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Abstract 

Background 
Rheumatoid arthritis (RA) is a chronic inflammatory arthritis that causes significant 

morbidity and mortality and has no cure.  Although early treatment strategies and biologic 

therapies such as TNFα blocking antibodies have revolutionised treatment, there still 

remains considerable unmet need.  JAK kinase inhibitors, which target multiple 

inflammatory cytokines, have shown efficacy in treating RA although their exact 

mechanism of action remains to be determined.  Stratified medicine promises to deliver the 

right drug to the right patient at the right time by using predictive ‘omic biomarkers 

discovered using bioinformatic and “Big Data” techniques.  Therefore, knowledge across 

the realms of clinical rheumatology, applied immunology, bioinformatics and data science 

is required to realise this goal. 

Aim 
To use bioinformatic tools to analyse the transcriptome of CD14 macrophages derived 

from patients with inflammatory arthritis and define a JAK/STAT signature.  Thereafter to 

investigate the role of JAK inhibition on inflammatory cytokine production in a 

macrophage cell contact activation assay.  Finally, to investigate JAK inhibition, following 

RA synovial fluid stimulation of monocytes. 

Methods and Results 
Using bioinformatic software such as limma from the Bioconductor repository, I 

determined that there was a JAK/STAT signature in synovial CD14 macrophages from 

patients with RA and this differed from psoriatic arthritis samples.  JAK inhibition using a 

JAK1/3 inhibitor tofacitinib reduced TNFα production when macrophages were cell 

contact activated by cytokine stimulated CD4 T-cells.    Other pro-inflammatory cytokines 

such as IL-6 and chemokines such as IP-10 were also reduced.  RA synovial fluid failed to 

stimulate monocytes to phosphorylate STAT1, 3 or 6 but CD4 T-cells activated STAT3 

with this stimulus.  RNA sequencing of synovial fluid stimulated CD4 T-cells showed an 

upregulation of SOCS3, BCL6 and SBNO2, a gene associated with RA but with unknown 

function and tofacitinib reversed this.   

Conclusion 
These studies demonstrate that tofacitinib is effective at reducing inflammatory mediator 

production in a macrophage cell contact assay and also affects soluble factor mediated 

stimulation of CD4 T-cells.  This suggests that the effectiveness of JAK inhibition is due to 
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inhibition of multiple cytokine pathways such as IL-6, IL-15 and interferon.  RNA 

sequencing is a useful tool to identify non-coding RNA transcripts that are associated with 

synovial fluid stimulation and JAK inhibition but these require further validation.  SBNO2, 

a gene that is associated with RA, may be biomarker of tofacitinib treatment but requires 

further investigation and validation in wider disease cohorts. 
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1.1 Rheumatoid Arthritis 

1.1.1 Introduction 
 

Rheumatoid Arthritis (RA) is a chronic symmetrical inflammatory arthritis with no cure 

that affects synovial joints but which typically causes painful swelling of the hands, wrists 

and knees.  Patients are often female with a typical onset from 30-50 years old (1)and often 

have significant disability and depression caused by their symptoms and the inflammatory 

process(2).  Furthermore, RA has systemic manifestations with organs such as the lungs, 

eyes and skin being involved.  Treatment revolves around a multidisciplinary team made 

up of doctors, nurses, physiotherapists, occupational therapists and other allied health 

professionals.  Pharmacotherapy includes painkillers, conventional Disease Modifying 

anti-rheumatic drugs (cDMARDS), immunosuppressant drugs, Biologic therapies and 

kinase inhibitors. 

 

1.1.2 Epidemiology 
 

The incidence of RA in the UK is 30 per 100,000 patients but the prevalence is 

approximately 1% in the Caucasian population as there is no cure for this chronic 

condition.  The incidence and prevalence does vary worldwide (3)with a significantly 

higher level in Inuits (4)and a lower incidence in Asian and Indian populations.  This is 

hypothesised to be due to environmental and genetic factors that will be discussed later in 

this thesis.  Females are four times more likely to be affected by RA and this is in contrast 

with some other arthropathies such as Psoriatic Arthritis (PsA), which has an equal 

incidence amongst both sexes or indeed with connective tissue diseases such as Systemic 

Lupus Erythematosus (SLE) which is much more common in females(5).  The average age 

of onset is 45 with a broad range of onset from 15 till elderly years.   
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1.1.3 Risk factors 

1.1.4 Genetics 
 

There is good evidence that there are various genetic traits that predispose the general 

population to developing RA.  Although the recent metanalysis of GWAS in RA (6) will 

be discussed further in the immunopathogenesis section, there are a few genetic factors 

which were discovered prior to GWAS.  These were the association of RA with HLA-DR3 

and 4 (7,8) and the shared epitope(9).  In particular there is evidence to suggest that having 

a genetic predisposition and other environmental factors such as smoking significantly 

increase your risk of developing RA(10,11).   

 

The risk conferred by variation of the Type II Major Histocompatibility Complex (MHC) 

have led to the hypothesis that the interaction between the innate and adaptive immune 

system is critical in the pathogenesis of RA(12).  In particular self-antigen presentation to 

the naïve or primed immune system has been thought to be a critical step in much the same 

way as mutations of tumour suppressor genes predispose you to cancer.  It is this 

interaction which led to researchers considering treatments which target antigen presenting 

cells such as macrophages and B-cells as well as the adaptive immune system in the form 

of mainly CD4+ T-cells. 

 

1.1.5 Environment 
 

Smoking is one of the major acquired risk factors for the development of both 

autoantibodies and RA(13,14).  Smoking as well as having over four hundred toxins that 

can cause oxidative damage, is known to cause damage to the mucous membranes of the 

airways as well as the lung parenchyma.  It is suggested that damage to the lungs results in 

an increase in peptidyl arginine deaminase 4 which leads to citrullination of arginine in self 

proteins such as fibronectin, alpha enolase and vimentin(15).  

 

In addition to smoking, occupational hazards and in particular pulmonary exposure to 

silica is a risk factor for not just rheumatoid arthritis but also other rheumatic diseases(16).  

Caplan’s syndrome which is rheumatoid arthritis combined with pneumoconiosis (17)can 

also be caused by asbestos and coal dust with the later likely contributing to the 

pathogenesis via similar agents as found in cigarette smoke. 
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Furthermore High Resolution Computerized Tomography (HRCT) of the lungs of patients 

with early RA has shown that there are inflammatory changes in the lungs include 

parenchymal oedema.  Furthermore, there is evidence of citrullinated peptides in mucosal 

biopsies and antibodies to citrullinated peptides (ACPA) that are higher in 

broncheoalveolar lavage fluid than serum suggesting local production(18).  Finally 

smoking has been shown to facilitate resistance to treatment, in particular biologics in the 

form of anti-TNFα agents(19). 

 

Social deprivation results in more severe rheumatoid arthritis but no increased risk of 

development(20).  It is likely that multiple risk factors contribute to this but even when 

smoking is removed from prediction models, deprivation still confers added risk(21).  This 

risk factor may however act as a surrogate for other factors such as microbiome differences 

or even adherence to treatment regimes and medication. 

 

1.2 Clinical Features 
 

Rheumatoid Arthritis causes pain swelling and early morning stiffness of synovial joints.  

The arthritis is symmetrical and tends to affect the metacarpal phalangeal joints of the hand 

and also the proximal interphalangeal joints as well as the radiocarpal and radial ulnar 

joints.  Left unchecked the arthritis results in destruction of the cartilage and bone by 

inflammation and recruitment of osteoclasts to the site of inflammation resulting in bone 

erosions and therefore joint destruction.  There is often a significant element of early 

morning stiffness alongwith fatigue which results in further disability and impacts of 

activities of daily living and the ability of the patient to interact with society. 

 

In addition to the articular features, extra-articular manifestations result in significant co-

morbidity either due to a direct pathologic effect or a secondary effect of the inflammation 

or treatments. 

 

1.3 Diagnosis 
 

There is no diagnostic test for RA and diagnosis relies on a referral being made in a timely 

fashion from primary care or a family physician to a rheumatologist.  Diagnosis is made 

from the clinical history of painful and swollen joints, an examination demonstrating 
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synovitis and raised inflammatory markers and autoantibodies on blood testing.  In 

addition to these basic criteria, there have been two sets of classification criteria: the ACR 

1987 criteria (22) and the newer ACR/EULAR 2010 (23)criteria.  These criteria offer a 

way to classify RA and therefore allow meaningful studies to be carried out in the disease.   
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1987 American Rheumatism Association criteria for the classification of rheumatoid 

arthritis – RA is defined by four out of the seven criteria below being present 

Morning stiffness around joints lasting for 1 hour 

Soft tissue swelling around 3 or more joints as observed by a physician 

Arthritis of the proximal interphalangeal, metacarpophalangeal or wrist joint 

Symmetrical distribution of arthritis 

Rheumatoid nodules 

Presence of rheumatoid factor 

Radiographic erosions and/or presence of periarticular osteopenia in hands and/or 

wrists 
Table 1-1 1987 ARA criteria for the classification of RA 
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2010 ACR/EULAR classification criteria for rheumatoid arthritis where the patient 

has at least one synovitic joint and this cannot be better explained by another disease 

Joint Involvement   

 1 large joint 0 

2-10 large joints 1 

1-3 small joints (with or 

without large joints) 

2 

4-10 small joints (with or 

without large joints 

3 

>10 joints with at least 1 

small joint involved 

5 

Serology   

 Negative RF and negative 

ACPA 

0 

Low positive RF or low 

positive ACPA 

2 

High positive RF or high 

positive ACPA 

3 

Acute phase reactants   

 Normal CRP and normal 

ESR 

0 

Abnormal CRP or normal 

ESR 

1 

Duration of symptoms   

 < 6 weeks 0 

≥ 6 weeks 1 
Table 1-2 2010 ACR/EULAR classification criteria for RA 
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As well as classifying disease, it is useful to have a way to measure disease activity in an 

objective fashion in order to guide treatment escalation and also de-escalation if a state of 

remission has been achieved.  There are various tools to carry this out but the most widely 

used is the Disease Activity Score in 28 joints (24). 

 
Figure 1-1:  Calculation of the DAS 28 score involves assessing each of the joints above for swelling and 
tenderness.  Image is reproduced from http://www.dermatologiahuec.com/index.php?pag=das28 

 

The score is comprised of: 

• A tender joint count 

• A swollen joint count 

• A measure of global health by the patient on a 100mm visual analogue scale 

• A measure of inflammation such as ESR or CRP 

 

DAS score corresponding to categories of disease activity 

Remission Low Disease 

Activity 

Moderate Disease 

Activity 

High Disease 

Activity 

<2.6 2.6-3.2 3.2-5.1 >5.1 
Table 1-3:  Categories of Disease Activity Score  

 

However the DAS-28 is limited by the fact that it tends to omit disease activity in the 

ankles and feet and also the calculation of the score is often delayed because it involves the 

measurement of an inflammatory marker.  Similarly the SDAI score involves calculating 

the sum of a tender and swollen 28 joint count along with a measure of both a patient and 

physician global disease activity assessment and an inflammatory marker (25)but the 

CDAI score omits the inflammatory marker and therefore can be calculated in 
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clinic(26,27).  In much the same was as DAS, there are categories for escalating therapy 

based on level of disease activity. 

 

As well as measuring the absolute disease activity, there are various markers of response 

that describe the degree of improvement that needs to be achieved for each level.  These 

are useful because they give criteria that need to be fulfilled in terms of an absolute change 

to be achieved along with a general disease activity state. 

 

EULAR response criteria (29) 

 Improvement in DAS 28 from Baseline 

≤ 1.2 > 0.6 and ≤ 1.2 ≤ 0.6 

DAS28 at endpoint    

≤ 3.2 Good Moderate None 

> 3.2 and ≤5.1 Moderate Moderate None 

> 5.1 Moderate None None 
Table 1-4: EULAR response criteria 

 

  

ACR20 response criteria.  Achievement of ACR50 or ACR70 requires a percentage 

improvement of that amount in the criteria below.  (28) 

Required criteria 

 ≥ 20% improvement in 28 tender joint 

count 

≥ 20% improvement in 28 swollen joint 

count 

≥ 20% improvement in 3 out of 5 

 Patient assessment of pain 

Patient assessment of global health 

Physician assessment of global health 

Patient self assessment of disability 

An acute phase reactant either ESR or CRP 

Table 1-5:  ACR20 response criteria 
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1.4 Investigations 

1.4.1 Blood testing 
 

A systemic inflammatory process is often shown in routine bloods such as a full blood 

count (FBC) and inflammatory markers such as the erythrocyte sedimentation rate (ESR) 

or C-reactive protein (CRP) level.  A thrombocytosis or leucophilia may be present in 

active RA as well as anaemia that can be due to multiple causes including disease-

associated, drug related or a deficiency state.  Furthermore due to the systemic nature of 

the disease, it is necessary to check kidney and liver function as treatments such as non-

steroidal anti-inflammatory drugs (NSAIDs) or cDMARDS can cause derangements.   

 

1.4.2 Autoantibodies 
 

Rheumatoid Factor (RF) was the first autoantibody to be described in RA by Waaler.  RF 

is IgG, IgA or IgM to the Fc portion of IgG and therefore it was hypothesised that patients 

with RF are more likely to form RF and IgG complexes therefore resulting in more tissue 

damage.  The exact mechanism was unclear but was thought to involve complement 

activation more than antibody dependent cellular cytotoxicity and activation of the innate 

immune system.  Further RF gave further evidence that there is a loss of appreciation of 

“self” by the immune system and also demonstrates a role for B-cells.   

 

The detection of antibodies to citrullinated peptides (ACPA) led to a further shift in the 

role of autoantibodies in RA(30).  These antibodies are raised to proteins that have 

undergone citrullination where an arginine residue is converted to citrulline by the enzyme 

Peptidyl arginine deaminase (PADI).  Citrullinated peptides do not exist in humans 

naturally and therefore this process gives further weight to the theory that the immune 

systems loses a sense of “self”.  ACPA have been shown to predate onset of RA (31) 

(32)and are also more common in smokers(33). 

 

Although RF is thought not to be pathologic, ACPA have been shown to promote and 

activate osteoclasts therefore giving a mechanism of action for the observation that ACPA 

are more often found in patients who have erosive disease(34).  In addition, citrullinated 

fibrinogen has been shown via TLR4 to induce TNFα production from macrophages(35). 
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1.4.3 Imaging 
 

Plain radiographs of the hands, feet and other affected joints typically show evidence of 

joint space narrowing or periarticular osteopenia in early disease.  There may also be 

evidence of erosion where the inflammatory pannus has caused resorption of the bone in 

juxtaposition to the joint.  Erosions at baseline are a poor prognostic factor for disease 

severity and response to therapy(36).  In addition to erosion, when further joint damage 

occurs, ulnar deviation, subluxation and dislocation of the joints can be seen especially 

around the metacarpophalangeal and wrist joints.   

 

However radiographic imaging may lag behind acute inflammatory changes and therefore 

dynamic imaging techniques such as ultrasound and magnetic resonance imaging (MRI) 

are employed to detect evidence of synovitis.  Furthermore, these techniques image bone 

and soft tissue and therefore allow assessment of tenosynovitis and bone marrow oedema 

in the case of MRI. 

 

1.5 Management 
 

The management of RA revolves around three main partners within the larger entity of 

society.  These are namely the patient, their healthcare providers and the patient’s family.  

Interventions in each of these areas make a significant contribution to the wellbeing of the 

patient and their journey.  Prior to effective strategies and drugs to treat synovitis, the 

hallmark of therapy in RA involved assembling a team of healthcare providers who in 

partnership with the patient and family could improve the quality of life of the patient and 

also decrease the impact of their disability interacting with society.  The multi-disciplinary 

team is employed within many other medical specialties but it is crucial in Rheumatology 

to ensure the safe and effective treatment of our patients(37). 

 

This team is even more important in the era of combination DMARD, biologic and kinase 

inhibitor treatments as patients, their families and also other healthcare professionals come 

to grips with the ways in which we can re-train the immune system. A summary of MDT 

team members is below: 
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Team member Role 

General Practitioner Overarching co-ordination of healthcare and 

wellbeing of patient 

Rheumatologist Diagnosis of rheumatoid arthritis, initiation 

of therapy and co-ordination of MDT 

Physiotherapist Assessment of joint restriction and 

rehabilitation.  Specialist physiotherapists 

can give joint injections or perform 

ultrasound examinations 

Occupational Therapist Determine whether input is required to 

home or workplace of the patient in order to 

keep them as active as they wish to be 

Rheumatology Specialist Nurse Initiation of further therapies and a rich 

source of information and contact for the 

patient.  In the UK, specialist nurses often 

carry out screening and monitoring for 

DMARD and biologic drugs 

Podiatrist Specialist input into the assessment and 

treatment of foot disease which can be 

neglected by in patients with RA 

Social Worker RA is a risk factor for unemployment and a 

social worker with knowledge of the varied 

ways in which the disease can affect a 

patient is crucial 

Psychologist Diagnosis with a chronic disease is a risk 

factor for depression and there is evidence 

that the disease process itself cause changes 

within the brain 
Table 1-6:  Multidisciplinary team members crucial in the management of RA 



 32 

 

1.5.1 Disease Modifying Anti-Rheumatic Drugs 
 

Once RA is diagnosed, therapy with DMARDs should be started as soon as possible.  

There is good evidence that treating earlier and in an intensive manner leads to better 

patient outcomes, less damage and less disability(38).  Furthermore combination and step-

up therapy is now common and although regimes differ worldwide, the principles remain 

the same(39,40). 

 

Commonly used DMARDS are shown in the table 1-7 along with their doses and side 

effect profile.  Many DMARDs require blood monitoring although the burden of this 

lessens after six months of therapy. 
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Drug Dose range Side effects Monitoring 

Methotrexate 10-25mg weekly Hepatitis.  Blood 

dyscrasias.  

Pulmonary fibrosis 

FBC, UE, LFT, 

screening chest XR 

Sulphasalazine 1.5-3g per day Hepatitis.  Blood 

dyscrasias.  GI side 

effects. 

FBC, UE, LFT 

Hydroxychloroquine 200-400 mg per day GI side effects.  

Retinopathy 

Yearly screening by 

optician 

Leflunomide 10-20mg per day Hepatitis.  Nausea.  

Hypertension 

BP monitoring, 

FBC, UE, LFT 

Ciclosporin Maximum 4 mg/kg Hepatitis.  

Hypertension.  

Gingival 

hyperplasia.  Renal 

Toxicity 

BP monitoring, 

FBC, UE, LFT 

Penicillamine Normally 500-

750mg daily 

Thrombocytopenia, 

proteinuria 

FBC and urine 

protein testing 

Gold 50mg but dosage 

interval varies 

Leucopenia, 

proteinuria, rash 

FBC including 

differential white 

cell count.  Urine 

protein testing 
Table 1-7:  Disease Modifying Drugs in RA 
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There are a significant number of patients who despite combination DMARD therapy, 

continue to have high disease activity.  Prior to the beginning of this millennium, there 

were few other treatment options but at that point Infliximab and Etanercept which both 

target TNFα had just completed two landmark phase III clinical trials in RA(41,42) with 

excellent results. 

1.5.2 Biologics 
 

Biological drugs or biologics are made from living organisms and can be used to prevent, 

diagnose or treat diseases.  Biologics in rheumatology often target either cytokines or their 

receptors but other classes of biologics include: 

 

• Vaccines 

• Synthetic peptides such as synthetic insulin e.g. Lantus 

• Growth and haematopoetic factors such as erythropoietin and granulocyte and 

macrophage colony stimulating factor (GM-CSF) 

• Antibodies targeting cell surface receptors therefore facilitating antibody dependent 

cellular cytotoxicity such as OKT3 against CD3 on T-cells and Rituximab against 

CD20 on B-cells 

• Antibodies targeting free or bound cytokine such as anti-TNFα agents 

• Antibodies against receptors such as tocilizumab blocking IL6R 

• Fusion proteins such as abatacept that binds to CD80/86 

 

In the 1990s work from the Kennedy Institute in Imperial College London showed that 

inhibiting Tumour Necrosis Factor Alpha (TNFα), using a monoclonal antibody, in 

patients with RA led to a significant improvement in both signs and symptoms of their 

inflammatory arthritis along with a decrease in the level of their disability(43).  In 2000, 

two biologic agents, Infliximab (41)and Etanercept (42)had their Phase III clinical trials 

which showed good efficacy and relative safety in patients with RA who had a high 

disease activity despite being treated with methotrexate.   
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1.5.3 Agents targeting TNFα 
 

There are currently five agents on the market that target this cytokine and their 

characteristics are shown in the table 1-8. 

 

Drug Origin Frequency of 

dosage 

Route 

Infliximab Humanised mouse 

monoclonal antibody 

6 weekly Intravenous 

Etanercept Human TNF 

receptor 

Weekly Subcutaneous 

injection 

Adalimumab Human monoclonal 

antibody from phage 

display 

Fortnightly Subcutaneous 

injection 

Golimumab Human monoclonal 

antibody 

Monthly Subcutaneous 

injection 

Certolizumab Human Fab portion 

of antibody attached 

to polyethylene 

glycol 

Monthly after 

loading 

Subcutaneous 

injection 

Table 1-8:  Currently available anti TNFα agents for RA 

 

These agents are more efficacious if used with methotrexate (44) although the recent 

RACAT trial (45) demonstrated that DMARD triple therapy was non-inferior to etanercept 

and methotrexate.  These agents have now been used in hundred of thousands of patients in 

the UK and thanks to registries we have significant amount of safety data with regards to 

their potential to cause infections (46)or cancers(47). 

 

In general these agents are safe but particular caution has to be taken to screen patients for 

tuberculosis, as there is a risk of TB reactivation (48)and a disseminated infection due to 

granuloma breakdown and loss of sentinel immune function.  

 

However there remained a proportion of patients in whom blockade of TNFα does not 

result in an improvement in signs or symptoms and therefore targeting other key pathways 

became a necessity. 
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1.5.4 IL-1 Receptor Antibody 
 

IL-1 levels are increased in patients with RA (49)and therefore it seemed logical to block 

this cytokine that is produced by inflammatory cells including macrophages and 

neutrophils.   

 

Anakinra was found to be effective in RA (50)but only attained moderate improvement in 

ACR responses and high IL-1 levels were thought to be as a result of generalised immune 

activation as opposed to a pathogenetic problem.  However this medication was re-

appropriated into the IL-1 and cryopyrin associated conditions and it has also been 

effective for conditions that affect the NLRP3 inflammasome such as gout(51).   

 

1.5.5 Blockade of the IL-6R 
 

Tocilizumab is used in the treatment of RA and also other inflammatory arthropathies such 

as juvenile idiopathic arthritis.  It was initially available as an intravenous infusion in 

patients who had failed TNFα blockers (52)but was then found to be efficacious in patients 

who were unable to tolerate methotrexate(53,54). Finally it is likely that the mechanism of 

action of tocilizumab is related to blocking the effect of IL-6 released from FLS (55) and 

also blocking IL-6 mediated B-cell stimulation(56). 

 

1.5.6 Anti CD20 Antibody 
 

Rituximab binds to CD-20 on B-cells but not plasma cells and was originally used as a 

treatment for non-Hodgkin’s lymphoma and also chronic lymphocytic leukaemia(57).  It 

was then repurposed into a treatment for RA although it does not have a license as a first 

line therapy and is only given following the failure of another biologic agent(58).  In 

patients who respond to Rituximab, they often have a prolonged response following two 

infusions suggesting that longer term disease modification by B-cells depletion is crucial to 

disease pathogenesis(59).  
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1.5.7 Abatacept and blockade of T-cell co-stimulation 
 

Abatacept is a fusion protein that blocks co-stimulation between CD28 on naïve T-cells 

and CD80/86 on antigen presenting cells.  It is as effective as TNFα blockade in improving 

signs and symptoms of RA and is administered as a subcutaneous injection(60).  Abatacept 

is currently being used in the APPIPRA trial to determine if co-stimulation blockade could 

prevent the onset of RA in those patients who have arthralgia and have already broken 

tolerance by developing antibodies to citrullinated peptides 

(http://www.isrctn.com/ISRCTN46017566).   

 

1.5.8 Other cytokines 
 

Proof of concept and Phase I trials have been performed in patients with RA for IL-15 

(61)and IL-21 blockade (https://clinicaltrials.gov/ct2/show/NCT01208506) and although 

these treatments showed some efficacy, they have not been moved through to further 

development.  GMCSF is targeted by mavrilimumab and this is currently in clinical trails 

to determine efficacy and safety(62). 

 

Despite combination DMARD therapy and biologic agents, there is considerable unmet 

need in the treatment of RA.  Patients have both primary and secondary non-response to 

agents and therefore the disease evolves or the immune system develops anti drug 

antibodies that neutralise the effects of biologic agents.  Small molecule kinase inhibitors 

make attractive targets because they have the potential to target multiple pathways and 

therefore remain efficacious when the disease evolves.  Furthermore small molecules are 

available as oral preparations and therefore may present a more attractive option to 

patients.  There is evidence for cancer literature that patients value efficacy over ease of 

dosage and therefore if the agents are equivalent in terms of disease improvement then 

route of dosage plays a role in compliance(63).   
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1.5.9 Novel small molecule inhibitors 
 

Inhibition of kinases showed efficacy in the field of oncology and in particular in the 

treatment of chronic myeloid leukaemia with imatinib mesylate(64).  This drug targets the 

ATP binding site of the BCR-Abl oncogene and became one of the first bench-to-bedside 

successes for translational medicine.  

 

Specifically in rheumatology, imatinib has been used to treat pigmented villonodular 

synovitis (PVNS) (65)in which there is a translocation of a collagen promoter juxtaposed 

to the MCSF gene in a minority of cells which results in a local production of MCSF and 

expansion of cells expressing MCSF receptor.  The reason that a drug which was first 

developed for CML works in a condition where there is expansion of immune cells in 

synovitis is that kinase inhibitors tend to have multiple targets.  The kinome is known 

(figure 1-3)(66) (67)and each kinase inhibitor can be mapped onto it (figure 1-2) with 

examples of commonly used inhibitors shown below where the diameter of the circle 

relates to the affinity with which a particular molecule binds a target.   

 

 
Figure 1-2:  Dendrograms of the human kinome depicting target inhibition by various agents including tofacitinib 
(CP-690550).  Kinase inhibitors often target multiple kinase pathways.  Staurosporine is used to induced apoptosis of 
cells and is a pan-kinase inhibitor.  Tofacitinib although targeting JAK also targets other kinases.  Reproduced from (67) 
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Figure 1-3:  The human kinome reproduced from Kinome Render (68). Illustration reproduced courtesy of Cell 
Signaling Technology, Inc. (www.cellsignal.com) 
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Although the JAK inhibitor tofacitinib has been successful in the treatment of RA when 

compared to methotrexate (69)and is useful in patients who are resistant to multiple 

biologic agents, not all kinase inhibitors have been so successful.  Targeting of Syk 

appeared promising at the pre-clinical and early phases but later trials revealed inadequate 

efficacy and significant safety signatures(70).  In the case of the Syk inhibitor fostamatinib, 

issues with a lack of efficacy were overshadowed by a poor safety profile with 

transaminitis, hypertension and hypercholesterolaemia being problematic(71).  Some of 

these effects could be linked to off target effects of the drug and it has been hypothesised 

that a lack of specificity of target in fostamatinib resulted in failure. 

 

The JAK inhibitor, tofacitinib is approved for the treatment of RA in the USA, South 

America, Australia and Japan and is available for use off-license in the UK.  It was 

developed in partnership between the O’Shea lab, the NIH and Pfizer and resulted in a 

small molecule inhibitor with a novel mechanism of action.  Tofacitinib was initially 

thought to target only JAK3 but further investigation showed it to have activity against 

JAK1/3 (72) and possibly JAK2 but no known activity against TYK2.  However although 

tofacitinib was approved by the FDA, the dosage was limited because of concerns 

regarding side effects namely reactivation of infections, abnormalities in serum creatinine 

and also changes to circulating lipids in a patient population with a higher cardiovascular 

risk.   

 

Furthermore, tofacitinib was thought to have it’s main effect in lymphocytes given its 

ability to inhibit JAK3 however there is now evidence for a wider role in innate immune 

cells(73), fibroblasts(74), osteoclasts(75) and dendritic cells(76).  Furthermore a recent 

study shows that tofacitinib treatment of white fat results in the generation of more 

metabolically active brown fat and therefore a possible link to treating obesity and the 

metabolic syndrome with kinase inhibitors(77). 

 

Another JAK inhibitor, baricitinib, is in clinical trials for the treatment of RA (78)and also 

for the treatment of psoriasis and diabetic nephropathy.  This JAK1/2 inhibitor has shown 

promise against TNFα blockade (78)and shows that JAK2 inhibition where once thought to 

be therapeutically impossible due to it’s association with colony stimulating and growth 

factors, may indeed be crucial to treat RA.   

 

Filgotinib is a selective JAK1 inhibitor from Galapagos that has 10-fold selectivity over 

Tyk2 and 30-50-fold selectivity over other JAK members.  Results from the ACR 2015 
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conference showed promising results in both patients treated with and without 

methotrexate with ACR70 results at 24 weeks in the region of 30% in the former and 25% 

in the later.  A higher dose of 100mg twice daily resulted in an ACR70 response rate of 

almost 40% when the drug was used alongside methotrexate.  Furthermore, inhibition of 

JAK1 alone led to little in the form of safety signature with a small decrease in neutrophils 

and increase in creatinine.  Furthermore, lymphocyte counts were not altered and HDL 

cholesterol improved over LDL suggesting that differential inhibition of JAKs results in 

significantly different lipid profiles.   

 

Although JAK3 specific inhibition is theoretically desirable, a clinical trial of VX-509 or 

decernotinib showed significant safety signatures in the form of increased infection, 

derangements of liver transaminases and hypercholesterolaemia(79).  The medication was 

moderately effective with ACR70 responses at 12 weeks in the region of 20% but only at 

the 150mg dose where side effects were prohibitive.   Following this trial Vertex decided 

to halt further development. 

 

Other kinase inhibitors which are in trial include Brutons tyrosine kinase which has shown 

efficacy in pre-clinical models of RA (80)and also the cyclin dependent kinase inhibitor 

seliciclib (81)may fill the unmet need of patients with RA who have a predominantly 

fibroid picture and for whom current biologic agents deliver little therapeutic benefit.  In 

addition PI3 Kinase inhibition is being explored with specific inhibitors of the gamma and 

delta subtypes posing interesting therapeutic targets in the field of autoimmune rheumatic 

diseases(82,83). 
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1.6 Immunopathogenesis of RA 

1.6.1 Genetics and lessons from GWAS 
 

Early genome wide association studies in RA yielded some useful information regarding 

the genetic heritability of the condition(84,85).  GWAS relies on large numbers to detect a 

small signal where a single nucleotide polymorphism confers an altered risk of developing 

a particular condition.  Part of the heritability of RA was explored by using initial twin 

studies where up to 15% of monozygotic twins went on to develop RA when one twin had 

the condition compared to 4% of non identical twins(86,87).  This also gives credence to 

the role of environmental factors although these could be acting as epigenetic factors such 

as smoking that alters methylation status of genes. 

 

Early linkage studies showed that the MHC Class II locus was critical in RA with HLA-

DR4 being associated with an increased risk of developing the disease.  Furthermore this 

was expanded to include other specific HLA-DR alleles that encode a five amino acid 

sequence known as QKRAA or the shared epitope(9).  Patients who are positive for the 

shared epitope are more likely to have an aggressive erosive course of disease and also 

require biologic therapy at an earlier stage(10).  Furthermore work from disease registries 

has shown that the shared epitope and environmental factors such as smoking can act 

together in a synergistic fashion to further increase the risk of developing RA.  This effect 

is reserved to patients who are seropositive and this makes biological sense where a defect 

in the antigen presentation apparatus of the adaptive immune system results in 

autoantibody production and further adaptive and innate activation in the form of CD4 T-

cells and macrophages.   

 

Early GWAS studies with small patient numbers confirmed these results but mainly in 

seropositive patients.  Furthermore, the population from which the patients were drawn 

from tended to be of Caucasian and European ancestry hence conclusions about other 

populations could not be confidently drawn.  In addition small linkage studies were 

emerging showing that other markers may have been important especially in other 

populations but these studies could not be replicated. 

 

The first metanalysis of RA GWAS studies increased the power of these studies to detect 

smaller effects and other defects of the adaptive immune system were discovered.  In 

particular PTPN22, a tyrosine phosphatase, was found to be significantly different in 
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patients with RA (88)and also components of the JAK/STAT pathway (89)that acts as a 

signal transduction pathway for many inflammatory cytokines was altered.   

 

A recent metanalysis comprising over a 100000 subjects with almost 30000 cases and the 

rest controls has shown further insight into the genetics of RA and also the ability of 

computational biology teams to combine data from various sources and integrate their 

analysis to provide biological insight(90).  This GWAS also included a significant number 

of individuals from Asian decent although many of these cases were from Japan and China 

and therefore Southeast Asia was not represented (figure 1-4). 
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Figure 1-4 Manhattan plot reproduced from (6) showing the larger number of polymorphisms found when a 
trans-ethnic analysis is employed.   
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Table 1-9:  Table of SNPs significant from trans-ethnic GWAS analysis.  Reproduced from (6) 
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In total over 10 million single nucleotide were tested and these were combined with other 

analyses to gain further insight into the pathogenesis of RA.  In the first instance, a large 

trans-ethnic metanalysis was carried out which revealed over forty risk loci just under half 

of which were novel.  This was then replicated and following replication, the total number 

of risk loci increased to 101 with 100 being outside the MHC locus.  In the trans-ethnic 

analysis, the loci outside MHC explained 5.5% of the heritability in Europeans and 4.7% in 

Asians.  Furthermore the group then went on to use the following methods to gain further 

insights into the role of the genetic component in the pathogenesis of disease: 

 

1. Enrichment of epigenetic chromatin marks at each loci in 34 different cell types by 

assessing trimethylation of Histone H3 at lysine 4 (H3K4me3).  Methylation of 

lysine 4 in Histone 3 is associated with gene activation and therefore if chromatin 

marks are seen at these loci it gives further evidence that these loci are important in 

pathogenesis.  In particular, significant enrichment was seen in the CD4+ Treg 

samples, a cell which has been linked to failure of resolution of inflammation.   

2. Carrying out a cis- expression quantitative trait locus analysis using data from 

PBMC, CD4 T-cells and CD14+ CD16- monocytes.  By combining expression data 

with SNPs you can interrogate whether a particular SNP has an effect on the 

expression of that particular gene. 

3. Overlapping the genes in the data set with other autoimmune conditions, primary 

immunodeficiencies, cancer somatic mutation genes and knockout mouse 

phenotypes. 

4. Finally pathways enrichment analysis was performed by text mining Pubmed and 

also determining which genes had a potential protein-protein interaction. 

 

Using a combination of these methods, genes associated with the SNPs were given a score 

that was higher if the gene was present in multiple analyses outlined above.  The approach 

led to a list of genes that were then further examined to determine whether the gene was 

currently associated with RA pathogenesis or in the case of genes that were identified in 

protein interaction networks, whether they were already therapeutic targets.   
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Figure 1-5 Table of RA risk genes discovered on trans ethnic GWAS and which source of data each satisfies.  
Reproduced from (6) 
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From the prioritized genes plot we can see that PTPN22 is present along with members of 

the JAK and STAT pathway, T-cell co-stimulation proteins CD28 and CTLA-4 as well as 

IL6R.  Furthermore PADI4 has been linked with the process of citrullination of native 

proteins and therefore the development of ACPA leading to a break in tolerance. 

 

 
Figure 1-6 SNPs linked via protein-protein interaction networks to current treatments for RA.  Only IL6R is 
linked directly to a treatment.  Reproduced from (6) 
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Notably many of the SNPs could be linked to current therapies in RA but only the SNP in 

IL6R was directly linked to a treatment namely, tocilizumab.  In all other cases, the link 

was through an extended protein-protein interaction network and may account for one of 

the reasons why discovering druggable targets via genetic studies has been difficult. 

 

In addition this study led to the discovery of SNPs in cytokine pathways and T and B cell 

pathways that were not previously shown in earlier GWAS.  This has led to the situation 

where GWAS has validated potential druggable pathways after we have already been using 

therapies in the field.  However it does validate the approach of GWAS and some 40 novel 

loci were not prioritised as having potential drug targets and further fine mapping is 

required to determine which genes are potentially responsible for the altered risk. 

 

 
Figure 1-7:  Plot of -log10(FDR q values) for pathways in the current versus previous RA GWAS.  B cell, T cell and 
cytokine signalling pathways were significantly changed in the current GWAS.  Reproduced from (6) 

 

Therefore this metanalysis of GWAS in RA patients with trans-ethnic origins has shown 

that genes involved with cytokine signaling, B and T-cell pathways and the JAK/STAT 

pathway are implicated in the pathogenesis of RA.  Some of this information is novel but 

in other cases therapeutics are already in the field and have been used for decades in the 

treatment of RA.  
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1.7 Environmental factors 

1.7.1 Smoking 
 

Cohort studies from the Karolinska Institute elegantly demonstrated the interaction 

between genetics and smoking where having HLA-DR4 positivity and PTPN22 along with 

being a current smoker increased the risk of developing RA dramatically(10).  Furthermore 

Rheumatoid Factor and ACPA are found more commonly in people who smoke and may 

predate the onset of arthritis by many years(33). 

 

ACPA are normally raised to structural components such as fibrinogen, fibronectin and α-

enolase and studies of the airways in early RA have demonstrated inflammation of the 

bronchial tree suggesting that the break of tolerance may occur at the mucosal barrier(18).   

 

Other agents such as coal dust and silica have also been implicated in the pathogenesis of 

RA and the insult of tar, hydrocarbons and free radicals will cause significant disruption to 

the mucosal barrier and alter self proteins by altering PADI4 an enzyme implicated in the 

process of citrullination and therefore the formation of ACPA(91).  In addition, the 

discovery of the aryl hydrocarbon receptor has given further credence that cigarette smoke 

and other sources of hydrocarbons can directly influence RA fibroblast activity(92).   

1.7.2 Infectious Agents 
 

Evidence for the involvement of bacterial and viral infectious agents such as Proteus and 

E.coli as well as cytomegalovirus and Epstein-Barr virus have been in the literature for 

some time.  The hypothesis in these cases is that the immune response against the pathogen 

results in a break of tolerance to self through molecular mimicry in a fashion similar to 

Gullian-Barre Syndrome and gastrointestinal bacterial infections.   

 

However alphavirus species such as Chikungunya, which are transmitted by mosquitoes, 

can cause a debilitating arthritis following the initial infection(93).  Furthermore 

Chikungunya has been spreading from Oceana through Africa and there have been cases in 

the North of Africa and southern Europe.  With air travel becoming more common, this 

problem is being intensified.  The virus itself was thought to be able to cause the 

development of ACPA but it may be that in those people who are susceptible to developing 

RA through their genetics and adverse environmental factors that the virus initiates the 
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onset of synovitis.  Without these other risk factors, a synovitis may also occur, hence the 

name which means “to become contorted” in the Kimakonde language, but is self limiting 

and resolves with conservative measures. 

1.7.3 The microbiome 
 

Although the pathogenesis of RA is linked to genetics and environmental factors, 

archaeological excavations from mid and southern states of USA showed that bones 

exhibited pathological changes, which were in keeping with erosions from rheumatoid 

arthritis(94).  Furthermore, these findings pre-dated the description of rheumatoid arthritis 

in the Europe by thousands of years suggesting that the disease itself may have been 

communicated from the Americas.   

 

No one infectious agent has been implicated in the pathogenesis of RA but the role of the 

human microbiome is likely to be significant.  We have formed symbiotic relationships 

with non-pathogenic bacteria and this adds another level of complexity to the pathogenesis 

of complex diseases.  Therefore alterations to the human microbiome may be implicated in 

disease onset, perpetuation and also failure of resolution.  

 

Molecular mimicry is proposed as one potential mechanism by which bacteria perpetuate 

the pathogenesis of RA.  However organisms such as P.Gingivalis that are associated with 

periodontitis and cause inflammation in the periodontal area can express PAD(95).  

However the literature surrounding the role of these species in the break of tolerance in RA 

is still debated.   

 

Evidence from other inflammatory arthropathies has shown the presence of a gut-joint-skin 

axis that may be influenced by the microbiome.  In a rat model of ankylosing spondylitis, 

administrations of antibiotics to sterilize the GI tract resulted in the prevention of disease 

pathology(96).  This suggests that the microbiome itself may have an influence on the 

immune system especially through Th17 cells that (97)are implicated in 

spondyloarthropathies and related conditions such as inflammatory bowel disease.   

 

Shotgun sequencing has provided microbiome researchers with the technology to measure 

the microbiome.  The 16s ribosomal RNA gene is conserved between species and therefore 

by sequencing this gene one can determine the relative abundance of microbial species at a 

particular site and also their diversity.  A recent study has sequenced the oral microbiome 
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teeth, saliva as well the faecal microbiome in patients with RA(98).  Perturbations in the 

microbiome were found between patients with RA and healthy controls and these changes 

reversed with treatment.  Also, certain species such as Haemophilus and Lactobacilus were 

over represented in patients with RA and especially in the case of the latter, were found 

more often in those with active RA.  In conclusion, the microbiome is an area of 

considerable unmet need and should be considered as another factor in the pathogenesis of 

RA. 
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1.8 The synovial microenvironment and lessons from pathology 
 

The future of treatment of RA lies in the realm of stratified medicine and getting the right 

treatment to the right patient at that right time.  In cancer and other conditions such as 

infection this can be done by biopsy or culture of a specific organism in order to determine 

which particular mutation is driving pathology or which organism is responsible for 

infection and also what it is sensitive to in order to determine optimal treatment. 

 

Therefore having a pathologic sample means that the molecular diagnosis is sound 

especially in diseases which seem to be homogenous e.g. lung cancer and also that there is 

likely to be a particular response to treatment in the case of determining sensitivities to an 

infectious organism.  The role of the synovial biopsy in RA is more controversial and is 

dependent on the acceptability of this diagnostic by the patient population, the provision of 

equipment and resource to carry this out and also whether the information which is gained 

from this procedure outweighs the risk of the procedure. 

 

The reason for synovial biopsy not being carried out as widely as a biopsy in cancerous 

conditions is that at a population level, people respond well to our treatment algorithm of 

early DMARDs, combination therapy and then biologic therapy.  However on a patient 

level, the response rates for the population are not important, you either do or do not 

respond to a particular treatment.  Therefore the goal of stratified medicine is to gain the 

best treatment outcome for the patient and therefore also improve treatment outcomes for 

the population and decrease the burden of disease for society.   

 

Many cell types have been implicated in the pathogenesis of RA however there are 

elements of the innate immune system along with the adaptive immune system which are 

critical in the pathogenesis of disease and this is demonstrated by the clinical effectiveness 

of treatments targeting macrophages in the form of anti-TNFα, B-Cells with rituximab and 

T-Cells with abatacept. 

 

A retrospective study(99) of synovial biopsies have revealed at least four different 

subtypes of pathology: 

1. Lymphoid predominant with evidence of ectopic lymphoid follicles of B and T 

cells 

2. Myeloid predominant 
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3. Low inflammatory 

4. Fibroblast dominant  

 

Furthermore in this retrospective study, the myeloid phenotype was associated with a 

better response to anti-TNFα therapy.  In addition the STRAP trial (http://www.matura-

mrc.whri.qmul.ac.uk/) , a part of the MRC-MATURA programme to deliver stratification 

in RA, is going to correlate patient outcome with biopsy results when they receive 

rituximab, etanercept or tocilizumab.  The outcome of the trial is to determine whether 

rituximab is a poorer treatment option in those patients who have a B-cell poor biopsy at 

baseline.   

 

1.8.1 Myeloid lineage cells 
 

Myeloid lineage cells from monocytes to macrophages, dendritic cells and osteoclasts have 

a central role in the pathogenesis of RA(100,101).  These cells provide an important link 

from the innate to the adaptive immune system with dendritic cells(DCs) and macrophages 

able to present antigen.  They are able to respond to pattern and damage related signals and 

are able to stimulate T-cells and B-cells.   

 

Furthermore subsets of monocytes with varying levels of CD14 and CD16 expression 

levels may be associated with an inflammatory or resolving phenotype(102).  CD14+ 

CD16+ monocytes have been shown to be pro-inflammatory but this population has been 

subdivided into CD14dim CD16+ and CD14bright CD16+ with the bright population being 

more frequent in the peripheral blood of patients with RA(103,104).  Furthermore, the 

bright population had higher MHC Class II expression, higher levels of CCR5 and also 

secreted higher concentrations of TNFα when stimulated with T-cells.   

 

Tissue macrophages express the CD68 marker and the presence of CD68 + macrophages 

has been shown to be a biomarker of therapeutic response(101). Further, there is evidence 

that these cells are derived from circulating monocytes as part of the mononuclear 

phagocytic system(105,106).  Macrophages have also been subdivided into M1 and M2 

type cells with the M1 being more inflammatory and related to an interferon or LPS 

stimulus and M2 being driven by a variety of stimuli such as IL-4, IL-13 or prostaglandins.  

Conventionally, macrophages that have been derived from CD14+ monocytes are cultured 

with MCSF to promote their differentiation and then used in further experiments.  These 
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cells have higher levels of CD64+ and also MHC Class II expression that demonstrates 

their differentiation.  However, these cells are plastic and can be differentiated to an M1 or 

M2 phenotype dependent on their environmental conditions(107).  Therefore, the 

infiltrating macrophage can change its phenotype based on the phase of the inflammatory 

process.  Macrophages are also a significant source of inflammatory cytokines such as 

TNFα, IL-1, 6, 12 and 15 as well as matrix metalloproteinases.   

 

However, evidence exists to support the argument that tissue resident cells can arise from 

the embryonic yolk sac or foetal liver(108,109).  In addition to tissue resident 

macrophages, there is evidence for both conventional and plasmacytoid DCs in the 

pathogenesis of RA(110-113). 

 

Dendritic cells are described as professional antigen presenting cells and are able to 

activate naïve T cells and initiate effector T cells responses.  However dendritic cells are 

also critical in the induction and maintenance of peripheral T cell tolerance (114)where 

autologous T-cells have escaped central tolerance induction from the thymus.  

 

1.8.2 T cells 
 

Abatacept which blocks T-cell co-stimulation is an effective treatment for DMARD 

resistant RA and therefore demonstrates the role of T-cells in pathogenesis and continued 

inflammation in RA(115).  Furthermore, T-cells are present in both the synovium of 

patients with active RA and are present in ectopic lymphoid follicles(99).  Furthermore, 

these cells are present in synovial fluid drawn from the joints of patients with active RA 

(116)and are able to induce inflammatory cytokine production from MCSF 

macrophages(117). 

 

CD4+ T cells have also been implicated through GWAS with PTPN22, CTLA-4, IL-2, 

TNFAIP3 and c-REL being over represented in patients with RA(6).  A conventional Th1 

CD4+ cell is a significant player in the pathogenesis of RA. IFNγ in response to activation 

by an APC then goes on to cause further activation of TH0 cells, in an autocrine loop, to 

promote their maturation to Th1 cells.  Further, macrophages are stimulated to secrete 

further pro-inflammatory cytokines, such as TNFα and metalloproteinases that cause 

cartilage and bone destruction.  Th2 cells are also responsible for initiating an antibody 

response from B-cells and therefore have a role in the development of RF and ACPA(118).  
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Th17 cells are also implicated in RA with macrophages and dendritic cells providing the 

necessary transforming growth factor β, IL-1β, IL-6, IL-21 and IL-23(119).  Furthermore, 

regulatory T-cells (Foxp3+) seem to have a limited function in RA patients and therefore 

suggest that there is an imbalance between Th17 and regulatory T-cells that drives RA(120). 

 

As well as implication from GWAS and also histology from synovial biopsy, the CD4 T-

cell is crucial in the macrophage: Tck cell contact activation model that demonstrated that 

an antigen specific response was not crucial in activating a macrophage(121).   Although 

an initial break of tolerance is required in order to develop an antibody response in the 

form of RF and ACPA, CD4 T-cells, once activated by cytokines such as TNFα, IL-6 and 

IL-15, can perpetuate the chronic immune response. 

 

The role of CD8+ T cells is not clearly defined in RA although recent evidence suggests 

that patients who have active RA may have an effector phenotype compared to controls 

and that this populations secretes more pro-inflammatory cytokines(122).  However with 

treatment and a reduction in disease activity, these cells persist although their cytokine 

secretion profile changes suggesting that they are being stimulated by external ligands. 

 

1.8.3 Other cells of relevance 

1.8.4 B Cells 
 

The presence of RF and ACPA demonstrates the role of B lineage cells in RA.  

Furthermore, rituximab, which depletes cells expressing CD20, is a licensed and effective 

therapy for RA(58).  Although B cells are crucial in the production of antibodies, they also 

have a significant role in antigen presentation, activating T cells and are a source of local 

cytokines.  B-cells are also a source of RANKL and may contribute to 

osteoclastogenesis(123).  Finally Breg cells may be important in the pathogenesis of RA but 

further work needs to be carried out(124).   

 

1.8.5 Neutrophils 
 

Both synovial fluid and the synovial lesion in RA contain large number of neutrophils, 

which were initially thought to be reactive(125).  These cells tend to be involved with 

acute inflammation and are responsible for the “pus” seen in acute bacterial infections.   
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Although they are present in the synovial lesion, their presence was thought to be due to 

chemotactic stimulation as well as activation by integrin families and immunoglobulin.  

Furthermore, the synovial microenvironment prevents the apoptosis of neutrophils and this 

has been demonstrated when synovial fluid is used to co-culture neutrophils with 

fibroblasts and endothelial cells(126,127).   

 

Neturophils can also form NETs or neutrophil extracellular traps and these are comprised 

of chromatin in a framework that is able to capture and present autoantigens, 

immunostimulatory molecules as well as components of neutrophil granules.  Specifically 

in RA, NETs have been shown to present autoantigen, in particular, citrullinated peptides 

and these NETs are present in the synovial lesion(128).  Production of NETs was induced 

by autoantibodies to citrullinated peptides and was augmented by proinflammatory 

cytokines such as TNFα.  Furthermore, NETs from RA neutrophils were able to stimulate 

synovial fibroblasts to not only secrete pro-inflammatory cytokines such as TNFα but also 

to produce chemotactic factors such as IL-8.  Therefore from a bystander cell, the 

neutrophil plays an important role where it responds to the altered citrullinated 

environment and then is able to perpetuate that response by presenting the autoantigen 

along with stimulatory molecules to other parts of the immune system.  

 

1.8.6 NK Cells  
 

NK cells may be activated in the synovial inflammatory process and there is evidence for a 

subpopulation present in the synovium of patients with RA(129).  They are activated 

through NK receptor signalling and are a rich source of cytokines including but not limited 

to IFNγ, TNFα and IL-15 and could therefore contribute to RA pathogenesis through both 

cytokine secretion and cellular activation. 

 

1.8.7 Stroma and Structure 

1.8.8 Fibroblasts 
 

Fibroblasts and specifically RA fibroblast like synoviocytes (FLS) make up an important 

component of the synovium as well as the pathologic pannus lesion that is the hallmark of 

RA(130).  In a recent study of phenotypic subtypes of disease on synovial biopsy from 
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patients with RA, a fibroid or fibroblast rich subtype was described(99).  This phenotype 

was less likely to respond to biologic therapies such as TNFα.  This subgroup was less 

likely to show B or T cell aggregates and was also more likely to show a higher 

angiogenesis score based on a gene profile.  These patients are also less likely to be 

seropositive for rheumatoid factor or ACPA and the findings of this study are echoed in the 

clinical sphere where we often find that patients who are seronegative tend to cycle 

through biologics and although there may be some response, there is often continual low-

grade inflammation.  

 

However FLS are not just structural components but are a rich source of pro-inflammatory 

cytokines and also enzymes such as matrix metalloproteinases which degrade surrounding 

stroma and result in joint destruction.  FLS have the ability via expression of adhesion 

molecules, proteinases and cathepsins to interact with the synovial lining and cartilage to 

invade and destroy stroma.  Furthermore, via TNFα and the production of RANKL(131), 

they can stimulate osteoclastogenesis thereby further contributing to joint destruction. 

 

The synovial phenotyping study was based on gene set analysis of microarray data and one 

such gene set was associated with angiogenesis.  FLS secrete factors such as VEGF that 

promote neo-angiogenesis (132)and via adhesion molecule expression can facilitate 

inflammatory cell infiltrate(133).  A recent study from Zurich also demonstrated that FLS 

could migrate from one joint to another over longer distances thereby demonstrating that 

RA may begin on one joint and then “spread” to another(134).  Finally, FLS can interact 

with T cells, macrophages, and osteoclasts and therefore co-ordinate the immune response 

to inflammatory arthritis. 

 

1.8.9 Osteoclasts and Osteoblasts 
 

Osteoclasts are generated from myeloid precursor cells that are either circulating or 

released from the bone marrow adjacent to sites of inflammation.  MCSF and RANKL are 

found in the inflamed joint and are secreted from synovial fibroblasts and activated T cells 

and therefore result in increased osteoclastogenesis and erosions.  ACPA have been 

demonstrated to further activate osteoclasts and therefore a mechanism for the clinical 

finding of a more destructive arthritis in those patients who are seropositive has been 

proposed(135). 
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In addition, osteoblasts act in balance with osteoclasts to lay down new bone and therefore 

keep bones in optimal health.  Bone health relies on multiple pathways such as the Wnt/β-

catenin pathways involved in osteoblastogenesis and the Dickkopf-1 (136)and sclerostin 

pathways which are negative regulators.  Furthermore other molecules such as LRP-5 and 

Kremen-1 are involved but their role is still unclear.  A recent GWAS of RA patients with 

erosive progression revealed single nucleotide polymorphisms in Dickkopf-1, sclerostin, 

LRP-5 and Kremen-1 with serum Dickkopf-1 levels associated with a polymorphism(137). 

 

1.8.10 Chondrocytes 
 

Chondrocytes make up articular cartilage that covers the joint surface of bones.  An early 

change in RA is joint space narrowing on plain radiographs and therefore cartilage and 

therefore chondrocyte loss is part of the pathogenesis of RA.  Chondrocytes produce 

collagens giving strength to the cartilage and along with proteoglycans such as aggrecan 

facilitate the retention of hyaluronic acid that gives the cartilage resistance to compression.   

 

The inflammatory and invasive pannus lesion invades cartilage but chondrocytes 

themselves can be activated by TNFα to produce and secrete MMPs thereby increasing the 

erosive insult although the majority of erosion is proposed to be due to a combination of 

fibroblast like synoviocytes, activated macrophages and osteoclasts(138-140). 

 

1.8.11 Cytokines and soluble factors in RA 
 

Cytokines are crucial in the management of a coordinated immune response to pathogens 

in order to prime the system, execute killing of a pathogen and also resolve the 

inflammatory response.  Deficiency of cytokine regulators such as IL-1RA lead to 

conditions where inflammation is a hallmark demonstrating the importance of this 

system(141).  

 

Many cytokines are implicated in the pathogenesis of RA with TNFα and IL-6 being the 

most widely implicated at a pathologic level and also by the response of patients with 

active disease to treatments which neutralise these mediators(41,42,53,142,143).  TNFα 

plays a role in perpetuating disease by activating endothelial cells, fibroblasts and other 

cell types to allow access to the joint by other immune cells and also stimulating the 
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release of further pro-inflammatory cytokines and mediators to perpetuate the 

inflammatory response.   

 

TNFα also plays a crucial role in the generation of osteoclasts from precursors and 

therefore contributes significantly to the formation of the erosive pannus, the hallmark 

pathology of RA(144).  As well as leading to erosions, joint damage and therefore 

disability, the increased activity of osteoclasts leads to the disease associated periarticular 

osteopenia and generalized osteoporosis.   

 

TNFα signals via the NF-κB pathway mainly but also has links to the JAK/STAT pathway.  

However inhibition of the NF-κB pathway to date has not been therapeutically useful 

perhaps demonstrating the ubiquitous nature of this pathway.  Therefore this suggests that 

TNFα while being crucial in the pathogenesis in the disease of a proportion of patients 

with RA, is not critical to host defence to bacterial pathogens.  A caveat to this is in the 

case of intracellular mycobacterial infections where early treatment with TNFα blockers 

was associated with tuberculosis infection due to the breakdown of the granuloma(145). 

 

The role of TNFα inhibition has also been demonstrated in other diseases such as PsA 

(146)and also Crohn’s disease(147).  Thus TNFα was thought to be a master cytokine 

responsible for coordinating aspects of autoimmunity.  However although it has a crucial 

role in autoimmunity, it fails in other conditions such as gout, Familial Mediterranean 

Fever and other auto inflammatory disorders.   

 

IL-6 receptor blockade is an effective therapeutic option in RA although patients initially 

had to undergo intravenous infusions of this medication as opposed to subcutaneous 

injection(53).  Therefore this medication tended to be used for those who had failed TNFα 

inhibition although there is significant evidence that IL-6 blockade is superior to TNFα 

inhibition in those patients with RA who are unable to tolerate methotrexate. 

 

IL-6 is secreted by macrophages in the synovial environment but is also produced by the 

fibroblast(74) and has a role in stimulating B-cells to produce antibodies.  Therefore this 

cytokine has a role in linking the stromal component of the disease with the innate and 

adaptive components to RA. 

 

Both TNFα and IL-6 are also responsible for the systemic components of disease including 

anaemia, cachexia and raised inflammatory markers.  Systemic IL-6 stimulates the liver to 
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produce CRP and therefore it is most often used when there is a high systemic 

inflammatory burden. 

 

IL-1 although present in both the synovium and synovial fluid of patients with RA is not a 

therapeutically useful target with Anakinra failing in patients with RA.  Despite this, IL-1 

blockade is useful in conditions where the IL-1 and IL-18 axis is deregulated such as in 

neonatal onset multi-inflammatory disorder or Muckle-Wells Syndrome(148).   

 

Colony stimulating factors are upregulated in macrophages from patients with 

inflammatory arthritis and in particular targeting GM-CSF is being assessed in a Phase II 

clinical trial(62).  Macrophages treated with GMCSF release more TNFα in response to 

stimulation and therefore targeting this growth factor was therapeutically viable although 

concerns regarding cytopenias and pulmonary alveolar proteinosis required significant 

safety assssments(149).    

 

 

1.8.12 Implication of the kinases and specifically the JAK/STAT pathway in 
RA 

 

Kinases phosphorylate proteins that lead to activation of a signal transduction pathway 

from ligand receptor to transcription factor activation and downstream gene transcription.  

Many kinases have been implicated in the pathogenesis of RA (150)and are attractive 

targets because of the ability to target them with small molecules as opposed to biologic 

therapies.   

 

Also, there is often a degree of redundancy in the kinome and therefore inhibiting a class 

of kinases is theorized to lead to a greater therapeutic potential than just targeting a single 

cytokine or receptor.  Current and previous targets for kinase inhibition in RA include NF-

κB, Syk and Btk. 

 

Tofacitinib targets JAK signaling and is the only kinase inhibitor licensed for the treatment 

of RA(151,152).  This medication targets the JAK/STAT pathway which is implicated in 

RA from genetic studies(90), in vitro studies (153-155)and finally from the clinical 

effectiveness of the molecule.   
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The Signal Transduction and activation of Transcription (STAT) proteins transduce signals 

from various cytokines and growth factors(156,157).  In contrast to receptor tyrosine 

kinases, Janus kinases are associated with the cytokine receptor and on ligand binding 

become activated by phosphorylation.  Thereafter they proceed to phosphorylate the 

cytokine receptor that leads to the creation of STAT docking sites and phosphorylation of 

the STAT proteins themselves(158).   

 

STATs then form homo or hetero dimers and translocate to the nucleus and bind to DNA 

and activate transcription of target genes.  STATs are also regulated once activated by 

protein tyrosine phosphatases such as PTPN22, the suppressor of cytokine signaling 

(SOCS) group of proteins(159) and also protein inhibitors of activated STATS 

(PIAS)(160).   

 

The four members of the JAK family are JAK1, JAK2, JAK3 and TYK2 with all being 

ubiquitously expressed except for JAK3 that is limited to lymphoid cells.  Furthermore, 

each JAK is activated by a particular ligands and also forms homo or heterodimers with 

particular STAT proteins.  In theory this makes studying the JAK/STAT system incredibly 

complicated due to the number of potential players involved and also redundancy within 

the system. 
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Figure 1-8 A summary of JAK family members and their association with cytokine receptor families.  Gamma 
chain cytokine, interferon, gp130 associated and growth factor receptor cytokine families have been targeted 
therapeutically in RA.  IL-12Rβ1 cytokines are associated with diseases such as psoriasis, inflammatory bowel disease 
and seronegative arthropathies.  A specific JAK1 inhibitor should target gamma chain cytokines, interferon and gp130 
associated cytokines and make an attractive target.  JAK2 inhibition would spare gamma chain cytokines but target 
growth factor receptors and may have unwanted side effects such as anaemia due to inhibition of erythropoietin 
signaling.  JAK3 inhibition will only target gamma chain cytokines and may be too specific for control of inflammatory 
arthritis.  A specific TYK2 inhibitor would spare both gamma chain cytokines and growth factor receptors and may also 
be therapeutically attractive.   
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Figure 1-8 outlines in general the JAK architecture and also shows which cytokine families 

a specific JAK inhibitor would hit.  JAK1 sits downstream of interferon receptors although 

it is also implicated in IL-2 and IL-6 signaling.  JAK2 was originally an unattractive target 

because it was involved with growth factor transduction including Epo but is also 

downstream of other cytokine receptors including type I and type II interferon, IL12/23 

and IL-6(67).  Therefore this makes JAK2 an attractive target if a small molecule can be 

developed with properties that allow inhibition as a heterodimer but relatively sparing 

inhibition when it is deployed as a homodimer downstream of growth factor receptors.  

Also the interferon and IL-6 pathways are important in RA but IL-12 and specifically IL-

23 have been implicated in psoriasis, spondyloarthropathies and inflammatory bowel 

disease(161,162).   

 

TYK2 is involved with type I interferon signaling and also downstream of the IL-12 and 

IL-23 axis and therefore may be a target in spondyloarthropathies or psoriasis.  

Theoretically, both TYK2 and JAK2 inhibition could lead to a powerful effect on diseases 

that are driven by Th17 cells and abnormal IL-23 signalling although monoclonal 

antibodies targeting this pathway have already been approved for conditions such as 

psoriasis and psoriatic arthritis(163).   

 

JAK3 is an attractive target because it sits downstream of the gamma chain cytokines such 

as IL-2, IL-4, IL-7, IL-9 and IL-15 therefore it would have an effect on both T-cell 

development as well as maturation of B-cells and therefore would potentiate two important 

aspects of pathogenesis in RA.  Furthermore, JAK3 is limited to lymphoid cells and 

therefore off target effects would be limited by targeting this kinase alone.  Human 

mutations of JAK3 result in severe combined immunodeficiency and these patients have 

poor lymphoid development(164).   

 

JAK inhibitors or jakinibs tend to target multiple parts of the kinome with different levels 

of specificity.  Therefore a JAK3 inhibitor alone may be an attractive idea because of 

target limitation to lymphoid cells but from pathogenesis and current treatments such as 

relative ineffectiveness of calcineurin inhibitors in RA, we know that other cell types are 

also crucial to disease pathogenesis.  Therefore inhibitors with a relative inhibition of one 

or two JAKs over others at a particular concentration are the rule rather than the exception.   

 

Although tofacitinib was thought to be a JAK3 specific inhibitor, there is evidence that it 

inhibits JAK3 and JAK1(73).  Therefore this drug targets both gamma chain signaling 
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cytokines as well as those that signal through gp130 such as IL-6.  This combination would 

appear to be the perfect storm for RA because these cytokines are involved in pathogenesis 

and there are approved and effective treatments for them in the form of IL-6R 

blockade(53).   

 

However, although JAK2 inhibition was discounted because of embryonic lethality in 

murine models and due to it’s role in growth factor and colony stimulating factor signaling, 

relative inhibition of this JAK may lead to an even greater therapeutic effect.  JAK2 

mutations have been implicated in myelofibrosis (165,166)and ruxolitinib is approved for 

this indication.  The novel JAK1/2 inhibitor baricitinib is showing promise in clinical trials 

and therefore I believe that JAK2 inhibition is crucial in treating RA given it’s widespread 

use downstream of cytokines which are pathogenic in RA(78). 

 

A clinical trial of tofacitinib versus methotrexate in patients with RA showed good efficacy 

and tolerability of the drug in patients with relatively short duration of disease(69).  

Furthermore it is the first drug to demonstrate efficacy beyond methotrexate with almost 

40% of patients achieving an ACR70 response by 6 weeks at the 10mg dose compared 

with 10% achieving the same outcome on methotrexate.   

 

However, jakinibs are associated with an infection signal for both viruses such as herpes 

zoster and also tuberculosis and this is likely to be drug related in a certain proportion of 

patients because of interferon disruption(167,168).  However the tuberculosis cases tended 

to occur in those from TB endemic countries and these patients were initially screened as 

negative.   

 

Furthermore in the case of tofacitinib and baricitinib, abnormalities in serum creatinine and 

lipids have been demonstrated.  The abnormalities in lipids, with a predisposition for a 

worsening in cardiovascular risk profile, also occurs with IL-6R blockade using 

tocilizumab and therefore the lipid effects may be due to blockade of IL-6 

systemically(169).  In addition, lipid abnormalities were improved with concomitant use of 

medications such as statins although quantifying the long-term effect of jakinibs on 

cardiovascular outcomes would take Phase IV observational studies.   

 

Although these drugs have been approved and are being prescribed to patients, the exact 

mechanism of action and mechanism of side effect is theorized as opposed to known.  

Therefore by using jakinibs you can investigate the effect of relatively inhibiting different 
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combinations of JAKs and also exploring their effect on primary cells from patients as well 

as in assay systems such as in macrophage and Tck co-culture.  

 

However, the current model of drug discovery is broken with failure more costly than ever 

before.  Stratified medicine promises to get the right drug to the right patient at the right 

time but to do this we need to interrogate disease pathology using high-throughput 

measures.  Therefore the use of ‘omic technologies and crucially the integration of this 

data should lead to advances in drug discovery(170,171).   

 

1.9 The role of omic technologies in the investigation, 
pathogenesis and treatment of chronic diseases 

 

‘Omics is a word which is heard often in the current scientific and medical literatures and 

is meant to herald a new age of stratified medicine and treatment where the right condition 

is diagnosed so that the right drug can be given to the right patient at the right time.  –Ome 

in this context means all parts considered in their entirety as opposed to alone.  There is an 

assumption that by using a particular ‘omic technology that as a researcher we will 

understand all of the components of that system and furthermore the field of systems 

biology exists because each particular –ome cannot exist by itself.  

 

However each particular ‘omic technique will only allow measurement of the constituent 

parts and depending on which technology is used this may not comprise of all parts of that 

particular system.  In addition, with increased measurement comes larger amounts of data 

and therefore conventional methods of visualisation, carrying out statistical tests and 

interpreting the results become cumbersome and infomatic techniques become a necessity. 

 

The triumvirate of the clinician, the scientist and the bioinformatician is incredibly 

powerful with each able to offer further insight into a problem which would not have been 

possible without the other two.  Our job as clinical academics is to push the frontiers in the 

diagnosis and treatment of conditions for our patients.  The advances in molecular biology 

and computing technology have allowed this to happen but the questions, hypothesis 

generation and interpretation still need to be carried out in the same method as in previous 

decades.  Further with higher fidelity clinical information comes the real ability to 

integrate clinical information with the results of high throughput techniques and then 
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interrogate the system based on the results using advanced molecular biological 

techniques.   

 

1.9.1 Genomics 
 

Watson and Crick published the structure of DNA in 1953 with Rosalind Franklin 

confirming this with X-ray crystallography(172-175).  Molecular biologists became 

interested in determining the sequence of DNA because Nirenberg and Leder 

(176)determined that the genetic code was laid out in codons or triplets which coded for 

different amino acids, the building blocks of proteins.   

 

Early sequencing was called the “plus and minus” method where primers were extended 

using radio-labelled nucleotides and mixtures of these nucleotides were used alongwith gel 

electrophoresis to determine the sequence of DNA(177).  This method was useful for short 

lengths of DNA of around 80bp but was incredibly time consuming and also required the 

use of a radio-label.  Following this, Sanger (or shotgun) sequencing was born where read 

length had increased from 100 to 1000bp and employed a method of early chain 

termination with fluoro-labeled dideoxynucleotides which are unable to form a 

phsophodiester bond(178).  

 

This however still meant that longer pieces of DNA could not be sequenced in one step 

and therefore the DNA had to be sheared into random segments and therefore these were 

sequenced to give a “read”.  The reads were then assembled using computational 

algorithms into the whole DNA sequence based on the overlapping regions and hence the 

concept of sequencing coverage was also born where a particular base can be “read” 

multiple times in overlapping “reads” to give confidence that the sequence is correct or 

that a particular base is different as may be the case if a cancer genome is sequenced. 

 

The first human genome was sequenced in this fashion and Sanger sequencing is still 

useful for short continuous read lengths such as to confirm the sequence of a PCR product.  

However this method is not high throughput and therefore methods were developed by 

companies such as Solexa and Illumina which allowed the DNA shears to be attached to a 

slide, extended reversibly in parallel and at each DNA extension step, an imaging camera 

captured which fluorescent base had been added.  Another sequencing technology called 

pyrosequencing relied on the measurement of the free hydrogen ion which is released 
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when DNA extension occurs.  In both cases, a collection of reads are built up which would 

then need to be assembled into a full sequence. 

 

This technology was reliant on appropriate molecular biology enzymes DNA polymerase 

and indeed this enzyme or variants of it are critical for both genomic and transcriptomic 

applications from qPCR to microarray and RNA-sequencing.  Without the discovery of 

thermostable versions of the DNA polymerase enzyme and also the reverse transcription 

enzyme for transcriptomics, high throughput methods would not have been possible. 

 

Early high-throughput sequencers delivered short read lengths which posed a bigger 

problem when it came to assembly because of the computational challenges.  Firstly it is 

harder to do a puzzle with 100 pieces as opposed to 10 and this is the problem when you 

have a shorter read.  Furthermore the process of producing a read is error prone and 

therefore assembling reads with multiple errors is extremely challenging. 

 

The process of assembly and genome finishing was made possible by advances in 

computer processor speed and also reductions in the cost of both RAM and long term 

storage.  Therefore bioinformatics teams were critical to sequencing in order to deal with 

the problem of having to join up the pieces of the puzzle.  Furthermore, because of the 

earlier sequencing efforts, we now have reference or scaffold genomes for many organisms 

and therefore we are able to assemble reads against a known sequence akin to making a 

jigsaw puzzle using the box as a reference guide. 

 

However the early shotgun sequencing approaches required de novo assembly where the 

reads had to be built up without a reference.  This is more difficult because it is 

computationally intensive as each read has to be matched against all others but advances in 

mathematical algorithms to enable text matching enabled considerable time savings to be 

made as the Human Genome project continued.  Therefore in most cases, reference 

genome based assembly is used in current genomic or transcriptomic approaches although 

de novo assembly is needed if large mutations are present which result in deletions as 

opposed to substitutions and also for genomes without a reference. 

 

Following sequencing, the genome itself required annotation for areas which may code for 

proteins, areas which do not code but may have other functions such as microRNA and 

long non coding RNA and also the function of these particular areas.  These efforts have 
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been made possible by curated databases such as Ensembl which show regions of the 

genome in incredible detail and on which multiple sources of information can be overlaid. 

 

In addition to whole genome sequencing which can be resource and computationally 

intensive, exomes or the exon containing portions of the genome can be sequenced to give 

a more targeted approach.  Furthermore the annotation of the genome and in particular 

analysis of mutations in patients with diseases allowed companies such as Illumina to 

make slide or “chip” based techniques which would allow the analysis of genomic or 

transcriptomic information in parallel.  This type of analysis can be used for GWAS 

studies if known single nucleotide polymorphisms are incorporated onto the chip and this 

technology will be discussed further in the transcriptomics section. 

 

With the advent of newer sequencers and also advanced sequencing chemistry has come 

the promise of the £1000 human genome and certainly with the newer Illumina HiSeq X 

Ten systems this is a possibility.  However we now live in an age where patients and the 

general public wish to have their sequences known even if it is unclear whether the 

information generated is correct or useful.  Companies such as 23andme offer DNA 

service, which results in a report giving a health overview, a DNA relative function and 

also a comment on your ancestry.  This information is provided not for diagnostic purposes 

and only for information but it is difficult to see how someone would not be concerned if 

they were at a high risk of Alzheimers disease.  In conclusion, patients and the general 

public will soon be coming to their doctors and other health care professionals armed with 

sequencing and other data and therefore a knowledge of how this is generated is critical. 

 

Finally, the epigenome(179) is the collection of modifications which can occur to the 

genome itself to switch on or off genes or regions of DNA by changing the accessibility to 

polymerizing enzymes.  DNA is normally held in a tight configuration in histones and in 

this state is not able to be transcribed.  Histones have to open to allow portions of DNA to 

be transcribed and this can be controlled by histone acetylation.  Furthermore, methylation 

is a process where the DNA is altered and normally suppresses gene activity and 

alterations to the genome sequencing methods have allowed the methylation status of DNA 

to be determined at a gene and also genomic level. 

1.9.2 Transcriptomics 
 



 70 

Although the genome for a particular organism is fixed and is stored in the nucleus in each 

of it’s cells, the transcriptome varies.  It is the transcriptome which varies between a skin 

dermal fibroblast and a synovial capillary endothelium.  Although the transcriptome itself 

need to be translated into protein, sequencing of the human genome and also high 

throughput sequencing technology have allowed researchers to interrogate the RNA 

species present down to a single cell. 

 

As well as messenger RNA, which is translated into protein, transfer RNA, ribosomal 

RNA, small RNAs such as microRNA and also long non-coding RNA each have their role 

in the transcriptome.  Furthermore each of these particular species requires modifications 

to experimental protocols to ensure that enrichment of that particular part of the 

transcriptome occurs prior to high throughput method deployment.   

 

Prior to discussing both microarray technology and also RNA sequencing, the molecular 

biology discovery of reverse transcription and also thermostable DNA polymerases made 

these techniques.  Total RNA isolation is possible from many different tissue sources 

including solid tissue, cultured cells and primary blood cells.  This total RNA is then 

reverse transcribed to give a more stable complimentary DNA or cDNA strand.  In the case 

of a particular cell such as a CD4 T cell from a patient with RA, thousands of cDNA 

strands will be created.   

 

In the case of RT-PCR and qRT-PCR, specific primers are employed to amplify a 

particular gene of interest based on a sequence that crosses an exon-exon junction thereby 

allowing amplification of the mRNA but not genomic DNA.  Therefore this process allows 

quantification of a particular gene under different conditions when compared to a 

housekeeping gene i.e. a gene that is expressed at a similar level under all experimental 

conditions.  A similar process is carried out in the case of both preparation for DNA 

microarrays or RNA-Sequencing.  As well as the PCR stage, with higher throughput 

methods, the cDNA is often labeled or barcoded depending of whether microarray or 

sequencing is being employed. 

1.9.3 DNA microarrays 
 

DNA microarray technology was made possible by the annotation of the human genome 

for both coding and non-coding elements.  Companies such as Affymetrix then constructed 

DNA “chips” where known sequences or “probes” were seeded in a pattern onto a glass 
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slide.  The probes, in the case of Affymetrix, were made of 25 base long lengths of DNA 

that were specific and complementary to sequences of known genes.  In addition 

mismatched probes were also included as well as probes for non-coding parts of the 

genome and quality control probes from species other than the one for which the array was 

intended for. 

 

DNA microarray technology relies on the RNA transcriptome being labeled fluorescently 

and then hybridised to the array using complementary base pairing.  The higher the amount 

of labeled cDNA hybrisiding to a particular spot, the brighter the fluorescent signal coming 

from that spot when the array was scanned.  Therefore DNA microarrays allowed 

researchers to relatively quantify the transcriptome between experimental conditions on a 

grand scale.  The Affymetrix U133 Plus 2.0 Human array contains 1.3 million individual 

oligonucleotide features with around 54,000 probe sets on the array itself.  A probe set is 

typically made up of 20 individual probes for the same gene in the last 3’ exon of the gene.  

Other arrays such as the exon array have probes present in all exons and even the 3’ IVT 

arrays have genes duplicated on the array itself. 

 

A critical factor in both microarray and RNA sequencing is the quality of the RNA because 

RNA is more susceptible to degradation by natural RNAases when compared to DNA.  In 

particular, if RNA is degraded heavily, the 3’ end RNA can be affected significantly and 

this can be assessed using informatics tools in the array experiment itself.  However 

carrying out an array experiment on poor RNA will lead to poor results and therefore an 

analysis of the RNA prior to array or sequencing should be carried out.  The RNA Integrity 

Number (RIN) is calculated from an algorithm which analyses the 18S and 28S fragments 

as well as the regions in between and gives a number for the quality of the RNA based on 

the peaks which should be present in good quality RNA and also the absence of 

degradation product bands. RNA with a high RIN ( >7) is most useful for high throughput 

applications although lower RIN values may be used for qPCR experiments. 

 

The employment of a fluorescent measurement to quantify the transcriptome means that 

quality control becomes more important as batch effects and also scanning artifacts can 

have a significant effect on an experimental result.  The particular quality control measure 

employed in microarray and sequencing technology are discussed in those particular 

chapters but assessment of raw and normalised data is crucial prior to statistical tests and 

making conclusions.  Furthermore a microarray or sequencing experiment needs to have its 
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findings validated by other methods such as qPCR or protein expression of transcriptional 

changes. 

 

Both array based and sequencing based techniques require bioinformatics input to assist 

the biologist in processing the data and with initial data analysis.  With the use of high 

throughput techniques comes the problem of multiple testing and the real possibility of 

false positive results.  If we take a stringent p value of <0.01 as the level of confidence we 

wish to apply to a particular statistical test of a gene between two conditions, we would 

expect approximately 540 probe sets to be changed by chance alone.  This is based on the 

assumption that on an Affymetrix Human U133 Plus 2.0 array, approximately 54000 genes 

are represented and with a p value of 0.01, 540 genes may be falsely determined as 

differentially expressed.  False discovery correction(180) is employed to assist researchers 

in accounting for this but good experimental design in the form of adequate biological 

replicates and randomisation to prevent batch effects is critical.   This problem and others 

once identified can be taken account for or analysed within bioinformatics packages. 

 

As well as microarrays for determining the transcriptome, the annotation of the human 

genome allowed manufacturers to produce array based methods to carry out GWAS 

studies.  Basing their chip design on earlier sequencing studies, microarrays such as the 

Illumina HapMap allow researchers to determine SNPs in common conditions and process 

the data using common pipelines.  Further methylation status can also be determined using 

an array-based method although sequencing is often used to confirm initial findings. 

1.9.4 RNA sequencing 
The process of RNA sequencing (181)is similar to DNA sequencing albeit that the cDNA 

is sequenced as opposed to genomic DNA.  The critical step in RNA sequencing is 

determining which RNA to sequence.  Ribosomal RNA makes up over 90% of the Total 

RNA isolated from a cell.  Ribosomal RNA does not pose a problem in microarray based 

technology because the specific nature of the probes on either the chip or bead, in the case 

of Affymetrix of Illumina respectively, means that hybridisation to reverse transcribed 

ribosomal RNA should not occur. 

 

To take account of this, the researcher has to make a decision as to whether they wish to 

sequence coding RNA ie that which has a poly adenylation signal, coding and non coding 

RNA which includes long non coding species or microRNA.  These decisions occasionally 

need to be made prior to RNA extraction as small RNA species can be lost and therefore 
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the input of a bioinformatician versed in sequencing issues is critical at the experimental 

design stage. 

 

Three techniques exist in general with regards to preparing a sample for sequencing: 

 

• Poly A selection allows RNA which has a poly adenylated signal to be pulled down 

and sequencing.  This signal exists at the 3’ end of the RNA and therefore relies on 

high quality RNA 

• Ribosomal reduction is used if long non coding RNA is required and aims to 

remove the ribosomal RNA.  Other species of RNA such as mitochondrial RNA 

will still be present and these can be removed computationally at the data analysis 

stage. 

• MicroRNAs need to be selected specifically and if a researcher wished to explore 

this avenue then a separate sequencing experiment is required. 

 

The RNA is then processed in that it is prepared into a library by shearing, reverse 

transcription and barcoded with specific primers.  The process of barcoding enables 

multiple RNA samples to be loaded onto a particular sequencing chip and therefore allows 

multiplexing. 

 

Following sequencing, the quality of the data is assessed and then differential gene 

expression can be carried out using cloud based services, command line tools or graphical 

interfaces such as CLC genomics workbench or the Galaxy project(182).  Each of these 

techniques has its advantages and disadvantages but the creation of the Illumina Basespace 

means that biologists do not require an in depth knowledge of the process of sequencing 

alignment and differential expression in order to get meaningful data in the form of a list of 

differentially expressed genes.   

 

The Basespace project uses scalable Amazon Web Machines to deploy more computing 

power when it is required such as during the process of alignment and therefore allows a 

typical sequencing project to be processed in around 24 hours for a project involving 8-16 

samples.  Furthermore Illumina sequences upload raw data directly to Basespace and 

therefore the data itself is protected and stored with each sequencing file often in the region 

of 4GB.  A typical workflow for an RNA sequencing project is shown in figure 1-9 and 
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although newer and optimised methods for alignment may be developed, the general 

methodology remains true.   

 

 

 

 
 

Figure 1-9 An overview of an RNA sequencing project processed in Illumina BaseSpace.  All sequencing projects 
result in base calling with an associated quality score.  These sequences are then assessed for their overall quality and 
high quality sequences are aligned to a reference genome if one is available.  Thereafter, differential gene expression is 
carried out and a list of differentially expressed genes generated.   
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1.9.5 Bioinformatic analysis of array and high throughput data 
 

Early experiments involving DNA and RNA sequencing involved using visual methods 

such as gel electrophoresis or blotting.  As PCR technology evolved, fluorescent markers 

made semi quantitation a possibility and this could again be visualised using standard 

curves and graphing.   

 

However visualising over a million probes led to problems in making the data accessible 

and meaningful and therefore bioinformatics solutions were required.  These came in the 

form of custom solutions in the first instance and once refined these methods were 

incorporated into software packages.  Common software packages to process and analyse 

microarray and sequencing data include Genespring and Partek Genomics suite.  These 

tools allow a researcher to take the proprietary data files and derive a differentially 

expressed gene list in relatively few steps.  They however tend to be black box solutions 

and do not allow much customisation or even an understanding of the processes behind 

data processing.  

 

The R statistical project grew out of a need to have a simple but powerful command line 

interface with which to carry out statistical calculations and also data visualisation(183).  

The R project is open source with a new release every six months and is heavily supported 

by an online community.  Furthermore, when researchers started using R for 

bioinformatics work, the Bioconductor(184) project was born to enable software 

developers to create, test and manage packages which would be useful to all 

bioinformaticians by providing a curated repository with vignettes for each package(184).  

Bioconductor requires packages to be tested on multiple system environments and 

therefore when software analysis is done using particular software versions one can be 

confident that the same result will be found by another researcher using the same data as 

long as they carry out the same commands as the original researcher.  Further the process 

of scripting, even at the most basic level, means that reproducibility can be ensured and 

also critique can be applied.  

 

In addition, novel statistical techniques are often implemented in R and similar languages 

and therefore when new methods are announced, using them in a current structure is often 

easier than if one was starting from scratch.  Also, the power of a command line interface 

is critical when analyzing large data sets but there is also the reality that biologists may 
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urinary work better with graphical interfaces and therefore using tools such as Tcl and 

Shiny(185) have allowed this powerful tool to become more accessible. 

 

Microarray analysis in R is a challenging prospect for the researcher who does not have a 

computing or mathematics background but with time the same analysis techniques can be 

applied to microarray, sequencing and qPCR data.  Throughout my thesis I will be 

referring to R and Bioconductor packages that have been used to process and analyse data 

and also including my scripts in the appendix. 

 

1.9.6 Proteomics 
In keeping with the other ‘omic fields, the aim of proteomics is to characterise all of the 

proteins in a particular biofluid or tissue.   

 

The field of proteomics is particularly complex because of the post-translational 

modifications that can occur to proteins and therefore the alteration of the protein from a 

simple amino acid sequence to a structured protein.  Methods of protein detection are 

common and the enzyme linked immunosorbant assay, bead multiplex and Western 

Blotting are methods of measuring proteins that rely on the ability of antibodies to 

recognise specific epitopes on proteins.  

 

These systems work well if a particular protein or group of proteins is selected a priori 

such as TNFα or cytokines and growth factors.  Discovering novel proteins requires the 

use of high throughput technology such as mass spectrometry and also curated protein 

databases again showing the important interface between technology and 

bioinformatics(186).   

 

Briefly, the proteins need to be separated by mass and charge by gel electrophoresis, and 

then particular proteins that are changed between experimental conditions are analysed 

using mass spectrometry.  The mass spectrometer takes a sample and then ionises it using 

electrons or protons. This results in the disruption of chemical bonds between amino acids 

or in the case of metabolites, within chemicals to produce ionised fragments.  These 

fragments are then accelerated along a voltage gradient until they reach a detector and a 

highly accurate mass and charge are read from the sample.   
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Mass spectrometry is often coupled to a method of electrophoresis to separate out complex 

mixtures and avoid overloading the mass spectrometer resulting in ion suppression and the 

inability to detect ions at the same mass.  Gas chromatography, liquid chromatography or 

capillary electrophoresis can be used and the method of electrophoresis is dependent on the 

size, charge of the analyte of interest as well as other factors.  

 

Based on the mass and charge, a predicted protein sequence can be inferred and this is then 

compared to curated databases of proteins such as UniProt.  Furthermore, computational 

algorithms can now predict protein structure based on amino acid sequences to determine 

whether particular proteins might have signaling, transmembrane or enzyme domains.  X-

Ray crystallography and nuclear magnetic resonance (NMR) are then used to confirm 

structural identities. 

 

However the use of proteomics on a global scale in human biomarker studies has been 

disappointing.  In particular, most proteins are rare and therefore are difficult to detect and 

furthermore the blood plasma, which is an accessible bio fluid, has high levels of albumin 

and antibodies which tends to make the detection of other proteins difficult.  A solution to 

this has been the use of urinary proteomics that employs the kidney as a protein sieve that 

keeps albumin and antibodies in the blood compartment.   

 

Urinary proteomics has been used in small studies to show the difference in the urinary 

proteome between patients with early RA and healthy controls(187).  Further studies are 

ongoing to determine whether the changes seen are due to joint breakdown products, 

generalised inflammation or are specific to different inflammatory conditions.   

 

1.9.7 Metabolomics 
The metabolome like the transcriptome and proteome is the collection of all small 

molecules within a biological sample or organism.  The study of the metabolome is used 

widely in clinical medicine on a targeted basis when we measure glucose levels, vitamins 

and blood creatinine.  Furthermore there are some niche applications such as in the 

diagnosis of inborn errors of metabolism that use mass spectrometry based approaches as 

opposed to clinical biochemistry or enzymatic methods.   

 

The metabolome of human serum and urine has been studied for decades using two main 

techniques, mass spectrometry coupled to a separation method and nuclear magnetic 
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resonance or NMR.   The target molecule tends to have a mass less than 1kDa that include 

amino acids, sugars hormones and lipids.  Profiling of bio fluids from patients has involved 

metabolomics of serum, urine and also synovial fluid (188,189) (190-194). 

 

However as well as fluids, intracellular metabolomics has led to an integration of the 

metabolomics and immunology.  Variation in the concentration of salt and lactate leads to 

alteration in the activation of immune cells and therefore serum and extracellular 

concentration of ions and metabolites have effects on the immune system.  Furthermore, by 

measuring the intracellular metabolome we have been able to show that in murine 

macrophages, LPS activation of TLR4 leads to alterations in succinate and other members 

of the tricarboxylic acid cycle(195).   

 

This integration of the metabolome with immune cell function gives credence to the idea 

that the metabolome is the result of or the outcome of the other ‘omic levels such as the 

transcriptome or proteome and therefore should take account of post-transcriptional and 

translational modification.   

 

However there are significant challenges with mass spectrometry based approaches and in 

particular when using an untargeted methodology, identification of metabolites can be 

difficult(196-198).  Each metabolite has a particular mass and charge and these are then 

compared to a database of known metabolites and each potential metabolite then needs to 

be matched with a standard of that metabolite.  In addition, the processing of the sample 

prior to mass spectrometry needs to be tailored based on expected experimental outcome.   

 

NMR is described as being more quantitative than LC/MS but the number of metabolites 

which can be detected is less than for LC/MS.  Clinically this can be useful where the high 

throughput nature and non-destructive nature of NMR mean that NMR based tests can be 

deployed using patient samples(199,200).  Furthermore, there are methods that also assess 

certain metabolite families such as lipids and lipoproteins in a quantitative fashion.   

 

 

 

1.9.8 Bringing it all together: The Science of Data 
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The  “Big Data” revolution is truly underway and this is also the case in both medicine and 

life sciences although the high stakes yields of the financial services or banking industries 

is not often immediately apparent.  Traditional experiments rely on a hypothesis to be 

tested using a specific experimental setup but the paradigm shift in data science is that the 

data itself will reveal patterns itself(171,201-204). 

 

On the surface this may seem similar to a hypothesis free approach which was common in 

the early days of genomics and transcriptomics but in good data science experiments, there 

is a pre-defined analysis plan with primary data analysis plans being akin to the primary 

endpoint in a randomized control trial.  Thereafter secondary analysis plans can be 

considered but these need to be pre-defined for each data science experiment.   

 

Big Data has four main properties known as the four Vs: 

• Volume 

• Variety 

• Velocity 

• Veracity 

 

The volume of data is measured by the physical storage that it occupies but also can be the 

number of observations that are held in total. Therefore there is a difference between a 

trawl of the known World Wide Web with the total number of web pages at a given time 

with a large number of observations made on a smaller number of individuals such as 

immunophenotyping combined with RNA sequencing in a RA disease cohort.  Many of 

the statistics which are used to analyse Big Data make the assumption that there are both a 

large number of observations and a large number of individuals from whom the 

observations have been made but this is often not the case in life sciences unless we are 

looking at epidemiological resources or processes such as journeys through Emergency 

Departments.   

 

Variety in the case of life sciences and medicine could be anything from clinical data, 

laboratory results to variant calls from genome sequencing.  Information from wearable 

devices and social media also adds to this.  Companies such as Hewlett Packard have 

developed intelligent systems, which can analyse data from hand written records and even 

video, and therefore allow historical records to be used in Big Data experiments.  Imaging 

such as XR radiographs or MRI studies are often components of clinical trials and cohort 
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studies and the complete information from these is often not assessed and therefore this is 

also an area of unmet need. 

 

The Velocity refers to the dynamic nature of method in that more is being collected as each 

second passes.  In systems where analysis of real time data is critical, particular data 

architectures are more important so that they can deal with the fact that initial data set 

would have changed by the end of an analysis. 

 

Finally Veracity refers to the uncertainty within the data and refers back to the quote from 

Donald Rumsfeld where we have known knowns, known unknowns and unknown 

unknowns.  The quality of data going into an experiment is crucial and therefore meta data 

is extremely precious as any data about the data allows us to make an assessment of 

quality.   

 

In addition to these properties of Big Data, two other factors are crucial:  firstly, data 

visualisation is important to allow rapid assessment and interpretation of large data sets 

and secondly machine learning methods have allowed the computers to assess Big Data 

sets and determine patterns which are not apparent to humans(205).    

 

Finally there are companies who combine both aspects of visualisation and machine 

learning in the form of topographical data analysis (TDA) that looks at the “shape” of the 

data(206).  Companies such as AYASDI are now helping researchers unlock information 

within their own data.  TDA has been employed in the assessment of Breast Cancer data 

where a novel subtype of patients who were oestrogen receptor (ER) positive but also had 

high levels of c-MYB and low levels of immune markers(207).  This group was associated 

with a high survival and low possibility of metastases.  Crucially, this group could not be 

found using traditional clustering methods and therefore TDA offered unique insight.   

 

Recently, publicly available data from brain injury and spinal cord injury experiments were 

reanalaysed using AYASDI’s platform and found that peri-operative hypertension 

predicted recovery better than any drug(208).  The analysis of data that was shelved for 

decades has now allowed the group to generate new hypotheses that can be tested.   

 

In conclusion, data science should sit at the centre of polyomic approaches to the 

interrogation of diseases although this is challenging as part of a PhD.  However by 
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employing software packages that are commonly used by bioinformaticians, the data is in a 

format that is best suited to be further analysed using advanced techniques.   

 

1.10 Psoriatic Arthritis 
Although my thesis is focused on the pathogenesis of RA, I will use some microarrays that 

have been prepared from synovial CD14+ cells from patients with psoriatic arthritis (PsA).  

Therefore I will provide a brief overview of PsA including some differences with regards 

to pathogenesis compared to RA. 

 

1.10.1 Epidemiology 
PsA has a prevalence of 1% but this may be higher as the disease is further sub classified 

(209).  It affects males and females in equal proportions and occasionally can predate the 

onset of psoriasis.  It is classified with seronegative spondyloarthropathies and spinal 

disease is linked to the presence of the HLA-B27 haplotype.  It occurs in Caucasians more 

than Asians or Africans.   

 

1.10.2 Classification 
PsA can be subdivided further which makes it different to RA and the different types are 

outlined below: 

• Asymmetric oligoarthritis often affecting large joints 

• Symmetric polyarthropathy in a distribution similar to RA 

• Axial spondyloarthropathy with stiffness and inflammation of the spine and 

sacroiliac joints 

• Distal interphalangeal joint disease in a distribution similar to osteoarthritis but 

with a younger onset, inflammatory changes and often associated with psoriatic 

nail pitting 

• Arthritis mutilans which is a deforming arthropathy that results in resorption of the 

terminal ends of the phalanges 

• Entheseal disease where tendinopathy is the predominant feature but may also be 

associated with plantar fasciitis 

1.10.3 Diagnosis 
A rheumatologist based on a suggestive history, inflammatory symptoms and appropriate 

investigations makes a diagnosis of PsA.  There are different classification criteria and also 
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CASPAR Criteria – In the context of inflammatory articular disease and ≥ 3 points 

from following categories(210) 

Category Description Points 

Current psoriasis or 

personal or family history 

of psoriasis 

Current psoriasis confirmed by a 

rheumatologist or dermatologist 

Personal history of psoriasis from 

patient or physician 

Family history of psoriasis from 

patient in a first or second degree 

relative 

2 – current psoriasis 

1 – personal or family 

history 

(only one category 

counted so maximum 

of 2 points) 

Psoriatic nail dystrophy Onycholysis, pitting or 

hyperkeratosis 

1 

Negative Rheumatoid 

Factor 

Preferably ELISA 1 

Dactylitis Current or history from a 

rheumatologist 

1 

Radiographic evidence of 

juxta-articular new bone 

formation 

Ossification near join margins but 

excluding osteophytes on hand or 

foot XR 

1 

Table 1-10 CASPAR criteria for the classification of psoriatic arthritis 
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disease assessment tools two of which are outlined below.  The Classification criteria for 

Psoriatic Arthritis (CASPAR) (table 1-10) criteria are one of the most commonly used and 

have a sensitivity of 91.4% and specificity of 98.7%.  Disease activity and outcomes are 

again measured by a variety of tools but require the assessment of 68 joints because of the 

distribution of disease compared to RA.  The Psoriatic Arthritis Response Criteria 

(PsARC)(146,211) comprises of 66 swollen and 68 joint tender assessments along with 

both physician and patient global assessment measure on a five point Likert scale.  This is 

used in a similar way to the DAS-28 to measure disease activity and also treat to a target. 

 

1.11 Treatment 
The principles of treatment for PsA are similar to RA with involvement of the 

multidisciplinary team with patient engagement an essential part of management.  In 

addition, dermatology colleagues with their own MDTs will be useful to help control skin 

disease.   

 

DMARDs are also used in PsA although there is a relative paucity of evidence for 

medications such as methotrexate(212) and sulphasalazine(211).  Although 

hydroxychloroquine is used, it has been associated with a flare of psoriasis and therefore is 

not used as commonly.   

 

First line biologic up until recently was only anti-TNF therapy(146) but other treatments 

that are effective in RA such as tocilizumab, abatacept or rituximab have not been effective 

in trials of PsA.  This may represent inefficacy of the agent but may also reflect that PsA is 

a heterogeneous disease and effectiveness in subtypes is difficult to assess in “catch-all” 

clinical trials.   

 

1.11.1 IL12/23 blockade 
Ustekinumab is a monoclonal antibody targeting the p40 subunit of IL-12 and IL-23.  It 

has been shown to be effective in controlling plaque psoriasis and is effective in psoriatic 

arthritis(163). 

 

1.11.2 IL-17 blockade 
Secukinumab is a monoclonal antibody to IL17A, a pro-inflammatory cytokine that is 

implicated in the pathogenesis of PsA.  Compared to placebo, secukinumab improved both 



 84 

the signs and symptoms of disease with 54% of patients treated with secukinumab 300mg 

achieving ACR20 compared to 15% of those taking placebo(213).   

 

1.11.3 Phosphodiesterase 4 (PDE4) inhibition 
Apremilast is a PDE4 inhibitor that has been demonstrated to be efficacious in psoriasis 

and psoriatic arthritis(214).  It breaks down cyclic adenosine monophosphate (cAMP) and 

this decreases the expression of TNFα, IL17 and IL23 while increasing IL-10 and this may 

be related to mechanism of action.   

 

The differential epidemiology, clinical features and also the differential response to 

treatment shows that RA and PsA have a fundamental difference in pathogenesis.  They do 

however have an overlap in that they are both inflammatory arthropathies and can affect 

similar joints and therefore makes a good comparator for RA.  
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1.12 Hypotheses and Aims 
 

Many data suggest that the JAK-STAT pathways subserve the effector biology of a range 

of cytokines in inflammatory arthritis pathogenesis.  Herein, I hypothesise that a JAK-

STAT transcriptomic signature will be evident in myeloid lineage cells from patients with 

RA and that this will be distinct form that present in PsA, as a comparator arthropathy, 

arising because of the rather fundamental differences in the pathogenesis of each disease.  

On this basis, I predict in consequence that the JAK1/3 inhibitor, tofacitinib, will inhibit 

critical inflammatory pathways in myeloid lineage cells and, in particular, will inhibit 

inflammatory cytokine production from macrophages following Tck cell contact activation 

and in conditions created to mimic the RA synovial microenvironment.   Finally using the 

novel technique of RNA sequencing I will test the hypothesis that novel effector pathways 

and biomarkers of response in monocytes following tofacitinib treatment will emerge. 

 

To investigate these inter-related hypotheses, I set out with the following aims: 

1. Using bioinformatic techniques, to determine whether there is a JAK-STAT 

signature evidence in a microarray dataset of patient derived monocytes and 

macrophages and if so is this unique to RA. 

2. To establish whether JAK inhibition prevents the production of pro-inflammatory 

cytokines such as TNFα when macrophages are cell contact activated by cytokine 

activated T cells. 

3. To further determine if JAK inhibition prevents RA patient derived monocytes 

from being stimulated by soluble factors in RA synovial fluid. 

4. To thereafter seek new pathogenetic pathways and biomarkers of treatment using 

RNA sequencing of RA patient derived monocytes treated with RA synovial fluid 

and tofacitinib. 
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Chapter 2 Materials and Methods 
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2.1 Buffers and Reagents 

2.1.1 Complete medium 
RPMI – 1640 (Life Technologies), with 10% heat inactivated foetal bovine serum 

(Invitrogen), 100IU/ml penicillin, 100µg/ml streptomycin and 2mM L-Glutamine. (Gibco) 

2.1.2 FACS/MACS wash buffer 
Dulbecco’s phosphate-buffered saline (DPBS) (Life Technologies) without calcium with 

2% heat inactivated foetal bovine serum (Invitrogen) 

2.1.3 FACS stain buffer 
DPBS with 0.5% bovine specific albumin (Sigma) 

2.1.4 PEA buffer 
DPBS, 2mM ethylene diamine tetra-acetic acid (EDTA) and 0.5% human serum albumin. 

2.1.5 Tofacitinib, Ruxolitinib and Tyrphostin AG-490 
Small molecules were obtained from LC-Labs and dissolved in DMSO (Sigma).  Serial 

dilutions were employed to ensure that DMSO concentration did not exceed 0.001% in cell 

culture.  Single use aliquots were prepared and stored at -80C. 

 

2.2 Cell Culture 
All tissue culture work was carried out in laminar flow hoods and cells cultured at 37C in a 

5% CO2 atmosphere.  Cells were cultured in complete medium. 

 

2.3 Isolation and preparation of cells 

2.3.1 Isolation of peripheral blood mononuclear cells (PBMC) from whole 
blood or buffy coats 

 

Whole blood was obtained from healthy volunteers under University of Glasgow Ethics or 

from patients with Rheumatoid Arthritis under West of Scotland Research Ethics 

Committee 4 (14/WS/1035) NHS GG&C additional sample tissue resource to support I3I 

Research.  Buffy coats were obtained from the Scottish National Blood Transfusion 

Service, Gartnavel Hospital, Glasgow.   
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Whole blood was diluted 1:2 with DPBS without calcium (Life Technologies) and buffy 

coats diluted 1:4.  Blood was separated by density centrifugation by layering onto 

Histopaque -1077 (Sigma) and spinning according to manufacturers instructions.  The 

interface layer of PBMCs was isolated and washed twice with wash buffer and once with 

complete medium.  The cell suspension was filtered with a 30µm filter (Miltenyi) prior to 

downstream applications.  Cell viability and number was assessed using Trypan Blue 

(Sigma) staining and a haemocytometer. 

2.3.2 Isolation of mononuclear cells from synovial fluid 
 

Synovial fluid was obtained from patients undergoing joint aspiration in the NHS Greater 

Glasgow and Clyde area under ethics approval 14/WS/1035.  Synovial fluid was spun at 

1200g to obtain a cell pellet.  The fluid portion was processed into aliquots and frozen at -

80C.  The cell pellet was washed twice in wash buffer and once with complete medium.  

The cell suspension was filtered through a 30µm filter (Miltenyi) and then assessed for 

viability and number as described previously prior to downstream processing. 

2.3.3 Positive selection of CD14+ monocytes 
 

PBMCs were processed according to manufacturer instructions with CD14 microbeads, 

human (Miltenyi).  Briefly, cells were suspended in 80µl of buffer per 107 cells.  An 

AutoMACS pro was then used for automatic labeling of cells using CD14 human 

microbeads and the positive fraction collected.  Labeled cells were assessed for viability 

and number as previously described.  Purity of cells was assessed using CD14 + mouse 

anti-human PE conjugated antibody Clone: TÜK4 (Miltenyi). 

2.3.4 Positive Selection of CD4+ T cells 
 

PBMCs were processed according to manufacturers instructions using the CD4microbeads, 

human (Miltenyi).  Briefly, cells were suspended in 80µl of buffer per 107 total cells.  An 

AutoMACS pro was then used for automatic labeling of cells using CD4 human 

microbeads and the positive fraction collected.  Labeled cells were assessed for viability 

and number as previously described.  Purity of cells was assessed using CD4 + mouse anti-

human PE conjugated antibody Clone: M-T466 (Miltenyi). 
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2.4 Microarray datasets and processing 

2.4.1 Microarray Dataset 1 

2.4.2 CD14+ peripheral blood monocytes and CD14+ synovial macrophages 
isolated from patients with inflammatory arthritis 

 

Paired blood and synovial fluid samples were obtained from eight patients with RA and 

PsA, who met classification criteria, undergoing joint aspiration within the NHS Greater 

Glasgow and Clyde area.  Samples were processed as per protocols for peripheral blood or 

synovial fluid as described previously.  Cells were lysed using Trizol (Invitrogen) at a 

concentration of 2x106 cells and stored at -80C till processing.  An aliquot was reserved for 

purity staining by flow cytometry and cells were >95% pure.   

 

RNA was isolated according to the protocol below and then processed according to 

manufacturers instructions for an Affymetrix Genechip U133 2.0 plus array.  Briefly this 

process involved cDNA first strand and second strand synthesis.  Purification, 

fragmentation and biotin labeling are carried out prior to fluorescent labeling and array 

hybridisation.  Chips were scanned using an Affymetrix Genechip® Scanner 3000 and data 

acquired using Affymetrix GeneChip Command Console software.  Each array was 

processed into a .CEL file. 

 

2.4.3 CD14+ PBMC isolated from healthy volunteers, differentiated into 
MCSF macrophages and cell-contact activated 

 

CD14+ monocytes were isolated by positive magnetic selection following density 

centrifugation of blood from healthy volunteers.  Cells were assessed for viability and 

number as described previously.  A proportion of monocytes were lysed immediately in 

Trizol (Invitrogen) with the remainder differentiated into macrophages and cell contact 

activated as previously described.  An aliquot was reserved for purity staining by flow 

cytometry and cells were >95% pure.   

 

To produce macrophages, CD14+ monocytes were stimulated with MCSF (50ng/ml) 

(Biosource) and cultured at 37C 6 days.  In this case, to produce Tck, CD3+ positive 

magnetic selection was used and these cells were stimulated with IL-2 (25ng/ml), IL-6 

(100ng/ml) and TNFα (25ng/ml) for 6 days at 37C.  These Tck were then washed with 
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PEA and fixed using DPBS and 2% paraformaldehyde on ice for two hours.  Cells were 

then washed with PEA thoroughly, stained with CFSE and added to mature MCSF 

macrophages in 12 well plates at a ratio of 1 macrophage to 4 Tck for two hours.  All cells 

were lifted using non enzymatic cell dissociation solution (Sigma) and then FACS sorted 

using a FACS Aria I with CFSE negative cells representing cell contact activated 

macrophages and CFSE positive cells representing fixed Tck.  Both MCSF macrophages 

and cell contact activated MCSF macrophages were lysed in Trizol (Invitrogen) at a 

concentration of 2x106 cells/ml.  RNA was processed and arrays carried out as previously 

described. 

 

2.4.4 Microarray Dataset 2 

2.4.5 Wild type mice versus microRNA 155 knockout mice fed on a high fat 
diet 

 

Briefly, Male C57 BL/6 wildtype (WT) and miR-155-/- (Jackson Laboratories) mice were 

fed a high fat diet (HFD) (0.15% cholesterol, 21% lard, Special Diet Services) for six 

weeks in house in a pathogen free facility.  Total RNA was prepared from frozen livers by 

homogenisation and an Affymetrix GeneChip Mouse Gene 1.0ST array was performed.  

These arrays were uploaded to the ArrayExpress database under accession no. E-MEXP-

3932. 

 

2.4.6 Microarray Dataset 3 

2.4.7 PBMC from healthy volunteers and patients with rheumatoid arthritis 
and systemic lupus erythematosus 

 

This microarray dataset was downloaded from the public GEO data repository under 

accession number GSE 38351.  This data set comprises of PBMC obtained from healthy 

volunteers and patient.  A special study module medical student who I was supervising 

analysed this data set as part of his project but I used two of the figures that he produced to 

illustrate batch effect in Chapter 3.  Cells were processed in a similar fashion as previously 

described and Affymetrix Human Genome U133A and U133 Plus 2.0 arrays were carried 

out. 
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2.4.8 Processing of microarray data 
 

Microarray data was analysed using the R project for statistical computing and packages 

from the Bioconductor repository.  Quality control of data was performed using the 

arrayQualityMetrics, affyQCreport and affyAnalysisQC script.  These packages and scripts 

generate the various QC plots which have been used in Chapter 3.   

 

Following QC, U133A and U133 Plus 2.0 arrays were processed using the affy package 

and the Mouse Gene 1.0ST array with the oligo package.  Normalisation of array data was 

carried out using RMA, GC-RMA or fRMA as described in the text.  Following 

normalisation, data was processed for differential gene expression using limma is a 

parametric test was required or RankProducts if a non-parametric test was employed.  In 

the case of limma, genes with a false discovery rate (fdr) corrected p value of  <0.05 were 

deemed to be differentially expressed unless otherwise indicated in the text.  RankProducts 

generates a predictor of false positive (pfp) results that has inherent multiple testing 

correction and this was set at <0.05. 

 

Scripts outlining example processes and also scripts used to generate Venn diagrams from 

Chapter 3 are included in the appendix.   

 

2.4.9 Pathway Analysis 
 

Differentially expressed genes were uploaded to Ingenuity Pathway Analysis (Qiagen) and 

analysed using Core Analysis or other options.  For a core analysis, the significance of 

association between the differentially expressed genes and canonical pathways is 

calculated using a Fisher’s exact test which is multiple testing corrected using a Benjamini-

Hochberg correction. 
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2.5 RNA sequencing 
 

2.5.1 Experiment outline 
 

CD4+ T cells were obtained from blood of patients who had ACPA+ RA density 

centrifugation and positive magnetic selection using previously described protocols. 

 

T cells were cultured in complete medium supplemented with 10% pooled synovial fluid.  

Synovial fluid was obtained from the Centre for Rheumatic Diseases biobank and the pool 

was made from two donors who were seropositive for antibodies against citrullinated 

peptides.  Tofacitinib dissolved in dimethyl sulfoxide (DMSO) was added to cultures at a 

concentration of 1000nM.  Control experiments contained the same concentration of 

DMSO as those containing tofacitinib.   

 

1.25 x 106 cells were used in each condition and cells were cultured in 12 well plates for 24 

hours.  Cells were then harvested, washed and lysed using QIAzol (Qiagen).  Total RNA 

was prepared as described below and samples were analysed by Nanodrop and Agilent 

Bioanalyzer for RNA quality.  RNA Integrity Number (RIN) was greater than 7 for each 

sample put foreword for sequencing. 

 

An aliquot of CD4+ cells was taken at baseline for evaluation of purity and viability with 

cells being >95% pure and >99% viable.  An aliquot of PBMC was also cultured for 24 

hours and then stimulated and stained as per intracellular FACS protocol. 

 

2.5.2 Sequencing preparation and protocol 
 

Glasgow Polyomics carried out all RNA sequencing.  Sequencing libraries were prepared 

using TruSeq Stranded Total RNA with Ribo-Zero Human kit (Illumina) as per 

manufacturers instructions for control and synovial fluid samples.  Sequencing libraries 

were prepared using TruSeq Stranded Total RNA with Ribo-Zero Gold kit (Illumina) as 

per manufacturers instructions for tofacitinib and synovial fluid and tofacitinib samples 

because of an issue with initial sequencing.   
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Samples were barcode labeled and run on a NextSeq 500 sequencer (Illumina) with 20-

25M reads with 75bp paired end reads.  Sample barcodes were demuxed on machine and 

data uploaded to BaseSpace for further processing and analysis. 

 

2.5.3 Data processing using Illumina BaseSpace 
 

Following sequencing, data in the form of FASTQ files were uploaded directly to Illumina 

BaseSpace and backed up on a local server.  Files were assessed for quality using 

FASTQC and Phred scores analysed.  All data had a Phred score >28 and tended to have a 

score of >30 for most bases.  A Phred score of 30 corresponds to a probability that a base 

is called as incorrect of 1 in a 1000 giving 99.9% accuracy in the base call. 

 

The data was aligned using TopHat2 and differential gene expression was performed using 

the Cufflinks pipeline to determine Fragments per kilobase of transcript per million 

mapped reads (FPKM) of each gene.  This gave a list of genes that were differentially 

expressed between two conditions, as multi condition analysis is not possible in 

BaseSpace.  The raw data from candidate differentially expressed genes was then visually 

inspected using the Broad’s Integrative Genome Viewer (IGV).   

 

2.5.4 Data visualisation using CummeRbund 
 

Sequencing data tables were read into R and analysed using the CummeRbund package.  

Graphs of raw FPKM values were generated within this package to show replicates.  The 

“findSimilar” function was used to discover genes that were differentially expressed in a 

particular pattern exhibited by an exemplar gene.  This function uses the Jensen-Shannon 

distance to determine the similarity of the probability distribution of each gene across 

different conditions(215).    

 

2.5.5 Pathway analysis 
 

FPKM tables were uploaded to Ingenuity Pathway Analysis (Qiagen) and analysed using 

both Core and exploratory analyses.  Genes that were differentially expressed (fdr 

corrected p value <0.05) and linked to the JAK/STAT pathway were validated using 
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qPCR.  Genes that were highly differentially expressed (fdr corrected p value <0.01) 

between conditions consistently were also validated. 

 

StringDB was also used to explore potential protein-protein interaction networks and 

clustering of genes. 

2.5.6 qRT-PCR validation of RNA sequencing data 
 

cDNA was prepared as described previously.  Taqman Low Density Array plates (TLDA, 

Life Technologies) were designed based on differentially expressed genes.  Probes 

spanned exon-exon junctions and were designed in conjunction with Life Technology 

technical support.  TLDA cards were designed to run 96 genes in singlet with 4 samples 

per card. 

 

0.7ng of input cDNA was used for each qPCR reaction in the 384 well TLDA plate made 

up as follows: 

 

cDNA        75µl 

Taqman Universal Master Mix II   115µl 

dH2O       30µl 

 

100µl was loaded into each of two injection ports per sample.  The cards were analysed 

using a 7500 Fast Real-Time PCR System (Applied Biosystems).  PCR protocol:  95C 

incubation for 10 minutes followed by 40 cycles of 15 seconds at 95C followed by an 

incubation at 60C for one minute. 

 

Data was analysed in the R using the HTqPCR package.  Samples were normalised to 18S 

genes and presented using the Relative Quantification method. 
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2.6 In vitro assays 

2.6.1 CD4+ T cell stimulation and differentiation into cytokine activated T 
cells (Tck) 

 

CD4+ T cells were isolated from blood by density centrifugation and positive magnetic 

selection using the method described above.  They were cultured at 1x106 cells/ml with IL-

2 (25ng/ml), IL-6 (100ng/ml) and TNFα (25 ng/ml) (Peprotech) for 6 days.  In subsequent 

experiments, IL-2 was substituted with IL-15 (100ng/ml). 

 

2.6.2 CD14+ monocyte stimulation and differentiation into macrophages 
 

CD14+ monocytes were isolated from blood by density centrifugation and positive 

magnetic selection using the method described above.  Monocytes were cultured in 24 or 

96 well plates with MCSF (50ng/ml) (Peprotech) for 3 days.  Cells were detached using 

non-enzymatic dissociation solution (Sigma), washed in DPBS and replated in 96 well 

plates at a density of 5x105 cells/ml with MCSF (50ng/ml) for 3 further days and then used 

in subsequent experiments. 

2.6.3 Macrophage cell contact activation by Tck 
 

Tck were washed thoroughly with wash buffer and added to macrophages at a defined 

concentration.  When JAK inhibitors were used in experiments, Tck were added to 

macrophages at a concentration of 4:1.  Inhibitors or 0.001% DMSO were added to both 

Tck and macrophages 30 minutes prior to co-culture.  A positive control of LPS (1ng/ml, 

Sigma) was used in each experiment.  Co-culture occurred for 24 hours and supernatants 

were collected for ELISA or Luminex analysis.  Transwell inserts (Corning) with pore size 

of 0.4µm were used to prevent cell contact between macrophages and Tck but allow 

soluble factors to permeate where appropriate. 
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2.7 Flow cytometric analysis of cells 

2.7.1 PhosphoFACS stimulation and staining protocol for THP-1 cells 
 

Cytokine stimulants were added to FACS tubes at concentrations described below: 

 

Cytokine Final concentration Manufacturer 

IFNγ 25ng/ml R&D Systems 

IL-6 20ng/ml Peprotech 

GM-CSF 200ng/ml R&D Systems 

IL-4 20ng/ml R&D Systems 

 

0.5 ml of THP-1 cells (ATCC) were added (0.5 x 106 cells per ml) and incubated in a water 

bath at 37C for 15 minutes.  Cells were washed in ice cold DPBS and spun at 350g for 

5min at 4C.  Supernatants were removed after all wash steps.  Cells were fixed using 500µl 

Cytofix (BD) and incubated for 15 minutes at room temperature and protected from light.  

Cells were washed twice with CellWash (BD) and then permeabilised using 1ml Perm III 

buffer (BD) for 30 minutes on ice and protected from light.  Cells were washed twice with 

CellWash and once with FACS stain buffer.   

 

Intracellular phosphoSTAT staining was carried out using the following antibodies: 

 

Marker Clone Isotype Source Conc. Conjugate 

pSTAT1 4a IgG2a
 BD 1:10 PerCP-Cy 5.5 

pSTAT3 4-pSTAT3 IgG2a κ BD 1:20 AF488 

pSTAT6 18/P-STAT6 IgG2a BD 1:10 PE 

 

Cells were stained for 30 minutes on ice and protected from light.  Cells were washed once 

in FACS stain buffer and resuspended in 200µl of FACS stain buffer and acquired using a 

BD LSR II.  Experimental anaylsis was performed in FlowJo version v9.7.6 (TreeStar 

Software) or in Cytobank (www.cytobank.org). 
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2.7.2 PhosphoFACS stimulation and staining protocol for human PBMC 
using SNAP cocktail 

 

Stimulants and surface stains were added to FACS tubes at concentrations described 

below: 

 

Stimulant Final concentration (in 

200ul cell suspension) 

Manufacturer 

PMA 50nM Sigma 

Ionomycin 1µM Sigma 

Anti-CD3 1µg/ml BD 

Anti-CD28 1µg/ml BD 

IFNγ 25ng/ml R&D Systems 

IL-6 20ng/ml Peprotech 

GM-CSF 200ng/ml R&D Systems 

IL-4 20ng/ml R&D Systems 

 

Marker Clone Isotype Source Conc. Conjugate 

CD4 SK3 IgG1κ BD 1:40 PE-Cy7 

CD5 UCHT2 IgG1κ BD 1:40 V450 

CD8 SK1 IgG1κ BD 1:40 APCH7 

CD14 MØP9 IgG2bκ BD 1:40 PE-CF594 

CD19 HIB19 IgG1κ BD 1:40 AF700 

 

200µl of PBMC (1x106 /ml) were added and incubated in a water bath at 37C for 13 

minutes.  Cells were washed in ice cold DPBS and spun at 350g for 5min at 4C.  

Supernatants were removed after all wash steps.  Cells were fixed using 500µl Cytofix 

(BD) and incubated for 15 minutes at room temperature and protected from light.  Cells 

were washed twice with CellWash (BD) and then permeabilised using 1ml Perm III buffer 

(BD) for 30 minutes on ice and protected from light.  Cells were washed twice with 

CellWash and once with FACS stain buffer.   
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Intracellular phosphoSTAT staining was carried out using the following antibodies: 

 

Marker Clone Isotype Source Conc. Conjugate 

pSTAT1 4a IgG2a
 BD 1:10 PerCP-Cy 5.5 

pSTAT3 4-pSTAT3 IgG2a κ BD 1:20 AF488 

pSTAT6 18/P-STAT6 IgG2a BD 1:10 PE 

 

Cells were stained for 30 minutes on ice and protected from light.  Cells were washed once 

in FACS stain buffer and resuspended in 200µl of FACS stain buffer and acquired using a 

BD LSR II.  Experimental anaylsis was performed in FlowJo version v9.7.6 (TreeStar 

Software) or in Cytobank (www.cytobank.org). 

 

Cytokine stimulation alone was used in subsequent experiments where PMA, Ionomycin, 

anti-CD3 and anti-CD28 antibody were omitted from stimulation cocktail. 
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2.8 Enzyme linked immunosorbent assay (ELISA) 
 

Supernatants from cell culture experiments were analysed with TNFα ELISA (Life 

Technologies) prior to Luminex analysis.  Capture antibody was diluted in PBS according 

to the product data sheet and plated onto high capture 96 well plates (ThermoFisher) and 

incubated at 4C overnight.  Plates were then washed with DPBS/0.05% Tween and 

blocked with blocking buffer (DPBS/0.5% BSA) to prevent non-specific binding for one 

hour at room temperature.  Standards were reconstituted in RPMI + 5% FCS to represent 

the sample matrix with the top standard of 2000pg/ml and an eight point standard curve 

constructed by serial dilution.  Cell supernatants were diluted 1:4 with complete medium 

and 100µl added in duplicate and incubated for 2 hours at room temperature with detection 

antibody.  Plates were thoroughly washed with PBS/Tween and thereafter Streptavidin-

HRP was reconstituted according to the product data sheet and was incubated for 30 

minutes at room temperature.  Plates were thoroughly washed with PBS/Tween and 100µl 

of TMB chromagen (ThermoFisher) was added and incubated at room temperature while 

protected from light until standard separation had occurred.  100µl of stop solution 

(ThermoFisher) was added to each well and the plate read within 30 minutes using a 

450nm plate reader (Dynex Technologies). 

 

2.9 Luminex 
 

Following ELISA, a Human Cytokine 30-plex panel (Invitrogen) was carried out on 

supernatants and synovial fluid samples.  Samples were thawed to room temperature and 

spun at 12000g for 1 minute to remove cellular debris.  They were then diluted 1:2 with 

complete medium.  Briefly, standards were prepared according to product data sheets.  

Assay wells were wet with 200µl of working wash solution and aspirated using a vacuum 

aspirator.  Beads were then resuspended by vortexing and sonication and 12.5µl added to 

each well.  Beads were washed with 200µl of wash solution and this was aspirated as 

before and washing repeated.  50µl of Incubation buffer was added to each well and 100µl 

of standard added or 50µl of sample and 50µl assay diluent to each well as appropriate.  

Plates were then wrapped in aluminium foil, protected from light and incubated at 4C on a 

rocker overnight.  Liquid from wells was aspirated and wells washed twice as before.  

100µl of 1x Biotinylated Detector Antibody was added to each well and the plate incubated 

for one hour at room temperature on a shaker.  Liquid from wells was aspirated and wells 

washed twice as before.  100µl of 1x Streptavidin-RPE was added to each well and the 
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plate incubated for 30 minutes at room temperature on a shaker.  Liquid from wells was 

aspirated and wells washed three times as before.  100µl working wash solution was added 

to each well and the plate shaken on an orbital shaker for 3 minutes.  Plate was then read 

using a Luminex 100 instrument and concentration of samples extracted from standard 

curves. 

 

2.10 RNA isolation 
 

Cells were lysed in QIAzol reagent (Qiagen) as per manufacturer instructions and stored at 

-80C.  RNA was extracted using the miRNeasy mini kit (Qiagen).  Briefly, the sample and 

QIAzol was allowed to thaw and then left at room temperature for 5 minute.  140µl of 

choloroform (Sigma) was added to each sample, vigorously shaken for 15 seconds and 

then left at room temperature for 3 minutes.  Samples were spun at 12000g for 15 minutes 

at 4C.  The aqueous phase was transferred to a new tube and 525µl 100% ethanol (Sigma) 

added and thoroughly mixed.  700µl of sample was then transferred to a column in a 

collection tube and spun at >8000g for 15 seconds.  This process was repeated until all the 

sample had been processed.  350µl of buffer RWT was added to each column and spun at 

>8000g for 15 seconds and the follow through discarded.  A DNAse digest step was 

carried out using RNase-Free DNase set (Qiagen).  10µl of DNase and 70µl of buffer RDD 

was added directly to each column and incubated for 15 minutes at room temperature.  

350µl of buffer RWT was added to the column and spun at >8000g for 15 seconds and the 

follow through discarded.  500µl of buffer RPE was added to each column and spun at 

>8000g for 15 seconds and the follow through discarded.  500µl of buffer RPE was added 

to each column and spun at >8000g for 2 minutes and the follow through discarded.  The 

collection tube was replaced and the column spun at >8000g for 1 minutes and the 

collection tube replaced with a 1.5ml tube.  30µl of RNase-free water was added to each 

column and spun at >8000g for one minute.  RNA was analysed using Nanodrop 

(ThermoFisher) and RNA concentration and 260/280 and 260/230 OD ratios recorded.  

2.11 First strand cDNA synthesis 
 

cDNA was synthesised from RNA using the AffinityScript Multiple Temperature cDNA 

synthesis kit (Agilent).  Briefly, 100ng of RNA was added to a microcentrifuge reaction 

tube and 3µl of random primers added.  RNase free water was used to take total reaction 

volume to 15.7µl.  Reaction was initiated by incubating at 65C for 5 minutes and cooling 
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to 20C for 10 minutes.  2µl of 10x RT buffer, 0.8µl of dNTP mix, 0.5µl RNase block and 

1µl Multitemp Reverse Transcriptase was added to each tube.  The reaction was then 

cycled at 25C for 10 minutes, 55C for 60 minutes and 70C for 15 minutes.  80µl of RNase 

free water was added to take final concentration of mixture to 1ng/µl of cDNA.  

2.12 Quantitative RT-PCR 
Primer sequences are outlined below: 

 

Gene Primer Forward Sequence Primer Reverse Sequence 
Product 

Size 

Bcl-6 CCCTATCCCTGTGAAATCTGTG TCTCACAATGGTAAGGTTTCTCTC 100bp 

Bcl2L1 GGCGGCTGGGATACTTT TCATTTCCGACTGAAGAGTGAG 147bp 

Myc GACTCTGAGGAGGAACAAGAAG CAGCAGAAGGTGATCCAGAC 103bp 

Bcl2 GATAACGGAGGCTGGGATG GAGACAGCCAGGAGAAATCAA 79bp 

SOCS3 GGAGTTCCTGGACCAGTACG TTCTTGTGCTTGTGCCATGT 116bp 

18S GGCCCTGTAATTGGAATGAGTC CCAAGATCCAACTACGAGCTT 146bp 

 

PCR reactions were carried out in a 96 well optical plate (Applied Biosystems).  PCR 

thermocycling was carried out in a One-Step Plus Applied Biosystems PCR platform with 

settings Fast cycling settings: 

  

50C for two minutes, 95C for two minutes and then 40 cycles of: 95C for 3 seconds and 

60C for 30 seconds. 

 

PCR reactions were as follows:  5µl SYBR Select, 1µl cDNA template (1ng), 0.5µl of 

forward primer (500nM), 0.5µl reverse primer (500nM), 3µl dH20. 

 

Data was analysed in R using the HTqPCR package. 

 

2.13 Statistical Analysis 
 

Statistical analyses were carried out in the R project for statistical computing or using 

Prism 6 for Mac OS X (Graphpad).  The exact statistical test employed is described in the 

appropriate section. 
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Chapter 3   Developing a transcriptomic pipeline to 
enable analysis of a microarray dataset of myeloid 
lineage cells from patients with inflammatory arthritis 
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3.1 Introduction 
 

In order to address the key research objectives of my thesis I decided to employ a 

systematic approach that involved re-analysing a microarray data set that had been 

generated in our lab.  This microarray set was generated to explore the contribution of 

peripheral and synovial CD14+ cells in the pathogenesis of RA and PsA and I decided to 

employ command line tools to process this data as opposed to commercial technology in 

order to fully exploit the data.   Programmes such as R with the limma package(216) use 

hierarchical models to determine differentially expressed genes that borrow data from the 

complete data set as opposed to treating each gene on it’s own.  This approach is an 

accepted method where there are a large number of observations on a small number of 

samples, the so called “large p, small n” problem(217). 

 

DNA microarray technology has allowed researchers to interrogate the transcriptome of 

cells, which are thought to be involved in pathogenic processes in RA.  The technology can 

be employed on primary cells, cell lines, cultured cells and even whole blood. The 

microarray or “chip” is a physical slide on which gene specific anti-sense oligonucleotides 

are spotted. 

 

Briefly RNA is extracted from a cell of interest and this RNA is then converted to cDNA 

in a reverse transcription step and labeled with a fluorescent marker.  Affymetrix 

technology is one channel, that is to say that only one fluorescent marker is employed but 

the principle is similar for two channel array systems or in the beadarray system employed 

by Illumina. 

 

Fluorescently labelled cDNA is hybridised to the array and then read by an array scanner.  

The raw images are processed by software and then in the case of Affymetrix, a .CEL file 

is the output.  The .CEL file is useful because it gives a standard format for the way an 

array is scanned and also contains useful information such as date of scanning and other 

metadata.  The processes employed in both wet and dry lab steps are summarised in figure 

3-1. 
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Figure 3-1 Overview of wet and dry lab processes that are required to perform a microarray experiment.  Initial 
steps involve acquiring samples and processing these to generate array files.  Thereafter, specific processing occurs 
computationally with the processes of quality control, normalisation and differential gene expression by different 
methods occurring according to experimental design.  Finally pathway analysis helps researchers analyse results and 
therefore generate further hypotheses that will be tested using specific follow-on experiments. 
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Array analysis comes in two forms: end user graphical products or command line tools 

used by bioinformaticians.  Each has advantages and disadvantages that are summarised in 

table 3-1. 

 

Advantages Disadvantages 

End User Product 

• Out of box solution 

• Guided analysis 

• Results often formatted and easily 

displayed 

• Customer support 

• Black box – little customization 

possible 

• Delay in updates to annotation files 

 

Command Line Tools 

• Inherently more powerful for big 

data sets 

• Latest analysis packages which are 

literature driven 

• Open source 

• Customisable 

• Transferrable skills 

• Community support 

• Steep learning curve 

• Data initially may appear 

inaccessible 

• Community support rather than 

customer support 

Table 3-1 Comparison of pertinent features of commercial software packages versus command line tools used to 
process microarray experiments 

 

The steps taken in the dry lab are summarised in figure 1 and these include initial quality 

control steps, initial unsupervised analysis and then a form of differential expression 

analysis.  Finally a form of pathway or covariance analysis is often used to make sense of 

the large amounts of data that are generated.  
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Therefore in this chapter I set out the following objectives: 

 

1. Investigate how microarray dataset quality can be determined using suitable 

packages, when these measures can influence downstream analysis and investigate 

what steps can be taken if data quality is not optimal 

 

2. Develop an analysis pipeline for microarrays and investigate whether batch effects, 

methods of normalisation and differential expression statistics affect analysis 

outcome 

 

3. Using the outcome of the above objectives, determine whether a JAK/STAT 

signature is present in myeloid lineage cells from patients with RA and if this 

differs from PsA 
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3.2 Quality control measurements of array files 
 

During RNA extraction the quality of the RNA is measured to determine degradation 

during sample processing.  If RNA is significantly degraded, it should not be processed 

further. 

 

In addition, there are methods to carry out quality control tests on the array files 

themselves.  The measures shown below look at both raw and normalised data and tend to 

use unsupervised analyses. 

 

• RNA quality control 

• Hybridisation and signal controls 

• Overall signal distribution 

• Spatial biases and array layout issues 

• Probe set analysis 

• Correlation between datasets 

 

3.2.1 RNA quality control 
 

There are two methods to assess RNA quality on the Affymetrix array platform:  firstly, 

the degradation from the 5’ to 3’ end of the beta-actin and GAPDH genes can be shown 

and finally an overall degradation plot analysed.  This is possible because several probes 

along the terminal and penultimate 3’ exon represent each gene and therefore degradation 

can be calculated as this often occurs from the 5’ end.  The Human Genome U133 Plus 2.0 

is a 3’ IVT array and it should be noted that newer arrays such as the Gene  

1.0ST and Exon 1.0ST have probes along the length of the gene and therefore allow the 

assessment of alternative splice variants.  Tiling arrays give even more detail and have 

probes spaces along the whole genome as per figure 3. 
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Figure 3-2 Visual demonstration of the differences in probe distribution on 3’ IVT, exon and tiling arrays.  Older 
3' IVT arrays had probes aligned along the terminal exon whereas exon arrays include probes on each exon and therefore 
when give information regarding alternative splicing.  Tiling arrays are probe intensive along the length of the genome. 

5’	 3’	
Gene		

3’	IVT	array	

Exon	array	

Tiling	array	
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Figure 3-3 RNA degradation plots of beta actin and GAPDH genes shows good RNA quality for primary cells.  
RNA degradation summary values generated using affyAnalysisQC.  Array files were read into R and processed to 
determine the ratio of intensity of the 3’ and 5’ probes in both the beta actin and GAPDH genes.  In the boxplot ratios of 
both 3’ and 5’ probes and also 3’ to a midpoint(M) are shown.  Although all values are within limits for this analysis, the 
beta actin gene is showing that in primary culture cells ie MCSF macrophages and also cell contact activated 
macrophages, there has been degradation of the RNA which is more than other cell types.   
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Although all of the arrays have passed the QC measure for this test, a few of the cell 

contact and also MCSF macrophage arrays have poorer RNA quality than the others.  It is  

suggested that a degradation value of 3 be used for beta actin and 1.25 for GAPDH.  These 

are outlined in the plots above by the grey shaded area.  The M probe in the boxplot is a 

probe taken at the midpoint between the 5’ and 3’ probe in the set in case there has been 

extreme degradation.   

 

The RNA degradation plot in figure 4 demonstrates that cell contact activated 

macrophages and some of the MCSF samples have degraded more than primary cells that 

were separated following blood or synovial fluid draw. 
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Figure 3-4 RNA degradation plot of probe intensities of summarised genes shows more degradation in cultured 
cells.  RNA degradation plot generated by reading array files into R and processed using affyAnalysisQC.  This plot 
demonstrates the intensity of signal from the 5’ to the 3’ probes of each gene in the array.  Therefore as RNA degradation 
occurs we expect that there will be a lower signal intensity from 5’ probes and therefore the line should slope from 
bottom left to upper right.  Each sample should be parallel showing that RNA degradation is similar in each sample and 
arrays from the cell contact activated macrophages and MCSF macrophages are showing more degradation. 
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3.2.2 Hybridisation controls and Signal Quality controls 
 

 
Figure 3-5 Array hybridisation plot demonstrates over hybridisation of a cell contact activated sample.  
Hybridisation control plot generated by reading array files into R and processed using affyAnalysisQC.  This shows the 
expected distribution of signal intensity across probes although array Cell Contact 22 is showing a much higher intensity 
suggesting that over hybridisation of this array has occurred and that this array should be removed from further analysis. 
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Figure 3-6 Cell contact activated arrays have fewer percentage present genes.  A plot of percentage present genes 
was generated by reading array files into R and processed using the affyAnalysisQC package.  It is expected that on any 
given array that between 50 and 60% of genes will be detectable and therefore significant deviation from this number 
suggest either technical issues if this is dissimilar to comparable samples.  Both Cell Contact 17 and 22 have fewer 
percent present genes demonstrating by a different method that there is a technical problem with these samples.   

 

The hybridisation control plot demonstrates that the cell contact 22 array is over hybridised 

and therefore suggests that it should be removed from further analysis (figure 3-5).  

Additionally the number of genes called as present and detectable is lower in the array cell 

contact 22 and cell contact 17 suggesting that there may have been a technical problem 

with these arrays (figure 3-6).  In general, the number of present genes should be within 

10% between the arrays and anything out with this may be suggestive of a technical failure 

or batch effect.  If they were taken forward to normalisation they may have an adverse 

effect on experimental analysis because most normalisation methods take account of the 

variability of genes on all arrays. 
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3.2.3 Overall signal distribution 
 

Raw data from microarray experiments undergoes a process of normalization in order to 

remove technical noise.  RMA or Robust Multi-array Average is one such method and 

consists of three steps: 

 

1. Background correction 

2. Quantile Normalisation 

3. Summarisation and median polish 

 

The process of normalisation log transforms the data and removes positive skew.  

Normalisation makes an assumption that most of the genes are unchanged and therefore 

arrays within an experiment should have similar mean signal intensities.  This can be 

visualised in a box plot of raw intensities for each array (figure 3-7) and a density 

histogram of log intensities (figure 3-8).   
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Figure 3-7 Arrays from cell contact experiment have lower raw signal intensities.  Boxplots raw log intensity values 
were generated by reading the array files into R and processed using affyAnalysisQC.  The raw log intensity median 
value is similar for each array except arrays from the cell contact group.  There is variation in other array samples but this 
can be assessed using other methods to decide whether samples should be removed 
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Figure 3-8 A density histogram of raw log intensity shows that cell contact 22 should be removed from further 
analysis.   The density histogram was generated by reading the array files into R and processed using affyAnalysisQC.  
The signal intensity distribution should be similar for each array but cell contact 22 is an obvious outlier using this QC 
measure 
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Quality control after RMA normalisation shows that the technical bias in cell contact 22 

cannot be corrected and it is still an outlier (figure 3-9).   

 

 
 
 
Figure 3-9   RMA normalised intensity boxplot shows that normalisation does not remove abnormal signal 
distribution of cell contact arrays.  RMA normalised intensity boxplots were generated by reading array files into R 
and processed using affyAnalysisQC.  The process of normalisation cannot remove the effects of technical bias and 
although subtle, some of the cell contact arrays have a narrower signal spread compared to others in the dataset 
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3.2.4 Assessing Spatial and Probe-set issues within a microarray 
experiment 

 

The Affymetrix .CEL file holds all of the raw data from a microarray chip once it has been 

scanned.  Visualisation of the chip itself can reveal issues with hybridisation, spatial 

artifacts or array defects.   

 

 

 
 
Figure 3-10   Visualisation of raw probe intensities on the array reveals over hybridisation.  False colour raw probe 
intensities were generated by reading array files into R and then processed using arrayQualityMetrics.  Visualisation of 
the raw array intensities shows that cell contact 22 is much brighter than other arrays.  Furthermore some arrays show 
edge effects such as healthy17 but are taken account of by the design where probe sets, which are up to ten probes per 
gene, are distributed across the array and outliers are taken account of during RMA processing.  The colourisation is 
based on the signal distribution of all probes on that array 
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Therefore array cell contact 22 has much higher signal intensity compared to other arrays 

thereby suggesting that it should be removed from analysis (figure 3-10).  Furthermore 

edge effects are demonstrated on array healthy 17 although this has not affected other parts 

of the array and due to probe redundancy, these effects can be mitigated by taking median 

or mean values of a complete probe-set.  Finally unsupervised correlation methods are 

used to determine outliers.  
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3.2.5 Correlation of arrays using unsupervised methods 
 

I used three methods to assess the arrays in an unsupervised manner: 

 

1. A correlation plot that assesses the raw correlation of signal intensity between 

arrays 

2. Principal Component Analysis of PC1 and PC2 of signal intensity in each array 

3. Hierarchical clustering of signal intensity in each array 

 

Figure 3-11 shows the correlation between each array with blue demonstrating similarity.  

In this case, only array 3, which corresponds to cell contact 22 is abnormal.  Furthermore, 

the PCA plot of PC1 and 2 (figure 3-12) show that this array is an outlier and this is 

confirmed with hierarchical clustering (figure 3-13).  The PCA and hierarchical clustering 

also show that there is an underlying structure to the data with monocytes, synovial 

macrophages and monocyte-derived macrophages clustering in separate groups.  
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Figure 3-11 A correlation plot confirms that the signal intensity of cell contact 22 is unlike other arrays.  A 
correlation plot was generated by reading array files into R and processed using arrayQualityMetrics.  The plot represents 
a measure of the total distance between arrays where the distance is calculated by all of the probe intensities on the array.  
Array 3 which corresponds to cell contact 22 is dissimilar to all other arrays in the experiment and is therefore an outlier 
by this test 

  



 122 

 
 
Figure 3-12 PCA of array signal intensities demonstrates that cell contact 22 is an outlier.  PCA plot of array signal 
intensity were generated by reading array files into R and processed using arrayQualityMetrics.  The PCA demonstrates 
that there is one outlier array that corresponds to cell contact 22 although it is difficult to assess other arrays due to the 
large variability that is contributed by that one array.  However, in this plot, the monocyte samples are clustering together 
as are the synovial macrophages and cultured macrophages. 
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Figure 3-13 Hierarchical clustering demonstrates that monocytes, primary macrophages and cultured 
macrophages cluster in separate groups.  A hierarchical clustering plot was generated by reading array files into R and 
processed with affyAnalysisQC.  Clustering demonstrates that monocytes and macrophages cluster together.  Within the 
macrophages, diseased macrophages form a sub-group as do the MCSF and cell contact activated macrophages.  Cell 
contact 22 is shown as an outlier 
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3.2.6 Conclusion from quality analysis of microarray files 
 

In conclusion, following extensive quality analysis of the microarray data, I have decided 

to concentrate my further investigation of this dataset to the cells that have been derived 

from patients and also healthy monocytes.  The quality control of cultured cells revealed 

problems with RNA quality of various cell contact activated macrophage samples and 

some of the MCSF macrophage samples especially in the RNA degradation plot.  The 

implications of this could mean that the gene lists that are derived from these arrays are 

subject to more bias and therefore lead to an unreliable result.  This is particularly true of 

the cell contact activated macrophages and it is likely that because these cells had to 

undergo cell sorting after co-culture, that the RNA from these samples is unreliable for 

microarray purposes. 

 

Furthermore, although analysis of the transcriptome of MCSF and cell contact activated 

macrophages compared to monocytes would be useful, it is not aligned to the core 

objectives of this chapter: to determine whether a JAK/STAT signal is present in RA 

myeloid lineage cells and if this differs from that found in PsA. 

 

Therefore I decided to proceed with the analysis of only the blood monocytes and synovial 

macrophages derived from RA and PsA patients and blood monocytes from healthy donors 

to achieve my next objectives namely: developing an analysis pipeline for microarrays 

taking account of methods of normalisation and differential expression and determining 

whether a JAK/STAT signature is evident in RA myeloid lineage cells.  
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3.3 Developing and optimizing an analysis pipeline for 
microarrays by investigating methods of normalisation, 
differential gene expression and batch effects 

3.3.1 Introduction  
 

Once raw data is acquired, converted to .CEL files and been subject to quality control it is 

normalised.  There are many methods to normalise microarray data from simple log2 

transformation of the raw data to correcting for background and mismatched probes. 

 

The Affymetrix microarray platform has gene probes that have both a perfect match (PM) 

and a mismatch (MM).  In theory this could be used to account for non-specific binding 

and therefore give a clearer signal for the perfectly matched probe.  However the MAS5.0 

algorithm from Affymetrix, which takes account of the mismatched signal, occasionally 

resulted in a negative intensity for the perfect matched probe once the mismatched one had 

been taken away especially at low intensities(218). The mismatched probe exhibited higher 

signal intensity than the perfect-match probe.  Possible explanations maybe that a 

mismatch for one gene turns into a perfect match for another.  Furthermore RNA 

hybridization to a chip depends on more than the raw sequence of the probe and binding 

affinities vary depending on GC content and three-dimensional structure of the RNA in 

question. 

 

Newer methods of normalization have been developed which do not take account of the 

mismatched probes but instead normalised across chips.  The first of these methods was 

developed in the Irizarry and Bolstad lab and was called RMA(219), Robust Multiarray 

Averaging.  RMA carries out three processes: 

 

• Background signal correction 

• Quantile normalisation of the data 

• Probe level summarisation and median polish 

 

Briefly this means that RMA takes account of the background fluorescence of the chip but 

not the mismatch probes.  It then normalises the distribution of the signal across all arrays 

so that it is comparable in each quantile.  It is important to note that if the data is an outlier 

and the signal intensity distribution is very different such as in cell contact 22, the quantile 
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normalisation process will “squeeze” the data to make it fit into the distribution of the 

other arrays.  This will lead to false positive results downstream and a failure to validate 

analysis results.   

 

Probe intensity is measured individually and then summarised so that a single value is 

derived for each gene.  This takes account of the fact that each gene is represented by up to 

20 probes.  There is variation between measurements and so the process of median polish 

takes the median intensity of the chip and also the probe set for that gene into account 

during normalisation.   

 

RMA is a standard method for normalisation of Affymetrix microarrays however it does 

not take account of the mismatch data.  Although this can be a problem if simply 

subtracted, a newer method of normalisation called gene-chip RMA or GC-RMA was 

developed.  This method took account of the probe sequence and calculated an altered 

value of intensity based on predicted probe affinity.  Therefore GC-RMA had the 

advantages of RMA but was still able to take account of mismatched data. In reality GC-

RMA may lead to differences in probe intensities that often resulted in false positive 

results and was also computationally expensive.  This is not such an issue now with the 

advent of faster CPUs and the decreasing price of RAM however the need for a validation 

cohort was highlighted by the fact that the normalisation method alone could result in a 

difference in the number and intensity of differentially expressed genes. 

 

I also assessed a final method of normalisation, built on RMA, called Frozen RMA(220) or 

fRMA.  This method is particularly useful if batch effects are discovered in datasets or 

when samples need to be collected incrementally such as in clinical trials.  The probe 

effects and variances are calculated from a large archive of publicly available data and then 

“frozen” so that they can be applied to as few as one array.  This is in contrast to RMA and 

GC-RMA where these factors are worked out on the complete array data that has been read 

in.     

 

Prior to investigating methods of normalisation, I will briefly describe the experimental 

setup, assess if there has been a batch effect and give an example of a microarray data set 

where there clearly has been an issue with batch.  The reason for this is because if a batch 

effect is present, it would change my choice of normalisation and I would also need to take 

account of the effect in the differential expression model.  
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3.3.2 Probe intensity boxplots and PCA of myeloid lineage cells from 
healthy volunteers and patients reveal no batch effect 

 

Briefly, the microarray data was generated by obtaining paired blood and synovial fluid 

samples from patients with RA or PsA and obtaining CD14+ cells by density 

centrifugation and magnetic bead selection.  Healthy volunteers had only blood CD14+ 

cells with no corresponding synovial sample because of absence of disease.  A table of 

patient characteristics is included in the appendix. 

 
Figure 3-14 Raw intensity boxplots do not reveal a significant batch effect.  Microarray files were read into R and 
processed using arrayQualityMetrics.  The log transformed raw intensity boxplots have medians centred at 6.  * denotes 
an array that has been determined as an outlier using the Kolmogorov-Smirnov statistic between that array’s distribution 
and the distribution of the pooled data. 
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Figure 3-15 Raw intensity boxplot coloured by scanning time.  Microarray files were read into R and processed using 
arrayQualityMetrics.  The boxplots have been coloured by the hour of scanning using a 24 hour clock.  This reveals no 
obvious batch effect.   

 

On assessment of the raw intensity boxplots (figure 3-14 and 15) and PCA I conclude that 

there is no significant batch effect detectable and therefore there is no need to account for a 

batch effect in the differential expression model (figure 3-16).  The lack of batch effect is 

likely due to the experimental design in that one research collected the samples and 

extracted the RNA.  They RNA was shipped frozen to a core genomics facility and the 

array processing carried out in one sitting.  The date of scanning for each of the arrays was 
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the same but in figure 3-15 I have coloured the boxplot according to the hour of scanning 

and no obvious batch effect can be seen.  Therefore, frozen RMA is unlikely to confer 

benefit in this analysis and may over fit the data in this experiment due to the fixed array 

correction values that are generated from public data although I will still test this.   

 
Figure 3-16 PCA plot of microarray data shows grouping by cell type and not disease but does not reveal a batch 
effect.  Microarray files were read into R and processed using arrayQualityMetrics.  Synovial macrophages and blood 
monocytes are clustering in two groups which are separated along the PC2 axis in the raw data.  There is no evidence of a 
batch effect. 

 

 

Although batch effect is not evident in my dataset, data generated by a student whom I 

supervised did show this (figure 3-16 and 3-17).  He analysed a publicly available 

microarray study of PBMC from healthy volunteers and patients with RA and Systemic 

Lupus Erythematosus (SLE), a connective tissue disease.    

 

HealthyMonocyte
PsAMonocyte
PsASynovialMac
RAMonocyte
RASynovialMac

PC1

PC
2

−200

0

200

−400 −200 0 200 400

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●



 130 

 
Figure 3-17 Raw intensity boxplot of microarray data from healthy volunteers, RA and SLE patients reveals 
multiple subgroups within disease.  Microarray data was obtained from the ArrayExpress public archive and read into 
R and processed using arrayQualityMetrics.  Within all disease conditions there is variation in the median signal intensity 
suggesting that a batch effect is present.  On further analysis of this dataset very few differentially expressed genes were 
found between diseases following differential expression analysis 
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Figure 3-18 Raw intensity boxplot of microarray data from healthy volunteers, RA and SLE patients coloured by 
date of reading of microarray reveals a cause of the batch effect.  Microarray data was obtained from the 
ArrayExpress public archive and read into R and processed using arrayQualityMetrics.  The intensity boxplots are the 
same as in figure 16 but are coloured by the date of reading of the microarray chip which reveals that the date of reading 
is a significant effect. 
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This data demonstrates a batch effect with the time of reading of a chip contributing the to 

the effect.  This suggests that samples from each of the conditions were collected over a 

period of years and run in small groups.  Although this is occasionally unavoidable in 

studies, experimental planning from the outset may have been able to avoid this problem.  

However in this case, use of the ComBat (221)batch correction package prior to 

differential expression resulted in more differentially expressed genes for exploration 

although they would need to be carefully validated in subsequent experiments.   

 

To assess whether the method of normalisation had an effect on the number of 

differentially expressed genes, I proceeded to take another data set and analyse it using a 

standard method in limma 

(216,222).  Limma is an R package that takes a normalised microarray dataset and then 

carries out differential expression analysis by using Bayes moderated t-tests.  Furthermore 

it can also correct for multiple testing because in a typical microarray dataset, if it is 

unfiltered, we will be carrying out over 50,000 t-tests.   

 

I used the murine data set described in the next section because it is small, with few 

replicates and therefore was ideal to investigate whether a non parametric or a parametric 

statistic for differential expression is useful.   
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3.3.3 Comparing parametric with non parametric testing for generation of 
differential gene lists 

 

Briefly, in this microarray data set, male C57BL/6 wild type and microRNA 155 knockout 

mice were fed on a high fat diet from 6 weeks old.  Total RNA was extracted from 

homogenised liver and a mouse microarray performed to determine genes that may be 

differentially expressed in the case of microRNA 155 knockouts.  Raw and RMA 

normalised quality control plots are in Figures 3-18 and 3-19. 

 

 

 
Figure 3-19 Raw quality control plots from wildtype versus microRNA 155 knockout mice show that data from 
one knockout array clusters with wildtype.  Male C57BL/6 wild type and microRNA 155 knockout mice (n=3 each 
group) were fed on a high fat diet from 6 weeks old, livers harvested, total RNA prepared and a Mo Gene 1.0 ST array 
performed.  Microarray files were read into R and processed using the oligo and arrayQualityMetrics packages.  A 
density histogram shows no issues with signal distribution of raw data but both the correlation plot and PCA demonstrate 
one knockout array clustering with the wildtype 
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Figure 3-20 Normalised quality control plots from wildtype versus microRNA 155 knockout mice show that data 
from one knockout array clusters with wildtype.  Male C57BL/6 wild type and microRNA 155 knockout mice (n=3 
each group) were fed on a high fat diet from 6 weeks old, livers harvested, total RNA prepared and a Mo Gene 1.0 ST 
array performed.  Microarray files were read into R and processed using the oligo and arrayQualityMetrics packages and 
normalised using RMA.  A density histogram shows a normal signal distribution for both wildtype and knockout data.  
Both the correlation plot and PCA clearly demonstrate one knockout array clustering with the wildtype.   
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Figure 3-18 shows a density plot in the expected distribution for raw data.   However both 

the correlation plot and PCA show that one of the knockout arrays is clustering with wild 

type.  This is also apparent when the data is normalised (figure 3-19). 

 

In this experiment there are three biological replicates in two groups and therefore 

discarding one array is going to have significant consequences for the experimental 

validity.  Furthermore, the limma pipeline works best for samples where the replicates in 

each group is over 5 however I performed this in the first instance but no genes were 

differentially expressed with an adjusted p value of <0.05(223).   

 

Therefore I decided to explore the use of non-parametric methods of differential gene 

expression to discover potentially differentially expressed genes in this difficult and noisy 

dataset.  I decided to use the Rank Products(224) based method for differential gene 

expression because it is particularly useful for small and variable data sets(225,226).  In 

this method the fold changes of genes is ranked in each replicate and then combined to 

give the rank product for each gene.  Therefore if a gene is upregulated in two out of three 

samples in the same group, the rank product will not be affected as much as a t test as the 

relative rank is taken into account as opposed to taking the mean.  This experimental 

design is typical for exploratory murine experiments where the assumption is that the 

inbred nature of the mouse will keep non specific biological variation to a minimum and 

therefore a wild type verses a knockout experiment should reveal changes in the 

transcriptome which are statistically significant even when using small numbers.   

 

Therefore, I carried out a Rank Products based analysis on the complete data set along with 

a limma analysis removing the array that was clustering with the wild type samples.  It 

should be noted that this was a purely exploratory analysis and that removing a data point 

because it is inconvenient could be considered manipulation of the data.  However in this 

circumstance all of the aberrant array information is clustering with the wild type arrays 

and this was carried out in an unsupervised manner.   

 

Employing a non-parametric statistic i.e. the Rank Product I was able to use the complete 

data set but still determine potentially differentially expressed genes.  Figure 3-20 shows 

the overlap of probes that are differentially expressed when using three approaches: the 

original limma testing involving all of the data, limma with the aberrant  
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Figure 3-21 Non-parametric testing reveals differentially expressed genes in a highly variable murine dataset.  
Male C57BL/6 wild type and microRNA 155 knockout mice (n=3 each group) were fed on a high fat diet from 6 weeks 
old, livers harvested, total RNA prepared and a Mo Gene 1.0 ST array performed.  Microarray files were read into R and 
processed using the oligo and arrayQualityMetrics packages and normalised using RMA.  Differential gene expression 
was carried out using three methods: a standard limma pipeline using all three replicates in each group, an altered limma 
pipeline removing the outlier array and a rank products analysis using all three replicates in each group.  The complete 
limma dataset reveals no differentially expressed genes after multiple testing corrections and the altered limma reveals 
more.  Using rank products on the complete data set gives over 200 differentially expressed genes to validate, 85 of these 
are shared with the altered limma dataset. 
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array 3 removed i.e. 2 knockout arrays versus 3 wild type and also rank products using the 

complete data set. 

 

The altered limma pipeline and the genes from the rank product analysis overlap to a 

degree and giving confidence that at least 85 genes are differentially expressed.  I took 

both datasets forward for pathway analysis using Ingenuity.  This employs a graph based 

method to determine how differentially expressed genes are related to each other.  This 

unschooled clustering is combined with whether the genes are over represented in 

canonical curated pathways and so over time the same differentially expressed genes may 

be associated with newer pathways as these continue to be discovered. 

 

I took both the rank products differentially expressed genes and the ones from the altered 

limma set and then carried out a Core analysis.  The top canonical pathways are shown in 

figure 3-21 and although these have a higher proportion of genes present in the limma set, 

they are also present in the rank products set. 

  

Furthermore although rank products allows us to use the complete data set and therefore 

not be accused of data manipulation, the test itself will cause false negatives to occur 

because of the inherent noise in the data set.  Colleagues went on to further investigate the 

LXR pathway and members of the lipid and cholesterol metabolism pathways(227).  
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Figure 3-22 Comparison of canonical pathways that are altered between microRNA 155 knockout mice and 
wildtype show agreement between rank product and limma differential expression methods.  C57BL/6 wild type 
and microRNA 155 knockout mice (n=3 each group) were fed on a high fat diet from 6 weeks old, livers harvested, total 
RNA prepared and a Mo Gene 1.0 ST array performed.  Microarray files were read into R and processed using the oligo 
and arrayQualityMetrics packages and normalised using RMA.  Differential gene expression was carried out using two 
methods: an altered limma pipeline removing the outlier array and a rank products analysis using all three replicates in 
each group.  Pathway analysis was then carried out of genes that had a p value <0.05 in limma differential expression or a 
pfp value <0.05 in rank products.  The length of the bar denotes the number of members of that pathway that are found in 
each data set and although in most cases fewer members are found in the rank products data set, the top four differentially 
expressed pathways are the same.   
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In conclusion, non-parametric tests such as rank product are useful if a dataset is small or 

particularly variable.  However there have previously been studies where various methods 

of differential gene expression have been compared and limma tends to outperform other 

methods of differential expression once the sample size is over five(223,226,228,229).  
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3.3.4 Investigating the effect of various normalisation methods during 
microarray processing 

 

I concluded that in the microarray data set from RA, PsA and healthy patients, a limma 

pipeline using the complete primary cell data set would be appropriate with the multiple 

testing corrected adjusted p value set at 0.05.  I decided to investigate the effect of 

normalisation on this data using this method. 

 

In this section, I went on to investigate the effect of using various methods of 

normalisation on the number of differentially expressed genes The three normalisation 

methods I employed are as follows: RMA, GC-RMA and FRMA.  I processed the 

microarray data in R using the limma package and following normalisation with each 

method, I calculated the number of differentially expressed genes using Bayes moderated 

t-tests with a false discovery rate adjusted p value of < 0.05. 

 

To investigate this I made the comparisons show in table 2.  These comparisons serve two 

main purposes in that they investigate biology which of crucial interest to me, namely what 

are the differences in macrophages from two different disease states and also between 

macrophages and monocytes in a disease state.   From the PCA plot (figure 3-15) I expect 

there to be a large difference in the transcriptome between monocytes and macrophages 

and very few consistent difference between synovial macrophages in RA and PsA.  

Therefore using both cell types gives me a probable yield experiment as well as a more 

exploratory analysis. 
 

 

Table 3-2 Microarray comparisons to be made to investigate the effect of normalisation on differential gene 
calculation 

  

Comparisons 

RA Synovial Macrophage vs PsA Synovial Macrophage 

PsA Synovial Macrophage vs PsA Peripheral Blood Monocyte 

RA Synovial Macrophage vs RA Peripheral Blood Monocyte 
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RASynovialMac − PsASynovialMac PsASynovialMac − PsAMonocyte

RASynovialMac − RAMonocyte 34326

6476

3197

8707

221

800

330

618

RMA	

Figure 3-23 Differential gene expressions using RMA normalisation reveals more genes differences in comparisons 
between monocytes and macrophages.  Microarray files were read into R and processed using RMA normalisation and 
differential genes calculated using Bayes moderated t-tests from the limma package with an fdr corrected p value of <0.05.  
Venn diagrams were generated using the decideTests function within limma.  The number in the bottom right shows the 
total number of genes from this experiment analysis.  A small number of genes are found in common between the three 
analyses although the most differentially expressed genes are found in the macrophage and monocyte comparisons.  
Although this Venn diagram shows overlap of genes, the direction of change may be different. 
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RASynovialMac − PsASynovialMac PsASynovialMac − PsAMonocyte

RASynovialMac − RAMonocyte 36955

6111

1925

7142

294

1078

455

715

GCRMA	

Figure 3-24 Differential gene expressions using GC-RMA normalisation reveals more genes differences in 
comparisons between monocytes and macrophages.  Microarray files were read into R and processed using GC-RMA 
normalisation and differential genes calculated using Bayes moderated t-tests from the limma package with an fdr corrected 
p value of <0.05.  Venn diagrams were generated using the decideTests function within limma.  The number in the bottom 
right shows the total number of genes from this experiment analysis.  A small number of genes are found in common 
between the three analyses although the most differentially expressed genes are found in the macrophage and monocyte 
comparisons.  Although this Venn diagram shows overlap of genes, the direction of change may be different. 
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RASynovialMac − PsASynovialMac PsASynovialMac − PsAMonocyte

RASynovialMac − RAMonocyte 34736

6643

3090

8406

220

719

274

587

FRMA	

Figure 3-25 Differential gene expressions using FRMA normalisation reveals more genes differences in 
comparisons between monocytes and macrophages.  Microarray files were read into R and processed using FRMA 
normalisation and differential genes calculated using Bayes moderated t-tests from the limma package with an fdr 
corrected p value of <0.05.  Venn diagrams were generated using the decideTests function within limma.  The number in 
the bottom right shows the total number of genes from this experiment analysis.  A small number of genes are found in 
common between the three analyses although the most differentially expressed genes are found in the macrophage and 
monocyte comparisons.  Although this Venn diagram shows overlap of genes, the direction of change may be different. 
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It is evident that each method of normalisation results in a different number of 

differentially expressed genes (figure 3-22 to 3-24).  However the numbers of differentially 

expressed genes tend to be similar in each of the overlaps although there are fewer found 

with GCRMA in the Psoriatic Arthritis comparisons. 

 

Furthermore it is clear that comparing RA and PsA synovial macrophages has resulted in a 

large number of differentially expressed genes which was not in keeping with my 

expectation due to the overlap of these samples on PCA (figure 3-15).  Briefly, these cells 

were isolated from the synovial fluid of patients undergoing knee aspiration by using 

magnetic bead positive selection for CD14.  Therefore we might expect these cells to be 

similar in terms of their transcriptomic profile as they both came from an inflamed joint.  

However, approximately 2000 genes are differentially expressed when we compare RA 

and PsA synovial macrophages and this may represent true biology and is a reflection of 

the different pathogenesis in each disease. 

 

Also when macrophages are compared to monocytes within either RA or PsA, a large 

number of differentially expressed genes are found in common.  This is in keeping with the 

hypothesis that the main effect would be due to the difference between the monocyte and 

macrophage transcriptome.  Certainly out of the approximately 13000-14000 differentially 

expressed genes, 8-9000 of these are shared between RA and PsA suggesting that these are 

commonly changed.  The Venn diagram does not show directionality of change and 

therefore it is possible that these genes could be changed in opposite directions.  This could 

be further interrogated using heatmaps or pathway analysis. 

 

Prior to drawing conclusions, I went on to determine the effect of different methods of 

normalisation within each comparison.  To do this I had to process the microarray data 

three times using a different method of normalisation and then draw a Venn diagram of the 

overlap within R (figure 3-25 and 3-26). 
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3.3.5 RMA, GCRMA and FRMA give a significant overlap of probesets when 
comparing the RA synovial macrophage to the PsA synovial 
macrophage and respective disease monocytes 

 

 
 
Figure 3-26:  Methods of normalisation show significant overlap in the number of differentially expressed genes 
from RA versus PsA synovial macrophages.  Microarray files were read into R and processed using three different 
normalisation methods to generate separate data sets.  Differential gene expression was calculated using limma and a 
Bayes moderated t-test with fdr multiple testing corrected adjusted p value <0.05 for each data set and the overlap 
determined using the VennDiagram R package.  Over 1200 of the approximately 2000 differentially expressed genes are 
discovered with any of the described methods of normalisation.  However each method does also generate a number of 
genes that are unique to that method. 
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Figure 3-27:  Methods of normalisation show significant overlap in the number of differentially expressed genes 
between monocytes and macrophages within diseases.  Microarray files were read into R and processed using three 
different normalisation methods to generate separate data sets.  Differential gene expression was calculated using limma 
and a Bayes moderated t-test with fdr multiple testing corrected adjusted p value <0.05 for each data set and the overlap 
determined using the VennDiagram R package.  There are more differentially expressed genes found in RA macrophages 
versus monocytes compared to the corresponding analysis in PsA.  The methods of normalisation generally agree with 
each other although there is more concordance between RMA and FRMA.    
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Two conclusions can be made from these figures:  firstly there are far more differentially 

expressed probes when disease macrophages are compared to monocytes versus comparing 

the macrophages to each other and secondly that in all three cases, there is a large overlap 

between the methods of normalisation. 

 

This could be expected given the techniques are built on RMA but is certainly encouraging 

that it is not grossly different.  In fact it appears that RMA offers a good compromise and 

certainly there has been evidence that GCRMA can overestimate the number of 

differentially expressed probes and therefore lead to more false positive results(230). 

 

FRMA would offer another option but in this case the QC plots in terms of the signal 

distribution, correlation plot or PCA do not provide evidence of a batch effect.  

Furthermore the experimental design was such that the same researcher collected samples 

and processed in one batch for RNA extraction and chip wet lab work although cell 

isolation was carried out as samples were received (Lucy Ballentine personal 

communication).  Therefore FRMA in this instance may provide too stringent a framework 

for differential expression analysis. 

 

Therefore I proceeded to analyse two of the datasets further: The RA synovial macrophage 

versus the PsA synovial macrophage to determine which pathways were changed in these 

diseases and also whether a JAK/STAT signature is evident between disease states and the 

RA synovial macrophage versus RA peripheral blood monocyte.  From the investigations 

so far, I decided to use RMA normalisation with no batch correction and I employed a 

Bayes moderated t-test from the limma package to calculate differentially expressed genes. 
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3.4 Over 1300 genes are differentially expressed between RA and 
PsA synovial CD14 cells revealing evidence of differential 
JAK/STAT utilization between the diseases 

 

 
Figure 3-28:  Canonical pathways from RA and PsA synovial macrophages show IL-6 and acute phase response 
signaling upregulated in RA.  Microarray files were read into R and processed using RMA normalisation and 
differentially expressed genes calculated using Bayes moderated t-tests in limma with an fdr adjusted p value <0.05.  The 
gene list was then analysed using an Ingenuity Core Analysis to give these differentially expressed canonical pathways.  
Orange demonstrates relative activation in RA synovial macrophages compared with PsA and blue demonstrates relative 
inhibition in RA synovial macrophages compared to PsA 



 149 

I therefore performed differential gene analysis, using limma and Bayes moderated t-tests, 

of RA versus PsA synovial macrophage samples.  This resulted in over 1300 genes 

determined as differentially expressed and therefore to provide insight into this data I 

carried out a Core Analysis in Ingenuity Pathway Analysis.  Figure 3-27 shows that certain 

canonical pathways are over represented in RA (orange) and PsA (blue). 

 

Furthermore, IL-6 signaling features high as a pathway up regulated in RA synovial 

macrophages versus PsA synovial macrophages.  Figure 3-28 demonstrates this where red 

molecules are genes that are upregulated in RA, green are upregulated in PsA and grey 

means that there is no differential expression.  The colour intensity gives an indication of 

magnitude of fold change. 

 

Clinically this is relevant because blocking IL-6R using tocilizumab is an effective 

treatment for RA but is not effective for PsA suggesting that although both diseases result 

in synovitis, the mechanisms responsible for disease pathogenesis must be different 

because of the differential response to therapy and also differential activation of 

inflammatory pathways in this array(12,54,231). 

 

IL-6 signals through JAK2, STAT3 and also PI3K and Akt and we see that JAK2 

expression levels are lower in RA synovial macrophages compared to PsA and also IL6R 

is highly upregulated in RA synovial macrophages compared to PsA.  Furthermore 

overlaying the differentially expressed gene list over the canonical STAT3 pathway in 

Ingenuity highlights significant differences in expression levels of growth factor receptors 

FGFR1 and FLT1 or VEGFR-1 are highly expressed in RA compared to PsA (figure 3-29). 

 

My analysis showed that PI3K/Akt kinases are upregulated while their inhibitor INPP5D is 

down regulated in RA synovial macrophages.  This validates the key role of this pathways 

and it’s epigenetic regulators in the pro-inflammatory activation of RA synovial 

macrophages that has previously been shown in our lab(232).   

 

This gives credence to the hypothesis that there is differential JAK/STAT utilisation in RA 

and PsA.  To investigate this further, I used the grow and connect functions in Ingenuity to 

construct my own JAK/STAT network starting with all JAK and STAT members and 

creating a network which ranged from growth factor receptors to nuclear transcription 

factors.  I already saw that JAK2 levels were different between the conditions and 
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therefore this approach allowed me to explore whether this was evident in other JAK and 

STAT members and associated pathways (figure 3-30). 
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Figure 3-29:  IL-6 signaling pathway showing that JAK2 is lower in RA synovial macrophages whereas IL-6R is 
upregulated.  Microarray files were read into R and processed using RMA normalisation and differentially expressed 
genes calculated using Bayes moderated t-tests in limma with an fdr adjusted p value <0.05.  The gene list was then 
analysed using an Ingenuity Core Analysis to give these differentially expressed canonical pathways.  The IL-6 signaling 
pathways demonstrates genes in red as relatively upregulated in RA synovial macrophages compared to PsA and those in 
green as relatively upregulated in PsA synovial macrophages. 
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Figure 3-30:  STAT3 signaling pathway shows that growth factor receptors that sit upstream of JAK2 and STAT3 
are upregulated in RA synovial macrophages.  Microarray files were read into R and processed using RMA 
normalisation and differentially expressed genes calculated using Bayes moderated t-tests in limma with an fdr adjusted p 
value <0.05.  The gene list was then analysed using an Ingenuity Core Analysis to give these differentially expressed 
canonical pathways.  The STAT3 signaling pathways demonstrates genes in red as relatively upregulated in RA synovial 
macrophages compared to PsA and those in green as relatively upregulated in PsA synovial macrophages.  
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Figure 3-31 JAK1, JAK2 and associated molecules are differentially expressed between RA synovial macrophages 
and PsA synovial macrophages.  Microarray files were read into R and processed using RMA normalisation and 
differentially expressed genes calculated using Bayes moderated t-tests in limma with an fdr adjusted p value <0.05.  A 
network was then constructed using all JAK and STAT members and grown both up and downstream.  Genes that were 
differentially expressed between RA synovial macrophages and PsA synovial macrophages were overlaid on this 
network.  Genes in red are relatively upregulated in RA synovial macrophages compared to PsA and those in green as 
relatively upregulated in PsA synovial macrophages.  JAK1, IL6R and FGFR1 levels are higher in RA with JAK2 and 
IL21R higher in PsA synovial macrophages. 
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Although JAK3 is not changed, JAK1 is upregulated in RA synovial macrophages and 

JAK2 is higher in PsA synovial macrophages.  Furthermore other changes which we would 

expect to see include CSF2RA (233)and IL6R upregulated in RA and IL21R upregulated 

in PsA(234).  Upregulation of IL21R and TGFBR2 in PsA macrophages compared to RA 

might represent the presences of a remodeling process in PsA but not RA joints.  Both IL-

21 and TGFβ have been described as drivers an M2 macrophage repair phenotype. 

 

We can further explore the differences between the two inflammatory arthropathies by 

examining two further data sets: the RA synovial macrophage compared to blood 

monocyte and also the PsA synovial macrophage compare to blood monocyte.  The reason 

for this would be to confirm finding that we have observed when comparing the synovial 

macrophages between disease states and dissect if the system of local environment drives 

the disease phenotype. 

 

Figure 3-31 shows that JAK2 is altered in RA synovial macrophages and blood monocytes 

and there is upregulation of IFNLR1 and FGFR1.  There is no change in IL6R transcript 

suggesting that IL6RT is upregulated in the periphery of RA patients.   

 

When the PsA data set is overlaid (figure3-32), a different pattern is seen in that although 

IFNLR1, FGFR1 and TYK2 feature, IL21R and NCK1 are differentially expressed in 

keeping with the findings from the RA and PsA synovial macrophage analysis.  Therefore 

I conclude that there is evidence of a JAK/STAT signature in RA (IL6R) is different from 

PsA (IL21R).  Therefore exploring inhibition of the JAK/STAT pathway using small 

molecule inhibitors in a macrophage and cytokine activated T cell cell contact assay would 

make a logical next step in my doctoral studies. 

  



 155 

 
 
Figure 3-32 JAK2, IFNLR1 and FGFR1 are upregulated in RA synovial macrophages compared to blood 
monocytes.  Microarray files were read into R and processed using RMA normalisation and differentially expressed 
genes calculated using Bayes moderated t-tests in limma with an fdr adjusted p value <0.05.  A network was then 
constructed using all JAK and STAT members and grown both up and downstream.  Genes that were differentially 
expressed between RA synovial macrophages and RA blood monocytes were overlaid on this network.  Genes in red are 
relatively upregulated in RA synovial macrophages compared to RA monocytes and those in green as relatively 
upregulated in RA blood monocytes.  JAK2, IFNLR1 and FGFR1 are upregulated in the RA synovial macrophage 
compared to blood monocyte.  IL6R is not altered between the two suggesting that levels are similar although a strong 
difference was seen comparing the RA and PsA synovial macrophage.   
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Figure 3-33 TYK2, IFNLR1 and IL21R are differentially expressed in PsA synovial macrophages compared to 
blood monocytes.  Microarray files were read into R and processed using RMA normalisation and differentially 
expressed genes calculated using Bayes moderated t-tests in limma with an fdr adjusted p value <0.05.  A network was 
then constructed using all JAK and STAT members and grown both up and downstream.  Genes that were differentially 
expressed between PsA synovial macrophages and PsA blood monocytes were overlaid on this network.  Genes in red 
are relatively upregulated in PsA synovial macrophages compared to PsA monocytes and those in green as relatively 
upregulated in PsA blood monocytes.  IL21R, IFNLR1 and FGFR1 are upregulated in the PsA synovial macrophage 
compared to blood monocyte.  IFNLR1 and FGFR1 are also altered in the corresponding RA comparison suggesting that 
these genes may be regulating monocyte to macrophage development.  Furthermore, TYK2 is altered in PsA that is in 
keeping with GWAS studies. 
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3.5 Discussion 
In this chapter I set out to: 

 

1. Investigate how microarray dataset quality could be determined and demonstrate 

the influence of this on downstream analysis  

 

2. Develop an analysis pipeline for microarrays and investigate whether batch effects, 

methods of normalisation and differential expression statistics affect analysis 

outcome 

 

3. Using the outcome of the above objectives, determine whether a JAK/STAT 

signature is present in myeloid lineage cells from patients with RA and if this 

differs from PsA 

 

In summary I used R and associated packages to perform quality control measures on a 

monocyte and macrophage dataset that had previously been generated in our lab.  I 

determined that the data quality of MCSF and cell contact activated macrophage samples 

was insufficient for further analysis.  I compared methods of normalisation and differential 

gene expression and concluded that in this case, RMA normalisation and Bayes moderated 

t-tests would be appropriate to process this data set.   

 

Having decided the best way to process this dataset, I went on to interrogate the 

transcriptome of synovial macrophages from RA and PsA.  Following pathway analysis 

and network creation I conclude that there is a JAK/STAT signature present in synovial 

macrophages with IL6R upregulated in RA and IL21R upregulated in PsA 

 

The use of DNA microarrays in translational research in rheumatology has grown from 

2004 and this technology is still being used today despite the availability and also relative 

ease of RNA sequencing.  Researchers have become familiar with particular manufacturers 

such as Affymetrix and Illumina, their wet lab and dry lab preparation and processing 

protocol and there is inherent trust in the results from these platforms.  Furthermore, the 

use of blackbox data analysis packages such as Partek Genome Studio and Genespring 

mean that researchers can access information that is useful to them in a quick and easy 

fashion.  However, misinterpretation or not analysing quality control plots can mean that 

there are no differentially expressed genes from an experiment or there is a high proportion 
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of false results(235).  Analysis of data from public repositories has revealed unreported 

quality control issues that affect the subsequent interpretation of the data.  Awareness of 

such issues enables removal of suspect data sets whose inclusion could bias the 

downstream interpretation by building poor hierarchical models. 

 

Unfortunately there is no way to take account of a random technical issue and therefore in 

that instance such as overhybridisation in cell contact 22 it is better to remove the data and 

not include it in a limma analysis.  The reasoning for this is that limma builds a 

hierarchical model that borrows data from all other genes and arrays in order to perform 

differential expression analysis.  If the data going into the model is poor, it will 

underperform. 

 

Removing the data is important because subsequent normalisation for the entire array data 

set will take account of some information in the poor array.  Furthermore the cell contact 

activated macrophage and MCSF macrophage data did not help in achieving my 

experimental objectives and therefore were removed from subsequent analysis. 

 

Batch effects occur in array and other omics datasets and therefore it is crucial that as 

much data as possible is collected about the wet lab process because any one of these steps 

could contribute to the batch effect.  If the batch effect is systematic ie a chip effect or in 

the case of the RA and SLE dataset that was presented, a time effect, this can be corrected 

by modeling the batch effect.  Methods to correct this involve computationally removing 

the “cause” of the batch effect either by including that factor as part of the differential 

expression model or using a package to remove it.  One useful method is the ComBat 

method that is implemented in the Bioconductor sva package.  This package models the 

batch effect and then aims to remove it by using an empirical Bayes framework similar to 

that used in the linear models for microarray data package, limma.  Therefore although 

batch effects were not an issue in my microarray dataset, I have the knowledge now to 

assess them and implement strategies to take account and correct for them if present. 

 

There are many methods of differential gene expression in microarray experiments ranging 

from calculating fold change, simple t-tests, significance analysis of microarray 

experiments, Bayes moderated t-tests as part of the limma package and also non parametric 

methods such as Rank Products.  I decided to investigate which statistical test was 

appropriate prior to assessing whether methods of normalisation had an effect on 

differential gene expression as a pragmatic approach.  Therefore, I controlled the method 
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of normalisation while varying the method of differential gene expression.  The limma 

method of normalisation is widely used for various array types and also RNA sequencing 

data.  It has been shown to outperform other methods of differential expression and is 

generally robust when there are more than 5 replicates in a microarray experiment and so 

in our data set with a minimum of 5 biological replicates of healthy blood monocytes and 8 

replicates of paired patient synovial and blood samples, it is likely that limma will be the 

best method(216,223). 

 

However, to address this question I employed another data set from our lab that had a high 

degree of variation possibly due to an element of technical error.  The quality control plots 

of wild type versus microRNA 155 knockout mice clearly showed that a knockout sample 

was clustering with the wild type samples on both raw and normalised data analysis.  

Furthermore, a standard limma analysis pipeline revealed no differentially expressed genes 

when an fdr adjusted p value of <0.05 was employed.  Therefore, in this situation one can 

discard the array that is failing quality control or employ a non-parametric statistic that is 

suited to smaller and variable data sets.  I decided to compare both of these approaches in 

this data set.   

 

In the case of the microRNA 155 knockout versus wild type arrays we see that the Rank 

product methods outperforms limma when used on the whole dataset and therefore would 

give the researcher an indication of which pathways or genes to assess further.  The caveat 

in this situation is that with a noisy dataset and poor quality data, the chance of a false 

positive result are much higher and therefore validation with other technologies such as 

quantitative real-time PCR or quantifying protein levels of a particular gene product would 

be crucial.  In this particular project, the researchers validated the differentially expressed 

genes that my analysis generated with qRT-PCR of additional samples. 

 

Therefore in the case of small numbers, non-parametric methods and even fold change can 

be helpful to analyse high throughput data.  This can be useful if an experiment has to be 

carried out on a degraded sample because it is particularly rare.   If larger numbers of 

replicates are available, methods such as limma outperform because they allow the 

modeling and removal of systematic batch effect and also enable the researcher to 

implement sophisticated experimental designs such as paired or time course sample 

analysis. 
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Microarray experiments need to be normalised to take account of technical differences that 

occur during the experimental process in order to allow researchers the best chance to 

discover a biological signal.  The nature of microarray and sequencing technology means 

that the distribution of data tends to be positively skewed and therefore a log 

transformation partly normalises the data. This tends to be the case for many of the ‘omics 

technologies and therefore assessing the distribution of proteins or metabolites from high 

throughput experiments for positive skew and then log transforming means that many of 

the parametric methods which are used for differential expression from microarrays can be 

deployed onto other technologies. 

 

Robust multiarray normalisation has been shown to be a reliable method of normalisation 

for microarray data especially when batch effects are not an issue.  When I compared the 

different methods of RMA normalisation in the RA synovial macrophages versus the PsA 

synovial macrophages, there was a good overlap of differentially expressed genes between 

the methods.  However, GC-RMA normalisation produced almost 50% more differentially 

expressed genes and there is literature suggesting that this method over estimates the 

number of differentially expressed genes(230).  There was good overlap between the RMA 

and frozen RMA methods although each method generated a small number of genes 

unique to that particular process. 

 

I decided to use the RMA method of normalisation as part of my pipeline because I had not 

discovered any batch effects that would make me want to use the frozen RMA method and 

it is widely accepted in the literature.  In reality, confirming that a particular method of 

normalisation is better than another is difficult and although it can be assessed with density 

histograms to assess the distribution, there is still a degree of subjectivity involved.  The 

only robust way to determine a superior method of normalisation would be to confirm 

using RT-qPCR whether the genes that are differentially expressed are validated. 

 

Therefore to determine whether a JAK/STAT signature is evident in myeloid lineage cells 

from RA patients I decided to use R to analyse the data using RMA to normalise and 

implement Bayes moderated t-tests as a method of differential expression.  An example of 

the programme script that I generated is shown in the appendix. 

 

Initial microarray studies in rheumatoid arthritis tended to use proprietary platforms and 

also focused on synovial tissue obtained from biopsy(236).  Although this approach is 

being refined, the conclusion of these studies was often that RA was a heterogeneous 
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disease and did not take account of the fact that the “transcriptome” in these samples 

consisted of a mixture of cells: fibroblasts, innate immune cells and also elements of 

lymphoid aggregates which vary from patient to patient. 

 

Microarray studies then focused on those where a drug intervention such as an anti-TNFα 

medication was employed as part of a clinical trial and therefore a patient sample became 

an internal control but was still dependent of the cellular makeup of the particular 

biopsy(237).  At the same time, researchers started carrying out studies of primary cells or 

cultured cells in particular conditions and work focused on fibroblasts isolated from 

synovial membranes of patients undergoing arthroplasty.  This approach resulted in 

homogenous populations of cells conditions such as osteoarthritis and RA could be 

compared(238).  In addition, cultured cells were subjected to cytokine stimulation or 

blockade thereby improving the experimental design and also the reliability of the 

experimental results(239).   

 

As well as profiling cultured cells, interest began to grow in the ability to profile the 

transcriptome of human whole blood(240).  This approach led to further issues of an 

excess of globin transcript levels from red blood cells but paved the way for a whole host 

of studies involving the whole blood transcriptome many of which have been and are still 

being carried out in our lab (James Dale, personal communication). 

 

To remove the effect of the red blood cell, many studies were also carried out on human 

PBMC fractions.  However, alteration in the relative makeup of the PBMC fraction by 

improvement in systemic inflammation could lead to a change in transcripts that was only 

as a result of a change in proportion of a particular cell type(241). 

 

One publicly available study comparing human synovial macrophages from patients with 

RA involved 5 donors with RA and 3 healthy donors from which CD14+ monocytes were 

selected by positive selection from PBMCs(242).  These were then cultured with MCSF 

and compared to the RA synovial CD14+ cells.  These samples led to the hypothesis that 

TNFα treatment of primary macrophages from patients led to an increased expression of 

interferon response genes, a finding that others have replicated in conditions such as SLE, 

JIA and also tuberculosis infection.   

 

An elegant study from You et al (243) showed how a systems biology approach can be 

used to compare two cell types: namely the synovial fibroblast and synovial macrophage.  
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They showed that factors involved with fibroblast were upregulated in RA and accentuated 

by RA synovial macrophages that were typified by a pro-inflammatory phenotype.  

 

Therefore the microarray study carried out in our lab added to this information because of 

the paired monocyte and macrophage samples from patients and also the ability to compare 

synovial macrophages between RA and PsA.  I used this data to devise a quality control 

and data analysis pipeline using open source bioinformatics software which would provide 

me with transferable skills across the various ‘omics fields and also in the field of data 

science. 

 

Analysis of the synovial macrophage transcriptome showed that the IL-6 pathway was 

upregulated in RA compared to PsA.  This is insightful in two ways: firstly, blockade of 

the IL6R by the monoclonal antibody tocilizumab is used clinically when DMARDs fail to 

control disease activity in patients and secondly, IL-6 signals via the JAK/STAT 

pathway(244).  Therefore this discovery confirms that JAK/STAT signaling is crucial in 

myeloid lineage cells in RA and that it is different from other arthropathies such as PsA. 

 

As well as being released from synovial macrophages, IL-6 is secreted by fibroblast like 

synoviocytes and anecdotally there is evidence that in patients with resistant RA, inhibition 

of IL-6 is a better therapeutic option.  IL-6 receptor expression is upregulated in RA 

synovial macrophages compared to PsA synovial macrophages.  Furthermore other 

components of the IL-6 pathway such as PI3 Kinase and AKT are also upregulated.  IL-6 

binds to IL-6R and GP130 and then via JAK1 and JAK2 phosphorylates STAT3.  IL-6 can 

also signal via the Ras/Raf pathway and therefore act with IL-1β and TLR signaling to 

activate NF-κB and further pro-inflammatory cytokine production. 

 

On further inspection, JAK2 is relatively downregulated in RA synovial macrophages 

compared to PsA and this is likely to reflect that when a comparison is made, the changes 

are relative and not absolute.  Furthermore, JAK1 is also involved with IL6 signaling and 

this is relatively increased in RA synovial macrophages.  A JAK 1 inhibitor, filgotinib, has 

shown excellent response rates in the treatment of RA(245). 

 

Furthermore, in PsA, IL21R is upregulated and IL21 signals via the common gamma chain 

and JAK3. This is not seen in RA synovial macrophages and also demonstrates the 

differential utilisation of the JAK/STAT pathway in these arthropathies.  
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Kinase inhibition is particularly attractive in the treatment of inflammatory arthritis 

because small molecules and therefore oral preparations can be used to treat patients as 

opposed to infusions or subcutaneous injections of cytokines.  Furthermore, whereas 

inhibiting a cytokine at the soluble or receptor level will inhibit a particular pathway, 

inhibition of signal transduction machinery such as Janus kinases means that many more 

pathogenic pathways can be modulated.  Tofacitinib showed excellent response rates in 

patients with RA when compared to methotrexate (69)however concerns over safety and 

also cost may have prevented a license in Europe being granted.   

 

Other kinases such as PI3K sit further downstream of JAK and may offer further solutions 

although inhibition of larger parts of immune transduction pathways may be problematic.  

Tofacitinib was thought to be useful in this respect in that JAK2 is known to transduce the 

signal from growth factors such as erythropoietin and therefore relative inhibition of this 

kinase may lead to blood dyscrasias.  Ruxolitinib, an inhibitor of JAK1/2 is licensed for the 

treatment of myelofibrosis but another JAK1/2 inhibitor baricitinib is under clinical trial 

for RA.   

 

Therefore pathway analysis techniques have facilitated my exploration of this microarray 

dataset and I have determined that the JAK/STAT pathway is a potentially tractable target 

in myeloid lineage cells as well as what is known from the literature regarding targeting 

lymphocytes.   

 

In conclusion, the analysis of array experiments should be predetermined at the outset in 

the same manner as for a clinical trial data analysis plan.  The number of biological 

replicates, cell type or disease and whether the samples are being collected at one or 

multiple centers will allow a researcher and bioinformatician to make an informed decision 

a priori as to what is the best analysis plan i.e. which method of normalisation will be used 

and which statistical tests for differential expression.  Furthermore on analysis of raw and 

normalised QC data, one can then decide whether a deviation from the plan is required and 

whether this is justified.  In the end this should mean that more results move forward to 

validation and further investigation in hypothesis driven experiments.   

Therefore, to further explore the role of JAKs in the synovial environment, I went on to 

employ a macrophage: T cell co-culture assay, which has been shown to simulate the RA 

synovial microenvironment.  Therefore I will assess the role of JAK inhibition with 

various compounds to further explore this pathway in RA with a view to determining the 



 164 

effect on two of the critical cell types, the synovial macrophage and also the synovial T-

cell. 
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Chapter 4 The effect of Tofacitinib, a pan JAK 
inhibitor on a Macrophage: Tck cell contact activation 

assay 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some TNFα ELISAs were performed by Miss Ashley Gilmour.  Luminex was performed 
by Mr Jim Reilly and Mrs Shauna Kerr.  
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4.1 Introduction 
 

My prior bioinformatic analysis of the RA and PsA macrophage transcriptome revealed 

differences in the JAK/STAT pathway and therefore I decided to further explore this as 

inhibitors of this pathway exist although their exact mechanism of action is unclear.    The 

perpetuation of synovial inflammation by macrophages stimulated by cytokine activated T-

cells (Tck) may be modeled in vitro by the macrophage: T-cell co-culture cell contact 

assay(121,246-249).  As well as antigen specific activation of T-cells by APCs, many 

groups, including our own, proposed that cytokines alone would provide the stimulus for 

memory T-cells to activate macrophages.  Initial work showed that this effect was cell 

contact dependent and could also be recapitulated using T-cell membrane fragments and 

also externally fixed Tcks.  The initial stimulus cocktail comprised of IL-2, IL-6 and TNFα 

but Tcks could also be generated by substituting IL-2 for IL-15 as well as by IL-15 alone.  

These cytokines are found within the inflamed rheumatoid joint and their role in 

pathogenesis is well documented in preclinical models with anti IL-15 antibodies being 

used in a proof of concept clinical trial in RA patients(61).  In addition, blockade of TNFα 

and IL-6 have been employed clinically for the treatment of RA further demonstrating the 

crucial role for these cytokines. 

 

Macrophages may be generated using an MCSF maturation protocol and specific 

functional subtypes can be generated using GMCSF, IFNγ, LPS or IL-4 in the final stage 

of maturation to give rise to inflammatory (GMCSF, IFNγ, LPS) or repair (IL-4/13) 

subtypes..  Tck express levels of CD18, CD69 and CD49d that are similar to RA synovial 

fluid derived T-cells(116).  Furthermore, blockade of these markers leads to a partial 

reduction in TNFα production. 

 

CD18 or integrin beta-2 is the beta chain that can be combined with various members of 

CD11 to form a complete integrin.  It is responsible for the ability of leucocytes to 

extravasate from the blood to the tissue compartment.  Furthermore a deletion in the CD18 

gene in humans results in the inability of leucocytes to migrate from the blood 

compartment to tissues.  This suggests that T-cells that can eventually form Tck are 

derived from circulating T-cells that are drawn into the tissue(250). 

 

CD69 is a C-type lectin that is an early marker of activation on T-cell, platelets and NK 

cells.  CD49d is an integrin alpha unit and therefore is involved with cell to cell signaling 



 167 

and has been shown to interact with paxillin a molecule that may have a role in the 

pathogenesis of RA(251).  Paxillin itself anchors cells to the extracellular matrix and is 

responsible for focal adhesion of cells and signals via tyrosine and src kinases. 

 

CD49d also makes up part of the adhesion molecule VLA-4 that can be activated by 

fibronectin fragments and VCAM-1(252).  VCAM-1 is upregulated on the endothelium of 

blood vessels in the RA synovium and soluble VCAM-1 is secreted by RA FLS and can 

act as a chemoattractant.  Furthermore blockade of VCAM-1 by antibodies results in 

reduced Tck chemotaxis and migration across endothelium.   

 

This therefore provides an ideal assays system in which to explore the effect of JAK 

inhibition on both the macrophage and T-cell, two cells that are crucial in the pathogenesis 

and the perpetuation of inflammation in RA.  Tofacitinib is licensed for the treatment of 

RA and is approved by the FDA in the USA and is also available in Japan, Australia as 

well as other countries.  However, it was not licensed by the EMA because of concerns 

regarding side effects and the lack of information regarding the exact mechanism of action.   

 

Kinase inhibitors have been employed for many years in hematology with one of the first 

great triumphs of translational medicine being imatinib mesylate (Glivec) which targeted 

the ATP binding site of the constitutively activated tyrosine kinase bcr-abl implicated in 

chronic myeloid leukaemia (CML).  This tyrosine kinase inhibitor was also found to be 

useful in other conditions such as gastrointestinal stromal tumours (GIST). 

 

The initial mechanism of action of tofacitinib was thought to be via T-cells given that it is 

a JAK1/3 inhibitor and will therefore inhibit signals downstream of interferon receptors 

and cytokines which use the common gamma chain as a receptor which include but are not 

limited to IL-2, IL-6 and IL-15.   

 

In addition to tofacitinib, other JAK inhibitors have been developed and ruxolitinib, a 

JAK1/2 inhibitor has been used to treat high-grade myelofibrosis(253).  Clinical trials are 

currently underway to determine efficacy in psoriasis and alopecia areata.   Baricitinib, a 

newer JAK1/2 inhibitor, has shown significant efficacy in rheumatoid arthritis phase II 

trials(78).  For this reason I used ruxolitinib as a further interventional drug in my in vitro 

studies.  A final kinase inhibitor, AG-490 tyrphostin, is not employed clinically but is a 

potent inhibitor of JAK2 but at a higher IC50 than for either tofacitinib or ruxolitinib and 
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was used as a further experimental condition.  A summary of the various cytokine families 

targeted by tofacitinib and ruxolitinib is presented in figure 4-1 below. 

 

 

 

 
 

Figure 4-1 Cytokine and growth factor receptor families that are targeted by tofacitinb and ruxolitinib.  JAK1/3 
inhbition with tofacitinib would target signaling from gamma chain cytokines as well as interferon and gp130 associated 
cytokines such as IL-6.  Although originally thought to target only JAK3, there is ample evidence of JAK1 inhibition.  
Ruxolitinib targets both JAK1/2 with similar efficacy and would also target signals from IL-12 receptor and growth 
factor and colony stimulating factor receptors.  The later could contribute to side effects but may deliver improved 
efficacy in RA if GM-CSF is inhibited to a degree. 
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I hypothesise that inhibiting the JAK/STAT pathway in both T-cells and Macrophages will 

impact their activation and that tofactinib will be able to hit multiple pathogenic cell 

targets as well as multiple cytokine pathways.  

 

The key questions addressed in this chapter are as follows: 

 

1. Does JAK inhibition prevent the release of TNFα when macrophages are cell 

contact activated by Tck? 

 

2. Does JAK inhibition prevent the formation of Tck? 

 

3. Does JAK inhibition prevent LPS driven TNFα release from macrophages? 

 

4. Does JAK inhibition prevent the release of inflammatory cytokines and 

chemokines that are important in the pathogenesis of RA? 
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4.2 MCSF macrophages produce TNFα in a concentration 
dependent manner when cell-contact activated by live 
cytokine activated CD4 T-cells 

 

Before investigating the effect of JAK inhibition on the macrophage: Tck cell contact 

activation assay, I wished to demonstrate that I could perform the assay in my hands 

consistently, that cell contact was a required event and that DMSO, used as a drug vehicle, 

would not affect the assay.   

 

Briefly, monocytes were cultured at density of 5x105 cells per ml in a 96 well plate with 

MCSF supplementation.  CD4 T cells (1x106 cells/ml) were cultured in flasks for six days 

and were supplemented with IL-2, IL-6 and TNFα.  Prior to co-culture, T-cells were 

thoroughly washed, counted and assessed for viability using trypan blue.  T cells were 

added to macrophages at various concentrations and allowed to remain in culture for 24 

hours.  Supernatants were harvested and TNFα concentration measured using an ELISA 

and results from two representative donors are shown in figure 4-2. 

 

TNFα is produced when macrophages are cell contact activated by Tck in keeping with 

what has previously been demonstrated in the literature(254,255).  TNFα production is 

dependent on the concentration of Tck added to macrophages and macrophages alone 

produce little TNFα without stimulation.  Finally, there is variability in the amount of 

cytokine produced by representative donors although the trends seen above are consistent. 

 

Figure 4-3 demonstrates that Tck do not produce significant amounts of TNFα when 

cultured alone and therefore the large amount of TNFα produced in the assay is likely due 

to cell contact.  Although there is a significant literature supporting the use of this assay, I 

decided to use transwell membranes to inhibit cell contact and therefore show that this 

event was crucial in this assay. 
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Figure 4-2 TNFα is produced in a concentration dependent manner when macrophages are cell contact activated 
by Tck.  CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive 
magnetic bead selection for CD14.  They were cultured at a density of 5x105 cells/ml for 6 days in complete medium in 
the presence of MCSF (50ng/ml) in a 96 well plate.  CD4 T cells were positively selected using magnetic beads from the 
CD14 negative fraction and cultured in 25ml flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-2 
(25ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) to produce Tck.  Tck were washed and added to macrophages at the 
concentrations shown and co-cultured for 24 hours.  Supernatants were harvested and an ELISA for TNFα performed.  
(A) – representative donor 1 (B) – representative donor 2.   TNFα is not produced by macrophages alone.  There is 
variability between the two donors. 
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Figure 4-3 TNFα is not produced in significant amounts by Tck. CD4 T cells were obtained by density centrifugation 
of healthy donor buffy coats and positively selected using magnetic beads from the CD14 negative fraction and cultured 
in 25ml flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-2 (25ng/ml), IL-6 (100ng/ml) and TNFα 
(25ng/ml) to produce Tck.  Tck were washed and cultured in a 96 well plate for 24 hours.  Supernatants were harvested 
and an ELISA for TNFα performed.  (A) – representative donor 1 (B) – representative donor 2.   TNFα is not produced at 
significant levels by Tck alone. 
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4.3 Preventing cell contact by using transwell membranes 
prevents the production of TNFα in the macrophage: Tck cell 
contact activation assay 

 

Figure 4-4 demonstrates that cell contact is a crucial factor in the macrophage: Tck cell-

contact activation assay.  When Tck were placed into a cell culture insert containing a 

membrane to prevent cell contact but still allow soluble factor transition, TNFα release was 

prevented to a concentration in keeping with that produced by macrophages in a resting 

state. 

 

 

 

 
Figure 4-4 Preventing cell contact by using a transwell membrane to separate macrophages and Tck prevents 
production of TNFα.  CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats 
and positive magnetic bead selection for CD14.  They were cultured at a density of 5x105 cells/ml for 6 days in complete 
medium in the presence of MCSF (50ng/ml) in a 12 well plate.  CD4 T cells were positively selected using magnetic 
beads from the CD14 negative fraction and cultured in 25ml flasks at a density of 1x106 cells/ml for 6 days in the 
presence of IL-2 (25ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) to produce Tck.  Tck were washed and added to 
macrophages at the concentrations of 1 macrophage to 4 Tck and co-cultured for 24 hours.  In the transwell condition, 
Tck were placed into an insert containing a transwell membrane with pore size of 0.4µm therefore inhibiting cell contact.  
Supernatants were harvested and an ELISA for TNFα performed.  Data shown is representative of three biological 
replicates. 
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4.4 Using DMSO as a drug vehicle does not affect the production 
of TNFα in the macrophage: Tck cell contact activation assay 

 

I had to dissolve tofacitinib in DMSO for use in my in vitro experiments.  However high 

concentrations of DMSO are toxic and therefore I went on to demonstrate that DMSO 

concentration which I would use in subsequent experiments would not adversely affect the 

production of TNFα in the cell contact activation assay. 

 

 
Figure 4-5 TNFα is produced at a similar level in the presence of 0.001% DMSO.  CD14+ monocytes were obtained 
following density centrifugation of healthy donor buffy coats and positive magnetic bead selection for CD14.  They were 
cultured at a density of 5x105 cells/ml for 6 days in complete medium in the presence of MCSF (50ng/ml) in a 96 well 
plate.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-2 (25ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) to 
produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 8 Tck and co-cultured 
for 24 hours.  DMSO was added at a concentration of 0.001% in keeping with what would be required in subsequent 
experiments.  Supernatants were harvested and an ELISA for TNFα performed.  Data is representative of one donor from 
three biological replicates. 
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4.5 Tofacitinib may lead to a reduction in TNFα production in the 
macrophage: Tck cell contact activation assay 

 

I went on to investigate the effect of JAK inhibition in the context of varying 

concentrations of Tck in the cell contact activation assay.  My aim was to determine a Tck 

concentration that I could use in subsequent experiments with various JAK inhibitors.   

 

Therefore, having prepared macrophages and Tck as described previously, I performed co-

culture experiments using tofacitinib at two concentrations: 100nM and 1000nM.  These 

concentrations correspond to approximate blood levels that would be reflected by peak and 

trough dosage of tofacitinib by mouth(256).  Both macrophages and Tck were pre-

incubated with tofacitinib for one hour prior to co-culture and supernatants were collected 

after overnight culture. 

 

Tck at a concentration of 1 macrophage to 4 Tck give a strong cell contact activation signal 

to macrophages (figure 3-5).  Furthermore, 1000nM tofacitinib inhibits the production of 

TNFα in this assay to approximately 25% of control conditions.  Therefore fixing Tck 

concentration at 1:4 gives a balance between a strong activation signal, the ability to detect 

inhibition of cytokine production by JAK inhibition and is also experimentally practical. 

 

In conclusion, I have shown that in my hands, TNFα is produced when macrophages are 

cell contact activated by Tck.  I have further demonstrated that this is in fact cell contact 

dependent by the use of transwell membranes.  Also, TNFα production depends on the 

concentration of Tck in the assay and the production of TNFα is prevented by tofacitinib.   

 

Therefore I have decided to further investigate the role of JAK inhibitors on TNFα 

production in the macrophage: Tck cell contact activation assay with cell concentration 

controlled at 1 macrophage to 4 Tck.  Furthermore, I decided to replate macrophages at 

day 3 of culture to make cell numbers more consistent in further assays.  Finally, I decided 

to use IL-15 in lieu of IL-2 to produce Tck because IL-2 levels in synovial fluid are 

low(257), IL-15 is detectable and also shown to be important in Tck development(254). 
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Figure 4-6 Tofacitinib reduces cell contact mediated TNFα production in a concentration dependent manner.  
CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic 
bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 6 days in complete medium in the 
presence of MCSF (50ng/ml) in a 96 well plate.  CD4 T cells were positively selected using magnetic beads from the 
CD14 negative fraction and cultured in 25ml flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-2 
(25ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) to produce Tck.  Tck were washed and added to macrophages at 
concentrations shown and co-cultured for 24 hours.  Tofacitinib was dissolved in DMSO and added to both macrophages 
and Tck one hour prior to co-culture.  Supernatants were harvested and an ELISA for TNFα performed.  Data is 
representative of two donors from three biological replicates.  Tck at a concentration of I macrophage to 4 Tck provide a 
strong cell contact activation signal and this is inhibited by tofacitinib at 1000nM. 
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4.6 Tofacitinib decreases TNFα production in the Macrophage: T 
Cell assay in a concentration dependent manner 

 

Tofacitinib decreases the production of TNFα from macrophages following Tck cell 

contact activation in a concentration dependent manner (figure 4-7).  Briefly, CD14+ 

monocytes were differentiated into macrophages from five healthy buffy coat donors by 

density centrifugation, CD14+ positive magnetic bead separation and culture with MCSF 

for 6 days.  Macrophages were replated at day 3 to improve experimental consistency.  

CD4+ T-cells were isolated from the CD14 negative fraction and isolated using CD4+ 

positive magnetic bead selection.  CD4+ T-cells were cultured in complete medium 

supplemented with IL-6, IL-15 and TNFα for 6 days to produce Tck. 

 

Both macrophages and Tck were incubated with tofacitinib or vehicle control in complete 

medium for 1 hour prior to co-culture for 24 hours.  Supernatants were harvested for TNFα 

ELISA and luminex analysis.   

 

Tofacitinib inhibits TNFα production in a concentration dependent manner following cell 

contact activation of macrophages by Tck (figure 4-7).  These results show that 1000nM 

tofacitinib reduces TNFα production in this assay to 10% of control.  Therefore I have 

demonstrated that JAK 1/3 inhibition is able to reduce TNFα production in the 

macrophage: Tck cell contact activation assay. 

 

Following this, I went further to investigate whether two other small molecule inhibitors, 

Ruxolitinib, a JAK1/2 inhibitor and AG-490 Tyrphostin, a JAK2 and EGFR inhibitor 

would have a similar effect or whether JAK3 inhibition was crucial to disrupting TNFα 

production in the cell contact activation assay.   
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Figure 4-7 Tofacitinib consistently reduces cell contact mediated TNFα production in a concentration dependent 
manner.  CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive 
magnetic bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in 
the presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 
3 days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) 
to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Both 
macrophages and Tck were pre-incubated with tofacitinib for one hour prior to co-culture for 24 hours.  Supernatants 
were harvested and luminex for TNFα performed.  Data shows the results of five biological replicates with line 
representing median.  Tofacitinib decreases the production of TNFα in the macrophage: Tck cell contact assay.  This 
effect is concentration dependent and there is no significant production of TNFα by macrophages at rest. Friedman test 
with Dunn’s multiple comparison test was used to calculate statistical difference of inhibitor treated conditions versus 
control. * =  p<0.05. (n=5 biological replicates) 
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4.7 Ruxolitinib, a JAK1/2 inhibitor and AG-490 tyrphostin, a 
JAK2/EGFR inhibitor also decrease TNFα production from 
macrophages following Tck stimulation 

 

Ruxolitinib is another kinase inhibitor that is used in the treatment of myelofibrosis but is 

also currently in clinical trial as a treatment for RA.  Furthermore, another JAK1/2 

inhibitor, baricitinib is under investigation and recently reported promising results at the 

American College of Rheumatology 2015 meeting with significantly better efficacy signals 

compared to TNFα inhibition.   

 

I was therefore interested to explore the effect of relatively sparing JAK3 from inhibition, 

as it was the inhibition of JAK 3 that was theoretically most important for autoimmunity 

when JAKs were discovered.  The reasoning behind this was that JAK3 was predominantly 

expressed on immune cells; in particular lymphocytes, and therefore inhibition of this 

target would result in fewer off target effects.  In contrast, JAK2 is heavily involved with 

growth factor signaling molecules such as erythropoietin and therefore inhibition could 

lead to anaemia and indeed we do see this in clinical trials of the JAK1/2 inhibitors 

although it is concentration responsive(253,258).   

 

Both ruxolitinib and AG 490 tyrphostin decreased TNFα production in the cell contact 

assay (figure 4-8).  Ruxolitinib was particularly effective at decreasing cell contact 

mediated TNFα production at the same concentrations as tofacitinib.  Despite this, there 

was no statistically significant difference in the production of TNFα when tofacitinib or 

ruxolitinib were used.  Ag 490 tyrphostin also decreased TNFα production but the dose of 

this drug was 50 times higher than either tofacitinib or ruxolitinib. 

 

Whereas both tofacitinib and ruxolitinib are licensed medications, AG 490 tyrphostin 

failed because of lack of potency.  I decided to investigate it because it was able to weakly 

inhibit JAK2 but also had actions on other kinases out with the JAK family and therefore 

allowed me to compare JAK inhibition with inhibition of other kinases in this assay. 

 

Having demonstrated that both tofacitinib, a JAK1/3 inhibitor, and ruxolitinib, a JAK1/2 

inhibitor, decreased cell contact mediated TNFα production, I then went on to investigate 

whether these drugs could also prevent the formation of Tck in vitro.   
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Figure 4-8 Ruxolitinib and AG 490 tyrphostin consistently reduce cell contact mediated TNFα production in a 
concentration dependent manner.  CD14+ monocytes were obtained following density centrifugation of healthy donor 
buffy coats and positive magnetic bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days 
in complete medium in the presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 
5x105 cells/ml for a further 3 days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative 
fraction and cultured in 25ml flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 
(100ng/ml) and TNFα (25ng/ml) to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 
macrophage to 4 Tck.  Both macrophages and Tck were pre-incubated with JAK inhibitors for one hour prior to co-
culture for 24 hours.  Supernatants were harvested and luminex for TNFα performed.  Data shows the results of five 
biological replicates with line representing median.  JAK inhibitors decrease the production of TNFα in the macrophage: 
Tck cell contact assay.  This effect is concentration dependent and there is no significant production of TNFα by 
macrophages at rest.  Friedman test with Dunn’s multiple comparison test was used to calculate statistical difference of 
inhibitor treated conditions versus control. **= p<0.01, *** = p<0.001. (n=5 biological replicates) 
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4.8 Tofacitinib and ruxolitinib prevent the cytokine induced 
maturation of Tck in vitro 

 

Briefly, Tck are matured by obtaining CD4+ T-cells from blood and culturing in complete 

media supplemented with TNFα, IL-6 and IL-15.  Theoretically, JAK inhibition should 

disrupt signaling via IL-6 and IL-15.  Tck arise from the effector memory compartment as 

described by Brennan et al (116)and are similar to synovial CD4 T cells in that they 

express high levels of CD69, CD18 and CD49d making these cells an accepted surrogate 

for a CD4 T-cell in an inflamed rheumatoid joint.    

 

Therefore, I went on to explore whether tofacitinib and ruxolitinib would prevent the 

formation of Tck by adding JAK inhibitors to the culture medium during the 6 day 

maturation period.  The T-cells were then washed thoroughly and cultured with mature 

macrophages as previously described at a concentration of 1 macrophage to 4 T-cells.   

 

When tofacitinib and ruxolitinib were added to the Tck maturation cocktail, the resulting 

T-cells were unable to induce TNFα production from macrophages in co-culture (figure 4-

9).  Furthermore, when these cells were counted, I noticed that they were smaller than Tck 

with their morphology in keeping with freshly isolated CD4+ T-cells.  Therefore I can 

conclude that JAK inhibition with tofacitinib and ruxolitinib does prevent the maturation 

of Tck. 

 

It is likely that both molecules inhibit both IL-6 and IL-15 signaling and others have 

demonstrated that these cytokines are crucial in the formation of mature Tck(117,254,255).  

Furthermore, there is also evidence from McInnes et al (254)that IL-15 alone is sufficient 

to form Tck and this cytokine signals via JAK1 and JAK3 and has been shown to alter the 

balance between effector and memory T-cells. 

 

Finally in this section I went on to investigate whether JAK inhibitors could prevent LPS 

mediated TNFα production from macrophages.  TLR4 is key pattern recognition receptor 

on myeloid lineage cells and there is evidence that ACPA can act as TLR4 ligands and 

therefore perpetuate inflammation(35,135,259).   JAK inhibitors should not be able to 

prevent LPS mediated TNFα production, as the JAK/STAT pathway is not used for 

primary signal transduction.
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Figure 4-9 Addition of tofacitinib or ruxolitinib during Tck maturation results in T-cells that are unable to drive 
cell-contact mediated TNFα production.  CD14+ monocytes were obtained following density centrifugation of healthy 
donor buffy coats and positive magnetic bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 
days in complete medium in the presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 
5x105 cells/ml for a further 3 days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative 
fraction and cultured in 25ml flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 
(100ng/ml) and TNFα (25ng/ml) to produce Tck.  Culture medium was supplemented with inhibitor for the duration of 
Tck culture.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Supernatants 
were harvested and luminex for TNFα performed.  Data shows an example of one representative experiment.  JAK 
inhibition results in T-cells which are unable to drive cell-contact mediated TNFα production from macrophages. 
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4.9 LPS induced production of TNFα, by macrophages is not 
inhibited by tofacitinib 

 

TNFα production in response to TLR4 stimulation by LPS was used as a positive control 

in the co-culture experiments since JAK/STAT inhibition is not expected to contribute to 

the primary effect of this pathway.  However TLR4 stimulation of myeloid lineage cells is 

a key inflammatory pathway that is implicated in the pathogenesis of RA.  I therefore 

explored the effect of inhibiting JAKs in conjunction with LPS stimulation and found no 

significant evidence of an effect on TNFα production by macrophages in response to LPS 

(figure 4-10) although this is based on two replicates.  This result is similar to findings 

from other groups, although they showed that JAK inhibition increased the production of 

TNFα in response to LPS by inhibiting IL-10 release.  I could not replicate this finding but 

with more biological replicates this could be confirmed because there was a trend to higher 

TNFα production with LPS and tofacitinib. However, the significance of this result in a 

system where cytokine concentration is already high is unclear(260).   
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Figure 4-10 Tofacitinib is unable to prevent LPS mediated TNFα production from macrophages.  CD14+ 
monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic bead 
selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the presence of 
MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 days.   
Macrophages were incubated with 1000nM tofacitinib or DMSO vehicle control for one hour and then stimulated with 
LPS (1ng/ml) for 24 hours.  Supernatants were harvested and luminex for TNFα performed.  Data shows two biological 
replicates.  Tofacitinib does not prevent LPS mediated production of TNFα from macrophages.  A paired t-test with a 
significance level of 0.05 was performed to detect statistical difference. 
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In summary: 

 

1. JAK inhibition using small molecules decreases TNFα production in a 

concentration dependent manner when macrophages are cell contact activated 

by cytokine activated T-cells 

 

2. JAK inhibition with tofacitinib and ruxolitinib prevents the formation of 

cytokine activated T-cells in vitro from freshly isolated blood CD4+ T-cells 

 

3. Tofacitinib does not inhibit LPS mediated TNFα production from macrophages 

 

Therefore in this assay, that is an accepted model of the interactions that occur in the 

synovial microenvironment, we see that the production of TNFα, a crucial cytokine in the 

pathogenesis of RA is decreased by tofacitinib.  This demonstrates that JAK1/3 inhibition 

interrupts TNFα production although it I cannot conclude whether this is a direct or 

indirect mechanism.   

 

Furthermore this effect is not specific to JAK1/3 inhibition and both ruxolitinib and AG 

490 tyrphostin are able to decrease TNFα production in this assay suggesting that JAK1 

and JAK2 inhibition mediates this effect.  This finding is in keeping with encouraging 

clinical trial results of other JAK inhibitors in RA such as baricitinib, which targets JAK 

1/2 (78)and filgotinib(245), which specifically targets JAK1.  Both of these agents showed 

efficacy in improving joint swelling and inflammation and had favourable side effect 

profiles compared to tofacitinib.  This is compared to decernotinib, a JAK3 specific 

inhibitor that has been dropped from further development following publication of a recent 

trial(79).  Although the drug was effective at controlling inflammation in RA, abnormal 

liver function tests, changes to plasma lipids and also herpes zoster infection occurred 

more commonly in the decernotinib treated group.  These side effects were seen in clinical 

trials of tofacitinib suggesting that JAK3 inhibition may be playing a role in these side 

effects as they were not as marked in the baricitinib or filgotinib trials. 

 

If I had more time, I would explore the role of specific JAK inhibition using tool 

compounds such as those available from the MRC Technology drug library.  This would 

allow me to specifically inhibit each JAK and determine which combination of JAK 

inhibition is most effective at reducing TNFα production. 
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Furthermore, tofacitinib and ruxolitinib prevent the formation of cytokine activated T-cells 

that is likely due to inhibition of signaling downstream of IL-6 and IL-15 receptors.  This 

finding in combination with the previous result in the co-culture assay suggests that JAK 

inhibition will be effective at not only disrupting cell contact mediated inflammation at a 

synovial site but will also prevent the development of further Tck.  This has clinical 

implications:  firstly JAK inhibition would be effective at treating inflammation where the 

process is established, such as in the case of RA, by disrupting macrophage and T-cell 

cross talk and preventing T-cells from developing an inflammatory phenotype and 

secondly they are unlikely to be useful in preventing the transition of pre-RA typified by 

autoantibody positivity without overt inflammation.  Agents that target the B-cell or 

antigen presenting cells specifically may be more suited to this although there has been 

encouraging work with Bruton’s tyrosine kinase in the treatment of RA(80). 

 

Tck express CD18, CD49d and CD69 in keeping with synovial CD4 T-cells.  Therefore, 

logical further experiments would be to investigate whether JAK inhibition prevents the 

upregulation of these surface molecules during Tck maturation and also if their expression 

is downregulated when mature Tck are exposed to JAK inhibitors.  Blockade of these 

markers was shown by Brennan et al (116) to reduce TNFα production and therefore if 

JAK inhibitors down-regulate these this may suggest a mechanism for the reduction in 

TNFα produced in this assay. 

 

Finally all experiments have been performed using live Tck and both macrophages and 

Tck are able to produce TNFα.  Therefore using fixed Tck would help to determine the 

effect on the macrophage specifically thereby further elucidating the mechanism for this 

finding.   

 

Although TNFα is a key cytokine in the pathogenesis of RA, IL-6, IL-15 and IFNγ also 

have a role(261).  Furthermore anti-inflammatory cytokines may be affected and therefore 

I went on to investigate the production of various cytokines and chemokines in the cell 

contact activation assay using a human cytokine luminex.  Unfortunately the IFNγ assay 

failed in this system and this would be a crucial further experiment if I had more time and 

to further explore this a time course cell contact activation experiment would reveal which 

cytokine IFNγ or TNFα increased first. 
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4.10 IL-6 production following macrophage cell contact activation 
by Tck is reduced by JAK inhibitors 

 

IL-6 receptor blockade has been employed clinically in RA (53)as well as other 

inflammatory conditions such as juvenile idiopathic arthritis (262,263)and giant cell 

arteritis(264).  IL-6 is produced following cell contact activation of macrophages by Tck 

and is shown to be contact dependent (figure 4-11).  IL-6 is also found in significant 

concentrations in both RA synovial fluid and is used to produce Tck and therefore 

decreasing IL-6 by JAK inhibition may result in an alteration of synovial T-cell to an anti-

inflammatory phenotype. 

 

 

 
Figure 4-11 Preventing cell contact by using a transwell membrane to separate macrophages and Tck prevents 
production of IL-6.  CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and 
positive magnetic bead selection for CD14.  They were cultured at a density of 5x105 cells/ml for 6 days in complete 
medium in the presence of MCSF (50ng/ml) in a 12 well plate.  CD4 T cells were positively selected using magnetic 
beads from the CD14 negative fraction and cultured in 25ml flasks at a density of 1x106 cells/ml for 6 days in the 
presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) to produce Tck.  Tck were washed and added to 
macrophages at the concentrations of 1 macrophage to 4 four Tck and co-cultured for 24 hours.  In the transwell 
condition, Tck were placed into an insert containing a transwell membrane with pore size of 0.4µm therefore inhibiting 
cell contact.  Supernatants were harvested and a luminex for IL-6 performed.  Student’s t-test was used to determine 
statistical difference.  * = p <0.05.  n=3 biological replicates.  Error bars show standard deviation. 
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Figure 4-12 JAK inhibitors reduce cell contact mediated IL-6 production in a concentration dependent manner.  
CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic 
bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the 
presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 
days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) 
to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Both 
macrophages and Tck were pre-incubated with inhibitors for one hour prior to co-culture for 24 hours.  Supernatants 
were harvested and luminex for IL-6 performed.  Tofacitinib may decrease the production of IL-6 in the macrophage: 
Tck cell contact assay but it is not statistically significant.  There is no significant production of IL-6 by macrophages at 
rest.  Ruxolitinib and Ag 490 Tyrphostin decrease IL-6 production.  Friedman test with Dunn’s multiple comparison test 
was used to calculate statistical difference of inhibitor treated conditions versus control.  **= p<0.01. (n=5 biological 
replicates)  
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There is no IL-6 production by macrophages (figure 4-12) or T-cells at rest (data not 

shown).  IL-6 is produced by cell contact activation and this is decreased by tofacitinib, 

ruxolitinib and AG 490 tyrphostin (figure 4-12).  Although ruxolitinib statistically 

decreases IL-6 production at a lower concentration of inhibitor, when tofacitinib is 

compared to ruxolitinib there is no statistically significant difference (data not shown).  

Finally tofacitinib does not alter LPS mediated IL-6 release from macrophages (data not 

shown). 

 

4.11 IL-15 is not produced by macrophages or Tck at rest but is 
produced following co-culture and this is reduced by JAK 
inhibition 

 

IL-15 is produced when macrophages are cell-contact activated by Tck (figure 4-13).  IL-

15 production is decreased by ruxolitinib more than the equivalent concentration of 

tofacitinib.  The production of IL-15 is completely cell contact dependent and is prevented 

by transwell membranes (data not shown).  Furthermore, in this case, ruxolitinib 1000nM 

is statistically better than tofacitinib 1000nM at decreasing IL-15 production following cell 

contact activation (data not shown).  Additionally, compared to TNFα and IL-6, AG 490 

tyrphostin had no statistically significant effect on cell contact activation mediated IL-15 

production.   

 

In contrast with TNFα and IL-6, tofacitinib inhibits LPS mediated IL-15 production by 

macrophages (figure 4-14).  This combined with results of the cell contact assay suggests 

that the mechanism leading to IL-15 production by both cell contact activation and LPS is 

different from that leading to the production of TNFα and IL-6.  In the case of both TNFα 

and IL-6, JAK inhibition had no effect on LPS mediated production of cytokine from 

macrophages but this is clearly decreased in the case of IL-15.  Further experiments using 

other TLR agonists and TLR agonism as a further stimulus in the macrophage: Tck cell 

contact assay would lead to further insight into whether this effect occurs across TLR 

agonists and and also suggest which pathway is over riding in the case of IL-15:  cell 

contact activation or TLR mediated production from macrophages.   

 

Furthermore, AG 490 tyrphostin is not effective at significantly decreasing IL-15 

production in the macrophage: Tck cell contact activation assay.  
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Figure 4-13 Ruxolitinib decreases cell contact mediated IL-15 production in a concentration dependent manner.  
CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic 
bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the 
presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 
days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) 
to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Both 
macrophages and Tck were pre-incubated with inhibitors for one hour prior to co-culture for 24 hours.  Supernatants 
were harvested and luminex for IL-15 performed.  Both tofacitinib and ruxolitinib decrease the production of IL-15 in the 
macrophage: Tck cell contact assay.  This effect is concentration dependent and there is no significant production of IL-6 
by macrophages at rest.  AG 490 tyrphostin does not significantly reduce IL-15 production in this assay.  Repeated 
measures one-way ANOVA with Bonferroni’s multiple testing was used to calculate statistical difference of inhibitor 
treated conditions versus control. * =  p<0.05, **= p<0.01, *** = p<0.001, **** = p<0.0001. (n=5 biological replicates).  
Error bars show standard deviation. 
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Figure 4-14 Tofacitinib statistically decreases LPS mediated IL-15 production from macrophages.  CD14+ 
monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic bead 
selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the presence of 
MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 days.   
Macrophages were incubated with 1000nM tofacitinib or DMSO vehicle control for one hour and then stimulated with 
LPS (1ng/ml) for 24 hours.  Supernatants were harvested and luminex for IL-15 performed.  Data shows two biological 
replicates.  Tofacitinib decreases LPS mediated production of IL-15 from macrophages.  A paired t-test was performed to 
detect statistical difference. * = p<0.05 

 

 

 

 

 

  

LPS

LPS To
fa

 10
00

nM
200

250

300

350

400

450
IL

-1
5 

(p
g/

m
l)

*



 192 

4.12 IL1RA is decreased by JAK inhibitors when macrophages are 
cell contact activated by Tck  

 
Figure 4-15 Macrophages produce IL1RA at rest, this is increased by cell contact activation and decreased by 
JAK inhibitors.  CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and 
positive magnetic bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete 
medium in the presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml 
for a further 3 days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and 
cultured in 25ml flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and 
TNFα (25ng/ml) to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 
Tck.  Both macrophages and Tck were pre-incubated with inhibitors for one hour prior to co-culture for 24 hours.  
Supernatants were harvested and luminex for IL1RA performed.  Both tofacitinib and ruxolitinib decrease the production 
of IL1RA in the macrophage: Tck cell contact assay.  This effect is concentration dependent there is production at rest by 
macrophages.  Repeated measures one-way ANOVA with Bonferroni’s multiple testing was used to calculate statistical 
difference of inhibitor treated conditions versus control. * =  p<0.05, **= p<0.01, *** = p<0.001. (n=5 biological 
replicates).  Error bars show standard deviation. 
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Macrophages produce IL1RA at rest (figure 4-15) and this is increased by cell contact 

activation.  Tck produce small amounts of IL1RA (data not shown) but the increased 

production is far in excess of an additive effect.  All of the small molecule inhibitors 

reduce IL1RA production with a suggestion that ruxolitinib may be more effective than 

tofacitinib although this is not statistically significant.  Furthermore, levels of IL1RA do 

not reduce below basal production suggesting that a JAK dependent mechanism causes 

upregulation of this anti-inflammatory cytokine.  Tofacitinib does not affect LPS mediated 

production of IL1RA from macrophages (data not shown). 
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4.13 LPS mediated production of IL-10 from macrophages is 
decreased by tofacitinib 

 

 
Figure 4-16 Tofacitinib statistically decreases LPS mediated IL-10 production from macrophages.  CD14+ 
monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic bead 
selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the presence of 
MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 days.   
Macrophages were incubated with 1000nM tofacitinib or DMSO vehicle control for one hour and then stimulated with 
LPS (1ng/ml) for 24 hours.  Supernatants were harvested and luminex for IL-10 performed.  Data shows two biological 
replicates.  Tofacitinib decreases LPS mediated production of IL-10 from macrophages.  A paired t-test was performed to 
detect statistical difference. * = p<0.05 

 

IL-10 is not produced by macrophages or Tck at rest and is not upregulated after cell 

contact activation by Tck (data not shown).  It is produced following LPS stimulation of 

macrophages, as others have shown, and is decreased by tofacitinib.   
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4.14 MIP1α and MIP1β are both released by macrophages 
following cell contact activation by Tck and are decreased by 
JAK inhibition 

 

Neither MIP1α nor MIP1β are produced at rest by macrophages (figure 4-17 and 4-18) or 

Tck (data not shown).  They are both upregulated on cell contact activation and this is 

inhibited by the use of transwell membranes (data not shown).  Tofacitinib, ruxolitinib and 

AG 490 tyrphostin decrease MIP1α and MIP1β although in the case of MIP1α this is 

statistically significant for ruxolitinib 1000nM.  The error bars denote standard deviation 

and they are wide showing that there is considerable variation between experiments.  

Despite this, the trend within an experiment shows that JAK inhibition decreased MIP1α 

and MIP1β in a concentration dependent manner. 

 

Both MIP1α and MIP1β are produced following LPS stimulation of macrophages and 

tofacitinib is unable to alter this (data not shown). 
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Figure 4-17 On cell contact activation by Tck, macrophages produce MIP1α and this is decreased by ruxolitinib. 
CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic 
bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the 
presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 
days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) 
to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Both 
macrophages and Tck were pre-incubated with inhibitors for one hour prior to co-culture for 24 hours.  Supernatants 
were harvested and luminex for MIP1α performed.  Both tofacitinib and ruxolitinib decrease the production of MIP1α in 
the macrophage: Tck cell contact assay and this is statistically significant with ruxolitinib 1000nM.  Repeated measures 
one-way ANOVA with Bonferroni’s multiple testing was used to calculate statistical difference of inhibitor treated 
conditions versus control. * =  p<0.05. (n=5 biological replicates).  Error bars show standard deviation. 
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Figure 4-18 On cell contact activation by Tck, macrophages produce MIP1β and this is decreased by JAK 
inhibition. CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive 
magnetic bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in 
the presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 
3 days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) 
to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Both 
macrophages and Tck were pre-incubated with inhibitors for one hour prior to co-culture for 24 hours.  Supernatants 
were harvested and luminex for MIP1β performed.  Tofacitinib, ruxolitinib and AG 490 tyrphostin decrease the 
production of MIP1β in the macrophage: Tck cell contact assay and this is statistically significant at multiple inhibitor 
doses.  Repeated measures one-way ANOVA with Bonferroni’s multiple testing was used to calculate statistical 
difference of inhibitor treated conditions versus control. * =  p<0.05, **= p<0.01, *** = p<0.001. (n=4 biological 
replicates – the luminex assay failed for one experiment).  Error bars show standard deviation.  
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4.15 IP10 is produced following LPS stimulation of macrophages 
and this is decreased by tofacitinib.   

 

 
Figure 4-19 Tofacitinib may decrease LPS mediated IP10 production from macrophages.  CD14+ monocytes were 
obtained following density centrifugation of healthy donor buffy coats and positive magnetic bead selection for CD14.  
Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the presence of MCSF (50ng/ml) in a 
96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 days.   Macrophages were incubated 
with 1000nM tofacitinib or DMSO vehicle control for one hour and then stimulated with LPS (1ng/ml) for 24 hours.  
Supernatants were harvested and luminex for IP10 performed.  Data shows two biological replicates.  Tofacitinib may 
decrease LPS mediated production of IP10 from macrophages, however the result is non significant.  A paired t-test was 
performed to detect statistical difference. 

 

IP10 is produced by macrophages following LPS stimulation and this is reduced by 

treatment with tofacitinib (figure 4-19).  IP10 is secreted in response to IFNγ (265)and in 

this case it is likely that IFNγ release following LPS stimulation leads to IP10 production.  

As stated previously, the luminex for IFNγ failed, and this is a limitation of my current 

work.  Therefore I suggest that tofacitinib via JAK1 inhibition is disrupting IFNγ signaling 

in this instance. 

 

Both tofacitinib and ruxolitinib decrease IP10 production following cell contact activation 

of macrophages by Tck (figure 4-20).   Use of transwell membranes to prevent cell contact 

prevented the release of IP10 (data not shown). 
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Figure 4-20 On cell contact activation by Tck, macrophages produce IP10 and this is decreased by JAK inhibition. 
CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive magnetic 
bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the 
presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 
days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) 
to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Both 
macrophages and Tck were pre-incubated with inhibitors for one hour prior to co-culture for 24 hours.  Supernatants 
were harvested and luminex for IP10 performed.  Tofacitinib and ruxolitinib decrease the production of IP10 in the 
macrophage: Tck cell contact assay and this is statistically significant..  Repeated measures one-way ANOVA with 
Bonferroni’s multiple testing was used to calculate statistical difference of inhibitor treated conditions versus control. * =  
p<0.05, **= p<0.01. (n=5 biological replicates).  Error bars show standard deviation. 
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4.16 MIG is released following cell contact activation of 
macrophages by Tck and is decreased by JAK inhibition 

 
Figure 4-21 MIG is produced following cell contact activation of macrophages and Tck is decreased by JAK 
inhibition. CD14+ monocytes were obtained following density centrifugation of healthy donor buffy coats and positive 
magnetic bead selection for CD14.  Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in 
the presence of MCSF (50ng/ml) in a 96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 
3 days.  CD4 T cells were positively selected using magnetic beads from the CD14 negative fraction and cultured in 25ml 
flasks at a density of 1x106 cells/ml for 6 days in the presence of IL-15 (100ng/ml), IL-6 (100ng/ml) and TNFα (25ng/ml) 
to produce Tck.  Tck were washed and added to macrophages at a concentration of 1 macrophage to 4 Tck.  Both 
macrophages and Tck were pre-incubated with inhibitors for one hour prior to co-culture for 24 hours.  Supernatants 
were harvested and luminex for MIG performed.  Tofacitinib and ruxolitinib decrease the production of MIG in the 
macrophage: Tck cell contact assay.  Repeated measures one-way ANOVA with Bonferroni’s multiple testing was used 
to calculate statistical difference of inhibitor treated conditions versus control after log transforming data. * =  p<0.05, ** 
= p<0.01, **** = p<0.0001. (n=5 biological replicates) 
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MIG (monokine induced by gamma interferon) is not released by macrophages or Tck at 

rest (data not shown).  It is upregulated by cell contact activation (figure 4-21) and this is 

prevented by the use of transwell membranes demonstrating the necessity of cell contact 

(data not shown).  There is biological variation in MIG levels following cell contact 

activation but the highest dose of ruxolitinib prevents production of MIG following cell 

contact activation.   

 

Furthermore, although it is produced at much lower levels following LPS stimulation of 

macrophages than cell contact activation, it is still decreased by tofacitinib (figure 4-22). 

 

MIG, IP10 and CXCL11 are located on chromosome 4 and form a cluster of interferon 

gamma inducible genes.  The failure of the IFNγ assay limits the interpretation of this data.  

However the data suggests that JAK inhibition is disrupting IFNγ mediated signaling and 

this may be by two possible mechanisms: firstly, there may be decreased production of 

IFNγ and secondly JAK1/2 inhibition prevents signaling from the IFNγ receptor. 
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Figure 4-22 Tofacitinib decreases LPS mediated MIG production from macrophages.  CD14+ monocytes were 
obtained following density centrifugation of healthy donor buffy coats and positive magnetic bead selection for CD14.  
Cells were cultured at a density of 5x105 cells/ml for 3 days in complete medium in the presence of MCSF (50ng/ml) in a 
96 well plate and then replated on day 3 at a density of 5x105 cells/ml for a further 3 days.   Macrophages were incubated 
with 1000nM tofacitinib or DMSO vehicle control for one hour and then stimulated with LPS (1ng/ml) for 24 hours.  
Supernatants were harvested and luminex for MIG performed.  Data shows two biological replicates.  Tofacitinib 
decreases LPS mediated production of MIG from macrophages.  A paired t-test was performed to detect statistical 
difference.  *= p<0.05. 
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4.17 Discussion 
 

In this chapter I set out to answer the following questions: 

 

1. Does JAK inhibition prevent the release of TNFα when macrophages are cell 

contact activated by Tck? 

 

2. Does JAK inhibition prevent the formation of Tck? 

 

3. Does JAK inhibition prevent LPS driven TNFα release from macrophages? 

 

4. Does JAK inhibition prevent the release of inflammatory cytokines and 

chemokines that are important in the pathogenesis of RA? 
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The data presented here shows that JAK inhibition reduces the release of TNFα, IL-6 and 

IL-15, cytokines key in the pathogenesis of RA, in a macrophage and Tck cell contact 

activation assay.  To my knowledge, others have not demonstrated this, although the 

effects of JAK inhibition on macrophage and T-cell activation have been studied 

separately(67,73,266,267).  In addition, tofacitinib did not have an effect on LPS mediated 

TNFα release from macrophages but did alter release of interferon responsive chemokines 

such as MIG and IP-10 in this case. 

 

There are limitations to the data presented herein that include the use of an in vitro culture 

system as opposed to a murine model of arthritis to assess the role of JAK inhibition.  

However murine models have been criticised as models of human disease (268)and 

therefore I decided to investigate this mechanism further in a human model system. 

 

The role of cell contact activation of macrophages by activated T-cells has been 

investigated extensively in the past(246,269,270).  Stimuli including activation of CD3 and 

CD28 by antibody and cytokine cocktails produce T-cells that are capable of driving pro-

inflammatory cytokine production from myeloid lineage cells.  Furthermore, based on 

immunohistochemical studies, we see that both macrophages and CD4 T-cells are present 

in the joint(99,100). 

 

Furthermore, to further validate the co-culture system, T-cells derived from RA synovial 

fluid and synovial tissue stimulate inflammatory cytokine production from mononuclear 

cells derived from healthy volunteers or RA patients.  Work by Brennan et al at the 

Kennedy Institute of Rheumatology showed that CD18, CD69 and CD49d were 

upregulated on cytokine activated T-cells and these markers were also highly expressed on 

RA synovial fluid derived T-cells(116,117).  Further, antibody blockade of these surface 

markers reduced the amount of TNFα generated by approximately 30%. 

 

In summary, although not perfect I believe that this assay system allowed me to explore 

how JAK inhibition would affect the crosstalk between macrophages and T-cells in the 

pathogenesis of RA. 

 

Both macrophages and T-cells that were used in my experiments were derived from 

healthy buffy coats although this is in common with pervious studies.  RA patient derived 

samples of blood and synovial fluid derived cells would be useful in the future to further 



 205 

explore the mechanism.  Donor to donor variability was an issue in the experiments but 

controlling macrophage cell numbers by re-plating partially addressed that. 

 

 

In my experiments I used live macrophages and T-cells, which leads to difficulties in 

concluding which cell type is responsible for the secretion of a particular cytokine.  Both 

macrophages and T-cells can secrete TNFα following stimulation and therefore limits my 

ability to comment on whether JAK inhibition is affecting one cell type more so than the 

other.   

 

An alternative approach I would have explored had I had more time would have been to 

use fixed Tck and T-cell membrane preparations to cell contact activate macrophages.  

This approach would help tease apart the role of JAK inhibition on the macrophage in this 

circumstance.  Furthermore, by using membrane preparations as opposed to fixed cells, I 

could also explore changes that occur to the transcriptome of the macrophage following 

contact activation and treatment with a JAK inhibitor.   

 

I used CD4 T-cell positive selection to prepare Tck and did not subset these into Th1, Th2 

or other T-cell subsets.  Brennan et al (116)showed that CD4+, CD45RO+, CCR7-, 

CD49dhigh T-cells mediated TNFα production in the monocyte contact activation and 

these are derived from the effector memory T-cell pool in peripheral blood.  It may be that 

these cells are being affected by JAK inhibition to reduce surface marker expression and 

this could be investigated using FACS analysis in further experiments. 

 

Finally, although other groups have shown that IFNγ levels are increased in macrophage 

and Tck co-culture(271,272), I was unable to demonstrate this due to failure of the luminex 

bead assay for that cytokine.  This cytokine may be mediating TNFα release from 

macrophages and therefore potential blockade of IFNγ signaling by JAK inhibitors may be 

responsible for my findings.  Despite these limitations, I believe that my work 

demonstrates that JAK inhibition is able to reduce inflammatory cytokine production in the 

macrophage and Tck co-culture and therefore adds to current knowledge regarding the 

mechanism of action of this class of drug in both the innate and adaptive immune system. 

 

Sebbag et al (255)used the macrophage and T-cell co-culture assay to demonstrate that 

CD3 T-cells could be activated by cytokines in an antigen independent fashion and 

stimulated macrophages and monocytes to produce TNFα but not IL-10 (255).  



 206 

Furthermore, they also demonstrated that cell-contact was a necessary component by using 

transwell membranes and found that the T-cells activated macrophages in a concentration 

dependent fashion.  My findings are in keeping with the discoveries in this paper.  They 

also demonstrated that IL-2 alone was unable to stimulate Tck formation but IL-6 and 

TNFα were necessary.  Also they showed that IL-15 alone or in combination with IL-6 and 

TNFα made functional Tck that could stimulate monocytes to produce TNFα.  They also 

demonstrated that exogenous IFNγ and GM-CSF led to an increased production of TNFα 

following Tck stimulation of monocytes.  Finally, this group used fixed Tck in their 

experiments and therefore it a reasonable assumption that the TNFα levels seen in my 

experiments is of macrophage origin.   

 

McInnes et al demonstrated the role of IL-15 in T-cell migration and activation (273)and 

also the ability of IL-15, at concentrations that are found in RA synovial fluid, to produce 

Tck that were capable of cell contact activating U937 cells to produce TNFα (254).  I 

found that macrophages do not produce IL-15 at rest but when Tck are added, significant 

concentrations of IL-15 are produced and this is dependent on cell contact.   

 

Furthermore, tofacitinib reduces IL-15 production at the highest concentration but 

Ruxolitinib has a more significant effect.  Although IL-15 itself signals through JAK1/3, 

from my experimental JAK1/2 inhibition may more effectively reduce IL-15.  

Furthermore, a proof of concept trial of IL-15 inhibition was encouraging in RA patients 

with 63% reaching an ACR20 response, 38% an ACR50 and 25% ACR70(61).   

 

Wenink et al showed that abatacept (CTLA4-Ig) was able to prevent cell contact mediated 

TNFα release from GM-CSF macrophages (274).  They did shows that IL-6 was not 

released in their system but was upregulated with concomitant LPS stimulation.  

Furthermore, IFNγ and IL-12p70 were also released in this situation.  Finally they state 

that abatacept had no effect on TLR mediated cytokine release alone.  These findings 

demonstrate that abatacept can inhibit inflammatory cytokine production in the co-culture 

assay where an antigen specific T-cell response is not required.  GM-CSF macrophages 

may respond differently to MCSF macrophages and therefore this could be a further 

avenue of further investigation. 

 

Taking account of the studies above, JAK inhibition may be able to break the vicious cycle 

of inflammation in the synovial joint by decreasing TNFα, IL-6 and IL-15 production 

when macrophages are cell contact activated by T-cells.  The exact mechanism of this is 
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unclear but studies have been carried out of JAK inhibition in both cell types that may 

suggest a mechanism, which could be tested in further studies. 

 

Ghoreschi et al carried out an extensive study of the effect of tofacitinib on mouse and 

human T-cells.  They found that tofacitinib disrupted both gamma and non gamma chain 

cytokine signaling by measuring phosphostat activation by both Western blotting and 

phosphoFACS (73).  They also showed that both Th1 and Th2 differentiation was affected 

by tofacitinib and suggested that IFNγ and IL-12 signaling may be affected in the former 

and IL-4 in the latter.   

 

Furthermore in the murine system, in vivo, they found that LPS mediated TNFα and IL-6 

production was blocked by tofacitinib.  Furthermore, IL-10 was increased in this situation 

which is contrary to my findings.  In vitro, I found that tofacitinib did not alter LPS 

mediated TNFα or IL-6 production from macrophages and furthermore, IL-10 was reduced 

with tofacitinib treatment.  This could be accounted for by the oversimplified nature of 

single cell culture compared to an in vivo model, differences in mouse and human biology 

or it may be a drug concentration effect as my LPS experiments utilised 1000nM 

tofacitinib and in vivo drug levels are likely to be from 100-300nM.  It should be noted 

that others have demonstrated in human macrophages that JAK inhibitions leads to a 

reduction in LPS mediated IL-10 production by possibly interrupting IFNβ signaling. (260) 

 

Yarilina et al showed clearly that both tofacitinib and ruxolitinib inhibited IFNγ mediated 

phosphorylation of STAT1 in human macrophages (267).  They also linked the TNF and 

JAK/STAT pathways by showing that JAK inhibition interfered with TNFα mediated stat 

activation.  In this circumstance they showed that the production of IP-10 and CXCL11 

was reduced following JAK inhibitor treatment of TNFα activated macrophages.   

 

A previous study from the same group showed that TNFα treated macrophages set up an 

autocrine loop involving IFNβ and this went on to activate interferon associated genes such 

as IRF7(242).  Therefore JAK inhibition may be able to break this loop and therefore 

intervene on the self-sustaining inflammatory macrophage phenotype.  This mechanism 

may account for my findings where both tofacitinib and ruxolitinib decreased IP-10 

following cell contact activation and LPS mediated stimulations of macrophages.   

 

This group has previously shown that prolonged exposure of macrophages to TNFα 

activates c-Jun and NFATc and promotes osteoclastogenesis(275).  JAK inhibition also 
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increased NFATc levels above TNFα stimulation and was associated with increased 

osteoclastogenesis.  This was not borne out in the clinical trial of tofacitinib versus 

methotrexate (69) where the tofacitinib treated group had fewer erosions. 

 

Maeshima et al studied RA patient derived CD4 T-cells and showed that tofacitinib 

inhibited IFNγ and IL-17 production from these cells but did not have an effect on IL-6 or 

IL-8 (276).  The exact mechanism of this was unclear but was proposed to involve 

inhibition of IL-2 mediated STAT activation.  This suggests that tofacitinib may be able to 

inhibit IFNγ production by Tck. 

 

Finally, in a related study, Kubo et al demonstrated that there was no effect on apoptosis of 

immature monocyte derived dendritic cells, measured by AnnexinV and propidium iodide 

staining, when up to 1000nM tofacitinib was used in culture(266). They also found that 

immature monocyte derived dendritic cells when stimulated with LPS increase the 

proliferation and production of IFNγ by naïve T-cells.  Tofacitinib decreased this but also 

increased IL-10 production in this circumstance.  

 

Both IP-10 and MIG were increased in macrophage and T-cell co-culture and decreased by 

tofacitinib.  Tofacitinib also prevents LPS mediated release of both chemokines from 

macrophages.  This mechanism may be mediated by IFNβ but I did not measure this in my 

assays.  Rosengren et al in a study of RA synovial fibroblasts demonstrated that TNFα 

mediated release of IP-10, MCP-1 and RANTES(74).  Furthermore, IP-10 release was 

decreased by tofacitinib and they went on to show that a blocking antibody to IFNβ could 

reproduce this effect.  Therefore in fibroblasts, TNFα induces IFNβ production by three 

hours and this is responsible for the increase in IP-10.  A similar mechanism may be 

responsible for my results as IP-10 was also reduced following JAK inhibition of TNFα 

stimulated macrophages(267).  It may also explain why tofacitinib decreases LPS mediated 

release of IP-10 and MIG if their production is dependent on type I interferon. 

 

IP-10 was also reduced in the treatment arm of a double-blinded clinical trial of tofacitinib 

which included synovial biopsy at day -7 and also day 28 of treatment(277).  The 

comparing the biopsies demonstrated that pSTAT1 and pSTAT3 were reduced following 

tofacitinib treatment and this correlated with disease activity.  Furthermore, interferon 

response genes such as IP-10 were reduced with tofacitinib treatment.  Also, IP-10 was 

detectable in patient blood samples and was statistically reduced when patients were on 

drug.  Finally, there was no difference, following tofacitinb treatment, to the cellular 
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makeup or the cellularity of the synovial biopsy demonstrating that it does not cause a 

depletion of cell populations but mediates effects through changes to transcription.   

 

IP-10 has been targeted therapeutically in RA in a Phase II clinical trial and showed an 

improvement in ACR20 response rates(278).  However the response was modest and there 

was no effect on ACR50 or ACR70 responses.  One possible reason for this is that the IP-

10 receptor CXCR3 also binds MIG and I-TAC.  My data shows that MIG is increased in 

co-culture and that there is a trend to reduction with tofacitinib treatment.  This suggests 

that tofacitinb is acting upstream of both chemokines to reduce their production by likely 

disrupting interferon signaling. 

 

This leads to a disparity in that on one hand tofacitinib acts on Janus kinases that act as 

signal transduction machinery for cell surface receptors that include interferons and 

cytokines that signal through the common gamma chain such as IL-15.  However in a 

system which requires cell contact and in which pro inflammatory cytokine production is 

prevented by cell contact inhibition, tofacitinib still has an effect.  Therefore JAK 

inhibition may be directly interfering with this.  

 

Both tofacitinib and ruxolitinib were able to prevent the formation of functional Tck when 

added into T-cell culture with the cytokine cocktail of TNFα, IL-6 and IL-15.  

Furthermore, I have demonstrated that in this assay, levels of these cytokines are decreased 

suggesting that JAK inhibition may be able to interrupt the cross talk between 

macrophages and T-cells and therefore disrupt the inflammatory process (figure 4-22). 
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Figure 4-23 Breaking the inflammatory cycle.  Cell contact activation of macrophages by T-cells results in the 
production of TNFα, IL-6 and IL-15 and these are reduced by JAK inhibition.  Both tofacitinb and ruxolitinib decrease 
the levels of these cytokines and will directly affect signaling from IL-6 and IL-15.  Furthermore, TNFα signaling, 
although not directly targeting by JAK inhibitors is disrupted in an indirect manner.  Finally, production of chemokines 
that are associated with type I interferon such as IP-10 are also inhibited.  The result of JAK inhibition, therefore, is more 
than inhibition of the JAK associated signaling cascades in each cell type alone.  
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Further investigation of the effect of JAK inhibition on the formation of Tck is required 

and in particular if surface expression of CD18, CD69 and CD49d is prevented if JAK 

inhibitors are used during Tck culture. Therefore examination of a time course 

investigating whether changes occur to the Tck following tofacitinib or ruxolitinib 

treatment would be a logical next step.   

 

Also using fixed Tck or T-cell membrane fragments would allow me to investigate the role 

on macrophages alone and the latter would also facilitate the interrogation of the 

transcriptome of cell contact activated macrophages.   

 

Utilising other compounds and tool compounds that are able to selectively inhibit JAK 

family members would increase our understanding of the whether differential inhibition 

has an effect on this system.  In this same respect, neutralising antibodies to type I 

interferon, type II interferon and TNFα would help dissect primary from secondary effects. 

 

Furthermore investigating this in patient samples would make the study translatable and I 

propose that we obtain peripheral blood cells from patients with RA to investigate whether 

this mechanism holds true in patients.  

 

In conclusion, tofacitinib inhibits the production of pro-inflammatory cytokines which are 

generated in a macrophage:Tck co-culture assay, which is a model system for the chronic 

inflammatory process.  Therefore in an established inflammatory arthritis, tofacitinib 

would be a useful therapeutic option given the ability to break the vicious cycle of 

macrophage and T-cell interaction.  This has also been demonstrated clinically where 

tofacitinib was superior to methotrexate in improving joint signs and symptoms(69).  

However I have demonstrated that the effect of tofacitinib is manifest in both the T-cell 

and myeloid compartments and therefore JAK inhibition rather than single cytokine 

inhibition allows targeting of multiple cell types and therefore a better outcome for 

patients.  
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Chapter 5 Investigating whether JAK inhibition with 
tofacitinib inhibits synovial fluid stimulation of 

candidate leukocytes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some phosphoFACs stimulation experiments were performed by Dr Moeed Akbar.  
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5.1 Introduction 
 

I have demonstrated that an IL6R/JAK/STAT signature is evident in macrophages derived 

from RA synovial fluid.  Furthermore, by using an in vitro macrophage: Tck cell contact 

activation assay, I have shown that tofacitinib and other JAK inhibitors can decrease the 

production of TNFα and other pro-inflammatory cytokines in a concentration dependent 

manner.  

 

These cytokines and chemokines once secreted from macrophages act locally within the 

joint but are also secreted into synovial fluid.  Synovial fluid from RA patients has been 

shown to contain high concentrations of IL-6, IL-21 and IL-23 (279) which can impact the 

activation of immune cells via JAK/STAT.  Therefore I decided to determine whether 

tofacitinib would prevent the phospho stat stimulation of monocytes by soluble factors 

present in RA synovial fluid.   

 

To achieve this I used a staining and stimulation protocol that had been developed as part 

of the Scottish Nested Arthritis Progression cohort (SNAP).  The aim of SNAP was to take 

patients with RA and controls and intensely immunophenotype the peripheral blood cells 

and measure changes to intracellular phosphorylation of STAT1, 3 and 6 following 

activation with a cocktail of various stimuli such as cytokines, immunoglobulin, 

ionomycin, PMA and anti-CD3 and anti-CD28.  I focused on STAT1, 3 and 6 because they 

would allow me to see signals from IFNγ (STAT1), IL-6 (STAT1 and 3) and IL-4 

(STAT6) 

 

In this chapter I set out with the following objectives: 

 

1. Show that I can use flow cytometry to measure phosphorylation of STAT proteins 

following cytokine stimulation in THP-1 cells 

 

2. To investigate whether tofacitinib can inhibit phosphorylation of STAT proteins in 

peripheral blood leucocytes from RA patients following stimulation with the SNAP 

stimulation cocktail 

 

3. To investigate if synovial fluid from RA patients phosphorylates STAT proteins 1,3 

and 6 in monocytes derived from RA patients 
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5.2 THP-1 cells phosphorylate STAT1 and 3 in a concentration 
dependent manner following stimulation with IFNγ and IL-6 

 

To demonstrate that the SNAP staining protocol worked in my hands, I used a monocyte 

cell line, THP-1 to assess the effect of cytokine stimulation on specific phosphorylated 

STATs.  THP-1 cells were stimulated with increasing concentrations of cytokine for fifteen 

minutes.  Thereafter they were fixed and permeabilised prior to intracellular staining with 

phosphostat antibodies. 

 

IFNγ signals through JAK1/2 to phosphorylate STAT 1 and we see that increasing 

concentrations of IFNγ results in a specific increase of phosphoSTAT1 but not 

phosphoSTAT3 or phosphoSTAT6 (figure 5-1).   

 

 
 
Figure 5-1 IFNγ phosphorylates STAT1 in a concentration dependent manner but has no effect on STAT3 or 
STAT6.  Increasing concentrations of IFNγ (from 0.5ng/ml to 400ng/ml) were added to FACS tubes and 250,000 THP-1 
cells added to each tube in 0.5ml of complete medium and incubated at 37C for 15 minutes.  Cells were washed in ice 
cold DPBS and fixed using BD Cytofix and washed three times.  Cells were permeabilised using BD Perm Buffer III, 
washed and stained with intracellular antibodies to pSTAT1, pSTAT3 and pSTAT6.  Following washing, data was 
acquired using an LSR II Instrument (BD).  Phosphorylated STAT1 Mean Fluorescence Intensity increases with IFNγ 
stimulation in a concentration dependent manner.  Phosphorylated STAT3 or 6 do not change with IFNγ stimulation.  
Data from one experiment.  
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Figure 5-2 IL-6 phosphorylates STAT1 and STAT3 in a concentration dependent manner.  Increasing 
concentrations of IL-6 (0.5ng/ml to 400ng/ml)were added to FACS tubes and 250,000 THP-1 cells added to each tube in 
0.5ml of complete medium and incubated at 37C for 15 minutes.  Cells were washed in ice cold DPBS and fixed using 
BD Cytofix and washed three times.  Cells were permeabilised using BD Perm Buffer III, washed and stained with 
intracellular antibodies to pSTAT1, pSTAT3 and pSTAT6.  Following washing, data was acquired using an LSR II 
Instrument (BD).  Phosphorylated STAT1 and phosphorylated STAT 3 Median Fluorescence Intensity increases with IL-
6 stimulation in a concentration dependent manner.  Phosphorylated STAT6 staining failed in this experiment.  Data from 
one experiment. 
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IL-6 phosphorylates both STAT 1 and 3 in a concentration dependent manner (figure 5-2). 

PhosphoSTAT6 was not changed by IL-6 stimulation (data not shown).  Therefore I have 

shown that the intracellular phosphostat staining protocol that was developed as part of the 

SNAP study is applicable to other cell types and I am able to perform the staining in my 

own hands.  I therefore went forward to analyse the effect of JAK inhibition using 

tofacitinib on PBMC cultures that were derived from peripheral blood of patients with 

CCP positive RA.   
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5.3 Protocol of stimulation and gating strategy 
Fresh blood was drawn into lithium heparin tubes from patients with CCP positive RA.  

PBMC were obtained by density centrifugation and cultured overnight with either vehicle 

control or 1000nM tofacitinib.  Following culture, the cells were surface stained and 

stimulated for 15mins using the SNAP stimulation cocktail.  This cocktail is outlined in 

chapter 2 but includes IFNγ, IL-6, IL-4, PMA, ionomycin and antibodies to activate CD3 

and CD28.  Cells were permeabilised using BD Perm Buffer III and stained with 

antibodies to pSTAT1, 3 and 6.   

 

The gating strategy for both monocytes (figure 5-3) and lymphocytes (figure 5-4) is shown 

below: 

 

 
Figure 5-3 Monocyte gating strategy.  Intact cells were gated from all events acquired.  Monocytes were gated based on 
forward and side scatted characteristics.  Doublets were excluded based on SSC-W and CD14+ CD5- cells were 
designated as monocytes. 
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Figure 5-4 Lymphocyte gating strategy.  Intact cells were gated from all events acquired.  Lymphocytes were gated 
based on forward and side scatted characteristics.  Doublets were excluded based on SSC-W.   CD14-, CD19+ cells were 
designated B-cells.  CD14- CD19- CD5 + cells were designated as T lymphocytes.  CD4+ and CD8+ T lymphocytes 
were gated based on the last biplot. 
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5.4 Tofacitinib prevents STAT1 phosphorylation induced by a 
stimulation cocktail in CD14 Monocytes from RA patients  

 

CD14 monocytes from RA patients phosphorylate STAT1 following stimulation with the 

SNAP cocktail; furthermore this is inhibited by tofacitinib (figure 5-5).  Further monocytes 

also phosphorylate STAT6 in response to stimulation; although this is decreased by 

tofacitinib the result is not statistically significant.  Finally monocytes do not 

phosphorylate STAT3 in response to the SNAP stimulation cocktail despite IL-6 being 

present in the stimulation cocktail. 
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Figure 5-5 CD14 monocytes from RA patients phosphorylate STAT1 and STAT6 in response to stimulation with 
the SNAP stimulation cocktail and the phosphorylation of STAT1 is decreased by tofacitinib.  Blood was obtained 
from CCP+ RA patients and PBMC obtained by density centrifugation.  PBMC were cultured overnight in the presence 
of vehicle control or 1000nM tofacitinib, washed and simultaneously surface stained and stimulated with the SNAP 
cocktail for 15 minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix and washed three times.  Cells 
were permeabilised using BD Perm Buffer III, washed and stained with intracellular antibodies to pSTAT1, pSTAT3 and 
pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  Data was analysed using Cytobank.  
CD14 monocytes phosphorylate STAT1 and STAT6 following stimulation with SNAP cocktail.  Tofacitinib prevents 
phosphorylation of STAT1 following stimulation.  Two way repeated measures ANOVA was performed with 
Bonferroni’s post-test.  *** = p<0.001, **** = p<0.0001.  (n=5 biological replicates)  
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5.5 Tofacitinib partially inhibits STAT1 and STAT6 
phosphorylation induced by the SNAP stimulation cocktail in 
CD4 T cells from RA patients 

 

In CD4 T cells STATs 1, 3 and 6 are phosphorylated in response to SNAP stimulation and 

tofacitinib partially inhibits phosphorylation of STAT1 and STAT6.  Tofacitinib may 

inhibit STAT3 phosphorylation but this was not statistically significant and if the effect 

size if small, we may need more numbers to detect an effect. 

 

Due to the constraints of surface staining within this experiment, I am unable to further 

characterise the CD4 T-cells and therefore do not know if this effect is global or there is 

differential responses within CD4 subsets.   
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Figure 5-6 CD4 T-cells from RA patients phosphorylate STAT1, 3 and 6 in response to stimulation with the SNAP 
stimulation cocktail and the phosphorylation of STAT1 and STAT 6 is decreased by tofacitinib.  Blood was 
obtained from CCP+ RA patients and PBMC obtained by density centrifugation.  PBMC were cultured overnight in the 
presence of vehicle control or 1000nM tofacitinib, washed and simultaneously surface stained and stimulated with the 
SNAP cocktail for 15 minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix and washed three times.  
Cells were permeabilised using BD Perm Buffer III, washed and stained with intracellular antibodies to pSTAT1, 
pSTAT3 and pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  Data was analysed 
using Cytobank.  CD4 T-cells phosphorylate STAT1, 3 and 6 following stimulation with SNAP cocktail.  Tofacitinib 
prevents phosphorylation of STAT1 and STAT6 following stimulation.  Two way repeated measures ANOVA was 
performed with Bonferroni’s post-test.  ** = p<0.01, *** = p<0.001, **** = p<0.0001.  (n=5 biological replicates) 
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5.6 Tofacitinib partially inhibits STAT1 and STAT6 
phosphorylation induced by the SNAP stimulation cocktail in 
CD8 T cells from RA patients 

 

CD8 T cells from RA patients also phosphorylate STAT1, 3 and 6 following stimulation 

(figure 5-7).  Tofacitinib reverses the changes of STAT1 and STAT6 statistically but the 

absolute changes in MFI are small compared to the effect inCD4 T-cells or CD14 

monocytes.   

 
Figure 5-7 CD8 T-cells from RA patients phosphorylate STAT1, 3 and 6 in response to stimulation with the SNAP 
stimulation cocktail and the phosphorylation of STAT1 and STAT 6 is decreased by tofacitinib.  Blood was 
obtained from CCP+ RA patients and PBMC obtained by density centrifugation.  PBMC were cultured overnight in the 
presence of vehicle control or 1000nM tofacitinib, washed and simultaneously surface stained and stimulated with the 
SNAP cocktail for 15 minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix and washed three times.  
Cells were permeabilised using BD Perm Buffer III, washed and stained with intracellular antibodies to pSTAT1, 
pSTAT3 and pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  Data was analysed 
using Cytobank.  CD8 T-cells phosphorylate STAT1, 3 and 6 following stimulation with SNAP cocktail.  Tofacitinib 
prevents phosphorylation of STAT1 and STAT6 following stimulation but the mean change in MFI is small.  Two way 
repeated measures ANOVA was performed with Bonferroni’s post-test.  ** = p<0.01, *** = p<0.001, **** = p<0.0001.  
(n=5 biological replicates) 
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5.7 Tofacitinib reduces STAT1 and STAT6 phosphorylation 
induced by the SNAP stimulation cocktail in CD19 B cells 
from RA patients 

 

The MFI of pSTAT1 and pSTAT6 is statistically increased by the SNAP stimulation 

cocktail and this is partially decreased by tofacitinib. Therefore B-cells from CCP+ RA 

patients respond to both IFNγ and IL-4 but not IL-6.  Furthermore, both IFNγ and IL-4 

employ JAK1 and therefore tofacitinib inhibited these as expected. 

 

 
Figure 5-8 CD19 B-cells from RA patients phosphorylate STAT1 and 6 in response to stimulation with the SNAP 
stimulation cocktail and the phosphorylation of STAT1 and STAT 6 is decreased by tofacitinib.  Blood was 
obtained from CCP+ RA patients and PBMC obtained by density centrifugation.  PBMC were cultured overnight in the 
presence of vehicle control or 1000nM tofacitinib, washed and simultaneously surface stained and stimulated with the 
SNAP cocktail for 15 minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix and washed three times.  
Cells were permeabilised using BD Perm Buffer III, washed and stained with intracellular antibodies to pSTAT1, 
pSTAT3 and pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  Data was analysed 
using Cytobank.  CD19 B-cells phosphorylate STAT1 and 6 following stimulation with SNAP cocktail.  Tofacitinib 
decreases phosphorylation of STAT1 and STAT6.  Two way repeated measures ANOVA was performed with 
Bonferroni’s post-test.  ** = p<0.01, *** = p<0.001, **** = p<0.0001.  (n=5 biological replicates) 

Unst
im

Unst
im

 + T
ofa

Stim

Stim
 + 

Tofa
0

50

100

150

200

250

CD19 STAT1

M
ed

ia
n 

Fl
uo

re
sc

en
ce

 In
te

ns
ity *** *

Unst
im

Unst
im

 + T
ofa

Stim

Stim
 + 

Tofa
0

100

200

300

400

CD19 STAT6

M
ed

ia
n 

Fl
uo

re
sc

en
ce

 In
te

ns
ity **** **

Unst
im

Unst
im

 + T
ofa

Stim

Stim
 + 

Tofa
0

20

40

60

80

CD19 STAT3

M
ed

ia
n 

Fl
uo

re
sc

en
ce

 In
te

ns
ity



 225 

In summary I have demonstrated the phosphorylation of STAT proteins in monocytes and 

lymphocytes from CCP+ RA patients occurs following stimulation with the SNAP 

cocktail.  Furthermore, tofacitinib is able to decrease the phosphorylation of STATs but 

this is dependent on cell type.  In B-cells and monocytes, STAT 1 and 6 are activated 

whereas in both CD4 and CD8 T-cells all the STATs are activated by stimulation.  

Furthermore the effect is partially reversed by tofacitinib at 1000nM but the median 

fluorescence intensities are not reduced to baseline values showing that phosphorylation is 

still occurring despite JAK inhibition.  This may be due to incomplete inhibition of JAK by 

tofacitinib or STAT phosphorylation by mechanisms out with JAK signaling.  

 

To achieve my final objective of determining if RA synovial fluid could phosphorylate 

STAT1, 3 and 6 in monocytes, I used RA synovial fluid as a stimulation condition and the 

SNAP cocktail as another.  I pooled two samples of synovial fluid from patients with 

CCP+ RA that had high concentrations of antibodies against citrullinated peptides (ACPA) 

and also inflammatory cytokines.  Table 5-1 shows the cytokines and chemokines that 

were found in the fluid. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Cytokine or 
Chemokine 

Concentration (pg/ml) 

IL-6 378.36 
IL-12 16.16 
IL1RA 129.37 
sIL-2R 26.505 
MCP-1/CCL2 188.18 
IP-10/CXCL10 1045.58 
MIG/CXCL9 118.25 
IL-8/CXCL8 111.775 

Table 5-1 Luminex analysis of pooled RA synovial fluid reveals high concentration of IL-6.  Synovial fluid was 
obtained from RA patients undergoing joint aspiration.  Fluid from two donors was pooled and added to complete 
medium to give a final synovial fluid concentration of 10%, aliquoted and frozen.  Two samples were analysed by 
luminex analysis to determine cytokine and chemokine concentrations. 
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This particular pooled synovial fluid sample had high levels of IL-6 as the main pro-

inflammatory cytokine.  

 

In the particular synovial fluid there was no TNFα, IL-15 or IFNγ detectable although 

other groups have detected these cytokines.  IL-23 also signals through STAT3 and this 

luminex did not contain the assay but I would explore this using an ELISA in the future. 

 

Therefore I carried out a pilot experiment using two CCP+ RA patient samples to 

investigate whether synovial fluid would phosphorylate STATs in RA monocytes.  I chose 

to investigate monocytes alone and therefore did not surface stain for lymphocytes but did 

employ CD5 to gate out any T-cells that express low levels of CD14. 
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5.8 CD14 monocytes do not phosphorylate STATs in response to 
stimulation with 10% RA Synovial fluid 

 

 
Figure 5-9 CD14 monocytes do not phosphorylate STATs following stimulation with synovial fluid.  Blood was 
obtained from CCP+ RA patients and PBMC obtained by density centrifugation.  PBMC were cultured overnight in 
complete medium, washed and simultaneously surface stained and stimulated with the SNAP cocktail or 10% synovial 
fluid for 15 minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix and washed three times.  Cells 
were permeabilised using BD Perm Buffer III, washed and stained with intracellular antibodies to pSTAT1, pSTAT3 and 
pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  Data was analysed using Cytobank.  
CD14 monocytes phosphorylate STAT1 and 6 following stimulation with SNAP cocktail.  This result is in keeping with 
those seen in figure 5-5.  10% synovial fluid does not phosphorylate STATs.  Data shows two biological replicates. 
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Monocytes phosphorylate STAT1 and 6 in response to the SNAP cocktail but do not 

phosphorylate STAT3, which is in keeping with finding from my previous experiment 

(figure 5-5).  However, 10% synovial fluid does not phosphorylate STATS in monocytes 

and therefore tofacitinib would have no role in this system with regards to inhibiting the 

phosphorylation of STAT1, 3 and 6 by inhibiting JAKs.   

 

I had used CD5 as a lymphocyte marker to gate out T-cell that express low levels of CD14 

and therefore explored whether synovial fluid phosphorylated STATs in CD5 

lymphocytes.  Most of these cells will be CD4 T-cells and I have demonstrated that this 

cell is crucial in cell contact activation of macrophages and is affected by JAK inhibition. 
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5.9 CD5 lymphocytes phosphorylate STAT3 in response to 
synovial fluid stimulation 

 

When I visualised the median fluorescent intensity of the CD5 population under 

stimulation conditions, using a histogram, I noticed that there were two peaks suggesting 

that two populations are present within the sample.  When two populations are present we 

are unable to use MFI to compare groups and therefore I decided to visualise the 

phosphorylation of each STAT using forward scatter as per the gating strategy in figure 5-

10.  The STAT gate was set on the unstimulated condition having less that 0.5% cells and 

the percentage of cells in that gate under stimulated conditions is presented in figure 5-11.  

 

 

 
 
Figure 5-10 Gating strategy for phosphorylated STATs in synovial fluid stimulation pilot experiment.  Blood was 
obtained from CCP+ RA patients and PBMC obtained by density centrifugation.  PBMC were cultured overnight in 
complete medium, washed and simultaneously surface stained and stimulated with a cytokine cocktail of IFNγ, IL-6 and 
IL-4 or 10% synovial fluid for 15 minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix and washed 
three times.  Cells were permeabilised using BD Perm Buffer III, washed and stained with intracellular antibodies to 
pSTAT1, pSTAT3 and pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  Data was 
analysed using Cytobank.  STAT gate was set by less 0.5% cells positive in the unstimulated condition and then applied 
to stimulation groups.  There are two populations in both the cytokine and SF stimulated groups.  This may be due to the 
stimulation protocol or staining protocol.  Data shows two biological replicates. 
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Figure 5-11 CD5 lymphocytes phosphorylate STAT3 in response to synovial fluid stimulation.  Blood was obtained 
from CCP+ RA patients and PBMC obtained by density centrifugation.  PBMC were cultured overnight in complete 
medium, washed and simultaneously surface stained and stimulated with the SNAP cocktail or 10% synovial fluid for 15 
minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix and washed three times.  Cells were 
permeabilised using BD Perm Buffer III, washed and stained with intracellular antibodies to pSTAT1, pSTAT3 and 
pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  Data was analysed using Cytobank. 
CD5 lymphocytes from two different patients with CCP+ RA phosphorylate STAT3 in response to synovial fluid 
stimulation.  The SNAP stimulation cocktail phosphorylates all STATs in keeping with previous results.  Data shows two 
biological replicates. 

 

 

Therefore we see that in keeping with the previously presented data, the SNAP stimulation 

cocktail stimulates the CD5 lymphocytes to phosphorylate STAT1, 3 and 6.  However 

unlike the monocytes, synovial fluid from patients with CCP+ RA stimulates CD5 cells to 

phosphorylate STAT3 to a higher degree than the SNAP stimulation cocktail.  It is also 

clear that there are two populations of cells ie that a percentage of the cells do not 

phosphorylate STAT3 within this group however the cells which do phosphorylate STAT3 

makeup a reasonable percentage of the total CD5 lymphocytes.   

 

STAT3 can be phosphorylated by many cytokines and growth factors including IL-6, GM-

CSF and EGF and therefore given my previous luminex analysis of synovial fluid; it is 

likely that this effect is being mediated by IL-6. 
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To explore this finding, I collected further peripheral blood samples from patients with 

CCP+ RA to investigate whether this pilot finding could be replicated and also whether the 

phosphorylation occurred in CD4 or CD8 T-cells.  Furthermore, instead of using the full 

SNAP stimulation cocktail, I decided to use IFNγ, IL-6 and IL-4 to specifically 

phosphorylate STATs and reduce secondary activation of STATs. 
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5.10 RA Synovial fluid stimulates CD4 T-cells and to a lesser 
extent CD8 T-cells to phosphorylate STAT3 

 
Figure 5-12 CD4 lymphocytes and to a lesser extent, CD8 lymphocytes phosphorylate STAT3 in response to 
synovial fluid stimulation.  Blood was obtained from CCP+ RA patients and PBMC obtained by density centrifugation.  
PBMC were cultured overnight in complete medium, washed and simultaneously surface stained and stimulated with a 
cytokine cocktail or 10% synovial fluid for 15 minutes.  Cells were washed in ice cold DPBS and fixed using BD Cytofix 
and washed three times.  Cells were permeabilised using BD Perm Buffer III, washed and stained with intracellular 
antibodies to pSTAT1, pSTAT3 and pSTAT6.  Following washing, data was acquired using an LSR II Instrument (BD).  
Data was analysed using Cytobank.  Both CD4 and CD8 T-cells phosphorylate STAT 3 following stimulation with 
synovial fluid although this occurs to a higher degree in CD4 T-cells.  Further, both CD4 and CD8 T-cells are stimulated 
by cytokine cocktail to phosphorylate STAT6 but this is not the case with synovial fluid.  Two-way ANOVA with 
repeated measures and Bonferroni’s post-test was used to calculate statistics.  * = p<0.05, ** =p<0.01, *** =p<0.001, 
**** =p<0.0001.  (n=5 biological replicates) 
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CD5 positive lymphocytes phosphorylate STAT3 in response to stimulation from IL-6 and 

also synovial fluid from CCP+ RA patients.  When I investigated this further, I found both 

CD4 and CD8 T-cells phosphorylate STAT3 in response to synovial fluid and cytokine 

stimulation.    Furthermore, neither CD4 nor CD8 T-cells phosphorylate STAT1 following 

stimulation with cytokine or synovial fluid and synovial fluid has no effect on 

phosphorylation of STAT6 in either cell type.   

 

Therefore I conclude that the phosphorylation of STAT3, which is seen following synovial 

fluid stimulation, occurs in CD4 T-cells and to a lesser degree in CD8 T-cells.  

Furthermore I see a similar effect when a cytokine cocktail itself is used to stimulate these 

cells and IL-6 is likely to be responsible for some of this effect.  Furthermore tofacitinib by 

inhibiting JAK1 will be able to prevent signal transduction through this pathway. 

 

In conclusion, I have shown that RA synovial fluid does not phosphorylate STATs in 

monocytes and I have shown that synovial fluid is able to phosphorylate STAT3 in CD4 T-

cells.  Therefore, I decided to focus the next chapter of my thesis on RNA Sequencing 

CD4 T-cells following stimulation with RA synovial fluid and treatment with tofacitinib to 

explore this change on a global scale. 
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5.11 Discussion 
 

I showed that STAT1 and STAT6 but not STAT3 are activated in monocytes and B cells 

upon stimulation with the SNAP stimulation cocktail that has a potential to stimulate all 

three STATs.  In contrast, all three STATs were activated in CD4+ and CD8+ cells upon 

incubation with this cocktail. Tofacitinib was able to inhibit STAT1 but not STAT6 in 

monocytes; both STATs in B cells and STAT1 and STAT6 but not STAT3 in T cells.  

These suggest that distinct STAT pathways are engaged in the activation of myeloid and 

T/B cells and tofacitinib shows a cell specific effect 

 

In addition, this small near patient study shows that soluble factors present in synovial 

fluid can phosphorylate STAT proteins. RA synovial fluid did not affect STATs activation 

in monocytes but induced STAT3 phosphorylation in CD4 and CD8 T cells. Previous data 

in the lab showed that RA SF activates monocytes to produces pro-inflammatory mediators 

and my data suggest that it is not through the JAK/STAT pathway. 

 

There are limitations to my approach and the conclusions that I have drawn are specific to 

these experimental conditions. 

 

Firstly, the number of patients involved in this study is small and furthermore I chose to 

limit the patients I used to those who had circulating antibodies to CCP.  Most patients 

were on combinations of DMARDs and biologic drugs and furthermore I did not have 

measurements of their disease activity.  These factors alone could account for the variation 

seen in my results, and therefore a larger study with more patients would help to clarify 

this. 

 

Furthermore, I used a pool of two synovial fluids from patients with RA and therefore, this 

finding may be specific to these synovial fluids and therefore not generalisable to all RA 

synovial fluids.  In addition, synovial fluids from other arthropathies may lead to the same 

effect and therefore investigating fluid from patients with PsA and osteoarthritis would be 

a logical next step. 

 

Also although I determined that the fluid contained large concentrations of IL-6, other 

ligands such as G-CSF(153,156,157,280,281), Oncostatin M and Leukaemia Inhibitory 

Factor can phosphorylate STAT3.  Finally, due to constraints with flurochrome channels, I 
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was unable to further characterise whether particular CD4 subsets had preferential 

phosphorylation.  I have shown that there is a population of CD4 T-cells that do not 

phosphorylate STAT3 following stimulation with synovial fluid and IL-6 and so further 

targeted work into whether these cells are naïve, central or effector memory T-cells would 

be useful.  In addition, measurement of surface IL-6 receptor on CD4 T-cells would help 

determine if the responding population has a higher expression of IL-6R.  A 

complementary experiment would be to use tocilizumab to block IL-6 receptor prior to 

stimulation with synovial fluid to investigate if that prevents phosphorylation of STAT3. 

 

Also, I did not measure total STAT protein and so during overnight culture, tofacitinib 

may be reducing total STAT levels thereby resulting in a lower MFI following stimulation.  

This is unlikely because I do not see a change in resting MFI when tofacitinib is used but 

this would need to be explored further. 

 

Therefore my work extends that done by Pratt et al where they showed that transcriptomic 

analysis of blood CD4 T-cells from patients with early inflammatory arthritis showed 

changes in genes responsive to STAT3. 

 

Pratt et al (282)used a biobank of CD4 T-cells from patients attending the early arthritis 

clinic to determine whether they could predict which patients with undifferentiated arthritis 

would progress on to rheumatoid arthritis.  They employed Illumina whole genome bead 

arrays and machine learning in the form of support vector machines to determine a 12-gene 

signature that would predict progression to RA from undifferentiated arthritis.   

 

However this metric was surpassed in the ACPA positive undifferentiated arthritis patients 

by their antibody status and the 12-gene metric added no further improvement over the 

predictive power of this.  In the ACPA negative group, this metric was useful in predicting 

progression to RA and the genes were related to STAT3.  This result was confirmed by 

qPCR and was also related to higher IL-6 levels in patients with ACPA negative RA and 

finally this was confirmed when IL-6 was used as a stimulus of healthy CD4 T cells.   

 

Anderson et al validated a phosphoSTAT3 signature in CD4 T cells of patients with RA 

using a methodology similar to the one I employed(283).  Furthermore they confirmed that 

when healthy CD4 T cells were cultured with 50ng/ml of IL-6, there was a significant fold 

change induction of SOCS3, BCL3 and SBNO2.  The pSTAT3 signal was correlated with 

serum IL-6 levels and also disease activity.  Finally, the ratio of basal pSTAT3 to pSTAT1 
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in CD4 T cells was determined as a factor that improved the Leiden risk metric 

(284,285)for progression to RA from undifferentiated arthritis.   

 

Migita et al (153) showed that tofacitinib could prevent STAT phosphorylation following 

activation of CD4 T-cells with anti-CD3 antibody.  They also demonstrated that CD4 T-

cells produced less IL-4, IL-17, IL-22 and IFNγ following anti-CD3 stimulation when 

treated with tofacitinib.  

 

Isomäki et al (155) showed that phosphor-STAT3 levels in peripheral blood T-cells and 

monocytes from patients with RA were higher than healthy controls.  Furthermore, they 

correlated with systemic IL-6 levels that were higher than healthy controls.  Furthermore, 

they suggested that in those patients who had circulating IL-6 levels, there was 

desensitisation of the IL-6 response in T-cells. 

 

In summary I have found that synovial fluid from RA patients stimulates peripheral blood 

CD4 T-cells to phosphorylate STAT3.  It is likely that this is due to high concentrations of 

IL-6 in the fluid but other ligands may be present and need to be investigated further.  I 

was unable to characterise if a particular subset of CD4 cells was responsible for the two 

populations seen after stimulation but I am planning to work on this in the future. 

 

To further explore the effect of synovial fluid stimulation on CD4 T cells I propose to 

perform a stimulation experiment using synovial fluid and tofacitinib as an inhibitor in a 

four-condition experiment.  I will explore the transcriptome of the CD4 T cells using RNA 

sequencing to determine which genes are differentially expressed when stimulated and 

which are reversed by JAK1/3 inhibition to investigate whether I can discover new 

pathways or biomarkers of response to tofacitinib following stimulation. 
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Chapter 6 The effect of RA synovial fluid on gene 
expression of CD4 T cells 
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6.1 Introduction 
 

Following my finding in chapter 5 that CD4+ T-cells from patients with CCP+ RA can be 

stimulated using synovial fluid from RA patients and phosphorylate STAT3, I went on to 

explore the downstream implications of this on gene transcription.  My original aim had 

been to demonstrate that RA synovial fluid would stimulate RA patient derived monocytes 

but I was unable to show this.  Therefore during my studies, I decided to change focus, 

driven by my findings, and investigate the RA CD4+ T-cell. 

 

CD4+ T-cells are crucial in the pathogenesis of RA by providing help for B-cell and 

macrophage responses.  Furthermore, in chapter 4, I demonstrated that cytokine activation 

of CD4+ T-cells results in large amounts of TNFα production in a macrophage cell contact 

activation assay.  In summary, I was able to use tofacitinib to decrease the production of 

TNFα and other inflammatory cytokines in this assay and also prevent the formation of 

functional Tck.   

 

Therefore, investigating if there are downstream transcriptional changes in CD4 T-cells 

following synovial fluid stimulation and whether this is prevented by tofacitinib is logical.  

Although the phospho-STAT3 effect is likely to be due to high concentrations of IL-6 in 

the RA synovial fluid, I decided to use synovial fluid instead of pure IL-6 stimulation.  My 

reasons for doing so include: firstly, RA synovial fluid gives a more accurate simulation of 

the soluble factor microenvironment found in an inflamed joint than just cytokine 

stimulation alone and secondly, other soluble factors present in synovial fluid may be 

responsible for the phosphorylation of STAT3.  Finally, tofacitinib in prolonged culture 

may affect the signaling of cytokines produced following stimulation with synovial fluid 

and therefore able to inhibit secondary signaling. 

 

To investigate this, in a global fashion, I could use three different technologies:  qRT-PCR 

based array systems such as Taqman TLDA, microarray either using an Affymetrix chip or 

Illumina Beadarray or RNA sequencing.  RNA sequencing is an alternative method to 

microarrays for assessing global transcriptomic changes and has both advantages and 

disadvantages over array-based approaches.   

 

A microarray relies on every gene or transcript of interest being represented on the array 

but in RNA-Seq, the entire transcriptome is sequenced including splice variants.  RNA-Seq 
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can generally be done using two methods: polyadenylated (polyA) transcript selection or 

ribosomal depletion.  The former uses the polyadenylated tag to pull down mRNA that is 

likely to be translated and the later involves removing ribosomal RNA (rRNA) that 

normally makes up 90% of the transcriptome of a cell.  Briefly, once RNA is obtained it is 

fragmented, depleted of rRNA or polyA selected, reverse transcribed and then index 

libraries are built.  At this stage, samples may be pooled using genetic barcodes to allow 

sample multiplexing.   

 

By using ribosomal depletion as opposed to PolyA selection, you can sequence long non-

coding RNA, which are novel RNA species whose role is currently being explored in the 

pathogenesis of inflammatory diseases(286,287).  However microarray technology is more 

established, analysis pipelines are mature and newer arrays include variant transcripts.  

RNA sequencing requires complicated alignment of reads against a reference genome, if 

one exists, and thereafter calculation of differential gene, transcript and non-coding RNA 

expression using various software tools often in the command line.  However, recently, 

Illumina developed Basespace, a cloud based method of analysing RNA sequencing data 

that made this novel technology accessible to the end user. 

 

Furthermore, there is the question of depth and how often each base of a transcript is likely 

to or should be sequenced.  ENCODE advises that for eukaryotic sequencing experiments, 

33 million reads should be the minimum for polyadenylated pull down or 100-200 million 

for ribosomal reduction(288).  The reason for the large number of reads required in the 

ribosomal reduction protocol is that many more reads are lost to common sequences such 

as mitochondrial or remaining ribosomal sequences due to protocol inefficiencies and long 

non-coding species take up a higher proportion of reads. 

 

Finally, publicly available RNA-Seq data from RA patients is lacking and therefore this 

study will yield novel information about stimulated CD4 cells from RA patients and also 

the effect of tofacitinib in this system.  I decided to use an Illumina NextSeq 500 platform 

with paired end reads with read length of 75bp and 20-25 million reads.  This would allow 

me to determine splice variation and although this is less than that recommended by 

ENCODE, I was constrained by resources.  Furthermore, although I would not be able to 

optimise the analysis pipeline as I had done for microarrays in chapter 3, Basespace would 

allow me to analyse this data in a time efficient manner while storing the raw data for 

subsequent in depth analyses.   
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Therefore, in this chapter I set out to seek new pathogenetic pathways and biomarkers of 

tofacitinib treatment response using RNA sequencing of CD4 T-cells from patients with 

RA.  My objectives are to: 

 

1. Demonstrate that pre-sequencing qRT-PCR of selected genes downstream of 

STAT3 are upregulated by stimulation with RA synovial fluid of CD4 T-cells and 

this is reversed by tofacitinib 

 

2. Following this, show that ribosomal depletion and RNA Sequencing can be used to 

discover other genes that follow a similar pattern of upregulation with RA synovial 

fluid and inhbition with tofacitinib 

 

3. To validate these genes by qRT-PCR and show that their levels are changed in 

keeping with the RNA Sequencing results 

 

4.  To use pathway analysis tools to predict whether networks of genes could act in 

concert and propose regulators of these networks that may be amenable to 

therapeutic targeting 
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6.2 Pre-sequencing validation of candidate genes show that 
tofacitinib prevents upregulation of SOCS3 and BCL6 
following synovial fluid stimulation 

 

Briefly, CD4 T-cells were obtained form patients with CCP+ RA by using density 

centrifugation of blood and positive selection of CD4 T-cells.  Experimental conditions are 

outlined below but comprise a standard 2x2 design: 

 

1. Vehicle Control 

2. Tofacitinib Control 

3. Synovial Fluid Stimulation  

4. Synovial Fluid Stimulation + Tofacitinib  

 

Cells were cultured for 24 hours in complete medium with their respective stimulants or 

inhibitors, harvested and RNA prepared using a column based method outlined in chapter 

2.  All samples were DNAse treated with the final RNA sample being split for cDNA 

production, described in chapter 2, and the remainder sent for quality control and RNA 

Sequencing.  Samples were analysed with an Agilent BioAnalyser and only samples with 

an RNA Integrity Number (RIN) >8 were used in subsequent sequencing experiments. 

 

In parallel, samples were stimulated with cytokines and 10% synovial fluid as per the 

protocol in chapter 5.  Only samples that showed phosphorylation of STAT3 following 

synovial fluid stimulation were subsequently sent for RNA sequencing (data not shown).   

 
In a hypothesis driven manner I decided to measure by qRT-PCR whether the levels of 

candidate genes downstream of STAT3 were increased by synovial fluid stimulation and if 

this was decreased by tofacitinib. I carried out qRT-PCR on the genes below: 

 

• BCL2, BCL6, BCL2L1, MYC, SOCS3, 18S 

 

The BCL family of genes, MYC and SOCS3 (156,159,289)have all been shown to be 

upregulated following activation of STAT3 in T-cells and 18S was chosen as a 

housekeeping gene. 
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Figure 6-1:  SOCS3 and BCL6 transcripts are increased following synovial fluid stimulation and this is reversed 
by tofacitinib.  CD4 T-cells were obtained from blood of patients with CCP+ RA by density centrifugation to obtain 
PBMC.  PBMC were then depleted of CD14+ cells using magnetic microbeads and CD4+ T-cells selected using positive 
selection from the CD14 negative fraction.  1.25 x 106 T-cells/well were cultured in 24 well plates in complete medium 
for 24 hours under the following conditions:  Control – 0.001% DMSO, SF – 10% pooled RA synovial + 0.001% DMSO, 
SF + Tofa – 10% pooled RA synovial fluid + 1000nM tofacitinib and Tofa – 1000nM tofacitinib.  Cells were harvested, 
RNA extracted and cDNA prepared as per previous protocols.  qRT-PCR was performed using specific primers spanning 
exon junctions using SYBR green as a reporter dye.  Ct values were calculated and deltaCt calculated by subtracting 18S 
Ct value from each sample.  Both SOCS3 and BCL6 have lower deltaCt values following synovial fluid stimulation, 
demonstrating increased transcript, and this is reversed by tofacitinib.  Figure produced in R following analysis of qRT-
PCR data with HTqPCR package.  (n=5 biological replicates) 
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Both BCL6 and SOCS3 are upregulated on synovial fluid stimulation and this is reversed 

with tofacitinib (figure 6-1).  BCL2, BCL2L1 and MYC were not consistently changed.  

Therefore pre-sequencing qRT-PCR has shown that SOCS3 and BCL6 transcripts have 

changed in ways that I would expect following stimulation with synovial fluid and 

treatment with tofacitinib. 

 

This approach means that when I move on to analysis of RNA sequencing data I can 

expect to see changes in these two transcripts and this will give me confidence that the 

sequencing itself has been successful and that the data analysis has been executed in the 

correct manner.  In addition I believe that this method will also save resources because 

money will not be wasted on experiments that have failed because of technical reasons at 

the cell preparation stage. 

 

I moved on to carrying out sequencing in two tranches: 

 

1. An initial run of synovial fluid stimulated cells versus unstimulated control cells 

2. A follow on experiment with the tofacitinib treated samples 

 

I did this in case there was a technical issue with the sequencing that required sequencing 

to be repeated or if there was a complete failure to deliver results.  In that case my plan 

was to analyse the problem and determine whether I had to repeat the experiment with 

fresh samples.  On further analysis, Donor D4 was removed because although qRT-PCR 

results were encouraging, RNA integrity was not as high for this sample as for others, 

therefore I proceeded with sequencing 4 biological replicates. 
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6.3 Over 400 genes were differentially expressed in CD4 T-cells 
from RA patients treated with synovial fluid versus control 
cells 

 

I chose to explore the peripheral blood CD4+ T cell transcriptome using synovial fluid as a 

stimulus as a surrogate for the synovial microenvironment.  CD4+ T cells circulate and 

will enter the inflamed synovium in response to chemotactic stimuli and cellular adhesion 

molecule expression.  Once there, they will be stimulated by cell contact events, 

inflammatory mediators such as cytokines and also TLR agonists such as CCP.  Therefore 

by using peripheral CD4+ T cells from patients with RA and also synovial fluid derived 

from RA patients my aim was to recreate this environment in vitro and then determine the 

effect of JAK inhibition with tofacitinib in this system using RNA sequencing.    

 

All samples from the initial run passed quality control measures within Basespace and this 

included FASTQC and analysis of the percentage of reads aligning to the genome and 

common sequences.  This confirmed that ribosomal reduction had been successful and that 

there was good alignment to the reference genome. 
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Figure 6-2 Overview of data processing in BaseSpace for RNA Sequencing data.  As data is being generated on the 
sequencer, it simultaneously uploads to BaseSpace for quality control and analysis.  Initial steps in the processing of 
RNA sequencing data are as for any ‘omics experiment with investigation of data quality using programs such as 
FASTQC.  Data is aligned to a reference genome using TopHat and alignment statistics interrogated for data quality 
control issues.  Finally the aligned data is processed using Cufflinks to convert aligned reads to measures of gene 
abundance and also allows statistical testing of differential genes to give a final list of differentially expressed genes. 
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I have outlined the Tuxedo pipeline that uses Tophat(290-292) as an aligner and then 

Cufflinks(293) to measure differential expression (figure 6-2).  Although TopHat provides 

information about differential transcript expression, on this first pass analysis, I decided to 

restrict myself to a gene level approach.  Analysis transcript level data would take longer 

and also require more extensive validation that was outside the scope of this chapter. 

 

For the same reasons, I decided not to discover potentially new transcripts and therefore 

restricted myself to genes that had been annotated in the reference genome.  Although 

discovery of novel transcripts is exciting and necessary for novel therapeutic or biomarker 

development, it is also fraught with difficulties in validation.  Therefore I made the 

decision to re-analyse the data for novel transcripts during my post-doctoral studies.   

 

Reads were aligned to iGenome Human Genome hg19 (GRCh37) as a reference genome as 

this is available within BaseSpace.  As part of follow-on work I would re-align this data to 

GRCh38, which is the latest genome to be released by the Genome Research Consortium 

with up to date annotations.   

 

Following differential expression, a multiple testing corrected gene list was obtained with 

any gene with a corrected p value of <0.05 being deemed statistically different.  Within 

BaseSpace, Cufflinks is only able to compare two conditions and therefore I performed 

differential gene expression analysis between the synovial fluid stimulated cells and 

control. 

 

FPKM (fragments per kilobase of transcript per million mapped fragments) corresponds to 

the abundance of a transcript based on paired end reads mapping to that transcript and 

normalised for the length of the transcript and also depth of sequencing.  Values differ 

between genes and there is no satisfactory value of how many FPKM amount to a 

transcript per cell but the value represents an estimate of gene level expression and 

therefore FPKM values can be compared in the same way as deltaCt values in qPCR.  
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6.4 Differential gene expression analysis of RNA Sequencing 
confirmed that SOCS3 and BCL6 gene levels are increased 
by synovial fluid stimulation 

 

Complete lists of the differentially expressed genes are included in the appendix.  The list 

includes both coding and non-coding species and is determined on a gene as opposed to a 

transcript level.  Furthermore all genes in the list have been multiple testing corrected and 

have a p value <0.05. 

 

Candidate genes that have been differentially expressed are shown in Table 6-1.  I 

confirmed that SOCS3 and BCL-6 were upregulated in CD4 T-cells after synovial fluid 

stimulation.  Furthermore, MYC levels were also statistically increased in the RNA 

sequencing data although this did not seem apparent on visual inspection of the pre-

sequencing qRT-PCR data. 

 

In addition genes associated with T cell activation such as CD69 were upregulated 

following synovial fluid stimulation demonstrating that synovial fluid is stimulating these 

cells.  Also JAK3 and STAT3 were also upregulated following stimulation although this 

was not apparent in other JAK/STAT members 

 

TNFSF8 is upregulated by synovial fluid and can stimulate T-cell proliferation(294).  Also 

TNFAIP3 is also increased and this is a negative regulator of the TNF pathway and inhibits 

NF-κB activation(295).   

 

Therefore I have demonstrated that RNA sequencing with ribosomal depletion can be used 

to measure differential gene and long-non-coding RNA expression in CD4 T-cells 

stimulated with synovial fluid.  Furthermore, the data from RNA sequencing has 

confirmed findings that were suggested by the pre-sequencing qRT-PCR of SOCS3 and 

BCL6. 

 

In conclusion, this gave me confidence that I should proceed with sequencing the 

tofacitinib treated samples and so narrow down the transcripts that are differentially 

expressed to those that are affected by JAK inhibition. 
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Gene	 log2(control	FPKM)	 log2(SF	FPKM)	 log2(Ratio)	 q	Value	
	 	 	 	 	
T	Cell	activation	
	 	 	 	 	
CD69	 4.13	 5.9	 1.77	 0.003	
	 	 	 	 	
JAK/STAT	signalling	
	 	 	 	 	
JAK3	 4.64	 5.53	 0.89	 0.003	
STAT3	 5.57	 6.22	 0.65	 0.019	
SOCS3	 2.54	 4.95	 2.41	 0.003	
	 	 	 	 	
Transcription	Factors	
	 	 	 	 	
BCL6	 2.37	 3.91	 1.54	 0.003	
MYC	 5.45	 6.41	 0.96	 0.003	
	 	 	 	 	
TNF	related	
	 	 	 	 	
TNFSF8	 4.2	 6.96	 2.76	 0.003	
TNFRSF25	 7.71	 6.52	 -1.19	 0.003	
TNFAIP3	 6.26	 7.37	 1.11	 0.003	
 

Table 6-1 Candidate genes including those from pre-sequencing qRT-PCR that are differentially expressed 
between synovial fluid treated versus control CD4+ T-cells from RA patients. 
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6.5 Over 100 genes are differentially expressed in CD4 T-cells 
treated with RA synovial fluid versus synovial fluid and 
tofacitinib treated cells 

 

Sequencing of the tofacitinib treated samples had to be repeated because there was a 

failure of ribosomal depletion stage that resulted in totalRNA being sequenced 90% of 

which was ribosomal.  Therefore the sequencing was repeated using a lower amount of 

input RNA and an alternative depletion kit was used, one that would deplete ribosomal and 

mitochondrial sequences.   

 

The newer kit was used so that more reads would sequence the coding and non-coding 

sequences as opposed to remaining common sequences such as mitochondrial RNA.  

However the implications for this experiment are that in the future I will not be able to re-

analyse the sequence for mitochondrial transcripts. 

 

Furthermore, although a smaller volume of input RNA was used in sequencing, some 

samples did not have the required minimum amount and therefore this part of the 

sequencing experiment is subjected to a significant amount of technical noise because 

conditions are compared across sequencing runs as opposed to within them.  

 

I proceeded to analyse the RNA sequencing data using the Tuxedo pipeline as previously 

and discovered that over 100 genes were differentially expressed with the majority being 

expressed at a higher level in the synovial fluid and tofacitinib treated cells compared to 

synovial fluid along alone.  A list of the genes that were differentially expressed is 

included in the appendix. 

 

SOCS3 and BCL6 were expressed at levels in keeping with pre-sequencing qRT-PCR 

(table 6-2).   
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Gene	 log2(SF	FPKM)	 log2(SF	+	Tofa	FPKM)	 log2(Ratio)	 q	Value	
	 	 	 	 	
JAK/STAT	signalling	
	 	 	 	 	
SOCS3	 4.98	 2.45	 -2.53	 0.014	
	 	 	 	 	
Transcription	Factor	
	 	 	 	 	
BCL6	 3.94	 1.61	 -2.33	 0.014	
	 	 	 	 	
TNF	related	
	 	 	 	 	
TNFRSF25	 6.55	 7.59	 1.04	 0.04	
 

Table 6-2 Candidate genes including those from pre-sequencing qRT-PCR that are differentially expressed 
between synovial fluid treated versus synovial fluid and tofacitinib treated CD4+ T-cells from RA patients. 
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At this stage because there had been problems with RNA sequencing of the second tranche 

of samples, I decided to determine a gene list that I could go on to validate using qRT-PCR 

using a Taqman Low Density Array (TLDA).  I had prepared cDNA prior to RNA 

sequencing and therefore it would not be subject to the same batch effect as was present 

for the two sequencing tranches.  Furthermore, a significant number of genes were 

differentially expressed in the synovial fluid versus synovial fluid and tofacitinib treated 

groups if I removed outlier samples that corresponded to samples that had less input RNA 

(data not shown). 

 

I decided to use R and a bioinformatics package called CummeRbund to further analyse 

the data for two reasons:  firstly based on a “candidate” gene expression profile such as 

SOCS3, I could ask the program to find other genes that followed a similar pattern and 

secondly it would allow me to visualise the raw expression or FPKM values.  This would 

therefore allow me to achieve my objective of discovering other genes that followed a 

similar pattern of upregulation with synovial fluid and inhibition with tofacitinib treatment 

in this circumstance. 
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6.6 CummeRbund reveals genes that have a similar expression 
profile to SOCS3 and BCL6 

 

Both BCL6 and SOCS3 showed the same predicted pattern in RNA sequencing as was 

determined on pre-sequencing qRT-PCR when visualised using CummeRbund(293).  This 

demonstrates that both the wet lab preparation and dry lab data analysis have been 

successful because I have confirmed the same pattern using two different methods: qRT-

PCR and RNA sequencing.   

 

Figure 6-3 has been produced with cummeRbund and show individual replicate FPKM 

values along with a mean value and error bars which are based on the depth of the 

sequencing library and not just the standard deviation of the absolute FPKM values.  I had 

to concatenate two datasets to produce the CummeRbund dataset and therefore 

occasionally only three FPKM replicate values are plotted as opposed to four.  This does 

not detract from the validity of visualisation because the genes are differentially expressed 

on statistical testing.  I therefore went on to use the “findSimilar” function in the 

CummeRbund package which allows you to find other genes within the data set that follow 

a particular pattern such as upregulated by synovial fluid and decreased with tofacitinib. 

 

 
Figure 6-3 Plots of raw FPKM values for the BCL6 and SOCS3 genes across different conditions in CD4 T-cells.  
CD4 T-cells were isolated from the peripheral blood of patients with CCP+ RA by density centrifugation and positive 
selection using CD4 magnetic microbeads.  1.25 x106 per well were cultured in complete medium for 24 hours in a 24 
well plate in four conditions:  SF – 10% synovial fluid from RA patients, SFTofa – 10% synovial fluid from RA patients 
and 1000nM tofacitinib, DMSO – vehicle control condition, Tofa – 1000nM tofacitinib only.  Cells were harvested, RNA 
extracted, quality controlled and sent for paired end ribosomal reduction RNA sequencing of length 75bp with 20-25M 
total reads.  Raw data was aligned using TopHat and differential gene expression determined using Cuffdiff.  FPKM plots 
were generated in CummeRbund following concatenation of two data sets.  Error bars denote gene variance that is based 
on a combination of raw FPKM values and also sequencing depth.  As demonstrated by differential gene expression 
analysis within Cufflinks, BCL6 and SOCS3 are upregulated by RA synovial fluid and this is reversed by tofacitinib 
treatment.  (N=4 biological replicates)  
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Figure 6-4 The findSimilar function in CummeRbund reveals genes that have a similar expression profile to BCL6 
and SOCS3.  CD4 T-cells were isolated from the peripheral blood of patients with CCP+ RA by density centrifugation 
and positive selection using CD4 magnetic microbeads.  1.25 x106 per well were cultured in complete medium for 24 
hours in a 24 well plate in four conditions:  SF – 10% synovial fluid from RA patients, SFTofa – 10% synovial fluid from 
RA patients and 1000nM tofacitinib, DMSO – vehicle control condition, Tofa – 1000nM tofacitinib only.  Cells were 
harvested, RNA extracted, quality controlled and sent for paired end ribosomal reduction RNA sequencing of length 
75bp with 20-25M total reads.  Raw data was aligned using TopHat and differential gene expression determined using 
Cuffdiff.  FPKM plots were generated in CummeRbund following concatenation of two data sets.  Error bars denote gene 
variance that is based on a combination of raw FPKM values and also sequencing depth.  The four genes above 
demonstrate similar expression profiles to that of SOCS3 and BCL6.  (N=4 biological replicates) 
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MYC, SFMBT2, SBNO2 and MTHFD1L were shown to have similar expression profiles 

to BCL6 and SOCS3.  Furthermore, each of these genes was statistically differentially 

expressed between synovial fluid treated CD4 T-cells and control cells.  However, they did 

not achieve statistical significance between the synovial fluid treated cells and synovial 

fluid and tofacitinib treated cells in the RNA sequencing data although this may be due to 

technical aspects previously alluded to during the sequencing process. 

 

As well as mRNA, ribosomal depletion allows the detection and quantification of long-

non-coding RNA (lncRNA).  The length of lncRNA means that coverage is less than the 

coding genome and therefore their FPKM levels are also less than other coding genes.  

Certain lncRNA have been annotated such as MIAT and others are still noted by an 

accession number.   

 

The validation of lncRNA is complicated as some of them are made of one exon and 

therefore cannot be distinguished from genomic DNA when cDNA is prepared from RNA.  

In this situation a non-reverse transcribed control is often used but I was unable to do this 

because of lack of sample.  Therefore I decided to validate by q-RT-PCR genes where 

probes spanned exons and so decided to focus on coding genes. 

 

 
Figure 6-5 Long non coding RNA are differentially expressed between CD4 T-cells stimulated with RA synovial 
fluid and those treated with tofacitinib.  CD4 T-cells were isolated from the peripheral blood of patients with CCP+ 
RA by density centrifugation and positive selection using CD4 magnetic microbeads.  1.25 x106 per well were cultured in 
complete medium for 24 hours in a 24 well plate in four conditions:  SF – 10% synovial fluid from RA patients, SFTofa – 
10% synovial fluid from RA patients and 1000nM tofacitinib, DMSO – vehicle control condition, Tofa – 1000nM 
tofacitinib only.  Cells were harvested, RNA extracted, quality controlled and sent for paired end ribosomal reduction 
RNA sequencing of length 75bp with 20-25M total reads.  Raw data was aligned using TopHat and differential gene 
expression determined using Cuffdiff.  FPKM plots were generated in CummeRbund following concatenation of two data 
sets.  Error bars denote gene variance that is based on a combination of raw FPKM values and also sequencing depth.  
Long non-coding RNA are also differentially expressed although FPKM values are low.  (N=4 biological replicates) 
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6.7 CD69 and other genes are increased following synovial fluid 
stimulation and do not change with tofacitinib treatment 

 

Genes such as CD69, a marker of lymphocyte activation, are low in control conditions but 

increase with synovial fluid treatment.  Furthermore, these genes do not respond to 

treatment with tofacitinib suggesting that their expression is controlled by mechanisms out 

with the JAK/STAT pathway or that tofacitinib does not inhibit the appropriate JAK 

member such as JAK2 to a high enough degree to alter their expression level.   

 

Many other genes followed a similar expression pattern to CD69 and these include 

transcription factors such as ZBTB16, proteins involved with calcineurin inhibition such as 

FKBP5 and also proteins with a role in redox balance such as TXNIP.  Each of these genes 

was statistically differentially expressed between synovial fluid treated CD4 T-cells versus 

control cells. 

 

In conclusion, I have demonstrated that RNA sequencing can be used to discover genes 

that show patterns of expression that are similar to candidate genes.  Furthermore, by using 

ribosomal depletion I have shown that long non-coding RNA are upregulated by synovial 

fluid treatment and that this is reversed by tofacitinib.   

 

Therefore, based on the differential gene expression results from Cuffdiff, the visual 

inspection of CummeRbund plots and also exploration of the differentially expressed genes 

using Ingenuity (data not shown), I decided to validate a list of genes using qRT-PCR.  I 

designed a TLDA plate in conjunction with colleagues at Life Technologies to validate 

genes that had been differentially expressed.  Furthermore, cDNA was created prior to 

RNA sequencing and therefore would not be subject to batch and technical effects 

experience during RNA sequencing. 

 

 

 

 

 

 

 

 



 256 

 
 

Figure 6-6 Genes such as CD69 and FKBP5 are upregulated following synovial fluid stimulation of CD4 T-cells 
and are not affected by tofacitinib.  CD4 T-cells were isolated from the peripheral blood of patients with CCP+ RA by 
density centrifugation and positive selection using CD4 magnetic microbeads.  1.25 x106 per well were cultured in 
complete medium for 24 hours in a 24 well plate in four conditions:  SF – 10% synovial fluid from RA patients, SFTofa – 
10% synovial fluid from RA patients and 1000nM tofacitinib, DMSO – vehicle control condition, Tofa – 1000nM 
tofacitinib only.  Cells were harvested, RNA extracted, quality controlled and sent for paired end ribosomal reduction 
RNA sequencing of length 75bp with 20-25M total reads.  Raw data was aligned using TopHat and differential gene 
expression determined using Cuffdiff.  FPKM plots were generated in CummeRbund following concatenation of two data 
sets.  Error bars denote gene variance that is based on a combination of raw FPKM values and also sequencing depth.  
CD69, a marker of lymphocyte activation, is increased following synovial fluid stimulation and does not change with 
tofacitinib treatment.  Other selected genes that change in a similar fashion are involved with calcineurin inhibition, 
redox or are transcription factors.  (N=4 biological replicates) 
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6.8 Taqman Low Density Array data can be analysed using R and 
Bioconductor packages 

 

To validate my findings from RNA sequencing, I custom designed a qPCR TLDA plate.  I 

chose genes that were differentially expressed in the RNA-Sequencing experiment along 

with some housekeeping genes.  I used cDNA that had ben prepared for the pre-sequencing 

qRT-PCR analysis of STAT3 related genes and therefore this had been prepared in one 

sitting by myself and therefore would not be subject to the technical effects experienced 

during sequencing. 

 

TLDA data is often analysed in software packages such as Excel or Prism.  Given my 

experience of R and bioinformatics packages, I chose to analyse the PCR data using R and 

Bioconductor.  The package HTqPCR was developed by the European Bioinformatics 

Institute specifically for use with high throughput qPCR experiments.  The advantage of 

using this method include the ability to annotate the data easily and carry out differential 

gene expression statistics with methods similar to microarray analysis. 

 

Furthermore the package allows you to generate easy to interpret quality control plots and 

perform normalisation using the deltaCT method and plot differentially expressed genes 

easily.  Finally the whole process of analysis can be written into a script and therefore the 

analysis of data should be reproducible and repeatable.  The R script that I employed is 

included in the appendix. 

 

Raw Ct values were inspected for spatial batch effects and there were none (appendix).  

Furthermore density plots of raw Ct and 18S normalised values showed good agreement 

between samples (figure 6-7).  Also PCA analysis of the same data revealed two groups, 

one that had been treated with synovial fluid ie SF and SFTofa groups and the other that 

had not ie Control and Tofa groups (figure 6-8).  These plots show that there is no obvious 

quality control issue and that there is likely to be a gross difference on differential gene 

expression between the synovial fluid and control cells. 
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Figure 6-7 Density plot of raw Ct values shows reasonable agreement between samples and this improves when 
data is normalised to the 18S gene using the deltaCt method.  CD4 T-cells were isolated from the peripheral blood of 
patients with CCP+ RA by density centrifugation and positive selection using CD4 magnetic microbeads.  1.25 x106 per 
well were cultured in complete medium for 24 hours in a 24 well plate in four conditions:  SF – 10% synovial fluid from 
RA patients, SFTofa – 10% synovial fluid from RA patients and 1000nM tofacitinib, DMSO – vehicle control condition, 
Tofa – 1000nM tofacitinib only.  Cells were harvested, RNA extracted, cDNA created and run on a TLDA plate.  
Smoothed density plots of Ct values were created using the HTqPCR package and show that there is  reasonable 
agreement between the samples with most genes having a Ct value between 29 and 33.  This improves with 18S deltaCt 
normalisation with average deltaCt values of 15.  (N=4 biological replicates in 4 conditions) 
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Figure 6-8 PCA of raw Ct and 18S deltaCt values shows two groups corresponding to presence and absence of 
synovial fluid stimulation with one outlier.  CD4 T-cells were isolated from the peripheral blood of patients with CCP+ 
RA by density centrifugation and positive selection using CD4 magnetic microbeads.  1.25 x106 per well were cultured in 
complete medium for 24 hours in a 24 well plate in four conditions:  SF – 10% synovial fluid from RA patients, SFTofa – 
10% synovial fluid from RA patients and 1000nM tofacitinib, DMSO – vehicle control condition, Tofa – 1000nM 
tofacitinib only.  Cells were harvested, RNA extracted, cDNA created and run on a TLDA plate.  PCA plots of Ct values 
were created using the HTqPCR package and show that there are two groups present in the raw and normalised data, 
those that have been exposed to synovial fluid stimulation and those that have not.  Sample 13 is an outlier and had a 
lower amount of input cDNA available due to experimental error.  (N=4 biological replicates in 4 conditions) 
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I therefore went on to carry out limma based differential expression analysis within the 

HTqPCR package.  A multiple correction adjustment method was not used in this case 

because these genes had been selected from a much larger population for validation.  No 

differentially expressed genes were found between the tofacitinib treated and control cells 

and the other comparisons are presented below. 

 

6.9 SBNO2 and MTHFD1L are confirmed to be upregulated in 
CD4 T-cells following RA synovial fluid stimulation and this 
is decreased by tofacitinib  

 

The calibrator, or control, set of samples is set as the synovial fluid stimulated cells with 

the target samples set as the cells stimulated with synovial fluid and treated with 

tofacitinib.  Therefore if a gene is downregulated on treatment with tofacitinib, it would 

result in a negative relative quantification (RQ) value.  Furthermore I have also shown the 

mean deltaCt values in bar plots along with individual replicate values for each of the 

genes that were statistically different.  To summarise, in a plot of deltaCt values, a lower 

deltaCt value corresponds to a higher transcript level. 

 

BCL6, SOCS3 and MYC are confirmed and validated as differentially expressed, in these 

samples, between the two conditions (figure 6-9).  Higher amounts of transcripts, for each 

of these genes, were found in the synovial fluid treated cells and this was decreased by 

tofacitinb.  This result is in keeping with the pre-sequencing PCR and the RNA sequencing 

data giving me confidence that these genes are differentially expressed.   

 

In addition, triple validating these genes gives me confidence that SBNO2, MTHFD1L and 

RELB are also differentially expressed.  The RELB gene bar is hatched because in one 

replicate it was undetectable.  

 

I went on to use a protein-protein interaction database, STRING 10 (296)to visualise 

whether these other genes are connected to each other and if they are known to form 

networks with JAK/STAT signaling. 



 261 

 

BC
L6

SO
CS

3

RE
LB

SB
NO

2

M
TH

FD
1L

M
YC

Comparison: SFTofa−SF

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

* *" " " "

BC
L6

SO
CS

3

RE
LB

SB
NO

2

M
TH

FD
1L

M
YC

Comparison: SFTofa−SF

0

5

10

15

20

meanTarget
meanCalibrator

* *" " " "

●

●●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●●●

●

RQ 

ΔCt 

18S 

Figure 6-9 Bar chart of relative quantification and deltaCt values between CD4 T-cells treated with synovial 
fluid and tofacitinib (Target) and those treated with synovial fluid alone (Calibrator).  CD4 T-cells were isolated 
from the peripheral blood of patients with CCP+ RA by density centrifugation and positive selection using CD4 
magnetic microbeads.  1.25 x106 per well were cultured in complete medium for 24 hours in a 24 well plate in four 
conditions:  SF – 10% synovial fluid from RA patients, SFTofa – 10% synovial fluid from RA patients and 1000nM 
tofacitinib.  Cells were harvested, RNA extracted, cDNA created and run on a TLDA plate.  RQ values were calculated 
using 2ΔΔCt and 18S as a normalisation gene.  Mean deltaCt values for target and calibrator samples are shown by 
boxplot with individual replicate values.  Each gene is expressed at a higher level in synovial fluid treated CD4 T-cells 
and expression is reduced by tofacitinib treatment.  Bayes moderated t-tests were used to test statistical difference.  
“=p<0.01, *=p<0.05. (N=4 biological replicates in 2 conditions) 
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Figure 6-10 SBNO2 and MTHFD1L sit out with a network made of BCL6, SOCS3, MYC and RELB.  Statistically 
different genes between CD4 T-cells that were stimulated with synovial fluid and treated with tofacitinib were analysed 
using the web version of STRING 10.  Both SBNO2 and MTHFD1L do not have predicted interactions with other genes. 

 

Four of the differentially expressed genes are related to each other (figure 6-10) and on 

growing the network, they are related to JAK signaling (figure 6-11).  The thickness of the 

line between two proteins denotes the amount of evidence for that interaction.  Evidence is 

derived from sources including databases of high-throughput experiment results, published 

literature or computational prediction.   

 

To determine if there are networks that could act in concert I decided to us the MCL 

clustering algorithm in STRING(297,298).  In this method you define the number of 

subnetworks you wish to have by setting a value called “inflation”.  As the value of the 

inflation increases, so do the number of clusters.  This method of clustering relies on a 

global score for the gene that is assigned from the database based on the strength of 

evidence for the protein-protein interaction.  This score is determined from high 

throughput experiments, text mining literature as well as predictive genome analysis.   

 

When I performed clustering analysis on a network that had been enlarged (figure 6-11), I 

found three potential sub-networks: one related to MYC, one connecting JAK2 to RELB 

and SOCS3 and a final network connecting BCL6 to co-repressing genes.  Furthermore, 

SBNO2 and MTHFD1L still remain out with this network. 
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Figure 6-11 SBNO2 and MTHFD1L sit out with an enlarged network that has been subjected to clustering and 
demonstrates three subnetworks.  Statistically different genes between CD4 T-cells that were stimulated with synovial 
fluid and treated with tofacitinib were analysed using the web version of STRING 10.  The network was then grown and 
subjected to MCL clustering with an inflation value of four.  Three subnetworks emerge but there are interactions 
between them with JAK2 directly connected to SOCS3, RELB, MYC and BCL6.  Both SBNO2 and MTHFD1L do not 
have predicted interactions with other genes although this may be due to lack of public data. 
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6.10 RA synovial fluid stimulation of CD4 T-cells results in a large 
number of differentially expressed genes 

 

When synovial fluid stimulated CD4 T-cells are compared to control, there are a large 

number of validated, statstically differentially expressed genes.  In the RQ plot below 

(figure 6-12), the calibrator (or control) is DMSO and synovial fluid is the treatment.  

Therefore genes that are upregulated with synovial fluid stimulation have a positive RQ 

value.   

 

Although many of these genes are upregulated, others are downregulated including LTB 

and CD82.  Furthermore when we inspect the deltaCt plots (data not shown), many of 

these genes are changed following synovial fluid exposure but the transcript level is not 

altered by tofacitinb suggesting that other stimuli are present in RA synovial fluid and they 

signal via pathways other than JAK/STAT. 

 
On initial analysis in STRING 10, two networks emerge: one which links IL23, SOCS3 

and NFKBIA related genes and another involving ZBTB16, TXNIP and BCL6.  This 

occurs without growing the network. 

 

Unfortunately due to experimental error, supernatants for evaluation of secreted cytokines 

and growth factors were not available and therefore I was unable to confirm whether these 

cells were secreting IL23.   

 

When the network was grown within STRING and then MCL clustered, three clusters 

emerge: 

 

1. NF-κB related proteins outlined in blue which also have a link to the JAK/STAT 

pathway via RELA 

 

2. JAK2, IL4, IL7 and EGFR related network outlined in yellow 

 

3. BCL6, ZBTB16, TXNIP and DDIT4 outlined in red 

 

Furthermore, many of the genes do not fit into a network but further work is required to 

elucidate the mechanism behind these changes and whether they are pathology related or 

reactive. 
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Figure 6-12 Bar chart of relative quantification between CD4 T-cells treated with synovial fluid (Target) and those 
treated with vehicle control alone (Calibrator).  CD4 T-cells were isolated from the peripheral blood of patients with 
CCP+ RA by density centrifugation and positive selection using CD4 magnetic microbeads.  1.25 x106 per well were 
cultured in complete medium for 24 hours in a 24 well plate in four conditions:  SF – 10% synovial fluid from RA 
patients, DMSO – 0.001% DMSO.  Cells were harvested, RNA extracted, cDNA created and run on a TLDA plate.  RQ 
values were calculated using 2ΔΔCt and 18S as a normalisation gene.  The genes shown above are statistically different 
between synovial fluid treated CD4 T-cells and control treated cell.  Bayes moderated t-tests were used to test statistical 
difference.  “=p<0.01, *=p<0.05. (N=4 biological replicates in 2 conditions) 
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Figure 6-13 Two networks emerge following analysis of statistically differentially expressed genes between CD4 T-
cells treated with synovial fluid and control cells.  Statistically different genes between CD4 T-cells that were 
stimulated with synovial fluid and control cells were analysed using the web version of STRING 10.  Two networks 
emerge based on known interactions between genes in the dataset.   
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Figure 6-14 Three networks emerge following analysis of statistically differentially expressed genes between CD4 
T-cells treated with synovial fluid and control cells.  Statistically different genes between CD4 T-cells that were 
stimulated with synovial fluid and control cells were analysed using the web version of STRING 10.  The network was 
grown and clustered using the MCL algorithm.  Three networks emerge coloured in red, blue and yellow based on 
predicted protein-protein interaction.  JAK signaling via JAK2 links the blue and yellow network although many other 
genes remain outside.   
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6.11 Discussion 
 

In this chapter I set out to: 

 

1. Demonstrate by pre-sequencing qRT-PCR that selected genes downstream of 

STAT3 are upregulated by stimulation with RA synovial fluid of CD4 T-cells and 

this is reversed by tofacitinib 

 

2. Following this, show that ribosomal depletion and RNA Sequencing can be used to 

discover other genes that follow a similar pattern of upregulation with RA synovial 

fluid and reversal of this with tofacitinib 

 

3. To validate these genes by qRT-PCR and show that their levels are changed in 

keeping with the RNA Sequencing results 

 

4.  To use pathway analysis tools to predict whether networks of genes could act in 

concert and propose regulators of these networks that may be amenable to 

therapeutic targeting 

	

I confirmed that SOCS3 and BCL6 are upregulated following synovial fluid stimulation of 

CD4 T-cells and that this is reversed with tofacitinib treatment.  Furthermore, RNA 

sequencing of these cells and bioinformatic analysis of data, reveals other transcripts such 

as SBNO2 that are differentially expressed in the same way.  By using ribosomal depletion 

I have also found some long non-coding RNA that are differentially expressed in the same 

pattern although due to time and sample constraints I have not been able to validate these. 

 

These three genes were validated using qRT-PCR as being differentially expressed and 

although SOCS3, BCL6 and MYC are related to STAT signaling, SBNO2 does not sit 

within this network when interrogated using protein-protein interaction databases.  Finally 

synovial fluid causes the differential expression of many more genes that are not changed 

with tofacitinib treatment demonstrating that soluble factors signaling via pathways other 

than JAK/STAT are present. 
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Using a novel technology such as RNA sequencing can lead to experimental and data 

analysis difficulties and I experienced both.  In terms of limitations of my work I will 

discuss these with regards to my experimental design, the RNA sequencing and limitations 

of data analysis. 

 

Based on my findings in chapter 5 where CD4 T-cells responded to soluble factors in RA 

synovial fluid by phosphorylating STAT3, I decided to perform RNA sequencing in these 

conditions to further explore this on a global scale.  Furthermore, in keeping with my 

exploration of JAK inhibitors, I decided to use tofacitinib as a treatment to determine if 

downstream transcript changes could be prevented.  

 

In this way, although RNA sequencing could provide me with large amounts of data, I 

could remain focused with concentrating on genes that were changed following stimulation 

and drug treatment.  Furthermore I decided to use RA synovial fluid from CCP+ patients to 

simulate the synovial microenvironment in terms of soluble factors.  Although the fluid 

contained high concentrations of IL-6, which could be responsible for the phosphorylation 

of STAT3, other unclassified stimuli could also be present which limits the usefulness of 

this study.   

 

Furthermore, as with experiments in chapter 5, my results are only applicable to the 

synovial fluid samples that I used although further experiments could be performed using 

other synovial fluid samples and also specific cytokine stimulation using IL-6.  In addition, 

I have generated a custom TLDA card and therefore subsequent experiments would not 

need to be sequenced if I wished to restrict myself to genes that are differentially expressed 

in the current experiment. 

 

Finally a significant limitation of my work is the lack of supernatants, due to experimental 

error, from CD4 T-cell culture under various conditions.  In particular measurement of T-

cell related cytokines such as interferons, IL4, IL-21 or IL-10 would help to determine if 

the naïve cells were being driven down a particular differentiation path(299) by synovial 

fluid stimulation and whether this was reversed by tofacitinib. 

 

In terms of execution of RNA sequencing, the pre-sequencing qRT-PCR screen helped to 

detect at an early stage whether changes in genes such as SOCS3 and BCL6, which are 

increased following activation of STAT3, were detectable prior to the expense of RNA 

sequencing.   
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Furthermore, I decided to split my experiment into two sequencing runs and the second 

was complicated by a failure of ribosomal depletion. This meant that the second set of 

samples, which were tofacitinib treated with and without synovial fluid, had a lower and 

inconsistent amount of input RNA and a different kit was used to deplete the sample of 

common ribosomal and mitochondrial sequences.  This de facto has led to a significant 

batch effect that cannot be corrected and therefore meant that results that were based on 

experiments across sequencing runs were subject to bias.  This may account for why so 

few genes were validated by TLDA qRT-PCR between the synovial fluid and synovial 

fluid with tofacitinib treatment conditions.   

 

I decided to use ribosomal reduction at the library preparation stage for RNA sequencing 

to assess the coding and long non-coding species.  This would not have been possible had I 

used a polyA selection method.  However I have not been able to validate any non-coding 

species in the study to date because of lack of sample and this would be necessary future 

work. 

 

In addition, although it is suggested to use 50 Million reads in RNA sequencing 

experiments of eukaryotic cells when using ribosomal depletion, I was only able to use 20-

25 million reads because of resource constraints.  I was able to detect statistically 

differentially expressed genes using these parameters, however it is possible that both 

coding and non-coding RNA that are expressed at low copy numbers would not be 

detected in my experiment. 

 

Processing of RNA sequencing data can be a daunting concept for most researchers 

without dedicated dry lab bioinformatics facilities.  Initial sequencing experiments required 

heavy infrastructure in terms of sequencers, computing power in the form of processors, 

short term swap storage and also long term storage as well as custom software to align and 

build the sequence from fragments.  This whole process has been significantly shortened 

and also made easier by three factors: 

 

1. The improvement of computing resources according to Moore’s law 

2. The development of cloud based sequencing analysis pipelines such as Illumina 

Basespace and Galaxy projects 

3. The research and development of newer and more memory and processor efficient 

algorithms for sequence alignment and differential gene expression 
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I decided to use Illumina Basespace because it is a cloud-based application that acts as a 

data repository and allows simple analysis in an app-based manner.  The main advantages 

of this system are that it is flexible because more computing power can be brought online 

as required, the data is backed up and held securely and data analysis is reproducible 

because most of the pipeline is decided for the uses.  The disadvantages are that 

customisation of the pipeline is almost absent, newer genomes and tools take a while to 

propagate to the platform and the data can be prohibitively large to download to a local 

machine.   

 

Alternatives to using Basespace include other graphical user interface (GUI) based 

methods such as the Galaxy project or using command line tools.  The former is possible 

but without a local Galaxy instance, the data transfer to a server overseas is a bottleneck.  

Furthermore, although the raw data for this experiment is in the region of 80GB, almost ten 

times this amount is required for analysis as a minimum once all alignment files have been 

generated.  Thereafter, if you wished to carry out a full analysis with iterative changes to 

analysis parameters, approximately 4-6 TB of storage space would be required.  This is not 

an option given that most public Galaxy instances give at the maximum, 250GB of storage 

space.  

 

Command line tools can be used on a local machine or server and these allow optimization 

of the analysis pipeline, however they also require local installation of a reference genome 

and knowledge of command line tools that often have a steep learning curve.  Finally 

RNA-Seq analysis can be performed within R but in this case I decided to use Basespace 

because it uses a well-tested analysis pipeline and is also able to process the samples 

quickly without having to download the raw data. 

 

Limitations to using this approach, for me, included the lack of access to the newest human 

genome, GRCh38 that was initially released in 2013.  Basespace utilises GRCh37 that was 

released in 2009 and therefore has an older human reference genome installed.  The newer 

genome has fewer gaps, and includes up to date annotations as well as mitochondrial 

sequences.   

 

Furthermore, Basespace utilises either TopHat as an aligner or STAR(300,301) as part of 

the RNA Express pipeline.  I decided to use TopHat because it was part of the Tuxedo 

pipeline and also for ease of use within BaseSpace.  However more efficient and faster 
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aligners have been developed along with newer methods of calculating differentially 

expressed genes.   

 

In general Tophat alignment of reads to a reference genome takes approximately 24 hours 

using Basespace prior to running a differential expression program.  If an experiment has 

to be optimised this can be cumbersome if local computing power is limited.   

 

There are newer algorithms available such as HISAT(302) and kallisto(303) which offer 

genome alignment at much higher speed.  In terms of speed, an experiment that takes 

almost 2000 minutes to analyse in Tophat and Cufflinks is processed in just over 5 minutes 

by kallisto. This allows experiments with larger numbers of replicates to be carried out but 

also means that bioinformaticians can execute optimisation of analysis pipelines without 

significant time expense.  

 

In summary, although there are significant limitations in the experimental setup and data 

analysis, I believe that this study does add to the knowledge of the CD4 T-cell 

transcriptome and also the effect of tofacitinib on gene expression. 

 

There are very few publicly available studies using RNA sequencing of primary cells in 

inflammatory arthritis.  The repositories of GEO and ArrayExpress have four such studies 

that are described further in the context of my results and three of these studies concentrate 

on CD4 T-cells with two of the studies involving in vitro drug treatment of the cells. 

 

The latest study from Peeters et al (304) investigated the role of drug inhibition of super-

enhancers in synovial fluid derived CD4 T-cells and the effect on gene expression.  

Enhancers are normally a few hundred base pairs in size and regulate DNA transcription 

by binding transcription factors and co-factors and can be analysed based on Histone 3 

Lysine 27 acetylation (H3K27ac).   

Super enhancers are longer lengths of DNA that can affect cell identity and disease 

specific genes and can be affected by drug treatment.  Vahedi et al (305) investigated the 

role of super-enhancers and found that of the 98 currently known genetic variants in RA 

(90), more than half were lined to super-enhancer regions in CD4 T-cells.  These SNPs 

often fell within intergenic regions and were associated with non-coding RNA.  

Furthermore, the group went on to use tofacitinib as an in vitro treatment of CD4 T-cells 

that had been activated by anti CD3/CD28 and found that this drug had a preferential effect 

on super-enhancer sites in CD4 T-cells.  Finally they found that SNPs of other conditions 
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such as type 2 diabetes and cancer, where CD4 T-cells do not have a large role, were not 

over represented in CD4 T-cell super-enhancer regions suggesting that disease 

pathobiology is crucial in super-enhancer biology. 

 

Peeters et al went on to use publicly available data to compare the enhancer and super-

enhancer profiles of naïve CD4 T-cells (CD4+, CD45RA+, CD45RO-) and 

effector/memory cells (CD4+, CD45RA-, CD45RO+)(304).  Following this they then went 

on to assess the super-enhancer landscape within these subsets that had been derived from 

healthy controls and activated by in vitro stimulation with anti CD3/CD28 beads and 

compared this to synovial fluid derived T-cells from patients with juvenile idiopathic 

arthritis.  They discovered a disease specific super-enhancer signature that was only 

evidence in synovial fluid cells, furthermore they went on to treat synovial fluid derived 

effector/memory T-cells with a bromodomain inhibitor and found that it inhibited immune 

related super-enhancers and also decreased disease associated genes such as cytokines.   

 

Their study was based on a small number of patient samples (n=4) but they were activated 

or treated with drug to investigate a specific hypothesis; that super-enhancers in primary 

site-derived cells would offer more insight into disease pathogenesis than healthy activated 

cells.  It went further by looking at synovial fluid derived T-cells and also sorting them into 

naïve and effector/memory cells that I did not do.  In addition, the novelty of combining an 

epigenetic approach by using chromatin immunoprecipitation of primary cells and then 

overlaying publicly available SNP data from GWAS is appealing and an approach I will 

employ in subsequent studies. 

 

Jiang et al (306) investigated the role of non-coding RNA in JIA by again combining an 

epigenetic approach with RNA sequencing.  Their reasoning for this was again data from 

GWAS of JIA showing that most of the risk loci associated with disease are located in 

non-coding regions of the genome.  Therefore they carried out RNA sequencing to 

determine differential expression of long non-coding RNA in CD4 T-cells and neutrophils 

from the blood of patients with JIA.  This was combined with public and researcher 

generated data of Histone 3 Lysine 4 monomethylation (H3K4me1) and H3K27ac to find 

areas of functional relevance within the non-coding genome.  In doing so they discovered 

two new long non-coding RNA within neutrophils but when validated in a clinical cohort, 

did not discriminate between disease and healthy.  This group sequenced neutrophils from 

16 patients, 8 with untreated disease and 8 in remission on drugs and combined this with 

public epigenetic data on CD4 T-cells and also neutrophil epigenetic data they generated 
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themselves.  This particular study does not look at samples from patients with RA but does 

show that an approach of combining data from GWAS ie SNPs and then merging this with 

epigenetic data such as H3K4me1 or K3K27ac to identify areas of functional relevance in 

the non-coding genome is valid.  Furthermore, I could employ this same approach in 

further work to investigate whether long non-coding RNA that I identified are associated 

with RA risk loci to prioritise investigation of the sequencing data. 

 

Rochman et al (307) performed RNA sequencing on resting, anergic and effector CD4 T-

cells.  These cells were isolated from healthy peripheral blood and generated in vitro and 

with anergic cells exposed to abatacept.  They demonstrated that human data did not agree 

with mouse models of anergy and confirmed, using western blots, that p27kip cyclin-

dependent kinase inhibitor was associated with abatacept induced hyporesponsiveness in 

anergic cells.  This study does not add directly to my own but does demonstrate that 

investigation of cell subsets is crucial as p27kip protein levels were significantly different 

between naïve, effector memory like and anergic T-cells.  

 

Finally Donlin et al (308) carried out RNA sequencing of one biological sample subjected 

to four conditions:  macrophage alone, macrophage and fibroblast co-culture, macrophage 

and TNFα  and macrophage with fibroblast in co-culture and TNFα.  A large number of 

genes were differentially expressed in each condition but due to the lack of replicates and 

hence statistics, it is difficult to comment on whether these results are reproducible.  

Furthermore, RNA sequencing of co-cultured cells leads to the transcriptome of two 

completely different cells being mixed and an approach employing single cell sequencing 

may provide clearer results.   

 

Three out of four studies investigated the role of CD4 T-cells including subsets thereof and 

two of these studies involved a drug.  They demonstrated that combining genomics, 

epigenetics and RNA sequencing data in a polyomic fashion is useful when employing a 

hypothesis-based approach.  Furthermore, cell subsets show differential responses to 

stimulation and using a drug helps to focus the experimental analysis. 

 

Therefore my study adds to the field in two ways:  firstly it addresses RA and secondly it 

looks at the effect of JAK inhibition in the context of synovial fluid stimulation to simulate 

the RA synovial microenvironment.  These two factors make it novel.  Furthermore, 

compared to the publicly available data, my study uses more biological replicates therefore 

improving the reliability.  The study from Jiang et al used 16 samples but unfortunately 
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these are not publicly available.  Synovial fluid as opposed to cytokines alone were chosen 

because many other unclassified factors may be present in the fluid itself and therefore 

exposing the CD4+ T-cells from patients with seropositive RA to synovial fluid from 

patients with seropositive RA allowed me to simulate the synovial microenvironment and 

the milieu in a synovitic joint. 

 

In addition to my pre-selected genes: SOCS3, BCL6 and MYC, SBNO2 was also increased 

following synovial fluid treatment of CD4 T-cells and this was reduced by tofacitinib.  

SBNO2 or strawberry notch homologue 2 has been shown to have transcriptional 

repression activities in macrophages(309).  El Kasmi et al showed that IL-10 mediated 

STAT3 activation led to increased levels of SBNO2 in human macrophages.  Furthermore, 

they went on to knockdown STAT3 and BTK using siRNA and demonstrated that the 

effect was STAT3 dependent.  Knockdown of BTK had no effect on IL-10 mediated 

SBNO2 production.  In addition, by using luciferase constructs in 293T cells, this group 

demonstrated that SBNO2 inhibited NF-κB but not IRF7 mediated transcription.  

 

Furthermore, in a murine model, sbno2 as been shown to regulate osteoclast fusion with 

sbno2 deficient mice having increased bone mass(310).  Therefore there is a role for 

SBNO2 in myeloid lineage cells and this may be related to IL-10 mediated STAT3 

activation.  However in CD4 T-cells from RA patients following STAT3 activation, I see 

upregulation of SBNO2 and this is reversed by tofacitinib.  Furthermore, I was not able to 

detect IL-10 in the synovial fluid pool that I used to stimulate the CD4 T-cells.  This 

suggests that STAT3 activation with other ligands such as IL-6 may have a similar effect. 

 

Sbno2 is also expressed by astrocytes in the murine CNS (311)and is stimulated by 

endotoxin and also IL-6 suggesting that both the innate and adaptive immune system are 

involved.  Other STAT3 ligands such as OSM, LIF and IL-11 could also increase sbno2 

levels and so this work showed that quantifying these other ligands, in synovial fluid, is an 

essential next step in my work. 

 

TNFα and IL-1β stimulation of astrocytes also led to increased sbno2 but this was 

independent of STAT3 phosphorylation showing that sbno2 transcript is governed by a 

STAT dependent and independent mechanism.  This with the finding from El Kasmi 

suggests that SBNO2 may be able to link STAT3 and NK-κB signaling and may be a 

therapeutically tractable target. 
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The role of SBNO2 in CD4 T cells in Rheumatoid arthritis has been explored in clinical 

samples from the Newcastle early RA clinic by Pratt et al (282).  This group examined 

peripheral blood CD4 T–cells from patients and compared the transcriptome using 

Illumina Beadarrays from patients with RA to those who had spondyloarthropathy, self-

limiting arthritis and osteoarthritis.  The group found that in their study genes that were 

associated with STAT3 activation such as SBNO2 were expressed at a higher level in the 

CD4+ T cells of those patients with CCP negative RA.  This is in contrast to what I found 

because I chose to derive cells from patients who were seropositive for CCP and also the 

synovial fluid samples were from patients who had high levels of anti CCP antibodies.   

 

Furthermore they showed a correlation between serum IL-6 concentration and SOCS3, 

SBNO2, BCL3 and PIM1 expression levels.  However this correlation was stronger in 

patients who were CCP negative as opposed to seropositive RA.  Therefore my study adds 

to this in that I found a similar finding in patients with seropositive RA.   These results 

were validated in a further cohort by Anderson et al (283) who showed that a gene 

signature that included SBNO2 was useful in predicting progression from undifferentiated 

arthritis to Rheumatoid arthritis in CCP negative patients.  In conclusion, SBNO2 is a 

novel gene that has an as yet unknown role in CD4 T cells in RA and I have found that it is 

increased following STAT3 activation of CD4 T-cells by RA synovial fluid and decreased 

by tofacitinib treatment.  The ligand responsible for this effect is likely IL-6 but this 

requires clarification and evidence suggests that SBNO2 may regulate and be regulated by 

NF-κB therefore suggesting that it may link STAT3 and NF-κB mediated signaling. 

 

With regards to future work, in data processing, I believe that optimising alignment and 

normalisation methods will help prioritise the differentially expressed genes.  As 

previously eluded to, I plan to use my local computing resources to align my data to the 

latest human reference genome GRCh38.  Finally, by using de novo assembly methods and 

also techniques to discover novel genes I plan to fully explore this novel dataset.   

 

Combining publicly available GWAS and epigenetic datasets to investigate the role of 

lncRNA is an area of biology that I would explore.  Non-coding RNA mainly in the form 

of microRNA are important in the pathogenesis of inflammatory arthritis (232,312-

314)and given that most of the SNPs associated with disease in RA lie in non-coding 

regions, this method will help to determine if lncRNA that are differentially expressed in 

my dataset could be important. 
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Further wet lab experimental work could include using synovial fluids from other 

arthropathies and specific cytokines such as IL-6 and others that activate STAT3 to 

determine whether my findings are unique to this synovial fluid or generalisable.  

Furthermore, blockade of IL-6 receptor using tocilizumab to prevent IL-6 signaling would 

help to this end.  Finally, JAK1/2 inhibitors such as ruxolitinib and baricitinib may be more 

potent in inhibiting transcripts such as SBNO2 given that the IL-6 receptor also utilises 

JAK2. 

 

Although there is an association between SBNO2, IL-6 and disease activity, this has not 

been explored in a mechanistic fashion in RA and I would propose to knockout this gene in 

fibroblasts or cell lines such as THP-1 or Jurkatt T cells using CRISPR technology to allow 

me to functionally characterise this gene.  

 

Finally, it is clear from other work that single cell sequencing is maturing as a technology 

and providing insight into disease pathogenesis with increasing fidelity(315,316).  Publicly 

available RNA sequencing studies have shown that CD4 T-cell subsets respond differently 

to the same stimulus and therefore investigating this at a single cell resolution would help 

to investigate risk loci in RA that are currently in non-coding regions by utilising new 

methods in single cell epigenetics and RNA sequencing. 
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Chapter 7 General Discussion 
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In my studies presented herein, I used bioinformatic tools to re-analyse a microarray 

dataset of synovial fluid macrophages in RA to determine if a JAK/STAT signature was 

present and unique to RA.  I decided to do this to fully exploit the data because packages 

such as Genespring still rely on traditional statistics such as t-tests and ANOVA but it has 

been shown that hierarchical models such as those implemented in the Bioconductor 

package limma are more suited to analysing data where we have a large number of 

observations and only a few samples the so called “large p and small n” problem.   

 

Therefore within this package, I compared methods of normalisation of microarray data 

and discovered that RMA normalisation was a reasonable method of normalisation if there 

was no evidence of batch effect.  I also importantly discovered that there is no way of 

measuring without performing a complete validation experiment whether one method of 

normalisation is superior to another.  Assessment of quality control can help a user decide 

between one or the other but unfortunately as with many ‘omics technologies, there is no 

“right” answer.  I also compared methods of differential gene expression and settled on an 

analysis pipeline to further examine the dataset. 

 

Within my data, I discovered that there are differences between RA and PsA synovial fluid 

derived CD14 macrophages.  Furthermore, a JAK/STAT signature is present and differs 

between the two arthropathies with IL-6R and STAT3 signaling more prominent in RA 

and IL21R upregulated in PsA.  This demonstrated that the signature was present, as others 

have shown, and that there were subtle differences between the two diseases despite the 

same cell type being isolated from a similar environment. 

 

Following demonstration of this signature in RA, I decided to use the JAK1/3 inhibitor, 

tofacitinib to investigate the effect of JAK inhibition on an in vitro model of macrophage 

cell contact activation by cytokine stimulated T-cells(121).  I demonstrated that both 

tofacitinb and ruxolitinib, a JAK 1/2 inhibitor decreased the production of TNFα in this 

assay.  Furthermore I also demonstrated that the pro-inflammatory cytokines IL-6 and IL-

15 are also decreased.  Finally chemokines were also affected and the interferon responsive 

chemokines MIG and IP-10 were decreased not only in the cell contact stimulation assay 

but also following LPS mediated stimulation of macrophages.   

 

This suggests but does not prove that secondary interferon signaling is affected by JAK 

inhibition although similar results have been found in TNFα stimulated macrophages 

(267)and also a fibroblast and macrophage co-culture assay(74).  Further work is required 
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and the use of fixed Tck or cell membrane fragments along with interferon neutralising 

antibodies would help to explore this mechanism further. 

 

I then went on to explore whether RA synovial fluid would stimulate RA patient derived 

monocytes and if this stimulation could be inhibited by tofacitinb.  I employed phospho 

FACS analysis of pSTAT1, pSTAT3 and pSTAT6 using a stimulation cocktail with and 

without tofacitinib treatment to demonstrate that JAK inhibition prevented STAT 

phosphorylation.   

 

RA patient monocytes phosphorylated STAT1 and STAT6 in response to the stimulation 

cocktail and this was decreased by tofacitinb.  However, RA synovial fluid did not cause 

phosphorylation of STAT1, STAT3 or STAT6 in RA monocytes despite high levels of IL-

6 in RA synovial fluid.  As there was no phosphorylation of STATs, tofacitinib would not 

have a direct “on-target” effect in this system.  In summary, I demonstrated that in the RA 

synovial fluid that I used, there was no phosphorylation of STATs 1, 3 or 6 in RA 

monocytes. 

 

However, CD4 T-cells did phosphorylate STAT3 following synovial fluid stimulation to a 

degree similar to cytokine stimulation alone.  IL-6 should phosphorylate both STAT1 and 

STAT3 but I only saw phosphorylation of the later.  This may have been due to the length 

of time the cells spent in culture or a disease specific effect.  This finding requires further 

investigation using cells from healthy donors and also other arthropathies such as PsA. 

 

Tofacitinib has been shown to inhibit IL-6 mediated STAT3 signaling and therefore I went 

on to explore this further using RNA sequencing.  I chose to use RNA sequencing instead 

of microarray technology to examine the effect of synovial fluid stimulation on CD4 T-

cells on a global scale and with high fidelity.  I went on to use ribosomal reduction as 

opposed to polyA selection to investigate if long non-coding RNA were changed following 

stimulation and treatment with tofacitinib.   

 

I demonstrated that a pre-sequencing qRT-PCR screen of SOCS3, BCL6 and MYC 

showed that these genes were upregulated by synovial fluid treatment and that this was 

decreased by tofacitinb in cells derived from four patients with RA.  These genes were also 

confirmed as differentially expressed by RNA sequencing and were validated again using a 

qRT-PCR TLDA array.   
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Using further bioinformatics tools in R, I showed that SBNO2 follows a similar pattern to 

SOCS3 and BCL6 in that it is upregulated following synovial fluid stimulation and is 

decreased by tofacitinib.  Furthermore, this gene has been identified in peripheral blood 

CD4 T-cells from RA patients and has been used to develop a gene metric to predict the 

progression from undifferentiated arthritis to RA(282,283).  There is also evidence from 

other cell types that this gene is upregulated following IL-6 stimulation but the exact role is 

unclear.  Therefore this gene may represent a biomarker of response to tofacitinib, 

systemic IL-6 levels or could be crucial to the crosstalk between the JAK/STAT and NF-

κB pathway as it can repress NF-κB activity in vitro(309). 

 

Finally, long- non-coding RNA were upregulated by synovial fluid stimulation in CD4 T-

cells and some were decreased by tofacitinib.  However due to time, resource and sample 

constraints I was unable to validate these.  In further work, I would go on to prioritise non-

coding species in areas with SNPs conferring risk to RA and where epigenetic markers 

suggest functional relevance and validate these in cells derived from patients.  This 

approach of combining epigenetics, genetics and transcriptomics has led to novel findings 

in pathogenesis of RA(304,306,317). 

 

This progress would not have been possible without the “Big Data” available from public 

consortia, the bioinformatic tools that are available and also patient derived samples that 

are interrogated using high throughput technology such as RNA sequencing.  With cell 

subset interrogation becoming more important to fully understand disease pathogenesis, I 

believe that single cell analysis using all three ‘omics described above will lead to society 

achieving the goal of getting the right drug to the right patient at the right time. 

 

In conclusion, tofacitinib reduces pro-inflammatory cytokine secretion in a macrophage 

cell contact activation assay suggesting that it affects both the innate and adaptive immune 

system.  Furthermore, soluble factors present in RA synovial fluid stimulate CD4 T-cells 

and this has an effect on genes that are regulated by STAT3.  Finally, RNA sequencing 

shows that genes such as SBNO2 are differentially expressed in a fashion similar to 

STAT3 associated genes and that long non-coding RNA may have an important role as 

biomarkers of response or in the pathogenesis of RA. 
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Appendix	

 
Figure 0-1 Signal intensity histograms and boxplots of primary cells only before and after RMA normalisation 
demonstrate good quality data.   Plots were generated by reading primary cell array files into R and processed using 
affyAnalysisQC.  A + B – Raw intensity density histogram shows similar peak intensity and spread of data.  Raw 
intensity boxplots show a similar pattern.  C and D - RMA normalised data shows a distribution similar to normal 
although there is still a positive skew with a small number of genes expressed at high values although this is consistent 
amongst samples showing that further analysis of these samples is appropriate  

A B 

C D 
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Figure 0-2 Unsupervised correlation methods of raw data demonstrate underlying structure with peripheral blood 
monocytes and synovial macrophages in distinct groups despite disease status.  Plots were generated by reading 
primary cell array files into R and processed using arrayQualityMetrics.  A-C:  The correlation, PCA and hierarchical 
clustering demonstrate that subgroups are present with peripheral blood monocytes and synovial macrophages in separate 
groups.  Disease status or absence of disease does not influence grouping at this level 
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Figure 0-3 Unsupervised correlation methods of RMA normalisaed data demonstrate underlying structure more 
clearly with peripheral blood monocytes and synovial macrophages in distinct groups despite disease status.  Plots 
were generated by reading primary cell array files into R and processed using arrayQualityMetrics.  A-C:  The 
correlation, PCA and hierarchical clustering demonstrate that subgroups are present with peripheral blood monocytes and 
synovial macrophages in separate groups.  Disease status or absence of disease does not influence grouping at this level 
although separation of monocyte and macrophage groups is more apparent after normalisation.   
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Name	 FileName	 Target	 Patient	 Disease	 Gender	 MTX	 Cell	
RAMono1
3	

GP2341_R03.CEL	 RAMonocyte	 13	 RA	 M	 	Yes		 Monocyte	

PsAMono
16	

GP2341_R05.CEL	 PsAMonocyte	 16	 PsA	 F	 	NA		 Monocyte	

PsASF11	 GP2341_R06.CEL	 PsASynovialMac	 11	 PsA	 M	 	NA		 Synovial	
Mac	

RAMono8	 GP2341_R07.CEL	 RAMonocyte	 8	 RA	 M	 	No		 Monocyte	
PsAMono
11	

GP2341_R10.CEL	 PsAMonocyte	 11	 PsA	 M	 	NA		 Monocyte	

PsASF1	 GP2341_R12.CEL	 PsASynovialMac	 1	 PsA	 F	 	Yes		 Synovial	
Mac	

PsASF7	 GP2341_R14.CEL	 PsASynovialMac	 7	 PsA	 F	 	Yes		 Synovial	
Mac	

RAMono3	 GP2341_R15.CEL	 RAMonocyte	 3	 RA	 F	 	NA		 Monocyte	
RAMono1
4	

GP2341_R18.CEL	 RAMonocyte	 14	 RA	 F	 	Yes		 Monocyte	

PsASF9	 GP2341_R19.CEL	 PsASynovialMac	 9	 PsA	 M	 	No		 Synovial	
Mac	

PsAMono
5	

GP2341_R20.CEL	 PsAMonocyte	 5	 PsA	 M	 	No		 Monocyte	

RASF10	 GP2341_R21.CEL	 RASynovialMac	 10	 RA	 F	 	Yes		 Synovial	
Mac	

PsASF5	 GP2341_R24.CEL	 PsASynovialMac	 5	 PsA	 M	 	No		 Synovial	
Mac	

RAMono6	 GP2341_R26.CEL	 RAMonocyte	 6	 RA	 F	 	Yes		 Monocyte	

RASF3	 GP2341_R30.CEL	 RASynovialMac	 3	 RA	 F	 	NA		 Synovial	
Mac	

RASF13	 GP2341_R31.CEL	 RASynovialMac	 13	 RA	 M	 	Yes		 Synovial	
Mac	

PsAMono
1	

GP2341_R33.CEL	 PsAMonocyte	 1	 PsA	 F	 	Yes		 Monocyte	

RAMono2	 GP2341_R35.CEL	 RAMonocyte	 2	 RA	 F	 	NA		 Monocyte	

RASF8	 GP2341_R36.CEL	 RASynovialMac	 8	 RA	 M	 	No		 Synovial	
Mac	

PsASF16	 GP2341_R38.CEL	 PsASynovialMac	 16	 PsA	 F	 	NA		 Synovial	
Mac	

PsAMono
15	

GP2341_R40.CEL	 PsAMonocyte	 15	 PsA	 F	 	No		 Monocyte	

RASF14	 GP2341_R41.CEL	 RASynovialMac	 14	 RA	 F	 	Yes		 Synovial	
Mac	

RAMono4	 GP2341_R44.CEL	 RAMonocyte	 4	 RA	 M	 	No		 Monocyte	

PsASF12	 GP2341_R45.CEL	 PsASynovialMac	 12	 PsA	 M	 	Yes		 Synovial	
Mac	

RASF2	 GP2341_R47.CEL	 RASynovialMac	 2	 RA	 F	 	NA		 Synovial	
Mac	

PsAMono
7	

GP2341_R49.CEL	 PsAMonocyte	 7	 PsA	 F	 	Yes		 Monocyte	

PsASF15	 GP2341_R51.CEL	 PsASynovialMac	 15	 PsA	 F	 	No		 Synovial	
Mac	

RAMono1
0	

GP2341_R53.CEL	 RAMonocyte	 10	 RA	 F	 	Yes		 Monocyte	

RASF4	 GP2341_R55.CEL	 RASynovialMac	 4	 RA	 M	 	No		 Synovial	
Mac	

PsAMono
12	

GP2341_R57.CEL	 PsAMonocyte	 12	 PsA	 M	 	Yes		 Monocyte	

RASF6	 GP2341_R59.CEL	 RASynovialMac	 6	 RA	 F	 	Yes		 Synovial	
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Mac	
PsAMono
9	

GP2341_R61.CEL	 PsAMonocyte	 9	 PsA	 M	 	No		 Monocyte	

Healthy17	 Healthy_blood_1_R1
3.CEL	

HealthyMonocyte	 17	 None	 F	 	No		 Monocyte	

Healthy18	 Healthy_blood_2_R2
2.CEL	

HealthyMonocyte	 18	 None	 M	 	No		 Monocyte	

Healthy22	 Healthy_blood_3_R2
9.CEL	

HealthyMonocyte	 22	 None	 M	 	No		 Monocyte	

Healthy19	 Healthy_blood_4_R4
3.CEL	

HealthyMonocyte	 19	 None	 M	 	No		 Monocyte	

Healthy21	 Healthy_blood_5_R5
0.CEL	

HealthyMonocyte	 21	 None	 M	 	No		 Monocyte	

 

Table 0-1 Microarray file metadata for arrays used in Chapter 3.  Patient disease status and also cell type was used 
to assess quality of arrays and also determine batch effect.  Some data was available on methotrexate use but this was 
incomplete.  This table was used to create the phenoData file which was read into the R ExpressionSet. 
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library(affy)	
	
###	Read	in	CEL	files	and	add	phenodata	#######	
	
celfiles	<-	list.celfiles(full.names=TRUE)	
	
raw	<-	ReadAffy(filenames=celfiles)	
pd	<-	read.csv("phenodata.csv",	row.names="FileName",	header=TRUE)	
	
pData(raw)	<-	pd	
	
	
###	generate	QC	reports	on	raw	data	
	
#library(affyQCReport)	
#library(arrayQualityMetrics)	
#QCReport(raw,file="RawaffyQCReport.pdf")	
	
	
###	Remove	array	3	
	
#raw	<-	raw[	,-3]	
#pData(raw)	<-	droplevels(pData(raw))	
	
###	Rerun	QC	report	
	
#QCReport(raw,file="RawaffyQCReportminus3.pdf")	
	
###	Normalise	with	RMA	##############	
	
rma	<-	rma(raw)	
	
###	QC	reports	on	raw	and	rma	data	
	
#arrayQualityMetrics(expressionset=raw,	do.logtransform=TRUE,	force=FALSE,	outdir="QARaw",	
intgroup=c("Target"))	
	
#arrayQualityMetrics(expressionset=rma,	do.logtransform=FALSE,	force=FALSE,	outdir="QARMA",	
intgroup	=	c("Target"))	
	
###	Normalise	with	gcrma	and	rma	
	
library(gcrma)	
library(frma)	
	
gcrma	<-	gcrma(raw)	
frma	<-	frma(raw)	
mas	<-	mas5(raw)	
	
###	Create	Correlation	plots	
	
e	<-	exprs(rma)	
f	<-	exprs(frma)	
g	<-exprs(gcrma)	
m	<-	exprs(mas)	
	
library(maCorrPlot)	
	
corrrma	<-	CorrSample(e,	np=1000,	seed=213)	
corrfrma	<-	CorrSample(f,	np=1000,	seed=213)	
corrgcrma	<-	CorrSample(g,	np=1000,	seed=213)	
corrmas5	<-	CorrSample(m,	np=1000,	seed=213)	
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pdf(file="correlationplot.pdf")	
plot(corrrma,	corrfrma,	corrgcrma,	corrmas5,	cond=c("RMA",	"FRMA",	"GCRMA",	"MAS5"),	scatter=T,	
curve=T)	
dev.off()	
	
####	perform	a	correlation	analysis	using	CCA	package	on	expression	matrices	from	different	
methods	of	normalisation	
	
library(CCA)	
	
	
###	Perform	limma	with	all	methods	of	normalisation	
	
library(limma)	
	
rna	<-	factor(pData(rma)[,"Target"])	
design	<-	model.matrix(~0+rna)	
colnames(design)	<-	levels(rna)	
aw	<-	arrayWeights(exprs(rma),	design)	
fit	<-	lmFit(exprs(rma),	design,	weights=aw)	
	
###	Contrasts	of	Synovial	Mac	and	venn	diagram	
	
#contrastsa	<-	makeContrasts(RASynovialMac-PsASynovialMac,	PsASynovialMac-
PsAMonocyte,RASynovialMac-RAMonocyte,	levels=design)	
#contr.fita	<-	eBayes(contrasts.fit(fit,	contrastsa))	
#resultsa	<-	decideTests(contr.fita)	
#pdf(file="Venn	Diagram	of	limma	with	rma	normalisation	-a.pdf",	height=10,	width=15)	
#vennDiagram(resultsa)	
#dev.off()	
	
###	Contrasts	of	Monocytes	and	venn	diagram	
	
contrastsb	<-	makeContrasts(RAMonocyte-PsAMonocyte,	RAMonocyte-HealthyMonocyte,	
PsAMonocyte-HealthyMonocyte,	levels=design)	
contr.fitb	<-	eBayes(contrasts.fit(fit,	contrastsb))	
resultsb	<-	decideTests(contr.fitb)	
pdf(file="Venn	Diagram	of	limma	with	rma	normalisation	no	fdr	-b.pdf",	height=10,	width=15)	
vennDiagram(resultsb)	
dev.off()	
	
	
###	Write	out	tables	
	
###	RMA	
	
write.table(topTable(contr.fita,	coef=1,number=nrow(fit)),	file="ProbesinRAvsPsAMac_RMA.txt",	
sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	)	
	
write.table(topTable(contr.fita,	coef=2,number=nrow(fit)),	
file="ProbesinPsAMacvsMonocyte_RMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	
)	
	
write.table(topTable(contr.fita,	coef=3,number=nrow(fit)),	
file="ProbesinRAMacvsMonocyte_RMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	
)	
	
write.table(topTable(contr.fitb,	coef=1,number=nrow(fit)),	file="ProbesinRAvsPsAMonocyte_RMA.txt",	
sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	)	
	
write.table(topTable(contr.fitb,	coef=2,number=nrow(fit)),	file="ProbesinRAvs	
HealthyMonocyte_RMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	)	
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write.table(topTable(contr.fitb,	coef=3,number=nrow(fit)),	
file="ProbesinPsAvsHealthyMonocyte_RMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE	,	
col.names=NA)	
	
###	gcrma	normalisation	
	
rna1	<-	factor(pData(gcrma)[,"Target"])	
design1	<-	model.matrix(~0+rna1)	
colnames(design1)	<-	levels(rna1)	
aw1	<-	arrayWeights(exprs(gcrma),	design1)	
fit1	<-	lmFit(exprs(gcrma),	design1,	weights=aw1)	
	
###	Contrasts	of	Synovial	Mac	and	venn	diagram	
	
#contrasts1a	<-	makeContrasts(RASynovialMac-PsASynovialMac,	PsASynovialMac-
PsAMonocyte,RASynovialMac-RAMonocyte,	levels=design1)	
#contr.fit1a	<-	eBayes(contrasts.fit(fit1,	contrasts1a))	
#results1a	<-	decideTests(contr.fit1a)	
#pdf(file="Venn	Diagram	of	limma	with	gcrma	normalisation	-a.pdf",	height=10,	width=15)	
#vennDiagram(results1a)	
#dev.off()	
	
###	Contrasts	of	Monocytes	and	venn	diagram	
	
contrasts1b	<-	makeContrasts(RAMonocyte-PsAMonocyte,	RAMonocyte-HealthyMonocyte,	
PsAMonocyte-HealthyMonocyte,	levels=design1)	
contr.fit1b	<-	eBayes(contrasts.fit(fit1,	contrasts1b))	
results1b	<-	decideTests(contr.fit1b,	adjust.method="none")	
pdf(file="Venn	Diagram	of	limma	with	gcrma	normalisation	no	fdr-b.pdf",	height=10,	width=15)	
vennDiagram(results1b)	
dev.off()	
	
###	Write	out	tables	
	
###	GCRMA	
	
write.table(topTable(contr.fit1a,	coef=1,number=nrow(fit1)),	file="ProbesinRAvsPsAMac_GCRMA.txt",	
sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	)	
	
write.table(topTable(contr.fit1a,	coef=2,number=nrow(fit1)),	
file="ProbesinPsAMacvsMonocyte_GCRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE	,	
col.names=NA)	
	
write.table(topTable(contr.fit1a,	coef=3,number=nrow(fit1)),	
file="ProbesinRAMacvsMonocyte_GCRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	
col.names=NA	)	
	
write.table(topTable(contr.fit1b,	coef=1,number=nrow(fit1)),	
file="ProbesinRAvsPsAMonocyte_GCRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE	,	
col.names=NA)	
	
write.table(topTable(contr.fit1b,	coef=2,number=nrow(fit1)),	file="ProbesinRAvs	
HealthyMonocyte_GCRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	)	
	
write.table(topTable(contr.fit1b,	coef=3,number=nrow(fit1)),	
file="ProbesinPsAvsHealthyMonocyte_GCRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	
col.names=NA	)	
	
###	frma	normalisation	
	
rna2	<-	factor(pData(frma)[,"Target"])	
design2	<-	model.matrix(~0+rna2)	
colnames(design2)	<-	levels(rna2)	
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aw2	<-	arrayWeights(exprs(frma),	design2)	
fit2	<-	lmFit(exprs(frma),	design2,	weights=aw2)	
	
###	Contrasts	of	Synovial	Mac	and	venn	diagram	
	
#contrasts2a	<-	makeContrasts(RASynovialMac-PsASynovialMac,	PsASynovialMac-
PsAMonocyte,RASynovialMac-RAMonocyte,	levels=design2)	
#contr.fit2a	<-	eBayes(contrasts.fit(fit2,	contrasts2a))	
#results2a	<-	decideTests(contr.fit2a)	
#pdf(file="Venn	Diagram	of	limma	with	frma	normalisation-a.pdf",	height=10,	width=15)	
#vennDiagram(results2a)	
#dev.off()	
	
###	Contrasts	of	Monocytes	and	venn	diagram	
	
contrasts2b	<-	makeContrasts(RAMonocyte-PsAMonocyte,	RAMonocyte-HealthyMonocyte,	
PsAMonocyte-HealthyMonocyte,		levels=design2)	
contr.fit2b	<-	eBayes(contrasts.fit(fit2,	contrasts2b))	
results2b	<-	decideTests(contr.fit2b,	adjust.method="none")	
pdf(file="Venn	Diagram	of	limma	with	frma	normalisation	no	fdr-b.pdf",	height=10,	width=15)	
vennDiagram(results2b)	
dev.off()	
	
	
	
###	Write	out	tables	
	
###	FRMA	
	
write.table(topTable(contr.fit2a,	coef=1,number=nrow(fit2)),	file="ProbesinRAvsPsAMac_FRMA.txt",	
sep="\t",	row.names=TRUE,	quote=FALSE	,	col.names=NA)	
	
write.table(topTable(contr.fit2a,	coef=2,number=nrow(fit2)),	
file="ProbesinPsAMacvsMonocyte_FRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	
col.names=NA	)	
	
write.table(topTable(contr.fit2a,	coef=3,number=nrow(fit2)),	
file="ProbesinRAMacvsMonocyte_FRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	
)	
	
write.table(topTable(contr.fit2b,	coef=1,number=nrow(fit2)),	
file="ProbesinRAvsPsAMonocyte_FRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	
)	
	
write.table(topTable(contr.fit2b,	coef=2,number=nrow(fit2)),	file="ProbesinRAvs	
HealthyMonocyte_FRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE,	col.names=NA	)	
	
write.table(topTable(contr.fit2b,	coef=3,number=nrow(fit2)),	
file="ProbesinPsAvsHealthyMonocyte_FRMA.txt",	sep="\t",	row.names=TRUE,	quote=FALSE	,	
col.names=NA)	
	
###	Compare	Diff	expr	genes	in	RASFMac	vs	PsASFMAC	
	
###	define	which	contr.fit	to	use	by	a	number	
	
j=3	
	
rma_deg_result	<-	topTable(contr.fitb,	coef=j,	number=nrow(fit))	
rma_deg_result	<-	rma_deg_result[rma_deg_result$adj.P.Val<=0.05,]	
gcrma_deg_result	<-	topTable(contr.fit1b,	coef=j,	number=nrow(fit1))	
gcrma_deg_result	<-	gcrma_deg_result[gcrma_deg_result$adj.P.Val<=0.05,]	
frma_deg_result	<-	topTable(contr.fit2b,	coef=j,	number=nrow(fit2))	
frma_deg_result	<-	frma_deg_result[frma_deg_result$adj.P.Val<=0.05,]	
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###		VD	between	methods	of	normalisation	
	
library(VennDiagram)	
	
venn.diagram(list("Probes	significant	from	RMA"=	as.factor(row.names(rma_deg_result)),	"Probes	
significant	from	GCRMA"=as.factor(row.names(gcrma_deg_result)),	"Probes	signficant	from	
FRMA"=as.factor(row.names(frma_deg_result))),	"Normalisation	method	overlap	PsAMono	vs	
HealthyMono.tiff",	
scaled=FALSE,	
euler.d=FALSE,	
height=800,	
width=800,	
resolution=50,	
units="px",	
main="Normalisation	method	overlap	PsAMono	vs	HealthyMono",	
sub="",	
#main.pos=c(2,	3),	
main.fontfamily="sans",	
main.col="black",	
main.cex="3",	
sub.fontfamily="sans",	
sub.col="black",	
sub.cex="3",	
fill=c("lightblue",	"cornflowerblue",	"skyblue"),	
fontfamily="sans",	
cat.fontfamily="sans",	
label.col="black",	
cex=2,	
cat.dist=0.035,	
cat.cex=1.9,	
cat.dafaultpos="text")	
	
	
###	Generate	Heatmaps		###	
	
require(Heatplus)	
corrdist	=	function(x)	as.dist(1-cor(t(x)))	
hclust.avl	=	function(x)	hclust(x,	method="average")	
	
RASFMACPsASFMac	<-	rma[	,	rma$Target	%in%	c("RASynovialMac",	"PsASynovialMac")]	
pData(RASFMACPsASFMac)	<-	droplevels(pData(RASFMACPsASFMac))	
esetrma	<-	exprs(RASFMACPsASFMac)[row.names(rma_deg_result),]	
ann	<-	annHeatmap(esetrma,	ann=pData(RASFMACPsASFMac)$Target,legend=3,dendrogram	
=list(clustfun=hclust.avl,	distfun=corrdist,	Col=list(status="hide")))	
plot(ann)	
	
###	try	attract	package	for	JAK	
	
eset1	<-	rma[	,	rma$Target	%in%	c("RASynovialMac",	"PsASynovialMac",	"HealthyMonocyte",	
"RAMonocyte",	"PsAMonocyte")]	
pData(eset1)	<-	droplevels(pData(eset1))	
	
library(attract)	
	
attractor.states	<-	findAttractors(eset1,	"Target",	nperm=10,	annotation="hgu133plus2.db")	
	
remove.these.genes	<-	removeFlatGenes(eset1,	"Target",	contrasts=NULL,	limma.cutoff=0.05)	
	
top10.syn	<-	findSynexprs(attractor.states@rankedPathways[1:10,1],	attractor.states,	
removeGenes=remove.these.genes)	
	
pretty.col	<-	rainbow(15)	
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for(i	in	1:10)	
	
{plotsynexprs(get(ls(top10.syn)[4],	top10.syn),	vertLines=c(5,10,16,24),	tickLabels=c("CellContact",	
"Normal",	"MCSF",	"PsA",	"RA"),	tickMarks=c(2.5,7.5,13,20,	28),	index=i,	
main=paste("SynexpressionGroup	",	i,	sep=""),	col=pretty.col[i])	
					
}	
	
###	JAK	syn	exprs	###	
	
jak.syn	<-	findSynexprs("04630",	attractor.states,	remove.these.genes)	
	
pretty.col	<-	rainbow(15)	
	
for(i	in	1:20)	
	
{plotsynexprs(jak.syn,	vertLines=c(5,10,16,24),	tickLabels=c("CellContact",	"Normal",	"MCSF",	"PsA",	
"RA"),	tickMarks=c(2.5,7.5,13,20,	28),	index=i,	main=paste("SynexpressionGroup	JAK-STAT",	i,	sep=""),	
col=pretty.col[i])	
					
}	
	
jak.cor	<-	findCorrPartners(jak.syn,	eset1,	remove.these.genes)	
jak.func	<-	calcFuncSynexprs(jak.syn,	attractor.states,	"CC",	
annotation="hgu133plus2.db")	
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List	of	genes	differentially	expressed	in	RNA	Sequencing	experiment	of	
synovial	fluid	treated	versus	control	CD4	T-cells	from	patients	with	RA	
Test	ID	 Gene	 Locus	 log2(control	

FPKM)	
log2(SF	
FPKM)	

log2(Ratio)	 q	Value	

ENSG0000
0256424.1	

RP11-
495K9.7	

chr12:13213
1657-
132132666	

-10	 1.19	 11.19	 0.003507
69	

ENSG0000
0161544.5	

CYGB	 chr17:74523
437-
74553765	

-10	 0.37	 10.37	 0.012755
2	

ENSG0000
0173369.1
1	

C1QB	 chr1:229792
54-
22988031	

-10	 0.21	 10.21	 0.003507
69	

ENSG0000
0223561.2	

AC003090.
1	

chr7:256329
70-
25790614	

-10	 0.2	 10.2	 0.003507
69	

ENSG0000
0109906.9	

ZBTB16	 chr11:11393
0314-
114227293	

0.39	 4.98	 4.59	 0.003507
69	

ENSG0000
0258919.1	

RP11-
1029J19.4	

chr14:10209
5320-
102098867	

-0.37	 3.46	 3.84	 0.012755
2	

ENSG0000
0182585.5	

EPGN	 chr4:751741
89-
75181024	

-1.94	 1.85	 3.79	 0.003507
69	

ENSG0000
0258512.1	

RP11-
796G6.2	

chr14:10210
0790-
102198859	

1.31	 4.67	 3.36	 0.003507
69	

ENSG0000
0182489.7	

XKRX	 chrX:100168
430-
100184422	

-1.13	 2.21	 3.34	 0.003507
69	

ENSG0000
0269926.1	

RP11-
442H21.2	

chr10:74033
677-
74035794	

3.67	 6.91	 3.24	 0.003507
69	

ENSG0000
0168209.4	

DDIT4	 chr10:74033
677-
74035794	

2.48	 5.6	 3.12	 0.003507
69	

ENSG0000
0096060.1
0	

FKBP5	 chr6:355413
61-
35696360	

4.11	 7.17	 3.06	 0.003507
69	

ENSG0000
0164674.1
1	

SYTL3	 chr6:159071
045-
159185908	

4.16	 6.96	 2.8	 0.003507
69	

ENSG0000
0106952.3	

TNFSF8	 chr9:117656
002-
117692697	

4.2	 6.96	 2.76	 0.003507
69	

ENSG0000
0117289.7	

TXNIP	 chr1:145438
468-
145442635	

7.85	 10.61	 2.76	 0.003507
69	

ENSG0000
0049089.9	

COL9A2	 chr1:407661
58-
40782966	

-0.9	 1.85	 2.75	 0.003507
69	

ENSG0000
0182021.5	

RP11-
381O7.3	

chr9:670173
99-
67032072	

-2.16	 0.55	 2.71	 0.003507
69	

ENSG0000
0157514.1
2	

TSC22D3	 chrX:106956
450-
107020572	

6.83	 9.53	 2.69	 0.003507
69	
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ENSG0000
0170522.5	

ELOVL6	 chr4:110967
001-
111120355	

-1.9	 0.75	 2.65	 0.016474
8	

ENSG0000
0171451.1
3	

DSEL	 chr18:65173
818-
65566856	

-1.78	 0.86	 2.64	 0.003507
69	

ENSG0000
0263424.1	

CTD-
2541J13.2	

chr18:65173
818-
65566856	

-0.7	 1.94	 2.64	 0.003507
69	

ENSG0000
0136235.1
1	

GPNMB	 chr7:232755
85-
23314727	

-1.67	 0.93	 2.6	 0.003507
69	

ENSG0000
0057657.1
0	

PRDM1	 chr6:106534
194-
106557814	

1.75	 4.23	 2.48	 0.003507
69	

ENSG0000
0184557.3	

SOCS3	 chr17:76352
863-
76356158	

2.54	 4.95	 2.41	 0.003507
69	

ENSG0000
0235842.1	

RP11-
356I2.2	

chr6:138144
809-
138147031	

1.53	 3.92	 2.39	 0.003507
69	

ENSG0000
0090376.4	

IRAK3	 chr12:66582
658-
66651214	

-2.07	 0.21	 2.28	 0.008685
71	

ENSG0000
0227145.1	

IL21-AS1	 chr4:123533
782-
123610311	

-2.1	 0.08	 2.18	 0.018070
6	

ENSG0000
0237513.1	

RP11-
325F22.2	

chr7:104581
509-
104653491	

1.37	 3.52	 2.15	 0.006316
88	

ENSG0000
0099250.1
2	

NRP1	 chr10:33466
419-
33625190	

-1.84	 0.27	 2.11	 0.014592	

ENSG0000
0164120.9	

HPGD	 chr4:175411
327-
175444305	

0.58	 2.68	 2.09	 0.003507
69	

ENSG0000
0271321.1	

CTAGE6	 chr7:143452
181-
143454789	

-1.97	 0.08	 2.04	 0.028352
3	

ENSG0000
0228484.1	

RP11-
106M7.1	

chr10:11652
4546-
116539662	

-1.83	 0.19	 2.02	 0.037856
6	

ENSG0000
0080546.9	

SESN1	 chr6:109307
639-
109416022	

4.15	 6.14	 1.98	 0.003507
69	

ENSG0000
0084070.7	

SMAP2	 chr1:408105
21-
40888998	

6.03	 8	 1.97	 0.003507
69	

ENSG0000
0137801.9	

THBS1	 chr15:39873
279-
39891667	

0.59	 2.53	 1.94	 0.003507
69	

ENSG0000
0115604.6	

IL18R1	 chr2:102927
961-
103015218	

2.55	 4.4	 1.85	 0.003507
69	

ENSG0000
0270348.1	

RP11-
436H22.1	

chr2:708839
15-
70885457	

-1.1	 0.74	 1.84	 0.049674
9	

ENSG0000
0110848.4	

CD69	 chr12:99050
81-9913497	

4.13	 5.9	 1.77	 0.003507
69	
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ENSG0000
0101187.1
1	

SLCO4A1	 chr20:61272
070-
61317137	

0.97	 2.72	 1.76	 0.003507
69	

ENSG0000
0104381.8	

GDAP1	 chr8:751469
34-
75401107	

0.38	 2.13	 1.75	 0.02688	

ENSG0000
0113269.8	

RNF130	 chr5:179338
650-
179499118	

3.72	 5.48	 1.75	 0.003507
69	

ENSG0000
0270127.1	

RP11-
526I2.5	

chr15:10108
7971-
101090358	

0.61	 2.31	 1.7	 0.003507
69	

ENSG0000
0097096.8	

SYDE2	 chr1:856225
55-
85666729	

1.17	 2.81	 1.64	 0.003507
69	

ENSG0000
0130340.1
0	

SNX9	 chr6:158244
295-
158366109	

4.03	 5.64	 1.62	 0.003507
69	

ENSG0000
0163629.8	

PTPN13	 chr4:875154
67-
87736324	

1.18	 2.8	 1.62	 0.010971
4	

ENSG0000
0141384.7	

TAF4B	 chr18:23805
899-
23971649	

2.82	 4.43	 1.61	 0.003507
69	

ENSG0000
0198478.6	

SH3BGRL2	 chr6:803409
99-
80413372	

-0.1	 1.46	 1.56	 0.003507
69	

ENSG0000
0113916.1
3	

BCL6	 chr3:187416
046-
187463515	

2.37	 3.91	 1.54	 0.003507
69	

ENSG0000
0173597.3	

SULT1B1	 chr4:705925
65-
70653679	

2.55	 4.1	 1.54	 0.003507
69	

ENSG0000
0090104.7	

RGS1	 chr1:192544
856-
192549161	

4.54	 6.05	 1.51	 0.003507
69	

ENSG0000
0172985.8	

SH3RF3	 chr2:109745
803-
110262207	

1.39	 2.87	 1.48	 0.003507
69	

ENSG0000
0105982.1
2	

RNF32	 chr7:156264
889-
156469824	

2.35	 3.82	 1.47	 0.016474
8	

ENSG0000
0150347.1
0	

ARID5B	 chr10:63661
058-
63856703	

3.8	 5.23	 1.43	 0.003507
69	

ENSG0000
0119138.3	

KLF9	 chr9:729995
02-
73029540	

3.2	 4.62	 1.42	 0.003507
69	

ENSG0000
0136153.1
4	

LMO7	 chr13:76123
618-
76434004	

4.09	 5.49	 1.4	 0.003507
69	

ENSG0000
0141469.1
2	

SLC14A1	 chr18:42792
959-
43332485	

0.78	 2.17	 1.39	 0.010971
4	

ENSG0000
0113249.8	

HAVCR1	 chr5:156456
423-
156486130	

3.08	 4.44	 1.37	 0.018070
6	

ENSG0000
0111863.7	

ADTRP	 chr6:117138
87-

5.38	 6.74	 1.35	 0.003507
69	
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11807279	
ENSG0000
0087589.1
2	

CASS4	 chr20:54987
167-
55034396	

1.99	 3.33	 1.34	 0.003507
69	

ENSG0000
0188211.4	

NCR3LG1	 chr11:17373
272-
17398888	

-1.21	 0.13	 1.34	 0.018070
6	

ENSG0000
0080986.7	

NDC80	 chr18:25715
09-2616634	

0.91	 2.24	 1.33	 0.012755
2	

ENSG0000
0156510.1
1	

HKDC1	 chr10:70975
088-
71027904	

0.85	 2.17	 1.33	 0.021147
8	

ENSG0000
0259863.1	

SH3RF3-
AS1	

chr2:109743
782-
109745386	

0.22	 1.55	 1.33	 0.049674
9	

ENSG0000
0114423.1
4	

CBLB	 chr3:105374
304-
105588396	

5.17	 6.5	 1.32	 0.003507
69	

ENSG0000
0145990.6	

GFOD1	 chr6:133580
61-
13487894	

-0.77	 0.55	 1.32	 0.02688	

ENSG0000
0260923.1	

AC137934.
1	

chr16:90252
404-
90289086	

2.22	 3.54	 1.32	 0.039025
1	

ENSG0000
0140848.1
2	

CPNE2	 chr16:57126
448-
57181878	

0.67	 1.98	 1.31	 0.035246
4	

ENSG0000
0174946.5	

GPR171	 chr3:150803
483-
151176497	

6.24	 7.53	 1.3	 0.003507
69	

ENSG0000
0198879.7	

SFMBT2	 chr10:72005
85-7453450	

3.66	 4.95	 1.29	 0.003507
69	

ENSG0000
0120129.5	

DUSP1	 chr5:172189
982-
172204777	

2.2	 3.45	 1.26	 0.003507
69	

ENSG0000
0260910.1	

LINC00565	 chr13:11462
9486-
114631817	

1.3	 2.56	 1.26	 0.006316
88	

ENSG0000
0074966.6	

TXK	 chr4:480684
09-
48136273	

5.6	 6.83	 1.23	 0.003507
69	

ENSG0000
0155324.5	

GRAMD3	 chr5:125695
823-
125832186	

2.01	 3.23	 1.22	 0.030930
7	

ENSG0000
0173262.7	

SLC2A14	 chr12:79651
07-8043744	

-0.14	 1.08	 1.22	 0.032426
7	

ENSG0000
0138646.4	

HERC5	 chr4:893782
67-
89427314	

2.94	 4.12	 1.18	 0.003507
69	

ENSG0000
0118515.7	

SGK1	 chr6:134490
383-
134639250	

1.02	 2.19	 1.17	 0.008685
71	

ENSG0000
0182118.5	

FAM89A	 chr1:231154
703-
231175992	

1.86	 3.02	 1.16	 0.021147
8	

ENSG0000
0107890.1
2	

ANKRD26	 chr10:27280
842-
27389421	

3.12	 4.25	 1.14	 0.008685
71	

ENSG0000 LINS	 chr15:10110 4.63	 5.76	 1.14	 0.008685
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0140471.1
2	

7118-
101191910	

71	

ENSG0000
0072310.1
2	

SREBF1	 chr17:17715
068-
17740325	

1.65	 2.78	 1.13	 0.006316
88	

ENSG0000
0112167.5	

SAYSD1	 chr6:390718
39-
39082965	

4.3	 5.43	 1.13	 0.003507
69	

ENSG0000
0135842.1
2	

FAM129A	 chr1:184759
857-
184943682	

4.34	 5.47	 1.13	 0.003507
69	

ENSG0000
0154589.2	

LY96	 chr8:749035
86-
74941322	

3.82	 4.95	 1.13	 0.019838
1	

ENSG0000
0121749.1
1	

TBC1D15	 chr12:72233
486-
72320629	

4.59	 5.72	 1.12	 0.003507
69	

ENSG0000
0118503.1
0	

TNFAIP3	 chr6:138178
422-
138204449	

6.26	 7.37	 1.11	 0.003507
69	

ENSG0000
0104312.6	

RIPK2	 chr8:907699
74-
90803291	

1.54	 2.63	 1.09	 0.024119	

ENSG0000
0253424.1	

CTC-
436K13.3	

chr5:157683
144-
157685444	

3.75	 4.84	 1.09	 0.024119	

ENSG0000
0135048.9	

TMEM2	 chr9:742982
81-
74431606	

5.31	 6.38	 1.08	 0.003507
69	

ENSG0000
0144802.7	

NFKBIZ	 chr3:101498
045-
101579866	

4.76	 5.84	 1.08	 0.012755
2	

ENSG0000
0159399.5	

HK2	 chr2:750611
07-
75120486	

0.91	 1.97	 1.07	 0.003507
69	

ENSG0000
0105983.1
4	

LMBR1	 chr7:156473
570-
156685924	

5.02	 6.07	 1.05	 0.003507
69	

ENSG0000
0159674.7	

SPON2	 chr4:116071
9-1202750	

2.6	 3.65	 1.05	 0.045196
5	

ENSG0000
0112245.6	

PTP4A1	 chr6:642316
65-
64293492	

3.18	 4.22	 1.04	 0.045196
5	

ENSG0000
0162946.1
6	

DISC1	 chr1:231762
560-
232177018	

2.71	 3.75	 1.04	 0.003507
69	

ENSG0000
0064932.1
1	

SBNO2	 chr19:11076
35-1174282	

4.22	 5.25	 1.03	 0.003507
69	

ENSG0000
0174839.8	

DENND6A	 chr3:576111
83-
57678816	

3.9	 4.93	 1.03	 0.039025
1	

ENSG0000
0145416.9	

MARCH1	 chr4:164445
449-
165305202	

1.7	 2.72	 1.02	 0.003507
69	

ENSG0000
0145850.4	

TIMD4	 chr5:156346
292-
156390266	

2.51	 3.53	 1.02	 0.018070
6	

ENSG0000 UGP2	 chr2:640680 5.15	 6.16	 1.01	 0.003507
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0169764.1
0	

73-
64118696	

69	

ENSG0000
0215417.5	

MIR17HG	 chr13:92000
073-
92006833	

3.37	 4.37	 1.01	 0.012755
2	

ENSG0000
0121966.6	

CXCR4	 chr2:136871
918-
136875735	

8.53	 9.53	 1	 0.003507
69	

ENSG0000
0122862.4	

SRGN	 chr10:70847
861-
70864567	

7.06	 8.05	 1	 0.003507
69	

ENSG0000
0155749.8	

ALS2CR12	 chr2:202152
993-
202222121	

2.95	 3.95	 1	 0.0464	

ENSG0000
0152518.5	

ZFP36L2	 chr2:433937
99-
43823185	

5.93	 6.91	 0.98	 0.003507
69	

ENSG0000
0113263.8	

ITK	 chr5:156512
842-
156682201	

7	 7.96	 0.96	 0.003507
69	

ENSG0000
0136997.1
0	

MYC	 chr8:128747
679-
128753674	

5.45	 6.41	 0.96	 0.003507
69	

ENSG0000
0145703.1
1	

IQGAP2	 chr5:756990
73-
76031606	

5.17	 6.1	 0.93	 0.003507
69	

ENSG0000
0151150.1
5	

ANK3	 chr10:61788
158-
62493248	

5.47	 6.39	 0.92	 0.033728
5	

ENSG0000
0271204.1	

RP11-
138A9.1	

chr7:130614
967-
130616965	

3.32	 4.24	 0.92	 0.006316
88	

ENSG0000
0174885.8	

NLRP6	 chr11:27836
4-285359	

1.56	 2.46	 0.91	 0.030930
7	

ENSG0000
0105639.1
4	

JAK3	 chr19:17935
594-
17958841	

4.64	 5.53	 0.89	 0.003507
69	

ENSG0000
0173281.4	

PPP1R3B	 chr8:899376
4-9009084	

2.31	 3.2	 0.89	 0.003507
69	

ENSG0000
0112297.1
0	

AIM1	 chr6:106959
729-
107018326	

4.92	 5.8	 0.88	 0.008685
71	

ENSG0000
0134333.9	

LDHA	 chr11:18415
934-
18429972	

5.57	 6.45	 0.88	 0.003507
69	

ENSG0000
0145391.8	

SETD7	 chr4:140417
094-
140477928	

2.85	 3.73	 0.88	 0.006316
88	

ENSG0000
0163565.1
4	

IFI16	 chr1:158969
757-
159024945	

6.04	 6.9	 0.86	 0.003507
69	

ENSG0000
0110002.1
1	

VWA5A	 chr11:12398
6068-
124018428	

2.7	 3.55	 0.85	 0.008685
71	

ENSG0000
0198604.6	

BAZ1A	 chr14:35221
936-
35345665	

4.57	 5.42	 0.85	 0.006316
88	

ENSG0000
0064012.1

CASP8	 chr2:202098
165-

7.04	 7.88	 0.84	 0.021147
8	
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7	 202152434	
ENSG0000
0112576.8	

CCND3	 chr6:419026
70-
42018095	

6.99	 7.82	 0.83	 0.003507
69	

ENSG0000
0155926.9	

SLA	 chr8:133879
204-
134147147	

6.15	 6.98	 0.83	 0.003507
69	

ENSG0000
0156804.3	

FBXO32	 chr8:124510
128-
124553446	

4.01	 4.84	 0.83	 0.030930
7	

ENSG0000
0048740.1
2	

CELF2	 chr10:11047
258-
11378666	

5.85	 6.67	 0.82	 0.0464	

ENSG0000
0101347.7	

SAMHD1	 chr20:35504
523-
35580246	

5.93	 6.76	 0.82	 0.003507
69	

ENSG0000
0164512.1
3	

ANKRD55	 chr5:553955
06-
55529186	

4.3	 5.11	 0.82	 0.012755
2	

ENSG0000
0007944.1
0	

MYLIP	 chr6:161293
55-
16148479	

4.1	 4.91	 0.81	 0.003507
69	

ENSG0000
0125630.1
1	

POLR1B	 chr2:113299
491-
113334635	

3.19	 4	 0.81	 0.006316
88	

ENSG0000
0170222.1
0	

ADPRM	 chr17:10583
653-
10718481	

5.68	 6.49	 0.81	 0.032426
7	

ENSG0000
0091409.1
0	

ITGA6	 chr2:173292
081-
173489823	

4.89	 5.68	 0.79	 0.008685
71	

ENSG0000
0131507.8	

NDFIP1	 chr5:141488
069-
141534008	

5.5	 6.28	 0.78	 0.003507
69	

ENSG0000
0163599.1
0	

CTLA4	 chr2:204732
508-
204738683	

3.55	 4.34	 0.78	 0.021147
8	

ENSG0000
0173762.3	

CD7	 chr17:80272
743-
80275478	

5.2	 5.97	 0.77	 0.003507
69	

ENSG0000
0145715.1
0	

RASA1	 chr5:865637
04-
86687748	

4.12	 4.88	 0.76	 0.003507
69	

ENSG0000
0177613.7	

CSTF2T	 chr10:52750
944-
54073888	

4.45	 5.22	 0.76	 0.003507
69	

ENSG0000
0115758.8	

ODC1	 chr2:105800
93-
10588630	

3.76	 4.51	 0.75	 0.010971
4	

ENSG0000
0162739.9	

SLAMF6	 chr1:160454
819-
160493052	

5	 5.74	 0.74	 0.003507
69	

ENSG0000
0259820.1	

AC083843.
1	

chr8:135804
262-
135810515	

1.64	 2.37	 0.74	 0.025496
8	

ENSG0000
0185885.1
1	

IFITM1	 chr11:30763
0-315272	

6.54	 7.27	 0.73	 0.014592	

ENSG0000 CD53	 chr1:111415 7.93	 8.64	 0.71	 0.012755
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0143119.8	 774-
111442550	

2	

ENSG0000
0198898.7	

CAPZA2	 chr7:116451
123-
116559315	

5.59	 6.3	 0.71	 0.014592	

ENSG0000
0088930.6	

XRN2	 chr20:21283
941-
21370463	

5.29	 5.99	 0.7	 0.003507
69	

ENSG0000
0128050.4	

PAICS	 chr4:573019
06-
57327534	

3.42	 4.12	 0.7	 0.024119	

ENSG0000
0170379.1
5	

FAM115C	 chr7:143318
042-
143427502	

4.82	 5.52	 0.7	 0.010971
4	

ENSG0000
0067066.1
2	

SP100	 chr2:231280
656-
231444721	

6.62	 7.3	 0.68	 0.012755
2	

ENSG0000
0100906.6	

NFKBIA	 chr14:35870
716-
35873952	

5.78	 6.46	 0.68	 0.003507
69	

ENSG0000
0143167.7	

GPA33	 chr1:167021
787-
167059868	

3.71	 4.39	 0.68	 0.008685
71	

ENSG0000
0147894.1
0	

C9orf72	 chr9:275465
43-
27573864	

4.51	 5.19	 0.68	 0.021147
8	

ENSG0000
0183696.9	

UPP1	 chr7:481282
24-
48148330	

5.06	 5.74	 0.68	 0.025496
8	

ENSG0000
0172292.1
0	

CERS6	 chr2:169312
371-
169642939	

3.36	 4.03	 0.67	 0.036654
5	

ENSG0000
0168610.1
0	

STAT3	 chr17:40465
341-
40540586	

5.57	 6.22	 0.65	 0.019838
1	

ENSG0000
0233251.3	

AC007743.
1	

chr2:564006
68-
56613308	

4.31	 4.96	 0.65	 0.014592	

ENSG0000
0168906.8	

MAT2A	 chr2:857662
87-
85772403	

5.15	 5.76	 0.62	 0.037856
6	

ENSG0000
0120800.4	

UTP20	 chr12:10167
3886-
101780394	

2.58	 3.18	 0.6	 0.024119	

ENSG0000
0095002.8	

MSH2	 chr2:476301
07-
47798078	

3.86	 4.43	 0.57	 0.049674
9	

ENSG0000
0124575.5	

HIST1H1D	 chr6:262344
39-
26235216	

8.47	 9.03	 0.56	 0.030930
7	

ENSG0000
0165732.8	

DDX21	 chr10:70715
883-
70744829	

4.71	 5.27	 0.56	 0.025496
8	

ENSG0000
0124203.5	

ZNF831	 chr20:57766
074-
57834168	

3.75	 4.3	 0.54	 0.025496
8	

ENSG0000
0179456.9	

ZBTB18	 chr1:244214
584-
244220778	

5.31	 4.8	 -0.52	 0.039025
1	
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ENSG0000
0186517.9	

ARHGAP30	 chr1:161016
737-
161039760	

5.92	 5.4	 -0.52	 0.040253
8	

ENSG0000
0197448.9	

GSTK1	 chr7:142941
185-
142985141	

7.47	 6.95	 -0.52	 0.0464	

ENSG0000
0126882.8	

FAM78A	 chr9:134133
462-
134151934	

5.34	 4.8	 -0.54	 0.039025
1	

ENSG0000
0104904.7	

OAZ1	 chr19:22522
51-2273487	

8.61	 8.05	 -0.56	 0.043112
7	

ENSG0000
0142784.1
1	

WDTC1	 chr1:275610
06-
27635110	

4.1	 3.54	 -0.56	 0.045196
5	

ENSG0000
0197976.6	

AKAP17A	 chrX:171048
5-1721407	

5.9	 5.34	 -0.56	 0.037856
6	

ENSG0000
0076924.7	

XAB2	 chr19:76844
10-7694451	

5.12	 4.55	 -0.57	 0.030930
7	

ENSG0000
0092820.1
3	

EZR	 chr6:159186
772-
159241625	

6.1	 5.51	 -0.58	 0.0228	

ENSG0000
0101265.1
1	

RASSF2	 chr20:47606
68-4804291	

4.28	 3.7	 -0.58	 0.021147
8	

ENSG0000
0115085.9	

ZAP70	 chr2:983300
22-
98356325	

7.07	 6.49	 -0.58	 0.021147
8	

ENSG0000
0173208.3	

ABCD2	 chr12:39943
834-
40013553	

3.66	 3.08	 -0.58	 0.028352
3	

ENSG0000
0188452.9	

CERKL	 chr2:182401
402-
182545603	

4.02	 3.45	 -0.58	 0.024119	

ENSG0000
0149930.1
3	

TAOK2	 chr16:29984
961-
30003582	

3.93	 3.33	 -0.6	 0.012755
2	

ENSG0000
0103502.9	

CDIPT	 chr16:29869
677-
29879371	

5.3	 4.68	 -0.61	 0.035246
4	

ENSG0000
0110711.4	

AIP	 chr11:67250
511-
67258574	

6.47	 5.86	 -0.61	 0.029779
6	

ENSG0000
0123143.8	

PKN1	 chr19:14543
864-
14582678	

5.47	 4.86	 -0.61	 0.019838
1	

ENSG0000
0159753.9	

RLTPR	 chr16:67678
821-
67694713	

4.43	 3.82	 -0.61	 0.029779
6	

ENSG0000
0184678.8	

HIST2H2BE	 chr1:149856
009-
149858232	

5.1	 4.49	 -0.61	 0.016474
8	

ENSG0000
0063244.8	

U2AF2	 chr19:56165
511-
56186081	

5.59	 4.97	 -0.62	 0.021147
8	

ENSG0000
0100239.1
1	

PPP6R2	 chr22:50781
732-
50883514	

4.87	 4.26	 -0.62	 0.0228	

ENSG0000
0117984.8	

CTSD	 chr11:17536
39-1785222	

5.58	 4.96	 -0.62	 0.025496
8	
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ENSG0000
0153179.7	

RASSF3	 chr12:65004
292-
65091347	

5.91	 5.29	 -0.62	 0.049674
9	

ENSG0000
0162413.1
2	

KLHL21	 chr1:665078
3-6684093	

4.91	 4.29	 -0.62	 0.029779
6	

ENSG0000
0178980.1
0	

SEPW1	 chr19:48281
828-
48287941	

6.33	 5.71	 -0.62	 0.025496
8	

ENSG0000
0184260.4	

HIST2H2AC	 chr1:149858
524-
149858961	

7.85	 7.22	 -0.62	 0.024119	

ENSG0000
0185905.3	

C16orf54	 chr16:29753
783-
29759620	

6.2	 5.57	 -0.62	 0.008685
71	

ENSG0000
0205220.7	

PSMB10	 chr16:67968
404-
67970990	

5.87	 5.26	 -0.62	 0.028352
3	

ENSG0000
0242802.2	

AP5Z1	 chr7:481525
2-4831399	

4.46	 3.84	 -0.62	 0.041643
8	

ENSG0000
0087074.7	

PPP1R15A	 chr19:49375
648-
49379314	

5.1	 4.47	 -0.63	 0.028352
3	

ENSG0000
0105669.8	

COPE	 chr19:19010
322-
19030206	

6.17	 5.54	 -0.63	 0.028352
3	

ENSG0000
0182162.5	

P2RY8	 chrX:158146
4-1656000	

5.85	 5.22	 -0.63	 0.036654
5	

ENSG0000
0262319.1	

CTC-
457L16.2	

chr17:19030
781-
19062489	

5.1	 4.47	 -0.63	 0.037856
6	

ENSG0000
0101216.6	

GMEB2	 chr20:62218
954-
62258394	

3.76	 3.11	 -0.64	 0.019838
1	

ENSG0000
0111252.6	

SH2B3	 chr12:11184
3751-
111889427	

3.53	 2.89	 -0.64	 0.049674
9	

ENSG0000
0141959.1
2	

PFKL	 chr21:45719
933-
45747259	

5.29	 4.65	 -0.64	 0.021147
8	

ENSG0000
0157303.6	

SUSD3	 chr9:958209
88-
95847420	

5.98	 5.33	 -0.64	 0.040253
8	

ENSG0000
0160570.9	

DEDD2	 chr19:42702
749-
42724292	

4.95	 4.31	 -0.64	 0.045196
5	

ENSG0000
0211450.5	

C11orf31	 chr11:57508
824-
57510510	

5.92	 5.28	 -0.64	 0.02688	

ENSG0000
0154016.9	

GRAP	 chr17:18853
657-
18950950	

5.72	 5.07	 -0.65	 0.036654
5	

ENSG0000
0164896.1
5	

FASTK	 chr7:150773
710-
150777949	

4.96	 4.31	 -0.65	 0.021147
8	

ENSG0000
0183688.4	

FAM101B	 chr17:28976
8-295730	

4.24	 3.59	 -0.65	 0.018070
6	

ENSG0000
0157873.1

TNFRSF14	 chr1:248135
8-2496821	

6.3	 5.64	 -0.66	 0.025496
8	
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3	
ENSG0000
0072958.4	

AP1M1	 chr19:16308
388-
16346160	

5.14	 4.47	 -0.67	 0.021147
8	

ENSG0000
0111679.1
1	

PTPN6	 chr12:70556
30-7070479	

5.85	 5.17	 -0.67	 0.033728
5	

ENSG0000
0109062.5	

SLC9A3R1	 chr17:72666
716-
72765492	

5.73	 5.05	 -0.68	 0.028352
3	

ENSG0000
0119669.3	

IRF2BPL	 chr14:77490
887-
77495034	

3.76	 3.09	 -0.68	 0.012755
2	

ENSG0000
0126464.9	

PRR12	 chr19:50094
899-
50129696	

2.28	 1.6	 -0.68	 0.033728
5	

ENSG0000
0135046.9	

ANXA1	 chr9:757666
72-
75785309	

7.6	 6.92	 -0.68	 0.012755
2	

ENSG0000
0146112.7	

PPP1R18	 chr6:306441
65-
30655672	

5.61	 4.93	 -0.68	 0.049674
9	

ENSG0000
0160255.1
2	

ITGB2	 chr21:46305
867-
46351904	

6.1	 5.41	 -0.68	 0.033728
5	

ENSG0000
0163191.5	

S100A11	 chr1:151967
006-
152020383	

6.81	 6.14	 -0.68	 0.014592	

ENSG0000
0172354.5	

GNB2	 chr7:100271
153-
100276797	

5.4	 4.72	 -0.68	 0.018070
6	

ENSG0000
0013306.1
1	

SLC25A39	 chr17:42396
992-
42402238	

5.13	 4.43	 -0.69	 0.030930
7	

ENSG0000
0084207.1
1	

GSTP1	 chr11:67351
065-
67354131	

6.28	 5.59	 -0.69	 0.024119	

ENSG0000
0118640.6	

VAMP8	 chr2:857886
84-
85809154	

5.54	 4.85	 -0.69	 0.043112
7	

ENSG0000
0164054.1
1	

SHISA5	 chr3:485091
96-
48542259	

6.83	 6.14	 -0.69	 0.006316
88	

ENSG0000
0173846.8	

PLK3	 chr1:452658
96-
45272957	

5.95	 5.26	 -0.69	 0.044367
6	

ENSG0000
0198055.6	

GRK6	 chr5:176829
140-
176883283	

6.07	 5.39	 -0.69	 0.039025
1	

ENSG0000
0067225.1
3	

PKM	 chr15:72491
369-
72524164	

6.71	 6.01	 -0.7	 0.003507
69	

ENSG0000
0115232.9	

ITGA4	 chr2:182321
933-
182400914	

6.33	 5.64	 -0.7	 0.008685
71	

ENSG0000
0159069.9	

FBXW5	 chr9:139834
886-
139839148	

6.11	 5.41	 -0.7	 0.019838
1	

ENSG0000 CTDSP2	 chr12:58213 6.34	 5.64	 -0.7	 0.040253
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0175215.5	 709-
58240522	

8	

ENSG0000
0109736.1
0	

MFSD10	 chr4:293228
7-2936586	

4.16	 3.45	 -0.71	 0.041643
8	

ENSG0000
0131634.9	

TMEM204	 chr16:15433
63-1662111	

5.95	 5.24	 -0.71	 0.010971
4	

ENSG0000
0140406.2	

MESDC1	 chr15:81293
294-
81296342	

3.66	 2.96	 -0.71	 0.021147
8	

ENSG0000
0145901.1
0	

TNIP1	 chr5:150409
505-
150473138	

6.13	 5.43	 -0.71	 0.039025
1	

ENSG0000
0160185.9	

UBASH3A	 chr21:43824
007-
43867791	

5.07	 4.36	 -0.71	 0.014592	

ENSG0000
0162032.1
1	

SPSB3	 chr16:18267
12-1844972	

6.16	 5.45	 -0.71	 0.019838
1	

ENSG0000
0164733.1
6	

CTSB	 chr8:117000
32-
11726957	

7	 6.29	 -0.71	 0.029779
6	

ENSG0000
0182179.6	

UBA7	 chr3:498426
39-
49851379	

5.41	 4.71	 -0.71	 0.008685
71	

ENSG0000
0269858.1	

EGLN2	 chr19:41284
120-
41314338	

6.42	 5.71	 -0.71	 0.025496
8	

ENSG0000
0125753.9	

VASP	 chr19:46009
836-
46030241	

4.81	 4.09	 -0.72	 0.0464	

ENSG0000
0125817.7	

CENPB	 chr20:37644
97-3767337	

4.62	 3.9	 -0.72	 0.003507
69	

ENSG0000
0213402.2	

PTPRCAP	 chr11:67202
980-
67211292	

7.24	 6.52	 -0.72	 0.008685
71	

ENSG0000
0023902.8	

PLEKHO1	 chr1:150121
372-
150136916	

6.91	 6.18	 -0.73	 0.012755
2	

ENSG0000
0100258.1
3	

LMF2	 chr22:50941
375-
50946135	

5.09	 4.36	 -0.73	 0.003507
69	

ENSG0000
0108622.6	

ICAM2	 chr17:62073
430-
62097994	

6.23	 5.5	 -0.73	 0.003507
69	

ENSG0000
0142444.6	

C19orf52	 chr19:11042
743-
11044211	

4.17	 3.44	 -0.73	 0.045196
5	

ENSG0000
0142634.8	

EFHD2	 chr1:157363
90-
15756839	

4.32	 3.59	 -0.73	 0.012755
2	

ENSG0000
0238227.3	

C9orf69	 chr9:139006
426-
139010731	

4.39	 3.65	 -0.73	 0.018070
6	

ENSG0000
0009790.1
0	

TRAF3IP3	 chr1:209929
376-
209957904	

8.01	 7.27	 -0.74	 0.014592	

ENSG0000
0051523.6	

CYBA	 chr16:88709
690-

7.11	 6.36	 -0.74	 0.006316
88	
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88717560	
ENSG0000
0099308.5	

MAST3	 chr19:18169
804-
18262498	

3.02	 2.29	 -0.74	 0.049674
9	

ENSG0000
0110660.1
0	

SLC35F2	 chr11:10766
1716-
107799019	

3.47	 2.73	 -0.74	 0.047686
3	

ENSG0000
0116871.1
1	

MAP7D1	 chr1:366211
79-
36646450	

5.51	 4.77	 -0.74	 0.0228	

ENSG0000
0173020.6	

ADRBK1	 chr11:67033
880-
67054027	

7.3	 6.56	 -0.74	 0.040253
8	

ENSG0000
0178996.8	

SNX18	 chr5:538135
88-
53842415	

3.72	 2.98	 -0.74	 0.010971
4	

ENSG0000
0180644.6	

PRF1	 chr10:72357
103-
72362531	

3.89	 3.15	 -0.74	 0.049062	

ENSG0000
0188229.5	

TUBB4B	 chr9:140135
664-
140142222	

4.63	 3.9	 -0.74	 0.0228	

ENSG0000
0204525.1
0	

HLA-C	 chr6:312365
25-
31239863	

9.72	 8.98	 -0.74	 0.018070
6	

ENSG0000
0104964.1
0	

AES	 chr19:30529
07-3063105	

8.51	 7.76	 -0.75	 0.047686
3	

ENSG0000
0105404.6	

RABAC1	 chr19:42460
832-
42463542	

5.69	 4.93	 -0.75	 0.02688	

ENSG0000
0123146.1
4	

CD97	 chr19:14491
312-
14519537	

4.99	 4.24	 -0.75	 0.030930
7	

ENSG0000
0144579.3	

CTDSP1	 chr2:219262
978-
219270664	

6.01	 5.26	 -0.75	 0.016474
8	

ENSG0000
0147138.1	

GPR174	 chrX:784264
68-
78427726	

5.22	 4.48	 -0.75	 0.010971
4	

ENSG0000
0149091.1
0	

DGKZ	 chr11:46354
454-
46402104	

6.11	 5.36	 -0.75	 0.047686
3	

ENSG0000
0156860.1
1	

FBRS	 chr16:30669
751-
30682135	

3.85	 3.1	 -0.75	 0.014592	

ENSG0000
0116584.1
1	

ARHGEF2	 chr1:155916
644-
155976861	

5.92	 5.17	 -0.76	 0.014592	

ENSG0000
0167716.1
4	

WDR81	 chr17:16148
04-1641893	

3.77	 3.01	 -0.76	 0.029779
6	

ENSG0000
0196154.7	

S100A4	 chr1:153516
088-
153522612	

6.96	 6.2	 -0.76	 0.003507
69	

ENSG0000
0160271.1
0	

RALGDS	 chr9:135973
106-
136039332	

6.13	 5.35	 -0.77	 0.030930
7	

ENSG0000 ARHGAP4	 chrX:153172 5.95	 5.17	 -0.78	 0.003507
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0089820.1
1	

820-
153193873	

69	

ENSG0000
0106351.8	

AGFG2	 chr7:100136
847-
100165842	

4.28	 3.5	 -0.78	 0.032426
7	

ENSG0000
0122224.1
2	

LY9	 chr1:160765
927-
160798045	

6.14	 5.35	 -0.78	 0.003507
69	

ENSG0000
0159388.5	

BTG2	 chr1:203274
663-
203278730	

6.39	 5.61	 -0.78	 0.003507
69	

ENSG0000
0160410.1
0	

SHKBP1	 chr19:41082
756-
41097305	

4.43	 3.65	 -0.78	 0.003507
69	

ENSG0000
0196544.6	

C17orf59	 chr17:80916
51-8093564	

3.93	 3.14	 -0.78	 0.0228	

ENSG0000
0197956.5	

S100A6	 chr1:153506
078-
153508720	

8.03	 7.25	 -0.78	 0.003507
69	

ENSG0000
0028137.1
2	

TNFRSF1B	 chr1:122270
59-
12269285	

4.77	 3.98	 -0.79	 0.003507
69	

ENSG0000
0101236.1
1	

RNF24	 chr20:39120
67-3996229	

2.89	 2.09	 -0.79	 0.044367
6	

ENSG0000
0122122.9	

SASH3	 chrX:128913
954-
128930939	

6.53	 5.74	 -0.79	 0.016474
8	

ENSG0000
0168067.7	

MAP4K2	 chr11:64556
608-
64570713	

5.67	 4.88	 -0.79	 0.010971
4	

ENSG0000
0172819.1
2	

RARG	 chr12:53604
353-
53626764	

3.65	 2.87	 -0.79	 0.021147
8	

ENSG0000
0175467.1
0	

SART1	 chr11:65729
159-
65747299	

4.2	 3.4	 -0.79	 0.006316
88	

ENSG0000
0180448.6	

HMHA1	 chr19:10659
21-1095598	

7.88	 7.09	 -0.79	 0.010971
4	

ENSG0000
0183741.7	

CBX6	 chr22:39257
454-
39268319	

4.44	 3.66	 -0.79	 0.003507
69	

ENSG0000
0099860.4	

GADD45B	 chr19:24761
24-2478257	

4.89	 4.1	 -0.8	 0.02688	

ENSG0000
0108518.7	

PFN1	 chr17:48489
46-4860426	

7.84	 7.04	 -0.8	 0.003507
69	

ENSG0000
0115306.1
1	

SPTBN1	 chr2:546834
21-
54896812	

5.58	 4.78	 -0.8	 0.003507
69	

ENSG0000
0149781.8	

FERMT3	 chr11:63974
149-
64001824	

5.38	 4.58	 -0.8	 0.045196
5	

ENSG0000
0160888.6	

IER2	 chr19:13261
228-
13265722	

3.55	 2.74	 -0.8	 0.049674
9	

ENSG0000
0197043.8	

ANXA6	 chr5:150480
272-
150537443	

6.9	 6.09	 -0.8	 0.003507
69	

ENSG0000 APOBEC3G	 chr22:39436 4.87	 4.07	 -0.8	 0.010971
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0239713.3	 608-
39483748	

4	

ENSG0000
0076928.1
3	

ARHGEF1	 chr19:42387
227-
42434302	

7.34	 6.53	 -0.81	 0.012755
2	

ENSG0000
0118046.1
0	

STK11	 chr19:11894
05-1238026	

4.78	 3.97	 -0.81	 0.012755
2	

ENSG0000
0127084.1
3	

FGD3	 chr9:957097
32-
95798518	

6.85	 6.04	 -0.81	 0.003507
69	

ENSG0000
0188603.1
2	

CLN3	 chr16:28467
692-
28510291	

4.66	 3.84	 -0.82	 0.018070
6	

ENSG0000
0197540.2	

GZMM	 chr19:54403
3-549919	

4.67	 3.85	 -0.82	 0.045196
5	

ENSG0000
0074370.1
3	

ATP2A3	 chr17:38271
68-3867736	

4.77	 3.94	 -0.83	 0.003507
69	

ENSG0000
0101224.1
3	

CDC25B	 chr20:37675
77-3786762	

6.4	 5.57	 -0.83	 0.033728
5	

ENSG0000
0115687.9	

PASK	 chr2:242045
513-
242123067	

6.8	 5.97	 -0.83	 0.040253
8	

ENSG0000
0129968.1
1	

ABHD17A	 chr19:18768
08-1885546	

6.13	 5.31	 -0.83	 0.003507
69	

ENSG0000
0130522.4	

JUND	 chr19:18390
562-
18392432	

5.59	 4.76	 -0.83	 0.02688	

ENSG0000
0135926.7	

TMBIM1	 chr2:219135
114-
219232822	

6.13	 5.3	 -0.83	 0.003507
69	

ENSG0000
0172932.1
0	

ANKRD13D	 chr11:67056
017-
67069956	

5.38	 4.55	 -0.83	 0.016474
8	

ENSG0000
0184271.1
1	

POU6F1	 chr12:51580
718-
51611477	

5.27	 4.44	 -0.83	 0.033728
5	

ENSG0000
0099849.1
0	

RASSF7	 chr11:53752
6-564021	

4.92	 4.08	 -0.84	 0.024119	

ENSG0000
0147813.1
1	

NAPRT1	 chr8:144655
659-
144660783	

3.97	 3.13	 -0.84	 0.018070
6	

ENSG0000
0165175.1
1	

MID1IP1	 chrX:386606
84-
38665790	

5.1	 4.26	 -0.84	 0.003507
69	

ENSG0000
0179218.8	

CALR	 chr19:13049
420-
13055303	

7.66	 6.82	 -0.84	 0.003507
69	

ENSG0000
0064666.9	

CNN2	 chr19:10262
11-1039068	

6.8	 5.95	 -0.85	 0.003507
69	

ENSG0000
0101665.4	

SMAD7	 chr18:46446
222-
46477081	

5.28	 4.42	 -0.85	 0.014592	

ENSG0000
0104998.2	

IL27RA	 chr19:14142
559-

5.09	 4.24	 -0.85	 0.003507
69	
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14163743	
ENSG0000
0122694.1
1	

GLIPR2	 chr9:361367
31-
36163910	

3.4	 2.55	 -0.85	 0.044367
6	

ENSG0000
0137309.1
5	

HMGA1	 chr6:342046
49-
34214008	

5.17	 4.32	 -0.85	 0.003507
69	

ENSG0000
0170604.3	

IRF2BP1	 chr19:46386
865-
46389376	

4.12	 3.27	 -0.85	 0.010971
4	

ENSG0000
0077150.1
3	

NFKB2	 chr10:10415
3866-
104162281	

4.18	 3.31	 -0.86	 0.014592	

ENSG0000
0099785.6	

Mar-02	 chr19:84781
53-8503901	

4.29	 3.43	 -0.86	 0.016474
8	

ENSG0000
0107404.1
3	

DVL1	 chr1:126669
3-1284730	

3.94	 3.08	 -0.86	 0.003507
69	

ENSG0000
0119403.9	

PHF19	 chr9:123617
976-
123639606	

5.75	 4.88	 -0.86	 0.024119	

ENSG0000
0140368.8	

PSTPIP1	 chr15:77285
699-
77329673	

5.55	 4.69	 -0.86	 0.003507
69	

ENSG0000
0173457.6	

PPP1R14B	 chr11:64011
955-
64016966	

5.59	 4.73	 -0.86	 0.003507
69	

ENSG0000
0198286.5	

CARD11	 chr7:294577
4-3083579	

5.35	 4.49	 -0.86	 0.044367
6	

ENSG0000
0213654.5	

GPSM3	 chr6:321585
42-
32191844	

7.1	 6.24	 -0.86	 0.003507
69	

ENSG0000
0071655.1
2	

MBD3	 chr19:15766
38-1592882	

4.41	 3.53	 -0.87	 0.006316
88	

ENSG0000
0128340.1
0	

RAC2	 chr22:37621
300-
37640488	

6.82	 5.95	 -0.87	 0.003507
69	

ENSG0000
0139641.8	

ESYT1	 chr12:56511
942-
56538455	

6.18	 5.31	 -0.87	 0.003507
69	

ENSG0000
0163545.7	

NUAK2	 chr1:205271
186-
205290883	

3.82	 2.95	 -0.87	 0.003507
69	

ENSG0000
0175550.3	

DRAP1	 chr11:65686
727-
65689032	

5.74	 4.86	 -0.87	 0.003507
69	

ENSG0000
0182500.7	

ORAI1	 chr12:12206
4454-
122080583	

4.28	 3.41	 -0.87	 0.008685
71	

ENSG0000
0113088.5	

GZMK	 chr5:542736
91-
54330398	

4.02	 3.13	 -0.88	 0.018070
6	

ENSG0000
0117643.1
0	

MAN1C1	 chr1:259439
58-
26112698	

5.35	 4.47	 -0.88	 0.003507
69	

ENSG0000
0165915.9	

SLC39A13	 chr11:47404
698-
47438047	

4.58	 3.7	 -0.88	 0.012755
2	
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ENSG0000
0011132.7	

APBA3	 chr19:37508
77-3761697	

3.88	 2.99	 -0.89	 0.008685
71	

ENSG0000
0026025.9	

VIM	 chr10:17256
237-
17279592	

8.93	 8.03	 -0.89	 0.003507
69	

ENSG0000
0077238.9	

IL4R	 chr16:27324
988-
27376099	

5.59	 4.7	 -0.89	 0.014592	

ENSG0000
0110719.5	

TCIRG1	 chr11:67806
482-
67888911	

5.96	 5.07	 -0.89	 0.003507
69	

ENSG0000
0167468.1
2	

GPX4	 chr19:11039
35-1106787	

7.12	 6.23	 -0.89	 0.003507
69	

ENSG0000
0170638.5	

TRABD	 chr22:50624
343-
50638027	

5.81	 4.92	 -0.89	 0.003507
69	

ENSG0000
0095370.1
5	

SH2D3C	 chr9:130500
595-
130541020	

3.85	 2.95	 -0.9	 0.003507
69	

ENSG0000
0101298.9	

SNPH	 chr20:12066
99-1289972	

3.88	 2.98	 -0.9	 0.003507
69	

ENSG0000
0142765.1
3	

SYTL1	 chr1:276685
12-
27680421	

5.38	 4.48	 -0.9	 0.003507
69	

ENSG0000
0166925.4	

TSC22D4	 chr7:100054
237-
100076902	

4.8	 3.9	 -0.9	 0.003507
69	

ENSG0000
0182866.1
2	

LCK	 chr1:327168
39-
32751766	

8.2	 7.3	 -0.9	 0.003507
69	

ENSG0000
0197471.6	

SPN	 chr16:29674
299-
29710020	

5.73	 4.83	 -0.9	 0.006316
88	

ENSG0000
0197530.8	

MIB2	 chr1:155079
4-1565990	

3.95	 3.05	 -0.91	 0.037856
6	

ENSG0000
0100599.1
1	

RIN3	 chr14:92980
117-
93155339	

3.38	 2.46	 -0.92	 0.003507
69	

ENSG0000
0102879.1
1	

CORO1A	 chr16:30194
147-
30200397	

8.18	 7.25	 -0.92	 0.003507
69	

ENSG0000
0126432.9	

PRDX5	 chr11:64085
559-
64089283	

5.26	 4.34	 -0.92	 0.003507
69	

ENSG0000
0136490.4	

LIMD2	 chr17:61699
774-
61778532	

8.3	 7.38	 -0.92	 0.010971
4	

ENSG0000
0213145.5	

CRIP1	 chr14:10595
2653-
105955284	

6.64	 5.71	 -0.93	 0.003507
69	

ENSG0000
0019582.1
0	

CD74	 chr5:149781
199-
149792492	

6.25	 5.31	 -0.94	 0.003507
69	

ENSG0000
0183889.8	

PKD1P1	 chr16:16411
300-
16444447	

5.87	 4.93	 -0.94	 0.003507
69	

ENSG0000
0206503.7	

HLA-A	 chr6:299090
36-

10.73	 9.79	 -0.94	 0.008685
71	
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29913661	
ENSG0000
0223865.6	

HLA-DPB1	 chr6:330323
45-
33054978	

4.88	 3.94	 -0.94	 0.0228	

ENSG0000
0225663.3	

FAM195B	 chr17:79780
286-
79791178	

5.27	 4.33	 -0.94	 0.003507
69	

ENSG0000
0008256.1
1	

CYTH3	 chr7:620140
6-6312275	

2.17	 1.22	 -0.95	 0.041643
8	

ENSG0000
0064687.8	

ABCA7	 chr19:10401
01-1065568	

5.48	 4.53	 -0.95	 0.024119	

ENSG0000
0108840.1
1	

HDAC5	 chr17:42154
113-
42201070	

4.52	 3.57	 -0.95	 0.010971
4	

ENSG0000
0161638.6	

ITGA5	 chr12:54747
444-
54891472	

6.1	 5.15	 -0.95	 0.014592	

ENSG0000
0090238.7	

YPEL3	 chr16:30103
634-
30115437	

7.01	 6.05	 -0.96	 0.003507
69	

ENSG0000
0100241.1
5	

SBF1	 chr22:50885
183-
50913454	

5.93	 4.97	 -0.96	 0.025496
8	

ENSG0000
0171222.6	

SCAND1	 chr20:34541
538-
34547394	

5.05	 4.09	 -0.96	 0.006316
88	

ENSG0000
0104783.7	

KCNN4	 chr19:44270
684-
44285409	

3.68	 2.71	 -0.97	 0.008685
71	

ENSG0000
0178199.9	

ZC3H12D	 chr6:149768
793-
149806197	

6.46	 5.48	 -0.97	 0.003507
69	

ENSG0000
0005844.1
3	

ITGAL	 chr16:30483
978-
30534506	

6.69	 5.71	 -0.98	 0.003507
69	

ENSG0000
0073350.9	

LLGL2	 chr17:73521
160-
73571289	

3.04	 2.05	 -0.98	 0.018070
6	

ENSG0000
0112242.1
0	

E2F3	 chr6:204023
97-
20493941	

3.65	 2.67	 -0.98	 0.003507
69	

ENSG0000
0125898.7	

FAM110A	 chr20:81435
7-838106	

2.93	 1.95	 -0.98	 0.049674
9	

ENSG0000
0128185.5	

DGCR6L	 chr22:20301
798-
20307603	

5.01	 4.02	 -0.98	 0.003507
69	

ENSG0000
0178038.1
2	

ALS2CL	 chr3:467106
78-
46735191	

2.97	 1.99	 -0.98	 0.006316
88	

ENSG0000
0178951.4	

ZBTB7A	 chr19:40443
61-4066943	

3.28	 2.31	 -0.98	 0.006316
88	

ENSG0000
0061273.1
3	

HDAC7	 chr12:48099
867-
48231681	

5.3	 4.31	 -0.99	 0.006316
88	

ENSG0000
0177548.8	

RABEP2	 chr16:28889
725-
28950667	

3.29	 2.3	 -0.99	 0.045196
5	

ENSG0000 FKBP8	 chr19:18642 6.76	 5.76	 -1	 0.003507
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0105701.9	 227-
18654863	

69	

ENSG0000
0125910.4	

S1PR4	 chr19:31723
43-3180329	

7.58	 6.57	 -1	 0.003507
69	

ENSG0000
0130787.9	

HIP1R	 chr12:12331
9972-
123347507	

5.24	 4.24	 -1	 0.003507
69	

ENSG0000
0160408.1
0	

ST6GALNA
C6	

chr9:130628
758-
130667687	

6.43	 5.43	 -1	 0.003507
69	

ENSG0000
0162783.8	

IER5	 chr1:181057
637-
181059977	

3.4	 2.4	 -1	 0.006316
88	

ENSG0000
0172164.9	

SNTB1	 chr8:121547
984-
121825513	

3.6	 2.6	 -1	 0.006316
88	

ENSG0000
0147443.8	

DOK2	 chr8:217663
83-
21771371	

4.21	 3.18	 -1.03	 0.006316
88	

ENSG0000
0162676.7	

GFI1	 chr1:929403
18-
92952433	

3.93	 2.89	 -1.04	 0.012755
2	

ENSG0000
0175602.2	

CCDC85B	 chr11:65657
874-
65659105	

3.6	 2.57	 -1.04	 0.019838
1	

ENSG0000
0184640.1
2	

Sep-09	 chr17:75253
818-
75496678	

8.5	 7.46	 -1.04	 0.003507
69	

ENSG0000
0136286.1
0	

MYO1G	 chr7:450022
64-
45018697	

3.93	 2.87	 -1.06	 0.003507
69	

ENSG0000
0175130.6	

MARCKSL1	 chr1:327994
32-
32801980	

3.32	 2.25	 -1.07	 0.008685
71	

ENSG0000
0090382.2	

LYZ	 chr12:69742
120-
69748014	

5.21	 4.13	 -1.08	 0.003507
69	

ENSG0000
0115756.8	

HPCAL1	 chr2:104430
14-
10567743	

5.42	 4.33	 -1.08	 0.003507
69	

ENSG0000
0128271.1
5	

ADORA2A	 chr22:24813
846-
24924358	

4.18	 3.1	 -1.08	 0.003507
69	

ENSG0000
0162591.1
1	

MEGF6	 chr1:340648
3-3528059	

4.67	 3.59	 -1.08	 0.003507
69	

ENSG0000
0253522.1	

hsa-mir-
146a	

chr5:159895
274-
159914433	

3.03	 1.95	 -1.08	 0.003507
69	

ENSG0000
0154165.3	

GPR15	 chr3:982507
42-
98251960	

6.01	 4.92	 -1.09	 0.003507
69	

ENSG0000
0175463.7	

TBC1D10C	 chr11:67159
175-
67193078	

7.09	 6	 -1.09	 0.003507
69	

ENSG0000
0100242.1
1	

SUN2	 chr22:39101
727-
39190203	

8.19	 7.09	 -1.1	 0.003507
69	

ENSG0000 PSD4	 chr2:113914 5.66	 4.56	 -1.1	 0.003507
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0125637.1
0	

901-
113960814	

69	

ENSG0000
0139626.1
0	

ITGB7	 chr12:53585
101-
53601091	

6.6	 5.49	 -1.1	 0.003507
69	

ENSG0000
0160685.9	

ZBTB7B	 chr1:154975
126-
154990998	

4.64	 3.54	 -1.11	 0.006316
88	

ENSG0000
0135127.7	

CCDC64	 chr12:12042
7672-
120532298	

6.25	 5.12	 -1.13	 0.003507
69	

ENSG0000
0176973.7	

FAM89B	 chr11:65337
900-
65341669	

5.24	 4.11	 -1.13	 0.003507
69	

ENSG0000
0185736.1
1	

ADARB2	 chr10:12280
72-1779670	

3.62	 2.49	 -1.13	 0.019838
1	

ENSG0000
0186350.8	

RXRA	 chr9:137208
943-
137332431	

1.48	 0.35	 -1.13	 0.030930
7	

ENSG0000
0196924.1
0	

FLNA	 chrX:153576
893-
153603006	

6.54	 5.41	 -1.13	 0.012755
2	

ENSG0000
0100299.1
2	

ARSA	 chr22:51063
445-
51066607	

3.75	 2.6	 -1.15	 0.003507
69	

ENSG0000
0165272.1
0	

AQP3	 chr9:334411
51-
33447609	

6.23	 5.08	 -1.15	 0.003507
69	

ENSG0000
0063180.4	

CA11	 chr19:49141
198-
49149569	

2.43	 1.28	 -1.16	 0.02688	

ENSG0000
0131759.1
3	

RARA	 chr17:38465
443-
38513094	

3.9	 2.75	 -1.16	 0.018070
6	

ENSG0000
0158717.6	

RNF166	 chr16:88762
902-
88772829	

6.5	 5.35	 -1.16	 0.003507
69	

ENSG0000
0138172.6	

CALHM2	 chr10:10520
6542-
105222452	

4.37	 3.2	 -1.17	 0.003507
69	

ENSG0000
0162496.4	

DHRS3	 chr1:126279
38-
12677737	

5.47	 4.3	 -1.17	 0.003507
69	

ENSG0000
0105122.7	

RASAL3	 chr19:15562
437-
15575377	

6.29	 5.1	 -1.18	 0.003507
69	

ENSG0000
0163508.8	

EOMES	 chr3:277574
39-
27764206	

3.75	 2.57	 -1.18	 0.003507
69	

ENSG0000
0167797.3	

CDK2AP2	 chr11:67273
967-
67276102	

4.75	 3.58	 -1.18	 0.003507
69	

ENSG0000
0135047.1
0	

CTSL1	 chr9:903404
33-
90346308	

6.5	 5.32	 -1.19	 0.003507
69	

ENSG0000
0136280.1
1	

CCM2	 chr7:450390
73-
45116068	

6.7	 5.51	 -1.19	 0.003507
69	
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ENSG0000
0164088.1
3	

PPM1M	 chr3:522798
40-
52284613	

4.84	 3.65	 -1.19	 0.003507
69	

ENSG0000
0188322.4	

SBK1	 chr16:28303
839-
28335170	

1.01	 -0.19	 -1.19	 0.016474
8	

ENSG0000
0215788.5	

TNFRSF25	 chr1:648484
7-6580121	

7.71	 6.52	 -1.19	 0.003507
69	

ENSG0000
0142227.6	

EMP3	 chr19:48799
713-
48833810	

6.99	 5.79	 -1.2	 0.003507
69	

ENSG0000
0135362.9	

PRR5L	 chr11:36317
837-
36486754	

4.68	 3.46	 -1.21	 0.003507
69	

ENSG0000
0169442.4	

CD52	 chr1:266056
66-
26647014	

9.79	 8.58	 -1.21	 0.003507
69	

ENSG0000
0088899.1
0	

PROSAPIP1	 chr20:31432
62-3154192	

3.2	 1.98	 -1.22	 0.003507
69	

ENSG0000
0102760.1
2	

RGCC	 chr13:42031
694-
42045018	

7.27	 6.05	 -1.22	 0.003507
69	

ENSG0000
0112667.8	

DNPH1	 chr6:431933
66-
43197222	

5.47	 4.25	 -1.22	 0.003507
69	

ENSG0000
0056558.6	

TRAF1	 chr9:123664
670-
123691451	

6.33	 5.1	 -1.23	 0.003507
69	

ENSG0000
0110944.4	

IL23A	 chr12:56732
662-
56734193	

4.81	 3.58	 -1.23	 0.003507
69	

ENSG0000
0129250.7	

KIF1C	 chr17:49012
42-4931696	

3.62	 2.39	 -1.23	 0.012755
2	

ENSG0000
0185347.1
3	

C14orf80	 chr14:10595
6191-
105965912	

2.48	 1.25	 -1.23	 0.029779
6	

ENSG0000
0106003.8	

LFNG	 chr7:255216
2-2568811	

5.87	 4.62	 -1.25	 0.003507
69	

ENSG0000
0151651.1
1	

ADAM8	 chr10:13507
5906-
135090372	

3.85	 2.61	 -1.25	 0.006316
88	

ENSG0000
0141556.1
5	

TBCD	 chr17:80709
939-
81009686	

6.7	 5.44	 -1.26	 0.003507
69	

ENSG0000
0135916.1
1	

ITM2C	 chr2:231729
353-
231743963	

4.13	 2.86	 -1.27	 0.003507
69	

ENSG0000
0170004.1
2	

CHD3	 chr17:77600
02-7816078	

6.01	 4.74	 -1.27	 0.003507
69	

ENSG0000
0141858.7	

SAMD1	 chr19:14198
651-
14201848	

4.13	 2.85	 -1.28	 0.003507
69	

ENSG0000
0168056.1
0	

LTBP3	 chr11:65306
275-
65326401	

4.56	 3.28	 -1.28	 0.003507
69	

ENSG0000
0267519.1	

CTD-
3252C9.4	

chr19:13945
329-

2.27	 0.99	 -1.28	 0.016474
8	
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13947103	
ENSG0000
0142303.9	

ADAMTS10	 chr19:86451
25-8675585	

3.84	 2.53	 -1.31	 0.008685
71	

ENSG0000
0106123.7	

EPHB6	 chr7:142552
791-
142568847	

3.75	 2.42	 -1.33	 0.008685
71	

ENSG0000
0161570.4	

CCL5	 chr17:34195
970-
34212867	

7.06	 5.73	 -1.33	 0.003507
69	

ENSG0000
0158856.1
3	

EPB49	 chr8:219065
05-
21940038	

0.67	 -0.68	 -1.34	 0.032426
7	

ENSG0000
0130592.9	

LSP1	 chr11:18741
99-1913497	

7.65	 6.3	 -1.35	 0.003507
69	

ENSG0000
0124641.1
0	

MED20	 chr6:418730
91-
41888877	

2.58	 1.22	 -1.36	 0.012755
2	

ENSG0000
0006704.6	

GTF2IRD1	 chr7:738681
19-
74016931	

1.48	 0.11	 -1.37	 0.0228	

ENSG0000
0124762.8	

CDKN1A	 chr6:366443
04-
36655116	

1.67	 0.29	 -1.38	 0.014592	

ENSG0000
0197077.8	

KIAA1671	 chr22:25348
696-
25593415	

2.55	 1.15	 -1.39	 0.003507
69	

ENSG0000
0241657.1	

TRBV11-2	 chr7:142197
569-
142198069	

5.35	 3.96	 -1.39	 0.003507
69	

ENSG0000
0251060.1	

U66061.31	 chr7:142413
073-
142426272	

2.16	 0.77	 -1.39	 0.003507
69	

ENSG0000
0029534.1
5	

ANK1	 chr8:415107
38-
41754280	

2.08	 0.68	 -1.41	 0.006316
88	

ENSG0000
0181588.1
5	

MEX3D	 chr19:15546
67-1568057	

1	 -0.41	 -1.41	 0.049062	

ENSG0000
0213420.3	

GPC2	 chr7:997672
28-
99774992	

4.07	 2.66	 -1.41	 0.02688	

ENSG0000
0232810.3	

TNF	 chr6:315433
43-
31546113	

2.37	 0.96	 -1.41	 0.006316
88	

ENSG0000
0135114.8	

OASL	 chr12:12145
8094-
121477045	

3.47	 2.04	 -1.43	 0.003507
69	

ENSG0000
0184613.6	

NELL2	 chr12:44902
057-
45315631	

7.1	 5.67	 -1.43	 0.003507
69	

ENSG0000
0123159.1
1	

GIPC1	 chr19:14588
571-
14606944	

4.41	 2.96	 -1.44	 0.003507
69	

ENSG0000
0183473.5	

SSTR3	 chr22:37600
277-
37608362	

2.4	 0.96	 -1.44	 0.003507
69	

ENSG0000
0246526.2	

RP11-
539L10.2	

chr4:668917
4-6692246	

2.65	 1.19	 -1.46	 0.003507
69	

ENSG0000 FCER1A	 chr1:159259 2.31	 0.82	 -1.49	 0.024119	
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0179639.6	 503-
159278014	

ENSG0000
0260231.1	

RP4-
659J6.2	

chr7:139877
060-
139879440	

3.39	 1.89	 -1.5	 0.003507
69	

ENSG0000
0104081.9	

BMF	 chr15:40380
090-
40401093	

2.95	 1.44	 -1.51	 0.010971
4	

ENSG0000
0145911.5	

N4BP3	 chr5:177540
443-
177553088	

0.09	 -1.42	 -1.51	 0.008685
71	

ENSG0000
0213658.5	

LAT	 chr16:28996
146-
29002104	

7.08	 5.56	 -1.52	 0.003507
69	

ENSG0000
0130748.6	

TMEM160	 chr19:47549
164-
47551888	

4.34	 2.81	 -1.53	 0.003507
69	

ENSG0000
0163235.1
1	

TGFA	 chr2:706744
11-
70781325	

2.22	 0.68	 -1.55	 0.021147
8	

ENSG0000
0104856.9	

RELB	 chr19:45504
687-
45541452	

2.51	 0.95	 -1.56	 0.003507
69	

ENSG0000
0168758.6	

SEMA4C	 chr2:975254
52-
97536494	

5.61	 4.05	 -1.56	 0.003507
69	

ENSG0000
0197093.6	

GAL3ST4	 chr7:997568
66-
99766373	

3.54	 1.89	 -1.65	 0.003507
69	

ENSG0000
0215475.3	

SIAH3	 chr13:46354
404-
46425871	

2.54	 0.88	 -1.66	 0.003507
69	

ENSG0000
0100097.7	

LGALS1	 chr22:38071
614-
38075813	

4.58	 2.89	 -1.69	 0.003507
69	

ENSG0000
0101412.9	

E2F1	 chr20:32263
488-
32274210	

1.21	 -0.49	 -1.7	 0.003507
69	

ENSG0000
0197696.5	

NMB	 chr15:85198
359-
85201794	

1.7	 0	 -1.71	 0.036654
5	

ENSG0000
0173114.8	

LRRN3	 chr7:110303
109-
111202573	

5.03	 3.32	 -1.72	 0.003507
69	

ENSG0000
0148737.1
1	

TCF7L2	 chr10:11471
0008-
114927437	

0.94	 -0.81	 -1.75	 0.035246
4	

ENSG0000
0137331.1
1	

IER3	 chr6:307109
75-
30712331	

2.85	 0.99	 -1.86	 0.003507
69	

ENSG0000
0183691.4	

NOG	 chr17:54671
059-
54672951	

5.82	 3.96	 -1.86	 0.003507
69	

ENSG0000
0186810.7	

CXCR3	 chrX:708357
65-
70838367	

3.47	 1.59	 -1.88	 0.003507
69	

ENSG0000
0085117.7	

CD82	 chr11:44585
976-
44641913	

4.3	 2.41	 -1.89	 0.003507
69	
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ENSG0000
0157551.1
2	

KCNJ15	 chr21:39493
544-
39673748	

0.18	 -1.72	 -1.89	 0.003507
69	

ENSG0000
0152268.8	

SPON1	 chr11:13983
913-
14295237	

5.18	 3.22	 -1.97	 0.003507
69	

ENSG0000
0227507.2	

LTB	 chr6:315483
01-
31550299	

7.78	 5.75	 -2.03	 0.003507
69	

ENSG0000
0178773.1
0	

CPNE7	 chr16:89642
175-
89663654	

2.91	 0.87	 -2.05	 0.008685
71	

ENSG0000
0117318.8	

ID3	 chr1:238844
08-
23886285	

5.94	 3.82	 -2.12	 0.003507
69	

ENSG0000
0100628.7	

ASB2	 chr14:94400
498-
94443137	

1.6	 -0.54	 -2.14	 0.016474
8	

ENSG0000
0182379.9	

NXPH4	 chr12:57610
577-
57620232	

0.72	 -1.75	 -2.47	 0.037856
6	
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Over	100	genes	are	differentially	expressed	in	between	CD4	T-cells	
stimulated	with	synovial	fluid	and	those	stimulated	with	synovial	fluid	and	
tofacitinib	
 
Test	ID	 Gene	 Locus	 log2(SF	

FPKM)	
log2(SF	+	Tofa	
FPKM)	

log2(Ratio)	 q	
Value	

ENSG000002
48309.1	

CTC-
454M9.1	

chr5:87803362-
88762215	

0.24	 -4.54	 -4.78	 0.013
7537	

ENSG000001
84557.3	

SOCS3	 chr17:76352863
-76356158	

4.98	 2.45	 -2.53	 0.013
7537	

ENSG000001
13916.13	

BCL6	 chr3:187416046
-187463515	

3.94	 1.61	 -2.33	 0.013
7537	

ENSG000001
11863.7	

ADTRP	 chr6:11713887-
11807279	

6.76	 5.11	 -1.65	 0.013
7537	

ENSG000001
81827.10	

RFX7	 chr15:56379665
-56535483	

3.6	 2.14	 -1.46	 0.013
7537	

ENSG000001
50347.10	

ARID5B	 chr10:63661058
-63856703	

5.26	 4.05	 -1.21	 0.013
7537	

ENSG000001
98879.7	

SFMBT2	 chr10:7200585-
7453450	

4.97	 3.79	 -1.19	 0.034
5442	

ENSG000001
76542.5	

KIAA2018	 chr3:113367231
-113415493	

3.29	 2.19	 -1.1	 0.039
9301	

ENSG000001
63564.10	

PYHIN1	 chr1:158900585
-158946844	

6.05	 5.1	 -0.96	 0.040
8826	

ENSG000001
69446.4	

MMGT1	 chrX:135044228
-135056222	

4.54	 3.59	 -0.95	 0.022
5061	

ENSG000001
00258.13	

LMF2	 chr22:50941375
-50946135	

4.39	 5.25	 0.86	 0.044
435	

ENSG000001
86517.9	

ARHGAP3
0	

chr1:161016737
-161039760	

5.43	 6.29	 0.86	 0.039
9301	

ENSG000001
73762.3	

CD7	 chr17:80272743
-80275478	

5.99	 6.86	 0.87	 0.013
7537	

ENSG000001
77105.9	

RHOG	 chr11:3848207-
3862213	

4.75	 5.64	 0.89	 0.040
8826	

ENSG000002
14753.2	

HNRNPUL
2	

chr11:62480101
-62494821	

3.6	 4.49	 0.89	 0.040
8826	

ENSG000001
49930.13	

TAOK2	 chr16:29984961
-30003582	

3.36	 4.28	 0.93	 0.039
9301	

ENSG000001
59753.9	

RLTPR	 chr16:67678821
-67694713	

3.85	 4.79	 0.94	 0.040
8826	

ENSG000001
70638.5	

TRABD	 chr22:50624343
-50638027	

4.94	 5.89	 0.95	 0.013
7537	

ENSG000001
77764.6	

ZCCHC3	 chr20:277736-
280965	

3.14	 4.1	 0.96	 0.040
8826	

ENSG000001
62496.4	

DHRS3	 chr1:12627938-
12677737	

4.33	 5.31	 0.98	 0.034
5442	

ENSG000002
54470.2	

AP5B1	 chr11:65543363
-65548273	

2.54	 3.53	 0.99	 0.040
8826	

ENSG000000
89820.11	

ARHGAP4	 chrX:153172820
-153193873	

5.2	 6.2	 1	 0.044
435	

ENSG000001
58106.8	

RHPN1	 chr8:144451056
-144466390	

2.64	 3.64	 1	 0.044
435	

ENSG000000
70047.7	

PHRF1	 chr11:576485-
612222	

3.59	 4.61	 1.01	 0.013
7537	

ENSG000000
68831.14	

RASGRP2	 chr11:64494382
-64512928	

7.17	 8.19	 1.02	 0.049
9294	
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ENSG000001
70604.3	

IRF2BP1	 chr19:46386865
-46389376	

3.3	 4.31	 1.02	 0.029
3171	

ENSG000001
01298.9	

SNPH	 chr20:1206699-
1289972	

3	 4.03	 1.03	 0.013
7537	

ENSG000001
76438.8	

SYNE3	 chr14:95883830
-95942173	

3.14	 4.17	 1.03	 0.034
5442	

ENSG000002
15440.7	

NPEPL1	 chr20:57264186
-57290900	

3.33	 4.36	 1.03	 0.039
9301	

ENSG000001
25910.4	

S1PR4	 chr19:3172343-
3180329	

6.6	 7.64	 1.04	 0.013
7537	

ENSG000001
97976.6	

AKAP17A	 chrX:1710485-
1721407	

5.37	 6.41	 1.04	 0.013
7537	

ENSG000002
15788.5	

TNFRSF25	 chr1:6484847-
6580121	

6.55	 7.59	 1.04	 0.040
8826	

ENSG000001
18046.10	

STK11	 chr19:1189405-
1238026	

4	 5.05	 1.05	 0.040
8826	

ENSG000001
58545.11	

ZC3H18	 chr16:88636788
-88698374	

3.12	 4.16	 1.05	 0.029
3171	

ENSG000001
10046.8	

ATG2A	 chr11:64662006
-64684722	

2.28	 3.34	 1.06	 0.029
3171	

ENSG000001
85950.7	

IRS2	 chr13:11040618
3-110438915	

1.83	 2.91	 1.08	 0.029
3171	

ENSG000001
19669.3	

IRF2BPL	 chr14:77490887
-77495034	

3.11	 4.2	 1.09	 0.013
7537	

ENSG000001
48296.5	

SURF6	 chr9:136197551
-136203235	

3.48	 4.57	 1.1	 0.044
435	

ENSG000001
49527.12	

PLCH2	 chr1:2357418-
2436969	

2.35	 3.45	 1.1	 0.034
5442	

ENSG000001
37818.7	

RPLP1	 chr15:69745122
-69748255	

9.54	 10.66	 1.11	 0.040
8826	

ENSG000001
69871.8	

TRIM56	 chr7:100728719
-100735017	

3.74	 4.84	 1.11	 0.039
9301	

ENSG000001
71206.8	

TRIM8	 chr10:10440425
2-104418075	

4.39	 5.51	 1.13	 0.013
7537	

ENSG000001
05122.7	

RASAL3	 chr19:15562437
-15575377	

5.13	 6.29	 1.15	 0.034
5442	

ENSG000001
27528.5	

KLF2	 chr19:16435627
-16438685	

5.83	 6.97	 1.15	 0.040
8826	

ENSG000000
88899.10	

PROSAPIP
1	

chr20:3143262-
3154192	

2.01	 3.17	 1.16	 0.029
3171	

ENSG000001
00599.11	

RIN3	 chr14:92980117
-93155339	

2.49	 3.65	 1.16	 0.040
8826	

ENSG000001
66925.4	

TSC22D4	 chr7:100054237
-100076902	

3.92	 5.09	 1.17	 0.029
3171	

ENSG000001
39718.6	

SETD1B	 chr12:12224208
5-122270562	

2.56	 3.74	 1.18	 0.029
3171	

ENSG000001
42765.13	

SYTL1	 chr1:27668512-
27680421	

4.5	 5.7	 1.19	 0.013
7537	

ENSG000001
66341.6	

DCHS1	 chr11:6642555-
6677085	

0.73	 1.92	 1.19	 0.022
5061	

ENSG000001
67716.14	

WDR81	 chr17:1614804-
1641893	

3.04	 4.25	 1.21	 0.029
3171	

ENSG000001
05287.8	

PRKD2	 chr19:47150868
-47220384	

3.05	 4.27	 1.22	 0.040
8826	

ENSG000001
06003.8	

LFNG	 chr7:2552162-
2568811	

4.65	 5.88	 1.23	 0.013
7537	

ENSG000001
75467.10	

SART1	 chr11:65729159
-65747299	

3.43	 4.67	 1.24	 0.013
7537	

ENSG000001 ALS2CL	 chr3:46710678- 2.02	 3.28	 1.26	 0.034
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78038.12	 46735191	 5442	
ENSG000001
61847.9	

RAVER1	 chr19:10426887
-10444316	

1.8	 3.08	 1.27	 0.022
5061	

ENSG000002
03485.8	

INF2	 chr14:10515594
2-105185942	

2.74	 4.01	 1.27	 0.044
435	

ENSG000001
40368.8	

PSTPIP1	 chr15:77285699
-77329673	

4.71	 5.99	 1.28	 0.013
7537	

ENSG000000
74370.13	

ATP2A3	 chr17:3827168-
3867736	

3.96	 5.25	 1.29	 0.013
7537	

ENSG000002
27507.2	

LTB	 chr6:31548301-
31550299	

5.76	 7.08	 1.31	 0.013
7537	

ENSG000000
61273.13	

HDAC7	 chr12:48099867
-48231681	

4.33	 5.65	 1.32	 0.044
435	

ENSG000002
55026.1	

RP11-
326C3.2	

chr11:287304-
288987	

5.7	 7.02	 1.32	 0.022
5061	

ENSG000001
57637.8	

SLC38A10	 chr17:79218799
-79269347	

3.32	 4.66	 1.34	 0.049
9294	

ENSG000001
47813.11	

NAPRT1	 chr8:144655659
-144660783	

3.14	 4.49	 1.35	 0.022
5061	

ENSG000001
23143.8	

PKN1	 chr19:14543864
-14582678	

4.88	 6.25	 1.36	 0.013
7537	

ENSG000001
76248.7	

ANAPC2	 chr9:140069235
-140082989	

4.1	 5.46	 1.36	 0.022
5061	

ENSG000000
89639.6	

GMIP	 chr19:19740284
-19754476	

4.46	 5.88	 1.42	 0.013
7537	

ENSG000001
82979.13	

MTA1	 chr14:10588615
8-105937066	

3.69	 5.14	 1.44	 0.022
5061	

ENSG000001
82154.7	

MRPL41	 chr9:140445650
-140447007	

3.99	 5.44	 1.45	 0.013
7537	

ENSG000001
14626.13	

ABTB1	 chr3:127391780
-127399768	

3.88	 5.36	 1.48	 0.013
7537	

ENSG000001
98467.8	

TPM2	 chr9:35681988-
35691017	

3.53	 5.02	 1.48	 0.013
7537	

ENSG000001
97530.8	

MIB2	 chr1:1550794-
1565990	

3.08	 4.57	 1.49	 0.022
5061	

ENSG000001
03326.6	

SOLH	 chr16:577716-
604636	

2.67	 4.17	 1.5	 0.013
7537	

ENSG000001
30522.4	

JUND	 chr19:18390562
-18392432	

4.79	 6.29	 1.5	 0.013
7537	

ENSG000001
77548.8	

RABEP2	 chr16:28889725
-28950667	

2.32	 3.81	 1.5	 0.022
5061	

ENSG000002
20008.2	

LINGO3	 chr19:2289773-
2308156	

2.65	 4.15	 1.5	 0.013
7537	

ENSG000000
59122.12	

FLYWCH1	 chr16:2961937-
3004277	

4.01	 5.56	 1.55	 0.029
3171	

ENSG000002
05336.6	

GPR56	 chr16:57644563
-57698944	

0.62	 2.17	 1.55	 0.040
8826	

ENSG000000
77454.11	

LRCH4	 chr7:100171633
-100205798	

5.53	 7.09	 1.56	 0.013
7537	

ENSG000000
76928.13	

ARHGEF1	 chr19:42387227
-42434302	

6.55	 8.14	 1.59	 0.039
9301	

ENSG000001
31584.14	

ACAP3	 chr1:1227755-
1243398	

1.69	 3.28	 1.59	 0.034
5442	

ENSG000001
68071.17	

CCDC88B	 chr11:64107694
-64125006	

4.21	 5.81	 1.59	 0.013
7537	

ENSG000001
55034.14	

FBXL18	 chr7:5520188-
5553429	

0.93	 2.54	 1.61	 0.022
5061	

ENSG000001
11676.9	

ATN1	 chr12:7033625-
7051484	

0.97	 2.62	 1.65	 0.013
7537	
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ENSG000001
75602.2	

CCDC85B	 chr11:65657874
-65659105	

2.59	 4.25	 1.66	 0.029
3171	

ENSG000001
83889.8	

PKD1P1	 chr16:16411300
-16444447	

4.96	 6.62	 1.67	 0.013
7537	

ENSG000002
05307.6	

SAP25	 chr7:100169854
-100171270	

4.04	 5.7	 1.67	 0.013
7537	

ENSG000002
28434.1	

AC004951
.6	

chr7:44040487-
44049721	

3.43	 5.1	 1.67	 0.039
9301	

ENSG000001
78951.4	

ZBTB7A	 chr19:4044361-
4066943	

2.33	 4.01	 1.68	 0.013
7537	

ENSG000001
62591.11	

MEGF6	 chr1:3406483-
3528059	

3.61	 5.32	 1.71	 0.013
7537	

ENSG000002
54144.1	

RP11-
661A12.4	

chr8:144624142
-144631899	

7.18	 8.89	 1.71	 0.013
7537	

ENSG000001
42235.4	

LMTK3	 chr19:48988527
-49016446	

0.43	 2.16	 1.73	 0.022
5061	

ENSG000000
61938.12	

TNK2	 chr3:195590234
-195638816	

3.99	 5.74	 1.75	 0.013
7537	

ENSG000000
79313.7	

REXO1	 chr19:1815247-
1848452	

2.43	 4.19	 1.76	 0.013
7537	

ENSG000001
36213.7	

CHST12	 chr7:2443222-
2474242	

1.66	 3.42	 1.76	 0.013
7537	

ENSG000000
63245.10	

EPN1	 chr19:56186591
-56249768	

2.49	 4.26	 1.77	 0.013
7537	

ENSG000001
13504.15	

SLC12A7	 chr5:1050498-
1112150	

1.95	 3.76	 1.81	 0.013
7537	

ENSG000001
26464.9	

PRR12	 chr19:50094899
-50129696	

1.63	 3.51	 1.88	 0.013
7537	

ENSG000001
53443.8	

UBALD1	 chr16:4658883-
4665028	

1.6	 3.52	 1.92	 0.034
5442	

ENSG000001
05193.4	

RPS16	 chr19:39923846
-39926588	

7.25	 9.21	 1.95	 0.013
7537	

ENSG000002
67874.1	

CTD-
2527I21.9	

chr19:35521587
-35531352	

3.93	 5.88	 1.95	 0.013
7537	

ENSG000001
62458.8	

FBLIM1	 chr1:16083101-
16113089	

-0.1	 1.86	 1.97	 0.013
7537	

ENSG000001
71604.7	

CXXC5	 chr5:139026883
-139063467	

0.39	 2.38	 1.99	 0.040
8826	

ENSG000002
67598.1	

CTC-
250I14.6	

chr19:13261228
-13265722	

3.75	 5.75	 2	 0.044
435	

ENSG000001
28011.4	

LRFN1	 chr19:39797207
-39805976	

0.67	 2.69	 2.02	 0.013
7537	

ENSG000002
27184.3	

EPPK1	 chr8:144939496
-144952632	

1.82	 3.85	 2.03	 0.013
7537	

ENSG000002
61221.1	

ZNF865	 chr19:56116770
-56128635	

0.47	 2.53	 2.06	 0.013
7537	

ENSG000001
33250.9	

ZNF414	 chr19:8575461-
8579044	

1.09	 3.19	 2.1	 0.040
8826	

ENSG000001
68056.10	

LTBP3	 chr11:65306275
-65326401	

3.31	 5.47	 2.16	 0.013
7537	

ENSG000001
30653.10	

PNPLA7	 chr9:140354403
-140444986	

0.52	 2.68	 2.17	 0.013
7537	

ENSG000001
11319.8	

SCNN1A	 chr12:6456008-
6500729	

0.37	 2.57	 2.2	 0.040
8826	

ENSG000001
67685.10	

ZNF444	 chr19:56643967
-56672262	

2.39	 4.67	 2.28	 0.013
7537	

ENSG000002
57900.2	

RP11-
454K7.1	

chr14:45846470
-45858489	

2.06	 4.38	 2.32	 0.034
5442	

ENSG000002 RP11- chr3:186525480 0.56	 2.92	 2.36	 0.022
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32233.1	 573D15.2	 -186543310	 5061	
ENSG000002
69468.1	

AC004824
.2	

chr1:17634689-
17690499	

3.6	 6.09	 2.49	 0.013
7537	

ENSG000001
24194.11	

GDAP1L1	 chr20:42875886
-42909013	

-1.41	 1.33	 2.74	 0.034
5442	

ENSG000001
86081.7	

KRT5	 chr12:52908358
-52914471	

-1.4	 2.37	 3.76	 0.013
7537	

ENSG000002
49612.1	

AC063980
.1	

chr5:135712035
-135732730	

-10	 0.81	 10.81	 0.044
435	

ENSG000001
65685.4	

TMEM52B	 chr12:10310901
-10344400	

-10	 1.68	 11.68	 0.013
7537	
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R	script	for	analysis	of	qPCR	data	using	HTqPCR	package	
 
library("HTqPCR")	
	
raw	<-	readCtData(files=c("B15590010_1_4.sdm-Amplification	Data.txt",	"B15590008_5_8.sdm-
Amplification	Data.txt",	"B15590011_9_12.sdm-Amplification	Data.txt",	"B15590009_27_30.sdm-
Amplification	Data.txt"),	head=T,	na.value=40,	column.info=c(Ct=6,	position=1,	feature=4,	type=5),	
n.features=96,	n.data=4)	
	
p	<-	read.csv("pdata1.csv",	row.names="Sample")	
	
pData(raw)	<-p	
	
###	Re-read	featurenames	-	May	need	to	alter	in	excel	and	then	read	in	a	data	frame	with	gene	names	
alone.	
	
z<-	read.table(file="test.txt")	
	
featureNames(raw)	<-	as.character(z[	,])	
	
	
	
###	Plot	QC	files	
pdf(file="Samples	27-30.pdf")	
	
plotCtCard(raw,	col.range	=	c(10,	35),	well.size	=	2.6,	card=c(13,14,15,16),	main="Samples	27-30")	
	
dev.off()	
	
###	Plot	Ct	overview	of	Housekeeping	genes	
	
featureNames(raw)[c(11)]	->	b	
	
plotCtOverview(raw,	genes=b,	xlim=c(0,50),	conf.int=TRUE,	
ylim=c(0,55))	
	
plotCtOverview(raw,	genes=b,	xlim=c(0,50),	groups=pData(raw)$Patient,	conf.int=TRUE,	
ylim=c(0,55))	
	
###	Normalise	files	
	
q.norm	<-	normalizeCtData(raw,	norm="quantile")	
d18s.norm	<-	normalizeCtData(raw,	norm="deltaCt",	deltaCt.genes=c("X18S"))	
dGAPDH.norm<-	normalizeCtData(raw,	norm="deltaCt",	deltaCt.genes=c("GAPDH"))	
dGPI.norm<-	normalizeCtData(raw,	norm="deltaCt",	deltaCt.genes=c("GPI"))	
dTBP.norm<-	normalizeCtData(raw,	norm="deltaCt",	deltaCt.genes=c("TBP"))	
	
dall.norm	<-	normalizeCtData(raw,	norm="deltaCt",	deltaCt.genes=c("18S",	"GAPDH",	"GPI",	"TBP"))	
	
d	<-	exprs(raw)	
e	<-	t(d)	
f	<-	cbind(e,	pData(raw))	
f$SampleA	<-	factor(f$SampleA,	levels=f$SampleA[order(f$Order)])	
	
	
###	Plot	Correlation	Heatmaps	of	raw	and	normalised	data	
	
pdf(file="Ct	correlation	of	raw	data.pdf")	
plotCtCor(raw,	main="Ct	correlation	of	raw	data")	
dev.off()	
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pdf(file="Ct	correlation	of	18s	normalised	data.pdf")	
plotCtCor(d18s.norm,	main="Ct	correlation	of	18s	norm	data")	
dev.off()	
	
pdf(file="Ct	correlation	of	GAPDH	normalised	data.pdf")	
plotCtCor(dGAPDH.norm,	main="Ct	correlation	of	GAPDH	norm	data")	
dev.off()	
	
pdf(file="Ct	correlation	of	GPI	normalised	data.pdf")	
plotCtCor(dGPI.norm,	main="Ct	correlation	of	GPI	norm	data")	
dev.off()	
	
pdf(file="Ct	correlation	of	TBP	normalised	data.pdf")	
plotCtCor(dTBP.norm,	main="Ct	correlation	of	TBP	norm	data")	
dev.off()	
	
pdf(file="Ct	correlation	of	quantile	normalised	data.pdf")	
plotCtCor(q.norm,	main="Ct	correlation	of	quantile	norm	data")	
dev.off()	
	
pdf(file="Ct	correlation	of	4	gene	normalised	data.pdf")	
plotCtCor(dall.norm,	main="Ct	correlation	of	4	gene	norm	data")	
dev.off()	
	
###	Plot	Ct	Densitites	of	raw	and	normalised	data	
	
pdf(file="Ct	densities	of	raw	data.pdf")	
plotCtDensity(raw,	main="Ct	densities	of	raw	data",	lty=1:16)	
dev.off()	
	
pdf(file="Ct	densities	of	18s	normalised	data.pdf")	
plotCtDensity(d18s.norm,	main="Ct	densities	of	18s	norm	data",	lty=1:16)	
dev.off()	
	
pdf(file="Ct	densities	of	GAPDH	normalised	data.pdf")	
plotCtDensity(dGAPDH.norm,	main="Ct	densities	of	GAPDH	norm	data",	lty=1:16)	
dev.off()	
	
pdf(file="Ct	densities	of	GPI	normalised	data.pdf")	
plotCtDensity(dGPI.norm,	main="Ct	densities	of	GPI	norm	data",	lty=1:16)	
dev.off()	
	
pdf(file="Ct	densities	of	TBP	normalised	data.pdf")	
plotCtDensity(dTBP.norm,	main="Ct	densities	of	TBP	norm	data",	lty=1:16)	
dev.off()	
	
pdf(file="Ct	densities	of	quantile	normalised	data.pdf")	
plotCtDensity(q.norm,	main="Ct	densities	of	quantile	norm	data",	lty=1:16)	
dev.off()	
	
pdf(file="Ct	densities	of	4	gene	normalised	data.pdf")	
plotCtDensity(dall.norm,	main="Ct	densities	of	4	gene	norm	data",	lty=1:16)	
dev.off()	
	
###	PlotCt	Pairs	
	
pdf(file="Ct	pair-wise	correlation	of	raw	data.pdf",	height=10,	width=10)	
plotCtPairs(raw,	col="type",	diag=TRUE,	main="Ct	pair-wise	correlation	of	Raw	data")	
dev.off()	
	
pdf(file="Ct	pair-wise	correlation	of	18s	normalised	data.pdf",	height=10,	width=10)	
plotCtPairs(d18s.norm,	col="type",	diag=TRUE,	main="Ct	pair-wise	correlation	of	18s	Normalised	
data")	
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dev.off()	
	
pdf(file="Ct	pair-wise	correlation	of	GAPDH	normalised	data.pdf",	height=10,	width=10)	
plotCtPairs(dGAPDH.norm,	col="type",	diag=TRUE,	main="Ct	pair-wise	correlation	of	GAPDH	
Normalised	data")	
dev.off()	
	
pdf(file="Ct	pair-wise	correlation	of	GPI	normalised	data.pdf",	height=10,	width=10)	
plotCtPairs(dGPI.norm,	col="type",	diag=TRUE,	main="Ct	pair-wise	correlation	of	GPI	Normalised	
data")	
dev.off()	
	
pdf(file="Ct	pair-wise	correlation	of	TBP	normalised	data.pdf",	height=10,	width=10)	
plotCtPairs(dTBP.norm,	col="type",	diag=TRUE,	main="Ct	pair-wise	correlation	of	TBP	Normalised	
data")	
dev.off()	
	
pdf(file="Ct	pair-wise	correlation	of	quantile	normalised	data.pdf",	height=10,	width=10)	
plotCtPairs(q.norm,	col="type",	diag=TRUE,	main="Ct	pair-wise	correlation	of	Quantile	Normalised	
data")	
dev.off()	
	
pdf(file="Ct	pair-wise	correlation	of	4	gene	normalised	data.pdf",	height=10,	width=10)	
plotCtPairs(dall.norm,	col="type",	diag=TRUE,	main="Ct	pair-wise	correlation	of	4	gene	Normalised	
data")	
dev.off()	
	
###	Plot	Ct	Heatmaps	
	
pdf(file="Ct	Heatmap	of	raw	data.pdf")	
plotCtHeatmap(raw,	gene.names="",	dist="euclidean",	main="Ct	Heatmap	of	raw	data")	
dev.off()	
	
pdf(file="Ct	Heatmap	of	18s	normalised	data.pdf")	
plotCtHeatmap(d18s.norm,	gene.names="",	dist="euclidean",	main="Ct	Heatmap	of	18s	Normalised	
data")	
dev.off()	
	
pdf(file="Ct	Heatmap	of	GAPDH	normalised	data.pdf")	
plotCtHeatmap(dGAPDH.norm,	gene.names="",	dist="euclidean",	main="Ct	Heatmap	of	GAPDH	
Normalised	data")	
dev.off()	
	
pdf(file="Ct	Heatmap	of	GPI	normalised	data.pdf")	
plotCtHeatmap(dGPI.norm,	gene.names="",	dist="euclidean",	main="Ct	Heatmap	of	GPI	Normalised	
data")	
dev.off()	
	
pdf(file="Ct	Heatmap	of	TBP	normalised	data.pdf")	
plotCtHeatmap(dTBP.norm,	gene.names="",	dist="euclidean",	main="Ct	Heatmap	of	TBP	Normalised	
data")	
dev.off()	
	
pdf(file="Ct	Heatmap	of	quantile	normalised	data.pdf")	
plotCtHeatmap(q.norm,	gene.names="",	dist="euclidean",	main="Ct	Heatmap	of	Quantile	Normalised	
data")	
dev.off()	
	
pdf(file="Ct	Heatmap	of	4	gene	normalised	data.pdf")	
plotCtHeatmap(dall.norm,	gene.names="",	dist="euclidean",	main="Ct	Heatmap	of	4	gene	Normalised	
data")	
dev.off()	
	



 351 

	
###	Plot	PCAs	
	
pdf(file="PCA	of	raw	data.pdf")	
plotCtPCA(raw,	features=FALSE)	
dev.off()	
	
pdf(file="PCA	of	18s	normalised	data.pdf")	
plotCtPCA(d18s.norm,	features=FALSE)	
dev.off()	
	
pdf(file="PCA	of	GAPDH	normalised	data.pdf")	
plotCtPCA(dGAPDH.norm,	features=FALSE)	
dev.off()	
	
pdf(file="PCA	of	GPI	normalised	data.pdf")	
plotCtPCA(dGPI.norm,	features=FALSE)	
dev.off()	
	
pdf(file="PCA	of	TBP	normalised	data.pdf")	
plotCtPCA(dTBP.norm,	features=FALSE)	
dev.off()	
	
pdf(file="PCA	of	quantile	normalised	data.pdf")	
plotCtPCA(q.norm,	features=FALSE)	
dev.off()	
	
pdf(file="PCA	of	quantile	4	gene	data.pdf")	
plotCtPCA(dall.norm,	features=FALSE)	
dev.off()	
	
	
###	Limma	for	different	raw	and	normalisation	methods.		Tables	and	plots	will	need	to	be	appended	
with	normalisation	method	
	
	
library(limma)	
	
#	Preparing	experiment	design	raw	
	
xnorm	<-	dall.norm	
	
design	<-	model.matrix(~0+xnorm$Treatment)	
colnames(design)	<-	c("DMSO",	"SF",	"SFTofa",	"Tofa")	
print(design)	
contrasts	<-	makeContrasts(SFTofa-SF,	SF-DMSO,	Tofa-DMSO,	levels=design)	
colnames(contrasts)	<-	c("SFTofa-SF",	"SF-DMSO",	"Tofa-DMSO")	
print(contrasts)	
#	Reorder	data	to	get	the	genes	in	consecutive	rows	
xnorm2				<-	xnorm[order(featureNames(xnorm)),]	
qDE.limma.xnorm							<-	limmaCtData(xnorm2,	design=design,	contrasts=contrasts,	
ndups=1,	adjust.method="none")	
	
write.table(qDE.limma.xnorm[["SFTofa-SF"]],	file="SFTofa-SF	dall.norm.txt",	sep="\t",	col.names=NA)	
write.table(qDE.limma.xnorm[["SF-DMSO"]],	file="SF-DMSO	dall.norm.txt",	sep="\t",	col.names=NA)	
#write.table(qDE.limma.xnorm[["Tofa-DMSO"]],	file="Tofa-DMSO	dall.norm.txt",	sep="\t",	
col.names=NA)	
	
pdf(file="SFTofa	vs	SF	significant	genes	-	dall.norm.pdf")	
plotCtRQ(qDE.limma.xnorm,	comparison=1,	p.val=0.05,	transform="log2",	col="#9E0142",	legend=F)	
dev.off()	
	
pdf(file="SF	vs	DMSO	significant	genes	-	dall.norm.pdf")	
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plotCtRQ(qDE.limma.xnorm,	comparison=2,	p.val=0.05,	transform="log2",	col="#9E0142",	legend=F)	
dev.off()	
	
	
#plotCtRQ(qDE.limma.xnorm,	comparison=3,	p.val=0.05,	transform="log2",	col="#9E0142")	
	
	
pdf(file="SFTofa	vs	SF	significant	genes	with	Ct	-	dall.norm.pdf")	
plotCtSignificance(qDE.limma.xnorm,	q=xnorm,	comparison=1,	
groups=xnorm$Treatment,	target="SFTofa",	
calibrator="SF",	jitter=0.1,	p.val=0.05)	
dev.off()	
	
pdf(file="SF	vs	DMSO	significant	genes	with	Ct	-	dall.norm.pdf")	
plotCtSignificance(qDE.limma.xnorm,	q=xnorm,	comparison=2,	
groups=xnorm$Treatment,	target="SF",	
calibrator="DMSO",	jitter=0.1,	p.val=0.05)	
dev.off()	
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Figure 0-4 Visual inspection of rawCt values does not reveal any obvious spatial batch effects.  Plots were generated 
using the HTqPCR package following qRT-PCR of samples from CD4 T-cells treated with synovial fluid and tofacitinib.  
Raw Ct values are colour coded by scale and blue dots correspond to 18S transcript showing that in each sample, 18S 
transcript is expressed at a similar level. 
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Sample	 Treatment	 Patient	
Sample1	 DMSO	 D1	

Sample2	 Tofa	 D1	

Sample3	 SF	 D1	
Sample4	 SFTofa	 D1	

Sample5	 DMSO	 D2	
Sample6	 Tofa	 D2	

Sample7	 SF	 D2	
Sample8	 SFTofa	 D2	

Sample9	 DMSO	 D3	

Sample10	 SF	 D3	
Sample11	 Tofa	 D3	

Sample12	 SFTofa	 D3	
Sample13	 DMSO	 D4	

Sample14	 Tofa	 D4	

Sample15	 SF	 D4	
Sample16	 SFTofa	 D4	
 

Figure 0-5 Sample information for TLDA qPCR validation experiment. 
 


