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Abbreviations

Ach Acetylcholine

ADP Adenosine diphosphate

AMP Adenosine monophosphate

ANS Autonomic nervous system

ATP Adenosine triphosphate

BRP Bovine retractor penis

[Ca2+]j Intracellular free Ca2+

cAMP Cyclic adenosine 3', 5'-monophosphate

[cAMP]j Intracellular cyclic adenosine 3', 5'-monophosphate

CCK Choleocystokinin

cGMP Cyclic guanosine 3', 5'-monophosphate

[cGMPJi Intracellular cyclic guanosine 3', 5'-monophosphate

DAG Diacylglycerol

DMPP Dimethylphenylpiperazinium

EDRF Endothelium-derived relaxing factor

gpIAS Guinea-pig internal anal sphincter

GI Gastrointestinal

GTN Glyceryl trinitrate

GTP Guanosine triphosphate

HbO Oxyhaemoglobin

IAS Internal anal sphincter

ICS Ileocolonic sphincter

IDN Isosorbide dinitrate

IF Inhibitory factor

IJP Inhibitory junction potential
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IP3 Inositol 1,4,5-triphosphate

[K+]0 Extracellular potassium concentration

42K+ Radiolabelled potassium

Katp ATP-activated potassium channels

L-Arg L-arginine

L-NAME N®-nitro-L-arginine methyl ester

L-NMMA N®-monomethyl-L-arginine

L-NNA N®-nitro-L-arginine

LOS Lower oesophageal sphincter

MeB Methylene blue

MLCK Myosin light chain kinase

MLCP Myosin light chain phosphatase

NA Noradrenaline

NADPH Reduced nicotinamide adenine dinucleotide phosphate

NANC Non-cholinergic, non-adrenergic

NO Nitric oxide

NOS Nitric oxide synthase

P Probability

PACAP Pituitary adenylate cyclase activating peptide

PDE Phosphodiesterase

PI Inositol phosphate

PKA cAMP-dependent protein kinase

PKG cGMP-dependent protein kinase

PLC Phospholipase C

PS Pyloric sphincter

RAc Rat anococcygeus

RB2 Reactive blue 2
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SNP Sodium nitroprusside

S.R. Sarcoplasmic reticulum

TEA T etraethy lammonium

TTX Tetrodotoxin

VIP Vasoactive intestinal polypeptide
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SUMMARY



1) The responses of the guinea-pig internal anal sphincter (gpIAS) to non- 

adrenergic, non-cholinergic (NANC) inhibitory nerve stimulation have been 

measured using electrical and mechanical recording, as well as biochemical, 

techniques in an attempt to determine the nature of the neuronally-released, 

relaxation-inducing substances.

2) The first method of study involved the use of intracellular electrical, and 

simultaneous mechanical recording techniques, to measure the effects o f electrical 

field stimulation (EFS; supramaximal voltage, 0.1ms, single stimuli and 5 stimuli 

at 5, 10, 20 and 40Hz) of the gpIAS on NANC-evoked IJPs. These were 

frequency-dependent, could reach up to 60mV in amplitude, accompanied by 

relaxations o f up to 80-90% of muscle tone and abolished by tetrodotoxin (TTX; 

lpM ).

3) The characteristics of the evoked IJPs were analysed using drugs. The 

bee venom apamin (0.3 pM) uncovered two separate TTX-sensitive IJP 

components; a large, fast-to-peak (361±31ms, n=25 cells from 8 preparations 

following a single stimulus) component abolished by the venom, and a second, 

slower-to-peak (530±17ms, n=16 cells from 4 preparations following a single 

stimulus) apamin-insensitive component.

4) The apamin-sensitive component appeared to be mediated by adenosine 

^ triphosphate  (ATP). The evidence supporting this view was;
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a) Exogenous ATP (0.1-lmM) added either by pressure injection or microsyringe, |into the bath 

hyperpolarized and relaxed the gpIAS and these effects mimicked, in amplitude

and duration, the responses to EFS.

b) The hyperpolarization and relaxations produced by ATP were antagonized by 

apamin (0.3 pM).

c) The P2-purinoceptor antagonist suramin (lOOpM) reduced IJP amplitude; 

reactive blue 2 (lOOpM) hyperpolarized the membrane.

5) The apamin-insensitive component was responsible for up to 80% of the 

relaxation produced by EFS and was mediated by nitric oxide (NO) or a 

NO-related substance, acting via guanylyl cyclase. The evidence supporting this 

view was;

a) The NO synthase inhibitor, N^-nitro-L-arginine methyl ester (L-NAME; 

lOOpM) stereospecifically antagonized the IJPs and relaxations, an effect reversed 

by the NO precusor L-arginine (lOOpM).

b) The NO scavenger, oxyhaemoglobin (HbO; lOpM), reduced, but did not 

abolish, the IJP component and relaxation.

c) Sodium nitroprusside (SNP; 50pM), which releases NO, also hyperpolarized 

and relaxed the gpIAS, effects which were mimicked, to a lesser degree, by the 

membrane-permeable cGMP analogue, 8-bromo-cGMP (lOOpM) and the cGMP 

phosphodiesterase inhibitor, methylene blue (MeB; 30pM).

d) The guanylyl cyclase inhibitor LY83583 (lOpM) abolished the apamin- 

insensitive IJPs.

e) NADPH-diaphorase, which is a marker for nitric oxide synthase (NOS), staining 

of transverse sections (25 pM) of gpIAS revealed NOS-containing neurons within 

the myenteric plexus.
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6) The P2-purinoceptor antagonist suramin (lOOpM) aslo revealed 

smaller, slower-to-peak (510±9ms, n=17 cells from 7 tissues following a single 

stimulus) suramin-insensitive IJPs which were abolished by L-NAME (each 

lOOpM) and significantly reduced, but not abolished, by HbO (lOpM). This 

indicated that the suramin-insensitive IJPs, like the apamin-insensitive IJPs, were 

also mediated by NO.

7) These results suggest that the neuronally-mediated IJPs and relaxations 

consist of two components; a) a large, fast, apamin- and suramin-sensitive 

component mediated by ATP or a closely related analogue and b) a smaller, 

slower, apamin- and suramin-insensitive component mediated by NO or a closely 

related substance.

8) In addition to measuring responses with electrical and mechanical 

techniques, changes in the intracellular levels of the second messengers cyclic 

adenosine 3', 5'-monophosphate (cAMP) and cyclic guanosine 3', 5'- 

monophosphate (cGMP) were also measured using a radioimmunoassay technique.

9) Field stimulation produced significant increases in both cAMP and 

cGMP. These increases were not attenuated by apamin (0.5 pM) or suramin 

(lOOpM) (which each abolished the purinergic component of the relaxation), but 

were each abolished by a combination of either apamin or suramin, and L-NAME 

(lOOpM). Field stimulation in the presence of L-NAME alone, also abolished 

increases in both cyclic nucleotides. Both cyclic nucleotides therefore appear to be 

involved in neuronally-mediated relaxation.

8



10) Exogenous SNP (lOpM), stimulated significant increases in both cAMP 

and cGMP, mimicking the effects of field stimulation. Exogenous ATP (10|iM) 

produced only a small, but significant, elevation in cAMP. These results imply that 

the neurogenically-mediated increase in cyclic nucleotide levels may be due to the 

action of NO alone as electrically-evoked IJPs, in the absence of apamin or 

suramin, remain unaffected by L-NAME, although increases in both cGMP and 

cAMP are apparently abolished. This implies that ATP may produce relaxation in 

a cyclic nucleotide-independent manner.

9



INTRODUCTION
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SMOOTH MUSCLE RELAXATION

1) PREFACE

Smooth muscle embraces a wide variety of tissue types, capable of 

performing numerous different functions within the body. These range from the 

precision, second by second, control exhibited by tissues such as the iris, in the 

control o f the amount of light entering the eye, to the contractions of the uterus at 

the end o f gestation. However, two features are common to all smooth muscles 

regardless o f their anatomical location, time scale or function, namely, the ability 

to contract and relax. This thesis is concerned with the process o f smooth muscle 

relaxation, specifically within the gastrointestinal (GI) tract.

Smooth muscle relaxation can be induced both physiologically (either by 

nerve stimulation or hormones) and pharmacologically. However, despite nearly a 

century of research, it is a process which is still relatively poorly understood. The 

last 50 years have exemplified the difficulties encountered by researchers who 

have tried to describe the mechanisms by which neuronally-mediated smooth 

muscle relaxation is produced. The success of investigators such as Dale, Loewi 

and Von Euler in establishing the existence of the so-called "classical" transmitters 

has not been repeated by those investigating the mediators of neuronal smooth 

muscle relaxation. As a result, several mediators have been proposed, each greeted 

with differing degrees of acceptance and scepticism by the scientific community. 

These mediators, or putative transmitters, each with substantial experimental 

support, have introduced to the scientific vocabulary the so-called purinergic, 

peptidergic and nitrergic theories of transmission (see Bumstock, 1972; 

Fahrenkrug, 1978 a,b; Moncada et al, 1991). Hence today, the investigation of 

smooth muscle relaxation has revealed a complex and not yet fully understood 

process involving several different substances and mechanisms.
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The lack of scientific understanding of smooth muscle relaxation has had a 

knock-on effect on dependent disciplines. This is felt nowhere more than in 

clinical medicine where a wide range of pathophysiological disorders such as 

achalasia, intestinal colic, irritable bowel syndrome and spasm of the internal anal 

sphincter, which often derive from an inability of precontracted smooth muscle to 

relax, are poorly understood. The inability to successfully treat, or even allay, these 

conditions stems from a lack of understanding of those factors controlling 

contraction and the mechanisms underlying smooth muscle relaxation.

In discussing smooth muscle relaxation, for the purposes o f this thesis, a 

distinction will be drawn between the processes by which smooth muscle 

relaxation occurs and the activators of these processes. The latter will be discussed 

initially.

2) MECHANISMS OF SMOOTH MUSCLE RELAXATION

At a molecular level, the mechanics of smooth muscle relaxation are 

reasonably well understood. Smooth muscle tone depends on the interaction of the 

intracellular macromolecules actin and myosin. Contraction is triggered when the 

actin and myosin filaments are able to form cross-bridges and slide over one 

another after the myosin light chain becomes phosphorylated by myosin light 

chain kinase (MLCK). This process is driven by the hydrolysis of adenosine 

triphosphate (ATP) and is dependent on Ca2+ and calmodulin (for review see 

Harthstone, 1987; see Fig. 1). Relaxation on the other hand, is thought to occur 

when either the affinity of MLCK for myosin light chain is reduced by the 

phosphorylation of MLCK (Conti & Adelstein, 1980; Adelstein et al, 1982), or 

enhanced dephosphorylation of myosin light chain occurs due to an increased

12
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activity of the myosin light chain phosphatases (Driska et al, 1989; Adelstein et al, 

1982; see Fig. 1).

This thesis is specifically concerned with the mechanisms by which the 

processes regulating smooth muscle relaxation are activated. Such mechanisms 

involve prostaglandins, hormones and, in particular, autonomic nerves. 

Interference with those neuronal processes using drugs has advanced our 

understanding of the contractile process, and has been particularly rewarding in 

clinical terms. On the other hand our incomplete and often fragmentary 

understanding of the neuronal control of relaxation has prevented the activation of 

relaxation to be modified for clinical advantage; the following pages describe the 

major steps taken towards the discovery of the mechanisms controlling smooth 

muscle relaxation, beginning with neuronal control.

I) Neuronal Control of Relaxation in the GI Tract

This is exercised by the release of substances from autonomic sympathetic 

and parasympathetic nerves including the "classical" transmitters acetylcholine and 

noradrenaline, as well as the less well identified substances released from so-called 

non-adrenergic, non-cholinergic (NANC) nerves which appear to be responsible 

for the majority of neuronally-mediated relaxant events within GI smooth muscle. 

It is not clear, however, whether all neuronally-released substances fulfil the 

accepted criteria for the establishment of a neurotransmitter (Eccles, 1964) nor, in 

many cases, is there agreement as to whether transmission relies on one, or more 

than one, of these "neuromediators" (see Bartfai et al, 1988) acting in consort.

Within this thesis, it is convenient to describe the effects o f neuronally- 

released substances, particularly the classical transmitters, in terms of two main 

types; direct and indirect. Direct effects can be considered as those which involve 

the stimulation of post-synaptic receptors situated on smooth muscle cells, whereas

13



indirect effects are those which involve the activation of pre-synaptic receptors on 

nerve terminals, which in turn modify contractile (usually cholinergic in the GI 

tract) events.

a) Cholinergically-Mediated Relaxation

Cholinergically-mediated effects are not commonly employed as 

mechanisms of inducing smooth muscle relaxation. However, one well known 

example o f this phenomenon, but which cannot be classed as neuronal, although it 

concerns the cholinergic transmitter, occurs within the vasculature where 

acetylcholine (Ach) effects relaxation by stimulating endothelial cells to produce 

and release endothelium-derived relaxing factor (EDRF; Furchgott & Zawadski, 

1980), which may be nitric oxide (NO; Moncada et al, 1988). On the other hand, 

examples o f direct cholinergically-mediated relaxation within the GI tract are rare, 

whether in response to nerve stimulation or exogenous Ach. Evidence, albeit 

contradictory, exists for such a role within the cat lower oesphageal sphincter 

(LOS; Clark & Vane, 1961) and human internal anal sphincter (IAS; Parks et al, 

1969; Burleigh et al, 1979; Paskins et al, 1982; Carpenedo et al, 1983). Both 

sphincters relax, in an atropine-sensitive manner, to exogenous Ach and, in the 

IAS, to other cholinergic agonists. Doubt has been cast, however, on each 

observation. Within the cat LOS contraction, as well as relaxation, to Ach has also 

been observed (Schenck et al, 1961) and within the human IAS part o f the 

response may have been indirect (Burleigh & D'Mello, 1983) because tetrodotoxin 

(TTX) inhibited the response by varying degrees. Although no further evidence 

has so far been uncovered to support the hypothesis, it may imply that Ach, in the 

human IAS, stimulates pre-synaptic muscarinic receptors, located on non- 

adrenergic nerves, to release an inhibitory transmitter(s).

14



Most examples of cholinergically-mediated inhibition in the GI tract are 

attributable to the stimulation of muscarinic receptors located pre-synaptically and 

pre-junctionally. These inhibitory receptors are situated on the enteric (Sawynok & 

Jhamandas, 1977; Kilbinger & Wessler, 1980 Morita et al, 1982; Kilbinger & 

Nafziger, 1985) and parasympathetic nerves (Gilbert et al, 1984). When activated, 

they block Ach release from cholinergic motor neurons supplying the gut, so 

causing the latter to relax. The mechanism underlying this inhibition by muscarinic 

receptors is probably an increase in membrane K+ conductance, leading to 

hyperpolarization and inhibition of Ach release (Hartzell et al, 1977; Dodd & 

Horn, 1983).

b) Adrenergicallv-Mediated Relaxation

In the main, with only a few exceptions, such as rabbit, cat and guinea-pig 

ilea (Gonella & Lecchini, 1971; Silva et al, 1971; Furness & Costa, 1974) and 

certain sphincters (Howard & Garret, 1973; see Papasova, 1989), sympathetic 

nerves in the GI tract do not directly innervate smooth muscle. Most post­

ganglionic sympathetic fibres, all of which are noradrenergic (Costa & Furness, 

1982), form perivascular nerve trunks running parallel to the blood vessels 

(Norberg, 1964). These nerves branch within the intestinal wall and terminate 

around the nerve cell bodies of the intramural plexuses supplying the GI tract. 

Stimulation of noradrenergic nerves usually causes indirect relaxation of GI 

smooth muscle by inhibiting acetylcholine release, for example in guinea-pig 

colon (Beani et al, 1969), ileum (Wikberg, 1977), rabbit jejenum (Vizi, 1970; 

Wikberg, 1977), and canine ileum and duodenum (Sakai et al, 1984), thereby 

inducing relaxation (see also Christ & Nishi, 1971; Knoll & Vizi, 1971; Gabella, 

1979). This inhibition may occur as a result of a hyperpolarization of the enteric 

cholinergic neurons, thus reducing Ach release and tone (Bauer, 1981; Morita &

15



North, 1981; Costa & Furness, 1982). However, this hypothesis has been 

questioned by findings which demonstrate that a) cholinergic block by atropine 

had no effect on responses to sympathetic nerve stimulation (Gershon, 1967), and

b) sympathetic nerve stimulation did not affect electrical activity recorded from 

ganglia in the myenteric plexus (Takayanagi et al, 1977).

In the absence of direct innervation, smooth muscle cells may be stimulated 

by catecholamines that are either present in the circulation, or released following 

high frequency nerve stimulation by overflow from sympathetic nerve terminals 

within the enteric plexuses (Gillespie, 1962; Gillespie, 1982).

The inhibitory effects of neuronally-released or circulating/exogenous 

catecholamines are mediated by receptors originally classified as a -  and p- 

adrenoceptors (Ahlquist, 1948). Both adrenoceptor subtypes were subsequently 

further subdivided into a r  and a 2-, and pr  and p2-adrenoceptors. Now, with the 

aid of molecular cloning techniques, further subtypes of receptor have also been 

proposed (see Ruffolo et al, 1991; Van Zwieten, 1991). However, the exact 

function and location of most of these receptors has yet to be determined, so only 

the effects of a r  and a 2-, and pr  and p2-adrenoceptor stimulation will be 

discussed here.

i) a-Adrenoceptor-Mediated Relaxation

The inhibitory a-action is usually only seen in spontaneously active smooth 

muscles such as the guinea-pig taenia caeci (BUlbring, 1979), proximal or terminal 

ileum (Fagbemi & Salako, 1980, 1982), rabbit jejenum and colon (Andersson, 

1972; Wikberg, 1977) and human colon (Huizingza et al, 1986), but can also be 

witnessed in less excitable tissues such as the guinea-pig and rabbit stomach 

(Guimares, 1969; Bailey, 1971; Haffner, 1971).
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Both a r  and a 2-adrenoceptor sub-types are capable of mediating relaxation 

of the GI tract and can be located both pre- (Bauer, 1981; Wikberg, 1977, 1979) 

and post- (Bulbring, 1979; Huizinga et al, 1986; Bauer, 1982 a) synaptically. 

Inhibitory effects, produced by stimulation of these receptors, can be seen in 

several GI smooth muscles;

Taenia Caeci

The effects of a-adrenoceptor stimulation have been studied most 

intensively in this longitudinal muscle. Activation of taenia caeci a!-adrenoceptors 

causes a hyperpolarization of the membrane by increasing K+ (and possibly Cl") 

conductance which leads to a cessation of spontaneous activity resulting in 

relaxation (Jenkinson & Morton, 1967 a, b; Bulbring & Tomita, 1969).

The mechanism(s) underlying the increase in K+ conductance is still a 

matter o f debate, but results suggest that a  r-adrenoceptors, by activating 

phospholipase C (PLC) via a pertussis toxin-insensitive Gs protein, stimulates 

diacylglycerol (DAG) as well as inositol 1,4,5 trisphosphate (IP3) formation which 

increases intracellular Ca2+ levels ([Ca2+]j; Nelemans & Den Hertog, 1987 a,b; 

Minneman, 1988; for PLC/IP3 pathway see Relaxant Transduction 

Mechanisms). This process is also dependent on a Ca2+ influx, probably to 

replenish the intracellular Ca2+ stores (Bulbring & Tomita, 1977; Den Hertog, 

1981, 1982; Timmermans & Van Zwieten, 1981; Tomita et al, 1985).

It is clear that the intracellular mechanisms mediating a r-adrenoceptor- 

induced relaxation of GI smooth muscle, are different from those mediating a r  

adrenoceptor-induced contraction, for example, in vascular smooth muscle 

(Minneman, 1988), although both adrenoceptor effects apparently involve the 

hydrolysis o f inositol phosphates and mobilization of intracellular Ca2+.
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Small and Large Intestine

The longitudinal muscle of the small and large intestine has similar 

properties to taenia caeci (Bolton, 1971, 1972; Suzuki & Kuriyama, 1975) in that it 

produces spike-type action potentials and the spontaneous activity occurs in bursts. 

Within the guinea-pig, the main action of catecholamines on the small and large 

intestine is likely to be an a 2-adrenoceptor-mediated suppression of Ach release 

from cholinergic nerve fibres (Paton & Vizi, 1969; Kosterlitz et al, 1970; Wikberg, 

1977; Broadley & Grassby, 1985). However, direct inhibitory actions on the 

smooth muscle have been observed (Bowman & Hall, 1970, Broadley & Grassby, 

1985). In the proximal and terminal ileum these are mediated by aj-receptors 

(Fagbemi & Salako, 1980, 1982), although a 2-receptors have also been implicated 

in the proximal ileum (Bauer, 1982 a).

The mechanisms underlying these responses have not been investigated as 

intensively as in the taenia caeci but it appears that the a 2-adrenoceptors in the 

guinea-pig proximal ileum produce a hyperpolarization (Bauer, 1982 a). Thus, the 

inhibitory action of catecholamines is apparently similar to that observed in the 

taenia but, in the small intestine is mediated by a 2- rather than a x-adrenoceptors. 

In the rabbit jejenum and colon, as in the guinea-pig taenia, a x-adrenoceptor 

stimulation also produces a hyperpolarization attributable to a Ca2+-dependent 

increase in K+ conductance (Andersson, 1972).

Stomach

In the guinea-pig and rabbit stomach, stimulation of a-adrenoceptors 

produces both excitatory and inhibitory effects depending on the area o f the 

stomach, the degree of existing mechanical activity and the concentration of 

agonist used (Guimares, 1969; Bailey, 1971; Haffher, 1971). However, it seems 

that in most species relaxatipn is mediated mainly by a !-adrenoceptors
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(Magaribuchi et al, 1972; Sahyoun et al, 1982) probably via a K+-dependent 

hyperpolarization (Haffner, 1972; Magaribuchi et al, 1972; Haffner et al, 1973; El- 

Sharkaway & Szurszewski, 1978).

The mechanisms underlying the post-junctional effects o f a 2-adrenoceptors 

are not known, although they would appear to be fundamentally different from 

those in the vasculature which cause a constriction (Medgett & Rajanayagam,

1984).

The mechanism(s) responsible for the pre-synaptic a 2-adrenoceptor- 

mediated inhibition of neurotransmitter release is equally unclear but may involve 

decreasing neuronal Ca2+ influx, as release of transmitter is dependent on this ion. 

This phenomenon has been observed in rat cortical synaptosomes (Adamson et al,

1987).

ii) p-Adrenoceptor-Mediated Relaxation

As with the a-adrenoceptors, p-adrenoceptor -mediated events within the 

GI tract have been investigated mainly on spontaneously active tissues such as 

guinea-pig taenia caeci (Bulbring & Tomita, 1969) and rabbit small intestine (Van 

Rossum & Mujic, 1965; Lands et al, 1967 a,b; Bowman & Hall, 1970) although 

less spontaneously active tissues like the guinea-pig stomach (Bailey, 1971) have 

also been utilised.

Both pr  and p2-adrenoceptor sub-types are capable of mediating relaxation 

of the GI tract (Bulbring et al, 1981; Huizinga et al, 1986). The inhibitory effects 

produced by stimulating these receptors are also best illustrated by describing p- 

mediated responses in different GI smooth muscles.

Taenia Caeci

Isoprenaline-induced activation of p-adrenoceptors in this tissue causes 

relaxation, by suppressing the spike activity, and a small membrane
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hyperpolarization (Bulbring & Tomita, 1969). These responses are mediated by 

both p r  and P2- receptors. The p2-mediated response is proposed to activate 

events at the membrane, resulting in spike inhibition and hyperpolarization (Bauer, 

1982 b) whereas P!-adrenoceptor activation influences intracellular events, 

probably raising intracellular cyclic adenosine 3', 5'-monophosphate (cAMP; 

Kimura et al, 1983; Stiles et al, 1984). The hyperpolarization is probably due to an 

increase in K+ conductance (Tomita et al, 1985) but may not be necessary for 

relaxation to take place (Bowman & Hall, 1970; Bulbring & Den Hertog, 1980; 

Bulbring et al, 1981; Chow & Huizinga, 1987). The mechanisms mediating the 

relaxation will be discussed at the end of this section.

Small and Large Intestine

The activity of the longitudinal muscle of the guinea-pig ileum, as well as 

rabbit duodenum and jejenum, was also suppressed by activation o f p r  

adrenoceptors on the smooth muscle cells (Lands et al, 1967 a, b; Kosterlitz et al, 

1970; Grassby & Broadley, 1984; Broadley & Grassley, 1985). However, within 

the rabbit large intestine and rat and cat colon p-adrenoceptors are predominantly 

of the p2-subtype (Sim & Lim, 1983; Ek, 1985).

The fundamental mechanisms causing relaxation through p-receptor 

activation are probably the same as in the taenia caeci; a small K+-dependent 

hyperpolarization accompanied by a second messenger-mediated relaxation 

(Bulbring & Tomita, 1987).

Stomach

Although this is the least well investigated of the tissues in terms of p- 

adrenegically-mediated events it is known that adrenergic inhibitory reponses 

within the stomach are mediated solely by p-adrenoceptors (Guimares, 1969;
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Bailey, 1971; Haffner, 1971) and that both (3r  and P2-adrenoceptors are probably 

involved, at least in the rat gastric fundus (Lefebvre et al, 1985).

The intracellular events leading to the actual instigation of relaxation by pr  

and p2-adrenoceptors are believed to involve stimulation of adenylyl cyclase, 

producing an increase in cyclic adenosine 3', 5'-monophosphate (cAMP; Stiles et 

al, 1984) which, presumably, leads to an alteration in the cells' Ca2+ handling 

capacity (see Relaxant Transduction Mechanisms). However, p-adrenoceptor- 

stimulated cAMP increases are not always correlated with relaxation; in the 

guinea-pig taenia caeci for example, isoprenaline-induced relaxation preceded an 

increase in tissue cAMP (Honda et al, 1977). Furthermore, prostaglandins 

produced a similar rise in cAMP levels to that of isoprenaline in the rat uterus, but 

caused a contraction (Harbon et al, 1976). These findings may refute a relationship 

between the relaxation and increased cAMP levels but, could also indicate a 

complex compartmentalization of the cAMP within the cells, such that the 

production of relaxation or contraction depends on which area of the cell that the 

increase occurs.

Although catecholamine- and cholinergically-induced relaxation both have 

important roles to play within the GI tract they do not constitute the full range of 

neuronal inhibitory mediators believed to control GI relaxation. Overwhelming 

evidence now suggests that one or more substances released from NANC nerves 

are responsible for controlling a wide range of inhibitory processes throughout the 

length o f the alimentary canal.
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c) Non-Adrenergic. Non-Cholinergic (NANC) Mediated-Relaxation

As early as 1898 Langley demonstrated that vagally-induced relaxation of 

the rabbit stomach was potentiated by the muscarinic antagonist atropine (Langley, 

1898). Atropine-resistant inhibitory responses were also demonstrated in several 

other tissues such as the dog small intestine (Bayliss & Starling, 1899), the rabbit 

cardiac sphincter (May, 1904), the cat stomach (Veach, 1925; McSwiney & 

Wadge, 1928; McSwiney & Robson, 1929), the rabbit and dog stomach 

(McSwiney & Robson, 1929) and the cat oesophagus (Veach, 1925). Various 

hypotheses were proposed to explain these "heretical" findings within the existing 

framework of the sympathetic and parasympathetic nervous system; perhaps the 

Ach receptors were inaccessible to atropine at the neuroeffector junction (Dale & 

Gaddum, 1930) because of very tight junctions proposed to separate nerve and 

muscle.This theory has been largely discounted by electron-microscopy which 

showed large gaps between the nerve endings and smooth muscle (Dumsday, 

1971). Atropine-resistant responses were proposed to have been due to stimulation 

of sympathetic nerves (known to be inhibitory) within the vagus (Harrison & 

McSwiney, 1936), or to a "peripheral mechanism" (McSwiney & Wadge, 1928) 

where the degree of muscle tone determined the response to nerve stimulation, i.e. 

in high tone, either sympathetic or parasympathetic stimulation would cause 

relaxation but, in low tone, contraction. Notwithstanding the attempts made to 

accommodate these observations within existing theories, Henderson and Roepke 

(1934) perceptively proposed that these autonomic nerves released a transmitter 

other than acetylcholine.

In the absence of specific antagonists however, it was impossible to 

determine the role of the inhibitory sympathetic nerves in these atropine-resistant 

effects. This confusion persisted until the advent of the adrenergic neurone 

blocking drugs such as guanethidine and bretylium, and the adrenoceptor
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antagonist phentolamine, in the late 1950's. The ability to block the actions o f both 

classical neurotransmitters using these drugs and atropine allowed, for the first 

time, the unequivocal identification of a new class of inhibitory, non-adrenergic, 

non-cholinergic (NANC) neurogenic response. These were characterised initially 

by two groups of workers, almost simultaneously, but using different techniques, 

in the early 1960's. First, using extracellular (sucrose-gap) recording, large 

tetrodotoxin-sensitive, neuronally-induced hyperpolarizations were elicited in the 

presence of atropine and bretylium (Bumstock et al 1963 a, b; 1964). Secondly, 

vagally-induced, atropine-resistant relaxations in the cat stomach which were 

unaffected by guanethidine, were seen (Martinson & Muren, 1963; Martinson, 

1965). NANC nerves have now been found at almost every level o f the GI tract in 

most mammalian species investigated. Principally, although not invariably (e.g. 

Shuttleworth et al, 1993; Zagorodnyuk et al, 1993), concerned with relaxation in 

the GI tract, they allow the passage of material along the tract; they control the 

"receptive relaxation" of the stomach, descending inhibition, which precedes 

contraction, in intestinal peristalsis (Bumstock & Costa, 1973) and the reflex 

opening of the sphincters. Although NANC nerves mediating these responses are 

intrinsic to the GI tract (Bumstock et al, 1966), they are linked to nerves by fibres 

from a) the vagus nerve (in the small intestine) b) the vagus and pelvic nerves (in 

the colon), the relative contribution of each being dependent on species, and c) the 

pelvic nerves (in the rectum and internal anal sphincter; see Gonella et al, 1987).

The electrical basis of the NANC responses was found to be membrane 

hyperpolarizations, or inhibitory junction potentials (IJPs), which preceded the 

relaxations (Bennett et al, 1966 b). Evoked NANC IJPs, recorded from 

anatomically distinct areas of the alimentary canal, such as the guinea-pig stomach 

(Kuriyama et al, 1970; Beani et al, 1971; Beck & Osa, 1971), ileum (Kuriyama et 

al, 1967), jejenum (Hidaka & Kuriyama, 1969), taenia ceaci (Bennett et al, 1966 a,
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b) and colon (Furness, 1969 a, b) are fundamentally different from those evoked 

by adrenergic nerve stimulation (Gillespie, 1962). Perivascular sympathetic nerve 

stimulation of guinea-pig taenia caeci, for example, using trains o f stimuli greater 

than 10Hz, produced relatively small (maximum amplitude 16mV), bretylium- 

sensitive hyperpolarizations and relaxations (Bennett et al, 1966 a). In contrast, 

stimulation of intramural NANC nerves with only a single pulse, in the same 

tissue, evoked relaxations and accompanying IJPs which could reach 25mV in 

amplitude (Bennett et al, 1966 b) and up to 35mV in response to trains o f stimuli 

around 8Hz which were unaffected by atropine or bretylium (Bennett et al, 1966

b). All NANC electrical responses are not similar however; the large IJPs found in 

the GI tract, which accompany relaxation, differ markedly from the much smaller 

ones found in the gastrointestinally-related accessory muscles of reproduction, 

such as the bovine retractor penis muscle (BRP; Klinge & Sjostrand, 1974; Byrne 

& Muir, 1984, 1985), rat anococcygeus (RAc; Gillespie, 1972, Creed et al, 1975; 

Gibson & Yu, 1983; Li & Rand,-1989) and rabbit rectococcygeus (King & Muir, 

1981). These IJPs may, however, play a less important role in relaxation (Creed et 

al, 1975; Byrne & Muir, 1984, 1985; Byrne et al, 1984). This may indicate either 

fundamental tissue-specific differences between the inhibitory transmitter(s) or, in 

the receptors mediating the responses (see Relaxant Transduction Mechanisms).

The identification of NANC nerves had a profound impact on scientific 

insight and research into autonomic systems. The success which had accompanied 

the establishment of Ach (Dale, 1937) and noradrenaline (NA; Von Euler, 1946) as 

classic (often excitatory) transmitters provided a template which encouraged the 

scientific community to investigate the mediators of those NANC nerve-mediated 

effects. There was no shortage of candidates, including prostaglandins, amino 

acids and peptides (see Hokfelt et al, 1980 a, b; Bumstock, 1981; Fumess et al, 

1989). However, for a substance to be considered an inhibitory transmitter it
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should satisfy each of the following five criteria (Eccles, 1964); it must 1) be 

synthesised and stored in nerve terminals 2) be released by a Ca2+-dependent 

process during nerve stimulation; 3) have a transmitter inactivation process 

present; 4) have its effects antagonized or potentiated by drugs which affect the 

responses to nerve stimulation in the same way; and 5) mimic the responses to 

nerve stimulation. Within the framework of these criteria, the only likely 

candidates to emerge from the many postulated inhibitory transmitters were, first, 

the purines, in particular ATP (see Bumstock, 1979), secondly, the peptides, such 

as vasoactive intestinal polypeptide (VIP; see Fahrenkrug, 1979) and finally, NO 

or a closely-related substance (see Rand, 1992). This is not to imply that each 

candidate satisfies all of the aforementioned criteria. The evidence for 

representatives of these three classes as inhibitory transmitters within the GI tract 

will be discussed.

i) Adenosine 5"-Trisphosphate (ATP)

Although smooth muscle sensitivity to adenine nucleotides was recognised 

in 1929 (Drury & Szent-Gyorgi, 1929) it took a further twenty years before ATP 

was proposed as a transmitter (Holton & Holton, 1953, 1954; Holton, 1958). The 

case for ATP being a NANC neurotransmitter has since strengthened (for reviews 

see Bumstock 1972, 1975, 1979, 1981, 1986 a, 1990 a) and there is now evidence 

that ATP largely satisfies the criteria for the establishment o f a neurotransmitter 

(Eccles, 1964) in that;

1) it is synthesised (Su et al, 1971) and stored in nerves (see for example 

Bumstock et al, 1978);

2) it is released by nerve stimulation (Su et al, 1971; Bumstock et al, 1978 

a, b). However, because of its ubiquitous nature as a cell metabolite, concern was 

expressed that the electrically-stimulated ATP release may have been from the
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muscle. Against this was the finding that while a 2-6 fold increase in ATP release 

from the guinea-pig taenia caeci and urinary bladder occurred after NANC nerve 

stimulation, no significant rise in ATP could be detected after direct muscle 

stimulation (Bumstock et al, 1978);

3) efficient inactivation processes exist for ATP in the form of 

ecto-ATPases and a 5'-nucleotidase. It is eventually deaminated to inosine or taken 

back up into smooth muscle or neurons (see Bumstock, 1972; 1979);

4) with regard to inhibitory effects, several putative purinoceptor 

antagonists such as reactive blue 2 (RB2; Crema et al, 1983; Manzini et al, 1986; 

Soediono & Bumstock, 1994) and suramin (Den Hertog et al, 1989; Ohno et al, 

1993; Brizzolara et al, 1993) reduced relaxations to ATP and/or evoked NANC- 

mediated IJPs. Indirect evidence also came from the use o f apamin, a bee venom 

which blocks small conductance Ca2+-activated K+ channels (Banks et al, 1979; 

Blatz & Magleby, 1986; Capoid & Ogden, 1989). Although not a purinoceptor 

antagonist per se apamin blocked the inhibitory effects o f both exogenous ATP 

and NANC nerve stimulation in various GI smooth muscles such as the guinea-pig 

taenia caeci (Maas & Den Hertog, 1979; Muller & Baer, 1980; Shuba & 

Vladimirova, 1980; Costa et al, 1986) and gpIAS (Lim & Muir, 1986);

5) the responses to ATP and inhibitory NANC nerve stimulation are very 

similar. These similarities, and their common resistance to adrenergic and 

cholinergic block, are perhaps the strongest indicators of an endogenous inhibitory 

transmitter role for ATP or 4 related nucleotide. Inhibitory NANC nerve 

stimulation and ATP both produce relaxations within the mammalian GI tract (see, 

inter alia, guinea-pig taenia caeci- Jager, 1974; rabbit intestine- McKenzie et al, 

1977; guinea-pig stomach- Huizinga & Den Hertog, 1980; guinea-pig internal anal 

sphincter (gpIAS); Lim & Muir, 1986) which are often followed by rebound 

excitations (Tomita & Watanabe, 1973; MacKenzie & Bumstock, 1980). The

26



concentration-dependent, rapid and relatively brief membrane hyperpolarizations 

induced by exogenous ATP are also similar to IJPs evoked by NANC nerve 

stimulation in several tissues such as the guinea-pig taenia caeci (Axelsson & 

Holmberg, 1969; Tomita & Watanabe, 1973; Jager, 1974; Jager & Schevers, 

1980), gpIAS (Lim & Muir, 1986) and rabbit caecum (Small, 1974). However, 

doubts regarding ATP's mimicry of inhibitory NANC stimulation persist; first, 

very high (0.1-ImM) concentrations of ATP were used to mimic NANC responses 

(e.g. Tomita & Watanabe, 1973; Maas & Den Hertog, 1979; Lim & Muir, 1986; 

Zagorodnyuk & Shuba, 1986). This was explained, for the guinea-pig urinary 

bladder at least, as being due to the rapid breakdown of ATP to adenosine. In 

support o f this view, a stable ATP analogue, py-methylene ATP, which was not 

degraded to adenosine, was found to be more potent than ATP in producing 

contraction (Brown et al, 1979). Secondly, in many tissues, the responses to ATP 

did not mimic NANC nerve stimulation, for example, in the pig stomach (Ohga & 

Taneika, 1977), oesophageal smooth muscle (Daniel et al, 1983), dog stomach 

(Sakai & Daniel, 1984) and RAc (Gillespie, 1972) but in these cases another 

NANC transmitter, possibly related to ATP, could have been responsible for the 

inhibitory responses. Finally, in certain smooth muscles, such as the guinea-pig 

fundus, (Baer & Frew, 1979), ileum (Weston, 1973 a), taenia caeci (Ambache et 

al, 1977), pig stomach (Ohga & Taneika, 1977) and rabbit duodenum (Weston, 

1973 b) responses to repeated application of ATP desensitized, whereas those to 

NANC nerve stimulation did not. Although this has been contradicted (Bumstock 

et al, 1970; Kasakov & Bumstock, 1983) it remains a significant barrier to 

acceptance of ATP as an inhibitory transmitter.

The investigation of a proposed transmitter role for ATP led, not 

surprisingly, to studies on the receptors involved. Based on rank order of potency 

studies, purinergic receptors were initially divided into two main categories; P r
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purinoceptors, which were more sensitive to adenosine and adenosine 

5'-monophosphate (AMP) than to ATP, and P2-purinoceptors, which were more 

sensitive to ATP and adenosine 5'-diphosphate (ADP) than adenosine (Bumstock, 

1978). Purinoceptors have since been further subdivided; the P r division into A r  

and A2-purinoceptors (Van Calker et al, 1979) and the P2-division into P2x- and 

P2y-purinoceptors (see Bumstock & Kennedy, 1985; Kennedy, 1990). The 

subdivision of P2-purinoceptors • was also based on studies of rank orders of 

potency of structural analogues of ATP (see Bumstock & Kennedy, 1985). 

However, differences between P2x- and P2y-purinoceptors seem to exist at a more 

basic level than relative sensitivities to nucleotide analogues, i.e. P2x-receptors 

mediate contraction in tissues such as the rat vas deferens (Taylor et al, 1983; 

Bumstock et al, 1985) and guinea-pig urinary bladder (Brown et al, 1979; Dahlen 

& Hedquist, 1980), whereas P2y-purinoceptors mediate relaxation in the guinea-pig 

taenia caeci (Satchell & Maguire, 1975; Bumstock et al, 1983) and gpIAS (Lim,

1985). Furthermore, P2y-purinoceptors constitute G protein-linked receptors 

(Fredholm et al, 1994) whereas P2x -purinoceptors represent an intrinsic ion 

channel permeable to Na+, K+, and Ca2+ (Bean, 1992).

Following the discovery, of receptors activated by ATP and uridine 

triphosphate, but not by P2x- or P2y-purinoceptor agonists (Brown et al, 1991; 

Dubyak et al, 1988; Okajima et al, 1989; Stutchfield & Cockroft, 1990), it was 

postulated that further subtypes of P2x- or P2y-purinoceptors may exist. This would 

explain why proposed P2y-receptors could apparently couple to two separate 

second messenger systems, either inhibition of adenylyl cyclase (Boyer et al, 1993, 

1994; Lin & Chuang, 1993; Okajima et al, 1987; Pianet et al, 1989) or stimulation 

of the polyphosphoinositide system (see inter alia Pirotton et al, 1987; Berrie et al, 

1989; Boyer et al, 1989; Cooper et al, 1989; Van der Merwe, 1989; Harden et al, 

1990; Flitz et al, 1994; for second messenger systems see Relaxant Transduction
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M echanisms), and has been supported by studies using novel selective agonists 

for P2x- and P2y-purinoceptors (Fischer et al, 1993; Bumstock et al, 1994).

ii) Vasoactive Intestinal Polypeptide (VIP)

More than twenty peptides have now been identified in mammalian brain, 

spinal cord and peripheral neurons, principally using immunohistochemical or 

radioimmunoassay techniques (see Hokfelt et al, 1980 a). O f these, only VIP has 

emerged as a likely inhibitory transmitter within smooth muscle, as it more 

adequately fulfills, than any other peptide, the criteria required to establish the 

existence of a substance as a neurotransmitter (Eccles, 1964), thus;

1) it is synthesised and stored in nerves throughout the GI tract (Alumets et 

al, 1979; Hokfelt et al, 1980 a,b; Fahrenkrug et al, 1985; Biancani et al, 1988; 

Wattchow et al, 1988; Lynn et al, 1994; Bandyopadhyay et al, 1994).

2) it is released from NANC-innervated tissues such as the taenia caeci 

(Fahrenkrug et al, 1978 a), LOS (Goyal & Cobb, 1981) and small intestine 

(Fahrenkrug et al, 1978 b; Bloom & Edwards, 1980).

3) it is inactivated by relatively slowly (4-15 minutes) acting peptidases 

(Fahrenkrug, 1979). However, no specific process comparable to that of the 

classical transmitters exists for VIP (Hokfelt et al, 1980 a) which means that the 

action of exogenous VIP is much more prolonged than that of inhibitory nerve 

stimulation in certain tissues such as the guinea-pig taenia caeci (Cocks & 

Bumstock, 1979) and gpIAS (Lim & Muir, 1986).

4) its effects are inhibited by several putative antagonists; a-chymotrypsin, 

VIP antiserum and the C-terminal VIP fragment, VIP (10-28). a-Chymotrypsin, 

which degrades certain peptides, abolishes responses to exogenous VIP in the 

guinea-pig taenia caeci (MacKenzie & Bumstock, 1980). VIP antiserum reduces 

the relaxations of several tissues in response to exogenous VIP and electrical or
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chemical stimulation of NANC nerves (Goyal et al, 1980; Ito & Takeda, 1982; 

Biancani et al, 1985 a, b). VIP (10-28) antagonized VIP-induced 

hyperpolarizations in the guinea-pig ileum (Grider & Rivier, 1990; Crist et al,

1992). However, strong doubts exist regarding the specificity of these 

aforementioned VIP antagonists. a-Chymotrypsin reduced responses to exogenous 

VIP but had no effect on NANC nerve-mediated reponses in the taenia caeci 

(MacKenzie & Bumstock, 1980). The inhibitory effect o f VIP antiserum on 

NANC nerve stimulation in cat (Ito & Takeda, 1982; Biancani et al, 1985 a) and 

opossum (Goyal et al, 1980) oesophageal tissues was not shown in human 

oesophageal and gastric tissues (De Carle & Pye, 1982), while VIP (10-28) shows 

low affinity for VIP receptors and may act as a partial agonist in some systems 

(Robberecht et al, 1990). A final point concerns the ability o f apamin to block 

NANC neuronally-mediated events, but not those of exogenous VIP, in certain 

tissues such as the guinea-pig taenia caeci (MacKenzie & Bumstock, 1980), which 

suggests that VIP is not the inhibitory transmitter in these cases.

5) VIP, among the peptides, is uniquely able to relax and hyperpolarize 

virtually all areas of the GI tract such as the rat colon (Grider & Rivier, 1990), rat, 

guinea-pig and cat gastric fundus (Grider et al, 1985; D'Amato et al, 1988, 1992; 

De Beurme & Lefebvre, 1988; Grider & Rivier, 1990; Li & Rand, 1990) and 

guinea-pig taenia caeci, circular smooth muscle of the stomach and ileum (Kamata 

et al, 1988; Grider et al, 1983; Crist et al, 1992) as well as the sphincters (LOS- 

Biancani et al, 1984; 1989; Goyal et al, 1980; sphincter o f Oddi-Wiley et al, 1988; 

IAS-Burleigh, 1983; Biancani et al, 1985; Nurko & Rattan, 1988; Nurko et al, 

1989; Lim & Muir, 1986). However, probably due to the absence of a rapid 

inactivation system, the time course of the VIP-mediated events does not correlate 

well with the much faster (in both onset and recovery) NANC nerve-mediated 

responses in most tissues (Cocks & Bumstock, 1979; Lim & Muir, 1986).
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Notwithstanding the doubts regarding its proposed transmitter role, two VIP 

receptors have been proposed (VIPj and VIP2; Robberecht et al, 1990). This 

classification was based on the binding of VIP, peptide histidine isoleucine (PHI), 

which is processed from a common precursor peptide (Itoh et al, 1983), and 

helodermin, a lizard peptide belonging to the VIP-PHI-secretin-GRF family 

(Robberecht et al, 1984), to a human lymphoblast cell line (SUP T l; Robberecht et 

al, 1988; Robberecht et al, 1990). Further classification has been restricted by the 

lack of selective synthetic ligands (Robberecht et al, 1990). However, all VIPergic 

inhibition is induced via stimulation of adenylyl cyclase leading to increased 

intracellular cAMP levels (Schwartz et al, 1974; Simon & Kather, 1978; Frandsen 

et al, 1978; Torphy et al, 1986; Ito et al, 1990; for cAMP actions see Relaxant 

Transduction Mechanisms).

iii) Nitric Oxide (NO)

EDRF is released from vascular endothelial cells in response to a variety of 

stimuli such as Ach, ATP and shear stress (Furchgott & Zawadzki, 1980; see 

Kerwin & Heller, 1994). EDRF has many pharmacological features in common 

with the gas nitric oxide (NO); each relaxes both vascular and non-vascular 

tissues, raises cyclic guanosine 3 ',5 '-monophosphate (cGMP) levels, and is 

antagonized by methylene blue (MeB), oxyhaemoglobin (HbO) and superoxide 

anions (Martin et al, 1985 a,b; Griffith et al, 1984; Forstermann et al, 1986; 

Grylewski et al, 1986; Rubanyi & Vanhoutte, 1986). That EDRF was indeed NO 

was demonstrated by Palmer et al (1987) when NO was measured as the 

chemiluminescent product of EDRF's reaction with ozone. The similarities 

between the actions of EDRF and NO have now been demonstrated in both 

vascular and non-vascular tissues (Hutchinson et al, 1987; Gillespie & Sheng, 

1988; Cocks & Angus, 1990; Tare et al, 1990; Mathie et al, 1991).
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Outwith the vasculature, following the identification of the "inhibitory 

factor" (IF), released by the BRP and the RAc (Ambache et al, 1975; Gillespie & 

Martin, 1980), as NO or a closely related substance (Furchgott, 1988; Martin et al,

1988), it was proposed that NO may also be a peripheral inhibitory transmitter as it 

is a very potent and ubiquitous relaxant agent. However, NO is probably released 

as a highly labile gas^nd has a short half-life of around 5s (although values of up 

to 30s have been reported; see Rand, 1992), making it unique in comparison to 

other proven and putative neurotransmitters. Because of this uniqueness it is 

perhaps unlikely that it can satisfy all o f the criteria previously proposed for the 

establishment of a substance as a transmitter (Eccles, 1964). Thus:-

1) in a reaction catalysed by nitric oxide synthase (NOS) NO is synthesised 

from the terminal guanido nitrogen atoms of L-arginine in a stereospecific manner 

(Palmer & Moncada, 1989). Perhaps not surprisingly, bearing in mind its gaseous 

and labile nature, no evidence exists for the pre-packaging o f NO or a NO 

precursor within nerve terminals, suggesting that it is synthesised only on demand 

(see Stark et al, 1991). However, in the absence of stored NO, the presence of 

NOS within neurons is often accepted as proof of the presence of NO. 

Constitutive, as opposed to inducible, NOS is found in many tissues both centrally 

(Bredt et al, 1990) and peripherally (Gillespie et al, 1989; Li & Rand, 1989), 

particularly concentrated within cell bodies and nerve fibres of the myenteric 

plexus (Bredt et al, 1990; Llewellyn-Smith et al, 1992; Ward et al, 1992 d; 

O'Kelly etal, 1994);

2) to date, only one group has actually demonstrated its release from 

smooth muscle. TTX-sensitive, calcium-dependent electrical and DMPP nerve 

stimulation of the canine ileocolonic sphincter (ICS) and rat gastric fundus, 

released NO, as demonstrated by bioassay (Bult et al, 1990; Boeckxstaens et al, 

1991 a, b, c; Boeckxstaens et al, 1993).
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3) with regard to an inactivation process, none is actually required since NO 

has a very short half-life in physiological solutions (Griffith et al, 1984; 

Forstermann et al, 1984; Rubanyi et al, 1985; Cocks et al, 1985; Palmer et al, 

1987; Ignarro, 1990), and it is perhaps unnecessary to assume such a conventional 

process exists.

4) its effects can be antagonized a) at source, b) in transit or c) at its 

receptor;

a) Synthesis of NO can be blocked by inhibition of NOS activity. Structural 

analogues of the NO precursor, L-arginine, such as N®-monomethyl-L-arginine 

(L-NMMA), N®-nitro-L-arginine (L-NNA) and N®-nitro-L-arginine methyl ester 

(L-NAME), (Palmer & Moncada, 1989; Hobbs & Gibson, 1990; Fleming et al, 

1991) can each stereoselectively inhibit NOS activity in a reversible manner.

b) By binding to NO, -after its proposed neuronal release into the 

extracellular fluid, HbO is able to antagonize its effects (Martin et al, 1985 a, b; 

Forstermann et al, 1986; Thombury et al, 1991). Superoxide anions, which are 

present in physiological solutions, are also capable of rapidly oxidizing and 

inactivating NO (Grylewski et al, 1986; Rubanyi & Vanhoutte, 1986).

c) Unlike other neuromediators, the receptor for NO, cytosolic guanylyl 

cyclase, is located intracellularly. Inhibition of guanylyl cyclase activity can be 

accomplished with MeB (Gruetter et al, 1981 a, b; Ignarro et al, 1986; Martin et 

al, 1985 a) or LY83583 (Miilsch et al, 1988; Brandt & Conrad, 1991) thereby 

antagonizing the responses to NO.

5) Exogenous NO mimics the inhibitory NANC nerve-mediated responses. 

It hyperpolarizes and relaxes almost all smooth muscles, effects which are resistant 

to cholinergic and adrenergic block. Electrical and mechanical responses to both 

NANC nerve stimulation and exogenous NO are rapid in onset and decline (for 

reviews see Rand, 1992; Sanders et al, 1992; Sanders & Ward, 1992; Stark &
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Szurszewski, 1992). In addition increased cGMP levels follow NANC inhibitory 

nerve stimulation (in the opossum LOS - Torphy et al, 1986; opossum and guinea- 

pig IAS - Baird & Muir, 1990; Chakder & Rattan, 1993 b) and also exogenous NO 

(see Waldman & Murad, 1987; Baird & Muir, 1990; Chakder & Rattan, 1993 b).

iv) Synergistic Transmitter-Mediated Relaxation

Current views on autonomic transmission are no longer restricted to 

consideration of only one mediator. There is now widespread acceptance that 

neuronally-mediated relaxation and contraction, in many smooth muscles, involves 

the release of more than one substance (e.g. Lundberg, 1981; Hokfelt et al, 1980 b; 

Campbell, 1987; Furness et al, 1989). This does not imply that all such substances 

can automatically be considered as transmitters even though this could be the case. 

In the main, a transmitter role has not been proven for many neuronally-released 

substances and for this reason, where two or more transmitters are found within the 

same nerve ending, the terms co-existence, co-localization or co-release, rather 

than co-transmission, are often preferred.

The release of more than one substance during nerve stimulation has led to 

a re-examination of "Dale's Principle", mistakenly ascribed to Sir Henry Dale by 

Eccles in the mid-1950's, which asserts that “at all the axonal branches of a 

neurone, there is liberation of the same transmitter substance or substances” (see 

Eccles, 1976). This principle has been interpreted, some would say incorrectly, to 

mean that one nerve fibre makes and releases only one transmitter. This 

interpretation was widely held for a number of years before Bumstock (1976) 

questioned its validity by suggesting that, since more than one substance appeared 

to be released during nerve stimulation, some nerve fibres synthesised and released 

more than one substance. This dissenting viewpoint has gained support with the 

identification of numerous examples of co-localized substances within neurons.



Both central and peripheral neurons appear to contain, and probably release, 

several different combinations of substances such as two or more peptides 

(Furness et al, 1989); peptides and classical transmitters (Hokfelt et al, 1980 a,b; 

Furness et al, 1989, 1992); purines and classical transmitters (Bumstock, 1985, 

1986 b, 1990 a); or, more recently, peptides or purines with NOS (Fumess et al, 

1992; Costa et al, 1992; Lynn et al, 1994; Soediono & Bumstock, 1994; Ward et 

al, 1994). Notwithstanding, in only in a very few instances has the co-release of 

these substances been demonstrated, for example, Ach and VIP in the cat exocrine 

glands (Lundberg, 1981; Lundberg et al, 1980, 1982 a, b; see also Campbell, 

1987). Indeed, where dual or multiple mediators are proposed to act 

synergistically, co-transmission, and contradiction of "Dale's Principle" have yet 

to be demonstrated unequivocally.

Notwithstanding this controversy, the weight of evidence suggests that in 

many cases more than one substance can be released from autonomic nerves onto 

smooth muscle. Unlike the majority of examples of proposed dual transmission 

which are excitatory/contractile, such as NA and ATP release from 

sympathetically-innervated blood vessels (Bumstock, 1990 b; Bumstock, 1988) or 

Ach and ATP release from somatic and autonomic nerves (Richardson & Brown, 

1987; Bumstock, 1986 b), inhibitory processes can apparently also be regulated by 

more than one substance.

Three inhibitory transmitter combinations have been proposed a) ATP and 

NO, b) VIP and NO and c) VIP, PACAP and NO.

ATP and NO

The first convincing evidence for the involvement o f two inhibitory 

transmitters mediating NANC nerve-mediated responses was obtained when, using 

apamin, the nerve-evoked large, fast IJPs of the guinea-pig ileum or distal colon,
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were converted to slower, smaller, distinct, so-called, "apamin-insensitive" IJPs 

(Niel et al, 1983 a,b; Smith & Bywater, 1983). Verification soon followed in the 

same (see inter alia Costa et al, 1986; Crist et al, 1991 c; Crist & He, 1991; Maggi 

& Giuliani, 1993) and other tissues such as guinea-pig stomach, small and large 

intestine (Vladimirova & Shuba, 1984), taenia caeci (Bridgewater et al, (1995) and 

human colonic circular muscle (Keef et al, 1993).

The apamin-resistant IJP component in the guinea-pig ileum (Humphreys et 

al, 1991; Lyster et al, 1992 a, b; Bywater et al, 1993; He & Goyal, 1993) and 

colon (Zagorodnyuk & Maggi, 1994) but not, interestingly, in the guinea-pig 

taenia caeci (Bridgewater et al, 1995 ), was abolished by NOS inhibitors, indicating 

its mediation by NO. Attempts to identify the "apamin-sensitive" component soon 

followed. Most evidence implicates ATP; apamin is a recognised antagonist of 

ATP-mediated responses in certain tissues (MacKenzie & Bumstock, 1980; Shuba 

& Vladimirova, 1980; Costa et al, 1986; Boeckxstaens et al, 1993). In addition, 

antagonists o f P2-purinergically-mediated responses, such as reactive blue 2 (RB2; 

Kerr & Krantis, 1979, Choo, 1980, Crema et al, 1983) and suramin (Dunn & 

Blakeley, 1988; Den Hertog et al, 1989; Ohno et al, 1993), together with NOS 

inhibitors, abolished the inhibitory responses to NANC nerve stimulation in the rat 

pyloric sphincter (PS; Soedino & Bumstock, 1994), guinea-pig colon (Maggi & 

Guiliani, 1993; Zagorodnyuk & Maggi, 1994) and rabbit portal vein (Brizzolara et 

al, 1993). ATP and NO may also be responsible for the separate IJP components 

seen in the circular muscle of the guinea-pig ileum (Humphreys et al, 1991; Lyster 

et al, 1992 a, b; Bywater et al, 1993; He & Goyal, 1993), stomach, small and large 

intestine (Vladimirova & Shuba, 1984) and human colonic muscle (Keef et al, 

1993; Boeckxstaens et al, 1993). The question remains as to whether these putative 

inhibitory transmitters are released from the same or different neuronal sources. In 

the guinea-pig taenia caeci, the fast, but not the slow IJP, was selectively abolished
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by ©-conotoxin GVIA which blocks neuronal Ca2+ channels, suggesting that the 

two IJP components were probably mediated by different populations o f nerves 

although different release mechanisms within the same nerves could also account 

for such a finding (Bridgewater et al, |l 995). Whether or not NO and ATP play a 

synergistic role within certain GI smooth muscles and if  so, how this is achieved, 

remains unclear.

VIP and NO

There is increasing evidence in favour of a synergistic relationship between 

VIP and NO within GI smooth muscles (see Makhlouf, 1994, Makhlouf & Grider, 

1993). Their roles are closely interlinked but in a different manner from that for 

ATP and NO together, such that VIP release may be dependent on NO production 

and vice versa.

Electrically or%)MPP-stimulated VIP release from isolated intestinal 

ganglia, it has been proposed, depends on NO production (Grider & Jin, 1993 a), 

as L-NAME abolished, and exogenous NO-stimulated, VIP production. In 

innervated muscles such as the guinea-pig gastric fundus (Grider et al, 1992) and 

rat colon (Grider, 1993) however, while NO production facilitated VIP release, 

liberation of the peptide could still occur independently. Thus, VIP antagonists, 

such as VIP (10-28), inhibited NO production (Grider et al, 1992; Jin & Grider, 

1993). This implies that VIP stimulates NO production within the target muscle 

cells (Grider et al, 1992; Jin & Grider, 1993; Grider & Jin, 1993 b), potentiating 

the relaxant effects of the peptide and enhancing neuronal VIP release. This also 

occurs with isolated, nerve free, gastric smooth muscle cells (Murthy et al, 1993

b). VIP reportedly stimulated NO production by interacting with a membrane 

bound NOS (Murthy et al, 1994; Murthy & Makhhlouf, 1994).

Ganglion stimulant
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Electrical studies have lent further weight to the proposed synergism 

between VIP and NO. Apamin-resistant IJPs in guinea-pig and canine ileum 

involve both NO and VIP; the effects of exogenous VIP in these tissues are 

suppressed by NOS inhibitors, implying VIP-induced NO release (Grider & Jin, 

1993 b; He & Goyal, 1992, 1993). If  this were so then at least three inhibitory 

mediators could be involved in mediating inhibitory responses in these tissues, an 

apamin-sensitive component, VIP and NO.

However, if  NO and VIP' act synergistically, then a number o f problems 

arise. If, following VIP stimulation, NO is synthesised within muscle cells rather 

than in neurons, it cannot be acting as a neurotransmitter in these tissues. This 

contrasts with the finding that HbO, which is unable to cross cell membranes, 

greatly reduces NANC responses in most GI smooth muscles (see Sanders & 

Ward, 1992; Sanders et al, 1992; Rand, 1992). Presumably, VIP is unaffected by 

HbO and, as the major effect of NO would be produced intracellularly on the NO- 

synthesising cells, it is unclear how HbO could exert its antagonistic effects. 

Importantly, TTX blocks the portion of the VIP relaxation attributed to NO 

(Huizinga et al, 1992) and co-conotoxin GVIA, which blocks neuronal calcium 

channels (McCleskey et al, 1987), reduces the contractile response to L-NAME in 

canine ileal segments (Daniel et aj, 1994). Each finding indicates a neuronal origin 

for NO. One might also ask why such a system should exist; the very short half- 

life o f NO makes it extremely unlikely that it would reach many cells that 

remained untouched by VIP.

PACAP, VIP and NO

A novel brain-gut peptide with a high sequence homology to VIP, pituitary 

adenylate cyclase-activating peptide (PACAP; Schworer et al, 1992, 1993) relaxes 

guinea-pig taenia caeci and human colon in an apamin-sensitive manner (Schworer
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et al, 1992, 1993; Jin et al, 1994 a, b; McConalogue et al, 1994). PACAP may 

regulate the descending phase of peristalsis in conjunction with VIP and NO, in rat 

ileum (Grider et al, 1994) and be an inhibitory substance in the guinea-pig taenia 

caeci where VIP and PACAP are proposed co-transmitters (Jin et al, 1994 b), 

however, further information regarding this transmitter combination is still sparse.

The discussion of relaxation has so far concentrated on mediators which are 

either proposed to be released from nerves or mimic the effects o f neuronal 

mediators. There are ways, however, o f inducing smooth muscle relaxation in the 

absence of any neuronal stimulation.

II) Non-Neuronal Control of Relaxation in the GI tract

Compounds that can be classed as non-neuronal relaxants are either, 

a) endogenous substances that are released from non-neuronal sources (e.g. 

circulating hormones) or b) drugs whose actions are mediated in ways other than 

by mimicking the action of known or putative transmitters, or transduction 

pathways (e.g. ATP activated K+ channel (KATP) openers). Research into non­

neuronal control of smooth muscle relaxation has not been extensive. This is 

probably because of its perceived relative unimportance in comparison to neuronal 

relaxation. Probably the most widely investigated endogenous non-neuronal 

inhibitory agents are the prostaglandins.

Prostaglandins mediate both excitatory and inhibitory effects (see Sanders, 

1984 b) and are synthesised by GI smooth muscle cells (Ali & McDonald, 1980; 

Bennett et al, 1968; LeDuc & Needleman, 1979; Sanders, 1978). They may act as 

local regulators, with their effects being mediated on, or near, the cell that 

produces them (Needleman, 1978; Sanders, 1984 a). The most likely candidates as
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inhibitory prostanoids are PGI2 and PGE2 (Sanders, 1984 a, b; Daniel, 1979). They 

allegedly act by decreasing the ability of calcium channels to open, thereby 

limiting membrane excitability (Sanders, 1984 a). An inhibitory role for 

prostaglandins within certain tissues is supported by the fact that indomethacin and 

other prostaglandin synthesis blockers enhance contractile activity, and suggests 

that sufficient quantities are produced to be of physiological relevance (Duthie & 

Kirk, 1978; El-Sharkawy, 1983; Sanders, 1984 a, b). However, in the opossum 

LOS (Daniel et al, 1979) a prostaglandin, released from intestinal interstitial cells 

during inhibitory nerve stimulation, facilitated the additional release o f the NANC 

transmitter (Daniel et al, 1979), but was not necessary for relaxation to be induced 

(Daniel, 1979).

Circulating hormones represent another form of non-neuronal inhibitory 

substances. As with the prostaglandins, hormones such as gastrin and 

choleocystokinin (CCK) each mediate excitation and inhibition in GI smooth 

muscle (see Bloom, 1977). However, examples of inhibitory effects on GI smooth 

muscles are relatively scarce; secretin and pancreatic glucagon each inhibit gastric 

motility (Bloom, 1975; Hubei, 1972); secretin alone inhibits tone in the human 

small intestine (Hubei, 1972) and motor activity in the human duodenum 

(Gutierrez et al, 1974). CCK reduces LOS pressure (Resin et al, 1973; Fisher et al, 

1975; Rehfeld, 1978) by inhibiting the effects of endogenous gastrin (Fisher et al, 

1975). As with the final example, the majority of hormonal effects are probably 

the result of these compounds acting to either facilitate or inhibit the release o f a 

secondary transmitter (e.g. Wiley et al, 1988; Bauer et al, 1991).

Within the vasculature the dilation induced by a large number o f substances 

such as ATP and bradykinin (see Kerwin & Heller, 1994) could be described as 

non-neuronal since the relaxation itself is due to the release of NO from the 

vascular endothelium rather than the "primary transmitter" (see Kerwin & Heller,
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1994; Moncada et al, 1991), although this may, initially, be released from a 

neuronal source. However, where mechanical stimuli, such as shear stress, 

stimulates endothelial NO production (Pohl et al, 1991; Shen et al, 1992) this may 

be considered as true non-neuronally-mediated relaxation.

One example of non-neuronally-acting drugs, i.e. drugs that do not mimic 

any known transmitter or transduction mechanism, are the so-called K+ channel 

opening drugs such as cromakalim (Hamilton et al, 1986) and other compounds 

based on a benzopyran nucleus (see Edwards & Weston, 1990). The ability of 

these drugs to hyperpolarize, and induce relaxation of, smooth muscle has direct 

therapeutic implications, for example, in the treatment o f hypertension. They are 

believed to mediate their inhibitory effects by, as their name suggests, opening K+ 

channels, possibly KATP (Sanguinetti et al, 1988; Buckingham et al, 1989; Garrino 

et al, 1989), although this has been disputed (Weston & Edwards, 1992; Carl et al, 

1992; Quast, 1993).

One other group of pharmacological agents that may modify membrane 

responses to both excitatory and inhibitory stimuli are the so-called membrane 

"stabilizers" and "labilizers" (Shanes, 1958). These compounds were first 

described in the context of neuronal activity, but the term has now been extended 

to also include muscle activity. Membrane stabilizers such as quinidine, procaine, 

cocaine, lignocaine and lanthanum (Shanes, 1958; Bowman & Hall, 1970; 

Biilbring & Kuriyama, 1973; Marshall & Kroeger, 1973) as their name suggests, 

stabilize the membrane by inhibiting changes in its permeability to either Ca2+ 

(Marshall & Kroeger, 1973) and/or K+ ions (Shanes, 1948 a) thereby inhibiting 

voltage-dependent changes in tone. For example, procaine and lignocaine inhibited 

a-, but not p-adrenoceptor-mediated relaxation, of rabbit intestine (Bowman & 

Hall, 1970) and cocaine inhibited the potassium depolarization of muscle (Shanes, 

1948 a, b). Labilizers, on the other hand, are the reverse of stabilizers and
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accentuate electrical change. These include veratrum alkaliods, calcium chelating 

agents and low calcium. As with the stabilizers, labilizers do not generally alter 

membrane potential per se but accentuate changes in membmae potential such as 

C 0 2-induced hyperpolarization (Shanes, 1951), and potassium and sodium- 

induced depolarization, of nerves (Stampfli & Nishie, 1956).

3) RELAXANT TRANSDTJCTTON MECHANISMS

The neuronal control of smooth muscle relaxation has so far been discussed 

in terms of inhibitory chemical messengers liberated from neurons. However, 

before relaxation occurs in response to these chemical messengers, mechanisms 

function to translate the primary signal, delivered by the chemical mediator, into a 

cellular response. Initially, this is achieved through the interaction of the 

messenger with cellular receptors located either in the cell membrane or in the 

cytosol. A number of mechanisms exist to transduce the agonist message into a 

cellular response (summarised in Fig. 2) but, with the exception of guanylyl 

cyclase, the receptor for NO, inhibitory receptors within the GI tract initially 

trigger relaxation only following an agonist-induced conformational change. This 

enables the receptors to interact with, and activate, specific membrane-bound 

proteins, G proteins, following the binding of guanosine triphosphate. The G 

proteins in turn, stimulate the formation of specific intracellular second 

messengers via the activation of membrane-associated enzymes (Ross, 1989). The 

second messengers trigger relaxation by reducing free [Ca2+]j within the smooth 

muscle cell (summarised in Fig. 3).

O f the known second messengers systems, the inositol phosphates, diacyl 

glycerol (DAG) and the cyclic nucleotides, cAMP and cGMP are the best
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understood. How these second messengers are activated and manipulate free 

[Ca2+]j levels will be discussed.

I) The Phosphoinositide System and Ca2+ regulation

Four decades have passed since the discovery that stimulation of muscarinic 

acetylcholine receptors provoked a striking enhancement in the turnover of the 

minor cell membrane constituent phosphatidyl inositol (PI) and its precursor 

phosphatidic acid (Hokin & Hokin, 1953). It was not until the mid 1970's 

however, that the role of polyphosphoinositides in receptor function, and their 

direct link with [Ca2+]j mobilization and PI turnover levels was fully 

acknowledged (see Michell, 1975). Stimulation of over twenty different types of 

cell-surface receptors leads to the hydrolysis of phosphatidyl 4,5-bisphosphate 

(Kirk et al, 1981), yielding the biologically active second messengers inositol 

1,4,5-trisphosphate (IP3), DAG (Berridge, 1987; Berridge & Irvine, 1989; Chuang, 

1989; Joseph & Williamson, 1989) and, possibly, inositol 1,3,4,5- 

tetrakisphosphate (IP4; Joseph & Williamson, 1989; Benham, 1992). This 

hydrolysis is catalysed by the membrane-associated enzyme phospholipase C 

(PLC) which is coupled to the receptor by a transducing Gs protein (Smrcka et al,

1993).

DAG is a lipid soluble second messenger molecule which remains in the 

plane of the plasma membrane to activate another membrane-bound enzyme, 

protein kinase C. This kinase phosphorylates a number of proteins in cell-free 

systems (Benham, 1992) but in vivo it is likely that its physiological targets are 

more limited. Postulated protein kinase C actions on acute signalling processes can 

be broken down into processes that are synergistic to the parallel Ca2+ 

mobilization, such as maintained smooth muscle contraction (Benham, 1992; 

Rasmussen, 1989), and a negative feedback role, which either involves inhibiting
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inositol phospholipid breakdown or an increase in the rate of Ca2+ efflux from cells 

(Nishizuka, 1986).

IP3 stimulates the release of Ca2+ from a non-mitochondrial store (Joseph & 

Willaimson, 1989; Nahorski, 1988; Nahorski & Potter, 1989), probably the 

sarcoplasmic or endoplasmic reticulum (Ross et al, 1989), by coupling to a 

specific intracellular receptor protein (Furuichi et al, 1989). The Ca2+ so released 

is generally associated with smoQth muscle contraction (Ochs, 1986), i.e. via a p  

adrenoceptors in the vasculature (Minneman, 1988). Conversely however, ocj- 

adrenoceptor stimulation within GI smooth muscle, despite also causing IP3 

generation (Nelemans & Den Hertog 1987 a, b), hyperpolarizes and relaxes 

smooth muscle. This may be due to elevated IP3-stimulated Ca2+ levels, which are 

probably restricted to the membrane, and which cause a membrane 

hyperpolarization by increasing the open probability of Ca2+-activated K+ channels 

(Bennett et al, 1963; Holman, 1970; Tomita, 1972; Den Hertog, 1981, 1982; Maas 

et al, 1980; Nelemans & Den Hertog 1987 a,b). This hypothesis is supported by 

patch-clamp studies which have demonstrated that noradrenaline application, to 

the outside o f single cells, increased the open probability of these channels, an 

effect similar to that produced by increasing the intracellular Ca2+ concentration 

([Ca2+]j; see BUlbring & Tomita, 1987).

The question arises however, as to how hyperpolarization o f the cell 

membrane, results in relaxation. [Ca2+]j is the prime regulator o f smooth muscle 

tone, both in the vasculature and GI tract (Rembold & Murphy, 1988, Bulbring & 

Tomita, 1987), and maintenance of tone depends on the long term balance between 

the entry of extracellular Ca2+ and its extrusion (Ashida & Blaustein, 1987; Quayle 

et al, 1990). Hyperpolarization, in order to produce relaxation, probably interferes 

with this [Ca2+]j homeostasis. Within spontaneously active smooth muscle, 

calcium entry is largely regulated by Ca2+ channels sensitive to membrane
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potential (see Sanders, 1989), such that lower (depolarized) membrane potentials 

increase the open probability (Droogmans & Callewaert, 1986) of these channels 

and vice versa for more negative membrane potentials. As a consequence of this 

coupling, any stimulus causing even a slight hyperpolarization of the membrane 

such as inhibitory NANC nerve stimulation or KATP openers blocks Ca2+ entry and 

therefore reduces tone.

O f the proposed NANC neuronally-released substances ATP, via activation 

of P2y-purinoceptors, stimulates PLC activation and [Ca2+]j mobilization within 

several systems (e.g. primary cultures of sheep anterior pituitary cells - Van Der 

Merwe et al, 1989; turkey erythrocyte membranes - Berrie et al, 1989; Boyer et 

al, 1989; Cooper et al, 1989, Harden et al, 1990; and vascular and adrenal 

endothelial cells - Forsberg et al, 1987; Pirotton et al, 1987; Boeynaems & 

Pearson, 1990). Within GI smooth muscle, P2y-purinoceptors, like a r  

adrenoceptors, are associated with hyperpolarization and relaxation (see Bumstock 

& Kennedy, 1985; Lim, 1985; Kennedy, 1990). To date however, only one study, 

using canine kidney cells, has directly implicated an ATP-induced, IP3-stimulated 

rise in [Ca2+]j in producing membrane hyperpolarization (Paulmichl & Lang, 

1991). This system could also account for the ATP-induced hyperpolarization and 

relaxation of GI smooth muscle.

II) Cyclic Adenosine 3\5"-M onophosphate (cAMP)

Relaxation of smooth muscle is more commonly associated with elevations 

of cAMP, as well as cGMP (see later). The identification of the second messenger, 

cAMP (Sutherland & Rail, 1958), was a landmark step in the discovery of how a 

number o f neurotransmitters, hormones and drugs produced their inhibitory effects 

on target tissues. Cyclic AMP is synthesised within cells by the enzyme adenylyl
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cyclase via the catalytic formation of cAMP from ATP (see Greengard et al, 1972) 

following receptor, and subsequent G protein, activation.

Initially, although there • was a clear correlation between a rise in 

intracellular cAMP levels ([cAMP]j) and relaxation (see Andersson et al, 1972), 

the mechanism of cAMP-induced relaxation remained obscure until the discovery 

of an intracellular receptor protein for cAMP; cAMP-dependent protein kinase 

(PKA), in skeletal muscle (Walsh et al, 1968) and liver (Langan, 1968). PKA, 

which exists as several different isozymes (Francis & Corbin, 1994), is found in all 

mammalian tissues (Francis & Corbin, 1994) and mediates the majority (Beebe & 

Corbin, 1986; Barnette et al, 1990), although not all (Nakamura & Gold, 1987), of 

the effects o f cAMP.

The inhibitory effects of cAMP/PKA are attributable to the regulation of 

[Ca2+]j. This regulation can take several forms. Either by:-

a) Prom oting Ca2+ Extrusion from the Cell: Calcium extrusion is 

probably achieved by activation of the two major energy-linked Ca2+ efflux 

pathways across the plasma membrane; the Ca2+-2H+-ATPase (or Ca2+ pump) 

(Niggli et al, 1982; Smallwood et al, 1983) and the 3Na+/Ca2+ exchanger, which is 

driven by the [Na+] gradient that exists across the plasma membrane, maintained 

by the Na+/K+-ATPase (Carafoli, 1987; Nicholls, 1986; Borle, 1981; Rasmussen & 

Rasmussen, 1990). Both ATPases may undergo a cAMP/PKA-dependent increase 

in activity (Scheid et al, 1979), enhancing the extrusion of [Ca2+]j. Isoprenaline, 

which relaxes and promotes increased intracellular cAMP levels in most smooth 

muscles (Andersson et al, 1972), is proposed to produce its inhibitory effects by 

promoting Ca2+ extrusion (Marshall & Kroeger, 1973; Bulbring & Den Hertog, 

1980).
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b) Promoting Intracellular Sequestration or Binding of Ca2+: Cyclic 

AMP and PKA have been implicated in the accumulation of Ca2+ into an 

intracellular storage site within smooth muscle (Andersson & Nilsson, 1972; 

Casteels & Raeymakers, 1979). The most likely intracellular structure to be 

involved in this process is the sarcoplasmic reticulum (S.R.). The S.R. accumulates 

Ca2+ from the cytosol through a specific ATPase (Tada & Katz, 1982; Carafoli, 

1987), therefore its activation, possibly by PKA, would increase Ca2+ 

sequestration.

c) Modifying the Activity of the Contractile Apparatus: Cyclic AMP is 

also proposed to induce relaxation via the suppression of Ca2+ binding, required to 

activate the contractile proteins actin and myosin (Adelstein et al, 1982; Nishimura 

& Van Breeman, 1989; Smith et al, 1993). Phosphorylation of the Ca2+- 

calmodulin-dependent enzyme, MLCK, by PKA (Conti & Adelstein, 1980; 

Adelstein et al, 1981), led to a shift in the Ca2+ dependency of MLCK, such that a 

higher Ca2+ concentration was required to activate the enzyme (Adelstein et al, 

1982). Although this has been demonstrated in skinned smooth muscle fibres 

(Meisheri & Riiegg, 1983; Meisheri et al, 1986 a) it has yet to be clearly 

demonstrated in vivo (Miller et al, 1983; Obara & De Lanerolle, 1989).

d) Inhibiting the Formation and Action of Inositol Phosphates: Cyclic 

AMP inhibited the agonist-induced hydrolysis of polyphosphoinositides (Hall et 

al, 1989; Hall & Hill, 1988; Jones et al, 1987; Madison et al, 1988). It also 

antagonized agonist-induced, IP3-dependent, Ca2+ release (Murthy et al, 1993 a) 

probably as a result of PKA-dependent phosphorylation of the IP3 receptor situated 

on the S.R. (Supattapone et al, 1988).
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e) Reducing Extracellular Ca2+ E ntry  by Channel C losure: This occurs 

in several smooth muscles such as guinea-pig taenia caeci (Den Hertog et al, 1985, 

Bulbring & Tomita, 1987), dispersed smooth muscle cells (Yamaguchi et al, 1988) 

and the canine colon (Smith et al, 1993; Du et al, 1994) where forskolin- 

stimulated adenylyl cyclase activity produced membrane hyperpolarization and 

relaxation. Membrane hyperpolarization, probably a result o f K+ efflux (Carl et al, 

1991; Smith et al, 1993; Du et al, 1994), would decrease the open probability of 

voltage-dependent Ca2+ channels (Langton et al, 1989) thereby inhibiting Ca2+ 

entry.

I ll)  Cyclic Guanosine 3 \  S^-Monophosphate (cGMP)

Although cGMP was discovered shortly after cAMP (Ashman et al, 1963), 

its role in biological regulation has been, until recently, considerably less well 

understood than that of cAMP. It is a ubiquitous second messenger which 

regulates many cell functions including smooth muscle relaxation (for review see 

Waldman & Murad, 1987; Tremblay et al, 1988;). Cyclic GMP formation, from 

guanosine triphosphate, is catalysed by the action of an enzyme, guanylyl cyclase, 

which exists in both particulate and soluble forms (Hardman & Sutherland, 1969; 

Schultz et al, 1969; White & Aurbach, 1969). The importance of cGMP as a 

smooth muscle relaxant has recently come to prominence with the identification of 

the putative transmitter NO (see Non-Adrenergic, Non-Cholinergic (NANC)- 

M ediated Relaxation) which mediates its widespread inhibitory effects by 

increasing intracellular cGMP levels (see Kerwin & Heller, 1994).

It was originally thought (Goldberg et al, 1973) that cGMP stimulated the 

contraction of smooth muscle (Dunham et al, 1974; Clyman et al, 1975; Amer & 

McKinney, 1975; Andersson et al, 1975), however the contractions described in 

these cases preceded the rises in cGMP by as much as fifteen seconds (Diamond &
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Hartle, 1976) indicating that the cGMP elevation was a result of, rather than the 

cause of, the contractions (Diamond & Hartle, 1974; Diamond & Holmes, 1976). It 

is now accepted that cGMP relaxes, rather than contracts, smooth muscle. 

Evidence for this was obtained using nitrovasodilators, which release the smooth 

muscle relaxant NO (Ignarro & Kadowitz, 1985; Murad, 1986; Waldman & 

Murad, 1987; Kerwin & Heller, 1994; see below), and produced relaxation 

concomitantly with increased intracellular cGMP levels ([cGMPJj; e.g. in rat 

myometrium (Diamond & Holmes, 1975) canine femoral artery (Diamond & 

Blisard, 1976) and several other smooth muscles (Schultz et al, 1977; Katsuki et 

al, 1977 b)). NO increases cGMP levels via activation of soluble guanylyl

cyclase (Murad & Aurbach, 1977; Katsuki et al, 1977 a; Arnold et al, 1977; Murad 

et al, 1978, 1981) by binding to its active haem centre (Gerzer et al, 1988). The 

evidence is now such, that it is almost universally accepted that cGMP is the 

inhibitory second messenger for NO (see Nakatsu & Diamond, 1989; Ward et al, 

1992 a).

The intracellular receptor protein for cGMP, cGMP-dependent protein 

kinase (PKG), was first described in 1970 (Kuo & Greengard, 1970). PKG is 

closely related in structure and function to PKA, discussed earlier, but is less 

widely distributed, with highest concentrations found in smooth muscles (Francis 

& Corbin, 1994). PKG is probably responsible for mediating the

majority, but not all (Wrenn & Kuo, 1981; Hartzell & Fischmeister, 1986; 

Hofmann et al, 1992; Altenhofen et al, 1991), of the inhibitory effects of cGMP 

within smooth muscles (see Francis & Corbin, 1994) by modulating smooth 

muscle [Ca2+]j metabolism (Collins et al, 1986; Schini et al, 1987; Bukoski et al, 

1989; Morgan & Morgan, 1984). One, or several, of the following mechanisms 

could explain the cGMP/PKG-evoked relaxation. Either by:-
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a) Prom oting Ca2+ Extrusion from the Cell: Ca2+ efflux may be achieved 

by PKG-dependent activation of the plasma membrane associated, calmodulin- 

stimulated Ca2+-ATPase (Popescu et al, 1985; Rashatwar et al, 1987; Yoshida et 

al, 1991) although a direct phosphorylation of the ATPase has yet to be 

demonstrated (Vrolix et al, 1988). A second mechanism could be the stimulation 

of the 3Na+/Ca2+-exchanger, possibly via stimulation of the Na+/K+-ATPase, 

which has been demonstrated in vascular smooth muscle cells (Furukawa et al,

1991).

b) Prom oting Intracellular Ca2+ Sequestration or Binding: Most 

evidence for this mechanism comes from vascular smooth muscle. Nitroprusside 

and the membrane permeable cGMP analogue, 8-bromo-cGMP, each inhibited 

noradrenaline-induced contractions of rat aortic rings in Ca2+-free medium 

(Lincoln, 1983; Karaki et al, 1988), suggesting intracellular sequestration o f Ca2+, 

stimulated by cGMP. The intracellular store for this sequestered Ca2+ is probably 

the S.R.. Cyclic GMP directly increased Ca2+ uptake into the S.R. o f rat aortic cells 

(Twort et al, 1988) and selective inhibitors of the S.R. Ca2+-ATPase, inhibited 

nitroglycerin-induced relaxations (Luo et al, 1993). These processes are probably 

regulated by PKG (Cornwell & Lincoln, 1989). Indeed, PKG catalyzed the 

phosphorylation of the S.R. Ca2+-ATPase regulatory protein, phospholamban, in 

vitro (Sarcevic et al, 1989; Cornwell et al, 1991; Karczewski et al, 1992) which 

was correlated with its activation and reduced [Ca2+]j.

c) Modifying the Activity of the Contractile A pparatus: As with cAMP 

and PKA, cGMP-activated PKG is probably involved in decreasing the Ca2+
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sensitivity o f MLCK (Adelstein et al, 1982; Pfitzer et al, 1982; Karaki et al, 1988; 

Rapoport & Murad, 1983; Nishimura & Van Breeman, 1989; McDaniel et al,

1992; Smith et al, 1993) although, to date, this hypothesis lacks direct 

experimental support. PKG may also activate protein phosphatases, resulting in 

dephosphorylation of the contractile protein, myosin light chain, thereby eliciting a 

relaxation (Driska et al, 1989; see Fig 1).

d) Inhibiting the Formation and Action of Inositol Phosphates: Several 

investigators have suggested that cGMP elevations inhibit the release of Ca2+ from 

IP3-sensitive storage sites in smooth muscle cells (Collins et al, 1986; Godfraind, 

1986; Meisheri et al, 1986 b; Rapoport, 1986; Jin et al, 1993; Murthy et al, 1993

a). Several lines of evidence support this; transfected PKG inhibited IP3 formation 

and thrombin-evoked [Ca2+]j mobilization in Chinese hamster ovary cells (Ruth et 

al, 1993). PLC activation, which stimulates IP3 formation, was also inhibitied due 

to the phosphorylation of one or more G proteins by PKG thereby inhibiting their 

GTPase activity (Hirata et al, 1990; Light et al, 1990). Recently PKG, like PKA, 

has been shown to phosphorylate the IP3 receptor, inhibiting IP3 receptor- 

dependent Ca2+ activation (Komalavilas & Lincoln, 1994).

e) Reducing Extracellular Ca2+ Entry by Channel Closure: NO, and

NO-donors, presumably acting via cGMP, and possibly PKG, hyperpolarized 

certain vascular and non-vascular tissues such as the canine proximal colon 

(Thombury et al, 1991; Ward et al, 1992 a; Koh et al, 1995) and pyloric sphincter 

(Bayguinov & Sanders, 1993), opossum oesophagus (Du et al, 1991; Conklin & 

Du, 1992), rabbit basilar and canine and porcine coronary arteries (Tare et al, 

1990; Rand & Garland, 1992; Taniguchi et al, 1993). Recent evidence suggests 

that within the canine colon there are three types of K+ channel which are activated
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by NO or NO donors (Koh et al, 1995). One of these channel types is the BK, 

Ca2+-activated K+ channel, which corresponds with previous studies on the

channel-opening effects of NO (Thombury et al, 1991; Murray et al, 1994; Khan 

et al, 1993). When activated, these channels hyperpolarize the membrane and 

inhibit Ca2+ entry through voltage-activated Ca2+ channels, thereby producing a 

relaxation. Significantly, Ca2+-activated K+ channels are also targets for PKG 

(Robertson e ta l , 1993; Taniguchi et al, 1993; White et al, 1993).

The relative importance of these various [Ca2+]i control systems probably 

varies within different tissues and it may be that, in certain cases, more than one of 

these systems is activated at a time to induce relaxation.

IV) Cyclic Nucleotide Cross-Activation of Protein Kinases

Smooth muscle relaxation is not always due to the actions of one 

biochemical process acting in isolation from other intracellular mediators. The 

phenomenon of cross-activation, defined as a cross interaction between two or 

more second messenger pathways under physiological conditions, is believed to 

occur with cyclic nucleotides and their respective protein kinases.

Originally, the cyclic nucleotide specificities of PKA and PKG were 

thought to serve as precise means of regulating cellular function, allowing the 

changes in only one cyclic nucleotide, followed by activation of its protein kinase, 

to control a particular regulatory pathway (Lincoln & Corbin, 1983). However, 

PKA and PKG are homologous proteins that share similar functions (Gill et al, 

1976; Corbin & Lincoln, 1978; Lincoln & Corbin, 1983; Takio et al, 1984; Hanks 

et al, 1988; Scott, 1991; Hoffmann et al, 1992) and a structural similarity between 

their cyclic nucleotide binding sites (Weber et al, 1987, 1989). Because of this
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structural similarity PKG is able to bind cAMP, although with an affinity some 50 

times lower than that of PKA for cAMP. However, autophosphorylation of PKG 

improves its affinity for cAMP by up to 10 times (Foster et al, 1981; Landgraff et

al, 1986). This, paired with the fact that cAMP levels in most smooth muscles can 

be up to 5 times higher than cGMP levels (Francis et al, 1988) means that small 

elevations in [cAMP]j could cross-activate PKG, possibly producing relaxation. 

Support for this has recently emerged; relaxing agents which raised [cAMP]j in 

gastric muscle cells and pig coronary arteries, besides activating PKA, also 

increased PKG activity (Jiang et al, 1992; Jin et al, 1993). Indeed, in some cases 

PKG may mediate the relaxation of both cyclic nucleotides (Cornwell & L incoln, 

1989; Lincoln et al, 1990; Lincoln & Cornwell 1991), for example;

1) PKG-specific analogues, but not PKA-specific ones, relaxed guinea-pig 

coronary arterial and tracheal smooth muscle (Francis et al, 1988).

2) Restoration of PKG, but not PKA, to PKG-depleted aortic smooth 

muscle cells restored the Ca2+-lowering {i.e. relaxing) effects elicited by either 

cGMP or cAMP (Lincoln et a/,1990).

3) Low concentrations of cAMP increased, whereas cGMP and higher 

concentrations of cAMP inhibited, Ca2+ channel opening in rabbit portal vein cells 

(Ishikawa et al, 1993), indicating a cAMP concentration-dependent activation of 

PKG.

PKA may also be cross-activated by cGMP, but this is rare and not directly 

applicable to smooth muscle relaxation. For example, the cGMP-induced 

accumulation by a heat stable enterotoxin in intestinal epithelial cells, increased 

chloride conductance (Forte et al, 1992), an effect mimicked by cAMP analogues 

that potently activate PKA. This contrasts with the ineffectiveness of cGMP 

analogues. PKA is present within these cells whereas there is no measurable PKG

53



(Forte et al, 1992). This type of cross-activation may also occur in vivo for 

example in Leydig cells where atrial natriuretic factor-induced cGMP increases are 

proposed to increase testosterone production by activating PKA (Schumacher et al,

1992).

In general, although the effector specificity of protein kinases provides a 

mechanism for defined and precise regulation of cellular function, cross-activation 

of these enzymes permits some flexibility in this regulation, perhaps reflecting an 

opportunist mechanism of the cell, i.e. the utilisation of an additional second 

messenger to regulate a pathway that is already in place. This may be analogous to 

the situation whereby two inhibitory transmitters, which perform essentially the 

same function, appear to be released together within the same tissue (see 

Synergistic Transmitter-Mediated Relaxation).

4) ATMS

Clearly, relaxation of smooth muscle involves several different processes, 

from the initial agonist-receptor interaction to the ultimate movement o f the actin 

and myosin filaments creating the relaxation event. This thesis has targeted, for 

study, the identification of the transmitter processes underlying relaxation, which 

encompasses both the putative transmitter substance(s), and the intracellular 

transduction process(es) activated by the transmitter(s). It represents my 

contribution to furthering the understanding of one particular aspect o f neuronally- 

mediated relaxation namely, NANC-mediated relaxation.

This can no longer be regarded as involving a single inhibitory mediator 

and is now commonly accepted as being the result o f two or more substances. The 

added complexity of such a system requires definitive investigation to determine
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the nature of the substances involved. For this puipose electrical, mechanical and 

biochemical procedures were employed utilising the spontaneously active, non- 

propulsive smooth muscle of the gpIAS, eminently suited to this purpose, 

possessing as it did, a well defined and developed NANC inhibitory innervation 

which was manifested as large IJPs and relaxations in response to nerve 

stimulation.

A study of the membrane responses to neuronally-released transmitters, 

using intracellular electrical recording, simultaneously with corresponding 

mechanical events, was undertaken. The electrical changes produced by nerve 

stimulation were measured as IJPs, the initial responses to neuronally released 

inhibitory transmitters. The electrically-evoked IJPs comprised two components, 

the nature of which, by pharmacological analysis, were found to be ATP or a 

closely-related analogue and NO, or a related substance.

The IJPs produced by nerve-stimulated release of these substances acting 

on the tissue are a result of large changes in ionic fluxes across the cell membrane. 

The identity of the ion(s) responsible for the separate IJP components, as revealed 

pharmacologically and by altering the external ionic enviroment of the tissue, 

probably involve K+ but not Cl".

The electrical responses which preceded relaxation were, however, only 

one aspect of the inhibitory response. Accompanying these were changes in the 

levels of the intracellular cyclic nucleotides most often associated with relaxation, 

cAMP and cGMP. These changes, in response to drugs and field stimulation, were 

studied a) indirectly, using drugs which modulated the activity of the cyclic 

nucleotides and b) directly, by measuring the levels of the intracellular cyclic 

nucleotides using radioimmunoassay.

By combining the information obtained from the two aspects of this study, 

a direct correlation could be made between the electrical, mechanical and
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biochemical events involved in the relaxation of the gpIAS, thereby producing a 

more integrated picture of relaxation in this tissue and fulfilling the aims of this 

thesis.
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METHODS AND MATERIALS
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n  SPHINCTERTC SMOOTH MUSCLE

The GI sphincters are located at various levels of the alimentary canal, 

separating specialised regions of the tract, where they function to prevent the 

reflux of contents and ensure their distal propulsion. No major anatomical 

differences distinguish sphincteric from non-sphincteric tissues, apart from a 

greater density of circular muscle in the former. However, due to their dense 

inhibitory NANC innervation, each sphincter responds to nerve stimulation 

with a profound relaxation. This inhibitory innervation, combined with the 

inherent tone displayed by most sphincters, makes them especially useful for 

the study of relaxation (for general review of sphincteric function see Papasova, 

1989). Within this context the gpIAS was chosen for further study because of 

its particularly well developed inhibitory innervation, even in relation to other 

sphincters, which is manifested as large inhibitory junction potentials and 

reductions in tone in response to nerve stimulation.

I) Guinea-Pig Internal Anal Sphincter (gpIAS)

The sphincteric region at the distal end of the digestive tract actually 

consists of two sphincters, the internal and external anal sphincters. However 

the external anal sphincter is skeletal rather than smooth muscle. The internal 

anal sphincter (IAS) is responsible for the involuntary retention of contents in 

the anal canal and is nearly always in a contracted state, resulting in a higher 

intraluminal pressure than the rectum (see Papasova, 1989).

The anatomy of the anal region in the guinea-pig has been described by 

Furness and Costa (1973). The guinea-pig IAS coincides with a thickening of 

the rectal wall (approximately 15-20mm long x 5mm broad), which can usually 

be recognised externally, and consists of a band of circular fibres more densely 

arranged than elsewhere in the rectoanal region (Fig. 4). The rectum and IAS 

consists of two muscle layers, the outer longitudinal muscle extending over the 

inner circular sphincteric muscle. Each muscle layer terminates some 5-10 mm
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short of the anal margin and is separated from the skin by a band of largely 

connective tissue with a few circular muscle fibres. The term gpIAS throughout 

this thesis refers to the circular muscle free from the longitudinal muscle layer 

(Fig. 4).

The gpIAS is innervated by three types of efferent nerves. First, 

sympathetic noradrenergic excitatory innervation. Pre-ganglionic axons 

emanating from the lumbar spinal cord synapse in the inferior mesenteric 

ganglion with postganglionic noradrenergic neurons. The latter directly 

innervate the gpIAS via the pudendal nerves. Secondly, cholinergic excitatory 

nerves running via the pelvic nerves enter both the circular and longitudinal 

muscles of the IAS and synapse with postganglionic intramural neurons. The 

third type of efferent nerves is parasympathetic, with cell bodies located in the 

sacral region of the spinal cord. Axons of this third type leave by the sacral 

ventral roots and run in the pelvic nerves to synapse with postganglionic non- 

adrenergic, non-cholinergic (NANC) intramural neurons in the pelvic plexuses 

which then enter the IAS (Costa & Furness, 1973) (see Fig. 4). In vivo the 

inhibitory motor responses emanating from the myenteric plexus are activated 

only during the rectoanal inhibitory reflex caused by rectal distension (Costa & 

Furness, 1973; Frenckner, 1975; Frenckner & Ihre, 1976; Tamura et al, 1989). 

In vitro electrical stimulation of the IAS results in a profound relaxation in this 

(Crema et al, 1983; Lim & Muir, 1983, 1985, 1986) and other species such as 

humans (Burleigh et al, 1973, 1979; Burleigh, 1991, 1992) and monkeys 

(Rayner, 1979). Proposed mediators of these inhibitory responses are ATP 

(Lim & Muir, 1986), VIP (Biancani et al, 1984, 1985; Rattan & Chakder, 1992) 

and, more recently, NO (Burleigh, 1991, 1992; Chakder & Rattan, 1992, 1993 

a, b; Craig & Muir, 1991; McKirdy, 1992; O'Kelly et al, 1992, 1993; Rattan et 

al, 1992; Rattan & Chakder, 1992; Tottrup et al, 1992).
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Figure 4 Top: Position of the guinea-pig internal anal sphincter (x5). In 
the stretched, intact preparation (a) the approximate location of the sphincter is 
indicated by a slight swelling of the rectal wall. In (b) a longitudinal incision in 
the rectum has been made and the mucosa and submucosa removed. The 
sphincter can be identified as a band of circular smooth muscle in which the 
fibres are more densely arranged than elsewhere in the rectal wall. The 
sphincter is thus easily differentiated from the connective tissue, which is 
adjacent to the anus. Bottom: Schematic representation of the innervation of 
the internal anal sphincter. 1 & 3 are cholinergic intramural excitatory neurons; 
2 is a intramural inhibitory NANC neuron; and 4 is a sympathetic excitatory 
neuron. (Adapted from Gonella, Bouvier & Blanquet, 1987).
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2) DISSECTION

I) Guinea-Pig Internal Anal Sphincter

Dunkin-Hartley guinea-pigs (250-500g) of either sex were killed by 

cervical dislocation and bled. Following a mid-line incision, the peritoneal 

cavity was opened, and the descending colon exposed as it passed into the 

pelvic cavity. The pubic symphisis was split and a segment of the rectum, 

including the anal region (~5cm), removed and transferred to a Sylgard-coated 

petri dish containing oxygenated Krebs solution (95% 0 2, 5% C 0 2). A 

longitudinal incision was made in the rectoanal canal from the anal end. The 

rectum was pinned out, and the skeletal and connective tissue forming the 

external sphincter, removed. The mucosa and submucosa were removed and the 

sphincter identified with the aid of a dissecting microscope (Fig. 3). The 

longitudinal muscle layer was carefully removed to leave only the circular 

muscle of the IAS. The gpIAS was then transferred to a horizontal organ bath 

and pinned to the Sylgard-coated base (Fig. 5). It was continually perfused with 

oxygenated Krebs solution, using a pump (Gilson minipuls 3; 4ml min-1), at 

37±0.5°C, containing atropine and phentolamine (each lpM), except when 

stated otherwise. The gpIAS was attached by a thread to an isometric force 

displacement transducer (Grass FT03C) to measure mechanical activity. The 

other end was threaded through a bipolar Ag/AgCl ring electrode (o.d. 2mm 

and 2mm apart) for electrical field stimulation (EFS) which was provided by a 

Devices type 2521 stimulator, triggered by a Devices Digitimer (0.1ms, 

l-40Hz, supramaximal voltage).
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Figure 5: Organ bath for simultaneous measurements of intracellular 
electrical and mechanical activity. The bath comprised a central trough (50 x 10 
x 10mm) cut from a perspex block (110 x 80 x 20mm). The block was drilled to 
accept stainless steel inlet tubes (o.d. 2mm) for Krebs' solution perfusion and 
two outlets for drainage. One end of the tissue was pinned to the Sylgard base 
of the bath, the other attached, by a thread, to an isometric transducer. Field 
stimulation by an isolated stimulator was affected via Ag/AgCl ring electrodes 
(V+ - V“). The bath was perfused (4ml min-1), using a pump, with oxygenated, 
pre-heated Krebs' solution (37±0.5°C), via the two inlets. The polythene tubing 
(o.d. 2mm) containing the Krebs' solution was surrounded by an outer tubing 
(o.d. 10mm) containing heated liquid paraffin, circulated by a thermostatically 
controlled pump (Tempette TE-7).
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3) APPARATUS AND TECHNIQUES

I) Intracellular Electrical and Simultaneous Mechanical Recording

The perspex horizontal organ bath (50 x 10 x 10mm; volume 3ml; 

Figure showing organ bath) was mounted on two non-conducting Bakelite 

supports attached to a steel plate (200kg) which in turn rested on a marble table, 

supported by anti-vibration dampers.

The bath was perfused with Krebs' solution, using a pump (Gilson 

minipuls 3; 4ml min-1) contained in polythene tubing (o.d. 2mm) surrounded by 

an outer polythene tube (o.d. 10mm) containing liquid paraffin, pumped and 

heated to 40±0.5°C by a modified Tempette (TE-7) pump in order to maintain 

the Krebs at the constant temperature stated above.

Other apparatus included Ag/AgCl ring electrodes (o.d. 3mm), capillary 

glass electrodes (Clark Electromedical Instruments, GC 200F-15), Ag/AgCl 

plated indifferent electrode, D.C. preamplifier (Neurolog NL102), dual beam 

storage oscilloscope (Tekronix 5103N), voltmeter and gated pulse generator 

(Devices type 2521), digital recorder (CRC VR-100B, Instrutech Corp., 

U.S.A.), VHS video recorder (Sharp VC-A30HM), U.V. oscillograph (6150 

Mk II, Thom EMI) and computer (Dell 486P/33).

Intracellular electrical recordings were made using conventional 

capillary glass microelectrodes (Clark Electromedical Instruments, GC 200F- 

15, resistance 10-80MQ) filled with 3M KC1, connected to a probe. The 

indifferent electrode was a Ag/AgCl pellet attached to the side o f the organ bath 

and placed in the bathing solution. Electrical signals were passed to a 

preamplifier (Neurolog NL102) and displayed on a storage oscilloscope 

(Tektronix 5103N). Electrical and mechanical signals were digitized (CRC VR- 

100B, Instutech Corp., U.S.A.) and stored on a video cassette recorder (Sharp 

VC-A30HM) and played back, when required, onto a U.V. oscillograph (6150 

Mk II, Thom EMI)(Fig. 6).

61



0  0  iE
^  $ o 
>  «  0)

<  "O
3  o

D) E
0 7 5

Q .

Q .

^ ■ o

CO O  ±i O O) O

O Q 
" D  —a) q.

T3
§
C/3bO
1
C /2

<

CD

3
«4—Io

C/3
CD
C/3C3oOh
C/3
CD*-i
3O
§
J3

o
CD

a

cd
O

o_0J
3

c5j
3

3
o
cd
H

T3
(-4
o
o
(DJ-i

T3
CD
C/3
3

C/3

I
cdOh
&
o

S-»
c
CDa
CD
& 0

§

'sO
i *
3DO

C /2

PCh
W



II) Criteria For Cell Penetration

A cell was accepted for electrophysiological investigation provided the 

following criteria were satisfied;

a) the penetration was sharp and the membrane potential stable, varying 

by not more than 2mV, over an initial period of approximately 10s,

b) inhibitory junction potentials were observed in response to nerve 

stimulation,

c) the voltage measured prior to cell penetration was restored following 

withdrawal of the microelectrode.

III) Administration of Drugs

Drugs were administered in three ways:

1) By addition to the reservoir containing the Krebs' perfusing the organ 

bath. Drugs were prepared in distilled water before dilution with Krebs' 

solution and subsequent addition to the reservoir, 2) from a microsyringe 

(volume 25pi) placed directly into the bath close to the recording site, or 3) by 

pressure injection using a Picospritzer (Picospritzer II, General Valve 

Corporation, N.J., U.S.A.). Using this technique, although the concentration of 

drug may be high, the applied substances are less likely to cause desensitization 

of the entire tissue because of the small area over which the drug is added. 

However, for the same reason, no changes in tension are detectable. Using this 

method drugs were applied, from micropipettes which had their tips broken 

back to 2-20 pM diameter. The pipette tip was placed to within approximately 

1mm of the recording site before application of the drugs (20-30 psi). The 

variation in ejection duration is indicated in the text.
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IV) NADPH-Diaphorase Staining

NADPH-diaphorase, is proposed to be nitric oxide synthase (NOS; Hope 

et al, 1991; Valtschanoff et al, 1992). Histochemical staining for this enzyme is 

now routinely used to detect the presence of NOS within tissues. NOS 

containing regions stained dark blue using this technique.

Following dissection the gpIAS was placed in fixative containing 4% 

paraformaldehyde in 0.1M phosphate buffer solution (PBS) for 1 hour at 37°C. 

The tissues were then transferred to a cryoprotectant solution containing 30% 

sucrose in 0.1M PBS until they sank to the bottom (-15 minutes), signifying 

that the tissues were saturated with the cryoprotectant, after which they were 

snap frozen in liquid nitrogen. Transverse and longitudinal sections (20pM) 

were cut using a Cryocut 1800 (Reichert-Jung). The slivers of tissue were 

transferred to glycerine-coated slides and incubated in 0.1M PBS containing

0.25% Triton X-100 for 10 minutes. The slides were then placed in a 0.1 M PBS 

solution containing 0.2mg/ml nitro blue tetrazolium and 0.5mg/ml p-NADPH 

and incubated in the dark at 37°C for one to two hours. The reaction was 

terminated by washing the slides in 1M PBS. The slides were then dehydrated 

in increasing concentrations of ethanol (75%, 95% and 100%) for 1 minute at a 

time and then transferred to increasing concentrations of Histoclear (50%, 75% 

and 100%) for approximately five minutes each. The slides were allowed to dry 

before being mounted.

V) Measurement of Cyclic Nucleotides

Levels of both cyclic adenosine 3', 5'-monophosphate (cAMP) and 

cyclic guanosine 3', 5'-monophosphate (cGMP) in the gpIAS were measured 

by radioimmunoassay (RIA; Steiner et al, 1972), using the scintillation 

proximity assay (SPA) technique. The effects on cyclic nucleotide levels o f 

drugs and field stimulation were measured.
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a) Sample Collection

Tissues were dissected out as previously described, weighed, mounted 

between a pair of platinum electrodes (o.d. 4mm) and placed in a heated 

vertical organ bath (15ml) containing oxygenated Krebs' solution (95% 0 2, 5% 

C 0 2) at 37±0.5°C. Atropine and phentolamine (each lpM ) were always 

present. The organ bath temperature was maintained using an electric pump 

(Grant W6).

Tension on the gpIAS was monitored using an isometric force 

transducer (Maywood, Type 49034). Tissues were stimulated by agonists or an 

isolated stimulator (Pfizer; 0.1ms, 1-10Hz, supramaximal voltage), with 

mechanical activity measured and displayed on a pen recorder (Grass or 

Multitrace 8, Lectromed MT8P).

Upon field stimulation or drug addition, after maximal relaxation had 

been reached, the tissues were removed rapidly from the organ bath and snap 

frozen with a pair of stainless steel clamps which had previously been 

immersed in liquid nitrogen. After clamping, the tissues were immediately 

immersed in the liquid nitrogen to ensure freezing of the entire tissue. The 

whole process, from tissue removal to freezing took less than five seconds.

b) Preparation of Samples

Frozen gpIAS samples were thawed in trichloroacetic acid (0.5ml; 10% 

w/v) and homogenised using a ground glass/glass homogeniser. Cellular debris 

and precipitated proteins were removed by centrifugation (3000g; 10 min; 4°C). 

The acid-soluble fraction (the supernatant) was removed and the pellet 

discarded. The supernatant was washed with water-saturated diethyl ether 

(4 times with 5 ml), the upper ether layer being discarded each time. Remaining 

traces of ether were driven off by placing the glass sample tubes in a heated 

water bath (80°C for 5 mins). The samples were then frozen (-20°C) until 

required for assay.
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c) Radioimmunoassay for cAMP and cGMP

After thawing, an aliquot of each sample was made up to the appropriate 

volume with sodium acetate buffer (50mM, pH 5.8, 0.01% (w/v) sodium azide; 

55p,l o f sample diluted to 1 I O j l l I  with buffer, for cGMP assay and 10pi of 

sample diluted to 150pl with buffer for cAMP assay). Both cAMP and cGMP 

levels were measured using the acetylation method of Harper and Brooker 

(1975). The assay involves the competition between the unlabelled cyclic 

nucleotides and a fixed quantity of radioactively (125I)-labelled cAMP or cGMP 

for a limited number of binding sites on a cGMP specific antibody and a 

method to separate the antibody-bound from the unbound material. Unlabelled 

antigens, in this case cAMP or cGMP from samples or standards, together with 

a fixed amount of radioactively-labelled cyclic nucleotides are allowed to react 

with a constant amount of primary antibody raised to the appropriate cyclic 

nucleotide. An inverse relationship therefore exists between the amount of 

bound radioactivity and the amount of cAMP or cGMP present in the sample,

i.e. the higher the levels of cyclic nucleotide in the sample the smaller the 

degree of radioactively-labelled cyclic nucleotide binding to the primary 

antibody. The antibody-bound cAMP or cGMP is then reacted with the SPA 

reagent, which contains anti-rabbit second antibody bound to fluomicrospheres. 

Any radioactively-labelled cyclic nucleotide bound to the primary rabbit 

antibody will therefore be immobilized on the fluomicrosphere, which then 

produces light which can be measured using a scintillation counter. The 

acetylation method was used since it markedly increased the sensitivity o f the 

assay by increasing the affinity of the cyclic nucleotide for its antibody. The 

samples were acetylated at room temperature by adding lOpl of the acetylating 

reagent; a mixture of acetic anhydride and triethylamine (1:2, v/v), directly into 

the solution, and vortexed immediately. Either guanosine 3', 5'-cyclic 

phosphoric acid 2'-0-succinyl-3-[125I] iodotyrosine methyl ester or adenosine
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3', 5'-cyclic phosphoric acid 2'-0-succinyl-3-[125I] iodotyrosine methyl ester 

was then added (50pi), as the tracer, to each sample. Subsequently, either the 

cAMP or cGMP antiserum (50 pi), followed by the SPA anti-rabbit second 

antibody (50pi) were added. The samples were mixed on an orbital shaker for 

15-20 hours at room temperature (15-30°C) at 200 rpm. The radioactivity 

bound to the fluomicrospheres was then determined using a P-scintillation 

counter (Fig. 7).

A standard curve was constructed for each assay (Figs. 8 & 9); this 

consisted of a duplicate sample of each of the following concentrations of 

cAMP (expressed as fmol):

2, 4, 8, 16, 32, 64, 128

or concentrations of cGMP (expressed as fmol):

8, 16, 32, 64, 128, 256, 512

The standards were assayed as described above. The standard curves 

were used to obtain the unknown cAMP or cGMP content present in each 

sample.

4) SOLUTIONS AND DRUGS

I) Physiological Salt Solution

Krebs' solution with the following composition (mM) was used 

throughout the investigation: NaCl, 118.4; NaHC03, 25.0; NaH2P 0 4, 1.13; 

KC1, 4.7; CaCl2, 2.7; MgCl2, 1.3; glucose 11.0; pH 7.4.

CP-free (0[Cl"]o) Krebs solution was made by replacement o f NaCl with 

sodium glucuronate, CaCl2 with calcium gluconate, KC1 with potassium 

gluconate (Saha et al, 1992) and MgCl2 with M gS04. It contained (mM) 

sodium glucuronate, 118.4; potassium gluconate, 4.7; calcium gluconate, 12.0, 

M gS04, 6.0; NaHC03, 25.0; NaH2P 0 4, 1.13; glucose, 11.0; pH 7.4. The 

concentration of divalent ions was raised to compensate for binding of Ca2+ by 

organic anions (Aickin & Brading, 1984) as described by Saha et al (1992).
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Light if L* bound

Ab +(L or L*) 'sT Ab or AbL'

F = fluomicrosphere with anti-rabbit second antibody

Ab = primary antibody

L* = labelled ligand

L = unlabelled ligand

Figure 7: Representation of the scintillation proximity assay (SPA). The 
assay is based on the competition between radioactively (125I) labelled (L*) and 
unlabelled cyclic nucleotide (L; cAMP or cGMP) for a limited number of 
binding sites on a cyclic nucleotide-specific primary rabbit antibody. The 
antibody-bound cyclic nucleotide is reacted with the "SPA reagent" which 
contains anti-rabbit second antibody (Ab) bound to fluomicrospheres (F). Any 
labelled cyclic nucleotide bound to the primary rabbit antibody is immobilised 
on the fluomicrosphere, which then produces light. (Adapted from Amersham 
SPA handbook).
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Figure 8: Standard curve for the radioimmunoassay of cAMP. The 
concentration of cAMP (fmol/50pl) is plotted against the percentage bound for 
each standard (%B/B0). The concentration of cAMP is inversely proportional to 
%B/B0.

100

80

~0
c
D
O

jD
C

60

Z)
40

20

10 100 1000

cGMP (fmol/ 5 0 /ul\)
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On occasion, nifedipine was added to the Krebs' perfusate to

reduce spontaneous or evoked movement of the muscle. The organic calcium 

entry blockers such as nifedipine have been shown to produce no significant 

effect on neuro-neuronal synaptic transmission (Smith & Furness, 1988; Smith 

et al, 1988; Wood, 1989) and neuro-muscular synaptic transmission enteric 

nerves of the guinea-pig small intestine (Bywater & Taylor, 1986).

Atropine and phentolamine (each lpM ) were always present except 

when stated otherwise.

II) Drugs

adenosine 5'-triphosphate disodium salt (ATP; Sigma), apamin (Sigma), 

L-arginine (L-arg; Sigma), atropine sulphate (Sigma), bovine haemoglobin 

(HbO; Sigma), BRL 38227, [(-)-6-cyano-3,4-dihydro-2,2-dimethyl-frvms-4-(2- 

oxo-l-pyrrolidyl)-2H-l-benzo-pyran-3-ol (lemakalim; kindly donated by Smith 

Kline Beecham), 8-bromoguanosine 3', 5' cyclic monophosphate (sodium salt) 

(8-Br-cGMP; Sigma), calcium gluconate (Sigma), R(+)-IAA-94, [(6,7- 

dichloro-2-cyclopentyl-2,3-dihydro-2-methyl-l-oxo-lH-inden-5-yl)-oxy] 

(Semat), cyclic AMP scintillation proximity assay radioimmunoassay kit 

(Amersham), cyclic GMP scintillation proximity assay radioimmunoassay kit 

(Amersham), (2,2'-di-p-nitrophenyl-5,5'-diphenyl-3,3'-[3,3'-dimethoxy-4,4'- 

diphenylene] ditetrazolium chloride (nitro blue tetrazolium; Sigma), 

glibenclamide (Semat), Histoclear (National Diagnostics), isosorbide dinitrate 

(IDN; Sigma), p-nicotinamide adenine dinucleotide phosphate diaphorase 

(p-NADPH; Sigma), N®-nitro-L-arginine methyl ester hydrochloride (L- 

NAME; Sigma), LY-83583, [6-(phenylamino)-5,8-quinolinedione] (Semat), 

phentolamine mesylate (Ciba-Geigy), phenylephrine hydrochloride (Sigma), 

pituitary adenylate cyclase activating polypeptide (PACAP; kindly donated by 

Dr. J. Morrison), potassium gluconate (Sigma), M&B 22948, [2-0- 

propoxyphenyl-8-azapurin-6-one] (May & Baker), nifedipine (Sigma), reactive
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blue 2 (procion blue; RB2; Sigma), sodium glucuronate (Sigma), sodium 

nitroprusside (SNP; BDH), suramin (kindly donated by Bayer A.G.), 

tetrodotoxin (TTX; Sigma), Triton X-100 (Sigma), vasoactive intestinal 

polypeptide (porcine; VIP, Sigma). Concentrations in the bath refer to the salts 

except TTX, apamin, VIP, PACAP and HbO, which are expressed as 

concentrations of the base.

With the following exceptions, stock solutions o f drugs were prepared in 

distilled water before dilution with Krebs' solution prior to use. The following 

were prepared as ImM stock solutions as indicated; R(+)-IAA-94 (50% 

ethanol), lemakalim (50% methanol), LY83583 (10% dimethyl sulphoxide), 

M&B 22948 (50% ethanol), nifedipine (50% methanol), before dilution with 

Krebs' solution prior to use. Oxyhaemoglobin was prepared by reduction of 

bovine haemoglobin as described previously (Martin et al, 1985 a,b).

5) ANALYSIS OF RESULTS

Where appropriate, results were expressed as mean ± S.E.M., of n (a 

number of) cells or preparations. Statistical analyses were performed by means 

of Student's t test for paired or unpaired data to test for significance between 

means. A t-value of P<0.05 was taken as being significant. A minimum of three 

tissues were used to investigate each drug or combination of drugs. 

Significance values, relative to control, are shown as asterisks, where P<0.05 is 

denoted by *, PO .Ol by ** and P<0.001 by ***. In figs. 55 & 56 significance 

between separate histograms, other than contol, where P<0.05 is denoted by #.
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RESULTS
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1) ELECTRICAL AND MECHANICAL

I) Resting Properties

Following pinning out in the organ bath the IAS, initially, exhibited no 

tone. However upon application of stretch (lg) and a 40 minute equilibration 

period, varying degrees of additional tone (l-3g) developed. This tone could be 

maintained for several hours without additional stretch or drugs. Prior to 

experimentation, phenylephrine (lpM ) was added to the bath; a contraction 

confirmed the presence of sphincteric muscle, as non-sphincteric tissue relaxes 

to a-adrenoceptor stimulation. Tone was dependent on the maintenance of a 

spontaneous action potential discharge - in the absence of tone action potentials 

were not obtained. The maintenance of tone was unaffected by muscarinic or a- 

adrenoceptor blockade, or tetrodotoxin (lpM ) confirming its myogenic origin.

Circular smooth muscle cells of the gpIAS had membrane potentials of - 

44.2±0.2 mV (n= 1119 cells from 117 preparations; Fig. 10). Electrically, they 

displayed either spontaneous oscillations in membrane potential and tone 

accompanied by a discharge of action potentials (maximum amplitude 60mV, 

1-2 Hz frequency; Fig. 11) or were relatively quiescent (e.g. see Fig. 13).

II) Response to Electrical Field Stimulation (EFS^

EFS (supramaximal voltage, 0.1ms, single stimulus (ss) or trains of 5 

stimuli at 5, 10, 20 or 40 Hz), inhibited spike discharge and evoked IJPs and 

relaxations (Fig. 12). IJP amplitude was not significantly affected by atropine 

and phentolamine (each lpM; Fig. 13). The ability to elicit them in the 

presence of both atropine and phentolamine indicated that the IJPs were 

mediated by NANC inhibitory nerves. Following a single stimulus, the IJPs 

peaked in 361±31 ms and lasted approximately Is (n=25 from 8 preparations). 

IJP amplitude increased with increasing frequency of stimulation 

(ss 19.7±l.lmV, n=165, 33 tissues; 5Hz 22.3±1.4mV, n=115, 23 tissues; 10 Hz 

27.5±1.2mV, n=145, 29 tissues; 20 Hz 29.6±1.3mV, n=151, 29 tissues; 40 Hz
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30.3±1.5mV, n=130, 26 tissues) and lasted between 1 and 2 seconds depending 

on the stimulation frequency (maximum duration at 5Hz). Following trains o f 

stimuli, IJPs were usually, but not invariably, followed by a rebound increase in 

action potential discharge, a common feature of NANC nerve-evoked IJPs in 

GI smooth muscle (Bennett et al, 1966 b; Ward et al, 1992 a). This rebound 

may be mediated by prostaglandins (Bumstock et al, 1975) or tachykinins 

(Zagorodynuk et al, 1993; Shuttleworth et al, 1993), although no evidence 

exists for this in the gpIAS. Responses to EFS were abolished by TTX (lpM ; 

Fig. 14).

On occasion, the Ca2+ channel antagonist nifedipine (lpM ) was used to 

ease impalement of cells by abolishing tone and spikes. The drug did not affect 

IJP amplitude (Fig. 15).

I ll)  Response to EFS in the Presence of L-NAME

NO is a widely distributed inhibitory transmitter within the GI tract 

(Sanders & Ward, 1992; Sanders e ta l, 1992; Rand, 1992; Stark & Szurszewski, 

1992). The effect of the NOS inhibitor L-NAME (lOOpM) was examined. 

L-NAME failed to affect resting membrane potential, as found by He & Goyal 

(1993) and Bywater et al (1993) in the guinea-pig ileum, or to significantly 

change the IJP response to EFS (supramaximal voltage, 0.1ms, single stimulus 

and trains o f 5 stimuli at 10 & 20 Hz; n=10 from 5 preparations, P>0.05; 

Fig. 16). These results apparently failed to implicate NO in the electrical 

response to EFS. However, L-NAME in the presence of high tone (~3-4g), 

significantly reduced relaxations to EFS (Fig. 17). This result confirmed the 

findings of Craig and Muir (1991) which implicated NO in neuronally- 

mediated relaxations in this tissue.
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A t r o p i n e  ( 1  p M )
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Figure 13: Failure of atropine and phentolamine (each lpM ) to 
significantly affect either the resting membrane potential or the intracellular 
electrical responses of the gpIAS to EFS (supramaximal voltage, 0.1ms, single 
stimulus (ss) and 5 stimuli at 5, 10, 20 and 40Hz) in the presence of nifedipine 
(IpM ). Records were obtained from approximately adjacent cells.

Tetrodotoxin(1 ^M)

10mV

10s

-46m V / W # i

-35rnV .................................... .... .............................

1 8g

0 5g

10s
0 8 g

SS 10Hz 20Hz 40Hz 5Hz S S 10Hz 20Hz 40Hz 5Hz

Figure 14: Effect of tetrodotoxin (TTX; lpM ) on the intracellular 
electrical (upper trace in each panel) and simultaneously recorded mechanical 
responses of the gpIAS to EFS (supramaximal voltage, 0.1ms, single stimulus 
(ss) and 5 stimuli at 10, 20 and 40Hz). TTX depolarized the membrane, 
increased tone and abolished the nerve-mediated IJPs and relaxations at each 
frequency. Records were obtained from approximately adjacent cells.
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IV) Response to EFS in the Presence of Oxyhaemoglobin (HbO)

HbO (lOpM), a proposed scavenger of NO (Martin et al, 1985 a, b), also 

failed to significantly attenuate the responses, either electrical or mechanical, to 

EFS (Fig. 18)

V) Response to EFS in the Presence of K+ Channel Modulators

In the gpIAS, the responses produced by inhibitory NANC nerve 

stimulation are mediated by an increase in K+ conductance (Lim & Muir, 1985) 

and are abolished by the the non-specific K+ channel blocker, 

tetraethylammonium (Lim, 1985; Baird, 1990). In the present study, the effects 

o f lemakalim (50pM), a proposed KA1P channel opener (Weston & Edwards, 

1992), glibenclamide (lOpM), a KATP channel blocker (Buckingham et al, 1989) 

and the bee venom apamin, which blocks small conductance Ca2+-activated K+ 

channels (Banks et al, 1979; Shuba & Vladimirova, 1980) were examined to try 

define, more fully, the K+ channel involved.

Lemakalim (30-50pM) slowly hyperpolarized the membrane and 

reduced tone. IJP amplitude was reduced, but this was probably due to the 

membrane hyperpolarization rather than an effect on the IJPs per se. Upon

washout of the drug, the membrane potential and IJPs were restored (Fig. 19) ( a .
(^i)

Glibenclamide (10pM) had no effect on IJPs or relaxations (Fig. 20^ These 

results indicated that the KATP channels did not mediate the neuronally evoked 

hyperpolarization of the gpIAS.

Previous studies had shown that apamin blocked evoked IJPs (Lim, 

1985; Baird, 1990), however, in contrast, the present investigation 

demonstrated that apamin failed to abolish either the IJPs or relaxations in 

response to EFS. Possible reasons for this anomaly will be discussed later.
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VI) Response to EFS in the Presence of Apamin

Apamin (0.3pM) evoked a transient depolarization (Fig. 21) and 

significantly (P<0.001) reduced IJP amplitude, evoked by EFS (supramaximal 

voltage, 0.1ms, single stimuli, 5 stimuli at 5, 10, 20 and 40Hz), at all 

frequencies (Figs. 21 & 22). Following a single stimulus (0.1ms, supramaximal 

voltage) IJPs could be resolved into two components. A fast-to-peak 

(3 61 ±3 lms, n=25 cells from 8 preparations) IJP component, obtained in the 

absence of apamin was changed and a significantly (P 0 .001) slower-to-peak 

(530±17ms, n=16 cells from 4 preparations) component revealed (Fig. 23). 

Higher concentrations of apamin (lpM ), far in excess of that required to block 

Ca2+-activated K+ channels (Capoid & Ogden, 1989), failed to further 

significantly reduce the electrical and mechanical responses to EFS 

(supramaximal voltage, 0.1ms, single stimuli, 5 stimuli at 5, 10, 20 and 40Hz). 

This would apparently indicate that two inhibitory substances mediate the IJP 

in this tissue.

VII) The Apamin-Sensitive Component of the IJP

The mediator of the fast, apamin-sensitive component, of the IJP was 

investigated using two purinoceptor antagonists, suramin (Dunn & Blakeley, 

1988; Ohno et al, 1993; Hoyle et al, 1990) and reactive blue 2 (Kerr & Krantis, 

1979; Choo, 1980; Crema et al, 1983; Manzini et al 1986). The reason for this 

choice was the evidence for ATP involvement in the evoked IJP in this tissue 

shown previously (Lim & Muir, 1986). Suramin has been claimed to be an 

effective P2-purinoceptor antagonist in reducing IJP amplitude in the guinea-pig

taenia caeci (Den Hertog et al, 1989), although this has been disputed 

(McConalogue et al, 1994). Suramin (lOOpM) reduced the mean amplitude of 

the IJP significantly (P 0 .001) following EFS (supramaximal voltage, 0.1ms, 

single stimuli, 5 stimuli at 5, 10, 20 and 40Hz), at all frequencies (Figs. 24 & 

25). This smaller suramin-insensitive component bore a marked resemblance to
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Figure 22: Effect of apamin (0.3pM) on IJP amplitude (mV) in response 
to increasing stimulation frequency (Hz; single stimulus (ss) and 5 stimuli at 5, 
10, 20 and 40 Hz, supramaximal voltage, 0.1ms). Each bar represents the mean 
± S.E.M., n = 27 (minimum), from 10 different tissues (minimum). Apamin 
significantly (P0 .001) reduced the amplitude of the IJPs at all frequencies.

-47mV
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Figure 23: Effect of apamin (0.3 pM) on time-to peak of two evoked 
IJPs, from approximately adjacent cells (~lmm), superimposed by coincidence 
of their stimulus artefacts, in response to a ss (supramaximal voltage, 0.1ms) 
from the same experiment. Apamin significantly (P<0.05) increased the IJP 
time-to-peak, but reduced IJP amplitude.
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the apamin-insensitive component, not only in amplitude, but also in its 

significantly slower time to peak; following a single stimulus (0.1ms, 

supramaximal voltage) the fast-to-peak (349±4ms, n=23 cells from 7 

preparations) IJP component, obtained in the absence of suramin was changed, 

and a significantly (PO.OOl) slower-to-peak (510±9ms, n=17 cells from 7 

preparations) IJP component revealed (Fig. 26). The accompanying mechanical 

activity usually became irregular in the presence of suramin.

Reactive blue 2 (lOOpM) also reduced the amplitude of the apamin- 

sensitive IJP component but hyperpolarized the membrane and lowered tone 

irreversibly. These effects could, themselves, have accounted for the reduction 

in IJP amplitude and could not, unequivocally, be related to the action o f the 

antagonist (Fig. 27).

Together, these results suggested that purinoceptors, probably P2y (Lim, 

1985; Bumstock & Kennedy, 1985; Kennedy, 1990), were involved in the fast 

apamin-sensitive component of the IJP. Support for this view came from 

experiments using ATP itself applied either by microsyringe injection (lmM - 

injection volume 3pi) or by hydrostatic pressure ejection (lOOpM). Because of 

the small volume of the drug applied to the tissue using pressure ejection, 

mechanical effects were restricted to a small number of muscle bundles which 

did not affect the overall tone of the tissue and therfore could not be monitored. 

ATP hyperpolarized the membrane and relaxed the gpIAS. The 

hyperpolarization was dose-dependent (Fig. 28). ATP (ImM), injected directly 

onto the tissue by microsyringe, resembled the fast apamin-sensitive IJPs in 

amplitude, time-to-peak, and time course (16.9±1.1 mV, n=23, from 5 

preparations; 1.7±0.2s, n=27, from 5 preparations and 5.3±0.4s, n=23 cells 

from 5 preparations respectively, (Fig. 29; see page 70-71 for control IJP 

values). These hyperpolarizations were also accompanied by relaxations. 

Significantly, the membrane hyperpolarization and relaxation produced by ATP
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Figure 25: Effect of suramin (lOOpM) on IJP amplitude (mV) in 
response to increasing stimulation frequency (Hz; supramaximal voltage, 
0.1ms, single stimulus (ss) and 5 stimuli at 5, 10, 20 and 40 Hz). Each bar 
represents the mean ± S.E.M., n = 9 (minimum), from 4 different tissues 
(minimum). Suramin significantly (P< 0.01) reduced the amplitude of the IJPs 
at all frequencies.

Suramin (100|iM) ----------- 1

Figure 26: Effect of suramin (lOOpM) on time-to-peak of two IJPs, 
from approximately adjacent cells (~lmm), superimposed by coincidence of 
their stimulus artefacts, in response to a ss from the same experiment, suramin 
increases the IJP time-to-peak but reduces IJP amplitude.
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were blocked by apamin (0.3pM), an effect noted previously in several other 

tissues (Maas & Den Hertog, 1979; MacKenzie & Bumstock, 1980; Shuba & 

Vladimirova, 1980; Vladimirova & Shuba, 1978; Fig. 30). However, attempts 

to desensitize the tissue, by superperfiising it with ATP (lOOpM) and L-NAME 

(lOOpM), failed to abolish the evoked IJPs (Fig. 31).

VIII) The Apamin-Insensitive IJP

The possibility that the slow apamin-insensitive, TTX (lpM)-sensitive 

(Fig. 32) IJP component, responsible for the major component o f relaxation 

(79.1 ± 4.5%, n=5 preparations), may be mediated by NO was then 

investigated. NO is produced from L-arginine by NOS (Palmer & Moncada, 

1989) by a stereospecific process inhibited by the L-arginine analogue, 

L-NAME (Hobbs & Gibson, 1990). For this reason, the evoked IJPs were 

examined in the presence of apamin and L-NAME. In contrast to its lack of 

effect on the fast IJP component, L-NAME abolished the slow apamin- 

insensitive component of the IJPs and relaxations to EFS (supramaximal 

voltage, 0.1ms, single stimuli, 5 stimuli at 10, 20 and 40Hz; Fig. 33).

The inhibitory effect of L-NAME was not mimicked by its stereoisomer 

D-NAME (Fig. 34) and was partially reversed by perfusion (30 minutes) with 

the NO precursor L-arginine (to 62.7 ± 7.1% of control, n=8 from 

3 preparations, single stimulus, supramaximal voltage, 0.1ms; Fig. 33).

Support for the involvement of NO in the slow component of the IJP 

came also from the inhibitory effect of HbO, a NO scavenger (Martin et al, 

1985 a, b). HbO (10pM), despite having no effect on the amplitude of the 

apamin-sensitive IJP component (Fig. 18), significantly (P 0 .001) reduced, 

reversibly, the amplitude of the slow IJP component at all frequencies (0.1ms, 

supramaximal voltage, single stimulus and trains of 5 stimuli at 5, 10, 20 and 

40 Hz; Fig. 35 & 36).
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Figure 34: Effect o f apamin (0.3 pM) alone, and in the presence of 
D-NAME or L-NAME (each lOOpM) on the intracellular electrical (upper trace 
in each panel) and simultaneously recorded mechanical responses of the gpIAS 
to EFS (supramaximal voltage, 0.1ms, single stimulus (ss) and 5 stimuli at 10, 
20 and 40 Hz). Apamin itself, transiently depolarized the membrane and 
reduced both the amplitude of the IJPs and tone. These effects were not 
significantly altered in the combined presence of apamin and D-NAME. 
Apamin and L-NAME together abolished IJPs and relaxations leaving only 
stimulus artefacts. Records were obtained from approximately adjacent cells.
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Figure 36: Effect of apamin (0.3 pM) alone and in combination with 
oxyhaemoglobin (HbO; lOpM) on IJP amplitude (mV) in response to 
increasing stimulation frequency (Hz; single stimulus (ss) and 5 stimuli at 5, 
10, 20 and 40 Hz, supramaximal voltage, 0.1ms). Each bar represents the mean 
± S.E.M., n= 26 (minimum), from 4 different tissues (minimum). Significance 
refers to comparisons between controls and apamin and between apamin alone 
and with HbO. Apamin itself significantly reduced IJP amplitude at all 
frequencies (P0 .001). This reduction was significantly (P 0 .001) enhanced by 
HbO at all frequencies.



These observations implicated NO in the slow, apamin-insensitive IJP 

component. If  this view was correct, the smaller, slower-to-peak IJP 

component, revealed by suramin, might also be mediated by NO and a 

combination of suramin and L-NAME should abolish IJPs and accompanying 

relaxations. This was indeed the case (Fig. 37). The inhibitory effect of 

L-NAME on the suramin-insensitive IJP component was reversed by 

L-arginine (lOOpM; Fig. 37). The effect o f L-NAME on IJPs and relaxations 

was not mimicked by its stereoisomer D-NAME (Fig. 38).

RB2 (lOOpM), when combined with L-NAME (lOOpM), failed to 

abolish the "RB2-insensitive" IJPs, indicating a difference between the 

mechanism of action of RB2 and that of suramin (Fig. 39).

The effect of HbO upon the suramin-insensitive component of the IJP 

was also examined. In the presence of suramin, HbO further reduced IJP 

amplitude (reversibly) at all frequencies studied (ss and trains of 5 stimuli at 5, 

10, 20 and 40 Hz, 0.1ms, supramaximal voltage; Fig. 40 & 41).

IX) Effects of Drugs Affecting Guanylyl Cyclase Activity

If  NO was involved in the IJPs and relaxations, then guanylyl cyclase 

modulators should affect IJPs and relaxations, as the effects of NO are 

mediated via this enzyme (Rapoport & Murad, 1983). The guanylyl cyclase 

inhibitor LY83583 (lOpM; Mulsch et al, 1988; Jin et al, 1993) reduced IJP 

amplitude and relaxations . in the presence (Fig. 43) 

of apamin (0.3pM). The cGMP phophodiesterase inhibitor M&B 22948 (MeB; 

30pM) and the membrane permeable cGMP analogue 8-bromo cGMP 

(8-Br-cGMP; lOOpM), each of which may have been expected to enhance NO 

activity, significantly hyperpolarized the membrane (from -43.4±0.9 mV, n=30 

from 3 preparations, to -61.9±1.0 mV, n=30 from 3 preparations, P 0 .0 0 1 , and 

from -49.9±1.1 mV, n=36 from 3 preparations, to -64.4±0.8 mV, n=23 cells 

from 3 preparations respectively, P<0.001) and relaxed the tissue as anticipated
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Figure 41: Effect of suramin (IOOjiM) alone and in combination with 
oxyhaemoglobin (HbO; IOjiM) on IJP amplitude (mV) in response to 
increasing stimulation frequency (Hz; single stimulus (ss) and 5 stimuli at 5, 
10, 20 and 40 Hz, supramaximal voltage, 0.1ms). Each bar represents the mean 
± S.E.M., n = 9 (minimum), from 4 different tissues (minimum). Significance 
refers to comparisons between controls and suramin, and between suramin 
alone and with HbO. Suramin alone significantly reduced IJP amplitude at all 
frequencies (P<0.01); this reduction was significantly (P<0.05) enhanced by 
HbO at all frequencies except 40Hz.



(Figs. 44 & 45). Neither drug increased the duration of the IJPs as has been 

proposed (Ward et al, 1992 c). These results suggested that apamin- and 

suramin-insensitive IJPs and relaxations to NANC nerve stimulation and the 

drugs which increase guanylyl cyclase activity were acting by a similar 

mechanism. Sodium nitroprusside (SNP; 50 pM), a NO donor (Bates et al, 

1991), also significantly hyperpolarized the membrane (from -43.4±0.9 mV, 

n=15 from 3 preparations to -66.4±1.6 mV, n=8 from 3 preparations, PO.OOl) 

and abolished tone. The effects were transient and declined in the presence of 

the drug; however, the NO-generating mechanism rather than NO itself may be 

responsible for this decline. During hyperpolarization IJP amplitude was also 

reduced but recovered upon restoration of the membrane potential (Fig. 46).

XJ Effects of VIP

Although a combination of L-NAME and, either apamin or suramin, 

abolished the evoked IJPs, suggesting the participation of only two mediators, 

the effects of VIP, proposed as an inhibitory transmitter in other gastrointestinal 

tissues (Goyal et al, 1980; Grider et al, 1983, 1992; He & Goyal, 1993; Grider 

1993; Makhlouf & Grider, 1993), were examined. Alone, VIP reversibly 

hyperpolarized the membrane and relaxed the gpIAS. The membrane potential, 

in the absence of VIP, was -48±1.0 mV (n=23 from 4 preparations) and in its 

presence (0.01-0.25 pM) was -67.9±2.7 mV (n=13 from 4 preparations, 

PO.OOl). The duration of the VIP-induced hyperpolarizations were prolonged 

compared with those produced by ATP and EFS. The response to VIP was not 

modified by either L-NAME (Fig. 47) or apamin (Fig. 48) suggesting that the 

hyperpolarizations and relaxations produced by VIP were not mediated by the 

release o f NO from enteric nerves as proposed (Grider et al 1992; Grider, 1993; 

Makhlouf & Grider, 1993; Murthy et al, 1994), or that VIP was the apamin- 

sensitive mediator.
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XI) Effects of [Cl~]0 Substitution

Elimination of [Cl"]0 (0[Cl“]o) with a mixture of sodium glucuronate, 

potassium gluconate and calcium gluconate hyperpolarized the membrane from 

-46.9±0.7 mV (n=28 from 5 preparations) to -60.0±1.1 mV (n=17 from 5 

preparations, P<0.001) and reduced both apamin-sensitive and -insensitive IJP 

amplitude and tone. These effects were reversible on washing (Figs. 49 & 50).

0[Cl"]o almost abolished the apamin (0.3pM)-insensitive IJPs and tone,

leaving only spontaneous depolarizations and contractions.

XII) Effects of the Chloride Channel Antagonist. IAA-94

In the presence of the chloride channel antagonist IAA-94 (30-50jaM; 

Landry et al, 1987, 1989), alone, the membrane potential increased from 

-42.7±1.1 mV (n=30 from 6 preparations) to -56.6=1=1.2 mV (n=20 from 6 

preparations, P<0.001) and the IJPs were reduced. These effects were reversible 

on washing (Fig. 51). IAA-94 reduced the amplitude of the suramin-insensitive 

IJPs, the effect being concentration-dependent. Washing partially restored 

suramin-insensitive IJP amplitude (Fig. 52).

2) HISTOLOGY

I) NADPH-Diaphorase Staining

Distinct, non-diffuse, blue stained areas could clearly be seen between 

the circular and longitudinal muscles of the gpIAS following NADPH- 

diaphorase staining, indicating the presence of NOS-containing elements, 

probably neurons, within the myenteric plexus (Fig. 53).

3) CYCLIC NUCLEOTIDE CONTENT

I) Effects of Electrical Field Stimulation

Both the cAMP and cGMP levels of the gpIAS were significantly 

(PO.OOl) raised from control values of 461.0±60.8 fmol/mg (n=8) to
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Xôr
N

Xo
CM

N

XO
N
Xm

cn
C/5

N

XOTT

N

Xo
CM

N

Xo

N

Xin

coco

>
Eo COo

O)in
o

C/3o Fi
gu

re
 

49
: 

Ef
fe

ct
 

of 
Cl

" 
re

pl
ac

em
en

t 
(0

[C
1"

]0
) 

by 
so

diu
m 

gl
uc

ur
on

at
e,

 
po

tas
siu

m
 

gl
uc

on
at

e 
an

d 
ca

lci
um

 
gl

uc
on

at
e,

 
on 

th
e 

in
tra

ce
llu

la
r 

el
ec

tri
ca

l 
(u

pp
er

 
tra

ce
 

in 
ea

ch
 

pa
ne

l) 
an

d 
sim

ul
ta

ne
ou

sly
 

re
co

rd
ed

 
m

ec
ha

ni
ca

l 
re

sp
on

se
s 

of 
the

 
gp

IA
S 

to 
EF

S 
(s

up
ra

m
ax

im
al

 
vo

lta
ge

, 
0.

1m
s, 

sin
gl

e 
sti

m
ul

us
 

(ss
) 

an
d 

5 
sti

m
ul

i 
at 

5, 
10

, 
20 

an
d 

40
H

z)
. 

Th
e 

0[
C1

"]
0 

so
lu

tio
n 

hy
pe

rp
ol

ar
iz

ed
 

th
e 

m
em

br
an

e,
 r

ed
uc

ed
 

ton
e 

an
d 

IJP
 

am
pl

itu
de

. 
Th

es
e 

ef
fe

ct
s 

we
re 

re
ve

rs
ed

 
on 

w
as

hi
ng

. 
Re

co
rd

s 
we

re
 

ob
ta

in
ed

 
fro

m 
ap

pr
ox

im
at

el
y 

ad
ja

ce
nt

 c
el

ls
.



A
pa

m
in

 
(0

.3
pM

) 
A

pa
m

in
 

(0
.3

jll
M

)

po
tas

siu
m

 
gl

uc
on

at
e 

an
d 

ca
lci

um
 

gl
uc

on
at

e 
on 

the
 

in
tra

ce
llu

la
r 

el
ec

tri
ca

l 
(u

pp
er

 
tra

ce
 

in 
ea

ch
 

pa
ne

l) 
an

d 
si

m
ul

ta
ne

ou
sl

y 
re

co
rd

ed
 

m
ec

ha
ni

ca
l 

re
sp

on
se

s 
of 

the
 

gp
IA

S 
to 

EF
S 

(s
up

ra
m

ax
im

al
 v

ol
ta

ge
, 

0.
1m

s, 
sin

gl
e 

sti
m

ul
us

 
(ss

) 
an

d 
5 

sti
m

ul
i 

at 
5, 

10
, 

20 
an

d 
40 

H
z)

. 
Ap

am
in

 
alo

ne
 

tra
ns

ie
nt

ly
 

de
po

la
riz

ed
 

the
 

m
em

br
an

e 
an

d 
in

cr
ea

se
d 

to
ne

. 
IJP

 
am

pl
itu

de
 

wa
s 

re
du

ce
d 

bu
t 

re
la

xa
tio

ns
 

are
 

un
af

fe
ct

ed
. 

Ap
am

in
 

an
d 

the
 

0[
C1

"]
0 

so
lu

tio
n 

hy
pe

rp
ol

ar
iz

ed
 

the
 

m
em

br
an

e,
 

ab
ol

ish
ed

 
ton

e 
an

d 
fu

rth
er

 
re

du
ce

d 
IJP

 
am

pl
itu

de
. 

Re
co

rd
s 

w
er

e 
ob

ta
in

ed
 

fro
m 

the
 

sa
me

 
ce

ll.



CD
CO

>
E

C D■"O'

o
C D

'O-
CDI
<
<

>
E

C D
I D

N
Xo

_N
_Lo
C \J

N

• i

N
•  X

I D

•  C/5

N
Xo

N
XO
C\J

N
XO
N

X
ID

CD
CD

N
XO

N
Xo
CM
N

XO

N
•  X

I D

>
E

C D
I D

>
Eo CDO

Fi
gu

re
 

51
: 

Ef
fe

ct
 

of 
IA

A
-9

4 
(3

0p
M

) 
on 

the
 

in
tra

ce
llu

la
r 

el
ec

tri
ca

l 
(u

pp
er

 
tra

ce
 

in 
ea

ch
 

pa
ne

l) 
an

d 
si

m
ul

ta
ne

ou
sl

y 
re

co
rd

ed
 

m
ec

ha
ni

ca
l 

re
sp

on
se

s 
of 

the
 

gp
IA

S 
to 

EF
S 

(s
up

ra
m

ax
im

al
 v

ol
ta

ge
, 

0.
1m

s, 
sin

gl
e 

sti
m

ul
us

 
(ss

) 
an

d 
5 

sti
m

ul
i 

at 
5, 

10
, 

20 
an

d 
40 

Hz
) 

in
 

the
 

pr
es

en
ce

 
of 

ni
fe

di
pi

ne
 

(l
pM

). 
IA

A
-9

4 
hy

pe
rp

ol
ar

iz
ed

 
the

 
m

em
br

an
e 

an
d 

re
du

ce
d 

IJP
 

am
pl

itu
de

, 
ef

fe
ct

s 
re

ve
rs

ed
 

on 
w

as
hi

ng
. 

Re
co

rd
s 

we
re

 
ob

ta
in

ed
 

fro
m 

ap
pr

ox
im

at
el

y 
ad

ja
ce

nt
 c

’el
ls

.



Fi
gu

re
 

52
: 

Ef
fe

ct
 o

f 
su

ra
m

in
 

(lO
O

pM
) 

alo
ne

 
an

d 
in 

the
 

pr
es

en
ce

 
of 

IA
A-

94
 

(5
0p

M
) 

on 
the

 
in

tra
ce

llu
la

r 
el

ec
tri

ca
l 

re
sp

on
se

s 
of

 
the

 
gp

IA
S 

to 
EF

S 
(s

up
ra

m
ax

im
al

 
vo

lta
ge

, 
0.

1m
s, 

sin
gl

e 
sti

m
ul

us
 

(ss
) 

an
d 

5 
sti

m
ul

i 
at 

5, 
10

, 
20 

an
d 

40 
Hz

) 
in 

the
 

pr
es

en
ce

 
of

 
ni

fe
di

pi
ne

. 
Su

ra
m

in
 

alo
ne

 
re

du
ce

d 
the

 
am

pl
itu

de
 

of 
the

 
IJ

Ps
. 

Su
ra

m
in

 
wi

th 
IA

A-
94

 
hy

pe
rp

ol
ar

iz
ed

 
the

 
m

em
br

an
e 

an
d 

fu
rth

er
 

re
du

ce
d 

IJP
 

am
pl

itu
de

, 
ef

fe
ct

s 
wh

ich
 

we
re

 
pa

rti
al

ly
 

re
ve

rs
ed

 
up

on
 

w
as

hi
ng

. 
Re

co
rd

s 
we

re
 

ob
ta

in
ed

 
fro

m 
ap

pr
ox

im
at

el
y 

ad
ja

ce
nt

 c
el

ls
.



Oh

u S j

T 3  ^  <D O rj C/3

S s  
|S
b£) £d> J3 
*“■ 3 o  o ■c *-<Vh • *-H<D oH-I
O  T 3

S c3  80

13 —H c 2c3 _3 
bD-a

’& 3
c3 '5b <u c e  o
3W) bQ fi <U •- 32 £ w O
o -g
^  <uC/3 3 

S-H033
§■

•T31
ffi
O h

Q
< 
z
Vho

in<N
w
3_o

'-t—>O<uc/3
<DC/3S-h<d>C/3
In
H

m<n
0)
3
3
0X1

la
ye

rs
, 

wi
th

 
the

 
m

ye
nt

er
ic

 
pl

ex
us

 
(M

P)
. 

Th
e 

he
av

ily
 

st
ai

ne
d 

ar
ea

s 
w

ith
in

 
th

e 
m

ye
nt

er
ic

 
pl

ex
us

 
are

 
ni

tri
c 

ox
id

e 
sy

nt
ha

se
 

co
nt

ai
ni

ng
 

ne
ur

on
s.



1078.0±64.6 finol/mg (n=14) and from 30.9±3.4 finol/mg (n=14) to 164.3+22.0 

finol/mg (n=12), respectively, in response to electrical field stimulation (~ 60 

pulses at 10Hz, supramaximal voltage, 0.1 ms) in the presence of atropine and 

phentolamine (each lpM). Nerve stimulation in the presence of apamin 

(0.5pM) *md suramin (lOOpM), which revealed smaller apamin- and suramin- 

insensitive IJPs, did not antagonize the electrically-evoked increases in either 

cyclic nucleotide, and, in fact, increased cGMP levels significantly (P<0.05) 

above that produced by nerve stimulation alone in the case of suramin (Figs. 54 

& 56).

The electrically-evoked increases in both cAMP and cGMP levels were 

abolished by a combination of apamin (0.5pM) plus L-NAME (lOOpM), 

suramin (lOOpM) plus L-NAME (lOOpM) and L-NAME (lOOpM) alone (Figs. 

54 & 56).

II) Effects of Exogenous Drugs

SNP (lOpM), which releases NO, was the only drug that significantly 

increased both cAMP and cGMP levels from control values of 461.0±60.8 

finol/mg (n=8) to 819.2±47.9 fmol/mg (n=12; P<0.01) and from 30.9+3.4 

finol/mg (n=14) to 154.3+23.8 fmol/mg (n=8; PO.OOl) respectively. ATP 

(lOpM), VIP (0.5pM) and VIP+L-NAME (lOOpM) also significantly (PO.05) 

elevated cAMP levels from a control of 461±60.8 fmol/mg (n=8) to 720.6±78.6 

fmol/mg (n=13), 705.8±53.2 finol/mg (n=10) and 1178.2+151.6 fmol/mg 

(n=l 1) respectively. These results indicate that it is only NO that mimics the 

effect of nerve stimulation by increasing the levels of both cyclic nucleotides 

(Figs 55 & 57). Interestingly, the combination of VIP+L-NAME significantly 

(PO.05) raised cAMP levels above those produced by VIP alone.
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Figure 54: Effect of nerve stimulation (N.S.; -60  pulses, supramaximal 
voltage, 0.1ms, 10Hz) alone and in the presence of apamin (AP; 0.5pM), 
apamin and L-NAME (lOOpM), suramin (SUR; lOOpM), suramin and L- 
NAME (lOOpM) and L-NAME alone (lOOpM) on cAMP levels (fmol/mg) in 
the gpIAS. Each bar represents the mean ± S.E.M., n = 8 tissues (minimum). 
Nerve stimulation alone, nerve stimulation plus apamin and nerve stimulation 
plus suramin significantly (PO.OOl) raised cAMP levels relative to control.
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produced a significant (PO .05) increase in cAMP levels relative to control. 
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than that produced by VIP alone as denoted by #.
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voltage, 0.1ms, 10Hz) alone and in the presence of apamin (AP; 0.5pM), 
apamin and L-NAME (lOOpM), suramin (SUR; lOOpM), suramin and L- 
NAME (100/iM) and L-NAME alone (lOOpM) on cGMP levels (fmol/mg) in 
the gpIAS. Each bar represents the mean ± S.E.M., n=8 tissues (minimum). 
Nerve stimulation alone, nerve stimulation plus apamin and nerve stimulation 
plus suramin significantly (P<0.01) raised cGMP levels relative to control. The 
increase produced by nerve stimulation in the presence of suramin was 
significantly (P<0.05) greater than that produced by nerve stimulation alone as 
denoted by #.
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Figure 57: Effect of SNP (10pM), VIP (0.5pM), VIP+L-NAME 
(lOOpM) and ATP (lOpM) on cGMP levels (fmol/mg) in the gpIAS. Each bar 
represents the mean ± S.E.M., n = 7 tissues (minimum). Only SNP significantly 
(PO.OOl) raised cGMP levels relative to control.
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Relaxation of the gpIAS was studied using two approaches; a) intracellular 

electrical, combined with simultaneous mechanical, recording and b) biochemical 

measurements.

The use of intracellular electrical and mechanical recording has proved a 

very valuable and powerful means of analysing relaxation in the gpIAS. Using this 

technique detailed analysis of the electrical responses from individual cells, 

representative of the entire smooth muscle preparation, together with the 

mechanical activity of the whole tissue, was made. The technique was also of great 

benefit as it allowed the prolonged analysis of membrane phenomena, essential for 

monitoring transmitter-mediated events, without damaging the cells. Furthermore, 

it is unlikely that the two separate components of relaxation, or their 

characteristics (see later), would have been discovered without the aid of 

intracellular electrical recording.

The well maintained tone (0.5-3g) of the gpIAS enabled the inhibitory 

NANC-mediated, electrical and mechanical effects of nerve stimulation to be 

easily seen. In this respect the tissue is rather unusual and compares favourably 

with other tissues such as the taenia caeci, where spontaneous tone is sporadic and 

often only lasts for short periods without drugs (Bennett & Rogers, 1967), and the 

BRP, where no tone exists in the absence of drugs (Gillespie, 1972; Creed et al, 

1975). The ability to maintain tone in the gpIAS is presumably influenced by Ca2+ 

influx during the action potential rather than diffusion of the ion into the muscle at 

rest (Ward et al, 1992 c), as both action potential discharge and tone were 

abolished by the Ca2+ channel antagonist nifedipine. The membrane potential 

which, under resting conditions was -44.2±0.2mV (n=l 119 cells), very similar to 

that previously reported (Lim & Muir, 1983, 1985, 1986), was also within the 

range where, in other GI smooth muscles (Ward et a!, 1992 c), Ca2+ channels are 

activated. Tone may also be influenced, to a small degree, by NO as L-NAME,



which inhibits NOS (Hobbs & Gibson, 1990), raised tone (0.35±0.2g, n=6 from 20 

tissues). On the other hand, it was my experience that cell impalement was easier 

when spontaneous activity was absent. This could be achieved by recording from
7

areas of low stretch tension where non-firing cells predominated.

Electrically-stimulated relaxation of the gpIAS was manifested electrically 

as NANC-mediated IJPs. These have long been utilised as a means of studying 

relaxation mechanisms and differ widely in duration and amplitude throughout the 

GI tract (see for example Ward et a!, 1992 c; He & Goyal, 1993; Zagorodnyuk & 

Maggi, 1994) and between GI and non-GI smooth muscles, such as the BRP and 

the RAc (Creed et a!, 1975; Byrne & Muir, 1984, 1985; Byrne et al, 1984). This is 

probably a reflection of different inhibitory processes among the tissues. Within 

the gpIAS, the NANC, TTX-sensitive IJPs were very large in comparison to those 

from other tissues, exceeding 40mV in response to a single pulse, significantly 

greater than that previously reported (Lim & Muir, 1985; Baird, 1990), possibly 

because of more advanced recording techniques. Pharmacological dissection and 

manipulation of the IJPs was made considerably easier by their large amplitude. 

As a result of this "dissection", using the bee venom apamin, two distinct IJP 

components indicated the involvement of at least two transmitters. This result 

extends previous investigations in this tissue (Lim & Muir, 1985; Baird, 1990) in 

which apamin abolished the IJPs. The high concentrations (0.1-5pM) of apamin 

used in the previous studies may have produced non-specific effects by blocking 

other channels besides small conductance Ca2+-activated K+ channels.

Previous studies proposed that ATP, or a related nucleotide, was involved 

as a mediator of the IJPs in this tissue as it could mimic them, both in amplitude 

and duration (Lim & Muir, 1986; present investigation) and in its ability to 

produce a K+ efflux (Lim & Muir, 1985). Nerve stimulation also increased the 

release of [3H] adenine nucleotides (Beattie et al, 1985). Importantly, the ATP-
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induced hyperpolarizations and relaxations were antagonized by apamin (0.3 pM), 

an effect noted in several other tissues (Vladimirova & Shuba, 1978, Maas & Den 

Hertog, 1979; Nelemans & Den Hertog, 1987 a) and a prerequisite for ATP's 

proposed transmitter role.

The evidence for purine involvement was further investigated using the P2- 

purinoceptor antagonists reactive blue 2 (RB2; Kerr & Krantis, 1979; Crema et al, 

1983; Manzini et al, 1986; Crist el al, 1992) and suramin (Dunn & Blakeley, 

1988; Den Hertog et al, 1989; Ohno et al, 1993; Soediono & Bumstock, 1994; 

Zagorodnyuk & Maggi, 1994). Their effectiveness differed markedly. RB2 

(procion blue) reduced IJP amplitude, but irreversibly hyperpolarized the 

membrane; this could have accounted for its inhibitoiy effect on the IJPs. Suramin 

on the other hand, despite reservations concerning its specificity (Hoyle et al, 

1990; McConalogue et al, 1995), was the more effective; membrane potential was 

unaffected and both NANC inhibitoiy responses and those of ATP were 

antagonized in parallel. Suramin, like apamin, also revealed an apparently distinct, 

slower-to-peak and smaller IJP (see later). Together these findings support and 

extend the evidence already presented (Lim & Muir, 1986) for the involvement of 

ATP in the neuronally-mediated IJPs of the gpIAS. However, one major 

discrepancy persists in this proposal; prolonged application of a desensitizing 

concentration of the drug failed to block the evoked IJPs. Similar results in other 

tissues has led to the rejection of ATP as a transmitter candidate (Ward et al, 1992

c). Clearly, either desensitization may have been incomplete, by the present 

procedure, or the substance released by NANC nerves may be a closely related 

analogue of ATP rather than the nucleotide itself.

The emergence of NO as a mediator of inhibitory transmission in several 

sphincteric tissues, such as the opossum lower oesophageal (Tottrup et al, 1991), 

canine ileocolonic (Ward et al, 1992 c), rat pyloric (Soediono & Bumstock, 1994)
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and human, rabbit and opossum internal anal (Burleigh, 1991, 1992; Tottrup et al, 

1992, 1993) and the gpIAS (Craig & Muir, 1991), suggested a high probability for 

NO involvement in the evoked IJPs of the gpIAS. Although initial investigations 

seemed to rule this out, with the IJPs unaffected by the NOS inhibitor, L-NAME, 

the identification of NO as the mediator of the apamin-insensitive IJP in the 

guinea-pig ileum (Lyster et al, 1992 a, b; Bywater et al, 1993; He & Goyal, 1993) 

was encouraging in this context. Subsequent experiments demonstrated that the 

apamin-insensitive IJPs were:-

a) evoked by narrow (0.1 ms) pulse widths, indicating their neuronal origin,

b) stereospecifically abolished by L-NAME, the NOS inhibitor,

c) inhibited by HbO, the NO scavenger, and

d) restored by L-arginine, the NO precursor.

Furthermore, histological studies demonstrated the presence of NOS- 

containing neuronal elements in the myenteric plexus of this tissue. These 

provided strong evidence in favour of neuronally-released NO as being the 

mediator of this IJP component.

Confirmation that the suramin-insensitive IJP component was also mediated 

by NO suggested that suramin and apamin each revealed what appeared to be 

identical NO-mediated IJP components and that the two drugs, although acting at 

different locations (receptor and channel respectively), produced essentially the 

same effect - antagonism of purinergically-mediated events. It is not obvious why 

apamin or suramin treatment was required to uncover the NO-mediated component 

of the IJP. It may be that during the IJP, conductance of the small Ca2+-activated 

K+ channels dominates other conductances, necessitating their blockade to enable 

the contribution of those other channels to be seen. It is equally unclear why L- 

NAME, which reduced NANC nerve-induced relaxations (Craig & Muir, 1991;
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present investigation), did not, in the absence of either apamin or suramin, 

significantly reduce the amplitude of the apamin- and suramin-sensitive IJPs.

In addition to TTX, evidence to support a neuronal source of NO came with 

the virtual elimination of the muscle as an alternative; L-NAME failed to affect 

VIP-induced relaxations. Thus, VIP-mediated NO generation from smooth muscle 

cells (see Makhlouf & Grider, 1993; Makhlouf, 1994) seemed unlikely.

The proposed combination of ATP and NO as mediators of inhibitory 

responses is not unique to this tissue or species. A similar combination, based on 

both electrical and mechanical observations, reportedly accounts for NANC nerve- 

mediated responses in the rabbit portal vein (Brizzolara et al, 1994), rat pyloric 

sphincter (Soedino & Bumstock, 1994), guinea-pig colon (Zagorodnyuk & Maggi, 

1994) and rabbit IAS (together with a “non-L-NNA, non-apamin-sensitive agent”) 

(Tottrup et a!, 1993). The fast apamin-sensitive IJP component revealed within the 

circular muscle of the guinea-pig ileum (Humphreys et al, 1991; Lyster et al, 1992 

a, b; Bywater et al, 1993; He & Goyal, 1993), stomach, small and large intestine 

(Vladimirova & Shuba, 1984) and human colonic muscle (Keef et al, 1993; 

Boeckxstaens et al, 1993) may also be ATP, therefore joining NO (the apamin- 

insensitive transmitter) as an inhibitoiy mediator in these tissues.

Are ATP and NO co-mediators released from the same nerves? Within the 

gpIAS several observations suggested that ATP and NO may indeed be released 

from the same nerves thus, a) both components were abolished by TTX, indicating 

their neuronal origin, b) the latencies of the two IJP components did not differ 

significantly and c) the IJPs could not be selectively evoked by varying stimulus 

parameters. Two recent studies have also investigated the possibility of co­

mediation in the guinea-pig colon (Zagorodnyuk & Maggi, 1994) and taenia caeci 

(Bywater et al, 1993) using the N-type voltage-dependent calcium channel blocker 

co-conotoxin GVIA (McCleskey et al, 1987). Like the gpIAS, these tissues also
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displayed distinct apamin-sensitive and -insensitive IJP components which, in the 

case of the guinea-pig colon, were also believed to be mediated by ATP and NO 

respectively, co-conotoxin GVIA blocked or reduced the apamin-sensitive 

component leaving the apamin-insensitive component unaffected in both tissues. 

This implied that different release mechanisms were utilised for each substance 

and that separate nerves may control the release of the apamin-insensitive 

mediator. The fact that the separate IJP components in the guinea-pig taenia caeci 

could be evoked selectively and appeared to have different latencies, the apamin- 

insensitive slow IJP being elicited at smaller (0.06 ms) pulse widths and having a 

latency in excess of 200 ms with the fast IJP predominating at larger (0.3 ms) 

pulse widths and having a significantly shorter latency of 144 ms (Bridgewater et 

al, 1994), further supported the proposal for differential release. Fundamental 

differences apparently exist between the taenia caeci and the IAS of the guinea-pig 

which merit further investigation.

Although the question of co-mediation remains to be fully resolved there is 

clear evidence that both substances are involved in the relaxation. The relative 

contribution of each mediator however, appears to be different; the ATP-mediated 

IJP, although some 50% larger in amplitude than the NO-mediated IJP, evokes 

only 20% of the mechanical response. In the light of this, the question arises as to 

the function of this purinergic component. Few studies have investigated possible 

ATP involvement in inhibitoiy co-transmission/co-mediation. In contrast, its role 

as an excitatoiy co-transmitter, in conjunction with noradrenaline, for example, in 

the rat tail artery (e.g. Sneddon & Bumstock, 1984; Muir & Wardle, 1988, 1989) 

and guinea-pig vas deferens (e.g. Sneddon & Westfall, 1984), has been well 

documented. Although not directly comparable, a distinct parallel exists between 

the inhibitory and excitatoiy actions in the gpIAS and the aforementioned tissues, 

in that ATP appeared to evoke the major component of the electrical events but
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appeared to play only an ancillary role in the mechanical response to nerve 

stimulation. In both cases ATP may act as a "primer" for the other transmitter, be it 

noradrenaline or NO, possibly acting via an additional or separate transduction 

mechanism as in the rabbit saphenous artery where, in addition to the 

phosphoinositide hydrolysis promoted by NA, ATP also stimulated 

phosphatidylcholine hydrolysis (Nally et al, 1992).

Although the nature of the mediators of the two IJP components had been 

determined the identity of the ions involved was still unclear. The IJPs in this 

tissue had been associated with an increased K+ conductance (Lim & Muir, 1985). 

The IJP component abolished by apamin implied its mediation by KT ions, as 

apamin blocks small conductance Ca2+-activated K+ channels (Banks et al, 1979; 

Capoid & Ogden, 1989). ATP-activated K+ channels (KATP) were unlikely to also 

be involved in the IJPs as the hyperpolarization and relaxation produced by the 

Katp channel opener, lemakalim, was slow in onset and recovery and unaffected by 

apamin (Baird, 1990), unlike the evoked IJPs. Glibenclamide, the KATP channel 

antagonist, failed to affect IJPs or relaxations.

Although the role of K+ in the apamin-insensitive IJP component remained 

undetermined, evidence suggested possible Cl' involvement. For example, the 

relationship between membrane potential and [K+]0 in the gpIAS was not linear 

(Lim, 1985) and NO, the mediator of the apamin-insensitive IJP component, 

hyperpolarizes several tissues, such as arterial smooth muscle (Kreye et al, 1977), 

BRP (Byrne & Muir, 1985), opossum lower oesophageal sphincter (Saha & Goyal, 

1992) and oesphageal circular muscle (Crist et al, 1991 b), by decreasing resting 

Cl" conductance. Additionally, in the guinea-pig ileum, in which an apamin- 

sensitive and NO-mediated, apamin-insensitive IJP also exists (Lyster et al, 1992 

a, b; Bywater et al, 1993; He & Goyal, 1993), the latter was also the result of 

decreased Cl' conductance (Crist et a!, 1991 a).
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For an IJP to involve Cl" this ion must already contribute to the resting 

membrane potential (Holman, 1958; Kuriyama, 1963). As the chloride channel 

antagonist IAA-94 (Landry et al, 1987, 1989) produced a reversible

hyperpolarization and relaxation, chloride ions appeared to be involved in the 

gpIAS. On the other hand, the apparent ability of IAA-94 to block K+ channels as 

well as Cl" conductance (see later) casts doubt on the specificity of the drug. The 

results of experiments in which [Cl"]0 was substituted with glucuronate/gluconate 

raised further doubts regarding the role of chloride in maintaining resting 

membrane potential. This substitution also hyperpolarized the membrane. 

Normally it would have been expected to favour an increase in the driving force 

for the efflux of Cl', therefore initially depolarizing the cells (Aickin & Brading, 

1983), before subsequently decreasing the driving force, by reducing [Cl'Jj, 

following continued perfusion with 0[Cl"]o (Aickin & Brading, 1982, 1983, 1984), 

thereby hyperpolarizing the tissue. As only hyperpolarization was seen it 

suggested that Cl" was not involved in regulating membrane potential in contrast to 

the result with IAA-94. Together, these results are apparently contradictory but the 

lack of specificity of IAA-94 however, suggested that the Cl" substitution 

experiments may have been the more meaningful and that chloride ions were not 

involved in the resting membrane potential.

If a decreased Cl" conductance contributes to the NO-mediated IJPs then 

the amplitude of the IJP should initially increase with the increased driving force, 

resulting from [Cl"]0 depletion (Crist el al, 1991 a). No such increase was observed 

and 0[Cl"]o invariably reduced the amplitude of both the apamin-sensitive and - 

insensitive IJPs. In this context IAA-94 also reduced the amplitude of the suramin- 

insensitive IJPs although the ability of the drug per se to hyperpolarize the 

membrane complicates the significance of this finding. In addition to its effects on 

Cl" conductances, IAA-94 also reduced the amplitude of the K+-mediated apamin-



and suramin-sensitive component of the IJP indicating some degree of non­

selectivity of the drug. The reduction of IJP amplitude seen using either IAA-94 or 

0[Cl’]o is unlikely to have arisen from a decrease in transmitter release from nerve 

terminals as chloride conductance is not critically involved in pre-synaptic events, 

such as a-autoinhibition (Alberts et al, 1981).

Together, these results suggest that chloride ions are probably not involved 

in either maintaining the resting membrane potential or in the mediation of the 

apamin- or suramin-insensitive IJPs. In order to verify this latter proposal it would 

be necessary to demonstrate that this IJP component did not occur as a result of a 

decrease in membrane conductance, that it did not have a reversal potential similar 

to that of the chloride equilibrium potential (approximately -25mV) and that the 

reduction in IJP amplitude produced by chloride channel antagonists, like IAA-94, 

was not due to a membrane hyperpolarization.

These membrane changes associated with transmitter release are however, 

only one aspect of the inhibitoiy process. There is now little doubt that these 

membrane changes are triggered by the inhibitoiy transmitter signal via the 

participation of an intracellular transduction system, possibly the phosphoinositide 

system or, more commonly, the cyclic nucleotides (see Relaxant Transduction 

Mechanisms).

Within the gpIAS there was already evidence for cyclic nucleotide 

involvement in the inhibitory response to NANC nerve stimulation (Baird & Muir, 

1990). It was therefore important to determine whether, and to what degree, 

changes in cyclic nucleotide levels accompanied each of the two IJP components. 

Indirect observations, obtained by pharmacologically altering intracellular cGMP 

levels ([cGMPJj), i.e. using M&B 22948, the cGMP phosphodiesterase inhibitor, 

8-br-cGMP, the membrane-permeable cGMP analogue and the NO-donor SNP,
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each of which hyperpolarized and relaxed the gpIAS, suggested cyclic nucleotide 

involvement in relaxation.

Direct confirmation was obtained using a radioimmunoassay (R1A) binding 

technique (Steiner et al, 1972). This method is simple, highly specific for both 

cyclic nucleotides and allows absolute quantification of basal and stimulated 

cAMP and cGMP levels to be made. In contrast to other techniques, such as the 

incorporation of 32P into cellular proteins, where drug-induced responses, rather 

than cyclic nucleotide quantities, produced by analogues of the cyclic nucleotides 

are investigated, RIA allows the direct measurement of cAMP and cGMP levels 

following treatment. This technique confirmed that both cAMP and cGMP were 

involved in the NANC neuronally-mediated relaxation of the gpIAS; both cyclic 

nucleotide levels increased concomitantly with the point of maximum relaxation of 

the tissue.

During the present investigation it was notable that the quantities of cyclic 

nucleotides varied markedly in comparison to previous studies of sphincteric tissue 

where electrically- or pharmacologically-stimulated increases in the cyclic 

nucleotides have been described (Baird & Muir, 1990; Chakder & Rattan, 1993 b). 

With the possible exception of the study of Chakder & Rattan (1993 b), where 

cyclic nucleotide content was calculated as a function of protein content rather 

than wet tissue weight, it is unclear why such large discrepancies should exist as 

each study utilised the RIA technique, albeit with slight modifications among the 

studies. Direct comparison among the studies was made possible however, by 

measuring the stimulated percentage increase in cyclic nucleotide content relative 

to control.

Inhibitoiy NANC nerve stimulation increased [cGMPJj levels ([cGMP];) by 

~ 430%, more than one and half times greater than that previously reported for 

both the gpIAS (Baird & Muir, 1990) and opossum IAS (Chakder & Rattan, 1993
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b). Differences in techniques are, however, unlikely sources of this discrepancy as
/

changes in cAMP levels among the different studies were similar (see later). 

[cGMP], levels were further enhanced by apamin (see also Baird & Muir, 1990) 

and by suramin suggesting that the purinergic transduction process antagonized 

this additional electrically-stimulated cGMP rise, possibly by inhibiting the 

activity of guanylyl cyclase. Because of the inhibitory effect of L-NAME on 

nerve-stimulated [cGMP]j and the enhancing effect of SNP on basal [cGMP]i5 NO 

involvement was implied. Interestingly, neither ATP, in contrast to a previous 

study (Baird & Muir, 1990), nor VIP, stimulated [cGMP]r

In comparison to the effects on [cGMPJj, field stimulation raised 

intracellular cAMP levels ([cAMP],) by only -130%, almost identical to that 

witnessed both in the gpIAS (Baird & Muir, 1990) and opossum IAS (Chakder & 

Rattan, 1993 b). Significantly, this increase was abolished by L-NAME. Although 

this may have been a non-specific effect of L-NAME on adenylyl cyclase, no 

evidence exists for such a proposal, and it is therefore tempting to speculate that L- 

NAME blocked an electrically-induced rise in [cAMP]j mediated by neuronally- 

released NO. In support, SNP-released NO increased [cAMP],, an effect also seen 

in the opossum IAS (Chakder & Rattan, 1993 b), canine lower oesophageal 

sphincter (Barnette et a!, 1990) and in the non-sphincteric rat gastric fundus (Ito et 

a!, 1990). Furthermore, apamin, as well as suramin, which each antagonize the 

purinergically-mediated IJP, had no effect on the electrically-evoked rise in 

[cAMP]r The latter finding also contrasts with the earlier study of Baird & Muir 

(1990) in which apamin blocked the neuronally-stimulated increase in [cAMP]j. 

This, however, was probably due to a non-specific inhibitory effect caused by the 

very high apamin concentration (5pM) used in the earlier study.

How then does NO stimulate cAMP production? In the absence of direct 

NO stimulation of adenylyl cyclase, the [cAMP]j rise could have been due to the
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ability of guanylyl cyclase to catalyse the formation of both cGMP and cAMP 

(Mittal & Murad, 1977; Braughler et al, 1979; Gerzer et a!, 1981) and/or to 

cGMP-dependent inhibition of cAMP hydrolysis by type III PDE (a cAMP 

selective isozyme) (Harrison et al, 1986). Interestingly VIP, although unlikely to 

play any role in this tissue (Lim & Muir, 1986; present investigation), increased 

[cAMPJj, an effect enhanced by L-NAME, possibly by antagonizing a NO- 

mediated, negative feedback effect on adenylyl cyclase production.

The involvement of both cAMP and cGMP in the neuronally-mediated 

relaxation of the gpIAS and in the opossum IAS (Chakder & Rattan, 1993 b), 

contrasts with prior investigations in the opossum LOS (Torphy et al, 1986; 

Barnette et at, 1989) and in the canine IAS (Joslyn et al, 1990) where only cGMP 

levels were raised by nerve stimulation; apparently not all sphincters utilise the 

same second messenger systems.

In light of both the biochemical and electrophysiological findings of the 

present study, what can be deduced about the respective roles of the two putative 

mediators of relaxation in this tissue? The apamin-insensitive component, which is 

probably mediated by NO, or a related substance, was responsible for the major 

component of relaxation (-80%) and appeared to be the main instigator of both 

cGMP and cAMP production. As the IJP is dependent on the generation of cGMP 

and/or cAMP it may explain why it is significantly slower to peak than the 

apamin-sensitive IJP. On the other hand, purinergic block, using apamin or 

suramin, failed to significantly reduce the nerve-evoked rise in either cyclic 

nucleotide and L-NAME had no effect on the apamin-sensitive IJP but 

antagonized the elevation of both [cAMP], and [cGMPJj. This suggested that the 

apamin-sensitive purinergic inhibitory component, responsible for the large 

electrically-evoked IJP component, appeared to mediate its effects by mechanisms 

other than via the cyclic nucleotides. The question arises then as to the identity of
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the transduction mechanism for ATP. The majority of evidence suggests that 

stimulation of P2y-purinoceptors, which mediate relaxation in the gpIAS (Lim, 

1985), is linked to increased phosphoinositide turnover (see inter alia Pirotton et 

al, 1987; Berrie et al, 1989; Boyer et al, 1989; Cooper et al, 1989; Van der 

Merwe, 1989; Harden et al, 1990; Flitz et al, 1994). However, if this is so in the 

gpIAS, the ability of exogenous ATP to significantly increase [cAMPJj levels 

remains unexplained. One possibility is that ATP is able to activate two second 

messenger systems as in the rabbit saphenous artery (Nally et al, 1992). In the 

gpIAS a Ca2+-sensitive adenylyl cyclase (Mollner & Pfeuffer, 1988; Pfeuffer et al, 

1989; Feinstein et al, 1991) may be stimulated by increased [Ca2+];, via increased 

ATP-induced inositol phosphate metabolism, thereby producing a rise in [cAMPfy 

However, if this were the case then the increase should be antagonized by apamin 

or suramin. Perhaps the simplest explanation is, however, that the apamin-sensitive 

transmitter is not ATP but a closely related analogue which does not raise 

[cAMP]r

Whatever the mechanism involved in mediating the effects of the 

purinergically-mediated IJP component it is clear that it plays a role, albeit 

apparently minor, in the inhibitoiy response to field stimulation. The ability of 

ATP to maximally relax the gpIAS (present investigation) clearly demonstrates the 

propensity of this compound to be the apamin-sensitive inhibitory transmitter in 

this tissue.

Conclusions

It was the aim of this thesis to investigate and identify the transmitter 

processes underlying the neuronally-mediated relaxation of the gpIAS using 

electrical and mechanical recording and biochemical measurements. To this end, 

this study has revealed that the neuronally-mediated relaxation is initiated by the
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release of two substances, probably ATP and NO, which mediate two distinct 

components of relaxation involving increases in intracellular cyclic nucleotide 

levels.

ATP, or a closely-related analogue, is responsible for the large, fast apamin- 

and suramin-sensitive IJP component which mediates about 20% of the overall 

relaxation. It triggers relaxation by an as yet unidentified second messenger system 

which appears to increase the open probability of K+ channels probably via the 

release of [Ca2+]i5 thereby hyperpolarizing the membrane, reducing Ca2+ entry and 

eliciting relaxation.

NO mediates the smaller, slower-to-peak IJP component which accounts for 

the other 80% of the relaxation, in response to field stimulation. NO appears to 

decrease tone by activating cAMP- and cGMP-dependent intracellular cascade 

systems which in turn hyperpolarize the gpIAS. Chloride ions do not appear to be 

the ionic mediators of this IJP component.

Both mediators are released simultaneously by nerve stimulation, possibly 

from the same nerves. However the question of their co-transmission must await 

further investigation.

Relaxation of the gpIAS is a process that can be achieved by the activation 

of multiple pathways capable of acting synergistically to attain this end-point.
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Abbreviations

Ach Acetylcholine

ATP Adenosine triphosphate

8-br-cGMP 8-bromo-cyclic guanosine 3 ',5 '-monophosphate

[Ca2̂ Intracellular free Ca2+

cGMP Cyclic guanosine 3', 5'-monophosphate

[cGMP]j Intracellular cyclic guanosine 3', 5'-monophosphate

DA Dopamine

DTZ Diltiazem

EDRF Endothelium-derived relaxing factor

EJP Excitatoiy junction potential

gpIAS Guinea-pig internal anal sphincter

GI Gastrointestinal

GTN Glyceryl trinitrate

HbO Oxyhaemoglobin

5-HT 5-Hydroxytryptamine

IAS Internal anal sphincter

IDN Isosorbide dinitrate

[K+]0 Extracellular potassium concentration

NANC Non-adrenergic, non-cholinergic

NO Nitric oxide

RDC Rabbit distal colon

RPV Rat portal vein

SNP Sodium nitroprusside

TTX Tetrodotoxin
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SUMMARY
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1) The effect of the nitrovasodilators sodium nitroprusside (SNP), 

glyceryl trinitrate (GTN) and isosorbide dinitrate (IDN), which each release 

nitric oxide (NO), on the spontaneous extracellular electrical and mechanical 

activity of the guinea-pig and human internal anal sphincter and the 

intracellular electrical activity of the mouse vas deferens, has been investigated.

2) Under resting conditions, the guinea-pig internal anal sphincter 

(gpIAS), mounted in a Golenhofen apparatus, exhibited two distinct patterns of 

activity. One consisted of almost continuous spontaneous electrical spiking 

accompanied by rapid mechanical oscillations in tone. The other was also a 

continuous spike discharge upon which bursts of spikes were superimposed.

3) SNP, GTN and IDN each possessed stimulatory and inhibitory effects 

on the gpIAS. SNP was the most effective and was used as a model for this 

type of drug. At lower concentrations (10-8- 10-6 M) it reduced tone and 

decreased the frequency of the bursts of electrical and mechanical activity. It 

increased the maximum amplitude of contractions and, occasionally, of the 

electrical spikes. At higher concentrations (>106 M) SNP reduced or abolished 

all spontaneous activity.

4) The actions of SNP were mediated by NO as its effects were

a) mimicked by the membrane permeable cyclic guanosine 3', 5'- 

monophosphate (cGMP) analogue, 8-bromo-cGMP and b) inhibited by the 

nitric oxide scavenger oxyhaemoglobin (HbO). Significantly, the effects of

SNP were not mimicked by potassium ferrocyanide, which structurally 

resembles SNP, but does not release NO.
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5) Calcium (Ca2+) availability was a determinant of SNP' s effects; the 

Ca2+ channel antagonist, diltiazem (ICHM), abolished, whereas the Ca2+ 

channel agonist, BAY K 8644 (10_6M), enhanced, the stimulatory actions of the 

drug.

6) Membrane hyperpolarization, possibly due to potassium ion efflux, 

may have accounted for the effects of SNP. Raising extracellular potassium ion 

concentration ([K+]0) from 4.7mM to 14.1mM enhanced, whereas eliminating 

[K+]0 abolished, the stimulatory response to SNP. In addition, SNP and the 

potassium channel opener, lemakalim each, in subthreshold concentrations, had 

no effect on it, but together abolished spontaneous activity, indicating that a K+ 

efflux was involved in the responses to SNP.

7) Increased intracellular cGMP ([cGMP]j) levels may produce an influx 

of extracellular Ca2+ accounting for the initial stimulation by SNP. However, 

the Ca2+ influx may also increase the open probability of Ca2+ -activated K+ 

channels thereby hyperpolarizing the tissue and reducing tone. As the degree of 

membrane hyperpolarization increases with the increasing concentration of 

SNP, closure of voltage-dependent Ca2+ channels ensues, and both spontaneous 

electrical and mechanical activity declines and is eventually abolished.

8) The effects of SNP, added by pressure ejection, on the mouse vas 

deferens were examined using intracellular electrical recording. SNP produced 

two types of effects; an increase in the amplitude of the spontaneous excitatory 

junction potentials (EJPs) and a membrane hyperpolarization without any 

change in EJP amplitude.

160



9) The effect of SNP on the mechanical activity of the human internal 

anal sphincter was also examined. SNP relaxed the tissue but did not produce 

any stimulatory effect.
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INTRODUCTION
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The classical neurotransmitters, acetylcholine (Ach) and noradrenaline 

(NA), each produce excitatoiy and inhibitory effects in different smooth 

muscles. For example, Ach contracts most gastrointestinal (GI) smooth 

muscles but relaxes vascular tissues by stimulating endothelial cells to release 

endothelium-derived relaxing factor (EDRF; Furchgott & Zawadski, 1980). 

Similarly, NA activation of a ,-adrenoceptors in vascular smooth muscle raises 

tone but relaxes most GI smooth muscles (see Bulbring & Tomita, 1987). 

Knowledge of drug-receptor interactions enables one to understand these 

phenomena. It is clear that drugs can interact with different, specific receptors 

to produce, in some cases, opposite responses; in the case of vascular and GI 

smooth muscle this is usually because of differences in the signal transduction 

mechanisms among the receptors. Thus, a]-adrenoceptor activation, in the 

vasculature increases [Ca2+]j levels causing a contraction, but in the GI tract 

the reverse occurs, with a lowering of [Ca2+]j levels and a reduction in tone 

(Bulbring & Tomita, 1987).

The more recently discovered putative transmitters, dopamine (DA), 

5-hydoxytryptamine (5-HT), and adenosine triphosphate (ATP) are also each 

capable of producing apparently opposite effects. For example, DA stimulates 

or inhibits the activity of adenylyl cyclase by acting either on D, or D2 

receptors respectively (Kebabian & Colne, 1979). In the dog, 5-HT elicits both 

coronary vasodilatation and vasoconstriction via 5-HT,-like and 5-HT2 

receptors respectively (Cocks & Angus, 1983; Houston & Vanhouette, 1988; 

Toda & Okamura 1990). ATP wasoconstricts the mesenteric arteries of several 

species (Ishikawa, 1985; Kiigelgen & Starke, 1985; Muramatsu & Kigoshi, 

1987; Machalay el al, 1988; Muramatsu ef al, 1989) via P2x-purinoceptors, but 

also^a^bdilates the rabbit mesenteric artery and portal vein (Mathieson & 

Bumstock, 1985; Bumstock & Warland, 1987; Reilly et al, 1987) via 

P2y™PUrin0Cept°rS.
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The newly discovered transmitter nitric oxide (NO), or a closely related 

substance (Myers et al, 1987; Rubanyi et al, 1988; Vedernikov et al, 1992), 

mediates a large variety of biological processes such as intracellular 

communication in the central nervous system (Garthwaite, 1990), macrophage 

cytotoxicity (Hibbs et al, 1990) and, importantly in terms of this thesis, 

relaxation of vascular (Moncada et al, 1991) and non-vascular (Rand, 1992; 

Sanders & Ward, 1992; Sanders et al, 1992) smooth muscle. In its proposed 

transmitter role, the overwhelming majority of evidence suggests that the 

effects of NO are purely inhibitory (for reviews see Moncada el al, 1991; 

Sanders & Ward, 1992; Rand, 1992). NO however, may be unique among the 

proposed named transmitters. It is a highly labile gas, with a half-life as short 

as ~ 0.1s (Kelm & Schroder, 1990) making its conventional storage prior to 

release unlikely. Its receptor target, the cytosolic enzyme guanylyl cyclase 

(Arnold et al, 1977), is intracellularly located, in contrast to the extracellular 

membrane-bound receptors, with which the more "classical" neurotransmitters 

interact. NO may therefore not behave like other "conventional" transmitters 

and may not display such a spectrum of excitatory and inhibitory effects.

On the other hand, using nitrovasodilators, such as sodium 

nitroprusside (SNP) and glyceryl trinitrate (GTN), which release NO (see 

Kerwin & Heller, 1994), an increasing number of studies have revealed that 

NO has excitatory properties, particularly on spontaneously active smooth 

muscle. For example, nitrovasodilators, in particular SNP, increased the 

frequency and amplitude of spontaneous electrical and mechanical events in 

the rabbit distal colon (RDC; Smith, 1994) and stimulated the peristaltic reflex 

in isolated guinea-pig ileal segments in a cGMP-dependent manner (Sugisawa 

et al, 1991). In the latter case it was postulated that free [ C a 2+]j may have been 

decreased by SNP as a result of an elevation of intracellular cGMP (Greutter et 

al, 1981) which in turn would increase neuronal excitability by decreasing K+ 

efflux and depolarizing the membrane.
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The electrically-evoked, NANC-mediated contractions of rat ileal 

longitudinal muscle were antagonized by NO synthase inhibitors and restored 

by the NO precursor L-arginine. In addition, SNP also produced contractions 

of this tissue (Bartho et al, 1992). However, it was possible that these effects 

could have been caused by the secondary release of an excitatory transmitter. 

Such a secondary excitation response to NO was witnessed in oesophageal 

smooth muscle where NO, SNP and the membrane permeable cGMP 

analogue, 8-bromo-cGMP (8-br-cGMP), each evoked a concentration- 

dependent relaxation followed by a rebound contraction (Saha et al, 1993). 

The rebound contraction however, also involved products of the 

cyclooxygenase pathway, as was also the case in the canine and feline colon in 

response to NANC nerve stimulation (Ward et al, 1992; Venkova & Krier, 

1994).

Excitatory effects of NO are also seen in non-GI spontaneous smooth 

muscle. For example, in the rat portal vein (RPV), the frequency of 

spontaneous contractions and extracellularly-recorded discharges was 

increased by GTN (Bray et al, 1987; Wylie, 1988; Smith, 1994), SNP and 

isosorbide dinitrate (IDN; Smith, 1994) although the amplitude of both 

parameters was decreased.

Evidence for an excitatory role for NO clearly exists, although the 

underlying mechanisms appear to differ. These findings modify our concept of 

NO as simply an inhibitory transmitter and have possible significant clinical 

consequences for the use of nitrovasodilators. For example, would the increase 

in spontaneous activity seen in the rat portal vein in response to 

nitrovasodilators (Bray et al, 1987; Wylie, 1988; Smith, 1994) make these 

compounds any less effective for the treatment of hypertension? Would the 

excitatory effects of these compounds, acting directly or indirectly, on a 

variety of gut smooth muscles (Sugisawa et al, 1991; Bartho et al, 1992; Ward
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et al, 1992; Saha et al, 1993) be significant in the treatment of conditions such
7

as achalasia? (

The existence of NO-mediated excitatory events led to my examination 

of its effects, using nitrovasodilators, on the extracellular electrical and 

mechanical responses of the spontaneously active guinea-pig internal anal 

sphincter (gpIAS) and human IAS, where the principal response to nerve 

stimulation is inhibitory (Burleigh & D'Mello 1983; Lim & Muir, 1985) and 

where NO has already been implicated as a putative inhibitory transmitter in 

these and other species (Burleigh, 1991; Craig & Muir, 1991; Chakder & 

Rattan, 1992, 1993 a, b; Rattan & Chakder, 1992). Possible neuronal 

mechanisms underlying the NO excitatory effects were investigated in the 

spontaneously active mouse vas deferens using intracellular electrical 

recording techniques.

AIMS

To date, the most frequently described effects of NO as a transmitter in 

smooth muscle have been inhibitory. However, examples of NO-induced 

excitation, although still relatively rare and poorly understood, are emerging 

more frequently. Such findings could have important pharmacological and 

clinical implications, particularly with regard to the therapeutic usefulness of 

the NO-donating nitrovasodilators which are often used clinically as relaxants. 

The ability of nitrovasodilators to stimulate contraction, either directly or 

indirectly, in a variety of GI smooth muscles, such as the ileum (Sugisawa et 

al, 1991) and colon (Ward et al, 1992), might affect their usefulness for the 

treatment of gut disorders such as achalasia and spasm of the IAS. 

Additionally, most, if not all, of the established transmitters, such as NA and 

Ach, have demonstr ated both excitatory and inhibitoiy properties. It is possible 

therefore that NO too has the, as yet largely undiscovered, ability to cause 

excitation as well as inhibition. In spite of the potential importance of such
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questions the phenomenon of possible NO-induced excitation has largely been 

ignored.

Due to this lack of knowledge and previous results regarding NO- 

associated excitatory phenomena produced within this laboratory (Wylie, 

1988; Smith, 1994), the effects and possible underlying mechanisms of 

nitrovasodilator action were examined on the spontaneously active smooth 

muscle, in vitro, of the gpIAS, the human IAS and the mouse vas deferens. 

Both intracellular and extracellular electrical and simultaneous mechanical 

recording techniques were employed for this purpose.
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METHODS AND MATERIALS
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1) ANATOMY AND FUNCTION

I) G u in ea -P ig  In ternal A nal S p h in c ter

The anatomy and function of the guinea-pig internal anal sphincter 

(gpIAS) was as previously described (see C hapter 1-Methods and M aterials, 

p. 58-59).

II) H u m a n  In terna l A n a l Sp h in cter

The anal sphincteric region in man, like most mammalian species, 

consists of two sphincters, internal and external. The internal anal sphincter 

(IAS) is responsible for the involuntary retention of contents in the anal canal. 

To this end, it is nearly always in a contracted state, resulting in a very high 

intraluminal pressure (some 85% of the total pressure in the anal canal 

(Freckner & Von Euler, 1975)) relative to the rectum (Duthie & Bennett, 1963; 

Bennett & Duthie, 1964; Collins et al, 1967; Schuster, 1975).

The IAS is situated at the level of the dentate line where the circular 

muscle of the rectum becomes considerably thickened (5-8mm) to form the 

sphincter. The sphincter surrounds the upper three quarters (~30mm) of the 

anal canal and terminates below the level of the white line (vide infra) 

(Warwick & Williams, 1973).

The IAS receives its excitatory sympathetic innervation via the 

hypogastric nerves from the fifth lumbar segment and its parasympathetic 

supply via the first, second and third sacral segments, although the 

parasympathetic division appears to have very little influence on the tone or 

function of the sphincter (see Burleigh & D'Mello, 1983). The human IAS 

also possess an intrinsic inhibitory non-adrenergic, non-cholinergic (NANC) 

innervation thought to be mediated by NO (Burleigh, 1991, 1992; O'Kelly et 

al, 1994).
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I l l )  M o u s e  V as  D eferen s

The vas deferens (~3cm long) is responsible for the transport of 

spermatozoa and seminal fluid from the epididymus of the testis to the seminal 

vesicle duct near the prostate gland. It comprises three smooth muscle layers; 

an outer and inner longitudinal, which surround a circular layer. The smooth 

muscle cells are surrounded by connective tissue and overlap in an 

interweaving fashion (Merrillees, 1968).

The tissue receives, principally, an excitatory sympathetic innervation 

by the hypogastric nerves, which originate at the T9-T10 level of the spinal 

cord and run to the inferior mesenteric ganglion. The hypogastric nerves, 

containing mainly preganglionic sympathetic fibres, pass from the inferior 

mesenteric ganglion to a plexus of ganglia located within 1cm of the prostatic 

end of the vas deferens (Sjostrand, 1965; Bumstock, 1970). From this plexus, 

postganglionic, mainly non-myelinated sympathetic nerve fibres, run first to 

the prostatic and then towards the epididymal end, sending off radial branches 

into the muscle, which form preterminal axons from which transmitter is 

released. The preterminal axons are predominantly non-myelinated, 

surrounded by a Schwann cell sheath and beaded, due to the varicosities of 

nerve endings (see Taylor, 1987).

2) DISSECTION

I) G u in ea -P ig  In ternal A n al S p h in cter

The gpIAS was dissected as previously described (see C hapter 1- 

Methods & M aterials, p. 60) and placed into the Golenhofen apparatus 

(Golenhofen & Von Loh, 1970; see Apparatus and Techniques; Fig. 1) 

between the four platinum wire ring electrodes, perfused, using a pump 

(Gilson Minipuls 3; 4ml min"l), with oxygenated Krebs' solution (95% 0 2, 

5% C 0 2) maintained at 37±0.5°C. The gpIAS was attached by a thread to an 

isometric force displacement transducer (Grass FT03C) and a fixed anchor
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hook at the opposite end, to measure mechanical activity. It was initially 

placed under lg stretch and allowed to equilibrate for at least 40 minutes prior 

to experimentation. On most occasions during this time, the IAS' developed 

spontaneous additional tone (0.8±0.5g, n=14). Phenylephrine (lO-MO-3 M), 

injected onto the tissue within the Golenhofen apparatus, contracted the 

sphincter.

II)  H u m a n  In terna l A n a l S p h in cter

Five IAS tissues, from patients undergoing abdomino-perineal resection 

of the rectum and anal canal for low lying rectal carcinoma were available.

After removing fat, connective tissue and mucosa, strips of the anal 

sphincter (2cm long x 0.5cm wide) containing both longitudinal and circular 

muscle, with the circular muscle bundles running lengthways, were mounted 

in the Golenhofen as previously described for the gpIAS. Tissues were initially 

placed under lg stretch and allowed to equilibrate for at least one hour prior to 

experimentation. Two of the five IAS' developed spontaneous, active tone in 

addition to the stretch placed upon them (l.Og & 3.1 g respectively). One tissue 

failed to contract to phenylephrine (10-3M) and was discarded.

III)  M o u se  V as  D eferen s

Male adult Theiler's Original mice (20-35g) were killed by a blow to 

the head and exsanguinated. The abdominal cavity was opened by a midline 

incision and the testes pushed into the peritoneal cavity. The epididymal end 

of the vas deferens was tied and the surrounding connective tissue and fat 

carefully removed. The vas deferens was then cut at the prostatic end and 

transferred to a Sylgard-coated petri dish containing oxygenated Krebs' 

solution (95% 0 2, 5 % C 0 2) where any remaining fat and connective tissue 

were removed under a dissecting microscope. The tubular vas deferens was 

then transferred to a horizontal organ bath and pinned to the Sylgard-coated



base. It was continually superfused with oxygenated Krebs' solution, using a 

pump (Gilson Minipuls 3; 4ml min-1), at 37±0.5°C. The tissue was attached by 

a thread to an isometric force displacement transducer (Grass FT03C) to 

measure mechanical activity. The tissue was allowed to equilibrate for at least 

40 minutes prior to experimentation.

3) APPARATUS AND TECHNIQUES

I) Extracellular Electrical and Simultaneous Mechanical Recording.

Extracellular electrical and simultaneous mechanical activity was 

recorded from the gpIAS and human IAS, separately, using the Golenhofen 

apparatus (Golenhofen & Von Loh, 1970; Fig. 1). This equipment consists of 

four platinum wire ring electrodes (i.d. ~2.5mm) contained within a narrow, 

water jacketed (37±0.5°C) glass capillary (i.d. ~2.3mm). These electrodes 

could be used for either recording or stimulating, as required. Electrical signals 

were amplified (xlOOO, Neurolog A.C. preamplifier NL104) and filtered 

(Neurolog NL115, low frequency cut-off 10 Hz, high frequency cut-off 

10kHz). Mechanical activity was monitored using an isometric force- 

displacement transducer (GRASS FT03). Electrical and mechanical activity 

were displayed on a storage oscilloscope (Hitachi VC-6023) and recorded on 

an instrumentation tape recorder (Racal, Store 4DS ) and U.V. oscillograph 

(Thom EMI 6150-Mk II; Fig 2).

The Krebs' solution superfusing the tissue flowed through a heat 

exchange coil, jacketed with water (37±0.5°C), before entering the 

Golenhofen apparatus.

II) Intracellular Electrical Recording

The apparatus and techniques used for intracellular electrical recording 

from the mouse vas deferens were the same as those described previously (see 

Chapter 1-Methods and M aterials, p. 61) except that in the present study the
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electrical signals were amplified by a unity gain high impedance (1010Q) D.C. 

preamplifier (W.P.I. M4A) and monitored on a digital voltmeter. The electrical 

and mechanical signals in this case were recorded on an instrumentation tape 

recorder (Racal, Store 4DS) and U.V. oscillograph (Thom EMI 6150-Mk II).

III)  C riteria For Cell Penetration

The criteria for accepting a cell for electrophysiological investigation 

were the same as those described previously (see C hapter 1-Methods and 

M aterials, p. 62).

IV )  Administration of Drugs

In the case of the Golenhofen apparatus drugs were added to 

oxygenated (95% 0 2, 5% C 0 2) Krebs' solution, which was pumped (Gilson 

Minipuls 3; 4ml min-1) through polythene tubing (i.d. 3mm) to the Golenhofen 

apparatus.

Each drug under investigation was allowed to superfuse the tissue until 

equilibration had been reached, usually between 7-15 minutes after addition. 

Electrical and mechanical activity was recorded prior to the drug reaching the 

tissue and for approximately 15 minutes thereafter. A representative example 

of tissue activity (~2 minute duration), after equilibration, was recorded on the 

U.V. oscillograph.

For intracellular recording, drugs were administered to the vas deferens 

by pressure injection using a Picospritzer (Picospritzer II, General Valve 

Corporation, N.J., U.S.A.). Using this technique the applied substances are 

less likely to cause desensitization of the entire tissue because of the small area 

over which the drug is added. However, for the same reason, no changes in 

tension are detectable. Drugs were applied from micropipettes which had their 

tips broken back to 2-20pM diameter. The pipette tip was placed to within
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~lm m  of the recording site before application of the drugs (20-30 psi). The 

duration of ejection is indicated in the text.

4) SOLUTIONS AND DRUGS

I) P h y s io log ica l  Sa lt  Solution

Krebs' solution with the following composition (mM) was used 

throughout the investigation: NaCl, 118.4; NaHC03, 25.0; NaH2P 0 4, 1.13; 

KC1, 4.7; CaCl2, 2.7; MgCl2, 1.3; glucose 11.0; pH 7.4.

When altering the [K+] of the Krebs' solution, the isotonicity of the 

solution was maintained by substituting KC1 with an equivalent amount of 

NaCl. Thus, the [K+]0-free Krebs' solution was of the following ionic 

composition (mM): NaCl, 123.1; NaHC03, 25.0; NaH2P 0 4, 1.13; CaCl2, 2.7; 

MgCl2, 1.3; glucose 11.0; pH 7.4.

The 14.1mM [K+]0-containing Krebs' solution was of the following 

ionic composition (mM): NaCl, 109.0; NaHC03, 25.0; NaH2P 0 4, 1.13; KC1, 

14.1; CaCl2, 2.7; MgCl2, 1.3; glucose 11.0; pH 7.4.

In the case of Ca2+-free solutions, no ionic substitution was made.

II)  D ru g s

BAY K 8644 (Bayer A.G.), bovine haemoglobin (HbO; Sigma), 8- 

bromoguanosine 3', 5'-cyclic monophosphate (sodium salt) (8-br-cGMP; 

Sigma), diltiazem hydrochloride (DTZ; Sigma), glyceryl trinitrate (GTN; 

kindly donated by Napp Laboratories), isosorbide dinitrate (IDN; Sigma), 

phenylephrine hydrochloride (Sigma), lemakalim (LMK; BRL 38227; kindly 

donated by Dr. W. Martin), potassium ferrocyanide (Hopkin and Williams), 

sodium nitroprusside (SNP; BDH), tetrodotoxin (TTX; Sigma).

With the exception of tetrodotoxin and haemoglobin, the concentrations 

in the text refer to those of the salts. With the following exceptions, stock 

solutions of drugs were prepared in distilled water before dilution with Krebs'
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solution prior to use. The following were initially prepared as 10_3M stock 

solutions as indicated before dilution with Krebs' solution; lemakalim (50% 

methanol), BAY K 8644 (70% ethanol). Oxyhaemoglobin was prepared by 

reduction of bovine haemoglobin as described previously (Martin et al, 1985 

a, b).

5) ANALYSIS

I) Guinea-pig Internal Anal Sphincter

Two distinct patterns of activity were evident in the gpIAS. One 

consisted of a continuous discharge of spikes of roughly comparable amplitude 

accompanied by small oscillations in tone. Under these conditions spike 

frequency (spikes/min.) and contraction frequency (contractions/min) were 

measured. The second pattern of activity was also a continuous spike 

discharge upon which was superimposed bursts of spikes. In these cases the 

frequency of the bursts (bursts/min) and changes in tone (contractions/min) 

were measured). In both situations results were expressed as mean±S.E.M. of 

n (a number of) tissues. Drugs modified the pattern and the degree of tone. 

Their effects were usually assessed visually since the increase in spike 

frequency frequently precluded measurement of individual spikes.

It) Human Internal Anal Sphincter

Two of the human IAS' exhibited spontaneous mechanical activity. The 

frequency of contractions, the degree of spontaneous tone and the extent of 

relaxation produced by SNP were expressed as mean±S.E.M. of n (a number 

of) tissues.

I ll)  Mouse Vas Deferens

Where appropriate, results, i.e. resting membrane potential and 

spontaneous EJP frequency and amplitude, were expressed as mean ± S.E.M.,
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of n (a number of) cells. Statistical analysis of the EJP amplitude and 

frequency was performed by means of Student's / test for paired data for 

significance between means. A t-value of P<0.05 was taken as being 

significant. A minimum of three tissues were used to investigate the effects of 

SNP.
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1) GUINEA-PIG INTERNAL ANAL SPHINCTER

I) C h a ra c te r is t ic s  o f  S p on tan eou s  A c t iv i ty .

After equilibration, bursts of spontaneous electrical and mechanical 

activity were always seen. This activity was usually rapid (33.8±10.4 

contractions/min., n=39; maximum contraction strength 0.9±0.5g, n=39) with 

the electrical spiking almost continuous (430 ± 40.6 spikes/min., n=10; Fig. 3), 

or burst-like (15.8 ± 0.8 contractions/min) with bursts of spikes (17.1 ± 6.8 

bursts/min., n=6; e.g. Fig. 8) superimposed on the almost continual discharge.

Spontaneous electrical and mechanical activity was myogenic and Ca2+- 

dependent; it was unaffected by tetrodotoxin (5xlO_6M; Fig. 4) and abolished 

after removal of [Ca2+]0 from the perfusing Krebs' solution (n=3; Fig. 5).

II) E ffect  o f  T e m p e r a tu r e  and Stretch

Decreasing the temperature of the perfusing Krebs' solution from 

37.5°C to 26°C reversibly decreased the tone and the frequency of 

spontaneous electrical and mechanical activity (n=3; Fig. 6), probably by 

decreasing tissue metabolism, and therefore the activity of the ion pumps 

controlling spontaneous activity.

Increasing stretch on the gpIAS, by up to 6g, had no significant effect 

on spontaneous activity relative to control, but a tension-dependent reduction 

in the frequency of spontaneous activity and spike amplitude occurred between 

7g and 15g stretch (n=3; Fig. 7). The increased amount of stretch may have led 

to a form of depolarizing block which decreased, before it eventually 

abolished, spontaneous activity. On the other hand, stretching the tissue 

beyond a certain tension may have damaged the tissue and the close junctions 

between the cells reducing synchronised activity.
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III)  E ffects  o f  N itrovasod ila tors

The effects of the following nitrovasodilators on the spontaneous 

activity of the gpIAS were studied:

Sodium nitroprusside (SNP; 5xlO-8M-l(MM) Fig. 8

Glyceryl trinitrate (GTN; 10*6M-10-3M) Fig. 9

Isosorbide dinitrate (IDN; 10-5M-10'3M) Fig. 10

These nitrovasodilators, upon addition to the perfusing Krebs' solution, 

each produced a reversible, qualitatively similar, concentration-dependent 

alteration in the spontaneous electrical and mechanical activity of the gpIAS 

with a rank order of potency SNP > GTN > IDN. SNP (10-MCHM), GTN 

(10-6-lO 3M) and IDN (10_5-10-3M) each lowered tone and altered the pattern 

of continual discharge (minimum n=3), initially producing a more 

synchronised pattern of mechanical and electrical activity before abolishing, or 

reducing, both.

At lower concentrations, SNP (10-8-lO 6M), GTN (10-6-10-5M) and 

IDN (lOMCHM), after relaxing the gpIAS (by 77.4±13.6% from control, 

n=13, using 5xl0-7M SNP), increased the maximum amplitude of spontaneous 

contractions and, on occasion, spikes, as well as the number of spikes in each 

burst of activity. They also produced a more intermittent pattern of activity. At 

higher concentrations [SNP (>10 6M), GTN (>10'5M), IDN (MCHM)] the 

frequency and amplitude of both spikes and contractions were reduced or 

abolished.

IV ) E ffects  o f  S N P

The most potent nitrovasodilator, SNP, was chosen for further study.

As expected, SNP appeared to exert its effects via NO-dependent 

cGMP stimulation. Oxyhaemoglobin (HbO; 10 5M), which binds NO (Keilin
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& Hartree, 1937; Martin el al, 1985 a, b; 1986), antagonized the reduction in 

tone and the increase in the maximum amplitude of contractions and spikes 

produced by SNP (106M; n=4; Fig. 11). 8-br-cGMP (2xlO'5-3xlO-5M), the 

membrane-permeable cGMP analogue, which, by raising [cGMP]; levels, 

mimics the effects of NO stimulation of cytosolic guanylyl cyclase, also 

reproduced the excitatory (83.0±18.6%, n=3, increase in the maximum 

amplitude of contractions) and inhibitory effects of SNP (Fig. 12). Potassium 

ferrocyanide, a compound structurally similar to the nitroprusside molecule 

but devoid of NO (Fig. 13), failed to mimic the effects of SNP (n=3; Fig. 14), 

indicating that the effects of SNP on the gpIAS were not due to the 

ferrocyanide portion of the molecule and were likely to involve NO.

The question remained however, as to how SNP, via NO, exerted its 

effects on the gpIAS. That a hyperpolarization was responsible was 

investigated by varying the extracellular concentration of K+ ([K+]0). Raising 

[K+]0 from 4.7mM to 14. ImM, enhanced the amplitude of contractions and the 

number of spikes per burst of electrical activity produced by a concentration of 

SNP (5x1 O'7 -1(>6M) which, under control conditions ([K+]0 = 4.7mM), 

reduced tone and mechanical and electrical activity (n=4; Fig. 15). So by 

raising extracellular [K+]0, and, presumably, depolarizing the gpIAS, the 

inhibitory effects of SNP were antagonized. The "stimulatory" effect of 

increased [K+]0 was reversed by eliminating [K+]0 (n=4; Fig. 16). This 

presumably hyperpolarized the gpIAS and enhanced the inhibitory effects of 

the drug.

K+ involvement was further investigated using the ATP-dependent 

K+-channel opener, lemakalim (see Weston & Edwards, 1992). SNP and 

lemakalim each, in subthreshold concentrations (10-8M and 5xlO'8M 

respectively), had no significant effect on spontaneous activity but together 

abolished spontaneous activity (n=3; Fig. 17), indicating that K+ was involved 

in the response to SNP.

180



SN
P 

(10
 

GM
)

OJD

D_
Z
CO

C
o
O

co  
o
CM

>a. CO
o o
o CM C D

'r~ T~
D)
O

Co

2  O-C O 7̂a  £  
Si ®

J - o  
2  *  £  
«? a  §o £ °

c d

*"rt O
o § «
K Cps—̂ ox . .

C  r n  ^  
. a  o o  ,*-■x> ^  ^
£  .o  °00 w  to o <u fa
E § |
« ~  JJ J3 13 O
> .  < u  c d  o <u
o £  c , 'o .a^  Do 2 « w <0 g <D ^O a  •-; c  o a< S -a ^rA\ Cu <4-1 
<L> / - ^ s  O

cl S  u^  Jo <D<1) • X>
5 2  E
• 9 *  §0) 

£  
as
§
coao

• I—I
-t—>o  
c dua  o  o
<u

£<4-1o

T3 JZJ
a  c/3as
0) CO
a <; 

£  ~  
53 &
sv o
6  <a

«

£  .>:
SS oc da> ^

«  .§  -3
g § E al-s u s
8  «  a  ^|  a 1°
2  -o a sa  ■ ̂T3Oco

<+-4O
-*-»o
£
<L>
<L>

e2

c d

CO<Do
c d
£
1-4<L>Oh
a 1
e do

<L>-a
73 a-i O 05
ed q<U> u
is £  
« a
a
•§ s
>■rt (D

i-H o i-H
a> 1l>

co
s  a  &o 5
s !

aoOh
CO

O
c d
coaoa>
9

N■ » Hao00
e d

1

I sa* *o -  6
*3 O



C
on

tr
ol

 
8-

br
-c

G
M

P 
(2

xl
O

-5
M

) 
8-

br
-c

G
M

P 
(3

x1
0-

%
!)

> > •rt *»-h

c ^a <u
CO ^  

§  ^

>

GOo
CO

>
o 'o

COo
CO o COID



O ’.

o

o

O'

o 
+  -

o

CD
LL'

\ z
O

CD
LL

)

V

o

o

<D"O
§
Oo
fa<D

T3• i—<cooo
2
GiOu

O

CD °  "3 *3
‘5 ‘o
rt >>, u 
a  -ao r„

a
*3

co  CD
'O

CD -*-i

3 u 
3 a>

o
•3 E

3
5,

<u
*3

rt
•— u  .3 O
oj 3 ;  
■3 <D

r- 3
O

— : i_rd _3
3 '3tu 3
S '55 
Q, LcL> a> 

>.. aj

5" U- 
3 3

,£f o 
f e  r 3

C3
Oo
fa

c£
S3
co
co3+-»O

Ph

n-IO

o
£Co
u

>
=t CO CO
o O  O
o OJ CNJ O)-T—

Fi
gu

re
 

14
: 

Th
e 

lac
k 

of 
ef

fe
ct

 
of 

po
tas

siu
m

 
fe

rro
cy

an
id

e 
(1(M

 
M

) 
on 

the
 

sp
on

ta
ne

ou
s 

el
ec

tri
ca

l 
(u

pp
er

 
tra

ce
s)

 
an

d 
m

ec
ha

ni
ca

l 
ac

tiv
ity

 
of 

the
 

gp
IA

S.



Figure 15: The effect of raising [K+]0 in the absence and presence of 
sodium nitroprusside (SNP; 5xlO'7M) on the spontaneous electrical (upper 
traces) and mechanical activity of the gpIAS. In 4.7mM [K+]0 Krebs' solution, 
SNP (5xlO-7M) produced minimal excitatory effects on the gpIAS, increasing 
the amplitude of contractions but reducing tone (by 87%) and frequency of 
spontaneous activity relative to control (a). 14.1mM [K+]0 Krebs' solution, 
increased tone (by 33%) and the amplitude of contractions and spikes relative 
to control (a). SNP (5xlO_7M), in 14.1mM [K+]0 Krebs' solution, increased the 
amplitude of contractions but reduced tone (by 68%) and frequency of 
spontaneous activity relative to control (b) indicating that increasing [K+]0 
antagonized the inhibitory effects of SNP.





Figure 16: The effect o f eliminating [K+]0 in the absence and presence 
of sodium nitroprusside (SNP; 5xlO-7M) on the spontaneous electrical (upper 
traces) and mechanical activity of the gpIAS. In 4.7mM [K+]0 Krebs' solution, 
SNP (5xlO-7M) produced minimal excitatory effects on the gpIAS, increasing 
the amplitude of contractions but reducing tone (by 87%) and frequency of 
spontaneous activity relative to control (a). OmM [K+]0 Krebs' solution, reduces 
tone (by 83%) and the amplitude of contractions relative to control (a). SNP 
(5xlO_7M) in OmM [K+]0 Krebs' solution abolished spontaneous activity 
indicating that eliminating [K+]0 enhanced the inhibitory effects of SNP.





Figure 17: The effects o f sodium nitroprusside (SNP; 10_8M) alone and 
with lemakalim (5x1 (HM) on the spontaneous electrical (upper traces) and 
mechanical activity of the gpIAS. Neither (a) SNP (10_8M) nor (b) lemakalim 
(5xlO-8M) alone was effective, but (c) together they abolished spontaneous 
activity implying a synergistic action between the two compounds.
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[Ca2+]0 was also involved. The calcium channel antagonist diltiazem 

(DTZ; 10-4 M) reduced or abolished spontaneous activity in combination with 

SNP (5xlO'7M; n=3; Fig. 18). The calcium channel agonist BAY K 8644 

(10'6M), which increases the open probability of Ca2+ channels, enhanced the 

maximum amplitude of both contractions (by 215.7±163.2%, n=3) and spikes 

produced by SNP (5x1 O'7 -2x10-6 M; Fig. 19).

2) HUMAN INTERNAL ANAL SPHINCTER

I) Effects of SNP

Four of the five tissues responded electrically, with the firing of action 

potentials (maximum amplitude ~240pV), and mechanically, with a 

contraction, to phenylephrine (10-3 M; Fig 20 (b)). Two of the five tissues 

exhibited spontaneous tone (4.1g & 2.0g) and mechanical activity 

(8.8±0.8 contractions m iir1, n=2; Fig. 20). SNP (5x1 O'8 M) relaxed the two 

LAS' (by 69.3±3.2% , n=2, from control); no stimulatory effects were seen 

(Fig. 21).

3) MOUSE VAS DEFERENS

I) Resting Properties

The mean resting membrane potential of the longitudinal smooth muscle 

cells of the mouse vas deferens was -72.7±0.5mV (n=345 cells from 31 

preparations). Electrically they displayed spontaneous excitatoiy junction 

potentials (EJPs) with a frequency of 32.0±6.4 m ur1 (n=l 1 cells from 9 

preparations) and a mean amplitude of 7.0±0.6mV (n=13 cells from 10 

preparations). No spontaneous mechanical activity could be detected.

I ll Effects of SNP

SNP (10-3 M), applied by pressure ejection (20-30 p.s.i., 50-1000ms 

duration), produced two kinds of activity on the mouse vas deferens; a
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membrane hyperpolarization (4.9±0.2mV, n=13 cells from 10 preparations) 

with or without a significant increase in the amplitude or frequency of 

excitatory junction potentials, indicating a post-synaptic locus of action, and b) 

a significant (PO.OOl) increase in amplitude (by 377.0±9.6% above control, 

n=10 cells from 8 preparations) of spontaneous EJPs, indicating a pre-synaptic 

enhancement of transmitter release, sometimes accompanied by a membrane 

depolarization (Fig. 22). No contractions were measured during these 

depolarizations. Occasionally, in response to SNP, a hyperpolarization would 

precede the increase in spontaneous EJP amplitude indicating that both 

inhibitory and excitatory events could occur simultaneously (see Fig. 22 b).
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In contrast to the vast majority of studies investigating the role of NO 

within smooth muscle, which substantiate its inhibitory role (see Rand, 1992; 

Sanders et al 1992, Sanders & Ward, 1992), this investigation demonstrates 

that nitrovasodilators, which release NO, also exert excitatory effects on 

gpIAS and mouse vas deferens smooth muscle.

1) GUINEA-PIG INTERNAL ANAL SPHINCTER

Under resting conditions the gpIAS exhibits a high degree of almost 

continuous myogenic spontaneous electrical and mechanical activity which is 

probably related to its physiological role as a regulator of rectoanal continence 

(Gowers, 1887; Denny-Brown & Robertson, 1935; Papasova, 1989).

The nitrovasodilators SNP, GTN and IDN each affected this resting 

activity. However, the potency of these drugs to effect changes in activity 

differed markedly; SNP was significantly more potent than the others, a 

similar finding to those in the rabbit distal colon (RDC) and rat portal vein 

(RPV; Smith, 1994). The biotransformation of SNP differs from that of the 

organic nitrates (Gryglewski et a!, 1992) in that it is probably activated 

intracellularly (Gryglewski et a!, 1992) whereas the organic nitrates IDN and 

GTN are effectively decomposed to release NO only when they come in 

contact with cysteine or N-acetylcysteine (Feelisch, 1991). Consequently, the 

chances of NO so released coming into contact with guanylyl cyclase are 

reduced, so making them less effective than SNP. Differences may also exist 

between the organic nitrates themselves as IDN is more potent than GTN in 

the RDC and vice versa in the RPV (Smith, 1994) and gpIAS (present 

investigation). The reason for this is unclear but may be related to their 

respective affinities for the metabolizing enzyme, possibly cytochrome P-450 

(Schroder, 1992), due to their different chemical structures (Tzeng & Fung, 

1992). As SNP was the most effective compound, it was used as a model for 

the actions of this type of drug in the present study.
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The release of NO (by SNP) and its subsequent stimulation of guanylyl 

cyclase, to increase intracellular ([cGMP]j) levels, appeared responsible for 

both aspects of activity; potassium ferrocyanide, which lacks NO, had no 

effect on the spontaneous activity of the gpIAS, while HbO inhibited SNP's 

activity and 8-br-cGMP mimicked both the stimulatory and inhibitory actions 

of the drug.

The question remains as to how the increase in NO-stimulated [cGMP]j 

mediates the effects of the nitrovasodilators seen here. The increase in this 

cyclic nucleotide may evoke a membrane hyperpolarization, although this 

cannot be measured using the Golenhofen apparatus. Nitrovasodilators 

hyperpolarize and relax a number of smooth muscles including rabbit 

pulmonary artery (Ito et al, 1978), rat tail artery (Cheung & MacKay, 1985) 

guinea pig uterine artery (Tare et al, 1990) and, importantly, the gpIAS (Baird 

& Muir, 1990; present investigation-see Chapter 1-Results, pp.76-77). This 

hyperpolarization was manifested as a decrease in tone and a resetting of the 

pacemaker activity, resulting in more synchronised, burst-like activity.

K+ replacement experiments and lemakalim, supported the proposal that 

a membrane hyperpolarization may be involved in mediating the actions of 

SNP; removal of [K+]0 and lemakalim each enhanced the inhibitory effects of 

the drug. Although not seen in tissues such as the RDC and RPV (Smith, 

1994), this may have been mediated by a K+ efflux, a well known mechanism 

of inducing smooth muscle hyperpolarization (e.g. guinea-pig taenia caeci - 

Bennett et al, 1963; jejenum -Hidaka & Kuriyama, 1969; gpIAS -Lim & Muir, 

1985). Cl" may also be involved in the hyperpolarizing response to SNP, as 

evidenced in the opossum LOS (Saha & Goyal, 1992), although experiments 

have not been carried to investigate this possibility in the gpIAS.

Ca2+ availability was necessary for maintaining both normal 

spontaneous tone and rhythm, and the stimulatory effects of SNP (Smith, 

1994; present investigation). Diltiazem (DTZ) which antagonizes, and BAY K
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8644 which opens, Ca2+ channels blocked and enhanced, respectively, the 

excitatory effects of SNP.

How does the interaction between K+ and Ca2+ fluxes contribute to the 

excitatory and inhibitory effects of SNP? In ganglia, dibutryl cGMP which, 

like SNP, increases [cGMP]j, produced a concentration-dependent, transient 

inward Ca2+ current (Nishimura et al, 1992). If so, then this may account for 

the enhancing effect of SNP in the gpIAS. On the other hand, one might expect 

that an inward, stimulatory flux of Ca2+ would increase, rather than decrease, 

tone as seen here. However, raised [cGMP]j levels cause a decrease in [Ca2+]j 

levels by increasing the binding, sequestration or efflux of the ion (Lincoln & 

Johnson, 1984) which may explain why tone decreased in response to SNP.

The proposed membrane hyperpolarization produced by SNP probably 

results from the opening of Ca2+-activated K+ channels due to the influx of 

Ca2+. As the degree of hyperpolarization, induced by higher concentrations of 

SNP increased, the open probability of voltage-dependent Ca2+ channels 

would decrease (Nelson et al, 1990), leaving the muscle increasingly unable to 

respond to this challenge until, eventually, all activity ceases.

2) HUMAN INTERNAL ANAL SPHINCTER

Two IAS' displayed spontaneous mechanical activity. In these tissues 

SNP produced a relaxation but did not reproduce the excitatory effects seen in 

the gpIAS. This may have been due to several reasons; a) the effects witnessed 

in the gpIAS may have been species-dependent; b) inappropriate 

concentrations of SNP may have been used to produce excitatory effects in the 

human IAS, although this is unlikely as the effects of a wide concentration 

range were examined in both tissues, or c) the tissues may have been unable to 

respond in such a way to the nitrovasodilator, possibly because the tissues 

were only available several hours into the operations, during which time they
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had undergone relatively severe mechanical stresses which may have affected 

their physical condition.

3) MOUSE VAS DEFERENS

Intracellular electrical analysis of the mouse vas deferens confirmed the 

post-synaptic hyperpolarizing effect of SNP, also proposed to occur in the 

gpIAS (present investigation). However, this study also demonstrated a pre- 

synaptically-mediated excitatory effect of the drug on spontaneous transmitter 

release.

Although not investigated, it is possible that the mechanism underlying 

the inhibitory hyperpolarizing response to SNP is similar to that proposed for 

the gpIAS, namely, a K+ efflux, possibly induced by an initial Ca2+ influx.

The stimulatory effect of SNP in the vas deferens, manifested as an 

increase in spontaneous EJP amplitude, indicated that the drug enhanced the 

release of an excitatory transmitter. How SNP produced this increase is 

unclear. It can be speculated however, that, as transmitter release is a Ca2+- 

dependent process, SNP enhances the neuronal Ca2+ influx. This could be 

achieved indirectly by raising intracellular cGMP levels, which in turn may 

transiently increase Ca2+ influx, as in parasympathetic ganglia (Nishimura et 

al, 1992), or, less likely, the nitroprusside molecule, by blocking pre-synaptic 

receptors, such as a 2-adrenoceptors, which regulate the release of transmitter 

(see Illes & Starke, 1983), could prevent negative feedback and thereby 

enhance transmitter release.

Such an enhancement of excitatory transmitter release may explain 

some excitatoiy effects of the drug in other tissues. Indeed, previous work in 

this laboratory has shown that the SNP-induced increase in frequency of both 

electrical and mechanical activity in the RPV was blocked by a combination of 

phentolamine and propranolol (Smith, 1994). Within the gpIAS, SNP, under
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certain circumstances may also enhance the release of a transmitter, such as 

noradrenaline, which is a known excitatory transmitter in this tissue.

Clearly, from these and other studies, the nitrovasodilators possess a 

spectrum of activity, with some drugs more effective than others depending on 

the tissue and species utilised. Nitrovasodilators are used clinically for their 

relaxant properties, as in the treatment of angina pectoris or achalasia. The 

excitation observed in tissues such as the gpIAS, mouse vas deferens (present 

investigation), RDC and RPV (Smith, 1994), in response to the 

nitrovasodilators, would clearly be an unwanted side effect in the treatment of 

conditions where relaxation is required and may therefore warrant a re­

assessment of the clinical usage of such drugs.

Further work is required to fully elucidate the mechanism of action 

involved in mediating the excitatoiy effects of these drugs within 

spontaneously active smooth muscle and to determine the possible 

consequences of these effects in disease therapy.

4) CONCLUSIONS

This part of my work was undertaken to further investigate possible 

excitatory effects of nitrovasodilators on spontaneously active smooth muscles 

first demonstrated in this laboratory by Wylie (1988), in the RPV, and Smith 

(1994) in the RDC and RPV. The results indicate that within the gpIAS and 

the mouse vas deferens the actions of these drugs were complex.

Although NO is regarded mainly as an inhibitory NANC transmitter 

within the majority of smooth muscles (see Rand, 1992; Sanders & Ward, 

1992; Sanders et al, 1992) the nitrovasodilators both enhanced and inhibited, 

spontaneous electrical and mechanical activity in certain smooth muscles. 

Inhibition in the gpIAS appeared as a reduction in tone and a decrease in the 

amplitude of both the contractions and accompanying electrical activity.



Within the mouse vas deferens it was manifested as a membrane 

hyperpolarization. Both effects were probably the result of a K+ efflux leading 

to reduction in [Ca2+]j levels.

Excitation in the gpIAS was manifested as an increase in both the 

maximum amplitude of spontaneous contractions and electrical spikes and 

within the mouse vas deferens as an increase in the amplitude of spontaneous 

EJPs. The reasons underlying the excitation are unclear but, in the gpIAS may 

be due to a NO/cGMP-induced influx of Ca2+ across the membrane. In the 

mouse vas deferens, the enhanced transmitter release may also be due to a 

transient Ca2+ influx into the nerves.

These results support previous findings of nitrovasodilator-induced 

excitation responses in this and other laboratories, i.e. in the RPV (Bray et al, 

1987), guinea-pig ileum (Sugisawa el a!, 1991) and rat ileum (Bartho et al, 

1992) suggesting that endogenous NO may, like most other neurotransmitters, 

possess both inhibitory and excitatoiy properties.
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