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Summary

The aim of this study was to investigate the possible role of the 

endothelium-derived vasorelaxant factors, NO and prostacyclin, in the 

maintenance of the low pulmonary vascular tone. This was achieved by

investigating whether a basal release of NO and prostacyclin is involved

in modulating the responsiveness of isolated pulmonary arteries to 

vasoconstrictors, and by examining the ability of various humoral

agents to stimulate NO release in this vascular bed. The extent to 

which this basal and stimulated release correlates w ith artery size was 

also investigated.

The main results obtained are summarised below :

1- Comparison of the concentration-response curves to the

vasoconstrictors PE (10 '9-10 '4M), 5-HT (10'9-10 '3M) or KCI 

(10-50mM) in MPA, 1st and 2nd branches revealed that generally 

2nd branches displayed a significantly greater contractility and higher 

sensitivity to the vasoconstrictors than 1st branches, which showed 

higher contractility and sensitivity than MPA. The greater contractility of 

the smaller arteries is thought to be due to their higher smooth 

muscle content.

2- Pretreatment with the NOS inhibitor L-NAME (2x10"4M) significantly

potentiated the contractile responses to PE (10 '9-10*4M), 5-HT 

(10'9-10"3M) and KCI (10-50mM) in all of the three arteries. The

potentiating effect was not specific to L-NAME as another NOS inhibitor,

L-NOARG (10'4M), also caused a similar potentiation of contractile 

responses to PE (10*9-1Cb4 M) in 2nd branches.
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Summary

3- Prior incubation with L-arginine (10‘2M) completely prevented the 

ability of L-NAME (2x10~4M) and L-NOARG (10'4M) to potentiate 

PE-induced contractions (10*9-10'4 M) in 2nd branches.

These results confirm that the potentiating effects of L-NAME and 

L-NOARG were due to inhibition of NO synthesis, and suggest that NO 

exerts a depressant effect on the contractile responses of pulmonary 

arteries to vasoconstrictors.

4- The a.2-agonist clonidine (10"8-10 '4 M) failed to produce any relaxant 

effect in 2nd branches precontracted with the thromboxane A 2 mimetic 

U 46619 (8x10 '1° M), even in the presence of the a-|-blocker prazosin 

(10'6 M) to suppress any possible a r mediated contractile effect of 

clonidine. This result excludes the presence of endothelial a 2-receptors 

that could stimulate NO release.

5- 5-HT (10"7-10*4 M) did not evoke any relaxation in 2nd branches 

precontracted with U 46619 (8x1 O' 10 M), even when the contractile 

effect of 5-HT was suppressed by the 5-HT2-antagonist ketanserin 

(10' 6 M). Similarly, KCI (10-50 mM) failed to produce any degree of 

relaxation in 2nd branches precontracted with PE (9.5x1 O'8 M).

6 -  Exposure of 2nd branch rings to PE (10'4 M) or 5-HT (10 -4 M) did not 

cause any significant change in basal cGMP level. The effect of KCI

(25.1 mM) on cGMP level was variable. KCI caused a significant rise in

cGMP level in 2 out of 6 rings, w ith no effect in the 4 remaining rings. 

These results generally suggest that the potentiating effects of L-NAME

and L-NOARG were due to the loss of modulation of contractile 

responses by basally-released NO, rather than NO released by 

vasoconstrictor stimulation.
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7- The potentiating effect of L-NAME on the contractile responses to PE,

5-HT and KCI was more pronounced as artery size decreased, this was 

neither due to a higher sensitivity of soluble guanylate cyclase in the 

smaller arteries, as the endothelium-independent vasorelaxant SNP 

(10 '11-10~4 M) produced similar maximum relaxant effects in the three 

arteries, nor was it due to the thicker vessel wall in the larger arteries 

serving as a physical barrier for NO diffusion, as MPA was more sensitive 

to the relaxant effect of low concentrations of the endothelium- 

dependent vasorelaxant CARB than were 1st and 2nd branches. The 

most likely cause for the greater potentiating effect of L-NAME in the 

smaller arteries, therefore, is a higher basal production of NO in 

these arteries.

8 -  This conclusion is further supported by the finding that the small 

arteries had higher cGMP levels than larger arteries.

9- Pretreatment of 2nd branch rings with the cyclo-oxygenase inhibitor 

flurbiprofen (10-5 M) had no significant effect on contractile responses to 

PE (10 '9-10'4 M). This result suggests that prostacyclin is not released 

spontaneously from the pulmonary endothelium.

10- The endothelium-dependent vasorelaxant CARB (10 '9-10 '4M) 

induced concentration-dependent relaxations in PE-precontracted rings 

(2 .2x10-7 M or 9 .5x10 ‘8 M) from MPA, 1st and 2nd branches. However, 

2nd branches were more responsive to the relaxant effect of CARB than

1st branches, which were more responsive than MPA. This most likely 

reflects the capacity of the small arteries to generate greater amounts of 

NO in response to the stimulatory effect of CARB than larger arteries.
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1 1 -  Pretreatment with L-NAME (2x10'4M) or L-NOARG (10'4M) inhibited 

CARB-induced relaxations (10~9-10"4M). The inhibitory effects of L-NAME 

and L-NOARG were only partially prevented by prior incubation with 

L-arginine (10*2 M).

The results demonstrate that only the inhibition by L-NAME and

L-NOARG of basal, but not CARB-stimulated, NO release is completely 

prevented by L-arginine. This raises the possibility that there are different 

isoenzymes of NOS involved in basal and CARB-stimulated NO release, 

or alternatively only one form of NOS is present and activation of the 

enzyme by CARB increases its affinity for the inhibitors.

1 2 -  The relaxant effects of CARB (10'9-10 '4M) in KCI-precontracted

rings (25.1 mM, 27.5 mM or 29.0 mM) were significantly weaker than in 

PE-precontracted rings (2.2x1 O'7 M or 9.5x1 O' 8 M). This was not due to 

an inhibitory action by KCI on the generation of NO, as SNP

(10 '11-10 '4 M) also induced significantly weaker relaxations in 

KCI-precontracted rings.

13- Pretreatment with L-NAME (2x1 O'4 M) had no effect on SNP- 

induced relaxation in PE-precontracted rings but caused a significant 

enhancement of the relaxant responses to SNP in KCI-precontracted 

rings.

These results imply that the limited capacity of CARB and SNP to relax 

KCI-precontracted rings reflect the ability of KCI to stimulate NO release, 

thereby reducing the capacity of the endothelium to generate more NO in 

response to CARB and decreasing the amount of unstimulated guanylate 

cyclase available for activation by NO.
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14- The non-selective (3-agonist ISO (1 0 '1°-10 ' 4 M) induced 

concentration-dependent relaxations in endothelium-intact 2nd branch 

rings precontracted with PE (9 .5x10'8 M). Flurbiprofen (10‘5 M) had no 

effect on ISO-induced relaxation, which excludes the contribution of 

prostacyclin to this effect.

1 5 -  Several lines of evidence indicate that the relaxant response to ISO 

(10~10-10~4 M) was partially mediated by stimulation of NO release. 

Pretreatment with L-NAME (2x1 O'4 M) caused partial inhibition of 

ISO-induced relaxation, an effect which was completely prevented by 

L-arginine (10'2M). Moreover, when L-NAME was added during maximum 

relaxation to ISO, a partial reversal of the relaxation was observed. In 

addition, ISO (10 -4 M) caused a rise in cGMP level.

16- In endothelium-denuded rings, ISO (10 '10-10 '4M) produced 

concentration-dependent relaxations comparable to those induced in 

endothelium-intact rings, but in this case L-NAME (2x10 '4M) had no 

effect on ISO-induced relaxation.

These results suggest that in the presence of endothelium, the relaxant 

effect of ISO is mediated partly by stimulation of NO release and partly 

by a direct effect on smooth muscle cells. In the absence of endothelium, 

ISO induces comparable relaxations by a direct effect on the smooth 

muscle, independently of NO release.

1 7 -  In endothelium-intact rings, the submaximal responses to ISO were 

markedly shifted to the right by the non-selective [3-antagonist 

propranolol (10~6M), and to a lesser extent by the selective 

(3-|-antagonist atenolol (10~5 M) and the selective (32-antagonist
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ICI 118551 (10"6 M), which indicates the involvement of (3-| and p2 

receptors in mediating these responses.

1 8 -  In conclusion, this study indicates that NO, but not prostacyclin, is 

spontaneously released in the pulmonary vascular bed. The release of 

NO, which can also be stimulated by a variety of vasoactive agents, 

serves to depress the contractility of pulmonary arteries to various 

vasoconstrictors and, therefore, might contribute to the maintenance of 

the low pulmonary vascular tone. The study also shows that in the 

pulmonary vascular tree, small arteries display a greater contractility to 

vasoconstrictors and a larger capacity to generate NO than larger 

arteries, and therefore would have a greater role in regulating pulmonary 

pressure.
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Introduction

The main function of pulmonary circulation is gas exchange, particularly 

transport of oxygen from air to blood. For the lungs to perform their gas 

exchange function efficiently, pulmonary blood vessels must be thin- 

walled so that the poorly soluble oxygen molecule can more easily diffuse 

from the alveolar air into the blood. This in turn requires the intravascular 

pressure to be low to prevent leakage of fluids from the vessels. Indeed, 

although blood flow to the lungs is higher than that to any other organ of 

the body, the pressure within pulmonary arteries is only 

one-fifth of that within systemic arteries. Not only is the pulmonary 

circulation a high flow ,low  pressure system in a subject at rest but it can 

also accommodate increases in cardiac output of up to four times resting 

value with only a small rise in intravascular pressure.

It is not clearly known how the lung maintains a low pressure. In addition 

to anatomical and mechanical properties of the pulmonary vascular bed, 

a variety of vasoactive agents might be contributors. Over the last two 

decades, it has become increasingly clear that the endothelium plays a 

major role in the control of vascular tone. However, the extent to which 

the endothelium contributes to the maintenance of the low pulmonary 

vascular tone is still under investigation. This introduction will focus on 

the vasorelaxant substances released by the endothelium, their 

mechanisms of producing vascular smooth muscle relaxation, and what is 

known on their role in modulating pulmonary vascular tone.



Introduction

1.1. Properties of arteries

1.1.1. Structure

Although the basic organisation of the wall of all arteries is similar, 

pulmonary arteries differ from their systemic counterparts in having far 

thinner walls as well as some other histological differences. Three 

concentric layers or tunicae can be distinguished in the arterial wall 

( Bloom & Fawcett, 1975 ) (Fig. 1) :

a) An inner layer, the tunica intima, consisting mainly of endothelial cells.

b) An intermediate layer, the tunica media, predominantly composed of 

smooth muscle cells with small bundles of collagen and elastic fibres. 

The boundary between the media and intima is marked by the internal 

elastic lamina. On the adventitial side, a thinner external elastic lamina 

can be found in many arteries.

c) An outer layer, the tunica adventitia, made up of elastin, collagen, 

fibroblasts and occasional Schwann cells with associated nerve axons 

which are usually confined to the adventitia and do not penetrate the 

media ( Hirst & Edwards, 1989).

2



Fig. 1.

A cross sectional area of an artery showing the different 

layers forming the artery wall ( Bloom & Fawcett, 1975 ).



Introduction

Three types of pulmonary arteries can be identified in the normal 

human lung ( Murray, 1986 ) :

i) Elastic arteries :

The pulmonary trunk, its main branches and all extralobular arteries are 

classified as elastic arteries because in them the media consists 

predominantly of elastic tissue with little smooth muscle and collagen.

ii) Muscular arteries :

In these vessels, which lie within lung lobules and accompany 

bronchioles, a compact muscle layer appears with poorly developed 

internal elastic lamina. In the lung, the transition to muscular arteries 

occurs gradually, whereas in the systemic circulation this transition 

occurs in large arteries.

iii) Partially muscular and non-muscular arteries :

The pulmonary vascular bed is also distinctive in that it possesses no 

counterpart to the small muscular arteries and arterioles of the systemic 

circulation. In the lung, the muscular arteries give way to partially 

muscular arteries which have an incomplete muscular coat in which the 

muscle has a spiral orientation. The non-muscular part of the wall 

contains cells that are intermediate in structure between mature cells and 

pericytes ( Reid & Meyrick, 1980 ). The partial layer of muscle gradually 

disappears until the vessel wall consists only of endothelial cells,
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Introduction

pericytes and elastic lamina. The partially muscular and non-muscular 

arteries supply alveolar ducts and alveoli

1.1.2. Signal transduction in vascular smooth muscle

In vascular smooth muscle, the cycle of contraction-relaxation is mainly 

regulated by changes in the free intracellular Ca2 + concentration 

( [Ca2 + ]j ), although Ca2 + -independent regulation may also play a role 

( Nishikawa et a/., 1984 ). The major mechanisms of excitation-

contraction coupling are electromechanical and pharmacomechanical 

coupling. Electromechanical coupling involves depolarisation of the 

plasma membrane leading to opening of voltage-operated Ca2+ channels 

through which Ca2+ influx occurs, as well as depolarisation-induced 

intracellular Ca2+ release ( Himpens & Somlyo, 1988 ).

Pharmacomechanical coupling, which does not involve membrane 

potential changes, is initiated by the binding of an excitatory agonist with

its particular receptor (Somlyo, 1985). These receptors are coupled by

guanine nucleotide-binding regulatory proteins (G proteins) to 

phospholipase C which when activated causes hydrolysis of 

phosphatidyl inositol 4,5-bisphosphate (PIP2), resulting in the production 

of 1,2-diacylglycerol ( DAG ) and inositol 1,4,5-trisphosphate ( IP3 ). 

DAG activates protein kinase C which phosphorylates myosin light chains 

( Nishikawa et a!., 1985 ). IP3 releases Ca2+ from the sarcoplasmic 

reticulum ( Berridge, 1987 ). Receptor activation may also stimulate 

Ca2+ influx through receptor-operated Ca2+ channels ( Bolton, 1979 ). 

Ca2+ binds to calmodulin and the Ca2 + -calmodulin complex 

subsequently activates myosin light chain kinase ( MLCK ) ( Dabrowska 

et a!., 1977 ) which phosphorylates myosin light chains leading to an
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Introduction

increase in actin-myosin Mg2 + -ATPase activity and, hence, muscle 

contraction.

Inhibition of excitation-contraction coupling, i.e smooth muscle 

relaxation, can result from withdrawal of the contractile stimulus leading 

to a decrease in [Ca2 + ] j, or can be mediated by an inhibitor of 

contraction in the continued presence of the contractile agonist. The 

latter mechanism involves the generation of an intracellular second 

messenger. The cyclic nucleotides adenosine 3',5 '-monophosphate 

(cAMP ) and guanosine 3',5'-monophosphate ( cGMP ) are thought to be 

the major second messengers mediating relaxation in vascular smooth 

muscle ( Kuriyama et a/., 1982 ; Murad, 1986 ). cAMP is synthesised 

from adenosine triphosphate by the action of adenylate cyclase. 

A number of membrane-bound receptors are now known to exert their 

stimulatory actions on adenylate cyclase via G proteins 

( Gilman, 1987 ). The primary mechanism by which cAMP causes 

relaxation include : (i) phosphorylation of MLCK by cAMP-dependent 

protein kinase ( protein kinase A ) resulting in a decreased affinity of 

MLCK for the Ca2+ -calmodulin complex ( deLanerolle et a/., 1984 ) ; (ii) 

reduction of [Ca2 + ]j by inhibition of Ca2+ influx, augmentation of Ca2 + 

efflux or enhancement of Ca2+ sequestration into the sarcoplasmic 

reticulum ( Scheid & Fay, 1984 ). Both of these events would decrease 

the extent of myosin light chain phosphorylation and cause relaxation.

cGMP synthesis is catalysed from guanosine triphosphate by guanylate 

cyclase, which can be activated by a number of agents including 

nitric oxide ( NO ) ( Arnold et a/., 1977 ). The primary mechanism by 

which cGMP causes smooth muscle relaxation is by lowering [Ca2 + ]j 

( Collins et at., 1986 ). cGMP exerts the majority of its actions through
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the activation of a protein kinase, termed cGMP-dependent protein 

kinase. The mechanisms by which cGMP-dependent protein kinase 

decreases [Ca2+]j include : (i) inhibition of phospholipase C, presumably 

through the phosphorylation of a regulatory protein for phospholipase C, 

resulting in inhibition of IP3 formation ( Hirata et a/., 1990 ); (ii) 

stimulation of Ca2+ -activated K + channels leading to hyperpolarisation 

and inhibition of Ca2+ entry through voltage-operated Ca2+ channels 

( Robertson et al., 1993 ) ; (iii) stimulation of Ca2 + -ATPase activity 

leading to augmentation of Ca2+ sequestration into the sarcoplasmic 

reticulum ( Yoshida et aL, 1991 ).

1.1.3. Endothelium-derived vasoactive agents

The original conception of the vascular endothelium as a physical and 

biochemical barrier between the circulating blood and the vascular 

smooth muscle, with no other functional properties, has been 

dramatically changed over the past two decades. It is now well

established that the endothelial cells are a rich source of substances 

regulating the tone of underlying vascular smooth muscle as well as 

coagulation, inflammatory and immunological processes. The first

endothelial vasoactive substance was discovered in 1976 ( Moncada 

et al. ) when it was demonstrated that endothelial cells synthesise 

prostacyclin ( PGI2 ), a potent vasorelaxant and platelet inhibitory 

metabolite of arachidonic acid. In 1980, Furchgott and Zawadzki

demonstrated the phenomenon of endothelial-dependent relaxation in 

vascular tissue and its mediation by a humoral factor, which later

became known as endothelium-derived relaxing factor (EDRF).Subsequent
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studies have suggested that EDRF may be NO ( Ignarro 

et al., 1986 ) or a NO-containing compound ( Myers et at., 1990 ).

In addition to the production of relaxing factors, the endothelium can also 

release vasoconstrictor substances, these include : vasoconstrictor 

metabolites of arachidonic acid ( Miller & vanhoutte, 1985b ) ; the 

contracting factor released by severe hypoxia, the nature of which has 

not yet been identified ( Rubanyi & Vanhoutte, 1985 ) ; and endothelin-1 

( Yanagisawa et a/., 1988 ), which is considered the most potent 

vasoconstrictor substance yet discovered.

1. 2 . N itric  oxide

1.2.1. Nitric oxide and EDRF

NO has long been known to account for the vasorelaxant activity of 

nitrovasodilators ( Arnold et al., 1977 ). Based on the similarities in the 

pharmacological behaviour of EDRF and NO, Furchgott ( 1988 ) and 

Ignarro et al. ( 1986 ) suggested that EDRF may be NO or a closely 

related species. The first evidence for the formation of NO by endothelial 

cells came from experiments which showed that the concentrations of 

bradykinin that induced EDRF release from cultured porcine aortic 

endothelial cells also caused a concentration-dependent release of NO 

( Palmer et a/., 1987 ). A detailed comparison of the biological actions of 

EDRF and NO on vascular strips and on platelets also showed that the 

tw o compounds were indistinguishable ( Moncada et al., 1988 ). Both 

EDRF and NO caused a relaxation of vascular strips ( Palmer et at., 1987) 

and inhibition of platelet aggregation ( Radomski et a!., 1987 ). These
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actions were similarly potentiated by superoxide dismutase and 

cytochrome C and inhibited by Fe2+ and some redox compounds 

( Hutchinson et a/., 1987 ; Palmer et at., 1987 ; Radomski et a/., 1987). 

Furthermore, both EDRF and NO act on vascular smooth muscle and 

platelets through the stimulation of guanylate cyclase and elevation of 

cGMP ( Mellion et a/., 1981 ; Rapoport & Murad, 1983 ). All of this 

evidence strongly supported the proposal that EDRF is NO. However 

several studies have questioned this conclusion, based on observations 

about variations in the half-life of EDRF ( Griffith et a/., 1984 ; Cocks 

et a/., 1985 ), differential binding of EDRF and NO to anion exchange 

columns ( Cocks et al., 1985 ; Long et al., 1987 ), and stabilisation of 

EDRF by acidification which would not be expected to stabilise NO 

( Murray et al., 1986 ). However, the general line of evidence suggests 

that even if EDRF is released from endothelial cells as a NO-containing 

compound, the biological effects of EDRF are mediated 

ultimately by NO.

1.2.2. Synthesis

NO is synthesised from the amino acid L-arginine, with the formation of 

L-citrulline as a by-product ( Palmer et al., 1988 ). The reaction is 

stereospecific since a number of analogues of L-arginine, including its 

D-enantiomer, are not substrates. The synthesis is catalysed by several 

isoforms of the enzyme NO synthase ( NOS ) ( Forstermann et al., 1991), 

which catalyse the oxidation of one of the terminal guanidino nitrogen 

atoms of L-arginine to form NO and L-citrulline, w ith N^-hydroxy- 

L-arginine as an intermediate ( Stuehr et a/., 1991 ). NOS utilises O2 and 

nicotinamide adenine dinucleotide phosphate ( NADPH ) as co-substrates
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and thiol, tetrahydrobiopterin, flavin adenine dinucleotide ( FAD ) and 

flavin mononucleotide ( FMN ) as cofactors ( Mayer et at., 1990 ; Bredt 

et a/., 1991 ). Two broad groups of NOS can be identified :

a "constitutive" Ca2+ -calmodulin dependent enzyme and an "inducible" 

Ca2 + independent enzyme ( Forstermann et at., 1991 ). The constitutive 

enzyme is present in a wide variety of cells including platelets, 

endothelial and neuronal cells ( Mayer et at., 1989 ; Knowles et a/., 

1990 ; Radomski et at., 1990 ). It binds calmodulin and becomes fully 

active at increased [Ca2 + ]j. Thus, increased [Ca2 + ]j can be linked to 

increased NO synthesis in cells. The inducible enzyme can be expressed 

in endothelial cells (Radomski et a/., 1990), vascular smooth muscle 

( Busse & Mulsch, 1990 ), macrophages ( Marietta et at., 1988 ) and 

neuronal cells ( Salvemin et at., 1992 ) among other cells. The conditions 

required for the induction of NOS in these cell types varies, but 

interferon y (Lowenstein et at., 1993), endotoxin ( Buttery et a/., 1993) 

and interleukin-1 ( Suschek et al., 1992 ) have all been shown to induce 

the enzyme.

1.2.3. Mechanisms of release

Different mechanisms can lead, by activation of the constitutive or 

inducible NOS, to the release of NO from the vascular endothelium. The 

inducible release occurs following activation by bacterial endotoxins or 

cytokines. Two types of constitutive release of NO can be defined : basal 

and stimulated release. Several lines of evidence suggest that there is a 

continuous basal release of NO from the endothelium. NOS inhibitors 

caused endothelium-dependent contractions of isolated vascular rings 

( Palmer et a!., 1988 ; Gold et al., 1990 ), increased coronary perfusion
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pressure in rabbit isolated perfused heart ( Amezcua et at., 1989 ), raised 

blood pressure when administered to conscious rats ( Gardiner et at., 

1990 ), and increased pulmonary arterial pressure and pulmonary 

vascular resistance in conscious rabbits ( Wiklund et a/., 1990 ). 

Moreover, removal of the endothelium or pretreatment with NOS 

inhibitors potentiated the contractile responses of isolated arteries to 

various vasoconstrictors ( Martin et al., 1986 ; Trezise et al., 1992 ; 

Ayotunde et a/., 1994 ). The basal release of NO presumably reflects

activation of NOS by the normal resting [Ca2 + ] within the 

endothelial cell.

NO release can be stimulated by various agonists such as acetylcholine 

( Furchgott & Zawadzki, 1980 ), bradykinin ( Palmer et a!., 1987 ), and 

substance P (Furchgott, 1983) or by receptor-independent compounds 

such as Ca2+ ionophores ( Furchgott, 1983 ). Physical stimuli such as 

shear stress ( Pohl et al., 1986 ) and pulsatile flow  ( Hutcheson & 

Griffith, 1991 ) also stimulate NO release and may represent the 

physiologically most important mechanisms of NO release from the 

endothelium. As the constitutive enzyme in endothelial cells is a 

Ca2+ -calmodulin dependent enzyme, an elevation of [Ca2 + ]j is an 

absolute prerequest for agonist-stimulation of NO release. Numerous 

studies have shown that the agonist-induced increase in [Ca2 + ]j in 

endothelial cells involves both a transient IP3-mediated release of 

intracellular Ca2+ and a more sustained extracellular Ca2+ influx ( Freay 

et a/., 1989 ). A similar relation between shear stress and increased 

[Ca2 + ]j have been observed ( Schwarz et al., 1992 ).
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1.2.4. Mechanism of action

Following its release from endothelial cells, NO diffuses into the 

underlying vascular smooth muscle cells where it binds to the haeme 

moiety at the catalytic site of guanylate cyclase thereby activating the 

enzyme, which leads to the generation of cGMP from guanosine 

triphosphate ( Greutter et al., 1981 ; Ignarro et al., 1986 ). cGMP in turn 

causes vascular relaxation through the mechanisms described in 

section 1 .1 .2 .

1.2.5. Inhibitors of NO

NO is a highly reactive free radical. It binds with a variety of biological 

substances, resulting in its rapid inactivation. The most important 

pathway in the removal of NO is its rapid reaction with oxyhaemoglobin 

( 0 2 Hb ) to form methaemoglobin and nitrate ( Wennmalm et at., 1992 ):

NO + 0 2 Hb -> metHb + N03~

This reaction ensures that NO diffusing into the lumen of a blood vessel

will be very rapidly converted to nitrate. Within the vessel wall, a 

reaction that has also been shown to be important in removing NO is that 

w ith  superoxide anion ( 02~ ) ( Grylewski et at., 1986 ) :

NO T O2 —̂ ONOO —̂ NO3
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In the absence of haemoglobin or superoxide anion, for example in 

physiological salt solutions, the predominantly reaction of NO is probably 

that with O2 ( Olbergts, 1985 ) :

2 NO + O2 —̂ N2O4 —̂ NO2-  “I- NOg-

Several analogues of L-arginine have been shown to inhibit 

stereoselectively the synthesis of NO. They act by competitively 

inhibiting NOS, their effects being reversed by the addition of excess 

L-arginine ( Rees et at., 1989 ). Among the most commonly used NOS 

inhibitors are NG-monomethyl-L-arginine ( L-NMMA ) ( Rees era/., 1989), 

NG-nitro-L-arginine ( L-NOARG ) ( Ishii et a/., 1990 ), and NG-nitro- 

L-arginine methyl ester ( L-NAME ) ( Rees et al., 1990 ). The action of 

NO can be inhibited by methylene blue which acts by inhibiting guanylate 

cyclase ( Gruetter et al., 1980 ).

1.3. Prostacyclin

1.3.1. Discovery and synthesis

In 1976, Moncada et at. reported that prostaglandin endoperoxides are 

transformed in blood vessel walls to an unstable substance which they 

called prostacyclin. Although prostacyclin can be formed in vascular 

smooth muscle, endothelial cells are the major site of its synthesis 

( Moncada et al., 1977 ). Stimuli for prostacyclin synthesis include 

various agonists such as acetylcholine ( Beetens et at., 1983 ), 

bradykinin ( Hong, 1980 ) and histamine ( Schellenberg et al., 1986 ); 

Ca2+ ionophores ( Wekler et a!., 1978 ), and physical stimuli such as

12
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shear stress and pulsatile f low  ( van Grondelle et at., 1984 ; Frangos et 

al., 1985). All of these stimulants activate the enzyme phospholipase A2 

which releases arachidonic acid from membrane phospholipids ( Van Den 

Bosch, 1980 ). Arachidonic acid is then converted by cyclo-oxygenase to 

prostaglandin G and subsequently to prostaglandin H ( Hamberg & 

Samuelsson, 1974 ), from which prostacyclin is formed by the enzyme 

prostacyclin synthase ( De W itt & Smith, 1983 ).

Prostacyclin synthesis can be inhibited by glucocorticoids which inhibit 

the enzyme phospholipase A 2 ( Hirata et al., 1980 ), and by nonsteroidal 

anti-inflammatory drugs which inhibit the enzyme cyclo-oxygenase 

( Vane, 1976 ).

1.3.2. Mechanism of action

Prostacyclin binds to a specific G protein-coupled receptor, termed the 

IP receptor, on the membrane of smooth muscle cells ( Kennedy et a/., 

1982 ), resulting in the activation of adenylyl cyclase ( Dembinska-Kiec et 

al., 1980 ) which catalyses the conversion of adenosine triphosphate to 

cAMP. The mechanisms by which cAMP causes vasorelaxation are 

discussed in section 1 .1 .2 .

1.4. Regulation of pulmonary pressure

Several factors might be involved in the regulation of pulmonary 

pressure. These can be divided into passive and active factors. Passive 

factors cause changes in pulmonary pressure by imposing a passive
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increase or decrease in the calibre of pulmonary blood vessels. In 

contrast, alterations in pulmonary pressure by active factors imply that 

contraction or relaxation of vascular smooth muscles has occurred.

1.4.1. Passive Factors

i ) Pulmonary blood flow

The pulmonary circulation can accommodate increases in cardiac output 

of up to four times resting values with only a small rise in intravascular 

pressure. This is thought to be achieved mainly by distension and 

recruitment of blood vessels ( Roos et a/., 1961 ). However, vasoactive 

agents might be involved. This ability of the lungs to accommodate 

greatly increased blood flow during exercise obviously conserves the 

energy of the right side of the heart, and it also prevents a significant rise 

in pulmonary capillary pressure and therefore prevents development of 

pulmonary oedema during the increased cardiac output.

ii ) Left atrial pressure

Left atrial pressure can rise as a result of left heart failure. A moderate 

rise in left atrial pressure causes distension and recruitment of pulmonary 

blood vessels leading to a decrease in vascular resistance, therefore 

showing almost no change in pulmonary arterial pressure ( Borst et a/., 

1956 ). However, a significant rise in left atrial pressure causes an 

almost similar increase in pulmonary pressure. This increases the load on 

the left side of the heart and leads to pulmonary oedema.
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iii ) Lung volume

During inspiration, the extra-alveolar vessels ( which are not in the 

alveolar walls ) become distended as the lung expands. By contrast, the 

alveolar vessels ( which lie in and around alveolar walls ) become 

flattened by lung inflation because the alveolar pressure tends to increase 

relative to their intravascular pressure ( Howell et at., 1961 ).

Accordingly, pulmonary pressure increases as lung volume rises because 

of the increase in resistance through the compressed alveolar vessels. 

The pressure becomes lowest at about the normal resting end-tidal 

expiratory level, but increases again at lower lung volumes due to an 

increased resistance in the extra-alveolar vessels which become flattened 

when the lung is deflated.

1.4.2. Active factors 

i ) Neural effects

The pulmonary vasculature is innervated by both sympathetic and 

parasympathetic nerves ( Downing & Lee, 1980 ). Despite the presence 

of a definite vascular nervous plexus which presumably must have 

functional significance, it has not been possible to demonstrate any 

influences mediated by the autonomic nervous system on the pulmonary 

circulation in normal human adults ( Widdicombe & Sterling, 1970 ). In 

experimental animals, electrical stimulation of the pulmonary sympathetic 

nerves can increase vascular resistance which can be attributed to 

a-adrenoceptor stimulation ( Kadowitz et al., 1973 ; Hakim & Dawson, 

1979 ). In the presence of a-adrenoceptor blockers, sympathetic 

stimulation can cause vasodilatation which appears to be mediated by
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p-adrenoceptors ( Hyman et al.,1981 ). Stimulation of the vagal nerve in 

the cat have indicated that the nerve contains both sympathetic and 

parasympathetic efferent fibres that innervate the pulmonary vascular 

bed ( Nandiwada et al., 1983 ). Stimulation of the sympathetic fibres in 

the vagus caused vasoconstriction, whereas stimulation of the 

parasympathetic fibres caused vasodilatation but only when some degree 

of vasoconstriction was already present. In more recent studies on the 

intact-chest cat ( McMahon et al., 1992 ; McMahon & Kadowitz, 1992 ), 

vagal stimulation caused a decrease in pulmonary arterial pressure which 

was blocked by atropine as well as L-NAME and methylene blue, 

suggesting that neurogenically-released acetylcholine induces NO release 

in the pulmonary vascular bed.

ii ) Chemical effects

The pulmonary circulation is distinguished by responding to hypoxia with 

a vasoconstriction, rather than a vasodilatation as seen in systemic 

vascular beds ( Fishman, 1976 ; Yuan et at., 1990 ). This hypoxic 

pulmonary vasoconstriction ( HPV ) is the principal mechanism that 

matches local lung perfusion to ventilation by diverting blood from poorly 

ventilated areas to those areas of the exchange membrane where oxygen 

concentrations are adequate. The response depends upon the oxygen 

tension in the alveoli and, to a much lesser extent, on that in the blood 

stream. A potential disadvantage of HPV is that chronic alveolar hypoxia 

can lead to chronic pulmonary hypertension ( Fishman, 1961 ). Although 

the phenomenon has been studied in various in vivo and in vitro 

preparations, its mechanism is still poorly understood. The search for a 

mediator of HPV has generated mostly negative evidence. The response 

to hypoxia is unaltered by inhibition of the sympathetic nervous system
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( Silove & Grover, 1968 ), and it is not dependent on the release of 

histamine, 5-hydroxytryptamine or angiotensin II ( Nayar et at., 1972 ; 

Hales & Kazemi, 1975 ; McMurtry, 1984 ). Recent studies that have 

addressed the possible role of the endothelium in mediating or modulating 

HPV have produced conflicting results. Some studies have proposed that 

hypoxic vasoconstriction is mediated by the release of an endothelium- 

derived contracting factor ( Holden & McCall, 1984 ; Rubanyi & 

Vanhoutte, 1985 ). However, HPV does not appear to be mediated by 

vasoconstrictor metabolites of arachidonic acid since it is not affected by 

inhibition of cyclo-oxygenase ( Rodman et al., 1989 ), and the fact that 

return to normoxia results in rapid reversal of hypoxic contraction does 

not support a role for endothelin as a mediator, since endothelin-induced 

contractions are characteristically slow to reverse ( Vanhoutte et at., 

1989 ). Other studies have proposed that HPV is mediated by a 

decreased release of NO from the endothelium ( Warren et al., 1989 ; 

Graser & Vanhoutte, 1991 ). However, it is consistently found that 

inhibition of NO synthesis markedly enhances the pulmonary pressor 

response to hypoxic challenges. L-NAME enhanced HPV in open-chest 

rabbits ( Persson et a!., 1990 ), and L-NMMA augmented the

vasoconstrictor response to hypoxia in rat perfused lungs and isolated 

pulmonary arteries ( Archer et a!., 1989 ). These results not only rule out 

the hypothesis of a blunted NO release as the cause of HPV, they also 

suggest that NO activity is in fact increased during acute hypoxia. This 

increased activity probably represents an important physiological defence 

mechanism, enabling the pulmonary vascular bed to limit excessive 

vasoconstriction during hypoxia.

Pulmonary vasoconstriction occurs also in response to hypercapnia and 

acidosis ( Barer et a!., 1967 ). Although hypercapnia is a weaker
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vasoconstrictor stimulus, the hypoxic response is potentiated by 

hypercapnia or the associated acidosis ( Malik & Kidd, 1973 ). Thus 

changes in carbon dioxide tension can be important in determining the 

magnitude of the hypoxic response.

iii ) Humoral effects

The pulmonary vasculature responds to numerous biological mediators. 

However, it remains to be established whether this mediator vasoactivity 

is significantly involved in the control of either the normal or the 

abnormal pulmonary pressure. The lung itself is a source of a large 

number of vasoactive substances. In addition to the relaxing and 

contracting factors released by pulmonary endothelium, the mast cells 

contain histamine, 5-hydroxytryptamine, adenosine triphosphate and 

dopamine ( Lewis & Austen, 1977 ), which can influence pulmonary 

vascular tone when released. Among the peptides known to occur in lung 

tissue are angiotensin II, vasoactive intestinal peptide ( VIP ) and 

substance P ( Said, 1982 ). Angiotensin II and, to a lesser extent, 

substance P contract isolated segments of pulmonary arteries. Inhibition 

of the conversion of angiotensin I to angiotensin II has been reported to 

reduce pulmonary arterial pressure and vascular resistance in humans 

( Niarchos et al., 1979 ). On the other hand, VIP is a potent vasodilator 

of isolated pulmonary arteries ( Hamasaki & Said, 1981 ). It has also 

been shown to reduce pulmonary arterial pressure and vascular 

resistance in cats receiving infusions of a prostaglandin endoperoxide 

analogue ( Said, 1982 ). Lung tissue can also generate substantial 

quantities of prostaglandins and thromboxanes especially during 

pathophysiological response ( Demling et al., 1981 ). Most of these and 

other vasoactive substances can also reach the pulmonary circulation via
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venous blood. However, the pulmonary endothelium has the capacity to 

inactivate or remove many of these substances and, therefore, their role 

in modulating pulmonary pressure is difficult to determine. The picture is 

further complicated by the fact that vasoactive substances can have 

multiple effects. Histamine can cause direct vasoconstriction or 

vasodilatation depending on the background vascular tone, as well as an 

indirect endothelium-dependent vasodilatation (Shaw, 1971 ; Hill, 1990). 

5-Hydroxytryptamine can cause direct vasoconstrictor effects, indirect 

sympathetic effects and also can induce endothelium-dependent as well 

as endothelium-independent vasodilatation ( Hollenberg, 1988 ; Glusa & 

Richter, 1993 ). Prostaglandins produce diverse effects on pulmonary 

vasculature ranging from intense vasoconstriction to vasodilatation. PGH2 

and most of its derivatives ( PGD2, PGE2, PGF2(X and TX A 2 ) are

vasoconstrictors. In contrast, prostacyclin and PGE-j are vasodilators 

( Kadowitz et a/., 1981 ).

Since the discovery of the release of prostacyclin and more recently NO 

from the endothelium, a growing research have focused on investigating 

their role in the maintenance of the low pulmonary vascular tone. 

Although prostacyclin is currently used to treat patients with severe 

primary pulmonary hypertension, its role in the physiology and 

pathophysiology of the pulmonary circulation is still unclear. The effect of 

cyclo-oxygenase inhibitors on baseline pulmonary haemodynamics during 

normoxic ventilation have been highly variable. In the intact 

anaesthetised dog, indomethacin produced an increase in pulmonary 

arterial pressure and vascular resistance whereas meclofenamate and 

ibuprofen had no effect ( Rubin et al., 1985 ). Ogletree ( 1982 ) found 

that only high doses of indomethacin increased pulmonary pressure and 

vascular resistance, and that meclofenamate did not alter pulmonary
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haemodynamics. In contrast, Walker et al. ( 1982 ) reported that 

administration of meclofenamate in conscious dogs increased pulmonary 

pressure and vascular resistance. Prostacyclin have been shown to be 

produced by the lungs in response to vasoconstriction, and inhibition of 

prostacyclin production by meclofenamate and indomethacin resulted in 

potentiation of the pulmonary pressor responses to angiotensin II, PGF2a

and hypoxia ( Weir et al., 1974 ; Voelkel et a/., 1981 ). Studies in 

sheep ( Newman et al., 1986 ) have indicated that prostacyclin does not 

seem to have a major role in the mechanisms that maintain a low 

pulmonary pressure during exercise.

The relation between chronic hypoxia and development of pulmonary 

hypertension is well established ( Fishman, 1961 ). Studies investigating 

the relation between prostacyclin production and the development of 

pulmonary hypertension have shown that repeated administration of 

indomethacin in sheep for 3 weeks caused sustained pulmonary 

hypertension ( Meyrick et al., 1985 ), and that pulmonary hypertension 

induced by chronic hypoxia in neonatal calves was associated with 

reduced pulmonary artery production of prostacyclin 

( Badesch et al., 1989 ). By contrast, others have found that prostacyclin 

production was increased in the endothelium and vascular smooth muscle 

of pulmonary arteries from rats with chronic hypoxic pulmonary 

hypertension ( Shaul et al., 1991 ).

There is increasing evidence indicating an involvement of NO in the 

modulation of pulmonary pressure in health and disease. Endothelium- 

dependent relaxation resulting from NO release has been found in 

isolated pulmonary arteries ( Chand & Altura, 1981 ; Ignarro era/., 1984) 

and perfused lungs ( Archer et a!., 1990 ) from most animal species.
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Haemoglobin and the NOS inhibitors NG-methyl-L-arginine and L-NMMA 

caused endothelium-dependent contraction of rat and bovine pulmonary 

arterial rings ( Archer et a/., 1989 ; Gold et a!., 1990 ). Similarly, 

methylene blue and L-NOARG significantly increased perfusion pressure 

in isolated perfused lungs from rats ( Archer et al., 1990 ) and rabbits 

( Persson et a/., 1990 ). In addition, inhibition of NO synthesis either by 

endothelium denudation or NOS inhibitors enhanced responsiveness to 

various vasoconstrictors in isolated pulmonary arteries ( Yamaguchi et 

at., 1989 ; Gold et al., 1990 ) and perfused lungs ( Yamaguchi et al., 

1987 ; Mazmanian et a/., 1989 ). While these results are consistent, 

other contrasting findings have been reported. L-NMMA had no effect on 

the basal tone of pulmonary arterial rings from rats (Crawley et al., 1990), 

and in isolated perfused lungs from rats and rabbits, L-NMMA and 

haemoglobin did not alter perfusion pressure under normoxic conditions 

( Cherry & Gillis, 1987 ; Archer et a/., 1989 ). Despite these

contradictory results, it seems likely that basal release of NO occurs in 

the pulmonary vascular bed, which contributes to the maintenance of the 

low pulmonary pressure.

This suggestion is further supported by studies in humans. Endogenous 

NO has been found in the exhaled air of normal humans ( Gustafsson 

et a/., 1991 ), and as in other mammalian species, endothelium-

dependent relaxation mediated by NO is also present in the human 

pulmonary circulation ( Greenberg et at., 1987 ; Cremona et al., 1991 ). 

In addition, infusion of methylene blue or L-NAME significantly increased 

pulmonary vascular resistance of isolated perfused lungs from humans 

(Cremona et al., 1991 ). Moreover recently, Celermajer et al. (1994 ) 

carried out a study on children with normal pulmonary haemodynamics 

who were undergoing cardiac catheterisation, and found that intralobar
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infusion of L-NMMA caused a decrease in pulmonary blood flow without 

altering systemic haemodynamics.

To determine the role of endothelial dysfunction in pulmonary disease, 

several studies have investigated the effects of chronic hypoxia on 

endothelium-derived NO activity in the pulmonary circulation of both 

animals with chronic hypoxic pulmonary hypertension and humans 

suffering from chronic hypoxic lung disease. Endothelium-dependent 

relaxation to acetylcholine was markedly reduced in isolated pulmonary 

arterial rings ( Leach et al., 1990 ) and perfused lungs ( Adnot et al., 

1991) from rats kept in hypoxic chambers for several weeks. Normal 

endothelium-dependent relaxation was restored when the animals were 

returned to normoxia. Studies in humans also produced results consistent 

with those in animals. Endothelium-dependent relaxation was markedly 

impaired in isolated pulmonary arterial rings from patients with chronic 

obstructive lung disease as compared with control subjects ( Dinh-Xuan 

et al., 1991, 1992 ). These results suggest that NO release and/or 

activity is impaired in chronic hypoxic pulmonary hypertension.

1.5. Metabolic functions of the lung

It is now well established that the lung has important metabolic functions 

in addition to its main function of gas exchange, in which the lung takes 

up, inactivates, or activates certain circulating substances, and 

synthesises and releases others. The lungs are ideally located and 

equipped for metabolic functions. First, the lungs are interposed between 

the venous and arterial sides of the systemic circulation and, therefore, 

receive the entire cardiac output. Consequently, the lungs are
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strategically located to exert a control function over the composition of 

arterial blood. Second, the pulmonary endothelial cells, which constitute 

a substantial fraction of all the vascular endothelial cells, are equipped 

with superficial enzymes and carrier systems that allow entry of selected 

products for intracellular processing.

Inactivation of 5-HT was the first metabolic function of the lung to be 

identified (Gaddum et at., 1953). Several vasoactive amines have since 

been shown to be inactivated to various extents during passage through 

the pulmonary circulation. The pulmonary inactivation of 5-HT and 

noradrenaline depends on uptake, followed by enzymatic degradation. 

The sites of uptake are in the endothelial cells, especially those within 

arterioles and capillaries ( Strum & Junod, 1972 ; Nicholas et at., 1974). 

In contrast, the lung does not inactivate adrenaline, dopamine and 

histamine, even though all are substrates for intracellular enzymes. This 

is due to the lack of specific uptake systems ( Alabaster, 1977 ). The 

uptake mechanism thus enables the lung to exercise selective control 

over the metabolism of circulating substances.

The pulmonary inactivation of prostaglandins, like that of vasoactive 

amines, requires an uptake process before enzymatic degradation. This 

uptake mechanism exists for PGE2 and PGF2a, but not for prostacyclin

( Eling et al., 1977 ; Dusting et a/., 1987 ). Consequently, PGE2 and 

PGF2oc are inactivated during passage through the pulmonary circulation,

whereas prostacyclin is unaffected by the lung.

The fate of several biologically-active peptides in the pulmonary 

circulation is quite different from that in other vascular beds. While 

peptides are generally extensively removed from the circulation by other

23



Introduction

vascular beds, most peptides pass through the lungs unchanged due to 

the absence of specific uptake mechanisms. Two physiologically 

important peptides, bradykinin and angiotensin I, are exceptions. 

Bradykinin is inactivated and angiotensin I is converted to the biologically 

active peptide angiotensin II by the action of a dipeptidyl 

carboxypeptidase, known as angiotensin-converting enzyme, which is 

localised on the luminal surface of endothelial cells ( Ryan et al., 1976 ). 

The adenine nucleotides adenosine triphosphate and monophosphate are 

inactivated across the pulmonary circulation by phosphate esterases 

which are situated on the luminal surface of endothelial cells ( Ryan & 

Ryan, 1977 ). In this respect, the pulmonary metabolism of nucleotides 

resembles that of peptides.

Many of the biologically active compounds already discussed in relation 

to their pulmonary metabolism may also be synthesised and released by 

the lung, where they apparently serve as local hormones. The lungs are 

an important source of synthesis of arachidonic acid metabolites, through 

both the cyclo-oxygenase pathway which generates prostaglandins and 

thromboxanes, and the lipoxygenase pathway which leads to the 

formation of leukotrienes ( Hyman et a/., 1978 ). The major tissue 

sources of cyclo-oxygenase products are alveolar macrophages, 

fibroblasts, smooth muscle cells, and type II epithelial cells ; endothelial 

cells are rich sources of prostacyclin, and platelets are active producers0f 

thromboxane A 2. The most important cellular sites of lipoxygenase 

products are mast cells, basophils and neutrophils.

The lung contains abundant mast cells which are situated mainly within 

the bronchial mucosa and the deeper connective tissues surrounding 

pulmonary venules. When stimulated by IgE-mediated immediate
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hypersensitivity reactions, mast cells release both preformed and newly 

synthesised biologically active substances, including: histamine, 5-HT, 

eosinophil chemotactic factor of anaphylaxis, the sulfidopeptide 

leukotrienes originally known as slow-reacting substance of anaphylaxis 

and a platelet-activating factor ( Lewis & Austen, 1977). As mentioned 

previously, the lung synthesises several vasoactive peptides, including 

vasoactive intestinal peptide, substance P, bradykinin and angiotensin II. 

The lung also contains endocrine cells which may occur singly or in 

groups called neuro-epithelial bodies in the epithelium of airways. These 

cells have been shown to contain bombesin-like peptides, calcitonin and 

opioid peptides ( Becker & Gazdar, 1984 ).

1.6. C linical application of prostacyclin and NO in  
pulmonary hypertension

Pulmonary hypertension is defined as a mean pulmonary arterial pressure 

above 25 mmHg for a cardiac output below 5 L.min' 1 ( Weir, 1984 ). 

Usually a cause can be found : commonly, left heart failure, mitral valve 

disease, congenital heart disease, chronic obstructive or fibrotic lung 

disease, hypoventilation or repeated pulmonary emboli. When no cause is 

known, the condition is called primary pulmonary hypertension ( PPH ) 

( Weir, 1984).

Vasodilator drug therapy of pulmonary hypertension is often unsuccessful 

due to concomitant systemic hypotension, which can be fatal ( Packer, 

1985 ). For this reason, most of the systemic vasodilators which had 

been tried in the treatment of pulmonary hypertension were discarded 

from clinical practice ( Packer, 1985 ; Palevsky & Fishman, 1985 ). Thus,
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the " ideal " pulmonary vasodilator must be selective, with its activity 

restricted to the pulmonary circulation.

Compared with other vasodilators, prostacyclin infusion produces rapid 

onset but short duration pulmonary vasodilatation, enabling titration of 

optimal vasodilating dose ( Palevsky & Fishman, 1988 ). It also causes 

systemic vasodilatation, but due to its short half-life ( about 5 min ) any 

systemic hypotension can be reversed by discontinuing the infusion. The 

disadvantages of prostacyclin is that it is orally inactive, and long-term 

infusion is expensive and complicated. At present, acute infusion of 

prostacyclin is used for the initial testing of the pulmonary vascular bed's 

responsiveness to vasodilatation. If acute infusion of prostacyclin causes 

a decrease of greater than 30% in pulmonary vascular resistance, oral 

vasodilators can be used. The calcium channel blockers nifedipine and 

diltiazem seem to be the favoured ( Rich & Brundage, 1987 ). 

Long-term infusion of prostacyclin is reserved for the most severely 

affected PPH patients awaiting heart-lung transplantation.

NO is a gas at room temperature, and therefore can be delivered directly 

to the lungs via inhalation. When inhaled, NO reaches pulmonary blood 

vessels primarily through diffusion from alveolar spaces, thereby causing 

pulmonary vasodilatation. However, no systemic vasodilatation should be 

seen, since NO is rapidly inactivated by circulating haemoglobin. On this 

basis, inhaled NO has been tested as a selective means to induce 

pulmonary vasodilatation in the treatment of pulmonary hypertension. 

In infants with persistent pulmonary hypertension, short-term inhalation 

of NO, with doses ranging from 10 to 80 ppm, caused selective 

pulmonary vasodilatory effects with significant improvement of 

oxygenation, w ithout causing systemic hypotension or significantly
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raising methaemoglobin levels ( Kinsella et at., 1992 ; Robe et al., 1992). 

In another study ( Pepke-Zaba et at., 1991 ), the acute effects of inhaled 

NO ( 40 ppm in air ) on pulmonary and systemic vascular resistance were 

compared with those of an intravenous infusion of prostacyclin 

( 24 pg / h ) in patients with PPH. Inhaled NO decreased pulmonary 

vascular resistance w ithout altering systemic vascular resistance. 

Infusion of prostacyclin also decreased pulmonary vascular resistance, 

but this was associated with a similar fall in systemic vascular resistance. 

Similar results w ith inhaled NO were obtained in patients with chronic 

obstructive lung disease and pulmonary hypertension ( Fratacci et at., 

1992 ). These results show inhaled NO as a selective pulmonary 

vasodilator agent. Further studies are needed, however, to investigate 

the development of tolerance and toxicity of NO before it can be 

considered as a treatment of pulmonary hypertension in humans.

1.7. Aims o f study

The aims of this study were :

1- To investigate whether a basal release of NO and prostacyclin is 

involved in modulating pulmonary vascular tone.

2- To test the ability of various humoral agents to stimulate NO release 

in this vascular bed.

3- To determine the extent to which this basal and stimulated release 

correlates with artery size.
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M ateria ls and Methods

2.1. Experimental animals

Adult male Wistar rats ( 250-300g ) were used throughout this study. 

Rats were housed in a room maintained at 20°C and were exposed to a 

12-hour light/dark cycle. All rats were allowed tap water and pellet 

food ad libitum.

2.2. Preparation o f pulmonary arteria l rings

2.2.1. Dissection of pulmonary arteries

Rats were killed by stunning and exsanguination. The thoracic cavity was 

exposed, and the lungs and heart were immediately removed and placed 

in a Petri dish containing Krebs' buffer. The main pulmonary artery 

( MPA ), 1st and 2nd branches were dissected free, cleaned of adherent 

fat and connective tissue and cut into 3-4 mm rings (Figs. 2 and 3, 

table 1). The localisation of the 2nd branches was facilitated by the fact 

that they are found in the same connective sheet as that of the bronchus 

when entering the lobe. The total dissection was usually accomplished 

within 30 min.

2.2.2. Removal of endothelium

In some 2nd branch rings, the endothelium was destroyed by perfusing 

rings with the detergent Triton X-100 ( 1:5000 ) for 30s, a technique 

which had been used in other resistance blood vessels to cause selective 

destruction of the endothelium ( Gaw et al., 1991 ) (Figs.4 and 5). 

Endothelial and smooth muscle integrity was determined functionally at 

the beginning of each experiment by assessing the relaxant responses
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to carbachol ( CARB, 10'4 M ) and sodium nitroprusside ( SNP, 10~4 M ) 

in rings submaximally contracted with phenylephrine ( PE, 9 .5x10 '9 M ).

2.3. Recording of mechanical responses

Arterial rings were suspended between two L-shaped stainless steel wire 

hooks in 25ml organ baths containing Krebs' buffer ( mM: NaCI, 118.5 ; 

KCI, 4.7 ; CaCI2, 2.5 ; M gS04.7H20, 1.0 ; KH2P04, 1.2 ; NaHC03, 25.0 

; glucose, 22.2 ), which was maintained at 37°C and gassed with 95% 

0 2/ 5% C 0 2. The rings were placed under 1g tension, selected on the 

basis of preliminary experiments ( section 2.4 ). Isometric tension was 

recorded using force displacement transducers ( Grass FT03 ) and 

displayed on a Grass polygraph ( model 7 ). The tissues were allowed to 

equilibrate for 60 min, during which time the bathing solution was 

changed once and the resting tension was re-adjusted to 1 g if required. 

A t the end of each experiment, the rings were gently blotted 

dry and weighed.

2.4. Prelim inary experiments on length-tension relationship

Preliminary experiments were carried out to determine the optimum 

length ( tension ) for maximum tension development in MPA, 1st and 2nd 

branch rings ( n = 6 ). Optimum tension was defined as the minimum level 

of tension that allowed for development of the largest contractile 

response to a maximum concentration of PE ( 10'4 M ). Various levels of 

tension ( 0 .25-1.5 g ) were applied to the rings in a stepwise manner. At 

each level of tension, the rings were allowed to equilibrate for 30 min 

before obtaining contractile responses to PE, which was then washed out 

and the baseline level re-established. Optimum tension was determined to
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1st branch

2nd branch

MPA

Fig. 2.

Diagram of the lungs and heart. The arrows indicate the position 

of the MPA, 1st branches ( extrapulmonary ), and 2nd branches 

( intrapulmonary ).
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Fig. 3.

Low power micrographs of cross sections from (A) MPA, (B) 1st and 

(C) 2nd branch rings, showing the size difference between the three 

arteries and the thin artery wall characteristic to pulmonary arteries. 

Magnification x40 , Polychrome stain.



Table 1.

Pulmonary
artery

Weight of rings 
(mg) (n = 50)

Internal diameter 
(pm) (n = 6)

Artery wall 
thickness 
(pm) (n = 6)

MPA 6.4 ± 0.3 2236 ± 35 87 ± 9

1st branch 2.3 ± 0.1 1325 ± 21 62 ± 4

2nd branch 1.1 ± 0.04 648 ± 18 37 ± 4

Comparison of some anatomical features of MPA, 1st and 2nd 
branches. Cross sections of artery rings were projected onto a paper 
using a slide microprojector ( Prado 500 ), and sketched. Internal 
diameter and wall thickness were measured from the sketches using 
the MOP system ( Kontron ). The system operates by generating 
magnetic pulses which get intercepted when a stylus is moved 
between tw o points, and a pulse count is established. This count is 
transformed into a distance by a microprocessor. Several 
measurements were made along each section and averaged to obtain 
the mean diameter and wall thickness of each ring. Data are 
presented as mean ± s.e.mean, n represents the number of rings, one 

ring per rat.



Fig. 4.

A high power micrograph showing a cross sectional area of a 2nd 

branch artery wall with an intact endothelial cell layer. E, 

endothelium ; SM, smooth muscle ; EL, elastic lamina ; L, lumen ; A, 

adventitia. Magnification x160 , Polychrome stain.



Fig. 5.
A high power micrograph showing a cross sectional area of a 2nd 

branch artery wall which had been perfused with Triton X-100 

( 1:5000 ) for 30s. This procedure resulted in total destruction of the 
endothelial cell layer, without damaging the underlying smooth 
muscle cells. SM, smooth muscle ; EL, elastic lamina ; L, lumen ; A, 
adventitia. Magnification x160 , Polychrome stain.
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be 1g for the three arteries, and did not vary as a result of 

endothelium denudation.

2.5. Experimental protocols

2.5.1. Experiments on contractile responses

Non-cumulative concentration-response curves (CRC) to the 

vasoconstrictors PE ( 10 '9-10"4 M ), 5-hydroxytryptamine ( 5-HT, 10 '9- 

10*3 M ) and potassium chloride ( KCI, 10-50 mM ) were obtained in 

endothelium-intact rings from MPA, 1st and 2nd branches. Preliminary 

experiments were carried out in which tw o consecutive CRC to each 

vasoconstrictor were constructed in the same ring with no treatment 

between the two curves, to determine whether there was any change in 

sensitivity of the tissues due to time and/or pre-exposure to the 

vasoconstrictor. An increase in sensitivity of tissues to all 

vasoconstrictors was observed, and therefore in all subsequent 

experiments only one CRC was constructed in each ring.

To investigate the effect of inhibiting NO synthesis on the contractile 

responses to vasoconstrictors, the NOS inhibitor, L-NAME ( Nw-nitro- 

L-arginine methyl ester, 2x1 O'4 M ) or L-NOARG ( N^-nitro-L-arginine, 

10~4 M ) was added to the Krebs' reservoir and a CRC was constructed 

after a 10-min equilibration period. Thus tissues remained exposed to the 

inhibitor throughout the experiment. In some experiments, tissues were 

first equilibrated with L-arginine ( 10’2 M ) for 10 min, after which time 

L-arginine was added to the Krebs' reservoir containing L-NAME or 

L-NOARG.
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Similar experiments were carried out in which only the cyclo-oxygenase 

inhibitor, flurbiprofen ( 10' 5 M ) was added to the Krebs' reservoir, to 

investigate the effect of inhibition of prostanoid synthesis on responses 

to vasoconstrictors.

Contractile responses to vasoconstrictors were expressed as 

mg tension, mg' 1 tissue.

2.5.2. Experiments on relaxant responses

Cumulative CRC to the vasorelaxants CARB ( 10 '9-10 '4 M ), SNP ( 1 0 '11- 

10'4 M ) and isoprenaline ( ISO, 10 '1°-10*4 M ) were obtained in the 

absence and presence of L-NAME ( 2x10"4 M ) or L-NOARG ( 10'4 M ) 

alone or with L-arginine ( 10'2 M ), in endothelium-intact rings from MPA, 

1st or 2nd branches in which the tone had been raised with either PE 

( EC75 2 . 2x 10'7 M for MPA , 9 .5x10 '8 M for 1st and 2nd branches ) or 

KCI ( EC75 27.5 mM for MPA , 25.1 mM for 1st branches and 29.0 mM 

for 2nd branches ). CRC to ISO were also constructed in 

endothelium-denuded 2nd branch rings precontracted with PE 

( 9 .5x10 '9 M ), in the absence and presence of L-NAME ( 2x10 '4 M ). 

Where L-NAME or L-NOARG were used, they were equilibrated with 

tissues for 10 min before induction of tone with PE or KCI. Where 

L-arginine was used, it was added 10 min before addition of 

L-NAME or L-NOARG.

In other experiments, CRC to ISO were constructed in the presence of 

either flurbiprofen ( 10 5 M ), propranolol ( 10' 6 M ), atenolol ( 10' 5 M ) 

or ICI 118551 ( 10' 6 M ), which were allowed to equilibrate with tissues 

for 30 min prior to exposure to ISO.
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Preliminary experiments showed that repeating CRC to CARB, SNP or 

ISO in the same ring produced similar results. This observation indicated 

that since vasorelaxant responses to CARB, SNP or ISO were 

reproducible, it was possible to compare CRC in the absence and 

presence of antagonists in the same ring.

All drugs were added directly to the bathing solution. Relaxant effects 

were expressed as % relaxation of PE- or KCI-induced tone.

2.6. Measurement o f cGMP

2.6.1. Experimental

cGMP levels were measured in artery rings in which mechanical 

responses had been recorded. Rings were set up in organ baths as 

previously described, and measurements were made under three different 

conditions :

i) Basal levels, in the absence of drug treatments.

ii) During contraction to PE ( 10'4 M, 2 min ), 5-HT ( 10'4 M, 2 min ) or 

KCI ( 25.1 mM, 3 min ).

iii) During relaxation to CARB ( 10"4 M, 30s ) or ISO ( 10'4 M, 30s ) in 

PE-precontracted rings.

Once responses to drugs had stabilised at the time intervals specified 

above for each drug, rings were removed from the organ baths while still
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attached to the wire hooks and frozen in liquid nitrogen. This step was 

completed in less than 2 seconds.

2.6.2. Extraction of cGMP

The frozen rings were deproteinised by extraction in trichloroacetic acid 

( TCA ) ( 1.6 ml, 5% W/V ). After a period of 2 hours the tissues were 

detached from the wire hooks, re-immersed in TCA and hand 

homogenised using Potter-Elvehjem glass-glass homogenisers. The tissue 

homogenates were then left for a further 18 hours at 4°C. Following this 

incubation period, the samples were vortex-mixed and centrifuged 

(1000g, 5 min, 4°C ) to remove any non-acid soluble tissue components. 

The cGMP content of a fraction of the supernatant ( 400 pi ) was 

extracted by washing four times with three volumes of water-saturated 

ether. Any remaining ether was evaporated by placing the sample tubes 

in a water bath at 80°C for 2 min. The samples ( 300 pi ) were 

neutralised with sodium acetate buffer ( 100 pi, 200 mM, pH 6.2 ), 

vortex-mixed and stored at 4°C until required.

2.6.3. Radioimmune assay

Tissue cGMP levels were measured using a commercially available cGMP 

radioimmune assay kit ( Amersham International, UK ). The assay was 

based on the competition between unlabelled cGMP and a fixed quantity 

of the tritium labelled compound for binding to an antiserum which has a 

high specificity and affinity for cGMP.

Standard cGMP concentrations ( 0.5-8 pmol/100 pi ) were prepared in 

Tris/EDTA buffer ( 50 mM, pH 7.5 ). Samples of both standard and
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unknown tissue concentrations of cGMP ( 100 til ) were acetylated by
(1g/ml)

the addition of a freshly prepared mixture of acetic anhydrideAand 
(100%V/V)

triethylamine^l :2 by volume ( 5pl ). The samples were immediately

vortex-mixed. [3PI]-labelled cGMP ( 50 pi ) was then added to each

sample, followed by anti-cGMP antiserum ( 50 pi ). Samples were vortex-

mixed and incubated for 16 hours at 4°C. Following this incubation
0.4g/ml

period, ice-cold ammonium sulphate ( 1 ml^) was added to each sample 

and vortex-mixed. The samples were allowed to stand for 5 min after the 

addition of ammonium sulphate to the last sample, before centrifuging 

( 1000g, 5 min, 4°C ). The supernatant was decanted and the assay 

tubes inverted on a tissue to drain. Cold distilled water (1.1 ml) was then 

added to each tube and vortex-mixed until the precipitate had dissolved. 

Samples ( 1 ml ) were transferred from the assay tubes to plastic 

counting vials containing scintillant ( Ecoscint, 10 ml ), and antibody 

bound [3H]-cGMP was measured by counting for 5 min in a Packard 

liquid scintillation counter.

Standard calibration curves were obtained and plotted as C0/Cx against 

concentration of cGMP (Fig.6 ) where CQ and Cx represent the amount of 

[3H]-cGMP bound in the absence and presence of unlabelled cGMP, 

respectively. The concentrations of cGMP in unknown samples ( 100 pi ) 

were determined by reference to the calibration curve. The concentration 

of cGMP in the original sample ( 1.6 ml ) was expressed as pmol.mg' 1 

tissue, and calculated using the following method :

1) Concentration of cGMP in 100 pi multiplied by 16 gives concentration 

of cGMP in sample tube ( pmol.tube' 1 ).
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Fig. 6 .
Standard calibration curve for cGMP as measured by radioimmuno 
assay based on the competition between unlabelled cGMP and 
[3H]-cGMP for binding to a specific anti-cGMP antiserum. C0 and Cx 
represent the amount of [3H]-cGMP bound in the absence and 
presence of unlabelled cGMP, respectively. The line of best fit 
through the points is a regression line fitted by computer.
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2) Concentration of cGMP in sample tube divided by weight of artery 

ring ( mg ) gives the concentration of cGMP per weight of tissue 

( pmol.mg-1 tissue ).

2.7. Materials

The following drugs were used :

L-Arginine hydrochloride, atenolol, carbamylcholine chloride ( carbachol ),

clonidine hydrochloride, flurbiprofen, hydrocortisone,

5-hydroxytryptamine creatinine sulphate, (±)-isoprenaline sulphate,

Ketanserin tartrate, N^-nitro-L-arginine, N^-nitro-L-arginine methyl ester

hydrochloride, phenylephrine hydrochloride, prazosin hydrochloride, 
hydrochloride

(±) -propranolol* sodium nitroprusside ( Sigma ) ; BRL 37344 ( sodium-4- 

[ 2-{ 2-hydroxy-2-( 3-chlorophenyl ) ethylamino }propyl] phenoxyacetate) 

was kindly supplied by Dr. A. MacDonald ( Glasgow Caledonian 

University ) ; ICI 1 18551 (erythro-DL-1-[7-methylindan-4-yloxy-3-

isopropylaminobutan-2-ol) ( ICI ) ; U 46619 ( 9 ,11-dideoxy-11a,9a- 

methanoprostaglandin F2a ) was kindly supplied by Dr. A. Shaw 

( Glasgow Caledonian University ). The cGMP radioimmunoassay kit 

( TRK 500 ) was obtained from Amersham, U.K. potassium chloride (Fisons)

Stock solutions of drugs were prepared daily and kept on ice during the 

experiment. Atenolol, ICI 1 18551 and isoprenaline sulphate were 

dissolved and diluted in distilled water containing ascorbic acid ( 50 p 

g/ml ). Flurbiprofen, hydrocortisone and ketanserin tartrate were 

dissolved in absolute ethanol and diluted in distilled water. Vehicles had 

no effect on tissue responses. All other drugs were dissolved in distilled
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water and diluted in Krebs' solution. Concentrations of drugs are 

expressed as the final molar concentration in the organ bath.

2.8. Statistical analysis

Results are expressed as mean ± s.e.mean. EC50 va lues were estimated 

graphically by plotting the logarithm of drug concentration versus 

percentage of maximum response, and determining the concentration of 

drug required to produce 50% of the maximum response. Statistical 

comparison between two groups of data was performed using Student's 

paired t-test for data within rings, and unpaired t-test for data between 

rings. For multiple comparison of data, one way analysis of variance was 

used and the modified t-test calculated for comparison between 

individual means. A probability ( P ) value of less than 0.05 was 

considered significant.
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Results

3.1. Studies on contractile responses

3.1.1. Comparative effects of PE, 5-HT and KCI in MPA, 1st 

and 2nd branch rings

In the systemic circulation, the properties of arteries alter w ith decreasing 

diameter. Small resistance arteries have different receptor properties and 

sensitivity to vasoconstrictors when compared with large conduit arteries 

( Bevan & Bevan, 1985 ; Leher & Bevan, 1985 ). Although the reactivity 

of small pulmonary arteries may have a profound influence on pulmonary 

resistance, there has been comparatively little investigation of these 

arteries. Data from in vitro studies of isolated conduit pulmonary arteries 

are often at variance with the findings documented in whole-lung 

perfusion experiments, and may reflect differences in the vasoreactivity 

of large and small pulmonary arteries. In this series of experiments, the 

responsiveness of MPA, 1st and 2nd branches to vasoconstrictors was 

compared.

The results generally show that 2nd branches were more responsive to 

the contractile effects of vasoconstrictors than 1st branches, which were 

more responsive than MPA.

PE induced concentration-dependent contractions with EC50 values and 

maximum responses of 5.6x10*8 M and 179.2 ± 14.9 mg.mg' 1 tissue in 

MPA , 8 .3x10"9 M and 311.0 ± 12.9 mg.mg*1 tissue in 1st branches, 

and 2 .3x10*9 M and 323.6 ± 23.4 mg.mg*1 tissue in 2nd branches, 

respectively (Fig. 7).
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Fig.8 . shows CRC to 5-HT in the three arteries. The EC5q values and 

maximum responses for 5-HT were 4.3x1 O' 6 M and 133.5 ± 3.0 mg.mg' 1 

tissue in MPA, 3 .2x10 '6 M and 189.7 ± 10.1 mg.mg' 1 tissue in 1st 

branches, and 2.2x10'6 M and 315.9 ± 22.1 mg.mg-1 tissue in 2nd 

branches, respectively.

KCI induced concentration-dependent contractions with EC50 values and 

maximum responses of 22.9 mM and 142.5 ± 14.9 mg.mg' 1 tissue in 

MPA, 19.5 mM and 239.6 ± 27.3 mg.mg' 1 tissue in 1st branches, and

21.9 mM and 435.0 ± 24.9 mg.mg' 1 tissue in 2nd branches, 

respectively (Fig. 9).

3.1.2. Effect of NOS inhibitors on responsiveness of MPA, 1st 

and 2nd branches to vasoconstrictors.

Several studies have shown that endothelium denudation or inhibition of 

NO synthesis increases vascular tone and potentiates contractile 

responses to vasoconstrictors ( Martin et a/., 1986 ; Trezise et a!., 1992). 

Most of these studies however have been conducted on systemic 

arteries, and little information is available on the relation between these 

effects and artery size. Therefore, the aim of the present experiments 

was to investigate the role of NO in modulating the responsiveness of 

pulmonary arteries to vasoconstrictors, and the extent to which this 

modulation correlates with artery size. Inhibition of NO synthesis was 

achieved with the NOS inhibitor L-NAME and, in some experiments, 

L-NOARG was used.

Inhibition of NO synthesis significantly enhanced the contractile 

responses to PE, 5-HT and KCI in the three arteries. The enhancement
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was more profound at low concentrations of the vasoconstrictors, and 

was more pronounced as artery size decreased. There were, however, no 

significant differences in the maximum responses.

Pretreatment with L-NAME potentiated PE-induced contractions, yielding

EC50 values of 1.4x1 O'8 M in MPA, 1.3x1 O'9 M in 1st branches and

2 .8 x1 0 '1° M in 2nd branches, representing a 4.0, 6.4 and 8.2-fold

increase in sensitivity, respectively. The maximum responses induced by

PE were 203.3 ± 8 .8 , 346.8 ± 12.8 and 370.7 ± 22.8 mg.mg-1 tissue,

respectively, which were not significantly different from those obtained in

control tissues (Fig. 10). The EC50 values were significantly different from 
control values ( 0.01 > P>0.001, P<0.001, P <0 .001, respectively ).

The EC50 values for 5-HT in the presence of L-NAME were 1 .1x10 '6 M in

MPA, 6 .6x10~7 M in 1st branches and 5 .1x10 ' 7 M in 2nd branches,

representing a 3.9, 4.8 and 4.3-fold increase in sensitivity, respectively.

The maximum responses induced by 5-HT in MPA, 1st and 2nd branches

( 143.2 ± 13.6, 227.5 ± 17.3 and 367.4 ±13.2 mg.mg' 1 tissue ) did not

differ significantly from those obtained in control tissues ( Fig. 11 ). The 
EC50 values were significantly different from control values ( 0.01 > P > 0.001).

Similarly, L-NAME potentiated KCI-induced contractions yielding EC50

values of 15.1 mM in MPA, 11.5 mM in 1st branches and 10.0 mM in

2nd branches, representing a 1.5, 1.7 and 2.2-fold icrease in sensitivity,

respectively. There was no significant difference in the maximum

responses induced by KCI ( 179.6 ± 22.5, 309.4 ± 11.5 and

447 .9  ± 24.5 mg.mg' 1 tissue, respectively ) when compared with those

obtained in control tissues ( Fig. 12). The EC50 values were significantly 
different from control values ( 0.05>P>0.01,0.01 > P > 0.001,0.01 > P>0.001, 
respectively ).

In some experiments, the effect of L-NOARG on PE-induced contractions 

in 2nd branch rings was investigated (Fig.14). In a similar manner to
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L-NAME, L-NOARG enhanced the contractile responses to PE producing
(P<0.001)

a 5.6-fold increase in sensitivity* with no significant effect on the 

maximum response. L-NAME and L-NOARG per se had no effect on basal 

tone in any of the three arteries.

3.1.3. Effect of L-arginine on L-NAME and L-NOARG-induced 

potentiation of contractile responses

To confirm the involvement of NO in the depression of contractile 

responses to vasoconstrictors, the effect of prior incubation with 

L-arginine on L-NAME and L-NOARG-induced potentiation of contractile 

responses to PE in 2nd branch rings was studied. Addition of excess 

L-arginine to the system generally prevents the actions of NOS inhibitors 

by competing for the enzyme ( Mulsch & Busse, 1990 ).

Prior incubation of tissues with L-arginine completely prevented the 

ability of L-NAME and L-NOARG to potentiate PE-induced contractions 

(Figs.13 and 14). In the presence of both L-NAME and L-arginine or 

L-NOARG and L-arginine, the EC5q values for PE were 1 .8x10 ' 9 M and 

3 .0x10 ' 9 M, and the maximum responses were 338.3 ± 10.8 and

314.9 ± 20.7 mg.mg' 1 tissue, respectively, which were not significantly 

different from those obtained in control tissues.
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Fig. 7.
Contractile responses induced by non-cumulative concentrations of 
PE in MPA, 1st and 2nd branches. Each point is the mean ± s.e.mean 
of 6-8 observations. Statistical comparison between the three arteries 

was performed using one way analysis of variance, followed by 
modified t-test for comparison between individual means. Asterisks 
denote significant difference as compared with MPA ( *P <0 .05 , 

* *P < 0 .0 1 ,  * * *P < 0 .0 0 1  ).
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Fig. 8 .
Contractile responses induced by non-cumulative concentrations of 

5-HT in MPA, 1st and 2nd branches. Each point is the 
mean ± s.e.mean of 6-9 observations. Statistical comparison between 
the three arteries was performed using one way analysis of variance, 
followed by modified t-test for comparison between individual means. 

Asterisks denote significant difference as compared with 
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Fig. 10.
Effect of pretreatment with L-NAME ( 2x1 O'4 M ) on concentration- 
response curves to PE in (A) MPA, (B) 1st and (C) 2nd branches. 
Each point is the mean ± s.e.mean of 6-8 observations. The 
potentiating effect of L-NAME on PE-induced contractions was more 
pronounced as artery size decreased. Asterisks denote significant 

difference from untreated rings (*P < 0 .0 5 , * *P < 0 .0 1 ,  * * * P < 0 .0 0 1 ;  

unpaired t-test ).
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Effect of pretreatment with L-NAME ( 2x1 O'4 M ) on concentration- 
response curves to 5-HT in (A) MPA, (B) 1st and (C) 2nd branches. 

Each point is the mean ± s.e.mean of 6-9 observations. The 
potentiating effect of L-NAME on 5-HT-induced contractions was 
more pronounced as artery size decreased. Asterisks denote 
significant difference from untreated rings ( * *P < 0 .0 1 ,  * * *P < 0 .0 0 1 ;  
unpaired t-test ).
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Fig. 12.
Effect of pretreatment with L-NAME ( 2x1 O'4 M ) on concentration- 
response curves to KCI in (A) MPA, (B) 1st and (C) 2nd branches. 

Each point is the mean ± s.e.mean of 6-10 observations. The 

potentiating effect of L-NAME on KCI-induced contractions was more 
pronounced as artery size decreased. Asterisks denote significant 

difference from untreated rings ( * *P < 0 .0 1 ,  * * * P < 0 .0 0 1  ; unpaired 

t-test ).
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Fig. 13.
Concentration-response curves to PE in 2nd branches, in the absence 

and presence of L-NAME ( 2x1 O'4 M ) or L-NAME 4- L-arginine 
( L-Arg, 10'2 M ). Each point is the mean ± s.e.mean of 8 

observations. L-NAME potentiated PE-induced contractions, an effect 
which was completely prevented by pretreatment with L-arginine. 
Asterisks denote significant difference from PE alone ( *P < 0 .0 5 , 
* * * P < 0 .0 0 1  ; unpaired t-test ).
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Concentration-response curves to PE in 2nd branches, in the absence 

and presence of L-NOARG ( 10“4 M ) or L-NOARG + L-arginine 
( L-Arg, 10~2 M ). Each point is the mean ± s.e.mean of 8 
observations. L-NOARG potentiated PE-induced contractions, an 
effect which was completely prevented by pretreatment with 
L-arginine. Asterisks denote significant difference from PE alone 
( *P < 0 .0 5 ,  * * *P < 0 .0 0 1  ; unpaired t-test ).



Results

3.1.4. Effect of inhibition of prostanoid synthesis on contractile 

responses to PE

The present experiments investigated the possible role of vasorelaxant 

prostanoids, especially prostacyclin, released by the endothelium in 

modulating the responsiveness of pulmonary arteries to vasoconstrictors. 

Prostanoid synthesis was inhibited by pretreatment of tissues with the 

cyclo-oxygenase inhibitor flurbiprofen.

In 2nd branch rings pretreated with flurbiprofen, PE induced 

concentration-dependent contractions with an EC50 value of 1.4x1 O' 9 M 

and a maximum response of 334.8 ± 13.0 mg.mg' 1 tissue ( Fig. 15 ). 

These values were not significantly different from those obtained in 

control tissues.

3.1.5. Investigation of relaxant responses to clonidine, 5-HT 

and KCI

As endothelium-dependent relaxations to a 2-agonists, 5-HT and KCI have 

been described in some vascular beds including pulmonary arteries from 

other species ( Miller & Vanhoutte, 1985a ; Rubanyi & Vanhoutte, 1988 ; 

Glusa & Richter, 1993 ), attempts were made to determine whether the 

previously described depression of contractile responses to
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vasoconstrictors was a consequence of a basal release or a 

vasoconstrictor-stimulated release of NO. In these experiments, 

cumulative CRC to the a 2-agonist clonidine or 5-HT were constructed in 

2nd branch rings precontracted with the thromboxane A 2 mimetic 

U 46619 ( EC75 8x1 O' 10 M ), in the presence of the a-|-antagonist 

prazosin ( 10~6 M ) or the 5-HT2-antagonist Ketanserin ( 10'6 M ), 

respectively. Cumulative CRC to KCI were obtained in PE-precontracted 

2nd branch rings.

Clonidine, 5-HT and KCI failed to produce any degree of relaxation 

( Figs. 16, 17 and 18 ).
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Fig. 15.

Concentration-response curves showing the lack of effect of 

pretreatment with flurbiprofen ( 10' 5 M ) on PE-induced contractions 

in 2nd branches. Each point is the mean ± s.e.mean of 8 

observations.
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Fig. 16.
Histogram showing the lack of a relaxant effect to increasing 

concentrations of clonidine in 2nd branches in which tone had been 
raised with U 46619 ( EC75 8x10~10 M ). Prazosin ( 10‘6 M ) was 

present throughout. Each bar is the mean ± s.e.mean of 6 

observations.
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Histogram showing the lack of a relaxant effect to increasing 
concentrations of 5-HT in 2nd branches in which tone had been 
raised with U 46619 ( EC75 8x1 O' 10 M ). Ketanserin ( 10‘6 M ) was 
present throughout. Each bar is the mean ± s.e.mean of 6 

observations.

i i
Mi

■

§§§88gi§8§8§8I
■

• .• ■

i s i i i
f l i t  ... ■ .

... • 1

f l l l l

I 3
! ;
:ssssSSs;

mim m

lYIyIYi



PE 1 1.3 1.48 1.6 1.7

LOg mM KCI 
a 10

Fig. 18.
Histogram showing the lack of a relaxant effect to increasing 
concentrations of KCI in 2nd branches in which tone had been raised 

with PE ( EC75 9-5x10' 8 M ). Each bar is the mean ± s.e.mean of 6 
observations.
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Results

3.1.6. Comparison of basal cGMP levels in MPA, 1st and 2nd 

branches

The finding that the potentiation of contractile responses after inhibition 

of NO synthesis was more pronounced as artery size decreased prompted 

an analysis of basal cGMP levels in the three arteries.

Basal cGMP levels inversely correlated with the vessel size. Basal cGMP 

level in 2nd branches ( 1.84 ± 0.14 pmol.mg*1 tissue ) was 1.4 times 

higher than in 1st branches ( 1.34 ± 0.11 pmol.mg*1 tissue ), which was 

3 times higher than in MPA (0 .46 ± 0.04 pmol.mg*1 tissue ) (Fig.19).

3.1.7. Influence of PE, 5-HT and KCI on cGMP levels

The cGMP levels measured in 2nd branch rings during contractions to PE 

or 5-HT were 1.60 ± 0.21 and 2.5 ± 0.30 pmol.mg*1 tissue, respectively 

(Fig.20 and 21). These levels were not significantly different from the 

basal level.

The effect of KCI on cGMP level in 1st branch rings was variable. KCI

6
caused a significant rise in cGMP level in 2 outAof rings, w ith no effect in 

the 4 remaining rings. Taken together, the overall effect of KCI on cGMP 

level was not statistically significant ( Fig. 22).
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Fig. 19.
Comparison of basal cGMP levels in MPA, 1st and 2nd branches. 
Each bar is the mean ± s.e.mean of 6 measurements. cGMP levels 
were measured in artery rings which had been set up in organ baths 

and allowed to equilibrate for 60 min under 1g tension. Statistical 
comparison between the three arteries was performed using one way 

analysis of variance, followed by modified t-test for comparison 

between individual means. Asterisks denote significant difference as 

compared with MPA ( * * *P < 0 .0 0 1  ).
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Effect of PE ( 10~4 M ) on cGMP level in 2nd branches. Each bar is 
the mean ± s.e.mean of 6 measurements. Artery rings were set up in 
organ baths and allowed to equilibrate for 60 min under 1 g tension 

before being exposed to PE for 2 min. PE did not significantly alter 
cGMP level as compared with the basal level ( control ).
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Fig. 21.

Effect of 5-HT ( 10~4 M ) on cGMP level in 2nd branches. Each bar is 
the mean ± s.e.mean of 6 measurements. Artery rings were set up in 
organ baths and allowed to equilibrate for 60 min before being 
exposed to 5-HT for 2 min. 5-HT did not significantly alter cGMP 
level as compared with the basal level ( control ).
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Fig. 22.

Effect of KCI ( 25.1 mM ) on cGMP level in 1st branches. Each bar is 

the mean ± s.e.mean of 6 measurements. Artery rings were set up in 
organ baths and allowed to equilibrate for 60 min under 1g tension 
before being exposed to KCI for 3 min. Although KCI apparently 
increased cGMP level, the difference was not statistically significant 
as compared with the basal level (control ).



Results

3.2. Studies on relaxant responses

3.2.1. Endothelium-dependent relaxations in MPA, 1st and 2nd 

branches

Several studies have suggested that NO released by the pulmonary 

endothelium may play an important role in the maintenance of the low 

pulmonary vascular tone ( Peach et al., 1989 ; Wiklund et al., 1990 ). 

However, most of the studies on isolated pulmonary arteries have used 

large conduit arteries, and the results may not reflect the significance of 

NO in the more functionally important small resistance arteries. This 

study has already demonstrated that the extent to which NO modulates 

responses to vasoconstrictors increases as artery size decreases. 

Therefore, further experiments were performed to compare endothelium- 

dependent relaxations in MPA, 1st and 2nd branches.

i) PE-precontracted rings

The endothelium-dependent vasorelaxant CARB induced concentration- 

dependent relaxations in PE-precontracted rings from MPA, 1st and 

2nd branches (Figs.23 and 24). An inverse relationship between 

CARB-induced relaxations and artery size was observed, as evident by 

the maximum relaxations obtained in MPA, 1st and 2nd branches which 

were 49.4 ± 5.1%, 81.6 ± 2.4% and 102.1 ± 4 .5% , respectively. 

However, MPA rings were more sensitive than smaller artery rings to the 

relaxant effect of the low 10' 8 M concentration of CARB.
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ii) KCI-precontracted rings

CRC to CARB were also constructed in MPA, 1st and 2nd branch rings 

precontracted with KCI to investigate whether, as has been found in 

aortic rings ( Collins et al., 1988 ; Morrison & Pollock, 1988 ), the degree 

of relaxation of pulmonary artery is influenced by the nature of the 

contractile agent used to raise muscle tone.

Relaxant responses to CARB in KCI-precontracted rings from the three 

arteries displayed a similar difference to that observed in 

PE-precontracted rings (Fig.25). However, KCI-precontracted rings 

showed a significantly smaller magnitude of relaxation in response to 

CARB than rings precontracted with PE. This was most striking in MPA 

where CARB, at all concentrations tested, failed to produce any degree 

of relaxation. In KCI-precontracted 1st and 2nd branch rings, the 

maximum relaxations obtained were 25.6 ± 2.1%  and 45 .4  ± 2.8%, 

respectively, representing approximately 30% and 40% of the maximum 

relaxations obtained in PE-precontracted rings.

CRC to CARB in 1st and 2nd branch rings precontracted w ith either PE or 

KCI are shown for comparison in Figs. 26 and 27.
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Fig. 23.

Relaxant effects induced by cumulative concentrations of CARB 
in MPA, 1st and 2nd branches precontracted w ith PE 
( EC75 2 .2x10 ' 7 M for MPA, 9 .5x10 ‘8 M for 1st and 2nd branches ). 

Each point is the mean ± s.e.mean of 6-9 observations. Relaxant 
responses are expressed as % relaxation of PE-induced tone. 

Statistical comparison between the three arteries was performed 

using one way analysis of variance, followed by modified t-test for 
comparison between individual means. Asterisks denote significant 

difference as compared with MPA ( *P < 0 .0 5 ,  * *P < 0 .0 1 ,

* * * P < 0 .0 0 1  ).
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Fig. 24.

Individual traces showing relaxant effects induced by cumulative 
concentrations of CARB in MPA, 1st and 2nd branches in which tone 

had been raised with PE. 2nd branches were more responsive to the 

relaxant effect of CARB than 1st branches, which were more 
responsive than MPA.
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Fig. 25.

Cumulative concentration-response curves to CARB in MPA, 1st and 
2nd branches precontracted with KCI ( EC75 27.5 mM for MPA,

25.1 mM for 1st branches and 29.0 mM for 2nd branches ). Each 
point is the mean ± s.e.mean of 6 observations. Relaxant responses 
are expressed as % relaxation of KCI-induced tone. CARB failed to 
produce any degree of relaxation in KCI-precontracted MPA. 

Asterisks denote significant difference as compared with 1st 

branches ( * P < 0 .0 5 , * * * P < 0 .0 0 1 ;  unpaired t-test).

MPA

1st branch 

2nd branch



-10 -9 -8 -7 -6 -5 -4 -3

Lem A M CARB 
y 10

Fig. 26.

Comparison of CARB-induced relaxations in 1st branches 
precontracted with either PE ( EC75 9.5x1 O' 8 M ) or KCI 

( EC75 25.1 mM ). Each point is the mean ± s.e.mean of 6 

observations. Relaxant responses are expressed as % relaxation of 
PE- or KCI-induced tone. CARB induced significantly weaker 

relaxations in KCI-precontracted rings than in PE-precontracted rings. 
Asterisks denote significant difference ( * * * P  <0.001 ; unpaired

t-test ).
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Fig. 27.
Comparison of CARB-induced relaxations in 2nd branches 

precontracted with either PE ( EC75 9.5x1 O' 8 M ) or KCI 

( EC75 29.0 mM ). Each point is the mean ± s.e.mean of 6-9 

observations. Relaxant responses are expressed as % relaxation of 
PE- or KCI-induced tone. CARB induced significantly weaker 
relaxations in KCI-precontracted rings than in PE-precontracted rings. 
Asterisks denote significant difference ( * * * P < 0 .0 0 1  ; unpaired 

t-test ).



Results

3.2.2. Effect of NOS inhibitors on CARB-induced relaxation

In the early experiments of this study, L-NAME was used to investigate 

the effect of NOS inhibitors on CARB-induced relaxation. However 

recently, Buxton et at. ( 1993 ) have reported that L-NAME may act as a 

muscarinic antagonist, and therefore is a poor choice as a NOS inhibitor 

in studies in which muscarinic receptors are not blocked. In contrast to 

the effect of L-NAME on NOS, muscarinic blockade cannot be reversed 

by an excess of L-arginine. This led us to compare the effects of L-NAME 

and L-NOARG on CARB-induced relaxation, and their prevention by 

L-arginine. L-NOARG was chosen because it does not block muscarinic 

receptors ( Buxton et at., 1993 ) and, unlike L-NMMA, does not act as a 

partial agonist for NO synthesis ( Archer & Hampl, 1992 ). Since L-NAME 

and L-NOARG both potentiate PE-induced contraction, a lower 

concentration of PE ( 2 .2x10~8 M for MPA , 9 .5x10 ' 9 M for 1st and 2nd 

branches ) was used to obtain a similar degree of contraction to that 

obtained in the absence of both agents.

Pretreatment with L-NAME abolished CARB-induced relaxations in MPA 

and 1st branches, and almost completely inhibited responses to CARB in 

2nd branches. In this case, the maximum relaxation induced by CARB 

was 6.6 ± 1 .8 %  (Fig.28).
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Pretreatment with L-NOARG caused complete inhibition of CARB-induced 

relaxations in 2nd branch rings precontracted with PE (Fig.29).

3.2.3. Effect of L-arginine on L-NAME and L-NOARG-induced 

inhibition of CARB-induced relaxation

In PE-precontracted 2nd branch rings, pretreatment w ith L-arginine only 

partially prevented the inhibitory effects of L-NAME and L-NOARG on 

CARB-induced relaxations, resulting in maximum relaxations of

44.1 ± 1.8% and 37.6 ± 1.3%, respectively ( Figs.28 and 29).

3.2.4. Influence of CARB on cGMP levels in MPA, 1st and 

2nd branches

CARB increased cGMP levels in MPA, 1st and 2nd branches

from 0.46 ± 0.04, 1.34 ± 0.11 and 1.84 ± 0 .14 pmol.mg' 1 tissue to 

1.82 ± 0.23, 7.30 ± 0.95 and 10.47 ± 2.15 pmol.mg-1 tissue, 

respectively (Fig.30), which is 4.0, 5.4 and 5.7 times higher than basal 

levels, respectively.
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Fig. 28.
Cumulative concentration-response curves to CARB in 2nd branches 

precontracted with PE ( 9.5x1 O' 8 M or 9.5x1 O' 9 M ), in the absence 

and presence of L-NAME ( 2x1 O'4 M ) or L-NAME + L-arginine 

( L-Arg, 10*2 M ). Each point is the mean ± s.e.mean of 9 
observations. Relaxant responses are expressed as % relaxation of 

PE-induced tone. L-NAME markedly inhibited the relaxant effect of 
CARB, an effect which was only partially prevented by pretreatment 

w ith L-arginine . Asterisks denote significant difference from CARB 

alone ( * * * P < 0 .0 0 1 ;  unpaired t-test ).
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Fig. 29.
Cumulative concentration-response curves to CARB in 2nd branches 
precontracted with PE ( 9 .5x10‘8 M or 9 .5x10 ' 9 M ), in the absence 

and presence of L-NOARG ( 10'4 M ) or L-NOARG + L-arginine 

( L-Arg, 10' 2 M ). Each point is the mean ± s.e.mean of 9 

observations. Relaxant responses are expressed as % relaxation of 

PE-induced tone. L-NOARG completely inhibited the relaxant effect of 
CARB, an effect which was only partially prevented by L-arginine 

pretreatment. Asterisks denote significant difference from CARB 

alone ( * * * P < 0 .0 0 1 ,  unpaired t-test ).
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Fig. 30.

Effect of CARB ( 10'4 M ) on cGMP levels in MPA, 1st and 2nd 
branches. Each bar is the mean ± s.e.mean of 6 observations. Artery 

rings were precontracted with PE ( EC75 2.2x1 O' 7 M for MPA, 

9 .5x10 ‘8 M for 1st and 2nd branches ) before being exposed to 

CARB for 30s. CARB significantly increased cGMP levels in the three 

arteries. Asterisks denote significant difference from the basal level 

( control ) ( * *P < 0 .0 1 ,  * * *P < 0 .0 0 1  ; unpaired t-test ).



Results

3.2.5. Endothelium-independent relaxations in MPA, 1st and 

2nd branches

The endothelium-independent vasorelaxant SNP relaxes vascular smooth 

muscle by spontaneously releasing NO in aqueous solutions ( Ignarro 

et a/., 1981 ). The effect of SNP in MPA, 1st and 2nd branches was 

investigated in an attempt to determine whether the previously described 

difference in CARB-induced relaxations between the three arteries could 

be accounted for by a higher guanylate cyclase sensitivity in the smaller 

arteries. If this was the case, SNP-induced relaxations in the three 

arteries would be expected to display a similar difference to that 

observed with CARB-induced relaxations.

i) PE-precontracted rings

SNP caused a complete inhibition of PE-induced tone in the three arteries, 

w ith maximum relaxations of 100% in MPA and 1st branches, and 

102.2 ± 3.0% in 2nd branches. Relaxant responses to submaximal 

concentrations of SNP were almost identical in MPA and 1st branches, 

but significantly weaker in 2nd branches (Fig.31).

ii) KCI-precontracted rings

In view of the earlier observation that relaxant responses to CARB in 

KCI-precontracted rings were markedly attenuated when compared to 

responses in rings precontracted with PE, we investigated whether this 

difference could be attributed to an inhibitory action by KCI on the

48



Results

generation of NO in response to CARB. If this was the case, SNP would 

be expected to produce similar relaxations in both PE- and 

KCI-precontracted rings.

In KCI-precontracted MPA and 1st branch rings, SNP induced 

significantly weaker relaxations when compared with those obtained in 

PE-precontracted rings, with maximum relaxations reaching only

74.1 ± 8.7% and 65.7 ± 5.4%, respectively.

CRC to SNP in MPA and 1st branch rings precontracted w ith either KCI 

or PE are shown for comparison in Figs.32 and 33.

3.2.6. Effect of L-NAME on SNP-induced relaxation

In PE-precontracted MPA and 1st branch rings, pretreatment with 

L-NAME had no effect on SNP-induced relaxations except for the 

response to the lowest SNP concentration tested which was slightly 

enhanced (Figs.34 and 36). In contrast in KCI-precontracted MPA and 

1st branch rings, L-NAME caused a significant enhancement of the 

relaxant responses to SNP increasing the maximum relaxations to 111.7 

± 3 .5%  and 95.6 ± 5.9%, respectively, which did not differ significantly 

from those obtained in rings precontracted with PE (Figs.35 and 37).
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Fig. 31.
Cumulative concentration-response curves to SNP in MPA, 1st and 

2nd branches precontracted with PE ( EC75 2 .2x10 ' 7 M for MPA, 

9 .5x10*8 M for 1st and 2nd branches ). Each point is the 

mean ± s.e.mean of 6-12 observations. Relaxant responses are 
expressed as % relaxation of PE-induced tone. Statistical comparison 
between the three arteries was performed using one way analysis of 
variance, followed by modified t-test for comparison between 

individual means. Asterisks denote significant difference as compared 

w ith MPA ( *P <0 .05 , * * *P < 0 .0 0 1 ) .
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Fig. 32.
Comparison of SNP-induced relaxations in MPA precontracted with 

either PE ( EC75 2.2x10 '7 M ) or KCI ( EC75 27.5 mM ). Each point is 

the mean ± s.e.mean of 6 observations. Relaxant responses are 
expressed as % relaxation of PE- or KCI-induced tone. SNP induced 

significantly weaker relaxations in KCI-precontracted rings than in 
PE-precontracted rings. Asterisks denote significant difference 

( * * *P < 0 .0 0 1  ; unpaired t-test ).
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Fig. 33.

Comparison of SNP-induced relaxations in 1st branches precontracted 
w ith either PE ( EC75 9.5x10‘8 M ) or KCI ( EC75 25.1 mM ). Each 

point is the mean ± s.e.mean of 6 observations. Relaxant responses 
are expressed as % relaxation of PE- or KCl-induced tone. SNP 

induced significantly weaker relaxations in KCI-precontracted rings 

than in PE-precontracted rings. Asterisks denote significant difference 
( * * * P < 0 .0 0 1  ; unpaired t-test ).
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Fig. 34.
Cumulative concentration-response curves to SNP in MPA 
precontracted with PE ( 2 .2x10 ' 7 M or 2 .2x10~8 M ), in the absence 
and presence of L-NAME ( 2x10*4 M ). Each point is the

mean ± s.e.mean of 6 observations. Relaxant responses are 

expressed as % relaxation of PE-induced tone. Pretreatment with 
L-NAME did not significantly alter relaxant responses to SNP except 
to the lowest concentration which was slightly enhanced ( *P <0 .05 , 

paired t-test ).
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Fig. 35.

Cumulative concentration-response curves to SNP in MPA 
precontracted with KCI ( 27.7 mM or 17.5 mM ), in the absence and 
presence of L-NAME ( 2x10'4 M ). Each point is the mean ± s.e.mean 

of 6 observations. Relaxant responses are expressed as % relaxation 
of KCI-induced tone. Pretreatment with L-NAME significantly 

enhanced SNP-induced relaxations. Asterisks denote 
significant difference from untreated rings ( *P < 0 .0 5 , * *P < 0 .0 1  ; 
paired t-test ).
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Fig. 36.

Cumulative concentration-response curves to SNP in 1st branches 
precontracted with PE ( 9 .5x10‘8 M or 9.5x1 O' 9 M ), in the absence 

and presence of L-NAME ( 2x10‘4 M ). Each point is the

mean ± s.e.mean of 6 observations. Relaxant responses are 
expressed as % relaxation of PE-induced tone. Pretreatment with 
L-NAME did not significantly alter relaxant responses to SNP except 
to the lowest concentration which was slightly enhanced ( *P <0 .05 , 
paired t-test ).
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Fig. 37.

Cumulative concentration-response curves to SNP in 1st branches 
precontracted with KCI ( 25.1 mM or 15.1 mM ), in the absence and 
presence of L-NAME ( 2x10'4 M ). Each point is the mean ± s.e.mean 
of 6 observations. Relaxant responses are expressed as % relaxation 

of KCI-induced tone. Pretreatment with L-NAME significantly 
enhanced SNP-induced relaxations. Asterisks denote significant 
difference from untreated rings (*P < 0 .0 5 , * *P < 0 .0 1  , paired t-test).



Results

3.2 .7.  Role of endothelium in mediating ISO-induced 

relaxation

(3-Adrenoceptor agonists have been widely believed to cause 

endothelium-independent vasorelaxation via increasing cAMP production 

in the smooth muscle. However recently, there have been conflicting 

reports regarding the contribution of the synthesis of NO to 

(3-adrenoceptor mediated vasorelaxation (Jackson & Busse, 1991 ; Gray 

& Marshall, 1992 ). Since a high density of (3-adrenoceptors have been 

detected in bovine pulmonary endothelial cells ( Ahmed et al., 1990 ) and 

endothelial cells are in direct contact with blood-borne catecholamines, it 

is highly possible that catecholamines could contribute to the regulation 

of pulmonary vascular tone through (3-adrenoceptor-stimulated NO 

release.

3.2.7.1 Effect of ISO and BRL 37344 in endothelium-intact 

rings in the absence and presence of flurbiprofen, L-NAME or 

L-NAME + L-arginine

In endothelium-intact 2nd branch rings precontracted w ith PE, 

ISO induced concentration-dependent relaxations w ith a maximum 

relaxation of 102.4 ± 1.8% ( Fig.38 ). Pretreatment w ith flurbiprofen 

had no effect on the relaxant responses to ISO resulting in a maximum 

relaxation of 101.7 ± 2.5%. In contrast, L-NAME caused a partial 

inhibition of ISO-induced relaxations with a reduction in the maximum 

response to 60.0 ± 6.4%. The inhibitory effect of L-NAME was 

completely prevented by prior incubation of rings with 

L-arginine (Fig.38). Furthermore, when L-NAME was added during
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maximum relaxation to ISO, a partial reversal of the relaxation 

( 45.7 ± 4.0% ) was observed, and addition of L-arginine markedly 

reversed the effect of L-NAME (Figs.39 and 43).

The ^ -a g o n is t  BRL 37344, at all concentrations tested, failed to produce 

any degree of relaxation in PE-precontracted 2nd branch rings (Fig.40).

3.2.7.2. Effect of ISO in endothelium-denuded rings, in the 

absence and presence of L-NAME

To further investigate the role of endothelium in mediating ISO-induced 

relaxations, CRC to ISO were obtained in 2nd branch rings which had 

been perfused with Triton X-100. This procedure resulted in successful 

removal of the endothelium as indicated by absence of relaxant 

responses to a maximum concentration of CARB, w ithout causing major 

damage to the underlying smooth muscle as indicated by normal relaxant 

responses to SNP and contractile responses to PE. Since endothelium- 

denudation potentiates PE-induced contraction, a lower concentration of 

PE ( 9.5x1 O'9 M ) was used to obtain a similar degree of contraction to 

that obtained in endothelium-intact rings.

In endothelium-denuded rings, ISO induced concentration-dependent 

relaxations comparable to those produced in endothelium-intact rings, 

w ith a maximum relaxation of 100.4 ± 1.4% (Fig.41). In contrast to 

endothelium-intact rings, pretreatment of endothelium-denuded rings with 

L-NAME had no effect on ISO-induced relaxations (Fig.41), and when 

L-NAME was added during maximum relaxation to ISO, no reversal of the 

relaxation was observed (Figs.42 and 43).
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3.2.7.3.  Influence of ISO on cGMP level

The level of cGMP in endothelium-intact 2nd branch rings was increased 

by ISO from 1.84 ± 0.14 pmol.mg"1 tissue to 4.48 ± 0.87 pmol.mg' 1 

tissue (Fig.44), which is 2.4 times higher than the basal level.

3.2.7.4.  Effect of P-antagonists on ISO-induced relaxation

In an attempt to classify the (3-adrenoceptor subtypes mediating 

ISO-induced relaxation, CRC to ISO were constructed in the absence and 

presence of the non-selective (3-antagonist propranolol, the selective 

(3-|-antagonist atenolol and the selective (32-antagonist ICI 1 18551. 

In these experiments, extraneuronal uptake of ISO was blocked by prior 

incubation of rings with hydrocortisone ( 3x1 O'5 M ) for 30 min. This had 

no effect on the potency of ISO in either endothelium-intact or 

denuded rings.

In endothelium-intact rings, the submaximal responses to ISO were 

markedly shifted to the right by propranolol, and to a lesser extent by 

atenolol and ICI 1 18551 (Fig.45). The EC50 values for ISO alone and in 

the presence of either propranolol, atenolol or ICI 1 18551 were 

3 .2 x 1 0 8 M, 6 .3x10 '6 M, 2 .5x10 '7 M and 5 .0x10 ' 7 M, respectively. 

However, neither of the antagonists caused any shift in the 

maximum response.

A similar rightward shift of submaximal responses to ISO in the presence 

of propranolol was observed in endothelium-denuded rings (Fig.46).
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Fig. 38 .

Cumulative concentration-response curves to ISO in endothelium- 

intact 2nd branches precontracted w ith PE ( 9 .5x10*8 M or 

9.5x1 O' 9 M ), in the absence and presence of flurbiprofen ( 10‘5 M ), 
L-NAME ( 2x10*4 M ) or L-NAME -l- L-arginine ( L-Arg, 10' 2 M ). Each 

point is the mean ± s.e.mean of 9 observations. Relaxant responses 

are expressed as % relaxation of PE-induced tone. ISO-induced 
relaxations were not significantly altered by flurbiprofen, but partially 

inhibited by L-NAME. Pretreatment with L-arginine completely 
prevented the inhibitory effect of L-NAME. Asterisks denote 
significant difference from untreated rings ( *P < 0 .0 5 , * *P < 0 .0 1 ,  

* * * P < 0 .0 0 1  ; unpaired t-test ).
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Fig. 39.
Histogram showing ISO-induced relaxations in endothelium-intact 2nd 

branches precontracted with PE ( EC75 9.5x1 O'8 M ), and the effect 

of L-NAME and L-arginine added at the arrows. Each bar is the 

mean ± s.e.mean of 6 observations. Relaxant responses are 

expressed as % relaxation of PE-induced tone. L-NAME partially 
reversed ISO-induced relaxation, an effect which was markedly 

reversed by L-arginine. Asterisks denote significant difference as 
compared with the maximum relaxation to ISO ( * * * P < 0 .0 0 1  , 

paired t-test ).
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Fig. 40.

Histogram showing the lack of a relaxant effect to increasing 

concentrations of BRL 37344 in endothelium-intact 2nd branches in 
which tone had been raised with PE ( EC75 9.5x1 O'8 M ). Each bar is 
the mean ± s.e.mean of 6 observations .
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Cumulative concentration-response curves to ISO in endothelium- 
denuded 2nd branches precontracted with PE ( 9.5x1 O'9 M ), in the 

absence and presence of L-NAME ( 2x10 '4 M ). Each point is the 

mean ± s.e.mean of 6 observations. Relaxant effects are 
expressed as % relaxation of PE-induced tone. ISO induced 
concentration-dependent relaxations comparable to those obtained in 

endothelium-intact rings. Pretreatment w ith L-NAME had no effect on 

ISO-induced relaxations.
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Fig. 42 .
Histogram showing ISO-induced relaxations in endothelium-denuded 
2nd branches precontracted with PE ( 9 .5x10 ‘9 M ), and the lack of 

effect of L-NAME ( 2x1 O'4 M ) when added at the arrow. Each bar is 
the mean ± s.e.mean of 6 observations. Relaxant responses are 

expressed as % relaxation of PE-induced tone.
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Control ISO

Fig. 44.

Effect of ISO ( 10 ‘4 M ) on cGMP level in endothelium-intact 2nd 
branches. Each bar is the mean ± s.e.mean of 6 measurements. 
Artery rings were precontracted with PE ( EC75 9.5x1 O' 8 M ) before 

being exposed to ISO for 30s. ISO significantly increased cGMP 

level 3 S  compared with the basal level ( control ) ( *P < 0 .0 5  , 
unpaired t-test ).
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Fig. 45.
Cumulative concentration-response curves to ISO in endothelium- 

intact 2nd branches precontracted with PE ( EC75 9.5x1 O' 8 M ), in 

the absence and presence of propranolol ( 10‘6 M ), atenolol (10 5 M) 
or ICI 1 18551 ( 10‘8 M ). Each point is the mean ± s.e.mean of 6 

observations. Relaxant responses are expressed as % relaxation of 
PE-induced tone. Asterisks denote significant difference from 
untreated rings ( * *P < 0 .0 1 ,  * * * P < 0 .0 0 1  ; unpaired t-test ). For 

clarity, statistical significance for ICI 1 18551 is not shown.
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Fig. 46.

Cumulative concentration-response curves to ISO in endothelium- 

denuded 2nd branches precontracted w ith PE ( 9 .5 x10 *9 M ), in the 

absence and presence of propranolol ( 10 ' 6 M ). Each point is the 

mean ± s.e.mean of 6 observations. Relaxant responses are 

expressed as % relaxation of PE-induced tone. Pretreatment with 
propranolol caused a rightward shift of submaximal responses to ISO 

but had no effect on the maximum response. Asterisks denote 

significant difference from untreated rings ( * * P < 0 .0 1 ,  * * * P < 0 .0 0 1 ;  

paired t-test ).
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Discussion

The pulmonary circulation is characterised by being a low pressure, low 

resistance system with a special capacity to accommodate large 

increases in blood f low  with only a small rise in intravascular pressure. 

The mechanisms by which the pulmonary vasculature maintains a low 

vascular tone are still unclear. However, since the discovery of the 

release by endothelial cells of the tw o potent relaxing factors, NO and 

prostacyclin, they have become potential candidates for such a function. 

Although the role of the endothelium in modulating the systemic 

circulation has been extensively studied, less is known about its role in 

modulating pulmonary circulation. Previous studies that have addressed 

this subject have produced conflicting results. Whereas some studies 

have suggested an important role for NO or prostacyclin in maintaining 

the low pulmonary vascular tone ( Voelkel et at., 1981 ; Walker et a/., 

1982 ; Archer et a/., 1990 ; Gold et a/., 1990 ), others have found no 

evidence for such a role ( Ogletree, 1982 ; Rubin et at., 1985 ; Archer 

et a/., 1989 ; Crawley et al., 1990 ). Furthermore, most of the in vitro 

studies have used strips or rings of large conduit pulmonary arteries 

where the results, as demonstrated in the systemic circulation, may not 

be applicable to the smaller arteries which may account for the major 

part of the pulmonary vascular resistance. Therefore, the purpose of the 

present study was :

(i) To further investigate whether a basal release of NO and prostacyclin 

is involved in modulating pulmonary vascular tone.
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(ii) To test the ability of various humoral agents to stimulate NO release 

in this vascular bed.

(iii) To determine the extent to which this basal and stimulated release 

correlates with artery size.

In this study, isolated rat pulmonary arteries were used. The normal 

structure and pattern of branching of rat pulmonary arteries have been 

described by Hislop and Reid ( 1978 ), and similarities between rat and 

human arteries assessed. In the rat, the main pulmonary artery ( MPA ) 

divides into left and right branches ( 1st branches ). The left lung has a 

single lobe, the right lung has four. Each lobe has one axial artery, from 

which side branches arise at right angles. The wall of the rat pulmonary 

artery is similar to the human in possessing an adventitia, muscular media 

w ith circularly arranged muscle cells bounded with internal and external 

elastic laminae with central elastic laminae in between, and an intima 

consisting of a single layer of endothelial cells. Furthermore, the 

percentage wall thickness is similar in rat and human arteries. Unlike the 

human lung, there are no elastic arteries in the rat lung i.e. arteries with 

more than four central elastic laminae. The MPA has only four central 

laminae, thus falling within the definition of muscular arteries. As the 

diameter of arteries decreases, the central laminae decrease in number 

until they disappear, and the wall gradually becomes partially muscular or 

non-muscular in structure. The distribution of size range for muscular,
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partially muscular and non-muscular arteries is similar in rat and human 

lungs. All arteries over 150 pm ( stretched external diameter ) are 

muscular in structure, and all arteries less than 50 pm non-muscular 

( Hislop & Reid, 1978 ). The many similarities between rat and human 

pulmonary arteries makes it appropriate to use the rat for the study of 

pulmonary vasculature.

The first series of experiments compared the contractility of large and 

small pulmonary arteries by investigating the responsiveness of MPA, 1st 

and 2nd branches to vasoconstrictors acting by different mechanisms - 

namely PE, 5-HT and KCI. Activation of a-|-adrenoceptors by PE and of 

5-HT2-receptors by 5-HT stimulates the hydrolysis of membrane 

phosphoinositides ( de Chaffoy de Courcelles et a/., 1985 ; Minneman, 

1988 ) resulting in the production of DAG and IP3 which, through the 

mechanisms described in section 1.1 .2 ., cause smooth muscle 

contraction. On the other hand, KCI induces smooth muscle contraction 

through membrane depolarisation and opening of voltage-operated 

Ca2+ channels ( Bolton, 1979 ). Comparison of the concentration- 

response curves to either PE, 5-HT or KCI in MPA, 1st and 2nd branches 

revealed that generally 2nd branches displayed a significantly greater 

contractility and higher sensitivity to the vasoconstrictors than 1st 

branches, which showed higher contractility and sensitivity than MPA. 

These results are at variance with those reported by Leach et a/. (1992),
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who found that noradrenaline and 5-HT were more powerful 

vasoconstrictors in large than in small pulmonary arteries. The 

discrepancies in the results could be due to differences in the size of 

arteries used ( 100-2000 pm ) and in the expression of developed tension 

( force per unit vessel length ). The greater responsiveness of the smaller 

arteries to the vasoconstrictors could be accounted for by a greater 

smooth muscle content, a higher affinity and/or density of 

a-(-adrenoceptors and 5-HT2-receptors, and a more positive smooth 

muscle cell membrane potential. However, it has been shown that 

smooth muscle cells in large and small pulmonary arteries show similar 

resting membrane potentials and a similar degree of membrane 

depolarisation in response to increased extracellular [K + ] ( Suzuki & 

Twarog, 1982 ). This finding together with the fact that the difference in 

the responsiveness of the three arteries was not restricted to receptor- 

mediated contractions but extended to depolarisation-mediated 

contractions suggest that the greater contractility of the smaller arteries 

is mainly due to their higher smooth muscle content.

Pretreatment w ith the NOS inhibitor L-NAME significantly potentiated the 

contractile responses to PE, 5-HT and KCI in all of the three arteries. The 

potentiating effect was not specific to L-NAME as L-NOARG also caused 

a similar potentiation of contractile responses to PE in 2nd branches. 

Prior incubation with L-arginine completely prevented the ability of
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L-NAME and L-NOARG to potentiate PE-induced contractions in 2nd 

branches. Since addition of L-arginine generally prevents the actions of 

NOS inhibitors by competing for the enzyme, this result confirms that the 

potentiating effects of L-NAME and L-NOARG were due to inhibition 

of NO synthesis.

Having confirmed that NO exerts a depressant effect on the contractile 

responses of pulmonary arteries to vasoconstrictors, the question 

remained whether the NO was released spontaneously or as a 

consequence of stimulation by the vasoconstrictors. If the latter 

assumption is true, the vasoconstrictors would be expected to induce 

endothelium-dependent relaxations in these arteries. Since o^-agonists 

have been shown to induce endothelium-dependent relaxation in various 

blood vessels including canine pulmonary arteries ( Miller & Vanhoutte, 

1985 ), it could be inferred that the NO, which mediated the depression 

of PE-induced contractions, was released in response to stimulation of 

endothelial o^-adrenoceptors by PE. However, we failed to detect any 

relaxant effect to the ot2-agonist clonidine in 2nd branches precontracted 

w ith the thromboxane A 2 mimetic U 46619, even in the presence of the 

a-j-blocker prazosin to suppress any possible a-|-mediated contractile 

effect of clonidine. This result contrasts w ith that of Miller and Vanhoutte 

( 1985 ) who reported that the selective ot2-agonist UK 14,304 produced 

a relaxant effect in canine pulmonary arteries precontracted with PE.
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However recently, a^-agonists have been shown to competitively 

antagonise a-| activation by o^-agonists ( Skrbic & Chiba, 1993 ) and, 

therefore, the reported inhibition of PE-induced tone by UK 14,304 could 

merely be a manifestation of its antagonistic action at a-|-receptors. 

Further evidence against PE being able to stimulate NO release was 

obtained from experiments involving measurements of cGMP. NO causes 

vasorelaxation via stimulation of intracellular cGMP production, and thus 

cGMP level has been widely used as an indication of NO release. 

Exposure of 2nd branch rings to PE did not cause any significant change 

in basal cGMP level.

Endothelium-dependent relaxations to 5-HT in various vascular beds 

including porcine pulmonary arteries have also been reported ( Glusa & 

Richter, 1993 ). However, we found no evidence that 5-HT stimulates 

NO release in rat pulmonary arteries. In 2nd branches precontracted with 

U 46619, 5-HT did not evoke any relaxation even when the contractile 

effect of 5-HT was suppressed by the 5-HT2-antagonist ketanserin. 

Furthermore, 5-HT failed to cause any significant rise in cGMP level.

Elevations in extracellular K+ concentration have previously been shown 

to indirectly stimulate NO release in canine femoral arteries ( Rubanyi & 

Vanhoutte, 1988 ), and to cause relaxation associated with a rise in 

cGMP level in duodenal smooth muscle ( Toda et at., 1992 ). In this
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study, we were unable to demonstrate any relaxant effect to KCI in 2nd 

branches precontracted with PE. It is possible, however, that any 

relaxant effect of KCI was simply masked by the accompanying 

contractile effect. The effect of KCI on cGMP level was variable. KCI 

caused a significant rise in cGMP level in 2 out of 6 rings , w ith no effect 

in the 4 remaining rings. These results do not rule out a stimulant effect 

of KCI on NO release.

In general, these results support the view that the potentiating effects of 

L-NAME and L-NOARG were due to the loss of modulation of contractile 

responses by basally-released NO, rather than NO released by 

vasoconstrictor stimulation. The source of NO is most likely the 

endothelium, but a contribution of NO released from smooth muscle cells 

or neuronal cells cannot be ruled out.

This conclusion is further supported by several observations. The 

potentiating effects of L-NAME and L-NOARG were more profound at low 

concentrations of the vasoconstrictors, with no significant change in the 

maximum responses. This is consistent with a basal release of a stable 

amount of NO which would be more effective in counteracting 

contractile responses to low rather than high concentrations of 

vasoconstrictors. Moreover, the modulatory effect of NO was a general 

phenomenon, occurring with receptor-mediated contractions as well as
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depolarisation-mediated contractions. Although L-NAME and L-NOARG, 

per se, did not cause a rise in baseline tone in any of the three arteries, 

this does not refute the presence of a basal release of NO. When arteries 

possess intrinsic tone, this provides an appropriate background for NO to 

exert its relaxant effect. Inhibition of NO synthesis removes this effect 

and leads to an increase in basal tone. Since, in this study, the maximum 

relaxations induced by various vasorelaxants in MPA, 1st and 2nd 

branches were not significantly greater than 100%, this was considered 

as an indication of absence of an intrinsic tone in these arteries.

The presence of a continuous basal release of NO from pulmonary 

endothelium would serve to depress the contractility of pulmonary 

arteries to the various vasoconstrictors that are either released locally or 

reach the pulmonary vasculature via venous blood. Therefore, NO may 

play a major role in maintaining the normally low pulmonary 

vascular tone.

The potentiating effect of L-NAME on the contractile responses to PE, 

5-HT and KCI was more pronounced as artery size decreased. This could 

be accounted for by :

(i) Higher basal production of NO in the smaller arteries.

(ii) Higher sensitivity of soluble guanylate cyclase in the smaller arteries.
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(iii) Assuming similar amounts of NO released in the three arteries, the 

smooth muscle cells in the smaller arteries may acquire higher 

concentrations of NO since the thinner arterial wall would constitute less 

of a diffusion barrier for NO than in larger arteries.

The possibility of a higher guanylate cyclase sensitivity in the smaller 

arteries is excluded by the observation that the endothelium-independent 

vasorelaxant SNP, which acts by spontaneously releasing NO in aqueous 

solutions, produced similar maximum relaxant effects in MPA, 1st and 

2nd branches. Moreover, relaxant responses to submaximal 

concentrations of SNP in 2nd branches were weaker than in MPA and 

1st branches. It is tempting to speculate that this was due to 

desensitisation of guanylate cyclase as a result of a higher basal release 

of NO in 2nd branches. The third suggestion is equally unlikely, since 

MPA was more sensitive to the relaxant effect of low concentrations of 

the endothelium-dependent vasorelaxant CARB than were 1st and 2nd 

branches, indicating that wall thickness does not prevent NO from 

reaching the underlying smooth muscle layer. The most likely cause for 

the greater potentiating effect of L-NAME in the smaller arteries, 

therefore, is a higher basal production of NO in these arteries.

This conclusion is further supported by the finding that the small arteries 

had higher basal cGMP levels than larger arteries. This result is in
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agreement with a previous study on bovine pulmonary arteries of 

different sizes, in which higher cGMP levels were found in smaller 

branches ( Ignarro et at., 1987 ). It would seem reasonable that NO 

release should become greater as arteries become smaller and more 

muscular, to counteract the accompanying increase in contractility and, 

therefore, maintain a low vascular tone.

Pulmonary endothelium can also modulate pulmonary vascular tone via 

the release of vasodilator prostanoids, especially prostacyclin. To test 

this possibility, we examined the effect of inhibition of prostanoid 

synthesis on contractile responsiveness of pulmonary arteries to 

vasoconstrictors, and found that pretreatment of 2nd branch rings with 

the cyclo-oxygenase inhibitor flurbiprofen had no significant effect on 

contractile responses to PE. From this result we can conclude that 

prostacyclin is not released spontaneously from the pulmonary 

endothelium and, therefore, does not contribute significantly to the 

maintenance of the low pulmonary vascular tone.

Having established that NO is basally-released in pulmonary arteries, and 

that this release correlates inversely with artery size, the next step was 

to investigate agonist-stimulation of NO release in the three arteries. The 

endothelium-dependent vasorelaxant CARB induced concentration- 

dependent relaxations in MPA, 1st and 2nd branches precontracted with
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PE. However, 2nd branches were more responsive to the relaxant effect 

of CARB than 1st branches, which were more responsive than MPA. 

Similar results have been reported by Owen and Bevan ( 1985 ) who 

found that isolated resistance vessels of the rabbit ear relax by 

proportionally greater amount to acetylcholine than the central artery. 

Since we have already excluded the possibility of a higher guanylate 

cyclase sensitivity in the smaller arteries and established that wall 

thickness does not act as a physical barrier for NO diffusion, the 

difference between the three arteries most likely reflects the capacity of 

the small arteries to generate greater amounts of NO in response to the 

stimulatory effect of CARB than larger arteries. In line with this 

conclusion is the observation that high concentrations of CARB, while 

causing further relaxations in 1st and 2nd branches, tended to evoke 

contractile responses in MPA. This suggests that the inability of MPA to 

generate more NO in response to increasing concentrations of CARB 

unmasked its direct contractile effect on smooth muscle cells. Whether 

these results can be extrapolated to even smaller arteries in the 

pulmonary vascular bed can only be speculated on.

The physiological significance of the stimulatory effect of muscarinic 

agonists on NO release is not yet clear. The pulmonary vasculature is 

innervated by cholinergic nerves which are situated in the adventitial- 

medial border. Since acetylcholine is destroyed very rapidly in vivo, it
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seemed unlikely that neuronally-derived acetylcholine could diffuse across 

the media to stimulate the endothelium. However, recent studies on the 

intact-chest cat ( McMahon et al., 1992 ; McMahon & Kadowitz, 1992 ) 

have shown that vagal stimulation causes pulmonary vasodilatation 

which is blocked by atropine as well as L-NAME and methylene blue, 

suggesting that neuronally-released acetylcholine could diffuse to the 

endothelium where stimulation of muscarinic receptors results in the 

release of NO. The possibility that endothelial cells themselves could 

synthesise acetylcholine was first proposed in 1985, when Parnavelas 

et al. reported that choline acetyltransferase, the enzyme responsible for 

the synthesis of acetylcholine, could be localised in vascular endothelial 

cells of the rat cortex and mesenteric arteries.

Pretreatment with L-NAME abolished CARB-induced relaxations in MPA

and 1st branches, and almost completely inhibited its effect in 2nd

branches. Recently, Buxton et at. ( 1993 ) have reported that L-NAME

may act as a muscarinic antagonist, and therefore is a poor choice as a

NOS inhibitor in studies in which muscarinic receptors are not blocked. In

contrast to the effect of L-NAME on NOS, muscarinic blockade cannot be

£
reversed by an exess of L-arginine. The same study showed that 

L-NOARG does not block muscarinic receptors. In the present study it 

was possible, therefore, that the inhibitory effect of L-NAME on 

CARB-induced relaxations was partly due to inhibition of NO synthesis
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and partly due to blocking of muscarinic receptors. Consequently, further 

experiments were undertaken to clarify this point by comparing the 

ability of L-arginine to prevent the inhibitory actions of both L-NAME 

and L-NOARG.

In a similar manner to L-NAME, L-NOARG abolished the relaxant response 

to CARB in 2nd branches. Prior incubation with L-arginine only partially 

prevented the inhibitory effects of L-NAME and L-NOARG on 

CARB-induced relaxations. The similarity in the inhibitory effects of 

L-NAME and L-NOARG on CARB-induced relaxations and in their partial 

prevention by L-arginine suggests that L-NAME has no significant 

antagonistic activity on the M3 muscarinic receptor subtype which has 

been shown to mediate the relaxant effect of muscarinic agonists in rat 

pulmonary artery ( McCormack et a/., 1988 ). In this respect, Sideso 

et al. ( 1994 ) also have found that L-NAME lacks antagonistic 

activity on the M3 muscarinic receptor mediating contraction of 

the mouse anococcygeus.

In addition to stimulation of NO release, acetylcholine and related 

cholinomimetics also cause hyperpolarisation of smooth muscle cells in 

some blood vessels via an endothelium-dependent mechanism ( Chen 

et al., 1988 ; Keef & Bowen, 1989 ). The hyperpolarisation is not 

mimicked by NO, nor can it be blocked by NOS inhibitors ( Garland &
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McPherson, 1992 ). These observations have led to the suggestion that a 

factor distinct from NO is also released from the endothelium. This factor 

has been termed " endothelium-derived hyperpolarising factor " or EDHF 

( Chen et a/., 1988 ). However in this study, the association of 

CARB-induced relaxation with a significant rise in cGMP level and the 

inhibition of this relaxation by L-NAME and L-NOARG indicates that NO is 

the sole mediator of the relaxant effect of CARB in rat pulmonary artery.

The finding that L-arginine completely prevented the potentiating effects 

of L-NAME and L-NOARG on PE-induced contractions but only partially 

prevented their inhibitory effects on CARB-induced relaxations 

demonstrates that only the inhibition by L-NAME and L-NOARG of basal, 

but not CARB-stimulated, NO release is completely prevented by 

L-arginine. These results raise the possibility that there are different 

isoenzymes of NOS involved in basal and CARB-stimulated NO release, 

where perhaps L-NAME and L-NOARG bind more tightly to the isoform 

mediating the effect of CARB that their inhibitory action cannot be 

completely overcome by L-arginine. Alternatively, only one form of NOS 

is present and activation of the enzyme by CARB increases its affinity for 

the inhibitors. Several studies have suggested differences in the 

mechanisms responsible for basal and agonist-stimulated NO release. In 

the perfused vascular bed of the rabbit ear, L-NAME inhibited both basal 

and acetylcholine-stimulated release of NO, but only in the former case
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was inhibition reversed by L-arginine ( Randall & Griffith, 1991 ). In rat 

aortic rings, L-NMMA inhibited basal but not acetylcholine-stimulated NO 

release ( Frew et a/., 1993 ). N-Ethylmaleimide, a sulphydryl alkylating 

agent, inhibited agonist-stimulated but not basally-released NO from 

cultured endothelial cells ( Siegle et a/., 1991 ). Furthermore, aortic rings 

from rats with heart failure showed an impaired basal production of NO 

despite the presence of a normal agonist-stimulated release of NO 

( Teerlink et a/., 1 994 ).

Several studies have found endothelium-dependent vasorelaxants to be 

more powerful inhibitors of agonist-induced contractions than of 

KCI-induced contractions in aortic rings ( Collins et al., 1988 ; Morrison & 

Pollock, 1988 ). In an attempt to investigate whether the degree of 

endothelium-dependent relaxation in pulmonary artery is influenced by 

the nature of the contractile agent used to raise muscle tone, relaxant 

responses to CARB were also obtained in artery rings precontracted with 

KCI. CARB-induced relaxations in KCI-precontracted MPA, 1st and 2nd 

branches displayed a similar difference to that observed in 

PE-precontracted rings. Flowever, KCI-precontracted rings showed a 

significantly smaller magnitude of relaxation in response to CARB. This 

was most striking in MPA where CARB, at all concentrations tested, 

failed to produce any degree of relaxation. This was surprising as basally- 

released NO had the ability to depress KCI-induced contractions in MPA.
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The attenuation of CARB-induced relaxations in KCI-precontracted rings 

cannot be attributed to an inhibitory action by KCI on the generation of 

NO, as SNP also induced significantly weaker relaxations in 

KCI-precontracted than in PE-precontracted rings. It has been suggested 

to be due to the ability of cGMP to reduce Ca2 + influx through receptor- 

operated but not voltage-operated Ca2+ channels ( Morrison, 1988 ). 

However, NO has been shown to selectively inhibit KCI-stimulated Ca2 + 

influx through voltage-operated Ca2+ channels in neuronal cells via a 

cGMP-dependent mechanism ( Desole et at., 1994 ). Pretreatment with 

L-NAME had no effect on SNP-induced relaxation in PE-precontracted 

rings but caused a significant enhancement of the relaxant responses to 

SNP in rings precontracted with KCI. These results imply that the limited 

capacity of CARB and SNP to relax KCI-precontracted rings reflect, at 

least in part, the ability of KCI to stimulate NO release, thereby reducing 

the capacity of the endothelium to generate more NO in response to 

CARB and decreasing the amount of unstimulated guanylate cyclase 

available for activation by NO. It is unlikely that KCI could stimulate NO 

release in large vessels by a direct action on endothelial cells, as 

voltage-operated Ca2+ channels have not been detected in aortic 

endothelial cells, despite their presence in capillary endothelium ( Colden- 

Stansfield et a!., 1987 ; Bossu et a!., 1989 ).
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In addition to muscarinic-agonists, a wide variety of biological mediators 

stimulate the release of NO. {3-Adrenoceptor agonists, on the other hand, 

have been regarded as endothelium-independent vasorelaxants mediating 

their effects by increasing cAMP production in vascular smooth muscle. 

However recently, there have been conflicting reports regarding the 

contribution of NO release to |3-adrenoceptor mediated vasorelaxation. 

Endothelium-denudation did not alter relaxation to (3-agonists in hamster 

thoracic aorta and canine coronary arteries ( Macdonald et a/., 1987 ; 

Jackson & Busse, 1991 ), but completely abolished (3-adrenoceptor 

relaxation in rat thoracic aorta ( Gray & Marshall, 1992 ). Treatment with 

NOS inhibitors reduced salbutamol or isoprenaline-induced relaxation in 

rat cerebral arteries and hindquarters ( Gardiner et at., 1991 ; 

Hempelmann & Ziegler, 1993 ), but not in feline hindquarters ( Bellan 

et at., 1991 ). Since a high density of (3-adrenoceptors have been 

detected in bovine pulmonary endothelial cells ( Ahmed et a/., 1990 ) and 

endothelial cells are in direct contact with blood-borne catecholamines, it 

is highly possible that catecholamines could contribute to the regulation 

of pulmonary vascular tone through stimulation of NO release. Therefore, 

we sought to investigate the possible role of the endothelium in 

mediating vasorelaxant responses to the non selective (3-agonist ISO 

in pulmonary artery.
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ISO induced concentration-dependent relaxations in endothelium-intact 

2nd branch rings precontracted with PE. The lack of effect of flurbiprofen 

excludes a contribution of prostacyclin to the ISO-induced relaxation. 

Several lines of evidence indicate that the relaxant response to ISO was 

partially mediated by stimulation of NO release. Pretreatment with 

L-NAME caused partial inhibition of ISO-induced relaxation, an effect 

which was completely prevented by prior incubation with L-arginine. 

Moreover, when L-NAME was added during maximum relaxation to ISO, 

a partial reversal of the relaxation was observed. In addition, ISO caused 

a rise in cGMP level, which was moderate in comparison with CARB. 

Gray and Marshall ( 1992 ) have suggested that the rise in cAMP induced 

by ISO could lead to stimulation of NO release. In this respect, it is 

noteworthy that NOS exhibits sites for cAMP-dependent phosphorylation 

( Dinermann et al., 1993 ). Surprisingly however, the relaxant effect of 

ISO was not at all affected by endothelium-denudation. This was not due 

to incomplete removal of endothelial cells, since denudation abolished 

CARB-induced relaxation. In contrast to endothelium-intact rings, L-NAME 

had no effect on ISO-induced relaxation in endothelium-denuded rings, 

which excludes the involvement of NO in mediating this effect. 

Regardless of the mechanisms involved, these results suggest that in the 

presence of endothelium, the relaxant effect of ISO is mediated partly by 

stimulation of NO release and partly by a direct effect on smooth muscle 

cells. In the absence of endothelium, ISO induces comparable relaxations
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by a direct effect on the smooth muscle, independently of NO release. 

However, what remains unexplained at this point is the differential effect 

of L-NAME and endothelium-denudation on ISO-induced relaxation.

To characterise the receptors involved in mediating ISO-induced 

relaxation, antagonists with a certain degree of selectivity for 

(3-adrenoceptor subtypes were used. Pharmacological studies as well as 

receptor binding studies have provided evidence for the existence of 

three main classes of (3-adrenoceptors : the classical (3-| and (32 receptors, 

and the atypical (33 receptor which is resistant to blockade by classical 

(3-antagonists ( Lands et al., 1967 ; Minneman et at., 1981 ; Emorine et 

al., 1989 ). In endothelium-intact rings, the submaximal responses to ISO 

were markedly shifted to the right by the non-selective (3-antagonist 

propranolol, and to a lesser extent by the selective (3-|-antagonist atenolol 

and the selective ^ -an tagon is t 'Cl '13 8551. A similar rightward shift of 

submaximal responses to ISO in the presence of propranolol was 

observed in endothelium-denuded rings. Thus, submaximal relaxant 

responses to ISO seem to be mediated by both (3-j and (32 receptors. The 

presence of a mixed population of (3-j and (32 adrenoceptors in rat 

pulmonary artery has previously been demonstrated ( O'Donnell & 

Wanstall, 1981 ). However, neither of the antagonists caused any shift in 

the maximum response, implicating the involvement of an atypical 

(3-receptor. The failure of the selective (33-agonist BRL 37344 to induce
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any relaxation suggests that this receptor differs from the previously 

recognised ^-recep tor.

In conclusion, this study demonstrates the presence of a continuous 

basal release of NO, but not prostacyclin, in the pulmonary vascular bed. 

The basal release of NO serves to depress contractile responses to 

vasoconstrictors and, therefore, can play a major role in maintaining the 

low pulmonary vascular tone. NO release can be also stimulated by a 

variety of vasoactive agents such as CARB, ISO and possibly KCI. The 

basal and CARB-stimulated NO release appear to be mediated by different 

isoenzymes of NOS. The study also demonstrates important differences 

between small and large pulmonary arteries. The small arteries are more 

responsive to vasoconstrictors and have a greater capacity to generate 

NO under basal conditions as well as in response to agonist stimulation 

than the larger arteries and, therefore, would have a greater role in 

regulating pulmonary pressure.
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