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Abstract

ABSTRACT

When matter is subjected to a gradient of: temperature, pressure, concentration, voltage 
or chemical potential a phase change may occur, which for dynamic processes will be 

separated by moving boundaries between the adjacent phases. Transport properties vaiy 

considerably between phases, consequently any change in phase modifies the rate of 

transport of: energy, momentum, charge or m atter which are fundamental to the 

behaviour of many physical systems. Such dynamic multi-phase problems have, for 
historical and mathematical reasons, become known as either: Stefan problems or 
Moving Boundary Problems (MBPs).

In most engineering applications the analysis of these problems is often impossible 
without recourse to numerical schemes which utilise either: finite difference or finite 
element methods. The success of finite element methods is their ability to handle 
complex geometries; however, they are time consuming and less amenable to 

vectorisation than finite difference techniques which, because of their greater simplicity 
in formulation and programming, continue to be the more popular choice.

Several finite difference schemes are available for the solution of moving boundary 
problems; however, there are some difficulties associated with each method. Each time a 
new numerical scheme is developed, it has the aim of improving either, or both, the 
accuracy and the computational performance. For solving one-dimensional moving 
boundary problems, the variable time step grid is the best approach in terms of simplicity 

and computational efficiency. Due to the fact that the time step is variable the implicit 

recurrence formulae, which are stable for any mesh size, have always been used with this 

type of discretisation of the space time domain. It will be shown in the course of this thesis 

that the implicit methods are very inaccurate when used with relatively large time steps; 
hence, the immediate conclusion may be made — that implicit variable time step methods 
may not be sufficiently accurate to solve moving boundary problems where the boundary 
is moving with a relatively slow velocity.

The proposed idea, of combining real and virtual grid networks and using new explicit 

finite difference equations, eliminates the loss of accuracy associated with implicit 
methods, when the time step is large, and offers higher computational performance. The 

new finite difference equations are based on the approach of making the finite difference 
substitution into the solution of the partial differential equation rather than into the 
partial differential equation itself, which is the classical approach. A new numerical 

scheme for two-phase Stefan problems which will be referred to as the EVTS method is
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developed and the solution is compared to other numerical methods as well as the 

analytic solution.

Furthermore, the EVTS method is modified to solve implicit moving boundary problems 
(oxygen diffusion problem), in which an explicit relation containing the velocity of the 

moving boundary is absent. The resulting method achieves similar results to other more 

complex and time consuming methods.

A further numerical scheme referred to as the ZC method is developed to deal with heat 
transfer problems involving three phases (or 2 moving boundaries) which appear and 
disappear during the process. To the knowledge of the author, a finite difference method 
for such a problem does not exist. For validation, numerical results are compared with 

those of the conservative finite element method of Bonnerot and Jamet, which is the only 

other method available to solve two-moving boundary problems.

Finally, a new finite difference solution for non-linear problems is developed and 
applied to laser heat treatm ent of materials. The numerical results are in good 
agreement with published experimental results.
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1 Introduction

1.1. Introduction

Most physical processes can be modelled as boundary value problems, in which the 
solution of differential equations has to satisfy certain conditions on the boundaries of a 
prescribed domain. However, in many important processes involving the changing 
states of matter, a boundary separating two different phases develops during the process. 
In these problems, the position of the boundary is not known a priori, but has to be 
determined as an integral part of the solution. The term "Moving Boundary Problems 
(MBPs)" is associated with time-dependent boundary problems, where the position of the 

Moving Boundary (MB) has to be determined as function of time and space. Moving 
boundary problems, also known as Stefan problems, were studied as early as 1831 by 
Lame and Clapeyron [1]. However, J. Stefan was given the major credit due to a sequence 

of papers [2,3] which resulted from his study of the melting of the polar ice cap around 

1890.
The formulation of MBPs requires not only the initial and boundary conditions to be 

known, as in boundary value problems, but two more conditions are needed on the 

moving boundary; one to determine the boundary itself and the other to complete the 
solution of partia l differential equations governing the process in each region 

(formulation examples are given in appendix A).
The applications of these problems are mainly but not exclusively concerned with: 

fluid flow in porous media, diffusion problems, heat transfer involving phase 

transformation, shock waves in gas dynamics and cracks in solid mechanics [4].
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Moving boundaries also occur in many processes associated with: the metal, glass, 
plastic and oil industries; preservation of foodstuffs; statistical decision theory, heat 

treatm ent of semi-conductors; cryosurgery; astrophysics; meteorology; geophysics and 

plasma physics [5,6].
In the early years, experimental analyses were the only means available to give an 

understanding of physical processes. However, with the advent of high speed digital 
computers, mathematical modelling and computer simulation are often the cheapest and 
fastest means to give a broad understanding of the real process. This permits the 
simulation of the performance of new product designs and the assessment of quality even 
before production, which results in greater savings in terms of time and money.

Due to the wide range of applicability in engineering and science, in the last two 

decades MBPs have drawn considerable attention from mathematicians, engineers and 
scientists alike. As analytical solutions are often impossible for most engineering and 

science applications, recourse is often made to numerical analysis.
Finite Difference Methods (FDMs) have been used extensively for the numerical 

solution of MBPs and only in recent years, Finite Element Methods (FEMs) have been 
introduced. The great advantage of FEMs is their ability to handle complex geometries; 
however, it is well acknowledged that they are time consuming and less suitable to 
vectorisation than FDMs.

Finite difference methods for solving MBPs can be classified into:

(i) Fixed Grid Methods (FGMs),
(ii) Variable Space-Step Methods (VSSMs),
(iii) Variable Time—Step Methods (VTSMs).

Ax

At
MB

x
Figure 1.1: Position of the MB in a fixed grid network

FGMs, where the Moving Boundary (MB) is often located between two neighbouring 

grid points (Figure 1.1), break down when the boundary moves a distance larger than a 

space increment during a time step. This restriction, upon the velocity of the moving
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boundary, may considerably increase the array size (memory) requirements and the 
cpu-time if computations are to be performed for extended times. The possibility of break 
down of the scheme is avoided in VSSMs, by using a variable space elements (as shown 

in Figure 1.2).

At

MB

x
Figure 1.2: Position of the MB in a variable space grid network

However, these methods present considerable computational difficulties (underflow and 
overflow) a t the beginning of computation when the MB is too close to the fixed 
boundaries, and loses accuracy at later times, due to the enlargement of space elements 
which is a consequence of the displacement of the MB.

MB

x
Figure 1.3: Position of the MB in a variable time grid network

By using VTSMs — where a variable time grid network is adopted (Figure 1.3) rather 

than a space variable grid -  the problems associated with FGMs and VSSMs are avoided, 

this makes VTSMs the most attractive approach. However, as the accuracy of VTSMs 
depends on the accuracy of recurrence formulae such as Crank-Nicolson and fully 
implicit equations which are very inaccurate when time step becomes relatively large; 

VTSMs may not be sufficiently accurate if used to solve MBPs where the moving 
boundary has a relatively slow velocity.
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1.2. Layout of the thesis

Chapter 2 reviews some of the well known numerical methods frequently used to solve 
moving boundary problems. The methods are briefly described in order to illustrate the 
essence of each approach. This chapter also contains important bibliographies which will 
assist any reader who has a profound interest in the topic.

A comparative study of the finite difference equations, which represents the basis of 
any finite difference scheme, is given in chapter 3. The study shows tha t the implicit 
methods, which are stable for any mesh size, are very inaccurate when used with large 

time steps. The combination of the proposed Virtual Sub-Interval Elimination Technique 
(VSIET) and the explicit finite difference equations offers higher performances than the 
implicit equations.

Due to the inaccuracy of the implicit finite difference equations when the Fourier 

number is relatively large, a new numerical scheme which will be referred to as the 
Explicit Variable Time Step (EVTS) method is developed for solving two-phase Stefan 
problems. Numerical results show that the EVTS method oufc-performs the implicit 
methods in current use. This is the subject of chapter 4.

In chapter 5, the EVTS method is modified to solve implicit moving boundary 
problems (the oxygen diffusion problem). Numerical results compare very favourably 
with those due to earlier authors.

In chapter 6, the EVTS method is extended to deal with multiple moving boundary 
problems, where the problem can have more than one moving boundary simultaneously. 
The method is applied to the collapse of a solid wall, where both melting and vaporisation 
interfaces appear and disappear during the process. Numerical results compare very 
well with those of the finite element solutions of Bonnerot and Jam et [7].

In chapter 7, a new finite difference equation for non-linear problems is developed 
and applied to the laser heat treatm ent of materials. Numerical results are in good 
agreement with published experimental results.

1.3. References

1. M.M. Lame and B.P.E. Clapeyron, Ann. Chem. Phys. 47, 250-256 (1831).

2. J. Stefan, Sber. Akad. Wiss. Wien. 98, 473-484 (1889).
3. J. Stefan, Ann. Chem. Phys. 42, 269-286 (1891).
4. J. Crank, Free moving boundary problems, Clarendon Press, Oxford (1984).
5. M. Furzeland, J. Inst. Math. Appl. 26, 411-429 (1980).

6. E. Magenes (ed.), Free boundary Problems vols. I  and II, Instituo Nazionale di 
Alta Matematica Francescon Severi, Rome (1980).

7. R. Bonnerot and P. Jamet, J. Comput. Phys. 41, 357-378 (1981).



2 Numerical Methods for 
Moving Boundary Problems

Summary

In this chapter, some of the well known numerical methods which can be used to solve 
moving boundary problems are reviewed. These methods compute, a t each time step, the 
position of the moving boundary as well as the temperature a t each grid point of the space- 
time domain. Most of the numerical methods cited in this chapter are described briefly; 
however, due to their utility in a later chapter, the heat balance and the variable time step 

methods are explained more fully.
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Nomenclature
a M aterial Thickness X Latent heat of fusion/unit volume

c Specific heat At Time step

h Heat transfer coefficient Ax Space element

H Enthalpy Subscripts
K Thermal conductivity i Space step index

M Position of the interface k Interface node index

L Latent heat of fusion j Time step index
r Fourier number m M elting

t Time variable s Solid

T Temperature I Liquid
X Space variable Superscript

a Diffusivity k Iteration index

9 Material density

2.1. Introduction

Research on moving boundary problems started as early as 1831. However, with the 
onset of the computer revolution, MBPs have been the focus of intensive research during 
the seventies and eighties, during which a large number of numerical schemes have 
been developed. It is not practical to review all of them in this chapter; however, many 
surveys and conference reports [1—14] are available which contain up to date accounts of 
the mathematical developments in this field and illustrate wide ranging applications in 

physics, biology and engineering.
Finite difference methods have been used extensively for solving moving boundary 

problems. However, before presenting the numerical techniques, the well known 
Goodman method [15] is illustrated; this is an analytical method which is often used as a 
reference against which to validate the numerical methods.

2.2. The heat balance integral method (Goodman)

By integrating the one dimensional heat flow equation with respect to the space 

variable x, and inserting the boundary conditions, Goodman [15] produced an integral 

equation which expresses the overall heat balance of the system. The successive steps in 

Goodman's method are:
(i) Assume a particular form for the dependence of the temperature on the 

space variable which is consistent with the boundary conditions, e.g. a 
polynomial relationship.
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( i i ) Integrate the heat flow equation with respect to the space variable over the 
appropriate interval and substitute the assumed temperature distribution
to obtain the heat balance integral.

(iii) Solve the integral equation to obtain the motion of the phase change 
boundary and the time dependence of the temperature distribution.

2JL1. Heat balance method for the one-phase ice melting problem

The heat balance method can be conveniently illustrated by solving the one-phase 
melting-ice problem in one space dimension as defined by the following non- 

dimensional equations:

(2 . 1)

T(x,t)= 1 , x = 0 , *>0 (2 .2)

T(x,t)= 0 , x >0 , * = 0 (2.3)

M(0) = 0 (2.4)

T(x,t) = 0 , x = M(t) , t> 0 (2.5)

dT dM 
dx dt

, x = M(t) , f> 0 (2 .6)

Integration of (2.1) with respect to x, from x = 0 to x = M(t) , gives:

M{t)
(2.7)

o

Assuming a temperature distribution in the water phase given by:

T(x,t) = |(«){* -  M(/)} + -  MU)}2 (2.8)

which satisfies (2.5). It is convenient to modify the condition (2.6) to the form:
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by using the standard formula:

. x = M(t) (2.10)
dt dx dt dt

to replace (d M / dt) in (2.6). Taking into consideration tha t T(0,f) = 1, x = 0, (2.8) gives: 

1 = -£M  + <pM2 and on differentiation, dT / dx = £, d2T  /  dx2 = 2<p at x = M(t) , so that the 
substitution into (2.9) yields:

o - M l l  (2.11)
? M(t) ' 9 M 2

Substitution of (2.8) incorporating £(t) and (pit) from (2.11), and integrating the left side 
of (2.7) gives:

I ( 1+V5)«" ( { - 2 * 0  (2.12)dt dt

Further elimination of £and q> from (2.12) gives:

dM  6(3-V5) ! 12(3-V3
M —j — = — r J- = -=-p2 where = J  V r  1

dt 7 + V3 2 V 7 + V3
(2.13)

from which it follows that:

M(t) = p j t  (2.14)

By substitution of (2.14) and (2.11) into (2.8), the temperature distribution which 

represents the solution of the problem, defined by (2.1) to (2.6), is readily obtained.

2.2.2. Heat balance method for two-phase melting of a  finite slab problem

The heat balance method was applied to solve the melting of a finite slab of thickness 
a initially a t a uniform temperature that is below the melting point. The problem is 
described by the following equations:

= , 0 £ * £ M « )
dt (2.15)
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2 H - a  
st ~ a‘ Sx* (2.16)

‘ dx * Sx dt 
Ti(x,t) = T8(x,t) = Tb

, x = M{t) (2.17)

where the suffixes I and s denote liquid phase and solid phase respectively. The solution 

of the problem during the pre-melting stage is not presented since standard solutions are 

readily available in [16]. Goodman and Shea [17] have also solved this stage by the heat 
balance method.

Following the three stages (i) to (iii) mentioned in section 2.2, (2.15) is integrated 
from x=0 to x=M(t) and (2.16) from x=M{t) to x=a to obtain the integral equations:

M M
dM
dt (2.18)

a c (2.19)

Elimination of ( dTi / dx)  and ( dTs / dx ) at x -  M(t) from (2.18) and (2.19) making use of 
(2.17) yields:

'  KjLTb - ^ - T h - X  
aa at

dM KidBt K , d 6 , _  ( S T . \  room'UtL (2-20)
where

M a

Ql = J Ti(x,t) dx , 08 = J T8(xtt) dx
o M

(2.21)

Suitable temperature distributions are then chosen:

Tt(x,t) = Tb + 1; (<){*- M«)} + <pi(t){x-M(t)Y (2.22)

Ts (x, t) = Tb + | s (t){x -  M(t)} + <p„ («{* -  M(t)}2 (2.23)
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The parameters £/(*), £«(*), and <p8(t) are determined so th a t the temperature 
distributions, (2.22) and (2.23), satisfy the boundary conditions. For example, with the 
following boundary conditions:

Equation (2.25) is obtained by substitution of (2.24) into (2.20); the evaluation of £/(*) and 
<Pl(t) using the conditions (2.24) and (2.18), and using the first integral of (2.21) gives
(2.26). Equation (2.27) is derived by first evaluating £s(t) and <p8(t) using (2.24) and
(2.19) and finally using the second of (2.21).

To solve the equations (2.25) to (2.27), the following initial conditions are needed:

68(tm) of (2.28) is obtained by integration with respect to x from jc = 0 to x = a of the

Goodman and Shea obtained the solution of (2.25) to (2.27) by lengthy mathematical 

manipulations. As an alternative method, solution of (2.25) to (2.27), can be obtained 
easily using a standard method such as Runge-Kutta.

F  = const. (2.24)

Goodman and Shea [17] arrive at the following differential equations:

 ̂dM   ̂ Kj dOi [ K8 d08 _ ^
dt a/ dt a8 dt

(2.25)

(2.26)

(a -M )2 d6,
(2.27)

3a . dt

6t(tm) = 0 (2.28)

temperature distribution Ts{x,tm) a t the time when melting starts which is given by 

Goodman and Shea [17] as:

(2.29)

Many authors [18-24] have applied the heat balance method to different problems, as 
well as studied ways of improving and easing the mathematical analysis. It is well
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acknowledged th a t the mathematical manipulations required for the heat balance 
method, for anything other than relatively simple problems, can be very lengthy and 
complicated. Furthermore, the choice of a satisfactory approximation to the temperature 
distribution is a major difficulty in the method. For example, the use of a high order 

polynomial for the temperature profile makes the approach highly complicated, and does 
not necessarily improve the accuracy of the solution.

The most promising way of improving the heat balance method was suggested by 
Noble [25]. The idea was to use spatial subdivisions and assume a quadratic profile in 
each sub-region, as in finite element methods. Bell [26] modified Noble's approach to 

solve a single phase melting problem, by using equal subdivisions of the temperature 
rather than subdividing the space variable. The solution of a system of differential 

equations provides the position of each isotherm identified by a subdivision, including 

that of the melting boundary, at successive times.

2J3. Fixed grid finite difference methods

The heat flow equation is solved by using finite difference replacements for the 
derivatives in order to compute values of temperature TiJ  , a t Xi = iAx and time tj  = jAt 
on a fixed grid in the (x,t) plane. At any time t j  = jA t, the phase change boundary will 
usually be located between two neighbouring grid points; for example: between i^Ax and 
(if, + l)Ax , as shown in Figure 2.1.

x = M(t)

pAx Ax

— 1 *6 ifr +1 ijj + 2

Figure 2.1: Location of the moving boundary in a fixed grid

The numerical solution of the single-phase problem, defined by equations (2.1) to (2.6), 

provides a simple example and proceeds as follows: the temperature T j j+ 1  is given by:

Tt j * i  = T‘. j + -  2T‘.J + r *+u} (2-30)

By using three point Lagrange interpolation [27], instead of (2.30), the temperature at 
x = i^Ax is calculated using:
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1 _  1 - ,  

U * J p »/+ 1 4 " w  p j  .

The variation of the position of the moving boundary is given by 

Pj+1 ~ Pj
'  M I Pi T  , Pj + 1T

Ax2,[py + 1 Pj W j

(2.31)

(2.32)

Various finite difference schemes have been proposed for approximating both the 

boundary conditions and the partial differential equation a t the neighbouring grid 
points. For instance, Murray and Landis [28] used a fixed grid network. In particular, in 
the sub-space containing the fusion front a t any time, they introduce two fictitious 

temperatures, one obtained by quadratic extrapolation from temperatures in the solid 
region and the other from temperatures in the liquid region. The fusion temperature and 
the current position of the interface are incorporated in the fictitious temperatures, which 
are then substituted into the standard approximation, such as (2.30), to compute 
temperatures near the interface instead of using special formulae like (2.31). For the 
motion of the fusion front, an expression analogous to (2.32) is used based on the Taylor 
extrapolation formulae. Furzeland [29] suggested using an approximation for ( dT I dx) 
on the MB with a fictitious temperature to be eliminated by use of (2.30).

The advantages of implicit finite difference equations have been investigated by 
Ehrlich [30], Koh et al. [31], Saitoh [32], and Bonnerot and Jamet [33]. For example Meyer 
[34] obtained a second order approximation for the movement of the MB by using a three- 
point backward formula.

Ciment and Guenther [35] employed a method of spatial mesh refinement on both 

sides of the MB, previously analysed by Ciment and Sweet [36]. They also incorporated 

the idea used earlier by Douglas and Gallie [37], of adjusting the time step so that the MB 

coincides with one of the refined mesh points.
Huber [38] used an implicit scheme for approximating the heat flow equation in each 

time step, but he tracked the MB explicitly using the Stefan condition; this approach was 
later simplified by Rubinstein [4] and Fasano and Primicerio [39].

Lazaridis [40] used explicit finite difference approximations on a fixed grid to solve 

two-phase solidification problems in both two and three space dimensions. He wrote the 

heat balance condition on the MB in Patel's expressions [40] and developed numerical 
schemes based on an auxiliary set of differential equations, which express the fact that 

the MB is an isotherm. These auxiliary forms are compatible with Patel's expressions in 

enabling the boundary movement to be computed in the direction of the co-ordinate axes, 
rather than along the normal to itself. Standard finite difference approximations to the 
heat flow equation were used at grid points far enough from the MB. Near the boundary,
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formulae for unequal intervals were incorporated into the auxiliary equations. To avoid 
loss of accuracy associated with singularities which can arise when the MB is too near a 

grid point, localised quadratic temperature profiles were used. The mathematical 
manipulations are very lengthy and complex indeed.

2.4. Variable space grid finite difference methods

Many ways of modifying the grid have been proposed, all with the aim of avoiding the 

increased complication, and loss of accuracy, associated with unequal intervals near the 

MB in the fixed grid networks. Murray and Landis [28] kept the number of space 
intervals between a fixed and moving boundary constant, for example equal to q, for all 
time. The space interval, Ax = M(t)/ q, is different for each time step. The MB is always 
on the qth grid line. They differentiated partially with respect to x. Thus, for the line 

xi = iAx they had:

d t k  l a j ,

Murray and Landis assumed that a general grid point a t x moved according to the 
expression:

dxj = Xj dM  (234)
dt M(t) dt

The one-dimensional heat equation becomes:

i L )  (2.35)
dt ): M(t) dt \ d t  )  dx2

The position of the moving boundary M(t) is updated a t each time step by using, for 

example, a suitable finite difference form of the boundary condition (d M / dt = - d T / dx) 
on x = M(t). The method was extended by Heitz and W estwater [41] to convection 
problems and by Tien and Churchill [42] to cylindrical coordinates.

Crank and Gupta [43] avoided the complications due to the unequal grid size near the 

MB by moving the whole uniform grid system with the velocity of the MB. They described 
two ways of obtaining the interpolated values of temperature at the new grid points, to be 
used for the next time step, based on cubic splines or polynomials. Later Gupta [44,45] 

avoided the interpolations by using a Taylor's expansion of space and time variables 
and derived an equation which can be seen as a particular case of (2.35).
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2.5. Variable time step grid finite difference methods

Douglas and Gallie [37] rather than using a fixed time step and searching for the 

position of the moving boundary decided to determine, as part of the solution, a variable 
time step such that the MB always coincides with a grid line in space. They used the fully 

implicit finite difference equation, this leads to a system of linear equations to be solved 

a t each time step.

Gupta and Kumar [46] formulated the same set of finite difference equations as 
Douglas and Gallie but they used the interface condition to update the time step At. They 
thus avoided the instability which develops as the depth of the MB increases; the 
instability is generated as the time step enters an infinite loop because it becomes very 
sensitive to rounding errors. Goodling and Khader [47] incorporated the finite difference 

form of the MB condition into the system of equations to be solved. The system is solved 
for an arbitrary value of the temperature of the node neighbouring the MB, which is then 

updated from the boundary condition. Gupta and Kumar [48] found this latter method 

fails to converge as the computation progresses in time because it is too sensitive to a 
small change in temperature. Gupta and Kumar's results are in good agreement with: 
those obtained by the other variable time step methods and by the integral method of 
Goodman. Gupta and Kumar [49] also adapted the method of Douglas and Gallie to solve 
the oxygen diffusion problem (implicit boundary condition). Their results compares 
favourably with results obtained by Hansen and Hougaard [50] and by Dahmardah and 
Mayers [51].

To illustrate these methods, consider the following non-dimensional problem:

371 rfi'T
—  = a — ~ 2  > 0 <x<M(t) , f >0 (2.36)
dt dx

2±- = hT+ \r  , * = 0 , <>0 (2.37)
OX

T(x,t) = 1 , M(t)<x<  1 , f> 0

dM dT A—  = —  , x = M(t) , t > 0 
dt dx

(2.38)

(2.39)

Af(O)= 0 (2.40)

where x = M(t) is the distance of the interface from x = 0.
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The region 0 £ x £ 1 is divided into N  sections of length A x - 1  I N .  The time step Atj , at 
each time step j , is chosen such that the boundary moves a distance Ax during that 
interval of time. Any point in the (x,t) domain is given by the coordinates:

j - 1
ci =iAx,tJ = ^ A t m

m-0  j

where Atm denotes the time interval in which the boundary moves from x - m A x  to 
x = (m + l)Ax.

Suppose the moving boundary is moving from the nodal point (ib,j) to (t& +1, j  +1), 
then the problem is to compute the time step Atj necessary for tha t move as well as the 
temperature distribution -  , i  = OtN  -  at the time tj+i, from a known temperature 

distribution at the time tj  (see Figure 2.2).

Pha:
Ph£se 2

Ax

ib + 1

Figure 2.2: Movement of the MB x = M(t) in a variable time step grid network

2JS.1. The Extended Douglas and Gallie's (EDG) method

Let T i j  be the temperature at the coordinates (*t- ,tj). Replacing the left side of (2.36) 
by backward difference at the point (jcittj)  and the right side by central difference, gives:

T i , j + l  ~ T i , j  _  J T i - h j + l ~ 2 T i , j + i  +  T j + u + i )

At j  y Ax2 J (2.41)

Rearrangement of (2.41) gives:

(1 + ^ r j ) ^ i , j +1 “ rj  [ ^ i -Xj+1+ W+1)= T i j  , (2.42)

where rj  = a Atj / Ax2.
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In order to determine Atj, both sides of (2.36) are integrated with respect to x , from x  = 0 to 
x  = M (t) , making use of (2.37)

d_
dt

(  M(t)

JT(x, t) dx -  (a + = -a(A r(0,f)-v^) (2.43)

Further integration of (2.43) with respect to t , and making use of (2.40), gives:

M
cry/f+ a / i j  T(Q,t)dt = (a  + 1)M - j*T(x,f)djc (2.44)

The finite difference replacement of (2.44), when t = tj+i is made to give:

/ + 1

avrfy+i + a h ^ '{ T 0 tP At i) = (a + DO* + I) Ax -  Ax
pm i

*6 + 1

»«1

(2.45)

After manipulation, (2.45) gives:

Ati =

*6 + 1

(a + DO* + 1) Ax -  ayrtj + a h ( r 0,p ^ p - i )  “  r »+U+i
p=l i* l

a(/i + v^oj+i)

(2.46)

It should be noted that in (2.45), the finite difference replacement of the integrals have 
been made such that the value of Atj, obtained from (2.46), matches with the one obtained 
by satisfying the boundary conditions (2.37) and (2.39). The special case of = 1  is 

discussed in section 2.5.3.
By choosing a suitable estimate of A tj, the temperature at any grid point is computed 

from (2.42) and the estimated value of Atj is subsequently re-evaluated from (2.46). This 

iterative process is repeated until the desired accuracy in Atj is achieved. The k ih 

iteration for solving the system of (i  ̂+ 1) linear equations is:

(1+2rj ) TL i - rj (T.*-U+l + TU j , i ) =Tu  - * - U (2.47)

T>J+l- ( l +hAx)T*J+1= VAx (2.48)

where r* = a Atj / Ax2 and ^ + ^ . + 1  = 1 from (2.38) for all k.
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Similarly, the (&+l)th iteration for calculating Atj can be written from (2.46) as:

A tk.+1 =

j  *6 + 1
(a + 1)( j  + DAx -  a y tj + a h ( r 0,p Atp-1) -  2 *$*+W+ 1

Pm l (-1

a(A+< j +i)
(2.49)

Choosing Atj equal to Atj_\ which is already known, , i = 0,i6 are determined

from (2.47) and (2.48). These values are in turn used to determine the new estimate of Atj 
from (2.49). Atj is substituted in (2.47) and (2.48) to give a new temperature distribution 

Tipj +i , i  = 0,it) . This process is repeated until the desired accuracy in Atj is achieved.

2J5.2. Goodling and Khader's (GK) method

Goodling and Khader [47] used the same set of simultaneous equations, (2.47) and 
(2.48), to determine the temperatures at time tj+\ a t the &th iteration. The boundary 
condition (2.39) is replaced by the following finite difference equation:

1 (fliA  rpk \ _ Ax
Ar I t*6 + W+l *W+1/ Afk (2.50)

giving:

AtJ = 1 ~pk  (2.51)
1 ±ibJ + 1

The method suggests that after choosing a value of T? lP A& is recalculated from 

(2.51). The value of Atj is used to calculate , i -  0 using (2.47). Equation (2.48) is 

then tested for the accuracy for the selection of T? .+1. If (2.48) is not satisfied, is
estimated again and a new Atj is obtained from (2.51), which in turn is used to calculate 

new values of Ti,y+i ,i = 0,/^. This process is repeated until (2.48) is satisfied within a 
specified error. However, the way in which 7f j + 1 is selected was not elaborated on by the 

authors.
Gupta and Kumar [48], in a comparative study of numerical methods for moving 

boundary problems, tackle this point. They tried taking T? j +1 equal to T ^ - ^ j  as a 
suitable estimate; then kept on giving a small increment to it successively until a change 

of sign in the error in (2.48) is detected; then 2/ is interpolated either by the method of 

chords or the bisection method. They found that this procedure does not always work. In 
the problem they solved [48] the procedure fails after some time; the method of solving
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(2.47) becomes unstable and the error in (2.48) behaves in an irregular manner. 

Therefore, they adopted the following approach: instead of estimating they
estimated Atj from the following:

Atj = Atj_i + [Atj_i -  Atj_ 2 ) + £ (2.52)

where e is  small. T? j + 1  is calculated from (2.49); values of r?y+1,i  = 0,i& are then 

determined from (2.47); (2.48) is checked to ensure that it is within the specified error; if 

not, Atj is incremented by approximately 0.2% and the process is repeated until a change 
of sign in the error occurs; then the value of Atj is interpolated by the method of bisection.

2J5.3. The Modified Variable Time Step (MVTS) method

In this method [48] the same set of simultaneous equations, (2.47) and (2.48), are to be 
solved as in the EDG and GK methods. The interface condition (2.39) is written as:

Atj +1=~ r w —  (2-53)1_ ■ 'w + i

Choosing Atj equal to Atj_i initially, the temperature distribution 7^j+1,* = 0,i& is 
obtained using (2.47) and (2.48). Using the value of T? j + 1  in (2.53) the new estimate Atj 
is obtained. The process is repeated until the specified error in Atj is reached.

The first time step Ato is calculated by combining both the boundary condition (2.37) 

and the interface condition (2.39). The finite difference of (2.37) gives:

^ ( r U - 2 ’o.1) = ^ o , 1 + y  (2.54)

and the finite difference of (2.39) gives:

Combining (2.54), (2.55) and remembering that the moving boundary is a t the node 
(1 ,1 ) and therefore T-^i = 1 , we obtain:

M U h ^ )  (2.56)
( h + y )
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In sections 2.5.1, 2.5.2 and 2.5.3 the computational procedure, of passing from one 
time step to another, for each method is explained. At the beginning of computation where 
the moving boundary is moving from x = 0 to x = Ax , using any of the EDG, GK and 
MVTS methods, the time step AIq is calculated from (2.56) without iterations and the 

temperature a t x = 0 is calculated using either (2.54) or (2.55).

2.6. The enthalpy formulation techniques

These techniques are based on the relationships which exist between the different 
thermodynamic properties of the material such as enthalpy, heat capacity and latent heat 
of fusion. These methods are strictly limited to melting (freezing) problems, where the 

enthalpy formulation automatically satisfies the jump in heat flux across an isothermal 
moving boundary. For instance, these methods cannot be used for implicit moving 
boundary problems, where the moving boundary is present due to physical phenomena 

other than a phase change [52].

2.6.1. Post-iterative (Isothermal)

This is probably the simplest method [53,54]. For each node the usual finite difference 
or finite element equations are used. For the nodes where the phase change is occurring 
the temperature is set back to the temperature of transition and the equivalent energy is 
added to an enthalpy budget for that node. Once the budget is equal to the latent heat for the 
volume associated with that node, the temperature is allowed to vary according to the 
Fourier conduction equation.

2 .6 .2 . Post-iterative (Mushy)

This is similar to the isothermal case except that a mushy range (see appendix A) is 
also taken into consideration [55,56]. The latent heat is released over a temperature 
range, and is assumed to be a function of temperature (generally linear) in that range. 

The procedure is as in 2 .6 . 1  except that the temperature will be set to:

where T<± is the temperature at the top end of the mushy range; AH, L  and AT are heat in 

enthalpy budget, latent heat of fusion and difference of temperature of the mushy range.

(2.57)

Again both implicit and explicit finite difference, as well as finite element formulations 
can be used for the partial differential equations.
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2&S. Apparent heat capacity

In this technique [57-59] the latent heat effect is considered by increasing the heat 
capacity in the phase change temperature range. For example, if a linear release of the 

latent heat in the range is assumed, the apparent capacity is

cap ~

c T < T i
Cmu T ^ T ^ T 2 
c T > T 2

Solid region 
Mushy region 
Liquid region

(2.58)

where cmu = c + (L/AT). The apparent capacities are calculated using the temperatures at 

the nodes, the resulting finite difference or finite element equations are based on these 

apparent capacities.

2J&A. Enthalpy method

In the enthalpy method [60 -  64], the heat conduction equation is written as:

pH Z-= KV2T  (2.59)
r  *

The enthalpy function of temperature is given by:

cT T <Ti Solid region

H{T) = \c T  + ~T l) T x< T < T2 Mushy region (2.60)
T2 - T x

cT +L T > T 2 Liquid region

Hunter and Kuttler [65] combined the enthalpy method with Kirchhoflf and a co-ordinate 

transformation to put moving boundary problems in a simple form; where, all the non- 

linearity in physical properties of the material can be concentrated in the functional 
relation between enthalpy and temperature.

2.6.5. Pham 's m ethod

This technique [59] combined the enthalpy and the heat capacity methods. Pham uses 
a three time level finite difference scheme. For the one-dimensional heat equation, this 
can be written as:
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PciJ+ l(r iJ+2 - ^ j ) - ^ 3^ 2 ]{ Ti+l>j+2+Ti+±j+l + (2.61)

Ti+lj + Ti-l,j*2 + Ti-i'j+i + r f_ i j  -  2Tij+2 -  2Titj+i -  2Titj  |

where c*j+1 is calculated as:

AH*
Ci,j+1 ~ fm* \ (2.62)

(r  ~ T i j )

(I i+l,j+l + Ti-\,j+l ~ 2Ti,j+l) (2.63)

where
(  2 KAtAH = i ----
V Ax

and
T ’ = f T [ fH{TiJ ) +AH'] (2.64)

where f y  is the function to calculate temperature from enthalpy and f j j  is the function to 
calculate enthalpy from temperature. When 2  bas been estimated using (2.61), it is 
corrected from

Ti,j+2 (corrected) = fj>{fh i,j) + ̂ i,j+l{^i,j+2 ~ ̂ i , j)} (2.65)

If Cf j + 1 was underestimated causing Tfj + 2  t° Pass the freezing temperature, (2.65) will 
reset ^  j + 2  back to the freezing range.

2.6.6. Effective heat capacity

In this technique [6 6 ], a temperature profile is assumed between the nodes; instead of 
calculating an apparent capacity based on the nodal temperature, an effective capacity is 

calculated based on the integral through the nodal volume and the assumed temperature 

profile. The integral to be evaluated is:

Ceff v  Capcnn dV (2.66)

By evaluating (2.66) at each time step, it is insured that the latent heat effect is considered 
at all time steps, even if the mushy range happens to fall between two nodes. Similarly to 

previous methods, the explicit or implicit finite difference as well as finite element 

formulation can be utilised.
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2.6.7. Tacke’s m ethod

This method [64] is based on an explicit finite difference formulation and it is 

identical to the enthalpy method except for the element that contains the phase front. If an 
element ib contains the phase interface, the interface position is calculated using the 

enthalpy Hi of the element ib

11^ = L ( l -  £) + -  T6 X l-  £) -  §(T» -  TeL){ (2.67)

where and T€l  is the temperature of the element to the right and left of the MB, 
respectively; £ is the fraction of nodal volume which is solid. Once the interface position 
is known, the heat flux density into and out of the element can be defined as:

K ufi{T h -T i i)
* L e f l =   / !  ,V ■ ( 2 ‘6 8 )

Kmght(Ti,,.n-Tb)

* ( H )  ( )

If the interface passes from one element to another in a time step, the enthalpies are 
corrected to account for the errors in the assumed heat flux densities.

2.6& Blanchard and  Fremond's method

Blanchard and Fremond [67] use the freezing index and the homograph 
approximation. The homograph approximation is an approximation of the variation of 

the liquid content fj. with temperature. It is expressed as:

T - T b
M 2(ri + \T -T b\)+ (2-7°)

where tj is a constant in the homograph approximation. If T  is greater than Tb, fi from 

(2.70) approaches unity, while if T  is less than Tb, /i approaches zero. The specific 
energy E  of the solidifying or melting material is given by:

E = cT + Lp. (2.71)

The freezing index u is defined as:
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t
U -K j T d t or m l  dll 

K  dt

(2.72)

The energy equation can be rewritten, using (2.71) and (2.72), as:

E (t)-E (0) = - V 2u (2.73)
P

In this method, equation (2.73) is solved instead of the original Fourier equation. Both the 
explicit and implicit finite difference as well as finite element formulation can be 
utilised.

2.7. Conclusion

Research into numerical solutions for moving boundaiy problems deals mainly with 
developing new schemes or extending the existing ones to more general applications of 
these problems. However, few attempts have been made to evaluate the best method. Fox 
[6 8 ], in his article "what are the best methods", concluded that considerable research is 
required to answer this question. Furzeland [52], compared the accuracy, computational 
efficiency, ease of programming and the ability to handle complex problems. He 
concluded tha t there is no method where all the criteria are fulfilled. Poirier and 
Salcudean [69] also compared different numerical schemes for different problems; 

however, they concluded that the best numerical method for ice-melting, for example, is 
not necessarily the best for metal-melting. The choice of the numerical scheme depends 

not only on the nature of the problem but also on the priorities set by the user on: accuracy, 

computational cost and ease of programming.
The accuracy of numerical schemes depend largely on the accuracy of the recurrence 

formulae such as the classical Euler explicit, the Crank—Nicolson and the fully implicit 
equations. On the other hand, the refinement of the mesh size also increases the accuracy 
of the solution, but the storage and execution time increases. However, from the point of 

view of programming ease and computing economy, variable time step methods, with 

implicit finite difference equations, are very attractive in tha t they avoid complications 

and reduce the storage and memory size requirements.
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3 Computational Performance 
of Finite Difference Methods
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Summary

Solutions of transient heat conduction problems are usually obtained utilising finite 
difference methods. These however depend on recurrence formulae such as the Crank- 
Nicolson, fully implicit and Euler. These and more recently developed equations, are 
tested on three different problems and their relative performances are compared using a 
Computational Performance Factor (CPF), which takes into account: the accuracy, cpu- 

time and computer memory requirement. Overall the explicit finite difference equations 
combined with the virtual sub-interval elimination technique is seen to offer higher 

performance compared to the implicit equations.
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Nomenclature
a M aterial Thickness rf A fixed Fourier number (£0.5)
AS Array size (=/ix x nt ) t Time variable
c Specific heat T Temperature
CPF Computational performance factor X Space variable
h Heat transfer coefficient a Diffusivity
K Thermal conductivity P Material density
MPD Maximum percentage deviation At Time step

nx Total number of space elements Ax Space element
nt Total number of time steps Subscripts
PD Percentage deviation i j Space / time step index

P Number of virtual sub-time steps Superscript
r Fourier number m Virtual sub-time step index

3.1. Introduction

In heat transfer problems where an analytical solution is not possible: finite 
difference, finite element or boundary element methods have to be applied, to compute the 
temperature distribution in the space—time domain. However, these methods depend -  for 
their implementation -  on the recurrence formulae such as the Crank-Nicolson, fully 

implicit and Euler equations [1-5].
Solving one-dimensional heat conduction problems, requires the solution of the 

partial differential equation

dT d2Tp c — = 1t - T  » 0 <x<,a , 0 < f £ r  (3 .1 )
dt dx*

with prescribed boundary conditions a t x= 0  and x - a , and known initial conditions. 

Analytical solutions of (3.1) are available in [6 ] for limited boundary and initial 
conditions. However, in most engineering problems, the boundary conditions are 

complex and with the wide availability of high speed digital computers, recourse is often 

made to numerical methods.
Using the implicit methods, the tem perature distribution a t each time step is 

determined by solving a system of nx (if the total thickness a is divided into nx grid 
points) simultaneous equations with nx unknowns; whereas using the explicit methods 

the temperature at each grid point is determined directly from the temperature of the same 

and neighbouring grid points evaluated for the previous time step. Due to stability 
constraints associated with explicit equations, an algorithm using this approach may 

require a large array size if computations are to be performed for an extended time
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period. On the other hand implicit methods do not have such constraints, which makes 
implicit methods more practical when the Fourier number is relatively large.

To avoid the large array size requirements and stability constraints associated with 
explicit equations, a Virtual Sub-Interval Elimination Technique (VSIET), similar to

mesh size without increasing the array size requirements.

Most authors [8 -1 1 ] compare different numerical methods in term s of accuracy 

(error) only, this however may not be a sufficient criteria to make a judgement on

accuracy of 0 .0 1 % greater than the accuracy of another method but with twice the cpu-time 
and memory requirements, this may make the first method better when an error of 0 .0 1 % 
is crucial, but less attractive when the cpu-time is more important than a 0 .0 1 % error.

Computational Performance Factor (CPF), which takes into account the three main 

computational parameters (accuracy, cpu-time and computer memory requirements). In 
this comparative study, besides the well known Euler, Crank-Nicolson and fully 

implicit equations -  the exponential equation [1 2 ] and the implicit weighted time step 
method [10,13] are also considered.

3 J2. Methods of solution

If equation (3.1) with prescribed boundary conditions has to be solved using finite 
difference methods; then a is divided into nx space sections of length Ax = a /n x , and % is 
divided into nt time steps of length At = t  /  nt .

Let Titj  be the temperature at ** = iAx; i = 0,nx a t time tj -  j  Ax', j -  0 ,nt. To compute 

the temperature distribution a t a time tj+i from that of t j , the following methods can be 
used:

(i) The Crank-Nicolson finite difference method [14]:

tha t used in moving boundary problems [7], is incorporated to maintain stability for any

whether one method is better than another. For instance, if a method achieves an

Therefore the objective of this study is to compare the different methods in terms of a

i+W+l

where r  = a — s- and a = K I  (pc)
Ax2

(ii) The fully implicit finite difference method [15]:

(3.3)

(iii) The weighted time step method [10,13]:
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(3.4)

where the matrix Ditj  is given by:

D i j  =  A ~ l  B kj (3.5)

A ij  and B ij  are matrices defined in [1 0 ]

(iv) The Euler equation combined with VSIET:

TU+l = Ttj (3.6)

where

K j= t1-  2rcK ;1+r'{Tr-i)+TZi)) . * - i . p (3.7)

p = int
f \r

V f
+ 1 (3.8)

r„ = — (3.9)

where the notation T/". denotes the tem perature a t Xt=iAx a t a v irtual time
( \

t?  = / + — \At\ "int (y)" stipulates the largest integer less than y; rr is a fixed value of 
J \  P )

Fourier number ( ry- £ 0.5).

(v) The exponential equation combined with VSIET:

Ti.j* i = T 6

where

m-lrpTtl   m l

* J  ~ i,J exp-< - r (
T.' j

m-l m = \ p (3.10)

Using the implicit methods, the temperature distribution a t each time step is 
calculated by solving a system of nx equations. Each equation contains three unknowns, 

except the equations for the first and last nodes which contain only two unknowns (by 
combining the boundary condition and the Fourier equation). The system is tri-diagonal 

and its solution is readily obtained by using the Gauss elimination method.
The VSIET consists of sub-dividing the real time step into p (equation (3.8)) Virtual 

Sub-Steps (VSS). Computation of the temperature distribution at each VSS is computed
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explicitly (temperatures a t the boundary nodes are calculated using a dummy node 
outside the domain with fictitious temperature) from that of the previous VSS. Each time a 
new VSS is completed, the previous VSS is eliminated (for more details see [7]) and the 
tem perature distribution a t the last VSS of each real time step, is assigned to the 

corresponding time (equation (3.6)).

In order to compare their performances, these methods are applied to three different 
problems where analytical solutions exist. For the purpose of comparison, in all the test 

problems the array size was the same for all the methods. The Computational 
Performance Factor (CPF), which is used to compare the different methods, is defined as

CPF- (VMPD) (3.11)
AS x CPU

where A S  is the array size (i.e. total number of grid points, AS -  (nx + 1)(nt + 1)), CPU  is 

the cpu-time spent by the method and MPD is the Maximum Percentage Deviation from 

the analytical solution registered anywhere in the grid:

MPD = max{(|PA j \ , i = 0 ,nx) ,j  = 0,n*} (3.12)

where PD ij is the percentage deviation from the analytical value a t the grid point (i,j) 
given by:

PDitJ = 1 0 0  x
rpviU  rpJ\Tt
h L — LL

rpAn
i,j

(3.13)

where the superscripts N u  and An  refer to temperature calculated Numerically and 
Analytically, respectively.

3.3. Test problems

P roblem  A

This consists of one-dimensional transient heat conduction through a slab, which 

initially has a triangular temperature distribution, the surfaces are maintained a t zero 

temperature at all times. The governing equations are:

■?-= a ~~T  ’ , t > 0  (314)
& d x 2

r(o ,/) = r( i,f)= o .o (3.15)
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T(x, 0) =
y/x

y ( l - x )

0 £ * £ ^

^ £ * £ 1
(3.16)

The analytical solution is given by [ref. 6 , pp. 104]:

s in ^ ^ js in (n  nx) expj-at(n*)2 j |
n=l

(3.17)

Problem A, when a  = LO and yr = 2.0, is solved by methods (i), (ii), (iii), (iv) and (v) 
(section 3.2) which will be referred to as CN, FI, WTS, EuVSS and ExVSS respectively. A 
comparison of numerical results is given in Tables 3.1, 3.2 (for r=  10.0) and 3.3 (for 
r  = 40.0), using nx = nt =20. These are discussed in section 3.4.

Table 3.1 (Problem A): Comparison of solutions of FI and CN at the slab centre.
Percentage deviation (PD [%]) from the analytical solution are also tabulated.

FI CN Analytic

j Tk,j PDkj Tk,j ™ k j Tk,j
1 0 .6 8 8 8 7.0931 0.5637 -12.3592 0.6432
2 0.5330 7.4739 0.5440 9.6920 0.4959
3 0.4226 9.2703 0.3493 -9.6820 0.3868
4 0.3376 11.7588 0.3313 9.6626 0.3021
5 0.2705 14.5868 0.2117 -10.3175 0.2361
6 0.2169 17.6023 0.2038 10.4981 0.1844
7 0.1740 20.7438 0.1270 -11.8503 0.1441
8 0.1396 23.9879 0.1262 12.1066 0.1126
9 0 .1 1 2 0 27.3266 0.0755 -14.1270 0.0880
1 0 0.0899 30.7586 0.0787 14.4693 0.0687
Note: the node &=int(/ix/2) is the node at the slab centre; r=10.0

Table 3.2 (Problem A): Comparison of solutions of WTS, ExVSS and EuVSS. 
Percentage deviation (PD [%]) from the analytical solution are also tabulated.

j

WTS ExVSS EuVSS Analytic

TkJTk,j PDk j Tk,J PDkJ TkJ PDkJ
1 0.6807 5.8409 0.6451 0.2938 0.6439 0.1048 0.6432
2 0.5286 6.5863 0.4977 0.3548 0.4963 0.0799 0.4959
3 0.4188 8.2954 0.3884 0.4114 0.3869 0.0369 0.3868
4 0.3341 10.5830 0.3035 0.4635 0.3021 -0.0154 0.3021
5 0.2671 13.1487 0.2373 0.5142 0.2359 -0.0702 0.2361
6 0.2137 15.8633 0.1855 0.5648 0.1842 -0.1254 0.1844
7 0.1710 18.6766 0.1450 0.6153 0.1438 -0.1809 0.1441
8 0.1369 21.5710 0.1133 0.6655 0.1123 -0.2369 0.1126
9 0.1096 24.5405 0.0886 0.7155 0.0877 -0.2927 0.0880
1 0 0.0877 27.5844 0.0693 0.7657 0.0685 -0.3481 0.0687
Note: the node k='mi(nx/2) is the node at the slab centre; r=10.0
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Table 33 (Problem A): Comparison of percentage deviations (PD [%]) from the analytical 
solution of FI, CN, WTS, ExVSS and EuVSS solution at different time step 

and at the slab centre position.

FI CN WTS ExVSS EuVSS Analytic

j ™ k,j PDkj PDkj PDkj ™ k,j Tk,j
1 39.3090 -56.5155 37.7851 0.4768 - 0.0783 0.3021
2 84.0123 86.2224 81.5747 0.6793 - 0.3618 0.1126
3 147.7231 -251.6444 143.1260 0.8830 -0.6454 0.0420
4 234.5848 488.6956 226.4239 1.0873 - 0.9262 0.0156
5 352.1880 -1248.9570 338.4726 1.2902 - 1.2086 0.0058
6 511.2041 2843.0334 489.0356 1.4959 - 1.4895 0 .0 0 2 2
7 726.1621 -7017.5547 691.3118 1.7009 - 1.7678 0.0008
8 1016.7266 16983.9336 963.0533 1.9046 - 2.0483 0.0003
9 1409.4824 -42065.726 1328.1135 2.1124 - 2.3259 0 .0 0 0 1
1 0 1940.3745 104251.750 1818.5382 2.3182 - 2.0266 0 .0 0 0 0

Note: the node k-mi(nxP) is the node at the slab centre; Fourier number r =40.

Problem B
The slab is initially a t constant temperature T q  throughout. At t  -  0 the slab is heated 

by a constant heat flux F  at one surface and thermally insulated on the other:

d T = irT_ 
dt a dx2

(3.18)

rTT
^ -  = 0 , x = 0 . 0  , t>  0  
dx

(3.19)

rfT■K —— = F  = const. , x = L 0  , t > 0  
d x

(3.20)

T(x,0) = T0 (3 .21)

The analytical solution is given by [ref. 6 , pp. 1 1 2 ]:

T(x,t) = T0 + 2F(a t) 
K

1/2

n=0

ierfc
r \
2 n + l- x  

1/2
2  (a t)

+ ierfc
( \  

2n+ 1+x
, 2  ( a * ) " 2

(3.22)

Numerical results for problem B ( a  = 0.4x 10-6 , Tq = 10.0, F = 5 x 103 andK"= 19.3) 
using the FI, CN, EuVSS and ExVSS methods ( r  = 30.0 and nx = nt = 20) are shown in 
Table 3.4.
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Table 3.4 (Problem B): Comparison of solutions of FI, CN, ExVSS and EuVSS at different time steps 
(j) for different space grid lines (i). Percentage deviation (PDij [%]) from the analytical solution

are also tabulated. Fourier number r -30.

FI CN • ExVSS EuVSS Analytic

j T • • J T • • PDiJ 7\ . PDU T • • T • •
i -= 0

1 14.4641 36.1696 10.7593 1.2914 10.6469 0.2331 10.5894 -0.3084 10.6221
6 93.1772 10.8978 82.0227 -2.3780 84.5730 0.6574 83.9543 -0.0790 84.0207
1 0 173.7317 7.8045 163.4193 1.4054 161.7820 0.3894 161.0758 -0.0488 161.1544
14 255.4144 6.9377 245.2222 2.6704 239.5092 0.2784 238.7423 -0.0426 238.8441
2 0 378.0920 6.3782 367.9272 3.5182 356.0598 0.1793 355.2534 -0.0476 355.4226
i =nx = 2 0

1 87.8593 -2.4401 67.0669 -25.528 90.8958 0.9317 90.0057 -0.0567 90.0568
6 219.9615 3.6004 210.9782 -0.6307 212.8857 0.2677 212.2566 -0.0286 212.3173
1 0 303.0122 4.2626 293.0459 0.8333 291.2397 0.2119 290.5393 -0.0291 290.6240
14 384.9236 4.4925 374.8130 1.7479 369.0127 0.1733 368.2537 -0.0327 368.3745
2 0 507.6238 4.6742 497.4917 2.5849 485.5896 0.1306 484.7622 -0.0400 484.9561

Problem  C

The slab initially has an exponential temperature distribution. At t = 0, one surface 
is exposed to a variable heat flux and the other surface loses heat by convection

rfT
—  = a ^ 2  » 0 <X £ 1  , t> 0 (3.23)

= -exp(a t) , x = 0.0 , t>  0 (3.24)
ax

? f- = -T (x ,t)  , x= 10 , t>  0 (3.25)
ax

T(x,0 ) = exp(-x) (3.26)

The analytical solution is given by:

r(x,f) = exp(a f -x)  (3.27)

Numerical results for problem C, when a = 2.5, are shown in Table 3.5 using FI, CN, 

ExVSS and EuVSS when r  = 25.0 and nx = nt = 2 0 .
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Table 3 J  (Problem C): Comparison of solutions of FI, CN, ExVSS and EuVSS at different 
time steps (j) for different space grid lines (i). Percentage deviation (PD [%]) from the 

analytical solution are also tabulated. Fourier number r =25.

FI CN ExVSS EuVSS Analytic

j T ■ • PDij T • • PDiJ T- • 1 i,J PDij T- • PDij T • •
1 = 0

2 1.1475 1.2697 1.1436 0.9198 1.1334 0.0192 1.1333 0.0116 1.1331
7 1.5885 2.5626 1.5766 1.7914 1.5493 0.0330 1.5491 0.0161 1.5488
1 2 2.1862 3.2680 2.1650 2.2697 2.1178 0.0390 2.1174 0.0168 2.1170
16 2.8164 3.6098 2.7862 2.4985 2.7194 0.0426 2.7188 0.0176 2.7183
2 0 3.6240 3.8302 3.5827 2.6459 3.4919 0.0459 3.4910 0.0189 3.4903
i = nx = 2 0

2 0.4223 1.3135 0.4202 0.7900 0.4169 0.0169 0.4169 0.0073 0.4169
7 0.5888 3.3294 0.5817 2.0856 0.5700 0.0444 0.5699 0.0129 0.5698
1 2 0.8144 4.5717 0.8016 2.9335 0.7792 0.0533 0.7789 0.0155 0.7788
16 1.0518 5.1783 1.0334 3.3397 1.0005 0.0528 1 .0 0 0 1 0.0140 1 .0 0 0 0
2 0 1.3555 5.5695 1.3302 3.5996 1.2847 0.0558 1.2842 0.0137 1.2840

3.4. Numerical results and discussion

Table 3.1 shows that for problem A, the CN method oscillates around the analytical 
solution, whilst the FI method does not exhibit such oscillations but it is less accurate than 
CN. Furthermore, it can be seen from Table 3.1 that the error accumulation in FI is 
greater than that in CN as time progresses. Table 3.2 shows that WTS is more accurate 
than FI but less accurate than CN; however, for ExVSS and EuVSS the maximum relative 
error is less than 1 % whereas for the FI, CN and WTS methods the maximum errors are 

around 31%, 14% and 28% respectively. It is evident from Table 3.3 tha t the implicit 

methods become very inaccurate when the time step length is relatively large. Such 

errors may be seen from the engineering point of view as not acceptable, whereas the 
error using both EuVSS and ExVSS, which is around 2 %, is still satisfactory even with 

very large Fourier numbers.
Similarly, numerical results for the problem B and C, which are shown in Tables 3.4 

and 3.5 respectively, show that the explicit equations combined with VSIET outperform  
the implicit schemes. The ExVSS method may exhibit computational difficulties (the 
argument of the exponential function may exceed the limit allowed for the compiler’s 
intrinsic function) if a high heat flux is prescribed at the boundaries. Such difficulties 

can be avoided by approximating the exponential function, a t the boundary nodes, by the 
first three terms of the Taylor series expansion.

In Table 3.6, a comparison of run times with and without vectorisation, for the 

different methods, is shown. Provided that the number of elements stays constant, the
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cpu-time for the implicit methods remain approximately the same irrespective of the time 

step length, but the cpu-time for ExVSS and EuVSS increases as r increases. Table 3.6 
also shows that the speed up due to vectorisation (sdv) for the explicit methods is greater 
than that of implicit methods, this however is due to the fact that the explicit methods -  
where there is no recurrence — are more suitable for vectorisation than implicit 
procedures.

Table 3.6: Comparison of cpu-time (x 1(P s) without and with vectorisation for FI, CN, ExVSS
and EuVSS for problem A.

r

FI CN ExVSS EuVSS

cpu sdv cpu sdv cpu sdv cpu sdv
00.25 0.4351 3.498 0.5580 4.161 0.3500 5.120 0.2127 6.147
00.35 0.4375 3.371 0.5674 4.244 0.5809 5.100 0.3038 5.899
00.50 0.4366 3.398 0.5648 4.212 0.5837 4.988 0.3030 5.872
00.80 0.4342 3.435 0.5620 4.163 0.8176 4.778 0.3926 5.723
0 1 .0 0 0.4379 3.434 0.5634 4.146 0.8158 4.668 0.3942 5.738
0 2 .0 0 0.4345 3.446 0.5658 4.241 1.5190 4.582 0 .6 6 8 8 5.597
03.00 0.4347 3.554 0.5609 4.208 2.2230 4.495 0.9399 5.411
06.00 0.4407 3.571 0.5598 4.241 4.3670 4.423 1.7550 5.375
09.00 0.4398 3.420 0.5600 4.124 6.2370 4.367 2.4750 5.327
1 2 .0 0 0.4413 3.348 0.5570 4.179 8.3600 4.282 3.2900 5.335
15.00 0.4352 3.498 0.5635 4.190 1 0 .2 1 0 4.256 4.0120 5.290
2 0 .0 0 0.4412 3.402 0.5659 4.131 13.760 4.234 5.3630 5.289
Note -  For each method, and for a given value of r, the first and second value corresponds to the 
cpu-time used by the method without and with vectorisation respectively. 
cpu (vect.) = cpu (without vect.)/sdv, where sdv is the speed up due to vectorisation. cpu and sdv 
are specific to the IBM390/150VF, Computer Centre, University of Glasgow, U.K.

108

CN
106 EuVSS

ExVSS

1 0 °

0 5 1 0 35 401 5 20 3025
Fourier number (r)

Figure 3.1: Variation of MPD with the Fourier number r for the different methods. 
Problem A; rf =0.35, a  =0.5, nx=nt =20 and A=4.0
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Figure 3.2: Comparison of computational performance factor CPF for the different methods. 
Problem A; /y=0.35, a  =0.5, nx =nt =20 and ^=4.0

To investigate the performance of the different methods over a large range of values 
of r, the three test problems are solved with r  varying from 0.3 to 35. The performance of 
each method is assessed by plotting the maximum percentage deviation MPD and the 
computational performance factor CPF against r. Figure 3.1 shows that for problem A, the 
accuracy of both EuVSS and ExVSS is always superior to that achieved by CN and FI (this 
holds true also for the WTS method, because its accuracy lies between that of CN and FI 
with higher cpu-time). It also shows that when r >1 0 , FI and CN give unacceptable errors.

Having regard to both the cpu-time and accuracy, the performances of the different 

methods are shown more clearly by Figure 3.2, where the CPF (the CPF is calculated 

using the cpu-time spent by the method using vectorisation) for EuVSS is the highest for 

all values of r  used in the computation. ExVSS has a similar accuracy to EuVSS (Figure 
3.1) but with a poorer CPFt this is mainly due to the greater cpu-time used for evaluating 

the exponential functions.
Figure 3.3 shows that for problem B, the MPD for FI and CN decreases when r  is less 

than 3.0, this is due to the increase of temperature and consequently a decrease of the 

relative error. However, when the Fourier number becomes large, the difference between 

the numerical and analytical solutions becomes larger than the rise in temperature, 

which causes an increase in the relative error. Figure 3.4 shows again that EuVSS and 
ExVSS out-perform the implicit methods. It shows also that the CPF for FI and CN 

increases when r< 3 due to the decrease in the error shown in Figure 3.2, as the cpu-time 
remains approximately the same provided that the number of nodes remains fixed (see 
Table 3.6).
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Figure 3.3: Variation of MPD with the Fourier number r for the different methods. 
Problem B; /y =0.35, a  =0.5x10*4, 7=3000, ̂ f=20, 7o=15.0 and nx=nt =20
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Figure 3.4: Comparison of computational performance factor CPF for the different methods. 
Problem B; /y = 0.35, a ^.SxlO*4, 7=3000, /if=20, 7 0=1 5 .0  and nx =nt =20
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Figure 3.5: Variation of MPD with the Fourier number r for the different methods. 
Problem C; // =0.35, a  =0.01 and nx =nt =20

The variation of MPD with r, for problem C, is shown in Figure 3.5. It shows tha t MPD 
for implicit methods increases with r , whereas for ExVSS and EuVSS it  remains 
approximately steady over a large range of r. Figure 3.6 shows that, as in problems A and 
B, the computational performance factor of EuVSS and ExVSS methods is higher than that 
of the FI and CN methods for all values of r  used in the computations.

CN
EuVSS
ExVSS

6iH
X

3x
I

.01

.001
5 1 0 15 20 25 300 35

Fourier number (r)

Figure 3.6: Comparison of computational performance factor CPF for the different methods. 
Problem C; rf =035, a  =0.01 and nx =nt= 20
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3.5. Conclusion

The numerical results for all three test problems show tha t EuVSS and ExVSS are 
more accurate than implicit schemes for any choice of Fourier number. Taking into 

consideration both the run time and accuracy, the explicit methods combined with the 

VSIET achieve higher computational performances than tha t of implicit methods for all 
the computations performed. The comparison of the different numerical schemes in 

terms of their computational performance factor, which measures unit accuracy per unit 

cpu-time per array element, seems to be a better tool for comparing competing numerical 

schemes than the usual comparison in terms of accuracy or cpu-time separately.

The numerical results for all three test problems show that the EuVSS method has the 
highest computational performance throughout Despite the good accuracy of ExVSS, its 
CPF sometimes approaches tha t of the implicit methods, this is due mainly to the time 
spent in evaluating the exponential functions. However, the performance of ExVSS can 
be considerably increased if the following equation is used instead of (3.10):

2  a
fjim _  rrTn— 1 _ rn m —1 rn m — 1 \  , (f*c) /o 'n w - 1  fp m -1  rn m — 1 \  /„

i j  ~ i j  ~ c\ i,j + (3.28)

Equation (3.28) is obtained by approximating the exponential in (3.10) by the first three 
terms of the series expansion (exp(y)= 1 +y + ̂ y 2). This permits considerable reduction 
in cpu-time, without loss of accuracy, this results in a higher CPF.

This study has shown that a numerical scheme based on an improved algorithm and 
using simple finite difference equations, may achieve superior computational 

performance to one based on more complex equations. Frequently, increasing the 

complexity results in much higher cpu-time for only a small improvement in accuracy.
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Time Step Method for 
Moving Boundary Problems
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Summary

Numerical solution of heat conduction problems with phase changes benefits from the 
application of variable time step methods when the behaviour of the moving boundary is 
not known a priori. Due to convergence and stability constraints only implicit finite 
difference equations have been used with these methods. Implicit methods show a 
significant loss of accuracy and exhibit convergence difficulties when used for 
relatively slow or rapid moving—boundary problems. To overcome these problems an 
improved explicit variable time-step method, which combines the explicit exponential 

finite difference equation, a variable time-step grid network and virtual unequal space- 

increments around the moving boundary, is presented and tested for both a solidification 

and a melting problem. A virtual sub-interval time-step elimination technique is 

incorporated to insure tha t stability is automatically maintained for any mesh size. 

Unlike the implicit variable time step methods, the accuracy of the resulting method is 
not affected by the velocity of the moving boundary. For both test problems numerical 
results are in better agreement with known analytical solutions than results predicted by 
other numerical methods.
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Nomenclature
a Slab thickness a Diffusivity

F Heat flux input €min Time-step error allowed to stop

h Heat transfer coefficient iteration

K Thermal conductivity X Latent heat of fusion/unit volume

M Liquid/solid interface position Subscripts

N Total number of space elements i j Space/time indices
PDt Percentage deviation for time k The node index holding the
PDs t Percentage deviation for surface moving boundary

temperature I Liquid

rd Corrected Fourier number in the m Virtual sub-time step index in the
liquid region liquid region

rcs Corrected Fourier number in the n Virtual sub-time step index in the
solid region solid region

rf Fixed Fourier number (<; 0.5) P Number of virtual sub-time steps

T Temperature in the liquid region

t Time variable Q Number of virtual sub-time steps
Tb Temperature at the moving in the solid region

boundaiy 8 Solid
To Temperature of the fluid in Superscript

contact the slab k Iteration index

X Space variable

4.1. Introduction

Several numerical methods are available [1 ] for solving moving boundary problems. 
According to Gupta [2 ] these may be classified into two categories:

(i) fixed grid methods,

(ii) variable grid methods.
In the first category the space and time dimensions are divided into step lengths of 

equal magnitude. For these methods the Euler explicit and implicit finite difference 
equations can be utilised; when the explicit finite difference equation is used the mesh 
size must be carefully chosen to avoid problems with convergence and stability, this 

method requires considerable memory size if computations are performed for large 

periods of time. Although the implicit finite difference equations have less demanding 
stability requirements, fixed grid methods either using the explicit or the implicit 
difference equations, break down when the moving boundary jumps a distance larger 

than a single space increment during a single time step [3]; in other words: these methods



Chapter 4 The EVTS method 44

are inadequate for heat transfer processes with phase changes where the moving 

boundary may have an instantaneously high velocity during the process.
Using variable grid methods only one dimension, either time or space, is divided into 

equal sized increments -  the other being variable. In the Murray and Landis method [4]: 
the time increment is kept constant and the liquid and solid regions are a t any instant in 
time divided into a fixed number of equally spaced intervals, however, the size of the 
intervals will increase or decrease as the proportions of solid/liquid alters; this kind of 
subdivision presents difficulties in commencing the computation, especially when the 

liquid or solidified depth is very small (for example laser surface melting). Douglas and 
Gallie [5] suggest in their methods that the thickness is to be divided into N  equally spaced 

intervals of length Ax; the time step A£t which is variable, is the time taken for the 
moving boundary to move Ax. Due to stability problems only the implicit difference 

equations have been used so far in these methods, where a t each time step a  set of (N  +1) 
simultaneous linear equations must be solved. When the time step is relatively large, the 
Euler explicit and the implicit equations suffer from either: significant oscillations, or 
loss of accuracy [6 ]; in other words, the implicit variable time step method may not be 

sufficiently accurate to solve heat transfer problems where the liquid/solid interface has 
a relatively slow velocity.

It is clear that the choice of the numerical method for a  specific problem depends not 
only on the nature of the heat transfer process itself, where a priori view is necessary, but 
also on the available computational platform. This chapter presents a numerical method 
which can be used to solve any one-dimensional moving boundary problem without 
stability problems or loss of accuracy irrespective of the velocity of the moving boundary. 
An additional benefit of the method is that it does not require a large amount of computer 
memory, this is due to the incorporation of the virtual sub-interval time step elimination 

technique, it may also be less costly in terms of cpu-time due to its high suitability for 
vectorisation.

The numerical method is described for a general heat transfer problem where a solid 

material melts under the effect of a variable heat flux prescribed a t one boundary and 

loses heat by convection through the other. It is convenient to test the method by adapting 
this general case to solve two specific problems which have been dealt with by other 
authors:

A) a liquid maintained a t its fusion temperature which solidifies by losing heat 
through its surface by convection [5 ,7 ],

B) a solid material a t constant temperature which melts due to a variable heat flux 
input at one boundary [8,9].

These results are compared with known analytical solutions which are used as a 
reference standard.
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One-dimensional heat transfer in a homogeneous m aterial of diffusivity a  is 

described by the Fourier conduction equation:

d T  d 2T  _  ^  ^—r— = a — 5- , 0 £ x £ a  , 
d t  dx

(4.1)

Difference solutions of equation (4.1), which give improved accuracy, have been 

reported recently [10-16]; Bhattacharya [10-14] gives two improved explicit finite 

difference equations which are:

J+ l — Q j  exp-J r
^ O 'T  T* T  '

T -  •1hj
(4.2)

/
Tij+ i -  T i j  exp1- r arcos

.

T j- i j  + Tu l j

W iJ

\ 2

-1/
(4.3)

A
where r  = aAt / Ax .

Equation (4.3) is an efficient approach when used for relatively slow heat transfer 
processes. But when the cooling rate is relatively high, which results in steep temperature 
gradients, hence, [(ZY-ij + T i+ itj ) / ( 2 T i j ) \  may exceed unity. Numerical experiments 
shows that a scheme based on (4.3) have a higher probability of break down, than that 
based on (4.2), if used for heat transfer processes with higher cooling rates such as 
subsequent cooling after laser surface heating. This work concentrates on the linear 

exponential equation, given by (4.2), as it has less stability constraints than (4.3).

4J2. Mathematical formulation of two phase Stefan problems

Consider the one-dimensional general melting process where a piece of solid 

material of infinite transverse dimensions and thickness a , is subjected to a source of 

heat F{t) at x  = 0, and is in contact with a fluid at temperature To at x  = a (Figure 4.1).

heat flux input
Fit) } Liquid

h{T(a,t)-TQ) )

heat flux lost by 
convection

x = 0 x = M(t) x = a

Figure 4.1: One-dimensional melting problem
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Assuming that the thermal properties are constant but different for the solid and liquid 

regions, the process is described by the following equations:

^ r  = a‘ ^ T T  ’ , t> 0 (4-4)dt dx

, M(t)S.x i .a , t > 0 (4 5 )
at dx

dt
Tl (x,t) = T8(x,t) = Tb

x = M(t) , t> 0
(4.6)

with the boundary conditions:

j r / iS - l=-*•(«) , *=o , «>o W-7)

- K . [ ^ \ ^ h{T ,(x ,t) -Ta) , x  = o , t > 0  W-8 )

and the initial conditions:

T8(x,0) = T(x) and Af(0) = 0 (4.9)

4^. Numerical computation scheme 
(the Explicit Variable Time-Step, EVTS, method)

At the beginning of computation an arbitrary fixed value of Fourier number ry £ -j is 

chosen. The material thickness a is divided into N  intervals of equal length Ax = a / N  , 
where X; = iAx , i = 0 ,N . The position of the moving boundary is indicated by if,; hence, in 

the liquid the spatial index ranges from i = 0 to i =  if, and in the solid i = if, + l,N . The 

time step At is of variable length and is determined as the time for the moving boundary 

to move a single space increment Ax; consequently, the moving boundary always 

coincides with a spatial grid line for each time step. The time step index varies from 
j - 0 to j  = N  and increments a t the same rate as if,. Figure 4.2 illustrates the grid 
network.
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Figure 4.2: Variable time step grid network
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A Virtual Sub-Interval time step Elimination Technique (VSIET) was incorporated to 
insure th a t the stability is automatically maintained for any mesh size without 
increasing the storage requirements. In moving boundary problems where two different 
phases exist simultaneously, the VSIET sub-divides the main time step increment into a 

number of Virtual Sub-time Steps (VSSs); namely, p in the liquid and q in the solid. In 
the liquid the VSS index m varies from m = 1  to m = p ; in the solid the VSS index n 
varies from / i = l  to n = q. This technique is automatically applied to preserve the 
stability of the scheme for any situation which may occur during the computation process. 
These VSSs are referred to as virtual, as the temperature distribution at the most recent 
VSS is discarded {eliminated) each time the new VSS is completed. Only the temperature 

distribution at the main time step {real) is retained.
When the temperature distribution at each real time step is determined, the energy 

balance a t the moving boundary (4.6) is checked. Each time the equality between the right 

hand and the left hand sides of (4.6) is not verified, At must be re-evaluated (4.30) as 
must p  and q (4.14). This iterative process, where k is the iteration index, is repeated 

until the desired accuracy in At is reached (4.31).
The numerical procedure is illustrated for passing from a real time step to another 

(i.e. from tj  to t j+{). The complete solution is achieved by repeating the procedure for 
each time step until the end of the heat transfer process. In particular the computation 
process, for the test problems in section 4.4, is stopped when the moving boundary has 

reached x = a, i.e. complete melting or complete solidification.

The notation T^j denotes the temperature at the grid point of coordinates (*»,*/) 
given by:
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j - 1 N
xi = iAx , tj  = ^  Atq 

?“° )

(4.10)

j  m p denotes the variable T  at x at the VSS (j ,m ,p ) located a t the virtual time **>mfP 

given by:
j - 1

<* = yV.w,p
M k.

M1 + m ~ ±  
, - 0  PJ

(4.11)

where Atq is the time taken by the moving boundary to move from xq to and the 

superscript k is the iteration index.

Suppose the moving boundary is at node (ibtj) and the time necessary to reach the node 

(i& + 1» j + 1) is At* (as shown in Figure 4.3), where

r j = m in(a/,aa)x
Ax4

1

> 2 *
(4.12)

then the problem is to compute temperature distribution at t = fy+i from tha t of t = t j ,  as 
well as the time step Atj necessary for the moving boundary to move from the node

j+l

( j ,m - l ,p )  (j,rn ,p )

i= ib~  1

-I
-  -  ■» Liquid phase

i =
I 9 9 9i Space increment undergoing 

phase transformation'__
----------------- J I

l i -  -  -  - li = ib + 1

Ax
Solid phase

i =ib + 2

Figure 4.3: Descretisation around the moving boundary. Dashed and solid lines represent, 
virtual and real grid networks respectively
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The VSIET is automatically applied to insure the stability of the scheme, when the 
Fourier number is greater than 0.5 (4.12), which is the limit of stability for explicit finite 
difference equations. Therefore Atj is divided in the liquid region into p* virtual sub- 
intervals of length S tij  and into q* virtual sub-intervals of length St^j in the solid 

region (as shown in Figure 4.3). Defining r f  _• and r j  . as:•%J •J

. A t )

r‘j = a‘ ^
k

r: r a' - £
(4.13)

and Pj and q) must satisfy the following conditions:

Pj = int
( k 'Sr* . 

1>J

rf
+ 1 Qj = in t

f  k  ̂r . *,J + 1 (4.14)

where ’'int(y)" stipulates the smallest integer less than y.
The corrected Fourier number in the liquid . and in the solid region r& j are 

defined as:

rk _ rU  
rd , j ----- r * .

09J  at d,J
(4.15)

4^5.1. Com putation of tem peratu re d istribu tion  in  th e  liq u id  region

In the liquid region, the temperatures distribution, T f j + vi = Otib* a t time t = **+i is 
computed from that at time t = t j  in p )  stages. The temperature distribution in the liquid 

region a t any VSS (y,m,p), where J./ = 0 ,2V -l;m = l,p * } , is calculated explicitly from 

that of previous VSS 0 ‘,m -  l»p) using:

(4.16)

where

k = 2
hj,m,p \

f  (  A  ̂ ^
r p k  _r p h  f A X

i,j,m,p i+Xj,m,p I ^ j,m,P for i = 0 (4.17)

T ■hj,m,p
(4.18)

and
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(4.19)

In order to calculate the temperature a t jc*6 a t (jr,m ,p), the movement of the moving 

boundary, between the two real nodes (ib,j) and (i& + is approximated by a step
shaped function of p* steps of equal length &c*j = Ax I p* (see Figure 4.3). Therefore, the 

spatial grid line ib can be considered to be in the middle of the two virtual grid lines 
located, respectively, a t xu =xi(t -  m Sxfj and xd = xif> +mSx}j. The temperature a t xu can 
be calculated by interpolation from temperatures a t x^  and the temperature at xd is 

always TV In order not to violate the stability criteria the temperature Tibj tmfp should be 
computed from temperatures a t xu, Xib, xd a t ( j , m - 1,p) in (p*/m) stages. However, in 

order to minimise the computation time and complexity, the temperature change across 
each virtual sub-interval is approximated by a step change:

T f M *
l.p) ' 0 ^X £ X ib ,

[^Z( * » )  » 0 £ X  £ X i h , ^ t  < t j  m ^ p

(4.20)

Thus, the temperature ^  will be computed, from temperatures a t (J*m ~ 1»P)» one 
stage (for details see appendix B) using (4.16) where:

V'i r p f i

ib>J>m >P

y  > f  \ '

l + 2 t i

.1 p J  J

rpk
ib,j,m,p

m + 1 

P k-
(4.21)

Hence, the temperature profile between t -  tj  and t -  f*+ 1  a t any depth x in the liquid 

region including is approximated by a step wise function of p* stages.
Since the VSS (./,m = p*,p) always coincides with the time t * t j+v the temperature 

distribution a t (./,p*,p) is assigned to the real grid as the temperature distribution in the 
liquid region a t the time t = t j+1

di+ i = T*. * , i = 0,ib (4.22)
l*J+L h j , p j , p  0

When j  = 0 (ib = 0 , i.e. the moving boundary is moving from (0,0) to (1,1)), instead of 
equations (4.17) and (4.21), the following equation is used:
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4&2. Computation o f temperature distribution in the solid region

In the solid region, the temperature distribution i = ib + 1,1V) at the time t =
is computed from that of time t = tj in q* stages. Similarly, the temperature distribution 

a t each VSS i j ,n tq)9 where jy = Q,N-  l ;n =  *n the solid region is computed
explicitly from that of the previous VSS ( j , n - \ q ) \

= r 6 .» -l,» eXP(-rl j  i = k  + <4'24>

where

rpk   rpk  f  hAX
i,j,n,q i-hj,n ,q  I T0 1- for i = N (4.25)

and

V i i n n - —r~— (2Ti tn n -T i.«  {rin- T i  * for i - L + 2 tN - l (4.26)

To calculate the temperature same approach as for is used. The
movement of the moving boundary between the two real nodes (fe,y) and (i& + 19j  + 1) is

L L L
approximated by a step shaped function of q { steps of equal length &xK j = A x /q j  (see

/  \2
Figure 4.3). Similarly the temperature ^ib+xj,n,q should be computed in ((<7* - n )/^ y ) 
stages in order to maintain the stability criteria. In the same way as for the grid line Xib, 
to minimise the computation time and avoid further complications, the temperature 
evolution between t - t j  and t = t j+1 at any depth in the solid region (including x^+i) is 

approximated by a step shaped function of q* steps:

Ta(x,t) =
T *[X' tkj . n - \ q )  ’ Xk  +1 ^ 0  > tkj , n - X q * t<tkj,n,q 

^ 8{X,tj ,n ,q ) » x ib+ l ^ x ^ a  » *j,n,q ^ * <  *jjn+\q

(4.27)

this allows the temperature T ^ +1j  n q to be computed explicitly in one stage using (4.24), 
where:
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As the VSS ^ jtn = q*fq)j also coincides with the time t = t j+i, the temperature 
distribution a t { jfq*,q} is assigned as the temperature distribution in the solid region at
the time t = t*+1.

hj,gj,g

When the temperature distributions in both liquid (4.22) and solid regions (4.29) are 
estimated a t the time t = t*+1 (the intermediate steps are virtual and are progressively 
eliminated) the Atj*1 is recalculated from the finite difference form of (4.6) giving:

d* * + 1  = J
r XAx2 ^

K,* /
(4.30)

where p  = K ifK s .

The iteration process a t each time step is stopped when the following test is verified:

100 x
At**1-A t*  J. J Z L

Atj mm (4.31)

The computing procedure a t each time step j t begins by choosing At**0 equal to A tj.i, 
which is already known from the previous time step. The temperature distribution 

, i  = Q,N is determined from (4.22) and (4.29). These values are in turn used to find 
the new estimate At**1 from (4.30). At**1 is used in the numerical analysis (from (4.13) 

to (4.29)) to determine the new temperature distribution T*^ll t i = 0 ,N . This process is 

repeated until the value of Atj, for two successive iterations, satisfies (4.31).

The numerical analysis presented (from (4.13) to (4.29)) shows the procedure for 
computing the temperature distribution (throughout the liquid and solid) a t a discrete 
time t j+1 = tj  + Atj from that of the previous time t j .  The time step interval necessary for 

the moving boundary to move a single space increment is also determined iteratively. 
For the complete solution, the procedure is repeated a t each real time step until the end of 
the heat transfer process. In particular, for the te st problems in section 4.4, the 

computation process stops when the moving boundary has reached x - a  (i.e. complete 
melting or complete solidification of the slab).
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4& 3. H ie  special case of zero tem perature a t th e  m oving boundary

When Tj = 0, the temperature at the node (ib,j) which always represents the position of 
the moving boundary will be equal to zero also ( i.e. 1'ib,j,o,p:sTibj  = Tj = 0). Hence,, 

equations (4.21) and (4.23) becomes indeterminate when m - 0.
To calculate Tf* j m when m = 1, equations (4.16) and (4.21) must be replaced by:

f  \

Equation (4.32) is obtained by using the previously stated approximations, i.e. that the 
moving boundary moves according to an equal-step shaped function during time steps, 

and applying equation (23) in reference [10].
Similarly, when the moving boundary is moving from (0,0) to (1,1), instead of 

calculating y ro when m -  1 using equations (4.16) and (4.23), the following is used:

which has been dealt with by: Goodling and Khader [17,18], Gupta and Kumar [7]. As

temperature throughout by losing heat through its surface by convection; the governing 

equations are:

(4.33)

4.4. Test problems

P roblem  A

The numerical scheme, illustrated in section 4.3 which will be referred to as the 
explicit variable time-step (EVTS) method, is used to solve the heat transfer problem

previously stated the process consists of solidification of liquid initially a t its fusion

dx
(4.34)

—  = hT  , x = 0 , f > 0
ax (4.35)

T(x,t) = 1 , M (t)Z x Z l.0  , t > 0 (4.36)

dM dT
dt dx ► , x = M (t) , f> 0  

T(x,t) = 1

(4.37)
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M(0) = 0 (4.38)

Solutions of the problem A, when h=lO.O and a  = 1 0 , using: the method proposed by 

Goodling and Khader [17,18] which will be referred to as the GK method, the Extended 

Douglas and Gallies's method (EDG) proposed by Gupta and Kumar [19], the Modified 
Variable Time-Step (MVTS) method given also by the same authors [7], and the present 

method are given in Table 4.1 for increasingly fine spatial resolution.
For accuracy assessment a recourse is made to an analytical solution based on the 

heat-balance integral method of Goodman [20] (details can be found in [7]). An identical 
time step error -0.05%  has been allowed for all the methods. For relatively large 
values of N  the GK method fails to converge with a small time step error; hence, an 

emin = 0.5% is used when Ax = 0 .0 1 . For EVTS an € ^ = 0 .0 5 %  and r f =0.35 were 

maintained in all computations.

Problem  B

A solid material melts due to a variable heat input a t the fixed boundary, x = 0, the 
tem perature throughout the solid is assumed to remain a t the melting point; the 

governing equations in non-dimensional form are:

371 3471
~ -  = a —4 - , o<;*<;M(f) , t> 0
rtf

d2T (4.39),2

—  = -exp (a t)  , x = 0  , f > 0
ox

(4.40)

T(x,t) = 1 , M (t)< x £ L 0 , f >0 (4.41)

1 dM dT'
a dt dx ► , x = M(t) , <>0
r(x,f) = L0

(4.42)

M(0) = 0 (4.43)

Exact solution:

T(x,t) = ex]>(at-x) , M(t) = a t (4.44)
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Problem B has been solved using MVTS and EVTS, for both methods an error of 

Emin = 0.05% is allowed for time steps and results are computed with r f  =0.40 for the 

EVTS method. Results for a = 0. 1 and a  = 10.0 are given in Tables 4.3 and 4.4 
respectively. For N  > 40 and a time step error of e„un -  0.05%, the MVTS method does not 
converge; hence, for N  = 50 and N  = 100 the time step error is increased to 0.1% and 0.2% 
respectively.

The accuracy of the numerical results is assessed by comparison with the analytical 

solution and expressed as Percentage Deviation (PD ) defined as:

p p  (Numerical solution) - (Analytical solution) w ^
(Analytical solution)

The Percentage Deviation for Surface Temperature PD sr(il/)), when the moving 

boundary is a t x=A/(f), is defined as:

PDST(M ) = 1 0 0  * r ^ (r ^ oy 0,<) (4 .4 5 )

The Percentage Deviation for the time PDt (M ), when the moving boundary is located 

a t x -M (O, is defined as:

PD, (M) = 100 x tJ h i~ tAn ( 4  46)
*An

where the subscripts A n  and N u  refer to the value calculated Analytically and 

Numerically, respectively.
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4.5. N um erical resu lts and discussion

Table 4.1 (Problem A): Comparison of time A t requ ired  fo r  the moving interface 
M(t) to move a distance Ax, Surface temperature T(Q,t) is also tabulated.

Ax = 0 . 1 Ax —0.025 Ax =0 . 0 1

M(t) At T(0 ,f) At T(0,t) At T(0,t)

0 .1
0 . 0 2 0 0
0 . 0 2 0 0
0 . 0 2 0 0
0.0196

0.5000
0.5000
0.5000
0.4905

0.0061
0.0061
0.0061
0.0059

0.5280
0.5280
0.5280
0.5315

0.0025
0.0025
0.0025
0.0025

0.5299
0.5299
0.5299
0.5309

0.4
0.0627
0.0627
0.0627
0.0596

0.2242
0.2242
0.2242
0.2235

0.0161
0.0161
0.0161
0.0158

0.2233
0.2233
0.2234
0.2229

0.0065
0.0065
0.0065
0.0064

0.2231
0.2231
0.2233
0.2229

0.7
0 .1 0 2 1
0 .1 0 2 1
0 .1 0 2 1
0.0983

0.1416
0.1416
0.1417
0.1406

0.0259
0.0259
0.0259
0.0256

0.1407
0.1407
0.1407
0.1404

0.0104
0.0104
0.0104
0.0103

0.1407
0.1406
0.1406
0.1404

1 .0
0.1413
0.1413
0.1413
0.1370

0.1032
0.1032
0.1032
0.1024

0.0356
0.0357
0.0356
0.0353

0.1026
0.1026
0.1026
0.1024

0.0142
0.0143
0.0143
0.0142

0.1026
0.1026
0.1026
0.1023

Note- For each value of M(t)% the first, second, third and fourth row of 
data corresponds to the EDG, MVTS, GK and EVTS method respectively.

Table 4.1 shows tha t the results predicted by the EVTS method for test problem A 
compare very well with the other variable time step methods. It can also be seen that 
results of the EDG, GK and MVTS methods are identical; the only difference is the time 
of convergence or number of iterations (MVTS and EDG converge much faster than the 
GK method [7]). For EVTS, time steps are evaluated within the specified accuracy in the 
same number of iterations as for MVTS for all but the initial time step, whereas for 
MVTS it is calculated directly from the boundary conditions and by an iterative process 

for EVTS. As the GK, EDG and MVTS methods give identical solutions, the EVTS 
method will be compared, in terms of accuracy, to MVTS only (this comparison being 

valid for the GK and EDG methods also).

Table 4.2 shows tha t for test problem A, the position of the moving boundary is 
calculated with higher accuracy using EVTS than with MVTS for any spatial resolution. 

For instance the time for complete solidification is calculated with an error of 13.58% 
using MVTS when N  = 10, whereas using EVTS it is calculated with an error of 9.21% 
only.

Unlike problem A, the numerical results for problem B„ when a  = 0.1 which is a 
relatively slow process, show that the EVTS method is far more accurate than MVTS. 
From Table 4.3 it can be seen that for example when N  = 10 the  time for complete melting
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Table 42 (Problem A): Comparison of time t required for the moving boundary to move M(t) for 
different space increment resolution. Percentage deviation from the analytical solution is also tabulated.

N  = 1 0 N = 50 iV = 1 0 0 Analytic

M(t) t PDt (M) t PDt (M) t PDt (M ) t
MVTS method
0 .1 0 .0 2 0 0 12.359 0.0185 3.932 0.0182 2.247 0.0178
0 . 2 0.0556 14.168 0.0512 5.133 0.0505 3.696 0.0487
0.3 0.1050 14.379 0.0972 5.882 0.0961 4.684 0.0918
0.4 0.1677 14.237 0.1565 6.607 0.1549 5.517 0.1468
0.5 0.2436 14.044 0.2288 7.116 0.2267 6.132 0.2136
0 . 6 0.3327 13.938 0.3141 7.568 0.3116 6.712 0.2920
0.7 0.4348 13.821 0.4125 7.984 0.4095 7.198 0.3820
0 . 8 0.5500 13.730 0.5239 8.333 0.5204 7.609 0.4836
0.9 0.6782 13.658 0.6483 8.647 0.6444 7.993 0.5967
1 .0 0.8194 13.584 0.7857 8.913 0.7816 8.344 0.7214
EVTS method
0 .1 0.0196 1 0 .1 1 2 0.0182 2.247 0.0181 1.685 0.0178
0 . 2 0.0532 09.240 0.0503 3.285 0.0500 2.669 0.0487
0.3 0.0998 08.714 0.0955 4.030 0.0952 3.703 0.0918
0.4 0.1594 08.583 0.1539 4.836 0.1535 4.564 0.1468
0.5 0.2319 08.567 0.2253 5.471 0.2248 5.243 0.2136
0 . 6 0.3172 08.630 0.3097 6.061 0.3091 5.856 0.2920
0.7 0.4156 08.795 0.4071 6.570 0.4065 6.413 0.3820
0 .8 0.5256 08.912 0.5174 6.989 0.5169 6.885 0.4836
0.9 0.6509 09.083 0.6408 7.390 0.6403 7.306 0.5967
1 .0 0.7879 09.218 0.7772 7.734 0.7766 7.651 0.7214

Table 43 (Problem B): Comparison of percentage deviation for time PDt and for surface temperature 
PDST when the moving boundary is located at M(t) for different space increment resolutions, a  = 0 . 1

N  = 1 0 N = 50 JV = 1 0 0

M(t) PDt PDSt PDt PDSt PDt PDs t
MVTS method
0 .1 -8.730 0.398 22.519 -1.302 26.729 -1.429
0 .2 14.370 -1.874 43.330 -3.103 47.254 -3.225
0.3 31.376 -3.266 59.353 -4.111 63.200 -4.215
0.4 45.040 -3.566 72.452 - 3.901 76.297 -3.934
0.5 56.445 -2.589 83.469 - 2.195 87.321 -2 .1 2 2
0 . 6 66.224 -0 .1 2 0 92.923 1.289 96.796 1.531
0.7 74.744 -4.057 101.145 6.872 105.042 7.359
0 .8 82.256 10.231 108.382 14.935 112.278 15.762
0.9 88.946 18.681 114.816 25.943 118.666 27.195
1 .0 94.915 29.783 120.566 40.455 124.385 42.294
EVTS method
0 .1 0.959 -0.551 0.129 -0.162 0.059 -0.081
0 . 2 0.880 -1.375 -0.070 -0.262 -0.019 -0.131
0.3 0.526 -1.948 -0.176 -0.362 -0.036 -0.192
0.4 0.140 -2.359 -0.219 -0.449 -0.027 -0.234
0.5 -0.160 -2.729 -0.231 -0.533 -0 .0 1 2 -0.278
0 .6 -0.369 -3.078 -0.235 -0.614 -0 .0 0 1 -0.318
0.7 -0.505 -3.406 -0.230 -0.690 -0.017 -0.352
0 .8 -0.590 -3.698 -0.223 -0.750 -0.031 -0.372
0.9 -0.638 -3.972 -0.215 -0.813 -0.042 -0.394
1 .0 -0 .6 6 6 -4.226 -0.209 -0.817 -0.053 -0.415
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using MVTS is calculated with an error of 94.915% but only 0 .6 6 6 % using EVTS. It can 
also be seen th a t the accuracy obtained by EVTS with only 10 space elements is not 
achievable with MVTS even using more than 100 space elements. Similarly the accuracy 
of the EVTS method remains outstanding even when the velocity of the moving boundaiy 

is relatively high. This is illustrated in Table 4.4 where numerical results are presented 
for problem B when a  = 10.0.

Table 4.4 (Problem B): Comparison of time t required for the moving boundary to move M(t) 
along with surface temperature 7X0,0. Percentage deviation for both time ( PDt) 

and surface temperature ( PDs t ) ̂  â so tabulated. ( N  = 10 and a  = 10)

M (t)

MVTS method EVTS method Analytic

t PDt 7X0,0 PDst t PDt 7X0,0 PDs t t 7 W )
0 .1 0.0091 -9.000 1.1096 0.398 0 .0 1 0 1 0.999 1.0991 -0.551 0 .0 1 0 0 1.1052
0 . 2 0.0176 -11.999 1.2371 1.285 0 . 0 2 0 2 1 .0 0 0 1.2046 -1.375 0 .0 2 0 0 1.2214
0.3 0.0256 -14.666 1.3824 2.407 0.0302 0 .6 6 6 1.3236 -1.948 0.0300 1.3499
0.4 0.0331 -17.249 1.5450 3.566 0.0401 0.250 1.4566 -2.359 0.0400 1.4918
0.5 0.0402 -19.599 1.7246 4.603 0.0499 -0 .2 0 0 1.6037 -2.729 0.0500 1.6487
0 . 6 0.0469 -21.833 1.9211 5.433 0.0598 -0.333 1.7660 -3.078 0.0600 1.8221
0.7 0.0534 -23.714 2.1341 5.973 0.0696 -0.571 1.9452 -3.406 0.0700 2.2255
0 . 8 0.0597 -25.374 2.3635 6 .2 0 0 0.0795 -0.624 2.1432 -3.698 0.0800 2.4596
0.9 0.0657 -26.999 2.6093 6.086 0.0894 -0 .6 6 6 2.3619 -3.972 0.0900 2.4596
1 .0 0.0715 -28.500 2.8714 5.632 0.0993 -0.700 2.6035 -4.223 0 .1 0 0 0 2.7183

100 T

75: MVTS
EVTS

25:o

9"

-25:

-50
0 5 10 20 2515

Velocity of the moving boundary

Figure 4.4: Variation of the PDt (L0) with the velocity of the moving boundary
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MVTS
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20 250 5 10 15
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Figure 4.5: Variation of the PD sr(lO ) with the velocity erf the moving boundary

When problem B is solved with different values of a ,  which represents also the 
velocity of the moving boundary, d M /d t = a ,  the MVTS method is very inaccurate for 
small and large values of a , whereas the EVTS method achieves good accuracy for all 
values of a . This is illustrated in Figure 4.4 and 4.5. These figures shows tha t for EVTS 
both the PDt (L0) and PDs t CLQ) remain constant with the variation of the speed of the 

moving boundary (this holds true for all PDt (M) and PDs t (M) >• ^  can a ®̂° ^  86611 r̂om 
these figures that MVTS cannot accommodate either slow or fast moving boundaries.

When the moving boundary is either slow or fast, the number of space elements is 

relatively large and the specified time step error (£,***) is small; the MVTS method fails 

to converge. Unlike MVTS, using EVTS the same time step error was maintained for all 

computations without exhibiting any convergence difficulties.

4.6. Conclusion

The results for both test problems show that the method presented herein outperforms 
the implicit methods and exhibits exceptional accuracy in the case of rapid or slow Stefan 

problems. The EVTS method avoids the solution of a system of linear equations a t each 

time step, it requires less memory resources and is highly stable. Since its accuracy is 

not affected by the velocity of the moving boundary, the approach is highly efficient 

compared to the implicit methods for modelling rapid or slow heat transfer processes. 

Due to its explicit procedure the EVTS method, where the unknown variables are 

determined with no recurrence (i.e. statem ents th a t form a cycle of variable 
dependencies), is more suitable for vectorisation than the implicit finite difference and
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finite element methods. Therefore the EVTS method would be more beneficial than 
implicit and finite elem ent methods in term s of computational efficiency using 

vectorisation facilities.
The EVTS method combines the advantages of variable time step methods and 

explicit procedures whilst excluding their disadvantages. The variable time step 

approach avoids the use of unnecessary real time steps if the moving boundary is moving 

with relatively slow velocity; this results in computational efficiency and storage 
economy. In contrast, if the moving boundary is rapid, the time step is chosen in such a 
way as to avoid the break-down of the scheme that would occur for a  fixed grid network. 
The VSIET automatically preserves the stability of the scheme, irrespective of the velocity 
of the moving boundary (without increasing the storage requirements), and reduces the 

loss of accuracy associated with relatively large time steps.
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Implicit Moving Boundary
Problems (Oxygen Diffusion Problem)

P > .-■> > Yrrr .y ,

Summary

The diffusion of oxygen into an absorbing medium, as an example of implicit moving 
boundary problems, has been dealt with by a number of authors using various numerical 
techniques and, where appropriate, approximate analytical expressions. To evaluate the 
time for complete absorption, extrapolation is usually employed. An unconditionally 
stable explicit numerical scheme that avoids the limitations of such methods is presented 
and tested herein. Unlike existing schemes this method is fully numerical; it avoids the 
large array size, generally required for existing methods, by using a variable length 
time step. The time for complete absorption emerges from the final step in the normal 

computing procedure with no recourse to extrapolation. Furthermore, due to the implicit 
condition prevailing a t the moving boundary, no iterations are needed to evaluate the 

time step required for the moving boundary to move a single space increment. The 

numerical results obtained compare very favourably with those due to earlier authors.
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Nomenclature
D Diffusion coefficient K,x Spiro, dimensionless space
M Dimensionless moving boundary t Time variable
n Total number of space intervals At Dimensionless time step
R Bate of consumption of oxygen per Ax Dimensionless space interval

unit volume of the medium Subscripts
rf A fixed value of Fourier number i Space node index
U,u Oxygen concentration, k Space node index containing

dimensionless concentration the moving boundary
Uq Initial concentration at the surface J Time step index
8 Position of the moving boundary Superscript
t Dimensionless time variable m Virtual time step index

6 .t  Introduction

Under certain conditions, the phenomenon of oxygen diffusion from blood into 
oxygen-consuming tissue, gives rise to a moving boundary. A typical example arises 
when studying tumour tissue-oxygen interaction. Generally, in moving boundary 
problems, the velocity of the Moving Boundary (MB) is determined by the physical 
requirement that the latent heat required for the change of phase must be supplied or 
removed by conduction. In the oxygen diffusion problem, a moving boundary is an 
essentia! feature of the problem, but the conditions which determine its movement are 
different Not only the concentration of oxygen is always zero at the MB, no oxygen 
diffuses across it a t any time. Unlike general moving boundary problems, an explicit 
relationship containing the velocity of the MB is absent

The problem was firstly reported by Crank and Gupta [1], who studied the moving 
boundary problem arising from the diffusion of oxygen into absorbing tissue. First the 
oxygen is allowed to diffuse into a medium, some of the oxygen is absorbed by the 
medium, thereby being removed from the diffusion process. The concentration of oxygen 
at the surface of the medium is maintained constant. This phase of the problem continues 
until a steady state is reached in which the oxygen does not penetrate any further into the 
medium. The supply of oxygen is then cut off and the surface is sealed so that no oxygen 
passes in or out, the medium continues to absorb the available oxygen already in it and as 
a consequence the boundary marking the farthest depth of penetration in the steady state, 
starts to recede towards the sealed surface. The mqjor problem is that of tracking the 
movement of the MB during this stage of the problem as well as determining the 
distribution of oxygen throughout the medium at any instant in time.
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This type of problem (also known as implicit moving boundary problems) has been 
addressed by Crank and Gupta [1 ]; initially when the MB is moving slowly they used an 
approximate analytical solution and a numerical scheme once the velocity of MB has 
increased. Their numerical scheme consists of using a fixed grid network and 
calculating the concentration a t each node using the Euler equation. For the grid near the 
MB, a Lagrange type formula is used and the location of the MB is determined using a 
Taylor series expansion. In a later paper [2] the same authors used a uniform grid system 

which moves with the velocity of the MB. This has the effect of transferring the unequal 

interval from the neighbourhood of the MB to the surface of the medium and therefore 

gives an improvement in the smoothness of the calculated motion of the MB. They 
evaluated the concentration distribution at the new grid points by interpolation using 
either: cubic splines or ordinary polynomials.

Hansen and Hougaard [3] used an integral equation for the function defining the 
position of the MB and an integral formula for the concentration distribution. The 

integral equation is solved asymptotically during the entire motion of the MB whereas 
the concentration integral is solved asymptotically for small times, and computed by 
numerical quadrature a t later times. Apart from the lengthy computational procedure, 
their results are acknowledged to be the most accurate.

Many other authors have dealt with the problem by various methods; for instance, 
Ferris and Hill [4] used an appropriate variable transformation to fix the MB, Berger et 
al. [5] used a truncation method, whilst Miller et al. [6 ] used finite elements. More 
references relating to the oxygen diffusion problem involving a moving boundary can be 
found in [7] and [8 ].

The common feature of the numerical methods [1-8] is tha t they adopt a fixed grid 
network in space and time, and utilise both numerical computation and analytical 

approximations. In order to prevent the oxygen concentration going negative, which 

causes instability problems, these methods [1 -8 ] often resort to small time steps which not 
only increase the cpu-time but the array size requirements also. Furthermore, the 

numerical procedures can not be used up to the end of the absorption process due to the lack 
of necessary mesh points, when the MB is too close to the sealed surface; therefore, in all 
these methods extrapolation is used to evaluate the time at which the MB reaches the 
sealed surface.

Gupta and Kumar [9], by using a variable time step grid network, avoid the large 

number of time steps generally required for the methods reported in [1-8]. Their method 
computes the concentration distribution using the Crank—Nicolson implicit finite 

difference equation. Due to the implicit boundary condition, an integral equation is used 

to determine the time step; this gives rise to convergence difficulties because it is very 
sensitive to a change in concentration. Furthermore, the first estimate of the time step
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length a t each step is a major difficulty, as it is crucial for the convergence and the 
stability of the scheme.

In this chapter the EVTS method [10] is modified to solve the oxygen diffusion as an 
example of implicit moving boundaiy problems. The significance of the method is th a t it 
combines the advantages of the variable time step grid and explicit equations, whilst 
excluding their disadvantages. The variable time step approach avoids unnecessary 

time steps a t the beginning of the process when the MB is moving with a relatively slow 

velocity, this results in a high computational efficiency and storage economy. In 
contrast, by the end of the diffusion process the MB is moving relatively quickly and the 

time step is automatically adjusted to a smaller value; this avoids the break down th a t 
would occur for a fixed grid network which would fail unless a very small time step was 
used throughout. The stability of the algorithm is automatically maintained for any 
mesh size, without increasing the minimum array size requirement, by using virtual 
time steps which are progressively eliminated as the computation moves forward. 
Furthermore, the iterative process, generally required to determine the time step 
necessary for the MB to be located a t a mesh point, is unnecessary.

5.2. Mathematical formulation of the problem

The oxygen diffusion problem defined in the introduction, is formulated in two 
stages; firstly: the steady-state, and secondly: the moving boundary stage. The solution 
of the steady-state, which is formulated as a boundary value problem, is readily available 
in [1]. This chapter concentrates on the moving boundary problem, which requires 
evaluation of the oxygen concentration distribution U(X, r), between the outer surface 
X=0, and the position of the MB, X  = Sir), at any instant in time r  (t=0 is the time when 

the surface is sealed). The functional relationship between these variables is given by the 
diffusion equation:

r)TT rfiTT
= ' ° * X *SM - T>0 (5.1)

with the following boundary conditions:

4 ^  = 0 , X  = 0 , T*0 (5.2)
dX

J/ = ^  = 0 , X  = S M  , r> 0  (5.3)
dX

U = - ^ ( X - S o )2 , OSXSfio , T = o (5.4)
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S„=S( 0) = ̂ £p L  (5.5)

where U(X,t) denotes the concentration of oxygen free to diffuse a t depth X, time r ; D and 
R  are the diffusion coefficient and the rate of oxygen consumption per unit volume of the 
medium, respectively. Equations (5.4) and (5.5) are the solution of the steady state [ 1 ], 
where U0 is the concentration at which the surface was maintained until a steady state is 

reached, and Sq is the maximum depth of oxygen penetration. To simplify the problem 

the variables are made dimensionless:

^  x D _ D TT _ 1  TT S  fK
So ’ s f  ’ R S l  2U0 U  ’ M ~ S 0 - (56)

The system of equations (5.1) to (5.5) is thus reduced to the following non-dimensional 
formulation:

= , 0 <>xZM(t) , f> 0  (5 .7 )

^  = 0  , * = 0 , t'Z.O (5.8)
dx

u = ~  = 0 , x = M(t) , t>  0 (5.9)
dx

u = \ ( l - x f  , , t = 0  (5 .1 0 )

M(t)=  1 , f = 0 (5 .1 1 )

The absence of (d M /d t) from (5.9) makes this an implicit moving boundary problem.

5.3. Numerical computation scheme

The space region £ 1  is divided into n equal sections of length A x = l/n .  Let j  
be the oxygen concentration at the nodal point in the space-time domain, given by
the coordinates
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where i=0,n; j=0,n and Mq is the time necessary for the MB to move from to xn-q- \ .  

The notation uf*. denotes the value of u at xs at the virtual time t?  which is given by:
*tj J

.M
t j 1 -  m r f A x 2  + ^  Atq (5.13)

q* 0

where r f  is a fixed value of Fourier number less than or equal to and m is a virtual 

time step index.

m- 1 in- 1
1 =  0

i

Zero concentration zoneAr

Moving Boundaryi

i=n
 ► ^  ►
1/ o ^  i
Figure 5.1: Discretisation of the space-time domain

Suppose that the moving boundary is located a t the node {kt j )  the time t = t j ,  then the 
problem is to compute the concentration distribution at the time t - t j + 1 -  from that of 

t = tj  -  as well as the magnitude of time step necessary for the MB to move from the node 

(ib»j) to (*6 -  \ j  + 1), where % is the grid line containing the MB (i& = n - j )  (Figure 5.1). 
Therefore, the numerical scheme proceeds as follows:

The concentration distribution, u^lj \ i  = 0,ifJ- l t a t any v irtu a l tim e t = t j l 
is calculated (see details in appendix C.l) from that of the previous virtual 

time t = fj1 - 1  using:

um.= u mr lhj i,j rr eu l - rf  e m-\

l,J
-  rfAx4 i = 0 , ^ - 1 (5.14)

where
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am _
i>j 2u™- -  um ”mi+ U  Ui - U

2u™. — u™ ■, - i,j ui - l j

, i  = 0 

, i= 1,16-2

, t =  i(f 1

(5.15)

Suppose a t some intermediate virtual time step m = k , so that £ 0, then the time step,

Atj, necessary for the MB to move from (ibtj) to (4 ~ W  + *)» given by:

J- 1
Atj = [ ( * - Dry + rj^Ax2 or t j+i = [( k -Dr f  + rj^dx2 + ^ A t q

9-0
(5.16)

where ry is the positive root of the quadratic equation:

r ,f}h-l
i  % -X i + r ^ 2 - u * :1u  = ° (5.17)

in order to satisfy = 0 .

After determination of Fj, the concentration distribution a t the time t = tj+i is calculated 

using:

uU+l = uU 1- r j ei . j1
i  j

2U*-1 iJ  1>J
-r jA x 2 , i = 0 , i6 - l (5.18)

During the last time step Atn_i ( i.e. the MB is moving from x  = Ax to x = 0), given by 

(5.15), becomes:

6i,j = 2ui,J • 1 =  0  » J  = (5.19)

since the virtual nodal point is at the zero concentration zone and therefore

“ U - 1 = °-

R e m a r k : Numerically, it was found th a t Afn _ 1 = u0  n_i, the same equation given by 

Gupta and Kumar (Eq. (4.1) in [9]) using an integral equation.

For each real time step, the numerical procedure starts by computing the oxygen 
distribution for each virtual time step, which are progressively eliminated, until there is 
a change in the sign of the concentration at the grid line i = if, - 1 ; then the time at which
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the MB is located a t *i6_i is corrected using equations (5.16) and (5.17), and the 

concentration distribution a t the corrected time is evaluated from equation (5.18) (the full 
numerical procedure is shown more clearly by the algorithm in appendix C.2 ).

5.4. Numerical results and discussion

Table 5.1 shows the time corresponding to the position of the moving boundary 
x — M(t) and the concentration distribution a t different discrete depths x, using both the 

present algorithm and the method of Gupta and Kumar [9], I t shows that both results are in 
good agreem ent However, the time step -  in the method of Gupta and Kumar [9] -  is 

calculated iteratively using an integral equation, which gives rise to convergence 
difficulties which develop as n increases causing the program to go into an infinite loop 

as it  becomes very sensitive to rounding errors [1 1 ]. Furthermore, the first estimation of 
Atj, for each time step, is a major difficulty in their method; the value Atj must be 

carefully chosen to avoid a negative concentration which causes instability problems.
In order to make comparison with other numerical methods, in which predominantly 

a fixed gnd network is used, a linear interpolation using the two closest points has been 
made. In Table 5.2, the differences in the boundary position -  relative to the results of 
Hansen and Hougaard [3] — for different methods are shown. The results of Crank and 
Gupta [1] are initially in good agreement with those of Hansen and Hougaard [3], they 
then start to deviate; this is due to the fact that the position of the MB is calculated using the 
first terms of the Taylor series which exclude the velocity of the MB. Provided tha t the MB 
is not moving fast such an approximation is reasonable; however, it loses accuracy as the 
velocity of MB increases with time. The results of Miller et al. [6 ] behave in similar 

m anner as those of Crank and Gupta [1 ], where the difference increases as time 
increases; whereas, the interpolated values of Gupta and Kumar [9] oscillate around those 
of Hansen and Hougaard [3]. The results due to the present algorithm give fairly good 
agreement, despite the fact that these values are interpolated to make a comparison a t 
similar times. The deviation evident is mainly due to interpolation error, which 

decreases as time increases because the time steps becomes smaller with a  consequent 

decrease in interpolation error. Furthermore, Hansen and Hougaard [3], by using very 
small time steps (1 0 ‘4), predict the time for complete absorption to be some where between

0.1972 and 0.1977; whilst Miller et a l  [6 ] predict it to be in the range of 0.196 and 0.198. 
Using the present algorithm with only 20 space elements (n=20), the time for total 
absorption is predicted to be 0.19744, when n=40 it is 0.19742, which are  closer to the 

accurate value of 0.19743 obtained by Dahmardah and Mayers [1 2 ].
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Table 5.1: Comparison of values of concentration u(x,t)xl(Pat different depths x at time t 
when the moving boundary is located at M(t). n = 1 0 0

M(oV 0 . 0 0 .1 0 . 2 0.3 0.4 0.5 0 . 6 0.7 0.8 0.9 t

r\ n 12660 12317 11327 9791 7869 5764 3698 1898 591 0 0.109120.9 12281 11941 10955 9432 7537 5471 3458 1724 495 0 0.11159

a  n 7985 7734 7008 5887 4495 2995 1585 591 0 0 0.13845
0 .8 7966 7712 6980 5851 4452 2949 1543 466 0 0 0.13861

a  *■* 5311 5107 4519 3618 2522 1392 448 0  0 0 0.156790.7 5318 5113 4520 3613 2511 1379 438 0  0 0 0.15669

3663 3487 2983 2223 1330 492 0 0  0 0 0.16870
0 . 6 3501 3327 2829 2081 1208 407 0 0  0 0 0.16983

A  £* 2440 2286 1850 1209 506 0 0 0  0 0 0.177870.5 2 2 1 0 2060 1636 1 0 2 0 370 0 0 0  0 0 0.17954

A  A 1259 1130 772 296 0 0 0 0  0 0 0.187040.4 1297 1166 805 323 0 0 0 0  0 0 0.18665

/ \  <1 687 573 275 0 0 0 0 0  0 0 0.191620.3 671 558 262 0 0 0 0 0  0 0 0.19165

295 198 0 0 0 0 0 0  0 0 0.19483
0 .2 275 178 0 0 0 0 0 0  0 0 0.19490

/ \  1 56 0 0 0 0 0 0 0  0 0 0.19683
0 .1 63 0 0 0 0 0 0 0  0 0 0.19668

0 0 0 0 0 0 0 0  0 0 0.19732
0 . 0 0 0 0 0 0 0 0 0  0 0 0.19722

Note: For each value of M(t), the first and the second row of data corresponds to the method of Gupta 
and Kumar [9] and the present method respectively. The numerical method of Gupta and Kumar starts 

from 1=0 .0 2  (Approximate solution), whereas the present method starts from r=0.

Table 5.2 : Differences (XlO4) in the position of the moving boundary M(t) calculated 
from those obtained by Hansen and Hougaard [3].

Hansen and Crank and Miller, Gupta and Kumar [9] present
time Hougaard [3] Gupta [1] Morton & method

M(t) Baines [6 ] ( 0 (ii) n = 50
0.060 0.99180 4.0 2 . 0 -18.7 -18.8 -107.2
0.080 0.97155 3.5 1.7 24.4 23.1 -97.1
0 .1 0 0 0.93501 1.7 5.8 -101.3 -105.5 -93.7
0 .1 2 0 0.87916 -3.1 4.1 -88.3 -132.7 -90.9
0.140 0.79891 -3.5 2.5 -73.4 41.6 -8 8 .6
0.150 0.74668 -18.1 0 .1 -72.4 -84.2 -8 6 .2
0.160 0.68337 -20.9 -2 .0 -9.0 -1 0 .1 -8 6 .2
0.180 0.50109 -50.2 -26.0 -234.4 -210.7 -83.3
0.190 0.34537 -66.4 -56.6 -100.5 -61.7 -77.4
0.195 0.20652 -452.4 — -140.7 3.8 -65.2
0.196 0.16266 - -165.6 -138.4 -52.9 -60.4

Note: (i) corresponds to values calculated using 100 equal intervals of length Ax = 0.01.
(ii) corresponds to values calculated using 58 unequal intervals of length Ax  ̂= * i+ 1  -  x* 

where x* = Vi- 8  /50, 0 £ i £ 16 ; x* = i /  16V8/50, 1 6 £ i £58.
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Table 53: Comparison of the concentration u(0,t) at the sealed surface 
(x=0) at different times

time

Hansen and 
Hougaard 

[3]

Crank and 
Gupta 

[1] _ _

Miller, 
Morton and 
Baines T61

Gupta and Kumar 
[9]

0 )* 0 0 *

present 
method 
n -  50

0 .1 0
0.15
0.18
0.19

0.14318
0.06308
0.02178
0.00902

0.14329
0.06316
0.02182
0.00904

0.14315
0.06302

0.00893

0.14234 0.14236 
0.06281 0.06282 
0.02162 0.02163 
0.00887 0.00888

0.14326
0.06306
0.02175
0.00899

* see footnote of Table 5.2

0.6

0.5
Hansen & Hougaard 
Present Method0.4

0.3

0.2

0. 1 -

0.0
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Time (t)
Figure 52: Variation of the concentration u(0,t) at the sealed surface x=0 with time t

1.0

0.8 -

0. 6 “

Hansen & Hougaard 
Present Method

0.4-

0.2 -

0.0
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.20C

Time (t)
Figure 5.3: The position of the moving boundary M(t) as a function of time t
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Table 5.3 shows the concentration at the surface (x=0) a t different times. It shows that 

the results of Crank & Gupta [1] and Miller et al. [6 ] diverge from those of Hansen and 
Hougaard as time increases. However, the interpolated results due to the present 
algorithm agree very well with those of Hansen and Hougaard [3]; the difference 
decreases as time increases due to decrease in the interpolation error as the velocity of the 
MB increases with time.

In Figures 5.2 and 5.3 a comparison of both concentration and the movement of the MB 
is shown using Hansen and Hougaard's method and the present algorithm. Both figures 

show that the agreement between the two methods is good.

5.5. Conclusion

Numerical results show that the present algorithm achieves similar results to other 
more lengthy and time consuming procedures. The algorithm avoids: numerical 
integration, solution of systems of linear equations and the iterative process to track the 
MB a t a mesh point. Furthermore, the computation procedure is fully numerical and 
carried out up to the end of the absorption process without any computational difficulties. 
The time for complete absorption emerges from the normal computing process without 
recourse to extrapolation. It also uses a smaller array size by using virtual sub-intervals 
and is very suitable for vectorisation due to its explicit computation scheme.
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Summary

Most numerical methods developed for moving boundary or Stefan problems deal with 
the case of a single Moving Boundary (MB) separating two different media. Although 
this is applicable to a large number of engineering problems, there are many problems 

where more than one MB exists simultaneously during the process. A heat transfer 
process involving heating of a solid, melting and partial vaporisation of liquid can be 
considered as a three-phase Stefan or a two MB problem, where the time of appearance 
and disappearance of phases are to be determined as a part of the solution. An explicit 
unconditionally stable numerical scheme for such problems is presented and tested 
herein. The approach originates from the Explicit Variable Time Step (EVTS) method, 
developed in chapter 4, for single MB problems. During the vaporisation stage, where two 

MBs exist simultaneously, the method uses a virtual distorted grid network moving in 

parallel to the vapour/liquid interface in order to determine its position vis—a—vis the 

real grid network. The method has been tested by solving both the collapse of an adiabatic 

wall and a normalised two MB problem whose exact solution is known.
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Nomenclature
a Slab thickness
C Heat capacity/unit volume
F Heat flux input
h Heat transfer coefficient
K Thermal conductivity
M Liquid/solid interface position
N Total number of space elements

t Time variable

tm Time of melting

tv Time of vaporisation

te Time of end of the process
T Temperature

Tm Melting temperature

Tv Vaporisation temperature

To Temperature of the fluid in contact the slab

re Corrected Fourier number for the heating stage

rcl Corrected Fourier number in the liquid region

rf Fixed Fourier number (£ 0.5)
X Space variable
V Vapour/liquid interface position
a Diffusivity
9 Temperature at the first virtual distorted line

<P Temperature at the second virtual distorted line

Emin Time-step error allowed to stop iteration

A>m Latent heat of fusion/unit volume

K Latent heat of vaporisation/unit volume

Subscripts

i , j Space/time indices

ijn The node index holding the moving boundary
ig The first node in the non-distorted grid just below the liquid/vapour interface

I Liquid

n Sub-interval time step index in the liquid region
p  Number of sub-intervals in the liquid region for a given time step
q Number of sub-intervals in the solid region for a given time step
« Solid
Superscript 
k Iteration index
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6.1. Introduction

Most numerical methods dealing with moving boundary problems are generally 
conceived for one MB separating two phases [1,2]. Whilst single MB problems are of 
considerable u tility  in modelling a whole class of engineering problems, many 
engineering and physical problems must be modelled with two or more MBs. Heat 

conduction problems with heating of solid, melting and partial vaporisation of liquid is 

one such problem.

Bonnerot and Jam et [3] have introduced a conservative finite element method which 
can be used to solve such problems. They applied a modified and extended form of their 
third-order-accuracy discontinuous finite element method [4]. It adopts a curved 
triangular element for each appearing or disappearing phase, whilst a curved 
trapezoidal element is employed elsewhere (this method will be referred to as the BJ 
method). However, finite element techniques are time consuming and less amenable to 
vectorisation than finite difference methods, which continue to be widely used due to their 
simplicity in formulation and ease of programming.

Due to its excellent performance in solving moving boundary problems, the EVTS 
method [5] is extended to deal with multi-phase Stefan problems. The present scheme 
adopts a fixed time-space grid network during the pre-melting stage, a variable time step 
grid network during the melting and vaporisation stages and uses explicit finite 
difference replacements for the partial and ordinary differential equations. During the 
vaporisation period, which is the most difficult period to compute, the method uses the 
approach of fixing the Liquid/Solid (L/S) interface a t a real space grid line and 
determines the time step iteratively. Having arranged the solution scheme, so that the 
L/S interface always coincides with a spatial grid line, a further problem is to determine 
the corresponding position of the Vapour/Liquid (V/L) interface. Therefore the method 

uses a virtual distorted grid network moving in parallel to the second MB; this permits 

the explicit determination of the position of the second MB as well as the temperature 

throughout the liquid region between the two moving boundaries.
As in EVTS, the Virtual Sub-Interval Elimination Technique (VSIET) [5] is 

incorporated throughout all the different stages of the computation -  to ensure that 
stability is automatically maintained for any mesh size. As a result of incorporating the 
VSIET the accuracy of the present method is unaffected by the speed of the MBs.

The numerical method is presented for a general heat transfer problem which will be 

described in section 6.2. For validation, the method was used to solve the collapse of a 
solid wall due to a heat flux input a t one boundary with an adiabatic condition at the other 

[3]. The problem involves heating of the solid, melting, vaporisation and finally 

complete collapse of the wall when the solid phase disappears. Numerical results are 

compared with those of the BJ finite element method and show a good agreement.
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Furthermore, a normalised two MB problem -  which has an exact analytical solution -  
was considered and numerical results show that the method achieves a good accuracy 
relative to the exact solution which is used as a reference standard.

&2. Description of m ultiphase Stefan problems

Consider a solid material of infinite transverse dimensions and thickness a  to be 

subjected to a variable source of heat Fit), at one extremity (x = 0) and in contact with a 
fluid a t a constant temperature T0 at the other (x  = a). Assuming tha t the heat transfer is 

one-dimensional and the material thermal properties are constant within each phase but 
differ from one to another; depending on the process duration, the following stages will 
occur:

&2.1. H eating  o f th e  solid  stage ( 0 £ t £ t m ; Figure 6. la )

Due to the positive heat flux input, the temperature throughout the solid increases with 
no change of phase. The governing equations for this stage are:

=  ,  A H O & x S a  ,  O S t S t ,  ( 6 1 )
ot dx

F it) , x = 0 , 0 Z tZ tm (6-2>

. * = “ . o m t e (6.3)

where Tix,t) is the temperature a t depth x time t; C , K , a  = K /C  and h are heat 

capacity per unit volume, thermal conductivity, diffusivity and convective heat transfer 

coefficient, respectively; M it), tm and te denote the liquid/solid interface position, the 
time at which melting starts, and the time at which the heat transfer process ends, 

respectively.
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Figure 6.1: Three phase Stefan problem with mixed boundary conditions

62J2. Melting stage ( tm <>t<>tv ; Figure 6.1b)

When the surface temperature T(0,t) reaches the melting point of the material (Tm) a 

MB, x=M (t), appears which separates the liquid from the solid. It is assumed that the 

liquid and the solid have the same density and consequently there is no displacement of 
the liquid surface. The liquid occupies the region 0£x£A f(f) and the solid occupies the 
region A f(l)£ x £ a; the liquid/solid interface M(t) moves in the x  direction and 
temperature increases throughout the solid and liquid regions. In addition to (6.1) and
(6.3), the following equations are necessary to describe this stage:

= , tm S t S t e (6'4)

(6.5)

’ x = m )  ■ tm * t s u  < 6 ' 6 )

where Xm , V(f) and tu are latent heat of fusion per unit volume, the vapour/liquid 

interface position and the time at which vaporisation starts, respectively. The subscripts I 

and 8 distinguish liquid and solid phases respectively.

6 ^3 . Vaporisation stage ( tv <. t <, te ; Figure 6.1c)

When the surface temperature T(Q,t) reaches the vaporisation point ( Tv) of the 

material, a second MB, x=V(t), appears which separates the liquid from the vapour. 
Assuming that the vapour is removed as soon as it appears (i.e. only two phases remain);
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therefore, the liquid occupies the region V (t)£ x£ M (t)  and the solid occupies a
(the ablation case, where the whole liquid region is instantaneously evaporated and the 
problem becomes a one moving boundary problem, is not considered in this work). The 

two MBs continue to propagate in the x direction and the tem perature increases 
throughout the solid and liquid regions until the time (te) of the end of the heat transfer 

process. The final time for the test problems in section 6.4 is the time for complete melting 
(i.e. when the liquid/solid interface M(l) has readied x = a). This stage is governed by 

(6.1), (6.3), (6.4), (6.6) and the following condition a t the second MB, x  * V(t):

Xv% ~ K\ j k ) +F(Jt) • X=V(<) • (6‘7)

where Xv is the latent heat of vaporisation per unit volume. 

The following conditions apply for all three stages:

V(*) = 0 
M{t) = 0 
T(x,t) = Tm 
T(x,t) = Tv 
r(x,o)=r0

, t z t v

, x = M(t) ,
, x = V(t) , t k t v 
, Vx € [0,a]

(6.8)

&3. Num erical com putation schem e

In this section, a description of the numerical scheme for the problem described in 

section 6.2 is given in the order of the computational sequences, assuming tha t all the 
stages occurred during the process. As previously mentioned, the numerical method 
adopts a fixed time-space grid network during the heating of solid stage, and variable 
time step grid network in the melting and vaporisation stages. The total thickness a is 

divided into a fixed number of space intervals N , of length Ax, during the whole 
computation process.

Let j m and j v be the time step indices so that tj  ̂tm ^tjm+1 The
notation T ij  stipulates the value of T  at the real grid point in the (x - 1) domain given by 

the coordinates:
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6.3.1. H eating o f solid  stage

In this stage, where there are no phase changes, a fixed time step Mq is chosen 
arbitrarily. The notation Yi,j,n,p is used to indicate the value of the variable y  a t the

virtual grid point in the ( x - t )  domain given by the coordinates:

xi = iAx Ato (6.10)

and the notation (j ,n ,p ) represents the Virtual Sub-Step (VSS) at the time t j n p , where n 

is the VSS index.

The temperature distribution at each VSS (j,n ,p o ), where [ l £ j £ j m , l^ n ^ P o } , is 
calculated from that of the previous VSS [ jt n - \ p o )  using:

,j,n,p0 ~ T i, j tn-l ,p0 e x P ^ c  ¥i,j,n~XPo ) » (6.11)

where

Yi,j>n>P ~ '

T • • Ti,j,n,p I'i+i'j■n-p ^

T.  . ( ^ i , j , n , p  ^ i - l J.n ,p  ^i+1J ,n ,p )
*hJ,n,P

hAx} hAx
1i,j,n,p I ^1 +

Ks
^ ) r o

(6.12)

where

Fj,n,p ~ g

( \
Po = int a8 At0

OTf AX2J
+ 1 a8 Atp

c ~ _ . 2Pq Ax

(6.13)

(6.14)

where ” int(y)" defines the smallest integer less than y ; jy is an arbitrary fixed value of 

Fourier number (/y £■£).

The temperature distribution at the last VSS ( j,n  = Po>Po) °f ea£h time step is assigned 
to the real grid; the temperature distribution at the time t = tj+i is given by:

r *J+i-  Ti,j,p0 ,pq t i -O tN (6.15)
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In order to avoid stability problems when the rate of the heat flux input prescribed a t 
x = 0 is relatively high, it is necessary to calculate the temperature distribution a t the first 
time step j  = 1 analytically (see appendix D.l).

Suppose a t some intermediate VSS ( jm*nmtPo)t the surface temperature exceeds the 

melting point Tm , then the time at which the melting starts (tm) is given by:

f 4*0 ]

( o >
—Ax

Loge
f Tm j

 ̂A) >
X

^a «V'0,Al,nm-l,po >
(6.16)

6.3.2. M elting stage

For sections 6.3.2 and 6.3.3 we use the notation ur*. „ „ to indicate the k^1 iteratedJfn9r
value of the variable yr a t the virtual grid point in the (x - t ) domain given by the 

coordinates

h l  At*
Xi=iAx , t j np  = („, + V  + n —V-

Qxjm
(6.17)

where Atq is the time necessary for the moving boundaiy M{t) to move from the position 

to *= *«+ !-/.•

For this stage, the temperature throughout the liquid and solid regions as well as the 
position of the moving boundary M{t) are computed using the EVTS method [5](explained 
fully in chapter 4). At some VSS (j Vtnvtp ), the surface temperature will exceed the 

vaporisation temperature ( Tv)f once this occurs the vaporisation time (tv) is calculated 
using:

A -i
t k = tr(J Atq +

Q=Jm

nv- 1

Ju
At) +Jo

-Ax*
\

<CL̂ 0 , j v,nu-Xp
Log* (6.18)

After determination of the time at which the vaporisation starts, computation is 

carried out similarly to melting until the condition given by (6.30) is verified. 
Consequently a liquid region of thickness x  = x± near the surface will be superheated 

(i.e. temperature is above the vaporisation point).
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&&S. V aporisation stage

At the beginning of computation of this stage, the liquid region of thickness x = Xi is 

superheated, equilibrium is established by vaporisation of the superheated liquid to a 
liquid depth of x = x2. A mathematical expression similar to tha t suggested by Heitz and 

Westwater [6] and later developed by Hsu et al. [7] for a superheated solid is used:

*i
* 2=£ J (r,(* ,<J>+1) - r „ )  d x  (6.19)

0

Generally the superheated region extends less than one space increment, therefore 

7/(x,fjv+i) can be approximated by a polynomial of degree one in the region 
hence, the depth of the initially vaporised material is determined directly without 

recourse to numerical integration.

1 1 1 
1 1 1

1 1 1 
Liquid phase

i i i
i i i

1--------
1

_
111 

11
- - !  ' '
—  '’ t z D -  1 -  - 11

1
1

Solid phase

i
i
i

(■)

Vapour phase 
(material removed)

0>)

Figure 6.2: Discretisation around the moving boundaries, (a) Around the liquid/solid 
interface M (t) . (b) Around the vapour/liquid interface V (i) t together with both 

real (solid lines) and virtual (dashed lines) grid networks.

At any time during the vaporisation stage, where two MBs exist simultaneously, both 

the energy balance conditions given by (6.6) and (6.7) must be satisfied at each time step. 
The method insures that M(t) moves a space increment Ax and determines iteratively 

the time step At necessary for that move. During each VSS a t each iteration, the position 

of V(t) is adjusted to satisfy the condition given by (6.7); hence, the problem is simplified, 
as in section 6.2.2, where the test for halting the iterations is carried out at the liquid/solid 
interface only. In order to achieve this, it is assumed that there is a virtual distorted grid
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network ( y - t )  formed by V(t), and two lines (one at Ax and the other a t 2Ax relative to 
V(f)) moving in parallel with V(t) (see Figure 6.2b). To transform the equations from 
the original grid ( x - t )  to { y - t)  the transformation y  = x + V(t) was used, applying the 

chain rule, (6.4) becomes:

dTt Kt d T\ dV  dTt 
dt ci dy2 dt dy (6.20)

Writing equation (6.20) between two VSSs (j tn ,p ) and (j,n  + l,p ), and assuming a 
linear propagation of V(t) between each two VSSs; hence, dV  /  dt can be approximated by 

Xj,n,p which represents the variation of V(t) during the course of ( j fntp) and (/,»+ 1»p)» 
(6.20) becomes:

dTi d Tt 
dt ~ a‘ d /  Z j'n-p

S T ,
dy (6.21)

Following the procedure of Bhattacharya [8,9], (6.21) has a difference solution of the 

form of (6.11). The temperature n+^p a t the first virtual distorted grid line D l, which is 
situated Ax from the position of the MB x  = V(f),at (j,n+  l,p) is given by:

ej,n+Kp =  eM , p eX^ r ra . j  * U , p ) (6.22)

Where

0* =j»ntP
Ax Y • A J ,n ,p

2a/

N2 /  >
1

0*J ,n ,p

Ax Y*  ̂
2a/ Vj,n,p)

 ̂Ax Yk  ̂
2V2a/

(6.23)

where r^  . and p* are defined in chapter 4.
The position of V(t) is conditioned to satisfy the energy balance at x = V(t); replacing

(6.7) by a finite difference gives:

y* = “J^.P {FJ*n'P Jx ej>*+l*p)\
(6.24)
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Since X j^ tP is n° t known, to solve (6.22), (6.23) and (6.24), an iterative procedure is 

used starting with X j’tn,p = XjtTt-Xp' ^ ue the small length of sub-intervals, Xj,n,p *8 
generally determined in two iterations only.

After determination of X jn p»the temperature a t the surface node, i = is, which is the 
first node below x = V(t) in the original (non-distorted) grid (see Figure 6.2b), at the VSS 
( j tn + l,p) can be interpolated by using simple interpolation from the temperature a t the 

virtual distorted line D1 and the temperature a t the moving boundary x  = V(t):

rpk _ nk
i„j*+Xp uj,n+ \p 1-mod

(  yk
j ,n + \p  1 

Ax ’
/J

+ 7Y mod
( yh

1
Ax

(6.25)

where mod(y,x) = y -x in t^ —j  and V*re+1̂  is given by:

n

V j,n+ \p  ~ V j - 1 + ̂ 5 ' JZj,n,p
»■ 0

(6.26)

Now the computation of temperatures a t the virtual grid points, i > i8, throughout the 

liquid are carried out in a similar manner to section 6.2.2.
It can be seen from (6.23) that for the next VSS, the temperature <Pjtn+itP* a t the second 

virtual distorted line D2 at (j,n  +1,p), must be known. In order to minimise the cpu-time, 
it is calculated by a simple interpolation from tem peratures a t the original (non

distorted) grid and it is given by:

1-mod
yh

J>n+1*P 1 
Ax

J J

+ T mod
f yh  

r j ,n + \p  1
Ax ’ (6.27)

The position of V(f) and the temperature distribution throughout the liquid and solid 
regions (computation of temperature distribution throughout the solid region is similar to 

section 6.2.2) at the time t = t j+1 are given by:

p i-1

VU = v y + 5 > * " . j
(6.28)

n* 0

(rpk
hj 'PjfP

r p k  _
* -  i»*bn 1

l = lr (6.29)

T . .  * , 1 = ^  + 1 ^
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Once the temperature distribution throughout the solid and liquid regions a t the time 
t = tj+v  has been estimated from (6.29), all the intermediate time steps are virtual and 

are progressively eliminated (see the algorithm in appendix D.2); the criterion used for 

convergence of the temperature field was:

(6.30)

where emin is the time step error allowed to stop iterations and £* is given by:

e j = 100 x
At:

(6.31)

where

-1
(6.32)

If equation (6.30) is not satisfied, a relaxation procedure is applied to determine the time 
step for the (£+1)^ iteration:

Atk+1 = Atk J J 1-
100 (O

(6.33)

where a) is a relaxation factor and Atj = Atj_\.

R em ark  1: When the energy balance a t x = M(t) takes into account the temperature 
gradient in one phase only as in test problem 2 of section 6.4, the time step a t the next 
iteration Atk+1 can be determined by a similar procedure to that suggested by Gupta and 

Kumar [10] (i.e. Atk+1 = ). For the case of two MBs such as problem 2, the procedure

may converge in certain cases and may not in others, however, equation (6.33) is general 

and has been satisfactory for all the computations performed.

R em ark  2: Experiments show that a given value of at may give satisfactory convergence 
for some time steps and may exhibit non-convergence oscillation for others. In these 
circumstances such oscillatory behaviour can be avoided by evaluating the time step for 
the (fc+l)^ iteration using: Atk+1 = \[A tk + $k) [111
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6.4. Test problems

Problem 1: Collapse of a  solid wall
The method described in section 6.3 has been used to solve the collapse of a solid wall 

due to a constant heat flux input F  a t x  = 0, whilst the other extremity x  = a is thermally 
insulated (i.e. 3T /dx  = 0 a t x = a)[3]. Solving this problem is similar to solving the 
problem previously described in section 6.2 but with a convective heat transfer coefficient 
h = 0. Bonnerot and Jam et [3] demonstrated the solution of the problem with two different 

sets of data.

Problem la:

a=  1 , T (x,0) = 27 , F  = 2500 , C/ =Cf = 4.944,
Kt =K8 = 0.259 , Xm =2160 , = 37200, (6.34)

Tm = 1454 , Tv = 3000

This data set permits all three stages (i.e. heating of solid, melting and vaporisation) 
to occur. For the present method a choice of dx = 0.02 was used so as to have approximately 
the same total number of grid points as the BJ method, where A t/ Ax =1/16. For the 
present method, which will be referred to as the ZC method, a relaxation factor to = 3.0, 

Emin -  0.05% and r f  = 0.30 have been used. A comparison of results using the BJ method 
and the ZC method are shown in Table 6.1, and Figures 6.1, 6.2, and 6.3, these are 
discussed in section 6.5.

R em ark  3: Since the time step during the melting and vaporisation stages for the ZC 
method is variable, the At quoted in Table 6.1 and 6.2 is the At0 defined in section 6.3.1.

Problem lb:

a = 1 , T(x,0) = 27 , F  = 2500 , c /= cf = 1041p,
Ki = 1.73 , K8 = 0.865 , Xm = 400p , Xv = 10700p, (6.35)

Tm = 638 , r„  = 2480 , p = 2.77

where p is the material density.

With this data set, the melting interface reaches the adiabatic boundary before 
vaporisation occurs; the process is therefore reduced to a single MB problem. The same 

parameters ( ZC [Ax, r f, to , emin}, BJ {At/ Ax , e}) have been used as in problem la. the 

comparison of results of the ZC and BJ methods are shown in Table 6.2 and Figures 6.4, 
6.5 and 6.6, these are discussed in section 6.5.
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Problem 2

In order to further validate the accuracy of the method, the following normalised two

melts due to a variable heat flux input applied a t the liquid surface, the temperature 
throughout the solid region is always assumed to remain a t the melting point. The 
governing equations are:

temperature near the vapour/liquid interface is computed in a similar manner to tha t 
near the liquid/solid interface. Numerical results when Tv - 'L b T mt cd- 2.0, r f - 0.35 
and Emin = 0.01% are shown in Table 6.3 and Figures 6.9 and 6.10.

For accuracy assessment, the Maximum Percentage Deviation for Temperature 
(MPDT) is defined as:

MB problem, whose exact analytical solution is known, was considered. A solid material

(6.36)

(6.37)

(6.38)

T dV = exp(a/ fi;) , tv Z t£ t e (6.39)

T ( x t )  = l Tm = 'L0 
l 'Xt * \ r w , x = V(t) , t * t 0 (6.40)

Af(0) = 0 , r z(*,0)=L0 for O slxSlO (6.41)

The exact analytical solution is given by:

Ti(x,t) = e x p (a it-x )  , M(t) = a i t  ,

tv = — LogJTv) and 
al

V(t) = a i ( t - t v)
(6.42)

Since in this particular problem the condition a t the second moving boundary 

(vapour/liquid) is not coupled to the temperature gradient in the liquid region; the virtual 

distorted grid network is omitted in order to reduce the cpu-time; therefore the

MPDT = max|((|flDrw  «= 0, Jv), j  = 0 , j .  } (6.43)
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where P D T ij is the percentage deviation from the analytical temperature calculated at

The Percentage Deviation for Vaporisation (PZ)V) interface position is given by:

Numerically, respectively.

6.5. Num erical results and discussion

Numerical results show that for problem la , which corresponds to a low conductivity 

material compared to th a t used in problem lb, the vaporisation occurs before the

wall collapses before the appearance of a vapour/liquid interface and therefore the 
problem is one of melting only.

Table 6.1, figures 6.3, 6.4 and 6.5 show that for problem la, both the BJ and ZC solutions 
are in good agreement; a maximum relative error of only 2% occurs between the two 
solutions. For problem la , the BJ method has a cpu-time of 40 seconds, whereas the ZC 

solution takes only 9 seconds (non-vectorised program) on an IBM3090/150VF (Computer 

Centre, University of Glasgow). The ZC scheme is more than 4 times faster than the BJ 
method. Using vectorisation, the speed up factor due to vectorisation varies from 2.5 to 3.5 

for the BJ method, whereas it varies from 5 to 6 for the ZC method. This however, is due to 

the fact that explicit methods are more suitable for vectorisation than implicit finite

the nodal point (*»»*/) which is given by:

(6.44)

The Maximum Percentage Deviation for time (MPDt) is given by:

where

MPDt = max

PDtj = 100 x
M m

(6.45)

(6.46)

(6.47)

where the subscripts A n  and N u  refer to the value calculated Analytically and

liquid/solid interface reaches the adiabatic boundary. On the contrary, in problem lb, the
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Table 6.1 (Problem la): Comparison of tm. tv , te and V(te) for 
different time increments At.

At tv U V(te)
BJ method T31
1/4 0.36150 1.63034 9.75464 0.28351
1/8 0.32897 1.63611 9.40210 0.26703
1/16 0.32767 1.63446 9.38719 0.26633
1/32 0.32768 1.63439 9.38708 0.26632
ZC method
1/4 0.32740 1.58887 9.15907 0.26318
1/8 0.32660 1.58783 9.15828 0.26319
1/16 0.32580 1.58705 9.15745 0.26318
1/32 0.32494 1.58620 9.15670 0.26319

1.2
x=M(t), BJ method 
x=M(t), ZC method 
x=V(t), BJ method 
x=V(t), ZC method

1.0
Hw

0.8e©
to©o,
4>O

0.6

ja
5cl-H

0.4

0.2

0.0
106 80 2 4

time (t)

Figure 6.3 (Problem la): Position of the liquid/solid and vapour/liquid interfaces versus time

4000
x=a/2, BJ method 
x=a/2, ZC method 
x=0, BJ method 
x=0, ZC method*, 3000

g 20004>a
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106 80 2 4 time (t)

Figure 6.4 (Problem la): Temperature versus time at different depths
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Figure 6.5 (Problem la): Velocity of the moving boundaries versus time

difference and finite element methods [12] where the unknown variables are determined 
with recurrent do-loops (i.e. do-loops that form a cycle of variable dependencies).

Figure 6.5 shows the velocity history of the two MBs for problem la y where the L/S 
interface starts  with zero velocity and reaches a maximum speed ju s t after its 
appearance; its propagation speed then starts to decrease due the greater thermal- 
resistance of the liquid. When the V/L interface appears, the L/S interface slows sharply 
due the heat loss from vaporisation. The V/L interface accelerates sharply in the initial 
instance, then continues to accelerate a t a lower rate throughout the process. The L/S 
interface velocity reaches a minimum then starts to increase again, this is due to the fact 

tha t the heat flux entering the solid region decreases sharply when approaching the 

adiabatic extremity (i.e. there is less energy absorbed as the whole solid approaches the 
melting temperature). The heat flux at the L/S interface decreases with a smaller 
gradient than the heat flux entering the solid region resulting in a greater proportion of 

the energy being available to melt the solid material; meanwhile, the V/L interface 
converges towards a constant acceleration due to the constant heat flux input. Before the 
total melting or the collapse of the wall, the L/S interface velocity starts to decrease due to 

the decreasing heat flux through the liquid and the absence of heat flux in the solid 

region.
As with problem la  there is good agreement between the two solutions for problem lb, 

this is shown in Table 6.2, Figures 6.6, 6.7 and 6.8. Unlike problem la, the material used 

in problem lb is a good conductor of heat, therefore, the melting process is faster than 

problem la. This can be seen from Figure 8 where the velocity of the L/S interface is much 
higher than that predicted by Figure 6.3; the wall collapses a t f=1.8 rather than *=9.2 for 
problem la.
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Table 6J (Problem lb): Comparison of tm, te and T(0,te) 
for different tim e increments At.

At tm te T(0,te)
BJ method f31
1/4 0.23485 
1/8 0.23401 
1/16 0.23400

1.92536
1.92383
1.92381

2349.18
2347.98
2347.96

ZC method
1/4 0.23352 
1/8 0.23398 
1/16 0.23390

1.89063
1.88747
1.88719

2341.45
2341.40
2341.40

1.50

x=M(t), BJ method 
x=M(t), ZC method1.25-

1.0 0 -

0.75-

0.50-

0.25-

0.00
2.01.0 1.50.0 0.5 time (t)

Figure 6.6 (Problem lb): The liquid/solid interface position versus time

3000

x=0, BJ method 
x=0, ZC method 
x=a, BJ method 
x=a, ZC method
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o»oo
500 -

0.4 0.8 1.6 2.00.0 1.2time (t)

Figure 6.7 (Problem lb): Temperature versus time at different depths
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Figure 6.8 (Problem lb): Velocity of the liquid/solid interface versus time

Unlike the behaviour of L/S interface in Figure 6.3, the melting interface for problem 
lb always accelerates due to the higher conductivity of the liquid compared to that of the 
solid. At the end of the process the IVS interface has a similar behaviour to that of problem 
la  due to the adiabatic extremity.
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Figure 6.9 (Problem 2, «=0.1): Variation of percentage deviations from the analytical 
solution with the total number of space elements N

Figure 6.9 shows that MPDT, M P D t, PDtju, PDtjt and P D V all decrease as N  
increases for problem 2. In other words, the accuracy of the ZC method increases by 

increasing the total number of space elements which results in greater cpu-time ( as 

shown in Figure 6.10).
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Figure 6.10 (Problem 2, a=0.1): Variation of cpu-time with the number of space elements N
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Figure 6.11 (Problem 2, Ax=0.02): Variation of percentage deviations from the analytical 
solution with the velocity of moving boundaries

Figure 6.9 also shows tha t despite the singularities that appear with each moving 
boundary, the accuracy is very satisfactory. Maximum errors for the different variables 
of the solution are always generated a t the appearance of a MB, these errors decrease with 
time as shown in Table 6.3.
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Table 63 (Problem 2): A comparison of computed history c f the moving boundaries 
M (t) and V(t) with the analytical solution. Percentage deviations are also tabulated.

M{t) *Nu *An PDt vNu v * . PDV
0.1 0.492868 0.5000 -1.426458
0.2 0.987501 1.0000 -1.249921
0.3 1.482948 1.5000 -1.136717
0.4 1.979041 2.0000 -1.047945
0.5 2.475761 2.5000 -0.969506 0.092003 0.094535 -2.677884
0.6 2.973228 3.0000 -0.892385 0.191497 0.194535 -1.561637
0.7 3.471273 3.5000 -0.820732 0.291106 0.294535 -1.163964
0.8 3.969764 4.0000 -0.755906 0.390805 0.394535 -0.945447
0.9 4.468581 4.5000 -0.698196 0.490569 0.494535 -0.801985
1.0 4.967664 5.0000 -0.646725 0.590385 0.594535 -0.697940

Due to the incorporation of the VSIET, the accuracy of the present scheme is unaffected
by the nature of the heat transfer problem; this can be seen from Figure 6.11 where the
percentage deviation for the different variables in the solution remain constant with the

variation of moving boundary velocity. Therefore the method presented can be adapted to
any heat transfer problem irrespective of its nature and good accuracy can be achieved by 
tuning the parameters /y, Ax and £min .

6.6. Conclusion

Vectorisation is an essential tool to increase performance and reduce the cpu-time of 
large scale computation; explicit methods, where the unknown variables are determined 
with no recurrence (i.e. group of statements that form a cycle of variable dependencies), 
are highly suitable for vectorisation. However, if computations are to be performed for 

extended times, explicit methods do have instability constraints which make higher 
demands on computer memory requirements due to the large amount of data that must be 

stored.
The ZC method combines the variable time step approach and explicit procedures. The 

variable time-step approach requires less memory and storage requirements than a fixed 

grid network; this results in highly efficient use of the computational platform. 
Additionally, the explicit computation procedure permits to maximise the percentage of 
vectorisation of the scheme. By incorporating the VSIET the stability of the schemes is 

autom atically m aintained for any mesh size w ithout increasing the storage 

requirem ents.
Other benefits of the method are simplicity and ease of programming, in the ZC 

method only simple linear equations must be solved compared to many numerical 

integrations and the solution of systems of linear equations for the BJ method.
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Heat Flow During Laser 
Heat Treatment of Materials

Summary

A new explicit finite difference equation for solution of the non-linear heat conduction 
equation is developed and validated by solving a normalised problem which has an 
analytical solution. A virtual sub-interval elimination technique is incorporated into 
the algorithm to insure the stability of the scheme irrespective of the mesh size; hence, 
avoiding the necessity for large array sizes. The finite difference scheme is then utilised 
to simulate the melting and re-crystallisation of silicon when subjected to radiation by a 

scanning cw-laser beam. The model incorporates temperature dependence of material 
properties and the surface reflectivity; the variation of the incident power density with 

time is also taken into account. The numerical scheme is also applied to the laser heating 

and melting of nodular cast iron; the results are compared with published experimental 

results.
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Nomenclature
Constants
Heat capacity/unit volume of material

Heat capacity of air
Laser power density
Gravity acceleration
Heat transfer coefficient

Thermal conductivity of material

Liquid/solid interface position
Maximum percentage deviation

Total number of space elements
Time of melting

Time of end of the process
Temperature at depth x , time t
Melting temperature
Temperature of air
Fourier number
Reflectivity of the surface material 
Fixed Fourier number (£ 0.5)
Total incident power of the laser beam
Percentage deviation
Thickness of the work-piece
Scanning speed
Thermal conductivity of air
Stefan-Boltzman constant

Dynamic viscosity of air
Density of air

Diffusivity
Space element
Time step length

Latent heat of fusion/unit volume
Laser beam diameter

Space / time indices 
Liquid / Solid

Virtual time step index

Last virtual time step index for a given real time step
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7.1. Introduction

Laser processing of surfaces, which involves rapid localised heating of materials to 
modify its physical properties by altering the surface structure or distribution of 
impurities, has found many applications in manufacturing and particularly in semi

conductor technology [1-3]. Typically a high-power laser beam is utilised to rapidly heat 
a thin surface region, with the underlying bulk substrate providing self quenching.

To achieve a desired effect on a specific material it  is necessary to make the optimum 
choice of process parameters such as: power, scan velocity and the beam diameter. To 

avoid a costly time-consuming experimental tria l-and-erro r search to obtain the 

optimal combination; and in order to assess the influence of the laser parameters on the 
process, it is necessary to construct a mathematical model describing the laser-material 
interaction process.

Laser materials processing technology allows beam-workpiece interaction times 
ranging from a few picoseconds duration to several seconds; the concomitant incident 
energy densities, which induce observably reproducible effects, range from several 
m J/cm2 to some thousands of J/cm2. For processes with high power and picoseconds 
interaction times, the heat diffusion length becomes comparable both to the radiation 

absorption length -  which is of the order of 20 nm in most metals — and to the mean free 
path I of the heat carriers (i.e. the conduction electrons for which Z=20 nm a t room 
temperature). Under these extreme conditions, the linearity between the heat flux and 
temperature gradient breaks down; for these circumstances the energy transport into the 
material can be described using the kinetic theory rather than the Fourier conduction 
theory [4]. However, for interaction times greater than some picoseconds, the heat 
conduction process is correctly described by the Fourier conduction equation [5].

A new explicit finite difference equation for the heat conduction equation — where 
thermal properties are a function of temperature — is developed, and validated by solving 
a normalised problem which has an analytical solution. In order to eliminate the 

constraint of using a small mesh size, a virtual sub-interval elimination technique is 

incorporated to insure the stability of the scheme irrespective of the mesh size without loss 
of accuracy. The finite difference scheme is then utilised to simulate the melting and re

crystallisation of silicon when subjected to radiation by a scanning cw—laser beam. The 

process is physically described as follows: a laser beam moving with a uniform velocity 

scans a silicon substrate of infinite length and width but definite depth. The incident 
power is partly reflected and partly absorbed, depending on the reflectivity of the surface. 
Some of the absorbed energy is lost by re—radiation and convection from both the upper 

and lower surfaces into the surrounding environment, whilst the rest is conducted 

throughout the substrate. When the beam has completely passed, the melted zone is self 
quenched by the solid substrate and the heat lost from the surfaces. The numerical
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scheme is also applied to the laser heating and melting of nodular cast iron; the results 
are compared with published experimental results.

7.2. F inite difference solution for non-linear heat conduction problems

The one-dimensional heat conduction equation in homogenous m aterial with 

variable thermal properties is given by:

c ( r ) i £ = i - l t f ( n 4 £ )  (7.i)
at d x \ dx J

where T(x,t), C(T) and K(T) are temperature a t the coordinates (xf), heat capacity/unit 
volume and thermal conductivity respectively. Equation (7.1) can also be written as:

C O T f - W ) * ? * # ®  (7-2)
at fa d x \ a x )

Writing (7.2) for the grid line i, situated a t x* = iAx relative to x=0, gives:

( K \  = ( * L )  + _ L _ f  f i T l  (7 3)
C(Ti) dx* .. C (r() t * J A * J (

Using a three point Lagrange formula, for the grid lines (i-1), i and (i+1); (dK / dx)i can 

be approximated by:

(7.4)
V, dx Ji 2Ax

Making use of the following notations:

1 f a n  (7.5)
c ( r i ) l * J f 2AtC( "  ’ c (T i) C; *

equation (7.3) is written as:
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Following the procedure of Bhattacharya [6]; the finite difference solution of (7.6) -  
expressing the temperature at the node (** = iAx,tj+i = t j  + At), as a function of those at 

nodes (xittj)  and (Xj+i ,f / ) -  is given by:

where

where

ViJ =

(7.7)

(7.8)

o _  K i - X j  K i+bj a . . = ^ L L  r . = a  ■ —  Pl,J a y  * a i,J r  » r i,j a hJ Ax (7.9)

Y ij  can also be evaluated using the approach in [7] yielding to a more lengthy equation:

f - 2 - '
, TiJ

^ T i , j  ( 1 + P i J  1J
8?. 

(1“Aj)r i+lJ + r i+u)
(7.10)

When T ij - * 0 ,  e x p ( - r i j ^ j ) -> -  f i jY iJ ^ i jy  th is elim inates 2 \ j  from
denominator of Y i,j» given by either (7.8) or (7.10); replacing T ^j = 0 in what remains of 
the equation yields the finite difference equation for the special case of T^j = 0.

The classical finite difference equation of (7.1) is given by [8]:

C i J
Tj,j+i T i j  _  l

At Ax K i - V 2 J
T i - \ j  T i,j

Ax
-K ;

T i J - T i+Xj)
n - y z j  f a

where

K  K i - l , j  + K i,j K  K i , j + K i+ l j
K i - V 2 J  ----------«---------- » A i +l / 2J  ~ ^ ----------

(7.11)

(7.12)

In equation (7.12), a linear interpolation is used for the thermal conductivity between 

each grid point giving K  a t the midpoint of the space interval separating the grid points. 

Ki_y2j  and Ki+y 2 ,j can also be evaluated using the approach of summing the thermal 
resistance as suggested by Patankar [9]. This gives:
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7.2.1 V irtu a l S u b -In te rv a l E lim ination  T echnique (VSIET)

This technique permits the use of large time steps for any of the explicit equations 

(Eq.(7.7) or (7.11)) without loss of accuracy or stability. I t consists of automatic 
generation of Virtual Sub-time-Steps (VSSs), which are progressively eliminated as the 

computation moves forward [10]. For illustration, let us consider that the temperature 
distribution T i j , i = 0,N  is known and we wish to compute the temperature distribution at 

the time t j+ 1  = t j  + At, using (7.7) and (7.8). The temperature distribution —T*j, i = 0 ,N  -  

a t any VSS of index n=l, k is calculated from that of previous VSS using:

where iy £0.5 is a  fixed Fourier number throughout the computation process. At some

calculated from th a t of f = using equation (7.14) (i.e. Tij+ i = T * j,i = OtN )  with

In order to validate the finite difference equation and compare its performance with 
the classical equations, let us consider the following problem:

where

(7.15)

interm ediate VSS n=&, so that the temperature distribution a t t = tj+i, is

(7.16)

T(*,*) = *(*) , * = 0 , *;>o (7.17)

T(x,t) = (pit) , J t= l , t * 0 (7.18)

T(x,t) = 7j(x) 0 £ 1  , f = 0 (7.19)

Let us assume the following dependencies:

dc2K(T) = dLoge(T) , C(T) = - J —(1+ Loge(r))
b

(7.20)
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If we choose the following boundary conditions:

r)(x) = exp(-cx) , 0 (*) = aexp(6 f) , <p(t) = aexp{bt -  c) (7 .2 1 )

The following is an exact solution for equations (7.16) to (7.19):

T(x,t) = aexp (b t-cx)  (7 .2 2 )

where a, b, c and d  are constants.

The problem defined by (7.16) to (7.19) is solved using: the classical equation (i.e. 
(7.11)&(7.12)), the equation of Patankar (i.e. (7.11)&(7.13)) and the new finite difference 

equations (i.e. (7.7)&(7.8) and (7.7)&(7.10)). The VSIET is incorporated with all the 

equations. For accuracy assessment, the numerical results are compared to the 
analytical solution and expressed in terms of percentage deviations defined as:

(t • ) -(T -  •)
W PD ^m axflPA .yl^O .w ) , PDU  = 100x '’" f "  .V (?23)

V U lA *

where A n  and N u  refer to tem perature calculated Analytically and Numerically 
respectively. Numerical results, omitting the units of variables, (when a - 20, 6=4, c= 1/2, 
d - 2.0, dx=0.1, d/=0 . 0 1  and ly = 0.35), are shown in Tables 7.1 and 7.2. These are 
discussed in section 7.5.

Table 7.1: Comparison of percentage deviations (xlO2) at the centre of the slab.

time
step

Classical
(7.11)&(7.12)

Patankar
(7.11)&(7.13)

Present equations 
(7.7)&(7.10) (7.7)&(7.8)

Analytic

j *1 PDN/2.j PDNI2j PDN /2 ,j PDN /2 ,j

1 0 .0 1 -0.1694 -0.1788 0.05647 +0.03765 16.2117
2 0 .0 2 -0.2080 -0.2261 0.05426 +0.03617 16.8733
3 0.03 -0.2346 -0.2520 0.01738 +0.01738 17.5619
4 0.04 -0.2421 -0.2588 0 .0 0 0 0 0 -0.00835 18.2786
5 0.05 -0.2567 -0.2647 0.00802 -0.00802 19.0246
6 0.06 -0.2620 -0.2697 0 .0 0 0 0 0 -0.03082 19.8010
7 0.07 -0.2369 -0.2517 0.00740 +0 .0 0 0 0 0 20.6091
8 0.08 -0.2276 -0.2419 0.00711 +0.00711 21.4501
9 0.09 -0.2119 -0.2255 0.02050 +0.02050 22.3255
1 0 0 .1 0 -0.2036 - 0 .2 1 0 1 0.02627 +0.02627 23.2367
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Table 72: Comparison of maximum percentage deviation (Xl(P).

time Classical Patankar Present equations
step (7.11)&(7.12) (7.11)&(7.13) (7.7)&(7.10) (7.7)&(7.8)

/ MPDj MPDj MPDj MPDj
1 0.1694 0.1788 0.07297 0.07021
2 0.2080 0.2261 0.07683 0.05844
3 0.2346 0.2520 0.04801 0.05581
4 0.2457 0.2633 0.02667 0.02728
5 0.2614 0.2698 0.01864 0.02071
6 0.2620 0.2697 0.00852 0.03240
7 0.2369 0.2517 0.01557 0.00818
8 0.2276 0.2468 0.00786 0.00869
9 0.2227 0.2299 0.02601 0.02050
1 0 0.2071 0.2140 0.03123 0.02761

7.3. M athematical form ulation of laser beam -m aterial interaction

As the laser—beam diameter is very small compared to the lateral dimensions of the 
material, and the power distribution is symmetric with respect to the beam centre (i.e. 
Gaussian); the approximation of the heat flow by a one-dimensional model is not 
expected to introduce significant errors [1 1 ], since the maximum heat effect occurs when 
the surface is irradiated by the centre part of the beam. The process can be adequately 
modelled as a 1-D  moving boundary problem with variable thermal properties. The 
governing equations, describing the heat conduction into a material of thickness X  with 
change of phase, are written as:

(7.24)

(7.25)

dM dTa E l
dx

r8(x,f)=r/u,o = r„
, x = M{t) , tm z t z t e (7.26)

where: M, A, Tm, tm an d te refer to the liquid/solid interface position, latent heat of 

melting/solidification per unit volume, melting temperature, time a t which melting 
starts and time at which solidification ends, respectively. The subscripts 8 and I refer to 

solid and liquid regions respectively. Equations (7.24M7.26) may also be written with a 
heat generation term, due to penetration of the radiation. However, calculations show that
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energy absorption is predominantly a surface phenomenon [1 2 ]; hence, the heat 
generation term is neglected in (7.24M7.26). The boundary conditions are written as:

-K iiT A(f)- F(T,,t)-h(Ti,T0XTi-T0) , at = 0 , tm<.t£te

h(T„T0) ( T ,- T 0) , x = X  , Q m t e

(7.27)

(7.28)

where h is the heat transfer coefficient and F(T,t) is the absorbed power density -  a t the 
centre of the beam -  by the surface material, which is a t temperature T, a t time t. 
Assuming that the laser beam has a Gaussian distribution of radius (O a t the 1/e point; if 

the laser beam has a total incident power P and is moving with a constant velocity v, then 
F(T,t) is given by:

F(T,t) =
u - m i J W - r s z - ) 1

(7.29)

where x = co / v and R  are the beam-workpiece interaction time and the reflectivity of the 
surface, respectively. From both surfaces (x= 0  and x=X) the heat is lost by a combination 
of free-convection and radiation. The function h{T\tT2)— expressing the heat transfer 
coefficient, due to both convection and radiation, of a plate of thickness X  a t temperature 
Ti sub-merged into a fluid at temperature T 2  -  is given by:

h(TltT2) = <r[l- f lC T i)]^  + r f  XTi + T2) +

K(Tf ) cp{Tf )2gpH Tf ) ( X i-T 2)X  
[K(Tf ) (Tt + T ^ M T f)

3 V (7.30)

where T f = 1 (T i + T2), o  and#: are tem perature of the air film, Stefan-Boltzman 

constant and gravity respectively; cp , p, p , and k denotes heat capacity, dynamic 
viscosity, density and thermal conductivity of air respectively; these variables are 
temperature dependent. The correlation factors z and y  are equal to: 2=0.14 and y=1/3, for 
the surface facing upwards; 2 =0.58 and y - 1/5 for the surface facing downwards [13].

7.3.1. A pplication to  silicon

The variation of the thermal conductivity and the heat capacity/unit volume of 
silicon with temperature is given by [14]:
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K(T) = 299 x 102f— — 1 , C(D  = 2.336 x 106f—— (7.31) 
^ r - 9 9 ;   ̂ T - 9 9  )

The units in (7.31) are: T[°K], K[W /m°K] and C [J /m 3oK]. The melting temperature 

of silicon is Tm = 1690 °K and the la ten t h eat of fusion per un it volume 
X = 3282x 106 J / m 3. For liquid silicon the thermal conductivity increases to 0.64 

[W/mK], while C(T) is taken to be constant [11]. Experimental evidence [15,16] shows that 

the reflectivity of silicon varies linearly with temperature for temperatures less than the 
melting point. However, a more accurate function, for a  large range of temperatures 
including melting, is given by [14]:

7?(T) = 0.372 +2.693 x 10~67, + 2.691x 10~16T4, TS3130 °K (7.32)

7J&J2. A pplication to  n o d u la r cast-iro n

The dependence of thermal conductivity and the heat capacity/unit volume of nodular 
cast iron with temperature are approximated, to fit the experimental data in [17], by:

K{T) =

8.257 x 10-3(T -  273) + 12.0 

-4.450 x 10“ 3 {T -  973) + 17.78 
0 .3 6 0 (T -1573)+15.11 
33.11

273 £ 7* £ 973 

973 £ T £ 1573 
1573 £ T £ 1623 

T  > 1623

(7.33)

C(T) =

4.670 x 10_3( r  -  273) + L94 , 273 Z T Z  1573
0 .123(T -1573)+ 8.01 , 1573 S T *  1623 (7 .3 4 )
-0 .123(T -  1623) + 14.17 , 1623 S T *  1673
8.01 , T>1673

The units in equation (7.33) and (7.34) are: T  [°K], C [106 J  / m3] and K  [W/m°K]. The 
melting temperature of nodular cast iron is Tm = 1573 °K and the latent heat of fusion 

per unit volume X = 791134 x 1 0 6 J  / m3. The reflectivity as a function of temperature is 
approximated with a linear function [18], which is given by:

R(T) = 0.72 -  25 x lO ^fT  -  293) , T[°K] (7.35)

For both processes (silicon and nodular cast-iron), the functions describing the 

variation of thermal properties of air with temperature are obtained by approximating the 

experimental data in [19] by a polynomial of degree 5.
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7.4. Num erical com putation schem e

Prior to melting ( T(0,t)<Tm) when only one phase is present, the numerical

surface, exposed to laser radiation, exceeds the melting point, the heat in the superheated 
region (i.e. T(x,tm)> Tm) is converted to heat of fusion, giving an initial melt

depth * 2  a uniform melting temperature [20]. This can be expressed mathematically 

as:

Generally the superheated region extends less than a space increment (* i< d x ); 

therefore, T(x,tm) in (7.36) is approximated by a linear function of x; hence, * 2  is 
directly obtained without recourse to numerical integration.

During the melting and solidification stages, the problem is to compute the 
temperature distribution T'ij+i, i = 0,N  as well as the melting front position M j+i from 
those at the previous time t j . The computing procedure is the same as tha t in section 7.2, 
except for the nodes near the moving interface. Consider tha t the moving boundary is 
located between ^  and im +1. For grid lines equation
(7.14) is used. For the grid lines ^  and ^  + 1, instead of (7.14) the following is used:

computation is similar to tha t illustrated in section 7.2. When the temperature of the

(7.36)

o

* ~  hnthn  + 1 (7.37)

where

where

(7.39)

where £ = mod|My 1,Arj. Equations (7.38) and (7.39) using the same approximations, 

for the nodes around the moving boundary, used in [10] ( also in chapter 4).
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The temperature distribution at the time is calculated from that of the last VSS (i.e. 
Tij+ 1 = T * j, i = 0,N ). Equation (7.14) is used for grid lines i e {0 ,^  -  l} u  + 2tN ]  and
(7.37) for i = + 1. The position of the melting front is given by:

k
Mj+l = Mj  + 2 i iX j  (7.40)

n*l

where X j » which is the variation of the melting front during each virtual time step 

Stj = tj -  t j~ l f is given in appendix E.

7J3. Num erical results and discussion

Table 7.1 shows tha t the relative errors using the classical equations are greater than 

that of the new equations. It also shows that both the classical finite difference equations 
under-estimate the solution; whereas, (7.7)&(7.10) give an over-estimated solution; 
however, the numerical results due to (7.7)&(7.8) oscillates around the analytical 
solution. Table 7.2 shows the maximum percentage deviation at each time step; overall 
the new finite difference equations are 4 times more accurate than the classical ones. 
Equations (7.8) and (7.10) achieve similar accuracy; however, (7.8) requires less 
operations.

500
P=200W
P=22GW
P=250W
P=300W

400-

1  300-

•§* 2 0 0 -
U

100-

125 14035 50 65 9580 110
Scanning velocity v [nun/s]

Figure 7.1: Variation of melt depth with the scanning speed 
at different incident powers -  Silicon.

Figure 7.1 and 7.2 shows the variation of the melt depth with the scanning velocity 

and the incident power, for a silicon substrate of thickness X=0.5mm irradiated with a
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laser beam of &=lmm. Figure 7.1 shows that as the velocity of the beam increases the melt 
depth decreases, whereas it increases when increasing the total incident power, as shown 
in Figure 7.2. Figure 7.2 also shows that the melt depth is sensitive to the laser power a t 
low scanning speeds, this sensitivity is less apparent a t high scanning speeds. Figure 7.3 

shows th a t the melt depth depends strongly on the beam diameter. Numerical results 
shows tha t the melt depth is generally very sensitive to the change in either the total 
incident power or the beam diameter; therefore, the scanning speed is the most useful 
laser parameter for high precision control of the process.

800
v=40 mm/s 
v=60 mm/s 
v=80 mm/s 
v=100 mm/s600-

400-

4>
2

200 -

23585 135 185 28535
Incident beam power P[W]

Figure 1 2 :  Variation of melt depth with the incident power 
at different scanning velocities -  Silicon.
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J* 1000- 
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2  600-
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200 -

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 7.3: Variation of melt depth with the beam diameter 
at different scanning velocities -  Silicon.
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Figure 7.4: Comparison of measured and calculated temperature histories 
at different depths for nodular cast-iron. P=950W, co=\6 mm
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Figure 7.5: Comparison of measured and calculated temperature histories 
at different depths for nodular cast-iron. /*=3.3KW, (0=16 mm

In order to measure the tem perature evolution in a substrate material when 

irradiated by a laser beam, Gay [17] used large interaction times (2-4s) and large beam 
diam eters (14-16mm) to achieve lower heating rates. The same experimental 
environment was used in the calculation of temperature profile during the radiation of a 

nodular-cast-iron substrate. Figure 7.4 shows a comparison between the calculated and 

measured [17] temperature evolution at different depths, when a 20 mm thick substrate is 
heated (no change of phase occurs) by a 16 mm diameter, 950 W laser beam, for 4 seconds. 

The agreement is fairly good. To obtain melting the incident power is increased to 3.3 

KW and the thickness of the material reduced to 15 mm. Figure 7.5 shows the calculated 

and measured temperature for such conditions. In order to see the variation of the melt
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depth with the interaction time, a 10 mm diameter, 3 KW laser beam was used. This is 
illustrated in Figure 7.6, where a comparison between the measured and predicted melt 
depth for different interaction times is shown. The agreement is satisfactory.

1.0

□ Experimental 

  Calculated0.8 -

0.6 -

0.4-

0.2 -

0.0
2 30 41

Interaction time [s]

Figure 7.6: Comparison of measured and calculated melt depths for different 
interaction times for nodular cast-iron. /^K W , fi* = 1 0  mm.

7.6. Conclusion

A finite difference equation for non-linear heat conduction problems has been 
presented and proved to be superior in terms of accuracy, when compared to the classical 
equations. The equation is also incorporated into a model for simulation of heat flow 
during melting and re-crystallisation of material induced by a scanning laser beam. 

The calculation includes temperature dependence of thermal properties and surface 

reflectivity. The numerical results compare very favourably with experimental results. 
Silicon was chosen due to its importance to the electronics industry, and nodular cast 
iron for comparison with experimental results. The large array sizes and consequently 
large computer memory, generally required for such calculations, are avoided by using 
the virtual time step elimination technique.
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General conclusions and suggestions for further work

The accuracy of numerical schemes depends largely on the recurrence formulae such as 
Euler, Crank—Nicolson and the fully implicit equations. On the other hand, the 
refinement of the mesh size also increases the accuracy of the solution, but at the expense 
of increasing the memory size requirements and cpu-time. When computations have to 
be performed for extended times, the use of large time steps is desirable to reduce the 
memory size requirements and the run time to the minimum possible (computational 
efficiency). Under these circumstances the implicit equations, which are stable for any 

mesh size, have been used extensively. Since the implicit equations are very inaccurate 
when the time step is large (chapter 3), and in order to achieve a good accuracy without 
recourse to large memory size requirements, the combination of explicit equations with 
the VSIET is the best choice. This permits calculations for large problems even using a 
computer with a very small RAM (Random Access Memory).

There is wide-spread use of Personal Computers (PC’s) and work-stations which have 
limited RAM (Random Access Memory), therefore in order to compute any type of 
problem the efficient use of memory is of major concern. The VSIET can be used to 
accomplish such tasks; using the VSIET, large computations can be performed with a 

minimum array size. Furthermore, the VSIET automatically preserves the stability of 

the scheme, irrespective of the mesh size, without increasing the storage requirements, 

and reduces the loss of accuracy associated with implicit finite difference equations, 
when used with large time steps. The use of explicit computation procedures permits the 

maximum percentage vectorisation of the scheme, since they are more suitable for 
vectorisation than implicit finite difference and finite element methods, due to the fact 
that the unknown variables are determined with no recurrence (statements that form a 
cycle of variable dependencies). This results in efficient use of the computational 
platform.

The idea of combining explicit equations with the VSIET, has been successfully applied to 

different problems, and proved to be superior in terms of accuracy and computational 

efficiency. The numerical schemes presented in different chapters are characterised by 

the simplicity in formulation and programming.
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Furthermore, non-linear heat conduction problems have also been dealt with. A typical 
application of these numerical schemes was presented in the last chapter, it consists of 
using numerical computation to study the heat flow during m elting and re

crystallisation of material subjected to radiation from a scanning laser beam. The 

numerical results compare very favourably with experimental results.

Further research should be undertaken to extend these schemes to higher dimensions (2- 
D and 3-D). The extension of these schemes to higher dimensions is possible, since the 
virtual time steps concern the time variable only. To achieve this, a combination of a 
fixed grid network and the VSIET can be exploited. The computation of the moving 
boundary can be performed using a similar scheme to tha t of chapter 7; however, 

incorporating the enthalpy-temperature relations would also be very useful. The finite 

difference equations for the solution of the 2 -D and 3-D non-linear heat conduction 
equation, using the approach in chapter 7, have already been developed and tested; they 
are not reported herein but will be the subject of a future publication.

The new finite difference equation can be used for both equal and unequal nodal spacing 
as well as for both Dirichlet and Newmann type boundary conditions. This facilitates the 
computation around the boundaries of complex shapes, such as corners, by using meshes 
of arbitrary geometry near the boundaries. As seen for 1—D problems, the VSIET uses two 
vectors, A and B, and transposes them as the computation moves one virtual step. For 
higher dimensions, the same procedure is used, the only difference is that A and B are 
arrays of 2 dimensions or 3 dimensions for 2-D and 3-D problems, respectively.

The numerical scheme may be used in many industrial applications involving 

transient heat transfer without or with phase transformations. Many industrial systems 
undergo transient processes at various stages of operation: the start-up and shut-down of 
systems, such as power plant, chemical manufacture, furnaces and ovens. All these 
systems involve a consideration of transient heat conduction as well as the variation of 
the thermal properties with temperature.
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Appendix A: M athematical form ulation of m oving 
boundary problems (Chapter 2)

A l. One-phase ice melting problem

The simplest formulation of Moving Boundary Problems (MBPs) is the melting of a 

sem i-infinite sheet of ice (J. Stefan [1 ]), maintained a t the m elting point (zero 
temperature). An interface x = M (t) on which the melting occurs, moves from the 
surface, which is kept a t a constant temperature T0  > 0 , into the ice-sheet. If T(x,t) 

denotes the temperature a t the liquid depth x  measured from the surface of the sheet, a t 
time t, the problem is to find the pair of functions T(x,t) and M (t) which verify the 

following set of equations:

pc*L  = K ^  , 0 <x<M (t) , t > 0  (A 1)
dt dx

with the boundary condition

T(x,t) = T0 , * = 0 , t = 0 (A.2)

and initial conditions

T(jc,O = 0 , *> 0  , t = 0 (A.3 )

M(t) = 0 , f = 0 (A.4 )

Two further conditions are needed on the moving boundary, these are:

T(x,t) = 0
v  dT T dM  - K —  = pL— - 

dx dt .
, x = M(t) , t > 0 (A 5 )

where p ,c f K  and L  are density, heat capacity, thermal conductivity and latent heat of 

fusion respectively.

AJ2, Two-phase ice melting problem

A more general formulation can expressed by the fact the heat flow occurs in both 

phases. The heat parameters may all be functions of T , x and t , i.e. K  = K (T ,x,t) and
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c = c(Ttx ,t). There may be also a heat source Q = Q(Tm,x,t) (or sink) a t the moving 

boundary. The heat conduction equation (A.1 ) becomes

, x e *  , * = 1.2 (A.6 )

where R i and R2  are the regions defined by:

R l = {(*,t ) ; 0 <x <M (t),00}
R i  = {(*,<); M(t)< x  « M > 0 }  (A 7)

and the condition a t the moving boundary (A.5) becomes:

K 1(Tm, x , t ) ^ - K i (Tm, x , t ) ^ - = p L ^ - Q ( T m,x,t) (A .8)

It can also be emphasised that the change of phase may not be explained by a sharp 
isothermal boundary. An alternative formulation may be used to explain the fact that the 
phase change occurs over a range of temperature "Mushy region". Atthey [2] studied the 
welding of two sheets of metal as an example of mushy region formulation. Several 
authors [3-7] have presented formulations for different problems and discussed the 
physical significance of such formulations.

A& G eneral form ulation of a  m oving boundary  problem

The general melting or solidification process of a material is described as follows: 
At time t = f0 , the two regions Ri and R% which are bounded by the fixed boundary 

surfaces dR\ and 0R2  respectively and the moving boundary M  = AKXJq) (Fig. A.1), 

with X  the space coordinate vector.

M(X,to)

Region 7^

Region R 2

Figure A.1: Two different regions separated by a moving boundary M ( X , t )
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At later time t the moving boundary M  moves into a new position in the domain
R = R%kjR2 . The problem is to locate M  in space a t any time and subsequently the 
temperature distributions T \{X tt) and r 2 (X,/) in the regions R \ and R% respectively. 

The formulation of a such problem, taking into considerations, dependence of thermal 

properties on temperature, heat generation terms E  and Q within the material and a t the 

moving boundary respectively, can be expressed as:

rfT •

m ^ L = v (« iVTi)+ £  , x e S i  , < = 1,2 (A.9)

with the boundary conditions

? zr-h iT i= g i , . <=1,2 (A. 10)on

and on the moving boundary M (X,t)

(a . i d

T 1(X,t) = T 1(X ,t) = Tm 

and the initial conditions

T 1(X,0 )= T 1(X) , r 2 ( x , 0 ) = r 2 (X) , m (x ,o )  = m 0(X ) (A.1 2 )

where n is the outward normal to the moving boundary and Vn is the velocity of this 

boundary along the normal. The functions E t Q and g  can be also functions of X  and t.
Equation (A. 1 1 ) can also be written in Patel's expressions for each space direction x y  

and z, which are more practical forms. Details of the Patel's expression can be found in 
[8 ] and [9].

A A  Im plicit m oving boundary  problem s (oxygen diffusion problem )

In the problems formulated in A.1 , A.2 and A.3, the moving boundary condition 

connect the variable T  or its derivatives with the velocity of the moving boundary (e.g. 
Eq. (A.8 )). Some problems exist, in which such an explicit relationship does not exists on 

the moving boundary, these are called implicit moving boundary problems [1 0 ], in other 
words they correspond to the special case of L= 0  in (A.8 ).

The problem, arising from the diffusion of oxygen in a medium which 

simultaneously consume the oxygen [1 1 ,1 2 ], is an example of implicit moving boundary
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problems, due to the nature of the boundary condition prevailing at the moving boundary. 

The diffusion process is described by the differential equation

dU „ d2U n
- F =d 1 ? - r  (A-13)

where U (x,t) denotes the concentration of the oxygen free to diffuse a t distance x  from the 
outer surface of the medium at time t, R  is the rate of consumption of oxygen per unit 

volume of the medium and D is the diffusion coefficient
The oxygen diffusion problem is formulated in two stages, first as a steady state 

solution (details can be found in [1 1 ]) and secondly as a  moving boundary problem. After 

the surface x= 0  has been sealed, the oxygen which is already in the region, continues to be 

consumed; consequently, the point of zero concentration moves towards x=0. Let the 
position of zero concentration be denoted by M (t)f the problem is expressed by the 
following equations:

^ -  = D ^ ~ - R  , 0 <x<Af(t) , t> 0 (A14)
oi dx

^  = 0 , * = 0 , <>0 (A. 15)
d x

U = ^  = 0 , x = M(t) , < 2 0  (A. 16)
dx

U(x,t) = £ - ( x - M 0f  , 0 S x S Jfo  , < = 0 (A. 17)
Zi/

where M0 = M(0), which is given by the solution of the steady state [11] and t- 0 is the 

moment when the surface is sealed. It can be noticed tha t the velocity of the moving 

boundary is absent in the boundary condition given by equation (A. 16).

Appendix B; Calculation of temperatures around 
the moving boundary (Chapter 4)

To calculate the temperature j mp the following approximation are made:
(i) The moving boundary between t = t j  and t = t j+1 is approximated by a step wise

function of Pj steps.
(ii) The temperature profile between t = tj  and t = <*+ 1  is approximated by a step wise

function of p j  steps ( i.e. The temperature remains constant within a virtual 

sub-time s tep ).
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t= t, t k t = t
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Figure B.l: Descretisation around the moving boundary

It follows from Figure B.l:

Ti ; m „ = T>r exp - r r
n f p t t l i  rpU  r p d  ^

r p m i  
1  1

(B.l)

where = a/ fiti/fix2 .

From (i), Sx = m A xJp jf therefore r i  = (p*/m ) To preserve stability, fifi

must in turn be divided into increments of length fifi (Figure B.l); therefore
T* . „  „ must now be calculated from:W *m»P

where

iJtT? : ___= exp ~ r 2
2 T ™ -T $ -T * ^

rpm i
l 2

r 2
«2 * V W m) *

= a i & S = “‘ I i  k\*

(B.2)

(B.3)

Using the approximation stated in (ii):

rpm i p  m i  p k
ib, j tm -Xp

rpU   rpU
2  ~  \ (B.4)

is interpolated from jm -Xp  ftiready known from the previous
VSS giving:
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rpU  _
i l “

/  N f  \
1 171 L m
1---- Tt

< PJ >
^ib J,**-\P  + V

(B.5)

Rewriting (B.2 ) and making use of (B.3), (B.4) and (B.5):

= exp(~rcl,J

where

1+
m

 ̂ \  
in

, 7 ' ,
kfj j

fpi
ib-bj,fn-hp-L D _ r 6

and in general for any value of m, ¥ibj tm,p *8 fPven by:

% 1+
m + 1 rpK

ibJfmfP

f \
m + 1

~ W\  y i  j
Th

(B.6 )

(B.7)

(B.8 )

The same approach can be used to derive equation (4.28).

Appendix C: The finite difference scheme of the oxygen 
diffusion problem (Chapter 5)

C.l. Finite difference of the diffusion equation

Using the change variable v=u+t, equation (5.7) becomes:

dv d2v 
d t~  dx2

where

( tw ( r\\ ^ v <P‘UK*,0) = u(*,0) , ^ 2 = ^ 2

(C.l)

(C.2 )

Following the procedure of Bhattacharya [13], the finite difference approximation to (C.l), 
expressing v^x^tj1 j as a function of and is given
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Similarly (5.7), taking into account (C.2 ), has the following finite difference solution:

u™- = um7l exp- i,j i,j y
hJ i+hJ » - l,J

um7li.J
- a i = 0 ,% - l (C.4)

where dt = t r? - f ?1 -1  and r r - — ,
J J ' Ax2 2

Since the concentration is small everywhere and to avoid overflow and underflow, the
exponential in equation (C.4) is approximated by the first three terms of the Taylor
expansion (exp(y)= 1+y + ̂ y 2), equation (C.4) therefore becomes:

< j  = uU 1- rf eU 1
1 rf  flW-l

2u?i7l '’j  
'•J J

- t f A x 4

where
8™. = 2u™ - u ml , -u™. .i , j  h j  *+lf j  i - b j

(C.5)

(C.6 )

When i = 0, is a fictitious concentration a t x = -A x. To satisfy the boundary

condition (5.8), u£ jj  is replaced by giving:

eU  = 2 t e - C u )  • < = 0  (C.7)

As is located in the zero concentration zone and therefore u™ y = 0 , when

i = i f , - 1, equation (C.6 ) becomes:

*D = 2 ttU " “ * U  • = (C.8 )

CJ2. Algorithm for numerical computation 

Let us define the real functions F  and G as:

2 (6 -c )  , i  = 0
2 6 - a - c  , 1 = 1,% “ 1 (C.9)
2 6 -o  , i = if,

G(a,b,r) = r ( 2 6 - a ) ^ l - - ^ ^ ^ j + M j c 2 - 6  (C.10)

F(a,b,c,i,ii,,r) = b - r Q ^ l- - ^ 0 ^ - r A x 2 where 0 =

The notation Af and B; represents the f t 1 element of the vector A and B respectively.
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The problem defined in section 5.2 can be computed following an algorithm of the 
following type:

ui,o = B i=  u(iAx, 0);i = 0,n using Eq. (5.10) 

do ./ = l,n
ib = n - j  ; 77i = 0 ; 8j = ^Ax 

do while > o)

771 = 771+1
Ai = Bi ; 1 = 0, k
d o i = 0,ib

Bi =F(Ai. l tAi tAi+i titibtrf )

end do 
end while
calculate 7j > 0  so that = 0

t j  = t j . i  + {(m -  %  + r; }4i2

end do

Appendix D: Num erical schem e of m ultiple 
moving boundary problems (Chapter 6)

D.l. Computation of temperatures a t the first time step

The dummy point temperature approach, which is generally used to convert a heat flux 

to a fictitious temperature outside the domain, is not a sufficiently accurate approach 

when the time step is relatively large, especially a t the beginning of the computation 

where the solid is a t constant temperature throughout. Therefore, in order to avoid 
instability of the scheme, and also the need for extremely small increments, it is 

necessary to approximate the temperature a t the first time step analytically. Since the 
temperature a t x = a remains unchanged during the time 0 <,t<,At0, the integral 

transform technique [14] was used to solve equations (6.1) and (6.2) for a semi-infinite 
slab subjected to constant heat flux Fc a t x  = 0, yielding the following solution for the 
temperature distribution:
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The heat flux during the time 0 Ai0 is approximated by the average of F(0) and 
F{AIq), hence the temperature distribution at the time t \  = Mq is given by:

= 2 ierfc
iAx

2(a,A to) 1 7 2
(D.2)

where

ierfc(x) = -  x erfc(x) (D.3)

erfc(x)= l-e rf(x ) (D.4)

and
X

.2 'erf(x) = —pgJexpC -y5® )^ (D.5)
o

Combination of (D.3) and (D.4) give:

ierfc(x) = - -  * (1 - erf(x)) (D.6 )
n

In order to reduce the computational time to the minimum possible, erf(x) is 
approximated within an error of |f(x)|^ 15 x 10- 7  by [15]:

erf(x) = 1 -  exp(-x ) + e(x) (D.7)

(D.8 )

where
b = 0.3275911 a x = 0.254829592 a2 = -0.284496736
a3 = 1421413741 a4 = -1453152027 a6 = 1061405429

D.2. A lgorithm  fo r num erical com putation

For simplification we use the notation VO(D) to represent a Vector Output of the 

temperatures of D discrete points, at any instant in time, calculated from the Vector Input 
VI(D) from the previous time step. Subscripts I and 8 are used to distinguish liquid and 

solid respectively the definition of all other variables are identical to the main text). The
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computation of the problem such as the one described in section 6 . 2  can be computed using 
the method described in section 6.3 following an algorithm of the following type:

Heating o f solid, stage
calculate temperature distribution at the first time step j  = 1  (analytical approximation) 

calculate p0  and rc 

do while (T(0,t)< T m)

7 = 7 + 1

do ti= l,p 0

calculate VO,(W + l) = VO,(V I,(N  + 1)) 

make the transposition VI, (iV + D = VOB(N +1) 

for the next VSS (n + 1)
end do
assign the final VO,(iV +1) as temperature distribution a t the time tj+i

end while
correct tm and recalculate the vector VO,(iV +1) for the corrected time tm

Melting stage
do while (7X0,f) < Tv)

7 = 7 + 1 
hn =7-7m + l

do while (|e*|>£mi»)» = M j-\

calculate p , and q , and the corrected values of r j  , and r* . 

d o i t = l , p *

VOi*(im) = V O f(v ii*(im))

VI,*(im) = VOi*(im)

end do 
do n= 1,<j*

VOj (N+ l - i m) = VOj(viJ(lV + l - i „ ) j  

VI^(N + l - i m) = V O ^ ( N + l - i m)

end do
calculate £* and the time step Atj+1 for the next iteration k = k +1 

end while
assign VO/ (im) and VO,(N  + l - i m) as temperature distribution 
in the liquid and solid, respectively, at the time tj+i

end while
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Vaporisation stage 
calculate tv and the initially removed material * 2  

do j  = j 0, j e

bn ~ J ~ Jm 1
do while (|e*|>emin); M°j = At

calculate p* and g* ; the values of j  and j  

d o n = \ p kj

calculate X^n-^p  ftnd locate the surface node i, 

v o f a  -<,) = V O ^ V I* ^  - i ) )

V lf( im - i , )  = VO f(im - i . )

end  do 

d o n  =1,9*

V O j(W + 1 - ^ )  = V O j(v iJ (W + I-* ,))

V Ik,(N  + l - i m) = V O * (N + l-in )

end do
calculate ek and the time step Atk+1 for the next iteration k = k +1 

end while
assign VO\ ) and VOg(iV + 1 - jm) as temperature distribution
in the liquid and solid, respectively, a t the time tj+\

end  do

stop
en d

Appendix E: Computation of liquid/solid motion (Chapter 7)

Integrating (7.24) with respect to x, from x=0 to x=M, and (7.25) from x=M to x=X, we 
obtain:

M X

j c , ^ - d x  + j c , ^ - d x  = - l ^ -  + Ql (t) -Q 2(t) (E .1 )
0  u

where Q\(t) and Qz(t) are the heat flux absorbed by the top surface (i.e. right side of 
(7.27)) and the heat flux lost by the bottom surface (i.e. right side of (7.28)), respectively. 
Further integration of (E.l) with respect of t , from t = t*~l to t = t* = f" _ 1  + gives:
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*j M tj x  tj tj

J j c , ^ - d x d t  + j JoaWd/ (E.2 )

t j '1 0  tj~l M t j '1 t j '1

where Xj is the variation of the position of the liquid/solid interface during the time step 
St* = tj  -  t j _1. Using the trapezoidal rule to approximate the integrals in (E.2), Zj is 
given by:

»-l
< S j + * S j  

2

- n
St* -0 ?J J

(E.3)

where Q^j = Q iitj), Q£j = Q2(t*) and 0* is given by:

N - l

ej = f £ c
i» 0

r p t l . r p t l , r p t l—1 , r p t l—1
n  T ^ n - l  / r » » -
<+W"i U  _ i *+W (E.4)
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