol ** denotes a P value <0.01. Graph B 

shows the same CRC data expressed as active effective pressure (KPa).
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Femoral artery rings from control and 
heart failure dogs in the presence of
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Figure 6.10. Concentration response curve data to noradrenaline in the dog 

femoral artery from control and heart failure animals after the addition of lpM  

cocaine. Graphs were generated from mean parameters derived from curve fitting. Mean 

raw data ± s.e. mean was superimposed on mean curves. Control animals (□), n — 10; 

heart failure animals (■), n =8. In graph A, the inset graph serves to highlight the 

pEC]0, pEC25, pEC50 and pEC75 values and the comparison between the two groups. 

Graph B shows the same CRC data expressed as active effective pressure (KPa).
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Figure 6.11. Concentration response curve data to acetylcholine from control and 

heart failure dogs in the femoral artery. Results are expressed as a percentage of the 

tone produced by lpM  noradrenaline. Data points represent mean ± s.e. mean. Control

animals (□), n = 9; heart failure animals (■), n = 6.
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Figure 6.12. Femoral artery immunohistochemistry. Both NPY and tyrosine 

hydroxylase appear as areas of red staining. Panel 1 shows scant red staining for NPY 

in a cross section of femoral artery. Panel 2 also demonstrates the low level of staining 

for tyrosine hydroxylase (TH). In both panel 1 and 2, any staining for either NPY or 

TH is limited to the adventitia of the vessel.
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6.2.3 Subcutaneous resistance arteries

Values were derived from 6 control animals and 4-5 heart failure animals.

Time control vessels were run in parallel with experiments and it was found that there 

were no significant differences between maximum or pEC50 values between two 

consecutive noradrenaline concentration response curves. Mean time control data is 

illustrated in Figure 6.13.

In the control group, noradrenaline contracted the vessels with a mean pEC50 value of 

6.4 ± 0.2 (n = 6). Although cocaine appeared to shift the curve slightly to the left there 

was no significant difference in the presence of ljiM cocaine to the maximum, pEC10 

pEC25 or pEC50 values (P of 0.19, 0.19, 0.22, 0.76 respectively), (Figure 6.12). lOOpM 

L-NAME had no significant effect on the pEC10, pEC25, pEC50 or maximum values of 

the noradrenaline CRC as illustrated in Figure 6.14, with P values of 0.84, 0.94, 0.46 

and 0.58 respectively. The combination of L-NAME (IOOjjM) and cocaine (lpM ) 

caused a marked left shift in the CRC to noradrenaline. The difference between the two 

curves was significant at the level of the pEC25 value (P of 0.023) and the pEC50 value (P 

of 0.045) (Figure 6.14).

In the failure group, noradrenaline contracted the artery with a pEC50 value of 6.64 ± 

0.33 (n = 5). 1 |aM cocaine had no significant effect on pEC10, pEC25 pEC50 or maximum 

parameters (Figure 6.15). Although both lOOpM L-NAME and the combination of 

lpM  cocaine and lOOpM L-NAME appeared to shift the curve to noradrenaline to the 

left, the differences in the pEC10, pEC25, pEC50 and maximum parameters were not 

significant (Figures 6.15).

When comparisons were made between the control and failure groups, no significant 

differences could be found when maximum, pEC10, pEC25 and pEC50 parameters were 

compared. This was true for responses to noradrenaline alone, and in the presence of
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IjllM  cocaine, lOOpM L-NAME and both cocaine and L-NAME (Figure 6.16). 

However, when responses to 125mM KC1 were compared, it was found that the 

maximal response in the heart failure group was significantly higher than that in the 

control group with a maximal response in the failure group of 28.49 ± 2.45KPa (n =14) 

compared to 16.81 ± 1.8KPa (n = 24), in the control group (P<0.004).

Responses to acetylcholine were variable. The maximum relaxation in the control 

group was 43.39 ± 10.66% (n = 11) and in the failure group 75.59 ± 11.79% (n = 6). A 

pEC50 value of 6.32 ± 0.3 (n = 6), was obtained for the control group and a pEC50 value 

of 6.77 ± 0.22 ( n = 5 ) for the failure group. Data from the control and failure animals 

is illustrated graphically in Figure 6.17. Although it appears that the failure animals 

showed an increased relaxation, when individual values were compared by t test, no 

significant difference was found between maximum values (P of 0.07). In addition no 

significant differences were found between the pEC10, pEC25 and pEC50 values (P values 

of 0.79, 0.69 and 0.29 respectively).

Subcutaneous resistance arteries appeared to be well innervated as can be seen from the 

NPY staining of a whole-mounted vessel in Figure 6.18. The nerves form an intricate 

lace work like pattern over the entire surface of the vessel.
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Time control curves for dog 
subcutaneous resistance arteries
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Figure 6.13. Mean time control data for dog subcutaneous resistance arteries. Data 

points represent mean data ± s.e. mean. Data is expressed as a percentage of maximum

of the first CRC. Curve 1 (□), n = 9 ; curve two (■), n = 9.
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Figure 6.14. Graphs illustrating mean concentration response curve data from 

subcutaneous resistance arteries of control dogs. Responses are expressed as a

percentage of the control curve. Graph A, NA (□) n = 6; NA and lpM  cocaine (■ ) n = 

6. Graph B, NA (□) n = 6; NA and lOOpM L-NAME (■) n = 6. Graph C, NA (□) h = 

6; NA and lOOpM L-NAME + lpM  cocaine (■ ) n = 6.
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Figure 6.15. Graphs illustrating mean concentration response curve data from 

subcutaneous resistance arteries of heart failure dogs. Responses are expressed as a

percentage of control maximum. Graph A, NA (□) n = 5; NA and lpM  cocaine (■ ) n 

= 5. Graph B, NA (□) n = 4; NA and lOOpM L-NAME (■) n = 4. Graph C, NA (□) n = 

4; NA and lOOfiM L-NAME + lpM  cocaine (■ ) n = 4.
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Figure 6.16. Mean concentration response curve data comparing control and heart 

failure dogs. Graph A (NA), control (□) n = 6; failure (■ ) n = 5. Graph B (NA in the 

presence of lpM  cocaine), control (□) n = 6 ; failure (■ ) n = 5. Graph C (NA in the 

presence of lOOpM L-NAME), control (□) n = 6; failure (■ ) n = 4. Graph D (NA in the 

presence of 100pM L-NAME and lpM  cocaine), control (□) n = 6; failure n = 4.
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Acetylcholine in control and heart
failure resistance arteries
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Figure 6.17. Mean concentration response curve data for acetylcholine in 

subcutaneous resistance arteries from control and heart failure dogs. Data points 

represent mean data ± s.e. mean. Results are expressed as a percentage of the tone

produced by lpM  noradrenaline. Control (□) n = 11; Heart failure (■ ) n = 6.
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Figure 6.18. Dog subcutaneous resistance artery histology and 

immunohistochemistry. Panel 1 shows a haemalum and eosin stained cross section of 

a representative DSCRA used in this study. In this section the endothelium (E) can be 

clearly seen, together with approximately five layers of smooth muscle making up the 

media (M) and the connective tissue of the adventitia (A). Panel 2 shows a whole- 

mounted preparation stained for NPY. There is abundant bronze coloured NPY staining 

forming a lacey pattern over the entire surface of the vessel.
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VESSEL pEC50 NA ± s.e. mean pEC50 NA + lpM  cocaine ± 

s.e. mean

Saphenous vein 5.93 ±.07 0  = 8) 6.35 ± 0.07 (n = 8)

Femoral artery 6.05 ±.07 (n= 10) 5.82 ±0.04 («=  10)

Resistance artery 6.4 ± 0.2 (n = 6). 6.61 ± 0.12 (n = 6)

Table 6.1. Summary of pEC50 values from vessels of control animals before and 

after the addition of cocaine.

VESSEL pEC50 NA ± s.e. mean pEC50 NA + l|nM cocaine ± 

s.e. mean

Saphenous vein 5.69 ±0.12 0  = 7) 6.03 ±0.12 0  = 7)

Femoral artery 5.54 ±0.13 0  = 8) 5.64 ±0.13 0  = 8)

Resistance artery 6.64 ± 0.33 («  = 5) 6.63 ± 0.3 O = 5)

Table 6.2. Summary of pEC50 values from vessels of heart failure dogs before and 

after the addition of cocaine.
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case number signalment diagnosis treatment

129293 8mnths, (M), Flat coated 

retriever.

Tricuspid and 

pulmonic valve 

dysplasia

none

129574 9yrs, (FN), Boxer. 2 year 

history of syncope. Presented 

with ventricular dysrhythmia

Cardiomyopathy none (died 

suddenly)

126443 lOyrs, (MN), King Charles 

Spaniel. Treated for 2 years.

Endocardiosis frusemide

enalapril

digoxin

130395 12 weeks, (F), Golden 

Retriever.

Pulmonic stenosis, 

aortic stenosis, 

mitral and tricuspid 

dysplasia.

none

130469 6yrs, (M), St Bernard. Dilated

cardiomyopathy

none

130659 3.5yrs (M) Whippet Dilated

cardiomyopathy 

secondary to septic 

myocarditis

antibiotics

128870 11.7yrs, (M), Collie. Endocardiosis enalapril

frusemide

10796 Aged, (M), King Charles 

Spaniel.

Endocardiosis none

Table 6.3. Synopsis of heart failure cases used in the femoral artery and saphenous 

vein experiments. M = male, F = female, MN = male neutered, FN = female neutered.
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case number signalment diagnosis treatment

125322 10.9yrs, (M), Standard Poodle. Dilated

cardiomyopathy

frusemide

spironolactone

enalapril

digoxin

130174 8yrs, (M), St Bernard. 

Recurrent disease over 

12mnths.

Idiopathic 

pericardial 

effusion causing 

right sided failure

Drainage. No 

drugs used

131736 8.5yrs, (M), Great Dane. 

Treatment over a five month 

period

Dilated

cardiomyopathy

frusemide

digoxin

enalapril

topical

nitroglycerine

132710 7yrs, (M), Doberman. Dilated

cardiomyopathy 

and endocardiosis

frusemide

enalapril

propranolol

128870 11.7yrs, (M), Collie. Endocardiosis enalapril

frusemide

Table 6.4. Synopsis of heart failure cases used in the subcutaneous resistance 

artery experiments. M = male, F = female, MN = male neutered, FN = female 

neutered.
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Femoral artery rings from  
individual heart failure dogs
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Figure 6.19. Individual concentration response curves from femoral artery rings of 

heart failure dogs. As can be seen from the graphs, two of the femoral artery rings 

appear to be more sensitive to noradrenaline than their counterparts. These are as 

follows: (A ) case number 126443; (A ) case number 128870. In addition one vessel is 

much less sensitive to noradrenaline (■) case number 129293. Table 6.2 gives case 

details.
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Subcutaneous resistance arteries from  
heart failure dogs in the presence o f  

L-NAME
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Figure 6.20. Individual concentration response curves from subcutaneous 

resistance arteries in the presence of L- NAME (from heart failure dogs).

Individual experiments from subcutaneous resistance arteries are compared to the mean 

control curve. Control (□), n = 4; case number 125322 (■); case number 130174 (A); 

case number 131736 (▼); case number 132710 (♦ ) .  As can be seen from the graph, the 

curve from case number 131736 is more sensitive to noradrenaline than the others. Case 

details are listed in Table 6.3.
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6.3 Discussion

Heart failure and the importance of the vasculature in the pathophysiology of this 

condition has been discussed in the introduction in Chapter one, together with the 

relevance of cardiac disease in the canine population and the main aetiologies and 

treatment options currently available.

To date, a number of studies have examined the effects of congestive cardiac failure in 

isolated vessels from the dog and also vessels in the intact animal (Mathew et al. 1993; 

LeTran and Forster, 1997; Ianuzzo et al. 1996; Forster et al. 1989; Forster and 

Armstrong, 1990; Forster et al. 1991; Forster, 1995; Larosa et al. 1994; Forster et al. 

1994; Forster and Campbell, 1993; Forster, 1996; Forster, 1995; Kaiser et al. 1989; 

Eisner et al. 1991; Kiuchi et al. 1993; Katz, 1995). All these studies used animals 

whose heart failure had been induced experimentally, with the pacing induced model 

being the most used and best characterised (Armstrong et al. 1986). In this study, 

vessels were harvested from animals in the canine population who had developed 

naturally occurring heart failure and who were seen at Glasgow University Veterinary 

hospital referral clinic. Animals had been referred to the hospital because of heart 

disease. On referral dogs were examined by a Veterinary cardiologist and underwent an 

examination consisting of clinical examination, thoracic radiography, 

electrocardiography and in most cases, diagnostic echocardiography and post mortem 

examination. This meant that each case had a definitive diagnosis of a specific cardiac 

disease. Ideally control animals should have been subjected to a similar clinical 

investigation to that of their heart failure counterparts. This unfortunately was not a 

feasible option. Control animals were however given a clinical examination. In the 

majority of cardiac diseases seen in the canine population, clinical examination will 

reveal some abnormality such as a murmur, poor pulses, reduced capillary refill time,
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cough and inspiratory crackles on auscultation of the lung field, increased heart rate, 

jugular distension and or pulsation and abdominal distension. Animals exhibiting any 

of these signs were not included as controls.

Vessels were taken from dogs with heart failure, who were euthanased at their owner’s 

request, because the cardiac disease had progressed and was no longer responsive to 

treatment, or because there was no appropriate treatment available and in one case due 

to the aggressive nature of the dog which prevented examination and administration of 

treatment. Tables 6.3 and 6.4, summarise the heart failure cases used in this study, 

giving information on the diagnosis and treatment if any. Several points need to be 

borne in mind when interpreting findings and making comparisons with the literature. 

Obviously in comparison with experimental models of heart failure, there is a non

uniformity in the aetiology of failure, breed of animal, age of animal, treatment and 

duration of the condition.

Responses to the catecholamine, noradrenaline and the endothelium-dependent 

vasodilator, acetylcholine were compared in control and heart failure groups. In 

addition, the effect of the agents cocaine and L-NAME were also examined. The 

rationale for using these latter two agents is discussed below.

Increased sympathetic activity is well documented as playing a part in the 

pathophysiology of cardiac failure (Leimbach et al. 1986; Grassi et al. 1995; Hasking et 

al. 1986; Cohn et al. 1984; Thomas and Marks, 1978). The assumption that increased 

plasma noradrenaline may simply be due to increased release from sympathetic nerve 

terminals may not necessarily be true. Noradrenaline in the neuroeffector junction is 

taken up by the nerve terminal (termed uptake-1) and by non-neuronal tissue (uptake-2). 

Uptake-1 is the most important and specific of the two uptake processes. Cocaine 

blocks uptake-1, thereby effectively increasing the amount of noradrenaline in the
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neuroeffector junction. In the myocardium several studies have identified a decrease in 

noradrenaline uptake which contributes to the increased sympathetic stimulation of the 

post-junctional adrenoceptors (Liang et al. 1989; Himura et al. 1993; Beau and Saffitz, 

1994; Eisenhofer et al. 1996). Cocaine was therefore employed in this study to see if 

this phenomenon also played a role in the peripheral sympathetic nerve terminals. 

Furchgott and Zawadzki (1980) first highlighted the requirement of an intact vascular 

endothelium in order for acetylcholine to mediate vasorelaxation. Palmer et al (1987) 

identified the endothelium-derived relaxing factor released by the acetylcholine to be 

nitric oxide. Nitric oxide is released under both basal conditions and upon stimulation 

(Vanhoutte and Shimokawa, 1989). L-NAME is an inhibitor of nitric oxide synthase, 

the enzyme responsible for nitric oxide formation. The aim of using L-NAME in this 

study was to compare basal release of nitric oxide in control and heart failure animals.

Conduit vessels (Saphenous vein and femoral artery)

In the saphenous vein segments from control animals, sensitivity to noradrenaline 

before and after the addition of cocaine was comparable to values from the literature 

(Flavahan and Vanhoutte, 1986b; Alabaster et al. 1985; De Mey and Vanhoutte, 1981). 

1 pM cocaine significantly enhanced the sensitivity of the saphenous vein and decreased 

the maximal response. As is clear from Figure 6.6, the saphenous vein is well 

innervated, indicated by abundant staining for both tyrosine hydroxylase and NPY. The 

distribution of the innervation in this vessel was also interesting in that the nerves 

appeared to penetrate the wall of the vessel right up to the intimal layer rather than being 

limited to the adventitial/medial border. It is therefore logical that in this vessel 

cocaine would have the effect of increasing the sensitivity to noradrenaline, especially at 

low concentrations of the agonist. Similarly, the shift seen with cocaine in the controls
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was still present in saphenous vein segments taken from heart failure animals. The shift 

in both groups was comparable, as when the differences in pEC10, pEC25, pEC50 and 

pEC75 values seen before and after cocaine, were compared by t test for both groups, 

there were no significant differences (P of 0.73, 0.41, 0.32 and 0.54 respectively). This 

would suggest that uptake-1 is not impaired in heart failure in the saphenous vein.

In control animals, the femoral artery was more sensitive to noradrenaline than the 

saphenous vein (pEC50 6.05 ± 0.07 (n = 10)). This is in agreement with DeMey and 

Vanhoutte (1981), but in contrast to Forster and Armstrong (1990) who found the 

saphenous vein to be most sensitive to noradrenaline.

In contrast to the saphenous vein, the canine femoral artery is poorly innervated. This 

can clearly be seen in Figure 6.12, where staining with tyrosine hydroxylase and NPY is 

sparse and limited to the adventitia of the vessel. It would be logical therefore, to expect 

little effect from cocaine in this vessel. In the failure group this is certainly the case, 

with no significant differences in any of the parameters after the addition of lpM 

cocaine. Surprisingly, in the control group, the same dose of cocaine caused a marked 

decrease in sensitivity and maximal response of the femoral artery rings. Cocaine does 

have local anaesthetic properties and therefore slows the rate of depolarisation by 

affecting sodium channels. It is also reported to have a depressant effect on smooth 

muscle contraction in a variety of smooth muscle types, for example intestinal and 

bronchial smooth muscle (Catterall and Mackie, 1996). It would appear for whatever 

reason, that the control vessels are more sensitive than the failure vessels to the 

depressant effects of cocaine. Interestingly in the study by Forster and Armstrong 

(1990), a reuptake blocker (desipramine lpM) was used at all times in the Krebs’ 

solution. Desipramine, pharmacologically, is a different class of drug to cocaine, being 

a tricyclic antidepressant (Baldessarini, 1996). It would however be interesting to see if
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desipramine also has a depressant effect on the femoral artery, as this may explain the 

lower sensitivity to noradrenaline in Forster and Armstrong’s study compared to this 

one.

In both the saphenous vein and femoral artery there was a rightward shift in the 

concentration response curves to noradrenaline in the heart failure animals compared to 

controls. This would indicate that in heart failure both femoral artery and saphenous 

vein become less sensitive to noradrenaline. The difference in the femoral artery was 

more marked with a significant difference existing between all parameters, whereas in 

the saphenous vein only the parameters compared in the lower part of the curve were 

significantly different. Working on the basis that some of the symptoms of heart failure 

are due to reduced blood flow to exercising muscle (Chapter 1), then it would be 

expected that vessels would be more sensitive to agonists. What may be important in 

this study is that the animals used would have been in end stage heart failure and it is 

perfectly possible that the decreased sensitivity is only a feature of severe disease.

In addition, when active effective pressures were compared for maximal response to 

noradrenaline and to 125mM KC1, values for the heart failure group were significantly 

higher for the femoral artery only. No difference was observed in the saphenous vein. 

This latter finding is probably the most important. Since the femoral artery is the main 

vessel supplying arterial blood to the hindlimb and hence to the skeletal muscle mass in 

this limb, it is possible that enhanced maximal contractile force exhibited by this vessel 

in the heart failure animals, plays a role in limiting blood supply to this region. This 

would tie in with the concept of reduced blood flow to exercising muscle being 

important in the pathophysiology of heart failure.

In the presence of cocaine the relationship between the two groups for the saphenous 

vein remained the same. Due to the disparate activity of cocaine in the femoral artery,
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after the addition of cocaine, there was no longer a significant difference in the 

sensitivity of the two groups. Hence, it would seem that cocaine distinguishes between 

control and heart failure femoral artery rings. The reasons for this are not immediately 

clear and require further investigation.

In the saphenous vein, acetylcholine-induced vasorelaxation was poor and no significant 

difference was seen in heart failure. Acetylcholine-induced relaxations can be mediated 

by both nitric oxide and endothelium-derived hyperpolarizing factor (Vanhoutte, 1996), 

and these would not seem to be an important feature in the saphenous vein. Poor 

responses to vasorelaxing agents have been reported previously in this vessel (Hicks et 

al. 1991; Nunes and Mota, 1994; Forster and Armstrong, 1990).

Relaxations to acetylcholine in the femoral artery were much more marked with 

maximal relaxations of 70.9 ± 6.6% ( n = 9) in controls and 68.1 ± 13.1% (n = 6) in the 

failure group. As for the saphenous vein, there was no significant difference in the 

response to acetylcholine between the control and failure animals. Numerous studies in 

both humans (Drexler et al. 1992; Ramsey et al. 1995; Katz et al. 1992; Hirooka et al. 

1994) and animal models (Kaiser et al. 1989; Wang et al. 1994; Drexler and Wenyan, 

1992; Kiuchi et al. 1993; Nasa et al. 1996; Mathew et al. 1993) have shown a reduction 

in acetylcholine induced vasorelaxation in a variety of vessels. However, in support of 

this study Forster et al (1990; 1989) found no differences in dorsal pedal artery or 

saphenous vein relaxations to acetylcholine before versus after heart failure in the dog 

pacing induced model, and Mathew et al (1993), found no differences in acetylcholine 

mediated relaxations in pulmonary arteries from dogs with pacing induced heart failure.
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Subcutaneous resistance arteries

In the dog subcutaneous resistance arteries, noradrenaline contracted the vessels with a 

pEC50 of 6.4 ± 0.2 (n = 6). Hence, the resistance vessels were more sensitive to 

noradrenaline than either the saphenous vein or femoral artery (Table 6.1). Although 

the DSCRA appears to be well innervated, cocaine had less effect than in the DSV. In 

the presence of cocaine, in both the control and failure group, the noradrenaline curve is 

marginally shifted to the left and the maximum decreased. However, none of the 

differences reach statistical significance in either group, suggesting that neuronal uptake 

of noradrenaline does not play a large role in the control of local levels of noradrenaline 

in the resistance vessels.

In control animals, L-NAME had no significant effect on the noradrenaline 

concentration response curve, indicating that basal release of nitric oxide does not seem 

to be a dominant feature in these vessels. In contrast, in the failure group, L-NAME 

seemed to shift the noradrenaline response curve to the left. The difference in the two 

curves did not reach statistical significance, but the findings suggested that basal release 

of nitric oxide may have been elevated in the heart failure animals in this study. 

Increased levels of basal nitric oxide in human patients has also been suggested (Drexler 

et al. 1992; Habib and Oakley, 1994; Winlaw et al. 1994). However, when the 

individual curves from the heart failure dogs, in the presence of L-NAME, were plotted 

against the mean control curve, it was clear that one curve was much more sensitive 

than the others (Figure 6.20). This curve is from case number 131736. From Table 6.4, 

it can be seen that this is the only dog in the cohort which was receiving nitroglycerine 

ointment. This drug induces the formation of nitric oxide which can then act directly on 

the vascular smooth muscle. While this should not be a surprising finding, it is
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exhilarating to observe that the drug would appear to be having the desired effect, at 

least in this animal.

In the control animals when cocaine and L-NAME were combined, there was a 

significant shift in the concentration response curve to the left indicating a significant 

increase in sensitivity in the presence of the combined drugs which was not seen with 

either substance on its own, indicating a synergistic effect. In contrast, in the heart 

failure group, the combination of the two drugs had no greater effect than L-NAME 

used in isolation. The numbers of heart failure animals are too low to draw any concrete 

conclusions from this difference, due to the variability in responses in the heart failure 

cohort exemplified in Figure 6.20. It could be hypothesised that the synergistic effect in 

the control situation may be caused by small increases in local noradrenaline, caused by 

the presence of cocaine, which in turn may stimulate the production of basal nitric oxide 

so that an effect with L-NAME is only seen when the two drugs are combined. 

Noradrenaline has been shown to stimulate nitric oxide production in the isolated 

mesentery of the rat (Yamamoto et al. 1994), and the desensitization to methoxamine 

seen in the rat mesentery would appear to be associated with nitric oxide production 

(Kamata and Makino, 1997).

When comparisons were made between the control and heart failure group, there was no 

alteration in sensitivity or maximal response to noradrenaline on its own or in the 

presence of cocaine, L-NAME, or cocaine and L-NAME combined. In contrast, 

maximal response to 125mM potassium chloride was significantly elevated in the 

failure group. Again as for the femoral artery, this is an important finding and may play 

a role in limiting blood flow.

Responses to acetylcholine, as for the larger vessels were not significantly different 

between the two groups.
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It is well established that increased total peripheral resistance is a feature of congestive 

heart failure (Parmley, 1985), so that while it seems reasonable that maximal responses 

in the femoral artery are enhanced, it is somewhat surprising to find that there seemed to 

be a decrease rather than an increase in agonist sensitivity in saphenous vein and 

femoral artery from heart failure animals. Also surprising, was the finding that there was 

no alteration in sensitivity of the resistance arteries, since these vessels are the most 

important in the control of total peripheral resistance.

Desensitization and homologous downregulation of p-adrenoceptors in heart failure, has 

now been well documented in the myocardium and would also appear to occur in the 

peripheral vasculature, (Kiuchi et al. 1993; Bristow et al. 1982; Bristow et al. 1986). 

For the P-adrenoceptors, desensitization is due to stimulation with catecholamines, is 

associated with phosphorylation of the receptor, and is mediated by protein kinase A 

and a specific p-adrenergic receptor kinase. Desensitization of the receptor is followed 

by downregulation which is characterised by a loss of binding sites (Morris et al. 1991). 

In the case of a,-adrenoceptors, desensitization of the response on exposure to 

catecholamines is also well documented and has been best characterised for the a lb- 

adrenergic receptor, where it has been shown that phosphorylation of sites in the 

carboxy terminus are involved (Diviani et al. 1997; Lattion et al. 1994). In contrast, loss 

of receptor number would not appear to occur (Seasholtz et al. 1997a; Seasholtz et al. 

1997b). Counterbalancing this are the findings that angiotensin II increases 

transcription of a r adrenergic mRNA in vascular smooth muscle cells (Hu et al. 1995), 

and that adrenaline can also increase a,-adrenergic receptor expression mediated 

through p2-adrenergic receptors (Morris et al. 1991).

The net effect of these interactions is unclear and will probably vary from one situation 

to the next.
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A number of other studies have examined agonist sensitivity in heart failure in a variety 

of vessels and species. Results have been conflicting. The most logical comparison to 

make would be with the dog pacing induced model. Forster et al (1987), in contrast to 

this study, found increases in sensitivity to noradrenaline in both dog saphenous vein 

and dorsal pedal artery. In agreement with this study they also found increases in 

maximal tension in the artery after heart failure, but they also saw increases in tension in 

the saphenous vein. As already mentioned, their study used desipramine. If 

desipramine had the same effect as cocaine in the present study, then the contrasting 

effect of the drug on control versus heart failure artery could account for the apparent 

increasing sensitivity seen in the dorsal pedal artery. In addition, in a subsequent study 

by the same group, they were no longer able to demonstrate differences in the dorsal 

pedal artery (Forster, 1995), although findings for the saphenous vein were consistent 

with the previous report (Forster et al. 1987). In a separate study by the same group 

(Forster and Armstrong, 1990), a ,- and a 2- agonists were examined and the study 

showed that there was an enhanced responsiveness to a r  agonists, but that the response 

to a 2- agonists was diminished in heart failure. Depression of vascular a 2-adrenoceptor 

function has also been shown in rat vasculature following heart failure (Feng et al. 

1996). Saphenous vein does have post-junctional a 2-adrenoceptors (Drew and Whiting, 

1979), which are thought to contribute mainly to the lower part of the noradrenaline 

curve (Flavahan and Vanhoutte, 1986b; Alabaster et al. 1985; Flavahan et al. 1984; 

Constantine et al. 1982; Sullivan and Drew, 1980; De Mey and Vanhoutte, 1981). This 

may explain findings for the saphenous vein in the present study, where the difference 

between the failure and control group was only significant for the lower part of the 

concentration response curve. In support of findings for both vessels, an in vivo study 

examining dorsal hand vein blood flow in human patients with congestive cardiac
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failure (Feng et al. 1994), showed a decreased responsiveness to both phenylephrine and 

clonidine in severe cardiac failure, suggesting decreased responsiveness involving both 

a r  and a 2-adrenoceptors. Slightly different findings again were reported by Angus et al 

(1993). In human resistance arteries taken from gluteal biopsies, no differences were 

found in sensitivity to a variety of agonists, but for all the agonists used there was a 

significant decrease in maximal response in the failure versus the control patients. The 

agonists used were noradrenaline, angiotensin I and angiotensin II, suggesting that the 

effect was not solely due to alterations involving the a-adrenoceptors. Two recent 

studies by Stassen et al (1997a; 1997b), examined resistance arteries and thoracic aorta 

from rats with experimentally induced heart failure. In contrast to the present study, 

they found an increased sensitivity to the agonist phenylephrine but a decreased 

maximal response in heart failure in the resistance arteries. The difference appeared to 

be associated with calcium influx induced by phenylephrine but not potassium chloride. 

There was also some suggestion of increased a,-adrenoceptor density after heart failure, 

although when this was normalised for DNA content the difference was not significant. 

To confound matters further, Kaiser et al (1989) in an in vivo study found no alteration 

in response to noradrenaline in femoral arteries of dogs with pacing induced heart 

failure.

Several possible reasons exist for the discrepancies between studies.

(1) The stage and severity of the cardiac failure. In this study the majority of animals 

had severe cardiac disease often of several years duration and in most cases were 

euthanased because of their disease. This contrasts with the experimental models where 

rapid pacing may have only been of 4-5 weeks duration prior to vessel isolation (Forster 

and Armstrong, 1990).
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(2). The use of drug therapy. In the case of the experimental animal models, treatment 

has generally not been used. In contrast, patients in the human studies may be on a 

variety of drug treatments. Interestingly in this study, of the cohort of eight animals 

with heart failure who were used in the femoral artery and saphenous vein experiments, 

only two were on treatment with drugs (Table 6.3). Another one was treated with 

antibiotic, but this would not be expected to alter vascular reactivity. If individual 

concentration response curves for the heart failure animals are graphed, there are no 

particular outliers in the saphenous vein experiments (not shown). In the femoral artery 

experiments this is not the case. Two of the animals seem to have curves which are 

shifted to the left compared to the others. It may be significant that these two were the 

only animals receiving treatment in the group (Figure 6.19). When this observation is 

considered along with the fact that 4/5 of the cohort used for study of the resistance 

arteries in failure, were on treatment and did not show alterations in sensitivity to 

noradrenaline, it should be considered that treatment may mask changes in the reactivity 

of vessels. Obviously at this stage this is only a preliminary observation. Increased 

numbers of heart failure animals are required, such that the heart failure group can be 

further subdivided on the basis of aetiology and treatment modality.

(3). Experimental populations tend to be more uniform with regard to age and breed. 

The studies carried out on experimental dogs state the use of adult dogs but do not 

elaborate on this. In this study because of the source of the control population, accurate 

ages were not available for these animals. It would be reasonable to say however, that 

there was a fairly even distribution of age bands among the control group. In contrast, in 

the heart failure cohort, with the exception of two dogs < 1 year of age and a 3.5 year 

old whippet, all the dogs would be considered old. A number of studies have examined 

changes in noradrenaline sensitivity and endothelial function with age (Haidet et al.
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1995; Toda and Miyazaki, 1987; Shimizu and Toda, 1986; Kaiser and Ptu, 1992; Vila et 

al. 1997; Carvajal et al. 1995; Tabemero and Vila, 1995; Gurdal et al. 1995). On 

examining the literature, the main observation is that alterations depend very much on 

the species and the blood vessel studied. Gurdal et al (1995) and Carvajal (1995), both 

report a decrease in sensitivity to noradrenaline in rat aorta with age, which could 

explain the findings of this study. In contrast, two in vivo studies of beagle hindlimb 

blood flow did not identify changes in either vasorelaxant or vasoconstrictor activity in 

the femoral artery (Kaiser and Ptu, 1992; Haidet et al. 1995), but vasoconstriction in 

isolated beagle coronary arteries showed enhanced vasoconstriction to catecholamines 

(Toda and Miyazaki, 1987). These latter three studies, because they relate to canine 

vasculature, are probably more relevant. They would support the argument that the 

decreased sensitivity seen in the conduit vessels in heart failure, from this study, is not 

age related, although the increased maximal response observed in the femoral artery 

from failure animals may be.

To summarise the findings of this study. In the heart failure animals there is a decreased 

sensitivity to noradrenaline in both femoral artery and saphenous vein but not in the 

subcutaneous resistance artery. The difference is most marked in the femoral artery 

where in addition, maximal responses to both noradrenaline and 125mM KC1 are 

increased. Since maximal response is increased to both noradrenaline and KC1, this is 

unlikely to be solely an adrenergic-mediated phenomenon, but may involve a general 

enhancement of vasoconstriction. The reason for the enhancement of only the 

potassium mediated response in the resistance arteries is not clear. In the large vessels 

the alteration in sensitivity to noradrenaline could be due to endothelial modulation of 

the response. Inducible nitric oxide and/or endothelium-derived hyperpolarizing factor 

(EDHF) are unlikely to play a role because of the similarity in response to acetylcholine
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in the two groups of animals, although in the future it would be interesting to look at the 

relative contribution of EDHF, if any, in the acetylcholine mediated response, and if 

there is a contribution, to examine if the relative contribution of EDHF and nitric oxide 

change in the disease state. Differences in basal nitric oxide production or adenosine 

3’,5’-cyclic monophosphate (cAMP) vasorelaxant pathways could be responsible. 

Alternatively, the alterations may be due to changes in adrenergic receptor density and 

number (although you may expect to see a decrease in maximal response if this was the 

case), or in the efficiency of receptor coupling and signal transduction.

Finally, the alteration may be a more general alteration in contractile ability of vascular 

smooth muscle, in which case alterations with other non-adrenergic agonists would be 

expected.

There was no alteration in sensitivity to noradrenaline in the resistance arteries. 

Masking of alterations due to treatment must be considered. Although it appears as if 

there may be differences in basal nitric oxide production in the resistance artery vessels 

between control and failure animals, this was mainly due to a single animal who had 

been treated with nitroglycerine ointment. This requires further elucidation with 

increased numbers of animals.

Future studies require increased numbers of animals, making it possible to divide heart 

failure animals into groups depending on aetiology and treatment modalities. A logical 

progression would be to determine if the apparent decreased sensitivity in heart failure 

in the large vessels is agonist-dependent and therefore, to look at other agonists such as 

vasopressin, angiotensin and endothelin. Although the aj-adrenoceptor population may 

not solely be involved in the changes seen, on the bases of studies such as those carried 

out by Stassen et al (1997a; 1997b), where there appears to be an increase in a r  

adrenoceptor density and alterations in aj-mediated calcium influx, it would be of
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interest to focus on the aj-adrenoceptor population in relation to a,-adrenoceptor 

subtypes, receptor density and levels of receptor expression at the mRNA level.



CHAPTER 7

General discussion
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There are several reasons for studying receptors. These are, the understanding of 

normal physiological processes, the understanding of pathophysiological processes, the 

understanding of how drugs currently in use work and the development of new more 

effective drugs.

The reasons for examining the canine a r adrenoceptors include all these categories, but 

in particular, the long term aim, from my perspective, is to understand 

pathophysiological changes, especially in heart failure and to aid in the development of 

new drug treatments for this and other conditions. With regard to the potential for drug 

development, it is often difficult to identify possibilities until the groundwork has been 

covered. However if, for example, the oq-adrenoceptor subtypes involved in a variety of 

vascular beds can be identified, then it may be possible to use subtype-selective a ,- 

adrenoceptor antagonists which will selectively enhance blood flow to a particular 

region, without having a significant effect on, say for example, systemic blood pressure.

Results from the studies on functional classification of the a,-adrenoceptors, mediating 

vascular smooth muscle contraction in the saphenous vein and the subcutaneous 

resistance arteries, exemplify the limitations and problems encountered with a ,- 

adrenoceptor classification at present.

One obvious problem in the saphenous vein, is the coexistence of an a 2-adrenoceptor 

population. In an ideal situation an irreversible a 2-antagonist should be used to exclude 

this population of receptors from the analysis. No such antagonist is available, although 

unsuccessful attempts have been made using phenoxybenzamine, which has a much 

higher affinity for a r  rather than a 2-adrenoceptors (Daly et al. 1988b; Dubovich and 

Langer, 1974; Constantine et al. 1982). The only other option is to use a reversible 

antagonist. The limitations of this are, that once equilibrium has been achieved, the
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antagonist can freely dissociate and reassociate with the receptors. This is potentially 

problematic especially at high agonist concentrations, where the agonist may break 

through the a 2-antagonist effect, leading to an underestimation of the a,-antagonist’s 

potency. In addition, when an irreversible antagonist such as CEC is being used, this 

antagonist is inevitably going to access some of the a 2-adrenoceptor population as the 

reversible antagonist dissociates from the receptors.

The lack of reliable subtype-selective antagonists is also the cause of considerable 

frustration. This is best illustrated by the lack of antagonists which have a high affinity 

for the a 1B-adrenoceptor subtype and can distinguish it from both a ]A- and a ]D-. 

Chloroethylclonidine is one of the few antagonists currently available, but it is far from 

ideal for several reasons. In addition to its antagonist effects, it also acts as an agonist. 

This has been demonstrated in this study and others, by the contraction seen in the DSV 

(Nunes and Mota, 1994; Low et al. 1994; Nunes and Guimaraes, 1993). O’Rourke et al 

(1995), also suggested that CEC acted as an agonist at adrenoceptors in the rat aorta. 

Although CEC alkylates a 1B-adrenergic receptors preferentially, it will bind to the other 

receptor subtypes (Michel et al. 1993), and the degree of alkylation is often influenced 

by experimental conditions and the species involved. In a recent study, using flow 

cytometry and confocal imaging techniques, it was shown that in cell lines expressing 

either the a ]a- or a lb- adrenoceptors, that the a lb-adrenoceptors localised on the cell 

membrane, whereas a ]a-adrenoceptors seemed to predominantly localise internally 

(Hirasawa et al. 1997). If this is really the case, then this may explain why the 

hydrophilic CEC preferentially alkylates the a ]B- subtype, since access to these sites 

would be greater. This also means that as exposure time increases, or for example 

membranes are used rather than whole cells in binding experiments, CEC will gain 

access to and inactivate other receptor subtypes, explaining the influence of
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experimental conditions. Some of the confusion caused by the unreliability of CEC can 

be seen by the difficulties which were encountered in the classification of the adrenergic 

receptor cloned by Schwinn et al, (1990). This receptor was initially classified as the 

ot]c-, since although the antagonist profile was similar to that for the native a JA-, it 

appeared more sensitive to CEC than would have been expected for an a ,A- adrenergic 

receptor. It was only later, when the rat homologue of the receptor was shown to have a 

lower sensitivity to CEC (Laz et al. 1994), that it became apparent that the comparative 

sensitivity of the bovine clone was due to a species variation (Forray et al. 1994a), and 

that in fact the bovine clone represented the a 1A- adrenergic receptor.

The current classification scheme also imposes limitations. In both the vessels 

examined in this study, the affinity for prazosin was low (pA2 < 9). This is indicative of 

the a 1L- subtype, which encompasses the a 1L- and ot]N- subdivisions distinguished by 

HV 723 (Muramatsu et al. 1995). These receptors with low affinity for prazosin are 

considered to be insensitive to CEC.

However, in both cases there was evidence from the pattern of interaction of the other 

antagonists used, that more than one subtype was involved in the responses of the 

saphenous vein and the resistance arteries. In the saphenous vein this was based on the 

antagonist profile of 5 methylurapidil, which at the highest concentration used seemed 

to distinguish a low and a high affinity site, and the non-competitive interaction of 

BMY 7378. In the case of the resistance arteries, evidence for the involvement of more 

than one subtype came from the reduction in upper asymptote seen with some of the 

antagonists used, in addition to the non-competitive interaction of BMY 7378 based on 

Schild analysis.
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Although the pitfalls associated with the use of CEC have been highlighted, both vessels 

seemed to display a certain amount of sensitivity to this antagonist, which would lend 

support to the evidence for a heterogeneous population of receptors.

These findings have given rise to two main issues. Firstly, although the a ]L- 

adrenoceptor has been demonstrated in both vessels, based on response to CEC, there 

would appear to be some differences in this subtype when the two vessel types are 

compared. Secondly, if additional receptors are involved, since they too have a low 

affinity for prazosin, how are they to be classified ?.

In the saphenous vein it was concluded that rauwolscine could interact with a population 

of a,-adrenoceptors, which also contributed to the baseline contraction caused by CEC. 

This population of adrenoceptors seemed to correspond to the a 1L- subtype already 

mentioned. In the subcutaneous resistance arteries, the antagonist profile also 

necessitated classification of the receptors as a 1L-, although the baseline contraction to 

CEC was only seen in two of the vessels used. Three reasons could exist for this 

difference.

1. The a,-adrenoceptors in the two vessels, although both classified as a ]L- are in fact 

different, supporting the suggestion that further subdivision within the low affinity 

prazosin sites does exist. If the a ]L-adrenoceptor is in fact a conformational variation of 

the a ]A-, then it would not be terribly surprising that there would be more than one 

conformational variant, leading to functional alterations in the receptor with regard to 

antagonist profiles.

2. The conclusion as regards the receptors responsible for the contraction to CEC in the 

DSV are wrong.
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3. Despite the use of delequamine, the a 2-adrenoceptor population in the DSV may have 

interfered with the antagonist profile in this vessel and could be the explanation for the 

evidence of involvement of other receptor subtypes in this vessel.

The a 2-adrenoceptor in the DSV has previously been classified as the a 2A- subtype 

(MacLennan et al. 1997). It could be argued that the potency of some of the antagonists 

used in this study would be consistent with their activity at the a 2-adrenoceptors. For 

example, the affinity for 5 methylurapidil, in the presence of delequamine, at the low 

affinity site in the DSV (pA2 6.29 ± 0.28), and its affinity in the presence of rauwolscine 

at the highest concentration used (pA2 6.00 ± 0.77), could be consistent with an action at 

a 2-adrenoceptors, since a pA2 potency range of 4 to 6 has been given for this antagonist 

at a 2-adrenoceptors (Wilson et al. 1991). In addition, it has been shown that CEC can 

inactivate the a 2A- and a 2C- adrenoceptors as well as the a 1B- (Michel et al. 1993). 

Evidence which would support the theory that the subtypes identified were all of the cq- 

adrenoceptor type would be the affinity of the other antagonists. Firstly, in the DSV, 

prazosin in the presence of delequamine acted in a competitive manner, with a pA2 

value of 8.31. This is much higher than would be expected at the a 2A-adrenoceptors, 

since of the three a 2-subtypes, prazosin has the lowest affinity at the a 2A-, and a pKB 

value of 5.19 has been obtained for this antagonist at the a 2-adrenoceptors in the DSV 

(MacLennan et al. 1997). Also, in the same study, a pKB value of 7.42 was obtained for 

WB 4101, at a 2-adrenoceptors in this vessel. This is lower than the value of 8.85 

obtained in this study, and although there may be considerable overlap in the potency 

ranges for this antagonist at both a,- and a 2- adrenoceptors, a pA2 value of 8.85, falls 

within the potency range at a,-adrenoceptors of 8-10, given by Wilson et al (1991).

In conclusion, in the DSV, there is evidence for the involvement of more than one 

receptor subtype. One of the subtypes involved seems to have all the characteristics of
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the a 1L-adrenoceptor when compared with the literature. The other subtype or subtypes 

involved also have a low affinity for prazosin and are sensitive to CEC. At this time, 

the possibility that the coexisting population of a 2-adrenoceptors has contributed to 

these findings cannot be excluded. In the resistance arteries, prazosin also has a low 

affinity. Again there is evidence for the involvement of more than one subtype of 

receptor and again there is a degree of sensitivity to CEC. Unlike the DSV, a 2- 

adrenoceptors would appear to have little part to play in functional responses, 

supporting the existence of further divisions of the low affinity prazosin receptors in this 

vessel.

The discussion so far raises questions regarding the usefulness of functional studies in 

a,-adrenoceptor classification, especially in this case, where it seems to be difficult to 

reach a satisfactory conclusion.

The answer lies in the reasons for wishing to establish the subtypes involved in the first 

place. Radioligand binding studies or molecular studies examining expression of 

receptor subtypes, may give more satisfactory and clear cut answers, but when the long 

term aim is to understand possible pathophysiological alterations in the a r  

adrenoceptors mediating the functional response of a vessel, and to develop antagonists 

that will affect this functional response, then other methods of study may bear little 

relation to the functional reality. Examples of the importance of functional studies can 

be taken from the literature. As already discussed, benign prostatic hypertrophy (BPH) 

is an important disease in the human and canine population. In man, the a,- 

adrenoceptors play an important role in the dynamic component of urinary tract 

obstruction (Hieble and Ruffolo, 1996). Although non-selective aj-antagonists, such as 

prazosin, are effective, the hunt has been on going to develop a subtype-selective 

antagonist that will have fewer systemic side effects. If only radioligand binding studies
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and molecular studies on prostatic tissue were taken into consideration, it would seem 

clear from binding, that the subtype of a,-adrenoceptor in the prostate is the a ]A- 

(Goetz et al. 1994). This would be supported by expression levels of mRNA, where 

although all three cloned subtypes are expressed, expression of the a ]a- subtype is 

highest (Moriyama et al. 1996; Nasu et al. 1996; Faure et al. 1994b). However, from 

functional studies, this is not quite the case, and indeed the a ]L-adrenoceptor seems to be 

important in mediating contraction in prostatic tissue from a number of species 

(Shannon Kava et al. 1998; Deplanne and Galzin, 1996; Leonardi et al. 1997; Testa et 

al. 1997; Ford et al. 1996a; Kenny et al. 1996). Therefore, based solely on binding 

studies, a 1A- selective antagonists such as, RS 17053, SNAP 5089 and Rec 15/2627, 

would be expected to be effective in the treatment of BPH. In fact, all these antagonists 

distinguish the a 1A-adrenoceptor from the a 1L- due to the fact that they have a lower 

affinity at the latter subtype in functional studies (Leonardi et al. 1997).

Although I have underlined the importance of the functional approach in studying the 

a,-adrenoceptors, the molecular approach has proved an important and valuable tool 

and encompasses a plethora of techniques and approaches.

The cloning and sequencing of the receptor subtypes, although initially confusing, did 

help in clarifying the idea that subtypes do exist and that they are the result of different 

gene products. The expression of individual subtypes in cell lines has provided insights 

into the structure function relationships of these G protein coupled receptors, although 

the assumption that receptors expressed at high levels in cell lines behave in a similar 

fashion to native receptors must be treated with caution. In particular, the use of mutant 

and truncated forms of receptor have identified regions of the receptor important in 

ligand binding, G protein coupling and phosphorylation/desensitization.
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With knowledge of the sequence of the specific subtypes, it has been possible to use 

techniques to identify the levels of expression of the three cloned subtypes in tissues 

(Price et al. 1994; Nasu et al. 1996; Piascik et al. 1994) and monitor alterations in levels 

of expression in disease states (Beaulieu et al. 1997).

In Chapter 5, I describe the isolation of a partial sequence of the canine ocla- 

adrenoceptor. The reasons for this have been discussed, but to reiterate, were due to the 

findings of the functional studies demonstrating involvement of the a ]L-adrenoceptor. 

Due to recent evidence suggesting the a ]a-adrenoceptor as being responsible for the 

functional a 1L-, it seemed logical to isolate this subtype first. Although the full length 

receptor was not isolated, the fragment which has been cloned and sequenced, can now 

be used as a probe to screen a cDNA library. This should allow the full length receptor 

to be identified and it will be interesting to see if, like the human a la-adrenoceptor 

(Chang et al. 1998), isoforms of the canine a la-adrenoceptor exist. With knowledge of 

the sequence of the receptor, it will be possible to use a variety of techniques to measure 

levels of expression in canine tissues, including blood vessels. As has been 

demonstrated in Chapter 5, and from other studies (Schwinn et al. 1990), Northern 

blotting is not ideal. One reason for this may be the relatively low level of expression of 

the adrenergic transcripts, which could have contributed to the failure of the canine a  ,,,- 

probe to identify transcripts in this study (Graham et al. 1996). Other more sensitive 

techniques such as PCR, semi-quantitative PCR and RNAse protection assays have 

already been used successfully in other studies, and the sensitivity of techniques such as 

PCR would enable examination of relatively small amounts of tissue, such as the blood 

vessels used in this study.

It would also be of interest to express the full length receptor in cell lines and examine 

the antagonist profile in relation to inositol phosphate accumulation, to see if, like the
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human, the canine a la-adrenoceptor can exhibit the a 1L- profile (Ford et al. 1997b; Ford 

etal. 1996b).

More recently, subtype-specific antibodies have been used to measure levels of 

expressed receptor protein on the cell surface using flow cytometry (Hirasawa et al. 

1998). This will allow the relationship between not only expression of mRNA and 

function to be made, but also allow exploration of the relationship between mRNA 

expression, expression of the receptor on the cell surface and functional contribution of 

the expressed receptor. The use of flow cytometry in this way is exciting in that it 

allows the localisation of the receptors on different cell types by the use of cell type 

specific antibodies in conjunction with the a,-adrenoceptor specific antibody. This is 

not possible with radioligand binding. In a recent study (Piascik et al. 1997), it was 

shown, again using an a ]B-adrenoceptor antibody, that receptor protein was expressed in 

a variety of blood vessels which had previously been shown to express the a 1B- subtype 

at the mRNA level. When functional studies were carried out on these blood vessels, it 

appeared that the a 1B-adrenergic receptor did not have a functional role in mediating 

contraction of all the vessels in which it was expressed. This raises the question as 

regards the role of receptors expressed in this way, that do not appear to partake in a 

functional role. Of course, as already described in the introduction, a,-adrenoceptors 

would seem to be involved in other functions apart from vascular smooth muscle 

contraction. Their role in mediating cell hypertrophy is the source of current research 

interest (Xin et al. 1997) and possibly certain subtypes may play a more important role 

in mediating these effects, than others.

A recent novel approach to the study of the adrenoceptors has been the use of antisense 

oligonucleotides (Gonzalez-Cabrera et al. 1998; Piascik et al. 1997). Antisense 

technology is treated with a degree of well deserved scepticism and it could be imagined
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from the high degree of homology seen between the a,-adrenoceptor subtypes, that 

generation of subtype-selective antisense oligonucleotides would be problematic. 

Despite this, a publication by Piascik et al (1997), describes the use of antisense 

oligonucleotides for each of the three cloned a ,-adrenoceptors, where the 

oligonucleotide targets the translation initiation site for the receptor. The antisense 

oligonucleotides did seem to have the effect of blocking the required subtype and 

findings were backed up by functional and antibody studies on a variety of vessels. 

Although the concept of the use of antisense oligonucleotides as therapeutic tools is a 

long way off, these may well prove useful as an additional means of targeting individual 

subtypes or removing additional receptor populations, for example a coexisting 

population of a 2-adrenoceptors such as occurs in the DSV, enabling analysis of the 

remaining a,-adrenoceptor population. Information could also be obtained on 

parameters such as turn over time of receptors, i.e. the length of time between blocking 

expression of the mRNA and the loss of receptor on the cell surface. Some information 

on this has already been shown, (Gonzalez-Cabrera et al. 1998) with the use of an a ]B- 

antisense oligonucleotide in DDT, MF2 cells, where the density of receptors was 

reduced by 28% within 24 hours, as ascertained by radioligand binding.

As already mentioned, one of the problems associated with the study of receptors in 

native tissues has been the presence of multiple receptor subtypes, making dissection of 

the effects created by a single subtype difficult. One way of overcoming this has been 

the expression of individual recombinant receptors in cell lines. This too creates 

potential problems as the cell line may often not contain the same intracellular 

signalling materials as the native tissue. One potential way around this is the current 

development of lines of transgenic knockout mice, which are lacking a particular
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subtype (Smiley et al. 1998). a ]B- knockout mice are currently being studied by other 

workers in this laboratory.

In Chapter 6 I have discussed experiments comparing vessels from control and heart 

failure dogs. The main findings from these experiments were, that in heart failure in the 

saphenous vein and femoral artery, there appeared to be a reduction in sensitivity to 

exogenous noradrenaline. In addition, there was no reduction in acetylcholine mediated 

relaxation. In the resistance arteries there was no change in noradrenaline sensitivity or 

acetylcholine mediated relaxation, although it was hypothesised that treatment in the 

cohort of heart failure animals used for the resistance artery studies (4/5 on treatment), 

may have contributed to this finding. Another important finding was that in the femoral 

artery, maximal responses to both noradrenaline and potassium chloride were 

significantly greater in the vessels from heart failure animals, while in the resistance 

arteries the maximal response to potassium chloride only, was significantly enhanced in 

the vessels from the heart failure cohort.

The main limitation to this part of the study was the supply of clinical material. 

Nevertheless, the findings from the conduit vessels are convincing and provide a good 

basis for future work.

A logical progression would be to examine the effect of endothelial denudation on the 

reduction in sensitivity to noradrenaline seen in heart failure, and also to establish if the 

alteration in sensitivity is observed with other types of agonist such as angiotensin, 

endothelin and vasopressin.

It would also be valuable to examine the a,-adrenoceptor population in more detail in 

heart failure animals, especially if a,-adrenoceptors appear to be contributing to the 

alteration in sensitivity to noradrenaline identified in the femoral artery and saphenous 

vein. It is possible that there could be changes in receptor number, receptor subtype or



256

receptor coupling and signal transduction. Reports from the literature in humans and 

experimental models of heart failure are inconclusive reporting both increases, (Forster 

et al. 1989; Forster and Armstrong, 1990; Stassen et al. 1997a; Stassen et al. 1997b), 

decreases, (Feng et al. 1994) or no change (Indolfi et al. 1994; Kubo et al. 1989) in the 

responsiveness of a ,- and a 2-adrenoceptors.

Further studies would take the form of experiments designed to address each of these 

possibilities. Functional and radioligand binding experiments would help to address the 

issues of receptor number and receptor subtype. In addition, vessels from some of the 

heart failure animals already used have been stored in liquid nitrogen for the purpose of 

examining expression of the a,-adrenergic subtypes once the full length receptors have 

been identified and the technique established in control tissue.

In addition to a more detailed look at the a,-adrenoceptor population, it would be of 

value to examine the role of the endothelium more closely.

Although no differences were found in any of the vessels to acetylcholine mediated 

relaxations, it would be of interest to look at the relative roles of nitric oxide and 

endothelium-derived hyperpolarizing factor in this response, as it is now clear that both 

of these can be released by acetylcholine, depending on the vessels examined 

(Vanhoutte, 1996).

It would also be of interest to examine cAMP-mediated vasorelaxations, for example 

prostacyclin mediated vasorelaxation, since one study has demonstrated impairment of 

cAMP-mediated vasorelaxations in canine pulmonary arteries from experimental heart 

failure dogs, despite no alteration in the cGMP-mediated vasorelaxations (Mathew et al. 

1993).
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Finally, with increased numbers of clinical cases, it will be possible to subdivide the 

heart failure animals into groups based on aetiology and treatment, to see if any of these 

parameters influence findings.

To summarise, functional classification of the canine vascular a,-adrenoceptors has 

provided a useful and revealing insight into the complexities of receptor classification, 

and while answering some question, it has raised others. Although not complete, good 

progress has been made towards isolation of the full length canine a 1a-adrenoceptor, 

which will allow expression of this subtype to be studied in canine tissues. Both the 

functional and molecular approach can then be used to make a comparison between 

control dogs and animals with naturally occurring heart failure, since it has already been 

established that in both the saphenous vein and femoral artery there appears to be a loss 

of sensitivity to noradrenaline.

This ground work and the questions it raises, together with the exciting possibilities 

arising from novel approaches such as the use of subtype-specific antibodies and 

antisense oligonucleotides, ensures a bright and exciting future in this area of research.
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HAEMALUM & EOSIN (H&E.)

Solutions.

GILL IIHAEMATOXYLIN (Gill et al. 1974). 

1% EOSIN.

Method.
1. Xylene or substitute. = 2 minutes.
2. Xylene or substitute. = 2 minutes.
3. Absolute alcohol. = 2 minutes.
4. Absolute alcohol. = 2 minutes.
5. 90% Alcohol. = 2 minutes.
6. 90% Alcohol. = 2 minutes.
7. 70% Alcohol. = 2 minutes.
8. Tap water. - Rinse.
9. Haematoxylin. - 5 minutes.

10. Blue in running tap water. = 5 minutes.
11. Eosin. = 2 minutes.
12. Running tap water. — Quick rinse.
13. 70% Alcohol. = Quick rinse.
14. 90% Alcohol. = 1 minute.
15. 90% Alcohol. = 1 minute.
16. Absolute alcohol. = 2 minutes.
17. Absolute alcohol. - 2 minutes.
18. Xylene or substitute. = 2 minutes.
19. Xylene or substitute. - 2 minutes.
20. Mount in synthetic mounting medium.

Result.

Nuclei. = Blue/purple/black.

All other structures. = Shades of pink/red.
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IMMUNOPEROXIDASE.

Immunostaining by the indirect method.

Wax sections.

Method.

1.) Bring sections to water (and treat if necessary).

2.) Inhibit endogenous peroxidase. = 30 minutes.

3.) Wash in gently running tap water for 15 minutes.

4.) Wipe slide, leaving section moist, and circle section with Pap Pen, allow circle to 

dry.

5.) Rinse in Buffer (PBS or TBS).

6.) Options. (Wax sections normally require both.)

A. Antigen retrieval.

The one of choice for the antibody.

B. Block non-specific sites.

Normal serum from species supplying second antibody diluted 1:30 with sera diluent. 

Add to slide and leave for 15 minutes. Do not rinse sections, but draw off excess serum 

with a tissue and proceed with IHC.

7.) Apply the primary antibody at a predetermined optimal dilution in sera diluent. 

(NPY 1:12000 and TH 1:4000).

8.) Place slides in moist chamber and incubate, in the dark, at room temperature (or 

4°C) for 1-48 hours depending on the dilution of the antibody.

9.) Buffer. = 3 x 5  minutes.

Either:
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10.) Apply peroxidase-conjugated second antibody diluted in sera diluent for 30 minutes 

to 1 hour at room temperature.

11.) Buffer. = 3 x 5  minutes.

Or:

10.) Finish with an ABC kit.

11.) Buffer. = 3 x 5  minutes.

12.) Develop peroxidase using the intensified Graham and Kamovsky DAB method or 

Sigma Fast DAB tablets. = 5 minutes.

Or:

Sigma AEC kit, or equivalent.

13.) Wash in running tap water for 10 minutes.

14.) Counterstain nuclei as and if required.

15.) AEC, mount in aqueous mountant, peroxidase can be DCM

Result.

Antigenic sites = black or red. 

Nuclei as counterstain.
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IMMUNOPEROXIDASE.

Immunostaining by the indirect method.

Whole mounts.

Method.

Ian Montogomery uses needle dishes for this method.

1.) Fixation as sections.

2.) PBS/TBS + 0.2% Triton X-100. = 2 x 20 minutes. Use for all buffer rinses.

3.) Inhibit endogenous peroxidase. = 30 minutes.

4.) Wash in tap water for 15 minutes with several changes.

5.) Options. (Normally both)

A. Antigen retrieval.

The one of choice for the antibody. These specimens normally require a little longer.

B. Block non-specific sites.

Normal serum from species supplying second antibody diluted 1:30 with sera diluent. 

Add to specimen and leave for 30 minutes. Do not rinse specimens and proceed with 

IHC.

6.) Incubate in the primary antibody, at a predetermined optimal dilution in sera diluent, 

overnight at room temperature (or 4°C) in the dark. (NPY 1:12000, TH 1:4000)

7.) Buffer. = 3 x 20 minutes.

Either:

8.) Apply peroxidase-conjugated second antibody diluted in sera diluent for 30 minutes 

to 1 hour at room temperature.

9.) Buffer. = 3 x 5  minutes.

Or:
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8.) Finish with an ABC kit.

9.) Buffer. = 3 x 5  minutes.

10.) Develop peroxidase using the intensified Graham and Kamovsky DAB method or 

Sigma Fast DAB tablets. = 5 minutes.

Or:

Sigma AEC kit, or equivalent.

11.) Wash in several changes of tap water for 10 minutes.

12.) Counterstain nuclei as and if required.

13.) AEC, mount in aqueous mountant, peroxidase can be DCM

Result.

Antigenic sites, black or red. 

Nuclei as counterstain.
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