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Abstract

Attempts to construct a theory with dynamical breaking of global chiral sym­

metries in four dimensions, which could explain or replace the Higgs-Yukawa mech­

anism of particle mass generation, usually lead to the introduction of a new strong 

gauge interaction beyond the standard model and its standard extensions. A lat­

tice model with fermions and scalar fields and the compact U(l) gauge group, has 

been suggested in [1] as a promising candidate for such a prototype field theory on 

the lattice, and it is called the uxU(f> model” or QED with scalars and fermions. 

The chiral symmetry of this model is broken by the gauge interaction and restored 

by the light scalar.

We investigate the critical behaviour of the three-dimensional lattice xU fo  

model in the chiral limit. The model consists of a staggered fermion field, a U( 1) 

gauge field (with coupling parameter /3) and a complex scalar field (with hopping 

parameter «). Two different methods are used: 1) fits of the chiral condensate and 

the mass of the neutral unconfined composite fermion to an equation of state and 

2) finite size scaling investigations of the Lee-Yang zeros of the partition function 

in the complex fermion mass plane. For strong gauge coupling (/? < 0.80) the 

critical exponents for the chiral phase transition are determined. We find strong 

indications that the chiral phase transition is in one universality class in this (3 

interval: that of the three-dimensional Gross-Neveu model with two fermions. 

Thus the continuum limit of the xU(f>3 model defines here a nonperturbatively 

renormalizable gauge theory with dynamical mass generation. At weak gauge 

coupling and small «, we explore a region in which the mass in the neutral fermion 

channel is large but the chiral condensate on finite lattices very small. If it does not 

vanish in the infinite volume lirriit, then a continuum limit with massive unconfined 

fermion might be possible in this region, too.

Calculations of the Lee-Yang zeros of the partition function in the complex 

fermion mass plane, were performed in [40] in order to help to clarify the position



of the critical point and the critical exponent of the transition of non-compact 

QED. However, exploratory simulations[39] of this theory on a 6 4 lattice showed 

that these zeros appeared to depend on the “updating” mass at which the ensemble 

they are found from is generated. This dependence is incorrect

Although we used a multi-precision package for the calculation of the Lee- 

Yang zeros, our analysis confirmed the dependence of the Lee-Yang zeros on the 

“updating” mass on a 6 4 lattice. High statistics simulations on large lattices, are 

probably necessary in order to verify the absence of the dependence of the edge 

singularity on the update mass at which the ensemble it is found from is generated.
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Chapter 1

Introduction

1.1 M otivation

The search for alternatives to the Higgs mechanism generating the masses of 

gauge bosons and fermions in the electroweak theory is motivated by a feeling 

that this mechanism is handmade, and some dynamical explanation might be 

possible. Attempts to construct a theory with dynamical breaking of global chiral 

symmetries in four dimensions, which could explain or replace the Higgs-Yukawa 

mechanism of particle mass generation, usually lead to the introduction of a new 

strong gauge interaction beyond the standard model and its standard extensions. 

For example the heavy top quark and the idea of top condensate inspired the 

strongly coupled topcolor and similar gauge models[19]. Among the requirements 

such a theory should satisfy, the most general ones are the following two: First, 

because gauge theories tend to confine charges in a regime where they break 

chiral symmetries dynamically, the physical states, in particular fermions, must 

be composite singlets of a new gauge symmetry. Second, as a strong coupling 

regime is encountered, the models should be non-perturbatively renormalisable in 

order to be physically sensible in a sufficiently large interval of scales. Even in very 

simplified models, these are too difficult dynamical problems to get reliably under

10



Chapter 1. Introduction 11

control by analytic means only. Therefore, a numerical investigation on the lattice 

of some prototypes of field theories with the above properties may be instructive. 

In such an approach, the presumably chiral character of the new gauge interaction 

and numerous phenomenological aspects have to be left out of consideration.

A promising candidate for such a prototype field theory on the lattice, has 

been suggested in [1]. It is called the “xU(j) model” or QED with scalars and 

fermions.

However, this model is different from the common mechanisms of fermion 

mass generation in Quantum Field Theories (QFT) which belong to one of the 

two generic types: First, the chiral symmetry is broken by the scalar field and the 

fermion mass is a consequence of the Yukawa coupling, like in the Higgs-Yukawa 

sector of the standard model. Second, the chiral symmetry is broken by a strong 

gauge interaction accompanied by confinement of the fermions acquiring mass. 

No scalar field is involved.

Another interesting investigation within lattice gauge theories, involves Quan­

tum Electrodynamics (QED). QED is a very succesful theory in describing the 

electromagnetic interactions of electrons, muons etc. to a high precision in per­

turbation theory. Therefore, the motivation at present is, by including a non- 

perturbative investigation of the theory, to try to improve the theoretical under­

standing of the general mathematical properies of QED (see chapter(7)).

1.2 Introduction to Lattice QED with Scalars 

and Fermions in 4D

The feeling that the Higgs mechanism of generating the masses of gauge bosons 

and fermions in the electroweak theory is handmade motivated the search for 

alternative dynamical explanations. A fundamental Higgs field is considered to 

provide a comfortable description of the spontaneous symmetry breaking allowing
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a perturbative approach, but its use might not be really necessary. Therefore, 

most alternative attem pts try to avoid the introduction of a fundamental scalar 

field. The obligatory Goldstone bosons, which should exist, are interpreted as 

composite states, formed by some strong dynamics beyond the standard model.

However, one should distinguish between a fundamental scalar field whose 

self-interaction triggers the symmetry breaking already on the tree level, as in the 

conventional Higgs mechanism, and such a field playing some different important 

role in the dynamical symmetry breaking occuring only beyond the perturbative 

expansion. In this second role, a fundamental scalar field is acceptable provided 

its particle excitations are massive or confined.

It should be pointed out that the experience accumulated on the lattice with 

strongly coupled vectorlike gauge theories with m atter fields suggests the ex­

istence of still another alternative of dynamically generated spontaneous chiral 

symmetry breaking (SxSB). This mechanism[l] assumes some new confining gauge 

field A of a compact gauge group G, and makes use of a fundamental scalar field 0 

which is coupled to this gauge field and, consequently, confined. The scalar field, 

however, does not generate the SxSB; in fact, it is crucial that </> acts against it. 

The SxSB is generated dynamically by the interaction between the gauge field 

A and some fermion fields x> making the gauge-invariant condensate < XX > 

nonzero in a analogy to the SxSB in Quantum Chromodynamics (QCD).

A special attention should be paid in the role of the scalar field. Its role is 

twofold. First, it shields the G charge of the fermion x, so that composite G 

neutral physical fermion states of the form:

F = 0 fx

can exist asymptotically in spite of the confinement of the G charge. This is why 

this mechanism is called the shielded gauge mechanism (SGM).

Second, to make the model applicable in (the) continuum physics the lattice 

constant has to be made small and thus approach a phase transition of second
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order. The scalar field has the tendency to suppress the SxSB and induces for 

very strong gauge coupling a new second order phase transition, at which the 

chiral symmetry is smoothly restored.

However, one should be more specific about the continuum physics of such 

a model; if e.g., the broken global symmetry is SU(2) with one fermion field 

doublet x coupled to A, one can find a massive fermion doublet F  = (fix and 

three Goldstone bosons 7r, all being gauge invariant with respect to G. Because 

of confinement due to the new gauge interaction there are no physical states 

corresponding to the field (f), but bosonic gauge-invariant states consisting of x, 4>, 

and A, e.g., of the type $(f) and XX should be expected, some of them possibly 

looking like the Higgs boson. The situation is then quite similar to the standard 

model with the standard gauge fields switched off, symmetry breaking present, 

and one degenerate weak isospin fermion doublet heavy. The other fermions, not 

coupling to A, are massless. If the standard S U (2)<g>[/(l) gauge fields are switched 

on, the broken global SU(2) changes into the local one, and the </>’s lead to massive 

vector bosons. The Higgs mechanism has been replaced by the SGM but, of course, 

the fermion spectrum is quite nonrealistic, except possible speculations about a 

very heavy fourth family with small mass differences in weak isospin doublets. A 

more realistic application is suggested by ideas ascribing the top quark a special 

role in the symmetry breaking. In fact, the mechanism described, might be related 

to the top quark condensate models based on new strong gauge interactions at 

some energies beyond the electroweak scale, as suggested by various authors[9]. 

The problem is that these models are chiral gauge theories which still cannot be 

simulated on the lattice. Thus for this kind of physical application of the SGM 

it is assumed that the dynamics of strongly coupled chiral gauge theories with 

scalars is similar to the vectorlike lattice models.

Except for being non-chiral, the lattice xUQ model with the compact U(l) 

gauge group is a prototype of a lattice model with such properties. It is a vector­
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like U (l) gauge theory which contains the staggered fermion field x and the scalar 

field </>, both of unit charge. A Yukawa coupling between these m atter fields is pro­

hibited by the gauge symmetry. The global U(l) chiral symmetry, present when 

the bare mass mo of the fermion field x  vanishes, is broken dynamically at strong 

gauge coupling by the gauge interaction. Whereas both x and 4> constituents are 

confined, the massive physical fermion F  = (fix with shielded charge appears. 

The Dynamical Mass Generation(DMG) occurs naturally at strong coupling due 

to the gauge interaction, i.e., without the help of the charged scalar field. The 

scalar suppresses the symmetry breaking when it gets lighter and induces a phase 

transition to the chiral symmetric phase. If the theory is renormalisable, a con­

tinuum theory with massive fermion F, as well as a massless Goldstone boson 

( “pion” 7r) would be obtained. When the global U(l) chiral symmetry, modelling 

the SU(2) symmetry of the standard model, is gauged, this 7r boson is eaten by 

the corresponding massive gauge boson. This is what is achieved in standard 

approaches by the Higgs-Yukawa mechanism.

The question is, whether this model is non-perturbatively renormalizable at 

strong gauge coupling so that the lattice cutoff can be removed. If so, the resulting 

theory might be applicable in the continuum and constitute a possible alternative 

to the Higgs mechanism [1].

We investigate such a lattice model in th re e  d im ensions with a vectorlike 

U (l) gauge symmetry, which is called the xUfo  m odel or Q E D  w ith  scalars 

an d  ferm ions in th re e  dim ensions.

The same model has also been investigated in two and four dimensions. In two 

dimensions it seems to be in the universality class of the Gross-Neveu model [10] 

at least for strong gauge coupling, and so is renormalizable. Thus the shielded 

gauge-charge mechanism of dynamical mass generation suggested in [1] works in 

two dimensions and its long range behaviour is equivalent to the four fermion 

theory. In four dimensions there is also a strong coupling region in which the
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model behaves in a very similar manner to the corresponding four-fermion theory, 

the Nambu-Jona-Lasinio model with a massive fermion whose mass scales at 

the critical point [37]. Here both models belong to the same universality class 

and have the same renormalizability properties. But for intermediate coupling 

there evidently exists a special point. It is a tricritical point at which, together 

with the composite fermion F, scaling of a particular scalar state was found. This 

composite scalar can be interpreted as a gauge ball mixing with a state. Thus 

the gauge degrees of freedom play an important dynamical role and the model 

belongs to a new universality class of models with dynamical mass generation and 

whose renormalizability is of much interest [12, 13].

1.3 Lattice Discretization in 4D

The great feature of the lattice method is that it provides a non-perturbative reg- 

ularisation for QFT, enabling systematic calculation without the aid of Feynman 

diagrams.

There are many different ways of discretizing a given continuum action for 

the lattice. It is important for universality that they do not lead to different 

continuum theories in the limit of the lattice spacing going to zero. In addition 

it is desirable to retain the symmetries of the continuum action in the lattice 

discretization.

1.3.1 Gauge and Scalar Fields on the Lattice

As we have already mentioned we consider the xU(j) model with U (l) gauge sym­

metry. The U (l) gauge action in the continuum (Sq071̂ )  is given by:

(1 .1)

where:

(1 .2 )



Chapter 1. Introduction 16

is the gauge invariant field strength tensor, and A^x)  is a four vector potential.

In lattice QED the gauge field is represented by the group element connecting 

neighbouring lattice sites:

U ^x) = exp (ieAn(x)a) (1.3)

where a is the lattice spacing, e turns out to be the coupling constant in the 

continuum limit and A^x)  is a field defined on the link which turns out to be the 

gauge potential field in the continuum limit. Our choice of lattice gauge action is 

dictated by the requirement of local gauge invariance under the transformation:

U ^x)  -> Q,(x)U^(x)Qrl (x +  p) (1.4)

where G 1/(1) and is defined independently on each lattice site.

Eqn.(1.3) can also be writen as :

U ^x)  =  exp (iO^x)) (1.5)

where 9n(x) is restricted to the com pact domain [0,27r].

The simplest possible gauge invariant action is defined in terms of the elemen­

tary plaquette variable U^(x) which is the trace of a directed product of gauge 

links around a closed loop joining a sequence of nearest neighbour sites:

U fax) = u^ x) u»(x +  A) U f a  +  i>) U fa ) .  (1.6)

Inserting the expression (1.3) into (1.6) we find:

U£„(x) = exp (iea2 F ^ (x ) )  (1.7)

where F ^ (x )  is a discretized version of the continuum field strength tensor:

F^ i x ) =  l l ( M x  +  A) -  M x )) ~  ( ' M *  +  * ) -  A ^ x ) ) ] .  (1.8)

It now follows from (1.7) that for small lattice spacing:

f1 - 5 (*&(*) + ( ^ w ) !  (i-9)
x  , n v
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where the sum appearing on the left hand side extends over the contributions 

coming from all distinct plaquettes on the lattice. Therefore, the lattice action 

for the gauge potential in the compact form can be written as:

We have also mentioned earlier that we consider the \U4> model with a complex 

scalar field (f>. The action of the complex scalar field, in the lattice formulation, is 

introduced as:

where k is the gauge-scalar coupling (or hopping parameter) and the A term 

determines the quartic selfinteraction of the scalar field. The action is symmetric 

under the reflection of so that it is sufficient to consider k, > 0. For A =  oo the 

modulus of the scalar field is frozen at the value one. We consider the scalar field 

in the fixed length limit,i.e.:

Therefore, in this limit, the action of the complex scalar field reads (omitting 

irrelevant constant) :

>)
( 1 .10)

± 4

SV =  E  -  !]2 - K E  c l  f i x )
X H = ± l

( l . i i )

( f i l f i x )  =  i - ( 1 . 12)

s,p k  'y y  f i x + i L  ^ x , j i  f i x  )■ (1.13)
x n

1.3.2 Fermions on the Lattice

Before introducing the fermion fields on the lattice we recall the Dirac fermionic 

action:

s (cont.) _  j  (7/i( ^  +  ieAp) +  m 0) tp(x) (1-14)

with

l u l v  d- 7^7n — 2$^ ; 7/x — 7/x- (1.15)
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The fermion fields are associated with lattice sites and the continuum Dirac

action is discretized by approximating the partial derivative by an antihermitean 

lattice derivative defined by:

where ipa is a single component of the four component field ip. The lattice form 

of the fermion action is:

After Fourier transforming to momentum space and taking the continuum limit 

we obtain the following expression for the physical correlation function:

zeros of the sine function (eqn.(1.21)) at the edges of the first Brillouin zone 

destroy the correct continuum limit -  they give rise to fermion species doubling 

[8]. Thus there exist sixteen regions of integration in eqn.(1.20) where p takes a 

finite value in the limit a —> 0. Of these, fifteen regions involve high momentum 

excitations of the order of J (and ^ ) ,  which give rise to a momentum distribution

d^ipa(x) = —  [ipa{x + afi) -  i p j x  -  ajX)} (1.16)

(1.17)
x,y,a,(3

where in the interacting case the fermion Dirac matrix M  is given by:

’y ,x + a f t

f1

so the dimensionless two point function is given by:

(1.19)

f-ir/o, i Ylfj, 7liPy, +  m 0

(1 .20)

where:

Pn = -  sin (p^a). (1 .21 )

The poles of eqn(1.20) correspond to physical particles. On the other hand the
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Origin of the fermionic doublers

-1.5

-0.5

0 .5

1.5

-2 L

-1

2

0

1. Brillouin zon e

fermion doubler

-3pi/a -2pi/a -pi/a 0
momentum p

pi/a 2pi/a 3pi/a

Figure 1.1: The origin of the fermionic doublers is clear from this plot of the 

inverse fermion propagator for the case of a massless free fermion.

function having the form resembling that of a single particle propagator. Hence, 

in the continuum limit, the Green function (1.20) receives contributions from 

sixteen fermion-like excitations in momentum space, of which fifteen are pure 

lattice artefacts having no continuum analog. In d space-time dimensions the 

number would be 2d; i.e. it doubles for each additional dimension.

In other words, the inverse propagator for a massless free fermion is given by:

where the periodicity of the sine function means that we have not one, but sixteen 

poles in every Brillouin zone. This is illustrated in Fig. (1.1). Nielsen and Ninomiya 

[5, 6, 7] showed that the fermion doubling problem cannot be eliminated without 

breaking the chiral symmetry in the limit mo —»■ 0.

1.3.3 Kogut-Susskind Fermions

One of the schemes dealing with fermion doubling is the Wilson fermions, whereby 

an irrelevant term is added to the action (1.17) which vanishes in the naive con­

tinuum limit. Wilson fermions have the disadvantage that the irrelevant term
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explicitly breaks the chiral symmetry (even for mo —> 0) of the original lattice 

action. Since we are interested in the chiral phase transition, we will use Kogut- 

Susskind fermions which preserve a non-trivial piece of the full chiral symmetry.

The Kogut-Suskind scheme deals with the fermion doubling problem by re­

ducing the Brillouin zone; i.e. by doubling the effective lattice spacing.

We consider the naive fermion action with spin indices a, (3 shown explicitly 

(and where the lattice spacing, a = 1, where not explicitly stated) :

s  = \  ^ 2  [^a(x) (^)aP̂ p(x  +  £) -  ^ a(z)(7n)a,0i)p(x ~  A) (1-23)
X , H

+m0' 2̂ 'ijja(x)8ap'ipp(x).
x

By making a local change of variables we arrive at an action which is diagonal in 

the Dirac indices thus the different fermion field components are decoupled and 

we keep only a single field component per site.

In more detail, we perform a local change of the fermionic variables, such as:

7pa(x) = T a/3(x)x(3(x) ; $a(x) = xp(x)T£a(x) (1.24)

where in d spacetime dimensions, T(x)  are 2 d//2 x 2 d//2 unitary matrices, and we can 

spin diagonalize the previous expression by choosing the matrices T(x)  in such a 

way that:

T \ x ) ^ llT(x  +  A) =  ^ { x ) ! .  (1-25)

If we choose:

r ( s )  =  T f'T r-rfT ? (1-26)

where (xi, £2 , £3 , £4) are the components of the lattice site four-vector x, then the 

appropriate phases are:

7ftOr) =  1; % (x) = (_l)^i+x2+...x„_1 (1 27)

After spin diagonalization and inclusion of gauge interactions the action reads:

S\[F “S') =  \  ^0*0 [Xa{x)U^{x)Xa{x +  A) -  Xa{x)Ul{x ~  A)Xa{x ~  A)]
x , /x ,a
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+  w io ^ X a W x W - (1-28)
x ,a

By eliminating the Dirac matrix we have decoupled the fermion field compo­

nents thus we can reduce the number of fermion field components to a single one 

per site. The above action is diagonal in Xa( %)  and is thus simply four copies of 

the same action written in terms of a one-component Grassmann variable X a ( x )  

and a space dependent sign rj^ix).

The remaining four fermion species are interpreted as physical flavours in the 

continuum limit. Thus the lattice action reduces in the naive continuum limit to 

a sum of free fermion actions, one for each of the quark flavours:

s f s) -> f  Tpf(x) (7 ^  + m )ap 4>f0 (x) (1.29)
J a,0,J

where /  is the flavour index which ranges from 1 to 4 and a , p  are the spinor 

indices. Note that the staggered formulation has the disadvantage that in d 

spacetime dimensions it is restricted to a description of 2d//2 degenerate quark 

flavours.

The staggered fermion action (Eqn.(1.28)) is local, Hermitian and invariant 

under the global U(l) i  rotation:

X { x )  eiax{x ) ; x(z) x(x)e~ta. (1.30)

In the massless case (mo =  0) this symmetry becomes extended and we have the 

additional U(l ) e symmetry defined by the transformations:

X ( x )  -> e0e{x)x{x) ; x(%) x(x)elPe(x) (1.31)

where e(x) =  (—l) xi +x^+x3+x4  ̂ [ /( i)£ invariance is a continuous remnant of

the full chiral symmetry of the naive action and in the continuum limit, the full 

chiral symmetry of the free theory is restored.

The full U{l ) e ® U(l) i  symmetry can be re-expressed in terms of independent 

rotations on odd and even lattice sites U0 (l) <S> Ue( l) . In the (m0 =  0) case the
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even sites will be rotated by the angle a + j3 while the odd sites will be rotated 

by a -  (3.

1.4 Chiral Symm etry Breaking

A symmetry of the action is said to be spontaneously broken if it is not respected 

by the ground state. If the transformations leaving the action invariant form a 

continuus group, then this spontaneous breakdown is accompanied by the appear­

ance of massless particles, the so-called Goldstone bosons. The number of such 

Goldstone bosons equals the number of generators associated with the broken part 

of the symmetry group.

In the limit of vanishing quark masses the pions observed in nature are believed 

to be the Goldstone bosons associated with a spontaneous breakdown of chiral 

symmetry. We consider the case of an abelian U{ 1) gauge theory. The continuum 

fermion action for vanishing fermion mass has the form:

gicont.) _  J  (7 m( ^  +  ieA^)) 'ip(x). (1.32)

The fields 0  can always be decomposed into left and right handed parts as 

follows:

0  =  i>R +  V>L

where

=  ; 'ipR = r R'ip (1.33)

where the matrices T^ =  and Fr — are chirality projection operators. 

With

^ r = ^ T l ; iPl = $F r (1.34)

the fermion action becomes:

S f  = j  0l7m (^  +  i e A ^ L  +  +  ieA^ipR. (1.35)
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This action is invariant under the following transformations:

ipL e^'ipL ; ipL -> e(_mVL (1.36)

ipR -» e(lAV/e ; ^  -> e(-zA)0i? (1-37)

where a and A are arbitrary parameters. These transformations are elements of 

the U(1 )r  <S>U(1)l chiral group. We consider now the ground state expectation 

value of 'ipR'ipL, he., < 4>riIjl >■ transforms as follows under (1.36,1.37):

't’R'ipL -> e '̂ijjR'ipL (1.38)

where A = a — X. If the transformations (1.36,1.37) are implemented by a unitary 

operator, and if the ground state is left invariant under the action of this operator,

< 'ipR'ipL > must vanish. The same is true for < ^ l '^r >■ This need however not be 

the case in a quantum theory involving an infinite number of degrees of freedom, 

where the ground state may not be chirally invariant. Hence, < ^ ri^l > may 

in fact be different from zero, implying that chiral symmetry has been broken 

spontaneously.

A good quantity for testing the spontaneous breakdown of chiral symmetry is

< 'ipR'ipL >■ Alternatively,

< -0^ > =  < 'IpR'lpL > +  < ipL'ipR > (1.39)

is an also good quantity for testing the spontaneous breakdown of chiral symmetry 

and is the quantity usually studied.

Chiral symmetry breaking has also been studied in the context of four-fermion 

interaction models where the chiral symmetry breaking is achieved via a short 

range interaction. In the Nambu-Jona Lasinio model the interaction is attractive 

and has zero range. If the strength of the four-fermion interaction is above a crit­

ical value then a chiral condensate forms and the fermions develop a dynamical 

mass (due to the interaction) non-perturbatively and a triplet of massless pions
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emerge as the Goldstone bosons of the spontaneously broken symmetry operators. 

Lattice studies of the Gross-Neveu model in three dimensions have demonstrated 

that the chiral symmetry transition predicted by mean-field theory can be suc­

cessfully reproduced using lattice Monte-Carlo techniques. The principal feature 

of four-fermi interaction models is that a short range interaction is sufficient for 

chiral symmetry breaking.

As we mentioned earlier in this chapter our motivation is to search for alternatives 

to the Higgs mechanism which generates the masses of gauge bosons and fermions 

in the electroweak theory. Therefore, we will describe the Higgs mechanism in or­

der to become more obvious that it is handmade and some dynamical explanation 

might be necessary.

The electroweak interaction is based on an S U (2) group of weak isospin I  and 

a U( 1) group of weak hypercharge Y, with the gauge bosons acquiring well de­

fined masses through a mechanism called spontaneous symmetry breaking without 

spoiling the renormalizability of the theory. This is achieved with the help of an 

isospin doublet of scalar bosons called Higgs scalars, which generate mass as a 

result of self interaction.

To be more specific, the weak interactions obey the S U (2)l symmetry in which 

the left handed (L H ) fermion states transform as members of a doublet. Hence, 

we can write :

where, I  and Is represent the weak isospin and the third component of the weak 

isospin, respectively. All the right handed (R H ) fermion states transform as

1.5 The Higgs Mechanism

I  =  1/2

I  = 1/2
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singlets under SU(2)l - Hence:

1 = 0 eR, tr , uR, dR, . . .  (1.42)

One can now define the weak hypercharge as :

Y  = 2 Q — 2 / 3 (1.43)

where Q is the electric charge, I 3 is the third component of the weak isospin and 

Y  is the weak hypercharge. Thus, we have :

CO. ( ? ) .  CO . (1“ >

Y  = — 2  eR n R tr (1-45)

G). 0 (1.46)

Y  --- 4/3 U r  Cr

Y  = - 2 /3  dR sR . (1.47)

A local SU(2)l transformation of the weak isospin has the form :

( j l ' j  = exp( i (g/2) cr • b(x)) x (1.48)

where g is the SU{2) coupling constant, cr =  (0 1 , 0 2 , <73) are the Pauli matrices 

and b(:r) =  (bi(x),b2 (x),bs(x)) are three independent angles. On the other hand, 

a local U( 1) hypercharge, for L H  doublets and R H  singlets transform respectively 

as:

( j l )  =  e xp ( i (g f/2 )Y L a{x)) x (1.49)

e'R = exp( i (g’/2) YR a(x)) x eR (1.50)



Chapter 1. Introduction 26

where g'  is the U(l)y  coupling constant, a ( x )  is the phase angle and YL , Y r  are 

the hypercharge values given above.

If we want the theory to be invariant under the previous local transformations, 

we have to introduce three vector fields W * , W^, W^  for the SU ( 2 ) l  group and 

one vector field B M for the U( 1) group. Hence, the covariant derivative has the 

form :

For the left handed leptons we know that T  =  cr / 2  , Y  =  —1 and then Eqn.( 1.51) 

becomes :

On the other hand, for the R H  leptons T  =  0  , Y  = —2 and the covariant 

derivative becomes :

(1.51)

=  d„+ i(g/2) <t ■ W  -  % (g'/2) (1.52)

D ,, =  — ig' (1.53)

We can write :

<t - W =  o 1 +  a2 W l + a3 W l

= V 2  (<t+ W~ + <J- W+) + O3 W 3 (1.54)

where

(ax +  ia2) 
2

(1.55)

(cri -  ia2) 
2

and

( 1.56)
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Substituting Eqn.{ 1.56) into Eqn.( 1.52) we obtain :

(1.57)

It is obvious from Eqs.( 1.57,1.53) that if we want SU(2)l ,U(1) to be invariant 

under local transformations we end up with three vector fields W^ and

one vector field B^ respectively. The two couplings constants g,g' represent the 

couplings of the W-bosons, R-boson to fermions respectively.

Although, and B M fields do not carry any electric charge, neither describe

the photon A M field, or the neutral vector boson Z®. Rather the physical boson 

fields and Z® are taken as linear combinations of and B^ :

where the angle 9w is called the weak mixing angle (or Weinberg angle) and is 

defined as follows:

an d  th e  ferm ions a re  m assless. The problem is to generate the required masses 

while preserving the renormalizability of the gauge theory . This is achieved 

by sp o n tan eo u s sy m m etry  break ing , where the gauge symmetry of the La- 

granzian remains but is hidden in the ground state by the appearance of a preferred 

direction in weak isospin space.

=  B^ cos 6 w +  Wp sin Bw

Z® = — B^ sin#vK +  W*cos9w

(1.58)

(1.59)

sin 9w
yjg2 + g'2'

cos 9w 9 (1.60)
\ / g 2 + g' 2

It can be shown that:

e = g' cos 9W = g sin 9W (1.61)

which establishes the relation between the coupling constants g , g\  e.

The deficiency of this model as it stands, is that the W ±, Z° and A M bosons
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The simplest Higgs field that we can choose is a complex doublet:

*  -  ( U  ■ t T i+ * ' )  <> «)\  (f>b )  V 2 y 03 +  Z04 J

where, I  — ^ Y  =  1, and </>2 , ^ 3 , <̂4) are four real scalar fields. We consider 

the Higgs potential:

V = +  (1.63)

with fi2  < 0 , A > 0  and $  =  — — i<j>2 ,<l>3 — ^ 4 )• This potential takes its
v  2

minimum value when:

=  lW i +  ^ 2  +  ^ 3  +  ^ 4) =  (L64)

We choose:

( 1.66)

^  =  <Pi =  0 , <pj = ^  = u (1-65)

which means that we have chosen:

7 0

u

to be the vacuum expectation value of the Higgs field. Using perturbation theory 

we can expand the 0  field around < 0  > G and obtain :

4> = - i f  ° )  (1-67)
V2  ^  +  h[x) )

where, h(x) has zero vacuum expectation value. It can be noticed that, from the 

four scalar Higgs fields of Eqn.( 1.62) we end up with a single field h(x).

Finally using the Higgs field and the spontaneous breaking of the symmetry,

the vector bosons VF± ,Z° acquire masses whilst the photon field remains

massless. More specifically it can be proved that :
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Mw-JJ- = cos ew  (1.70)

where Mw  is the mass of the W ± and M z  is the mass of the Z°. It is obvious that 

the inequality M w ^  M z  is due to the mixing between the W^ and B^ fields. In 

the limit $w = 0 we see that Mz = Mw- More complicated choices of the Higgs 

sector lead to different mass relations. The value of u=246Gev is determined 

experimentally from /x-decay. Finally, it can also be shown that:

37 3
M w = — TrG eV,  (1.71)

sin 6 w

which means that we can use this equation to predict the mass of the W-boson if

the value of sin$vv is known. The value of sin#vv is known from experiment. The

mass of the Z-boson is then also predicted.

The Higgs mechanism also generates the masses of the fermions. The gauge 

invariant £agrangian of the electroweak sector of the standard model describes 

massless gauge bosons interacting with massless fermions. The Higgs-fermion cou­

plings give masses to the fermions. We consider the so-called “Yukawa” couplings 

of the form:

- G Y [{$L<l>)'lpR + 'ipR(<i>*'lf>L)]- (1-72)

We now consider the previous Yukawa term for the electron doublet:

CeY = -G t (ve,e)L | j +eji(4>a,4>b) f (1.73)
L  J

When we spontaneously break the symmetry and substitute Eqn.(1.67) the 

previous term becomes:

G TJX
£ y  = +  h)(eLeR +  eReL) = - m e(ee) -  — (eeh) (1.74)

z1/"2 u

revealing that the electron’s mass and coupling are:
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(i m e 9 m e / 1 ~a\g(hee) = —  = ~cyT7  ■ (1-76)
u 2 Mw

Since Ge is arbitrary, the actual mass of the elctron is not predicted, but its Higgs

coupling is specified and, being proportional to is very small. The quark

masses and couplings are generated in an analogous manner.



Chapter 2

Compact lattice QED w ith  

scalars and fermions in 3D

2.1 The M odel

2.1.1 Introduction

We investigate a lattice model with a vectorlike U(l) gauge symmetry, which is 

called [1] [18] the xU<t>3 model. It consists of a staggered fermion field x  with a 

global U(l) chiral symmetry, a gauge field U G U(l) living on the lattice links of 

length a and a complex scalar field (f) with frozen length \<j)\ — 1 and charge one. 

It is characterized by the dimensionless gauge coupling parameter /? (proportional 

to the inverse squared coupling constant), the hopping parameter k, of the scalar 

field and the bare fermion mass am0. The unconfined fermion is the composite 

state F  = (fix- In a phase with broken chiral symmetry, it has nonvanishing 

mass amp in the chiral limit arrio = 0. The xUfo  model can be seen either as 

a generalization of three-dimensional compact QED with a charged scalar field 

added or as three-dimensional U(l) Higgs model with added fermions.

31
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2.1.2 The xUfo  model with U( 1) gauge sym m etry

The ~xJJ</>3 model is defined on a 3-dimensional cubic lattice with periodic bound­

ary conditions except for antiperiodic boundary conditions for the fermion field 

in the “time” direction. The action reads:

Sxu<i> = Sx + Su + S<i„ (2-1)

with:

1 _  3
S *  =  2  ^   ̂ ^   ̂ 7l n x { U x ^ X x + i i  ~  U ^ n  ^ X x - f j )  +  a m o   ̂ X x X x  ,

x  n = l  x

Sij = (3 (1 — R e t4 )Aa,) ,
x , /x O

3

Ĥ x+H T &X+I-1 Ux,n fix )•
x  / x =  1

Xx are the Kogut-Susskind fermion fields with 77̂  =  (—i)*i+-+xm-i. The 

model describes two four-component fermions ( N f  =  2,) because of doubling . 

The bare mass amo of the fermion is introduced for technical reasons as will be 

discussed in chapter(3). We are interested in the chiral limit mo = 0. The a in 

front of mo indicates that we have to distinguish between the chiral limit in the 

continuum (mo =  0 ) and the continuum limit of the lattice model, where amo 0  

can also be achieved by a —>■ 0  at nonzero mo.

Ux)M represents the compact link variable and Ux>fJi„ is the plaquette product of 

the link variables UXtfi. The charge of x, determining its U (1 ) gauge transformation 

properties, is one.

The hopping parameter n vanishes if the square of the bare mass of the scalar 

field is + 00, and is infinite if the bare mass squared is —00. The choice of \(j)\ =  1 

is made in order to restrict the number of parameters of the model. W ithout 

that choice, symmetries and dimensionality of couplings would allow several other 

terms in the action.
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We stress that the charges of the fundamental fields exclude a direct Yukawa 

coupling between the fundamental fields.

2.1.3 Limiting cases of the model

The model has some interesting limiting cases:

• For k = 0

the scalar field decouples and the model is equivalent to three-dimensional compact 

QED with fermions. It is known [22, 21, 31, 32] that pure compact QED has 

no phase transition and, as /? —> oo, it is confining via a linear potential with 

an exponentially decreasing string tension. There is an indication that, with 

fermions, chiral symmetry is broken at large coupling, but at weak coupling results 

are inconclusive [33]. It has been suggested that, in non-compact QED with 

fermions (see chapter(7)), the phase diagram is dependent on the number of flavors 

and that, at weak coupling, chiral symmetry is broken only for a small number 

(less than about 3.5) of fermions [23, 25, 27, 28]. It is quite probable that, at 

weak coupling, both the com pact and non-com pact formulations have quite 

similar properties. If so, then these (uncertain) features suggest that the chiral 

symmetry is broken in the k = 0  limit of the weak coupling region.

• In the weak gauge coupling limit, {3 =  oo,

the fermions are free with mass am 0, and S$ reduces to the XY3 model. It has a 

phase transition at k, «  0.27.

•  At amo =  oo

the model reduces to the three-dimensional compact U(l) Higgs model.

•  For (3 = 0
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the gauge and scalar fields can be integrated out exactly[16] which means that 

the xU(f)3 model can be rewritten exactly as a lattice four-fermion model. In the 

path integral:

dXxdxxd(f)xdUX)fJi exp { - S xU(p3} (2 .2 )y nx , n

the gauge and scalar fields can be integrated out exactly. This results in:

Z  = rNJ f* J  dXxdXx exP { - S 4/}> (2-3)

where N and iVj are the number of lattice sites and links respectively, and: 

3

x X x + t l X x + l i  y V f l x i X x X x + f l  X x + |t X x ) ]  "t" r  E x , X x ,

(2.4)

cy • f f JLX V A x A X t f i  A .X H -/X A .X /J  'l r
x  / i = l  2:

with:

and

r = r(/s) = (2.5)

Ju  =  J  dUe2KReUU =  / i ( 2 k), (2 .6 )

Ji = f  dUe2nReU =  / 0(2k) (2.7)

where, Iq and I\ are modified Bessel functions. The fermion field has been rescaled 

by yjr. The parameter r is an analytic function of k increasing monotonically from

r(0) = 0  to r(oo) =  1. The action (2.4) obviously describes a lattice version of

the four-fermion theory. The four-fermion coupling parameter G is related to k 

via r:
1 — r 2

G :=  (2-8)

From (2.5),(2.6),(2.7) one sees that G is decreasing monotonically with increasing 

G =  oo at k, = 0, and G = 0 at k, = oo.

The action (2.4) describes the lattice Gross-Neveu model. Some caution is 

necessary, however. There is some uncertainty whether the four-fermion model

(2.4) is a lattice version of the Gross-Neveu model or of the Thirring model. The
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four-fermion action (2.4) was used in four dimensions for the study of the Nambu- 

Jona-Lasinio model e.g. in [34, 35], which would correspond to the Gross-Neveu 

model in three dimensions. Recently in [29, 30] the four-fermion action (2.4) in 

three dimensions is interpreted as the Thirring model and similar interpretation 

is implied in [36]. For our number of fermions, N f  = 2, the distinction might be 

unimportant and both models might actually coincide. The Gross-Neveu model 

has a chiral phase transition and is nonperturbatively renormalisable [15]. The 

properties of the N f  = 2 Thirring model appear to be similar [36, 29, 30]. For 

our purposes the important property of the three-dimensional four-fermion model 

obtained in the (3 = 0 limit of the xU<j>3 model is its renormalisability, which 

presumably holds for both interpretations.

2.2 Observables

2.2.1 Chiral Condensate and Fermion Mass

Because we are interested in the chiral properties of the model we concentrate on 

the chiral condensate, the fermion mass and the Lee-Yang Zeros (which will be 

described in chapter(3)). Our aim is to localize the chiral phase transition.

The chiral condensate can be evaluated using stochastic estimators. This pro­

cedure avoids the full inversion of the fermionic matrix, M, which can be com­

putationally intensive. (We will refer to the fermionic matrix, in detail, in the 

next chapter). Instead the traces appearing in the expressions for expectation 

values of the observables are approximated by unbiased estimators. These are ob­

tained by introducing vectors of complex Gaussian random numbers 77M with 

(p =  1,2,..., N v) of dimension equal to the dimension of M.  The components of 

rfti are distributed according to so that the diagonal

matrix element with respect to the random vector is an unbiased estimator for
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the trace:
-j

Tr  {M -1} =  lim £ („ (* > , M 'V " ) )  . (2.9)
l v - q  y OO l i y - t' fl- 1

The chiral condensate now is defined by:

(xx)  =  (Tr M _1) (2 .10)

where M  is the fermionic matrix. The trace is measured with the gaussian esti­

mator.

The physical fermion of the xU(f>3 model is the gauge invariant composite 

fermion F  = (fix- Its mass amp is measured in momentum space [37]. Considering 

the gauge invariant fermionic field

Fx := 4>lxx, F  =  (l>xx x (2 .1 1 )

the corresponding fermion propagator:

G p i t )  =  —  5 3 5 3  ^  Fx,tFtfto >  (2 .12)
x  y

is determined numerically ([37] and references therein). The numerical data for 

Gp{t) are then fitted to an ansatz[37] and the mass amp of the gauge-invariant 

fermion is calculated. The calculations of the chiral condensate and of the physical 

fermion mass were made in [2 0 ].

2.3 Equation of State

A standard way to analyse the critical exponents of a chiral phase transition is via 

the use of an equation of state (EOS). Normally data close to the phase transition 

can be well described by such an ansatz. In this model for fixed (3 this equation 

reads:

am 0 = (xx)SF  ( ( k - k c)(xx)~1/Px) , F(x) = R x  + S . (2.13)
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Here (xx) is the infinite volume value of the chiral condensate for given am 0, n 

and p. Px and 6  are the exponents defined in analogy to a magnetic transition. 

The index x is added to distinguish the exponent and the coupling. The scaling 

function F  is used in its linear approximation and R  and S  are constants. This 

equation is applied in the region for which k  «  kc and where we might expect the 

scaling deviations to be small.

In order to clarify what we mean by a magnetic transition we consider the 

continuous phase transition of iron, from paramagnetic form to ferromagnetic at 

temperature Tc (Curie Temperature). At T  > Tc iron is paramagnetic. That is, 

the material is not magnetised in the absence of an applied magnetic field, and 

if a weak field B is applied, the material’s magnetic moment per unit volume m  

is proportional to the applied field: m  ~  p B  with p  a positive constant. In the 

ferromagnetic state (T < Tc), the material is magnetised even when no field is 

applied, and when an external field B is applied this magnetisation swings almost 

instantaneously to align with B. Consequently, m  is no longer linearly related 

to B. The magnitude of the magnetisation m 0 (T) at B =  0 vanishes as one 

approaches Tc from below. Therefore, as one heats a sample of iron, through Tc, in 

zero applied field, nothing very dramatic happens at Tc. The iron’s magnetisation 

steadily decreases as Tc is approached, vanishing entirely at Tc and for all higher 

temperatures. What changes discontinuously at Tc is the rate of change of mo 

rather than m 0 itself. This is the essence of a continuous phase change: the 

properties of the system do not change discontinuously at Tc, but at least, one of 

their rates of change, does.

In a magnetic system now, mo tends to zero as

m 0 ~  (Tc -  TY%

where /3X is a critical exponent of the system. At Tc itself, m  becomes proportional 

to a power of B :
im  ~  Bs
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where 5 is another critical exponent of the system. Thus, at Tc, mo responds 

sensitively and highly non-linearly to small fields B. a is another critical exponent 

which describes how the specific heat diverges with temperature as the critical 

temperature is approached. Finally, 7  is the critical exponent which describes how 

the magnetic susceptibility varies with the temperature as the critical temperature 

is approached.

We now assume, as we did for the chiral condensate, the corresponding scaling 

equation for the fermion mass:

am 0 — (a m p Y ^ G  [(k, — , G(x) = Ax  +  B  . (2-14)

The exponent v is the correlation length critical exponent in the chiral plane 

(amo — 0 )- v is an analogous exponent obtained if one approaches the critical 

point from outside the chiral plane. The two exponents have to be distinguished. 

At fixed (3 in the chiral plane (amo — 0) the fermion mass scales with v: amp  oc 

( a c  —  A C c)i / | a m 0 = 0  5 whereas for all other straight paths into the critical point (for 

example ac = acc )  it scales with amo as: amp oc (amo)v\K- KcCxamo. This is indicated 

in figure(2 .1 ) in the plane /3 = const.

Figure(2.1) also illustrates that for ac < acc  the chiral condensate changes sign 

and makes a jump if one crosses the line amo — 0. This means that it is a line of 

first order phase transitions. For ac > acc  the line becomes a line of second order 

phase transitions on which the fermion mass gets critical. In between there is a 

critical point (a c  =  k c ) .

It can be shown that the critical exponents we described earlier can be written 

in terms of just two numbers: v and 77, where v is the correlation length critical 

exponent and 77 is a critical exponent which describes the variation at the criti­

cal temperature of the connected two-point correlation function Gc(x) with the 

separation x of the two points, as x —> 0 0 . Using this, one can show, that the 

following scaling laws hold:

2/? + 7  =  2 - a ,  (2.15)
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am,

K, K'c

Figure 2 .1 : First order chiral phase transition line (bold line) and the critical 

point in a plane (3 = const. The fermion mass amp scales with exponent v in 

the direction tangential to the transition line and with exponent v in any other 

direction.

2/35 — 7  =  2 — g;, (2.16)

7  =  v(2 — n) (2.17)

vd = 2  — a  (2.18)

where d is the space-time dimension. Using now eqns.(2.15)(2.16)(2.18) we see 

that only two of the four exponents defined by the equations of state are indepen­

dent. The corresponding scaling relations are:

5 =  x h i  and ^  =  v { d - l ) -  (2-19)

2.4 Phase Structure of compact QED w ith scalars 

and fermions 

in three dimensions

We investigated the phase diagram and the critical behaviour of the y t/ (p model in 

three dimensions. We have found that in the chiral limit mo =  0 the xUfomodel
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has three regions in the (3 — n plane with different properties with respect to the 

chiral symmetry. They are indicated in Fig. (2.2). The region at strong gauge 

coupling (small f3) and small k, is the Nambu phase where the chiral symmetry 

is broken and the neutral fermion F  is massive. At large k chiral symmetry is 

restored and the fermion F  is massless. This phase is labelled the Higgs phase 

because of its properties in the weak coupling limit. The third is the X region at 

large (3 and small k . It is conceivable that this region is analytically connected 

with either the Nambu or Higgs phase but it may well be a separate phase. In 

this region the mass measured in the fermion channel is large, but the chiral 

condensate is very small (within our numerical accuracy consistent with zero).

The main result of our investigation is the determination of the critical be­

haviour at strong gauge coupling. We found strong indications that the chiral 

phase transition between the Nambu and Higgs phases is in one universality class 

for all (3 < 0.80 and possibly for all /? < 1.25. It is the class of the three- 

dimensional Gross-Neveu model which is known to be (nonpertubatively) renor- 

malizable [15]. That model is the (3 =  0 limit of the xUffr3model [16]. This 

universality means that the continuum limit of the xU(f>3 model defines a nonper- 

turbatively renormalisable gauge theory in which the fermion mass is generated 

dynamically by the shielded gauge-charge mechanism. However, it also means 

that in this (3 region the gauge field is auxiliary and the xU(j>3 model does not 

represent a new class of field theories.

The chiral properties of the region X are elusive and we made only an ex­

ploratory investigation. But we point out that, provided the chiral symmetry is 

broken there, the phase transition between the region X and the Higgs phase gives 

rise to another possible construction for a continuum theory containing an uncon­

fined fermion with dynamically generated mass. It could continue to be in the 

universality class of the three-dimensional Gross-Neveu model. But experience 

[12, 13] with the four-dimensional model in the vicinity of the tricritical point
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suggests that at larger /3 the gauge degrees of freedom are dynamical and a new 

universality class may be present. This interesting possibility, and the possible 

existence of a tricritical point in three dimensions, deserves further study.

Our investigation was mainly based on two methods: firstly, via fits to an equa­

tion of state and, secondly, via a finite size scaling investigation of the Lee-Yang 

zeros in the complex fermion mass plane (see chapter(3)). As first pointed out by 

Lee and Yang [45, 46], the determination of the finite size scaling behaviour of the 

complex zeros of a partition function could be a direct method for the determina­

tion of the critical properties of the associated theory. We investigated these zeros 

of the canonical partition function in the complex bare fermion mass plane. These 

zeros control the fermion condensate and its associated susceptibilities [11, 14], 

physical quantities which are often measured directly on the lattice and used, via 

finite size scaling, to determine the critical behaviour.

As we described earlier, the investigation of a phase transition via fits to an 

equation of state is quite reliable because the finite size effects we find close to the 

phase transition are usually small. Therefore we expect a simple finite size scaling, 

described by the empirical formula we mentioned earlier. Then the observables 

were extrapolated to the infinite volume and a simultaneous fit to the fermion 

mass amp and the chiral condensate (xx)  was performed.

In the region X, the chiral condensate is very small. A small condensate sug­

gests that the Lee-Yang zeros cannot be near to the physical region. Nevertheless, 

it was of interest to investigate if the closest zeros can be determined with sufficient 

accuracy to ascertain their finite size scaling (and hence that of the condensate).
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Figure 2.2: Phase diagram of the xU(f>3 model for m0 =  0. For (3 < 0.80 a clear 

phase transition between the Nambu and Higgs phases can be observed. Whether 

the region X at large (3 and small k forms a third phase or belongs to one of the 

other phases, separated from it only by a crossover, is discussed in chapter5. All 

phase transitions seem to be 2 nd order.



Chapter 3 

Zeros of the Grand Canonical 

Partition Function

3.1 M otivation

As we have already mentioned in the introduction, the lattice approach to quan­

tum field theories is a mathematically well defined way to extract results in the 

non perturbative regime. Being a regularization scheme, the lattice formulation 

has to be connected with the continuum limit, which is supposed to describe the 

real theory, through a renormalization procedure. The equivalence can be mean­

ingful only when the effects of the discretisation of space-time become negligible, 

i.e.: when the system is scale invariant. This is known to happen in the vicinity 

of a continuous phase transition.

Therefore the knowledge of the phase diagram of the corresponding statistical 

mechanical system is crucial in order to establish the existence of the theory in 

the continuum and to make predictions about its physical properties. It is a 

well known result of statistical mechanics that, if one knows the grand canonical 

partition function (GCPF) of a system then one can, in principle, calculate all 

thermodynamic quantities.

43
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The critical behaviour of a statistical system can be investigated using several 

different approaches; one of the most direct is the study of the Lee-Yang zeros, 

i.e.: the zeros of the analytical continuation of the GCPF for complex values of 

the critical parameter. The thermodynamical functions can be reconstructed from 

the Lee-Yang zeros and the critical properties of the theory in the continuum can 

be inferred from the dependence of the thermodynamical functions on the volume.

3.2 Lee-Yang Theorem

Phase transitions are manifested in nature by the occurence of singularities in 

thermodynamic(s) functions, such as the pressure in a liquid-gas system, or the 

magnetization in a ferromagnet. How is it possible that such singularities arise 

from the GCPF, which seems to be analytic function of its arguments? The answer 

lies in the fact that a macroscopic body is close to the idealized thermodynamic 

limit-the limit of infinite volume with particle density held fixed. As this limit is 

approached, the GCPF can develop singularities, because the limit function of a 

sequence of analytic functions need not be analytic.

By studying the zeros of the GCPF we can visualize its properties and learn 

much about the occurrence of singularities in the thermodynamic limit.

Lee and Yang[45, 46], first, showed that a knowledge of the distribution of 

the zeros of the GCPF can yield much information on the phase structure of the 

system under investigation. They studied a simple statistical system of a lattice 

gas with attractive interactions (Ising ferromagnetic system). The Lee-Yang circle 

theorem states that for this particular system the roots of the GCPF lie on a circle 

in the activity plane (e~2h where h is the magnetic field).

Consider a (quantum mechanical) system consisting of particles in volume V, 

interacting with one another through a pairwise potential[47]. A finite volume 

can accommodate a maximum number of particles nmax. When n exceeds nmax so
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that two of them touch, the free energy will become infinite and the GCPF will 

vanish.

The grand canonical partition function (GCPF) comprises a sum of terms

Z ( z ,  V )  =  1 +  Cl ( V ) z  +  c2( V ) z 2 + .....+  cnm^ ( V ) z n™* (3.1)

corresponding to canonical partition functions and the coefficients cn reflect the 

relative probability that the system will be in a state with n particles. If the 

expansion coefficients are to be interpreted as probabilities then in order to be 

physical they must be real and positive. Since all the expansion coefficients, cn, 

are positive the polynomial can have no real positive roots. We can however

observe negative roots which are unphysical and, of course, complex roots. Yang

and Lee showed that phase transitions are controlled by the distribution of roots 

of the GCPF in the complex z plane. A phase transition occurs whenever a root 

approaches the real axis in the limit V  —> oo.

Consider the parametric form of the equation of state in the infinite volume 

limit:

=  lim V-Mn Z ( z , V )
K_[ V —>oo

1 Q
-  =  lim V ~ l z —  ] n Z ( z , V )  (3.2)
V V - > o o  d z

where v is the specific volume. Then the Lee-Yang theorems can be stated as 

follows:

•  T H E O R E M  1 The following limit exists for all z  >  0

F ^ z )  =  lim f \ n Z ( z , V )  (3.3)
V —> 0 0  V

and this function is a continuous non-decreasing function of z.

•  T H E O R E M  2

Suppose R  is a region in the complex z  plane that includes a segment of 

the positive real axis and contains no roots of the GCPF then in this region
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V  1 log Z(zj V )  will converge uniformly to its limit as V  —> oo and this limit 

is analytic for all z in R.

A thermodynamic phase is defined by those values of z contained in any single 

region R  of theorem(2 ). As a result of the second theorem it follows that in any 

region R  the order of the partial derivative and the limit in Eqn.(3.2) can be 

interchanged so that in any single phase:

Y  -

-7 -r z^-Fooiz). (3.4)
v ( z )  o z

If region R  includes the entire positive z axis then the system always exists in a 

single phase. However, if a zero of the GCPF approaches a point, z0, on the real 

positive z axis, then the system will have two phases : one in the region z  <  z 0 

and one in the region z  >  z Q. P(z) must be continuous according to theorem(l) 

but a discontinuity in d P / d z  would correspond to a first order phase transition 

while a discontinuity in d 2P / d z 2 would indicate a second order phase transition.

Of course in practical lattice calculations we are not close to the thermody­

namic limit V  —> oo. At finite volume the GCPF has a finite number of complex 

zeros lying outside a region surrounding the real axis. At increasing finite volume 

the sequence of the real parts of the zero lying nearest to the real axis (critical 

zeros) converges to the critical point. The finite volume scaling behaviour of the 

lowest zero can be used to determine the order of the phase transition as we will 

explain later in this chapter. We have to notice that in a physically meaningful 

system which has positive GCPF expansion coefficients we do not expect any of 

the zeros to lie on the positive real axis and the coefficients will all be positive 

once the statistical average is complete.
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3.3 The GCPF of the X U f a  model

The GCPF for the xU(f>s model with staggered fermions may be written as a 

function of the bare fermion mass:

where Sxjj^  is given by(2 .1 ). (Note that in the remaining of this chapter we 

have taken the lattice spacing a— 1 so that all dimensionful quantities are to be 

understood in units of the (inverse) lattice spacing.) The fermion fields can be 

integrated out using the standard Gaussian integration technique:

The fermionic matrix M can be decomposed for a finite lattice as the sum of 

a hermitean term diagonal in mass which we denote m0/  and an anti-hermitian 

term which corresponds to the nearest-neighbour interaction between even and 

odd sites denoted by %. These are V  x V  matrices. In matrix block form it can 

be written as:

block matrix M  is the even-to-odd site interaction. The matrix M  is hermitean. 

Hence, the fermionic determinant can be written as:

det(M[m0, U[(3, «]]) =  det(ml +  M^M)  =  J^[(m0 +  zAi)(m0 — i \ )  (3.9)

(3.5)

Z(P,K,m0) =  J  J  [d<j>][d<f>]}[dU}e (Su*) j {d x \[d \ \e  s*

— det M[rao, U[j3, k]]

(3.6)

where Su<p = Su +  5^ and M[mo, C/[/?,«]] is the fermionic matrix:

\Uv {x^Tju{x')5yfX-\-u PuipC ^'nv{p^)^y,x—u\-

(3.7)
u = x + y + t

where the subscripts of the square unit matrices denote their size and the y  x ^

V
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V

= i i k + a?)
i —1

where %\ are the eigenvalues of PL.

This characteristic form of M allows one to write its determinant as a polyno­

mial in the fermion mass for each configuration of the gauge fields (at fixed/?, k):
v

det(M[ra0, U[(3, /c]]) =  ^  Cn[U[P, (3.10)
n = 0

In this formulation, the polynomial has degree equal to the volume of the system. 

Its even coefficients are positive, and the odd ones are identically zero; hence, 

equation(3.10) becomes:
V
2

det(M[m0, U[j3t «]]) =  ^  Cn[U[/3, K]]m20n (3.11)
71=0

where Cn = C2n-

At fixed /?, k the GCPF is proportional to the expectation value of the fermionic 

determinant:

< det(M[ra0, £/[/?,«]]) >p[u,</>]

averaged over configurations which are generated with a probability weight pro­

portional to exp— (Su +  S q). Therefore we can express equation(3.6) in the form 

of a polynomial in the bare fermion mass:
V V
2 2

Z(/3, «, mo) =< Y 2  Cnvnft1 >= ^  < Cn > mj". (3-12)
71=0 71=0

The zeros of this polynomial are the Lee-Yang zeros in the complex fermion mass 

plane, introduced in the previous section.

3.4 The expansion of the GCPF

The lattice approach to the computation of the bare fermion mass dependence of 

the GCPF amounts to the determination of the coefficients in (3.12). In general,
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the functional integration over the gauge and scalar fields in (3.6) can be performed 

numerically using a Hybrid Monte Carlo ([1] and references therein) scheme for 

the generation of statistically independent gauge configurations from the correct 

probability distribution.

3.4.1 Introduction of the “updating” mass

One of the main problems arising in the measurement of the expectation value 

of the fermionic determinant is, that there may be little overlap between the 

probability distribution of the pure gauge fields with the effective support of the 

operator (3.11) and this spoils the convergence of the averaging procedure.

The problem can be faced by shifting the probability distribution of the gauge 

fields by introducing an “updating” mass mo [3]. This procedure corresponds to 

the measurement of a new operator that can be analytically related to the old 

fermionic determinant. The support of the new operator overlaps with the shifted 

probability distribution, at least for ra0 belonging to a neighborhood of m0.

Hence, since we have the freedom to define the GCPF up to a constant mul­

tiplicative factor, we may write:

m  K, r oo) = (3-13) f  dUd(f) det M[mo,

or
f det M[m0, U]es«*

Z (P ,«, m0) =  -------^  f  °’ - (3.14)
f  dUd(f> det M[m 0 ,U]eSu‘t’

Z(0,K,mo) = I  o] (3.15)

jyrjr i - , det M[m0,

The GCPF is now expressed as the vacuum expectation value of the determi­

nant ratio detM[^o’c  ’ avera§eĉ  over configurations which are generated with the

or

where
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probability weight P[U, 4>, m0], i.e :

(ll7>
The role of the “updating” mass fho is now clear: by considering a particular 

region of the configuration space (critical region) we will tune ra0 to be as near 

as possible as the expected value of the lowest zero. We will then perform mea­

surements on the ratio ^  AqSo’t/} (w^ich is now close to unity) and obtain reliable 

results for all values of amo which are close to fho.

Obviously, this procedure should not change the zeros of the GCPF. At every 

set of (/3, k)  values the configurations for the gauge fields are generated, following 

the new distribution (3.16), with a HMC ([1] and references therein) code. For a 

single configuration a modified Lanczos algorithm [42], without reorthogonalisa- 

tion, gives the eigenvalues Aj of the massless fermionic matrix M[mo = 0 ], which 

are pure imaginary. The coefficients are then computed from the eigenvalues and 

then averaged over the configurations: they are the fundamental quantities for 

the determination of the zeros of the polynomial.

3.4.2 Shifted expansion of the GCPF

As we saw earlier in this chapter we can write the fermionic determinant in terms 

of its eigenvalues as:

V
2

det(M[am0, £/]) =  J~J(rao +  A2). (3.18)
i = 1

Introducing now a second arbitrary (and apparently irrelevant) mass parame­

ter m, which is called the “mass shift” [3], we can write a shifted expansion of the 

femionic determinant:
V
2

det(M [am0, f/]) =  JJ(m g — ra2 +  A2) (3.19)
i = 1
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where we just substituted A2 =  (Xf +  fh2). The reasons for introducing fh will 

become clear in the next sections.

We can now express the determinant ratio as:

V

det(M [ara0, £/]) (ml — m 2)n
=  ^ > x p ( * „ )  . ° r .  T t] \  (3-20)det(M[rh0 ,U]) det (M[rh0 ,U])

V

= ^ e x p ( c n)(mo -  m 2)n
n —0

where

cn =  x n — In det(M[mo, Ĉ ])- (3.21)

The series coefficients exp(cn) have been expressed in exponential form in order 

to stress the fact that they vary by many orders of magnitude.

From Eqs.(3.17) and (3.20) the GCPF becomes a finite polynomial in mass:

Z((3,K,mQ) =  ^  < exp(cn) >P[m0 ,p,K] (ml -  m2)n =  ^  exp(Cn)(mo -  m 2)n
n = 0  n = 0

(3.22)

where the logarithm of the averaged coefficients Cn is defined to be:

exp(Cn) = <  exp(c„) >P[rn0 ,p,K) ■ (3.23)

Recalling equation(3.9) we note that for real m2, the coefficients in equation(3.20) 

are real positive numbers. The coefficients are thus identified with products of 

real positive eigenvalues A2 shifted by the real positive quantity fh2.

3.4.3 Determ ination of the coefficients of the polynom ial

We can now describe the method that has been used[3] to extract the coefficients of 

the polynomial (3.22). We are looking for real positive coefficients of the determi­

nant ratio det(M[m0]) /  det(M[ra0]) expressed as a polynomial in (mg — fh2). The 

first step is the Lanczos tridiagonalisation of the hermitian matrix M 2 through a
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similarity transformation:

X ' M 2X  = T v /2 , (3.24)

where T  is a ^  x j  real tridiagonal matrix:

(

T v  =
2

a x 0X 

01 &2 02 

02 <̂3

V 0 N -

0 N - 1  

CXn J

(3.25)

and X  is a series of column vectors X2 , x n ) .  These are the Lanczos vectors 

which are orthogonal: x\xj — 8ij and recalling Eqn.(3.24) we have:

or

M 2X  = X T

M 2 x  1 =  a \ X \  +  0 \ X 2 i

(3.26)

(3.27)

M 2Xi = 0i-iXi-i +  a,iXi +  0iXi + 1 ,2 < i < N  -  1, (3.28)

M 2xn =  0n - \X n - i +  (3.29)

These are the Lanczos equations which can be used recursively to calculate all the

di,0i and Xi. We choose x± to be a unit vector. We then take the scalar product

of Xi with the first Lanczos equation and we can obtain d\ from:

d \  — x \ M 2x  1 (3.30)

where d\ is asuumed to be real because M 2 is hermitian. We then calculate:

0iX2 = M 2x 1 — a\X\ (3.31)

and using 0:2 ^ 2  — 1 we obtain 0\ and x2■ However, we need to check that X2 is 

orthogonal to xp.

x \ 0 \ X 2  — x \ d \ X \  — x \ M 2 x  1 , (3.32)
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P\x\x2 =  a\ -  ai =  0. (3.33)

We continue in a similar way with all the other equations in turn:

a,i = x \ M 2Xi, (3.34)

/3iXi+1 =  M 2Xi -  fc-iXi-i  -  diXi , 2 < i < N  -  1. (3.35)

We calculate the final a from the last equation in order to complete the calculation:

d n = x̂ n M 2x n . (3.36)

Finally we can check that the last equation is automatically satisfied because we 

can show that:

u = M 2xn  — /?/v—i — Pn —i%n —i ~  Q*n x at (3.37)

is orthogonal to all the Lanczos vectors and must therefore be zero. In fact a good 

check on the accuracy of the calculation is that:

Pn = M (3-38)

is small.

We can now calculate the denominator det(M[m0]). The fermionic determi­

nant is invariant under similarity transformations and we can write:

det(M[m0]) =  det(M 2 4- ml) = det(XV +  ra§). (3.39)

By omitting the last p rows and columns of Tv we introduce a new p x p matrix 

Tp. Then the Laplace expansion of the determinant gives rise to the following 

recursion:

det(Tp +  ml)  =  (ap +  ml)  det(Tp_i +  ml) -  (32_x det(Tp_2 +  ml). (3.40)

Since we are dealing with variations of several orders of magnitude, it is essential to 

express the above recursion in exponential form. By defining Ep = lndet(Tp +  ?fio)
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equation(3.40) becomes:

Ep =  Ep-i  +  In [(ap +  mj) -  p2_x exp(Ep- 2 ~  £ P-i)] (3.41)

with initial conditions:

E0 =  0, Ei =  ln(ai +  m§). (3.42)

We can now obtain lndet(M [m 0]) after j  iterations of equation(3.41).

Our task now is to calculate det(M[rao]) as a power series in (ml — fh2). The 

first steps are identical to those above; writing the determinant in terms of the 

matrix TV:
2

det(M[mo]) — det (TV +  m l — fh2) (3.43)

we have, analogously to equation(3.40), the recursion:

det[Tp +  (ml -  fh2)} =  [ap +  ((ml -  fh2)} det[Tp_i +  (ml -  fh2)] (3.44)

-  det[Tp_2 +  (ml -  fh2)}.

Each minor determinant is then expressed as a polynomial in (ml — fh2):

v
det[Tp +  (ml — fh2)] = ex p (x^ ) (m l  — fh2)n. (3.45)

71=0

When p =  V/2  we recover the final expansion of interest; i.e. equation(3.20), 

with exp(xV2) =  exp(xn). This time the recursion of equation(3.44) imposes a 

recursion on the x^ ’s:

x n ] =  x n  “1} +  H aP +  exp(x{̂ : l ) -  x {P- l)) -  (3l_1e x p ( x ^ '2) -  x (P- 1))] (3.46)

with initial conditions:

4 1) =  % ( “ i). s j =  o,

xffl =  log(aia2 — (32), x ^  = log(a 1 +  a 2), x P  = 0,

from which the coefficients exp(xn) are obtained after j  iterations. Note tha t the 

coefficients exp(xn) depend on the mass parameter fh as will be described in detail
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later in this chapter. Having now calculated the coefficients x n and lndet(M [ra0]), 

the coefficients cn can be obtained through:

cn =  x n -  In det(M[m0]). (3.48)

For each given configuration we have now obtained the coefficients cn but we 

need to average them over our ensemble of thermalised configurations in order to 

obtain CVs from equation(3.23). This is also done in exponential form through 

the recursion:

+  ^  +  ( * - 1 ) ^ - . ) - ^  (3.49)

where k runs over configurations. We have dropped the subscript n of the coeffi­

cients cn and Cn and the initial condition is:

Ci = ci. (3.50)

Having obtained the averaged coefficients exp Cn, we normalize the polynomial so

that exp Co =  1. Clearly, this does not affect the roots.

This method is efficient when applied to small lattices but it meets difficulties 

for large lattices. The problem is that Lanczos algorithm is characterized by a 

rapid accumulation of rounding errors. As a result the last vector X{ obtained 

after each iteration loses its orthogonality with the earliest Lanczos vectors. The 

problem is resolved by re-orthogonalising the Lanczos vectors: we project each 

new Lanczos vector [xi —> X{ — Xj(x^Xi)\ to make it orthogonal with an earlier 

vector Xj. If we assume that all the previous vectors are approximately orthogonal 

then Xi can be reorthogonalised against all previous ones in turn and will then be 

orthogonal to all of them:

X{ y X i  sj T ^ x j ( x ]j X i )  +  X j ( x ] x k ) { x \ x i ) . . . .  (3.51)
j < i  k < j < i

However, this is a memory intensive operation and thus is not applicable to large 

lattices.
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Fortunately we can avoid the reorthogonalisation of the Lanczos vectors by 

using a method which consists in allowing the previous algorithm to proceed 

beyond the j th iteration and end up with a tridiagonal matrix T  from which all 

the eigenvalues of the fermionic matrix can be found [42].

In more detail, we perform the Lanczos algorithm without reorthogonalisation 

and allow it to proceed beyond the N th iteration. We calculate the new Lanczos 

vectors, a ’s and /Ts. The cm’s  and /Ts now form a N  x N  tridiagonal m atrix T  

with N  eigenvalues Xr from which we can sort out the true eigenvalues of M.

Empirically, we see that if N  is sufficiently large then all eigenvalues of M 

will converge as eigenvalues of T. However, T  will also have spurious eigenvalues 

which are not eigenvalues of M. The spurious eigenvalues of T  can be recognised 

by comparing them with the eigenvalues of the tridiagonal matrix T, formed from 

just the first N  — 1 iterations. The real eigenvalues of M will be eigenvalues of T  

as well as T.  However, T  will have different spurious eigenvalues than T.  This 

happens because the last component of their eigenvectors are large and they are 

therefore greatly affected by removing the last alpha and beta.

Our aim now is to calculate the eigenvalues of the matrix T  using the method 

of the Sturm sequences. The whole method is based on the following theorem: If V 

is any hermitian N  x N  matrix and Di is the minor determinant of V — IX formed 

from the first i rows and columns only, then the number of eigenvalues of V less 

than A is equal to the number of sign changes in the sequence D0, , Z)2, ...D ^

(where we consider D 0 =  1 and regard any Di = 0 as positive).

In our case we have the tridiagonal matrix T  and we can generate the ZVs by 

a recurrence relation:

Di —  ~ X)Di- 1  —  2

D0 =  1, (3.52)

D\ — cxi — A.
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or instead we can just calculate the ratios:

A
n  = (3-53)

J J i - l

which satisfy

r\ =  Gi -  A, n  = oii — A -----— . (3.54)
T i - 1

This is the way one can calculate the number of eigenvalues less than a given 

A and locate the kth eigenvalue by a series of bisections. We can start from 

an interval [Amin , A m a i ] known to contain the eigenvalue. Hence, by repeatedly

halving the interval and calculating the number of eigenvalues less than the mid­

point, to determine whether Â  is in the lower or upper half, we may home in on 

the kth eigenvalue until its value is known to within machine precision.

In order to decide whether this is a spurious or a true eigenvalue we need 

only to calculate the Sturms sequence twice for each eigenvalue on the reduced 

tridiagonal form T, to determine whether or not it has moved outside a given 

interval [A* — 5, A* +  £].

In practice a more convenient technique is to observe the final ratios of 

determinants for each bisection at the lower and higher limits i.e.: t n (X—5), r^(A + 

£). If these terms have the same sign this indicates that the interval contained (is) 

an eigenvalue of T  as well as T.  Hence, the size of the smallest interval during the 

bisection sequence, for which this is the case, can be taken as a measure of the shift 

of the eigenvalue and this is usually accurate anough to enable the identification 

of spurious eigenvalues.

We then define the coefficients r ^  through the expansion:
v_

det(M [am0, U]) =  [ | ( m j  -  m2 +  A2) =  ^  ^ i . 171 o — (3.55)
i = 1 k = 0

where we just substituted A2 =  (A? +  f h 2 ) .

This gives rise to the iteration:
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with initial conditions:

ro1) =  A?, rf> =  1. (3.57)

V  ( —)After j  of these iterations one finally obtains the coefficients exp(cn) =  rn2 . This 

is the way we calculated the coefficients exp(cn) and it is obvious that they depend 

on the mass parameter fh. Note that the coefficients exp(cn) in eqns.(3.45,3.46) 

also depend on the mass parameter fh. This dependence is expected since we 

want to evaluate the zeros in mo near fh for different choices of fh. However, the 

same zeros should appear for adjacent choices of fh if they are the true zeros of 

the polynomials.

3.5 Extraction of the zeros from the polynomial

As we have already mentioned on a lattice with N sites, the GCPF is a polynomial 

of order N/2  in ml,  and the range of its coefficients is large[3]. It is known that 

standard root finders suffer from several problems when we have this kind of 

data[14]. One of the most important problems is that, unless the starting point 

is very near a complex zero, the root finder is not expected to converge. This 

is a typical problem when one has to deal with huge variation in the values of 

the coefficients of the polynomials. Moreover, once one finds a zero, the usual 

deflation algorithm lowers the precision at each step. After several deflations the 

results become unreliable.

The “mass shift” (fh) method, that was described in the previous section, a t­

tempts to solve some of the problems previously cited. We want, for different 

choices of fh, to evaluate the zeros in mo near m by using a standard rootfinder. 

The same zeros should appear for adjacent choices of m if they are the true zeros 

of the polynomials. We have to notice that m works as a starting point for a 

Taylor expansion of the GCPF in ml — fh2. If ml  — m2 is small enough the last 

terms in the polynomial give negligible contributions. For a given m it is not
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possible to determine accurately all the zeros of the GCPF but only those which 

are in the neighbourhood of fh.

The zeros were found by using two standard root finding algorithms on the 

equivalent sets of polynomials generated as in equation(3.22) :

v_

- » ” ?)" (3-58)
71=0

for a set of fhi in the region where we expect the lowest zeros to occur. These 

zeros in the bare mass we label as yi in the following chapters.

We have to notice that we used two rootfinders to determine the zeros of the 

GCPF: one based on Muller’s algorithm[14] and a second one based on Newton- 

Aberth algorithm[44]. With both of these rootfinders we could handle complex 

coefficients of the polynomials when complex values of fh were introduced. The 

agreement beetween the two rootfinders, based on different algorithms, was very 

good. In our calculations we used, for lattices up to 8 3 — 103 the Newton-Aberth 

rootfinder, because it appeared to be a lot (2 — 3 times) faster. For simulations 

on larger lattices the other rootfinder was used.

One has to notice that, both our rootfinders could handle the problems as­

sociated with deflation and slow convergence. However, they still suffered from 

the fact that if one looks for zeros further away from a given m, more and more 

coefficients of the polynomial control the position of the zero. Thus the value 

of the GCPF Z will be sensitive to delicate cancellations among higher powers 

in the polynomial expansion. In this way spurious zeros may appear. Only the 

zeros that reproduce themselves as fh2 is varied were taken as genuine zeros of the 

GCPF.

The errors in the Lee-Yang zeros were estimated by a Jacknife method. The 

coefficents for each lattice size were averaged to produce 6  subsets of averaged 

coefficients, each taking into account 5/6 of the measurements. These 6  different 

sets of coefficients give 6  different results for the Lee-Yang zeros from which the
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variance was calculated.

Finally we would like to note that, in the calculation of the Lee-Yang zeros of 

the Non-Compact QED GCPF polynomial we also used a multi-precision package 

MPFun[43] which was implemented in the Newton-Aberth rootfinder. Knowing 

that we had to deal with a huge variation in the values of the coefficients of 

the polynomials, this package allowed us to to consider approximately known 

coefficients. We could use an input precision, dn, which defined the polynomial 

neighbourhood of the GCPF polynomial, i.e, the set of all the polynomials with 

coefficients having dn common digits with the corresponding coefficients of the 

GCPF polynomial. For example, we could choose 15 common digits (as in the 

standard machine precision) up to 500 common digits.

3.6 Chiral Condensate and Lee-Yang Zeros

The Lee-Yang zeros in the strong coupling region of the x U ^ 3 model are purely 

imaginary (as we will describe in the next chapter) and evenly spaced along the 

imaginary axis. Therefore, we can parametrize these zeros as:

where a and b are constants and n = 0 ,1 ,2 ....  Using the distribution(3.59) it is

zerosn ±i(a  +  nb) (3.59)

possible to calculate the chiral condensate < i/iip > in the infinite volume limit.

For the xU4>3 model:
v_
2

where V  = L3 is the volume of the lattice and x = y.  

Hence:

( 3 .62)
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or

< 'ibib >= —
^  Vb

,Vbx  +  a.
arctanf----------- )

m 0

VbHi+a
m0

(3.63)
m Q

For a first order phase transition in the infinite volume limit at m 0 =  0 a, b 

should scale with some positive power of the inverse volume V.

We now introduce :
a'

a = v ’

and in the infinite volume limit (V —¥ oo) equation(3.63) becomes:

< W > = 1  a rc ta n f-^ -) ,
b  zttlq

where in the chiral limit (mo =  0) we obtain:

< ipip >—> ■

(3.64)

(3.65)

Hence, for a first order phase transition, in the infinite volume (I7 —y oo) and 

chiral (mo =  0) limit, b should scale as

b ^ V ~ K (3.66)

3.7 Scaling exponents and the order of the tran­

sition

Although, the complete set of the zeros is needed in order to reconstruct the 

thermodynamical functions of the model, the critical properties of the system are 

determined by the zeros lying closest to the real axis.

The zero with the smallest imaginary part we label y\. It is also called the 

edge singularity. With increasing finite volume it converges to the critical point.



Chapter 3. Zeros o f the Grand Canonical Partition Function 62

For a continuous phase transition, the position of the zeros closest to the real axis 

in the complex plane, is ruled by the scaling law:

yi{(3, k, L) -  yR(/3, k , oo) =  A;ZT1/s, (3.67)

where the A^s are complex numbers. The exponent s = s({3, k) describes the 

finite size scaling of the correlation length. For the xU(j>3 model (and for the 

non-compact QED in 4D which will be described in chapter(7))

yR{(3, k , 0 0 ) =  0 (3.68)

in the strong coupling region and we ignore it in the following. We do not exlude 

that it could be possible to have yR{(3, k , 0 0 ) /  0 in the weak coupling region of the 

xU(f)3 model. However, our data (up to 123 lattices) show that yR(j3,K} 0 0 ) —»■ 0 

as the lattice volume increases.

It immediately follows that the real and the imaginary parts of the zeros should 

scale independently with the same exponent. In particular, for the zero y\ closest 

to the chiral phase transition (at mo =  0)

Im y i (/3, /c, L) = A rL ~l/s, (3.69)

with a similar scaling behaviour for Re y\ (/?,«, L) via A R. In practice the real 

part of the zero is much smaller than its imaginary part or is identically zero. 

So Eqn.(3.69) usually provides a more reliable measure of the exponent than the 

scaling of the real part.

Although the above scaling law was originally established for the case of a con­

tinuous phase transition, it can also be extended to that of a first order phase tran­

sition. Since there is no divergent correlation length, the exponent is determined 

only by the actual dimension of the system. In this case, for a three-dimensional 

model we expect s =

At the critical point (k = nc) we expect s to be equal to £, because the fermion 

correlation length should be the relevant one. In the symmetric phase (« > kc)
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Kc K

Figure 3.1: Schematic plot of the exponent s in infinite volume (full lines and dot) 

and the effective s in finite volume (dashed line).

K>K(
In y,

:=k (K<K(

In L

Figure 3.2: Expected finite size scaling of the zero yi with lattice size.

we expect scaling with s =  1, because amp  oc amo. This behaviour is indicated 

in Fig. (3.1) by the full lines and the dot.

In practice it is important to understand the scaling deviations on a finite 

lattice. The expected behaviour is shown schematically in Fig.(3.2). Far away 

from the critical point we expect linear scaling in the log-log plot with s = 1/3 

in the broken phase, and s = 1 in the symmetric phase. At the critical point we 

expect linear scaling and the exponent should be s = i>. These expectations are 

indicated by the full lines. Close to the phase transition, we expect a crossover. 

For small lattice sizes the exponent should be close to 9 and then change to 1/3 

and 1, respectively, if the lattice size is increased and the true scaling shows up.
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This is indicated in Fig. (3.2) by the dashed lines. For a set of lattice sizes this 

defines an effective s which smoothly goes through v at the critical point. Such 

an effective s is represented in Fig. (3.1) by a dashed line.

Therefore, in order that the critical exponent can be determined, we must 

either know the position of the critical point accurately or have many simulations 

on large lattices so that the scaling deviations can be measured accurately. In 

practice the limited knowledge of the position of the critical point leads to the 

largest uncertainty in the determination of v by this method.



Chapter 4 

Strong Coupling Calculations

4.1 M otivation

As we have already mentioned in the introduction, strongly coupled lattice [1] 

gauge theories are interesting candidates for new mass generating mechanisms be­

cause they tend to break chiral symmetry dynamically. The question is, whether 

these models are nonperturbatively renormalizable at strong gauge coupling so 

that the lattice cutoff can be removed. If so, the resulting theory might be applica­

ble in the continuum and constitute a possible alternative to the Higgs mechanism 

[!]■

4.2 Universality at Strong Coupling

At strong gauge coupling we can clearly see the chiral phase transition and we 

investigate the scaling behaviour and the universality along this line. The Lee- 

Yang zeros, the chiral condensate and the fermion mass are determined for various 

values of k, at f} =  0.00 and 0.80. Investigating the universality along this line 

means that we are looking at the scaling of the data at (3 = 0 as a reference and 

compare it with the scaling found at (3 = 0.80. At (3 = 0 the scalar and gauge

65
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fields can be integrated out exactly and we end up with a lattice version of the

GN3 model[16]. This model is known to have a chiral phase transition at which

it is non-perturbatively renormalizable [15].

4.2.1 Equation of State

The critical exponents of the chiral phase transition are determined by using the 

EOS for amp  and (xx )[18][20]. The conclusions seem to depend, to some extent, 

on the choice of ansatz for the extrapolation of amp  and (xx) to infinite volume, 

although, simulations on lattices up to 243 were performed. For the extrapolation 

three approaches were tried[20]:

amp(L) = amp(oo) +  A , (4.1)
± J

amp(L) = amp{oo) +  A y  , (4.2)

amp(L) = am p (0 0 ) + A y  exp (—amp (0 0 ) L ) . (4.3)
Jj

Each has two free parameters: amp(0 0 ) and A. Fig.(4.1) shows, for example, the 

data for amp  at /? =  0.80 and amo =  0.01 plotted against 1 /L2.

In table (4.1)[20] one can see the comparison of the x 2’s per degree of freedom 

using the data on 163, 203 and 243 lattices, at the values of (3 and k at which 

there is good statistics. It turned out that the results for these lattice sizes are 

not conclusive as to which extrapolation formula should be used, because, for each 

ansatz, all x 2 per degree of freedom are usually below 1.

The fit with eq.(4.1) was adopted for the extrapolations because it is signifi­

cantly preferred if compared with the 123 data. However, data from the 123 lattice 

was not included. Such an extrapolation is indicated in Fig. (4.1) by the dotted 

lines.

For the chiral condensate the finite size effects are in general smaller and 

with opposite sign. Again, consideration of the 123 lattices favoured a fit ansatz 

analogous to eq.(4.1).
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Figure 4.1: Data for am? at /? =  0.80 and amo = 0.01 plotted against 1 /L2. The 

dotted lines are a fit with eq.(4.1) to the data with L > 16.
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p K am o

Fit 1

amF x 2

Fit 2

amF X2

Fit 3

amF x 2

0.00 0.95 0.01 0.269(3) 0.30 0.256(7) 0.53 0.278(2) 0.01

0.00 1.00 0.01 0.194(4) 0.22 0.180(9) 0.45 0.202(2) 0.01

0.00 1.05 0.01 0.132(5) 0.23 0.111(10) 0.04 0.142(3) 0.62

0.00 0.95 0.02 0.337(3) 0.41 0.327(6) 0.22 0.343(1) 2.07

0.80 0.40 0.01 0.441(8) 0.12 0.437(2) 0.15 0.445(3) 0.03

0.80 0.42 0.01 0.276(8) 0.01 0.247(16) 0.08 0.295(4) 0.31

0.80 0.43 0.01 0.215(5) 0.07 0.191(9) 0.01 0.230(2) 1.33

0.80 0.45 0.01 0.122(2) 0.01 0.087(1) 0.14 0.137(3) 0.36

Table 4.1: Results of the fits to the finite size behaviour at different couplings and 

masses on 163, 203, 243 lattices. The extrapolated infinite volume mass amp =  

amF{oo) and the x 2 per degree of freedom for the three fits are given: with eq.(4.1) 

(Fit 1), eq.(4.2) (Fit 2) and eq.(4.3) (Fit 3).
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amp:

p K c V V A B X2

0.00 0.987(33) 0.91(22) 0.43(8) 1.1(3) 0.38(8) 0.72

0.80 0.425(5) 0.78(14) 0.40(5) 3.6(6) 0.33(5) 0.82

(xx)-

Table 4.2: Results of fits at (3 = 0.00 and 0.80 using the equations of state. The 

upper table shows the results of the fit of amp based on eq.(2.14), the lower table 

those of {xx) based on eq.(2.13).

Therefore the ansatz of eq.(4.1) was used to extrapolate all the data for amp 

and (xx)j obtained on 163 and larger lattices, to infinite volume. It is very im­

portant to notice that the results presented in the following change somewhat 

quantitatively, but not qualitatively, if a different extrapolation formula is used.

The data at different k, and amo, extrapolated to the infinite volume, were 

analyzed by means of the EOS. Only the data at amo — 0-01 and am 0 =  0.02 

were included. The chosen k range was 0 .80 ... 1.05 for (3 = 0.00 and 0 .38 ... 0.47 

for (3 =  0.80[20].

First the data for amp and (xx) were analysed independently and fitted 

to their corresponding EOS (2.14) and (2.13). The results are shown in table 

(4.2) [20]. As can be seen, for both /?’s the critical n values kc are identical within 

the error bars.

As a next step a simultaneous fit with one common kc for amp  and (x x ) (table 

4.3) [20] was performed. A very good fit to all the data was obtained.

Then the scaling relations were checked (2.19). Calculating (3 and 6 with v

P KiC Px 6 R S x 2

0.00 0.983(12) 0.56(5) 3.1(3) 1.3(2) 1.1(3) 0.84

0.80 0.429(7) 0.56(10) 3.0(5) 4.4(12) 2.4(13) 0.58
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p Kc p V Px S X2

0.00 0.983(12) 0.88(8) 0.42(3) 0.56(5) 3.1(3) 0.71

0.80 0.425(4) 0.78(11) 0.40(4) 0.47(5) 3.4(3) 0.71

Table 4.3: Results of fits of amp and (xx) at /? =  0.00 and 0.80, using both 

equations of state with a common kc.

P kc v v x 2 Px ^

0.00

0.80

0.981(6) 0.79(2) 0.437(5) 2.2 

0.425(2) 0.75(2) 0.431(6) 2.3

0.56(4) 3.2(2) 

0.51(4) 3.4(2)

Table 4.4: Results of the fits using the equations of state at (5 = 0.00 and 0.80 

with one kc and the scaling relations (2.19) at /3 = 0.00 and 0.80.

and gives (3X = 0.54(20) and S = 3.8(15) for (3 = 0.00 and /?x =  0.39(25) and 

6 =  5(3) for (3 = 0.80. The agreement with the fit is quite good. Note that in 

(2.19), dv =  3z> is close to 1 and hence the statistical errors are increased.

A third fit was also tried in which the validity of the scaling relations was 

assumed (2.19). The result is shown in Figs.(4.2) and (4.3) and summarized in 

table(4.4)[20]. As one can see, the quality of the fit is still good and x 2 are 

reasonable. The figures also show the prediction of the fit for the fermion mass 

and chiral condensate at am0 = 0.04 and 0.06. Only small deviations are visible. 

It is therefore concluded that (2.19) is consistent with the data.

The values of the exponents z/, z>, and (3X in table (4.2) and table (4.3) agree 

with those in table (4.4). Thus all three fitting procedures gave consistent results 

at each (3.

The most important observation is that the exponents obtained at (3 =  0.00
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Figure 4.2: (a) Fermion mass and (b) chiral condensate for (3 =  0.00. The data 

are the extrapolation into the infinite volume. The fit assumes the validity of the 

scaling relations and is described in the text. The parameters are given in table 
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0 K c V V X2 Px P

0.00

0.80

0.968(9) 0.76(3) 0.426(8) 0.89 

0.419(3) 0.66(4) 0.409(10) 0.64

0.50(6) 3.6(3) 

0.37(6) 4.4(6)

Table 4.5: Results of fits, when eq.(4.2) is used for the extrapolation to infinite 

volume. As in table (4.4), the equations of state with common kc and the scaling 

relations (2.19) are used.

and (3 = 0.80 agree within errors which is a strong signal that the chiral phase 

transition is in one universality class at these /Ts and probably also for those in 

between. The difference in the exponents of the last fit, which is somewhat larger 

than the pure statistical errors may for example be the result of small scaling 

deviations.

To estimate the uncertainty due to the choice of the extrapolation formula, 

the above procedures were repeated using the extrapolation (4.2). The results are 

given in table(4.5). The x 2’s are even smaller and the exponents differ by a little 

more than one standard deviation. Although the agreement for the two /Ts is less 

good, it is still compatible with universality if one takes into account that the 

error bars only reflect the statistical errors and not the uncertainty due to scaling 

deviations.

4.2.2 The Finite Size Scaling of the Lee-Yang Zeros

The Lee-Yang zeros were found to be purely imaginary for all k, values in the 

strong coupling region. For small k they are equally spaced, consistent with a 

strong first order transition in the condensate as the bare mass amo goes through 

zero.

Figs. (4.4) [20] and (4.5) show the finite size scaling behaviour of the edge sin-
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L

Figure 4.4: Imaginary part of zero y\ as function of the lattice size for different 

k at p = 0.00. The different straight lines should help to investigate the linearity 

and claim only for k = 0.975 «  kc (full line) to describe the data well.

gularity at various k, for (3 = 0.00 and 0.80, respectively. Our data confirm the 

expectations presented in chapter3 and Fig.(3.2). Close to the critical point we 

see the expected crossover: for small lattices the exponent is close to v and shifts 

for increasing lattice size to the exponent 1/3 or 1.

At small k, the exponent s is consistent with a first order phase transition, 

s > | .  At large k is s < 1. Close to the critical point, determined in the previous 

section and given in table (4.4), the data scale linearly on the log-log plot allowing 

determination of za

At the k, points closest to kc we expect s ~  v. At P =  0.00 we find at 

k = 0.975 ~  kc = 0.981(6) the exponent s = 0.440(4) in excellent agreement with 

v = 0.437(5), as determined in the previous section. For j3 = 0.80 we did the 

simulations at k, = 0.43 slightly larger than the kc = 0.425(2) obtained from the
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Figure 4.5: Imaginary part of zero y\ as function of the lattice size for different k 

at P =  0.80.
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Figure 4.6: ln[Im(yi)] +  \ j v \ n L  with v — 0.440 as a function of the lattice size 

for different ft’s at (3 = 0.00. The dashed straight lines are linear extrapolations 

to the data points at the lowest two values of L.

EOS. We found s = 0.431(4), in good agreement with v =  0.431(6) from the EOS.

If one analyses these plots without the knowledge of the critical point deter­

mined with the EOS, the critical point can also be determined by looking for lin­

earity of \n[Im(yi)] as a function of InL. For this purpose we show in Figs.(4.6) 

and (4.7) the quantity \n[Im(yi)] +  1 /z> In L. The addition of the second term 

makes the plots approximately horizontal and so allows us to enhance the vertical 

scale making the error bars clearer. In the figures we have used i> = 0.440(3) 

and 0.490(4), respectively. The dashed lines are a linear extrapolation of the data 

points at the two lowest L-values. They provide a guide as to the linearity of the 

data.

Figs.(4.6) and (4.7) suggest a larger ftc and s ( k c) than those obtained from the 

EOS analysis. For example, at (4 = 0.80, Fig. (4.7) would suggest ft =  0.45 as the
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Figure 4.7: As in the previous figure but at (3 = 0.80 with z> = 0.490.

point closest to kc, with D ~  s(0.45) =  0.490(4). However, the difference between 

the two methods of analysis is about 10% which is the same size as the statistical 

error.

All in all, this demonstrates the reliability of the methods we have used. Both 

(very different) methods agree rather well and their combination is very useful.

4.2.3 D ensity of the Lee-Yang Zeros

The Lee-Yang zeros, in the strong coupling region, and near the physical mass 

region (m > 0 and real) are imaginary. This suggests that any phase transition 

will only occur at zero fermion mass.

As discussed in chapter(3), in the infinite volume limit and in the chiral limit, 

the Lee-Yang zeros control the fermion condensate, which is given by p(0), the 

density of zeros at the origin. For large enough lattices, this unrenormalised 

density corresponds to the slope of the straight line fit of the lowest zeros, at fixed
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Figure 4.8: The lowest zeros on the 103 lattice plotted in sequence for (5 = 0.00. 

(/?, k). It is given by:

(4.1)

where N is the index of the zeros.

Figure(4.8) shows the lowest zeros plotted in sequence on the 103 lattice for 

P = 0.00 and different values of «. Hence, we estimate the transition to occur at 

kc «  0.95.

We also investigate the separations between the second and third, and the 

third and fourth zero for k =  0.95. The separations scale with respect to the 103 

lattice as V a with a > — 1, indicating a transition different than first order (recall 

eqn.(3.66)), as expected.

The value of kc determined using the densities of the Lee-Yang zeros is very 

close to the value obtained using the EOS and the value obtained from the finite 

size scaling of the Lee-Yang zeros. The difference might be due to the fact that 

larger volumes need to be simulated.
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Figure 4.9: The lowest zeros on the 123 lattice plotted in sequence for f3 = 0.80.

Figure(4.9) shows the lowest zeros plotted in sequence on the 123 lattice for 

/3 = 0.80 and different values of n. This time we estimate the transition to occur 

at kc «  0.43. Investigating again the separations between the second and third, 

and the third and fourth zero for n — 0.43 we find that the seperations scale with 

respect to the 123 lattice as V 01 with a  > — 1, indicating a transition different 

than first order (recall eqn.(3.66)), as expected.

This value of k,c is consistent with the value obtained using the EOS and is 

very close to the value obtained from the finite size scaling of the Lee-Yang zeros. 

Again the difference might be due to the fact that larger volumes need to be 

simulated.
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4.3 Summary of the Strong Coupling Simula­

tions

Our data are a good indication that the chiral phase transition of the x ^ 3  

model is in the same universality class at {3 = 0.00 and (4 = 0.80. Assuming this 

universality we combine the results for exponents at both (3 values and determine 

the exponents of this chiral phase transition to be v =  0.75(10) and v =  0.43(2). 

The errors take into account the uncertainties discussed above. These values of v 

and v correspond to (3X = 0.51(11) and 8 = 3.45(71). We note that the position 

of the critical point at f3 = 0, as well as the results for 8 and (3 are compatible [18] 

with those obtained for the N f =  2 case in [30] {(3X =  0.57(2) and 5 =  2.75(9)). 

In that work the same action (2.4) has been simulated, though in a somewhat 

different representation by means of auxiliary fields than the (3 = 0 limit of the 

xU(f)3 model.

The universality might be expected at small (3 because of the convergence of 

the strong coupling expansion. But our data are (to our knowledge) the first 

indication that this is true for a large (3 interval.

This result indicates that the xU fo  model belongs to the same universality 

class as the three-dimensional Gross-Neveu model which is known to be (non- 

pertubatively) renormalizable [15]. Hence the xU ft3 model is renormalisable and 

it is a nontrivial example in three dimensions for the shielded gauge-charge mech­

anism of fermion mass generation proposed in [1 ].

The universality on the other hand also means that, with respect to the three- 

dimensional Gross-Neveu model, nothing substantially new happens at small and 

intermediate (3 and no new physics arises on scales much below the cutoff. The 

scalar field shields the fermion x  giving rise to the fermion F  equivalent to the 

fermion of the four-fermion theory. We find no indication that composite states 

consisting only of fundamental scalars or gauge fields, which would not fit into
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the Gross-Neveu model, scale at the chiral phase transition.



Chapter 5

Interm ediate-W eak Coupling 

Calculations

5.1 M otivation

As we saw in the previous chapter the bosonic fields appear to be auxiliary at 

strong gauge coupling, as they are in a rigorous sense [16] at (3 = 0. However, as 

indicated by the results in four dimensions [12, 13], this may change as the gauge 

coupling gets weaker. Our aim is to perform an explorative study and see how far 

the methods applied succesfully at strong coupling can be of use also at weaker 

coupling.

5.2 Interm ediate Coupling Simulations

We have already presented our data for (3 = 0.00 and ft = 0.80 indicating that 

the chiral phase transition of the \U  model is in the same universality class at 

these two (3 values. We also noticed in the previous chapter that the Lee-Yang 

zeros were imaginary for both these (3 values. Our aim now is to investigate at 

which value of the gauge coupling the Lee-Yang zeros become complex and what

81
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their behaviour is. Therefore, we performed our simulations with increasing {3 

coupling at ac =  0.33. We noticed that the Lee-Yang Zeros became complex for 

/3 = 1.25 and k = 0.33 on a 43 lattice. The Lee-Yang zeros were determined for 

various values of k at (3 =  1.25 in order to see any chiral phase transition at this (3 

value and investigate if the critical exponent of the finite size scaling of the edge 

singularity is the same as for (3 — 0.0 and (3 = 0.80.

5.2.1 The Finite Size Scaling of the Lee-Yang Zeros

The Lee-Yang Zeros were complex (with a very small real part) at (3 = 1.25 and 

ac =  0.33 on a 43 lattice but they became imaginary for larger lattices (63 — 83). 

We noticed this behaviour of the Lee-Yang Zeros for almost all the k values at 

(3 = 1.25 at which we performed our simulations. Fig.(5.1) show the finite size 

scaling behaviour of the edge singularity at various ac for (3 = 1.25. Our data 

confirm again the expectations presented in chapter(3) and Fig. (3.2). Close to 

the critical point we see the expected crossover: for small lattices the exponent is 

close to v and shifts for increasing lattice size to the exponent 1/3 or 1.

Therefore, we analysed our plot without any previous knowledge of the critical 

point. As we have already mentioned in the previous chapter the critical point 

can be determined by looking for linearity of \n[Im(yi)] as a function of InL.

For this purpose we show in Fig.(5.2) the quantity \n[Im(yi)\ +  1/z/lnL. The 

addition of the second term makes the plots approximately horizontal and so 

allows us to enhance the vertical scale making the error bars clearer. In the figure 

we have used v =  0.490(7). The dashed lines are a linear extrapolation of the 

data points at the two lowest L-values. They provide a guide as to the linearity 

of the data.

Figs.(5.1) and (5.2) would suggest k = 0.31 as the point closest to /cc with 

v ~  s(0.31) =  0.490(7). This value of v agrees very well with the value obtained 

from the finite size scaling of the edge singularity at (3 =  0.80 and k, = 0.45 and
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Figure 5.1: Imaginary part of zero y\ as function of the lattice size for different k,

at (3 = 1.25. The different straight lines should help to investigate the linearity.
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Figure 5.2: \n[Im(yi)] +  l/i> \nL  with z> =  0.49 as a function of the lattice size for

different /Fs at (3 =  1.25. The dashed straight lines are linear extrapolations to

the data points at the lowest two values of L.
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is close to the value of v  obtained at /3 = 0.00 and k = 0.975. Hence, at (3 = 1.25, 

the analysis using the finite size scaling of the edge singularity suggest a value 

of v close to the one at (3 =  0.00 and (3 = 0.80 indicating that the chiral phase 

transition might be in the same universality class at these three [3 values.

We have to notice that the Lee-Yang zeros at (3 = 1.25 and various «’s (on a 

43 lattice) were determined using the information about the behaviour of the edge 

singularity at intermediate coupling, described in the following chapter.

5.3 Weak Coupling Simulations

5.3.1 Condensate and fermion mass

To investigate the chiral properties of the weak coupling region the chiral conden­

sate and the fermion mass have been used[18] [20].

Fig.(5.3) shows the fermion mass and condensate at k, = 0.25 as a function of 

at three values of the bare fermion mass. The neutral fermion mass decreases 

for increasing (3 but then stabilizes with amp > 1 . So it is clearly nonzero at all 

(3 and again only weakly dependent on the bare fermion mass. The condensate 

is large at small (3 (the Nambu phase) but rapidly decreases with (3 and becomes 

very small (zero?) in the chiral limit for (3 > fix — 1.3. Thus here a new, weakly 

coupled region is encountered.

In order to see how this region is related to the Higgs phase at large «, the 

fermion mass and condensate are shown in Fig.(5.4) at (3 = 2.0 and three values 

of the bare fermion mass. For nonvanishing bare mass, where the simulations 

have been performed, the mass of the neutral fermion is large for k < Kx — 0.27 

whereas it is small for larger k . It is only very weakly dependent on the bare 

fermion mass and therefore we expect this behaviour to persist in the chiral limit. 

For k > Kx its small nonzero value probably vanishes in the infinite lattice size 

limit.
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Figure 5.3: (a) fermion mass and (b) chiral condensate for different small amo as 

function of /3 at k, = 0.25 on the 8216 lattice.

The condensate, as expected, does depend strongly on the bare mass amo but 

does show a crossover behaviour at k = k,x  with (xx )(amo)K<KX < (xx )(amo)k>kx - 

However, at large k we believe that we are in the Higgs phase where the conden­

sate is zero in the chiral limit. It is therefore conceivable that, in this limit, it is 

zero at /3 =  2.0 for all k . It is very surprising, however, that, at fixed bare fermion 

mass and lattice size, the condensate tends to slightly increase with increasing k;, 

quite in contrast from its behaviour in the strong coupling region. Of course, this 

can change in the infinite volume and chiral limit.

Fig. (5.5a) confirms the weak dependence of the fermion mass amp on the bare 

mass. At k, = 0.22 below k,x -> the fermion mass is large and stays clearly nonzero 

at amo ~ > 0- Above Kx, at k, = 0.34, the fermion mass is too small for the lattice 

size used and might vanish in the infinite volume limit.

Fig.(5.5b) shows that, at /3 = 2.0 and k, just below or above k j ,  the condensate
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Figure 5.4: (a) fermion mass and (b) chiral condensate for different small amo as 

function of k at (3 = 2.00 on the 8216 lattice.

extrapolates linearly in amo to a very small value or zero. As we shall see later 

in this chapter, this is due to the Lee-Yang edge singularity in this region being 

relatively distant from the real axis.

A naive extrapolation to the chiral limit would thus classify the region at small 

k, (k, < Kx) and large (3 (/3 > flx) as a phase with zero chiral condensate and 

nonvanishing fermion mass. But the condensate could also remain very small but 

nonvanishing. Because of this uncertainty we label this region X. Its boundaries 

/3x and Kx may slightly depend on n and /3, respectively.

It would be surprising if in the region X the fermion mass was different from 

zero with unbroken chiral symmetry. There are essentially two scenarios avoiding 

such a paradox:

1) Chiral symmetry breaking persists at small k also for (3 > (5X - X is light, 

because the chiral condensate is very small, though nonzero. F  is a bound state of
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of amo at (3 = 2.00 on the 8216 lattice.

(f) and x- The binding might be quite loose, presumably by a weak linear confining 

potential, which one expects in pure U(l) in 3d [21, 31, 32]. F  is heavy essentially 

because <j> is heavy. The transition at /? =  (3x is probably a cross-over, but a 

genuine phase transition is not excluded.

In this scenario the region X must be separated by a chiral phase transition at 

k x {(3) from the Higgs phase. As the data around k,x  do not indicate any metasta­

bility, it would be a higher order transition and a continuum limit should be 

possible. Thus an interesting continuum limit with a massive unconfined fermion 

might exist.

2) Chiral symmetry is restored at f3 = px  and the chiral condensate thus 

vanishes identically and x is massless in X. The F  channel gets a contribution 

from the two-particle state 4> and x- This contribution appears as a massive state 

because 4> is heavy. This state presumably cannot be a bound state in the chiral
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limit because of the old argument of Banks and Casher [24]: a fermion on a closed 

orbit must be able to flip its helicity, i.e. existence of the bound state implies 

chiral symmetry breaking. We cannot distinguish between a bound state F  and 

a two-particle state </> + x  looking at the F  channel only (as we did). X could be 

connected to the Higgs phase, where we expect the same spectrum.

Which of these scenarios is true might be investigated in the limit case k, = 0, 

i.e. in the three-dimensional compact QED. The results in the non-compact case 

[23, 25, 27, 28] might be applicable at weak coupling also to the compact one. As 

the number of fermions in our case is below the critical number ~  3.5 of fermions 

in the noncompact model, the more interesting scenario 1) seems to be preferred.

5.3.2 The Lee-Yang zeros at Weak Coupling

In an attem pt to clarify the situation at weak coupling we investigate the Lee- 

Yang zeros in the region X[18][17]. The edge singularity y\ has a nonzero real 

part in this region. The zeros must appear in conjugate pairs. We define the edge 

singularity in this region to be the zero with smallest positive imaginary part and 

count each pair only once.

The finite size scaling of the lowest zeros is shown in Figs.(5.6) (5.7)[20],(5.8), 

for (3 = 2.00 and « =  0.00, k =  0.15, k, = 0.27, respectively. All these three points 

are points in the the region X.

The real part of the low lying zeros is clearly nonvanishing. Then the first 

two zeros have within the numerical precision identical imaginary part but their 

real parts differ by a factor of about 3.5. The first two zeros have imaginary 

parts so close as to be indistinguishable within statistical error. We have assumed 

continuity in the behaviour of their real parts as a function of lattice size when 

plotting Figs.(5.6),(5.7), (5.8).

These imaginary parts scale linearly in the log-log plot with an exponent s ~  

0.7. Their real part has somewhat larger errors but scales within the numerical
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Figure 5.6: (a) Real and (b) imaginary part of the first two Lee Yang zeros (sorted 

by their positive imaginary part) for (3 =  2.00, k = 0.00 as function of lattice size.

precision with the same exponent. This pattern for the edge singularity is found 

throughout the region X as can be easily seen in Fig(5.9) for the imaginary part.

Figs.(5.10),(5.11,5.12), show the Lee-Yang zeros for (3 =  2.00 and k =  0.00, 

k =  0.27, respectively, in the complex fermion mass plane. One can notice here 

the indistinguishable imaginary parts of the complex zeros, specially for the edge 

singularity.

Fig. (5.13) shows the behaviour of the imaginary part of the edge as a function 

of lattice size at k = 0 for various (3. There is a crossover between (3 = 1.25 and 

(3 =  1.88, i. e. from the Nambu phase, where the imaginary part of the edge zero is 

small and the transition first order, to a region where the imaginary part is large 

(with nonzero real part). No scaling deviations can be observed for (3 > 1.88. In 

the region X the critical exponent has a very weak dependence on (3 and increases 

only very slowly on further increase of k .
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2.00, k, = 0.15 as function of lattice size.

If the scaling in the region X is different from that in the other regions, the most 

naive expectation would be that the exponent s is universal. This is compatible 

with our data at ft «  2 but not at (3 = 5. Further simulations on larger lattice 

are necessary to confirm this difference.

It is to our knowledge the first model in which scaling of the real part of the 

edge singularity to zero has been observed.

Summarizing, the region X can be distinguished from the Nambu and Higgs 

phase by the edge singularity having a real part (on a finite lattice) and a scaling 

which cannot be described by either an exponent s = 1/3 or s =  1. If the 

exponent s is different from those in Nambu and Higgs phases then the region X 

is presumably a new phase.
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Figure 5.8: (a) Real and (b) imaginary part of the first two Lee Yang zeros (sorted 

by their positive imaginary part) for (3 =  2.00, k = 0.27 as function of lattice size.

5.4 Summary of the Interm ediate and Weak Cou­

pling Simulations

Our investigations, at weak coupling, showed that there is a region at small «, 

where the chiral condensate is zero within our numerical accuracy but the neu­

tral fermion mass is large, called the X region. This region can analytically be 

connected with either the Nambu or Higgs phase but it may well be a separate 

phase. If chiral symmetry is not broken in this region, then the mass observed in 

the fermion channel is presumably the energy of a two-particle state. Otherwise 

this region might be an interesting example of dynamical mass generation of un­

confined fermions. If the continuum limit is taken at the Higgs phase transition, 

the gauge fields should play an important dynamical role and the model would 

not fall into the universality class of the three-dimensional Gross-Neveu model. A
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imaginary part) for (3 = 2.00 and different k’s as function of lattice size.

further investigation of this possibility is highly desirable.

Our investigations at intermediate coupling, using only the Lee-Yang Zeros, 

showed that there are indications that the chiral phase transition is in one univer­

sality class for all (3 < 1.25: that of the three-dimensional Gross-Neveu model. An 

analysis of the Lee-Yang Zeros using larger lattices would be necessary in order 

to clarify the chiral properties at intermediate coupling.
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Figure 5.10: Lee Yang zeros for (3 = 2.00 and k =  0.00 in the complex fermion

mass plane for V  = 83.
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mass plane for V  =  83.



m
(y

i)

Chapter 5. Intermediate-Weak Coupling Calculations 96

L ee  Y a n g  Z e r o s  /? =  2 . 0 0  k = 0 . 2 7  L= 12

- . 2

- . 3

_ Y Y _
- . 4

- . 0 4 - . 0 2 0 .02 . 0 4

Re(ys)

Figure 5.12: Lee Yang zeros for (3 = 2.00 and k =  0.27 in the complex fermion

mass plane for V = 123.
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Chapter 6 

Accurate determ ination of the  

Lee-Yang Zeros

6.1 M otivation

As mentioned earlier, in the region X, the chiral condensate is very small, which 

suggests that the Lee-Yang zeros cannot be near to the physical region. It is 

of interest to investigate if the closest zeros can be determined with sufficient 

accuracy to ascertain their finite size scaling behaviour (and hence that of the 

condensate) in the weak coupling region.

However, we also investigated how accurate the closest zeros are determined 

in the strong and intermediate coupling.

It appears that the closest zeros in the weak and strong coupling region are 

determined with very  good accuracy, and therefore we can ascertain their finite 

size scaling behaviour as described in chapters(4, 5).

The behaviour of the edge singularity in the intermediate coupling region is 

desribed later in this chapter.
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6 .2  The Lee-Yang zeros at Weak Coupling

As mentioned in chapter(5) the Lee-Yang zeros in the weak coupling region are 

moving in the complex plane. We have defined the edge singularity, in this region, 

to be the zero with the smallest positive imaginary part and count each pair 

only once. The real part of the low lying zeros is clearly nonvanishing and the 

first two zeros have imaginary parts so close as to be indistinguishable within 

statistical error. Our aim is to investigate any (unexpected) dependence of the 

edge singularity on the number of measurements(N), the thermalisation of the 

system from a cold(hot) start, the number of iterations used to thermalize the 

system(T), the “updating” mass am0 and the units of Monte Carlo Time(I) used 

between configurations for each measurement of the coefficients for fixed (/?,«;).

As can been seen from table(6.2)) for /3 = 2.00 and n = 0.00 (on a 43 lattice) 

the edge singularity seems to behave very well and no significant dependence on 

any of the previous parameters was found. However, one has to notice again that 

the imaginary parts of the first two zeros are so close as (see table(6.2)) to be 

indistinguishable within statistical error.

In order to see a more clear picture of the behaviour of the edge singularity we 

monitored the imaginary and the real part of it with the number of measureme- 

nents for arho = 0.02.

Figs. (6.1,6.2) show the imaginary and the real part of the edge singularity with 

the number of measurements, respectively, when we thermalised the system with 

1000 iterations from a hot start and the measurements of the coefficients were 

made on configurations separated by 2 units of Monte Carlo Time. It is obvious 

that the real and the imaginary part of the edge singularity are stable after about 

2000 measurements.

As can be seen from tables(6.2,6.3) we also investigated the behaviour of the 

edge singularity for j3 = 0.00 and k, = 0.27 on a 43 and 83 lattice. It is obvious 

that there is no significant dependence of the edge singularity on the “updating”
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p K, afriQ Start N T I F irst Zero Second Zero

2.00 0.00 0.100 Hot 10,000 1,000 2 (0.260,0.6239) (0.077,0.6197)

2.00 0.00 0.100 Cold 10,000 1,000 2 (0.244,0.6269) (0.070,0.6317)

2.00 0.00 0.020 Hot 10,000 1,000 2 (0.264,0.6226) (0.073,0.6296)

2.00 0.00 0.020 Hot 10,000 3,000 2 (0.262,0.6291) (0.078,0.6134)

2.00 0.00 0.020 Hot 15,000 1,000 2 (0.255,0.6216) (0.071,0.6308)

2.00 0.00 0.020 Hot 10,000 10,000 2 (0.262,0.6348) (0.078,0.6340)

2.00 0.00 0.020 Hot 2,000 10,000 10 (0.228,0.6356) (0.065,0.6533)

2.00 0.00 0.020 Cold 10,000 1,000 2 (0.256,0.6060) (0.063,0.6247)

2.00 0.00 0.005 Hot 10,000 1,000 2 (0.248,0.6167) (0.067,0.6242)

2.00 0.00 0.005 Hot 10,000 3,000 2 (0.249,0.6230) (0.069,0.6309)

2.00 0.00 0.005 Hot 15,000 1,000 2 (0.244,0.6142) (0.062,0.6294)

2.00 0.00 0.005 Hot 10,000 10,000 2 (0.258,0.6242) (0.074,0.6211)

2.00 0.00 0.005 Hot 2,000 10,000 10 (0.257,0.6086) (0.067,0.6252)

2.00 0.00 0.005 Cold 10,000 1,000 2 (0.241,0.6313) (0.066,0.6399)

Table 6.1: Results of the behaviour of the edge singularity with the number of 

measurements(N), the thermalisation of the system from a cold(hot) start, the 

number of iterations used to thermalize the system (T), the “updating” mass amo 

and the units of Monte Carlo Time (I) used between configurations for each mea­

surement of the coefficients for /3 = 2.00 and k = 0.00, on a 43 lattice.
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Figure 6.1: Imaginary part of zero y\ as function of the number of measure­

m en ts^ )  for =  2.00 and k, = 0.00 on a 43 lattice.

P K, airiQ Start N T I F irst Zero Second Zero

2.00 0.27 0.020 Cold 20,000 1,000 2 (0.231,0.5724) (0.072,0.5948)

2.00 0.27 0.005 Cold 20,000 1,000 2 (0.232,0.5671) (0.071,0.5940)

Table 6.2: Results of the behaviour of the edge singularity with the number of 

measurements(N), the thermalisation of the system from a cold(hot) start, the 

number of iterations used to thermalize the system(T), the “updating” mass arrio 

and the units of Monte Carlo Time(I) used between configurations for each mea­

surement of the coefficients for (3 =  2.00 and k, =  0.27, on a 43 lattice.
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Figure 6.2: Real part of zero y\ as function of the number of measurements(N) 

for p = 2.00 and ft = 0.00 on a 43 lattice.

p ft am0 Start N T I F irst Zero Second Zero

2.00 0.27 0.040 Cold 12,000 1,000 2 (0.026,0.2298) (0.080,0.2341)

2.00 0.27 0.020 Cold 12,000 1,000 2 (0.026,0.2288) (0.080,0.2334)

Table 6.3: Results of the behaviour of the edge singularity with the number of 

measurements(N), the thermalisation of the system from a cold(hot) start, the 

number of iterations used to thermalize the system(T), the “updating” mass am 0 

and the units of Monte Carlo Time(I) used between configurations for each mea­

surement of the coefficients for (3 = 2.00 and ft — 0.27, on a 83 lattice.
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mass amo, as expected.

We have to notice that the errors of the Lee-Yang zeros (calculated with the 

jackknife method described in chapter(3)) were about (or less than) 5% and are 

not shown for simplicity.

6.3 The Lee-Yang zeros at Strong Coupling

We also investigated the behaviour of the edge singularity in the strong coupling 

region and specially at (/3 = 0.80, k = 0.00) on a 43 lattice. The Lee-Yang zeros 

were found to be imaginary at this value of the gauge coupling.

In table(6.4) one can notice that there is no significant dependence of the edge 

singularity on any of the parameters investigated at (/3 = 0.80, k, = 0.00).

Again we can see a more clear picture of the behaviour of the edge singularity, 

when the imaginary part of it is monitored with the number of measuremenents 

for arho = 0.02.

Fig. (6.3) shows dependence of the imaginary part of the edge singularity on the 

number of measurements, respectively, when we thermalised the system with 1000 

iterations from a hot start and the measurements of the coefficients were made on 

configurations separated by 2 units of Monte Carlo Time. One can notice that the 

imaginary part of the edge singularity is stable after about 500 measurements.

Again the errors of the Lee-Yang zeros (calculated with the jackknife method 

described in chapter(3)) were about (or less than) 5% and are not shown for 

simplicity.

6.4 The Lee-Yang zeros at Interm ediate Cou­

pling

As we recall from chapter(5), intermediate coupling is where the Lee-Yang
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p K, am0 Start N T I F irst Zero

0.80 0.00 0.020 Hot 10,000 1,000 2 (0.000,0.0937)

0.80 0.00 0.020 Hot 10,000 3,000 2 (0.000,0.0922)

0.80 0.00 0.020 Hot 15,000 1,000 2 (0.000,0.0932)

0.80 0.00 0.020 Hot 10,000 10,000 2 (0.000,0.0931)

0.80 0.00 0.020 Hot 2,000 10,000 10 (0.000,0.0918)

0.80 0.00 0.020 Hot 1,000 10,000 20 (0.000,0.0922)

0.80 0.00 0.020 Cold 10,000 1,000 2 (0.000,0.0956)

0.80 0.00 0.005 Hot 10,000 1,000 2 (0.000,0.0964)

0.80 0.00 0.005 Hot 10,000 3,000 2 (0.000,0.0948)

0.80 0.00 0.005 Hot 15,000 1,000 2 (0.000,0.0967)

0.80 0.00 0.005 Hot 10,000 10,000 2 (0.000,0.0984)

0.80 0.00 0.005 Hot 2,000 10,000 10 (0.000,0.0933)

0.80 0.00 0.005 Hot 1,000 10,000 20 (0.000,0.0949)

0.80 0.00 0.005 Cold 10,000 1,000 2 (0.000,0.0936)

Table 6.4: Results of the behaviour of the edge singularity with the number of 

measurements (N), the thermalisation of the system from a cold (hot) start, the 

number of iterations used to thermalize the system(T), the “updating” mass am 0 

and the units of Monte Carlo Time(I) used between configurations for each mea­

surement of the coefficients for /? =  0.80 and k = 0.00, on a 43 lattice.
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p K, afho Start N T I F irst Zero

1.25 0.00 0.100 Hot 10,000 1,000 2 (0.063,0.3136)

1.25 0.00 0.100 Cold 10,000 1,000 2 (0.070,0.3101)

1.25 0.00 0.020 Hot 10,000 1,000 2 (0.000,0.2844)

1.25 0.00 0.020 Hot 10,000 3,000 2 (0.077,0.3000)

1.25 0.00 0.020 Hot 2,000 1,000 10 (0.079,0.3131)

1.25 0.00 0.020 Cold 10,000 1,000 2 (0.074,0.3169)

1.25 0.00 0.005 Hot 10,000 1,000 2 (0.000,0.2665)

1.25 0.00 0.005 Hot 10,000 3,000 2 (0.079,0.3068)

1.25 0.00 0.005 Hot 2,000 1,000 10 (0.079,0.2846)

1.25 0.00 0.005 Cold 10,000 1,000 2 (0.054,0.2997)

Table 6.5: Results of the behaviour of the edge singularity with the number of 

measurements(N), the thermalisation of the system from a cold(hot) start, the 

number of iterations used to thermalize the system (T), the “updating” mass arho 

and the units of Monte Carlo Time(I) used between configurations for each mea­

surement of the coefficients for (3 = 1.25 and n = 0.00, on a 43 lattice.
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Figure 6.3: Imaginary part of zero yi as function of the number of measure­

m e n ts^ )  for p  =  0.80 and k = 0.00 on a 43 lattice.

zeros start moving in the complex fermion mass plane. At (3 = 1.25 and k, = 0.33 

we saw the edge singularity becoming complex on a 43 lattice. However, the real 

part of the edge singularity was very small and became zero when the lattice 

volume was increased.

In table(6.5) one can see the behaviour of the edge singularity with the number 

of measurements(N), the thermalisation of the system from a cold(hot) start, 

the number of iterations used to thermalize the system (T), the “updating” mass 

am 0 and the units of Monte Carlo Time (I) used between configurations for each 

measurement of the coefficients for j3 = 1.25 and k, =  0.00 on a 43 lattice.

These results show that the real part of the edge singularity, has a strong 

dependence on the “updating” mass am0 when we thermalised the system with 

1000 iterations from a hot start and the measurements of the coefficients were 

made on configurations separated by 2 units of Monte Carlo Time. However, this
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p afho Start N T I F irst Zero

1.25 0.00 0.050 Cold 5,000 1,000 2 (0.000,0.0378)

1.25 0.00 0.020 Cold 12,000 1,000 2 (0.000,0.0379)

1.25 0.00 0.005 Cold 4,000 1,000 2 (0.000,0.0398)

1.25 0.00 0.020 Hot 6,000 1,000 2 (0.000,0.0382)

Table 6.6: Results of the behaviour of the edge singularity with the number of 

measurements (N), the thermalisation of the system from a cold (hot) start, and 

the “updating” mass arrio for (3 =  0.80 and k = 0.00, on a 83 lattice.

dependency of the edge singularity on the “updating” mass no longer exists if a 

cold start is used.

We also notice that if we increase the number of iterations when we thermalise 

the system from a hot start or the units of Monte Carlo Time between measure­

ments of the coefficients, the dependency of the edge singularity on the “updating” 

mass does no longer exists.

In order to have a more clear picture of the behaviour of the edge singularity 

at (3 = 1.25 and k =  0.00 we investigated the behaviour of it on a 83 lattice. We 

first noticed that the Lee-Yang zeros were imaginary. As can be seen in table(6.6) 

the edge singularity has no significant dependence on any of the parameters 

investigated at (/3 =  0.80, n =  0.00) on a  83 la ttice .

The errors of the Lee-Yang zeros (calculated with the jackknife method de­

scribed in chapter(3)) were about (or less than) 10% and are not shown for sim­

plicity.
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6.5 Summary

Our aim was to investigate if the closest zeros can be determined with sufficient 

accuracy to ascertain their finite size scaling behaviour (and hence that of the 

condensate) in the weak coupling where the chiral condensate is very small. How­

ever, we also investigated if the edge singularity can be determined with sufficient 

accuracy in the strong and intermediate coupling region.

Our investigation showed that the edge singularity can be determined with 

sufficient accuracy in the weak and strong coupling region and therefore, we 

can ascertain its finite size scaling behaviour as described in chapters(4,5).

In the intermediate coupling region we found an interesting behaviour of the 

edge singularity. In this region the edge singularity has a very small real part. 

It appears that the real part of the edge singularity at (3 =  1.25 and k  =  0.00, 

on a 43 lattice, depends on the “updating” mass when we thermalised the system 

from a hot start. However, when the number of iterations or the units of Monte 

Carlo Time were increased or the system was thermalised from a cold start, this 

dependence no longer existed. On the other hand, simulations on 83 lattice at 

(j3 = 1.25, k = 0.0) showed no dependence of the edge singularity on the  

“updating” mass, indicating that the previous dependence was due to the sim­

ulations being performed on a small lattice (43).

Therefore, our investigation showed that the edge singularity can be deter­

mined with sufficient accuracy in the weak, interm ediate and strong cou­

pling region and therefore, we can ascertain its finite size scaling behaviour 

in all the regions of the phase diagram, shown in Fig.(2.2).



Chapter 7

Partition Function Zeros in 

Non-Com pact QED  

w ith fermions in 4D

7.1 Introduction to Non-Com pact QED  

with Fermions in 4D

Quantum Electrodynamics (QED) is a very succesful type of quantum field the­

ory in describing the electromagnetic interactions of electrons, muons etc. to a 

high precision in perturbation theory. It is a part of the standard electroweak 

model, which describes all phenomena of both electromagnetic and weak interac­

tions in the presently known energy range up to about 100 GeV. Therefore, the 

non-perturbative lattice study of QED is not motivated by some unexplained phe­

nomena or by lack of theoretical tools for the extraction of numerical predictions 

from the basic equations of the theory. The motivation at present is to try to 

improve the theoretical understanding of the general methematical properies of 

this type of quantum field theories.
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It appears that QED suffers from the existence of the so-called Landau pole 

in the perturbative behaviour of the renormalised coupling constant as a function 

of the cut-off. The Callan-Symanzik /3-function is defined as:

a is the renormalised fine structure constant, A is the cut-off, and the derivative 

is taken at fixed bare coupling e and renormalised mass m r . The lowest orders in

The dependence of a on the cut-off is obtained from the differential equation:

For simplicity we first consider only the one-loop approximation to the /3-function

Therefore, in this approximation, the infinite cut-off limit of a is zero for any bare 

coupling a0. The continuum theory is consistent only for vanishing renormalised 

coupling. In other words, according to the 1-loop /3-function, the continuum limit 

of QED is triv ia l. The two-loop contribution proportional to /32 does not change 

this conclusion qualitatively.

Instead of the fine structure constant a on the lattice one ussually considers 

the renormalised coupling squared e \  defined by:

(7.1)

perturbation theory (up to three loops) in QED with one fermion species in the

M S  renormalisation scheme are given by:

o o

(7.3)

(7.4)

(proportional to (3\). In this case the solution with ao

1 +  a0Pi log(A/m R)
(7.5)
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The /3-function also determines the change of e \  as a function of the renormali­

sation scale p. The differential equation for e2R(p) is, with /3e2 =  47r/3,

d,e\(n)
dlog p

In the 1-loop approximation we have:

=  (7.7)

p 2 ( \______________e«(Mo)__________ ( 7  o\
r W  l - e l W t A / ^ l o g W / X o  )■ 1 j

If e2R(p) =  e|j(//o) at //q then e2R(p) becomes infinite at the scale:

47T

A 4 ( mo)
I^Landau —  6xp Hq ( a 2 / . \ ) (7*9)

in the 1-loop approximation. The position of the Landau pole on the right hand 

side of Eqn.(7.8) is changed by the two loop contribution to:

(  p2 \  (  471" \
HLzndau =  Ho e X P  { f a e U f l o ) )  ^  +  '  ( 7 ' 1 0 )

The higher order corrections are contained here in the last parentheses. Substi­

tuting here the physical value of the renormalised coupling (eR(po) = 47r/137) 

one obtains a very high scale. Therefore, in QED the mathematically inconsistent 

energy range is very far away from any reasonable scale.

The appearance of the Landau pole shows a mathematical inconsistency of 

renormalised perturbation theory in QED. This inconsistency can be resolved if 

the full /3-function qualitatively behaves as shown in Fig. (7.1). In this case the 

zero of the /3-function at e2R = e2 is an ultraviolet stable fixed point (UVFP). This 

means that the solution of the differential equation(7.7) for the running coupling 

constant e2R(p) always tends to e2, for p  -* oo. The zero of the Callan-Symanzik 

/3-function in Eqn.(7.4) implies that it is possible to tune the bare coupling a0 near 

ao* =  e2/ in such a way that for infinite cut-off, a, has an arbitrary finite limit. 

Therefore, if a UVFP at e2 exists, the continuum limit is non-trivial. Note that 

the 3-loop /3-function looks actually like Fig. (7.1), due to the opposite sign of the
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2 -  loop

h<
1 _   ̂ \  \

Figure 7.1: The behaviour of the Callan-Symanzik /3-function in QED if there is a 

non-trivial ultraviolet fixed point at e \  = e*. The dashed line qualitatively shows 

the 2-loop /3-function.
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3-loop term in Eqn.(7.3). Nevertheless, the 3-loop zero is at such large value of 

e^, that the perturbative approximation is not reliable there. Besides, the 3-loop 

contribution does also depend on the regularisation scheme, unlike the existence 

or non-existence of a zero. The zero of the /3-function may be associated with a 

phase transition of QED in the space of bare parameters (m,e).

The first studies in lattice QED concentrated on the question of the chiral phase 

transition. Numerical simulations of compact QED showed that it undergoes a 

first order phase transition ([2] and references therein) and therefore a continuum 

limit cannot be defined. On the other hand, the existence of a continuous phase 

transition at finite inverse gauge coupling /3, separating a strongly coupled phase 

where chiral symmetry is broken from a weak coupling phase where the symmetry 

is realised, was found in the non-compact QED (it will be defined later in this 

chapter) ([41] and references therein). This allows one to take the cut-off to infin­

ity, which is prerequisite to a non-perturbative definition of a continuum theory. 

There are indications that non-compact QED, like other non-asymptotically free 

theories, is trivial in the sense that all renormalised couplings vanish as the cut-off 

is taken to infinity.

However, the various groups that have investigated the ultra-violet behaviour 

of four flavor non-compact QED disagree in the exact position of the critical 

point and the critical exponents of the chiral phase transition ([41] and references 

therein).

The aim in [40] was to investigate the behaviour of the lowest Lee-Yang zeros 

of the lattice partition function for non-compact QED. These zeros, which are in 

the complex fermion mass plane, correspond to singularities in the free energy and 

reflect the phase structure of the theory in the thermodynamic limit. Therefore, 

an investigation using the Lee-Yang zeros, could help to clarify the position of the 

critical point and the critical exponent of the transition.

However, exploratory simulations[39] of this theory on a 64 lattice showed that
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these zeros appeared to depend on the “updating” mass at which the ensemble 

they are found from is generated. This dependence is incorrect (recall chapter(3)). 

Our task has been to investigate the nature of this dependence.

7.2 The M odel

In the case of Abelian gauge fields it is also possible to define a non-compact 

formulation of the lattice action[26], which is based on the discretised version of 

the continuum field strength tensor: (in the following the lattice constant a has 

been set equal to one, so that all dimensionful quantities are to be understood in 

units of the (inverse) lattice spacing)

F^ ( x ) =  \ l ( A A x  +  A) -  A„{x)) -  {A^(x +  0) -  A„{x))]. (7.11)

Hence,
S i„ o n -co mpact) =  1  £  * £ ( * ) * £ ( * ) .  ( 7 . 1 2 )

X ,fiV

This is a direct discretization of the Euclidean action of the Abelian gauge field in 

continuum. Here the real link variables A ^ x )  have a range (—0 0 , + 0 0 ). Therefore, 

the intergration over gauge variables in the path integral is:

/ 4 p+ 0 0

[d4 = n n /  dA^ ) -  (7.13)
x  ti ^ l J - co

As a lattice version of non-compact QED we consider Kogut-Susskind fermions 

coupled to a non-compact U( 1) gauge field A The action now reads:

S  = SG + S F (7.14)

where:

SG = ^  +  A "(x  +  A) -  A n(x +  i>) -  A„(x))2, (7.15)
x,n<v

S f =  ^ 2 x { x )M xyx{y) (7.16)
x,y
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and

Mxy = m 0Sxy +  i  (7.17)

mo is the bare fermion mass, M is the fermionic matrix, f) = ^  (e is the bare 

charge).

In the naive continuum limit the fermionic action describes four Dirac fermions 

(flavours) coupled to a U( 1) gauge field. For finite lattice spacing it has a chiral 

U( 1) x U( 1) symmetry at mo =  0 . The physically interesting region is near the 

phase transition at /? =  /?c, where this chiral symmetry is spontaneously broken.

7.2.1 Lee-Yang Zeros

As described in chapter(3), for the xU(j>3 model, the GCPF of this model can be 

written as :

where rho is the “updating” mass, M  is the fermionic matrix at zero fermion 

mass, and S q is the non-compact gauge field action. The eigenvalues of M  are 

found using the Lanczos algorithm [42]. The determination of the eigenvalues en­

ables the determination of the coefficients of the characteristic polynomial (recall 

chapter (3)).

These coefficients, averaged over the ensemble, give the polynomial expansion 

in m l for the GCPF:

Z (p ,m 0) = ^ e x p ( C n)(mo)n (7.19)
71=0

or
V
2

Z((3,m0) = ^ e x p ( C n)(mo -  m -)n (7.20)
71 =  0

where m  is the “mass shift” as we recall from chapter(3).
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Finally, the Lee-Yang zeros are found by using a standard root finding algo­

rithm on the equivalent sets of polynomials generated as in the previous equation:

71=0

for a set of fhi in the region where we expect the lowest zeros to occur. We first used

a multi-precision package MPFun[43] which allowed us to consider approximately 

known coefficients. We used an input precision, dn: which defined the polynomial 

neighbourhood of the GCPF polynomial, i.e, the set of all the polynomials with 

coefficients having dn common digits with the corresponding coefficients of the 

GCPF polynomial. For example, we could choose 15 common digits (as in the 

standard machine precision) up to 500 common digits.

7.3 Strong Coupling Calculations

We first performed simulations on a 64 lattice at (3 = 0.22 (above (3C ([41] and 

references therein)). We have used the Hybrid Monte Carlo algorithm, as in [41], 

for updating the gauge field configurations and we thermalised the system with 250 

iterations from a hot start. We chose the molecular dynamics parameters to keep 

the length of each molecular dynamics trajectory ~  0.8 and the acceptance rate ~

0.9 — 0.95. Measurements of the coefficients were made on configurations separated 

by 6 units of Molecular Dynamics time. In order to investigate the dependence 

of the edge singularity on the “updating” mass we generated an ensemble of 

configurations using ra0 =  0.04 as the “updating” mass and a second ensemble 

using m0 =  0.02 as the “updating” mass.

On a 64 lattice for (3 =  0.22, the zeros are imaginary and appear in conju­

gate pairs. The edge singularity is defined as the zero with the smallest positive 

imaginary part and we count each pair only once.

V

(7.21)

a standard rootfinder[44] in order to find the zeros of the polynomials and then
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Figure 7.2: The Imaginary part of the lowest zero with increasing 

number of measurements.

Figs.(7.2,7.3) show the evolution of the edge singularity (every 100 measure­

ments) for rho = 0.04, ttt-o — 0.02 “updating” masses, respectively. Fig. (7.4) shows 

the lowest zeros, plotted in sequence, for the two different “updating” masses. It is 

obvious that there is a strong dependence of the Lee-Yang zeros on the “updating” 

mass.

However, one has to notice that for m0 =  0.02 the first two zeros have imag­

inary parts so close as to be indistinguishable within statistical error. Assuming 

that the first two zeros (for mo =  0.02) have within the numerical precision iden­

tical imaginary part, the lowest Lee-Yang zeros seem to depend now weakly on 

the “updating” mass as can be shown in Fig. (7.5).

We also performed simulations on a 64 lattice at (3 = 0.19, (close to (3C ([41] 

and references therein)). We thermalised the system with 100 iterations from a 

hot start. We chose the molecular dynamics parameters to keep the length of each

* * * * * * * *  * * *
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Figure 7.3: The Imaginary part of the lowest zero with increasing 

number of measurements.
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Figure 7.4: The lowest zeros on the 64 lattice plotted in sequence.



Chapter 7. Partition Function Zeros in Non-Compact QEDwith fermions in 4D119

e d g e  s i n g u l a r i t y  /? =  0 . 2 2 , L = 6

.12

li

.10

. 0 9

. 0 8

. 0 7

. 0 6

. 0 5

. 0 4

. 0 3

.02
20 4 6 8 10

N

Figure 7.5: The lowest zeros on the 64 lattice plotted in sequence. We have 

assumed that the first two zeros (for m0 =  0.02) have imaginary parts so close as 

to be indistinguishable within statistical error.
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molecular dynamics trajectory ~  0.8. In order to investigate again the dependence 

of the edge singularity on the “updating” mass we generated an ensemble of 

configurations using rh0 =  0.04 as the “updating” mass and a second enseble 

using rho = 0.01 as the “updating” mass.

We first noticed that the acceptance rate for the enseble of configurations using 

rho — 0.01 as the “updating” mass was ~  0.45 — 0.50 compare to the acceptance 

rate, for the enseble of configurations using m0 =  0.04 as the “updating” mass, 

which was ~  0.9 — 0.95. We also noticed that the simulations with the rho =

0.01 “updating” mass gave jumps (“spikes”) in the plaquette energy between 

configurations. A typical examples of these “spikes” is shown in Fig. (7.6). The 

number of “spikes” decreased when we decreased the time stepsize of the molecular 

dynamics trajectory. On the other hand no significant jumps in the plaquette 

enrgy were noticed between configurations for the simulations with the rho =  0.04 

“updating” mass.

On a 64 lattice for p = 0.19, the zeros near the physical mass region (mo > 0 

and real) were imaginary indicating that any phase transition will only occur at 

zero fermion mass, as expected. Figs. (7.7,7.8) show again the evolution of the 

edge singularity (every 100 measurements) for m0 =  0.04, ra0 =  0.01 “updating” 

masses, respectively. Fig. (7.9) shows the lowest zeros, plotted in sequence, for the 

two different “updating” masses. We notice again that there is a weak dependence 

of the lowest Lee-Yang zeros on the “updating” mass.

Finally, we calculated the Lee-Yang zeros using a multi-precision rootfinder 

which allowed us to to consider approximately known coefficients. Although we 

chose from 15 up to 500 digits for the input precision dni the value of the edge 

singularity did not change significantly for both “updating” masses.
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Figure 7.6: The difference in the plaquette energy between configurations with 

increasing number of configurations.
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Figure 7.7: The Imaginary part of the lowest zero with increasing 

number of measurements.
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Figure 7.8: The Imaginary part of the lowest zero with increasing 

number of measurements.
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7.4 Summary

We noticed in our simulations on a 64 lattice that there is a dependence of the 

edge singularity on the “updating” mass at which the ensemble it is found from 

is generated. This dependence is incorrect (recall chapter(3)).

The simulations on a 64 lattice at (3 =  0.19 (close to /3C) with ra0 =  0.01 

as the “updating” mass gave jumps (“spikes”) in the plaquette energy between 

configurations. The number of “spikes” decreased when we decreased the time 

stepsize of the molecular dynamics trajectory. The simulations on a 64 lattice at 

P = 0.22 (above j3c) with ra0 =  0.02 as the “updating” mass showed that the 

the first two zeros have imaginary parts so close as to be indistinguishable within 

statistical error. Note that this behaviour is only observed in the edge singularity.

High statistics simulations on large lattices, using a set of different “updating” 

masses, are probably necessary in order to verify the absence of the dependence 

of the edge singularity on the update mass at which the ensemble it is found from 

is generated.



Chapter 8 

Summary and Conclusions

The uxU(f) model” or QED with scalars and fermions is a model which was sug­

gested as a promising candidate[l] for dynamical fermion mass generation. In two 

dimensions it seems to be in the universality class of the Gross-Neveu model[10] 

at least for strong gauge coupling, and so is renormalizable. In four dimensions 

there is also a strong coupling region in which the model behaves in a very sim­

ilar manner to the corresponding four-fermion theory, the Nambu-Jona-Lasinio 

model with a massive fermion whose mass scales at the critical point. Here both 

models belong to the same universality class and have the same renormalizability 

properties. But for intermediate coupling there evidently exists a special point. 

It is a tricritical point at which, together with the composite fermion F, scaling 

of a particular scalar state was found. This composite scalar can be interpreted 

as a gauge ball mixing with a state. Thus the gauge degrees of freedom play 

an important dynamical role and the model belongs to a new universality class of 

models with dynamical mass generation and whose renormalizability is of much 

interest[12, 13].

We investigated, in this work, the phase structure of the three-dimensional 

11 XU(/> model” or compact lattice QED with scalars and fermions in three dimen­

sions. The analysis has been made possible by the application of two different

125
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methods: l)fits to an equation of state of the chiral condensate and the mass of 

the physical neutral fermion and 2)finite size scaling investigations of the Lee-Yang 

zeros of the partition function in the complex fermion mass plane.

Our investigations showed that there are three regions in the (3-k plane with 

possibly different critical behaviour in the chiral limit:

a) The region at small k and strong gauge coupling, where the chiral symmetry 

is broken and the neutral physical fermion is massive, called the Nambu phase.

b) The region at large k , where the chiral symmetry is restored and the physical 

fermion is massless, called the Higgs phase.

c) A third region at weak coupling and small k, where the chiral condensate is 

zero within our numerical accuracy but the neutral fermion mass is large, called 

the X region. This region can analytically be connected with either the Nambu 

or Higgs phase but it may well be a separate phase. If chiral symmetry is not bro­

ken in this region, then the mass observed in the fermion channel is presumably 

the energy of a two-particle state. Otherwise this region might be an interesting 

example of dynamical mass generation of unconfined fermions. If the continuum 

limit is taken at the Higgs phase transition, the gauge fields should play an impor­

tant dynamical role and the model would not fall into the universality class of the 

three-dimensional Gross-Neveu model. A further investigation of this possibility 

is highly desirable.

In the region X of the phase diagram, the chiral condensate is very small, 

which suggests that the Lee-Yang zeros cannot be near to the physical region. It 

was of interest to investigate if the closest zeros can be determined with sufficient 

accuracy to ascertain their finite size scaling behaviour (and hence that of the 

condensate) in the weak coupling region. Our investigation showed that the edge 

singularity can be determined with sufficient accu racy  not only in the weak, 

but also in the in te rm e d ia te  and s tro n g  coupling region and therefore, we can 

a sce rta in  its  fin ite  size scaling b eh av io u r in all the regions of the phase
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diagram.

At strong gauge coupling, the chiral phase transition was clearly localized, 

and there are strong indications that it is in one universality class for all /3 < 0.80 

(and probably for all (3 < 1.25): that of the three-dimensional Gross-Neveu model, 

which is known to be non-pertubatively renormalizable. This demonstrates that 

the three-dimensional lattice xUffiz model is a nonperturbatively renormalizable 

quantum field theory and the shielded gauge-charge mechanism of fermion mass 

generation works in three dimensions.

There are indications that non-compact QED, like other non-asymptotically 

free theories, is trivial in the sense that all renormalised couplings vanish as the 

cut-off is taken to infinity. The various groups that have investigated the u ltra­

violet behaviour of four flavor non-compact QED disagree in the exact position of 

the critical point and the critical exponents of the chiral phase transition ([41] and 

references therein). The aim in [40] was to investigate the behaviour of the lowest 

Lee-Yang zeros of the lattice partition function for non-compact QED and help to 

clarify the position of the critical point and the critical exponent of the transition. 

However, exploratory simulations [39] of this theory on a 64 lattice showed that 

these zeros appeared to depend on the “updating” mass at which the ensemble 

they are found from is generated. This dependence is incorrect.

Our task was to investigate the nature of this dependence. Our analysis con­

firmed the dependence of the Lee-Yang zeros on the “updating” mass on a 64 

lattice. (Note that we observed jumps ( “spikes”) in the plaquette energy be­

tween configurations on the 64 lattice simulations for small “updating” masses at

0 ~ & ) .

High statistics simulations on large lattices, using a set of different “updating” 

masses, are probably necessary in order to verify the absence of the dependence 

of the edge singularity on the update mass at which the ensemble it is found from 

is generated.
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