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A bstract
This thesis is about the possible consequences of the existence of scalar par­

ticles on astrophysical objects, particularly neutron stars. The existence of such 

particles is hypothesized by certain developments in elementary particle theory. 

These paxticles are assumed to be light, having masses less than, or of approxi­

mately one electron volt. The stipulation that these particles are light is in no way 

discriminatory; it just so happens that over astrophysical distances lighter parti­

cles have far greater influence because of their greater range, i.e. their Compton 

wavelength, and so are more interesting in this context.

The introduction of this work will, after giving a brief historical summary of 

each subject, show how scalar fields arise in various theoretical contexts within 

the disciplines of particle physics and cosmology. It will also show how highly 

interlinked these disciplines are, and how developments in each drive and influence 

the other. Also included in the introduction will be a review of neutron stars and 

their properties and a summary of the methods of nuclear theory.

The first chapter consists of the construction of an explicit model of static 

neutron star and scalar field configurations. The properties of these configurations 

are discussed at length and then used to give bounds on the coupling of this 

hypothetical scalar field to ordinary matter. Certain technical difficulties arising 

from the presence of the scalar field are also discussed.

The second chapter consists of a study of the radial oscillations of the static 

configurations which were found in the preceding chapter. The equations of 

motion for the oscillations of the neutron star and scalar field are derived, after 

which the stability of the configurations is discussed with particular reference to 

the possibility of monopole scalar radiation. Lastly, an approximate calculation 

is made of the relaxation time of radial oscillations for a star which is radiating 

scalar waves.

The last chapter contains a simple model of gravitational collapse with a 

scalar field, constructed in the manner of the Oppenheimer-Snyder model. After 

integration of the Einstein equations for the interior, the problem of matching 

to an appropriate exterior is considered. It is found that, contrary to naive 

expectation, matching is greatly complicated by the presence of a scalar field;
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both technical and conceptual problems are found to arise.

Finally, the necessary conditions and procedures for construction of more 

general exterior solutions, which this problem seems to require, are given and 

discussed.

3



D eclaration
The work presented in this thesis was done entirely by myself, except where 

otherwise indicated by a reference. Chapter two was a collaboration between 

myself, my supervisor Professor R.G.Moorhouse and Professor A.B.Henriques of 

the Instituto Superior Tecnico in Lisbon.

All the numerical work contained in this thesis was done entirely by myself, 

and so I must take responsibility for any errors in the numbers I have presented.

Gary Joseph Benson

4



A cknow ledgem ents
I would like to thank my supervisor Professor Moorhouse for his help and timely 

advice over the past three years, which was always given in a gentle, friendly and 

positive manner. I only hope that I took this good advice in the spirit in which 

it was offered. Thanks also to Professor Henriques in Lisbon, who in the course 

of my studies visited Glasgow on a couple of occasions. It was a pleasure to 

meet and work with Alfredo, who offered his insights freely in a cooperative and 

gentlemanly manner. Thanks to the other theory staff also, in particular David 

Sutherland, and also to Colin Froggatt for tolerating my attem pts at librarianship.

Thanks also to my fellow students with whom I have shared lunches, dinners, 

drinking sessions, football matches and games of pool with over the past three 

years. In no particular order; Carolyn, David, Amarjit, Alan, David, Helen, Ely, 

Simon, Gerry, Brian, Luke and David.

Thanks to the Science and Engineering Research Council for a postgraduate 

studentship.

Thanks to my first employer, whoever it is.

5



To Mum and Dad

6



C ontents
A bstract 

D eclaration  

A cknow ledgem ents  

C ontents 

0. Introduction

0.1 Particle Physics

0 .1 .1  Gauge theories and the Standard Model

0 .1 .2  Quantum Chromodynamics

0 .1 .3  Electro-Weak Theory

0 .1 .4  The Strong CP Problem and the Axion

0 .1 .5  Extensions of the Standard Model

0 .1 .6  String Theory and the Dilaton

0 .2  C osm ology

0 .3  N eutron stars and the Nuclear Equation of State  

0 .3 .1  Historical Review

0 .3 .2  Gross features of Neutron stars and Observation 

0 .3 .3  The Nuclear Equation of State

0 .3 .4  Uncertainties

1. N eutron  stars and Scalar Fields

1.1 C onstruction of the M odel

1.1 .1  Equations

1 .1 .2  Boundary Conditions

1.2 M ethod of Solution

1.2 .1  Principles and general method

1 .2 .2  Limitations and Approximations

7



1 .2 .2 .1  Scalar Mass

1 .2 .2 .2  Coupling Strength

1.3  Equations of State

1.3.1 Free Fermi Gas Equation

1.3 .2  Bethe and Johnson equation of state VN

1.4 Stellar Configurations

1.4.1 Star Masses

1.5 Stellar Properties

1.5 .1  Binding Energies

1 .5 .2  Radii and Maximum Rotational Frequencies

1 .5 .2 .1  \i > 10~9eV

1 .5 .2 .2  /x <  10~n eV

1.6  C ooling o f N eutron Stars

1.6.1 Light—fi=10_5eV

1.6 .2  Ultralight—//=10-11eV

1.7  Conclusions and Discussion  

Figure Captions 

References

2. Radial Oscillations: R adiation and Stability

2.1  D erivation of Pulsation Equations

2 .2  Stability

2 .3  R elaxation tim e of Scalar W aves

2 .4  D iscussion  

Figure Captions 

References

8



3. G ravitational Collapse o f Scalar Fields

3.1  Equations of M otion

3 .2  Interior Solutions: Discussion

3 .3  Exterior Solutions and M atching Conditions

3 .4  Conclusion  

Figure Captions 

R eferences

4. O verview  and Conclusions

9



Introduction

Particle Physics, Cosm ology, N eutron  
Stars and the role o f Scalar Fields

The role of this introduction is to provide a solid motivation for the material 

studied in this thesis; that is, to show how scalar fields have arisen and been 

utilised in particle physics, and, furthermore, to show how this has repercussions 

in the field of cosmology. This is to provide something of a prelude and a motiva­

tion for the topic of the main body of this thesis, that is, to investigate how light 

scalars can alter the structure of compact objects, particularly neutron stars.

Particle physics, cosmology, their problems, and their necessary extensions 

concerning scalar fields will be reviewed first of all. Again, this is to provide 

motivation for the study of the scalar field in the astrophysical context. The 

‘astrophysical context’ this thesis is chiefly concerned with, is neutron stars and 

in the final introductory section a review of the properties of neutron stars will be 

given, this time to provide some essential background information which will be 

of use later on. A review of some of the research concerning the equation of state 

of nuclear m atter is also given since this is by far the most important ingredient 

used in the building of neutron star models.
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0.1 P a rtic le  P h ysics
At the present time the most successful physical theory of fundamental parti­

cles and forces is the, rather aptly named, Standard Model. The successes of this 

theory have been phenomenal and are yet increasing due to the continued efforts 

of experimenters at CERN and other places.

So successful has the theory been that, in fact, there have been no clear-cut 

failures so far; despite this success, it is universally agreed by theoretical physicists 

that the Standard Model is in no way the final word on the subject of elementary 

particles.

To understand why this is so it necessary to review and criticise the Standard 

Model.

0.1.1 Gauge theories and th e Standard M odel

It is generally thought that any fundamental description of nature must be mod­

elled in terms of a relativistic quantum field theory; the trouble is that there 

are too many possible choices of theory one can make. Within the class of all 

theories there exists a subclass known as Gauge Theories which occupy a very 

special position; so far, all known viable physical theories are of this type; Quan­

tum Electrodynamics, the Standard Model and almost every plausible extension 

or would-be successor to these.

The Standard Model is a gauge theory; what this means is that there exists 

a special type of symmetry among the constituent fields of the action which give 

rise to a number of desirable properties, e.g. renormalizability. The origin of this 

type of symmetry goes back to the work of Hermann Weyl in the 1920s1, who 

discovered an ‘excellent’ reason for the existence of the electromagnetic field. 

Consider the lagrangian density for a free electron

C  =  $  — m ) ^  ( 1)

Notice that this expression is invariant under the global phase transformation of 

the fields

$  _> q7 c-iorqF (2 )

1He was at this time chiefly involved in trying to unify general relativity with electromag­

netism by means of scale invariance.
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Weyl suggested that one should be able to do this at each point in space, i.e. 

putting a  —> a(x) and still maintain the invariance of the action. To do this 

requires the introduction of a ‘compensating’ field, which is massless. After 

introducing kinetic terms for one has the action for quantum electrodynamics, 

An being of course, the photon field.

Whether one agrees that this is an ‘excellent’ idea or not is irrelevant—it 

works!

In more mathematically sophisticated terms, the transformations in (2) are 

elements of a compact2 abelian Lie group known as U(l). The extension to 

compact non-abelian groups was made in 1954 by Yang and Mills and remained 

for some time a mathematical curiosity until the idea was used by Glashow, 

Weinberg and Salam to build a candidate theory of the weak nuclear interaction, 

and later used by others to encompass the strong nuclear force.

The Standard Model is an SU (3) <8 > SU (2 ) ® U (l) gauge theory which is 

spontaneously broken to 5f/(3) (8 ) U{ 1 ). The quantum numbers associated with 

the respective groups are termed color, weak isosopin and weak hypercharge. 

There are three types of field in the theory; the force-carrying gauge bosons of 

which there are twelve, consisting of eight gluons(strong), 3 vector bosons(weak) 

plus the photon which transform as (8 , 1 ) ® (1,3) ® (1 , 1 ) under SU (3) ® SU(2); 

fifteen 4-component complex spinor m atter fields
• /  \ / \ '

Ve I Ui \
d iR. cr ; ; u iR

1 e ‘ ) l I
which transform as (1 , 2 ) ® (1 , 1 ) ® (3 ,2 ) ® (3 ,1 ) ® (3 ,1 ) under 51/(3) ® SU(2). 

There are three families of this type.

The last type is of course, the scalar fields; one complex isodoublet with four 

degrees of freedom, which has not been detected so far, and which, through the 

mechanism of spontaneous symmetry breaking(SSB) gives masses to the fermions 

through their mutual Yukawa couplings, and masses to the vector bosons, plus 

an extra longitudinal degree of freedom for the gauge bosons. Gauge bosons are 

naturally massless but the weak force is very short ranged, hence the need for 

masses.

2No one has yet found a use for non-compact gauge theories.
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0.1.2 Quantum  Chrom odynam ics

The Standard Model separates naturally into two quite distinct theories, quantum 

chromodynamics(QCD) and electro-weak theory(EW). The lagrangian density of 

QCD is

Cqcd =  Y F ,  ( i - f D ,  +  m j) 9 ,  -  jT rF '.F " ' +  ^ p f iF .F  (4)

where D is the covariant derivative and f stands for the different flavours of 

quarks having different masses and charges. The quarks are commonly known as 

up, down, charmed, strange, bottom and top. Up, charm and top have charge 

+ | ,  while down, strange and bottom have charge — The up and down are the 

lightest, the heaviest, the top is as yet undiscovered.

The evidence that QCD is the correct theory of the strong interaction comes 

from two distinct sources; one is the ‘hard’ evidence from deep inelastic scattering, 

the other being the predictions of ‘soft’ QCD in the form of chiral symmetry 

breaking theorems and the static quark model.

One very important thing to bear in mind is that quarks are not observed as 

free particles, they are only seen as bound states, i.e. the known hadrons.

Deep inelastic scattering at high energy and momentum transfer provides us 

with very strong evidence that the hadrons are composed of more elementary 

entities, and moreover that these constituents are fermions. These experiments 

also tell us that these ‘quarks’ are not the only constituents—the quarks only 

account for half the momentum of the nucleon—but there exist other particles as 

well, the gluons.

The gluons are thought to be the carriers of the colour force, and so bind the 

nucleus together. The observational data produced in this type of experiment 

are correctly explained in terms of the parton model. The phenomenon known 

as Bjorken scaling, correctly interpreted in terms of the parton model gives the 

most direct evidence that hadrons are not elementary.

The non-relativistic quark model of the hadrons also provides evidence for 

QCD. In this theory all hadrons consist of quarks; mesons are quark-anti-quark 

bound states while baryons are three quark states. This model favours these
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types of bound states only, and replicates the low lying spectra of the heavier 

mesons reasonably accurately i.e. the charmonium, cc and bottomium, 6 6 .

For example, in the quark model the ground state of the proton has spin-| 

and is modelled as one up and two down quarks, giving charge + 1 , in a relative 

s-state of orbital angular momentum, with two of the quark spins ‘pointing’ up 

while the other ‘points’ down. Such thinking is overly simplistic—where are the 

gluons in this strongly interacting system?—but the model is a reasonably good 

first approximation to reality. Inspired by the surprising success of this naively 

attractive picture one feels motivated to give a more rigorous treatment, but it 

is extremely difficult to do much better; calculation of bound states in quantum 

field theory is notoriously difficult and lattice simulations are as yet in an early 

stage of development.

The ‘naive’ quark model also tells us that quarks have an extra quantum 

number, called color, associated with them. According to the model the wave- 

function of the quarks should be symmetric in space<g)spin(8 )flavour. The A ++ 

is interpreted as having three up quarks in an orbital s-state which violates the 

Pauli Principle unless one adds color. The number of ‘colors’ is suggested as three 

from the observation of the R-ratio and from the chiral symmetry prediction for 

the width of the decay 11° —► 7 7 . Anomaly cancellation constraints also suggest 

that there should be three families of quarks for each lepton family.

Chiral symmetry is a symmetry of low energy QCD. It originates when one 

assumes that the up and down quarks are massless. In this theory the pion is 

interpreted as a pseudo-Goldstone boson. Since chiral symmetry is only approx­

imate, i.e. the up and down quarks being massive, yet light, the pion gets a small 

mass. This is thought to explain why the pion is much lighter than the next 

lightest meson, the rho. Chiral symmetry predicts that the gluons have spin-1 

and much else in terms of the so-called ‘soft pion theorems’.
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0.1.3 Electro-weak Theory

The lagrangian density for the electro-weak theory is

CEw =  -  jG'2 ~ ^ B 2 + J2 + W ri^ D ^ ' h) +
i

|JD^|2- c ( r $ - / < 2)2+ £  (A‘ (tf’t*) V r + h.c.) +
lep tons

E  (a°(J) (^i®) * m R + Ay(„) (fK T ^j + h.c.) (5)
quarks

where G and B are the kinetic terms for the SU(2) and U(l) gauge fields respec­

tively ( the physical W ±, Z , 7  are linear combinations of these). The subscripts L, 

R denote left and right handed fields respectively.

For spontaneous symmetry breaking to occur one requires g.2 > 0, then, in­

stead of having massless gauge bosons with only transverse degrees of freedom, 

one gets massive vector bosons, three of the complex scalar doublet’s degrees of 

freedom evaporating, to leave a massive neutral Higgs boson which couples to the 

vector bosons as gM w , gM z and as g j ^  the fermions, g being the SU(2) cou­

pling constant. There are no right-handed neutrinos in the standard electro-weak 

theory.

The successes of the electro-weak lie primarily in the discovery of the vector 

bosons at exactly the predicted mass, and in the measurement of the width of the 

Z, which in turns implies that the number of generations of neutrinos is three.

The untested aspects of the theory lie in examining the self-coupling of the 

gauge bosons, hence testing the explicitly non-abelian features of the gauge the­

ory, finding the top quark, which must exist, and finding the Higgs boson, of which 

there may be many or none. Of these aspects divulging the detailed structure of 

the Higgs sector is the most important.

Despite all these successes the Standard Model is seriously flawed; it is the 

best we have, and it does give the correct answers to all the questions we are 

capable of asking, but it provides remarkably few convincing explanations to the 

basic questions: Why are there three families? Why is charge quantized? Why 

are there no right-handed neutrinos? Are the forces of nature genuinely distinct, 

or are they the remnants of a single theory? and so on, and so on.
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Given enough parameters, one can always fit a theory to the data but this is 

a very unsatisfying situation for anyone interested in finding the ultimate expla­

nations.

For these reasons, theorists have been trying for a long time to find an all- 

encompassing theory with only a very small number of free parameters, which 

contains the standard model and in terms of which one may determine the large 

number of arbitrary parameters found therein. Ambitious attem pts have been 

made towards this with the so-called theory of Grand-Unified Theories(GUTS).

Beyond any grand-unification lies the spectre of gravity, so long ignored by 

particle theorists. Eventually it too must be found a place in these grand schemes. 

In this case supergravity and strings are the main contenders as Theories of 

Everything(TOES).

Later on will be given an indication of how scalars may play an important role 

in the theory of strings and in the context of the unification program in general, 

but first it is fruitful and necessary to consider one of the problems of the Standard 

Model in some detail, since it has direct relevance to the possibility of light scalar 

particles and is also instructive in that it shows how particle theorists work in 

attempting to extend the Standard Model, but in a conceptually simple way. 

This is of course the ‘Strong CP problem’ and its ‘solution’ via the axion.

0.1.4 T he Strong CP Problem  and the A xion

If one examines the last term of C q c d  one can see that it can give rise to CP 

violation in the strong interaction. This is because F.F  is odd under parity and 

even under charge-conjugation since F  is given by

pru = e^ “0pa0 (6)

where is the completely antisymmetric tensor in four dimensions. To pro- 

ceed further it is necessary to make some manipulations of the 0 -term.

It can be shown that F.F  can be written as where

F \ 0 -  9̂ f abcAhaAcl} (7)

This is known as the Chern-Simons current and it is gauge-dependent.

16



The contribution to the action of the 0-term can thus be written J  which 

upon using Gauss’s divergence theorem becomes /  dS^R**, where the bounding 

surface, S^, encloses an infinite volume. Such surface terms are usually discarded 

as they do not normally contribute to the action. However, in this case the 

contribution need not vanish since K ** is not necessarily zero at infinity. One can 

however get rid of the 0 term in the action by a chiral rotation of the fields, this 

in turn introduces a 6 dependent, CP-violating phase into the quark mass matrix. 

This term in the quark mass matrix gives rise to an electric dipole moment for 

the neutron. Experimentally this is very small, necessitating that 0 be very small 

also; |0 | < 1 0 -9.

This is the strong CP-problem; 0 is a strong interaction parameter, therefore 

its ‘natural’ scale is of the order of unity, but it is in fact minute. The fact that it 

is so small seems to suggest that it should be exactly zero, but there is no reason 

coming from QCD why this should be.

Peccei and Quinn suggested that the action should have an exact chiral 

symmetry—in which case the CP-violating piece of the mass matrix vanishes. 

To make the action invariant under this transformation they suggested introduc­

ing another Higgs doublet into the theory. This results in the theory having 2 

charged and 3 neutral Higgs particles plus an ‘axion’ with a very small mass. 

Other variations on this idea include the KSVZ version which in addition to an 

extra doublet has a scalar and a heavy fermion, and the DFSZ variant which has 

two extra doublets plus a scalar.

All these ideas introduce an extremely light, extremely weakly interacting 

pseudo-scalar particle known generically as an ‘axion’. The mass of the axion is 

approximately 1 0 - 2 //(G e V ) 2 where /  must be greater than 1 0 9 GeV.

0.1.5 Extensions of the Standard M odel

Other more substantial extensions to the Standard Model include GUTS and 

supersymmetric theories. The basic idea of the GUT scenario is that the gauge 

group of the Standard Model is a broken down remnant of a single, grand-unified 

group, G which contains the Standard Model group as a subgroup and which 

only has a single coupling constant. Because this larger symmetry is not manifest
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means that it must be broken at some very high energy; this leads to problems 

of its own, the ‘gauge hierarchy problem1.

Evidence for this hypothesis comes from the renormalization group flow of the 

Standard Model coupling constants. It is found that as we increase the energy of 

the particle interactions, the strong force becomes weaker while the weak force 

and electromagnetism become stronger. By extrapolation one finds that all the 

forces are of approximately equal strength at the colossal energy of 1015GeV. This 

is the unification energy.

Supersymmetry (SUSY) is a symmetry between bosons and fermions, perhaps 

providing the essential link between the duality of ‘force’, which is mediated by 

bosons, and ‘m atter’ which is in the form of fermions. This idea has a great 

deal of mathematical elegance and has been used over the years to do various 

things; to provide much needed cancellations in field theory calculations, to pro­

vide finiteness, to solve the gauge hierarchy problem and to sidestep the famous 

no-go theorem of Coleman and Mandula; that it was impossible to unify the 

compact Lie groups of gauge-invariant particle physics and the Poincare group of 

general relativity. Although very interesting, it would be inappropriate to go into 

too much detail about the myriad uses of SUSY. Nevertheless SUSY is a very 

beguiling idea; so far the concept of symmetry has been of profound importance 

to the model building process of particle physics and SUSY is in some sense the 

last remaining unexploited symmetry there is. Apart from the elegant theoret­

ical reasons mentioned previously, there may actually be some evidence for the 

existence of SUSY. Recent calculations suggest that to truly unify the coupling 

constants of the Standard Model, i.e. to make them equal at exactly one point, 

supersymmetric contributions are required. In any case, we shall probably know 

once the next generation of colliders are built, SUSY predicts that at least one of 

the SUSY particles must be absolutely stable and reasonably light.

GUTS and SUSY have largely been superseded in recent years by interest in by 

far the most compelling candidate TOE so far invented, the Superstring. Before 

discussing strings it is worth quickly mentioning the first pioneering attem pt at 

unification of fundamental forces, Kaluza-Klein theory. Interestingly enough, this 

theory and all modern extensions of it predict the existence of scalar particles in
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four dimensions.

The original idea of Kaluza and Klein3 was to unify general relativity and elec­

tromagnetism by encompassing them within a single theory of general relativity in 

five dimensions. In five dimensions there are twenty five gravitational potentials, 

the idea was then to reduce the apparent dimensionality of spacetime by ‘rolling- 

up’ one of the dimensions into a tube. The effective four dimensional theory now 

has sixteen gravitational potentials, four other potentials which are interpreted 

as electromagnetic potentials plus a single scalar field. Modern variations of this 

idea try to use even more dimensions and more exotic compactification manifolds 

than the cylinder used originally. These ideas are somewhat out of favour at 

present but it is interesting to note that the more popular TOES all use more 

than four dimensions, and hence all require compactification. Despite having lit­

tle practical impact on the development of particle physics so far, Kaluza Klein 

theory is the true ancestor of all unification ideas.

0.1.6 String theory and the D ilaton

The most favoured candidate TOE at present is the Superstring. The basic idea 

of string theory is to replace the zero-dimensional point particles of quantum 

field theory with one-dimensional objects, strings. These strings then sweep out 

worldsheets in a background spacetime rather than wordlines. Analogously to 

an elastic membrane in classical mechanics, this worldsheet has many different 

modes of vibration or ‘excitation’, these modes of oscillation are interpreted as 

being different particle states. The ‘higher harmonics’ of the string all have masses 

of the order of the Planck mass, but the lowest modes are massless and can give 

rise to particles of spin 0 , | ,  1 , | ,  2 , thus showing the possibility of unifying all 

particle interactions within a single theory. The existence of a spin-2 particle 

which seems to arise totally naturally, would seem to imply that the string can 

provide the first consistent quantum theory of gravity.

The action of the bosonic string is

J  d 2(  ( s / h h ^ g ^ X ^ d i X u +  X "  + V h R m ^ )  (8)
3They worked independently some years apart from each other and had somewhat differing 

views on the interpretation of their work, but here I refer to them as co-authors for the sake of 

brevity.
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is the spacetime gravitational field, h is the target space metric and X  is the 

string worldsheet vector. B is an antisymmetric tensor field which gives rise to 

a spacetime scalar in four dimensions which can be axion-like. $  is the dilaton 

field.

There are two important constraints which the string must satisfy; one is 

reparametrisation invariance, which in the case of the bosonic string results in 

the background spacetime be 26 dimensional, and modular invariance which puts 

important constraints on the type of boson and fermion fields one can put on the 

worldsheet.

Several string models exist; the bosonic string, above, which lives in 26 di­

mensions, the supersymmetric string( superstring) which requires 1 0  dimensions 

and the most important from a phenomenological viewpoint, the heterotic super­

string.

These theories all require more dimensions than the world really seems to 

have, and so need to be compactified in some way. This unfortunately has to 

be put in by hand as spacetime compactification seems to be a non-perturbative 

mechanism.

In any case to find what particle content string theory gives requires compact­

ification and then a choice of vacuum. Unfortunately there are thousands of ways 

to do this but it is worth mentioning that the string can give rise to a ‘flipped’ 

SU(5)®U(1) gauge theory which is a promising GUT4 candidate.

The most interesting aspect of string theory from the point of view of this 

thesis is the existence of the last term in the string action, the dilaton, $ . The 

dilaton is a universal prediction of string theory, all variations have it, and it 

seems to occupy a quite central role in the theory of the string. This is because the 

dilaton is multiplied with the Gauss-Bonnet two form, R^2\  on the worldsheet. 

This term is sensitive to sheets of different genus, i.e. numbers of ‘holes’ or 

‘handles’. Since in string theory ‘handles’ are equivalent to the vertices of field 

theory, that is represent interactions, it follows that the dilaton determines the 

coupling constant.

Classically, and to all orders in perturbation theory the dilaton is massless,

4This is not actually unified in the original GUT sense.
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but it is thought that it should obtain some mass since a massless scalar is ruled 

out cosmologically. What is more, this mass could possibly be very light. This 

is suggested by the hypothesized existence of a superconformal invariance linking 

the dilaton to the axion which was discussed previously. This invariance should 

only be broken by anomalies and so the dilaton mass should be reasonably closely 

linked to the mass of the axion, which is thought to be in the sub-eV range.

Of course, by reason of the vast choice of string theories there could be a very 

rich spectrum of light scalars but none are as well motivated as the dilaton.
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0.2 C osm ology

Although not concerned with cosmology per se, it is not inappropriate to give 

a brief summary of present thinking since the links between comology and particle 

physics are very close and also since the best theory there is of modern cosmology 

actually seems to demand the existence of a scalar particle.

The question one first asks oneself when seeing the subjects of particle physics 

and cosmology linked is this: what has each to do with the other?—one is con­

cerned with things that are extremely small, while the other is concerned with 

things that are extremely large. Of course, the answer is that they are linked 

because we live in a dynamical, expanding universe. The fact of universal ex­

pansion at the present epoch implies that the universe was much smaller and 

consequently, much hotter in the distant past.

The hotter things are, crudely speaking, the greater the energy there is avail­

able and the more energy one has, the more one becomes sensitive to small 

distances. So, it seems very likely that at very earler times in the past the struc­

ture of the universe was extremely sensitive to its most elementary excitations 

i.e. particles.

The ‘Standard Model’ of Cosmology is the Hot Big-Bang(HBB) model which 

states that the universe began at a definite time in the remote past in a cat­

aclysmic explosion known as the Big-Bang. The temperature was at this time 

incredibly high, and from this event the universe has been expanding and cooling 

ever since.

This is shown in table 0.1, listing against time, temperature and corresponding 

energy the relevant processes which dominated the evolution of the universe.

Mathematically this is modelled in terms of an isotropic, homogeneous, Friedmann- 

Robertson-Walker fluid model with metric

ds2 =  dt2 — R2(t)

written in comoving coordinates. It is thought that our universe is spatially flat, 

k =  0. The functional form of the scale factor, R(t), is found by solving the Ein­

stein equations for a perfect fluid with appropriate source terms; which amount 

to including pressure and energy density terms for whatever particles happened

dr2
-  hr2

+ r2dfli (9)
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to be in thermal equilibrium at that temperature. The scale factor describes how 

distances between objects are being stretched. Again if one looks at figure. 1 one 

can see what the appropriate degrees of freedom are at each specific instant and 

temperature. The scale factor varies approximately as t? for temperatures less 

than around 103K, and as t% for those above it.

The successes of the Hot Big Bang are impressive. The expansion of the 

universe correctly accounts for the Hubble recession. Galaxy surveys show the 

universe to be fairly homogeneous and isotropic. The abundances of light elements 

are correctly predicted, and finally the most convincing evidence is of course 

the Microwave Background Radiation(MBR), discovered by Penzias and Wilson, 

which has a black body spectrum and is found to be very homogeneous and 

isotropic and which is in a sense the faint echo of that initial conflagration.

Galaxy formation in the HBB is assumed to come from small initial pertur­

bations and subsequent gravitational instability.

The HBB is afflicted several serious problems, the solution to which may be 

some form of ‘inflationary1 period.

The ‘flatness’ or ‘oldness’ problem is this: the universe is thought to be flat 

and of critical density5 but this type of solution is an unstable fixed point of the 

FRW models. This means that if the universe today is of critical density then 

in the very distant past, it has to be of critical density to an incredibly high 

accuracy. For example, if the universe contained an infinitesimally small amount 

more m atter then the universe would have re-collapsed, and ended, millions of 

years ago. To resolve this situation within the HBB results in an ugly fine-tuning 

problem.

The ‘horizon’ problem is this: The MBR is homogeneous to an incredible high 

degree, but in the early universe not all of what we see as homogeneous could have 

been in causal contact—parts of the sky which could not have any ‘knowledge’ of 

each other are incredibly uniform in their structure—this is extremely puzzling.

Other problems are the monopole problem which asks why the universe was

5In the FRW models, depending on the initial density the universe may expand forever, 

recollapse in a ‘Big-Crunch’. The value on the density at which the behaviour of the model 

changes is called the critical density.
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not dominated in its early stages by various types of topological defect which 

must have been produced in copious numbers, and the dark matter problem; we 

can only see 10% of the matter in the universe which gravitates. Also, where are 

the inhomogeneities required to seed galaxy formation?

One possible solution to these problems could be Inflation. The inflationary 

hypothesis is this; at some early stage in the history of the universe it under­

went a period of exponential expansion, thus flattening out the universe, diluting 

monopoles and enabling, more of the universe to come into causal contact. The 

inflationary scenario also gives quite naturally the required spectrum of inhomo­

geneities for galaxy formation. This inflationary, or de-Sitter, phase is enabled by 

the presence of a scalar field in the early universe. There is however no favoured 

candidate for what this ‘inflaton’ actually is.

Inflation, as one might expect, has problems of its own. This is suggested 

by the large number of specific models that have been cited. They all more or 

less result in a tweaking of the scalar potential so that the scalar field has just 

precisely the right characteristics to reproduce the observational data.

Despite the problems in the fine details of this type of model it is hard to find 

anything which solves the original sicknesses of the HBB and which is as remotely 

as compelling.
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Time(secs) Temperature(K) Energy(GeV) Event

0 oo oo Big Bang
10-45 1 0 32 1 0 19 Planck era; particle creation, 

quantum gravity, strings?

io - 31 1 0 27 1 0 14 Unification time;

GUT particles, 

supersymmetry?

GUT phase tansition ? 

Desert?

IO" 6 1 0 15 1 0 0 Electroweak phase 

transition

CO1o

1 0 13 1 Quark-Hadron phase 

transition 

Hadron era; 

nuclear physics, 

pp annihilation

1 IO10 IO" 3 Lepton era; 

e+e~ annihilation

1 0 2 1 0 5 IO' 8 Radiation

COrHo

1 0 3 IO" 10 Matter 

Decoupling 

Galaxy formation

00r-4o

2.7 3 IO’ 13 Now

Table 0.1: H istory o f the U niverse.
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0.3 N eutron Stars and the Nuclear Equation o f State

Since the work in this thesis is primarily concerned with neutron stars it 

is necessary to provide some more detailed background than has so far been 

presented in this introductory chapter.

After a historical review the gross feature of neutron stars will be described 

along with experimental observations and the mechanics of model-building. The 

most important ingredient of this model building is the equation of state. For 

this reason the properties of nuclear matter will be reviewed also. This has direct 

relevance to the models constructed in chapter one.

0.3.1 H istorical R eview

Two Dutch physicists, Baade and Zwicky first proposed in 1934 that neutron 

stars could exist, noting that they would be small, extremely dense and highly 

bound gravitationally. They also pointed out that they could possibly be formed 

in supernova explosions.

The first models of neutron star structure were constructed five years later by 

J.R.Oppenheimer and G.M.VolkofF using the equation of state for an ideal gas. 

Their model predicted that such objects would have a maximum mass of 0.72M@.

At this time the principal motivation for the study of these objects was that 

they were thought to be a possible source of stellar energy; when this was shown 

not to be the case, interest waned dramatically, often accompanied by the excuse 

that such objects were too small to ever be seen anyway.

Interest sparked up again in the early sixties when the first quasi-stellar objects 

were discovered but again dissolved once it too was realized that quasars were 

nothing to do with neutron stars. Throughout this period the neutron star was 

not taken at all seriously, being regarded as little more than a theoretical curiosity.

These views were to change dramatically in 1967, for it was then that the 

first pulsar was discovered by Jocelyn Bell, then working at Cambridge as a 

research student in the research group of Anthony Hewish. This provoked a flurry 

of theoretical interest and it was Gold who first suggested that these periodic 

signals were being emitted by a rapidly rotating neutron star. This idea was soon 

accepted as being correct.
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In 1968 pulsars were discovered in the Crab and Vela nebulae, strengthen­

ing the link, first made by Baade and Zwicky, that neutron star formation was 

connected with supernovae and stellar deaths.

The next important findings were made by the UHURU satellite in 1971, 

which found the first compact X-ray souces. These are thought to be binary 

pulsars accreting gas from their companions.

The most important event of recent times was the observation of the supernova 

in the lesser Magellanic cloud, SN1987A. This confirmed a great many theoretical 

predictions about neutron stars, especially the verification of the existence of the 

‘neutrino burst’.

0.3.2 Gross Features of N eutron stars and O bservation

Neutron stars are small; radius approximately 15km, highly dense; central 

density around nuclear density, objects of approximately stellar mass with sig­

nificant suface redshift. They are formed in the gravitational collapse of massive 

stars, M  > 4M®.

The main properties of neutron stars can be calculated by considering cold, 

non-rotating perfect fluid models. This is done by solving the Tolman-Oppenheimer- 

Volkoff equation of stellar structure, using a given equation of state. This equa­

tion is actually the general relativistic equivalent of the equation of hydrostatic 

equilibrium.

The ‘equation of state’ is merely a. relationship of the form p=p(p) and is the 

crucial ingredient in this recipe; every aspect of the star’s structure is sensitive 

to it. The models constructed in this manner are parametrised by the central 

density of the configuration, pc.

Stable configurations are found for all central densities up to that for which 

the maximum mass is obtained. The maximum mass is very sensitive to the 

equation of state.

The internal structure of a neutron star consists of a number of distinct layers.

The surface layer is a region of density less than about 106g cm - 3  forming 

a thin outer shell to the star and containing only a very small proportion of its 

total mass. For this reason the surface is largely ignored by model-builders. It



is quite fortunate that the surface contains so little of the total mass since a 

proper treatment is difficult—rapid rotation and strong magnetic fields become 

important factors here.

The outer crust is a solid coulomb lattice of heavy nuclei in /^-equilibrium 

with a gas of relativistic electrons.

The inner crust, density between 4.310n g cm - 3  and nuclear density, 2.41014g 

cm-3, is a lattice of neutron rich nuclei.

The core will consist of a fluid of neutrons at or above nuclear density. If even 

higher densitities are available strange particles—‘hyperons’—or even quarks and 

gluons may appear.

Because the maximum mass is so sensitive to the equation of state it is very 

important to measure the masses of neutron stars found in nature. This data 

can then be used to provide an astrophysical bound on the properties of nuclear 

matter. For example, a mass determination of, say, 1.7Af© would invalidate all 

but the very ‘stiffest’ equations of state.

Mass determinations of neutron stars are found by applying Kepler’s Third 

Law to observations of binary pulsars.

The experimental limits found are consistent with general relativity and stan­

dard theories of hadronic matter, but cannot discriminate between competing 

theories very well. Observations are also consistent with conventional theories 

of stellar evolution which suggest that almost all massive stars evolve to a state 

where they have a cental iron-nickel core of mass 1.4M®.

Pulsar observations are the best ‘handle1 we have on neutron star properties, 

but are extremely difficult to model successfully. This is because the treatment 

of rapid rotation in strong general relativity is so difficult; most existing mod­

els assume slow rotation, uniform rotation and/or homogeneity which may not 

be appropriate. Rotation also invalidates the rather simple stability criterion 

mentioned previously. It is reckoned, however, that rotation cannot increase the 

maximum mass by more than 2 0 %.

The most worrying aspect of pulsar physics is that there is no single convincing 

model which explains how these rapidly rotating neutron stars actually ‘pulse’.

The emission mechanism emits radiation in a very narrow beam, with broad

28



band radiation at radio and optical frequencies and strong linear polarisation at 

radio frequencies also. No one has yet found an entirely satisfactory explanation 

of this.

0.3.3 T he N uclear Equation of State

Whenever one seeks to improve a neutron star model, the place to start is 

with the equation of state; the more accurately one can model the dynamics of 

nuclear m atter the more accurate the derived features of the neutron star model,

1.e. mass, radius, surface redshift and keplerian frequency, will be.

The equation of state is, in fact, fairly well known up to a density of approxi­

mately 2.41011g cm-3, but in modelling neutron stars it is the high density region 

which is of greatest importance. This is a consequence of the fact that, when one 

integrates the TOV equations one finds that over a major proportion of the star’s 

radius the variation of the density is quite modest. This leads to the ‘sensitivity’ 

alluded to previously.

Early approaches to nuclear physics were carried out within the framework 

of non-relativistic quantum mechanics. The problem is then to find a suitable 

phenomenological potential which can match the known data and an adequate 

ansatz for the many-body wavefunction.

Ths non-relativistic nuclear force is conservative and independent of nucleon 

velocity but does not obey the superposition principle. It depends on the sep­

aration and spins of the nucleons and conserves the total spin. Any candidate 

potential must reasonably fit low energ\' scattering data and also must satisfy, as 

closely as possible, the constraints impose by saturation.

Saturation is the property that the energy and volume of the nucleus increase 

in direct proportion to the nucleon number. This is actually a very severe con­

straint; many apparently satisfactory potentials are ruled out by it. One of the 

implications of saturation is that the nuclear force must be attractive for small 

numbers of nucleons but repulsive for larger numbers; it is thought this comes 

about by a combination of three things, the Pauli Principle, exchange forces and 

a repulsive core. The saturation constraints boil down to correctly deriving four 

numbers; saturation density, energy and compressibility of symmetric nuclear 

m atter and the ‘volume symmetry coefficient’.
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The earliest suggestion for the origin of the nuclear force was due to Yukawa in 

1935, who suggested that this force was due to the exchange of a massive virtual 

boson. The Yukawa potential is of the form ^7 —, where fi is the mass of the 

boson involved. This force is attractive for scalar bosons and repulsive for vector 

bosons. This picture is known to be too simplistic, but the Yukawa potential is 

still used in building potential models, except that there would be a sum of such 

terms with their coefficients fixed to give agreement with experiment. The Reid 

potential, which reproduces phase shift data very accurately, is of this form.

The other ingredient one needs in this recipe is the assumed form of the many 

body wave function. There are several names for the various approximations used. 

The ‘Hartree’ approximation is to use a product of the one-particle wavefunctions; 

the ‘Hartree-Fock’ is a Slater determinant of one particle wavefunctions, which 

allows one to include the effects of spin. The Hartree-Fock introduces ‘exchange’ 

terms into the interaction which add an effective attraction for repulsive forces 

and an effective repulsion for attractive forces. The next stage in sophistication 

is to include correlation effects. The wavefunction is now a Slater determinant 

of one body wavefunctions multiplied by the symmetrised product of 2 -body 

correlations. This is of the type used in the more sophisticated treatments of 

Pandharipande and, Bethe and Johnson.

The most popular approach, once potential and wavefunction ansatz are cho­

sen is to do a variational calculation, i.e imposing S < > =  0, where H is

the Hamiltonian of the system. This technique was first used by Pandharipande. 

The most highly regarded of the Pandharipande models is the Three-Nucleon- 

Interaction (TNI) model, which as the name suggests takes into account three 

body correlations. The TNI equation of state turns out to be very similar to 

ones constructed by Bethe and Johnson[8 ]. Since one of the Bethe and Johnson 

equations of state is used in chapter one it is sensible to review the basis on which 

it was constructed.

Bethe and Johnson used the constrained variational technique of Pandhari­

pande with a potential consisting of a sum of Yukawa terms, their coefficients 

tweaked to fit the nucleon-nucleon scattering data below 300MeV. The particle
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content of the models was the proton, neutron, uj vector meson6, and a scalar, <r, 

to simulate the attractive force from two pion exchange. Models were also con- 

struced with the hyperons, A, S, A. Bethe and Johnson used the formalism of a 

classical field theory since this would be valid for all values of coupling constant 

and also since the velocities of the particle could be expected to be quite slow 

which is why the potential was fitted to low energy scattering data.

The models constructed by Bethe and Johnson reproduce the phase shifts, 

neutron m atter binding energy and deuteron dipole moment as well as the Reid 

potential but give rise to a significantly stiffer equation of state. Stiffness is the 

principal quality of any candidate equation of state used in neutron star model 

building; a ‘stiff’ equation of state gives rise to greater pressure for a given density 

than does a ‘soft’ equation of state. Stiffer equations of state give rise to increased 

maximum mass, lower central densities, larger radii and thicker crusts than do 

softer equations. All the Bethe and Johnson models give maximum masses in 

the range 1.65M®—1.85M®. This is phenomenologically acceptable. The Reid 

equation of state is however, for example, ruled out because the energy loss rate 

of the pulsar in the Crab nebula is larger than the Reid potential will allow.

The hyperonic models of Bethe and Johnson are very similar to their non- 

hyperonic models. The main difference is that the equation of state is softened 

slightly.

The models of Bethe and Johnson can be criticized on several counts; they 

fail to achieve saturation, the uj coupling is too large, causality is violated at 

high densities and the hyperons are not really treated adequately. In spite of 

these faults the models are actually very good and agree surprisingly with the 

seemingly more rigorous TNI equation of state of Pandharipande.

0.3.4 U ncertainties

At densities much greater than nuclear density very little is known about the 

properties of matter. This gives one much freedom to speculate and indeed there 

exist a number of fascinating possibilities which could arise—pion condensates, 

exotic hyperon production or even a quark gluon plasma.

6The p and the <j> were not included since the do not couple as strongly as the u.
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A pionic condensate would lead to a softened equation of state and enhanced 

cooling by neutrino emission. This possibility is suggested by certain calculations 

which predict that the negative pion should appear at around twice nuclear den­

sity. Since pions are bosons there exists the possibility of a condensate forming 

at low temperatures.

However, the most obvious omission in neutron star theory there is, is a proper 

and systematic study of the hyperons. These appear at high densities due to weak 

interactions.

In this ultra-high density regime a different approach is also required, rela­

tivity must fully be taken into account. One formalism which does this is the 

relativistic mean field theory (RMF) of Walecka and his school. The most com­

plete treatment of the hyperons so far, the paper of Kapusta, Ellis and 01ive[9] 

uses this approach to ‘parametrize’ the nuclear equation of state. In their paper 

all the lightest hyperons were included. In this model various condensates arise, 

giving the baryons ‘effective’ masses. Charge neutrality and weak chemical equi­

librium give an equation of state with only one independent chemical potential 

plus five other parameters plus the values of the hyperon couplings which are 

unknown.

A large number of parameter choices were made in their treatment. The 

main conclusion they reached was that uncertainties in the values of the hyperon 

couplings lead to an uncertainty by a factor of two in the maximum mass for a 

neutron star. Other conclusions were that the E could appear at high density, 

softening the equation of state; a (f> meson condensate could exist, stiffening the 

equation of state and that quark-gluon cores were unlikely, though still possible.

More exotic possibilities in neutron star theory include the possible existence 

of entire ‘quark stars’ forming a third stable branch of compact objects beyond 

white dwarfs and neutron stars; and even ‘strange stars’ 7 with their remarkable 

properties. These ideas are at present purely speculative and it is difficult to see 

how they could be tested within the near future. Nevertheless, such possibilites 

make the study of neutron stars and their properties one of the most interesting

7In this idea it is speculated that three quark matter has lower energy per baryon than 

nuclear matter therefore being the true ground state of bulk matter.
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branches of theoretical physics.
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C hapter One

N eutron Stars and Scalar Fields

In this chapter the object is to consider the possible influence of a weakly 

coupled scalar particle, mass less than about one electron volt, on the constitution 

and evolution of neutron stars when the neutrons are sources of the scalar field, 

and then to find the consequent bounds on the mass and coupling of the scalar, 

finally comparing these with bounds obtained from other sources.

Considerations of this type have already been made in the paper of Ellis 

et.al.[3] These considerations shall be somewhat extended and refined in the con­

text of an explicit model which is detailed in §2.1. After that in §2.2 and §2.3 the 

method of solution is given for the constitution of such a neutron star which is 

also acting as a source of the scalar field; also discussed is the upper limit on the 

scalar coupling, g, implied by the fact of neutron star formation. In §2.4 detailed 

plots of the resulting star configurations are given, followed in §2.5 by the binding 

energies and maximum rotational frequencies for neutron stars with scalar fields 

which have masses in the likely pulsar mass range. In §2.6 the corresponding
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modification to cooling of the star by neutrino emission are given. In §2.7 the 

results are discussed, and whether any new limitations can be derived on the 

strength of the coupling for a given scalar mass.

This investigation of the possible presence of massive scalar fields in stars is 

closely related to work on the possible effects of massless[4] scalar fields. There 

are however, two principal qualitative differences between the massive and mass- 

less cases, both of which arise from the fact that a massless field has infinite 

range while a massive field is necessarily of finite range. Firstly, in the massless 

case, Birkhoff’s theorem does not apply and the metric exterior to the star is 

not Schwarzchild but a different one; secondly in the case of a very large or infi­

nite range field astronomical observations are very much more restrictive on the 

allowed coupling of the scalar field to matter[5].

This present investigation has also to be distinguished from the cases where 

there is a conservation law in the number of massive scalars, arising for example 

from a U (l) charge. Then there can, in principle, be boson stars[6,7,8] which axe 

to be regarded as macroscopic quantum objects with markedly different properties 

from that of ordinary neutron stars. Boson stars have a conserved number of 

bosons all in the lowest energy quantum state. These can also exist in association 

with fermions, making a boson-fermion star[7,8,9,10]. Although related to such 

other work in this present study the scalar field has the characteristics of a classical 

field to which it is impossible to ascribe a definite number of quanta. It is worth 

noting that because of this there can be no limiting procedure through which we 

may relate both types of study. This is disappointing since one might expect that 

there should be some analogue of the correspondence principle at work, especially 

since in certain parameter regimes it is found that the static configuration is 

dominated by the presence of the scalar field, the normal fermionic component 

of the neutron star acting only as a ‘seed’.

1.1 C on stru ction  o f th e  M od el

The system to be modelled consists of a neutron star interacting with a field of 

scalar particles of small mass, ft. It shall be taken to consist of a large number, 

about 1 0 57, of a single species of fermion, acting as a source for a scalar field, $.
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Only one species of fermion shall be taken for clarity since emphasizing differences 

due to the presence of the scalar field is what is required and not those due to 

the myriad complexities of exotic hyperonic equations of state.

The scalar particles have mass f.i and couple via a scalar coupling, coupling 

constant g, to the fermions; these two constants fix the physical theory sufficiently 

for the considerations of this chapter. The whole system is localized, and is held 

together by the mutual gravitational attraction of its constituents. The fermions 

are cold and degenerate, i.e. their Fermi energy is very much greater than their 

temperature. One therefore looks for static, spherically symmetric solutions to 

the coupled Einstein/Klein-Gordon equations with an equation of state for the 

fermions which is yet to be chosen.

There are a large number of possibilities for the choice [18] of equation of state. 

A very simple one is that for an ideal gas following the original prescription of 

Chandrasekhar[12], which was used by Oppenheimer and Volkoff[13] in their orig­

inal relativistic treatment of the neutron star. Though this has the disadvantage 

of giving maximum neutron star masses too low in the case $  =  0 , for simplicity 

of illustration it shall be taken as one of our examples since the greater interest 

lies in the essential differences between the cases with and without the scalar 

field. Our other example is one of the more realistic equations of state based on 

detailed considerations of nucleon-nucleon interactions[14,15]. Two equations of 

state are used so that by comparing the results from both it will be clearly seen 

in what respects any novel phenomena are generic, and what are peculiar.

The conventions for the metric and curvature tensors are (-  -  -) in the 

terminology of Misner, Thorne and Wheeler[16], Throughout 7i=c=l, and thus 

G = M Pl~2 .

1.1.1 Equations

The coordinate system is

=  ( t ,  r, 0, <f>) (1)

and the metric

ds2 =  B(r)dr 2 — A(r)dr2 — r2d02 — r2sm(0)2d<f>2 (2)
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is of the standard form. One attempts to solve the Einstein equations,

R ^  ~ \ (J ^ R = S ttG T ^  (3)

with energy momentum tensor given by

Tnu = {p + p)UtlUv -  p g^  +

d„$d„<t> -  l- g ^ g alsda$d0$> +  l- g ^ ^

(4)

where p is the pressure, p is the density, and U is the 4-velocity of the fluid. The 

fluid is in static equilibrium, with the normalisation — 1 , so that

U = 0,0,0) (5)

The Klein-Gordon equation is

( □ + ^ 1 $=  g j  (6 )

where J  —< 'F'P > . Equations (3),(4),(6) may be derived from the Lagrangian 

density

C =  — l—  R  +  -  m Fm
1o7tG 2

-  p i 1®2 +  sO tf#  (7)

where m and p are the fermion and scalar masses respectively and g is the

scalar-fermion coupling constant. In (4) the exact fermionic stress-energy tensor

has been replaced by that of a perfect fluid. The proof that such an approximation 

is valid for a large number of degenerate fermions has been given by Ruffini and 

Bonazzola[6 ]. In (6 ) has likewise been replaced by its expectation value over 

the degenerate fermion gas.

From the r r ,  rr components of (3), the r-component of the energy conservation 

equation, T = 0 , and (6 ), one may derive the following set of equations

A A2
A' = ------------h S-jrGrA2p + i irGrA$'

r r
+4;7rGp2rA 2$ 2 — $7rGgrA2$ J  (8)
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B'  =  —— -f 4 - 87rGrABp  + 47rGrB<b'2 
r r

-4 tt Gp2r A B $ 2 + 8 tvGgrABQJ  (9)

P = - ^ g \ p  + p ] - 9 ® J ‘ (1 0 )

<J>;/ =  < jj 'J ---------------------- [_ i x G r A ^ p  — p )  +
r r

4vGrp2AQ2 -  8 ;rGgrAQJ] +  p2A $  -  g A J  (11)

m is taken to be 939MeV, the neutron mass.

The above equations for A, B, p and $  contain the additional unknowns p 

and J. However, p and p are connected by some equation of state which, typically, 

expresses p and p in terms of one common parametric function of position. Also, 

in the cases that are dealt with, the source function J can be expressed in terms 

of the same parametric function. The equations of state used are discussed in 

§4 below; and these enable the 4 equations (8 )—(11) to be re-expressed in terms 

of just 4 unknown functions, these being A, B, $  and the equation of state 

parameter.

1.1.2 Boundary Conditions

To solve the equations (8 )—(1 1 ) it is necessary to specify boundary conditions 

which follow from physical considerations. These latter are

1. Regularity at r =  0 

Implying A  —► 1 as r  —> 0

2. Birkhoff’s Theorem

For the standard metric (2) the exterior solution of Einstein’s equations 

must be of the Schwarzchild form. This implies that A, B must tend to 1 

as r  —> oo.

3. The solutions describe a cpmpact star, i.e. are localized.

This may seem like a trivial point to make; it is not. Most solutions of 

equations (8 )—(1 1 ) do not describe neutron stars and finding those that do 

is a nontrivial numerical problem which is discussed in §1 .2 .2  .
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The conditions that are imposed on the solutions are

(a) p, p and J become effectively zero for r greater than some value, say R a. 

That is the star has an edge.

(b) <I>(r) —» 0  exponentially as r  —> oo; the whole system is compact.

4. Spherical symmetry as expressed in standard form (2 ) for the metric and 

Einstein equations (8 )—(11) leads to the following expansions around r =  0

A(p) =  1 +  ^ T {p° + *•* ~  9<b°Jo)r2 + ' ’ ’ (12)

B(r) =  6„ + 4^ V  +  3p0 -  fi*$02)r2 + . . .  (13)

H r )  =  -  g j 0)r2 + . . .  (14)

The free parameters in the model are //., p(r = 0) and g

As may be seen from (9)—(11), b0 is an irrelevant parameter for this static 

solution. The equations are linear in b, so that one can always shift this parameter 

without making any difference; if necessary b can be shifted at the end of the 

integration. The remaining task is to calculate the properties of the star, i.e mass, 

radius and binding energy for as large a range of (p, p0, g) as possible.

1.2 M eth od  o f S o lu tion

1.2.1 Principles and general m ethod

Analytical solution of the field equations is not possible except in very specialized 

circumstances. The basic method utilized is that used for other star equations[17]. 

That is, one integrates the equations numerically, outward from the origin, r =  0 

using an appropriate numerical procedure, which was in this case a fourth order 

Runge-Kutta method.

Given the physical theory, with a given p and g, the parameters which fix 

the initial conditions are those appearing in equations (12)—(14), namely pQ, 

or equivalently p0 or and 4>0; bQ is irrelevant as can be seen from equations 

(9),(10) and (13). In fact, as discussed below, for a given p0 the initial value of <&Q 

of 4>, is fixed by the condition of compactness. Thus, as in an ordinary neutron
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star, only one parameter, the energy density at the origin, is enough to fix the 

star configuration.

In integrating the equations (8 )—(1 1 ) out from the origin, to define the star’s 

fermionic edge, R a, a criterion such as p(r =  R s) < e is used. In the case of no 

scalar field the criterion is, in principle, p(r =  Ra) =  0 but as it shall be shown 

there are further complications in the presence of a scalar field.

Integration is continued outwards far past Ra to check that the scalar field 

$  has the correct asymptotic behaviour. Once one is convinced that it has, one 

may stop integrating and attach a Schwarzchild solution to the exterior. This 

then gives the star’s mass Ma, through the equation (R > R a)’,

= (15)

The number of fermions in the star is determined by the fact that in a cold 

neutron star model, such as this, the degenerate neutrons fill momentum-space 

up to a radius PF(r )> this being the Fermi-momentum for a volume element at 

radial coordinate r. The fermion number is then this quantity integrated over the 

star

Nj = ■£- f  pF6(r ) ' /A r2dr (16)
o7T J 0

One cannot define a similar expression for the number of scalars in the star, since 

$  carries no conserved charge.

An important and useful quantity to know is the binding energy. This is 

defined as

B.E.  = N jm  — Ma (17)

Since the precursor iron core is a much more extended object, its gravitational 

binding energy is small relative to the compact remnant; a similar argument holds 

for the influence of the scalar field on the binding energy. So its total mass-energy 

is approximately N fm  and thus (17) is the maximum energy available to the burst 

neutrinos during collapse. The positivity of the binding energy is not sufficient 

to ensure stability of an envisaged collapsed star configuration.

The difficulty in solving these equations is connected with the fact that the 

initial value of $  is undetermined by any condition at r =  0 ; this is not to say
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that it is a free parameter—it is not. For instance, if one chose values of $ 0 at 

random one would find the three types of behaviour seen in figure 1 .1 , where the 

solid line represents a curve of $  falling exponentially outside the fermion edge 

(at large distances $  ~  ), For the value of 3>0 corresponding to this curve

there exists a star with a well-defined mass and a well-defined, though fuzzy, 

edge, outside which the metric is approximately of Schwarzchild form. This value 

of $ 0, unique for a given pQ must be found by iteration and defines the lowest 

energy or ground state of the star.

The iterative procedure used to find the correct value of $ 0 makes this initial 

value problem very similar to an eigenvalue problem. Indeed a similar procedure 

is gone through in the case of boson stars or boson-fermion[9] stars, where the 

eigenvalue is the lowest frequency associated with a quantum state of the scalar 

field; the configuration of that scalar quantum wave function is analogous to the 

configuration of our classical scalar field. Similarly to the quantized case, there 

may exist in our present situation higher energy states of the star in which the 

classical scalar field $  has the correct asymptotic behaviour but has nodes.

Checking that $  has the correct asymptotic behaviour is very computationally 

expensive since one typically has to do several integrations to find each single 

configuration. Because of limitations of time this puts an intrinsic error into the 

final results.

The exact method used to find involved choosing an initial guess, then 

integrating the equations until one of three things happened. If the scalar field 

became negative, this showed that the guess was too low and so the next guess 

was taken to be higher. If the scalar field began to increase then a lower guess 

was taken. If the scalar field went smoothly to zero then this was the correct 

value required. In this fashion the procedure successively subdivides the interval 

of investigation so that eventually the computer will ‘home-in’ on the required 

value of $ 0.

The efficiency of this method is itself a function of the scalar field parameters, 

and indeed breaks down or becomes too expensive in certain cases. The nature 

of this behaviour and the difficulties caused by the exponential tail of the scalar 

field are discussed further on.
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1.2.2 L im itations and Approxim ations

1.2.2.1 Scalar mass

The method described above for finding the scalar central density, $ 0, is sensitive 

to the scalar mass, /x; for the heavier masses of our range, corresponding to smaller 

Compton wavelengths, the iteration procedure to find the correct asymptotic 

behaviour becomes very slow. A serious fine-tuning problem develops. For a 

neutron star and values of fi > 10-9eV it becomes effectively prohibitive to 

apply.

Fortunately, for a neutron star typically of radius ~  1 0 km, the scale of signif­

icant variation of the scalar field is > 0.1 km. This means, since he = 2 10-loeV 

km, that for fi > 10~9eV it is a permissible approximation to neglect the $  

derivative terms in (11), compared with the term Making the approxima­

tion, the scalar field is given in terms of the fermion density by

* = ^  (18)

Substitution of this, with J given as in §2.5, into (8 ) to (1 1 ) gives just 3 equations 

to solve, which is like solving for a star without scalars, but with a modified 

equation of state for the fermions. There is no difficulty in this.

In the ultralight region of mass, // < 10-1°eV the approximation is not valid, 

and not required anyway.

The method also fails for masses less than 10- 13eV. In this case it seems that 

whatever initial guess for the scalar field one makes, the scalar field and fermion 

density remain constant for far larger distances than those associated with normal 

neutron stars. This is largely due to the fact that the range of the scalar field 

is now much larger than a normal neutron star; in some sense the scalar field 

hardly notices it is there. None of the solutions of this type can correspond to, 

or be associated with any known type of star and so are ignored. In any case the 

numerical procedures used successfully in previous cases, cannot be used here.

1.2.2.2 Coupling strength

It is found that for any given value of /*, there is an approximate limiting value of 

the coupling, g, in the sense that for greater values the star cannot be constructed
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because a proper star boundary does not form; this is similar to the behaviour 

described previously for very light masses but here it is due to having too large a 

coupling. Though this is the case for all /1 it is only possible to give the following 

qualitative analysis of this for the regime /z~10-9eV where (18) holds.

In the Einstein equations it is useful to compare the part of the energy- 

momentum tensor coming from the scalar field and its interactions with that 

purely from the fermions. That from the scalar field in, for example equation (8 ) 

is

8irGr i $ ' 2 + -  $7) (19)

making the substitution, and in this regime of p dropping the derivative term $ /2 

as small compared to /z24>2, the scalar field contribution is

 ̂(-&H (2o)
This is to be compared with SwGrp or SirGi'p. Forming the ratio

Stt G r \ { i J ) 2D _   2 V/i >
SirGrp

■  U t ) ’ ( 2 , )

One can illustrate this in terms of the Chandrasekhar equation of state, in §4 

below, when p, p and J are given in terms of a parameter t. Then

R  = f ^ 21 6 , V (2;iny - ^ 2 (22)
\ p j  ( s in h i-* )

R is greater at regions of high density, t large, towards the centre of the star 

and less at regions of low density, t small, towards the edge. The condition 

for the system to resemble, reasonably closely, a normal neutron star should be 

presumably that R<1 throughout most of the star. The coupling and the scalar 

mass occur only in the ratio and it is this which is the governing parameter. 

If ^ be too large then this condition will not be fulfilled and one should not be 

too surprised if the system fails to be a recognisable star.

Though one cannot make a simple quantitative argument like this in the 

ultralight region one would again expect that a too large source strength for the 

scalar field, would upset the neutron star-like nature of the system.
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One possible explanation is that the coupling is so strong that the neutron 

star is broken up into a very large clust cloud. It should be noted that this ‘strong’ 

coupling regime is still very weak by, say, particle physics standards.

The limitations on g in both scalar mass regimes are discussed further below, 

as is the associated problem of defining the star’s edge for those values of g which 

are relatively large but still star-forming. In either regime however, one has to 

be cautious about drawing a definite conclusion that a star could not exist for 

large coupling. It might be that the equations of state, including the fermions, 

should be completely revised.

1.3 E quation s o f  S ta te

The principal concerns of this chapter are with quantities such as total mass and 

radius which are mainly determined by the properties of the cold neutron gas 

forming the bulk of the star. Many equations of state have been proposed and 

used in evaluating the properties of neutron stars[ll]. Here the questions are 

what qualitative differences arise from the presence of a very light scalar coupled 

to the fermions and from these what ranges of scalar coupling and mass (g,^) are 

ruled out by existing observations.

In this chapter the object is to look at large corrections to the scalar case. 

Consequently it seems reasonable for one to take the view that all that is required 

of an equation of state is that it be not unlikely and fairly representative in a 

widely interpreted sense.

However, the study shall be started with an equation of state which is dis­

tinctly neither. This is the free Fermi gas equation first proposed by Chan­

drasekhar, used by Oppenheimer and Volkoff in their classic paper, and derived 

on the basis of relativistic quantum theory by Bonazzola and Ruffini. It is pre­

sented for its simplicity and for comparison with those of a more realistic equation 

of state. Even though the Chandrasekhar-Oppenheimer-Volkoff equation is not 

correct for a neutron star since it gives a maximum neutron star mass of about 

0.72M©, nevertheless it gives most of the qualitative features of neutron stars 

obtained from sophisticated equations.
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1.3.1 Free Fermi Gas Equation

Any volume element of the star at radial coordinate r is supposed to contain 

a free degenerate Fermi gas with all levels up to a momentum pr(r) filled, and 

all others unfilled. The Chandrasekhar parametrisation is given in terms of the 

parameter t(r) where

t = 4 log£ 2 4  + W1 +m (-)\ m  J
(23)

The pressure and density are given by

m
P =  

P =

967T2
m 4

32?r2

[sinh(f) — 8sinh(f/2) +  3£] 

[sinh(f) — t]

(24)

(25)

From the work of Bonazzola. and Ruffini the source term can also be evaluated. 

This is done by inserting the plane wave expansions for the Dirac fields, and after 

multiplying out, one is left with an elementary integral, which once expressed in 

terms of ‘t ’ gives for the source J = < 'P'P >

.3
J  =

m 
37r

[sinh(£/2 ) — t f  2] (26)

The 4 unknowns in equations (8 )—(11) are now taken as A, B , $  and t, replacing 

equation (1 0 ) for jjjf by

dt
dr

dp ,  d j
d t + 9 * l i

- 1
B '  r  V

2 B { p + p }
(27)

The above equation of state for a neutron star has low pressure for a given density 

compared with those stiffer equations of state based on known and surmised 

properties of nucleon—nucleon interactions. These considerations, referred to 

in the introduction, are quite detailed and have considerable uncertainties at 

high density, including the proportion of hyperons and whether a transition to 

hyperonic m atter takes place in the core of neutron stars.

Considering those given by Bethe and Johnson, and Malone et.al[14,15], they 

are all stiff enough to have the feature that the maximum neutron star mass is 

greater than about 1.6A/q. N ow stellar models for supernovae precursors lead to



an iron core with mass of the order of 1 . 5 all of whose nucleons collapse to form 

the subsequent neutron star. The few pulsars whose masses have been estimated 

are in accord with this number of nucleons. Consequently all the equations of 

state which we have just referred to allow the formation of neutron stars seen 

as pulsars. Thus any of these equations of state could form an a priori realistic 

basis on which to add the scalar field and estimate its effects, especially as we are 

looking for relatively large differences due to presence of the scalars.

1.3.2 B eth e and Johnson equation o f sta te  V N

Consider the equation of state model VN of [15]. The equation of state is given in 

terms of the parameter ra#, being the fermion number density expressed in units 

fm-3. There are three regions of nB:—

• High density : n# > 0 .7 /m - 3

In this region the equation of state has the following parametrization 

p = ( ^ ) 4(30.15nB2508)

/) =  ( ^ ) 4(91.6nfl + 18.8nB2-508)

• Intermediate density : O . I / 7 7 ? - 3  < rc# < 0 .7 /m - 3

nB{ f m ~3) P /(i% )4 p /  (ro) 4

0 .1 0 0.073 9.41

0.15 0.180 14.09

0 .2 0 0.369 18.89

0.25 0.671 23.81

0.30 1.126 28.81

0.40 2.517 38.95

0.50 4.682 49.47

0.60 7.752 60.54

0.70 13.16 72.60

Table 1 .1 : Numerically tabulated equation of state corresponding to Bethe VN 

model in the intermediate density region.
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• Low density : n# < 0.1 f in -3

Model VN of [15] is a high and intermediate density model. For the low 

density region the free fermi gas equation of §4.1 is used; matching is done by 

finding the parameter t for a given value of ns  by using the relationship

n B = g  (28)

and using the definition of t, (23).

It is also necessary to specify J, the source density of the scalar field. Model 

VN is an equation of state without the presence of hyperonic m atter even at high 

density. Accordingly it shall be assumed that there is only one species of baryon, 

the neutrons, and one Fermi-momentum pp, defined as above in equation (28) 

In accord with this assumption the source density J is

J  =  < >
m. /"pf p2dp
7r2 Jo (29)

\Jp2 + m 2

Equations (28), (29) give the source density as a function J (n # ) of the baryon 

number density ng, and completes the specification of the equation of state in 

the presence of a scalar field.

1.4 S tellar C onfigurations

Using both the equations of state described in §4, neutron star properties were 

calculated for boson masses, p, of 10“5, 10-7, 10-9, 10-1 1  and 10-1 3  eV. The 

coupling, g, was varied from zero up to the maximum value with which our 

procedure could form a star as discussed in §3.2.2 above. In all, over one thousand 

configurations were calculated, giving an extensive picture of the structure of 

these objects.

The boson masses investigated are exceedingly small on the scale of known 

particle masses and so correspond to macroscopic ranges of interaction, given in 

table 1.2 by their Compton wavelength for future reference. Particularly relevant 

is their relationship to a typical radius of a neutron star which is of the order of 

ten kilometres.
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p{eV) IO” 5 IO" 7 1 0 " 9 io - 11 IO" 13

Afl(km) 2  IO" 5 0 .0 0 2 0 .2 2 0 2 0 0 0

Table 1.2: Correspondence between boson mass and Compton wavelength for various 

values of p.

The scalar field produces between two static neutrons, an attractive force with 

Yukawa potential siHEizrZAej por comparative purposes write

9 =  7  9a (30)

ga =  =  2.16 IO-2 0  (31)
y/A'KMpi

So for 7  =  1 and the inter-nucleon distance less than A#, the force between the 

two neutrons is equal to that of the gravitational field.

Recall here the argument given in §3.2. This showed that for /z~10- 9eV, the 

dependence on g and p is only through the ratio

1.4.1 Star M asses

In a simple model of a neutron star, without light scalars, taking account only of 

the neutrons and with a given equation of state for these, the star mass depends 

only on one parameter such as the neutron central density, equivalent to pQ in the 

equation of state we have discussed above. The results can be described in a plot 

of star mass versus the parameter, p0 say, and takes the well known form of a 

curve with a series of turning points of which the first usually gives the maximum 

possible star mass corresponding to that particular equation of state.

When light scalars are present and for a given p and g, the situation is the same 

in this case. However, the primary interest lies in examining the variation with p 

and g, and this is more difficult to present. For both equations of state shall be 

used the parameter pQ =  p(r = 0), the central mass density. In figures 1.2a, 1.2b 

are given, for fixed p =  1 0 - 11eV, the surface plot of the star mass as a function 

of loglo(/0o[<7 cra-3]) and g, figure 1 .2 a. being that for the COV( Chandrasekhar, 

Oppenheimer—Volkoff) and figure 1.2b being that for the BJ( Bethe, Johnson) 

equation of state. The diagrams give! a good idea of the qualitative changes 

which can be induced by the scalar field. The result for zero scalar field can be
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clearly seen in the bottom front of the plots and note how the maximum mass 

can be drastically increased, and attained for smaller p0, when the coupling is 

increased. These effects hold for all p but are more marked in the ultra-light 

region. The corresponding plots for p = 10~5eV is given in figures 1.3a, 1.3b, 

showing similar though somewhat less prominent effects.

However for p — 10-5eV one can make a qualitative analysis of the region for 

the changes with g. In the equations (8 )—(11) it is for this mass, as explained in 

§1 .2 .2 , a very good approximation to put =  0  and $  =  Jy from equation (1 1 ). 

Equations (8 )—(10) then reduce to

1 dA 1 A n s-i A ~ /ooX— — =  b SirGrAp (32)
A dr r r
1 dB  1 A  . .

— —— — -----1 b b7vGr Bp (33)
B dr r r

f  -  («>

where

P = P(r ) ~  l ^ j 2 (r ) (35)1 p*

P  =  P ( r )  + (36)
2 p*

Equations (32) to (34) are the normal, scalarless, equations but with the 

pressure and density modified by equations (39) and (40). The equation of state 

for p and p is stiffer than the original equation of state. The increase of maximum 

mass with g is just what would be expected for increased stiffness.

One cannot make a similar analysis in the ultra-light region, p, < 1 0 - 9eV, but 

it is interesting that the effect is even more marked. Among others, one reason 

may be the greater range of the force due to the scalars. At p ~  10-11eV it is 

comparable, see table 1 .2 , with the neutron star radius.

For a given g and p the first turning point of the mass curve at pQ = pm say, 

gives the maximum mass in our models. For a one variable parameter star such 

as is being considered, it also marks the boundary between stable and unstable 

configurations; for p0 less than pm a star is stable, for pQ greater than pm up to 

the next turning point is unstable.
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As noted in §4 the evidence from stellar calculations and from pulsars in­

dicates that neutron stars are formed with a mass of about 1.5 M0 . For g=0 

the COV equation—the original calculation of Oppenheimer and Volkoff—gives 

a maximum mass of 0.72 M0 . However, for g large enough the presence of the 

scalar field converts this into an acceptable model from a purely phenomenologi­

cal standpoint. But one cannot take the point of view that this could correspond 

to physical reality as there are too many good arguments for the significant effect 

of nucleon-nucleon forces of normal provenance.

Thus for the results which will be given in the remainder of this section and 

in the next section, §2.5, the results from the second equation of state( VN of 

Bethe and Johnson) are quoted with more weight as corresponding more closely 

to physical reality.

In figure 1.4 is plotted the contour lines of constant maximum mass in the 

log(g)/ log( / 0  plane.

It has been shown in §3.2 that for /* greater than 10-9eV then the star equa­

tions depend on fi and g only through their ratio. Consequently in that region 

contours of maximum mass, M max(g,//) must be straight lines on the log/log 

plane, as is shown. In the ultralight region /.i < 10“9eV the plots show that 

M max becomes less dependent on //; in this connection one may note that for 

H < 10-11eV the range of the scalar interaction encompasses the whole star.

Neutron stars observed as pulsars seem to have masses of the order of 1.5Af0 , 

so for normal neutron star models, the maximum mass attainable is a significant 

guide to the equation of state. That is one of the reasons why favoured neu­

tron star models have an equation of state significantly stiffer than that in the 

Oppenheimer-Volkoff calculation, which gives a maximum mass of about 0.72A/0 .

1.5 S tellar P ro p erties

1.5.1 B inding Energies

In theories of supernova collapse and subsequent formation of a neutron star, 

most of the binding energy is released in a few seconds of neutrino pulse. Such a 

pulse was observed in SN19S7A and has been estimated at (2.5 ±  1) 1053 ergs. For 

a given equation of state the binding energy usually increases with the neutron
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star mass in the stability region of the neutron star, thus reaching its maximum 

possible value at maximum mass. For a given boson mass and coupling this is the 

situation in our model and thus for each (</, p) pair there is a unique maximum 

binding energy, B E max.

Not surprisingly contours of equal B E max on the log (g)/log (//) plane follow 

the trend of the maximum mass contours plotted in figure 1.4. However, a su­

pernova core is unlikely to be of the mass which would collapse to a maximum 

mass neutron star. So it is more relevant to consider the binding energies, as a 

function of (g,/j), which would correspond to a typical mass of a neutron star. As 

an example a mass of 1.4M®. is taken

Mass(M©) B.E.(1 0 54) ergs J(10- 9 )eV-1 log p0 Radius(km) Angular freq.

1.38 0.286 0 .0 15.12 11.07 7261

1.39 0.289 0.5 15.12 1 1 .1 0 7254

1.40 0.300 1 .0 15.12 11.16 7233

1.40 0.315 2 .0 15.10 11.44 6900

1.40 0.330 3.0 15.06 12.13 6400

1.40 0.328 4.0 15.00 13.15 5600

1.40 0.288 5.0 14.92 14.60 4800

1.39 0.248 6 .0 14.80 16.74 3921

1.41 0 .2 1 0 7.0 14.63 19.16 3229

1.40 0.190 8 .0 14.46 21.80 2660

1.40 0.170 9.0 14.30 24.30 2250

1.40 0.150 1 2 .0 13.92 31.6 1520

1.40 0.130 13.0 13.82 33.9 1370

Table 1.3a: Neutron star binding energies and other parameters for mass ~  I AMq  

as a function of the coupling to scalar mass ratio g/fi. Because of the scaling noted in 

the text these values hold for p > 10-9eV. p0 is in grams per cubic centimetre. Angular 

frequency is in radians per second, g/p  is in eV-1 . The equation of state used was 

Bethe and Johnson VN.

In table 1.3a is found, for this neutron star mass, 1.4A/©, and p >  10-9eV the 

binding energy and other properties of the star for a range of values of the coupling
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to scalar mass ratio, g/p.  One can see that as g gets larger, for a fixed p, the 

radius of the star increases and naturally with this the fermion central density, 

p0, decreases. Thus for the maximum value of g/p  given, g =  13 lO^eV--1, 

the radius is about 34km and the central density about 1014g cm-3, lower than 

nuclear density, a picture which is quite unlike the standard model of a neutron 

star. For values of g/p  > 3.0 10- 9jeV -1  radius increases sharply, and g2J 2(r) 

decreases with g so that the effective equation of state indicated by equations 

(35), (36) is becoming less stiff for those larger values of g, but still of course 

stiffer than for g =  0 .

For most of the range of g the binding energy is clearly compatible with the 

observations from SN1987A and still at g/p  =  13 10- 9  it has only fallen to about 

1.3 1053ergs, a value which cannot be ruled out.

Mass (Mq) B.E.(1054) ergs s ( io 19) log Po Radius(km) Angular freq.

1.40 0.30 0.5 15.11 12.32 6220

1.40 0.28 1 .0 15.00 18.0 3500

1.40 0.26 1.4 14.86 25.3 2 1 0 0

1.40 0.17 1.6 14.61 33.4 1400

1.40 0.146 1 .8 14.15 40.0 1 1 0 0

1.40 0.125 2 .0 13.99 45.0 900
Table 1.3b: Star configurations for a fixed scalar mass, p = 10-11eV calculated 

as for table 1.1.3a.

In table 1.3b, still for Ma = 1.4M@ but now with p =  1 0 -11eV is given the 

same quantities for a more limited range of g. As discussed below in §6.2.2 the 

definition of radius is not so clear-cut for this value of //, which corresponds to 

a range of 2 0 km, but the same tendencies in radius, central density and binding 

energy are observed as in table 1.3a.

1.5.2 Radii and M axim um  R otational Frequencies

There is an upper limit on the rotational frequency, related to the stars mass and 

radius because of the possibility of centrifugal breakup; rapidly rotating stars 

tend to shed mass at the equator. In this case the presence of a scalar field



can further complicate the calculation in the ultralight region of the scalar mass 

where the concept of radius becomes fuzzy.

To find the maximum angular velocity of a star, mass M, in a naive spheri­

cally symmetric model one might straightforwardly calculate the angular velocity 

for which gravitational attraction at the surface is just enough to supply the 

acceleration towards the centre, Keplerian frequency

/ — / in \
n* =  1-152 s ' 1 (37)

where M a is in M@ and R s is in kilometres.

Taking into account corrections due to non-sphericity and relativity it has 

been predicted that for a given equation of state the maximum Keplerian fre­

quency is [19,20]

n mal = 0.7210‘, v /M 7 (^ )3/2S- 1 (38)

where M 3 and R 3 are for the spherically symmetric configurations calculated for 

that equation of state. It is surmised that this formula is good to better than 

1 0 %, but that stars rotating faster than 0.9flmax may develop instabilities.

With scalar fields present further discussion is necessary. If first one considers 

the model equation of state without a scalar field, the curve of density versus 

radial distance would fall rapidly to zero near the star edge, and in this ideal 

model case the curve would be vertical at the star’s edge. When the scalar field 

is introduced then a sharp fermion edge is impossible; for if there were an edge 

then the scalar field would extend beyond it a distance of the order of and then 

there would be fermions dragged beyond the edge by the scalar field. Analytical 

and numerical calculations confirm that there is no sharp fermion edge, but rather 

a tail of interacting bosons and fermions. For > 10- 9eV, equivalent to a range 

of 0 .2 km, there is no practical problem; the fermion density drops sharply enough 

to enable the definition of an edge to better than 0.2km. It may be noted that 

near the edge the reasons that one may put $  =  <?<////, for // > 10-9eV because 

of the slow variation of <£' break down. However, this causes only a small error.

For fi < 10-9eV ‘tailing’ becomes a problem; already at fi =  10-11eV the 

tail must be of the order of 20km. Firstly, the edge is now seriously fuzzy
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(such a star profile is shown in figure 1.5) and the concept of radius becomes like­

wise fuzzy. Secondly the central density, <I>0, of the scalar field is determined as 

that density for which the scalar field for large radial distance, r, drops smoothly 

to zero without nodes; and for calculation there has to be a criterion of satisfac­

tion of this condition. Associated with any particular criterion is an error on 

the determination of $ 0. This is illustrated in figure 1.11. The longer the tail the 

greater is the difficulty in achieving a reasonably small error

This is the basic physical idea of what is happening. In more practical terms, 

the problem is to actually do with the fact that tailing behaviour of the scalar 

field induces a strong dependence of the derived star radius on the arbitrary 

parameters of the numerical procedures used. For example, when integrating the 

equations one does not wait until the t parameter becomes negative to define the 

edge; if one does then the program will crash. Instead a cutoff, usually a small 

value relative to the initial t value is used. When the effects of the scalar field 

become large, i.e. very small masses and/or large couplings, the fermion density 

begins to mimic the behaviour of the scalar field, tailing off very slowly instead 

of the usual abrupt stop. This leads to the problem of defining where the edge 

of the star is, and occurs in all boson mass regimes. In the light regime one 

can simply choose the cutoff to be some suitable value, and this suffices. These 

results remain insensitive to any other of the arbitrary program parameters. In 

the ultralight region further, more serious problems arise because there are a 

further two arbitrary parameters to contend with, i.e. the stopping criterion. 

This tells the computer that a found configuration has the required behaviour by 

stopping the integration if and only if the fermion density is less than its cutoff, 

and the scalar field at a certain multiple of fermion radius is a certain fraction 

of the starting value of $. Now, it turns out that the error introduced by this 

stopping criterion introduces an enormous error into the definition of the star 

radius.

In this way the tailing behaviour of the scalar field can also interfere with the 

convergence of the numerical procedure itself for very small masses.
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1.5.2.1 n > 10"9eV

The first result of the preceding discussion is that for fi > 10“9eV, with a given 

fermion central density and equation of state and a given (g,fi) yielding a well 

enough defined radius R s as well as a mass M5, one can define a maximum 

Keplerian frequency ftmax. This is shown in table 1.1.3a calculated using equation 

(38), where the central density has been chosen to give a neutron star mass 

M s= I A M q. Pulsar frequencies have been observed in the range

4200 > Qmax > 10. (39)

For the larger values of g given in table 1.3a the maximum attainable frequency 

is below 4200. Consequently this model implies a limitation on the value of <7/// 

for fi > 10- 9eV:-

-  < 0 .6  10- 8  e V - 1 (40)
P

This excludes those values of g which, as noted in §1.5.1 give a star configuration 

with low central densities very unlike the standard neutron star picture.

1.5.2.2 fi < 10“n eV

The conclusions arising in this region are much more complicated and uncertain, 

and this arises in large part from the definition of radius to be inserted in any 

formula for the Keplerian frequency, where there is a factor (M / R 3)1̂ 2.

A criterion which chooses a smaller R for a given configuration will give a 

larger fimax than a criterion choosing a larger R, and thus will allow a larger 

range of g for a given fi to be in accord with the observation (39). Thus if one 

chooses a smaller R criterion then one is being more cautious about what range 

of g can be excluded.

The criterion used in table 1.3a gives the range of g compatible with (39) as

^  <  1.0 10- 8  eV-1, fi =  1 0 -11eV (41)
/<

In making the choice of R-criterion one has to bear in mind that if a significant 

part of the tail breaks away the whole calculated configuration will be invalidated.
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Since for g/fi =  0.1 1 0 ~ 9 eV-1  the radius in table 1.3a is given as R=15km and 

the scalar field range corresponding to /*. =  10-11eV is 20km, the criterion used 

obviously tends to a smaller R rather than for a larger R criterion. Thus the 

upper limit on plausible g given by equation (40) is, if anything, too big.

1.6 C ooling  o f  N eu tro n  Stars

In the models constructed, there is a scalar field and m atter at high density. 

One can think of the scalar field as producing density dependent fundamental 

constants. Variation in these constants will affect any astrophysical process in 

the vicinity of the star. It therefore seems sensible to look at one of the principal 

phenomena associated with neutron stars; their cooling by neutrino emission.

The end stages of normal stellar evolution tend to result in the existence 

of an iron-nickel core of around 1.5 M®. This becomes unstable and collapses 

until the density is approximately that of nuclear matter. In this process around 

1 0 53ergs are released—about 1 0 % of the gravitational energy—mostly in the form 

of neutrinos. The internal temperature decreases rapidly from around 1011K to 

10loK.

For neutron stars starting at a temperature of between 109K and 10loK fur­

ther cooling also takes place, this time for a. considerably longer period, also by 

neutrino emission until the temperature drops below 108K, when photo-emission 

becomes important.

The equations which describe the structure of hot neutron stars can be found 

in Glen and Sutherland[2 1 ]. Within the star the thermal conductivity of the 

degenerate relativistic electrons is assumed to be extremely high. This simplifies 

the analysis greatly since it implies that the structure of the neutron star consists 

of an approximately isothermal core and a thin envelope. Only in the outer skin 

of the star is there an appreciable temperature gradient. Energy is lost from the 

neutron star, in this phase from 1 0 loK downwards to 108 K, primarily in the form 

of neutrinos which are produced by weak interactions in the core, and, since they 

have an extremely long mean free path, stream freely from it.

The cooling equation is

d V  _  f n FquBdV A ^ R 2(j TsaB c 
dt f n FcvdV ' ’
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where np  is the baryon number density, qv is the emissivity per baryon, B is 

goo, and cv is the specific heat of baryons. A subscript ‘c’ denotes the quantity 

to be evaluated at the core-envelope boundary. This boundary is thought to 

form when the density falls to approximately 10log cm-3. T'  is the internal 

temperature multiplied by #0o- This equation fully takes into account general 

relativistic effects.

In the analysis of neutron star cooling there are a number of important ingredi­

ents, variations in which can change the ultimate consequences quite considerably. 

These include, the equation of state, especially at high density, the presence of 

a pionic condensate, neutron superfluidity, and high magnetic fields. All these 

considerations tend to make the conclusions, even in the most careful of studies, 

somewhat qualitative. In this section only a broad comparison is sought between 

the cases with and without scalar fields. Therefore the possible effects of high 

magnetic fields and superfluidity will be ignored.

For temperatures around 1 0 9 I\, the luminosity is dominated by the modified 

URCA processes

n -fi n — ► n -fi p -fi e~ -fi Ve (43)

n -fi p -fi t~ — ► n -fi n -fi ue (44)

The emissivity of the modified URCA process, eurca has been calculated by Friman 

and Maxwell [22] to be

Curca =  1 .8  lO21̂ 8^ ^ - " )  zrgscm~zs~l (45)
V m n J \  m p j  \ p nucJ

where pnuc is the density of nuclear matter, which we take to be 2 .8  1 0 14 grams 

per cubic centimetre. Tq stands for T  10_9 K, and mn)P* denote the effective

masses of the neutron and the proton respectively. Note the strong dependence

of the emissivity on these quantities. These so-called Landau parameters are 

poorly known from nuclear physics, and are generally taken to be about 0 .8  in 

conventional studies.

The specific heat of the neutrons is given by



Here the neutrons are being treated non-relativistically.

It is through the effective masses of the nucleons, we shall assume, that the 

effects of the scalar field are manifest. By inspection of the Lagrangian density 

(7) one can set

=  mniP -  g$  (47)771n, p

That is, one assumes our model without any extra contribution to the effective 

masses coming from nucleon forces appropriate to other equations of state.

The effects of general relativity in the cooling of neutron stars are twofold, 

firstly, they ensure that, even in the infinite conductivity limit there is a tem­

perature gradient. This can be an important effect for very heavy, very compact 

neutron stars. Secondly, radiation emitted from the surface is redshifted.

Since the effects of scalar fields on neutron stars seem to be to make these 

objects heavier, but also more extended, it shall be assumed that the core is 

isothermal. The crust contribution is also neglected. Since there are obviously 

a great many other factors involved, it is reasonable to simplify the analysis so 

that the effects of scalar field can be more clearly delineated.

The approximate cooling equation

dT f  eurcaBdV
dt f  npcudV

will be used. This is written as

(48)

where

1.8 10-51 J0R- ( ^ f ( ^ ) ( - £ - f /3B\ /Ar2dr
_   J u  v m n '  K trip pnuc ' ________    / c n \

n2 Icb 21 0 9 /  0R* n p pp~2 m n* y/A r 2 dr 

The general solution to (49) is

l°gioT i =  logioT o ~  g logiol1 +  6T06at] (51)

To convert from internal to surface temperatures one may use the approximate 

relational]

logioT { ss | l o g 10Ts -  7.5 (52)
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Temperatures are in Kelvin(K) and the time is in seconds.

Now, one takes stars of approximately equal, and phenomenologically accept­

able mass but differing g, and compares the cooling curves of these stars with 

that of a star without an attached scalar field. This is done for two values of /z, 

one light and one ultralight and using the Bethe-Johnson equation of state.

1.6.1 Light— ^ = 10“5eV

STAR l°gioA> g(1 0 "14) Mass(M@) Radius(km) a

0 15.10 0 .0 1.38 11.08 1.0910"62

1 14.92 5.0 1.39 14.61 7.3410”63

2 14.54 7.5 1.39 20.57 5.7210"63

Table 1.4a: Cooling factors,(a), for various stellar configurations with boson mass, 

/i=10-5eV.

1.6.2 U ltralight— f i — 10-11eV

STAR °̂gl()/*o g (io -19) Mass (A/@) Radi us (km) Q

3 14.95 1 .0 1.39 24.11 1.2610~62

4 14.68 1.5 1.39 29.72 7.03 10' 63

Table 1.4b: Cooling factors for configurations with boson mass of 10-11eV.

The resulting cooling curves are shown in figure 1.12a, and figure 1.12b.

The effect of the scalar field is to alter the cooling rate slightly, but the overall 

difference is negligible. Initially one might think that because of the fairly strong 

dependence of the URCA luminosity on the effective masses a noticeable effect 

could arise. Unfortunately it seems that changes in the integrated luminosity 

and specific heat largely cancel each other out, to within a factor of a few, and 

because the overall observational dependence is logarithmic, other physical factors 

will override any alterations caused by these.
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1.7 C onclusions and D iscu ssion

The effect of a very light scalar particle, mass less than leV, coupled to nucleons, 

has been studied on the physics of neutron stars. The nucleons act as a source 

of the scalar field and Einstein’s equations are modified through the change in 

the energy momentum tensor to include the scalar field and its interaction term; 

thus the gravitational interaction is modified both by a long range inter-nucleon 

interaction and by the gravitational effects of the scalar field.

There are two regimes of scalar mass. The light region, fi > 10-9eV and 

the ultralight region, fi < 1 0 - 9eV. There are two parameters associated with the 

scalar field, the coupling constant g and the scalar mass fi. In the light region 

the effect of the scalar presence on the neutron star only depends on the single 

parameter J  and the effect of the scalar field can be eliminated from the equations 

to yield normal neutron star equations with a modified equation of state for the 

fermion pressure and density. In order for this modification to be not so severe 

that a neutron star does not form it is necessary that ^ is less than or of the 

order of 2 10- 8eV-1.

As fi decreases into the ultralight region, g and fi have an independent effect 

on at least some of the physical quantities; for example over a large range of g the 

definition of the radius depends on ft in the ultralight region where the range is of 

the order or greater than 1km. This effectively put a lower limit of fi > 10-13eV 

on our numerical investigations. It was also found, as in the light region, that 

the formation of a neutron star required an upper limit on the value of g.

The principal objective was to investigate the effect of a scalar field on the 

non-detailed features of neutron stars such as mass, binding energy and radius. 

For example, no evaluation was made of the importance of the fine details of 

the structure of the surface. The investigation was made using two equations of 

state, the ideal gas equation plus a stiffer, more realistic equation due to Bethe 

and Johnson, which is the one that was most fully reported on. In both these 

cases very similar effects of the scalar field were observed; for example to form a 

star of a fixed mass an increase in g was accompanied by an increase of radius 

and a decrease of density.

Of particular interest is whether, from current or potential observation of
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neutron stars, limitations not available from other observations can be placed on 

the parameter pair (g,//). Currently available observations are pulsar frequencies 

and the binding energy released by the neutrino burst from probable neutron star 

formation in one supernova, both being associated with the theory of neutron star 

formation from the collapse of an iron core of mass about 1.5M@. There is also 

the observation of the surface temperature of the Crab pulsar, from which cooling 

rates are deduced.

In the light region comparison of calculations with the observations on ro­

tational frequencies imposes the limit of equation (40), g /p  < 0.6 10- 8  eV-1, 

binding energy and cooling, calculations give a somewhat less stringent limit 

than this. Though this rotational frequency limit can only be got using actual 

star configuration calculations as here, it unfortunately does not greatly improve 

the qualitative limits from other quantities (including binding energy and cooling) 

made in [3]. Thus over the range 10-4eV > f.i > 10-9eV one is left in the situation 

that Cavendish type experiments and astronomical and satellite observations[5] 

seem to provide a more stringent bound by a factor of about 1 0  or more.

For n >  10“3eV, corresponding to a range A# < 210“4m, data from Cavendish 

type experiments does not exist. There is the possibility of other data; for axions 

whose coupling to mass ratio can be carefully calculated or estimated there are 

limitations on this mass region from careful calculations on the evolution of red 

giant stars and the duration of the neutrino burst from SN1987A which would 

be affected by axion emission in this mass region[2 ]. In the case of the particles 

considered here, i.e. with scalar coupling, the coupling to mass ratio of equation 

(40) is significantly less than the axion coupling to mass ratio and there do not 

seem to be corresponding careful calculations of cooling by scalar emission in this 

mass region which might give much better limits than equation (40).

In the part of the ultralight region where we have been able to perform calcu­

lations the astronomical and satellite observations[5 ] give a more stringent bound 

than equation (41) by a factor of about 10.

Lastly, the importance of crust/surface structure must be mentioned. In this 

work this aspect of the scalar field/neutron star interaction has been largely ig­

nored, and yet it may be of vital importance to the structure of the star, especially
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with respect to the formation of an edge, and how this relates to the existence 

of the scalar field ‘Yukawa tail’. This has an obvious bearing on the question of 

rotation frequencies and perhaps on the efficiency of cooling also. It bears men­

tioning that in another type of exotic compact object, the so-called strange stars, 

the crust is radically different from that of normal neutron stars[23]. However, 

it seems likely that the surface structure would be strongly dependent on the 

particular type of scalar particle one is interested in.

This section leaves a number of subjects open for further investigation. There 

is the difficulty posed of finding analytical or computational methods capable 

of investigating for scalar masses less than 1 0 _13eV. No detailed investigation of 

light scalar particle emission in radial pulsations or in the gravitational collapse 

of the supernova, and the possibility of its detection, has been made so far. In 

the wider context one could consider the influence of a light scalar field on the 

pattern of gravitational collapse to a black hole, and its influence on much bigger 

and more massive astronomical objects.

These subjects will be looked at in the following chapters. While using the 

properties of these static configurations to produce astrophysical bounds on the 

light scalar parameters has been somewhat unsuccessful, satellite observations 

typically being better by an order of magnitude, these objects which are more 

massive, larger and more diffuse than ordinary neutron stars, and with fuzzy 

edges are quite interesting in themselves. To this end the dynamical phenomena 

associated with them will be studied further on. It is also possible that these 

dynamical processes will improve the bounds given by the static properties.

F igu re C aptions

F ig u re  1 .1 : Radial behaviour of the scalar field for arbitrarily chosen values 

of the central scalar field density, <I>0. The darker, central curve is the one which 

could correspond to a neutron star configuration.

F ig u re  1 .2 a: Stellar mass as a function of the central density, p0, and the 

coupling g. The mass of the boson is 10- 11eV, and the equation of state is that 

of Chandrasekhar.



Figure 1.2b: Stellar mass as a function of the central density, pQ, and the 

coupling g. The mass of the boson is 10- 11eV, and the equation of state is that 

of Bethe and Johnson VN[15].

Figure 1.3a: Stellar mass as a function of the central density, pQ, and the 

coupling g. The mass of the boson is 10~5eV and the equation of state is that of 

Chandrasekhar.

Figure 1.3b: Stellar mass as a function of the central density, p0, and the 

coupling g. The mass of the boson is 10-5eV and the equation of state is that of 

Bethe and Johnson VN[15].

Figure 1.4: Contours of equal maximum mass plotted on the log(g), log(^) 

plane; the figures indicate the maximum mass of the contour in units of M@. 

The dashed lines are for the COV equation of state and the solid lines for the 

Bethe and Johnson equation of state, log(g) ~  -20 corresponds to a coupling 

approximately equal to that of gravity in the sense of equations (30) and (31) of 

the text.

Figure 1.5a: Binding energy as a function of the central density and the 

coupling. Binding energy is in 1 0 53ergs. Boson mass is 10- n eV and the equation 

of state is that of Chandrasekhar.

Figure 1.5b: Binding energy as a function of the central density and the 

coupling. Binding energy is in 1 0 53ergs. Boson mass is 10~n eV and the equation 

of state is Bethe and Johnson.

Figure 1.6a: Binding energy as a function of the central density and the 

coupling. Binding energy is in 1 0 53ergs. Boson mass is 1 0 -5eV and the equation 

of state is that of Chandrasekhar.

Figure 1.6b: Binding energy as a function of the central density and the 

coupling. Binding energy is in 1 0 53ergs. Boson mass is 10_5eV and the equation 

of state is that of Bethe and Johnson.

Figure 1.7a: Radius, in kilometres, as a function of central density and 

coupling. Boson mass is 10- 11eV. Equation of state is that of Bethe and Johnson.

Figure 1.7b: Radius, in kilometres, as a function of central density and 

coupling. Boson mass is 10_5eV. Equation of state is that of Bethe and Johnson.

Figure 1.8a: Contour lines of maximum rotational frequency against cen-
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tral density and coupling. Boson mass is 10_11eV. Equation of state is that of 

Chandrasekhar.

F ig u re  1 .8 b: Contour lines of maximum rotational frequency against central 

density and coupling. Boson mass is 1 0 - 11eV. Equation of state is that of Bethe 

and Johnson.

F ig u re  1.9a: Contour lines of maximum rotational frequency against cen­

tral density and coupling. Boson mass is 10- 5eV. Equation of state is that of 

Chandrasekhar.

F ig u re  1.9b: Contour lines of maximum rotational frequency against central 

density and coupling. Boson mass is 10- 5eV. Equation of state is that of Bethe 

and Johnson.

F ig u re  1 .1 0 : Radial profiles for the fermion density (dark), and the scalar 

field(light). Note the tailing behaviour of the scalar field.

F ig u re  1 .1 1 : Demonstration of how error arises in the determination of $ 0.

All radial profiles which lie beneath and to the right of the dotted lines are 

acceptable field configurations. The exact position of where we draw these lines 

determines our ‘stopping criterion’.

F ig u re  1 .1 2 a: Internal temperature of neutron star versus log10[ time(secs) ] , 

starting initially from 10loK, for star configurations 0, 1 and 2 . 0 is the bottom 

line, 1 is the middle line and 2  is at the top.

F ig u re  1.12b: Internal temperature of the neutron star versus log10[ time(secs) ] , 

for configurations 0, 3 and 4. 3 is at the bottom, 0 is in the middle and 4 is at 

the top.
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Chapter Two

N eutron Stars: Radial O scillations, 
Stability and Scalar R adiation

In the previous chapter static neutron star-scalar field configurations were 

found and their properties examined. In certain cases, the effects of the scalar 

field could be quite dramatic. The differences, which arise due to the presence 

of the scalar field, can be thought of as being due to the fluid’s equation of state 

being significantly stiffened. The next, most natural, question one may ask is, 

which of these configurations are stable, which are unstable, and, what are the 

essential differences between the stability criteria for ordinary neutron stars and 

those for neutron star-scalar field configurations?

To answer these questions one must consider the adiabatic radial pulsations 

of the stellar configurations. Such considerations were first made for neutron 

stars by Chandrasekhar[1] in 1964 who derived derived the stability criterion 

for such objects in terms of an elegant variational formalism. This stability 

criterion depends crucially on the condition that the oscillating system does not
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lose energy. This is obviously true for normal neutron stars because the neutron 

fluid is localized and because can be no gravitational waves from a monopole 

source.

For the case of a neutron star with attached scalar field, the situation is more 

complicated. Monopole scalar waves can exist and so there exists the possibility 

of scalar radiation escaping to infinity and therefore the oscillations of the star 

will be damped. These scalar waves will carry away energy making the star lose 

mass, which will in turn, have a bearing on the stability of the system; will the 

star release a burst of radiation, then stabilize or will the whole configuration be 

dispersed?

A general analysis of such phenomena is extremely complicated because of the 

presence of the radiative backreaction and damping. However, in this chapter it 

will be shown that a significant simplification occurs depending on which region 

of scalar mass is being considered; it is found that the stability and the radiation 

problem can, to an extent, be studied separately. Only in the extreme ultralight 

region of the scalar mass will there be a strong mixing of these effects. It is 

worth remembering that in this region even static configurations were extremely 

difficult to construct, or rather many of the solutions found did not bear any 

great resemblance to any reasonable neutron star-like configuration.

Before such a discusion may begin one needs the actual pulsation equations 

for the star. These are derived in the next section.

2.1 D erivation  o f th e  P u lsa tio n  E q u ation s

Consider a static fluid-scalar configuration, C, labelled by the central density 

of the fluid and the mass and coupling of the scalar field, (p ,g ,pc). Unique 

for any value of these parameters there exist four functions which describe the 

configuration, A 0, B0, p0, $ 0. So one has

CWPc = (4>(r), B0(r), p0(r), $o(r))  (1)

where the four functions satisfy the time-independent Einstein Klein-Gordon 

equations



A A 2
A 0‘ =  —  -  —  -  8  i r G g r A , 2 ^ .  +  4 * G p 2r A 02<S>02 +  S i r G r A S p ,

r r
+4 v G r A ^ f  (2)

Bo = - —  + + SxGAoJo^o ~  4ffG>2rA 02 $ 02 +  8 irGrAoPo
r r

+4:r GrBo^o'2 (3)
B '

Po =  ~ 2^(p°  +  Po) -  9$oJo (4)

$  '' =
Ao' B :  2

+ »2A 0$ 0 — gA0J0 (5)
2A0 2B0 r

The metric of the static configuration is

ds2 =  B 0dt2 — A0dr2 — r2dQ2 — r2sm2(0)d(f)2 (6)

The strategy employed in this derivation will be to perturb the full time depen­

dent field equations about this static solution keeping only the linear terms in 

the perturbed quantities. These equations; Einstein, Klein-Gordon plus energy 

conservation and the equations of thermodynamics will be reduced to only two, 

the ‘pulsation equations’. These are the equations of motion for the fluid and 

scalar perturbations and depend only on the static quantities.

Consider the time dependent Einstein Klein-Gordon equations

ds2 =  B{t,r)dt2 — A(t,r)dr2 — r2d62 — r2 sin2 (0)d(f>2 (7)

now with the pressure, density and scalar field functions of t as well.

The displacement of the fluid is denoted £, and the fluid 4-velocity is now

(8)

This last relationship follows from the definition Ur/U* =  £, and the normaliza­

tion condition of the fluid 4-velocity U^U^1 =  1- 

The time dependent equation are

~4 +  44 -  SxGBJQ +  &rGui B &  +  SirGBp -  ^4v A r2 rA 2
B $ '2

+4ttG — — +  4xG $ 2 =  0 (9)
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(10)

1 A B f A $ 2
~r “1— r +  SnGAp 4 - SwGgAJ$ — 47rGg2  — + 47rG$/2 +  47xG—■=— =  0 (11)
r i  r l  r Q  B

SirGABp +  8nGgJ$AB  -  4ttG / S & A B  -  4ttG B & 2 +  ^
2 r

A!B ' n/2 B" A
+ -------1- B ' --------- 1- —

4 A  2 2
=  0 (12)

-
B

B
2AB  2 B 2

+  $ '
A! B'

+ g 2<f>-gj = 0 (13)
2A2 2AB Ar  

The energy conservations are omitted for the sake of brevity.

It is necessary to define here Eulerian and Lagrangian perturbations. Eule- 

rian perturbations, denoted 6X,  are measured by observers who remain fixed in 

the coordinate system while Lagrangian perturbations, denoted AX , are those 

measured by observers who move with the fluid. These types of perturbation are 

related by the following

AX = SX  +  X0'{

Making the following substitutions

(14)

A(t,r) = A 0[r) + 8A(t,r) (15)

B(t ,r) = B 0(r) + 8B(t,r) (16)

p(t,r) = p0(r) + 8p(t,r) (17)

P(Ur) = Po{t,r) + 6p(t,r) (18)

J{t,r) = J0{r) + 6J( t , r ) (19)

= $ 0{r) + 8$(t,r) (2 0 )

and inserting these expressions into the time dependent equations, after which 

expanding and linearizing, gives the following set

SA -  87TGgB0J0<S>0 + A i r G P B ^ , 1 +  8ttGBoPo + 
r £ A 0 r

—8 A' B n
.A0r.

+ —87xGgA0B0J0 +  87rGg2 A 0B 0$ 0

+6&[SvG*0'B0] + 6J[-STrGgA0B 0$ 0] + 6p [8kGA0B 0\ =  0 (2 1 )
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6 A
— -SxG/Up,,+ />„)£+ 8jrG*„'«$ = 0T A q

(22)

6A —  -+■ 87rGp0 +  8 7cGgJ0$ 0 — ■iirGp2^ 02 
L r*

+ 8p [SttGAJ

+6$ [STrGgA0J0 -  87iGp2A0$ 0] +  6 #  [8xG$o'] +

8J [S-KGgAoQo] SB
\ B '
B0 r

SB'
B 0r

=  0 (23)

87xGJ0$o — 47xGp2$ 02 +  8xGp0 +

A +
B, /2

Ap b j  
2AQ2r 2 r2A 0B 0 

A J§ 0  B o
4A02B 0 1 4A0B 02 4?rGX  “  2AqB o +  6A

B '

+6B

2r2A02Bc
b :

A q'B q'
2A03 B 0 

/2

Bo
/2

+ 8ttG

B0' +

4 A 2B 2 2 A 02
B J  , £ 0"

+

A03r
Bn"

+
2r2A 0B 02 2A0B 03 2A0 £ 02 2A0£ 02

£A'
+87rG«p +  8jtGJ0<5$ -  %*Gh2* M  +

.  2A02B 0

+ 87vGg$08J  

SB'
2 A 2r 2 r2A oB 0

8B'A0'B0' AJ6B' B J 8 A f
4“ . . o „ +4 A 2B 2 4 A 2B0 4 A 2B q 

8icG $ 0'6& 8 B " <5A"
2A0B 0 4A0B 0

=  0 (24)

( P o  +  P o )
s a  2^ B 0'i  , ,
 1- — H —  + £
2An r 2 Bn *

+ (p</ + p0')t  -  g $ 08J + 8p = 0 (25)

vA0 - c /  ,
(Po +  + 8P + (po + Po)t̂ -  ~ (Po +  Po) 2B  2

B '
+ T7t(8p + 6 p ) + g * 08J, + gJo,8*  =  0 (26)

Bn An +
A ' B '

2 A 2. 2AoB 0 A0r
+ p28<& — g8J

+ 8 B
’ B q' S J
2 A0B 02

— SB'

8A
+  a T

2 A0B 0 

p2$ 0 -  gJ0 -

* L
2 A 02 

A 0'$o'
2 A f

=  0 (27)
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To these are added the equations of baryon number conservation and the adia- 

baticity relation.

Baryon conservation is expressed as

V • n = 0 (28)

which becomes explicitly

uada (A?*) +  -^=<9,3 ( x / ^ u '3) =  0

n08A , f.. t n0A0 £ ( 2n0£ ( t ^    A /qox
——-----1- on -\----- -------1----------(- n0 £ 4- n0£ — 0 (29)
2iA0 A 0 v

Adiabaticity, i.e negligible heat flow in the system, is expressed by the relation

r' = I t  ™

The pulsation equations are equations (26) and (27) of the set. (26) describes 

the fluid oscillations and (27) describes the scalar oscillations. The derivation is 

however not complete. The pulsation equations are not in the required form. The 

remaining equations must be used to eliminate the unknown auxiliary functions, 

8A,8B,8p,8p,8J  from the pulsation equations.

From (22) after one integration, setting the constant equal to zero one finds 

that

8 A = —87xGrA02{pQ + p0)£ + 87TGrA0<&0'8$ (31)

and from the baryon conservation equation one also gets

( 2n0£ n0A 0't n08A
Sn = - { — + ^ A 7 + i A : + n ° t + n ° t )  (32)

The adiabatic relation gives

*p =
\ nQ /  \  n0 )

_ r i P s ( ^ + f e : + S + e ' ) _ p ^  (33)

and the ^-component of the linearized Einstein equations gives

(9 £ A f C f i A \

—  + + f 7) — Po£ +  9$o8J +  g ^ o JJ i  (34)
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There is no equation for 8B, but instead one for 8B'. This does however com­

pletely eradicate 8B from the pulsation equations since 8B and 8B' always appear 

in the specific combination which allows the cancellation to take place.

SB’ = +  8TrGA0B 0̂ 0rSJ + \&*GB„$Jr\ 6&

+ £$ ]^>'KGgrA0B0J0 — 8nGp2rA 0B0$ 0 + 8p\8nGrA0B 0]

IB—  +  8TrGB0p0r -f 87rGgB0J0$ 0r — AirGp2 B 0<fr02r (35)

There is no analogous initial value equation for 8J; in practice one would need 

to use the equation of state.

W ith these relations for the auxiliary functions one can then do a series of 

recursive substitions into the pulsation equations, which subsequently become 

extremely lengthy. In view of this it is convenient to define the pulsation equations 

as

-j- 0 2 ^^ 4“ T cl±8Q -f- <zs£ 4- o>6£ =  0 (36)

&i£ 4- b2C  -f- b ^ f +  b4  ̂ bs8$' b̂ SA* =  0 (37)

The coefficients are then

“ i =  4 -  (38)■tfo
a2 =  - 4 -  (39)

A 0
A  ' Ft ' 9o ° “ / i

a 3 _  2 A 2 ~  2 A 0B0 ~  A ^  ( '
aA =  p 2 — 167T G grJ0$ 0' +  167rGfi2r $ 0$ 0'

*  /2
- i i r G b f  + AttG —j — -  %ltt2G2gr2J0$ 0$ '2

+167r2G 2p 2r 2$ 02<!>0'2 — I67r2r 2p04>0/2 +  \§ ’K2G 2r2Y\p0$ 0l2 

2 tt GrAo’Q *  27rGrB0'$ 0'2 
A 2 A B0

a5 =  4nGr<&0'(Y xp0 - p 0 - p 0) (42)

a 6 =  87TG grA 0J0p0 -  87rGp2rA 0$ 0p0 +  87rGgrA0J0p0

— 8 ' K G p 2 r A 0 ^ 0p 0 — A-k G p o ^ oA - k G A oP o^ J  +
8nGYip0<&0' -f 82ir2G2g r2A 0J0$ 0p0$ 0' -  167v2G 2 p 2r 2 A 0<&02p0$ J

4-327T2G 2r 2A oPo2$ 0' -  16tt2G2r 2A 0Y i Po2$ o ~  4 ttGp0* 0' +  4 ttG A 0p0$ 0'
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-F327r2G2gr2A0J0$ 0p0$ 0' -  16tt2G 2p2r2A 0$ 02p0<b0' +  

327T2G2r2A 0p0p0̂ o ~ l§K2G2r2A C)Yxp0p0§ 0' -  4xGrp0 —

A ' A '
+ 2 n G r Y -  4ttGrp0- ~ ^  -  AirGrSjpo'

W0 ^Po + Po^

-T\Po
_ 2 £ i P o  _  r i p 0A 0/ _  P qB J  _  Y i P qB q 

r 2 A 0 2 B0 2 B 0
PoBj
2 B 0 

2 r  ip0

-  p0Y\ -  p j  -Y iPo

-  47TGA02Po2 -  AnGAoYxPo*

—32'K2G2gr2A 02Jo$oPo2 + 167r2G2/«2rM 02$ 02p02 — 327T 

+ 167r2G'2r 2A 02r 1p03 -  87tG A 02p 0p0 -  A7rGA0Y ip 0p0 

- 6 4 7 z2G 2g r 2A 02J 0$oPoPo 4- 3 2 k 2 G 2 p 2r 2 A 02$ 02p0p0 

—6ATr2G 2r 2A 02p02po +  327r27’2A 02F ip o2po 

—47rG A02p02 — 32ir2G 2g r 2 A 02J 0$ o P o 2 +  327r 2G 2p 2r 2A Q 

- 3 2 7 T2G 2r 2A 02p0p02 4- 167c2G 2r 2A 02Y lp0p02

+27rGrYip02Ao 4- 27rG 7T ip0p0A o' +   P°J*°
2 A 0 B 0r

Y\p0B0' 2tt G r A 0p02Bo' 27rGrAor lPo2£ 0'
B0r B 0 B 0

P o B ° '  a  n  a  B ° '  o n  a  r  B °— d  1- AirGrAoPopo-^- +  27rGrAor ip 0p0 —
DqT' t j0 Do

, n sy A 2 Bo' PoAjBJ Y iPqA J B J+ 2*G M „,. -g - -

P o A j B j  p0B j 2 p o B j 2
AA0B 0 AB02 A B 02

_ 2 p j j_  ^  4 ^ . 4 ^ 2 4 ^ 0 ^ ^ ^ '  
r

PoAo'Yi 2Yxp0' A ri a / ^ --------------------- AwGrAoPoPo
L A 0 t

+87rGV.4f.,r1p0p0' - 4-KGrAopcpJ + 47r6'r/l(,r1p0p0'
5 „ V  , . /"f T"1 /

— 2A,  j - + 4* G rA .r lP.p

Bo pd YtfoAo" „
2 Bn 2 A, ~ P o



47TG r $ J  (p0 + po -  T\Po) (48)

4nG grA 0J0p0 +  4i:GgrA0Yi J0p0 -  4nG p2r A 0$ 0p0 

-47rG p2rA 0r i $ 0p0 +  47rGgrA0J0p0 -  47rGf.i2r A 0$ 0p0

~YgJ0' +  4nG A 0p0<&0’ +  4'kGY iPo^ J  

+32;r2G gr2A 0J0$ 0p0$ 0' -  16tt2G 2p 2r 2A 0p0$ 02$ 0' 

+327T2 G2 r 2 A 2 p02 $  J  — \§K2G 2r 2 A 0Yip02§ 0' +  47xGA0p0^ 0' 

+ 32tT2G2g r2A 0J0$ 0p0$ 0' -  16tt2G2p 2r 2A 0$ 02p0$ 0'

+ 32n2G2r 2A 0p0p0$o' -  167r2G2r 2A 0Y1p0p0$ 0' -  ^ lP° — —

2'KGrp0B o ^ J  2nGrp0B 0,<f>0' , ,
---------- 5---------------------5----------- 4wGrp0Yi $ Q -

4IrG rr1$„V0' (49)

These can be ‘reduced’ to an even greater extent by repeated application of the 

time independent field equations, but this is not necessary since any practical 

usage of these equations must depend on a numerical treatment, and in this case 

there would be no need to express the derivatives of the time dependent quantities 

in terms of the time dependent quantities themselves.

The pulsation equations are a pair of coupled linear second order partial differ­

ential equations which describe the motions of the fluid and scalar pertrubations. 

They are parametrized by a complicated set of coefficient functions (a*, 6,) which 

depend on the static configurational functions in a non-trivial way. This makes 

an analysis of the properties of the scalar and fluid perturbations very difficult 

since such complicated equations of motion are, obviously, hard to solve. Also, 

since the static configurations are labelled by the triple (<7, pc) one has twelve 

coefficients for each triple, and one would like to see how the properties of the 

pulsation equations change as one changes ( g , p , p c), it would seem to be a quite 

hopeless task to make a general study of the system.

Again, the motivation for this work is in finding out which configurations are 

stable, the nature and bearing ©n stability of any scalar radiation emitted, and 

how this picture changes as one varies the parameters of the static configurations. 

The equations as they stand would seem to shed little light upon this, luckily an 

exhaustive analysis of the pulsation equations is not required. Earlier on it was
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found that the most important parameter for the static case seemed to be the 

scalar mass, it does not take too much intuition to see that this should be for 

the case of radial pulsations also. That this is indeed the case will become clear 

in the §2.3. Firstly, the more general properties which the pulsation equations 

may have or may not have should be discussed.

If one assumes a harmonic time dependence for the pulsation equations and 

then separating variables in the usual manner, the pulsation equations become 

an eigenvalue problem. To progress further one would need to know the num­

ber, distribution, nature and, eventually, the values of these eigenvalues. The 

‘nicest’ property that such a system of equations may have for the answering of 

such questions is that of self-adjointness. If the system has this property then 

one knows immediately that the eigenvalues are real, discrete and form an infi­

nite denumerable set( as well as other things). Knowing this information makes 

their subsequent calculation a whole lot easier, for example, one may then use 

a variational technique to estimate them. From there one may calculate the 

eigenfunctions and proceed to analyse the dynamics of the system in terms of a 

complete set of normal modes. Self-adjointness of the equations also guarantees 

completeness of the eigenfunctions, and so the problem becomes essentially solved 

once this process has been completed. This happens in the case of ordinary fluid 

neutron stars and is detailed in the next section.

So, one may ask: are the pulsation equations for the fluid-scalar perturbations 

self-adjoint? Without doing any hard work one may conclude immediately that 

they are almost certainly not, for one excellent physical reason: the system can 

radiate scalar particles. That the system can radiate must of course depend on 

the values of the defining parameters, and so far one has no explicit knowledge 

of this dependence; all the same, if the scalar coupling is strong enough and the 

scalar mass is light enough there must be some radiation.

To study this radiation one could integrate the full equations of motion and 

in certain parameter regions this is almost certainly required, however, the in­

terest here lies in studying configurations which are, initially at least, ‘close-to’ 

the static configurations of chapter one. To this end it would seem natural to 

regard the background configuration as static and then study the propagation of
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scalar particles on this background, i.e. ignoring the backreaction problem for 

the moment.

The equation for the scalar perturbations in the static background is ellip­

tic, non self-adjoint, and has to be studied over a non-compact domain [0, oo). 

This makes it difficult to analyse, and again one doesn’t know have any a priori 

information about the eigenvalues except the naive expectation that for any con­

figurations remotely resembling neutron stars the eigenvalues should be discrete 

and form an infinite set, perhaps having small imaginary parts to account for the 

damping of the fluid oscillations.

If one wanted to find the response of the scalar field for some initial pertur­

bation the best one could hope for is that some analogue of the normal Green 

function and normal mode expansions may be used, i.e. a quasi-normal mode 

expansion[4]. That is

6$(t,r) = J  J  G{t r\t' r')Q(t' r^dt'dr'  (50)

where G is expressed as a sum over the quasi-normal modes of the system

^

£  =  (51)
n

If successful, this method would enable one to find very accurately how much 

mass was being radiated by the star, as well as giving the precise scalar ‘foot­

print’ for the radiation. The method seems quite straightforward, get 6$  from 

(50), get G from (51), then get the eigenfunctions by numerical integration of the 

scalar equation once the quasi-normal modes are known. This apparent simplic­

ity founders on the fact that the evaluation of the quasi-normal modes is very 

difficult indeed. There are special methods for finding the quasi-normal modes 

of black holes[4] but these are not applicable for neutron star-scalar field sys­

tems. Instead, direct numerical integration is required, and lots of it, even for a 

single configuration never mind a representative sample of parameter space. So 

although this procedure seems possible in principle it appears to be prohibitive 

in practice.

Supposing one managed to do it, what would one find? Well, if the modes

were lightly damped then mass loss could be significant whereas if the modes
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were highly damped then little mass could be radiated away. Considering the 

backreaction problem to be ‘quasi-static1 one might then assume that the config­

uration would move to a less massive configuration on a curve of constant scalar 

coupling in the mass/coupling/density diagram. Since one would expect higher 

central density configurations to be less stable than the lower ones this reasoning 

leads one to expect that, similar to the ordinary case, the stable configurations 

lie to the left of the maximum mass ridge. This conclusion is borne out by the 

simpler methods detailed in the next section, where the stability criterion are 

given more fully.

2.2 S tab ility

When there is no scalar field present there is only one pulsation equation. 

By making the following manipulations, and assuming a harmonic time depen­

dence of the form £(£,r) =  £(r)eMt, the pulsation equation can be written in the 

manifestly self-adjoint form

+ + (52)

Where, in the notation of the previous section

p  =
rii  eJ b2 (53)

Q = (54)

w  =
S '

(55)

and g , 3>0 and JQ have been set equal to zero in the b-coefficients.

From the theory of Sturm-Liouville systems it follows that such a system has 

an infinite series of discrete real eigenvalues, and the eigenfunctions of the system 

£„ are orthonormal over [0,R) with respect to the weight function W.

It is this important property that gives one an elegant and practical way of 

determining whether or not a given configuration, C is unstable.

It can be shown that the eigenvalues of the system satisfy the following 

relationship[8]
2 So ( P t f  -  Q(n2) dr

U,\
/o" Win dr

(56)
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Of course, one does not know the eigenfunctions £n, but an estimate of the eigen­

value can be obtained by replacing the unknown by a suitable trial eigenfunc­

tion. By ‘suitable’, meaning one which satisfies the relevant boundary conditions. 

These boundary conditions are that the Lagrangian perturbation of the pressure 

vanishes at the star surface and the the fluid displacement is zero at the star 

centre

Vp —► 0 as v —> R  (57)

( — 0 at r =  0 (58)

A consequence of this is that the nth eigenfunction has (n-1) nodes in the interval

[0,R).
The evaluation of such an integral will always overestimate the value of the 

eigenvalue but it is this property which gives the stability criterion that is re­

quired, that is, a given configuration is unstable if for any suitable trial eigen­

function the right hand side of equation (56) becomes zero or negative.

Furthermore, if the fundamental mode of the star is stable, all other radial 

modes will be stable also, and correspondingly if any of the radial modes are 

unstable, then the fundamental mode will have the fastest growing instability.

For Newtonian stars several other results may be established, the importance 

of these being that while derived from the Newtonian theory, some tend to be 

general results applicable even in the case of General relativity. For example, a 

homogeneous star will be stable or unstable depending on whether the adiabatic 

index, Ti is greater than or less than | .  The general result for Newtonian stars 

corresponding to this, is that stars are stable or unstable depending on whether 

the pressure-averaged adiabatic index, is greater than or less than General 

relativity modifies this result further, for instance for weak general relativistic 

effects one has stability if

r ' - 5 > 4 r  (59)

where c is some number of order one. General relativity tends to make stellar 

configurations more unstable.

Further results enable one to study stability by looking at the plots of mass 

against central density( though mass against radius can also be used). Stable



configurations on the mass/density plot are found between critical points and 

have positive gradient. The critical points show where there is a changeover from 

stable to unstable and vice versa.

Another approach to the stability of neutron stars which has been used in 

recent years is that of catastrophe theory [7]. This method is completely general as 

opposed to the merely linear and extremely tedious analysis presented previously; 

it also tends to make the study rather easy. In this approach one studies how a 

‘potential function’ varies as a ‘control parameter’ is altered. The graph of this is 

known as the ‘bifurcation’ diagram. When there is only a small number of control 

parameters it is found that the qualitative nature of the bifurcation diagram must 

be one of a small number of generic types; these are known as catastrophes.

For the case of neutron star stability, the potential function is the mass of 

the configuration while the control parameter may be taken to be the fermion 

number. Consider the mass-density curves for white dwarfs and neutron stars 

given in figure 2.1 and the corresponding bifurcation diagram, figure 2.2. The 

branches AB and CD are known to be stable corresponding to white dwarfs and 

neutron stars repectively. Notice how the changeover from stability to instability 

is shown as a cusp in the bifurcation diagram.

This analysis is more general than the usual linear perturbation treatment and 

is very simple. The simplicity of this case is due to the fact that neutron stars 

are only one parameter systems, the only catastrophe for which is the simple 

fold. Multiple parameter systems are much harder to analyse in this fashion. 

A classification theorem, W hitney’s theorem, exists for two parameter systems, 

which allows, for example, a catastrophe theory analysis of boson stars to be done 

[6]. It has not been possible to perform an analogous study of boson-fermion star 

stability because there is no generalization of W hitney’s theorem which applies 

to this case which has more than two integrals of motion.

Despite seeming more complicated than that of ordinary neutron stars, it 

is still possible to use these methods for the case of neutron star-scalar field 

configurations since this is still a one parameter system. If one considers the 

mass/density plots for constant coupling one sees similar behaviour to that of 

figures 2.1, 2.2. An immediate consequence of this is that when there is no scalar
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radiation the stable neutron star-scalar field configurations lie to the left of the 

maximum mass ridge on the scalar coupling, central density plane.

2.3  R ela x a tio n  tim e  o f Scalar W aves

As stated previously, the general case of resolving the Einstein Klein-Gordon 

equations in which the star pulsates radially sending scalar radiation off to infin­

ity, is extremely complicated, requiring the full intensive apparatus of numerical 

General Relativity. It is possible though to gain significant insight into this prob­

lem by much simpler considerations.

By making an approximate calculation of how the scalar waves tend to damp 

the radial pulsations it is possible to see how the coupled stability-radiation prob­

lem separates into different classes of behaviour depending upon the value of the 

scalar particle mass as well as providing another useful bound on the scalar cou­

pling. For a certain region of scalar mass the treatment of the stability problem is 

similar to that of the pure neutron star case, though the equations are lengthier; 

in other regions one is required to construct the scalar propagator in the curved 

background and find the quasi-normal modes of the system, finally, only in a 

region so far unconsidered will the full numerical treatment of general relativity 

be required.

In this section the treatment is analogous to that given by Chiu and Morganstern[5] 

for the case of a zero mass Jordan-Brans-Dicke scalar particle.

One starts by considering the equations of energy conservation for the system

T»v.u =  0 (60)

Making the substitutions of (15)—(20) . , allows one to decompose the energy

momentum tensor into the separate contributions from the different components 

of the system
' T V * '  —  T  V V  I , M "  I r p  fjii /  / / > - .  \
-*■ — ■‘■star i ■‘■scalar  T  ■*■ g r a v  V /

The first term contains the static, time independent quantities corresponding to a 

static configuration of chapter one. The second contains the scalar perturbations 

which give rise to scalar radiation, and the third contains the perturbations of 

the metric tensor. These do not give rise to gravitational radiation since this is 

not possible from purely radial motions of the star.
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The covariant conservation equation (60), is not in the most suitable form 

required since it is not possible to use certain theorems of calculus which only 

hold for ordinary partial derivatives. To this end it is necessary to use instead 

of the energy momentum tensor, the Landau-Lifshitz pseudotensor denoted . 

The point of using this object is that instead of (60) holding one has

T yU = 0 (62)

where the comma now denotes the partial, rather than covariant derivative.

The pseudotensor splits up in a similar fashion to the energy momentum 

tensor; now one can do several useful manipulations.

Ignoring the gravitational perturbations one has

-  T'sta/ 1' =  TSc a /a /%  ( 6 3 )

Taking ft = 0, splitting v = (0,a) where a =1,2,3 and integrating gives

-  /  (Tjtar°°,0 +  T,t„r°°,a) dV =  J  ( r„ olor00,0 +  Tsea,or°“,0) dV  (64)

By Gauss’s divergence Theorem

-  /  T,tar° \ J V  = - J  T,tar° ° n J S  (65)

holds, and this vanishes for large spatial distances. Also the first term on the 

right hand side of(64)ill average to zero over a complete cycle, so that one is left 

with

-  J  rstarmfidV = J  T3caiar0anadS (66)

again using Gauss’s theorem.

This equation simply states that the energy loss of the is due to the flux of 

scalar radiation escaping to infinity.

Furthermore

/  Tstar°°dV = j  Tsca,ar°‘nadS  (67)

dt
~  = Jim [T , ĉ r°“nadS (68)
d t  Ft-* o o  J

= lim 47rFl2Tscaiaror (69)
dt H—o o
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Since the right hand side is approximately 47rR28§8$'  this gives the energy loss 

rate of the star as

— ~  47 r 8$8$'  (70)
dt

evaluated in the limit of infinite radius.

To proceed further one needs to find the far field waveform of the scalar field. 

The Klein-Gordon equation is

6<f> 6$ "  CJR/
----------------- b 6 $
B 0 A0 ^

A '  B '  2 =  Q (71)

o" + - a  +  (w — (i )a = Q (72)

<$$(£, r) = [ /  Qr2dr (73)

2 A 2 2 A 0B q A0r

Here the source term is now — (a5£' +  a6£). At large radial distance A 0, B 0 —> 1 

and A q\ B o’ —> 0” . Putting <!)<I>(2,r) =  cr(r)elut gives the simplified equation

2 
— <
r

An approximate solution to this is

sin(A:r — ut)  
r

This consists of damped, outgoing wave multiplied by the ‘strength of the source’ 

(in square brackets).

The condition that one actually has wave propagation is that k2 > 0, where 

k2 =  u>2 — fi2. This puts a very strong constraint on which class of configura­

tions can actually radiate. For example, most oscillation frequencies of neutron 

stars will be of the order of a millisecond and it seems likely that the oscillation 

frequencies of the neutron star-scalar field configuration must remain within no 

more than a few orders of magnitude of this. This is not unreasonable.

This implies that unless the boson mass, (.i is less than, or approximately equal 

to 10-11eV there can be no emission of scalar radiation. Without the emission 

of scalar radiation the pulsation operator will revert to being self-adjoint and so 

the treatment of stability can proceed in a qualitatively similar manner to that of 

normal neutron stars. This is exactly the information that is required to facilitate 

the decoupling of the various theoretical aspects of this problem.

Substituting the large radius solution for into the energy loss equation one 

obtains
d e \  1



The average energy of each oscillation is

( € ) a v e  =  \  J  P ( v 2 ) a v f  ( , V  = 7 r U  j Q P ^ r 2 d r  ( 7 5 )

 t_

Combining these gives < e > oue ~  e tr . Where t r ,  the relaxation time is defined 

as
r„ = (7g)

k ( t f Q r ’dr)

A rough estimate of this quantity may be obtained by assuming the following

Q ~  SnGgrAoJoPo (77)

and A 0 ~  1, J0 ~  Taking £ ~  r° gives for the relaxation time

= / “ N (a  +  4)2 1 m 2
R \ k / { 2a + 3) 327Tg2p03R 5

After substituting reasonable neutron star values this gives

t r  =  2 .5  1 0 - "  j  ^  (7 9 )fc g

An immediate consequence of this result is that any observation of a pulsating 

neutron star would put severe constraints on the coupling of the scalar field, thus 

providing a dynamical bound that provides a. link with the bounds that were 

derived from static quantities in chapter one.

2.4 D iscu ssion

As well as providing a strong bound on the scalar coupling, should ever a

neutron star be seen to pulsate, the relaxation time calculation provides the

information that the stability/radiation problem for neutron stars with massive 

scalar fields breaks down into three types of behaviour depending on the value 

of the scalar boson mass, /f, based on the not outrageous assumption that the 

pulsation frequncies for these combined scalar fluid systems must stay within an 

order of magnitude, or so, of their normal counterparts.

For p'>lO~11eV no radiation can take place. In this region the treatment of 

stability is qualitatively similar to that for ordinary neutron stars. The stable 

configurations lie to the left of the maximum mass ridge in the gjp  plane.
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In the region 10~13eV</* <|;iO_11eVsome scalar radiation is likely. If the mass 

loss is not too rapid one may do an accurate ‘quasi-static’ calculation by assuming 

the background metric to be static and then calculating the scalar propagator in 

this background. This is done by expressing the Green function as a mode sum 

over the quasi-normal modes of the system. The quasi-normal modes of the 

system have to be found by numerical integration of the pulsation equations. In 

this way the far field form of the scalar field may be evaluated accurately allowing 

an exact calculation of the energy loss of the system. The difficulty of calculating 

the quasi-normal modes of the system prohibits this more extended study.

For the extreme ultralight region the quasi-static approximation will probably 

break down and integration of the full time dependent Einstein-Klein-Gordon 

equations would be required. Again it should be emphasized that even finding 

static neutron star-like configurations in this region was extremely difficult.

F igu re C aptions

Figure 2.1: Star mass against density for Harrison, Wakano, Wheeler(HWW) 

equation of state. The branches AB and CD represent stable configurations 

corresponding to white dwarfs and neutron stars respectively.

Figure 2.2: Bifurcation diagram for HWW stellar configurations. Note the 

correspondence between the cusps and a change of stability.

Figure 2.3a: Mass contours against central density and coupling for boson 

mass 10-11eV and Chandrasekhar equation of state. The dark line separates the 

stable and unstable configurations.

Figure 2.3b: Mass contours against central density and coupling for boson 

mass 10-11eV and Bethe and Johnson equation of state. The dark line separates 

the stable and unstable configurations.

Figure 2.4a: Mass contours against central density and coupling for boson 

mass 10-5eV and Chandrasekhar equation of state. The dark line separates the 

stable and unstable configurations.

Figure 2.4b: Mass contours against central density and coupling for boson 

mass 10-5eV and Bethe and Johnson equation of state. The dark line separates 

the stable and unstable configurations.
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C hapter Three

G ravitational Collapse o f Scalar Fields

In this chapter the gravitational collapse of a scalar field coupled to a pres- 

sureless dust is analysed and discussed, extending the considerations of earlier 

chapters, which centred on static and pulsating solutions of the Einstein-Klein- 

Gordon equations, to the more general, time-dependent case.

The treatment applied here is however, a very simple one, being the natural 

extension of the original model of Oppenheimer and Snyder[3] to include scalar 

fields. This is not to say that the inherent simplicity of the model precludes it 

being informative or interesting, after all, it is well known that the main qualita­

tive predictions of the Oppenheimer-Snyder model are not significantly altered 

when more complex models are considered. It is in this spirit which this chapter 

is written; the object is to identify and study any major qualitative alterations to 

the Oppenheimer-Snyder model which could be caused by the presence of a scalar 

field, and to attem pt to interpret these differences so that information about the 

scalar field parameters could be gathered by a hypothetical observer.
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In the first two sections will be presented the derivation of the equations of 

motion and their solutions. The significance of these will then be discussed with 

respect to the possibilities of particle production, phase transitions and certain 

quantum mechanical phenomena.

Of particular interest to the study of collapse are the celebrated Hawking- 

Penrose theorems which predict the inevitability of singularity formation under 

most physically reasonable conditions. These conditions can in certain circum­

stances be violated by the presence of a scalar field and so there exists the pos­

sibility of singularity avoidance. Although this is not found to be the case, the 

solutions found do differ from the Oppenheimer-Snyder model, perhaps indicat­

ing that when treated ‘properly1 more exotic phenomena, i.e. quantum effects, 

phase transitions, could greatly alter the gravitational collapse process resulting 

in singularity avoiding ‘bounce’ behaviour.

In section §3.3 the problem of finding the spacetime exterior to the collapsing 

region is considered. This is of vital importance if one wishes to make a proper 

interpretation of the interior solutions, that is, describe what a distant observer 

would observe; this primarily involves predicting how the redshift of the collapsing 

object would behave. It is found that difficulties exist in carrying out this process. 

These difficulties are discussed and clarified.

3.1 E q u ations o f  M otion

In this derivation of the collapse equations the treatment of Weinberg[l] will be 

followed closely. The assumptions of the model are that the collapse is spherically 

symmetric, spatially homogeneous and isotropic; since it is the qualitative aspects 

of the situation which are of primary interest this should be perfectly adequate. 

The m atter present in the model is a ‘dust1 having the equation of state p=0. 

The coordinate system is

^  = ( r ,r ,0 ,0 )  (1)

where it is to be understood that these coordinates are co-moving.

The metric is

ds2 =  dt2 — A(t, r)dr2 — B(t,  r)(d02 +  sin20d<̂ 2) (2)
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This is the most general line element required for spherically symmetric, isotropic 

collapse.

The m atter content of the model is described by the energy-momentum tensor,

Tto/

r p  ______  r p  du s t  . r p  sca lar  i r p  in t e r a c t io n
J- p i/ — J- nis I -t hi/ "T J- pi/

= p U f l v

-  ^ g ^ g al3da$d0$ + 1 
- 9 ^ V ( $ , p )  (3)

where U is the 4-velocity of the dust, p is the energy density of the dust, $  

is the scalar field density, p is the mass of the scalar boson, and V ($ ,p )  is an 

unspecified potential representing the interaction between the scalar field and the 

dust.

Typical types of potential for a scalar field include a yukawa coupling to 

fermions, or a self-coupling of the form A4>4. These are the common

particle-physics type interactions present in quantum field theories. Throughout 

this paper the scalar field will be treated classically, but some of the possibilities of 

using a quantum description for the scalar field will be discussed. This potential 

can also be temperature dependent but this will not be considered here.

When one have a yukawa coupling present between the scalar particle and 

the fermionic ‘dust’ m atter particles, one can approximate the term by the 

following

< ~  < ^ 7 ° ^  >

(4)

= nF 
. P

m

where g is the coupling constant and m is the mass of the dust particle.

The evolution of the system is determined by the coupled Einstein/Klein-

Gordon equations

~ \ 9 nuR =  S t t G T ^  (5)

(D + "2)*  = %  («)
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Explicitly, these are1 

1 A'B' B '2 B" A B  I f
B  +  2A2B  +  4 AB2 A B  + 2AB + 4 B 2

„ //2$ 2 <h'2 <h2 gp<$>\8)rG ( , +  j  (7)

AB' B B '  0 , /oX
--------------- 1---------- =  S7rG$<& (8)
2 A B  B  2B2 W

B '2 A B 2 A A B  „ „ ,  / $ 2 O'2 p2$ 2
4fl2 +  4B2 “  B ~ B  ~  * (  2 +  221 2 +  m j  ^

—A'B'  B '2 B" B A 2 A B  B 2 B A  B
4v4 4A B  +  2A +  4A2 ~ 4,4 + 4B “  2A 2 ~

( ¥  $ '2 u2$ 2 oz>$\ , ,
SttGB) —  -  —  - i- l r - + ^ r ) (10)2A 2 m y

: i ( B  r  B' \  2_ gp
( b  2 /i2/  /T ^  \ 2 ^  _  A S /  =  m (11)

In the above ' represents and • represents

These equations are obviously very complicated. To make them tractable 

one can make the further simplifying assumption that $  and p are spatially 

homogeneous. This allows one to look for separable solutions.

A(t, r ) = R(t)2 f (r )  (12)

B(t ,r )  =  S(t)2g(r) (13)

Equation (8) now implies that S is equal to R. times a constant. This can be taken 

to be one by suitably normalising f and g. Also it is useful to re-define the radial 

coordinate as F = \Jg(r). Inserting this into the equations, and immediately

dropping the bar over the r to avoid any visual messiness, one has, since now

A  =  R 2f , and B = R 2r2, the following set

3 * 2 - 8 x GW p  +  ^  +  f - ^ ) + R - ^  +  £ }  = 0 (14)

xThe equations shown are specifically for the case of a Yukawa potential. Other potentials 

are dealt with similarly.

115



2 M  + fi2 +  8, Gf l 2 ( ^ - ^  + ̂ )  +  { - 7L  +  l }  =  0 (15)

" 3i?4> gp
$  + - 5 -  + p 2$ =  — (16)It m

Immediately one may see the benefits of these manipulations, the bracketed terms 

in equation (15) must be equal to a constant, which is taken to be k. This implies

/( r )  = (1 — nr2)~l (17)

Furthermore the radial coordinate, r, is re-scaled so that /2(0) =  1 and the bound­

ary condition 4>c =  0 is imposed. Equation (14) then determines the separation 

constant, k.

SttG (  , /z2$ 02 gp0$ o \  /1CA
K = - r ( *  +  _ 2----------(18)

The final set of equations to be solved is

-  M 1 »,

- 3 R $  o gp
$  + - 5 -  +  /< $  =  — (2 0 )n  m

3Rp , .
P+ R ( l -  £ )  “

The last equation comes from the r-component of the energy conservation equa­

tion T ^ . u = 0, and using (20) to cancel certain terms.

It should be noted that the interior collapse metric we have just specified 

is of Robertson—Walker type, and can have positive, negative or zero spatial 

curvature depending on the initial conditions. In many cases it is more usual to 

redefine the radial coordinate so that the curvature constant is +1 or -1, then the 

absolute value of the scale factor, R(t), is of physical relevance. Whenever the 

constant is zero, so that the metric is spatially flat, only the relative magnitude 

of the scale factor is physically relevant.

Finally, the interior metric of the collapsing star is given by

ds2 =  dt2 — R 2(t) ( —- ----  + r2d02 +  r 2sin2(0)d<^2') (22)
\  1 — xr J

where i?(f), p and $  are to be determined by solving (19), (20) and (21).
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3.2 R esu lts

The first figure shows the form of the scale factor, R(t), for the pure dust collapse 

model of Oppenheimer and Snyder. Note the characteristic cycloidal shape. The 

three curves correspond to initial expansion, contraction and stationarity. For

the star initially at rest, collapse to singularity occurs in a time |  ( ^ f ^ )

Figure 3.2 shows the scale factor for the collapse of a pure scalar configuration, 

and figure 3.3 shows the evolution of the scalar field itself. Particularly interesting 

is the ‘bump’ in the scale factor, which seems to be a general feature of scalar 

collapse.

In figure 3.4 can be seen the effect of varying the mass of the scalar boson 

upon the scale factor. Notice how the maximum value of the scale factor is not 

affected by any variation of the scalar mass; it depends only on the initial value 

of the scalar field. The time taken for the collapse to proceed to singularity is 

inversely proportional to the scalar mass, as would be expected on dimensional 

grounds.

Figure 3.5 shows the effect of variation in the initial value of the scalar field. 

As the initial value is increased the extent of the expansion caused by the scalar 

field increases markedly. Figure 3.6 shows the evolution of the scalar field cor­

responding to the largest curve in figure 3.5. In contrast to figure 3.3 the scalar 

field oscillates several times before diverging. If one examines closely the graph 

of the scale factor in figure 3.5 one can just see slight undulations in the scale 

factor which correspond with the scalar field oscillations.

Figures 3.7 and 3.8 show the evolution of the scale factor and the scalar field 

for a peculiar value of initial scalar field. Choosing such an initial value has 

produced a very strange pattern of behaviour of the scale factor. This is caused 

by the oscillation of the scalar field occurring near the time when the expansion 

has just reached its maximum.

So far, the overwhelming conclusion one may derive from these results is that 

the scalar field may, under certain conditions, tend to make the star expand, but 

does not prevent the eventual formation of singularities.

For these results, a non-zero initial value of the scalar field has been assumed— 

it sort of appears from ‘nowhere’. This can happen under somewhat more exotic
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circumstances than have been considered here, but perhaps it is more natural 

to expect that the scalar field must initially be of extremely small value. The 

question then arises as to what effect, it can have, if, starting from zero, the scalar 

field is driven by the collapse itself, perhaps from the motion of the dust particles 

through a yukawa coupling. Figure 3.9 shows a comparison of two collapses, both 

starting with zero scalar field but one having no yukawa coupling, and the other 

having such a coupling. Here there is no expansion, no scalar ‘bump’ but the 

coupling term has in fact accelerated the collapse; notice how the scale factor 

is significantly steepened in its late stages. Such a treatment of scalar particle 

production would seem to have little observational effect, the steepening would 

be very difficult to detect, but later on will be discussed how a more rigorous 

treatment of particle production could result in more significant alterations to 

the Oppenheimer-Snyder model.

Lastly is shown the scale factors for scalar collapse, but this time including a 

quartic self interaction for the scalar field. The effect of the coupling term is to 
increase the collapse time .

The basic conclusion one may draw is that in the early stages of collapse 

a large scalar density may halt contraction and cause expansion before finally 

collapsing to a singularity; in late stages, in this classical model, the scalar field 

may only hasten singularity formation.

While it may seem that this instantaneous ‘dumping’ of the scalar field is a 

somewhat unphysical process, it turns out that such a thing is entirely possi­

ble. This is precisely what happens when a spontaneously broken gauge theory 

undergoes a symmetry-restoring phase transition.

It has long been known that a spontaneously broken gauge symmetry can be 

restored at very high temperatures[15]. The scalar field originally in the asym­

metric vacuum evolves into the symmetric vacuum liberating the energy stored 

there. In the cosmological context this scenario has been used to create the ex­

ponential expansion period which is invoked in the inflationary theories. This 

expansion comes about because the scalar field gives rise to a negative effective 

pressure in the Einstein equations. It is interesting to imagine the effects of such 

a high temperature phase transition on a hot collapsing star. Qualitative consid­
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erations of this type have been made in the paper of Sinha and Prasanna[16]. The 

phase transition considered by these authors is that of the electroweak theory, 

which has a critical temperature of around lOOGeV, whereas the phase transition 

considered in the inflation theories is that of the GUT phase transition, critical 

temperature 1014GeV.

By the standard of stellar interiors, temperature around 10-3GeV, the electro- 

weak critical temperature is very high and possibly quite inaccessible in the course 

of normal stellar evolution. The whole scenario therefore requires quite unusual 

physical conditions to become possible. Several ideas have been proposed to sug­

gest how such high temperatures could be obtained but these are very speculative.

Assuming that such a high temperature can be obtained once the scalar field 

makes the transition to the symmetric vacuum, the energy release gives a negative 

pressure which tends to act against the collapse, perhaps causing an expansion. 

This expansion, if acting for long enough results in cooling, and a subsequent 

decay back into the symmetric vacuum; this results in a large amount of latent 

heat being released( assuming the transition is first order) which could result in 

a catastrophic explosion, with the heat being transported away. Eventually this 

cycle could repeat itself. Alternatively, the negative pressure could be just enough 

to halt the collapse, resulting in a new type of star, one with a core of symmetric 

vacuum. Simple arguments using the Tolman-Oppenheimer-Volkoff equations 

and Oppenheimer-Snyder equations show that such behaviour is possible.

Such a scenario demands that certain constraints be satisfied; firstly, by what­

ever means the high temperature must be attained, secondly the star must be 

in quasi-equilibrium, i.e. contracting very slowly, this lets one evade the entropy 

constraint pointed out by Sher[14] who used it to show that a cosmological bounce 

would, in fact, violate the second law of thermodynamics.

So far the scalar field has been treated classically, and this is the extent to 

which it is possible to study the system with present technology, all the same it 

is worthwhile to speculate further; what are the possible consequences when a 

proper quantum tretament is applied?

In a realistic collapse scenario one would envisage, say, a 1.5M© core of de­

generate nucleons contracting inwards, reaching tremendous densities and tem ­
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peratures in the process. If a light scalar as we have been considering exists, one 

would expect that at high densities a large amount of scalar particle production 

would take place, the particles produced either being radiated away, trapped in­

side the collapsing m atter or both. To understand these phenomena one must 

treat the scalar field using the methods of quantum field theory. Because of the 

distinctive character of the scalar field one may surmise that the backreaction 

effects produced in this process could be particularly interesting.

Scalar production during collapse can take place due to two mechanisms, 

the first from the usual yukawa vertex, the second from mixing of positive and 

negative modes[6]. The second method is a curved space effect and results in 

particle production even for free fields. The two mechanisms also mix so that 

production can also take place to first order in the coupling constant, whereas 

this could not happen in flat space due to momentum conservation constraints.

This leads one naturally on to a consideration of the discipline of quantum 

field theory in curved spacetime which can be regarded as a first approximation 

to a theory of quantum gravity, akin to the phenomenologically successful semi- 

classical electrodynamics of the 1930s. Here the m atter fields are treated field- 

theoretically and the gravitational field is to be regarded as a classical background 

field. Presumably this approach should give one the first quantum corrections to 

the classical collapse equations. This is done by replacing Einstein’s equation by 

their quantum, ‘renormalized’ counterparts

= SwGT^ —► = SttG < Tul/ > (23)

The bracket round the energy momentum tensor indicates that one is taking an 

expectation value with respect to some specific state.

The calculations of renormalised stress-energy tensors has been something of 

an industry for two decades now. In the early days much attention was spent on 

calculations for free massless scalar fields. Indeed the renormalised stress tensor 

has been calculated for free massless fields in a Robertson-Walker background in 

closed form in terms of the Ricci tensor[7].

< T ^ >  = a

+ P

-  R̂;nu -  ^RRnv + J^9»»R2 

— t̂ R R ^  + Rf t XR u \  ~  + ~^9ni/R? (24)
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The coefficients a , (3 depend on the method of regularization used. 

This results in a third order field equation2

2 R R 2
_ JL

2 ”  2a
. &_____R R _ Po f25i

1 SnGa. R  6 a R R

Equationj (25) has been investigated in cosmological scenarios[9] primarily be­

cause it was expected that quantum effects may alter or eradicate the initial 

singularity[8], this being thought possible since quantum effects can lead to neg­

ative energies and pressures; the Hawking-Penrose singularity theorems predict 

the ubiquity of singularities under the condition that energies and pressures re­

main positive. The effects of massless quantised fields on dust cloud collapse 

have also been calculated with qualitatively similar results[ll]. It is found that 

both singularity free, ‘bounce’ solutions and singular solutions can be obtained, 

depending on the initial conditions.

Unfortunately, a closed form solution for the renormalised stress tensor does 

not exist for massive scalar fields in a Robertson-Walker background[12]. Studies 

suggest however that quantum effects may manifest themselves on a scale of the 

order of the inverse mass of the particle; there can be something of a ‘resonance’ 

effect here. For most of the known stable particles this is extremely small and 

hence unobservable, but if a light scalar such as has been considered so far ex­

isted then these interesting quantum effects could manifest themselves over much 

larger, even macroscopic, distances leaving them open to possible experimental 

verification.

Bounce behaviour at the order of the inverse mass of the scalar particle was 

exhibited in the paper of Parker and Fulling[13]. The object of this work was 

simply to see if the apparent inevitability of collapse to a singularity could be 

halted by quantum effects of any means. To do this the semiclassical Einstein 

equations for a closed Robertson-Walker universe were solved. The metric was 

treated as a classical function while the matter content, as represented by the 

energy momentum tensor, is a quantum field operator acting on a specific state. 

The methods used in this work were canonical quantization in the Heisenberg 

picture and the adiabatic regularization method to eliminate divergences from

2for the case /c=0. A classical dust term has also been included.
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the ill-defined energy-momentum operator. The pressure and density terms were 

constructed from the tt and rr components of the canonical energy momentum 

tensor in the usual manner. The methods used fully took into account particle 

creation effects due to rapidly changing curved spacetime. When the scale factor 

varied very slowly no particle production took place, as perhaps one would naively 

expect.

The resultant equation of state for this quantum scalar gas behaved like an 

ideal gas for low velocities and as an extreme relativitic gas at high velocities.

The crucial part of this work was not in the methods used to construct the 

equation of state but in the quantum state which was used in the right hand side 

of the semiclassical equations. What Parker and Fulling did was to explicitly 

construct a quantum state that would give rise to negative pressure effects. The 

results they found were that the system would indeed bounce from such states 

but would collapse to a singularity for others. Again, the bounce occurs at spatial 

distance of the order of the Compton wavelength of the particle.

So, in that work singularity avoidance depended on the use of a special quan­

tum state, the peculiarity or otherwise of which is open to speculation. The 

negative pressure produced in this case is a ‘quantum coherence’ effect between 

states with states with different particle numbers. States with definite particle 

number always formed singularities. What is more, this special state is not in any 

way intrinsically connected with general relatvity or curved space, it is completely 

general, and could possibly occur in many other situations. Parker and Fulling 

speculated that this state could be brought about during the collapse by some, 

(unspecified) interaction, in a somewhat similar manner to the superconducting 

BCS phase transition. This was because the special state they had constructed 

had a similarity to an excited superfluid state.

This is, altogether, a very interesting scenario, though, it must be said, very 

inconclusive. What makes it of relevance from the point of view of this thesis, 

and its primary emphasis on lighjt scalars is that such exotic effects could manifest 

themselves over relatively large distances. Parker and Fulling when investigating 

scalar bounces had in mind the pion as a candidate particle. The pion has 

a Compton wavelength of around 10-15cm. Observing the bounces of curved



spacetime over such small distances is clearly impossible, but if light scalars did 

exist, then there exists the possibility of witnessing these exotic and speculative 

quantum phenomena.

3.3  E xterior  So lu tion s and M atch ing  
C on d ition s

Having found a representative sample of interior solutions and identifying 

novel and interesting qualitative featues in these, it is important that appropriate 

exterior solutions are found so that definite observational predictions may be 

made.

For instance it is well known that radial emitted photons in the Oppenheimer- 

Snyder model exhibit a characteristic redshift. What modifications to this picture 

will there be for collapsing objects with significant scalar component?

The surface of the star divides the spacetime into two regions; given a known 

interior which has been obtained previously by solving the Einstein equations, 

one must find a suitable exterior then match it smoothly to the interior at the 

star surface.

The form of the exterior that one might deem suitable depends on what m atter 

content exists there. Normally there wouldn’t be any, i.e. vacuum. This along 

with the assumptions of spherical symmetry leads uniquely to the Schwarzschild 

form for the exterior; this result is known as Birkhoff’s theorem. If one envisaged 

the star to be radiating as it collapsed, but still maintaining spherical symmetry 

the simplest generalization of the Schwarzschild metric is that of Vaidya[21]. The 

Vaidya metric describes a non zero flux of incoherent massless radiation. These 

two metrics, the Schwarzchild and the Vaidya are therefore the two favoured 

candidates for matching to the collapsing Robertson-Walker interiors found in 

§3.2.

The Schwarzschild metric is

ds2 =  ^1 — dt2 — ^1 — dr2 ~ r2d02 — r2sm2(0)d<f>2 (26)

where the barred coordinates are specifically Schwarzschild coordinates. Un­

barred coordinates are the interior comoving coordinates. The Vaidya metric



is

-  +  'MTdR -  R 2d02 -  R 2sm2(9)d<j>2 (27)

This is written in terms of radiative coordinates.

One possible difficulty that may arise is that because of the tailing of the 

scalar field, no sharp star boundary exists, so that instead of a well defined star 

surface one has a tail of interacting bosons and dust particles as was the case 

for the static configurations of chapter 1. This tail extends a distance of the 

order of the Compton wavelength of the scalar field, so the problem is more 

serious for lighter particles. On the other hand since the scalar field is massive 

and hence of finite range one would expect that at some suitably large radial 

distance the scalar tail will be negligible and then one may match at this ‘effective’ 

radius. This introduces a degree of arbitrariness into the problem; what is a 

‘suitable’ effective radius? Is it that 99% of the star mass lies within this radius 

or 99.9%? Nevertheless, since the scalar range is finite, and assuming surface 

effects are unimportant, and the effective radius, whatever it is, is large enough, 

then matching to a simple Schwarzschild exterior should be possible with very 

little difficulty. Even if this is not the case one would expect that matching to a 

Vaidya metric possible since this takes into account mass loss from the star, and 

one might reasonably expect the some sort of radiative process is taking place 

simultaneously with the collapse.

It turns out that matching to Schwarzschild or Vaidya exteriors is not possible 

in this model. Nevertheless, it shall be shown explicitly why this is not possible, 

and later on some discussion will be spent on why, such an apparently reasonable 

thing to do, can’t be done.

The two principal methods of matching are due to Lichnerowicz and Darmois 

respectively. These have been shown to be equivalent in the paper of Bonnor and 

Vickers[17], who also showed that other matching conditions due to Synge and 

O’Brien are inequivalent, being somewhat stronger.

The Lichnerowicz matching conditions are that the metric components and 

their first derivatives are continuous on the matching surface. This obviously 

requires that a single set of coordinates be used; so if the interior and exterior 

are not in the same coordinates, then a transformation has to be made. In this
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case one would have to find the transformations taking one from the interior 

comoving coordinate system to the exterior Schwarzschild coordinates. Such a 

method is used by Weinberg in his treatment of the Oppenheimer-Snyder model. 

He matches the Robertson-Walker interior to the exterior Schwarzschild metric 

by using the following transformation

6 = 0 (f> = cf) r = r R  (28)

and

where

(1 — kcl2\ 1̂ 2 f 1 (  R  \ 1̂ 2 dR  , .

,2 \  1/2
S (t,r )  =  l - ( J — ( l - f l ( t ) )  (30)

\  i — Kd* J
Matching is accomplished by this means and relates the arbitrary constants of 

the two regions thus

m = ^  (31)

The appearance of the collapsing star to a distant observer can now be calcu­

lated. Consider an external observer at radial coordinate rQ and photons being 

emitted radially from the surface of the star. Since for null geodesics, ds2 =  0, in 

Schwarzschild spacetime one has

I - ( ■ - £ ) "  <•»
a photon emitted radially from the star surface r s, at a time t s, will arrive at the 

distant observer at a time t Q, where

2 m x -1t0 = t a + J_ ^1 - dr (33)

= ts + f 0 -  f s 4- 2m log (34)

The redshift is defined as the fractional change in the observed and emitted 

wavelengths of the photons

- =  =  _  1 (35)
A0 dt

which is explicitly
• /  Om \ ~ l

z = ts - d R R ( R - ^ - \  - 1  (36)
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This last equation gives the reclshift as a function of the interior proper time. 

To convert this to the external coordinate time, one needs to use the coordinate 

transformation. (36) is in a very interesting form for it shows explicitly how the 

dynamics of the interior affect the external appearance; the redshift function is 

explicitly parametrized by the scale factor.

For (36) to be of any use it is necessary to transform the internal time de­

pendence of the expression to a dependence upon the proper time of the external

observer; since this observer is at a large distance from the collapsing star, his

proper time will be the same as the coordinate time, ta. To do this conversion 

requires intricate manipulations with equations (29) and (34) on (36) and cannot 

be accomplished exactly. Instead, using the coordinate transformation one may 

identify two types of redshift behaviour, emanating from the ‘early’, initial ra­

dius much greater than Schwarzschild radius, and ‘late’ behaviour, when the star 

radius is nearly crossing the Schwarzschild radius.

For early times, R »  ~  since

ts -  t (37)

tQ ~  t + r0 (38)

the redshift is approximately

j 2m ( 1 ~ R (to ~  r °)
" I  a \  R{ t 0 ~  r 0)

and for late times, R ~  , since’ a ’

ts ~  —2m log 

t0 ~  —4m log

where cl5 C2 are some constants, one has

(39)

2m
1 ~ ~R\

2m
”  ~R J

+  C, (40)

+ c2 (41)

. ^ e x p ( ^ )  (42)

The usefulness of this way of treating the redshift, in that the interior dynamics 

explicitly appear, prompted an attem pt to generalize the result (29), attempting 

to perform the matching in the manner of Lichnerowicz, so that through the



redshift formula (36), an easy interpretation of the interiors of §3.2 could be 

made. Naively, one might expect that when one has a ‘bump’, interior one would, 

making comparisons with the pure dust result, get power-law blue-shift followed 

by power-law red-shift, then finally exponential redshift. Certainly, if (37) and

(38) still hold at early times, then this would be correct.

Generalizing the transformation proved in practice to be much more difficult 

than was initially envisaged and so was abandoned in favour of the Darmois 

method.

The Darmois[19] matching conditions are by far the neatest and most elegant 

matching conditions. They are highly geometric in nature, manifestly covariant 

and allow the use of different coordinates in the interior and exterior regions. This 

method is to be preferred since one need not worry about the admissibility of 

coordinate systems or actually calculating the coordinate transformation, which 

can rarely be found analytically.

The Darmois matching conditions are that the first and second fundamen­

tal forms of the matching surface calculated in each coordinate system must be 

identical. Let these be discussed in some greater detail3.

One has a four dimensional spacetime M, divided into interior and exterior re­

gions, M/, M#, which are separated by a three dimensional spherically symmetric

timelike surface, E. The metrics on Mj, M e are denoted ds 2, dsE2 respectively,

whch are written in terms of the coordinates x ^ ,  Xe** • The first fundamental 

form is the intrinsic metric evaluated on E as seen from M/, M e - The second 

fundamental forms are the extrinsic curvatures A'/, K e  as seen from M/, M e - 

The matching surface is parametrized by parameters {*, and described by the 

functions £ /M(£‘), *tem(£u) as seen from the interior and exterior regions.

The intrinsic metric of E in the interior is

d a ? = g ,J * l * d] £ . d e d e  (43)

and the extrinsic curvature is

d e e  (4 4 )

3The notation used here is that of [18]

K \  =  - n i p
d2iXI ' d x f d x f

+ -7 ^ --^ —  1 hdi'd# d£l d£j



where n, is the unit outward normal of E as seen from Similar expressions 

hold for the exterior region.

The matching conditions are then

ds i2 =  ds£2

Ki  = K e

(45)

(46)

Matching using the Darmois method for dust collapse can be found in ref[20].

Here are the required geometric objects for the metrics that are under con­

sideration

Robertson-Walker

ds2 = dt2 — R 2
1 — ter2

f  =  M ,4>)

dr2 — r2R 2dO2 — r2R 2sm2(0)d<f>4

E = (t,a,0,(t>) 

ds^2 =  dt2 — a2R 2 (cl02 +  sin2(0)d<^2)

R
s / l  -  ka2

n = \0,

I<tt =  0

Kgg  =  a R (l  — ka2̂j

, 0,0

1/2

Schwarzschild

ds2 = ^1 — clt2 + ^1 — dr2 — r2d02 — r2sin2(0)d<f>2

E =  (t(t),r(t),0,~4>^ 

r (r — 2m )
n =

d s y 2 =

I<U =

_(r — 2 m )2t — r 2r 2_

1/2

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)( - F , i , o , o )

( l  -  i 2 -  ( l  -  ^ - )  dt2 -  r2 ( d f  +  sin2(5)d$t) (57)

—2-7 m r t 2m2r2t
+

(r — 2m)2 r(r — 2m)2 ' r ( r - 2 m )  ' r 

+rt
\f?(r — 2 m )3̂ 2t

7 112 n. 2lV 2
(r — 2m) t — r2r

_L 2 -  - 3  - 32mr t 2m t mt
H -̂-------- -̂--- tr

(58)

(59)
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Vaidya

ds2 = xdT* + 2 d T d R - R Idtl2 (60)

e  =  ( r ( / ) , f l ( * ) ,M )  (61)

n = ( x 2 + 2 f R y U2( - R , t ,  0,0) (62)

dsE2 = (XT 2 + 2 T R )d t2 -  R 2dSl2 (63)

K .  ,  <64,
[XT2 + 2 TR)

/ i n  xn±
K ee =  ~ ;-------- . . s l/2 (65)

R R  -}* \ R T  

( x P  + 2 TR)

where x =  1 ~ IT ■> an<l m a function of T.
The matching conditions for matching from the Robertson-Walker to the 

Schwarzschild exterior are

r=aR  (66)

( - f )  «">
fa„(, _ ,.,r  m

( (r — 2m) t — r2r J 

m r2t 2 m 2r2t 2 m r2t 2 m 2t
(r — 2m)2 r ( r - 2 m ) 2 +  r ( r - 2 m )  r3

2.3

— fr +  rt =  0 (69)
f 2

The condition that is most useful here is (69). Upon simplification one gets

m = ^  (K +  R2) (70)

If one has a dust solution one has

R2 =  k ( l / R -  1) (71)

holding, and so one has as Weinberg (-31).

For the more general interiors found in §3.2 (72) does no hold, and so matching 

is not possible since m  and a are constants.



Why is matching not possible? The exterior is spherically symmetric and 

asymptotically static and there are no long range forces—perhaps the system is 

radiating, could one match to a Vaidya exterior? The answer is no, for as has 

been shown by [5] when the matching surface is comoving no radiation can take 

place and then the Vaidya metric reverts to Schwarzschild form.

This is a very puzzling result. Fayos et.al[18] have shown that matching a 

Robertson-Walker metric to a Vaidya metric is always possible if there exits a 

surface upon which the total radial pressure vanishes. For a massive scalar field 

as has been considered here, the total radial pressure indeed would not vanish, 

but it would become exponentially small at large radii. Surely this should be 

good enough for matching to take place??

One idea could be to try to match to a Vaidya metric with a non-comoving 

matching surface, but this, even if possible, results in difficulties of interpretation.

This state of affairs puts one in a frustrating position. From a very simple 

model interesting qualitative behaviour has been seen which differs from that of 

the pure dust case. Other arguments argue for extremely interesting behaviour 

connected with scalar fields, in phase transitions, particle production and quan­

tum effects to occur in gravitational collapse. This simple model could be indica­

tive of such possibilities. But any observation of such phenomena must be made 

by a distant observer in the exterior region; the failure to match to a suitable 

exterior spacetimes precludes the possibility of any definite identification of such 

phenomena.

The apparent naturalness of matching Robertson-Walker to Schwarzschild or 

Vaidya, and its apparent impossibility begs the question as to whether the prob­

lem is a fundamentally serious, physical problem, or merely some mathematical 

pathology. Physical intuition suggests the latter but then is confounded by the 

problem of understanding the precise nature of such a pathology, (if it exists).

The only way to settle this problem is to begin again, this time restoring 

the radial depedence in the field equations, and in doing so going down the way 

of numerically intensive general relativity. In this way one has to begin with 

clearly defined interior, exterior and boundary regions, and one may see how 

these all evolve during the collapse. To set down this road would be a very major
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undertaking, which will not be attempted here.

In this approach one effectively ‘undiscovers’ the problems which have so far 

plagued the matching procedure. There is a very big jump in complexity in 

going from the simple methods of this chapter to numerically intensive general 

relativity, but this is the only way to go to settle the problem. This is not a glib 

remark; one may think that by ‘tweaking’ around with the Schwarzschild metric 

it may be possible to get an appropriate exterior, and indeed one can, but this 

approach subsequently becomes as difficult as the numerically intensive approach 

as will be demonstrated below.

Taking a more general exterior metric, which reduces to the Schwarzschild case 

for pure dust collapse, and the usual Robertson-Walker exterior, the matching 

conditions will be derived along with necessary steps to make firm observational 

predictions about the model.

The exterior metric is

ds2 =  B (t,r )d t2 — A(t,r)dr2 — r 2dQ2 (72)

where

B ( l r )  = ( l  _ ^ i  + « B (i,r))  (73)

A ( l r )  =  ( l - ^  + M (7,F)) 1 (74)

The functions SA, SB therefore represent the deviations from the Schwarzschild 

metric.

The curvature forms are then

ds-r2 =  h i t  -  ^F2)  dt2 -  r W  (75)

K„ =  { a B\IB 't -  AT2} ( A B l f - A B f i

+ i.BF2L4' -  A B ' f l  + i B B ' f  -  );A ? A

+ B Art — —AA 'r i — - A B r t  ) (76)



Applying the first two matching conditions gives

r = aR  (78)

f  I  B~l ( l +  a2A R 2) (79)

The third matching condition gives

SA= -  2a2R0SR -  a2SR2 (80)

upon assuming (72) for R0, (31) and setting

R(t)  =  R0{t) +  6R  (81)

The form of SA makes for a very easy interpretation in terms of the known 

solutions of §3.1. Bearing in mind that R0 is in some sense the dust solution that 

is most closely related to the actual solution, it is obvious that the deviation from 

Schwarzschild must be fairly small when the scalar field results in only a slight 

‘bump’ in the scale factor, as in figure 3.3, but very large when the scalar field 

causes a vast expansion, as in figure 3.5.

The last matching condition is altogether more tricky, but can in principle

be integrated to give SB on the star surface, since the other three matching

conditions provide the unknown functions of t.

The matching conditions provide initial data for the full Einstein equations 

for the exterior; these have then to be integrated, perhaps with some scalar field 

content, to provide the metric functions over the whole exterior region. Once 

these are constructed one may check that the deviation functions, 8A, SB  tend to 

zero at large values of the radial coordinate and become time-independent at large 

times. These conditions satisfied, one may conclude that the exterior is indeed 

the correct one, and then go on to analyse the null geodesics of this exterior, 

so finding out how the collapsing star will appear to some distant observer. The 

work is then finished. The drawback is that integrating the exterior equations and 

analyzing the null geodesics must be done numerically, which is not significantly 

easier than adopting this approach from the beginning.



3.4  C onclusion

In this chapter the Oppenheimer-Snyder model has been extended to include 

a classical scalar field. The solutions found differ qualitatively from the pure 

dust solutions of the Oppenheimer-Snyder model. The significance of these solu­

tions was discussed in relation to more sophisticated treatments and phenomena, 

the main conclusion of which being is that the scalar field is of interest since it 

may lead to bounce behaviour. Of course, treatment of the gravitational col­

lapse problem is as yet in an early state of development, since even for simple 

fluid models, integrating the Einstein equations is notoriously difficult and com­

putationally expensive—which is to say nothing of the problems of providing a 

rigorous field-theoretic treatment.

Gravitational collapse has been described as the ultimate problem of theoret­

ical physics, and its eventual resolution must require solution of the backreaction 

problem for quantum fields in curved space. This is perhaps the most difficult 

problem of theoretical physics. Study of scalar fields in this context has primar­

ily been in the sense of constructing ‘toy’ models, purely to gain an insight into 

the technical aspects of the problem. This work may yet find phenomenological 

applications, since for some time now, as detailed in the introduction, there has 

been no shortage of candidate scalar particles.

Hence, in this chapter, after discussing such possibilities, the emphasis has 

been on finding appropriate exterior solutions and so in trying to tie down some 

observational predictions. In this sense the work is only partially successful. 

Matching was not performed, but the problem was discussed, identified and, I 

hope, clarified; the difficulties encountered related to known work[5, 18] in the 

area, and offering, perhaps, a useful critique. The most probable cause of the 

difficulties encountered is that the scalar field causes a sharp star boundary to 

become impossible. This is precisely related to the problem of scalar tailing which 

was mentioned in chapter one, and which subsequently caused the calculations of 

which, to be so very time consuming.

Originally it was hoped that matching would be performed, allowing the red­

shift function to be precisely calculated as a function of the external observers 

time and of the collapse parameters themselves, i.e. the dust density, and the



scalar mass, coupling and initial density. To do this requires a significantly more 

sophisticated approach, as is described in §3.3 . The most it is possible to say 

at present is that in the late stages of collapse, the scalar field will give rise to a 

very similar redshift as the pure dust solution, but in the early stages there may 

be the possibility of a blue-shift.

One aspect so far unconsidered is that of the importance of scalar radiation 

during collapse. Light scalars would be copiously produced during the collapse 

and could in certain circumstances carry off significant amounts of mass, perhaps 

leading to singularity avoidance by allowing the star to shrink or fragment into 

small enough pieces that a black hole would not be formed. A study of this 

type, though prohibitvely difficult, would link up with the work of chapter two, 

and could lead to significant bounds on the allowed values of the scalar field 

parameters.

F igu re C ap tions

F ig u re  3.1: Pure dust collapse; scale factors corresponding to initial expan­

sion, contraction and stationarity.

F ig u re  3.2: Pure scalar collapse; scale factor.

F ig u re  3.3: Pure scalar collapse; time dependence of scalar field correspond­

ing to scale factor of figure 3.2 .

F ig u re  3.4: Pure scalar collapse; scale factors showing variation with chang­

ing scalar mass.

F ig u re  3.5: Pure scalar collapse; scale factors showing effect of varying initial 

scalar density .

F ig u re  3.6: Pure scalar collapse; evolution of scalar field corresponding to 

largest scale factor of figure 3.5 .

F ig u re  3.7: Pure scalar collapse; scale factor .

F ig u re  3.8: Pure scalar collapse: evolution of scalar field corresponding to 

scale factor of figure 3.7 .

F ig u re  3.9: Combined scalar/dust collapse; scale factors showing variation 

with yukawa coupling .

F ig u re  3.10: Pure scalar collapse; scale factors showing variation with quar- 

tic coupling .
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Overview and Conclusion
The object of this thesis was to consider what effects certain postulated funda­

mental fields could have on the constitution and dynamics of collapsed or collaps­

ing stars. Since these postulated particles, whose origins were explained in the 

introduction, have a very great uncertainty amongst their defining parameters, it 

was thought useful to consider the possible modifications to known and surmised 

properties of neutron star and gravitational collapse models as a function of these 

parameters. This made for a great deal of labour, examining such alterations over 

many orders of magnitude of parameter space, but was necessary in enabling a 

thorough job to be done.

The models considered in this thesis increase rapidly in difficulty as firstly, 

static, then pulsating, then time-dependent models were considered. The simplest 

case, that considering the effects of light scalars on static neutron star configu­

rations was examined carefully and thoroughly, though even in this, the easiest 

case, there were found to be significant difficulties due to the tendency of the 

scalar field to tail-off over large distances. This ‘tailing’ behaviour is the most 

serious and recurrent problem which affects any exhaustive study of the scalar 

field over very light mass ranges.

The study of the pulsations did not require the intense numerical treatment 

that was carried out in chapter one, luckily, by consideration of the radiation 

condition and comparison with works on stability for neutron stars and boson 

stars, it was possible to work out the possible behaviour of the configurations in 

the various parameter regions.

The last model considered was that of gravitational collapse itself. Due to the 

innate difficulty of this study, only a very simple model was considered, though it 

was hoped that this would be a reliable indicator of any significant modifications 

due to scalar fields. Interior solutions were and their possible relevance discussed. 

Here the success was only partial; a rigorous, quantitative interpretation of these 

solutions was not achieved because of the inability to match the interior solutions 

to an appropriate exterior. In lieu of this, a critical appraisal of the matching 

problem was given. The conclusion to this part of the work was that, again, the 

problem was probably due to scalar ‘tails’, and that to progress further a more
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sophisticated computational approach was required.

To have difficulty with the collapse problem is perhaps unsurprising, it is after 

all, a very active and challenging field of research; gravitational collapse is the 

work of a lifetime, not merely a thesis.
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