PREDICTION OF SHEAR STRENGTH OF REINFORCED
AND PRESTRESSED CONCRETE BEAMS
BY FINITE ELEMENT METHOD

By

MOHAMED MOHAMED AHMED ABDEL-KADER

A thesis submitted for the degree of
Doctor of Philosophy

Department of Civil Engineering

University of Glasgow

© M. M. A. Abdel-Kader
November 1993



ProQuest Number: 13832072

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13832072

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106- 1346



In the Name of ALLAH

"Most Gracious, Most Merciful"

"He Who taught (the use of) the Pen,"

"Taught man that which he Knew not."



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
SUMMARY ii
NOTATIONS iii

CHAPTER 1 :INTRODUCTION

L1 TNEOAUCHION. ..ttt ettt et st 1
1.2 PUIPOSE OF STUAY .ottt ettt ettt et e e e e 3
1.3 Organisation 0fthe thesSiS........oouiiiiiiiiiiiieiie e 4

CHAPTER 2 : ON SHEAR IN REINFORCED CONCRETE

2.1 INETOAUCTION. ..eeitiieetieeeiee ettt ettt et e et e et eeeaeesseaeessseeesssaeesssaeessseeennseeensseesnsseenns 5
2.2 Definitions related to SHEaT.........c.cooiiiiiiiiiiee e 5
2.3  Mechanisms 0f shear transfer..........ccoouieiieiiiiiiierieceee e 7

2.3.1 Shear transfer by shear Stress in CONCIELe.......uvevvieeriereiieeeiiee e eiie e 10

2.3.2 Aggregate interlock ..o 10

2.3.3. DOWEI QCHION....uiiieiiieciiieciiee ettt e et e e e e e aae e s s e e eabeeeenneeas 10

2.3.4 Interaction between aggregate interlock and dowel action...........cccceeeeeene. 12

0 BTN (o] (B ol 5 (o) o FOR ST SRUU S 13

2.3.6 Web reinfOrCemMENt.......ccuviiiiieiiie et ettt e e rae e e ee e et e e esveeeseaeeeens 13

2.4  Mechanisms of shear failure...........cocvviiiiieiiiieiiie e 15

2.4.1 Beams without web reinforcement..............ccceeevvveeriiieniieeniee e 16

2.4.2 Beams with web reinforcement...........cceevvveeeriieeriieerieeeeeeeeeeeee e 16

2.5 Factors affecting the shear strength............ccoccviviiiiiiiiiiiic e 18

2.5.1 Reinforcement detailS........ccceeeveeiiieriieiiieiie e e 18

2.5.2  CONCIELE PIOPECTTICS. ..ueeeiureeeereeeitieeairiees cevreesreeesiseeeesseeessseeessseesnsseessssessnsees 19

2.5.3 Beam dimeNSIONS. ....cueieiiieeiieeeitieeciteesieeesteeerireeereeesteeeeaeeessseeeseseeenseeennns 21

2.5.4  Other faCtOTS.....ceeviiiieiie ettt see ettt e et eeeaeeeabeeeareeenaseesnseeees 23

2.6 TyPESs OF fAIIUIES...cciieiiieiieiie ettt ettt eeabeeeaee e 24

2.6.1  Flexural failure.......cccoooiiiiiiiiieiee e 24

2.6.2  Shear fallUre......c.coouiiiiieiieeie et et 24

2.7 Methods of analysis of shear failure..........ccceeveiiieiiiieciieee e 26

2.7.1 Beams without web reinforcement..............cceeevvveeriiieeniiieeniieeieeeee e 27

2.7.1.1 Analytical shear compression theories. ........cccceveevueeviereeniereeneenns 27

2.7.1.2 Concept of concrete CantileVer..........ccevveeiierieiriieniieeieeieeieee 29

2.7.1.3 Concept ofthe compressive force path..........ccceeeveeviiiinceeenieenne, 29

2.7.2  ATCh @QnalO@IeS......eeiiieiiieiieiie ettt st 30

2.7.3  Frame ANalOZIES......cceoriiiiiiiiiiieiieie ettt ettt et 32

2.7.4 Truss aNAlOZICS.....cccueeiiiieiieeiieiie ettt et ette et e s e et ate et e et enaaeens 32

2.7.4.1 Morsch model: (or the 45° truss model).........ccceeveveeiiiiieciieeeienee, 34



2.7.4.2 Collins and Mitchell truss Model.......uuueeeeeeeeeeeeeeeeeee e, 36

2.1A3 Modified truss model.......cccooiriiiiiiiiiniiniiiiee e 38
2.7.5 Modified Compression Field Theory........ccccoocerviiniiiinieninniniciceicceeene 43
2.7.5.1 Stress-strain relationships.........ccceviereriiniciinicnencccceeeee 44

CHAPTER 3 : MATERIAL BEHAVIOUR AND NUMERICAL

MODELLING

3.1 INErOAUCIION. ..c..eiiiieeeee e et e et e e e e et e e e e et e e e e e aaaeeeeeaasaeeeeennns 47
3.2 Modelling Of CONCIELC. ....ccuiiieiiieiiie ettt ettt e et e e e e s e e e eseeeeseeenes 49
3.2.1 CoNCrete iN COMPIESSION...ccurrrerrererreeerirreeirraesreeessseeasseessseeessseessseeessseeans 50

32,101 UniaXial StreSS.....cciiiuuiieeeiiiieeeciiiee et et 50

3.2.1.2 BiaXial StIESS...ciiiiiiiiiiieeiiiieceeieee ettt 53

3.2.1.3  TriaXial StrESS....ciiiiiiiieeieiiiee ettt et 60

3.2.1.4 Compression SOfENING......ccevcviieriuieeeiieeeiieeeieeerieeerree e e e e 62

3.2.2  ConCrete N tENSIOMN . ...uuiieitiieciieeeieeeiiieeeieeeeteeesteeeeaaeeesseessaeeereeesseeessseaans 63

3.2.2.1 Tensile strength 0f CONCIEte......eevuiiiiiiiiieiieiieieee e, 63

3.2.2.2 Cracking 0f CONCTELE.....ccuuieiieiiiiiieiieeieeeee et 65

3.2.2.3 Tension Stiffening.......cccoocevviieiiiiiieiieiiieieeecee e 74

3.2.2.4 Tension SOftENING......cceeriiiriierieeiierie ettt 76

3.2.3 CoNnCrete 1N SNEAT.......c.ueiiiieiiiie e e 77

3.2.3.1 Shear retention facCtOr..........oceeiiuiiieeeiiieeeeee e 81

3.2.4  YIeld CIIteriON.....uviiiiiiiiiie ettt e e e e e aaae e e e eaaaeeeeenans 84

3.2.4.1 2-D yield CriteTioN....c.ueieciiieiieecieeeiee et e e 84

3.2.4.2 3-D yield CrIteTION...ccciuirieiiieeiieeeiieeeiee et et e e e e e eesaae e 88

3.3 MoOdelling OF StEEL.....iiiiieiiiiiiieiie ettt et ettt eaae e ebe e e e e s snsaens 92
3.3.1 Smeared modeli........cccoiioiiiiiiiii e 92

3.3.2 DiScrete MOAECLi.....couiiiiiiiceiee e e 94
3.3.3 Embedded model:.......ccoviiiiiiiiie e 94

3.4 Interaction betweenconcrete and Steel..........ocoviiieiiiiiiiiiiiiiee e 95
341 BONA-SIP.iiiiiiiiiiiiiieiiecie ettt ettt e enraas 95

3.4.2 DOWEL QCHION . ...eiiciiiiiiiiii ettt ettt ettt e e e e e et eetre e eeaeeeeeaaaens 96

CHAPTER 4 : THE FINITE ELEMENT AND NUMERICAL METHODS

OF ANALYSIS
A1 INETOAUCTION. ...ttt ettt ettt et e st e et e e ateeabeesaeeenbeesabeenbeenseeenseans 100
4.2 Finite element concept and formulation............oeceeiiiiiiiiiiiiiee e 100
4.3 Discretisation by finite €lement...........cocviieiiiiiiiiieciieececee e e e 101
4.4 TSOParametriC CleMENTS . ....ceiuiiiiieiieiie ettt ettt ettt st e st e e eeees 104
4.4.1 Shape fUNCHIONS ... .ccciuiieiiiieecie et ettt et e e e e et e e e teeesaseeesareeesareeenens 104
4.4.2 Stress-strain 1elationShips.......cocueeiiieiiiiiiiiiieeee e 107
4.4.3 Element stiffness MatriX.....ccceoiiriiieriiiiieiieeeee et 111
4.4.4 Stiffness matrix of embedded bar..........ccoocieiiiiiiiiiiii I11
4.4.5 Numerical INtEETatioN......c.eeecuiieiciiieriieeeiee et e esreeesaeeetaeeeeeeesreeesreeesseeenes 113

4.5 The equation SOIUtION tECANIQUE........eeiiiiieiiie ettt e e ee e ens 114



4.6 Numerical methods 0fanalysiS........ccceeeciieiieiiiieiieiiieeecee e 116
4.6.1 Incremental proCedure...........occueevieiiiniieniieeiiesee et 117
4.6.2 Tterative PrOCEAUTE. ....ccviieeeiieeiiieeiee et ettt et see e te e e e aee e easeeennneeas 118
4.6.3 Incremental-Iterative proCedure...........cccuerveeiiierieeiiienie et eiee e 118
4.7 CONVEIZEINCE CTILETIA. .uuvieutieiieeiieeiieeteeeiteettesteeteeetteesseessbeeseessseesseeenseenssesnseenseessseensees 119
4.8 Basic steps in NONIINEAr PIOZTAIMN........cccviirieerrrerieeriieereenieeereeseessseesseessseesseessseesseessaeens 120
CHAPTER 5 : COMPARISON BETWEEN THE PREDICTIONS OF 3-D
AND 2-D FINITE ELEMENT MODELS
5.1 INEEOAUCTION. ¢ .tvieeiiieeciie ettt et et e et e et eeta e e saebaeessaaesssseesssseesssaesssseensseeensseeas 123
5.2 Features ofthe 3-D and 2-D versions used in the analysis........c.ccceeeueeveeniieneeniiieneenns 123
5.3 Prediction ofthe behaviour of a plain concrete prism...........ccceceeveeriiieniiiieenienieeen. 128
5.4 Prediction ofthe behaviour of a rectangular beam without web
TRINTOTCOIMIETIL. ...ttt ettt et e et eeb e e e bt e saeeenbeessbeebeesneeenneenes 140
5.5 Prediction ofthe behaviour of a rectangular beam with web
TRINTOTCEIMEIE. ...ttt ettt et e et e st e e bt e et e et e s st e e bt e esbeesbeesaneans 152
5.6 Prediction of'the behaviour ofa Tee beam.........cccoeecveeeeiiieciiiecieeee e 161
5.7 CONCIUSIONS. ..cutiiiiiette ettt ettt et e she e et e s bt e e be e sate et e e st e e abeebeeenbeesbeeeaneas 166
CHAPTER 6 : PRELIMINARY PARAMETRIC STUDY
0.1 INErOAUCTION. ....eiiiiiieie ettt ettt et e b ettt et e e e naeenee 172
6.2 Analysis of Bresler and Scordelis's beams...........ccceeveiieriieniiiniieiiieciecieeee e 173
6.2.1 Effect of shear retention factor...........cecveeciieiiiiiiieiie e 181
6.2.1.1 Beams without shear reinforcement...............cccooevveviieriinciieniennnne, 181
6.2.1.2 Beams with shear reinforcement.............ccoeveevieriieciienieceeeeee e, 193
6.2.2 Effect oftensile strength of concrete........oovvviieiiieiieeniieiiieieeeee s 219
6.2.2.1 Beams without shear reinforcement.............ccccceecveviienieeniennennnen. 220
6.2.2.2 Beams with shear reinforcement..............ccccoeeiiiiiiniiniienieneee. 226
6.2.3 Effect ofthe value ofthe compressive strain at peak stress............ccccuveennee. 234
6.2.4 Effect oftension softening of concrete ........cccoocvevierciieriieniencieenieeeeee. 245
6.2.4.1 Beams without shear reinforcement.............cccoeceevienieeiieniiencens 246
6.2.4.2 Beams with shear reinforcement.............ccccoeeeeevieniieiieniieeiienee 247
6.2.5 Effect of compressive strength 0f conCrete.........ovevvveiierciieriinciieieeieeeeas 264
6.2.6 Effect of compression softening of concrete..........ccoevveeeeiienieenieeneenieenenne, 269
0.3 CONCIUSIONS. .. .eitiiiiiiiieieeteet ettt sttt et sttt sae b e e bt ene s 302
CHAPTER 7 : PARAMETRIC STUDY CONTINUED
7.1 INETOAUCTION. ..ttt ettt ettt sae ettt et esbe et e st e saeensesnean 304
7.2 Data Of DEAMIS....uiiieiiieciieccie ettt e et e e e e e et e e e b e e ebaeennraeennreeenns 304
7.2.1 Krefeld and Thurston's beams..........coceerieriiiiiiniieeiieeeeee e 304
7.2.2  Clark's DEAMIS. ..cuieiiiieiieieeiee e 314
7.2.3  Mphonde and Frantz's beams...........ccceevveeviieriiniieniecieeeeeee e 314



7.3 ANalySis OFDEAMS.....eeiiiiiiiiiieieee ettt 324

7.3.1 Beams without shear reinforcement.............cc.c.cooevveeieeiiiieieciieee e 328

7.3.1.1 Results of Krefeld and Thurston's beams.............cccceeveeeeeinreeeennnne.. 329

7.3.1.2 Clark's DEAMS.....cccvviiieeiiiee e 329

7.3.1.3 Mphonde and Frantz's beams..........cccccoevviriiieniieiieniecieee e, 329

7.3.2 Beams with shear reinforcement..............ccccoooeevviiiiiiiiiiiiiiiiee e, 334

7.3.2.1 Krefeld and Thurston's beams..............cooevveeiieiiieeeeeiieeeeeecreeeeeeeee. 334

1322 Clark'S DEAMIS.....uvvieiieiieiie e 334

7.4 Prediction Of failure MOdE.........ooovoviiiiiiiiieeeceee e 338
7.5 CONCIUSIONS. ....cuviiiieiieiee e et eee e ee e e et e e e e e e e aae e e e eeaaaeeeeeeareeeeenaeeeeeennns 353

CHAPTER 8 : PRESTRESSED CONCRETE BEAMS

T B 015 0 Y6 L0115 (o) s DO PSRN 356
TN 10D R o Y<F: Y o4 NSRS 356
8.3 Elzanaty, €t al's DEAMS.....cccceeiiiiiiiiieeiieeeee et et e 386
8.4 CONCIUSIONS. ....eeiiiiiiiie e et e ettt eeeee e e eete e e e e etaaeeeeeeaaeeeeeeteeeeeeaaeseeesntsreeeeeteeeeeesaeeeeanns 400

CHAPTER 9 : REINFORCED CONCRETE TEE-BEAMS

0.1 INTFOAUCTION. .....ueeiiiiiiiiiei ettt e e eeeeet e e e e e e e eesaaeeeeeeeseesensssanreeseeeeeeensees 401
0.2 KOtSOVOS, €1 A1'S DEAIMS....coiiiiiiieiiieeee ettt e ettt e e e e s e e e aeeeeeeesssenanes 401
I T 2 (o) R 0120 o PSRRI 415
0.4 CONCIUSIONS. ....ceeeeeieeeeeitee e e ettt e e et e ettt e e e eetaeeeeeeeaaeeeeeeteeeeeesssreeeeeessseeeeenseeeennnes 432

CHAPTER 10 : CONCLUSIONS AND RECOMMENDATIONS

10.1 GENETAL CONCIUSIONS. ... ettt e e e e e e e e e e e e e e et eaaaeeeeeeeeeaeaaaaeeeeeeeeeennnnas 434
10.2 Recommendations fOr fULUIE WOTK ... ..coeeeeeeeeeeee oo e ee e e e e e eeeeeeeaeeeaeeneens 439

REFERENCES ...ttt sttt 446



ACKNOWLEDGEMENTS

The work described in this thesis was carried out in the Department of Civil
Engineering at the University of Glasgow, under the general guidance of Professor A.

Coull whose interest and encouragement are gratefully acknowledged.

The author is indebted to Dr. P. Bhatt for his valuable supervision, patience,

encouragement and advice throughout the course of this study.

| wish also to express mythanks to Professor D. R Green, Professor D. Muirwood,
and Dr. J. G. Herbertson, past, and present heads of Department of Civil Engineering

for making the facilities available.

Grateful thanks are due to:

Dr. D. V. Phillips, Dr. T. J. A. Agar, and Dr. P. D. Arthur for their interest and useful
discussions.

The research staff and students of Civil Engineering Department, especially Dr. B.
Zhang, Dr. B. Famiyesin, Dr. A Khan, Dr. H Musavi, Dr. A. Bensalem, Mr. A
Hamidon, Mr. S. D. Djellab, Mr. B. Khaled, Mr. Khalifa for their useful discussions.
My wife and lovely daughter and sons Heba, Ali, and Tarek for their patience and
moral support and for my parents, sisters,and brothers for their valuable

encouragement throughout the years.

This study was made possible by the award of a scholarship by the Egyptian

Government. lam grateful to it



SUMMARY

This thesis presents a 2-D finite element model that can be used to predict the shear
strength of reinforced and prestressed concrete beams. A comparison between the
predictions of 3-D and 2-D finite element models was made first, from which it was
concluded that the 2-D finite element model is sufficient to predict the behaviour of
reinforced concrete beams.

To improve the results of the 2-D finite element, five parameters which have a
significant effect on the prediction of the failure load and the corresponding mode of
failure were studied. These parameters are: (i) shear retention factor, (ii) tensile
strength of concrete, (iii) magnitude of the strain corresponding to the peak stress in
the stress-strain curve of concrete in compression, (iv) tension softening of concrete,
and (v) compression softening of concrete. The developed model is used in a
nonlinear finite element program. Only smeared cracking approach was used.

After developing, the model was tested against more than two hundred reinforced and
prestressed concrete beams from seven previous experimental investigations. These
beams were with and without shear reinforcement having rectangular, |, and Tee
cross-sections. The beams covered important variables affecting the shear strength of
reinforced concrete beams such as: shear span to depth ratio a/d, amount of shear
reinforcement, effective depth and width of beam, and compressive strength of
concrete. Most of the beams failed in shear. Because of the fact that in many
previous studies on a small number of beams, the emphasis had been placed purely
on the prediction of the failure load, very often the corresponding mode of failure
differed significantly from the actual mode of failure. In this study particular emphasis
is placed on the predicted mode agreeing with the actual mode of failure. The model
was capable of predicting to good accuracy the failure load, the mode of failure, the

load-deflection curve, and the stresses in reinforcement.



NOTATIONS

Major symbols used in the text are listed below. Others are defined when they first

appear. Some symbols have different meanings in different contexts; these are clearly

defined at the appropriate place.

a/d

As

Asv

\BJ

IP]

fc
fee
feu

ft

GO

Ger

Shear span.

Shear span over effective depth ratio.

Area of concrete section.

Area of tensile reinforcement.

Cross sectional area of a vertical stirrup.
Width of a section.

Strain matrix.

Elasticity matrix for any material.

Effective depth of beam.

Young's modulus.

Cylinder compressive strength of concrete.
Intermediate yield surface strength of concrete.
Cube compressive strength of concrete.
Tensile strength of concrete.

Yield strength of steel.

Shear modulus of uncracked concrete.

Shear modulus of cracked concrete.

Stiffness matrix.

Load factor = computed load / Experimental failure load.
Ratio of tensile to compressive strengths of concrete.
Bending moment at any stage of loading.

Shape function matrix.



S, Sy

(7]
Tol

{5}
{€}

e7/ e2
scc

ecr

8«'
8tmax

S ey

Applied load.

Intensity of the uniformly distributed load.

Spacing of stirrups.

Transformation matrix for cracks.

Specified convergence tolerance.

Shear force.

Shear stress carried by concrete.

Displacements at a point in X, Y, Z directions respectively.
Rectangular cartesian coordinates.

Coordinates at a point in X, Y, Z system.

Ratio of the principal stresses = dj/ c”-

) Grr
Shear retention factor =
GO

Minimum shear retention factor.

Displacement vector.

Strain vector.

Normal strain.

Principal strains.

Compressive strain at peak of stress.

Cracking strain of concrete.

Maximum compressive strain of concrete.

Strain normal and tangential to the surface of crack.
The tensile strain after which concrete does not carry tensile stress.
Strain components in the cartesian coordinates.
Yield strain of steel.

Intrinsic coordinates of any point within the element.

Reinforcement bar diameter.

Percentage of tensile steel = — -

Poisson's ratio.



Total potential.

Total potential of element.

Stress vector.

Initial stress vector.

Octahedral normal stress.

Normal stress.

Stress components in a cartesian coordinates.
Principal stresses.

Shear stresses in xy plane.

Octahedral shear stress.



CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis is concerned with the development of a two dimension (2-D) finite
element model that gives 'good' predictions of the shear strength of reinforced
and prestressed concrete beams. Although many attempts have been made, the
prediction of the response of reinforced concrete structures failing in shear is not
an easy task. A brief review of the available important investigations include the
following.

Starting with Ngo and Scordelis (1967) who developed the first linear elastic finite
element model which was used in the analysis of the behaviour of reinforced
concrete members, a lot of work using the finite element method has been done.
Cedolin and DeiPoli (1977) developed a finite element model, which incorporated
the available experimental results on concrete nonlinear behaviour under biaxial
stresses, and predicted the load-deflection curve for two beams failing in shear. In
1978, Cedolin and Nilson studied the convergence of iterative methods applied to
finite element analysis of reinforced concrete on one beam without shear
reinforcement failing in shear. Arnesen, et al. (1980) developed a finite element
model and compared the results of the model with four tests. Bedard and
Kotsovos (1985) tried to ensure the generality of their finite element model to the
analysis of concrete structures. They analysed three structural configurations: deep
beam with openings and web reinforcements, four shear panels, and a plain
concrete sphere in addition to results of nine examples (mainly on beams and

plain concrete prisms) reported in their paper. In 1987, Cervera, Hinton and
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Hassen used 3-D finite element model and compared the results with: two panels,
four slabs, two deep beams and beam without shear reinforcement. Chang,etal.
(1987) compared the numerical results obtained fromtheir finite elementanalysis

with four reinforced concrete panels. In 1988, Balakrishinan and Murray published
three papers which described a constitutive model for smeared cracking nonlinear
finite element analysis of reinforced concrete structures and they compared the
results of their model with eleven beams and nine panels. After modification of
layered shell element to more accurately model shear behaviour, Harmon and
Zhangyuan (1989) compared the results of their model with two beams: one
failing in flexure and the other beam without stirrups failing in shear, in addition
to four plates and concrete shell. Recently, Vidosa, et al. (1991) introduced 3-D
non-linear finite element model and studied its generality in three papers. They
analysed eight structures: a beam and a shear wall both failing in flexure, two
beams with and without shear reinforcement failing in shear, T-beam, two slabs
exhibiting punching failure, and two prism under strip or patch loading. After
development of the compression-field theory, Vecchio and Collins (1986) introduced
the modified compression-field theory which was incorporated in nonlinear finite
element program by Vecchio (1989). Vecchio predicted the ultimate loads for three
different types of test specimens: panel, deep beam, and beam with shear
reinforcement. Stevens, et al. (1991) incorporated the modified compression field
theory in nonlinear finite element program (FIERCM) which was described by
Vecchio (1989) as a more complex program and by simple program Vecchio
obtained better results. Stevens, et al. demonstrated the power of their program

by analysing a beam with shear reinforcement and a deep beam.

The above literature review shows that in most of the previous finite element
modelling:
+ only a few beams or a definite class of beams have been analysed,

* parametric studies have been done on only a few beams,
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+ the relationship between the ultimate load and the mode of failure has not been

studied in most of the above investigations.

1.2 Purpose of study

Among the finite element models that have been developed to predict the
behaviour of reinforced concrete structures are the simple model which neglects
many factors including even the shear resistance of concrete after cracking and
the sophisticated one which takes everything into account such asthe bond slip
between the concrete and reinforcement, softening of concrete in tension, and
softening of concrete in compression. Also, material models for concrete and
reinforcement are based on different theories e.g. nonlinear elasticity theory,
plasticity theory, endochronic theory, or modified compression-field theory. They
deal with concrete after cracking as a smeared model, discrete model, crack band
model, or fracture mechanics model. The common aspect between these models,
as mentioned above, is that all of them have used for the analysis only a small
numbers of experimental tests which do not cover all the factors influencing the
behaviour of reinforced concrete. In other words the generality of any one of
these models has not been established and it is difficult to judge which model

gives best predictions for any kind of structures.

The purpose of this studyis to attempt to find out the features of a finite
element model which is able to predict, with reasonable accuracy, the ultimate
load and the mode of failure for a large number of beams which cover all factors
influencing the behaviour of reinforced concrete beams. To determine this finite
element model many parameters that affect the prediction should be studied. In
this study some parameters which many think have a significant effect on the
prediction will be studied.

These parameters are:

(i) shear retention factor,
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(i) tensile strength of concrete,

(i) magnitude of the strain corresponding to the peak stress in the stress-strain
curve of concrete in compression,

(iv) tension softening of concrete,

(v) compression softening of concrete.

1.3 Organisation of the thesis.

Chapter 2 focuses on the shear in reinforced concrete, while Chapter 3 reviews
the behaviour of material (steel and concrete) and numerical modelling.

In Chapter 4, the finite element method and numerical methods have been
discussed. A comparison between the predictions of a 3-D finite element model
and 2-D one has been made in Chapter 5. In Chapter 6 a parametric study of
some factors affecting the prediction of shear strength has been done on
rectangular beams with and without shear reinforcement.

In Chapter 7 about hundred and fifty rectangular beams with and without shear
reinforcement have been analysed and some factors which affect on the prediction
of reinforced concrete failing in shear have been studied. Prestressed concrete
beams have been analysed in Chapter 8. The analysis of reinforced concrete Tee
beams is presented in Chapter 9. The final conclusions and recommendations for

future work are given in Chapter 10.



CHAPTER 2

ON SHEAR IN REINFORCED CONCRETE

2.1 Introduction

The ACI-ASCE Committee 426 (1974) stated that despite the tremendous
number of references on the prediction of the strengths of reinforced concrete
members subjected to shear forces, the question of shear strength is far from
settled. This is because of the complexities involved in formulating rational
analytical solutions. Shear failure dueto web crushing, which is likely to occur in
a thin-webbed I|-beam, does not seem to be open to any precise mathematical
treatment (Kar 1969). Chana (1987) reported that a theoretical analysis of
splitting failures is difficult owing to the complex nature of stress conditions present
in the dowel splitting region. As a result of this, he concluded that shear design
methods for members without web reinforcement are likely to remain empirical in
basis. At present, although thereis no final solution of the problem, considerable
progress has been achieved towards the solution of the problem.
In this chapter, a brief review of basic facts about mechanisms of shear
resistance, modes of failure, and theories of analysis of shear in reinforced

concrete beams are given.

2.2 Definitions related to shear
In this section the definitions related to the shear in reinforced concrete

beams used in this thesis are introduced.
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On shear in reinforced concrete

Shear stress: isthe average shear force per unit area resisting this shear
force.

Shear strength:is themaximum shear force that the beam can carry.

Shear transfer:is the transmission of theforce by shear from one plane to
another.

Shear span: is the length of the beams subjected to uniform shear force. It is
denoted by a

a/d ratio: The ratio a/d takes into account the ratio between the bending
moment M and shear force V occurring simultaneously at the same cross
section (a/d = M/(Vd)). Thisis in a beam loaded by two concentrated loads
at equal distances from the supports.

Flexural crack: is a nearly vertical crack formed at the middle of the beam
starting from the tension face due to bending of the beam.

Shear crack: There are two types of shear cracks which may develop in
reinforced concrete beams. These types are the flexure-shear and web-shear
cracks.

Flexure-shear crack: is an inclined crack originating from the top of a
previously existing flexural crack.

Web-shear crack: is an inclined crack forming in a beam without flexural
crack in its vicinity. This  kind of shear cracking is more likely to occurin tee
and thin-webbed beams.

Aggregate interlock action: is due to the interlocking of the irregular
concrete surfaces on each side of the crack. It provides a resisting force
similar to a frictional force.

Dowel action: is the resistance to shear across a crack provided by the

longitudinal reinforcing bars.

Shear retention factor (P): is the ratio of the residual shear modulus of concrete

after cracking Grr to the shear modulus before cracking Ga (p = E’,‘q ).



Chapter 2. On shear in reinforced concrete

2.3 Mechanisms of shear transfer

As defined before, shear transfer means transmission of the force by shear
from one plane to another. This transmission may occur in various ways in
reinforced concrete members.  Shear stress in concrete, aggregate interlock, dowel
action, arch action, and web reinforcement are the main types of shear transfer
(Fig.2.1). The relative contribution of these components vary considerably as the
applied load is increased. In beams without web reinforcement, after cracking the
shear resistance is distributed approximately in the following proportions (Houde and

Mirza 1974; Taylor 1974):

Houde and Mirza (1974) Taylor (1974)

Aggregate interlock 50% 33 - 50%
Compression zone 30% 20 - 40%
Dowel action 20% 15 - 25%

Fig. 2.2 llustrates the distribution of shear forces ina typical beam tested by
Taylor (1974). Shear stresses were measured on the two lines marked 1 and 2
(Fig. 2.2a). These lines were located at the head of major cracks on the beam
across which displacements had been measured inthe test. The line on the Fig.
2.2b at 45° is the line that should be achieved if the three components (dowel,
aggregate interlock, and compression zone shear forces) added up to the full
imposed shear force. This did not happen probably due to slight under-estimation
of dowel and aggregate interlock forces in the experiment because the movement
of the crack before the instrumentation was applied could not be measured. The
figure shows that up to the point of cracking, the beam behaves elastically and
the shear force is distributed through the concrete. After cracking, as the applied
shear force increases, the rate of increase of the shear force carried by
aggregate interlock becomes more than that of the shear forces carried by both

dowel action and compression zone.
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Ve = shear carried by concrete in compression zone

Vs = shear carried by stirrups

Va = shear carried by aggregate interlock
Vd= shear carried by dowel action

V/ = total shear force

T = tensile force in bar

C = compressive force in concrete

Fig. 2.1 Forces acting at inclined crack for beams with web reinforcement.
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Fig. 2.2 Distribution of shear force in beam without web reinforcement.
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2.3.1 Shear transfer by shear stress in concrete

Before cracking of concrete, the whole section can carry shear. After cracking,
shear can be transmitted by the concrete continuum through the compression zone
only (Vc in Fig. 21). The percentage of the shear force -carried by the
compression zone is influenced by the size of the zone and its ultimate shear

capacity is affected by the concrete strength (Taylor 1974).

2.3.2 Aggregate interlock

When a crack is developed in a concrete mass the surfaces of the crack
are usually rough and irregular. When this crack forms along a continuous plane,
a parallel displacement in this plane is possible (Fig. 2.3). This displacement is
restricted by the bearing and friction of the aggregate particles on the cracked
surface which is the aggregate interlock action (Paulay and Loeber 1974). Divakar,
et al. (1987) stated that shear transfer by aggregate interlock is of a frictional
nature with the normal compressive forces being provided by embedded
reinforcement. Millard and Johnson (1984) concluded that aggregate mechanism
results from a combination of crushing and overriding of the crack faces and can
be predicted if the normal stiffness that restrains crack widening is known. This
means that shear transfer by aggregate interlock is by friction. Aggregate interlock
has a significant contribution to the total shear resistance of concrete beams. This
has been proved by many experiments (e.g., Fenwick and Paulay 1968; Paulay
and Loeber 1974). Aggregate interlock is usually defined in terms of the average
shear stress, the shear displacement in the plane of interface, and the width of
the crack. Paulay and Leober (1974) concluded that the largest single factor

affecting aggregate interlock is the width of the crack.

2.3.3. Dowel action
Sliding shear deformations are resisted, in addition to aggregate interlock, by

dowel action of the reinforcing bars (Fig. 2.4). When aggregate interlock
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Fig. 2.3 Shear transfer by aggregate interlock.

Crack

Fig. 2.4 Interactive effect between concrete and reinforcement: Dowel
effect.
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diminishes with a large crack opening, dowel bars play amajor role in preventing
sliding shear failure. Soroushian, et al. (1986) concluded that the main factor
influencing the dowelbehaviour is the diameter of thebar. Axial load in the
dowel bar can also have an important effect if it approaches the axial vyield
strength  (Soroushian, et al. 1986). Other factors that influence dowel behaviour
include the steel and concrete strengths aswell as theinclination of the dowel
bar and the concrete cover.

Hofbeck, et al. (1969) concluded that dowel action of reinforcing bars crossing the
shear plane is insignificant in initially = uncracked concrete, but issubstantial in
concrete with a pre-existing crack along the shear plane.

The amount of vertical shearresisted by the longitudinal reinforcement is limited
by the tensile strength of the concrete beamat the level of the steel; an amount
in excess of this Ilimiting value causes spliting of the beam along the
reinforcement. As the tensilestrength of concrete is low and the vertical tensile
stresses are concentrated near the plane of the diagonal tension crack, usually the
contribution of the longitudinal reinforcement to transfer of shear cannot be large.
Due to this Ruble, et al. (1955) stated that ordinary shear resistance of the
longitudinal reinforcement may be neglectedin the analysis. However if the bars are

well supported by links, then the dowel action is considerably enhanced.

2.3.4 Interaction between aggregate interlock and dowel action

Swamy and Andriopoulos (1974) reported that there is an interaction or
interdependence between aggregate interlock and dowel action and it is difficult to
separate the effects of onefrom the other. The relative shear contributions of
aggregate interlock and dowelaction and  their combined contribution will depend
primarily on the developmentof the diagonal crack both in the web and at the
level of the tension steel,and hence on the amount of tension steel, the
moment-shear ratio, the amount and position of web reinforcement, and concrete

strength. Swamy and Andriopoulos said "the hazards and limitations of trying to

12
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separate the effects of aggregate interlock and dowel action are far too obvious".
More experimental study is required of both the aggregate interlock and dowel

action mechanisms before their combined action in reinforced concrete can be

predicted with confidence (Millard and Johnson 1984).

2.3.5 Arch action

Beams may be visualised as composed of twoparts: an arch portion, above,
and a beam portion, below the diagonal crack. When there is no web
reinforcement the arch acts as if there is a hinge under the applied load (Fig.
2.5), because of the relatively small zone of concrete remaining intact. The
negative bending moment along the arch produced by this action reduces the
compressive stress at the top fibre. When the web reinforcement is added, the
stirrups forces represent a distributed load along thearch, which tendsto cause a
larger compressive stress at the top fibre (Scordelis, et al. 1974). For arch action
to develop, a horizontalreaction component is required at the base of the arch.
In beams, thisis usually provided by the tieof the longitudinal bars. Frequently
deep beams fail due to a failure of the anchorage of the bars. In beams, arch
action occurs not onlyoutside the outermost cracksbut also between diagonal
tension cracks. Web reinforcement produces an additional arch support (Fig. 2.6).
The location of the stirrups is very important. It was found (Kani 1969) that

stirrups close to the base ofdiagonal cracks can provide support to the arches.

2.3.6 Web reinforcement

The stirrups remain practically unstressed untildiagonal tension cracking occurs;
afterward the stirrup strains increase rapidly. Stirrups reduce the maximum principal
concrete stresses in the vicinity of the diagonal crack and thus inhibit the growth

of these cracks (Scordelis, et al. 1974).
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a) BEFORE CRACKING | |

0) SUPPORTED ARCH

C) HANGING ARCH

d) AFTER CRACKING

Fig. 2.5 Arch analogy for reinforced concrete beam without web
reinforcement.

BENT-UP BARS

If___

INCLINED STIRRUPS

VERTICAL STIRRUPS

Fig. 2.6 Arch supports provided by three conventional types of web
reinforcement.
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It was observed in the tests of 136 beams, 35 of them with web reinforcement
(Moody, et al. 1955) that the stirrups delayed the full development of diagonal
tension cracks. In beams without stirrups only one or two diagonal tension cracks
formed; these cracks then penetrated into the compression zones of concrete and
precipitated the failure which occurred by destruction of one of these zones. In
beams with stirrups, however, numerous short diagonalcracks formed since the
stirrups distributed the cracks; more load was required for the cracks to develop
and penetrate into the compression zones, and thus to cause crushing of the
concrete.

With large amounts ofweb reinforcement, the dowel and interlock contributions to
shear capacity become much less important (Taylor 1974; Scordelis, et al. 1974).
This means that not only stirrups carry shear themselves but also they limit the
maximum dowel shear and thus reduce the tendency for horizontal splitting.
Moreover, stirrups may transfer a small force across the crack by dowel action
(see e.g., Ruble, et al. 1955) due to possible kinking and they tend to enhance

the strength of the compression zone by confining the concrete.

2.4 Mechanisms of shear failure

A major difficulty in the development of a rational theory for shear design is
identified as the lack of information on the mechanism of failure (Chana 1988).
Many attempts have been made to explain the mechanism of shear failure (e.g.,
Moody, et al. 1955; Kani 1966; Kotsovos 1983,1986; Chana 1987; and Bazant
and Kazemi 1991). Moody and Viest (1955) reported that for beams with or
without web reinforcement, the shear failure occurs at the section of maximum
moment in the regionof maximum shear by the destruction of the compression
zone directly above or below the diagonal tension crack. Kotsovos (1983)

concluded that thereis no single cause of diagonal failure and it is not
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considered realisticto expect that theories based on the assumption of a unique
mechanism of diagonal failure could lead to safe design procedures. For beams
with a/d smaller than 2.5 subjected to two point load, Kotsovos (1984) reported
that their failure is due to branching of diagonal crack within the shear span
toward the compressive zone of the middle span (Fig. 2.7) and not due to

crushing of the compressive region of the loading point as for beams with a/d

greater than 2.5 (Kotsovos 1986).

241 Beams without web reinforcement

Shear failures of beams without web reinforcement are brittle in nature and,
hence, there is litle information on beam displacements approaching failure, and
during the immediate post-peak or failing branch phase (Chana 1987). Chana
(1988) concluded that shear failures of beams without web reinforcement are
initiated by dowelsplitting. The dowelaction of the main reinforcement causes
splitting of the concrete along the steel. As the dowel force is lost, shear force
is transferred and the diagonal crack extends into the compression zone, which
fails on account of excessive principal tensile stress. Taylor (1974) also concluded
that the sequence offailure is initiated by dowel cracking. The aggregate interlock
is the next to fail, causing an abrupt and sometimes explosive failure of the
compression zone. It can be understand from these conclusions that the failure is
initiated by dowel action but is completed by failing or crushing of the
compression zone. Inother words, the magnitude of the failure load depends on

the resistance of the compression zones at the end of the diagonal tension crack.

2.4.2 Beams with web reinforcement
The presence of web reinforcement has no important effect on the behaviour
of beams prior to the formation of initial diagonal tension cracks. The strains in

the stirrups are practically zero and the load deflection curve for a beam without
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On shearin reinforced concrete

(a) Generally accepted

(b) Postulated by Kotsovos (1984)

Fig. 2.7 Cause of failure for beams with a/d smaller than 2.5.
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web reinforcement is the same for a typical beam with web reinforcement (Moody,
et al. 1954). After the formation of a diagonal crack, the interaction between the
web reinforcement and the crack provides additional shear strength beyond that of

a beam without web reinforcement.

2.5. Factors affecting the shear strength

The factors influencing behaviour and strength of reinforced concrete beams
failing in shear are numerous and complex (Bresler and MacGregor 1967). They
include: the proportions and shape of the beam, the structural restraints and the
interaction of the beam with other components in the system, the amount and
arrangement of tensile, compressive, and transverse reinforcement, the degree of
prestress, the load distribution and loading history, the properties of the concrete
and steel, the concrete placement and curing, and the environmental history.
These factors may be classified to four groups; reinforcement details, concrete
properties, beam dimensions, and other factors, e.g. type of loading and degree of

prestress.

2.5.1 Reinforcement details

Longitudinal reinforcement:
A
Percentage of tensile steel p (=;d; Mb=cross-sectional area of tensile steel,

b = beam width, and d = effective depth) is a significant parameteraffecting
shear strength of reinforced concretebeams (Kani 1966; Taylor 1974; Swamy and
Andriopoulos 1974; Elzanaty, et al 1986a). As p increases the flexural cracks
become narrower and shorter. Therefore, the shear strength increases due to an
increase of both dowel action and aggregate interlock contributions.

In the Canadian code, the longitudinal reinforcement is designed to resist, in
addition to the bending moment at the midspan section, an equivalent axial

tension caused by shear (Collins and Mitchell 1986, see Sec. 2.7.4.2).
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Web reinforcement:

Beams with web reinforcement fail at higher loads and are capable of
developing substantially higher deflections, thus exhibiting greater  ductility (Bresler
and Scordelis 1963). The stirrups not only carry shear themselves but also
enhance the strength of other shear transfer mechanisms. The functions of the
web reinforcement may be summarised as follows:

+ Carrying a part of the additional shear after diagonal tension cracking (some
Codes assume that the additional shear is resisted by stirrups only).

* Increase the strength of the dowel action. The stirrups provide support for the
longitudinal steel and prevent the bars from splitting from the surrounding
concrete.

* Increase both the shear carried by aggregate interlock and shear strength of
the uncracked compression zone. The stirrups help to contain the crack,
limiting its propagation and keeping its width small.

« Stirrups also increase the strength of concrete in compression by providing
confinement.

+ They may transfer a small force across the crack by dowel action.

Compression reinforcement:

Moody and Viest (1955) reported that if the shear failure is caused by the
destruction of the compression zone of concrete at the end of diagonal crack,
compression reinforcement located in this compression zone will increase shear

strength by preventing failure of concrete.

2.5.2 Concrete properties

Concrete strength:
Some investigators concluded that concrete compressive strength (from about

17.0 to 34.0 MPa) has little or no effect on the shear strength (e.g., Kani 1966;
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Taylor 1974). But some investigators concluded that it has effect on shear
strength. lyengar and Rangan (1966), based on tests by Moody et al. (1954),
concluded that concrete strength (from about 14.0 to 41.0 MPa) has a definite
influence on the shear strength of beam in medium and higher ranges of a/d (i.e.
a/d >2.0). Clark (1951) reported that the shear capacity of a beam increases with
the strength of concrete (from about 14.0 to 41.0 MPa) when the other factors
are the same (a/d was small, from 1.17 to 2.43).

After using the high-strength concrete (up to about 83.0 MPa), Elzanaty, et al.
(1986a) found that the shearstrength of beams with or without web reinforcement
increased with the increase of concrete strength. Mphonde and Frantz (1984)
concluded that the effect of concrete strength (from 21.0 to 103.0 MPa) on shear
capacity becomes more significant as the a/d ratio decreases. Also, failures
become more sudden and explosive as the compressive strength increases,

especially at lower a/d values.

Aggregate type:

In lightweight concrete, the actual performance in shear depends on the
aggregate type (Taylor 1974). With some aggregates, the crack goes right through
the aggregate and low shear strengths are obtained. In other cases, a rough
cracked surface is obtained and shear test results much closer to those from
dense concrete are obtained. Akhtaruzzaman and Abul Hasnat (1986) found that
the shear strength of brick-aggregate concrete beams without web reinforcement is
higher than that of normal weight concrete beams. The percentage of increase
depends on concrete strength and a/d ratio. They reported that this increase in

the shear strength of brick-aggregate concrete beams is due to its higher tensile

strength.
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2.5.3 Beam dimensions
a/d ratio:

The ratio a/d takes into account the ratio between the bending moment M
and shear force V occurring simultaneously at the same cross section (a/d =
MZ(vd)). It is now well established that a/d ratio is one of the most important,

if not the only important factor influencing the shear strength of reinforced

concrete beams.

Many investigators (e.g., Mphonde and Frantz 1984) found that there is much
more scatter in the ultimate shear strengths asa/d ratio decreases due to the
possible variation of failure modes. Mphonde and Frantz (1984) found that at a/d
rato of 1.5 (with other properties remaining constant) failure was either by
crushing of the archrib and the beam attained high capacity or by extension of
the inclined crack through to the top surface and the beam failed at lower
capacity.

An increase in a/d ratio causes a decrease inshear strength. This is because
flexural cracks in beams with high a/d ratios will be well developed, decreasing
interlock capacity (Taylor 1974).

The mode of diagonal failure has been found by many investigators to be
primarily dependent upon a/d ratio (Kani 1964,1966). Kotsovos (1983) classified

the mode of failure according a/d ratio to four types as shown in Fig. 2.8.

Depth of the beam:

Ahmed, et al. (1986) observed that theshear capacity of beam decreases

with increased depth for a constant a/d ratio.

Size effect:

The size effect is defined by comparing geometrically similar specimens or
structures of different sizes. When these specimens or structures fail at the same

nominal stress, this means there is no size effect.
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J

Failure of Type I : Flexural capacity reached

Failure of Type II: Flexural capacity not reached

Failure of Type HI: Flexural capacity not reached

=|
7 .V

T

Failure of Type IV: Flexural capacity reached

Fig. 2.8 Types of behaviour exhibited by beams without web reinforcement
subjected to two-point loading.
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Tests on four beams, each beam is a scale model of the other three, by Ivey
and Buth (1967) indicated that if the effect of beam size is present, it is
probably quite small. But several studies by Bazant and co-workers have
addressed the size effect, for example Bazant and Kazemi (1991) concluded that
the diagonal shear failure in beam without web reinforcement exhibits a strong
size effect of fracture mechanics type, due to the differences in the stored energy
that can be released to drive the failure propagation (Bazant and Kazemi 1991).
Bazant and Kazemi reported that this contradiction is because the previous tests
were not carried out with geometrically similar beams and the size ranges tested

were insufficiently broad.

2.5.4 Other factors
Type of loading:

(1) Indirect loading: In most tests onbeams, the loads and reactions are
applied on the top and bottom faces of the beam respectively (directly loaded
beams). In practice, beams are usually loaded or supported by intersecting
beams so that the load transfer is by shear rather than by bearing on the top
and bottom surfaces (indirectly loaded beams). For a/d ratio less than 25,
indirectly loaded beams are weaker than directly loaded beams (Ferguson 1956;
Taub and Neville 1970). Clark (1951) reported that the loading condition is an

important factor that affects the shear capacity of a beam.

(2) Repeated loading: The shear strength of reinforced concrete beams

subjected to repeated loading is less than that subjected to static loading.

Degree of prestress:
The shear strength is strongly affected by the prestress force (Cederwall, et
al. 1974). An increase in prestressin the prestressed concrete beams increase the

strength in shear (Zwoyer and Siess 1954).
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2.6 Types of failures

In considering the mode of failure of reinforced concrete beam, one has to

consider both its flexural and shear capacity.

2.6.1 Flexural failure
Flexural failure can occur in two ways (Fig. 2.9):

(1) flexure compression, in which the crushing of concrete in the compression
zone occurs before yielding of the main steel.

(2) flexure tension, in which the main reason for failure is yielding of main

steel.

2.6.2 Shear failure
Many types of shear failure  havebeen reported in theliterature. Some  of

these types have clear definiton  whilethe others are difficult to identifyclearly.

Some of these types of failure are described below (Fig. 2.9):

(1) Shear-compression failure: A beam is said to fail in shear-compression
when the concrete crushes under compressive stress above an inclined crack
which has formed in the shear span and which itself extends to or from the
level of the horizontal tensile reinforcement (Evans and Schumacher 1963). In
this mode of shear failure, the concrete compression zone is either crushed
or ruptured along the diagonal crack (Kar 1969). Shear compression failure is
the most frequently observed mode of shear failure especially in prestressed
concrete beams.

A closely related mode of failure is:
DT-C failure: A crushing disintegration failure  above or at the endof a
horizontal crack in the compression zone (Krefeld and Thurston 1966b).

(2) Shear-proper failure: Failure defined as shear proper generally takes place

by shearing off of the compression zone of the concrete along the line of

24



Chapter 2 On shear in reinforced concrete

ompression
Flexure
ension

Shear-Compression, DT-C

Shear-Proper, DT

* Diagonal-Tension, DT-R

e DT-S

Fig. 2.9 Different types of failures.
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the diagonal tension crack in beams havingvery small a/d ratio (Mathey and

Watstein  1963).

A closely related mode of failure is:

DT failure: A diagonal crack at nearly constant slope to the top surface of
the beam (Krefeld and Thurston 1966b).

(3) Diagonal-tension failure: The failure occurs as a result of the longitudinal
splitting in the compression zone near the load point andby horizontal
splitting along the tensile reinforcementnear the end of the beam. The
failure occurs shortly after the formation of the critical diagonal tension crack
(Bresler and Scordelis 1963).

A closely related mode of failure is:

DT-R failure: A failure associated withrelative rotation  of adjacent segments
at the end of the horizontal portion of a diagonal tension crack in the
compression zone which has extended close tothe top  surface. In many
cases a thin layer of concrete above the horizontal crack buckles upward
(Krefeld and Thurston 1966b).

(4) DT-S failure: A sliding type of failure along a diagonal plane above or at
the end of a horizontal crack in the compression zone(Krefeld and Thurston

1966b).

2.7 Methods of analysis of shear failure

For all beams failing in shear, up to the formation ofdiagonal tension cracks
the behaviour of all beams is the same as that of beams failing in flexure
(Moody, et al. 1955).
None of the shear failure theories or analogies which are currently used are
sufficiently general to consider all possible failure modes. As a result, it is difficult

to generalise about the nature of shear failures (Breslerand MacGregor 1967).
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Beams can fail in combined bending and shear in different ways, depending on
the geometry and properties of the beams.

In the past there were two basic approaches to analyse shear problems in
reinforced concrete: (1) arch, frame, and truss analogies, and (2) limit analysis
mechanisms. The mechanism method cannot satisfy the compatibility condition,
unless the concrete and steel are assumed to have infinite plasticity (Mau and
Hsu 1990). Arch, frame, and truss models represent behaviour of reinforced
concrete beams subjected to flexure and shear. It is generally agreed by
researchers in recent years that the truss model theory provides a more promising
way to handle shear failure mechanisms.

In this section a brief review of the arch, frame, and truss models is introduced

with emphasis on truss models.

2.71 Beams without web reinforcement
Various theoretical approaches have been suggested for the behaviour of
beams without web reinforcement under action of shear forces. Some of these

approaches are briefly reviewed in this section.

2.7.1.1 Analytical shear compression theories:

These theories consider the load carrying capacity of concrete in its
compression zone due to shear (e.g., Bresler and Pister 1958; Ojha 1967). The
forces acting on the free body above the shear crack are shown in Fig. 2.10. In
this approach any forces transfer across the inclined crack by dowel action or
aggregate interlock action is ignored. The external load is supported by an inclined
thrust in the concrete above the crack and the horizontal component of the thrust
at the support is resisted by tension steel acting as a tie (Fig. 2.10).

These theories are now only of historical interest. They represent the first serious
attempts to analyse the shear capacity of beams without stirrups. However, it

should be noted that these theories are unrealistic, in that they ignore any shear
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Inclined thrust

cy

Fig. 2.10 Forces acting on free body above shear
(ignored are: dowel and aggregate interlock).

Fig. 2.11 Concrete cantilevers.
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force transfer across the diagonalcrack. Acharya and Kemp (1965) showed by
means of a series of careful experiments that this assumption leads to

unacceptably high stress in the concrete at the tip of the diagonal crack.

2.7.1.2 Concept of concrete cantilever: (Fenwick and Paulay 1968)

The causes of the diagonal mode of failure are generally considered to be
associated with the response of the concrete to the force transmitted to it from
steel through bond in the region of shear span below theneutral axis (Kani
1964; Regan 1969). In fact, it has been observed that an improvement of bond
between steel and concrete, which should result in an increase in the force
transmitted to the concrete, leads to a significant reduction of the load sufficient
to cause diagonal failure (Fenwick and Paulay 1968). It has been suggested that,
under the action of the bond forces, concrete between consecutive flexural cracks
reacts as a cantilever fixed to the compression zone of thebeam (Kani 1964),
Fig. 2.11.

Kotsovos stated that in spite of a number of detailed investigations of the stress
conditions of a concrete cantilever, the above assumption neither explains why the
diagonal crack leading to failure invariably initiates near thetip of the flexural
crack closest to the support, nor is it compatible with the formation of a diagonal
crack, which is indicative of failure of the support (compressive zone) of the

cantilever rather than the cantilever itself.

2.7.1.3 Concept of the compressive force path:(Kotsovos 1983; Kotsovos and
Lefas 1990)

The concept of the compressive force path is related to arch action and
assumes that load-carrying capacity of a beam is associated with the strength of
concrete in the region of the path along which compressive force of the middle
cross section is transmitted to the supports. The path of a compressive force may
be visualized as a flow of compressive stresses, with varying sections

perpendicular to the path direction and with the compressive force representing the
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stress resultant at each section (Fig. 2.12). It is assumed that the shape of the
path is a bilinear. The junction between the two parts of this bilinear path occurs
at a distance which depends on the a/dratio. It is approximately equal to the
shear span from thesupport for beams with a/d < 2 and twicethe beam
effective depth from thesupport for beams with a/d > 2 (Fig. 2.8).

It has been suggested that the causes of diagonal failure are very closely related
to the shape of the path along which the compressive force is transmitted to the
supports and not with the stress conditions in the region of the beam below the
neutral axis. It is assumed that failure is related to the development of tensile
stresses in the region of the path.

On the basis of theconcept of the compressive force path, it hasalso been
found that collapse of beams never occurs after the compressive strength of
concrete is exceeded, and that even in thecompressive zone where concrete fails
under combined compressive and tensile stresses, failure occurs by splitting of the
compressive zone connecting the point where the load is applied to the supports

rather than by crushing of the loading point region (Fig. 2.13).

2.7.2 Arch analogies

The aims of arch analogies were to reduce the complexity and indeterminacy
of the actual cracked beams. Observation of crack patterns in different beams
suggested such analogies. For example, in a beam cracked as shown in Fig. 2.5
an element between adjacent cracks can be isolated and considered as a tied
arch freebody. The dowel action in the longitudinal reinforcement is neglected. The
transverse shear is carried bystress components along the arbitrary arch
boundaries in the uncracked parts of the beam. The arch ribs arecapable of
supporting transverse loads only as long as they act essentially in compression,
not in bending. Without transverse reinforcement only short deep beams can
develop tied-arch action. As the length of the span increases, bending develops

in the rib and failure occurs. With transverse reinforcement (Fig. 2.6), it is possible
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Fig. 2.12 Path of compressive force indicating locations of tensile stress.

CT - triaxial compression

Cu - uniaxial compression

Fig. 2.13 Stress conditions within shear span for Type IV behaviour
(see Fig. 2.8).
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to develop arch action in longer spans, andsubstantial shear loads can be
transmitted essentially by compression forces in the arch ribs.

Partly because the geometry of the arch rib elements is not precisely defined,
and partly because stress analysis of a system of statically indeterminate arches is
relatively complicated, this analogy has been used largely as a model to describe
beam behaviour, rather than as a precise analytical tool (Bresler and MacGregor

1967).

2.7.3 Frame Analogies

This model was proposed as an analogy consisting of curvilinear concrete
elements, which more nearly approximate the geometry of the concrete segments
in a cracked beam, and linear steel elements, which represent longitudinal and
transverse  reinforcement (Fig. 2.14). The steel reinforcement, wherever it crosses a
crack, is capable of resisting both axial and dowel forces. The nodal points are
considered rigid joints, and stiffness of the frame elements is varied along their
length to approximate the stiffness of the beam segments. Although this s,
perhaps, the most general of frame analogies, analysis of sucha frame is greatly
complicated by irregular geometry of its elements and by difficulty of defining the

appropriate stiffness of each element.

However none of the above analogies provides a sufficiently accurate and, at the

same time, sufficiently simple solution (Bresler and MacGregor 1967).

2.7.4 Truss analogies

For beams with transverse reinforcement, a more familiar and generally more
useful model for the designer is based on an analogous truss (Bresler and
MacGregor 1967). The first truss model in reinforced concrete beams was
presented at the beginning of this century (known as Morsch model or 45° truss

model). Recently, there are many variations on the truss models in the literature.
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Compression members

Tension members

Fig. 2.14 Frame analogy (after Rusch).

a) Classical truss analogy

b) Modified truss analogy

Fig. 2.15 Truss analogy.

On shear in reinforced concrete

33



Chapter 2 On shear in reinforced concrete

In this section, in additon to the classical truss model, two of the recently
developed truss models will be discussed. These models are; the compression field
theory truss model by Collins, (Collins and Mitchell 1980,1986; Mitchell and Collins

1974) and the modified truss model (Ramirez and Breen 1983,1991).

2.7.4.1 Morsch model: (or the 45° truss model)

In this model the beam is replaced by a pin-connected, statically determine
truss in which the concrete compression zone is represented by thecompression
chord, the tensile steel reinforcement is represented by the tension chord, the
transverse reinforcement corresponds to the tension web members, and the
concrete between inclined cracks corresponds to compression web members (Fig.
2.15a). All the external loads are assumed to be acting only at the nodes. In
its common form, this model assumes the crack angle to be 45°. It was observed
from tests, that the angle of inclined shear cracks is close to 45°. The model
ignores the fact that shear cannot exist at flexural cracks. Also it neglects the
shear resistance by compression zone, aggregate interlock, and dowel action; i.e.,
It assumes that failure is caused by vyielding of the web reinforcement. The
traditional Morsch theory was widely used in codes of practice (e.g, CP-114
1957) and when it is used, the web reinforcement (vertical stirrups) can be

calculated from the following equation,

where V = the shear force; A= area of one stirrup or group of stirrups at one
cross section; f = the vyield stress of stirrups; d = the effective depth; sv =
spacing of stirrups.

Although the model is simple to use, it does not give results which are in

general agreement with test results.
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In order to improve the predictions of the truss model, many attempts have been
made to introduce new truss models. These attempts were mainly along the
following lines:

1. Sloping of compression chord to take account of direct arch action. In a
classical truss model the cords are assumed to be parallel to each other. As
neither chord can transmit any transverse load, all shear must be carried by
the inclined web members. To account for the experimentally observed shear
capacity of the concrete in a beam with or without web reinforcement, the
compression chord of the truss may be assumed curved (Fig. 2.15b). This
modified truss begins to approach the arch analogy described previously.

2. Generalization of the angle of inclination of the concrete struts 9. Collins and
Mitchell (1986) related the angle of inclination 0 with the economical need to
minimize the amount of web reinforcement. They choose the lower value of 0
at which the diagonal compressive stress reaches the diagonal crushing stress.

3. Introduction of compatibility conditions. Collins (1973) developed compatibility
equation to determine the angle of inclination of the concrete struts. This angle
is assumed to coincide with the angle of inclination of the principal
compression stress and strain, this theory is also known as the compression
field theory. In this theory, the average strain condition should satisfy Mohr's
strain circle and the stress in the concrete struts should satisfy Mohris stress
circle.

4. Introduction of the softening of concrete struts. After the discovery of the
softening of concrete struts, Vecchio and Collins (1981) developed the
quantification of this phenomena. They proposed a softened stress-strain
curve, in which the softening effect depends on the ratio of the two principal
strains. Based on combining the equilibrium, compatibility, and softened stress-
strain relationships, the softened truss model theory has been proposed by Hsu

(see Hsu 1988,1991; Belarbi and Hsu 1990; Mau and Hsu 1987,1990).
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2.7.4.2 Collins and Mitchell truss model:(Collins and Mitchell 1986)

This truss model concentrates on the conditions at the mid-depth of the
beam. The model assumes that the shear stresses are uniformly distributed over
the cross section of the beam. The truss consists of compression struts and a
tension tie. The shear force on the section is resisted bydiagonal compressive
stresses in the concrete. By assuming that the principal tensile stresses in the
concrete is equal zero, the principal compressive stress in the concrete can be
related to the shear stress on the concrete by the following equilibrium equation,
which is derived from Mohr's circle (Fig. 2.16)

(tan#+ P Y v

tan6 iy j

The cross-sectional dimensions of the member calculated from the following

condition

fl ™ fl mex

where /[ 2vax is diagonal crushing strength of concrete which is related to the

principal tensile strain s, by the following equation

f = A - <7Af
hx  (0.8+170%)" cc

where A is a factor accounting for lightweight concrete and <¢ is the material
resistance factor for concrete in the Canadian Code ({c = 0.60). The principal
tensile strain s,, the principal compressive strain s2 the longitudinal strain at mid
depth Ex the transverse strain st, and the principal compressive strain direction 0

are interrelated by the requirements of compatibility (see Fig. 2.17) as follows:

sx= sx+(sx+£2)/tan26
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Fig. 2.16 Concrete stresses in web of beam.
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Fig. 2.17 Concrete strains at middepth of beam.
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Fig. 2.18 Design of transverse reinforcement for shear.

37



Chap_ter2_ On shear in reinforced concrete

The area of the web reinforcement is calculated from the following equation which

satisfies the equilibrium in the vertical direction (see Fig. 2.18):

vy _ AnpSpd

svtan9

The horizontal component of force D in Fig. 219 is equivalent to an axial
compression on the concrete. This compression needs to be equilibrated by tensile

forces (Vy/tanO) in the longitudinal reinforcement (Fig. 2.18). The model suggests

that the longitudinal reinforcement is designed to a larger moment of

Mf +0.5(Vf /tand)dv to give the additional longitudinal reinforcement to balance
the tensile stresses caused by shear.
The model limits the compressive struts angle such that 15° < 0 < 45° The

model also neglects the shear contribution introduced by the aggregate interlock

and dowel action.

21 A3 Modified truss model: (Ramirez and Breen 1983,1991)
The modified truss model consists of aparallel chord truss with the diagonal
forming a uniform compression field as shown in Fig. 2.19.The shearcapacity of

the model is given by:

svtana

s T =rfywcota

where r = Av/(b.sv)

To account for the shear carried by the uncracked concrete, aggregate interlock,
and dowel action, the truss model assumed additional concrete contribution which
is added to the shear capacity of the truss model. Fig. 220 show this

contribution which is a function of the applied load. For example, when the

applied load causes shear stress V/(b.z) less than 2 , the contribution vc is
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Fig. 2.19 Truss model for beams and beam-type regions.
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Fig. 2.20 Diminishing concrete contribution for reinforced concrete beams.
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constant ( =2 ), while when it causes shear stress equal 6y[j* the contribution
becomes zero. The total shear capacity ofthe modified truss model after this

contribution is given as:

AMTM Mruss

where 's the available shear stress capacity in the modified truss model.
Additional tension force (Wu/tana) is added to the tension flange and
compression flange forces to balance the tensile stresses caused by shear.
The modified truss model differs from the truss model of Collins and Mitchell in
the following aspects:
1. The modified truss model is more economical: The model assumes that the
total shear is resisted by truss actionand beam action, the truss action consists of

diagonal concrete struts plus web reinforcement.

2. Limitation on0: The range of 0 in the Model of Collins and Mitchell is 15°
< 0 < 45° with the suggestion forusing the lowest possible value of 0 (Fig.
2.21a), while in the modified trussmodel the range is 30° < 0 < 65° (Fig.
2.21b).

3. Comparison with a large number of tests. Ramirez and Breen (1991)
compared the results of their model with 59 reinforced concrete beams with
web reinforcement, a/d ratio > 2.0, and which failed in shear. The predicted
capacity of the modified truss model was based on a minimum value of 0
(=30°). These results (Fig. 2.22) show that the model provided generally
conservative values (test/ predicted failure> 0.94) with mean value =1.42 and
standard deviation = 0.32. The prediction becomes quite conservative for

beams with rf* < 138 MPa (200 psi) and unconservative values for beams
with rfyv > 2.07 MPa (300 psi). If the value of 0 decreasesthe conservatism

decreases but the results will be unacceptable unconservative for beams with

rfyy > 2.07 MPa (300 psi).
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Fig. 2.21a Choice of 6 in Collins and Mitchell's truss model
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Fig. 2.21b Choice of the compressive struts angle (a) in Modified truss model

(Ramirez and Breen 1991)
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Fig. 2.22 Evaluation of reinforced concrete beams with concrete
contribution of Fig. 2.20 (Ramirez and Breen 1991)

42



Chapter 2 On shear in reinforced concrete

On the other hand, thetruss model of Collinsand Mitchell, unfortunately, has
not been tested on a large number of beams. But it is expected to be more
conservative than the modified truss model because the latter includes the

shear resistance of concrete.

2.7.5 Modified Compression Field Theory: (Vecchio and Collins 1986)

In reinforced concrete structures subjected to shear, various internal
mechanisms  can be createdto resist the load. Inregions where the reinforcement
and the ensuring crack conditions are well distributed, the predominant mechanism
of resistance is internal truss action. With the formation of diagonal cracks,
compression struts develop in concrete while the longitudinal and transverse
reinforcement act as tension ties. The modified compression field theory, which has
been developed from the compression field theory (Mitchell and Collins 1974;
Collins 1978; Collins and Mitchell 1980) was formulated to specifically model this
behaviour. It was proposed several years ago as a theoretical model for predicting
the response of reinforced concrete elements subjected to in-plane shear and
normal stresses. The theory was based on thesmeared-crack concept with
equilibrium, compatibility, and stress-strain relations formulated in terms of average
strains and average stresses. The cracked concrete is treatedas a new material
with its own stress-strain characteristics. This new set of constitutive relations,
which were developed for cracked concrete, reflected significant influences from
compression strain softening and tension-stiffening effects. Consideration was also
given to the transfer of stresses across cracks. The modified compression theory
also includes the change in the angle of inclination of the cracks.

The theory was based on the smeared-crack concept with stress-strain relationship for

concrete formulated in terms of average strains and average stresses.
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2.7.5.1 Stress-strain relationships:

The theory assumes that the average stress-average strainrelationship for the
concrete is independent of that for the reinforcement. Also the reinforcement is
assumed to carry only axial force  withbilinear uniaxial stress-strain relationship
(Fig. 2.23),

fs,"EsE<fy,

fgé E,.E <f;,

In order to determine the averagestress-average strain relationship, Vecchio and
Collins  tested 30 reinforced concrete panels under uniform stresses. Based on
these test results, they quantified theobserved softening of concrete in the
principal compressive direction as a function the coexisting principal tensile in
addition to theprincipal compressive strain as follows (Fig. 2.23):
ro v f \=
2 £2 — £2
uld

where

chmx_ 1 <10

fc  0.8-0.34ejsc~’

Also, they derived an expression for the average tensile stresses that exist in the

cracked concrete as follows (Fig. 2.23):

Before cracking,

L\=Ec.e

After cracking,

Jcl =
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where f o is the stress in concrete at cracking. These relationships enabled Vecchio
and Collins to predict the response of reinforced concrete elements to a good
accuracy especially when the failure was controlled by the crushing of the
concrete. The theory was incorporated into a nonlinear finite element program by
Vecchio (1989) and applied to reinforced concrete beams and panels (Vecchio
1989,1992; Vecchio and Collins 1986; Stevens, et al. 1991). Because the modified
compression field theory was based on the assumption of well distributed
reinforcement to ensure that cracks are well distributed, all attention was focused
on the structural element satisfying this condition. For example, no attempt to
analyse a beam without web reinforcement was made. And when the theory was
used to analyse pushoff specimenstested by Hofbeck, et al. (1969), Vecchio and
Nieto (1991) concluded that the application of the analysis procedure is not
recommended unless the crack andreinforcement conditions are discretely modelled.
For more information about the modified compression field theory and its use see

Vecchio and Collins (1986) who gave a numerical example.
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CHAPTER 3

MATERIAL BEHAVIOUR AND NUMERICAL MODELLING

3.1 Introduction

The statistical scatter of concrete test results tends to support the view that a
perfect match between an analytical and experimental data is neither possible nor
really necessary (Meyer 1982). Figure 3.1 shows three examples of this scatter for
the Young's modulus, the concrete strain at failure (ACI-Committee-363 1984),
and the tensile stress-strain curve of concrete (Vecchio and Collins 1986). In view
of this statistical scatter of concrete test data, it appears questionable whether
complex models are justified. Reinforced concrete is considered as a
heterogeneous, composite material. At macroscopic level, it consists of two major
components: steel reinforcements andconcrete. In  the modelling of its nonlinear
stress-strain  behaviour, a general approach is to treat the response of each
component separately, then obtain their combined effects by imposing the condition
of material continuity. To model the nonlinear response of concrete as a
continuum, three distinct approaches have been employed; nonlinear elasticity based
models (Palaniswamy and Shah 1974; Cedolin, et al. 1977; Elwi and Murray
1979), plasticity based models (Chen and Chen 1975a, b; Bazant and Kim 1979),
endochronic theory (Bazant and Bhat 1976; Bazant 1978; Bazant and Shieh 1978,
1980; and Al-Manaseer 1983). A comprehensive evaluation of these approaches

was given by Chen and Teng (1980).
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results.
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The finite element models used in the present study are based on nonlinear
elasticity. For other approaches, the reader should refer to the appropriate
references.

In the nonlinear elasticity, the bulk modulus, shear modulus, Poisson's ratio, and
Young's modulus, of concrete are expressed in terms of stress/strain variables,
such as deviatoric stresses or strains, stress or strain invariants, normal and shear
octahedral strain, etc. These relationships are obtained from experimental data. The
moduli are usually used to formulate an isotropic matrix to represent the behaviour
of concrete at a certain load level. Hypoelastic and hyperelastic models are

examples of this approximation (for more details see Chen 1982).

In this chapter, the behaviour of reinforced concrete and its modelling will be

reviewed with the focus on the modelling chosen in the present study.

3.2 Modelling of concrete

The derivation of a realistic analytical model of concrete behaviour and its
implementation in nonlinear finite element analysis have been a subject of major
investigation by many researchers. However, up to now, there is no unique way
of modelling of concrete in shear, tension,or even in compression which has
been agreed by the majority of investigators. This is because concrete has a very
complex behaviour involving phenomena such as inelasticity, cracking, and the
interactive effect between concrete and steel. Mainly for this reason, the problem
of defining a suitable law for it still persists, although much progress has been
made in the development of material models for uncracked and cracked concrete
for all stages of loading,and as a result of it, several numerical models have
been developed (Chen 1982).
A brief summary of the behaviour of concrete and its modelling in compression,

tension, and shear will be given in this section.
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3.21 Concrete in compression

The uniaxial compressive strength of concrete is the most common measure
for assessing the quality of concrete. Uniaxial cube compressive strength of
concrete fcu is evaluated by determining the strength of 28 day old standard
150 mm cubes of concrete. 100 mm cubes are sometimes used if the nominal
maximum size of the aggregate does not exceed 25 nmm This is the practice in
the UK. In USA, uniaxial cylinder compressive strength of concrete fc' is evaluated
by the strength of 152 x 305 nmm cylinder specimens. Nasser and Kenyon (1984)
studied the possibility of testing 76 x 152 nm cylinders instead of 152 x 305 nm
cylinders in compression andthey concluded that it can be  successfully used
where the maximum size of the aggregate does not exceed 25 nm The cylinder
strength fc' is usually about 70-90% of the cube strength fcu. The difference is
due to the frictional forces which develop between the platen plates of the testing
machine and the contact face of the test specimen. These end forces produce a
multiaxial stress state which increases the apparent cube compressive strength of
concrete. The multiaxial stress effects are significant throughout the cube. In the

cylinder, the specific height to width ratio will minimise this effect.

3.2.1.1 Uniaxial stress
A typical stress-strain curve for concrete under uniaxial compression is shown
in Fig. 3.2. The main experimental observations can be summarised as follows:

« The concrete has nearly linear behaviour up to 30% of its maximum
compressive strength fc'

+ Stress above 30% of fc' shows a gradual increase in deformation up to about
75-90% of fc\ where upon it bends more sharply when approaching the
peak strength fc'

+ Beyond the peak strength fc\ the stress-strain curve has a descending branch

until crushing failure occurs at some ultimate strain {£max)-
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Fig. 3.2 Typical stress-strain curves for concrete in uniaxial compression test,
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Fig. 3.3 Uniaxial compressive stress-strain curves for concrete
with different strengths,
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Fig. 3.3 shows that the initial modulus of elasticity of concrete is highly dependent
on the compressive strength. Also high strength concrete behaves in a linear
fashion to a relatively higher stress level than low strength concrete. On the
descending portion of the stress-strain curve, high strength concrete tends to
behave in a more britle manner, and the stress dropping off more sharply than it

does for concrete with low strength.

Many mathematical expressions have been used to predict the compressive
stress-strain response. These range from the use of standard mathematical curves,

to more complex formulae based on curve fitting techniques.

Equation 3.1 originally proposed by Liu, et al. (1972), representing uniaxial stress-
strain curve for concrete is commonly used for numerical analysis. And it will be
used in the present study for the ascending portion of the uniaxial compressive

stress-strain curve.

Ec.e
o = (3.1)
foo\2
[+ (— -2) — +
KEp J
where;
8 isthe strain at maximum compressive strength of concrete ap.

Ec isthe initial modulus of elasticity of concrete for uniaxial loading.
Es isthe secant modulus of elasticity at the peak of stress and given by the
expression Es= Gp/z p-

a and 8 are stress and strain in uniaxial loading.

Kotsovos and Cheong (1984) attempted to establish to what extent the
behaviour of an element of concrete in a structure is realistically described by

stress-strain relationships obtained from tests on concrete specimens, such as
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cylinders, prisms, or cubes, subjectedto concentric and eccentric states of

compressive stress. They concluded that the ascending portion (up to the level at

which the specimen volume becomes aminimum, pointA in Fig. 3.2b) of stress-
strain relationships of concrete established from the uniaxial compression tests was
found to be sufficient to completely describe the deformational response ofan
element of concrete of the structural forms investigated. This conclusion seems to
be not valid in all the cases as willbe shown later.

On the shape of the compressive stress-strain curves, much experimental work

has been done, and many numerical formulae have been proposed. Fig. 3.4

shows some different shapes which have been experimentally reported, while Figs.

3.5 and 3.6 show some curves that have beenderived numerically. From these

figures the following observations can be made:

« The compression softening of concrete has been proved by all the
experimental works, however, the maximum compressive strain is different from
test to test (Fig. 3.4).

* There is no unique modelling of concretein compression that has been
agreed by the majority of researchers (see Figs. 3.5 and 3.6).

* Many researchers assume a minimum value of post-crushing strength (Fig.

3.6).

3.2.1.2 Biaxial stress

Typical stress-strain curves for concrete under biaxial states of stress in
compression-compression, tension-compression and tension-tension are shown in
Figures 3.7-3.9. These curves were obtained from the experimental tests of

Kupfer, et al.(1969), where normal weight concrete specimens of dimension 200 x

200 x 50 mm were tested. Uniaxial stress-strain curves are also shown in these

figures.
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Fig. 3.8 Stress-strain relationships of concrete under combined
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Fig. 3.9 Stress-strain relationships of concrete under biaxial tension.

Fig. 3.10 Equivalent uniaxial stress-strain curve
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To account for nonlinear stress-strain relationship  of concrete in the principal
stress direction, equation describing concretein elastic stage (a = D.c) is adopted
as proposedby Saenz (1964) and modified by Liu, et al. (1972), toaccount for
biaxial effect. It takes the form:

A + BEcS

cJ = — (32)
(1 &)1 +CE + Ds2)

where; a is the ratio of the principal stresses = (Jj/c”*, v is the Poisson's ratio
and A, B, C, and D are parameters which depend on the shape of the stress-

strain curve. They were calculated from the following conditions:

1) At the initiation of loading, i.e. s = 0.0:

dv/ds = Ec/(1 -va); a = 0.0

2) At the peak of stress of concrete <p the corresponding strain is ep and the

slope of the stress-strain curve becomes zero, thus at s = zp we have:

dn/ds =0.0 ;

W)
1

ar

The above four conditions are sufficient to define the unknown parameters A, B

C, and D of Equation 3.2. After solving for the constants we have (Fig. 3.10):

Ec £
a = (3.3)
( .V
1-va )I1+(— !— 12-2)— +
1-va Es ep |\ cp,

where:
ap is the ultimate strength of concrete in compression, equal fc\
zp is the strain at maximum compressive strength of concrete.

Ec is the initial modulus of elasticity of concrete for uniaxial loading.
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Es is the secant modulus of elasticity at the peak of stress and given by the
expression Es = <p/ 2zp.
a is the ratio of the principal stresses= cij/ a2 (fa = 0, ie. foruniaxial

state of stress, equations (3.1) and (3.3)become identical),

v is Poisson's ratio.

a and £ are stress and strain in biaxial loading.

Equation 3.3 is used to generate the stress-strain behaviour of concrete in biaxial
compression up to peak strain e after which this equation ceases to be valid
due to softening deformation.

Further details on the biaxial states ofstress can befound in references, e.g.;

Darwin and Pecknold (1977); Liu, et al. (1972); and Van Mier (1986).

3.2.1.3 Triaxial stress

In a triaxial state of stress, the strength of concrete can be increased
considerably above the wuniaxial strength, in particular, under hydrostatic stress
conditions. A considerable amount of research has been performed to study the
strength of concrete in a three-dimensional state of stress (Kotsovos, et al. 1977,
1978, 1979, 1980; Elwi and Murray 1979; Murray 1979; Ahmad and Shah 1982,
Van Mier 1986). Figs. 311 and 3.12 show a stress-strain curves from the tests
by Richart, et al. (1928) and Balmer (1949). These tests were conducted under
different volumetric compression (or confining) stresses. As these curves show,
depending on the confining stress, concrete act as a quasi-brittle, plastic-softening,
or plastic-hardening material. This is because under higher confining stresses the
possibility of bond cracking is greatly reduced and the failure mode shifts from
cleavage to crushing of cement paste (Chen 1982). Figs. 311 and 3.12 show

that the axial strength increases with increasing
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confining pressure. Under very high confining stresses, extremely high strengths
have been recorded (Fig.3.12). These curves show linear behaviour up to about
30-40% of the ultimate load. Thereafter the behaviour dependson the confining
pressure and concrete behaves more likea metal exhibiting apparent ductility. This
is because the formation of microcracks is suppressed by hydrostatic pressure on
the specimen and this apparent ductility increases as the confining stress
increases. From different experimental data a wide range of ultimate strains have
been reported. This is due to the different machine constraints on the specimen
boundaries. The boundary constraints will inhibit transverse deformation affecting the
value of the moduli.

Analysis of test data by Kotsovos and Newman (1978) indicates that when
concrete is subjected to a constant hydrostatic stress (constant <bct) and an
increasing shear or deviatoric stress (xoct), it undergoes not only octahedralshear
strain yoct but also consolidation in the form of compressive octahedral normal

strain £oct.

3.2.1.4 Compression softening

Strain softening refers to any material response where the slope of stress-
strain curve is negative. Little is known about the unloading branch of the stress-
strain curve, even though it has a definite effect on the failure modes of concrete
structures. It has been shown (Kent and Park 1971) that the concrete
confinement plays an important role in the post-crushing behaviour of concrete.
The better confined the concrete, the more gradual the unloading. There is no
agreement among the researchers about the descending portion of the compressive
stress-strain curve of concrete. Therefore, a straight line approximation with a free
parameter to account for confinement steel, is probably adequate for most practical
purposes (Meyer and Bathe 1982). Also, many investigators have proposed to
credit concrete with a residual post-crushing strength of between 10 and 40% of

fc (see Fig. 3.6).
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3.2.2 Concrete in tension

Strength of concrete in tension is very low. Until recently, the tensile
behaviour in concrete has been neglected, this is because it does not significantly
affect the ultimate strength of members (this will be discussed in Sec. 5-3).
However, to predict the load-deflection characteristics of structures, the tensile
strength of concrete should be taken into account. The primary reason for the low
tensile strength of concrete is the heterogeneous structure of concrete. Concrete
contains a large number of microcracks at the interfaces between coarse
aggregate and mortar, this even before any load has been applied. Much
experimental work on the complete tensile stress-strain relationship has been done.
Fig.3.13 shows tensile stress-strain curves including unloading portion (ACI

Committee-224  1986).

3.2.2.1 Tensile strength of concrete

The uniaxial tensile strength of concrete is rarely measured or reported in the
experiments and, when it is, its accuracy may be open to question due to the
scatter in the tensile strength test. There are three methods of tests used to find
the tensile strength of plain concrete; the direct tension test, the beam test, and
the splitting test. Very often the tensile strength of concrete is not measured but
has to be inferred from compressive strength. The best property used to calculate
the tensile strength is the uniaxial compressive strength of concrete fc' because it
is usually tested and reported in the experimental works. There are many
empirical equations which estimate the tensile strength from the cylinder
compressive strength fc'. From these equations, two equations (3.4 and 3.5) have
been chosen for this study (Fig. 3.14). These two equations are plotted against

some previous experimental results obtained from Raphael (1984).

/m = 010 fec- MPa (34)

MPa (3.5)
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3.2.2.2 Cracking of concrete

Progressive cracking is one of the most important nonlinear characteristics
displayed by concrete (Fig. 3.15). Dealing with cracking of concrete,many ways of
modelling can be found in literature, e.g. Discrete, Smeared, Orthogonal, Fixed,
Rotating or Swinging, Fracture energy, Fictitious, Composite damage, Local,
Nonlocal, Modified Voigt-Reuss, and Crack bandmodel. These models can be
classified into two distinct models; the discrete cracking model (Ngoand  Scordelis
1967) and the smeared cracking model (Rashid 1968). Starting with one of the
above two models, many attempts have beenmadeto improve, modify, or
develop a new crack model (e.g., Suidan and Schnobrich 1973; Phillips and
Zienkiewicz 1976; Hillerborg, et al. 1976; Bazant and Oh 1983; Bazant and Lin
1988; Gajer and Dux 1988 and 1990; Yamaguchi and Chen 1990, and Dahlblom
and Ottosen 1990).

A brief review of some of these models are presentedin the following.

3.2.2.2.1 Discrete crack model:

In 1967, Ngo and Scordelis introduced the discrete crack model which is the
first model used to represent the cracking for the finite element method. The
discrete cracking model is a direct approach  and simulates cracksby disconnecting
the displacement at nodal points for adjoining elements (Fig. 3.16). The obvious
difficulty in this approach is that the location and orientation of cracks are not
known in advance so that geometrical restrictions imposed by the preselected finite
element mesh can hardly be avoided. This can be rectified to some extent by
redefinition of element nodes. However, such techniques are complex and time-
consuming. Furthermore, the accuracy of stress at nodes is relatively poor in a
finite element analysis (Yamaguchi and Chen 1990). These difficulties result in a
rather limited acceptance of the use of discrete cracking representations in the
finite element analysis of concrete structures. One of the recent discrete crack

model is the fictitious crack model.
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Fictitious crack model:

The fictitious crack model, in its original form, is a discrete approach based
on the nonlinear fracture mechanics. It is a two parameter model (tensile strength
ft' and fracture energy Gj). Many attempts have been made to determine
experimentally and analytically the fracture energy (see RILEM TC50-FMC 1985;
Wu and Zhang 1988). The fictitious crack model of Hillerborg, et al. (1976) takes
as its basis the experimentally observed fact that cracking is a discrete, localized
phenomenon exhibiting a softening effect caused by cohesive stresses in the
microcracked region. For a concrete bar loaded in tension into its post-peak
region, the fictitious crack model assumes that elastic unloading occurs over the
entire length of the bar, and an additional elongationoccurs in an infinitely thin
cracked zone (Fig. 3.17). |Instead of describing the cracking process by a
relationship between stresses and strains, the fictitious crack model describes the
behaviour of the infinitely thin cracking zone by a constitutive relation expressed in
terms of normal stress a and crack elongation normal to the crack plane wc. Fig.
3.17 shows this description of the fictitious crack model where a linear relation
between stress and crack elongation is assumed.

Dahlblom and Ottosen (1990) tried to reformulate the fictitious crack model so that
it can be applied in a smeared manner by the introduction of a so-called
equivalent length. They defined it as the maximum length of the finite element
region of interest in the direction normal to crack plane. Fig. 3.17b shows the
equivalent length for the eight-node isoparametric element with 2 x 2 Gauss point
integration. This was not the only attempt to do so, there were others, however,
they did not obtain entirely satisfactory results (Dahlblom and Otteson 1990). For
more information about fictitious crack model see Hillerborg, et al. (1976); and

Dahlblom and Ottosen (1990).
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Fig. 3.17 Fictitious crack model (Hillerborg, et al. 1976).
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Fig. 3.18 Tensile stress-strain curves for concrete.
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3.2.2,22 Smeared-crack model:

The first smeared crack model, which over the years became the most practical
model for numerical analysis of fractured concrete, was introduced by Rashid
(1968). Later the original idea of Rashid was enhanced by the introduction of a
shear reduction factor (Suidan and Schnobrich 1973; Phillipsand Zienkiewicz 1976).
In its original form, the smeared crack approach adopted the orthogonal crack
idea, where cracks are allowed to open only in directions orthogonal to the
existing cracks. These fixed orthogonal cracks are governed by the direction of the
first principal stress that exceeds the cracking stress. Before cracking, concrete is
assumed to be homogeneous and isotropic. When a firstcrack occurs, it is
assumed that direct tensile stresses cannot be supported inthe direction normal to
the crack (Fig. 3.18a). This is when tension stiffening or softening is not taken
into account. But when it is taken into account, a value of tensile stress as a
certain function of strain normal to the crack can be allowed to across the crack
(Fig. 3.18b).  On further loading, it is possible that new cracks will occur. Second
crack occurs when the stress parallel to the first crack Gt* becomes greater than
ft' (Fig. 3.19). In some cases, the postcracking principal stress directions may
deviate from crack orientation due to the assumed shear retention factor. The
principal postcracking tensile stress may reach its limiting value on a plane other

than the plane of the first cracking.

Many finite element programs adopt fixed-orthogonal crack model to treat the

cracking of concrete. Also in the present study this crack model is adopted.

Recently, Many new versions of the smeared crack model under different names

have been introduced. A brief review on two from these models is presented

here.
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Fig. 3.19 Smeared-crack model
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Crack band model:

This model proposed in 1974 by Bazant (Bazant 1976), was later called the
crack band model (Bazant and Oh 1983).Thecrack band model is essentially a
smeared approach, based on the linear elastic fracture mechanics concept, which
describes the bilinear behaviour of a crack by three parameters (tensile strength
ft\ fracture energy Gf, and size of process zone wc) all considered to be
material parameters. This model is based on the assumption of constant energy
release during the fracture process. The fracture process takes place in bands of
certain width called crack bands (Bazant and Oh 1983). The width of the crack
band is ftreatedas a material property. Crack band width between 3 and 10
times the maximum aggregate size leads to a good correlation  between
experimental and numerical results (Bazant and Oh 1983).

Gajer and Dux (1988,1990) also introduced aversion of the crack band model
which yields theformulation of the crack band model of Bazant and Oh (1983).
Gajer and Dux assumed a linear curve for the descending portion of the stress-
strain curve of concrete in tension and compression. For more information about
the crack band model see Bazant (1976); Bazant and Oh (1983, 1984); Bazant
and Pijaudier-Cabot (1988); Pijaudier-Cabot and Bazant (1987); Bazant and Lin
(1988); Gajer and Dux (1988, 1990).

It is worth commenting that an extensive application of this model on full-scale

problems is still not forth coming.

Yamaguchi and Chen model

Based on the nonlinear fracture mechanics concept, Yamaguchi and Chen
(1990) proposed a cracking model for the finite element analysis of crack
propagation in concrete materials. Yamaguchi and Chenreported that the crack
band model and the composite damage model (which is another crack model

proposed by Wiliam, et al. in 1984) are special cases of the proposed model.
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The constitutive laws for their model consists of two phases; intact layer and

cracked layer as follows:

Phase a (intact layer)

> -vI|E ME 0 <
/2. 0 0 MG

8 "ME -vIE 0 <f
<2

Phase b (cracked layer)

"ME -vIE 0 g 0
xp >= -v IE 0 0 <’\2[2) >+ <g(<?22) «
0 o MpG -P 0

where p = the shear retention factor; and e(cyB2 is the softening function, whose
value increases as a2 decreases. P is assumed to be constant. Directions 1
and 2 are the directions parallel and normal to the crack, respectively. The
advantage of this model is that it does not place any restrictions on the form of
the softening function (Yamaguchi and Chen only presumed linear softening
behaviour). Equations (3.6) and (3.7) show that during the process of crack-
opening, phase (b) experiences strain-softening behaviour due to cracking, whereas
phase (a) is subjected to unloading behaviour. These behaviours have been
observed experimentally by Gopalarathnam and Shah (1985).

The relationship between incremental stress and strain for this model which can
be wused in construction of the tangent stiffness matrix in a nonlinear finite

element analysis is:

dan - 'ME v/E 0 - dfu

1
dc?2 A v/E ME 0 ds» (3.8)
do\2 0 0 GA dyw2
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where
,-i
E = V_ +v __g?
E do,,

G =

va/3+vl
A=-4=-

EE

*

va and Vv are the volume fractions and their summation is equal unity

= "4 volume of uncracked zone
V  total volume of the composite
Vh volume of cracked zone
vb = - /7777774

V  total volume of the composite

b_ wf

For example v =—h in  this Figure.

If e(cr22) & P (which are regarded as material properties) and va & vh (which
are not pure material properties, but they are influenced by the mesh size) are
given together with elastic constants, all the variables in the stress-strain

relationship are determined.

Yamaguchi and Chen took p as a constant and they reported that p makes no
significant difference in the crack propagation process (Their example was a 90 x
90 mm rectangular solid made of mortar with a pre-existing flaw at the center).

When traction-free crack is developed, this cracked but homogenized region loses

its load-carrying capacity in the direction perpendicular to the crack. Equation (3.8)

becomes:

73



ChagterA Material behaviour and numerical modelling

0 o' de,'
<der2 .= 0 0 0 < g»*
dern 0 0 G 41,

and G <can be assumed equals zero if the shear transfers across the crack
plane is neglected.

In crack band model, crack width and element width are made identical. If wf
assumed to be equal to the width of the cracked region, i.e. vA=1, the model is
the same as the crack bandmodel (Bazant and Oh 1983). For more information

see Yamaguchi and Chen (1990)

It can be seen that the above crack models (Fictitious crack model, crack band
model, and Yamaguchi and Chen model) have focused on the implementation of
tension softening of concrete into the crack model based on nonlinear fracture
mechanics. Also these models have concentrated the attention on the analysis of
crack propagation in fracture tests or localized effects, while no, or little, attention
has been paid to analyse the main structure concrete elements (e.g. reinforced

concrete beams, slabs, and panels).

3.2.23 Tension stiffening

When a reinforced concrete member is subjected to a sufficiently high tensile
force, concrete cracks at discrete sections. The concrete between cracks continues
to carry tensile stresses and offer stiffness. This phenomenonis called tension
stiffening. Modelling of this phenomenon is important in studying the load-
deformation characteristics of reinforced concrete structures in the post cracking
range. Tension stiffening can be modelled intwo ways. In the first method, the
stress-strain curve of concrete is modified (Fig. 3.20). In the second method, a

modified stress-strain curve for steel is used (Gilbert and Warner 1978, Fig.

3.21).
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Fig. 3.20 Alternative stress-strain diagrams for concrete in tension.
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Fig. 3.21 Modified stress-strain diagrams for tension steel after cracking.
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Much work has been done on the phenomenon of tension stiffening; starting with
Scanlon and Murray (1974) who proposed a stepped stress-strain curve for
concrete as shown in Fig. 3.20a. In 1975 Lin and Scordelis used a gradual
unloading curve, Fig. 3.20b. Gilbert and Warner (1978) used several variations of
Scanlon-Murray stepped curve and Lin-Scordelis curve. In addition, they employed
a new curve consisting of a small drop in strength immediately after cracking
followed by piecewise linear unloading, Fig. 3.20c. Gupta and Maestrini (1990)
have studied in detail a concrete member reinforced by a single bar allowing for
bond-slip. They have shown that the tensile stress carried by concrete is a
function of bond slip, area of bar and strength parameter unlike many tension
stiffening relationships used which do not include the above parameters. Gupta and
Maestrini based their model on a bilinear idealisation of bond stress-slip curve
obtained experimentally by Nilson (1971). In addition to Gupta and Maestrini, Floegl
and Mang (1982); Bazant and Oh (1S84) also showed that the tension stiffening
is a function of bond slip. If there is no bond between the concrete and steel,
the tension stiffening phenomena will disappear. The tension stiffening effect

increases with the increase of bond.

3.2.2.4 Tension softening

The tension softening is a phenomenon associated with the descending branch
of the tensile stress-strain curve. The unloading branch was usually introduced to
model the tension stiffening effect of concrete between cracks (Scanlon and Murray
1974; Lin and Scordelis 1975). Now, the experimental data support the strain
softening behaviour of concrete after the recent testing techniques enabled post-
peak stress-strain curves to be obtained (Reinhardt 1985; Gopalaratham and Shah
1985). Tension softening can exist in plain concrete subjected to tensile stress

while tension stiffening is absent due to absence of reinforcement.
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To derive a stress-strain curve for concrete in direct tension, two parameters
are needed; Gy and wc  (Massicotte, et al. 1990).Gyis the fracture energy (the
energy dissipated in the opening of a crack in a tension specimen (Fig. 3.22) is

defined as the cracking energy per unit of area) which is equal to the area

under a stress-elongation curve (Fig. 3.22b). wc isthe width of the fracture
process zone.

Fig. 3.23 shows some tensile stress-strain curves including tension softening which
have been adopted in the analysis of reinforced concrete members. Massicotte, et
al. (1990) introduced a stress-strain curve of concrete in tension based on the
analysis of 52 tests from 5 different sources. This curve is ftrilinear with a linear
ascending branch and a bilinear softening branch for concrete after cracking (Fig.
3.23a).

Recently, all the newly developed cracking models are including the tension
softening in the modelling (e.g. crack-band model, fictitious-crack model; Yamaguchi

and Chen model).

In the present thesis, a tensile stress-strain curve for concrete as shown in Fig.
3.24 is used. The ascending part is linear similar to any tensile stress-strain
curve in literature. The descending part is a function of the strain normal to the
crack plane. The proposed curve agrees with the ftrilinear stress-strain curve
proposed by Massicotte, et al. (1990). Also the proposed curve has a certain
maximum strain after which the tensile stress equals zero. This maximum strain
has been suggested by Bazant and Lin (1988) to correspond to a point where

the tensile stress normal to the crack reaches to 5% of the tensile strength.

3.2.3 Concrete in shear

Before the cracking of concrete, shear can be transmitted by the concrete
continuum. In reinforcedconcrete structures subjected to shear, various internal

mechanisms can be created to resist shear loading.
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(a) Massictte, et al. (1990) (b) Cervera, et al. (1987)

(¢) Vecchio (1989)

Fig. 3.23 Strain softening models for concrete.

Fig. 3.24 Assumed strain softening model for concrete.
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In regions where the reinforcement and ensuring crack conditions are well
distributed, the predominant mechanism of resistance is internal truss action
(Vecchio and Nieto 1991). Through the formation of diagonal cracks, compression
struts develop in the concrete while the longitudinal and transverse reinforcement
act as tension ties. In the case where the well-distributed crack condition does
not exist (this can occur, for example, in structural components under high direct
shear, such as corbels and ledger beams) strength can be governed by behaviour
along a single plane or a dominant crack. Here, the mechanism of shear transfer
is commonly seen as relying less on the formation of compression fields, and
more on contributions from shear friction, dowel action, and aggregate interlock
(Vecchio and Nieto 1991). Shear cracking is caused when a principal tensile
stress due primarily to shear exceeds the resistance of concrete (Regan 1969).
Many experiments have been done on the shear transfer; e.g. Hofbeck, et al
(1969), Taylor (1974), Swamy and Andriopoulos (1974), Mattock (1974), Paulay and
Loeber (1974), Milard and Johnson (1984), Abd Al-Khalik (1987), Mphonde (1988).
The most important observation from the physical tests is that the crack width has
the largest influence on the shear stiffness, and the maximum size and shape of
coarse aggregate does not seem to influence the shear stress-shear strain
relationship (Paulay and Loeber 1974). Other factors such as the amount of
reinforcement crossing the cracks and the orientation of the reinforcement with
respect to the crack, also have a significant influence on both the ultimate shear
strength and shear stiffness (Mattock 1974). When a comparison between
measured variation of shear modulus after crack G' and those suggested by some
investigators was made, Abd Al-Khalik (1987) concluded that a representation of
shear transfer by unchanged shear modulus of cracked sections (e.g., Isenberg
and Adham 1970, Fig. 3.25a) or neglecting any shear transfer across the crack
(e.g., Cervenka 1970, Fig. 3.25b) is completely unrealistic. Also, he concluded that

constant reduction of shear stiffness after cracking (e.g., Suidan and Schnobrich
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1973; Yuzugullu and Schnobrich 1973, Fig. 3.25c) isonly an approximation to the

real behaviour.

3.2.3.1 Shear retention factor

Cracking of concrete usually occursalong the interfacebetween the cement
paste and the aggregate particles. The resulting rough cracks can transfer shear
by aggregate interlock. Inplain concrete the main shear transfer mechanism is
aggregate interlock and in reinforced concrete dowel action will play a significant
role. Both mechanisms are controlled by the widthof crack, the shear transfer
capacity being reduced as the widthincreases. The above mentioned mechanisms
cannot be directlyincluded in finite element analysis of reinforced concrete based
on smeared representation of the cracks. In smeared crack model, the reduction
in  shear modulus acrossthe plane of the crackis usually defined by the shear
retention factor p. This factor is clearly associated with the contribution of the
aggregate interlock to the shear resistance of the cracked regions.
Many equations have been reported in the literature to define p. For example:
+ Cedolin and DeiPoli (1977) took the variation of shear modulus after cracking

decreasing with the crackwidth and they assumed a linear dependence.

p=F (@1 - elecg ; 0 <8 < sC

p =0 ; e >sc
in which F = numerical constant; s = fictitious strain in the direction normal
to the crack; ec = limit value after which aggregate interlock becomes zero =

0.005.
* Arnesen, et al (1980) took p as
P=ux - 025 X/ X0
in  which X is a scalar parameterrelated to the inelastic dilatancy (volume
change).

* Chang, et al. (1987) took P as
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p =k .a',/ > pmin for &n / Gn > -1
= k for a'w / < 9
in which k, oM = material constants to define shear behaviour; a', = a normal

stress acting on the cracked plane (negative value representscompression);
Pmin = aminimumvalue of p, and they took Pmin = 0.1;Pmax= 0.5; and
<,= 05 fe-
in Cervera, Hinton and Hassan (1987) took the following value
P=1 - (s [/ 0.005)7
where s is the fictitious tensile strain normal to the crack plane, and kl is
a parameter in the range of 0.3 - 1.0.

* Balakrishnan and Murray (1988) took p as

P = (gt E) | (eg/ " scr) > PwM >
Pw« = 0.05
where scr = extensional cracking strain; et = strain intercept at zero shear
modulus; and s = average extensional strain.

* Unlike the above, Bedard and Kotsovos (1985), Yamaguchi and Chen (1990), and
Vidosa, et al. (1991) assumed that aggregate interlock plays a negligible role in
load - carrying capacity of a member and this was reflected in their model by
taking p = Constant (non-zero) only in order to avoid excessive deterioration

of the stiffness matrix.
In this study, the effect of shear retention factor on the prediction will be studied

by taking p as a function of the tensile strain normal tothe crack as follows

P = B ecrl en > Pwiw (3.10)

where ecr isthe tensile crack strain; ew is the fictitioustensile strain normal to

the crackplane; and B & Pmin are numerical constants. Four values for these

two constants will be studiedin thisthesis (Fig. 3.25e-h).
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Fig. 3.25 Shear retention factor p.
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3.2.4 Yield criterion

Yield criterion defines the combinationof stresses necessary to cause plastic
flow at a point. Researchers aggree that, there is no such mathematical model
that can describe the strength of real concrete materials completely under all
conditions. Even if such a failure criterion could be constructed,it would be far
too complex to serve as the basis for the stress analysis of practical problems
(Chen 1982).

A large number of failure criteria have been proposed in the literature. Two of
them will be discussed here. One for biaxial stress conditions based on
experimental work of Kupferet al. (1969). The other for triaxial state of stress

introduced by Kotsovos and Newman (1979).

3.2.4.1 2-D yield criterion

For biaxial stress conditions, the work by Kupfer, et al. (1969) is a widely
quoted reference. Fig. 3.26 shows the failure curve, indicating that the maximum
compression strength increase is about 25% of fc\

It is possible to summarise the mainobserved characteristics of concrete behaviour

as follows:

+ The ultimate strength of concrete under biaxial compression is greater than that
under uniaxial compression. The main reason for this increase is due to the
confinement of microcracks.

+ The ultimate strength increase under biaxial compression is dependent on the
ratio of principal stresses, and it appears that the maximum strength is at a
stress ratio about 0.5, diminishing somewhat (to about 16% higher than the
uniaxial value) as the ratio is increased to 1.0.

« The compressive stress at failure in the case of combined compression and

tension decreases as the tensile stress increases.
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Fig. 3.26 Biaxial strength of concrete (Kupfer, et al. 1969).
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Fig. 3.27 Yield surface zones, initial, intermediate and
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+ The biaxial tensile strength of concreteis approximately equal to its uniaxial
tensile strength, and the stress-strain curves are similar in shape in both
uniaxial and biaxial tension.

* In Dbiaxial compression-tension, the magnitude at the failure of both the
principal compressive strain and principal tensilestrain decreases as the tensile
stress increases. Further details on the biaxial states of stress can be found

in (Chen 1982 and Chen and Saleeb 1982).
In this study the octahedral shear stress, linearised in termof octahedral normal
stress, is used to fit the yield surfaces for concrete under biaxialstress states in
the form

AOCt~ 3 + b &oct (3.1)

where Toct is the octahedral shear stress given by:

Moct = + ®y" ~ +

and Goct is the octahedral normal stress given by:

(Gx +vy)
°oc,= 3
The factors a, b are determined as follows.
Compression yield
1- For uniaxial compression: ex= - fcl G = tr= 0.0
2 YA
Toct = ~ fc and °oct = ~Y~

Substituting in equation (3.11) we get:
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2- For biaxial compression: gx= <y= -1.16 fcl xxy= 0.0

*oct= —(1-16 fc) and aocl = - [(1.16 f¢")

Thus equation (3.11) can be written as:

f (116 fc)= a - |(1.16 b

Solving for a and b, the biaxial compression yield criterion is given by:

ZIL + 01714 _ 04143 - 0.0 (3.12)

fc' | fc [ ]

Tension-Compression Yield
ox= - £mfc

Using the same procedure, we obtain:

Loct -m ) a oct 2V2 m

0.0 (3.13)
fc* (1+«) fe ~ 3 (1+w)

Tension-Tension Yield

For biaxial tension the simple circular criterion is adopted.

<3t °2 40. 00 (3.14)
xft'j yft'j
where aj and <2 are principal stresses.
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To accommodate the early changes in the stiffness of concrete, equation 3.3 is
incrementally linearized during loading by assuming intermediate surfaces similar to
that used by Chen and Teng (1980). Such surfaces are shown in Fig. 3.27. The
first loading surface corresponds to the initial discontinuity in the stress-strain
diagram. The subsequent loading surfaces are assumed to have the same shape

of limiting vyield surface. Johanry (1979) proposed the following equation:

fee = fco ft + (3.15)
where fcc = intermediate concrete strength, fco= 0.5 fc\ fj = tensile strength
of concrete, Ec = modulus of elasticity of concrete, and Ej = instantaneous

modulus of elasticity of concrete. Up to the peak strain sp, the concrete
instantaneous modulus is computed using equation 3.3 and for strain above this

value the following expression is used up to the assumed crushing strain (0.0035).

E: = B4 (3.16)

Concrete is considered to be crushed if the failure criteria is violated or, if the

principal compressive strain exceeds the ultimate compressive strain zmax =0.0035.

3242 3-D yield criterion

Under triaxial loading, experiments indicate that concrete has afairly consistent
failure surface that is a function of the three principal stresses. If isotropy is
assumed, the elastic limit (onset of stablecrack propagation), the onset of
unstable crack propagation, and the failure limit all can be represented as surfaces
in three-dimensional principal- stress space (Chen 1982). To reasonable accuracy,
constitutive equations (mathematical formulae) for concrete can be incorporated into

theoretical models without much difficulty. One of these -constitutive equations used
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in the 3-D finite element to model concrete compressive triaxial behaviour, is due
to Kotsovos, et al. (Kotsovos and Newman 1979; Kotsovos 1979), as shown in
Figs. 3.28, 3.29.

Kotsovos developed a mathematical description of the ultimate strength envelope of
concrete under axisymmetric stress states by analysing experimental data from a
comprehensive programme of investigation into the behaviour of concrete under
complex states of stresses. A brief review of this is given below

For the construction of the constitutive equations for concrete, the geometrical
representation of the stress state at a point is very useful. Since the stress
tensor Gy has six independent components, it is of course possible to consider
these components as positional co-ordinates in a six-dimensional space. However
it is too difficult to deal with. The simplest alternative is to take the three
principal stresses ctj, Gz, g$ such that cj > o2 > a3 as co-ordinates and
represent the stress state at a point in the three dimensional stress space. This
orthogonal co-ordinate system aj, G2, as can be transformed into a cylindrical
co-ordinate system z r, o and the two system are related by the following

equations:

z=(<r,+azx2+a,)/V3 =V3

= "3 t,c

coso =—7=(a, +az2-2a3)
rve

where cod and xod are the normal and shear octahedral stresses, respectively. The
variables z and r define the hydrostatic and deviatoric components respectively, of
a stress state. The variable 0 defines the direction of the deviatoric components

on the octahedral plane as shown in Fig.3.28 and varies from
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Fig. 3.28 Schematic representaion of the ultimate strength surface - definitions.
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Fg. 3.29 Combinations of octahedral stresses at ultimate strength for concrete under

the axisymetric stress states

> (\=a3 and ox= <2> aj).
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0= o for aj = az > <33

o = 60° for aj > a2z = (3

Kotsovos (1979) derived mathematical expressions to describe the strength

properties of concrete under biaxial or triaxial stress states which can be

presented as follows:

xoe is the value of xoct at the ultimate strength level for o = o degree;

roc is the value of xoct at the ultimate strength level for o 60 degrees.
The value of xoct at the ultimate strength level for any values of 0O such that O

< o < 60 degrees may be given by the following expression:

(t/ - O cose+td 2tm- toc -Qcos26+5x)- 4ty

(3.17)
-0 cos20+ (v -

This expression describes on the deviatoricplane a smooth convex curve  with

tangents perpendicular to the directions of xoe and xoc at o = o and o = 60
degrees respectively (Fig. 3.28).

If isotropic material behaviour is assumed, Equation (3.17) may be used to define
a six-fold symmetric (about the space diagonal) ultimate strength surface, provided
the variations ofxoe and 7ac  with Goct are established (Fig. 3.28).

Fig. 3.29 shows the normalized (with respect to the uniaxial cylinder compressive
strength fc!) combinations ofoctahedral stresses at the ultimate strength level
obtained from ftriaxial tests (Kotsovos 1979). The envelopes in this figure are
considered to describe adequately the strength of most concretes likely to be
encountered in practice. A  mathematical description of the above strength
envelopes was obtained as follows:

X 0.724

NN-=0.944 — +0.05 (3.18)
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f X 0.857

(3.19)

Equations (3.18) and (3.19) represent two open ended convex envelopes whose
slope tends to become equal to that of the space diagonal as doc( tends to
infinity. These expressions together with the equation (3.17) are used in the present
3-D finite element program to define an ultimate strength surface which conforms
with the generally accepted (Kotsovos and Newman 1979) shape requirements such
as six-fold symmetry, convexity with respect to the space diagonal, and open
ended shape which tends to become cylindrical as Goct tends to infinity.

The above mathematical formulae are applicable to a range of concretes with

uniaxial cylinder compressive strength fa varying from about 15 to 65 MPa.

3.3 Modelling of steel

The derivation of constitutive equations for reinforcing bars is, compared with
concrete, straight forward because the material behaviour is essentially uniaxial and
well-known. A bilinear representation is fully adequate to simulate the elasto-
plastic behaviour of steel with or without strain hardening (Fig. 3.30). Three
alternative approaches are used in modelling the reinforcement in a prestressed or
a reinforced concrete structure: smeared model, discrete model, and embedded

model (Fig. 3.31).

3.3.1 Smeared model:

In this model, reinforcement is assumed to be distributed over the concrete
element (Fig.3.31a). This model is convenient for structures where a large
number of reinforcing bars are placed. This model is widely used in reinforced
concrete plate and shell structures, in which the structure is divided into layers.

This approach was first adopted by Wegmuller (1974).
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Fig. 3.30 Assumed steel laws.

Xv AXIAL ELEMENTS
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a) Smeared Approach

b) discrete representation

REINFORCEMENT

c¢) Embedded bars

Fig. 3.31 Alternative representaion of steel.
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3.3.2 Discrete model:

In the discrete model, reinforcing bars are modelled using special elements
connected to concrete through fictitious springsto allow for bond-slip (Fig. 3.31b).
The reinforcing bar element can be one  dimensional element. In this case, the
bar element is superimposed on the two dimensional element by assuming that
the bar is pin connected with two degrees of freedom at nodal points.
Alternatively, discrete beam element can be used, in which the steel is assumed
to be capable of resisting axial force, shear force,and bending moment. This
case is suitable for heavy bars for which bending is a significant effect. Ngo and
Scordelis (1967) used constant strain triangular element for both concrete and steel
in the analysis of reinforced concrete beams. Also Cedolin and Poli (1977) used
the same element to allow for the longitudinal reinforcement to resist the shearing
force (dowel action). The discrete model has the advantage of representing
different material properties more precisely. The only disadvantage of discrete
modelling is that the finite element mesh patterns arerestricted by the location of
reinforcement which leads to an increasein the size of the stiffness matrix. El-
Mezaini and Citipitioglu (1991) presented a technique for discrete modelling which
allows for the reinforcement of arbitrary type and location to be represented
independent of thefinite element mesh, and also different bond conditions at
different nodes can be represented. But the disadvantageis that this model does
not consider Cracking, dowel action, or any other aspects related to the nonlinear

behaviour of reinforced concrete.

3.3.3 Embedded model:

To overcome the problem of mesh dependency inthe discrete model, a
number of embedded formulations were introduced. Phillips and Zienkiewcz (1976)
developed an embedded representation provided that the reinforcing bar is aligned
with one of the local isoparametric element co-ordinate axes. A model similar to

Phillips and Zienkiewicz model, butmodified to account for inclined bars hasbeen
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introduced by Ranjbaran (1991). An embedded reinforcement formulation including
bond-slip has been introduced by Balakrishnan and Murray (1986). Chang, et al
(1987) presented a formulation for arbitrarily oriented embedded reinforcing layers.
Elwi and Hrudey (1989) and Phillips and Wu (1990) published another formulation
for curved embedded reinforcement.

The advantage of using embedded model is that there is no limitation for
representing the locations or distributions of the steel reinforcements. The
contribution of the reinforcements to the element stiffness can be evaluated
independently for each steel bar. The element stiffness matrix of bar can be
introduced using the virtual work principle based on the following assumptions:

. Reinforcing bar has stiffness contribution only in the longitudinal direction.

. Reinforcement is straight and it has a constant cross-section area.

. Full compatibility between the bar and the isoparametric element of concrete.

In this work, only reinforced bars lying parallel to the co-ordinate axes x or vy

are considered.

3.4 Interaction between concrete and steel
3.41 Bond-slip

Bond means transferring of force from the steel bar to the surrounding
concrete and vice versa. This bond results from chemical adhesion, friction and
mechanical interaction between concrete and reinforced bars. In deformed bars, ribs
or lugs add to the bond resistance by bearing on the concrete and thereby
minimizing slip considerably (Fig. 3.32). A common way to describe the bond
between steel bar and concrete is through the relation between the local bond
stress and the relative slip of the bar. Bond stress is the shearing stress on the
steel-concrete interface and parallel to the bar axis.

Bond is a complicated phenomena that is influenced by concrete strength,
embedment length, concrete cover, bar spacing, stirrups, and associated shear and

flexure (Kemp 1986). The location, spacing, and width of cracks; internal
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distribution of forces; tensile stiffening contribution of concrete between the primary
cracks; and  strengthof the member relate directlyto the characteristics of the
interface (Jiang, et al. 1984). Fig. 3.33 shows three types of bond failure in
reinforced concrete beams (Kemp 1986).

Many experiments with different approaches have been performed to measure the
bond-stress and bond-slip along the steel bar (Perry and Thompson 1966; Abeles
1966; Jiang, et al.1984; Brettmann, et al. 1986; Kemp 1986; Lahnert,et al.
1986; and Altowaiji, et al. 1986). Fig. 3.34 shows an experimental relationship
between local bond stress and local bond slip (Houde and Mirza 1974). Also,
many attempts to develop an analytical method to determine the bond stress-slip
relationship have been done (Jiang, et al. 1984; Yankelevsky 1984; Yannopoulos
and Tassios 1991). Not only general agreement islackingamong researchers on
the relative influence of various parameters affecting the bond-slip relationship but
also the local bond stress-slip relationships obtained by the researches based on
tests show considerable scatter.

Using 2-D finite element model, Balakrishnan, et al. (1988) took the bond-slip
infto account when they predicted the behaviour of five beams without shear
reinforcement and they have got some improvement in the prediction (-s, 0, -15,
-14, +9% of the experimental failure loads). However, they did not report any
result for beams with shear reinforcement despite the fact that they analysed four
beams with shear reinforcement.

In this study full bond has been assumed.

3.4.2 Dowel action

When major shear deformations occur after tension cracking has occurred,
reinforcing bars passing through this crack act as dowels. As a result, the bars
will be subjected to concentrated shear force. The shear deformations are resisted
by dowel action of the reinforcing bars and the aggregate interlock between the

two rough faces of the interface crack.
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Fig. 3.32 Deformation of concrete around reinforcing bars
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Fig. 3.33 Typical bottom and side bond-splitting cracks (Kemp 1986).
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Fig. 3.34 Local bond stress versus local slip.

Fig. 3.35 Possible failure modes of dowel mechanism
(Vintzeleou and Tassios 1986).
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Aggregate interlock diminishes quickly with crack opening, and hence the dowel
bars play a major role in preventing sliding-shear failure. There is no common
agreement as to the magnitude of the dowel forces but they may amount to as
much as 30 percent of the applied shear force (Kemp 1986).

There are two possible failure modes of dowel mechanism (Vintzeleou and Tassios
1986): (1) vyield of the bar and concrete crushing under the dowel; (2) concrete
splitting.  Concrete cover is the main parameter upon which the mode of failure
of the dowel mechanism depends. For small cover (less than ¢ to 7 times the
bar diameter), the mechanism is governed by splitting of concrete, splitting cracks
being opened either at the bottom (due to local bending) or at the side faces of
a section (due to direct tension), see Fig. 3.35.

The dowel force capacity of a member is increased significantly by increasing the
clear cover and the amount of stirrups. If nominal stirrups are used the dowel

forces can be carried directly and efficiently by the stirrups (Kemp 1986).
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CHAPTER 4

THE FINITE ELEMENT AND NUMERICAL
METHODS OF ANALYSIS

4.1 Introduction

In Chapter 2, somemethods of analysis of shear strength of concrete
structure were mentioned. None of these methods can be compared with the finite
element method. The analysis by the finite element methodis more general. By
using it in the analysis of reinforced concrete structure, beside the prediction of
the failure load, stresses and strains in concrete and steel, deflection at any point,

and the mode of failure can be determined.

4.2 Finite element concept and formulation

The finite element method has been described extensively in the literature (e.g.;
Hinton and Owen 1977, Zienkiewicz 1977, Owen and Hinton 1980, Bhatt 1986), and
no attempt will be made here to review the vast literature in these fields. Instead,
a brief review of the method will be presented in the following sections which is
selected from several references.

The finite element method started as an extension of the stiffness (or
displacement) method, in which a skeletal structure is assumed to be made up of
an assemblage of one-dimensional elements (axial, bending and torsional actions).
In the stiffness method for skeletalstructures the elements of an actual structure
are connected together at discrete joints, and equationsof equilibriuminvolving
external loads and member end forces expressed in terms of displacements are

established at all joints. These equations are solved for joint displacements. The
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relationship  between the end forces and end displacements of each member is
represented by the stiffness matrix which can be derived directly through the
solution of differential equations, useof various energy theorems, or the principle
of virtual work. However, unlike skeletal structures, in the finite element method,,
there are no well-defined joints where equilibrium of forces can be established
and therefore, the continuum must be discretized into a number of elements of
arbitrary shapes and also artificial joints or nodes must be created.

In this way the continuum isapproximated by a system with  finite degree of
freedoms, so that a numerical solution can be achieved.

In recent years the most intensive work has taken place insolving nonlinear
problems. The general procedure for solving such problems is to approximate the
nonlinear behaviour by a series of linear solutions. The linear solution procedure is

therefore a basic and important partof any nonlinear solution method.

4.3 Discretisation by finite element
For structural applications, the governing equilibrium equations can be obtained
by minimising the total potential energy of the system. The total potential energy,

N, can be expressed as:

S
1]

{s}dv-\{5}r{P}dv-\{S} {q}ds

v v S

- {P}Hs}T (4.1)

where a and8 are the stress and strainvectors respectively, 5 is the
displacements at anypoint, p is thebody force per unit volume, q is the applied
surface tractions, and P is the concentrated forces. Integrations are taken over the

volume, V, of the structure and loaded surface areas S
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The first term on the right handside of equation (4.1) represents the internal
strainenergy and the second and third terms are thework contributions of the
body forces and the distributed surface loads respectively.

In the displacement method, the displacements are assumed to have unknown
values at the nodal points so thatthe variation within any element is described in

terms of the nodal values by means of interpolation functions, thus

{("}=10"1-{"" (4.2)

where N is vectorof interpolation functions often termed shape functions, and 8e

is the vector of the nodal displacements of the element.The strains within the

elements can be expressed in terms of theelement nodaldisplacements,

{«} =["]1.{<"} (4.3)

where B is the strain matrixgenerally composed of  derivatives of the shape

functions. The stresses may be related to the strainsby making use of elasticity

matrix, D, as follows:

{<ri=[2)]I.M (4.4)

Ensuring that the element shape functions have been chosen so that no
singularities exist in the integrands of the function, the total potential of the
continuum will be the sum of the energy contributions of the individual elements.
Thus:

n =z>, (4.5)
where tc!is the total potential of element ¢ by using equation (4.1), ne can be

written as follows:
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n,= X\{S‘}T[B]T[D]r[B}{S‘}dV-
K

\{8°)TW T{p)dV- J{<E}T[VI]r “4e)

where Ve is theelement volume and S eis the loaded surface area of the
element.
Theperformance of the minimisation for element, e with respect tothe nodal

displacement, 8e, of the element results in:

-Ah =\{Bf[D][B]{S')dV-\[N]T{p}dV-\[N?{q}dS

K e se
=[KeW }-{Fe=0 4.7)
where
{F'} =J[A(Qr{p}</F+}[iIVIMdS (4.8)

are the equivalent nodal forces for the element and

[K*]=\[B]T[D][B]dV (4.9)
K

is termed the  stiffness matrix. The summation of terms inequation (4.7) over all

the elements, when equated to zero, results in a system of equilibrium equations

for the complete continuum, i.e.

{F} =[£]{£} (4-10)

where {F} is the equivalent nodal forces for the continuum, [F] is the stiffness

matrix of continuum and {5} is the nodal displacements of the continuum.

After the insertion of the necessary boundary equations, these equations are then

solved by any standard technique to vyield the nodal displacements. Once the
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displacements are determined, the strains and thereafter the stresses in each

element can be evaluated by using equations (4.3) and (4.4) respectively.

A A lsoparametric elements:

The name isoparametric came because the same interpolation function used
for defining the displacement variation within the element is also used todefine
the element geometry.

The basic procedure is to express the element co-ordinates and element

displacements by functions expressed in terms of the natural co-ordinates of the

element. A natural co-ordinate system is a local system definedby the element

geometry and not by the element orientation in the global system. Moreover, these

systems are usually arranged such that the natural co-ordinate has unit magnitude

at primary external boundaries. Fig. 4.1 shows this type of element and its natural

co-ordinate system.

Many reasons encourage one use isoparametric elements, such as:

1. They are far more accuratethan simple elements.

2. The simultaneous description of element geometry and displacement variation
by the shape functions leads to efficient computing effort.

3. Curved elements can model thecurved boundaries of a structure.

In the present investigation, isoparametric elements have been used.

4.41 Shape functions:

The fundamental property of the shape (interpolation) function Nt is that its value
in the natural co-ordinate system is unity at node i and is zero atall other
nodes. A shape function defines the variation of the field variable and its
derivatives through an element in terms of its values at the nodes. Therefore,
shape functions are closelyrelated to the numbers of nodes and consequently to
the type of element. Polynomials are often selected as shape functions because

they are relatively easy to manipulate mathematically, particularly with regard to
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integration and differentiation. However, the degree of polynomial chosen will clearly
depend on the number of nodes and the degree of freedom associated with the
element. The shape functions for the eight-noded strain element are given by the

following equations in curvilinear co-ordinate £ and r|:

For corner nodes:

n,="0+)&Xi+ +tin, - 1) (4.11)

For midside nodes:

N,=2 i(1+%)(1 =2+ (i +TynXI-S2) 4 12)
where and rj are the intrinsic co-ordinates of any point within the element. By
definition, % and r| have values in the interval [-1,1].

These shape functions are part of the so-called serendipity family (Zienkiewicz

1977), and they are shown pictorially in Fig. 4.2. The displacement at any point

inside the element, namely u and v, can be expressed in terms of these shape

functions as follows:

4.13)

(4.14)

It should be noted that the displacements v and v are parallel to the x and v,
not the £ and r| axes. Similarly, the position of a point within the element in

global co-ordinates is given by:
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Fig. 4.1 Typical 8-noded isoparametric element.

corner
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Fig. 4.2 Shape function for 8-noded isoparametric element.
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Since each element has two degrees of freedom at each node, namely the

displacement v, then it has a total of 16 degrees of freedom, and the

element nodal displacement vector {5e} can be written as:

{6 € = {{s1},{s2},....,{s 8}} (4.17)

{8,}= The displacement components at the Zth node.

= {u., v}

Having thus established the nodal displacements, the displacements at any point

inside the element are expressed in terms of these through the shape functions

[N(£,r))] such as:

{5} = {«, v}
=[#($, t)Ir{e }=X"_, A" ri){s .} (4.18)
where
SN O R N (4.19)
[N{S,Vv)}T = N, N 0 N .

>

= shape function matrix.

4.4.2 Stress-strain relationships
The strains within the element are expressed in terms of the derivations of the

displacements:

i.e
{£} = {£, a, (4.20)
_f£» (» +£ 1)Ir (421)
\d x dy dy dx J

Substituting equations (4.13) and (4.14) into equation (4.21) leads to:
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(422)
where
{8e}7={u, , V, , u2, Vj, ... u,, v,, ... u8, v8}
and
[6]1=[ B 2(4,n) B,(*,77)
= strain matrix.
in which
dN,
0
dx
dN,
0 (4.23)
dy
dNt ON;
dy dy

Since the shape functions N are defined in terms of the curvilinear co-ordinates
£ and r|, a co-ordinate transformation from local to global is required in equation
(4.23).

It is well known that the Cartesian and the curvilinear derivatives are related by:

n d [ 7 d '
dx _

g =
\_dyl .dn

where J is the Jacobian matrix defined by:

dx d
S %
dx dy
_dq

Differentiating equations (4.15) and (4.16) in accordance with equation (4.24) gives:
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yi
Yy
‘d N x dN x d Nx d Nx
% AT AT
d Nx d Nx dN x dN x s
% % Ar
y8

For linear analysis of uncracked concrete, and in the absence of initial stresses
and strains, the incremental form of stress-strain relationship in global direction in
plane stress case is given by the following relationship:

A{o-} =[Dr]A{e} (4.26)

elasticity matrix given by .

1 % 0
= 1 0 4.27
[A] (|-V2)\; (1-v) *.27)
2

where E is Young's modulus of elasticity and v is Poisson's ratio. The onset of
the cracking will introduce orthotropic conditions, and new incremental constitutive
relationships will apply for the material parallel to and normal to the cracks.
Normal stress across the crack is either reduced to zero in case of tension cut-
off criterion, or follows the descending portion of the tensile stress-strain curve
when the tension softening is taken into account. A new elasticity matrix in crack

directions takes place and is given by:
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En O

J

0 pG
where p is the shear retention factor, and En and E{ are the moduli of
elasticity normal and parallel to the crack plane, respectively.

Using tension cut-off criterion, when single crack has occurred then,

E, = 0.0 and E = E

For double cracking,

0.0

0.0 and E,

It is essential, for reasons of numerical stabilty, to avoid zero values on the
diagonals. Thus instead of putting E equal zero it takes a comparatively small
value (e.g, E = 1.E-20).

When tension softening is taken into account and single crack has occurred, then

For double cracking,

o/ and E, = a,/ e

where 2n and zt are the tensile strains normal and tangential to the crack plane,
and a, and <k are the corresponding tensile stresses calculated from the tension
softening curve.

To transform the above matrix to the global system (xy), the standard

transformation matrix [7] can be used as follows:
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[Dri=[T]JT[D]-[T]

where
c2
[r]= s2
-2 82
where C= cos 6, S= sin 0, and 0 =the crack angle.

4.4.3 Element stiffness matrix
Now all the information necessary to evaluate the element stiffness matrix, K" are

available. From equation (4.9), ie.

(4.28)

a typical submatrix K* linkihng nodes i and j may be evaluated from the
expression
+1+1

IK'] =Jy[B ,]r[0][B,]f.det.J.</f .<*

- 141

where t is element thickness and the incremental volume dV is given by

dV = t.det.J.dd; .drj (4.30)

444 Stiffness matrix of embedded bar
The displacements {u,v} of any point on the bar are obtained from the

displacement field of the isoparametric element as:

(4.31)

where N is the shape function of concrete element and {8}e is the nodal

displacement vector.

The virtual work of reinforcing element can be written as
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S U = As*Ss , .cr, .dI (4.32)
in which bU = internal virtual work in the reinforcement; As = cross-sectional
area; dl = line segment along the reinforcement; and a, e, = the longitudinal

stress and strain along line segment, respectively.

For bar parallel to the x-axis,

CTi=CTx
£,=£x
dl = dx
Equation (4.32) becomes
S U = AsJ Se x .</X.dx (4.33)

X

The strain in the bar can be calculated as follows:

Sx=duldx =W AA
dx

E=BSe
SE =BS(5¢

where B is the nodal displacement-strain matrix. The relation between the stress
and strain in the bar is:
cr=Ese

And the stiffness of the embedded representation can be expressed as
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K, =A,E,]BTB (4.34)

where Es = the bar Young's modulus and Js = Jacobianfor steel element.The
same steps can repeated for a bar parallel to y-axis.
The final expression for the composite element stiffness is simply evaluated by

adding the stiffness matrices for concrete and steel together, as follows

K,=Kc+K,

in which Ke is the stiffness matrix for the composite element,Kc and Ks are the

element concrete and steel stiffness matrix respectively.

4.4.5 Numerical integration

It is difficult or perhaps impossible to perform the closed form integrations required
in evaluating the element matrix and thus numerical integration is essential.
Numerical integration will replace the exact integral by evaluating the integrand at
various sampling points and then taking a weighted summation of these values. In
this study Gauss-Legendre quadrature values have been used because of their
higher accuracy over other forms of quadrature and the ease with which these
can be implemented. An «th order integration can integrate exactly a polynomial

of degree (22-1).

The general form of the integral using Gauss-Legendre is:

+1 m
JI(E)<M=£7](6) (435)
-1 «=1

where is the co-ordinate of the zth integration point, W. is a weighting factor

and m is the total number of integration points.
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In two dimensions where a double integral exists, then

+1+1 +1 +1
+> m
j drj
m m
=X X w
m m
= Z w LA (4.36)
A jA « )
where W, ,W. are the zth and y'th weighting factors and r|(( are the co-

ordinates of the ith integration point.

These Gaussian-Legendre rules are particularly suitable for isoparametric elements
since the limits of integration are .1 to +1 which coincide with the local co-
ordinate system -1 to +1 on element boundaries. Table 4.1 shows the
symmetrical positions of Gauss points § and the corresponding weighting factors

W1 for m=1,23, and 4.

4.5 The equation solution technique

There are various equation solution techniques which can be used to solve a

given set of linear simultaneous equations. In this study direct Gaussian elimination

algorithms have been used in conjunction with the frontal method of equation

assembly and reduction, and is applicable here only for symmetric systems of

linear equations. The features of this technique are:

1. It assembles the equations and eliminates the variables at the same time,
hence the complete structural stiffness is never formed, only the upper
triangle of a square matrix containing parts of the equations which are being

assembled at a particular time.
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Table 4.1 Positions of Gauss points and corresponding weighting factors

Si

0 2

1
+V3 +1
1
+1

8

0 9

5

+V0.6 9

-Vaé S

9
3+V48 1 V30
+A 7 2 36
J3+ VA8 1 V30
| 7 2 36
3-V48 1 V30
'b‘ 7 2 36
13-VA8 1 V30
2 36
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2. The frontal solver does not store as many zerocoefficients as a banded
solver does. Once an equation has been completely assembled and
eliminated, it reduces space which can be used for subsequent equations.

3. The storage allocation in a banded solver is determined by the order in
which the nodes are presented for assembly. But, in frontal solver the
storage is determined by the order in which the elements are presented. It
can handle any order of node numberings. Hence, at any stage,if a mesh
of a problem is found to be too coarse in some regions, its modification
does not require extensive nodal point renumbering. In this sense, the frontal
solver is easier to use than banded solvers.

4. The frontal solver tends to be more economical than banded solvers,

especially for higher order elements with midside nodes.

4.6 Numerical methods of analysis

For the solution of nonlinear problems by finite element method, three procedures
are usually used:

1. Incremental (Step-wise procedure).

2. lterative (Newton-Raphson method).

3. Incremental-iterative (mixed procedure).

All these procedures solve the basic linear elastic equations given by equation

(4.37)

[K]{S}-{F} =0 (4.37)

in which the assumed linear elastic constitutive law given by equation (4.38)

[cr]=[DI{s} + {cr0} (4.38)

where [D] = the constant linear elastic matrix, and {GJ = the initial stress vector.
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Under nonlinear conditions, equation (4.38) is replaced by a differentlaw of the
form:

f(<r,£) =0 (4 39)

which represents the relationship between stress and strain.

The element stiffness matrix is a function of the material properties and can be

written as:

[F]=[£{a,s)] (4.40)

The external nodal forces {F} are related to the nodal displacements {s }through

the stiffnesses of the element and can be expressed by:

{F}=["(a,e)s } (4.41)

which on inversion becomes:

{5}=[A(a,8)r1 {F} (4.42)

This derivation illustrates the basic nonlinear relationship between {8} and {F},
due to influence of the material law on [F],

However, equation (4.42) is solved by a succession of linear approximations, and
different methods of applying these linear approximations will lead, in general, to

different load-displacement paths influencing the final solution.

4.6.1 Incremental procedure
In this procedure the load is divided into a number of equal or unequal load
increments. At each step only one increment of load is added to the structure. At

each stage of loading the stiffness of the structure may have a different value
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depending on the deformation reached and constitutive law adopted for the
material as well as the method for estimating the stiffness at that stage.

The total load and displacement at any stage is given by the sum of the
increments of all the loads and displacements of the previous stages. The process
is repeated until the ultimate or the total load is reached. This procedure has the
advantage that it is simple to apply but the accuracy is rather low unless the
load increments are very small. The main disadvantage of this procedure is that it
does not account for force redistribution during the application of increment owing

to the fact that there is no iteration process to restore equilibrium.

4.6.2 lterative procedure

In this procedure, the load is applied to the structure and then the displacement
is adjusted in accordance with the constitutive laws until equilibrium is attended. In
this method either the stiffness matrix remains constant or varies throughout the
solution. One distinct advantage ofthis method is that the same stiffness matrix
can be usedat each of iteration which involves a small amount of computing
effort in each subsequent iteration step for the determination of the corresponding
displacement. Other methods with variable stiffness matrix [AT] such as the secant
method and Newton- Raphson method may have a faster convergence rate but
only at the expense of having to reassemble and solve a new system of linear

equations at each iteration.

4.6.3 Incremental-lterative procedure

In practice, usually a combination of both the increment and iterative procedure is
used. The total load is divided into a number of load increments. At every
increment of load, iterative procedure is applied until convergence is obtained
under that load increment. The constant stiffness procedure can be used. For

nonlinear analysis of reinforced concrete structures, experience seems to indicate
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that relatively small load increments with fairly frequent updating of the stiffness for

just a few iteration steps are required to produce good results.

Developments in numerical analysis and applied mathematics can be used to
further improve the efficiency of solution technique at Ilow additional  cost.
Recently, a number of techniques have been introduced in order to accelerate the

rate of convergence, such as the accelerated method and arc length methods.

A-7 Convergence criteria

Since in a numerical process, equilibriumconditions are unlikely to be satisfied
exactly, criteria to determine convergence have to be established for objective
analysis. The main purpose of reliable convergence criterion is to monitor the
gradual elimination of the out-of-balance residual forces until the desired accuracy
has been achieved. The convergence criterion, usually used, is based on
displacement or out-of-balance force norms and sometimes oninternal strain
energy. In the present work, convergence criterion is basedon out-of-balance
force norms. They indicate directly how well equilibrium requirements are met.
Since it is difficult and expensive to check the decay of residual forces for every
degree of freedom, an overall evaluation of convergence ispreferable. This is
achieved by using a force norm.

This criterion assumes that convergence is achieved if:

(4.43)

where:

= the norm of'the residuals,

{R,}= the residual force vector at Zth iteration,
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the norm of the total applied loads,

{*}

and Tol= specified convergence tolerance.

the total applied load vector,

Fine tolerances are theoretically desirable but can be very expensive to obtain
because they quite often require a large number of iterations. Steep discontinuities
in material laws (cracks, vyielding ..) can cause large residuals and these residuals
need to be distributed. However this redistribution will cause more discontinuities in
other parts of the structure and hence residuals in subsequent iterations. In such
cases the rate of accumulation of residuals can be higher than the rate of
distributing them. An intermediate solution is to choose a lowtolerance value at
initial stages and increase it towards the later part of the load history.

Finally, it should be noted that the rate of convergence depends particularly on
the method used in the solution, and it is well known for example that constant
stiffness will lead to slow convergence and this leads to many iterations, which is

without any doubt a very costly operation.

4.8 Basic steps in nonlinear program

The major steps inthe linear and nonlinear analysis of a typical finite element

program are:

1. Subdivision of the structure and representing different parts by appropriate
types of finite elements.

2. Generation and assembly of load vector {F}.

3.  Generation of the element stiffness [K?].

4. Assembly of the structure stiffness [K\.

5. Solution for the nodal displacements } =[AT]11 {FM and hence the strain

M = {<?}

6. Determination of element stresses {tr} = [/)|{E£m}

120



Cha’\terA The finite element and numerical methods of analysis

For nonlinear analysis:
7. Check forcracking, yielding, and failure.
g.  Determination of unbalanced nodal forces,
g Check for convergence.
10. This Step depends on the convergence
(@) If not converged apply the unbalanced nodal forces again to the structure
and goto Step 3 if the stiffness is to updated and to Step 5 if constant
stiffness solution is adopted.
(b) If converged apply the next load increment and go to Step 2.
11. Stop when failure occurs or when full loading has been applied.

Fig. 4.3 shows the main steps of the finite element nonlinear analysis procedure.
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and store [K]
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Linear Analysis only ? Yes
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Print out results
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Fig. 4.3 flow Chart for Linear and Nonlinear Reinforced Concrete Analysis.
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CHAPTER 5

COMPARISON BETWEEN THE PREDICTIONS OF 3-D AND 2-D
FINITE ELEMENT MODELS

5.1 Introduction

Reinforced concrete beams are usually analysed as a plain stress problem; i.e.
the stresses in the direction normal to the plane of the beam are neglected. The
prediction of the behaviour of reinforced concrete Tee beams may probably be
affected by neglecting these stresses. The three dimension (3-D) analysis is more
general than the two dimension (2-D) analysis. But when the finite element
method is used, the 2-D finite element model is preferable to the 3-D one. This
is because of the considerable saving of cost and time. The main purpose of this
chapter is to answer the following question. Is itacceptable from the accuracy
point of view to use a 2-D finite element model instead of a 3-D one to
predict the behaviour of reinforced concrete beams?

To answer the above question a number of structures have been analysed
and the results of 2-D and 3-D models have been compared. The structures
chosen for the analysis are; a plain concrete prism, a reinforced concrete
rectangular beam with and without web reinforcement, and a Tee beam with web

reinforcement.

52, Features of the 3-D and 2-D versions used in the analysis
The 3-D finite element model used in the present analysis was developed by
Elnounu (1985). This model was used to predict the ultimate loads of rectangular

and flanged shear wall-floor slab connections with or without shear reinforcement.
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The results showed good agreement with the experimental values. Later, this

model was used by Bari (1987) to study the ultimate strength of shear wall-floor

slab junctions reinforced for flexure and shear subjected to monotonic and reversed

cyclic loading; and by Musavi (1992) to study the punching shear strength of

unbonded prestressed flat slabs at edge column junction.
The 3-D model and the 2-D model used in the analysis have the following

common features:

« Based on a smeared representation of cracks. Orthogonal cracks approach is
adopted.

* Use of tension cut-off criterion for concrete.

* Neglecting the compression softening of concrete.

+ Assuming shear retention factor (3 as a function of the strain normal to the
crack plane.

* Deal with the reinforcement as embedded bars.

+ Use of force convergence criterion.

* Newton- Raphson method is used in the numerical analysis.

+ Use of the same algorithm. Updating the structure stiffness matrix at the second
iteration of each increment only and not at every iteration.

+ Use of Gauss-Lagendre integration method with full integration (3x3 Gauss
points for 2-D and3 x 3 x 3 Gauss points for 3-D).

* Use of a constant Poisson's ratio v (= 0.15).

The differences between the two models are explained below.

3-D Model:
In addition to the common features with the 2-D version mentioned above,
the other features of the 3-D model are as follows:

+ Based on Kotsovos yield criterion for concrete.
+ Assuming the tensilestrength of concretevanishes after tensile stress offt72.

This value has been modified to be ft\ This is because when themodel was

124



Chagter5. Comparison between the predictions of 3-D and 2-D finite element models

used to analyse an element under uniaxial tensile stress the predicted failure

stress was half of the value given in the data as a tensile strength of

concrete.

* Assuming the shear retention factor p as a function of the average strain sm

(=(£] + =22 + £3)/3) as follows:

P=£— >0 (5.1)

where B is a constant (=0.4).

2-D model:
The 2-D finite element version used in the present analysis has the following
different features:

+ Based on Kupfer yield criterion for concrete.
» Assuming the shear retention factor p as a function of the strain normal to the

crack E, as follows:

P=£— >0 (5.2)

To see the difference between the assumed uniaxial stress-strain relationship
of concrete in the 2-D model and that in the 3-D model, a plain concrete cube
element (100 x 100 x 100 mm) was analysed. The assumed uniaxial compressive
strength is 30.0 MPa. The cube is analysed with conditions of supports as shown
in Fig. 5.1a. The applied load is uniformally distributed on the finite element edge
in the 2-D analysis and on the horizontal plane in the 3-D analysis. The
stress-strain curves of the cube in this case are shown in Fig. 5.2. From this
figure, it can be seen that the difference between the two models is very small
P to the peak of stress, after that the 2-D model assumes a perfect plasticity
until strain equal 0.0035, while in the 3-D analysis the calculation is stopped at

the peak of stress.
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100ms

Fig. 5.1a Plain concrete cube under uniaxial compression

Fig. 5.1b Plain concrete cube under confinement.
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Fig. 5.2 Uniaxail stress strain curve of concrete
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Fig. 5.3 Stress-strain curves for concrete (effect of confinement)
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The cube is re-analysed again to see the effect of confinement. In this case
the cube is restrained from all the directions except the direction of the applied
load (Fig. 5.1b). The compressive stress-strain curve is shown in Fig. 5.3. From
this figure, it can be seen that the difference between both of the two curves is
very small up to the assumed uniaxial compressive strength. After that, the gain
of the strengthin the 3-D model (10% of the uniaxial compressive strength) is

more than that in the 2-D analysis (only 3%).

5.3 Prediction of the behaviour of a plain concrete prism

Before using the two models to predict the behaviour of reinforced concrete
beams, a plain concrete prism has been analysed.
A prism from many plain concrete prisms tested by Niyogi (1974) has been
chosen for analysis. This prism has been analysed before by some Authors; e.g.
Vidosa, et al. (1991a) using a 3-D model; Bedard and Kotsovos (1986) and
Gajer and Dux (1988) using a 2-D model. The dimensions of the prism were
203.2 x 203.2 x 4064 mm It was loaded simultaneously from top and bottom
over one half of the end faces with equal sizes of plates (see Fig. 5.4). Due to
symmetry, in 2-D analysis one-fourth of the prism is analysed, while in 3-D
analysis only one-eight of the prism is analysed. Fig. 55 shows the mesh used
in both of the 2-D and 3-D analysis.
Theexperimental failure of this prism took place at 65% of the  cylinder
compressive strength fc' (fc' = 26.9 MPa, ultimate bearing stress = 174 MPa).
The experimental load deflection curve is not reported by Niyogi.
The prism has been analysedusing 4 isoparametric elements with the following
data:
fc = 26.94 MPa,
fi= 280 MPa,

E = 26000 MPa,
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203.2

Rigid neel platen

406.4

Ripd Meet platen

Fig. 5.4 Niyogi's plain concrete prism
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Fig. 5.5 Finite element mesh for Niyogi's plain concrete prism
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0.15

<
1

B = 04
Convergence tolerance of 4%

The two models underestimated the failure load. The predicted failure load
from the 3-D model (about 48% of fc\ 74% of the experimental failure load) is
lower than that predicted from the 2-D model (about 59%of fc\ 91% of the
experimental load). This can be explained according to Vidosa, et al. (1991c) as
follows. The application of the central strip loading at bothends of the prism
produces tensile stresses perpendicular to the axis of the structure that have a
significant influence on the ultimate load. The 2-D representation allowsfor some
of these stresses, while it neglects those stresses perpendicular to the plane of
the prisms. The 3-D representation and triaxial model may remove this
shortcoming, and avoid the artificial gain in strength arising through plane-stress
modelling.

Fig. 5.6 shows the predicted stress-displacement curves. From this  figure, it can
be seen that the predicted stress-displacement curve using the 3-D model is
nearly the same asthat predicted using the 2-D model.

Using a 3-D model, Vidosa, et al. analysed this prism. They predicted a failure
load between 57% and 75% of fc' depending on factors being investigated. These
factors are the crack propagation procedure, the adopted finite element mesh and
the type of finite element used. Using the same type of element (20-noded
isoparametric brick element with 3x3x3 Gauss points) as inthe present analysis
and the same mesh (2 x 1 x2) but with the single-crack approach (which allowed
for certain number of cracks to occur per iteration, for example, two new cracks
per iteration), they predicted a failure load of 0.57% of fc' Although Vidosa, etal.
reported that the tensile stresses perpendicular to the axis of the prism have a
significant influence on the ultimate load, in their paper no attempt was made to
study the effect of tensile strength of concreteon the prediction. Moreover they

did not even mention the value of the tensile strength taken in their analysis.
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Stress-displacement curves for Niyogi’s prism.

Fig. 56
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Gajer and Dux (1988) analysed this prism by a 2-D model. Their result
confirmed the result of Bedard and Kotsovos (1986) using 2-D model with single
crack approach (allowing for the formation of only one new crack per iteration)
that failure of the prism began at a stress greater than fc¢' and was due to
progressive crushing of concrete. One can explain this overestimated prediction as
due to taking the tensionsoftening of concrete into account directly by Gajer and
Dux and indirectly by Bedard and Kotsovos. The single crack approach can be
considered as a form of tension softening (see Philips 1992). This is because
preventing certain Gauss points within an element from cracking even though the
stresses violate the strength envelope means that stresses are retained within the
system, whichare then released in a controlled manner in  subsequent
iterations. This is similar to tracing a strain softening in which stress is gradually
released as a crack opens. Taking tension softening into account delays the
failure after the tensile stresses reach the maximum allowable strength.

When Gajer and Dux repeated the analysis with a different numerical method
(modified Ramm's method instead of load controlled secant-Newton method) the
analysis became unstable at stress about 62% of fc¢' from which theyconsidered
this stress as the predicted ultimate stress (Fig. 5.7a). No attempt was made by
Gajer and Dux to repeatthe analysis without taking the tension softening into
account. On the other hand when Bedard and Kotsovos repeated their analysis
without any restriction on the formationof the cracks, they obtained predicted
ultimate stress around the experimental one (56% to 78% of fc' depending on the
value of shear retention factor p.see Fig. 5.7b).

Fig. 5.8a shows the predicted deflected shapes and the crack patterns at some
load stages before failure. From this figure, it can be seen thatboth the two
models predict the same type of failure. As in the experiment, the failure starts
with the formation of vertical cracks under the applied load at the middle of the
prism. A horizontal crackin the outer zonehas been observed in the 3-D

predicted crack patterns. These cracks occur because of differential vertical
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Fig. 5.7a Predicted stress-displacement curves for Niyogi’s prism
(Gajer and Dux 1988).
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Fig. 5.7b Predicted ultimate bearing stress for Niyogi’s prism
(Bedard and Kotsovos 1986).
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Fig. 5.8 Predicted crack patterns and deformed shapes for
Niyogi’s prism
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deformations (Vidosa, et a. 1991a). The predicted crack patterns at some
increments are shown in Fig. 5.8a. Neither Bedard and Kotsovos (1986) nor Gajer
and Dux (1988) reported the predicted crack pattern. The crack patterns predicted
by Vidosa, et al. (1991a) are shown in Fig. 5.8b in which the cracks formed at
most of the Gauss points. This might be due to the difference in the assumed

shear retention factor (they assumed a constant value of o.1).

To see the effect of the number of Gauss points per element on the result,
the prism has been analysed with 2x2x2 Gauss points for the 3-D model and
2x2 for the 2-D model. Figures 59 to 511 show the predicted stress-deflection
curves and the predicted crack patterns from the two models at different
increments. An increase of the predicted load has been observed; e g the

predicted failure load increased from 48% of fc' to 61% of fc¢' in the 3-D

analysis. The same behaviour has been reported by Vidosa, et al. (an increase

from 57% of fc' to 72% of

Figures 5.12 to 5.14 show the effect ofthe constant B in equations 51 and 5.2
on the results. In 3-D analysis, the effect of B is significant when 2x2x 2

Gauss points is used (increase B from 0.4 to 0.99 increases the predicted failure

load by about 16% of while it has no effect on the results when 3x3x3
Gauss points is used (the same curve in Fig. 5.9). In 2-D analysis, the effect of
B is less significant (see Figs. 5.13 and 5.14).

The effect of convergence tolerance is shown in Fig. 5.15. This figure shows that
the convergence tolerance of 0.1% and 4% givenearly the same result (difference

of 2% of the experimental failure load).
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Fig. 5.9 Stress-displacement curves for Niyogi's prism (effect of No. of Gausss points)
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Fig. 5.10 Effect of number of Gauss points in 2-D analysis.
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143 MPa 145 MPa
14.8 MPa 154 MPa
15.9 MPa 164 MPa

Fig. 5.11 Predicted crack patterns and deformed shapes using 2x2x2 Gauss
points (3-D analysis).

137



chapter5

Comparison between the predictions of 3-D and 2-D finite element models

Fig. 512 Stress-displacement curves (effect of B)
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Fig. 5.13 Stress-displacement curves (effect of B)
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Fig. 5.14 Stress-displacement curves (effect of B)
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Fig. 5.15 Effect of convergence tolerance.
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z A Prediction of the behaviour of a rectangular beam without web
reinforcement

The beam OA-1 chosen for the analysis was one of the twelve beams

tested by Bresler andScordiles (1963). This beam has been tested by many
authors, e.g. Bedard and Kotsovos (1986) using a 2-D model; Vidosa, et al.
(1991a) using a 3-D model. The beam is shown in Fig. 5.16. This beam had
a/d ratio of 4.0. It had a span of 1828.8 mm with cross-sectional dimensions
556.3 x 310.0 mm. The longitudinal reinforcement consisted of four bars with a
total area of 2588.0 mm2placed in the bottom of thebeam at two levels. The
beam was subjected to acentral concentrated load andfailed in a britle manner
in shear without vyielding of the longitudinal reinforcement. The experimental failure
occurred shortly after the formation of the critical diagonal tension crack as a
result of longitudinal splitting in the compression zone nearthe load point and
also by horizontal splitting along the tensile reinforcement near the end of the
beam. The failure occurredat a load of 333.6 kNwith a mid-spandeflection of
6.7 mm. Fig. 5.17 shows the crack pattern obtained from the test.
Fig. 5.18 shows the finite element mesh used for the analysis of the beam. The
same finite element mesh (consists of 14isoparametric elements) is used for both
the 2-D and 3-D analysis. Due to symmetry, only one-half of the beam is used
in the analysis.

The beam is analysed with the following data:

fc = 226 MPa
ft'" = 2.57 MPa
V = 015

E = 23800 MPa
fy - 5555 MPa

Es= 218040 MPa
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556.3

3657.6

All dimensions in mm
429.3

63.5
63.5

309.9

Fig. 5.16 Details of beam OA-1

Fig. 5.17 Observed crack pattern for beam OA-1.
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2x278.15

228.6 6x304.8

All dimensions in mm

(a) 2-D finite element mesh

2x2

All dimenisons in mm

(b) 3-D finite element mesh

Fig. 5.18 Finite element mesh for beam OA-1
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The numericalfailure  loads obtained from the 2-D and 3-D analysis are about
100% and 105% of the experimentalfailure load,respectively. The numerical failure
load is the load corresponding to the last convergent increment after which the
displacements become very large compared to thedisplacements at the last
converged increment. In the analysissometimes at certainincrement the maximum
number of iterations (50 iterations) reaches while the norm of residual forces is
stil greater than the convergence tolerance (4%). Despite this, the convergence
occurs but at a slowrate such that the norm may reach to about 5% or 6% at
the last iteration. Also the displacements are not too large. This should not be
considered as a numerical failure.

The predicted load-deflection curves obtained from the 2-D and 3-D analysis are
compared with the experimental curve in Fig. 5.19. By comparing the predicted
failure loads and the load - deflection curves obtained from the two models it can
be concluded that both of the 2-D and 3-D analysis give nearly the same
degree of accuracy in predicting the behaviour of the beam under analysis.

The predicted stresses obtained from the two models, at a Gauss point under the
applied load near the middle of the beam, are plotted at all increments up to the
numerical failure (see Fig. 5.20). From this figure, it can be seen that the
stresses obtained from the 3-D model, at all increments, in the direction normal
to the plane of thebeam (Y-direction) are very small (lessthan 1.0 MPa) in
comparison to the stresses in the other two directions (X and Z). This may
explain why the 3-D analysis result did not differ much from that obtained from
the 2-D analysis.

n Figs. 521 to 5.25, the predicted crack patterns and deformed shapes obtained
from the two models are shown at different increments. The displacements are
magnified by 20 times. The cracks areplotted at the Gausspoints. The crack is
represented by a line. Its direction is normal to the maximum principal stress and
s length is proportional to the strain normal to the crack at this Gauss point.

One line per Gauss point means single crack occurred at this point, two lines
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Fig. 519  Load-deflection curves of beam OA-1
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perpendicular to each other at a Gausspoint means double cracks occurred,
asterisk (*) symbol means three perpendicular cracks occurred (for 3-D analysis
only), and a small square (o) means thatthe concrete at this Gauss point
crushed (i.e. the yield criterion has been violated).

Fig. 521 shows the crack patternsat load level of 50% of the experimental
failure load of the beam (load factor = 0.50).In the crack pattern obtained from
the 3-D model more cracksformed than inthat obtained from the 2-D model.
The crack patterns at load factor = 0.75 areshown in Fig. 5.22. In the crack
pattern obtained from the 2-D model, double cracksare shown at most of the
Gauss points near the level oflongitudinal reinforcement (Fig. 5.22a). In the
observed crack pattern (Fig.5.17) only some doublecracks have occurred. Fig.
5.22b shows that the cracks reached the support region which is not supported
by the observations in the experiment. In Fig. 5.23, the crack patterns obtained
from the two models are plotted at aload factor = 0.95. This increment is the
last converged increment in both the 2-D and 3-D analysis. Therefore, the load
at this increment is not considered the numerical failure load since the
displacement at the next increment (load factor = 1.00) is not much larger than
that at this increment. Nearly-horizontal cracks at thisincrement have reached the
top of the beam in the shear span, in both the 2-D and 3-D analysis (the
critical cracks occurred in the experiment at load factor about 0.80). Fig. 5.24
shows the crack patterns at a load equal tothe experimental failure load (load
factor = 1.00). As mentioned above, the maximum number of iterations is reached
at this increment without achieving the condition of convergence (i.e., the norm of
residual forces is still greater than the convergence tolerance, 4%). Most of the
Gauss points in the shear span have cracked, but the beam still can carry more
load. At load factor = 1.05,the displacement in the 2-D analysis becomes very
large with respect to the displacements at load factor = 1.00 (e.g.; the mid-span
deflection increased from 8.93 to 1451 mm). Fig. 5.25 shows the crack patterns

and the deformed shapes ata load factor = 1.05 (in Fig.5.25a displacements
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Fig 5.21 Crack patterns and deformed shapes ofbeam OA-1 at load factor = 0.50:
(a) 2-D; (b) 3-D (displacements magnified x 20).
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Ho

single crack : X
double crack: X
triple crack (3-D only): *
crushing of concrete : |

Fig 5.22 Crack patterns and deformed shapes ofbeam OA-1 at load factor - 0.75:
(a) 2-D; (b) 3-D (displacements magnified x 20).
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single crack :

double crack:
triple crack (3-D only):
crushing of concrete : H
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Fig 5.24 Crack patterns and deformed shapes of beam OA-1 at load factor - 1.00:
(a) 2-D; (b) 3-D (displacements magnified x 20).
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(a) 2-D, load factor = 1.05 (displacements magnified x 2).

Jingle crack :
ouble crack:
riple crack (3-b only):
rushing of concrete :

(b) 3-D, load factor = 1.05 (displacements magnified x 20).

(c) 3-D, load factor =1.10 (displacements magnified x 2).

Fig. 5.25 Crack patterns and deformed shapes ofbeam OA-1.
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are magnified only 2 times). At this load factor, the concrete at most of the
Gauss points has crushed. In the 3-D analysis (Fig. 5.25b), the displacement
increments at load factor = 1.05 are still small, therefore, the concrete at one
Gauss point under the applied load has crushed and double cracks occurred at
some Gauss points in the shear span. The convergence at this increment has
been achieved in the 3-D analysis only. At load factor = 1.10, the calculations
stopped in the 2-D analysis due to appearance of negative pivot in the stiffness
matrix. In 3-D analysis, the convergence did not occur, the displacements became
very large (Fig. 5.25c, displacements are magnified only 2 times), three cracks
occurred at many Gauss points, and the concrete crushed at many Gauss points.
The negative pivot appeared at a load factor = 1.15.

By looking at the stresses in the longitudinal reinforcement, at none of the Gauss

points on any bar has there been yielding up to the numerical failure load (load

factor = 1.00 in 2-D analysis and = 1.05 in 3-D analysis). In 2-D analysis, the
maximum stresses at load factor = 1.00 was 325 MPa (about 58% of the vyield
stress of steel). This stress in 3-D analysis was 356 MPa at load factor = 1.05.

Both the 2-D and 3-D models predicted similar crack patterns, deformed shapes
at the numerical failure load, and stressesin the longitudinal reinforcement, and it
is easy from the above to conclude that the mode of failure of this beam s
shear and not flexure.

Bedared and Kotsovos (1986) and Vidosa, et al. (1991a) predicted the behaviour
of this beam (beam OA-1). In the former paper using 2-D finite element version,
they overestimated the failure load of this beam. This was when they used the
single crack approach and when this restriction on the cracks was removed they
underestimate the failure load by about 40%. This result was obtained using
constant shear retention factor = 0.5. In the second paper using a 3-D finite
element version, 7 runs were performed on this beam with different parameters all
°f them using the single crack approach. The predicted failure load was between

15% to 90% of the experimental failure load. One comment on the analysis by
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Vidosa, et al. (1991a) should bementioned here thatdespite their using a 3-D
model which is very expensive compared to 2-D model, they approximated the
representation of the beam by neglecting the concrete cover and putting the
longitudinal reinforcement in one layer instead of two.

The large difference in predictions by the 2-D model reported by Bedard and
Kotsovos or in those reporting by Vidosa, et al. using a 3-D model may reflect
that the problem is not 2-D or 3-D model, but it is how to adjust all
parameters that affect the prediction to get the best result, and this cannot be
predicted without the analysis of alarge number ofbeams.

More discussion on this beam is presented in the next chapter.

5.5 Prediction of the behaviour of a rectangular beam with web
reinforcement

A beam (A-1) from the twelve beams tested by Bresler and Scordiles (1963)
is chosen for analysis. Beam A-1 is nearly similarto beam OA-1, that has been
analysed in the previous section, except for the use of web and compression
reinforcement. The cross-sectional dimensions of the beam are 561.3 x 307.3 mm.
The stirrups consist of s mm deformed bars with a spacing of 210.0 mm and the
compression reinforcement consists of 2 bars of 10 mm diameter (Fig. 5.26). The

use of the web and compression reinforcement increased the experimental failure

load from 333.3 kN (the experimental failure load of beam OA-1) to 467 kN.

The beam is analysed using the following data:

fc = 244 MPa

ft = 2.65 MPa

vV = 015

E = 23800 MPa

For tension reinforcement:

fy = 5555 MPa , Es= 218040 MPa
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561.3

63.sT
63.51

210 210
1228 3657.6 228.6|

All dimensions in mm

383.0

307.3

Fig. 5.26a Details of beam A-1

IlTITl1 Ft “T"T“rTITr

Fig. 5.26b Observed crack pattern for beam A-l.
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For compression reinforcement:
fy = 3457 MPa, Es= 201480 MPa
For web reinforcement:

fyv= 3257 MPa , Es= 189750 MPa

The same finite element mesh used for analysis of beam OA-1 is used here
(Fig. 5.18). Both of the two models underestimated the failure load of this beam.
The predicted failure loads from the 2-D and 3-D models are 90% and 80% of
the experimental failure load, respectively.

Fig. 5.27 shows the predicted load- deflection curves obtained from the two
models. The predicted curves are more flexible than the experimental curve. The
stresses at a Gauss point under the applied load near the middle of the beam
are shown in Fig. 5.28. Like the beam OA-1, the stresses in the direction
normal to the beam plane are very small compared with the stresses in the other
two directions (X and Z directions).

The predicted crack patterns and deformed shapes are plotted in Fig. 5.29 to Fig.
532. Fig. 5.29 shows the crack patterns and deformed shapes at load factor =
05. The beam behaves at this increment as the beam OA-1 at the same
increment, most of the Gauss points at the bottom of the beam have cracked. At
load factor = 0.75 (Fig. 5.30), nearly horizontal cracks occurred in the top half of
the beam which indicates that the critical shear cracks have already occurred (the
critical shear cracks occurred in the experimentat load factor = 0.57). In 3-D
analysis, at this increment (load factor = 0.75)convergence did not take place.
The rate of convergence was very slow. The norm of residual forces reached
4.76% at the maximum number of iterations allowed (50 iterations).

Fig 531 shows the cracks and the deformed shapes at the numerical failure
loads predicted from the 2-D (load factor = 0.90) and 3-D (load factor = 0.80)

analysis which clearly indicate that shear is dominant.
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Fig. 5.27 Load-deflection curves of beam A-1
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single crack :

double crack:
triple crack (3-p only):

crushing of concrete :

o

Comparison between the predictions of 3-D and 2-D finite element models
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Fig. 5.29 Crack patterns and deformed shapes of beam A -I at load factor 0.50:

(a) 2-D;

(displacements magnified x 20).

156



A 0
/7 /. /K I, | 1] i
A < r
{ ; ll / I I + + / 1 + + -’ i 1 |S
...... L | 1 1 1 1 ' 1
ety 4o
single crack : /
double crack: A
triple crack (3-Donly):  *
crushing of concrete : 1+
f
/ [~ - o
—_ WA
“//6//////r~r1T"J/1 °
A i1 0
OV T & T T 1V 2 ©

Fig. 5.30 Crack patterns and deformed shapes ofbeam A -I at load factor - 0.75:
(a) 2-D; (b) 3-D (displacements magnified x 20).
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Fig. 5.31 Crack patterns and deformed shapes ofbeam OA-1: (a) 2-D, load factor 0.90;

(b) 3-D, load factor = 0.80 (displacements magnified x 20).
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The longitudinal reinforcement hasn't yielded up to the numerical failure load in
both the models which supports the predicted failure mode concluded from the
crack patterns and deformed shapes that the beam failed in shear. The stresses
in the reinforcement obtained from both two models showed no large difference.
For example, the maximum stresses obtained from the 2-D and 3-D models in
the longitudinal reinforcement at load factor = 0.75 are 321.6 and 328.6 MPa and
at load factor = 0.80 are 350.7 and 345.7 MPa, respectively. In 3-D analysis,
the stresses in the horizontal legs of stirrups did not exceed 35 MPa up to the
numerical failure.

This beam has been analysed by Bedard and Kotsovos (1986) using 2-D finite
element model and by Vidosa, et al. (1991b) using a 3-D finite element model.
Bedard and Kotsovos, using the single crack approach and constant shear
retention factor = 0.5, predicted afailure load nearly equal to the experimental
one which is considered an excellent result. However, by comparing their predicted
load-deflection curve (Fig. 5.32a) with the present predicted load- deflection curves
from the 2-D model in Fig. 527, it can be seen that the two curves are nearly
the same up to about 80% of the experimental failure load. After that, the
present predicted curves stopped while the predicted curve by Bedard and
Kotsovos continues but stiffer than the experimental curves which might be due to
assuming a high constant shear retention factor and using the single crack
approach in their model.

Using a 3-D finite element version, Vidosa, et al. (1991b) predicted a failure load
of about 9%6% of the experimental failure load of this beam. Their predicted load-
deflection curve is more flexible than that of Bedared and Kotsovos (Fig. 5.32b).
This is because they neglected the concrete cover to the tension reinforcement in
their finite element discretization and also due to taking less shear retention factor
(01). From the above it can beconcluded that the assumedvalue of shear

retention factor and the accurate representation of the beam under investigation
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Fig. 5.32 Predicted load-deflection curves for beam A-l.
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may have more significant effect on the prediction than the effect of using a 2-D
or 3-D version.

More discussion on this beam is presented in the next chapter.

4fi Prediction of the behaviour of a Tee beam

In this section a comparison between the 2-D and 3-D models is made on
a Tee beam (beam ST1) from those tested by Taylor (1966). Due to the triaxial
state of stresses in the flange one could expected a large difference between the
results of the 2-D and 3-D analysis. But this did not happen aswillbe shown
below.
The beam has a span of 3099 nmm and a cross-section as shown in Fig. 5.33.
It is subjected to a central concentrated load. The amount of web reinforcement
in one half of the beam is different from (about 80% of) the amount provided in
the other half. All stirrups are ¢ nm diameter at a spacing of 88.9 and 114.3
mm in the two halves of the beam, respectively. Tension reinforcement consists of
five 16 nmm deformed cold-worked mild-steel bars. Three of the longitudinal bars
were continuous to the ends of the beam while the other two bars were stopped
at distance of ese mm from the supports. Two 22 nm mild-steel bars were used
as compression reinforcement. The beam was designed to fail in shear, but it
reached its maximum flexural capacity although wide cracks in shear span near
the ends of the stopped-off bars were observed. The experimental failure load
was 132 KkN.
Fig. 5.34 shows the finite element mesh used for the analysis of the beam. In
2-D analysis the mesh consists of 36 elements, while in 3-D analysis 48
elements are used. Dueto symmetry, only one-half and one-fourth ofthe beam
are used in 2-D and 3-D analysis, respectively. The beam is analysed using the

following data:
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top longitudinal steel In all beams: two 22.2 mild-steel bars

rdL

-7

three 15.9 c.w.m*. bars two 15.9 c.w.m.s. bars 1828.8 long
3657.6

spacing of'stinups in left side = 114.3
spacing of'stirrups in rigth side = 88.9

All dimensions in mm

25.4 cover to top
longitudinal bars
12.7 cover between bars
cover to bottom longitudinal
bars: 25.4
114.3

Fig. 5.33 Details ofbeam STI.
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(b) 3-D

Fig. 5.34 Finite element mesh for beam STI.
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f = 259 MPa

J' = 274 MPa

0.15

\

£

25000 MPa
For tension reinforcement:

fy = 4416 MPa , Es= 190000 MPa
For compression reinforcement:

fy = 278.0 MPa , Es= 190000 MPa
For web reinforcement:

fy,= 290.0 MPa , Es= 190000 MPa

In 2-D  analysis when the beam stiffness matrix is onlyupdated at the second
iteration of each increment, numerical problem (iterations did not yield a convergent
solution, since the stresses orthogonal to the cracks were alwayslarger than the

maximum allowable residual stress criterion) was observed at load factor = 0.4
and the numerical failure occurred at load factor = 0.45. This numerical problem
also faced Vidosa, et al. (1991a) when they used intial stiffness matrix or stiffness
matrix updated every three iterations in the analysis of beam OA-1. The analysis
of beam ST1 was repeated with updating the beam stiffness matrix at every
iteration.  The calculation inthe two models reached loadfactor = 0.95 without
any trouble. This increment was the last converged increment in both the 2-D
and 3-D analysis. In 3-D analysis, despite the convergence tolerance (4%) was
not be achieved at load factor = 1.00 but the displacement increments were not
very large and the rate of convergence was very slow (the norm of residual
forces reached 10.3% at the last 50th iteration. In 2-D analysis, a negative pivot
appeared in the beam stiffness matrix at load factor= 1.00. Thepredicted failure

loads from the 2-D and 3-D analysis are 95% and 100% of the experimental
failure load, respectively. The load-deflection curves are shown in Fig. 5.35. As

observed in the analysis of the previous two beams (beams OA-1 and A-1), the
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curves for beam ST1.

Load-deflection

Fig. 5.35
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predicted load-deflection curve obtained from 3-D model is slightly stiffer than that
obtained from 2-D model.

The crack patterns and deformed shapes at load factors = 0.5; 0.75, and 0.95
are shown in Figs. 5.36 to 5.38. Unlike the predicted crack patterns of beams
OA-1 and A-1 whichfailed in shear, the crack patterns of beam ST1 show that
the ’lengths' of shear cracks are less than that of the flexural cracks (the crack
length is plotted proportional to the strain normal to the crack plane).

The stresses in concrete obtained from the two models at a Gauss point under
the applied load are shown in Fig. 5.39.

Fig. 540 shows the stresses in the flange under the applied load in the Y-
direction. The maximum compressive stresses in this direction did not increase
beyond 3.0 MPa.

The two models predicted nearly the same stresses in the reinforcement. For
example, the maximum stresses intension reinforcement at load factor = 0.85
obtained from 2-D and 3-D models are 430 and 428 MPa, respectively. In both
the models, the tension steel started to yield at a load factor = 090, i e

before the numerical failure which indicates that the beam failed in flexure.

5J Conclusions
From the comparison between the predictions of 2-D and 3-D finite element
versions that has been made in this chapter on four types of structures, the
following conclusions can be drawn.
+ The difference in the predictions of failure load did not exceed more than «o %
in any case whichindicates that the use of 2-D finite element version instead
of 3-D one is safely acceptable. The 2-D version is preferable because of

the considerable saving of cost and time.
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chapter 5 Comparison between the predictions of 3-D and 2-D finite element models

Fig. 5.39 Stresses at a Gauss point under the applied load (ST1)
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. Adjustment of the factors that affect the prediction in the model itself is more

significant for the correct prediction than the choice of 2-D or 3-D model.

* Updating the stiffness matrix at certain iteration only may cause numerical

problems.

* Increase in the assumed value of shearretention factor more than 0.4 may lead

to overestimation of the failure load.
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CHAPTER fi

PRELIMINARY PARAMETERIC STUDY

fi 1 Introduction

The comparison, which has been made in chapter 5, between the
predictions of 2-D and 3-D finite element models led to the conclusion that
2-D finite element model is sufficient for predicting the behaviour of reinforced
concrete beams. The aim of this chapter is to find out the features of this
2-D finite element model that gives good prediction of the behaviour of any
reinforced concrete rectangular beam. To determine this finite element model,
many parameters that affect the prediction should be studied. One can classify
the parameters affecting the final results into two classes. The first contains
material parameters such as compressive strength of concrete, tensile strength
of concrete, Young's modulus, shear modulus and shear retention factor,
stress-strain relationships of concrete, and yield strength of reinforcement. The
second class contains numerical parameters such as the numerical method used
in calculating strains and stresses, the number and the size of increments, the
maximum number of iterations in each increment, the convergence criteria, the
mesh size, the type of element used in the analysis, the number of Gauss
points per element, and other parameters such as simulation of supports and
applied loads. Twelve beams will be analysedin this chapter. These beams
were tested by Bresler and Scordelis in 1963.The main purpose of analysing
Bresler and Scordelis's beams in great detailis to find out the important

Parameters which have a significant effect onthe prediction of these beams.



ChapterA Preliminary parametric study

From this preliminary study, it was found that the material parameters have

more effect on the prediction than the numerical parameters. Therefore, the

concentration in this chapter will be on material parameters. Five parameters

which many think have a significant effect on the prediction will be studied.

These parameters are:

() shear retention factor,

(i) tensile strength of concrete,

(i) magnitude of the strain corresponding to the peak stress in the stress-
strain curve of concrete in compression,

(iv) tension softening of concrete, and

(vy compression softening of concrete.

6.2 Analysis of Bresler and Scordelis's beams

In their famous paper, Bresler andScordelis (1963) tested aseries of 12
beams. These tests were designed to provide (at that time) needed data
regarding the shear strength of beams. From these twelve beams, there are
four beams which have attracted the attention of investigators during checking
the validity of theirfinite element models. These beams areOA-1, A-1, OA-
2, and A-2.
All beams were of rectangular cross section and had the same nominal over-
all depth of 553 mm (Fig. 6.1). Main longitudinal reinforcement consisted of
from two to six 28 MM diameter high strength steel deformed bars [fy = 555
MPa) placed in two or three levels. The nominal effective depth was 457 mm
All stirrups were made from 6 mMmM intermediate grade steel deformed bars (fyv
= 326 MPa). Three beam widths 152, 229, and 305 mMm and three simple
span lengths 3658, 4572, and 6401 mm were used (Table 6.1). All beams

were loaded at midspan. The beams have normal to low percentages of web

? A
reinforcement (rf= 0, 0.33, 0.48, and 0.65 Nmm, where r= b = cross-
y .S
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Fig. 6.1 Dimensions of cross sections of Bresler and Scordelis's beams

Table 6.1 Data of Bresler and Scordelis's beams

Stirrups
Beam Length Cross- d a/d Spacing Failure Ultimate
) fe P rfyv
(mm) section (mm) mode shear force
(mmxmm) (mm) (MPa) (%) (MPa) (kN)

OA-1 3657.6 310x556 461 3.97 22.56 1.81 - - D-T 167.0
OA-2 4572.0 305x561 466 4.90 23.74 2.27 - - D-T 178.0
OA-3 6400.8 307x556 462 6.94 37.61 2.74 - - D-T 189.0
A1 3657.6 307x561 466 3.92 24.08 1.80 209.6 0.33 V-C 233.5
A-2 4572.0 305x559 464 4.93 24.29 2.28 209.6 0.33 V-Cc 244.5
A-3 6400.8 307x561 466 6.91 35.05 2.73 209.6 0.33 F-C 234.0
B-1 3657.6 231x556 461 3.95 24.77 2.43 190.5 0.48 V-C 221.5
B-2 4572.0 229x561 466 4.91 23.18 2.43 190.5 0.48 V-Cc 200.0
B-3 6400.8 229x556 461 6.95 38.78 3.06 190.5 0.48 F-C 177.0
C41 3657.6 155x559 464 3.95 29.60 1.80 209.6 0.65 V-C 155.5
C-2 4572.0 152x559 464 4.93 23.81 3.66 209.6 0.65 V-Cc 162.5
_C-3 6400.8 155x554 459 6.98 35.05 3.63 209.6 0.65 F-C 134.5
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sectional area of stirrup over the product of beam width and spacing of

stirrups) and normal to high shear span depth ratios [a/d = 4, 5, and 7).
Beams OA-1, OA-2, and OA-3 are without shear reinforcement. Beams A-1,
A-2, and A-3 are identical to Beams OA-1, OA-2, and OA-3, respectively,
except for the presence of shear reinforcement (6 mm diameter; f = 326 MPa)
and the top bars (13 nmm diameter; fy - 346 MPa). High-strength longitudinal
steel reinforcement was used in all beams to minimise the possibility of
flexural failure. To prevent bond failure due to possible insufficient anchorage
after the formation of diagonal tension cracks, special anchor nuts were
attached to the longitudinal bars. All beams were tested under centre-point
lead. Nine of the twelve beams failed in shear and the remaining three beams

failed in flexure.

General behaviour ofall the twelve beams: Typical flexural cracks appeared first,
following by the appearance of diagonal tension cracks, usually in the middle

third ofthe over-all beam depth and at various sections along the span. With

further increase in load these diagonal cracks extended both upwards and
downwards. The generalmodes of failure observed in this series of tests
were:  diagonal tension (D-T), shear-compression (V-C), and flexure-

compression (F-C) failures, defined as follows.

e D-T: Typical crack pattern for D-T failureis shown in Fig. 6.2a. This
type of failure was observed in all the beams without shear reinforcement.
The failure was sudden andoccurred as a result of longitudinal splitting in
the compression zone near the load point, and also by horizontal splitting
along tensile reinforcement near the end of the beam.

- V-C: Typical crack pattern for V-C failureis shown in Fig. 6.2b. This
type of failure was observed in intermediate span beams with shear
reinforcement. Failure developed without extensive propagation of flexural

cracks towards the compression zone in the centre portion of the span and
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Fig. 6.2 Typical crack patterns of Bresler and Scordelis's beam.
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it occurred by splitting in the compression zone and without splitting along
the tension reinforcement.

+ F-C: Typical crack pattern for F-C failure is shown in Fig. 6.2c. This type
of failure was observed in long span beams with adequate web
reinforcement. Failure occurred by crushing of the compression zone near
midspan. Flexure cracks continued to extend upward untii a sudden
compression failure occurred. Unfortunately, Bresler and Scordelis did not
measure the strain in the bars.

The observed load-deflection curves for the twelvebeams are shown in Fig.

6.3.

Analysis ofthe beams,:
First, the beams will be analysed with the 2-D finite element version used

in chapter 5. The features of this version are as follows

¢ Representation of the stress-strain relationship of concrete under compressive
force using curve fittingmethod (Equations 3.1 and 3.3). The value of
strain zcc at the peak of stress Jff) is 0.0025 and the maximum

compressive strain Zmax is 0.0035 (Fig. 6.4).

The failure criterion for concrete is assumed to follow the Kupfer-Hilsdrof

criterion

The intermediate surfaces will be withan intermediate strength {fcc) replacing
the ultimate strength (fc). An empirical form for fcc is used (Equation 3.4).
 Smeared cracking model.

* Tension cut-off criterion, i. e. the concrete is unable to carry tensile stress

after cracking.

The shear retention factor P is taken as a function of strain normal to the

crack plane (see Sec. 6.2.1 for more details).

Reinforcement is simulated by embedded elements. The bar carries load in its

axial direction only. An elastic-perfectly plastic behaviour is assumed.
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Fig. 6.3 Load-deflection curves of Bresler and Scordelis's beams.
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+ Perfect bond between steel and concrete.

¢ Using tangent stiffness method (updating of tangent stiffness matrix at each
iteration).

+ Convergence is checked by comparing the residual forces to the total

external applied loads.

Thefollowing are keptfixedfor all the beams.

e Only one half of the beam is used in the analysis.

e The load steps for all cases in the first three increments will be 10% of
the experimental failure load of the beam under analysis and 5% of the
experimental failure load for the remaining load steps until the numerical
failure, i. e. the accuracy of the prediction is *5%.

. The convergence criterion is based on the residualforces, the convergence
tolerance is 4%.

e The predicted failure load is the load at the last converged increment.

¢ The maximum number of iterations per increment is 50 iterations.

e The concentrated loads and reactions at the supports are simulated as
distributed loads on an element edge.

e The poisson's ratiois kept equal to 0.15.

* Young's Modulus is taken according to ACI code as;

E = 5000 y~fc' in MPa

At the beginning, the tensile strength of concrete ft will be taken as
reported in Bresler and Scordelis's paper.

e Beams OA-1, A-1, B-1, and C-1 are modelled by 36 elements. Beams
OA-2, A-2, B-2, and C-2 are modelled by 42 elements. Beams OA-3,

A-3, B-3, and C-3 are modelled by 57 elements (see Fig. 6.5).
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Fig. 6.5 Finite element idealization.
(a) Beams OA-1, A-1, B-1, and CA1
(b) Beams OA-2, A-2, B-2, and C-2
(c) Beams OA-3, A-3, B-3, and C-3
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6.2.1 Effect of shear retention factor
The shearretention factor Pis taken as a function of the tensile strain

normal to the crack as follows

P = B fcr / sn >pmn

where zcr is the tensile crack strain;s, is the fictitious tensile strain normal to

the crackplane; and B and pmnare numerical constants. Four values for

these two constants will be studied (see Fig. 3

Case (1) p = 01 > 0.0
Case (2) p =04 | £« > 0.0
Case (3) p = 05 I s, > 041
Case (4) p = 1.0 ecr /<=« > 0.5

6.2.1.1 Beams without shear reinforcement
Figures 6.6 to 6.8 show the load-deflection curves for the four cases of the
shear retention factor P for the three beams without shear reinforcement OA-
1, OA-2, and OA-3. The resultsof the prediction are shown in Table 6.2.
From Table 6.2, it can be seen that the effect of P onthe load-carrying
capacity is very significant for these beams. The difference in the predicted
failure load between Case (1) and Case (4) for beam OA-1 is about 80% of
the corresponding experimental failure load. This difference decreases for beam
OA-3 to about 35% of the corresponding experimental failure load.The best
prediction of the failure load for these beams is given by Case (1), the mean
value of the predicted to the experimental failure loads in thiscase is about

0.92.
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Fig. 6.6 Load-deflection curves for beam OA-1 (effect of shear retention factor p).
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Fig. 6.7 Load-deflection curves for beam OA-2 (effect of shear retention factor p).
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Although the lowest value of P gives a good prediction of the failure load, as
will be shown below it fails to predict to good accuracy the load-deflection

curve (Figs. 6.6 - 6.8) and the crack pattern (Figs. 6.9 -6.10).

In this study, the prediction of the mode of failure of a beam will depend
on the following aspects:

(I) Crack pattern: Cracks are plotted at the Gauss points. Single crack is
represented by a symbol — . The length of the two lines of this symbol
and the spacing between them are proportional to the strain normal to
the crack at this Gauss point. The direction of the lines is normal to the
maximum principal tensile stress. Adding another symbol (=*=) perpendicular
to the previous one means doublecrack occurred atthis Gauss point.
Small solid square (m) symbol means that the concrete at this Gauss
point has crushed. In the predicted crack pattern, if the cracks, as
represented using convention explained before, in the shear area are larger
than that in the flexure region then the failure of the beam is shear dominant.

(2) Deformed shape of the beam: The deformed shape consists of the mesh
of elements after deformations. The mesh elements are plotted after
adding the displacements (magnified by a suitable factor) to their
coordinates. The deformed shape of beams clearly indicates those beams
failing in flexure and those failing in shear.

(3) Stress in concrete in compression zone: The stress-strain curve of
concrete in the compression zone near mid-span of thebeam will be
plotted to see if the stress of concrete reached the compressive strength
before the numerical failure or not. In beams failing in shear-compression
or flexure-compression, this stress should reach to the compressive
strength of concrete before or at numerical failure.

(4) Stresses in tension steel: Yielding of tension steel near mid-span of the

beam before numerical failure indicates that the beam may fail in flexure.
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(5) Stresses in shear and compression reinforcement (if exist): Yielding of
some points of stirrups arranged diagonally from the load point to the
support indicates that the beam failed in shear. While yielding of the
compression steel before numerical failure indicates that the beam may fail
in either shear-compression or flexure-compression.

The predicted behaviours of the three beams without shear reinforcement (OA-

1, OA-2, and OA-3) are similar, therefore only the predicted behaviours of

beam OA-1 will be discussed.

The effect of P on the prediction of the crack pattern for beam OA-1 is
shown in Figs. 6.9 and 6.10.In Fig. 6.9, the crack patterns and deformed
shapes are plotted for the four cases of P at the same load factor (L. F.=
0.95). When the value of p is low (Case 1), all the Gauss points in the
lower parts of concrete section ofthe beam crack. Moreover, the number of
Gauss points at which double cracking occurs near the longitudinal
reinforcement increases. By increasing the value of P, the number of Gauss
points at which the cracks occur reduces. By comparing the observed crack
pattern (after ignoring the horizontal splitting in the compression zone and
along the reinforcement) with the four predicted crack patterns, it can be seen
that the crack pattern of Case (2) is the nearest to the observed crack
pattern for this beam. In Fig. 6.10, The crack patterns and deformed shapes
at the last converged increment are plotted for the four cases of P for beam
OA-1. It can be noticed that inspite of the fact that the whole span of the
beam has cracked for the higher three cases of P, still the beam carried loads
untii the compression zone near the mid-span load crushed. This crushing happened
due to the compression strainin concrete exceeding the assumed maximum
strain (0.0035). The principal compressive stress-strain curve of concrete at a

Gauss point, under the load point is shown in Fig. 6.11 for the
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four cases of (3. From this figure, it can beseen that the primary failure is
caused by the crushing of the concrete in the compression zone near the load
(the strain reached 0.0035) which results in the development of diagonal
cracks running towards the mid-span load which leads to the experimental
failure mechanism reported by Bresler and Scordelis (D-T failure). This supports
the conclusion of Ottosen (1982) when he studied the beam OA-2. He
assumed that the strain at the peakcompressive stress equals 0.002 and he
noticed that the compressive strain near the mid-span load reached more than
this value before the numerical failure of the beam.

Fig 6.12 shows the principal compressive stress distribution (stresses greater
than 2 MPa) using the lower and highest value of (3 (Case (1) and Case (4)). As
shown in this figure, the higher value of (3 leads to smaller stresses especially
in the lower part of the beam. This naturally leads the beam to resist higher
load before failure.

In Fig. 6.13, the stresses in a longitudinal bar from the Ilowest level (main
reinforcement is placed in two levels) are shown for the four cases. At the
same load factor (for example load factor = 0.90), the stresses in the bar at
the middle of the beam are nearly the same for the four cases of P which
indicates that the value of P doesn't affect the magnitude of the stress in the
steel. This means that in the bending region, P is not important. For all the
four cases of P, the steel has not yielded up to about 155% of the
experimental failure load of the beam, while in the highest case of P (Case
4), the steelstarted to yield at about 160% of the experimental failure load.
This indicates that the beam did not fail in flexure. Also the dependency of
the predicted failure load on the value of P supports the view that the beam

fails in shear.

The important question now after this result is why did the prediction

overestimate the observed failure loads for these beams especially when a high
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value of the shearretention factor is used ? Isit only because of the shear

retention  factor oris there something else either in the implied input data or

in the program itself which causes this overestimating ?

* From the input data, it can be seen that the tensile strength (modulus of
rupture of concrete which has been taken from Bresler5 paperis higher
than any calculated tensile strength taken from any code. But this leads to
other question; does the tensilestrength have agreat effect on the
prediction? The answer to this question is given inSec. 6.2.2.

e From the program, the important numerical result which has been noticed
during the analysis is that the maximum compressive strain whichhas been
taken as 0.0035 is quite big especially since there are no stirrups in these
beams to confine the concrete to reach this value. This point will be
considered in Sec. 6.2.3.

The second question is why was the predicted load-deflection curve more

flexible than the experimental one even for a high value of shear retention

factor (Figs. 6.6-6.8); was it due to neglecting the tension stiffening or
tension softening in concrete ? To answer this question the effect of tension

softening of concrete will be studied in Sec. 6.2.4.

6.2.1.2 Beams with shear reinforcement

In Figures 6.14 to 6.22, the load-deflection curves for the nine beams with
shear reinforcement are plotted for the four cases of p. For all the beams,
the lower the value of P more flexiblethe load-deflection curve. In these
beams, the effect of P isless significant than in the beams  without shear
reinforcement, especially for the three beams A-3, B-3, and C-3 which failed
n flexural compression mode. The resultsof prediction of the nine beams are
shown in Table 6.3. The difference between the mean values of the ratios of

the predicted to the observed failure loadfor Case (1) and Case (4) is about

193



Preliminary parametric study

o6

0z

o6
of

oy

in
ro

(peoy anjey

|leyuswiadxe ap p %

Chagter6

(eses pe (y) eseD
udamiaq aosualaylag

vo 'L

S56°0

S0 ‘I

S0 I

S6°0

S

S0 I

S€ 1L

?es

o))

S0l

S0

oo

06"

G0’

G6°

oo

0z’

l

(¢) eoseD

8

0°01}

€670

§8°0

o8 o

S0 I

00 '}

G6 "0

06 0

06°0

juawooiojulal Jeays UM sSweaq U Jojoej UOIJUIJSl Jedays Jo 1oahg

t
r

9. 0
SL 0
G9°0

08*0

S9°0
GL°0
o8 o

oS o

apou

X

(%)

98" ¢

€6° €

(AN 4

(A2 4

9.° ¢

66" €

ve'y

€L e

98° ¢

uoljeiAdp

piepl 5

(7= ”
S0 'S¢
18" &
09°6¢
8L" &€
81" &
Ll
G0 S€
62
80 &

S

16"

§6°

16"

28

p/v

to

ID

wedg

£€9 sKgeL

194



ChagtedL Preliminary parametric study

1.50
casey  M1-2->0
P Case(2): £=0.4 -2- > 0 10 mm
o
§ 125 Case(3): £= 0.5-2- > oll
jo
@ Case(4): £= 10-Z- > 05
a
£
1.00
W
075
a.
0.50
025 C 1 C 2 C 3 C 4
ase (1) ase (2) ase (3) ase (4) Experiment
Numerical
0. 00
Mid-span deflectiom (mm)
Fig. 6.14 Load-deflection curves for beam A1 (effect of shear retention factor p).
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Fig. 6.15 Load-deflection curves for beam A-2 (effect of shear retention factor p).
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Fig. 6.17 Load-deflection curves for beam B-1 (effect of shear retention factor p).
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Fig. 6.19 Load-deflection curves for beam B-3 (effect of shear retention factor p).
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28% of the observed failure loads. Except for Case (1), the results for the
other three cases are of acceptable accuracy. The mean values and standard
deviation for the four cases are (0.76, 7.7%), (0.93, 10.0%), (0.99, 10.5%),
and (1.04, 14.2%), respectively.

The predicted behaviours of the beams having the same a/d ratio are similar.
Therefore only the predicted behaviours of three beams with different a/d ratio

(A-1, A-2, and A-3) will be discussed.

Results of beam A-1 [a/d= 4.0]:

In Fig. 6.14, the predicted load-deflection curves using the four cases of P
for beam A-1 are plotted against the observed curve. The predicted load-
deflection curve using Case (1) is more flexible than the observed curve up to
the numerical failure, while the predicted curves using the other three cases of
P agree well with the observed curve up to about 80% of the observed
failure load. After that the predicted curves become stiffer and increasingly
stiffer as the minimum value of P (Pmin) increases. This stiffening in the
predicted curves might be due toassuming a minimum value of P (which
remains constant) even after reaching a very large width of the crack.

Figures 6.23 to 6.27 show some numerical results for beam A-1 for the four
cases of p. These results are; the crack patterns and deformed shapes at the
last converged increments, the stresses in the stirrups at the last converged
increments, the stress-strain curves of concrete at a Gauss point under the
applied load, the stresses in the compression steel for several increments, and

the stresses in a longitudinal bar from the tension steel.

CasaliH
Fig. 6.23 shows the crack patterns at the last converged increments. The
crack pattern of Case (1) agrees to a certain extend with the observed crack

Pattern at failure in that some cracks penetrated the compression zoneat the
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middle of the beam and some horizontal cracks appeared in this zone (this
indicates that failure starts in compression zone). However, the predicted
crack pattern of Case (1) disagrees with the observed crack pattern in that
except near the load, no cracks occurred above the Ilower third. The predicted
stresses in the stirrups are shown in Fig. 6.24; the position of the points at
which  the stirrups yielded does not correspond tothe correct position of the
diagonal cracks that appears in the observed crack pattern. Fig. 6.26 shows
the stresses in the compression steel which indicates that it started to yield
before numerical failure. The tension steel has not yielded at any point (which
means no flexure failure, Fig. 6.27). From the above, it can be concluded that

the failure is nearest to be Shear-Compression.

Case (2):

UsingCase (2) of (3, the results for beam A-1 are also shown in Figures
6.23 to 6.27. In this case, the program overestimated the failure load by
about 10% (Table 6.3). The crack pattern and deformed shape at the Ilast
converged increment (L.F. = 1.10) are shown in Fig. 6.23. From the figure, it
can be seen that the diagonal cracks dominate and penetrated the compression
zone up to the top of the beam although the beam can still carry load. Many
points in the stirrups vyielded in the shear span (Fig. 6.24). The compression
steel started to yield at L.F.= 1.0 (Fig. 6.26), and the main steel has not
yielded (Fig. 6.27). This leads one to conclude that the predicted failure mode

is Shear-Compression.

fase (3):
Figures 6.23 to 6.27 show theresults of Case (3) for the same beam A-1.
Nearly the same results as for Case (2) but with overestimating of the failure

load by about 20% (Table 6.3).
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Casfi-141:

In Case (4) of P, not only the prediction overestimatedthe failure load by
about 35% (Table 6.3), but also the predicted mode of failure changed to be
Flexure-Compression instead of Shear-Compression. Although Fig. 6.23 shows
good prediction of the crack pattern in this case, the stresses in stirrups do
not indicate clearly that these cracks are critical shear cracks (Fig. 6.24). Also,

the tension steel has yielded before the numerical failure (Fig. 6.27).

In all the four cases of P, the numerical failure was due to the strain in the
compression zone under the load point exceeding the assumed maximum strain
(0.0035). Fig. 6.25 shows that at the |last converged increment, the

compressive strain is near to 0.0035 for the four cases of p.

Results of beam A-2 [a/d= 5.0]:

The numerical results of beam A-2 are shown in Figures6.28 to 6.32,
while the load-deflection curves for the four cases of P are shown in Fig.
6.15. Except for Case (1) for which the predicted failure load is 70% of the
experimental failure load, the predicted failure load is reasonable for the other
cases (90%, 100%, and 105% of theexperimental failure load, Table 6.3). As
for beam A-1 (Fig. 6.14), the predicted load-deflection curve for beam A-2
using Case (1) is more flexible than the observed curve, while the predicted
curves using the other three cases of P agree well with the observed curve
up to about 80% of the observed failure load. After that the predicted curves
become stiffer. The predicted crack patterns for the four cases agree well with
the observed one (Fig. 6.28), the best result is obtained using Case (2) which
predicted both the horizontal cracks in the compression zone near the load and
the double cracks at the level of tension steel near the middle of the beam
and near the support. The shear cracks are clear in the predicted crack

patterns, many points on the stirrups have yielded in the shear span (except
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in Case (4), Fig. 6.29). The compressive strain at Gauss point under the
applied load nearly reached the maximum strain at the Ilast converged
increment (Fig. 6.30). The compression steel has yielded before the numerical
failure (Fig. 6.31). In none of the cases has the tension steel yielded before
numerical failure (Fig. 6.32). All these facts indicate that the predicted mode
of failure is Shear-Compression which agrees with the experimental mode of

failure.

Results of beam A-3 [a/d= 7.0]:

The reported mode of failure of beam A-3 is Flexure-Compression which s
different from the reported mode of failure of the previous two beams (A-1
and A-2). Despite this, it can be seen that there is big similarity between
the two modes of failure (see Fig. 6.2). In none of the four cases of P, is
the experimental failure load of this beam overestimated. All the predicted
load-deflection curves are more flexible than the observed curve (Fig. 6.16).
The difference between the predicted failure loads of Cased) and Case (4) is
about 20% of the observed failure load (Table 6.3) which means that the
behaviour of the beam does not seriously depend on the assumed value of P,
indicating that the mode of failure is not shear failure. The results for this
beam using the four cases of P are shown in Figures 6.33 to 6.37. The
predicted crack patterns are shown in Fig. 6.33. With different degree of
accuracy, all of them predicted the observed crack pattern. In Case (3),
horizontal crack occurredin the compression zone which did not occur in Case
(1) and Case (2). When Case (4) was used, concrete at two Gauss points in
the compression zone had crushed. Also by using Case (4) none of the
stirrups has yielded up to the lastconverged increment (Fig. 6.34). The
compressive stress-strain curves at a Gauss point under the applied load for
the four cases are shown in Fig. 6.35. The tension steel has yielded before

the numerical failure only by using Case (4) (Figs. 6.36).
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It is interesting to notice that an increase in the value of P delays the yield
of the compression steel (compare for example the stresses at L. F. = 0.80

in Figs. 6.37). This was observed in all the beams with compression steel.

The above resultsof the nine beams lead to a question; why did this
stiffening in the predicted load-deflection curve happenafter about 75% of the
observed failure load when a high value of P is taken into account, although
this value gives an improvement (or increase) in the predicted failure load. The
answer to this question might be that the high value of P gives an artificial
(not real) increase in the stiffness of thebeam which increases the predicted

failure load.

6.2.2 Effect of tensile strength of concrete

The values of wuniaxial tensile strength of concrete used in Sec. 6.2.1 to
predict the behaviour of the twelve beams have been taken from Bresler and
Scordelis's paper (modulus of rupture of concrete). These values were obtained
from the beam test by loading the 1524 x 152.4 x 508 mm beams at the
third points of an 457.2 mm span. There are many equations in the literature
which relate the tensile strength of concrete with the modulus of rupture (see
for example Raphael 1984; Neville 1986).

The analysis of the twelve beams were repeated usingdifferent values of the

uniaxial tensile strength for two reasons. The first reason is that since not all
the previous experimental works tested or reported the tensile strength of
concrete, so, there is a need to estimate this value from other properties of
the concrete. The best property used to calculate the tensile strength is the
uniaxial compressive strength of concrete fcf because it is usually tested and
reported in the experimental works. The second reason is to see the effect of

this parameter on the prediction of the present finite element model.
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There are many empirical equations which estimate the tensile strength from

the cylinder compressive strength fcl\ One from these equations istaken from

A CI Code.

/I = 054 ffc' MPa

6.2.2.1 Beams without shear reinforcement

The predicted load-deflection curves using the value of ft' = 0.54 yj~fc'
for the three beams without shear reinforcement for the four cases of P are
shown in Figs. 6.38 to 6.40, and the predicted failure loads are shown in
Table 6.4. From Figures, as expected, that for all beams and for all cases of
P the Iload-deflection curves become more flexible than the corresponding
values in the previous results, This is because all values of ft' used in these
runs are less than that used in the previous runs (mean value of ft' is about
68% of the previous one). The effect of change of ft' on the predicted
failure load is different from one beam to another and also from the case of
one value of P to another. For example, the effect of using a lower value
of ft* on beam OA-1 using Case (1) of p decreases the predicted failure load
by about 10% of the observed failure load, this decrease becomesabout 35%
for the same beam when Case (2) of P is used. While for beam OA-3, there
is no effect of change of ft' on the prediction using cases (2) &(4).
The crack patterns and deformed shapes for the beam OA-1 for three cases
of P at the last converged increment are shown in Fig. 6.41. By comparing
the crack patterns and deformed shapes of Fig. 6.41 with the corresponding
crack patterns and deformed shapes (using value of f/ reported in the paper)
of Fig. 6.10, it can be seen that in Case (1), more cracks occurred in the
shear span above the bottom third of the over-all beam depth. In Case (2),

the cracks formed at the top of the beam in the whole shear span and the
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Fig. 6.38 Load-deflection curves for beam OA-1 (effect of tensile strength of concreteft).
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Fig. 6.39 Load-deflection curves for beam OA-2 (effect of tensile strength of concrete/,')-
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Fig. 6.40 Load-deflection curves for beam OA-3 (effect of tensile strength of concretef) .
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F9 6.41 Crack patterns and deformed shapes for beam OA-1 after reduction in//
(displacements magnified x 10).
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mesh elements atthe top of the beam deformed upward. In Case (3), the
same behaviour asCase (2)is observed. It can be seen also (from Fig. 6.41)
that case (2) represented what happened at the top of the beam at failure
(Buckling of the concrete in the compression zone with nearly horizontal crack
above the longitudinal steel reached to the beam end. In Fig.6.42, the crack
patterns and deformed shapes are shown for Case (2) at two load factors
(0.90 and 0.95). At load factor = 0.90, no cracks has formed at the top of
the beam. At load factor = 0.95, although the cracks reached the top of the
beam, still thebeam can carry more load. The displacements of the top
elements of the finite element mesh indicate that the failure occurs as a result
of longitudinal splitting in the compression zone near the load point. The
compressive strain  of 0.0016 in this increment at a Gauss point under the
load point did not exceed the assumed maximum strain of 0.0035. If one
remembers that the main reason of failure of this beam is the crushing of the
compression zone, this may explain why the beamdid not fail by these large

shear cracks.

6.2.2.2 Beams with shear reinforcement
The predicted load-deflection curves for beams with shear reinforcement are
shown in figures 6.43 to 6.51. The predicted failure loads are shown in Table
6.5. In general, the predicted load-deflection curves using the calculated values
of // are more flexible than that predicted using the values of ft' reported in
Bresler and Scordelis's paper. Also, the effect of change of ft' on the
predicted failure load is insignificant for these beams. The maximum difference
in the prediction for any beam at any case of (3 does not exceed more than
10% of the observed failure load. Although the mean value of the reduction in
ft was about 38%, the mean value of the reduction in the predicted failure

*cads is about 1-4% of the observed failure loads.
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Mid-span deflection (mm)

Fig 6.43 Load-deflection curves for beam A-1 (effect of tensile strength of concrete”').
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Fig. 6.44 Load-deflection curves for beam A-2 (effect of tensile strength of concretef ).
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Fig 6.45 Load-deflection curves for beam A-3 (effect of tensile strength of concrete
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Fig. 6.46 Load-deflection curves for beam B-1 (effect of tensile strength of concrete f #.
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Fig 6.47 Load-deflection curves for beam B-2 (effect of tensile strength of concretef ).
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Fig. 6.48 Load-deflection curves for beam B-3 (effect of tensile strength of concrete/,")m
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Fig 6.49 Load-deflection curves for beam C-1 (effect of tensile strength of concrete//).
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Fig. 6.50 Load-deflection curves for beam C-2 (effect of tensile strength of concrete/).
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Fig. 6.51 Load-deflection curves for beam C-3 (effect of tensile strength of concretef ).
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An important point to note is that for all the beams with and without shear
reinforcement, the scatter in the results decreases by using AC/ equation
(Tables 6.4 and 6.5). Therefore, since the tensile strength of concrete
calculated from AC/ equation gives less scatter in the prediction of failure
loads than that reported in Bresler and Scordelis's paper, the rest of the

analysis will be based on this equation in calculating ft'

6.2.3 Effect of the value of the compressive strain at peak stress

From the analysis of the three beams without shear reinforcement, it was
noticed that the primary reason for failures was the crushing of concrete due
to the compressive strain exceeding the assumed maximum strain of concrete
(fmax = 0.0035). The failures of these beams occurred at a load level more
than the observed failure loads for the last three cases of P (see Table 6.2).
In this section, the stress-strain relationship of concrete will be modified in
the model such that the maximumcompressive strain £max will be equal to
the compressive strain at peak stress fcc. The value of fcc will be variable as

a function of the cylinder compressive strength fc' as following (Fig. 6.52a).

"max = fcc = y/~fc | 2500

where fc' in MPa. The load-deflection curves after this modification for the
twelve beams are shown in Figs. 6.53 to 6.64 and the predicted failure loads,
the mean value, and standard deviation are shown in Tables 6.6 and 6.7.
From the figures, it can be seen that the predicted load-deflection curves are
nearly the same as that predicted using constant f£cc (0.0025) for most of the
beams. However, changethe value of £cc has significant effect on the

predicted failure loads. Table 6.6 shows the change in the predicted failure
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6&c  Emax= J7C 12500 £

Fig. 6.52a Stress-strain curve of concrete in compression without softening.

=0.005 £

Fig. 6.52b Stress-strain curve of concrete in compression with softening.
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Fig 6.53 Load-deflection curves for beam OA-1 (effect of e, ana).
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Fig. 6.54 Load-deflection curves for beam OA-2 (effect of ecc, arex).
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Fig 6.55 Load-deflection curves for beam OA-3 (effect of ecc, e
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Fig. 6.56 Load-deflection curves for beam A-1 (effect of ecc, enay.
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Fig 6.57 Load-deflection curves for beam A-2 (effect of ax;
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Fig. 6.58 Load-deflection curves for beam A-3 (effect of ecc, eray.
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Fig. 6.59 Load-deflection curves for beam B-1 (effect of e, a13.
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Fig. 6.60 Load-deflection curves for beam B-2 (effect of ecc, smay.
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Fig. 6.62 Load-deflection curves for beam C-1 (effect of scc, eray.
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Fig. 6.63 Load-deflection curves for beam C-2 (effect of e, a1&.
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Fig. 6.64 Load-deflection curves for beam C-3 (effect of ecc, eray.
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loads for beams without shear reinforcement due to the decrease in zcc % The
mean values of reduction are between 5-22% of the observed failure loads.

Table 6.7 shows the results for beams with shear reinforcement. All the mean values
of the prediction are conservative. The mean values of reduction in the failure
loads which were predicted using constant maximum strain (Ecc =0.0025) are
between 8% and 16% of the observed failure loads. In fact, only in two beams
(A-1 and B-3) using Case (4) of P was the failure load overestimated. Using Case (1)
or Case (2) of p, none of the failure loads of all beams (with or without shear

reinforcement) was overestimated (see Tables 6.6 and 6.7).

Now, the time has come to choose only one case of P to continue the
analysis. From the previous analysis, it can beconcluded that the lowest and
highest case of P did not give reasonable results either in predicting the load-
deflection curve or the failure load while theremaining two cases gave an
acceptable results. Because there are some factors (tension softening and
compression softening of concrete) stillto bestudied and these factors may
probably increase the predicted failure load, so,Case (2) (P = 0.4 scr/ sn >

0.0) will be chosen to continue the analysis.

6.2.4 Effect of tension softening of concrete

In conforming with experimental evidence and like most of the previous
works, since the beginning of using the finite element method in prediction of
structure response, the ascending portion of the tensile stress-strain curve is
assumed to be linear. In this work, preliminary study of the descending portion
of the tensile stress-strain curve as a linear curve (reaches to =zero stress at
a strain equals ten times of the crack strain)gave unsatisfactory result and

so, the descending portion will be taken as afunction of the strain normal to
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the crack plane (non-linear curve). Three equations of the descending curve

will be studied (Fig. 6.65)

Equation  (A) a = (scr [ s, I/
Equation  (B) a = J~(fcr | e,) ft'
Equation (AB) a = (scr / B0+ (Ecr / £,) 1112

6.2.4.1 Beams without shear reinforcement

The predicted load-deflection curves for the three beams without shear
reinforcement using the three equations are shown in Figs. 6.66 to 6.68. From
these Figures, it can be seen that all the predicted load-deflection curves are
in good agreement for the three beams. In general, the predicted load-
deflection curve using equation B to represent the tension softening of
concrete is stiffer than that using the other two equations (A and AB). Also,
the predicted load-deflection curve using equation AB is stiffer than thatusing
equation A. The predicted failure loads are also in good agreement (Table 6.8);
the mean values of the ratio of the predicted failure loads to the observed
failure loads using the three equations (A, AB, and B) are 0.97, 1.0, and
1.02, respectively. Neglecting the compression softening of concrete did not
make the result worse. This may be explained as follow. Since there are no
stirrups to confine the concrete and the failures of these beams are brittle and
sudden, the compression softening of concrete doesnot take place.

It can also be seen that there is an increasein the predicted failure load
because of taking the tension softening into account. This increase in the
predicted failure load varies from 5-25% of the experimental failure load (see
Table 6.8).

The predicted crack pattern and deformed shape using the three equations are
nearly the same. In Fig. 6.69, the crack pattern and deformed shape for

beam OA-2 (using Eq. AB) are shown at three different load factors (L.F.=
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0.50, 0.95, and1.00). At L.LF= 0.50, the <crack pattern is in good
agreement with the observed; the quarter span of the beam near the support
has no cracks. The crack pattern at L.F.= 0.95shows that the flexural cracks
reach the centreline of the beam in the shear span; no cracks occur near
the supports. At the Ilast increment at which numerical instability occurred
(L.LF.= 1.00), a crushing in the compression zone under the load point occurred
while a large nearly horizontal cracks appear above the middle of the beam.
This indicates that the main reason for failure is the crushing of concrete in
compression zone under the load point. This can be seen from the stress-
strain relationship at a Gauss point in the compression zone and close to the
load point (Fig. 6.70). Fig. 6.71 showsthe stresses in the longitudinal steel;

the maximum stress in the bar at the last converged increment (L.F.= 0.95)

does not exceed 55% of the yield stress.

These  satisfactory results for these three beams without shear reinforcement
makes it possible to conclude that further investigation of shear failure of

beams without shear reinforcement is not required.

6.2.4.2 Beams with shear reinforcement
Figs. 6.72 to 6.80 show the predicted load-deflection curves of the beams
with shear reinforcement. It can be seen from these figuresthat the predicted
load-deflection curves agree well with the observed load-deflection curves up
to the numerical failure which occurs at a load level less than the observed
failure load. As for beams without shear reinforcement, the predicted load-
deflection curve for these beams using equation B to represent the tension
softening of concrete is stiffer than that using the other two equations (A and
AB). Also, the predicted load-deflectioncurve using equation AB is stiffer than

that using equation A. The mean valuesof the predicted to the observed
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Fig. 6.65 Assumed stress-strain curve of concrete in tension
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Table 6,8 Effectof tension softening of concrete in beams without shear reinforcement

Eq. B

0

Eq. AB

15

Normal strain / Initial cracking strain

fe 1,"=0.54/7/ Bhax ecc
Beam

MPa MPa fc'l/2500
OA-I 22.6 2.81 0.0019
OA-2 23 .7 2.63 0.0020
OA-3 37.6 3.31 0.0025

Mean value

Without
tension
softening

0.95
0.70
0.85

0.83

Eq. A

25

Predicted / Experimental failure load

EQUATION EQUATION EQUATION

(A)
1.10

0. 95
1. 00

0. 97

(AB) (B)
1.05 1.00
0.95 0.95
1.00 0. 95
1.00 1.02
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Load-deflection curves for bean OA-1 (effect of tension softening).

Fig. 6.66
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Load-deflection curves for bean OA-2 (effect of tension softening).

Fig. 6.67
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Load-deflection curves for bean OA-3 (effect o tension softening).

Fig. 6.68
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(displacements magnified x 10).
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Fig 6.69 Crack patterns and deformed shapes for beam OA-2
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Strain

Fig. 6.70 Principal compressive stress-strain curve of concrete at Gauss
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Fig. 6.71
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Stresses in tension steel at different load factors (beam OA-2).
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Load-deflection curves for beam A1 (effect o tension softening).

Fig. 6.72
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Load-deflection curves for bean A2 (effect of tension softening).

Fig. 6.73
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Load-deflection curves for beam B2 (effect o tension softening).

Fig. 6.76
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Load-deflection curves for beean B3 (effect of tension softening).

Fig. 6.77
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Load-deflection curves for bean C-1 (effect of tension softening).

Fig. 6.78
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Load-deflection curves for bean C2 (effect of tension softening).

Fig. 6.79
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Load-deflection curves for beeam C3 (effect of tension softening).

Fig. 6.80
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failure loads of the nine beams with shear reinforcement using the three
equations (A, AB, and B) are 0.73, 0.74,and 0.76, respectively (Table 6.9).
This underestimation of the prediction could be because of ignoring the
confinement produced by stirrups in increasing compressive strength of concrete

above fc' or because the compression softening of concrete was neglected. To

see which of these two parameters was the responsible for this poor
prediction, these parameters will be studiedin the following sections.
N. B,i

In the remaining part of analysis, the stress-strain relationship of concrete in the
tension softening portion will follow equation (AB) which gave satisfactory results

for most of the twelve beams.

6.2.5 Effect of compressive strength of concrete

The analysis of the nine beams with shear reinforcement was repeated after
using compressive strength of concrete which is higher than fc' by 28%. The
object of considering this increase in strength is to allow for some effect of
confinement of concrete dueto stirrups. Many investigators have assumed
compressive strength of concrete higher than fc'(see for example Stevens, et al.
1991; Vecchio 1992 and Fig. 3.6). Table 6.10 shows the results of the
prediction for the nine beams. It can be seen that the increase in the
predicted failure loads is small (5-10% ofthe experimental failureloads). The
predicted load-deflection curves are shownin Figs. 6.81 to 6.83. From these
figures, it can be seen that the predicted load-deflection curves of some
beams are in general closer to the experimental load-deflection curves (beams
A-3, B-1, C4, C-2, and C-3) while in somebeams theload-deflection
curve became stiffer than the experimental curve (beams A-1, A-2, B-2, and

B-3).
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6.2.6 Effect of compression softening of concrete

Many experimental works prove that the softening in compression exists (see
Figs. 3.4 - 3.6), but the typical stress-strain relationship which describes exactly
the behaviour of concrete after the compressive stress reaches the peak is still
not available. Also, there is no agreement on the maximum compressive strain
of concrete. A straight line with a very small slope for the descending portion
will be assumed and some values of maximum compressive strain will be

studied as follows.

(1) when fJ is used (see Fig. 6.52b):

(0.1-8) _
" ¢ (/6“1 -8 cc) ' £ £mex

where :.. is the strain at maximum stress.
Two values of £max have been taken; 0.005 and ten times FEcc
(approximately 0.020). The Ilatter might occur when concrete is well

confined (see Fig. 3.4-6)

(20 when 1.28fc' is used:
CT= L2*fc {B¥-SeB}:) : 6 < Hnax

and two values of EHmax have been taken; 0.004 and 0.005.
Table 6.11, shows a comparison between these results and the results when
the compression softening was neglected. From this Table, it can be seen that
taking compression softening into account increased the predicted failure load

by about 10-50% of the corresponding experimental failure load. An increase of
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fimax from 0-004 to 0.005, increased the mean value by 5%. When zmax
increased from 0.005 to 10.8QC (about 0.020) the mean value increased by
17%. The best mean value (0.98) was obtained by using compressive strength
of concrete = 1.28%' and zmax= 0.005, although the standard deviation was
not the best (10.6%). The mean value and the standard deviation using
compressive strength = fc' and £max= 0.005 are (0.88, 9.4%) . In this case it
can be seen that all the predicted failure loads except for beam A-1 are
conservative. Using compressive strength = fc’ and £wax= 10. 80C the mean
values and standard deviation become (1.05, 12.8%). These results of Table
6.11 show that there is an interaction between the maximum compressive
strength and the maximum compressive strain and any increase in one of them
leads to an increase in the predicted failure load.

The predicted load-deflection curves are shown in Figs. 6.84-85. From these
figures, it can be seen that assuming high value of maximum compressive
strain £max (even 10 times the strain at the peak of stressscc, Fig. 6.84a-c)
makes most of the predicted load-deflection curves continue in the same trend
as the experimental curves and delays failure which means that the reason of
failure of these beams is the crushing of compression zone.

In the following, the predicted behaviours of some beams using compressive
strength of concrete = 1.28 fc’ and £max= 0.005, which gave the best mean
value, are presented.

Figs 6.86 to 6.90 show the predicted crack pattern and the stresses in
stirrups, compression, and tension reinforcement for beam A-1. The crack
patterns at two load factors are shown in Fig. 6.86 which show good
agreement with the observed crack pattern. The principal compressive stress-
strain curve of concrete at Gauss points under the applied load is shown in
Fig 6.87, in which the compressive strain nearly reached the value of Smax
(=0.005). The points at which the stirrups have yielded are arranged diagonally

in the shear span from the support to the load point (Fig. 6.88). The
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Fig. 6.86 Crack patterns and deformed shapes for beam A-1

(displacements magnified x 10).
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Fig. 6.87 Principal compressive stress-strain curve of concrete at Gauss
point under the applied load (beam A-1).
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Fig. 6.88 Stresses in shear reinforcement (beam A-1).
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compression steel has yielded under the load point before the numerical failure
(Fig. 6.89). The tension steel hasn't yielded at any point up to the failure
(Fig. 6.90). From the above it can be concluded that the mode of failure is Shear-
Compression as reported in Bresler and Scordelis's paper.

The predicted crack patterns for beam A -2 at two load factors (0.90 and
0.95) are shown in Fig. 6.91. Inspite of the fact that large shear cracks
occurred at L.F.= 0.90, stil the beam carried loads until the compressive
strain in the compression zone under the load point reaches £wax (Fig. 6.92).
The predicted stresses in the stirrups agree well with the observed mode of
failure (Fig. 6.93). The compression steel has yielded under the load point before
numerical failure (Fig. 6.94a) and no yield occurred in the tension steel (Fig.
6.94b). The predicted failure mode for this beam is Shear-Compression. The
main reason of failure is, like beam A-1, the crushing of concrete in the
compression zone under the load point.

Beam A-3, as reported in Bresler and Scordelis's paper, failed in F-C mode.
In Fig. 6.95, the predicted crack patterns and deformed shapes at three
different load factors (0.90, 1.00, and 1.05) are shown. The lengths of shear
cracks (which are plotted proportional to the strain normal to the crack) are
equal to the lengths of theflexure cracks (and not like beam A-1 and A-2
where lengths of shear cracks are larger than that of flexure cracks). Also,
the deformed shape of the beam indicates a ductile behaviour. The stress-
strain relationship of concrete at Gauss point in the compression zone under

the load point indicates that the concrete entered the softening zone at load

factor 0.90 (Fig. 6.96). Most of stirrups started to yield late at Load

factor 1.00 (Fig. 6.97). The compression steel has yielded at Load factor
= 0.90 (Fig. 6.98a). The stress in tension steel nearly reached yield stress at
the last converged increment (Fig. 6.98b). The reason for failure is the

crushing of concrete due to increase in thecompressive strain of more than

fmax (= 0.005). The predicted failure mode is nearer to Flexure-Compression.
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Fig. 6.92 Principal compressive stress-strain curve
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Fig. 6.93 Stresses in shear reinforcement (beam A-2).
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Fig. 6.94b Stresses in tension steel at different load factors (beam A-2).
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Fig. 6.95 Crack patterns and deformed shapes for beam A-3

(displacements magnified x 10).
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Fig. 6.96 Principal compressive stress-strain curve of concrete at Gauss
point under the applied load (beam A-3).
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Fig. 6.97 Stresses in shear reinforcement (beam A-3).
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In all the nine beams, a small nearly-horizontal crack occurred in the predicted
crack patterns at the top of the beam near the load point at the last
converged increment (see Figs. 6.86, 6.91, 6.95) which agrees well with the

observed.

An interesting point has been noticed in this group of beams is that the
predicted failure load of beam C-2 did not reach the experimental value for
any of the analysis carried out. In the following section, the reasons for it are

explored.

Figs. 6.99 to 6.106 show the results of the two beams B-2 andC-2. The
differences between these two beams are the width of the cross-section
(228.6, 152.4 rmMm respectively) and the spacing between the stirrups (190.5,
209.6 mm respectively). These differences make the tension reinforcement ratios
equal 2.43% and 3.66% and the shear reinforcement ratios equal 0.243% and
0.366% respectively. The predicted failure load for beam B-2 (which is 90% of
its experimental failure load) is better than that of beam C-2 (which is 80%
of its experimental failure load). Beam B-2 shows the same behaviour as
beam A-2 in the prediction (compare Figs. 6.99 - 6.102 with Figs. 6.91 -
6.94). Beams A-2, B-2, and C-2 have the same a/d ratio. BeamC-2 has
the highest tension reinforcement ratio (3.66%). As shown in Fig. 6.105, a
sudden increase in the compressive strain between increment number 12 (L.F.=
0.75) and increment number 13 (L.F.= 0.80) is observed. This sudden increase
did not happen in beams A-2 and B-2 (Figs. 6.92, 6.100). Sincethe main
reason of the failure is the crushing of compression zone so, the weakness in
the prediction of the failure load of this beam may be because of the

assumed stress-strain curve of concrete.
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Fig. 6.99 Crack patterns and deformed shapes for beam B-2

(displacement magnified x 10)
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Fig. 6.100 Principal compressive stress-strain curve of concrete at Gauss
point under the applied load (beam B-2).

Yielding of stirrup o

LF. =085 fo..T r
1 « i
OIS 5b
il 1
0.90 J— 1 T ~T
I\ i
. Y Y /
L~ LoX G20 N T TR I
AAA - . . =

Fig. 6.101 Stresses in shear reinforcement (beam B-2).
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Fig. 6.104 Principal compressive stress-strain curve of concrete at Gauss
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Fig. 6.105 Stresses in shear reinforcement (beam C-2).
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To see if the above explanation is acceptable or not, beam C-2 was rerun
by assuming compressive strength of concrete equals two times fc' (47.6 MPa)
and with £max of 0.007. The predicted load-deflection for beam C-2 is
shown in Fig. 6.107. It can be seen from this figure that the predicted load-
deflection curve is nearly the same as the observed one. Also, the predicted
failure load is the same as the experimental one. This result means that the
assumed stress-strain curve of concrete might represent the high degree of
confinement of the compression zone under the load point which makes the
concrete in compression zone can carry compressive stress twice fcl Or this
result may state that there was inaccurate measurement of fc' in the
experiment. Fig. 6.108a shows theprincipal compressive stress-strain curve of
concrete at a Gauss point in the compression zone under the load point. From
this figure, it is clear that the stresses in the compression zone reached the
assumed compressive strength up to the assumed maximum compressive strain
ewax. In Fig. 6.108b, the crack pattern and deformed shape are plotted for
beam C-2. Thiscrack pattern isin very good agreement with the observed
crack pattern which indicates that the assumed compressive strength of

concrete is not far from the actual behaviour.

By repeating the analysis of beams B-2 and A -2 after assuming a
compressive strength of concrete equals 1.5 fc' for beam B-2 and 1.25 fc'
for A-2 (this assumption is related to the cross-sectional area, or to the
width of the beam since the depth is nearly the same) with £max of 0.007,
the predicted failure load became equal to the experimental failure load in the
two beams (Fig.6.107). This may mean that there is a relation between the
stress-strain curve of concrete or the degree of confinement and the cross-

sectional dimensions.
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Fig. 6.108b Crack pattern and deformed shape for beam C-2

(Load factor = 1.00, displacements magnified x 10).
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Figs. 6.109 to 6.111 show a comparison between the results of the present
model with that of some previous finite element models. A comparison
between the load-deflection curves of six of Bresler and Scordelis's beams
predicted by the present model (using fc' to represent the compressive strength
of concrete and f£max= 0.005, Fig. 6.52a) and that predicted by the model of
Balakrishnan, et al. (1988) is shown in Fig. 6.109. This figure shows that the
two models have similar degree of accuracy.

For the purpose of comparison with Vecchio (1989) and Stevens, et al.
(1991), The analysis of beam A-1 was rerunincluding the self-weight of the
beam. The convergence tolerance was 4% for the first seven increments (up to
50% of the observed failure load), 2% for the next five increments (up to
75%), and 1% for the rest of increments. The predictedload-deflection is
shown in Fig. 6.110b, while the predicted crack pattern and deformed shape
are shown in Fig. 6.111c. The predicted load-deflection curve has the same
degree of accuracy as that predicted by the above two models (Fig. 6.110a).
Vecchio did not report the predicted crack pattern in his paper. The crack
patterns predicted by the model of Stevens, et al. are shown in Fig. 6.111b.
In the crack patterns of Stevens, et al., nearly all the flexural cracks at the
bottom third of the over-all beam depth changed their direction which does
not agree well with theobserved, also in the crack pattern of Stevens, et al.,
in which the cracks locations and spacing are arbitrary, the cracks reached the

top of the beam before failure.
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Fig. 6.109 Load-deflection curves for six of Bresler and Scordelis's beams,
(a) Balakrishnan, et al. (1988b)  (b) Present model
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fi.3 Conclusions

« The last version of the present model predicted the behaviours of the
twelve beams to an accuracy equal to or better than the previous models.
The prediction of the load-deflection curve, the crack pattern, and the
stresses in the steel was to an acceptable accuracy for the twelve beams.
The concrete material input data required is the compressive strength of
concrete fc' only. The other properties viz. Young's modulus E, tensile

strength ft\ the maximum compressive strain of concrete scc at the peak of

stress are calculated from fc' as follow:

E =80WP4 / c'

/Il =054 |/ c MPa

Ecc = g 2500

where fc' in MPa

For beams with shear reinforcement, compression softening of concrete is
taken into account by assuming a straight line with very small slope and
maximum compressive strain of 0.005. For beams without shear reinforcement
no compression softening is assumed.

* For beams failing in shear, the effect of shear retention factor P is very
significant in beams without shear reinforcement, while it is less significant
in beams with shear reinforcement.

+ The tensile strength of concrete ft' has a small effect on the prediction of the
failure load and the mode of failure.

+ Taking tension softening of concrete into account improves the prediction of
load-deflection curve. It has significant effect on the prediction of failure
load of beams without shear reinforcement (10-25% of the failure load of
beam) while it has insignificant effect on the prediction of failure load of

beams with shear reinforcement. The following equation for the descenéigg
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portion of the stress-strain curve of concrete in tension gave satisfactory

results.

a = (I /*n + yT(*cr I eJ J ft I2 in MPa

* The value of the compressive strain at the peak ofstress in the stress-
strain relationship of concrete scc has a significant effect on the prediction
(up to 25% of the failure load of beam).

» The compression softening of concrete has a significant effect on the load-
carrying capacity of beams with shear reinforcement. Taking the
compression softening into account increased the predicted failure loads of
the nine beams with shear reinforcement by 15-20% of their load-carrying
capacity.

* For beams with shear reinforcement with small spacing of stirrups, ie. well
confinement of concrete, assuming compressive strength of concrete (=kfcf where
k is factor greater than 1.0) which is higher then fc' gave good results for most of
the beams. However, the failureload of some beams became overestimated by
about 15%. For beams without shear reinforcement and for beams with shear
reinforcement with spacing of stirrups greater than half of the effective depth of

beam, assuming compressive strength of concrete of fc' gave good results.
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CHAPTER 7

PARAMETRIC STUDY CONTINUED

7.1 Introduction

In chapter 6, a 2-D finite element model was developed to predict the behaviour
of reinforced concrete beams. The model was adjusted to get the best prediction
of the behaviours of twelve beams tested by Bresler and Scordelis (1963). In this
chapter, an attempt is made to investigate the model further by studying beams
from other sources. Only reinforced concrete rectangular beams have been studied
in this chapter. A study of other types of beams will be presented in the next
two chapters. More than one hundred and fifty beams have been analysed. The
beams studied were taken from three previous experimental works; Krefeld and
Thurston (1966b), Clark (1951), and Mphonde and Frantz (1984). These beams
covered important variables affecting the shear strength of reinforced concrete
beams such as: shear span to depth ratio a/d, amount of shear reinforcement,
effective depth and width of beam, and compressive strength of concrete. Most of
the beams failed in shear. The beams which failed in flexure were studied for

the purpose of comparison.

L.2 Data of beams

7.21 Krefeld and Thurston's beams

Krefeld and Thurston (1966b) tested over 200 reinforced concrete beams subjected
to concentrated and distributed loads, among them there were 44 beams with
shear reinforcement. All the beams with shear reinforcement, in addition to 4

beams which have the same properties as the beams with shear reinforcement but
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without shear reinforcement have been analysed. Also, the first27 beamswithout
shear reinforcement reported in the paper have been analysed. There was no
specific reason for selecting these as opposed to others. The dimensions of the
beams and the methods of loads application are shown in Fig. 7.1. Table 7.1
shows the data required for the analysis of beams without shear reinforcement.

These beams had a range of a/d rato from 235 to 6.0, a range of fc' from
165 to 30.2 N/mm2, and a range of tension reinforcement ratio p from 0.8 to
51%  The data required for the analysis of beams with shear reinforcement are
shown in Table 7.2. These beams had a range of a/d rato from 3.89 to 6.0, a
range of fc' from 157 to 485 N/mm2, and a range of p from 222 to 3.41%.
The spacing of stirrups s was from 88.9 to 5334 mm and the product of the
percentage of shear reinforcement r (=ASvb.s) and the yield stress of stirrups fy,
was from 021 to 1.67 N/mm2.

The experimental load-deflection curves of the beams have not been reported in

the paper. Six types of failures have been reported by Krefeld and Thurston as

follows (see Fig. 2.9):

DT: Failure occurred due to a diagonal crack at nearly constant slope to the
top surface of the beam.

DT-S: A sliding type failure along adiagonal plane above orat the end of a
horizontal crack in the compression zone.

DT-C: A crushing disintegration failure above or at the end of a horizontal crack
in the compression zone.

DT-R: A failure associated with a relative rotation of adjacent segments at the
end of horizontal portion of diagonal tension crack in the compression
zone which has extended close to the top surface. In many cases a thin
layer of concrete above the horizontal crack buckles upward.

7-C: Flexure-Compression.

F~T: Flexure-Tension.
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Fig. 7.1 Krefeld and Thurston's beams and type of loading.
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P/6

2x190.5 1524 6x127.0 mm 762
(a) Finite element mesh /
4P/6
P/6
P/6
2x190.5 152.4 6x127.0 mm
(b) Finite element mesh [/
4P/6
76.2

2x190.5 1524 ! 6x127.0 mm

(c) Finite element mesh [/l

FI9 7.2 Finite element meshes for Krefeld and Thurston's beams without
shear reinforcement.
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Chapter 7
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4P/6
P/6
76.2
2x190.5 152.4 9x118.5 mm
(d) Finite element mesh [V
4P/6|
P/6
3x101.6 <v
76.2

2x190.5 1524 11x124.7 mm
(e) Finite element mesh V
Fig. 7.2 Finite element meshes for Krefeld and Thurston's beams

without shear reinforcement (continued).

4P/6

P/6

P/6
1 2286 im.4 . 9x152.4 mm

76.2

(a) Finite element mesh V/
Fig. 7.3 Finite element meshes for Krefeld and Thurston's beams
with shear reinforcement.
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Parametric study continued

4P/6

P/6

76.2
228.6 1524 10x167.6 mm

(b) Finite element mesh VI

PUTAT

nT

228.6 1524 9x127 mm

(c) Finite element mesh VI

Ok
Ok
Ok
'ok
s T

228.6 11524 11x131.6 mm

(d) Finite element mesh IX

Fig. 7.3 Finite element meshes for Krefeld and Thurston's beams

with shear reinforcement (continued).
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<K

3x127 <fC
<b
KK
<b

P/6

228.6 152.4 6x139.7 mm

(e) Finite element mesh X

2x152.4

P/6

228.6 152.4 10x144.7 mm

(f) Finite element mesh X/

3x169.3

P/6
2286  152.4 11x159.3 mm
(g) Finite element mesh X /I

Fig. 7.3 Finite element meshes for Krefeld and Thurston's beams
with shear reinforcement (continued).

313



Chapter 7 Parametric study continued

The beams have been analysed using different finite element meshes depending
on beam dimensions (see the last Column in Tables 71 & 7.2 and Figs. 7.2 &

7.3).

7.2.2 Clark's beams

Clark (1951) tested 62 beams all of them had a/d ratioless than 2.5. Among
these beams, 12 beams were without shear reinforcement. Only 4 of the beams
with shear reinforcement were loaded by mid-span loads, the other beams were
loaded by two concentrated loads at equal distances fromthe supports. Different
positions of the two concentrated loads from the supports were used to obtain
different a/d ratios for beams with the same total span. The stirrups were placed
in the shear span only. The dimensions of the beams and types of loading are
shown in Fig. 7.4. All of the beams failed in diagonal tension, but in some
beams yielding of the longitudinal reinforcement or compressive failure of the
concrete occurring at about thetime as the diagonal tension failure made the
primary cause of failure difficult to determine. The experimental load-deflection
curves and the crack patterns of some beams have beenreported (Figs. 7.5 &
7.6).

In the analysis, the beams (62beams) have been divided to 22 groups. Each
group has the same properties except the concrete compressive strength fc' (the

difference in fc' is not large). Data for the beamsare shown in Table 7.3. The

finite element meshes used in the analysis are shown in Fig. 7.7.

7.2.3 Mphonde and Frantz's beams

Mphonde and Frantz (1984) tested three series (19 beams in total) of beams
without shear reinforcement with three a/d ratios; 1.5, 2.5, and 3.6. They studied
the effect of a verywide range of concrete compressive strength (designed to be
between 21 and 103 MPa). All beams exceptone had the same tension

reinforcement ratio (p = 3.36%). This high ratio wasused to ensure that a shear
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Chapter 7
129POO »
(556.0)

=z 100y0O00*
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Parametric study continued

D4)
C3J

B2)

108

0.05(1.27) 0.10 (2.54) 0.15(3.81)

Deflection , in (mm)

Fig. 7.5 Load-deflection curves of Clark's beams
(1in. =254 mm, 11lb=4.448 N)
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chapter 7

4x114.3

88.9, 7x111.6 mm

(a) Finite element mesh |/

4x114.3

88.9, 6x112.2 mm

(b) Finite element mesh [/

4P/6l

4x114.3

P/6

88.9, 4x130.1 mm 88"

(c) Finite element mesh [/

Parametric study continued

4P/fl

,88.9

4P/6l

188.91108

2x130.2

Fig. 7.7 Finite element meshes for Clark's beams.
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4P/6
1 U
4x114.3
I
P/6
,88.9, 4x92.1 mm 88.9 4x103.2 mm
(d) Finite element mesh IV
4P/6
P/6
VM fi i
3x127
1
P61
3x137.6 88.< 5x104.1 mm 88.9 5x113.0 mm
(e) Finite element mesh V
4P/6|
P/6
3x127 0
0
0
%
P/6|
3x158.8 88.9, 4x136.5 mm ,88.9, 5x156.2 mm s
(f) Finite element mesh V/
4P/6
n u
m
0
0
3x127 0
*77
P/6
3x137.6 88.8 5x134.6 mm ,88.9, 5x143.5 mm ,
(9) Finite element mesh VI

Fig. 7.7 Finite element meshes for Clark's beams (continued).
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35.25" or 58.75" or 84

3-*8 | covor

0 or
2-»7 4,-*6 (only 3- 3C)

Fig. 7.8 Dimensions of Mphonde and Frantz's beams and type
of loading (1 in. =25.4 mm).

Arch rib failure

15-lb
0/6 m15

Shear compression (V-C) failure

Diagonal tension (D-T) failure

Fig. 7.9 Typical crack patterns of the three series of Mphonde & Frantz's beams.
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Chapter 7 Parametric study continued

4P/6

P/6

JU

3x112.2

e T

44.5
107.9 88.9 9x108.7 mm
(a) Finite element mesh /

4P/6

P/6
1
T

3x112.2
A
P/6
445
3x142.9 88.9 6x109.5 mm
(b) Finite element mesh I/
4P/6 1
P/6
3x112.2
Al
P/6 Wl
44.5
5x145.4 mm 88.9 3x119.6 mm

(c) Finite element mesh [//

pig. 7.10 Finite element meshes for Mphonde and Frantz's beams
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Chapter 7 Parametric study continued

failure rather than a flexure failure took place in all the beams. The dimensions
of beams are shown in Fig. 7.8. Three typical failure crack patterns for the three
a/d series have been reported (Fig. 7.9). At failure longitudinal splitting along main
reinforcement was present in all the beams. But very careful observation of the
actual failure sequence showed that the longitudinal splitting did not initiate the
final failure. For beams with a/d ratio of 1.5 there was a much greater variation
in the measured ultimate failure load than for beams with a/d ratios of 3.6.
Mhponde and Frantz referred this scatter to the way inclined cracking developed
at different a/d ratios. In beams with a/d ratio of 1.5, the initial inclined crack
develops suddenly along almost its entire length. The initial crack location is
critical and it determines if much arching action can develop or if the capacity is
increased only slightly as the inclined crack punches through the top face of the
beam and so very little arching action develops. Experimental load-deflection
curves have not been reported in the paper.

The beams data required for the analysis are shown in Table 7.4. The finite

element meshes used in the analysis are shown in Fig. 7.10.

7.3 Analysis of beams
Initially, the last version of the model which was developed in chapter 6 will be
used to predict the present reinforced concrete rectangular beams. This version

has the following features.

» The stress-strain relationship of concrete in compression is assumed as shown
in Fig. 711. In the analysis of beams without shear reinforcement, no
compression softening is assumed (Fig. 7.11a). In the analysis of beams with
shear reinforcement, a straight line with very small slope is assumed for the

descending portion as follows (Fig. 7.11b).
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Chapter 7 Parametric study continued

o =fc01-8 / (01 - £ < (7.1)

Acc~ Ve / 2500 ;

’ emax

=0.005.

where fc¢* in mpPa

. The stress-strain relationship of concrete in tension is assumed as shown in
Fig. 7.12. The tensile strength of concrete r¢- is estimated from the

compressive strength of concrete rc- as follows (Fig. 7.13).

t MPa (7.2)

The equation which represents the descending portion of the stress-strain

curve is.

tmax (7.3)

Two values of ztmax will be stuided in this chapter; a very large value (which
was assumed in the model of chapter 6) and 20 zcr (which is arround the
yield strain of steel).

+ The shear retention factor Pis assumed as a function of the strain normal to

the crack s, as follows (Fig. 7.14).

P =04 7 > Pmi,, ; Pmg, = 00 (7.4)
SH
* Young's modulus is taken as follows.
E MPa
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/..
10 10
(a) (b)
o £ e

Fig. 7.11 Assumed stress-strain curve of concrete in compression
(a) for beams without shear reinforcement
(b) for beams with shear reinforcement

(7= —

sAr

Fig. 7.12 Assumed stress-strain curve of concrete in Tension
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(N/1TnND)

/.

»>J%

0 10 20 30 40 50 60
f'c (N/mm2

Fig. 7.13 Estimating tensile strength of concrete //from
compressive strength fc'

p = G/G(
1.0

0.4-.

Fig. 7.14 Shear retension factor p
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Chapter 7 Parametric study continued
In this chapter also, a study on the effect of the tensile strength of concrete //

and the minimum value of the shear retention Pmin is presented.

The initial load Pini for all beams is taken as follows.

pini = 06 fy As/(a/<d)

This initial load is about 70% (0.6/0.87) of the flexure capacity of thebeam (for
two point loading, Moment = Pa, P = load, a = shear span, flexure capcity = fy As
(0.8790, d- effective depth). The beam which reaches its full flexure capacity takes

about 26 increments (1.45 of the initial load).

7.3.1 Beams without shear reinforcement: Tables 7.5 to 7.7.

The results of prediction for beams without shear reinforcement are presented in
Tables 7.5 to 7.7. In these tables, there are four basic sets of runs. In Column
(A), the ratios of predicted to the experimental failure load using themodel of
chapter 6 are presented. Column (B) shows the results after assuming ztmax =
20ecr (Fig. 7.12). In Column (C), the analysis was repeated after taking the

tensile strength of concrete ft' from the following equation (Fig. 13).

The object of using this equation is to obtain lower values of tensile strength than the

given by Eq. 7.2 (/"/= 0.54 yffc') because analysis has shown that obtaining //

from Eq. 7.2 gave higher prediction than the experiment. Column (D) shows the

results after assuming that the minimum value of shear retention factor fimin (see

equation 7.4) is equal 0.05.
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Parametric study continued

7.3.1.1 Results of Krefeld and Thurston’s beams: Table 7.5

The results of Krefeld and Thurston's beams without shear reinforcement are shown in
Table 7.5. The results in Column A of this Table are obtained from the model of
chapter 6. The results are acceptable for all the beams except for three beams
(4A3, 11A2, and OCabs-ll) in which the experimental failure load is overestimated
by more than 30%. The mean value of the results and the standard deviation are
1.06 and 15.8%, respectively. When zitmax was taken = 208cr, nearly the same
results as of Column A were obtained (Column B). The beams which were
slightly affected by the value of ztmax were those having a/d ratio less than 4.0.
The mean value and standard deviation in this case are 1.04 and 13.7%,
respectively. When the tensile strength was calculated from equation (7.5), a
decrease of about 10% in the mean value was obtained with standard deviation
94% rather than 13.7% (compare Columns B and C). The strength of one of the
beams was overestimated by more than 10% The results in Column D are
obtained by assuming minimum value of shear retention factor (pw/, = 0.05). As
shown in this column, this small value of p increased the predicted failure load

of some beams by more than 25% (beams 4A3 and OCabs-Il).

7.3.1.2 Clark’s beams: Table 7.6
Table 7.6 shows the results of Clark's beams without shear reinforcement. As for

Krefeld and Thurston's beams (Table 7.5), the more conservative result for Clark's

beams was obtained by using equation (7.5) for estimating ft. Also less scatter in

the results was obtained by usingthis equation. By comparing ColumnC and D

it can be seen that increasing fmin from zero to 0.05 increased the mean value

of the predicted failure loads by 15%.

7.3.1.3 Mphonde and Frantz’s beams: Table 7.7

The results of Mphonde and Frantz's beams (without shear reinforcement) are
shown in Table 7.7. In this Tablethere are six sets of runs. To seeclearly the

effect of ft' and P on the results,in addition to the basic four sets of runs
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Chapter 7 Parametric study continued

(Column A, B, C, and D), there are two other sets; one by assuming ft'= 0.1
fc' (Column BO, Fig. 7.13) and the other (Column E)by assuming constant shear
retention factor (P = $min = 04).

In these beams the effect of limiting the tension softening of concrete at strain
etmax = 20ECT was significant (compare ColumnA and B). A decrease in the
mean value of about 9% was obtained. In beam 15-3aa decrease in the
predicted failure load of 28% of the experimental failure load was obtained.
Comparing the results of ColumnsBO B, and C, in which the only difference
was in the assumed values of //, it can be seen that the effect of // on the
predicted failure load was very significant. For example in beams 11-3b,c the

predicted failure load decreased from 1.88 to 0.88 of the experimental failure load

by changing the value of // from 0.1*' (7.48 MPa) to(2.94 MPa). Also,
it can be seen that the Ilower the assumed valueof ft\ less the scatter in the
results. In beams which failed in diagonal tensionand having a/d ratioof 3.6,

the higher the value of compressive strength of concrete fclhigher the predicted

failure load. This high predictionreduced as the values of ft' decreased. This can
be seen in the first five rowsof table 7.7. In Column A, the predicted failure
load varied from 0.81 for beam3-3b to 1.85 for beams 11-3ab, while in column

C for the same beams the predicted failure load is around 0.85.

With regard to p, in general, the results of all beams were seriously affected by
its value. An increase in the value of pmin fromzero to 0.05increased the
mean value of the results by about 38% (compare Columns C and D). In beam
11-3a,b, the predicted failure load increased by 100% of the experimental failure
load when fimin changed from 0.0 to 04 (Columns C and E). Although high
value of fmin generaly overestimate the predicted failure load, for three beams
the predicted failure loads were underestimated (7-1,11-1, and 15-1b). The
reported mode of failure of thesethree beams was arch-rib (see Fig.7.9). This

type of failure occurred in beamswith a small a/d ratio (1.5) and it does not
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Chapter 7 Parametric study continued

always occurs. Mphonde and Frantz tested two beams with the same properties
but one (beam 15-1a) failed in shear flexure mode at a low load while the
other beam (15-1b) failed in arch-rib mode at a load which is greater by 80%.
As mentioned earlier, this type of failure depends on the location and the
direction of inclined critical crack. It seems that from the numerical point of view
that, unlike the othertypes of failures, higher the assumed value of 3@ more

accurate the predicted failure load for those beams.

7.3.2 Beams with shear reinforcement: Tables 7.8 and 7.9.
7.3.2.1 Krefeld and Thurston's beams: Table 7.8.

Table 7.8 shows the results of Krefeld and Thurston's beams with shear
reinforcement. In these beams the effect of limiting thetension softening of
concrete at strain zfmax = 20scr was insignificant (compare Column A and B).
Column C shows the results after using equation (7.5)for f/. The results
improved for most of the beams which failed inshear. The mean  value
decreased from 1.14 to 0.97 with standard deviation 11.9% rather than 20.1%.
Onlyfor three beams  were the failure load overestimated by more than 20%. By
increasing from zero to 0.05, the results became the worst results for these

beams. The mean value increased to 1.16 with standard deviation of 23.1%.

7.3.2.2 Clark's beams: Table 7.9.
Table 7.9 shows the results of Clark's beams with shear reinforcement. Column A
shows the results using the model of chapter 6. The mean value and standard
deviation 0.97 and 9.4%, respectively. Column B shows that the effect of limiting
the  tension softening of concrete atstrain ztmax = 20ecr was very small, a
reduction of only 4% inthe mean value was obtained. Columns B and C show
that the effect of ft' was very small. The results were good for all cases. The

best result was with using equation 7.5 for // and assuming $min = 0.05, the
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Chapter7 Parametric study continued

mean value and standard deviation are 1.01 and 7.7%, respectively. Unlike Krefeld
and Thurston's beams, it can be seen that increasing pmin from zero to 0.05

improved the results of Clark's beams.

The predicted failure loads are plotted against the experimental failure loads for all
beams in Figs. 7.15-17.  Fig. 7.15a shows the results using the model of chapter
6. Fig. 7.15b shows the results after taking £imax= 20scrin the stress strain curve
of concrete (see Fig. 7.12). The results after taking ft' as from equation 7.5 are
shown in Fig. 7.16. In this case if the predicted failure load is assumed to be
80% of the numerical failure load, all the predicted failure loads will be

conservative. After increasing fmin to be 0.05, the results are shown in Fig. 7.17.

7.4 Prediction of failure mode

Ten types of failure have been reported by Krefeld and Thurston, Clark, and
Mphonde and Frantz. In the following some of these types of failure have been
analysed to see how accurately the present finite element model predicts the
mode of failure. The prediction of the mode of failure depends on the following
(see Sec. 6.2.1.1):

- thedeformed shape of the beam,

- thecrack pattern,

- the stresses of concrete in the compression zone, and

- the stresses in thereinforcement.

Beams OCa.bs-l {DT-R failure)
Beams OCa and OCb were two of Krefeld and Thurston's beams (series S-l)
which failed in DT-R failure type. These two beams were without shear

reinforcement and similar in everything except for a slight difference in the cylinder

compressive strength fc¢' and the reported failure load. There were eight beams
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Chapter 7 Parametric study continued

similar to  these twobeams but with shear reinforcement (first four rows in Table
7.2). The difference among the eight beams was in the spacingof stirrups.

Beams OCa and OCb were analysed as one beam (noted by OCabs-l in Tables
71 and 7.5) using the average fc' The predicted failure load was equal 95% of
the average experimental failure load of the two beams (Table 7.5, Column C).
The reported critical shear loads for thetwo beams were 92% and 97% of the
experimental failure loads. This meansthatthe beams failed just after the
formation of the critical shear cracks. The predicted crack pattern and deformed
shape at the last converged increment (load factor 0.95) are shown in Fig. 7.18.
No critical shear cracks has formed up to this increment. The stress-strain curve
of concretein the compression zone at a Gauss point near the mid-span is
shown in Fig. 7.19.The stress of concrete reached a value which was higher
than the value of fc* at the last converged increment because of the biaxial
compression state. The predicted stresses in the longitudinal reinforcement at the
last three increments are shownin Fig. 7.20. The bars haven't vyielded up to the
numerical failure. This was the only sign to indicate that the beam failed in
shear. The observed maximum steel stress was reported only for one beam which
was 93% of the steel yield stress. The predicted maximum steel stress was 79%

of the steel yield stress.

Beam 23.5 (F-T failure)

Beam 23.5 was similar to beams OCabs-l (which was analysed above) except for
the presence of stirrups. The stirrups changed the failure mode to be Flexure-
Tension rather than shear failure. The experimental failure load was 121.9 kN
which was higher than that of beam OCabs-l by about 20%. The predicted
failure load of this beam was in good aggreement with the experimental failure

load in all cases (0.99of the experimental failure load, see Table 7.8) which
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Single crack
Double crack

Crushing of concrete

Fig. 7.18 Crack pattern and deformed shape of beam OCabs-I
(displacements magnified x 20)
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Fig. 7.19 Stress-strain curve of concrete at Gauss point
under the applied load (beam OCabs-I)
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Fig. 7.20 Stresses in tension reinforcement at the last
three increments (beam OCabs-I)
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Fig. 7.21

Parametric study continued

Crack pattern and deformed shape of beam 23.5

(displacements magnified x 20)
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Fig. 7.22 Stress-strain curve of concrete at Gauss point
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Fig. 7.23 Stresses in tension reinforcement at the last
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Fig. 7.24

three increments (beam 23.5)
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Stresses in stirrups at the last increment (beam 23.5)
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Chapter 7 Parametric study continued

means that the model predicted with good accuracy the additional load carried due to the
existence of the stirrups. The good result supports the conclusion of chapter 6 that
the concrete crushes when it reaches the peak of stress in beams without
stirrups while in beams with stirrups the concrete is assumed to work up to a
compressive strain of 0.005. The predicted crack pattern and deformed shape at
the last converged increment are shown in Fig. 7.21. The crack pattern is very
similar to that of beam OCabs-l. The stress-strain curve of concrete at a Gauss
point in the compression zone near the mid-span of the beam is shown in Fig.
7.22. The failure occurred because the maximum compressive strain of concrete
reached the assumed value (0.005). In Fig. 7.23, the stresses in the longitudinal
reinforcement at the last three increments are shown. The bars have yielded at
the last increment which indicates that the beam failed in flexure, although some

stirrups yielded at the last increment (Fig. 7.24).

Beams OCa.bs-ll (DT-R failure)

Beams OCa and OCb in series S-ll of Krefeld and Thurston's beams failed in
DT-R failure type which has  beendefined earlier. These beams were without
shear reinforcement having the same properties including the compressive strength
of concrete. The experimental failure loads of these two beams were 293.6 and
266.9 kN\ ie., one was higher than the other by about 10%. The reported critical
shear loads were 9% and 97% of the experimental failure loads. These two
beams are denoted here as OCabs-ll. There are 34 beams similar to these two
beams but with shear reinforcement (beams number 9-37 in Table 7.2). The
predicted failure load of beam OCabs-ll was 106% of the average of experimental
failure load (Table 7.5, Column C). The predicted crack pattern and deformed
shape at the last converged increment (load factor = 1.06) are shown in Fig.
7.25. The critical shear cracks have formed at this increment. The stress-strain

curve of concrete at a Gauss pointnear the mid-span is shown in Fig. 7.26.
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The stresses in the longitudinal bars at the last three increments are shown in
Fig. 7.27 which shows that the bars did not yield up to the numerical failure.
The reported maximum steel stresses for these two beams were 61% and 58% of

the steel yield stress which has been predicted very well as shown in Fig. 7.27.

Beams 29a-1.b-1 (DT-R failure)

Beams 29a-1 and 29b-1 were two of Krefeld and Thruston's beams which failed
in DT-R failure type. These beams were similar to beams OCabs-Il except for
the stirrups. The stirrupsincreased the ultimate load by about 14% but didn't
change the mode of failure. The two beams were analysed as one beam. The
predicted failure load for this beam was higher than the average of the
experimental failure loads by 22%(Table 7.8, Column C). The predicted crack
pattern and deformed shape are shown in Fig. 7.28 which shows clearly that the
beam failed in shear. The stress-strain curve of concrete near mid-span s
shown in Fig. 7.29. The stressesin one bar at the last three increments are
shown in Fig. 7.30 which shows that the steel did not yield. The measured
maximum steel stresses for these two beams were 51% and 83% of the steel
yield stress. The predicted one was about 78% of the steel yield stress. The
stresses in the stirrups at the last increment are shown in Fig. 7.31 which shows
that the Gauss points at which the stirrups have yielded are arranged diagonally

from the load point to the support.

Beams AO (DT failure)
Beams AO were three of Clark’'s beams without shear reinforcement which failed

in pure diagonal tension (D-T)\ i.e., the tensile reinforcement hadn't yielded up

to the time of diagonal tension failure. The beams were similar in everything

except for small differences in the values of fc' (21.5, 26.0, and 23.7 MPa). The
reported failure loads for these beams were 178.1, 2159, and 2381 kN,
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Single crack

Double crack

Fig. 7.25 Crack pattern and deformed shape of beam OCabs-Il
(displacements magnified x 20)
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Fig. 7.26 Stress-strain curve of concrete at Gauss point
under the applied load (beam OCabs-Il)
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Fig. 7.27 Stresses in tension reinforcement at the last
three increments (beam OCabs-Il)
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Double crack

Crushing of concrete =

Fig. 7.28 Crack pattern and deformed shape of beam 29a-1 ,b-1

Parametric study continued

(displacements magnified x 20)
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Fig. 7.30 Stresses in tension reinforcement at the last
three increments (beam 29a-1,b-1)
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Fig. 7.31 Stresses in stirrups at the last increment (beam 29a-1 ,b-1)
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respectively. The difference between the lowest and highest failure load was about
4% of the lowest one. The predicted failure load was 98% ofthe average of
the three experimental failure loads (Column B in Table 7.15). The observed crack
pattern is shown in Fig. 7.32. Also, the predicted crack pattern and deformed
shape at the last converged increment are shown in thisfigure. Good agreement
is shown between the predicted and the observed crack pattern. The stress-strain
curve at a Gauss point in the compression zone near the mid-span of the beam
is shown in Fig. 7.33. Thepredicted stresses in a bar at the last three
increments are shown inFig. 7.34. The tensile reinforcement did not vyield up to

the numerical failure.

Beams A1 (D-T failure)

Four beams with shear reinforcement were tested by Clark under the designation
A1. The beams failed inpure diagonal tension at different levels of load although
they had the same properties except for slight differences in the values of fc'
(24.7, 237, 234, and 24.8 MPa). The experimentalfailure loads for these four
beams were 444.9, 418.3, 444.9, and489.4 kN with an average of 4494 kN.
The predicted failure load (404.5 kN) was 90% of the average of the experimental
failure loads (Column B in Table 7.9). The observed and predicted crack pattern
are shown in Fig. 7.35 whichshow good agreement. The stress-strain curve of
concrete at a Gauss point in the compression zone under the load point is
shown in Fig. 7.36 which shows that without the compression softening portion,
the beam could fail atincrement 14 (about75% of the ultimate failure load)
because of crushing of concrete in the compression zone (due to increase the
compressive strain more than the assumed strain). The predicted stresses in the
tension steel and stirrups are shown in Figs. 7.37,38. The stresses in the tension
steel were much less than the yield stress up to the numerical failure which

indicates that the beam failed in shear.
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NORTH

Observed

Single crack

Double crack

Crushing of concrete m

Fig. 7.32 Crack pattern and deformed shape of beam AO
(displacements magnified x 20)

-50
(IA -30
E
g -0

0.000 -0.001 -0.002 -0.003 -0.004 -0.005

Strain

Fig. 7.33 Stress-strain curve of concrete at Gauss point
under the applied load (beam AO)
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Fig. 7.34 Stresses in tension reinforcement at the last
three increments (beam AO)
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Chapter T_
Observed
Single crack /
Double crack
Crushing ofconcrete m
Fig. 7.35 Crack pattern and deformed shape of beam A1
(displacements magnified x 20)
-50
&
E
8 %)
g -to
0.000  -0.001 -0.002  -0.003  -0.006  -0.005
Strain
Fig. 7.36 Stress-strain curve of concrete at Gauss point
under the applied load (beam A1)
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Chapter 7 Parametric study continued

The predicted load-deflection curves are plotted against all the experimental curves
that have been reported by Clark in Fig. 7.39. Most of the reported load-
deflection curves were not complete; i. e, the reported curves were not plotted
up to the reported failure loads. Also, the load-deflection curve of beam C3 was
extended beyond the reported failure loads of this beam which probably indicated

that there was some error in reporting.

7.5 Conclusions
In this chapter, an attempt is made to establish the generality of the 2-D finite
element model which was developed in chapter 6 and the following conclusions

can be drown:

The best prediction was for beams with shear reinforcement with a small

spacing of stirrups (less than half of the effective depth).

+ Both the shear retention factor and thetensile strength of concrete had a very
significant effect on the prediction of beams without shear reinforcement which
failed in shear, especially beams with a small a/d ratio.

* Increasing the assumed value of shear retention factor improved the predicted
failure loads of beams with shear reinforcement and having a small a/d ratio.

« It is difficult to predict the failure load of  beams without shearreinforcement
and having a small a/d ratio and high value of cylinder compressive strength.
This is because in this type, beams with the same properties may fail in
different ways.

+ The model developed in chapter 6 with limiting the tension softening of

concrete at strain equal to 20 times the initial crack strain and taking the

tensile strength of concrete // equal (in MPa) gave good results.
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CHAPTER 8

PRESTRESSED CONCRETE BEAMS

8.1 Introduction

This chapter presents the results of analysis of prestressed concrete beams using
the 2-D finite element model developed in chapter 6. More than sixty prestressed
concrete beams have been analysed. These beams were with and without shear
reinforcement having a/d rato from 112 to 58 The beams without shear
reinforcement . were tested by Arthur (1965) while the beams with  shear

reinforcement were tested by Elzanaty, et al. (1986b).

8.2 Arthur's beams

Arthur (1965) tested 50 prestressed concrete |-beams without web reinforcement.
His work was concentrated on the diagonal cracking failures and the development
of a rational semi-empirical expression for predicting the diagonal cracking load
and not the ultimate load. He reported that although the ultimate shear loads
carried by the beams exceeded the diagonal cracking loads in about 80% of the
tests, the amount of this excess could not be predicted with any degree of
confidence and he suggest that the ultimate shear load for design purposes
should be taken as the diagonal cracking load.

Arthur tested five types ofbeams. The difference among these typeswas in the
cross-section dimensions and the existence of a solid end-block. Two types (A
and B) hadsolid end-blocks 304.8 mm long, while the other types (C,D, and

E) had no end-blocks. All the beams were 2896 nm long. Due to the change of
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the cross-section dimensions, a/d ratiovaried from 1.12 to 4.57. The beams
dimensions are shown in Fig. 8.1. All thebeams were tested under symmetrical
two-point loading on a span of 2591nmm The prestressing reinforcement was
eighteen 2.64 mm diameter for type A andnine 5.08 nm diameter for types B-E.
The average initial prestress wasapproximately 6.9 MPa. Thenominal initial
prestressing force, after elastic compression loss, was about 117.4 kN for type A
and about 176.1 kN for the other types. Arthur hasn't reported the load-deflection
curves but only the final crack patterns of some beams. Sixtypes of failures
were observed. Their definitions are as follows:

* DC failure: This type of failure was observed only at short shear span, a/d

< 252. A crack formed from the support to the load point, and the failure

was complete without any other signs of distress developing.

DC/WD failure: This is a web distortion failure which occurred at all ratios of
a/d (112 - 457). ltoccurred when web tension formed aseries of multiple

cracks in the shear span.

DC/WD/F failure: In this type, web distortion failures showed a further
development, collapsebeing delayed untii compression failure began in the top
flange concrete under the load point. The range of a/d ratios for this type of
failure was from 2.24 to 4.57. If a flexural shear crack was present together

with the web tension cracks, (SC) designation was addedand this type of

failure was called DC/WD/F (SC). The flexural shear cracks occurred only
when a/d ratio was 4.57.

« DC/WD/T failure: This occurred when failure of the tension steel occurred
near mid-span, after diagonal cracking in the shear span. This type of failure
occurred when a/d ratio was 4.57.

« WC failure: This failure took place by crushing of the web in beams of a/d
ratios of 1.12 and 3.36.

* SC failure: This type of failure initiated by a flexural crack in the shear

span.
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=107
79
TYPE A TYPES B Cc
d- 107 107
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Prestressing wires are indented, Belgian pattern:
type A, eighteen 0.104 in. diameter;
types B-E, nine 0.2 in. diameter

Fig. 8.1 Cross-sections of Arthur's beams.
(1 in. =25.4 mm)
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Chapter 8 Prestressed concrete beams

The data of the beams required for the analysis and the results of analysis are
shown in Table 8.1. The finite element meshes used for the analysis are shown
in Fig. 8.2. At the first increment, the total effective prestressing force was applied
on the beam end as a horizontal compressive force. This force was divided into
two components. The two components were applied at the top and the bottom of
beam as a distributed load and were proportional to the number of wires at the
top and the bottom of beam. The stress-strain relationship of prestressing
reinforcement used in the analysis was obtained by subtracting the value of the
effective stress G from the stress as shown in Fig. 83. The value of G is
equal the effective prestress force Pe, after allowance for all prestress losses, over
the cross-sectional area of the prestressing reinforcement Aps (cp= Pe | Aps).

The ratios of the predicted over the experimental failure loads of Arthur's beams
are presented in Table 8.1. These runs were obtained by using the 2-D finite
element model developed in chapter 6. The results in general are good. Only
the predicted failure loads of two beams (B4 and C4) were overestimated by
more than 25%; B4 by 40% and beam C4 by 90%. The worst prediction was for
beam C4. This beam was the only beam in type C which was tested only once.
The other beams were tested at least twice to measure the cracking shear force.
By comparing the properties of beams C4 and C5 (Table 8.1), it can be seen that
all the properties are the same except for anincrease in fc' and the effective
prestressing force of beam C5 by about 17% and 10% more than those of beam
C4. Therefore, beam C4 failed just after the formation of critical shear crack at a
load of 62.3 kN, while beam C5 failed at a load which is higher by about 74%

(108.5 kN).

The mean value of the ratios of the predicted over the experimental failure loads of

the all beams was 1.02 with standard deviation of 20.3%. By excluding beams B4

and C4 the mean value and the standard deviation became 0.99, 13.3%, respectively.
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360



Chapter 8

50.8

101.6

101.6

50.8

50.8

101.6

101.6

50.8

50.8

101.6

101.6

50.8

50.8

101.6

101.6

50.8

P/6
il
107.4 90.0 4x72.8 mm 1900 I
Types B - E: = 1.40
4pP/6
P/6
107.4 90.0 1 4x91.8 mm 1900 1
Types B-E: a/d- 1.68
4P/6
P/6
I
P/6
107.4 90.0 5x103.9 mm 90.0
r
Types B-E: a/d= 2.24
| 11
T*T
107.4 90.0 7x85.1 mm 90.0

Types B-E: a/d=2.52

Prestressed concrete beams

9x96.6 mm
9x88.1 mm
6x106.8 mm
6x94.1 mm

&4

Fig. 8.2 Finite element meshes for Arthur's beams (continue).

361



Chapter 8

50.8

101.6

101.6

50.8

P/6 t

107.4 90.0 8x84.0 mm
(i) Types B-E: a/d=2.80
50.8
101.6
101.6
50.8
4 * f
107.4 90.0 9x91.6 mm
(k) Types B-E: = 3.36
50.8
101.6
101.6
50.8
P/6T * T
107.4 90.0 1
() Types B-E: a/tf=3.93

11x88.8 mm

90.0

Prestressed concrete beams

§I\

78

5x97.7 mm
JLVYy
31%
<
1900 1 4x84.0 mm
4p6
Pl6
m

Xl
A

190.0 2x91.8

Fig. 8.2 Finite element meshes for Arthur's beams (continued).

362



Chapter 8
beams

<J

f actual f used
y

<J
P / £ used
/ cM= stress due to prestressing
/
/ used = fy actual - or,
~  actual
r y

Prestressed concrete

Fig. 8.3 Assumed stress-strain relationship for prestressing steel.

363



Prestressed concrete beams

o' T o =8 Cuw w T onT YTy 89t 8 oc£ £o8XBcx 1 o o
0o T &' =8 a — &' 8%E S oc #8' 8 8° o £o8%XBcE 2 &5 & s8
08° o 8°s=c > - 0° BT 3L 28° 8 8 o c£o8%XBerT T 374 88
08" T 8 g5 o 8* ocE Q° oc 88z 8° o £o08%XB=eE £ ol 8
08" T 8° ocT c_ 8° ocT 8 oc BE" T 8° of £ o8X%XBcE v ol Q8
€L° 1 8- 88 ow 8 8%T 8° 58 S8° 8 8° o =o8%XBcE = b £8
£3° o g 88 o _ S GET 5" 8% 85" 6 8° o2 £o8%X&=V kS 8 &
OE" I 2° 506 o _ ST E I ocs 88° x 8° o £o8X3BsE I g 88
£8° T 8°8: . I GoE *18 8¢ 8° o c£oBXBsex I =] 88
£3° o 8° =8 @ E° oS8z % 8% 8c' 8 8° o E£o08XBeE T =R £8
ol T I o8 a 5" SHE A 89z 8° o <c£o8X%X&sex T I o8
£8° o 8° =9 _ - 5°8 T I oh 8" 8 8° o Eo08X%XB =T £ 8¢ S
00" T s 9% ca T 8% I 98- 8 8° o £o8X%XBecx 5 -8 B88~+¢5
08° o % B% - - 9 of 8- 88 8% 8 8° o SBBXBcE I3 S8-88v S8+88
£8° o £° 88 B « -~ 8" =of o' s8 e H 8° o OBBXB<eE 8 886~EI8v BBTId
£8° o ] - - ' 8o o' 84 LE B 8° o OBBXBsI £ oBv 0B
oS ' o I8 b cw w® £° ooE ¢ 8 “E'h 8° o S66XBcE I STV ST
5" o * 88 H - @ E° 8o o* 58 -] 8° o OBBXBcI B 8~ Ev 8I~.:.I
£8° o r* Q¢ « 8° EIE s 88 88° 8 8° o£ SBBXBeT T Sz o
o8 o % ES ® S SoF i 88° & 8° o OBBXBcE £ ETv £T
08° o £ o8 © ST AET * 88 88° & 8° o SBBXBcE £ BTV 13
oo° =z 8° o= o - o 20oF 8° 98 88°8 8° o SBBXBex 8 8X~ITv BT~Izx
£3° o 855 p S° SoxX ¥ 88 88° & 8° os SB8XE=T T oIV ST
£0° o ok © 8* 5oV ° 48 88° & 8° os S66X8cx k4 STV s—e
T T '8 © 8° 8oz g° 84 88° 8 8° o5 SBBXBEEX I £V £
oL ' T 8° 28 o 8°6s o°'8% £ 4 8° o SBBEXEcT E &V
oS’ o 8 = - - I°00f 285 885 B° o 588%Bex I 8v 8
00" T 5 %9 o _ 8°Es a°'s Le°4 8° o= SBEXBceE I Y 8
£35 o 8° L% R 2°'5s =°18 88° 8 8° o BBXBEL T V]
(N -
99210} 9940} w 0 | |.»m
leays ajewyn leays apow ainjeq . AIA ~en v weaq MHQGW * ol
“dx3 /peroIpeid e1e wnIn S Gas 5 b8 g ION

sweaq sJNyuy o sisAleue p s)nsal pue ejeq L'g 9|qey

364



Prestressed concrete beams

365

459 w3

Chapter 8

@mwsonq
O UN w oV
e B eOem
N M
G6°0 L°99 aAvoa 8t °8 o8 8 8'Qo £o8%x3csr I 83 s
Eo' T v LS aavoa 8'8 T £°8 o8 8 8° Q0 E£o8%xBesE T = o
oV’ o €°0S ) gex I 87'8 £°82 co8x3cr T 8w &
08° o 2661 aAvoa 8*'Tsr 8°88 e8° 8 £°82 £08x3cE x o 8
£o0'E G .8 oa Q8 ¥ 8°'89 g8 x 8° o€ £o08x8cE I 8o A
S6°0 v L9 Jamwoa §°8 T ‘8 b3 g 8* o £o8XxBEeE - Lo Q
ST 8° ocT oa Q-Qcx ‘8 QLT B8* o £08x3er I Qo £
£3° G801 oa Q- cE ‘0% o °E 8° os £oeXx3cT I £D
061 €29 aAvod 88 T ‘o o °E 8° os c£oB8Bx8er I o 8
S$6°0 199 aAvoa 85 1 *E 88 8° o £08x3el I 8w 5]
ST-TJ LoV om 8.1 8= 8L T 8° o £08xBcsE I &> £
9210} 9210} = n 0%
Jeays ajewnn Jeays opow aunjeq . tr ~ . n“M.» 2 58 * o
"dx3 pajoipaid ajewn|n 8 v wiN w0 ¥ Bas N

(Pp@2nujuoo) sweaq SsJNYHyY JO SisAleue JO Ss)}INsaa pue ejeq L8 aiqeyr



Chapter 8 Prestressed concrete beams

This result is considered as a good result for beams without shear reinforcement.
The predicted failure loads are plotted against the experimental failure loads in
Fig. 84. If the predicted failure load is taken as 80% of the numerical failure

load all the predicted failure loads except for two beams (B4 and C4) will be

conservative.

To study the mode of failure of Arthur's beams, the predictedbehaviours ofsome
beams will be presented. The predicted failure mode will depend on four
considerations;

a) the deformed shape of the beam,

b) the crack pattern,

c) the stresses of concrete in the compression zone, and

d) the stresses in the reinforcements.

Beam A1 ( DC/WD/F failure)

The ratio of the predicted over the experimental failure load of beam A1 was
0.95. It failed in DC/WD/F failure type. The cracking shear force for this beam
was about 80% of the ultimate shear force. The observed crack pattern is shown
in Fig. 8.5a. Fig. 8.5b-e shows the predicted crack patterns and deformed shapes
of the beamr at some load factors. At load factor = 0.80 (Fig. 8.5b), no critical
cracks has formed. The shearcracks started at a load level equal 0.85 of the
experimental failure load (Fig. 8.5c). This load was higher than the observed
critical cracking load by about5% of the experimental failure load. At load factor
= 0.90 (Fig. 8.5d), although the shear cracks became very large, the beam
carried more load. Arthur reported that in this type of failure the collapse was
delayed until compression failure began in the top flange concrete under the point
load. The predicted crack pattern and deformed shape at the last converged

increment (load factor = 0.95)are shown in Fig.8.5e. Comparing Fig. 8.5a with
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Fig. 85e it is seen clearly that the observed crack pattern was predicted to a
good degree of accuracy. The stress-strain curves of concrete at a Gauss point
near the mid-span and a Gauss point under the load point are shown in Fig.
8.6a. This figure shows that the stresses in the compression zone are less than
fc' up to the numerical failure. Fig. 8.6b shows the stresses in prestressing wire
at some load factors. The steel was under nearly constant compressive stress at
the beginning of vertical loading due to the existence of the axial force. By
increasing the applied vertical load, most of the Gauss points on the steel started
to carry tensile stresses. This behaviour of the prestressing steel was observed for
the all beams. The tensile stresses were far from yielding up to the numerical
failure load. From Fig. 8.6, it can be seen that the cause of failure was not the
crushing of concrete in the compression zone or the yielding of tension steel. This
leads to conclude that the beam failed in shear. To see how the beam failed,
the distribution of the principal compressive stresses (stresses greater than 3 MPa)
are plotted in Fig. 87. In Fig. 8.7a, the distribution of the principal compressive
stresses are plotted at load factor = 0.1. At this level of load, nearly all the
principal compressive stresses were horizontal. The maximum stress was 7.71 MPa
and its location was near the end of the beam. Atload factor = 0.50 (Fig. 8.7b),
in the constant bending region, the principal compressive stresses (greater than 3
MPa) disappeared from the bottom of the beam and developed at the top of the
beam. In the shear area, the stresses became inclined and arranged diagonally
from the support toward the vertical load point. At load factor = 0.95 (last
converged increment, Fig. 8.7c) the neutral axis moved up due to the flexural
cracking and the compression zone depth became smaller. The maximum principal
compressive stress, which reached the value of fc\ was located in the shear area
(in the compression thrust between the support andthevertical load point) and it

was the cause of failure.
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Beam A2 ( DC/WD failure)

Beam A2 failed in DC/WD failure type at a loadof 49.8 kN This load was
also the critical cracking load for this beam; i.e. the beam failed quickly when the
critical shear cracks formed. The predicted failure load of this beam was equal to
its experimental failure load. The observed crack pattern is shown in Fig. 8.8a. In
Fig. 8.8b, the predicted crack pattern and deformed shape at the last converged
increment (load factor = 1.00) are shown, no shear cracks have formed up to this
increment which agreed well with the observed behaviour. Atincrement 18 (load
factor = 1.05) the displacements were nearly infinity so that the deformed shape
couldn't be drawn. By reducing the increment step after increment 17 to 1% of
the initial load, the numerical failure occurred at load factor = 1.02. The deformed
shape at load factor = 1.01, at which the convergence was not achievedand the
displacements were large, is shown in Fig. 8.8c which shows the large
displacements that occurred in the elements in the shear span and under the
load point. Comparing this predicted deformed shape with the observed crack
pattern (Fig. 8.8a) shows reasonable agreement. The stresses in the prestressing
steel at some load factors are shown in Fig. 89 and the stress-strain curve of
concrete at a Gauss point under the load point is shown in Fig. 8.10. These two
figures show that the beam failure did not occur due to stresses exceeding neither

in the compression zone nor in the tension steel. The beam failed in shear.

Beam E1 ( DC/WD failure)

This beam also failed in DC/WD failure type as the beam A2 described above.
The a/d ratio was 4.57 for beam A2 and 2.8 for beam E1. The observed crack
pattern is shown in Fig. 8.11a. The predicted crack patterns and deformed shapes
of this beam at the last two load factors (1.00, 1.05) are shown in Fig. 8.11b,c.
The predicted crack pattern agreed well with the observed one. The predicted

stress-strain curve of concrete at a Gauss point under the load point is shown in
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Fig. 8.12 and the predicted stresses in the prestressing steel at some load factors

are shown in Fig. 8.13.

Beam A5 | DC failure)

Beam A5 had a a/d ratio of 2.28. It failed in DC failure type at a load of 97.9
kN. The critical cracking load was equal to the failure load. The predicted failure
load of thisbeam was higher than the experimental one by 15%. Fig. 8.14a shows
the observed crack pattern. Fig. 8.14b shows the predicted crack pattern and
deformed shape at a load factor = 0.90, where no critical cracks formed. At a load
equal the experimental failure load, the predicted crack pattern shows clearly the
formation of the critical shear cracks (Fig. 8.14c). Despite this, the beam continued
to carry more load up to a load factor of 1.15. Fig. 8.14d shows the crack
pattern and deformed shape at this load level. The beam failed when the
concrete in the compression zone under the load point crushed (Fig. 8.15). The
predicted stresses in the prestressing steel at some load factors are shown in

Fig. 8.16 which shows that the stresses are much less than the yield stress.

Beam A20 ( DC/WDFT failure)

Beam A20 failed in DC/WD/T failure type. Only two beams failed in this type of
failure (A20 andA21). This beam was testedtwice. The critical cracking loads in

the two tests were the same (equal to 82% of the failure load). The predicted
failure load was lower than the experimentalone by15%. The predicted crack
patterns and deformed shapes at the last two increments (Load factors of 0.80
and 0.85) are shown in Fig. 8.17. The stress-strain curve at a Gauss point
under the applied load is shown in Fig. 8.18. Because the predicted failure load
was less than the experimental one, no failure in the tension steel occurred as
reported in thistype of failure (Fig. 8.19), whilethe diagonal cracking in the

shear span was very clear (Fig. 8.17b).
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Fig. 8.17 Crack patterns and deformed shapes of beam A20
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Beam C2 iwc failure)

Beam C2 was tested twice. Two critical cracking loads and only one failure load
have been reported for this beam. The two critical cracking loads were about
29% and 60% of the failure load which was 280.2 kN. This beam C2 failed in
WC failure type. The predicted failure load of this beam was higher than the
experimental one by 15% The predicted critical cracking load was 65% of the
experimental failure load. Fig. 8.20a shows the predicted crack pattern at load
factor = 0.65 at which the shear cracks started to form. The predicted crack
pattern at a load equal to the experimental failure load is shown in Fig. 8.20b
whereas the predicted crack pattern at the last increment (load factor =1.15) is
shown in Fig. 8.20c. The predicted stress-strain curves at a Gauss point near
the mid-span and under the load point are shown in Figs. 8.21. The predicted

stresses in the prestressing steel at some load factors are shown in Fig. 8.22.

Beam D2 ( sc failure)

Beam D2 failed in shear compression at a load of 100.5 kN which is 1.33 of
the cracking shear load. The ratio of the predicted to the experimental failure of
this beam was 0.90. The observed crack pattern is shown in Fig. 8.23a. The
predicted crack patterns and deformed shapes at the last two increments (load
factors of 0.85 and 0.90) are shown in Fig. 8.23b,c. It is clear from Fig. 8.23
that the model predicted the modeof failure of thisbeam to a good accuracy.
The flexural cracks started to propagate towards the load point and at the level
of the reinforcement the cracks propagated towards the support. The stress - strain
curve of concrete at a Gauss point near mid-span is shown in Fig. 8.24. The
predicted stresses in the steel are showninFig. 8.25. These stresses are less
than the yield stress up to the numerical failure indicating that the beam failed in

shear and not in flexure.

381



Chapter 8

Prestressed concrete beams

@)

(b) L F. =1.00

©

Single crack

Double crack

Crushing of concrete

Fig. 8.20 Crack patterns and deformed shapes of beam C2
(displacements magnified x 10)

7A

MA A AAZ2A

KX a kKksk

382



Chapter 8 Prestressed concrete beams

50 50
g o
= ' A
g B
w ||
o =30 | -30
= in
é 20 & 20
8 g
g 2
2 g -10
o a
-0.003 .0.002 -0.003
(a) (b) Strain

Fig. 8.21 Stress-strain curves of concrete at a Gauss point (beam C2)
(a) under the load point
(b) near mid-span

LF.=
1.15

1.10

1.00

Position from beam end (mm)

Fig. 8.22 Stresses in prestressing steel at some load factors
(beam C2)

383



Rresfressedoonodfajears

Chapter.8

Observed

Single crack

(C) L. F. =0.90 Double crack

Crushing o f concrete

rnH

ttprns and deformed shapes of beam D2
™ 823 CSpl1«rn. ™M 9n«.1><y»)

384



Chapter 8 Prestressed concrete beams

Pa

-20

-10

RoOog 00 2es=WT OSS

0.000 -0.002 -0.003 -a00s

Strain
Fig. 8.24 Stress-strain curve of concrete at a Gauss point

near mid-span (beam D2)

LF=

0.90

0.80

0.60
0.40 —

Position from beam end (mm)

Fig. 8.25 Stresses in prestressing steel at some load factors
(beam D2)

385



Chapter 8 Prestressed concrete beams

8.3 Elzanaty. et al's beams

Elzanaty, et al. (1986b) tested 34 prestressed concrete beams using concrete with
compressive strength up to 83 MPa Half of these beams were designed for
flexure-shear cracking (Cl series) and half for web-shear cracking (CW series).
The beams were with and without shear reinforcement. Only the beams with
shear reinforcement (16 beams) have been analysed here.

The beams were 4572 nm long with a span of 3810 nmm Two cross-sections
were used. The beams had a constant a/d ratio (3.8 for CW series, and 5.8 for
Cl series). The reinforcement consisted of prestressed and unstressed. The
prestressed reinforcement was 15 nm diameter made up of low-relaxation seven-
wire Grade 270 strands. The area of this wire was 142 mm2 (the area was
taken from Seraj, et al. 1992). The stress at 1% extension was 1760 MPa. The
unstressed reinforcing bars used were deformed bars having yield stress of 434
MPa for longitudinal reinforcement and stirrups, and smooth round bars of 6 nm
diameter having vyield stress of 379 MPa for top reinforcement. Single legged
stirups in the form of J" were used. The horizontal projection was placed
alternately left and right in the flange (see Fig. 8.26). The beams were loaded by
two-point loading. Unfortunately Elzanaty, et al. didn't give the shear span, the
position of reinforcement, or the effective depth. The figures used were measured
from the figures in the paper. Seraj., et al. (1992) analysed beam CW12 using
a shear span of 1310 nmm which was used here for the analysis of series CW
beams. This shear span was calculated assuming that the effective depth is the
distance from the compression face to the centroid of the prestressed steel. Fig.
8.26 shows the details of the beams.

The data required for the analysis are shown in Table 8.2 and the finite element
meshes used are shown in Fig. 8.27.

The ratios of the predicted over the experimental failure loads are presented in
Table 8.2. The mean value and standard deviation were 1.04 and 7.7%, respectively.

All the predicted failure loads except two are within the range of 0.95 - 1.10 of
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Fig. 8.26 Dimensions of Elzanaty, et al' beams.
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Chapter 8 Prestressed concrete beams

the experimental failure loads. The predicted failure loads of these beams are
plotted against the experimental failure loads in Fig. 8.28. This figure also

presents the predicted failure loads of Arthur's beams.

Seraj, et al. (1992) predicted the behaviour of beam CW12, using a 3-D finite
element model. In their analysis, the prestressed and unstressed main steel were
smeared to the element edges and the compression steel were placed at the top
edge of the beam. They predicted a value of failure load equal 323.38 kN which
is 15% higher than the experimental failure load (281.11 kN). Seraj, et al. referred
the higher predicted failure load to the modelling of the stirrups. This was
because they assumed symmetrical stirrups inorder to keep, as they said, the
computational efforts within the Ilimit of available resources, while in the test the
stirrups were arranged alternately in the flange. This modelling of stirrups, as they
explained, introduced an additional confinement of the concrete. No attempt was
made by Seraj, et al. to rerun the beam again without this part of stirrups to
support their explanation.

Using thepresent 2-D finite element model the predicted failure load of beam
CW12 was lower than the experimental failure load by about 5%.

The predicted crack patterns of Seraj, et al. at some increments are shown in
Fig. 8.29. Elzanaty, et al. haven't reported the observed crack patterns of the
beams but they mentioned that no cracks occurred up to the diagonalcracking
load which forthis beam was 170.8 kN. Seraj, et al. predicted a diagonal
cracking load (182.8 kN) which is closer to the observed diagonal cracking load

than the one predicted here (210 kN).

In Figs. 8.30 to 8.34, the predicted behaviours of beam CW12 are presented. Fig.
8.30 shows the predicted crack patterns and deformed shapes at some load
factors. At the first increment (in  which onlythe prestressed force was applied,

Fig. 8.30a), the beam deflected upward. At load factor = 0.65 (Fig. 8.30b), the
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Fig. 8.29 Crack patterns and deformed shapes of beam CW12
predicted by Seraj, et al. (1992)

392



Chapter 8 Prestressed concrete beams

(@) L.F.=0.0
Single crack I ---.-.%
Double crack |
Crushing ofconcrete =
(b) L. F. =0.65 nrl7
d
d
d
LAJ
() L. F.=0.75
(d) L.F.=0.95
(e) L. F. = 0.98
i X
/VrAS #OHS T e e
11 ! W4 jrHH-4M-

—l—i..llii 11§ i iiii11K

Fig. 8.30 Crack patterns and deformed shapes of beam CW12

(displacements magnified x 20)
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beam deflected downward butwithout the formation of any cracks. At load factor
= 0.75 (Fig. 8.30c) the diagonal critical cracks occurred along the whole length of
the shear span with an angle in the range 23-30 degrees to the horizontal. With
increase in the applied load, these parallel diagonal cracks propagated towards the
loading point and the support and also the flexural cracks formed in the shear
span. Fig. 8.30d shows the crack pattern and deformed shape at the last
converged increment (load factor = 0.95) when theincrement step was 5% of the
experimental failure load. From this it can be concluded that the beam failed in
shear. By reducing the increment step after 0.95 of the applied load to 1% of
the experimental failure load rather than 5%, the predicted failure load became
equal to 0.98 of the experimental failure load. The crack pattern and deformed
shape at that load level are shown in Fig. 8.30e in which the diagonal cracks
became extensive. Also, the flexural cracks in the shear span near the loading
point propagated towards the loading point. All these predicted behaviours were
observed in the experiment.

Comparing the predicted cracks pattern of Seraj, et al. (Fig. 8.29) with that
predicted here (Fig. 8.30), it can be seen that representing the crack by a line
with its length related to the strain normal to the crack makes the predicted
crack pattern more clear than representing it by a line related to the mesh
element dimensions as in the predicted crackpattern of Seraj, et al.

The predicted stresses in the prestressed, unstressed, and compression steel are
shown in Fig. 8.31.Seraj, et al. haven't quoted the stresses in any reinforcement
to compare with the present analysis. The predicted stresses in the prestressing
and non- prestressing steel were muchless than the vyield stress up to the
numerical failure. The predicted stresses in the stirrups are shown in Fig. 8.32.
The stirrups started to sustain load after the formation of diagonal crack and
started to yield before the numerical failure. The numerical failure occurred due to
the compressive stress of concrete in the compression zone under the applied

load equal to fc' This can be seen in Fig. 8.33 which shows the stress-strain
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Fig. 8.32 Stresses in stirrups at some load factors
(beam CW12)

-50 -50
g
® -40
o 2
10 W
: I -0
2 | 7]
Q. Q.
-20 -20
: S
® g
c -10 o -10
CL
0.000 -0.001 -0.003 0.000 -0.001 -0.002 -0.003 -0.004
Strain Strain

Fig. 8.33 Stress-strain curves of concrete at a Gauss point (beam CW12)
(a) under the load point
(b) near mid-span

396



Chapter 8 Prestressed concrete beams

curve of concrete at a Gauss point under the applied load and near the mid-
span of the beam.

Fig. 8.34 shows the distribution of the principal compressive stresses (greater than
5 mpa) at some load factors. Fig. 8.34a shows this distribution before the vertical
load was applied (only the prestressing force was applied at this increment). Most
of the stresses were horizontal and inthe lower part of the beam. At Load
factor = 0.50 (Fig. 8.34b), the stresses started to disappeared from the bottom of
the beam near the mid-span and developed in the upper part of the beam. The
stresses in the shear area became inclined toward the load point. At load factor
=0.75 (Fig. 8.34c), the depth of compression zone near mid-span started to
decrease and the values of the stresses in the shear area were nearly equal to
the values of stresses in the compression zone under the load point. At the last
converged increment (load factor = 0.95, Fig. 8.34d), the stresses in the shear
area nearly reached the value of fc¢' as those in the compression zone under the
load point. The principal compressive stresses in the shear area of this beam
were more uniformly distributedthan those stresses in beam A1 which was
without shear reinforcement (compare Fig. 8.7 with Fig. 8.34).

The predicted load- deflection curve is plotted against the experimental one which
was taken from Seraj, et al. (Fig. 8.35b). This predicted curve was modified since
at the first increment in which only the prestressed force was applied, the beam
deflected upward, and not downward, by about 2 mm. This was because the
prestressed force was placed under the centre line of the beam. This deflection
(2 mm) was subtracted from the deflection obtained at all increments. The predicted

load - deflection curve of Seraj, et al. is shown in Fig. 8.35a.
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8.4 Conclusions

From the analysis of prestressed concrete beams it can beconcluded that:

+ The prediction of the behaviour of beams with shear reinforcement is better
than that of beams without shear reinforcement.

* Representing the crack to be proportional to the strain normal to the crack
leads to clarity of crack pattern than representing it by a constant line or a

line which is proportional to the mesh element dimensions.
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CHAPTER 9

REINFORCED CONCRETE TEE-BEAMS

9.1 Introduction

In Chapter 5, a reinforced concrete Tee-beam was analysed using 3-D and 2-D
finite element models and it was found that the 2-D finite element model is
sufficient to predict the behaviour of this type of beam. In this chapter, more than
twenty reinforced concrete Tee-beams have been analysed using the 2-D finite
element model developed in chapter 6. These reinforced concrete Tee beams were
with and without shear reinforcement having a/d ratio varying from 3.3 to 104.
The beams without shear reinforcement were tested by Kotsovos, et al. (1987),

whereas the beams with shear reinforcement were tested by Taylor (1966).

9.2 Kotsovos. et al's beams

Kotsovos, et al. (1987) tested three types of reinforced concrete Tee beams. The
beams were without shear reinforcement. Type | and Il beamswere 6600 mm
long with a shear span of 2500 mm, whereas type Il beams were 3200 nmm long
with a shear span of 800 mm (Fig. 9.1). All the beams had the same Tee
cross-section at mid span and a rectangular cross-section 200 mm wide x 290 nmm
high after the supports to the beam ends. In type Il beams the rectangular
section extended to a distance of 1000 nmm from the supports. The beams were
under-reinforced with two 20 mm diameter high vyield deformed steel bars (fv =
540 MPa). The bars were welded at the ends onto steel plate to eliminate the
possibility of anchorage failure. Also six 8 mm diameter mild steel links were used
after the supports to prevent splitting along the interface between the steel bars

and concrete.
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Chapter 9 Reinforced concrete Tee-beams

Type | and I beams were subjected to two-point loading. Type Il beams were
subjected to both two-point and six-point loading. Two beams in each beam type
were tested under the same loading configuration (i. e. a total eight beams were
tested). Table 9.1 shows the data required for the analysis and Fig. 9.2 shows
the finite element meshes used. Different thicknesses for the elements were taken
depending on the element location. For example, the thicknesses of the elements
which lie at the flange or at the rectangular cross-section were taken equal to
200 mm

Kotsovos, et al. reported the load-deflection curves for type |Ill. In this type, two
beams were tested under two-point loading and two beams were tested under
six-point loading. In this reported load- deflection curves, there was about 16 kN
and 30 kN differences in the ultimate loads of the pair of beams with the same
type of loading. This difference represents about 27% of the lower ultimate loads,

which indicates that there was considerable scatter in the experiments.

Using the 2-D finite element model developed in chapter 6 and taking the tensile
strain at which the tensile stress becomes zero ,ftmax , to be equal the yield
strain of steel (see Fig. 7.12), the results of analysis are shown in Table 9.1.
The mean value and standard deviation for the four beams were 1.05 and 14.7%,
respectively. The worst prediction was for beam type |, the predicted to the
experimental failure load was 1.25. Despite this it was noticed that at a load
level a little greater than the ultimate load (load factor = 1.05), a large deflection
was observed and also the number of iterations required for convergence in this
increment was about 45 iterations (at other increments the number of iterations
required was in the range of 1-8 iterations), which means that a large number

of cracks occurred at that level.

To predict the mode of failure of beams, the following points will be looked at in

greater detail:
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Fig. 9.2 Finite element meshes for Kotsovos, et al's beams.

405



Chapter 9

« the crack pattern anddeflection shape of the beam,

» the stresses in the longitudinal reinforcement at some increments.

+ the stress-strain curve of concrete at a Gauss point under the applied load
or/ and at a Gauss point near mid span, and

+ the stresses in the compression steel and in the stirrups, ifthey are present, at
some increments.

In the following, a brief summary of the predicted behaviours of the four beams

are presented.

Beam KOTI

The resultsof the analysis of beam type | are shown in Figs. 9.3 t09.6. The

observed crack pattern after failure is shown in Fig. 9.3a. The predicted crack

pattern and deformed shape at the last converged increment (load factor = 1.00)
are shown in Fig. 9.3b. Fig. 9.3c shows the deformed shape atincrement 18
(load factor = 1.05) atwhich the convergence has notbeen achieved, both the

crack pattern and deformed shape are drawn in Fig. 9.3d. It is clear from this
figure that the beam failed in shear. Large vertical displacements are shown in
the elements which lie in the shear span above the middle of the beam and a
combination of nearly horizontal and double cracks are observed also in this
region. Comparing Fig. 9.3a and Fig. 9.3d shows that the predicted crack pattern
is in good agreement with the observed one. The stresses in the Ilongitudinal
reinforcement (Fig. 9.4) supports the fact that the beam failed in shear, since the
bars haven't vyielded upto the numerical failure load. The three curvesdrawn in
Fig. 9.4 are for the three load factors 0.95, 1.00, and 1.05. Fig. 9.5 shows the
stress-strain curves of concrete at a Gauss point under the applied load (Fig.
9.5a) and at a Gauss point near the mid span (Fig. 9.5b). These curves show

that The stress of concrete has not reached the value offcf up to the

failure. All these signs indicate that the beam failed in shear.
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Fig. 9.3 Crack patterns and deformed shapes of beam KOTI

(displacements magnified x 10)
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Beam KOTII

In Figs. 9.6-8, the predicted behaviours ofbeam type Il are presented. Fig. 9.6a
shows the observed crack pattern for this beam after failure. Figs. 9.6b-d show
the predicted crack patterns and deformed shapes at threeload factors (1.00,
1.05, and 1.25). By comparing these crack patterns anddeformed shapes with
those of beam KOTI (Fig. 9.3), it can be seen that the critical cracks in beam
KOTI started fromthe support while in  beam KOTIl these cracks started from a
distance of about 1000 mm from the support. This is because over this length
the cross section of beam KOTII is rectangular (see Fig. 9.1) and not Tee as in
beam KOTI. Also in both beams KOTI and KOTII, no critical cracks occurred up
to a load factor = 1.0. At a load factor = 1.05, the critical cracks occurred in
both the beams but only beam KOTI failed, while beam KOTIl continued to carry
more load up to a load factor = 1.25. Fig. 9.7 shows that the stress at any
point on the bar hasn't reachedthe vyield point even at a load factor of 1.25.
The stress-strain curvesof concrete at a Gauss point under the applied load and
at a Gauss point near mid span are shown in Fig. 9.8. The stress in concrete

is much less than fcl  From the above it can be concluded that the beam failed

in shear.
Beam KOTIII2
This beam is type Il where the load was applied as a two-point loading. The

observed crack patterns at a load of 24kN and after the failure are shown in
Fig. 9.9a-b, while the predicted crack patterns at a load factor = 0.65 (total load
=24.05 kKN and at the last convergedincrement (load factor = 1.05) are shown in
Fig. 9.9c-d. From Fig. 9.9d only, it can be concluded that the beam failed in
shear. The stresses in the bar support this conclusion (Fig. 9.10).Also the
stress-strain curves at Gauss points under the applied load and near the mid

span show that the stress in concrete isless than fe¢’ (Fig. 9.11).
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Fig. 9.9 Crack patterns and deformed shapes of beam KOTIII2
(displacements magnified x 10)
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Fig. 9.12 shows the distribution of the principal compressive stresses at two load
factors (0.2 and 1.05). From this figure it can be seen that the cause of failure

was the crushing of concrete in web in the shear area due to the compressive

stress exceeding fc|

Beam KOTIII6

This beam is type Il where the load was applied as six-point loading.Fig. 9.13a

shows the observed crack pattern after the failure. The predicted crack pattern is
shown in Fig. 9.13b. The stresses in the bar are shown in Fig.9.14 and the
stress-strain curve at a Gauss point near the mid-span is shownin Fig. 9.15.

From these figures, it can be concluded that the beam failed in shear.

9.3 Taylor's beams

Taylor (1966) performed, on nine beams, 23 tests. All the beams were 3658 mm
long. Some beams were tested only once, while some were tested two or three
times depending on the mode of failure of the beam. Beams for which the
maximum flexural capacity was reached (this was indicated by the strain readings
for the steel bars) the test was repeated again after reducing the shear span. In
the first group A of nine beams, eight beams failed in flexure, while the mode of
failure of the remaining beam was anchorage failure. In test B (which consists of
the eight beams failed in flexure in test A), two beams failed in shear and the
others failed in flexure. In test C (six beams), three beams failedin shear and
three failed in flexure. Thus a total 23 tests were performed. The shear spans of
the three tests were 1600, 1143, 914 mm,respectively (Fig. 9.16). In Test A, the
load was applied at mid-span. In Tests Band C, two point loads were applied.
Al the beams had the same cross-section. The difference was in the

reinforcement ratio, type of steel, and spacing of stirrups (Fig. 9.17).
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Fig. 9.16 Types of loading for Taylor's beams
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In each beam the amount of shear reinforcement in one half differed from the
amount provided in the other half (one being approximately 80% of the other).
The greater amount was designed to enable the full flexural capacity to be
attained when the beams were centrally loaded over a span of 3200 mm.
Although the title of Taylor's paper is 'Some shear tests on reinforced concrete T beamswith
stirrups, in seventeen out of twenty-three tests the beams failed in flexure and only
five beams failed in shear. Also, the difference between the shear failure and
flexure failure was not very large. For example, he classified the crack width to
six descriptions; fine, prominent, very prominent, wide, very wide, andvery
extensive and he considered the shear failure occurred only when the crack was
described as very extensive (in one beam when web crushing occurred). Also, he
reported that the beams which failed in shear had also reached, or were very
near to, their ultimate flexural capacity. So, some difficulty in the predictionis to
be expected in distinguishing clearly between the shear failure and the flexural

failure for these beams.

The data of the beams required for the analysis are shown in Table 9.2. The
finite element meshes used are shown in Fig. 9.18. The ratios of predicted over
the experimental failure load are shown in Table 9.2. The results of prediction of
the failure load were good, the mean value and the standard deviation of the 23
tests were 0.97 and 54%, respectively.

Taylor reported the observed crack patterns after failure for two beams only, beam
ST1 under test A and B (named here as ST1A and ST1B) and beam ST2
under test C (named here as ST2C). Also, Taylor reported the load-deflection
curves for beams of test A

In the following, a brief summary of the predicted behaviours of beams ST1 and

ST2 are presented.
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Fig. 9.18 Finite element meshes for Taylor's beams.
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Beams ST1A&ST1B

The observed crack patterns after failure for beam ST1 under test A and B are
shown in Fig. 9.19a,b. Fig. 9.19a shows the crack pattern of test A where the
beam failed in flexure, whereas Fig. 9.19b shows the crack pattern of test B
where the beam failed in shear. The predicted crack patterns at the last
convergent increment for the two tests A and B are shown in Fig. 9.19c,d. The
difference between the two patterns is small, but the shear cracks in test B are
slightly larger than thatin test A. In Fig. 9.20, thestresses in the continuous
longitudinal bars at the last three increments are shown for the two tests. Again,
a small difference between the results of the two test are observed. But in test
A, the stresses in the bar is higher than those intest B, also the bar has
yielded at the last two increments in test A. Fig. 9.21 shows thestresses in the
cut-off bar. The stress in the bar in test A ishigher than in thatin Test B.
Fig. 9.22 shows the predicted stresses in the stirrups at the last converged
increments. The circle at a Gauss point means that the stirrup yielded at this
point. The stresses in the compression steel and the stress-strain curves at a

Gauss point under the applied load are shownin Figs. 9.23 and 9.24.

Beams ST2A. ST2B. and ST2C

Taylor reported the observed crack pattern after failure for beam ST2 in Test C
only (Fig. 9.25c). Thepredicted behaviours of the three tests (A, B,and C) of
beam ST2 are shown in Figs. 9.25 to 9.29.

Fig. 9.25 shows the crack patterns. The shearcrack in thecrack pattern of test
C is more critical than the shear crack in the crack patterns of tests A and B.
The stresses in the tension steel at the last three increments are shown in Fig.
9.26. Again like beam ST1 in case of flexural failure (beams ST2A, ST2B), the
tension steel has yielded at the last two increments while in shear failure (beam
ST2C) the steel has yielded at the last incrementonly. The stresses in the

compression steel at the last three increments are shown in Fig. 9.27. As the
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Fig. 9.19 Crack patterns and deformed shapes of beam ST1

(displacements magnified x 10)
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supports move toward the mid-span, the stresses in the compression steel change
from compression to tension above the support. The stresses in the stirrups at
the last converged increments are shown in Fig. 9.28. The stress-strain curves at

a Gauss point under the applied load are shown in Fig. 9.29.

Finally the observed and predicted load - deflection curves for three beams (beams
ST1, ST6, and ST9) are plotted in Fig. 9.30. The predicted failure loads are
plotted against the experimental failure loads in Fig. 3.31. Assuming the predicted
failure load of a beam equal to 80% of the numerical failure load makes all the

predicted failure loads of the Tee beams conservative.

9.4 Conclusions

* In this chapter, the 2-D finite element model developed in chapter 6 has been
used to predict the behaviour of reinforced concrete Tee beams with and
without shear reinforcement. The results of prediction of the ultimate loads and
the mode of failures are in a good agreement with the experiments in most
of the cases.

* In some cases the model was not able to distinguish between the shear failure

\'A

and the flexural failure, and this is not completely the fault of the model but

due to the vague description of the mode of failure of the beam.
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 General conclusions

The main conclusions from the results presented in this thesis can be summarised

as follows:

1. From the comparison that has been made between 2-D and 3-D finite
element models it was found that, the 2-D finite element model is sufficient
to predict to good accuracy the behaviour of reinforced concrete rectangular
and Tee beams. The stresses in the direction perpendicular to the plane of
the beam are not large enough to significantly affect on the prediction of
the beam's behaviours. It was found that adjustment of the parameters that
affect the prediction in the model itself was more significant for the correct
prediction than the choice of 2-D or 3-D model.

2. From studying the effect of shear retention factor, p, the following general
conclusions can be drawn:

+ Large value for P may lead to an overestimation of the failure load. It
may also lead to the predicted mode of failure for beams which fail in
shear being flexural rather shear.

* Assuming P as a function of the strain normal to the crack is more
acceptable than assuming it as a just numerical constant especially for

* the analysis of beams which failed in shear.

+ In the finite element model which took the tension softening of concrete
into account, the effect of P was more significant than in that model

which was based on tension cut-off criterion. This was because the two
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models created different states of stresses after cracking. This dependency
of @ on the model itself explains why most of the previous finite
element models concluded conflicting results about the effect of B

In some classes of beams the following conclusions canbe drawn:

+ Beams without shear reinforcement:
- In beams having a smalla/d ratio,P had a very significant effect on
the prediction of the failureload (25 - 125% of the experimental failure
load).
- In beams having a high value of compressive strength of concrete, p
had a very significant effect on the prediction of the failure load (up to
100% of the experimental failure load).

+ Beams with shear reinforcement:

- In beams having a high a/d ratio and high percentage of shear
reinforcement (which was expected to fail in flexure), P had little or no effect

on the predicted behaviours.

- In beams having a smalla/d ratio,P had a significant effect on the

predicted failure load (10 - 25% of the experimental failure load).

3. From a study of the effect of tension softening of concrete on the prediction
of the behaviour of reinforced concrete beams the following conclusions can

be drawn:

+ Taking tension softening into account was economical because it reduced

the number of iterations required to achieve convergency.

* In beams with shear reinforcement having a higha/d ratio and high
percentage of shear reinforcement, taking tension softening into account
had very little effect on the predicted failure load, the mode of failure,

and the load deflection curve.
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 In beams without shear reinforcement having a high a/d ratio, taking
tension softening into account had little effect on the predicted failure
load although it improved the load deflection curve

* In beams without shear reinforcement having low a/d ratio taking tension

softening into account had a significant effect on the predicted failure
load (20-35% of the experimental failure load). Also in these beams the
strain at which the tension softening was terminated had a significant
effect on the predicted failure load.
4. From a study of the effect of tensile strength of concrete on the prediction
of reinforced concrete beams:

* In general, the less the assumed value of the tensile strength the less
the predicted failure load. Also, the less the assumed value of tensile
strength the less the scatter in the prediction.

The tensile strength of concrete had very little effect on the prediction of

the behaviour of beams having a high a/d ratio and high percentage of

shear reinforcement which failed in flexure.

« It had a significant effect on the prediction of the behaviour of over
reinforced beams without shear reinforcement which was expected to fail

in shear

« It had a very significant effect on beams without shear reinforcement

having a/d ratio less than 4.

From a study of the effect of maximum compressive strain of concrete it
was found that:

In beams without shear reinforcement assuming the concrete to be crushed
immediately after it reached the peak of stress with a maximum compressive

strain £max of

Emax~

2500

gave good results.
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In beams with shearreinforcement assuming the concrete to be crushed
when the maximum compressive strain cmax reached to a value of 0.005
gave satisfactory results.

6. From a study of the effect of compression softening of concrete the following

conclusions can be drawn:

+ This effect was more important in beams having a high percentage of
shear reinforcement, a high value of a/d ratio, and a low value of the
compressive strength of concrete.

« The shape of the curve in the descending portion of the stress-strain
relationship had less effect onthe prediction than the value of the
compressive strain at which the concrete was assumed to be crushed
(Ewa-

7. From the analysis of reinforced concrete T-beams it was found that:

 The essential features of the behaviour of Tee beams were predicted to
a good accuracy using the 2-D finite element model. Neglecting the
stresses variation in the flange had no significant effect on the prediction.

+ The prediction of the behaviour of Tee beams with shear reinforcement
was more accurate than the prediction of the behaviour of beams without

shear reinforcement.
C. o
8. From the analysis of prestressed concrete beams the following conclusions

can be drawn:

+ Like the reinforced concrete rectangular and Tee beams the prediction of
the behaviours of beams with shear reinforcement was better than the
prediction of the behaviours of beams without shear reinforcement.

+ Assuming the effective prestressing force as a constant horizontal load
applied to the beam in the first load step seemed to be acceptable.
Also modifying the stress strain curve of the prestressing reinforcement by
subtracting the effective prestress andtreating it as unstressed steel

reasonably simulated the actual behaviour.
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9. From Fig. A1 (Appendix A) it is clear that the mesh used in the analysis is fine
enough for the results to be only marginally affected by mesh dependency.

10. Finally, this thesis introduces a 2-D finite element model which can be used
to predicted with satisfactory result the behaviour (e.g.; the ultimate load, the
load-deflection curve, and the mode of failure) of reinforced and prestressed
concrete beams. In this model the concrete and steel are modelled as
follows:

« Concrete: is assumed to be elasto-plastic in compression and linear elastic in

tension with a softening in both tension and compression as follows:

(i) Compression: The stress-strain relationship of concrete in compression is
assumed as shown in Fig. 10.1. In the analysis of beams without shear
reinforcement, no compression softening is assumed (Fig. 10.1a). In the
analysis of beams with shear reinforcement, a straight line with very small

slope is assumed for the descending portion as follows (Fig. 10.1b).

£ < 0.005 (10.1)

ecc= I 2500

where fc' in MPa

(i) Tension: The stress-strain relationship of concrete in tension is assumed
as shown in Fig. 10.2. The tensile strength of concrete ft' is estimated
from the compressive strength fc' as follows.

1 MPa (10.2)

The equation which represents the descending portion of the stress-strain

curve is.

(10.3)
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where zcr is the initial cracking strain of concrete and zs is the vyield
strain of steel used(s5~20 zcr for normal steel and 50 zcr for prestressing
steel).

(iiy Shear: After cracking, the shear retention factor p is assumed as a function

of the strain normal to thecrack zn as follows (Fig. 10.3).

P=04" >00 (10.4)
Sy

* Young's modulus of concrete is taken as follows.

E MPa

o Steel: is assumed to be elastic perfect plastic in tension and compression with
the maximum stress equalto the vyield stress. Fig. 104 shows the stress-
strain curves of the normal and the prestressing steel.

The results of the model for more than two hundrads reinforced and prestressed

concrete beams with and without shear reinforcement are shown in Fig. 10.5.

10.2 Recommendations for future work
This section recommends further work as follows:

1- Although the present equation (Eq. 10.4) used for shear retention factor gave
acceptable results in most of the cases there is a need to study other
equations obtained from the shear tests on concrete.

2- The compressive strain at which the concrete is assumed to be crushed
needs more investigation. It is believed to be related to the percentage of
reinforcement in reinforced concrete structure.

3- Further extensive analysis ofthe available test results, particulary for beams with

shear reinforcement needs to be completed.
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Cec 8 /2500 0.005

Fig. 10.1 Assumed stress-strain curve of concrete in compression
(a) for beams without shear reinforcement
(b) for beams with shear reinforcement

cr ucr

ellEcr

Fig. 10.2 Assumed stress-strain curve of concrete in Tension
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P=G/Q
1.0 —

0.4.m

Fig. 10.3 Shear retension factor O

f used

used

ap= stress due to prestressing

}fv used = J/V actual - o,

£ actual 8 6
y

(a) (b)

Fig. 10.4 Assumed stress-strain relationship for reinforcement
(a) Prestressed (b) Ordinary
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Appendix A

Effect of number of elements on the prediction
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