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SUMMARY

This thesis presents a 2-D finite element model that can be used to predict the shear 

strength of reinforced and prestressed concrete beams. A comparison between the 

predictions of 3-D and 2-D finite element models was made first, from which it was 

concluded that the 2-D finite element model is sufficient to predict the behaviour of 

reinforced concrete beams.

To improve the results of the 2-D finite element, five parameters which have a 

significant effect on the prediction of the failure load and the corresponding mode of 

failure were studied. These parameters are: (i) shear retention factor, (ii) tensile 

strength of concrete, (iii) magnitude of the strain corresponding to the peak stress in 

the stress-strain curve of concrete in compression, (iv) tension softening of concrete, 

and (v) compression softening of concrete. The developed model is used in a 

nonlinear finite element program. Only smeared cracking approach was used.

After developing, the model was tested against more than two hundred reinforced and 

prestressed concrete beams from seven previous experimental investigations. These 

beams were with and without shear reinforcement having rectangular, I, and Tee 

cross-sections. The beams covered important variables affecting the shear strength of 

reinforced concrete beams such as: shear span to depth ratio a/d, amount of shear 

reinforcement, effective depth and width of beam, and compressive strength of 

concrete. Most of the beams failed in shear. Because of the fact that in many 

previous studies on a small number of beams, the emphasis had been placed purely 

on the prediction of the failure load, very often the corresponding mode of failure 

differed significantly from the actual mode of failure. In this study particular emphasis 

is placed on the predicted mode agreeing with the actual mode of failure. The model 

was capable of predicting to good accuracy the failure load, the mode of failure, the 

load-deflection curve, and the stresses in reinforcement.



NOTATIONS

Major symbols used in the text are listed below. Others are defined when they first 

appear. Some symbols have different meanings in different contexts; these are clearly 

defined at the appropriate place.

a Shear span.

a/d Shear span over effective depth ratio.

A c Area of concrete section.

A s Area of tensile reinforcement.

Asv Cross sectional area of a vertical stirrup.

b Width of a section.

\B] Strain matrix.

IP ] Elasticity matrix for any material.

d Effective depth of beam.

E Young's modulus.

fc Cylinder compressive strength of concrete.

fee Intermediate yield surface strength of concrete.

feu Cube compressive strength of concrete.

f t Tensile strength of concrete.

fy Yield strength of steel.

G0 Shear modulus of uncracked concrete.

Gcr Shear modulus of cracked concrete.

M Stiffness matrix.

L .  F . Load factor = computed load / Experimental failure load.

m Ratio of tensile to compressive strengths of concrete.

M Bending moment at any stage of loading.

Shape function matrix.



p Applied load.

Intensity of the uniformly distributed load.

S, Sy Spacing of stirrups.

[7] Transformation matrix for cracks.

Tol Specified convergence tolerance.

V Shear force.

VC Shear stress carried by concrete.

U, V, w Displacements at a point in X, Y, Z directions respectively.

X, Y, Z Rectangular cartesian coordinates.

X, y, z Coordinates at a point in X, Y, Z system.

a Ratio of the principal stresses = d j /  c^-

P
Grr

Shear retention factor =
G0

Pm/w Minimum shear retention factor.

{5} Displacement vector.

{£} Strain vector.

8 Normal strain.

e7 / e2 Principal strains.

scc Compressive strain at peak of stress.

ecr Cracking strain of concrete.

8wax Maximum compressive strain of concrete.

8«' Strain normal and tangential to the surface of crack.

8tmax The tensile strain after which concrete does not carry tensile stress.

sjc, ey Strain components in the cartesian coordinates.

Yield strain of steel.

Intrinsic coordinates of any point within the element.

♦ Reinforcement bar diameter.

p Percentage of tensile steel = —  •
bd

V Poisson's ratio.



Total potential.

Total potential of element.

Stress vector.

Initial stress vector.

Octahedral normal stress.

Normal stress.

Stress components in a cartesian coordinates. 

Principal stresses.

Shear stresses in xy plane.

Octahedral shear stress.



CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis is concerned with the development of a two dimension (2-D) finite 

element model that gives 'good' predictions of the shear strength of reinforced

and prestressed concrete beams. Although many attempts have been made, the 

prediction of the response of reinforced concrete structures failing in shear is not 

an easy task. A brief review of the available important investigations include the 

following.

Starting with Ngo and Scordelis (1967) who developed the first linear elastic finite 

element model which was used in the analysis of the behaviour of reinforced

concrete members, a lot of work using the finite element method has been done. 

Cedolin and DeiPoli (1977) developed a finite element model, which incorporated 

the available experimental results on concrete nonlinear behaviour under biaxial

stresses, and predicted the load-deflection curve for two beams failing in shear. In 

1978, Cedolin and Nilson studied the convergence of iterative methods applied to 

finite element analysis of reinforced concrete on one beam without shear 

reinforcement failing in shear. Arnesen, et al. (1980) developed a finite element 

model and compared the results of the model with four tests. Bedard and 

Kotsovos (1985) tried to ensure the generality of their finite element model to the 

analysis of concrete structures. They analysed three structural configurations: deep 

beam with openings and web reinforcements, four shear panels, and a plain

concrete sphere in addition to results of nine examples (mainly on beams and 

plain concrete prisms) reported in their paper. In 1987, Cervera, Hinton and
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Hassen used 3-D finite element model and compared the results with: two panels, 

four slabs, two deep beams and beam without shear reinforcement. Chang, et al.

(1987) compared the numerical results obtained from their finite element analysis

with four reinforced concrete panels. In 1988, Balakrishinan and Murray published 

three papers which described a constitutive model for smeared cracking nonlinear 

finite element analysis of reinforced concrete structures and they compared the 

results of their model with eleven beams and nine panels. After modification of 

layered shell element to more accurately model shear behaviour, Harmon and 

Zhangyuan (1989) compared the results of their model with two beams: one 

failing in flexure and the other beam without stirrups failing in shear, in addition 

to four plates and concrete shell. Recently, Vidosa, et al. (1991) introduced 3-D 

non-linear finite element model and studied its generality in three papers. They 

analysed eight structures: a beam and a shear wall both failing in flexure, two 

beams with and without shear reinforcement failing in shear, T-beam, two slabs 

exhibiting punching failure, and two prism under strip or patch loading. After 

development of the compression-field theory, Vecchio and Collins (1986) introduced 

the modified compression-field theory which was incorporated in nonlinear finite 

element program by Vecchio (1989). Vecchio predicted the ultimate loads for three 

different types of test specimens: panel, deep beam, and beam with shear 

reinforcement. Stevens, et al. (1991) incorporated the modified compression field 

theory in nonlinear finite element program (FIERCM) which was described by 

Vecchio (1989) as a more complex program and by simple program Vecchio 

obtained better results. Stevens, et al. demonstrated the power of their program 

by analysing a beam with shear reinforcement and a deep beam.

The above literature review shows that in most of the previous finite element 

modelling:

• only a few beams or a definite class of beams have been analysed,

• parametric studies have been done on only a few beams,

2
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• the relationship between the ultimate load and the mode of failure has not been

studied in most of the above investigations.

1.2 Purpose of study

Among the finite element models that have been developed to predict the 

behaviour of reinforced concrete structures are the simple model which neglects 

many factors including even the shear resistance of concrete after cracking and

the sophisticated one which takes everything into account such as the bond slip

between the concrete and reinforcement, softening of concrete in tension, and 

softening of concrete in compression. Also, material models for concrete and 

reinforcement are based on different theories e.g. nonlinear elasticity theory, 

plasticity theory, endochronic theory, or modified compression-field theory. They 

deal with concrete after cracking as a smeared model, discrete model, crack band 

model, or fracture mechanics model. The common aspect between these models, 

as mentioned above, is that all of them have used for the analysis only a small 

numbers of experimental tests which do not cover all the factors influencing the 

behaviour of reinforced concrete. In other words the generality of any one of 

these models has not been established and it is difficult to judge which model 

gives best predictions for any kind of structures.

The purpose of this study is to attempt to find out the features of a finite

element model which is able to predict, with reasonable accuracy, the ultimate 

load and the mode of failure for a large number of beams which cover all factors 

influencing the behaviour of reinforced concrete beams. To determine this finite 

element model many parameters that affect the prediction should be studied. In 

this study some parameters which many think have a significant effect on the

prediction will be studied.

These parameters are:

(i) shear retention factor,

3
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(ii) tensile strength of concrete,

(iii) magnitude of the strain corresponding to the peak stress in the stress-strain

curve of concrete in compression,

(iv) tension softening of concrete,

(v) compression softening of concrete.

1.3 Organisation of the thesis.

Chapter 2 focuses on the shear in reinforced concrete, while Chapter 3 reviews 

the behaviour of material (steel and concrete) and numerical modelling.

In Chapter 4, the finite element method and numerical methods have been 

discussed. A comparison between the predictions of a 3-D finite element model 

and 2-D one has been made in Chapter 5. In Chapter 6 a parametric study of 

some factors affecting the prediction of shear strength has been done on 

rectangular beams with and without shear reinforcement.

In Chapter 7 about hundred and fifty rectangular beams with and without shear 

reinforcement have been analysed and some factors which affect on the prediction 

of reinforced concrete failing in shear have been studied. Prestressed concrete 

beams have been analysed in Chapter 8. The analysis of reinforced concrete Tee 

beams is presented in Chapter 9. The final conclusions and recommendations for 

future work are given in Chapter 10.

4



CHAPTER 2

ON SHEAR IN REINFORCED CONCRETE

2.1 Introduction

The ACI-ASCE Committee 426 (1974) stated that despite the tremendous

number of references on the prediction of the strengths of reinforced concrete 

members subjected to shear forces, the question of shear strength is far from 

settled. This is because of the complexities involved in formulating rational 

analytical solutions. Shear failure due to web crushing, which is likely to occur in

a thin-webbed I-beam, does not seem to be open to any precise mathematical 

treatment (Kar 1969). Chana (1987) reported that a theoretical analysis of 

splitting failures is difficult owing to the complex nature of stress conditions present 

in the dowel splitting region. As a result of this, he concluded that shear design 

methods for members without web reinforcement are likely to remain empirical in 

basis. At present, although there is no final solution of the problem, considerable

progress has been achieved towards the solution of the problem.

In this chapter, a brief review of basic facts about mechanisms of shear 

resistance, modes of failure, and theories of analysis of shear in reinforced

concrete beams are given.

2.2 Definitions related to shear

In this section the definitions related to the shear in reinforced concrete 

beams used in this thesis are introduced.
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• Shear stress: is the average shear force per unit area resisting this shear

force.

• Shear strength: is the maximum shear force that the beam can carry.

• Shear transfer: is the transmission of the force by shear from one plane to

another.

• Shear span: is the length of the beams subjected to uniform shear force. It is 

denoted by a

• a/d  ratio: The ratio a/d takes into account the ratio between the bending

moment M  and shear force V occurring simultaneously at the same cross

section (a/d = M /(V d )). This is in a beam loaded by two concentrated loads

at equal distances from the supports.

• Flexural crack: is a nearly vertical crack formed at the middle of the beam

starting from the tension face due to bending of the beam.

• Shear crack: There are two types of shear cracks which may develop in 

reinforced concrete beams. These types are the flexure-shear and web-shear 

cracks.

• Flexure-shear crack: is an inclined crack originating from the top of a

previously existing flexural crack.

• Web-shear crack: is an inclined crack forming in a beam without flexural

crack in its vicinity. This kind of shear cracking is more likely to occur in tee

and thin-webbed beams.

• Aggregate interlock action: is due to the interlocking of the irregular

concrete surfaces on each side of the crack. It provides a resisting force 

similar to a frictional force.

• Dowel action: is the resistance to shear across a crack provided by the

longitudinal reinforcing bars.

• Shear retention factor (P): is the ratio of the residual shear modulus of concrete

after cracking Grr to the shear modulus before cracking Ga (p  = —̂ ) .
Gn

6
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2.3 Mechanisms of shear transfer

As defined before, shear transfer means transmission of the force by shear 

from one plane to another. This transmission may occur in various ways in 

reinforced concrete members. Shear stress in concrete, aggregate interlock, dowel 

action, arch action, and web reinforcement are the main types of shear transfer 

(Fig.2.1). The relative contribution of these components vary considerably as the 

applied load is increased. In beams without web reinforcement, after cracking the 

shear resistance is distributed approximately in the following proportions (Houde and 

Mirza 1974; Taylor 1974):

Houde and Mirza (1974) Taylor (1974)

Aggregate interlock 50% 33 -  50%

Compression zone 30% 20 - 40%

Dowel action 20% 15 - 25%

Fig. 2.2 illustrates the distribution of shear forces in a typical beam tested by

Taylor (1974). Shear stresses were measured on the two lines marked 1 and 2 

(Fig. 2.2a). These lines were located at the head of major cracks on the beam

across which displacements had been measured in the test. The line on the Fig.

2.2b at 45° is the line that should be achieved if the three components (dowel, 

aggregate interlock, and compression zone shear forces) added up to the full

imposed shear force. This did not happen probably due to slight under-estimation 

of dowel and aggregate interlock forces in the experiment because the movement 

of the crack before the instrumentation was applied could not be measured. The 

figure shows that up to the point of cracking, the beam behaves elastically and 

the shear force is distributed through the concrete. After cracking, as the applied 

shear force increases, the rate of increase of the shear force carried by 

aggregate interlock becomes more than that of the shear forces carried by both 

dowel action and compression zone.

7
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Vc = shear carried by concrete in compression zone 

Vs = shear carried by stirrups 

Va = shear carried by aggregate interlock 

vd = shear carried by dowel action 

V = total shear force
f

T  = tensile force in bar 

C = compressive force in concrete

Fig. 2.1 Forces acting at inclined crack for beams with web reinforcement.

8
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Fig. 2.2 Distribution of shear force in beam without web reinforcement.
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2.3.1 Shear transfer by shear stress in concrete

Before cracking of concrete, the whole section can carry shear. After cracking, 

shear can be transmitted by the concrete continuum through the compression zone 

only (Vc in Fig. 2.1). The percentage of the shear force carried by the 

compression zone is influenced by the size of the zone and its ultimate shear 

capacity is affected by the concrete strength (Taylor 1974).

2.3.2 Aggregate interlock

When a crack is developed in a concrete mass the surfaces of the crack 

are usually rough and irregular. When this crack forms along a continuous plane, 

a parallel displacement in this plane is possible (Fig. 2.3). This displacement is 

restricted by the bearing and friction of the aggregate particles on the cracked 

surface which is the aggregate interlock action (Paulay and Loeber 1974). Divakar, 

et al. (1987) stated that shear transfer by aggregate interlock is of a frictional 

nature with the normal compressive forces being provided by embedded 

reinforcement. Millard and Johnson (1984) concluded that aggregate mechanism 

results from a combination of crushing and overriding of the crack faces and can 

be predicted if the normal stiffness that restrains crack widening is known. This 

means that shear transfer by aggregate interlock is by friction. Aggregate interlock 

has a significant contribution to the total shear resistance of concrete beams. This 

has been proved by many experiments (e.g., Fenwick and Paulay 1968; Paulay 

and Loeber 1974). Aggregate interlock is usually defined in terms of the average 

shear stress, the shear displacement in the plane of interface, and the width of 

the crack. Paulay and Leober (1974) concluded that the largest single factor 

affecting aggregate interlock is the width of the crack.

2.3.3. Dowel action

Sliding shear deformations are resisted, in addition to aggregate interlock, by 

dowel action of the reinforcing bars (Fig. 2.4). When aggregate interlock

10
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Fig. 2.3 Shear transfer by aggregate interlock.

Crack

Fig. 2.4 Interactive effect between concrete and reinforcement: Dowel 
effect.

11
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diminishes with a large crack opening, dowel bars play a major role in preventing

sliding shear failure. Soroushian, et al. (1986) concluded that the main factor 

influencing the dowel behaviour is the diameter of the bar. Axial load in the

dowel bar can also have an important effect if it approaches the axial yield 

strength (Soroushian, et al. 1986). Other factors that influence dowel behaviour

include the steel and concrete strengths as well as the inclination of the dowel

bar and the concrete cover.

Hofbeck, et al. (1969) concluded that dowel action of reinforcing bars crossing the 

shear plane is insignificant in initially uncracked concrete, but is substantial in

concrete with a pre-existing crack along the shear plane.

The amount of vertical shear resisted by the longitudinal reinforcement is limited

by the tensile strength of the concrete beam at the level of the steel; an amount

in excess of this limiting value causes splitting of the beam along the 

reinforcement. As the tensile strength of concrete is low and the vertical tensile

stresses are concentrated near the plane of the diagonal tension crack, usually the 

contribution of the longitudinal reinforcement to transfer of shear cannot be large. 

Due to this Ruble, et al. (1955) stated that ordinary shear resistance of the

longitudinal reinforcement may be neglected in the analysis. However if the bars are

well supported by links, then the dowel action is considerably enhanced.

2.3.4 Interaction between aggregate interlock and dowel action

Swamy and Andriopoulos (1974) reported that there is an interaction or 

interdependence between aggregate interlock and dowel action and it is difficult to 

separate the effects of one from the other. The relative shear contributions of

aggregate interlock and dowel action and their combined contribution will depend

primarily on the development of the diagonal crack both in the web and at the

level of the tension steel, and hence on the amount of tension steel, the

moment-shear ratio, the amount and position of web reinforcement, and concrete 

strength. Swamy and Andriopoulos said " the hazards and lim itations o f  try ing to

12
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separate the effects o f  aggregate interlock and dowel action are fa r  too obvious". 

More experimental study is required of both the aggregate interlock and dowel 

action mechanisms before their combined action in reinforced concrete can be

predicted with confidence (Millard and Johnson 1984).

2.3.5 Arch action

Beams may be visualised as composed of two parts: an arch portion, above,

and a beam portion, below the diagonal crack. When there is no web

reinforcement the arch acts as if there is a hinge under the applied load (Fig. 

2.5), because of the relatively small zone of concrete remaining intact. The 

negative bending moment along the arch produced by this action reduces the

compressive stress at the top fibre. When the web reinforcement is added, the

stirrups forces represent a distributed load along the arch, which tends to cause a

larger compressive stress at the top fibre (Scordelis, et al. 1974). For arch action 

to develop, a horizontal reaction component is required at the base of the arch.

In beams, this is usually provided by the tie of the longitudinal bars. Frequently

deep beams fail due to a failure of the anchorage of the bars. In beams, arch 

action occurs not only outside the outermost cracks but also between diagonal

tension cracks. Web reinforcement produces an additional arch support (Fig. 2.6). 

The location of the stirrups is very important. It was found (Kani 1969) that

stirrups close to the base of diagonal cracks can provide support to the arches.

2.3.6 Web reinforcement

The stirrups remain practically unstressed until diagonal tension cracking occurs;

afterward the stirrup strains increase rapidly. Stirrups reduce the maximum principal 

concrete stresses in the vicinity of the diagonal crack and thus inhibit the growth 

of these cracks (Scordelis, et al. 1974).
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BEFORE CRACKING |  Ia)

0) SUPPORTED ARCH

C) HANGING ARCH

d) AFTER CRACKING

Fig. 2.5 Arch analogy for reinforced concrete beam without web 
reinforcement.

BENT-UP BARS

If___

INCLINED STIRRUPS

VERTICAL STIRRUPS

Fig. 2.6 Arch supports provided by three conventional types of web 
reinforcement.
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It was observed in the tests of 136 beams, 35 of them with web reinforcement 

(Moody, et al. 1955) that the stirrups delayed the full development of diagonal 

tension cracks. In beams without stirrups only one or two diagonal tension cracks 

formed; these cracks then penetrated into the compression zones of concrete and 

precipitated the failure which occurred by destruction of one of these zones. In

beams with stirrups, however, numerous short diagonal cracks formed since the

stirrups distributed the cracks; more load was required for the cracks to develop 

and penetrate into the compression zones, and thus to cause crushing of the 

concrete.

With large amounts of web reinforcement, the dowel and interlock contributions to

shear capacity become much less important (Taylor 1974; Scordelis, et al. 1974). 

This means that not only stirrups carry shear themselves but also they limit the

maximum dowel shear and thus reduce the tendency for horizontal splitting. 

Moreover, stirrups may transfer a small force across the crack by dowel action 

(see e.g., Ruble, et al. 1955) due to possible kinking and they tend to enhance 

the strength of the compression zone by confining the concrete.

2.4 Mechanisms of shear failure

A major difficulty in the development of a rational theory for shear design is 

identified as the lack of information on the mechanism of failure (Chana 1988).

Many attempts have been made to explain the mechanism of shear failure (e.g., 

Moody, et al. 1955; Kani 1966; Kotsovos 1983,1986; Chana 1987; and Bazant 

and Kazemi 1991). Moody and Viest (1955) reported that for beams with or

without web reinforcement, the shear failure occurs at the section of maximum 

moment in the region of maximum shear by the destruction of the compression

zone directly above or below the diagonal tension crack. Kotsovos (1983) 

concluded that there is no single cause of diagonal failure and it is not
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considered realistic to expect that theories based on the assumption of a unique

mechanism of diagonal failure could lead to safe design procedures. For beams

with a/d  smaller than 2.5 subjected to two point load, Kotsovos (1984) reported

that their failure is due to branching of diagonal crack within the shear span 

toward the compressive zone of the middle span (Fig. 2.7) and not due to 

crushing of the compressive region of the loading point as for beams with a/d 

greater than 2.5 (Kotsovos 1986).

2.4.1 Beams without web reinforcement

Shear failures of beams without web reinforcement are brittle in nature and,

hence, there is little information on beam displacements approaching failure, and 

during the immediate post-peak or failing branch phase (Chana 1987). Chana

(1988) concluded that shear failures of beams without web reinforcement are

initiated by dowel splitting. The dowel action of the main reinforcement causes

splitting of the concrete along the steel. As the dowel force is lost, shear force 

is transferred and the diagonal crack extends into the compression zone, which 

fails on account of excessive principal tensile stress. Taylor (1974) also concluded 

that the sequence of failure is initiated by dowel cracking. The aggregate interlock

is the next to fail, causing an abrupt and sometimes explosive failure of the 

compression zone. It can be understand from these conclusions that the failure is 

initiated by dowel action but is completed by failing or crushing of the 

compression zone. In other words, the magnitude of the failure load depends on

the resistance of the compression zones at the end of the diagonal tension crack.

2.4.2 Beams with web reinforcement

The presence of web reinforcement has no important effect on the behaviour 

of beams prior to the formation of initial diagonal tension cracks. The strains in 

the stirrups are practically zero and the load deflection curve for a beam without
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(a) Generally accepted
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(b) Postulated by Kotsovos (1984)

Fig. 2.7 Cause of failure for beams with a/d smaller than 2.5.
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web reinforcement is the same for a typical beam with web reinforcement (Moody,

et al. 1954). After the formation of a diagonal crack, the interaction between the 

web reinforcement and the crack provides additional shear strength beyond that of 

a beam without web reinforcement.

2.5. Factors affecting the shear strength

The factors influencing behaviour and strength of reinforced concrete beams 

failing in shear are numerous and complex (Bresler and MacGregor 1967). They 

include: the proportions and shape of the beam, the structural restraints and the 

interaction of the beam with other components in the system, the amount and

arrangement of tensile, compressive, and transverse reinforcement, the degree of 

prestress, the load distribution and loading history, the properties of the concrete 

and steel, the concrete placement and curing, and the environmental history.

These factors may be classified to four groups; reinforcement details, concrete 

properties, beam dimensions, and other factors, e.g. type of loading and degree of 

prestress.

2.5.1 Reinforcement details

Longitudinal reinforcement:
A

Percentage of tensile steel p (=— ; 4̂5=cross-sectional area of tensile steel,
bd

b = beam width, and d  = effective depth) is a significant parameter affecting the

shear strength of reinforced concrete beams (Kani 1966; Taylor 1974; Swamy and

Andriopoulos 1974; Elzanaty, et al. 1986a). As p increases the flexural cracks

become narrower and shorter. Therefore, the shear strength increases due to an

increase of both dowel action and aggregate interlock contributions.

In the Canadian code, the longitudinal reinforcement is designed to resist, in 

addition to the bending moment at the midspan section, an equivalent axial 

tension caused by shear (Collins and Mitchell 1986, see Sec. 2.7.4.2).
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Web reinforcement:

Beams with web reinforcement fail at higher loads and are capable of

developing substantially higher deflections, thus exhibiting greater ductility (Bresler

and Scordelis 1963). The stirrups not only carry shear themselves but also

enhance the strength of other shear transfer mechanisms. The functions of the

web reinforcement may be summarised as follows:

• Carrying a part of the additional shear after diagonal tension cracking (some

Codes assume that the additional shear is resisted by stirrups only).

• Increase the strength of the dowel action. The stirrups provide support for the

longitudinal steel and prevent the bars from splitting from the surrounding

concrete.

• Increase both the shear carried by aggregate interlock and shear strength of

the uncracked compression zone. The stirrups help to contain the crack,

limiting its propagation and keeping its width small.

• Stirrups also increase the strength of concrete in compression by providing

confinement.

• They may transfer a small force across the crack by dowel action.

Compression reinforcement:

Moody and Viest (1955) reported that if the shear failure is caused by the

destruction of the compression zone of concrete at the end of diagonal crack, 

compression reinforcement located in this compression zone will increase shear 

strength by preventing failure of concrete.

2.5.2 Concrete properties

Concrete strength:

Some investigators concluded that concrete compressive strength (from about 

17.0 to 34.0 MPa) has little or no effect on the shear strength (e.g., Kani 1966;
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Taylor 1974). But some investigators concluded that it has effect on shear 

strength. Iyengar and Rangan (1966), based on tests by Moody et al. (1954), 

concluded that concrete strength (from about 14.0 to 41.0 MPa) has a definite 

influence on the shear strength of beam in medium and higher ranges of a/d (i.e. 

a/d  > 2.0). Clark (1951) reported that the shear capacity of a beam increases with 

the strength of concrete (from about 14.0 to 41.0 MPa) when the other factors 

are the same (a/d  was small, from 1.17 to 2.43).

After using the high-strength concrete (up to about 83.0 MPa), Elzanaty, et al. 

(1986a) found that the shear strength of beams with or without web reinforcement

increased with the increase of concrete strength. Mphonde and Frantz (1984)

concluded that the effect of concrete strength (from 21.0 to 103.0 MPa) on shear 

capacity becomes more significant as the a/d  ratio decreases. Also, failures

become more sudden and explosive as the compressive strength increases,

especially at lower a/d values.

Aggregate type:

In lightweight concrete, the actual performance in shear depends on the

aggregate type (Taylor 1974). With some aggregates, the crack goes right through

the aggregate and low shear strengths are obtained. In other cases, a rough 

cracked surface is obtained and shear test results much closer to those from 

dense concrete are obtained. Akhtaruzzaman and Abul Hasnat (1986) found that 

the shear strength of brick-aggregate concrete beams without web reinforcement is

higher than that of normal weight concrete beams. The percentage of increase 

depends on concrete strength and a/d  ratio. They reported that this increase in 

the shear strength of brick-aggregate concrete beams is due to its higher tensile

strength.
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2.5.3 Beam dimensions

a/d ratio:

The ratio a/d takes into account the ratio between the bending moment M  

and shear force V  occurring simultaneously at the same cross section (a/d  = 

MZ(Vd)). It is now well established that a/d  ratio is one of the most important, 

if not the only important factor influencing the shear strength of reinforced 

concrete beams.

Many investigators (e.g., Mphonde and Frantz 1984) found that there is much 

more scatter in the ultimate shear strengths as a/d ratio decreases due to the

possible variation of failure modes. Mphonde and Frantz (1984) found that at a/d  

ratio of 1.5 (with other properties remaining constant) failure was either by 

crushing of the arch rib and the beam attained high capacity or by extension of

the inclined crack through to the top surface and the beam failed at lower 

capacity.

An increase in a/d  ratio causes a decrease in shear strength. This is because

flexural cracks in beams with high a/d ratios will be well developed, decreasing 

interlock capacity (Taylor 1974).

The mode of diagonal failure has been found by many investigators to be 

primarily dependent upon a/d ratio (Kani 1964,1966). Kotsovos (1983) classified 

the mode of failure according a/d ratio to four types as shown in Fig. 2.8.

Depth of the beam:

Ahmed, et al. (1986) observed that the shear capacity of beam decreases

with increased depth for a constant a/d  ratio.

Size effect:

The size effect is defined by comparing geometrically similar specimens or 

structures of different sizes. When these specimens or structures fail at the same 

nominal stress, this means there is no size effect.
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J
Failure o f T ype I : Flexural capacity reached

d

Failure o f T ype II: Flexural capacity not reached

Failure o f T ype HI: Flexural capacity not reached

=i
Z

III

IV

T
Failure o f T ype IV: Flexural capacity reached

Fig. 2.8 Types of behaviour exhibited by beams without web reinforcement 
subjected to two-point loading.
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Tests on four beams, each beam is a scale model of the other three, by Ivey 

and Buth (1967) indicated that if the effect of beam size is present, it is 

probably quite small. But several studies by Bazant and co-workers have 

addressed the size effect, for example Bazant and Kazemi (1991) concluded that 

the diagonal shear failure in beam without web reinforcement exhibits a strong 

size effect of fracture mechanics type, due to the differences in the stored energy 

that can be released to drive the failure propagation (Bazant and Kazemi 1991). 

Bazant and Kazemi reported that this contradiction is because the previous tests 

were not carried out with geometrically similar beams and the size ranges tested 

were insufficiently broad.

2.5.4 Other factors

Type of loading:

(1) Indirect load ing : In most tests on beams, the loads and reactions are

applied on the top and bottom faces of the beam respectively (directly loaded 

beams). In practice, beams are usually loaded or supported by intersecting

beams so that the load transfer is by shear rather than by bearing on the top 

and bottom surfaces (indirectly loaded beams). For a/d  ratio less than 2.5, 

indirectly loaded beams are weaker than directly loaded beams (Ferguson 1956; 

Taub and Neville 1970). Clark (1951) reported that the loading condition is an 

important factor that affects the shear capacity of a beam.

(2) Repeated load ing : The shear strength of reinforced concrete beams 

subjected to repeated loading is less than that subjected to static loading.

Degree of prestress:

The shear strength is strongly affected by the prestress force (Cederwall, et

al. 1974). An increase in prestress in the prestressed concrete beams increase the

strength in shear (Zwoyer and Siess 1954).
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2.6 Types of failures

In considering the mode of failure of reinforced concrete beam, one has to

consider both its flexural and shear capacity.

2.6.1 Flexural failure

Flexural failure can occur in two ways (Fig. 2.9):

(1) flexure compression, in which the crushing of concrete in the compression 

zone occurs before yielding of the main steel.

(2) flexure tension, in which the main reason for failure is yielding of main 

steel.

2.6.2 Shear failure

Many types of shear failure have been reported in the literature. Some of

these types have clear definition while the others are difficult to identify clearly.

Some of these types of failure are described below (Fig. 2.9):

(1) Shear-compression failure: A beam is said to fail in shear-compression

when the concrete crushes under compressive stress above an inclined crack 

which has formed in the shear span and which itself extends to or from the 

level of the horizontal tensile reinforcement (Evans and Schumacher 1963). In 

this mode of shear failure, the concrete compression zone is either crushed 

or ruptured along the diagonal crack (Kar 1969). Shear compression failure is 

the most frequently observed mode of shear failure especially in prestressed 

concrete beams.

A closely related mode of failure is:

DT-C failure: A crushing disintegration failure above or at the end of a

horizontal crack in the compression zone (Krefeld and Thurston 1966b).

(2) Shear-proper failure: Failure defined as shear proper generally takes place

by shearing off of the compression zone of the concrete along the line of
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Flexure HCCompression

Tension

On shear in reinforced concrete

Shear-Compression, DT-C

Shear-Proper, DT

• Diagonal-Tension, DT-R

• DT-S

Fig. 2.9 Different types of failures.
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the diagonal tension crack in beams having very small a/d  ratio (Mathey and

Watstein 1963).

A closely related mode of failure is:

DT failure: A diagonal crack at nearly constant slope to the top surface of

the beam (Krefeld and Thurston 1966b).

(3) Diagonal-tension failure: The failure occurs as a result of the longitudinal

splitting in the compression zone near the load point and by horizontal

splitting along the tensile reinforcement near the end of the beam. The

failure occurs shortly after the formation of the critical diagonal tension crack

(Bresler and Scordelis 1963).

A closely related mode of failure is:

DT-R failure: A failure associated with relative rotation of adjacent segments

at the end of the horizontal portion of a diagonal tension crack in the

compression zone which has extended close to the top surface. In many

cases a thin layer of concrete above the horizontal crack buckles upward

(Krefeld and Thurston 1966b).

(4) DT-S failure: A sliding type of failure along a diagonal plane above or at

the end of a horizontal crack in the compression zone (Krefeld and Thurston

1966b).

2.7 Methods of analysis of shear failure

For all beams failing in shear, up to the formation of diagonal tension cracks

the behaviour of all beams is the same as that of beams failing in flexure

(Moody, et al. 1955).

None of the shear failure theories or analogies which are currently used are 

sufficiently general to consider all possible failure modes. As a result, it is difficult 

to generalise about the nature of shear failures (Bresler and MacGregor 1967).
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Beams can fail in combined bending and shear in different ways, depending on 

the geometry and properties of the beams.

In the past there were two basic approaches to analyse shear problems in 

reinforced concrete: (1) arch, frame, and truss analogies, and (2) limit analysis 

mechanisms. The mechanism method cannot satisfy the compatibility condition, 

unless the concrete and steel are assumed to have infinite plasticity (Mau and 

Hsu 1990). Arch, frame, and truss models represent behaviour of reinforced 

concrete beams subjected to flexure and shear. It is generally agreed by 

researchers in recent years that the truss model theory provides a more promising 

way to handle shear failure mechanisms.

In this section a brief review of the arch, frame, and truss models is introduced 

with emphasis on truss models.

2.7.1 Beams without web reinforcement

Various theoretical approaches have been suggested for the behaviour of 

beams without web reinforcement under action of shear forces. Some of these 

approaches are briefly reviewed in this section.

2.7.1.1 Analytical shear compression theories:

These theories consider the load carrying capacity of concrete in its 

compression zone due to shear (e.g., Bresler and Pister 1958; Ojha 1967). The 

forces acting on the free body above the shear crack are shown in Fig. 2.10. In 

this approach any forces transfer across the inclined crack by dowel action or 

aggregate interlock action is ignored. The external load is supported by an inclined 

thrust in the concrete above the crack and the horizontal component of the thrust 

at the support is resisted by tension steel acting as a tie (Fig. 2.10).

These theories are now only of historical interest. They represent the first serious 

attempts to analyse the shear capacity of beams without stirrups. However, it 

should be noted that these theories are unrealistic, in that they ignore any shear
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I n c l i n e d  t h r u s t
cy

Fig. 2.10 Forces acting on free body above shear
(ignored are: dowel and aggregate interlock).

v

Fig. 2.11 Concrete cantilevers.
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force transfer across the diagonal crack. Acharya and Kemp (1965) showed by

means of a series of careful experiments that this assumption leads to 

unacceptably high stress in the concrete at the tip of the diagonal crack.

2.7.1.2 Concept of concrete cantilever: (Fenwick and Paulay 1968)

The causes of the diagonal mode of failure are generally considered to be 

associated with the response of the concrete to the force transmitted to it from 

steel through bond in the region of shear span below the neutral axis (Kani

1964; Regan 1969). In fact, it has been observed that an improvement of bond 

between steel and concrete, which should result in an increase in the force 

transmitted to the concrete, leads to a significant reduction of the load sufficient 

to cause diagonal failure (Fenwick and Paulay 1968). It has been suggested that, 

under the action of the bond forces, concrete between consecutive flexural cracks 

reacts as a cantilever fixed to the compression zone of the beam (Kani 1964),

Fig. 2.11.

Kotsovos stated that in spite of a number of detailed investigations of the stress 

conditions of a concrete cantilever, the above assumption neither explains why the 

diagonal crack leading to failure invariably initiates near the tip of the flexural

crack closest to the support, nor is it compatible with the formation of a diagonal 

crack, which is indicative of failure of the support (compressive zone) of the 

cantilever rather than the cantilever itself.

2.7.1.3 Concept of the compressive force path:(Kotsovos 1983; Kotsovos and 
Lefas 1990)

The concept of the compressive force path is related to arch action and 

assumes that load-carrying capacity of a beam is associated with the strength of 

concrete in the region of the path along which compressive force of the middle 

cross section is transmitted to the supports. The path of a compressive force may 

be visualized as a flow of compressive stresses, with varying sections 

perpendicular to the path direction and with the compressive force representing the
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stress resultant at each section (Fig. 2.12). It is assumed that the shape of the 

path is a bilinear. The junction between the two parts of this bilinear path occurs 

at a distance which depends on the a/d ratio. It is approximately equal to the

shear span from the support for beams with a/d < 2 and twice the beam

effective depth from the support for beams with a/d > 2 (Fig. 2.8).

It has been suggested that the causes of diagonal failure are very closely related 

to the shape of the path along which the compressive force is transmitted to the

supports and not with the stress conditions in the region of the beam below the

neutral axis. It is assumed that failure is related to the development of tensile 

stresses in the region of the path.

On the basis of the concept of the compressive force path, it has also been

found that collapse of beams never occurs after the compressive strength of 

concrete is exceeded, and that even in the compressive zone where concrete fails

under combined compressive and tensile stresses, failure occurs by splitting of the 

compressive zone connecting the point where the load is applied to the supports 

rather than by crushing of the loading point region (Fig. 2.13).

2.7.2 Arch analogies

The aims of arch analogies were to reduce the complexity and indeterminacy 

of the actual cracked beams. Observation of crack patterns in different beams

suggested such analogies. For example, in a beam cracked as shown in Fig. 2.5 

an element between adjacent cracks can be isolated and considered as a tied

arch freebody. The dowel action in the longitudinal reinforcement is neglected. The 

transverse shear is carried by stress components along the arbitrary arch

boundaries in the uncracked parts of the beam. The arch ribs are capable of

supporting transverse loads only as long as they act essentially in compression, 

not in bending. Without transverse reinforcement only short deep beams can 

develop tied-arch action. As the length of the span increases, bending develops 

in the rib and failure occurs. With transverse reinforcement (Fig. 2.6), it is possible
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Fig. 2.12 Path of compressive force indicating locations of tensile stress.
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CT -  triaxial compression 

Cu - uniaxial compression

Fig. 2.13 Stress conditions within shear span for Type IV behaviour 
(see Fig. 2.8).
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to develop arch action in longer spans, and substantial shear loads can be

transmitted essentially by compression forces in the arch ribs.

Partly because the geometry of the arch rib elements is not precisely defined, 

and partly because stress analysis of a system of statically indeterminate arches is 

relatively complicated, this analogy has been used largely as a model to describe 

beam behaviour, rather than as a precise analytical tool (Bresler and MacGregor 

1967).

2.7.3 Frame Analogies

This model was proposed as an analogy consisting of curvilinear concrete

elements, which more nearly approximate the geometry of the concrete segments

in a cracked beam, and linear steel elements, which represent longitudinal and 

transverse reinforcement (Fig. 2.14). The steel reinforcement, wherever it crosses a

crack, is capable of resisting both axial and dowel forces. The nodal points are

considered rigid joints, and stiffness of the frame elements is varied along their 

length to approximate the stiffness of the beam segments. Although this is, 

perhaps, the most general of frame analogies, analysis of such a frame is greatly

complicated by irregular geometry of its elements and by difficulty of defining the 

appropriate stiffness of each element.

However none of the above analogies provides a sufficiently accurate and, at the 

same time, sufficiently simple solution (Bresler and MacGregor 1967).

2.7.4 Truss analogies

For beams with transverse reinforcement, a more familiar and generally more

useful model for the designer is based on an analogous truss (Bresler and

MacGregor 1967). The first truss model in reinforced concrete beams was 

presented at the beginning of this century (known as Morsch model or 45° truss 

model). Recently, there are many variations on the truss models in the literature.
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Compression members

T ension mem bers

Fig. 2.14 Frame analogy (after Rusch).

a) Classical truss analogy

b) Modified truss analogy

Fig. 2.15 Truss analogy.
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In this section, in addition to the classical truss model, two of the recently

developed truss models will be discussed. These models are; the compression field 

theory truss model by Collins, (Collins and Mitchell 1980,1986; Mitchell and Collins 

1974) and the modified truss model (Ramirez and Breen 1983,1991).

2.7.4.1 Morsch model: (or the 45° truss model)

In this model the beam is replaced by a pin-connected, statically determine 

truss in which the concrete compression zone is represented by the compression

chord, the tensile steel reinforcement is represented by the tension chord, the

transverse reinforcement corresponds to the tension web members, and the 

concrete between inclined cracks corresponds to compression web members (Fig. 

2.15a). All the external loads are assumed to be acting only at the nodes. In

its common form, this model assumes the crack angle to be 45°. It was observed

from tests, that the angle of inclined shear cracks is close to 45°. The model

ignores the fact that shear cannot exist at flexural cracks. Also it neglects the

shear resistance by compression zone, aggregate interlock, and dowel action; i.e.,

It assumes that failure is caused by yielding of the web reinforcement. The 

traditional Morsch theory was widely used in codes of practice (e.g., C P -114 

1957) and when it is used, the web reinforcement (vertical stirrups) can be 

calculated from the following equation,

where V = the shear force; A^=  area of one stirrup or group of stirrups at one 

cross section; f  = the yield stress of stirrups; d  = the effective depth; sv = 

spacing of stirrups.

Although the model is simple to use, it does not give results which are in 

general agreement with test results.
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In order to improve the predictions of the truss model, many attempts have been 

made to introduce new truss models. These attempts were mainly along the 

following lines:

1. Sloping of compression chord to take account of direct arch action. In a 

classical truss model the cords are assumed to be parallel to each other. As 

neither chord can transmit any transverse load, all shear must be carried by 

the inclined web members. To account for the experimentally observed shear 

capacity of the concrete in a beam with or without web reinforcement, the 

compression chord of the truss may be assumed curved (Fig. 2.15b). This 

modified truss begins to approach the arch analogy described previously.

2. Generalization of the angle of inclination of the concrete struts 9. Collins and 

Mitchell (1986) related the angle of inclination 0 with the economical need to

minimize the amount of web reinforcement. They choose the lower value of 0 

at which the diagonal compressive stress reaches the diagonal crushing stress.

3. Introduction of compatibility conditions. Collins (1973) developed compatibility 

equation to determine the angle of inclination of the concrete struts. This angle 

is assumed to coincide with the angle of inclination of the principal 

compression stress and strain, this theory is also known as the compression 

field theory. In this theory, the average strain condition should satisfy Mohr' s 

strain circle and the stress in the concrete struts should satisfy Mohr1 s stress 

circle.

4. Introduction of the softening of concrete struts. After the discovery of the

softening of concrete struts, Vecchio and Collins (1981) developed the 

quantification of this phenomena. They proposed a softened stress-strain 

curve, in which the softening effect depends on the ratio of the two principal 

strains. Based on combining the equilibrium, compatibility, and softened stress-

strain relationships, the softened truss model theory has been proposed by Hsu 

(see Hsu 1988,1991; Belarbi and Hsu 1990; Mau and Hsu 1987,1990).

35



ChaptSLZ-------------------------------------------------------------------------------  On shear in reinforced concrete

2.7.4.2 Collins and Mitchell truss model:(Collins and Mitchell 1986)

This truss model concentrates on the conditions at the mid-depth of the

beam. The model assumes that the shear stresses are uniformly distributed over 

the cross section of the beam. The truss consists of compression struts and a 

tension tie. The shear force on the section is resisted by diagonal compressive

stresses in the concrete. By assuming that the principal tensile stresses in the 

concrete is equal zero, the principal compressive stress in the concrete can be

related to the shear stress on the concrete by the following equilibrium equation, 

which is derived from Mohr's circle (Fig. 2.16)

( i Y  v, \tan# +
tan 6 v M v  j

The cross-sectional dimensions of the member calculated from the following 

condition

fl  ^ f l  max

where / 2max is diagonal crushing strength of concrete which is related to the 

principal tensile strain s, by the following equation

f  = ^  cf - < 7A f
2max (0.8 + 170*,)" c c

where A, is a factor accounting for lightweight concrete and <|>c is the material 

resistance factor for concrete in the Canadian Code (<|)c = 0.60). The principal 

tensile strain s,, the principal compressive strain s2, the longitudinal strain at mid 

depth ex, the transverse strain st, and the principal compressive strain direction 0 

are interrelated by the requirements of compatibility (see Fig. 2.17) as follows:

sx = sx +(sx +£2)/tan 2 6

36



Chapter 2
On shear in reinforced concrete

cross- stresses in web Mohr's circle 
section of stress

shear
stress

normal
stress
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The area of the web reinforcement is calculated from the following equation which 

satisfies the equilibrium in the vertical direction (see Fig. 2.18):

The horizontal component of force D in Fig. 2.19 is equivalent to an axial

compression on the concrete. This compression needs to be equilibrated by tensile 

forces (Vy /  tanO) in the longitudinal reinforcement (Fig. 2.18). The model suggests

that the longitudinal reinforcement is designed to a larger moment of 

M f  +0.5(Vf  / tand)dv to give the additional longitudinal reinforcement to balance

the tensile stresses caused by shear.

The model limits the compressive struts angle such that 15° < 0 < 45°. The 

model also neglects the shear contribution introduced by the aggregate interlock 

and dowel action.

2.1 A 3  Modified truss model: (Ramirez and Breen 1983,1991)

The modified truss model consists of a parallel chord truss with the diagonal

forming a uniform compression field as shown in Fig. 2.19. The shear capacity of

the model is given by:

where r  = Av /(b.sv)

To account for the shear carried by the uncracked concrete, aggregate interlock, 

and dowel action, the truss model assumed additional concrete contribution which 

is added to the shear capacity of the truss model. Fig. 2.20 show this 

contribution which is a function of the applied load. For example, when the 

applied load causes shear stress V/ (b.z) less than 2 ,  the contribution vc is

A (b f  dY  _ .YVT J yv**

sv tan 9

V = ----------truss sv tanatruss

truss
truss = rf yv cot a
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Fig. 2.20 Diminishing concrete contribution for reinforced concrete beams.
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constant ( = 2 ) ,  while when it causes shear stress equal 6y [ j^  the contribution 

becomes zero. The total shear capacity of the modified truss model after this

contribution is given as:

^ MTM t̂russ

where 's the available shear stress capacity in the modified truss model.

Additional tension force (Vu/ tana) is added to the tension flange and 

compression flange forces to balance the tensile stresses caused by shear.

The modified truss model differs from the truss model of Collins and Mitchell in 

the following aspects:

1. The modified truss model is more economical: The model assumes that the

total shear is resisted by truss action and beam action, the truss action consists of

diagonal concrete struts plus web reinforcement.

2. Limitation on 0 : The range of 0 in the Model of Collins and Mitchell is 15°

< 0 < 45° with the suggestion for using the lowest possible value of 0 (Fig.

2.21a), while in the modified truss model the range is 30° < 0 < 65° (Fig.

2.21b).

3. Comparison with a large number of tests. Ramirez and Breen (1991) 

compared the results of their model with 59 reinforced concrete beams with 

web reinforcement, a/d  ratio > 2.0, and which failed in shear. The predicted 

capacity of the modified truss model was based on a minimum value of 0 

(=30°). These results (Fig. 2.22) show that the model provided generally 

conservative values (test/ predicted failure > 0.94) with mean value =1.42 and

standard deviation = 0.32. The prediction becomes quite conservative for 

beams with r f ^  < 1.38 MPa (200 psi) and unconservative values for beams

with rfyv > 2.07 MPa (300 psi). If the value of 0 decreases the conservatism

decreases but the results will be unacceptable unconservative for beams with 

rfyy > 2.07 MPa (300 psi).
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Fig. 2.21a Choice of 6 in Collins and Mitchell's truss model

C s : s t ra in  in the 

st ir rup re inforcement

C[_ : s t ra in  in the 

longitudinal  
re inforcement

Fig. 2.21b Choice of the compressive struts angle (a) in Modified truss model 
(Ramirez and Breen 1991)
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On the other hand, the truss model of Collins and Mitchell, unfortunately, has

not been tested on a large number of beams. But it is expected to be more 

conservative than the modified truss model because the latter includes the 

shear resistance of concrete.

2.7.5 Modified Compression Field Theory: (Vecchio and Collins 1986)

In reinforced concrete structures subjected to shear, various internal 

mechanisms can be created to resist the load. In regions where the reinforcement

and the ensuring crack conditions are well distributed, the predominant mechanism 

of resistance is internal truss action. With the formation of diagonal cracks, 

compression struts develop in concrete while the longitudinal and transverse 

reinforcement act as tension ties. The modified compression field theory, which has 

been developed from the compression field theory (Mitchell and Collins 1974;

Collins 1978; Collins and Mitchell 1980) was formulated to specifically model this 

behaviour. It was proposed several years ago as a theoretical model for predicting

the response of reinforced concrete elements subjected to in-plane shear and 

normal stresses. The theory was based on the smeared-crack concept with

equilibrium, compatibility, and stress-strain relations formulated in terms of average

strains and average stresses. The cracked concrete is treated as a new material

with its own stress-strain characteristics. This new set of constitutive relations, 

which were developed for cracked concrete, reflected significant influences from 

compression strain softening and tension-stiffening effects. Consideration was also

given to the transfer of stresses across cracks. The modified compression theory 

also includes the change in the angle of inclination of the cracks.

The theory was based on the smeared-crack concept with stress-strain relationship for 

concrete formulated in terms of average strains and average stresses.
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2.7.5.1 Stress-strain relationships:

The theory assumes that the average stress-average strain relationship for the

concrete is independent of that for the reinforcement. Also the reinforcement is

assumed to carry only axial force with bilinear uniaxial stress-strain relationship

(Fig. 2.23),
f s , ^ E s. E < f yx

fsy =  E,.E <f„

In order to determine the average stress - average strain relationship, Vecchio and

Collins tested 30 reinforced concrete panels under uniform stresses. Based on

these test results, they quantified the observed softening of concrete in the

principal compressive direction as a function the coexisting principal tensile in

addition to the principal compressive strain as follows (Fig. 2.23):

r  \ f  \ to
 _1

2 £2 — £ 2

U J

where
f  1J c2max _  __________________ < 1 0
f'c 0.8-0.34 e j s c~ '

Also, they derived an expression for the average tensile stresses that exist in the 

cracked concrete as follows (Fig. 2.23):

Before cracking,

L \ = E c.e,

After cracking,

=J  c\
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where f cr is the stress in concrete at cracking. These relationships enabled Vecchio 

and Collins to predict the response of reinforced concrete elements to a good 

accuracy especially when the failure was controlled by the crushing of the 

concrete. The theory was incorporated into a nonlinear finite element program by 

Vecchio (1989) and applied to reinforced concrete beams and panels (Vecchio 

1989,1992; Vecchio and Collins 1986; Stevens, et al. 1991). Because the modified 

compression field theory was based on the assumption of well distributed 

reinforcement to ensure that cracks are well distributed, all attention was focused 

on the structural element satisfying this condition. For example, no attempt to 

analyse a beam without web reinforcement was made. And when the theory was

used to analyse pushoff specimens tested by Hofbeck, et al. (1969), Vecchio and

Nieto (1991) concluded that the application of the analysis procedure is not

recommended unless the crack and reinforcement conditions are discretely modelled.

For more information about the modified compression field theory and its use see 

Vecchio and Collins (1986) who gave a numerical example.
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CHAPTER 3

MATERIAL BEHAVIOUR AND NUMERICAL MODELLING

3.1 Introduction

The statistical scatter of concrete test results tends to support the view that a 

perfect match between an analytical and experimental data is neither possible nor 

really necessary (Meyer 1982). Figure 3.1 shows three examples of this scatter for 

the Young's modulus, the concrete strain at failure (ACI-Committee-363 1984), 

and the tensile stress-strain curve of concrete (Vecchio and Collins 1986). In view 

of this statistical scatter of concrete test data, it appears questionable whether

complex models are justified. Reinforced concrete is considered as a

heterogeneous, composite material. At macroscopic level, it consists of two major 

components: steel reinforcements and concrete. In the modelling of its nonlinear

stress-strain behaviour, a general approach is to treat the response of each 

component separately, then obtain their combined effects by imposing the condition 

of material continuity. To model the nonlinear response of concrete as a 

continuum, three distinct approaches have been employed; nonlinear elasticity based 

models (Palaniswamy and Shah 1974; Cedolin, et al. 1977; Elwi and Murray 

1979), plasticity based models (Chen and Chen 1975a, b; Bazant and Kim 1979), 

endochronic theory (Bazant and Bhat 1976; Bazant 1978; Bazant and Shieh 1978,

1980; and Al-Manaseer 1983). A comprehensive evaluation of these approaches 

was given by Chen and Teng (1980).
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The finite element models used in the present study are based on nonlinear 

elasticity. For other approaches, the reader should refer to the appropriate 

references.

In the nonlinear elasticity, the bulk modulus, shear modulus, Poisson's ratio, and

Young's modulus, of concrete are expressed in terms of stress/strain variables, 

such as deviatoric stresses or strains, stress or strain invariants, normal and shear 

octahedral strain, etc. These relationships are obtained from experimental data. The

moduli are usually used to formulate an isotropic matrix to represent the behaviour 

of concrete at a certain load level. Hypoelastic and hyperelastic models are 

examples of this approximation (for more details see Chen 1982).

In this chapter, the behaviour of reinforced concrete and its modelling will be 

reviewed with the focus on the modelling chosen in the present study.

3.2 Modelling of concrete

The derivation of a realistic analytical model of concrete behaviour and its 

implementation in nonlinear finite element analysis have been a subject of major

investigation by many researchers. However, up to now, there is no unique way 

of modelling of concrete in shear, tension, or even in compression which has

been agreed by the majority of investigators. This is because concrete has a very

complex behaviour involving phenomena such as inelasticity, cracking, and the 

interactive effect between concrete and steel. Mainly for this reason, the problem 

of defining a suitable law for it still persists, although much progress has been 

made in the development of material models for uncracked and cracked concrete 

for all stages of loading, and as a result of it, several numerical models have

been developed (Chen 1982).

A brief summary of the behaviour of concrete and its modelling in compression,

tension, and shear will be given in this section.
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3.2.1 Concrete in compression

The uniaxial compressive strength of concrete is the most common measure 

for assessing the quality of concrete. Uniaxial cube compressive strength of 

concrete f cu is evaluated by determining the strength of 28 day old standard 

150 mm cubes of concrete. 100 mm cubes are sometimes used if the nominal 

maximum size of the aggregate does not exceed 25 mm. This is the practice in 

the UK. In USA, uniaxial cylinder compressive strength of concrete f c' is evaluated 

by the strength of 152 x 305 mm cylinder specimens. Nasser and Kenyon (1984) 

studied the possibility of testing 76 x 152 mm cylinders instead of 152 x 305 mm 

cylinders in compression and they concluded that it can be successfully used

where the maximum size of the aggregate does not exceed 25 mm. The cylinder 

strength f c' is usually about 70-90% of the cube strength f cu. The difference is 

due to the frictional forces which develop between the platen plates of the testing 

machine and the contact face of the test specimen. These end forces produce a 

multiaxial stress state which increases the apparent cube compressive strength of 

concrete. The multiaxial stress effects are significant throughout the cube. In the

cylinder, the specific height to width ratio will minimise this effect.

3.2.1.1 Uniaxial stress

A typical stress-strain curve for concrete under uniaxial compression is shown 

in Fig. 3.2. The main experimental observations can be summarised as follows:

• The concrete has nearly linear behaviour up to 30% of its maximum

compressive strength f c'.

• Stress above 30% of f c' shows a gradual increase in deformation up to about

75-90% of f c\ where upon it bends more sharply when approaching the

peak strength f c'.

• Beyond the peak strength f c\ the stress-strain curve has a descending branch

until crushing failure occurs at some ultimate strain {£max)-
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Fig. 3.2 Typical stress-strain curves for concrete in uniaxial compression test, 
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Fig. 3.3 Uniaxial compressive stress-strain curves for concrete 
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Fig. 3.3 shows that the initial modulus of elasticity of concrete is highly dependent 

on the compressive strength. Also high strength concrete behaves in a linear 

fashion to a relatively higher stress level than low strength concrete. On the 

descending portion of the stress-strain curve, high strength concrete tends to 

behave in a more brittle manner, and the stress dropping off more sharply than it 

does for concrete with low strength.

Many mathematical expressions have been used to predict the compressive 

stress-strain response. These range from the use of standard mathematical curves, 

to more complex formulae based on curve fitting techniques.

Equation 3.1 originally proposed by Liu, et al. (1972), representing uniaxial stress- 

strain curve for concrete is commonly used for numerical analysis. And it will be 

used in the present study for the ascending portion of the uniaxial compressive 

stress-strain curve.

o  =
E c .e

l  + (— - 2 )  — +
f  \ 2 

£

K £ p J

(3.1)

where;

8 is the strain at maximum compressive strength of concrete ap.

E c is the initial modulus of elasticity of concrete for uniaxial loading.

E s is the secant modulus of elasticity at the peak of stress and given by the

expression E s =  G p / z p - 

a  and 8 are stress and strain in uniaxial loading.

Kotsovos and Cheong (1984) attempted to establish to what extent the 

behaviour of an element of concrete in a structure is realistically described by 

stress-strain relationships obtained from tests on concrete specimens, such as
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cylinders, prisms, or cubes, subjected to concentric and eccentric states of

compressive stress. They concluded that the ascending portion (up to the level at

which the specimen volume becomes a minimum, point A in Fig. 3.2b) of stress-

strain relationships of concrete established from the uniaxial compression tests was 

found to be sufficient to completely describe the deformational response of an

element of concrete of the structural forms investigated. This conclusion seems to

be not valid in all the cases as will be shown later.

On the shape of the compressive stress-strain curves, much experimental work 

has been done, and many numerical formulae have been proposed. Fig. 3.4

shows some different shapes which have been experimentally reported, while Figs. 

3.5 and 3.6 show some curves that have been derived numerically. From these

figures the following observations can be made:

• The compression softening of concrete has been proved by all the 

experimental works, however, the maximum compressive strain is different from

test to test (Fig. 3.4).

• There is no unique modelling of concrete in compression that has been

agreed by the majority of researchers (see Figs. 3.5 and 3.6).

• Many researchers assume a minimum value of post-crushing strength (Fig. 

3.6).

3.2.1.2 Biaxial stress

Typical stress-strain curves for concrete under biaxial states of stress in 

compression-compression, tension-compression and tension-tension are shown in 

Figures 3.7-3.9. These curves were obtained from the experimental tests of 

Kupfer, et al. (1969), where normal weight concrete specimens of dimension 200 x

200 x 50 mm were tested. Uniaxial stress-strain curves are also shown in these

figures.
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Fig. 3.10 Equivalent uniaxial stress-strain curve
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To account for nonlinear stress-strain relationship of concrete in the principal

stress direction, equation describing concrete in elastic stage (a = D.c) is adopted

as proposed by Saenz (1964) and modified by Liu, et al. (1972), to account for

biaxial effect. It takes the form:

A  +  B E c S
cj = ---------------------------------- r— (3.2)

(1 -va)(1 + C e + D s 2)

where; a  is the ratio of the principal stresses = (J j/c ^ , v is the Poisson's ratio 

and A, B, C, and D  are parameters which depend on the shape of the stress- 

strain curve. They were calculated from the following conditions:

1) At the initiation of loading, i.e. s = 0.0:

dv/ds = Ec/(1  -va); a  =  0.0

2) At the peak of stress of concrete <jp the corresponding strain is ep and the 

slope of the stress-strain curve becomes zero, thus at s = zp we have:

dn/ds = 0 . 0  ; a  = a r

The above four conditions are sufficient to define the unknown parameters A, B, 

C, and D  of Equation 3.2. After solving for the constants we have (Fig. 3.10):

E c  £
a  =

(1 - v a  ) l  + ( — !— 1 ^ - 2 )  —  +  
1 - v a  Es ep

(  V  
£

\ ep j

where:

ap is the ultimate strength of concrete in compression, equal f c\ 

zp is the strain at maximum compressive strength of concrete.

Ec is the initial modulus of elasticity of concrete for uniaxial loading.

(3.3)
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Es is the secant modulus of elasticity at the peak of stress and given by the 

expression Es = <jp/  zp.

a is the ratio of the principal stresses = c i j /  a 2 (If a  = 0, i.e. for uniaxial

state of stress, equations (3.1) and (3.3) become identical),

v is Poisson's ratio.

a and £ are stress and strain in biaxial loading.

Equation 3.3 is used to generate the stress-strain behaviour of concrete in biaxial 

compression up to peak strain e after which this equation ceases to be valid 

due to softening deformation.

Further details on the biaxial states of stress can be found in references, e.g.;

Darwin and Pecknold (1977); Liu, et al. (1972); and Van Mier (1986).

3.2.1.3 Triaxial stress

In a triaxial state of stress, the strength of concrete can be increased 

considerably above the uniaxial strength, in particular, under hydrostatic stress 

conditions. A considerable amount of research has been performed to study the 

strength of concrete in a three-dimensional state of stress (Kotsovos, et al. 1977, 

1978, 1979, 1980; Elwi and Murray 1979; Murray 1979; Ahmad and Shah 1982; 

Van Mier 1986). Figs. 3.11 and 3.12 show a stress-strain curves from the tests 

by Richart, et al. (1928) and Balmer (1949). These tests were conducted under 

different volumetric compression (or confining) stresses. As these curves show, 

depending on the confining stress, concrete act as a quasi-brittle, plastic-softening, 

or plastic-hardening material. This is because under higher confining stresses the 

possibility of bond cracking is greatly reduced and the failure mode shifts from 

cleavage to crushing of cement paste (Chen 1982). Figs. 3.11 and 3.12 show 

that the axial strength increases with increasing
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Fig. 3.11 Triaxial stress-strain relationship for concrete 
(Richart, et al. 1928).
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confining pressure. Under very high confining stresses, extremely high strengths 

have been recorded (Fig. 3.12). These curves show linear behaviour up to about

30-40% of the ultimate load. Thereafter the behaviour depends on the confining

pressure and concrete behaves more like a metal exhibiting apparent ductility. This

is because the formation of microcracks is suppressed by hydrostatic pressure on

the specimen and this apparent ductility increases as the confining stress

increases. From different experimental data a wide range of ultimate strains have

been reported. This is due to the different machine constraints on the specimen

boundaries. The boundary constraints will inhibit transverse deformation affecting the

value of the moduli.

Analysis of test data by Kotsovos and Newman (1978) indicates that when 

concrete is subjected to a constant hydrostatic stress (constant <Joct) and an 

increasing shear or deviatoric stress (xoct), it undergoes not only octahedral shear

strain yoct but also consolidation in the form of compressive octahedral normal

strain £oct.

3.2.1.4 Compression softening

Strain softening refers to any material response where the slope of stress- 

strain curve is negative. Little is known about the unloading branch of the stress- 

strain curve, even though it has a definite effect on the failure modes of concrete 

structures. It has been shown (Kent and Park 1971) that the concrete 

confinement plays an important role in the post-crushing behaviour of concrete. 

The better confined the concrete, the more gradual the unloading. There is no

agreement among the researchers about the descending portion of the compressive 

stress-strain curve of concrete. Therefore, a straight line approximation with a free 

parameter to account for confinement steel, is probably adequate for most practical 

purposes (Meyer and Bathe 1982). Also, many investigators have proposed to 

credit concrete with a residual post-crushing strength of between 10 and 40% of

fc  (see Fig. 3.6).
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3.2.2 Concrete in tension

Strength of concrete in tension is very low. Until recently, the tensile 

behaviour in concrete has been neglected, this is because it does not significantly 

affect the ultimate strength of members (this will be discussed in Sec. 5-3). 

However, to predict the load-deflection characteristics of structures, the tensile

strength of concrete should be taken into account. The primary reason for the low 

tensile strength of concrete is the heterogeneous structure of concrete. Concrete 

contains a large number of microcracks at the interfaces between coarse 

aggregate and mortar, this even before any load has been applied. Much

experimental work on the complete tensile stress-strain relationship has been done. 

Fig.3.13 shows tensile stress-strain curves including unloading portion (ACI 

Committee-224 1986).

3.2.2.1 Tensile strength of concrete

The uniaxial tensile strength of concrete is rarely measured or reported in the 

experiments and, when it is, its accuracy may be open to question due to the 

scatter in the tensile strength test. There are three methods of tests used to find

the tensile strength of plain concrete; the direct tension test, the beam test, and 

the splitting test. Very often the tensile strength of concrete is not measured but 

has to be inferred from compressive strength. The best property used to calculate 

the tensile strength is the uniaxial compressive strength of concrete f c' because it 

is usually tested and reported in the experimental works. There are many 

empirical equations which estimate the tensile strength from the cylinder

compressive strength f c'. From these equations, two equations (3.4 and 3.5) have 

been chosen for this study (Fig. 3.14). These two equations are plotted against 

some previous experimental results obtained from Raphael (1984).

/,■ = 0.10 f c- MPa (3.4)

MPa (3.5)
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Fig. 3.13 Tensile stress-strain curves for concrete including 
unloading portion (4C/-Committee-224 1986).
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3.2.2.2 Cracking of concrete

Progressive cracking is one of the most important nonlinear characteristics 

displayed by concrete (Fig. 3.15). Dealing with cracking of concrete, many ways of

modelling can be found in literature, e.g. Discrete, Smeared, Orthogonal, Fixed, 

Rotating or Swinging, Fracture energy, Fictitious, Composite damage, Local, 

Nonlocal, Modified Voigt-Reuss, and Crack band model. These models can be

classified into two distinct models; the discrete cracking model (Ngo and Scordelis

1967) and the smeared cracking model (Rashid 1968). Starting with one of the 

above two models, many attempts have been made to improve, modify, or

develop a new crack model (e.g., Suidan and Schnobrich 1973; Phillips and 

Zienkiewicz 1976; Hillerborg, et al. 1976; Bazant and Oh 1983; Bazant and Lin 

1988; Gajer and Dux 1988 and 1990; Yamaguchi and Chen 1990, and Dahlblom

and Ottosen 1990).

A brief review of some of these models are presented in the following.

3.2.2.2.1 Discrete crack model:

In 1967, Ngo and Scordelis introduced the discrete crack model which is the 

first model used to represent the cracking for the finite element method. The 

discrete cracking model is a direct approach and simulates cracks by disconnecting

the displacement at nodal points for adjoining elements (Fig. 3.16). The obvious 

difficulty in this approach is that the location and orientation of cracks are not 

known in advance so that geometrical restrictions imposed by the preselected finite

element mesh can hardly be avoided. This can be rectified to some extent by

redefinition of element nodes. However, such techniques are complex and time-

consuming. Furthermore, the accuracy of stress at nodes is relatively poor in a 

finite element analysis (Yamaguchi and Chen 1990). These difficulties result in a

rather limited acceptance of the use of discrete cracking representations in the 

finite element analysis of concrete structures. One of the recent discrete crack

model is the fictitious crack model.
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Fig. 3.15 Cracking of concrete.

CRACK

LINKS

Single crack Double crack Crack and aggrgate
interlock

Fig. 3.16 Discret cracking model.
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Fictitious crack model:

The fictitious crack model, in its original form, is a discrete approach based 

on the nonlinear fracture mechanics. It is a two parameter model (tensile strength 

f t ' and fracture energy Gj). Many attempts have been made to determine

experimentally and analytically the fracture energy (see RILEM TC50-FMC 1985; 

Wu and Zhang 1988). The fictitious crack model of Hillerborg, et al. (1976) takes 

as its basis the experimentally observed fact that cracking is a discrete, localized 

phenomenon exhibiting a softening effect caused by cohesive stresses in the 

microcracked region. For a concrete bar loaded in tension into its post-peak

region, the fictitious crack model assumes that elastic unloading occurs over the 

entire length of the bar, and an additional elongation occurs in an infinitely thin

cracked zone (Fig. 3.17). Instead of describing the cracking process by a 

relationship between stresses and strains, the fictitious crack model describes the 

behaviour of the infinitely thin cracking zone by a constitutive relation expressed in 

terms of normal stress a  and crack elongation normal to the crack plane wc. Fig.

3.17 shows this description of the fictitious crack model where a linear relation 

between stress and crack elongation is assumed.

Dahlblom and Ottosen (1990) tried to reformulate the fictitious crack model so that 

it can be applied in a smeared manner by the introduction of a so-called 

equivalent length. They defined it as the maximum length of the finite element 

region of interest in the direction normal to crack plane. Fig. 3.17b shows the 

equivalent length for the eight-node isoparametric element with 2 x 2  Gauss point 

integration. This was not the only attempt to do so, there were others, however, 

they did not obtain entirely satisfactory results (Dahlblom and Otteson 1990). For 

more information about fictitious crack model see Hillerborg, et al. (1976); and 

Dahlblom and Ottosen (1990).
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Fig. 3.17 Fictitious crack model (Hillerborg, et al. 1976).
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Fig. 3.18 Tensile stress-strain curves for concrete.
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3.2.2,22 Smeared-crack model:

The first smeared crack model, which over the years became the most practical 

model for numerical analysis of fractured concrete, was introduced by Rashid

(1968). Later the original idea of Rashid was enhanced by the introduction of a

shear reduction factor (Suidan and Schnobrich 1973; Phillips and Zienkiewicz 1976).

In its original form, the smeared crack approach adopted the orthogonal crack

idea, where cracks are allowed to open only in directions orthogonal to the 

existing cracks. These fixed orthogonal cracks are governed by the direction of the

first principal stress that exceeds the cracking stress. Before cracking, concrete is 

assumed to be homogeneous and isotropic. When a first crack occurs, it is

assumed that direct tensile stresses cannot be supported in the direction normal to

the crack (Fig. 3.18a). This is when tension stiffening or softening is not taken

into account. But when it is taken into account, a value of tensile stress as a 

certain function of strain normal to the crack can be allowed to across the crack

(Fig. 3.18b). On further loading, it is possible that new cracks will occur. Second 

crack occurs when the stress parallel to the first crack Gt* becomes greater than 

f t' (Fig. 3.19). In some cases, the postcracking principal stress directions may 

deviate from crack orientation due to the assumed shear retention factor. The 

principal postcracking tensile stress may reach its limiting value on a plane other 

than the plane of the first cracking.

Many finite element programs adopt fixed-orthogonal crack model to treat the 

cracking of concrete. Also in the present study this crack model is adopted.

Recently, Many new versions of the smeared crack model under different names 

have been introduced. A brief review on two from these models is presented 

here.
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Fig. 3.19 Smeared-crack model
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Crack band model:

This model proposed in 1974 by Bazant (Bazant 1976), was later called the 

crack band model (Bazant and Oh 1983). The crack band model is essentially a

smeared approach, based on the linear elastic fracture mechanics concept, which 

describes the bilinear behaviour of a crack by three parameters (tensile strength 

f t \ fracture energy Gf, and size of process zone wc) all considered to be 

material parameters. This model is based on the assumption of constant energy 

release during the fracture process. The fracture process takes place in bands of 

certain width called crack bands (Bazant and Oh 1983). The width of the crack 

band is treated as a material property. Crack band width between 3 and 10

times the maximum aggregate size leads to a good correlation between

experimental and numerical results (Bazant and Oh 1983).

Gajer and Dux (1988,1990) also introduced a version of the crack band model

which yields the formulation of the crack band model of Bazant and Oh (1983).

Gajer and Dux assumed a linear curve for the descending portion of the stress- 

strain curve of concrete in tension and compression. For more information about 

the crack band model see Bazant (1976); Bazant and Oh (1983, 1984); Bazant 

and Pijaudier-Cabot (1988); Pijaudier-Cabot and Bazant (1987); Bazant and Lin 

(1988); Gajer and Dux (1988, 1990).

It is worth commenting that an extensive application of this model on full-scale

problems is still not forth coming.

Yamaguchi and Chen model

Based on the nonlinear fracture mechanics concept, Yamaguchi and Chen 

(1990) proposed a cracking model for the finite element analysis of crack 

propagation in concrete materials. Yamaguchi and Chen reported that the crack

band model and the composite damage model (which is another crack model 

proposed by Wiliam, et al. in 1984) are special cases of the proposed model.
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The constitutive laws for their model consists of two phases; intact layer and 

cracked layer as follows:

Phase a (intact layer)

£a*11 " M E -v IE 0 _ a
<Jn

> = -v  I E M E 0 <<*22
/ l 2 . 0 0 MG

Phase b (cracked layer)

'  M E - v  I E 0 On 0

*22 > = - v  I E 0 0 < b
^22 > + <e(<?22) •

0 0 M p G _ b 0

where p = the shear retention factor; and e(cyb22) is the softening function, whose 

value increases as a 22 decreases. P is assumed to be constant. Directions 1 

and 2 are the directions parallel and normal to the crack, respectively. The 

advantage of this model is that it does not place any restrictions on the form of 

the softening function (Yamaguchi and Chen only presumed linear softening 

behaviour). Equations (3.6) and (3.7) show that during the process of crack- 

opening, phase (b) experiences strain-softening behaviour due to cracking, whereas 

phase (a) is subjected to unloading behaviour. These behaviours have been 

observed experimentally by Gopalaratnam and Shah (1985).

The relationship between incremental stress and strain for this model which can 

be used in construction of the tangent stiffness matrix in a nonlinear finite 

element analysis is:

d an
i

' M E v / E 0 “ d£u

dc? 22
1

~ A
v / E M E 0 ds22 (3.8)

dO\2 0 0 GA dy \2.
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where

E = v ‘  * de—  + v -----
E do

,-i

22

G =
va/ 3 + v l

A = - 4 = -  
EE

va and v* are the volume fractions and their summation is equal unity 

( v ° + v ‘  =1)

V volume o f  uncracked zone
v = —  = -----------------------------------------------

V total volume o f  the composite

vb =
V h _ volume o f  cracked zone 

V tota l volume o f  the composite

b w fFor example v = —  in this Figure. 
h

7ZZZZZZZ

If e(cr22) & P (which are regarded as material properties) and va & vh (which 

are not pure material properties, but they are influenced by the mesh size) are 

given together with elastic constants, all the variables in the stress-strain

relationship are determined.

Yamaguchi and Chen took p as a constant and they reported that p makes no

significant difference in the crack propagation process (Their example was a 90 x

90 mm rectangular solid made of mortar with a pre-existing flaw at the center).

When traction-free crack is developed, this cracked but homogenized region loses 

its load-carrying capacity in the direction perpendicular to the crack. Equation (3.8) 

becomes:

73



C hag terA M ateria l behaviour and numerical modelling

dcrn 'E 0 o ' de „  '
< dcr22 . = 0 0 0 < ds22 *

dcrn 0 0 G .dr n .

and G can be assumed equals zero if the shear transfers across the crack 

plane is neglected.

In crack band model, crack width and element width are made identical. If wf  

assumed to be equal to the width of the cracked region, i.e. v A=1, the model is 

the same as the crack band model (Bazant and Oh 1983). For more information

see Yamaguchi and Chen (1990)

It can be seen that the above crack models (Fictitious crack model, crack band 

model, and Yamaguchi and Chen model) have focused on the implementation of

tension softening of concrete into the crack model based on nonlinear fracture

mechanics. Also these models have concentrated the attention on the analysis of

crack propagation in fracture tests or localized effects, while no, or little, attention

has been paid to analyse the main structure concrete elements (e.g. reinforced 

concrete beams, slabs, and panels).

3.2.23 Tension stiffening

When a reinforced concrete member is subjected to a sufficiently high tensile 

force, concrete cracks at discrete sections. The concrete between cracks continues 

to carry tensile stresses and offer stiffness. This phenomenon is called tension

stiffening. Modelling of this phenomenon is important in studying the load- 

deformation characteristics of reinforced concrete structures in the post cracking 

range. Tension stiffening can be modelled in two ways. In the first method, the

stress-strain curve of concrete is modified (Fig. 3.20). In the second method, a 

modified stress-strain curve for steel is used (Gilbert and Warner 1978, Fig. 

3.21).
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Fig. 3.20
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Fig. 3.21 Modified stress-strain diagrams for tension steel after cracking.
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Much work has been done on the phenomenon of tension stiffening; starting with 

Scanlon and Murray (1974) who proposed a stepped stress-strain curve for 

concrete as shown in Fig. 3.20a. In 1975, Lin and Scordelis used a gradual 

unloading curve, Fig. 3.20b. Gilbert and Warner (1978) used several variations of 

Scanlon-Murray stepped curve and Lin-Scordelis curve. In addition, they employed 

a new curve consisting of a small drop in strength immediately after cracking 

followed by piecewise linear unloading, Fig. 3.20c. Gupta and Maestrini (1990) 

have studied in detail a concrete member reinforced by a single bar allowing for 

bond-slip. They have shown that the tensile stress carried by concrete is a 

function of bond slip, area of bar and strength parameter unlike many tension 

stiffening relationships used which do not include the above parameters. Gupta and 

Maestrini based their model on a bilinear idealisation of bond stress-slip curve 

obtained experimentally by Nilson (1971). In addition to Gupta and Maestrini, Floegl 

and Mang (1982); Bazant and Oh (1S84) also showed that the tension stiffening 

is a function of bond slip. If there is no bond between the concrete and steel, 

the tension stiffening phenomena will disappear. The tension stiffening effect 

increases with the increase of bond.

3.2.2.4 Tension softening

The tension softening is a phenomenon associated with the descending branch 

of the tensile stress-strain curve. The unloading branch was usually introduced to 

model the tension stiffening effect of concrete between cracks (Scanlon and Murray 

1974; Lin and Scordelis 1975). Now, the experimental data support the strain 

softening behaviour of concrete after the recent testing techniques enabled post- 

peak stress-strain curves to be obtained (Reinhardt 1985; Gopalaratnam and Shah 

1985). Tension softening can exist in plain concrete subjected to tensile stress 

while tension stiffening is absent due to absence of reinforcement.
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To derive a stress-strain curve for concrete in direct tension, two parameters 

are needed; Gy and wc (Massicotte, et al. 1990). Gy is the fracture energy (the

energy dissipated in the opening of a crack in a tension specimen (Fig. 3.22) is

defined as the cracking energy per unit of area) which is equal to the area 

under a stress-elongation curve (Fig. 3.22b). wc is the width of the fracture

process zone.

Fig. 3.23 shows some tensile stress-strain curves including tension softening which 

have been adopted in the analysis of reinforced concrete members. Massicotte, et 

al. (1990) introduced a stress-strain curve of concrete in tension based on the 

analysis of 52 tests from 5 different sources. This curve is trilinear with a linear 

ascending branch and a bilinear softening branch for concrete after cracking (Fig.

3.23a).

Recently, all the newly developed cracking models are including the tension 

softening in the modelling (e.g. crack-band model, fictitious-crack model; Yamaguchi 

and Chen model).

In the present thesis, a tensile stress-strain curve for concrete as shown in Fig.

3.24 is used. The ascending part is linear similar to any tensile stress-strain 

curve in literature. The descending part is a function of the strain normal to the 

crack plane. The proposed curve agrees with the trilinear stress-strain curve 

proposed by Massicotte, et al. (1990). Also the proposed curve has a certain

maximum strain after which the tensile stress equals zero. This maximum strain

has been suggested by Bazant and Lin (1988) to correspond to a point where 

the tensile stress normal to the crack reaches to 5% of the tensile strength.

3.2.3 Concrete in shear

Before the cracking of concrete, shear can be transmitted by the concrete 

continuum. In reinforced concrete structures subjected to shear, various internal

mechanisms can be created to resist shear loading.
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Fig. 3.23 Strain softening models for concrete.

a

Fig. 3.24 Assumed strain softening model for concrete.
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In regions where the reinforcement and ensuring crack conditions are well 

distributed, the predominant mechanism of resistance is internal truss action 

(Vecchio and Nieto 1991). Through the formation of diagonal cracks, compression 

struts develop in the concrete while the longitudinal and transverse reinforcement 

act as tension ties. In the case where the well-distributed crack condition does 

not exist (this can occur, for example, in structural components under high direct 

shear, such as corbels and ledger beams) strength can be governed by behaviour 

along a single plane or a dominant crack. Here, the mechanism of shear transfer 

is commonly seen as relying less on the formation of compression fields, and 

more on contributions from shear friction, dowel action, and aggregate interlock 

(Vecchio and Nieto 1991). Shear cracking is caused when a principal tensile 

stress due primarily to shear exceeds the resistance of concrete (Regan 1969). 

Many experiments have been done on the shear transfer; e.g. Hofbeck, et al.

(1969), Taylor (1974), Swamy and Andriopoulos (1974), Mattock (1974), Paulay and 

Loeber (1974), Millard and Johnson (1984), Abd Al-Khalik (1987), Mphonde (1988). 

The most important observation from the physical tests is that the crack width has 

the largest influence on the shear stiffness, and the maximum size and shape of 

coarse aggregate does not seem to influence the shear stress-shear strain 

relationship (Paulay and Loeber 1974). Other factors such as the amount of 

reinforcement crossing the cracks and the orientation of the reinforcement with 

respect to the crack, also have a significant influence on both the ultimate shear 

strength and shear stiffness (Mattock 1974). When a comparison between 

measured variation of shear modulus after crack G' and those suggested by some 

investigators was made, Abd Al-Khalik (1987) concluded that a representation of 

shear transfer by unchanged shear modulus of cracked sections (e.g., Isenberg 

and Adham 1970, Fig. 3.25a) or neglecting any shear transfer across the crack 

(e.g., Cervenka 1970, Fig. 3.25b) is completely unrealistic. Also, he concluded that 

constant reduction of shear stiffness after cracking (e.g., Suidan and Schnobrich
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1973; Yuzugullu and Schnobrich 1973, Fig. 3.25c) is only an approximation to the 

real behaviour.

3.2.3.1 Shear retention factor

Cracking of concrete usually occurs along the interface between the cement

paste and the aggregate particles. The resulting rough cracks can transfer shear

by aggregate interlock. In plain concrete the main shear transfer mechanism is

aggregate interlock and in reinforced concrete dowel action will play a significant

role. Both mechanisms are controlled by the width of crack, the shear transfer

capacity being reduced as the width increases. The above mentioned mechanisms

cannot be directly included in finite element analysis of reinforced concrete based

on smeared representation of the cracks. In smeared crack model, the reduction 

in shear modulus across the plane of the crack is usually defined by the shear

retention factor p. This factor is clearly associated with the contribution of the 

aggregate interlock to the shear resistance of the cracked regions.

Many equations have been reported in the literature to define p. For example:

• Cedolin and DeiPoli (1977) took the variation of shear modulus after cracking 

decreasing with the crack width and they assumed a linear dependence.

p = F (1 -  e /e c) ; 0 < 8  < sc

p = 0  ; e > sc

in which F = numerical constant; 8  = fictitious strain in the direction normal

to the crack; ec = limit value after which aggregate interlock becomes zero =

0.005.

• Arnesen, et al (1980) took p as

P = (1  -  0.25 X /  X0)

in which X is a scalar parameter related to the inelastic dilatancy (volume

change).

• Chang, et al. (1987) took P as
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p = k . a '„ /  > pmin for & n /  Gn > -1

= k for a 'w /  < - 1

in which k, crM = material constants to define shear behaviour; a '„ = a normal 

stress acting on the cracked plane (negative value represents compression);

Pmin = a minimum value of p, and they took Pmin = 0.1; Pmax= 0.5; and

<*„ = 05 fe ­

rn Cervera, Hinton and Hassan (1987) took the following value 

P = 1 -  (s /  0.005)*7

where s is the fictitious tensile strain normal to the crack plane, and k l is 

a parameter in the range of 0.3 - 1.0.

• Balakrishnan and Murray (1988) took p as

P  =  (£gt E ) /  ( e g/ "  s c r )  >  P/w/M >

P/w'« = 0.05

where scr = extensional cracking strain; e t = strain intercept at zero shear 

modulus; and 8  = average extensional strain.

• Unlike the above, Bedard and Kotsovos (1985), Yamaguchi and Chen (1990), and 

Vidosa, et al. (1991) assumed that aggregate interlock plays a negligible role in 

load - carrying capacity of a member and this was reflected in their model by 

taking p = Constant (non-zero) only in order to avoid excessive deterioration 

of the stiffness matrix.

In this study, the effect of shear retention factor on the prediction will be studied

by taking p as a function of the tensile strain normal to the crack as follows

P = B ecr /  en > Pw/w (3.10)

where ecr is the tensile crack strain; ew is the fictitious tensile strain normal to

the crack plane; and B & Pmin are numerical constants. Four values for these

two constants will be studied in this thesis (Fig. 3.25e-h).
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Fig. 3.25 Shear retention factor p.
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3.2.4 Yield criterion

Yield criterion defines the combination of stresses necessary to cause plastic

flow at a point. Researchers aggree that, there is no such mathematical model

that can describe the strength of real concrete materials completely under all

conditions. Even if such a failure criterion could be constructed, it would be far

too complex to serve as the basis for the stress analysis of practical problems

(Chen 1982).

A large number of failure criteria have been proposed in the literature. Two of 

them will be discussed here. One for biaxial stress conditions based on 

experimental work of Kupfer, et al. (1969). The other for triaxial state of stress

introduced by Kotsovos and Newman (1979).

3.2.4.1 2-D yield criterion

For biaxial stress conditions, the work by Kupfer, et al. (1969) is a widely 

quoted reference. Fig. 3.26 shows the failure curve, indicating that the maximum 

compression strength increase is about 25% of f c\

It is possible to summarise the main observed characteristics of concrete behaviour

as follows:

• The ultimate strength of concrete under biaxial compression is greater than that

under uniaxial compression. The main reason for this increase is due to the

confinement of microcracks.

• The ultimate strength increase under biaxial compression is dependent on the 

ratio of principal stresses, and it appears that the maximum strength is at a

stress ratio about 0.5, diminishing somewhat (to about 16% higher than the 

uniaxial value) as the ratio is increased to 1 .0 .

• The compressive stress at failure in the case of combined compression and

tension decreases as the tensile stress increases.
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Fig. 3.26 Biaxial strength of concrete (Kupfer, et al. 1969).
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Fig. 3.27 Yield surface zones, initial, intermediate and 
failure envelop.
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• The biaxial tensile strength of concrete is approximately equal to its uniaxial

tensile strength, and the stress-strain curves are similar in shape in both

uniaxial and biaxial tension.

• In biaxial compression-tension, the magnitude at the failure of both the

principal compressive strain and principal tensile strain decreases as the tensile

stress increases. Further details on the biaxial states of stress can be found

in (Chen 1982 and Chen and Saleeb 1982).

In this study the octahedral shear stress, linearised in term of octahedral normal

stress, is used to fit the yield surfaces for concrete under biaxial stress states in

the form

^OCt~ 3 + b &oct (3. “11)

where Toct is the octahedral shear stress given by:

^oct = + ®y" ~ +

and Goct is the octahedral normal stress given by:

(Gx + v y )
°o c ,  = 3

The factors a, b are determined as follows.

Compression yield

1 - For uniaxial compression: g x =  - f c\ Gy = t ^ =  0.0

2 - /  '
Toct = ~  fc  and °oct =  ~Y~

Substituting in equation (3.11) we get:
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2- For biaxial compression: g x = <jy =  -1.16 f c\  xxy=  0.0

* o c t =  — ( 1- I 6  f c )  and a ocl = - |(1 .16  f c' )

Thus equation (3.11) can be written as:

f (1-16 fc) = a -  |(1 .16  b

Solving for a and b, the biaxial compression yield criterion is given by:

ZJL
f c '

+ 0.1714 _ 0.4143
I  f c  ■

=  0.0

Tension-Compression Yield

ox= - ff=  m  f c ‘

Using the same procedure, we obtain:

Loct

f c '

- m ) a oct 2V2 m 

( l  +  « )  f c  ~  3 (1 +  w )
=  0.0

Tension-Tension Yield

For biaxial tension the simple circular criterion is adopted.

(  \ 2 
<3±

x f t ' j

(  \ 2 
0 2

y f t ' j
-  1.0 =  0.0

where a j and <72 are principal stresses.

(3.12)

(3.13)

(3.14)
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To accommodate the early changes in the stiffness of concrete, equation 3.3 is 

incrementally linearized during loading by assuming intermediate surfaces similar to 

that used by Chen and Teng (1980). Such surfaces are shown in Fig. 3.27. The 

first loading surface corresponds to the initial discontinuity in the stress-strain 

diagram. The subsequent loading surfaces are assumed to have the same shape 

of limiting yield surface. Johanry (1979) proposed the following equation:

where f cc = intermediate concrete strength, f co = 0.5 f c\  f j  = tensile strength

of concrete, Ec = modulus of elasticity of concrete, and Ej = instantaneous 

modulus of elasticity of concrete. Up to the peak strain sp, the concrete

instantaneous modulus is computed using equation 3.3 and for strain above this

value the following expression is used up to the assumed crushing strain (0.0035).

Concrete is considered to be crushed if the failure criteria is violated or, if the 

principal compressive strain exceeds the ultimate compressive strain zmax =0.0035.

3.2.4.2 3-D yield criterion

Under triaxial loading, experiments indicate that concrete has a fairly consistent

failure surface that is a function of the three principal stresses. If isotropy is 

assumed, the elastic limit (onset of stable crack propagation), the onset of

unstable crack propagation, and the failure limit all can be represented as surfaces 

in three-dimensional principal- stress space (Chen 1982). To reasonable accuracy, 

constitutive equations (mathematical formulae) for concrete can be incorporated into 

theoretical models without much difficulty. One of these constitutive equations used

fee = fco - f t  + (3.15)

E; = fc6/ (3.16)
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in the 3-D  finite element to model concrete compressive triaxial behaviour, is due 

to Kotsovos, et al. (Kotsovos and Newman 1979; Kotsovos 1979), as shown in 

Figs. 3.28, 3.29.

Kotsovos developed a mathematical description of the ultimate strength envelope of 

concrete under axisymmetric stress states by analysing experimental data from a 

comprehensive programme of investigation into the behaviour of concrete under

complex states of stresses. A brief review of this is given below

For the construction of the constitutive equations for concrete, the geometrical 

representation of the stress state at a point is very useful. Since the stress 

tensor Gy has six independent components, it is of course possible to consider 

these components as positional co-ordinates in a six-dimensional space. However 

it is too difficult to deal with. The simplest alternative is to take the three 

principal stresses ctj, G2 , g$ such that c j  > 0 2  > a 3  as co-ordinates and 

represent the stress state at a point in the three dimensional stress space. This 

orthogonal co-ordinate system a j, G2 , a 3 can be transformed into a cylindrical

co-ordinate system z, r, 0  and the two system are related by the following

equations:

where g ocI and x ocl are the normal and shear octahedral stresses, respectively. The 

variables z and r  define the hydrostatic and deviatoric components respectively, of 

a stress state. The variable 0 defines the direction of the deviatoric components 

on the octahedral plane as shown in Fig.3.28 and varies from

z = (<r, + a 2 + a ,)  / V3 = V3

r  =  ^ 3  t „ c,

cos0  = — 7=  (a , + a 2 - 2 a 3) 
r v  6
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deviatoric plane
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Fig. 3.28 Schematic representaion of the ultimate strength surface - definitions.
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F'g. 3.29 Combinations of octahedral stresses at ultimate strength for concrete under 
the axisymetric stress states > ( \= a 3 and ox = <r2 > cr3).
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0 = 0 ° for a j = a 2  > <33

0  = 60° for a j > a 2  = (73

Kotsovos (1979) derived mathematical expressions to describe the strength 

properties of concrete under biaxial or triaxial stress states which can be 

presented as follows:

xoe is the value of xoct at the ultimate strength level for 0  = 0  degree; 

t oc is the value of x oct at the ultimate strength level for 0  = 60 degrees.

The value of xoct at the ultimate strength level for any values of 0 such that 0 

< 0  < 60 degrees may be given by the following expression:

This expression describes on the deviatoric plane a smooth convex curve with

tangents perpendicular to the directions of xoe and xoc at 0  = 0  and 0  = 60 

degrees respectively (Fig. 3.28).

If isotropic material behaviour is assumed, Equation (3.17) may be used to define 

a six-fold symmetric (about the space diagonal) ultimate strength surface, provided 

the variations of xoe and toc with Goct are established (Fig. 3.28).

Fig. 3.29 shows the normalized (with respect to the uniaxial cylinder compressive 

strength f c') combinations of octahedral stresses at the ultimate strength level

obtained from triaxial tests (Kotsovos 1979). The envelopes in this figure are 

considered to describe adequately the strength of most concretes likely to be 

encountered in practice. A mathematical description of the above strength

envelopes was obtained as follows:

( t  I  -  O  cose + t J 2 t m -  t oc)  -  Q c o s 2 6 + 5 x j -  4 tocx,

-  O  cos2 0 + (v  -
oc oe (3.17)

X 0.724

^£- = 0.944 — + 0.05 (3.18)
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f X 0.857

(3.19)

Equations (3.18) and (3.19) represent two open ended convex envelopes whose 

slope tends to become equal to that of the space diagonal as <j oc( tends to 

infinity. These expressions together with the equation (3.17) are used in the present

3 -D  finite element program to define an ultimate strength surface which conforms 

with the generally accepted (Kotsovos and Newman 1979) shape requirements such 

as six-fold symmetry, convexity with respect to the space diagonal, and open 

ended shape which tends to become cylindrical as Goct tends to infinity.

The above mathematical formulae are applicable to a range of concretes with 

uniaxial cylinder compressive strength fa  varying from about 15 to 65 MPa.

3.3 Modelling of steel

The derivation of constitutive equations for reinforcing bars is, compared with 

concrete, straight forward because the material behaviour is essentially uniaxial and 

well-known. A bilinear representation is fully adequate to simulate the elasto- 

plastic behaviour of steel with or without strain hardening (Fig. 3.30). Three 

alternative approaches are used in modelling the reinforcement in a prestressed or 

a reinforced concrete structure: smeared model, discrete model, and embedded 

model (Fig. 3.31).

3.3.1 Smeared model:

In this model, reinforcement is assumed to be distributed over the concrete

element (Fig. 3.31a). This model is convenient for structures where a large

number of reinforcing bars are placed. This model is widely used in reinforced 

concrete plate and shell structures, in which the structure is divided into layers.

This approach was first adopted by Wegmuller (1974).
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Fig. 3.30 Assumed steel laws.

Y

'xv

REINFORCEMENT

AXIAL ELEMENTS

.FLEXURAL ELEMENTS

a) Smeared Approach

b) d i s c r e t e  r e p r e s e n t a t i o n

Y

REINFORCEMENT

c )  Embedded b a rs

Fig. 3.31 Alternative representaion of steel.
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3.3.2 Discrete model:

In the discrete model, reinforcing bars are modelled using special elements 

connected to concrete through fictitious springs to allow for bond-slip (Fig. 3.31b).

The reinforcing bar element can be one dimensional element. In this case, the

bar element is superimposed on the two dimensional element by assuming that 

the bar is pin connected with two degrees of freedom at nodal points.

Alternatively, discrete beam element can be used, in which the steel is assumed 

to be capable of resisting axial force, shear force, and bending moment. This

case is suitable for heavy bars for which bending is a significant effect. Ngo and

Scordelis (1967) used constant strain triangular element for both concrete and steel

in the analysis of reinforced concrete beams. Also Cedolin and Poli (1977) used

the same element to allow for the longitudinal reinforcement to resist the shearing

force (dowel action). The discrete model has the advantage of representing 

different material properties more precisely. The only disadvantage of discrete 

modelling is that the finite element mesh patterns are restricted by the location of

reinforcement which leads to an increase in the size of the stiffness matrix. El-

Mezaini and Citipitioglu (1991) presented a technique for discrete modelling which

allows for the reinforcement of arbitrary type and location to be represented

independent of the finite element mesh, and also different bond conditions at

different nodes can be represented. But the disadvantage is that this model does

not consider Cracking, dowel action, or any other aspects related to the nonlinear 

behaviour of reinforced concrete.

3.3.3 Embedded model:

To overcome the problem of mesh dependency in the discrete model, a

number of embedded formulations were introduced. Phillips and Zienkiewcz (1976) 

developed an embedded representation provided that the reinforcing bar is aligned 

with one of the local isoparametric element co-ordinate axes. A model similar to 

Phillips and Zienkiewicz model, but modified to account for inclined bars has been
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introduced by Ranjbaran (1991). An embedded reinforcement formulation including 

bond-slip has been introduced by Balakrishnan and Murray (1986). Chang, et al. 

(1987) presented a formulation for arbitrarily oriented embedded reinforcing layers. 

Elwi and Hrudey (1989) and Phillips and Wu (1990) published another formulation 

for curved embedded reinforcement.

The advantage of using embedded model is that there is no limitation for 

representing the locations or distributions of the steel reinforcements. The 

contribution of the reinforcements to the element stiffness can be evaluated 

independently for each steel bar. The element stiffness matrix of bar can be 

introduced using the virtual work principle based on the following assumptions:

• Reinforcing bar has stiffness contribution only in the longitudinal direction.

• Reinforcement is straight and it has a constant cross-section area.

• Full compatibility between the bar and the isoparametric element of concrete.

In this work, only reinforced bars lying parallel to the co-ordinate axes x or y 

are considered.

3.4 Interaction between concrete and steel

3.4.1 Bond-slip

Bond means transferring of force from the steel bar to the surrounding 

concrete and vice versa. This bond results from chemical adhesion, friction and 

mechanical interaction between concrete and reinforced bars. In deformed bars, ribs 

or lugs add to the bond resistance by bearing on the concrete and thereby 

minimizing slip considerably (Fig. 3.32). A common way to describe the bond 

between steel bar and concrete is through the relation between the local bond 

stress and the relative slip of the bar. Bond stress is the shearing stress on the 

steel-concrete interface and parallel to the bar axis.

Bond is a complicated phenomena that is influenced by concrete strength, 

embedment length, concrete cover, bar spacing, stirrups, and associated shear and 

flexure (Kemp 1986). The location, spacing, and width of cracks; internal
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distribution of forces; tensile stiffening contribution of concrete between the primary

cracks; and strength of the member relate directly to the characteristics of the

interface (Jiang, et al. 1984). Fig. 3.33 shows three types of bond failure in 

reinforced concrete beams (Kemp 1986).

Many experiments with different approaches have been performed to measure the 

bond-stress and bond-slip along the steel bar (Perry and Thompson 1966; Abeles 

1966; Jiang, et al. 1984; Brettmann, et al. 1986; Kemp 1986; Lahnert, et al.

1986; and Altowaiji, et al. 1986). Fig. 3.34 shows an experimental relationship 

between local bond stress and local bond slip (Houde and Mirza 1974). Also, 

many attempts to develop an analytical method to determine the bond stress-slip 

relationship have been done (Jiang, et al. 1984; Yankelevsky 1984; Yannopoulos 

and Tassios 1991). Not only general agreement is lacking among researchers on

the relative influence of various parameters affecting the bond-slip relationship but 

also the local bond stress-slip relationships obtained by the researches based on 

tests show considerable scatter.

Using 2 -D  finite element model, Balakrishnan, et al. (1988) took the bond-slip 

into account when they predicted the behaviour of five beams without shear 

reinforcement and they have got some improvement in the prediction ( - 6 , 0, -15, 

-14, +9% of the experimental failure loads). However, they did not report any 

result for beams with shear reinforcement despite the fact that they analysed four 

beams with shear reinforcement.

In this study full bond has been assumed.

3.4.2 Dowel action

When major shear deformations occur after tension cracking has occurred, 

reinforcing bars passing through this crack act as dowels. As a result, the bars 

will be subjected to concentrated shear force. The shear deformations are resisted 

by dowel action of the reinforcing bars and the aggregate interlock between the 

two rough faces of the interface crack.
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Fig. 3.32 Deformation of concrete around reinforcing bars 
(after formation of internal cracks).
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Fig. 3.33 Typical bottom and side bond-splitting cracks (Kemp 1986).
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Fig. 3.34 Local bond stress versus local slip.

Fig. 3.35 Possible failure modes of dowel mechanism 
(Vintzeleou and Tassios 1986).
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Aggregate interlock diminishes quickly with crack opening, and hence the dowel 

bars play a major role in preventing sliding-shear failure. There is no common 

agreement as to the magnitude of the dowel forces but they may amount to as 

much as 30 percent of the applied shear force (Kemp 1986).

There are two possible failure modes of dowel mechanism (Vintzeleou and Tassios 

1986): (1 ) yield of the bar and concrete crushing under the dowel; (2 ) concrete 

splitting. Concrete cover is the main parameter upon which the mode of failure 

of the dowel mechanism depends. For small cover (less than 6  to 7 times the 

bar diameter), the mechanism is governed by splitting of concrete, splitting cracks 

being opened either at the bottom (due to local bending) or at the side faces of 

a section (due to direct tension), see Fig. 3.35.

The dowel force capacity of a member is increased significantly by increasing the 

clear cover and the amount of stirrups. If nominal stirrups are used the dowel 

forces can be carried directly and efficiently by the stirrups (Kemp 1986).
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CHAPTER 4

THE FINITE ELEMENT AND NUMERICAL 

METHODS OF ANALYSIS 

4.1 Introduction

In Chapter 2, some methods of analysis of shear strength of concrete

structure were mentioned. None of these methods can be compared with the finite 

element method. The analysis by the finite element method is more general. By

using it in the analysis of reinforced concrete structure, beside the prediction of 

the failure load, stresses and strains in concrete and steel, deflection at any point, 

and the mode of failure can be determined.

4.2 Finite element concept and formulation

The finite element method has been described extensively in the literature (e.g.; 

Hinton and Owen 1977, Zienkiewicz 1977, Owen and Hinton 1980, Bhatt 1986), and 

no attempt will be made here to review the vast literature in these fields. Instead, 

a brief review of the method will be presented in the following sections which is 

selected from several references.

The finite element method started as an extension of the stiffness (or 

displacement) method, in which a skeletal structure is assumed to be made up of 

an assemblage of one-dimensional elements (axial, bending and torsional actions).

In the stiffness method for skeletal structures the elements of an actual structure

are connected together at discrete joints, and equations of equilibrium involving

external loads and member end forces expressed in terms of displacements are 

established at all joints. These equations are solved for joint displacements. The
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relationship between the end forces and end displacements of each member is

represented by the stiffness matrix which can be derived directly through the

solution of differential equations, use of various energy theorems, or the principle

of virtual work. However, unlike skeletal structures, in the finite element method,,

there are no well-defined joints where equilibrium of forces can be established 

and therefore, the continuum must be discretized into a number of elements of 

arbitrary shapes and also artificial joints or nodes must be created.

In this way the continuum is approximated by a system with finite degree of

freedoms, so that a numerical solution can be achieved.

In recent years the most intensive work has taken place in solving nonlinear

problems. The general procedure for solving such problems is to approximate the 

nonlinear behaviour by a series of linear solutions. The linear solution procedure is

therefore a basic and important part of any nonlinear solution method.

4.3 Discretisation by finite element

For structural applications, the governing equilibrium equations can be obtained

by minimising the total potential energy of the system. The total potential energy,

n, can be expressed as:

n  = { s } d v - \ { 5 } r {P} d v - \ { S }  {q}ds
V V s

-  { p } { s } T (4.1)

where a and 8 are the stress and strain vectors respectively, 5 is the

displacements at any point, p is the body force per unit volume, q is the applied

surface tractions, and P is the concentrated forces. Integrations are taken over the 

volume, V, of the structure and loaded surface areas S.
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The first term on the right hand side of equation (4.1) represents the internal

strain energy and the second and third terms are the work contributions of the

body forces and the distributed surface loads respectively.

In the displacement method, the displacements are assumed to have unknown

values at the nodal points so that the variation within any element is described in

terms of the nodal values by means of interpolation functions, thus

{ * } = [ * ] • { * ' }  (4.2)

where N  is vector of interpolation functions often termed shape functions, and 8e

is the vector of the nodal displacements of the element. The strains within the

elements can be expressed in terms of the element nodal displacements,

{« } = [ * ] . { < * '}  (4.3)

where B is the strain matrix generally composed of derivatives of the shape

functions. The stresses may be related to the strains by making use of elasticity

matrix, D, as follows:

{<t } = [ Z ) ] . M  (4.4)

Ensuring that the element shape functions have been chosen so that no

singularities exist in the integrands of the function, the total potential of the

continuum will be the sum of the energy contributions of the individual elements.

Thus:

n  = 2 > ,  (4.5)

where tĉ  is the total potential of element e, by using equation (4.1), ne can be

written as follows:
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n , =  XT \ { S ‘ }T[B]T[D] r [B}{S‘ } d V -
K

\ { 8 ‘ ) TW T{ p ) d V -  J {<5' } T[(V ]r  (4 6 )

where V is the element volume and S is the loaded surface area of the
e e

element.

The performance of the minimisation for element, e, with respect to the nodal

displacement, 8e, of the element results in :

- ^ h  = \ { B f [ D ] [ B ] { S ' ) d V - \ [ N ] T{ p } d V - \ [ N ? { q } d S
K ve se

= [KeW } - { F e} = 0 (4.7)

where
{ F ' }  =  J [A ( ]r { p } < /F + } [ iV f M d S  (4.8)

are the equivalent nodal forces for the element and

[ K ‘ ] = \ [ B ] T[D][B]dV (4.9)
K

is termed the stiffness matrix. The summation of terms in equation (4.7) over all

the elements, when equated to zero, results in a system of equilibrium equations 

for the complete continuum, i.e.

{F }  = [ £ ] { £ }  (4-10)

where {F } is the equivalent nodal forces for the continuum, [F ] is the stiffness

matrix of continuum and {5} is the nodal displacements of the continuum.

After the insertion of the necessary boundary equations, these equations are then 

solved by any standard technique to yield the nodal displacements. Once the
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displacements are determined, the strains and thereafter the stresses in each 

element can be evaluated by using equations (4.3) and (4.4) respectively.

a  A Isoparametric elements:

The name isoparametric came because the same interpolation function used

for defining the displacement variation within the element is also used to define

the element geometry.

The basic procedure is to express the element co-ordinates and element 

displacements by functions expressed in terms of the natural co-ordinates of the 

element. A natural co-ordinate system is a local system defined by the element

geometry and not by the element orientation in the global system. Moreover, these

systems are usually arranged such that the natural co-ordinate has unit magnitude 

at primary external boundaries. Fig. 4.1 shows this type of element and its natural 

co-ordinate system.

Many reasons encourage one use isoparametric elements, such as:

1. They are far more accurate than simple elements.

2. The simultaneous description of element geometry and displacement variation

by the shape functions leads to efficient computing effort.

3. Curved elements can model the curved boundaries of a structure.

In the present investigation, isoparametric elements have been used.

4.4.1 Shape functions:

The fundamental property of the shape (interpolation) function Nt is that its value 

in the natural co-ordinate system is unity at node i and is zero at all other

nodes. A shape function defines the variation of the field variable and its

derivatives through an element in terms of its values at the nodes. Therefore, 

shape functions are closely related to the numbers of nodes and consequently to

the type of element. Polynomials are often selected as shape functions because 

they are relatively easy to manipulate mathematically, particularly with regard to
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integration and differentiation. However, the degree of polynomial chosen will clearly 

depend on the number of nodes and the degree of freedom associated with the 

element. The shape functions for the eight-noded strain element are given by the 

following equations in curvilinear co-ordinate £, and r | :

For corner nodes:

where and rj are the intrinsic co-ordinates of any point within the element. By 

definition, % and r| have values in the interval [ - 1 ,1 ] .

These shape functions are part of the so-called serendipity family (Zienkiewicz 

1977), and they are shown pictorially in Fig. 4.2. The displacement at any point 

inside the element, namely u and v, can be expressed in terms of these shape 

functions as follows:

n , = ̂ 0 + )&X i+ + tin, - 1) (4.11)

For midside nodes:

N, = ^ i (1 + %)(1 — r|2) + ( i + TynXl-S2) (4 12)

8

(4.13)

8

(4.14)

It should be noted that the displacements u and v are parallel to the x and y, 

not the £ and r| axes. Similarly, the position of a point within the element in 

global co-ordinates is given by:
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GAUSS POINT 
POSITION

ORDER OF NUMBERING- 
OF ELEMENT NOOAL 
CONNECTIONS

Fig. 4.1 Typical 8-noded isoparametric element.

corner

Fig. 4.2

M idside

Shape function for 8-noded isoparametric element.
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Since each element has two degrees of freedom at each node, namely the 

displacement v, then it has a total of 16 degrees of freedom, and the 

element nodal displacement vector {5e} can be written as:

{6 e} = {{8 1},{8 2 },....,{8 8}} (4.17)

{8,}= The displacement components at the z'th node.

= {u., v.}

Having thus established the nodal displacements, the displacements at any point 

inside the element are expressed in terms of these through the shape functions 

[N(£,r))] such as:

{5} =  {«, v}

= [# ($ , t)) ]r {8 ‘ } = X '_ ,A ^ , r i ) { 8 ,} (4.18)

where

[ N { S , v ) } t =
N, , 0 ,
0 , N ,,

N 2 ’ 0

N
N j

0

0

N s
(4.19)

= shape function matrix.

4.4.2 Stress-strain relationships

The strains within the element are expressed in terms of the derivations of the

displacements:

i.e.

{£} = {£„ a „  (4.20)

_ f  £ »  ( ^  + £ l ) l r (4 .2 1 )
\ d  x d y  d y  d x  J

Substituting equations (4.13) and (4.14) into equation (4.21) leads to:
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(422)

where

and

in which

{ 8 e } 7 =  {u , , V, , u 2 , V j , ... u, , v , , ... u 8 , v 8}

[5 ] = [ B 2(4,n)  B,(^,77)

= strain matrix.

d N ,  

d x 

0

d N t

0

d N ,

d y
ON;

d y  d y

(4.23)

Since the shape functions N  are defined in terms of the curvilinear co-ordinates 

£ and r|, a co-ordinate transformation from local to global is required in equation 

(4.23).

It is well known that the Cartesian and the curvilinear derivatives are related by:

" d ' ’ d '

d x
d = [J]~' d

\_dy\ .dn .

where J  is the Jacobian matrix defined by:

d x d
SS, %
d x d y

_dq

Differentiating equations (4.15) and (4.16) in accordance with equation (4.24) gives:
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' d N x

%  
d N x

%

d N x

d N x 

%

d N x

^ T
d N x

^ r

d N x

^ T
d N x

y i 
y 2

y>

y 8

For linear analysis of uncracked concrete, and in the absence of initial stresses 

and strains, the incremental form of stress-strain relationship in global direction in 

plane stress case is given by the following relationship:

A {o -} = [D r ]A {e } (4.26)

[ A ]  = ( l - v 2)

elasticity matrix given by •

1 V 0

V 1 0 (4.27)

0 0
( l - v )  

2 .

where E is Young's modulus of elasticity and v is Poisson's ratio. The onset of 

the cracking will introduce orthotropic conditions, and new incremental constitutive 

relationships will apply for the material parallel to and normal to the cracks. 

Normal stress across the crack is either reduced to zero in case of tension cut­

off criterion, or follows the descending portion of the tensile stress-strain curve 

when the tension softening is taken into account. A new elasticity matrix in crack 

directions takes place and is given by:
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En 0 0

0 E, 0

0 0 p  G

where p is the shear retention factor, and En and E{ are the moduli of 

elasticity normal and parallel to the crack plane, respectively.

Using tension cut-off criterion, when single crack has occurred then,

E„ = 0.0 and E = E

For double cracking,

=  0.0 and E, = 0.0

It is essential, for reasons of numerical stability, to avoid zero values on the 

diagonals. Thus instead of putting E equal zero it takes a comparatively small 

value (e.g., E = 1.E-20).

When tension softening is taken into account and single crack has occurred, then

£ „ = <*„/ e„ and E. = E

For double cracking,

=  ° « / and E, = a , /  e,

where ?.n and zt are the tensile strains normal and tangential to the crack plane, 

and a „ and <Jt are the corresponding tensile stresses calculated from the tension 

softening curve.

To transform the above matrix to the global system (x,y), the standard 

transformation matrix [7] can be used as follows:
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[ D r l = [ T ] T[ D ] - [ T ]

where
c 2

[ r ]=  s 2
- 2  CS2

where C  = cos 6, S = sin 0, and 0 = the crack angle.

4.4.3 Element stiffness matrix

Now all the information necessary to evaluate the element stiffness matrix, K" are 

available. From equation (4.9), i.e.

a typical submatrix K*  linking nodes i and j may be evaluated from the 

expression
+ 1+1

IK ']  = J } [ B , ] r [ 0 ] [ B , ] f . d e t . J . < / f  .<*/ (4.29)
- 1 - 1

where t is element thickness and the incremental volume dV  is given by

4.4.4 Stiffness matrix of embedded bar

The displacements { u,v} of any point on the bar are obtained from the 

displacement field of the isoparametric element as:

(4.28)

dV  = t.det.J.dd; .drj (4.30)

(4.31)

where N  is the shape function of concrete element and { 8 } e is the nodal 

displacement vector.

The virtual work of reinforcing element can be written as
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S U = As j*Ss , .cr, .dl (4.32)

in which bU = internal virtual work in the reinforcement; As = cross-sectional 

area; dl = line segment along the reinforcement; and a,, e, = the longitudinal 

stress and strain along line segment, respectively.

For bar parallel to the x-axis,

CTi=CTx 

£ , = £ x 

dl = dx

Equation (4.32) becomes

S U = AsJ Se x .<7X .dx (4.33)
X

The strain in the bar can be calculated as follows:

Sx = d u l d x  = W ^ A
d  x

E x  —  . U i

e = BSe 

Se = BS ( 5 e)

where B is the nodal displacement-strain matrix. The relation between the stress 

and strain in the bar is:

cr = Ese

And the stiffness of the embedded representation can be expressed as



ChagterJ. The finite element and numerical methods o f analysis

dx = ^ = j , . d 4

K, = A ,E , ] b tB (4.34)
- 1  J  S

where Es = the bar Young's modulus and Js = Jacobian for steel element. The

same steps can repeated for a bar parallel to y-axis.

The final expression for the composite element stiffness is simply evaluated by

adding the stiffness matrices for concrete and steel together, as follows

K , = K c + K,

in which Ke is the stiffness matrix for the composite element, Kc and Ks are the

element concrete and steel stiffness matrix respectively.

4.4.5 Numerical integration

It is difficult or perhaps impossible to perform the closed form integrations required 

in evaluating the element matrix and thus numerical integration is essential. 

Numerical integration will replace the exact integral by evaluating the integrand at 

various sampling points and then taking a weighted summation of these values. In 

this study Gauss-Legendre quadrature values have been used because of their 

higher accuracy over other forms of quadrature and the ease with which these 

can be implemented. An «th order integration can integrate exactly a polynomial 

of degree ( 2 a? -1).

The general form of the integral using Gauss-Legendre is:

+ 1 m
j / ( £ ) < ^ = £ ^ / ( 6 )  (435)
-1 «=1

where is the co-ordinate of the zth integration point, W. is a weighting factor 

and m is the total number of integration points.
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In two dimensions where a double integral exists, then

+ 1+1 +1 +1

+ > m

j  drj

m m

= X X  W
m m

= Z S W « . . ^ ) (4.36)
/=1 j=\

where W. ,W. are the zth and y'th weighting factors and r |( are the co­

ordinates of the ith integration point.

These Gaussian-Legendre rules are particularly suitable for isoparametric elements 

since the limits of integration are - 1  to + 1  which coincide with the local co­

ordinate system -1 to +1 on element boundaries. Table 4.1 shows the 

symmetrical positions of Gauss points § and the corresponding weighting factors 

W. for m=1,2,3, and 4.i

4.5 The equation solution technique

There are various equation solution techniques which can be used to solve a 

given set of linear simultaneous equations. In this study direct Gaussian elimination 

algorithms have been used in conjunction with the frontal method of equation 

assembly and reduction, and is applicable here only for symmetric systems of 

linear equations. The features of this technique are:

1. It assembles the equations and eliminates the variables at the same time, 

hence the complete structural stiffness is never formed, only the upper 

triangle of a square matrix containing parts of the equations which are being 

assembled at a particular time.
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Table 4.1 Positions of Gauss points and corresponding weighting factors

m i S i

1 I 0 2

2 I
1

+ V3 +1

II
1

+1

I 0
8
9

3 II +V0.6
5
9

I I I
-V a 6 5

9

I + l̂

3 +  V48 
7

1 V30
2 36

II
|3 +  V ^8 1 V30

4 i 7 2 36

I I I +l
3 -V 4 8

7

1 V30
2 36

IV
13 -V ^ 8 1 V30

2 36
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2 . The frontal solver does not store as many zero coefficients as a banded

solver does. Once an equation has been completely assembled and 

eliminated, it reduces space which can be used for subsequent equations.

3 . The storage allocation in a banded solver is determined by the order in 

which the nodes are presented for assembly. But, in frontal solver the

storage is determined by the order in which the elements are presented. It 

can handle any order of node numberings. Hence, at any stage, if a mesh

of a problem is found to be too coarse in some regions, its modification 

does not require extensive nodal point renumbering. In this sense, the frontal

solver is easier to use than banded solvers.

4. The frontal solver tends to be more economical than banded solvers, 

especially for higher order elements with midside nodes.

4.6 Numerical methods of analysis

For the solution of nonlinear problems by finite element method, three procedures 

are usually used:

1. Incremental (Step-wise procedure).

2. Iterative (Newton-Raphson method).

3. Incremental-iterative (mixed procedure).

All these procedures solve the basic linear elastic equations given by equation 

(4.37)

[K ]{S}-{F} =  0 (4.37)

in which the assumed linear elastic constitutive law given by equation (4.38)

[cr] = [D ]{s } + {cr0} (4.38)

where [D]  = the constant linear elastic matrix, and { gJ  = the initial stress vector.
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Under nonlinear conditions, equation (4.38) is replaced by a different law of the

form:

f ( < r , £ )  = 0 (4 .3 9 )

which represents the relationship between stress and strain.

The element stiffness matrix is a function of the material properties and can be

written a s :

[F ]= [£ {a ,s)] (4.40)

The external nodal forces {F } are related to the nodal displacements { 8 } through

the stiffnesses of the element and can be expressed by:

{F }= [* (a ,e ) ] { 8 } (4.41)

which on inversion becomes:

{5}= [A (a ,8)r1 {F }  (4.42)

This derivation illustrates the basic nonlinear relationship between { 8 } and {F }, 

due to influence of the material law on [F],

However, equation (4.42) is solved by a succession of linear approximations, and 

different methods of applying these linear approximations will lead, in general, to 

different load-displacement paths influencing the final solution.

4.6.1 Incremental procedure

In this procedure the load is divided into a number of equal or unequal load 

increments. At each step only one increment of load is added to the structure. At 

each stage of loading the stiffness of the structure may have a different value
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depending on the deformation reached and constitutive law adopted for the 

material as well as the method for estimating the stiffness at that stage.

The total load and displacement at any stage is given by the sum of the 

increments of all the loads and displacements of the previous stages. The process 

is repeated until the ultimate or the total load is reached. This procedure has the 

advantage that it is simple to apply but the accuracy is rather low unless the 

load increments are very small. The main disadvantage of this procedure is that it 

does not account for force redistribution during the application of increment owing 

to the fact that there is no iteration process to restore equilibrium.

4.6.2 Iterative procedure

In this procedure, the load is applied to the structure and then the displacement 

is adjusted in accordance with the constitutive laws until equilibrium is attended. In

this method either the stiffness matrix remains constant or varies throughout the 

solution. One distinct advantage of this method is that the same stiffness matrix

can be used at each of iteration which involves a small amount of computing

effort in each subsequent iteration step for the determination of the corresponding

displacement. Other methods with variable stiffness matrix [AT| such as the secant 

method and Newton -  Raphson method may have a faster convergence rate but 

only at the expense of having to reassemble and solve a new system of linear 

equations at each iteration.

4.6.3 Incremental-Iterative procedure

In practice, usually a combination of both the increment and iterative procedure is 

used. The total load is divided into a number of load increments. At every 

increment of load, iterative procedure is applied until convergence is obtained 

under that load increment. The constant stiffness procedure can be used. For 

nonlinear analysis of reinforced concrete structures, experience seems to indicate
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that relatively small load increments with fairly frequent updating of the stiffness for

just a few iteration steps are required to produce good results.

Developments in numerical analysis and applied mathematics can be used to 

further improve the efficiency of solution technique at low additional cost. 

Recently, a number of techniques have been introduced in order to accelerate the 

rate of convergence, such as the accelerated method and arc length methods.

A-7 Convergence criteria

Since in a numerical process, equilibrium conditions are unlikely to be satisfied

exactly, criteria to determine convergence have to be established for objective 

analysis. The main purpose of reliable convergence criterion is to monitor the

gradual elimination of the out-of-balance residual forces until the desired accuracy 

has been achieved. The convergence criterion, usually used, is based on

displacement or out-of-balance force norms and sometimes on internal strain

energy. In the present work, convergence criterion is based on out-of-balance

force norms. They indicate directly how well equilibrium requirements are met. 

Since it is difficult and expensive to check the decay of residual forces for every 

degree of freedom, an overall evaluation of convergence is preferable. This is

achieved by using a force norm.

This criterion assumes that convergence is achieved if:

(4.43)

where:

= the norm of the residuals,

{R,}= the residual force vector at z'th iteration,
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= the norm of the total applied loads,

{^ }  = the total applied load vector, 

and Tol= specified convergence tolerance.

Fine tolerances are theoretically desirable but can be very expensive to obtain

because they quite often require a large number of iterations. Steep discontinuities 

in material laws (cracks, yielding ...) can cause large residuals and these residuals 

need to be distributed. However this redistribution will cause more discontinuities in 

other parts of the structure and hence residuals in subsequent iterations. In such 

cases the rate of accumulation of residuals can be higher than the rate of

distributing them. An intermediate solution is to choose a low tolerance value at

initial stages and increase it towards the later part of the load history.

Finally, it should be noted that the rate of convergence depends particularly on

the method used in the solution, and it is well known for example that constant 

stiffness will lead to slow convergence and this leads to many iterations, which is

without any doubt a very costly operation.

4.8 Basic steps in nonlinear program

The major steps in the linear and nonlinear analysis of a typical finite element

program are:

1. Subdivision of the structure and representing different parts by appropriate

types of finite elements.

2. Generation and assembly of load vector {F}.

3. Generation of the element stiffness [K?].

4. Assembly of the structure stiffness [K\.

5. Solution for the nodal displacements } = [AT]-1 {F ^  and hence the strain

M  = {<?,}

6 . Determination of element stresses { t r }  = [/)]{£■}
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For nonlinear analysis:

7 . Check for cracking, yielding, and failure.

8 . Determination of unbalanced nodal forces, 

g. Check for convergence.

10. This Step depends on the convergence

(a) If not converged apply the unbalanced nodal forces again to the structure

and go to Step 3 if the stiffness is to updated and to Step 5 if constant

stiffness solution is adopted.

(b) If converged apply the next load increment and go to Step 2 .

11. Stop when failure occurs or when full loading has been applied.

Fig. 4.3 shows the main steps of the finite element nonlinear analysis procedure.
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( s t a r t )

Input data of the problem

Load increment initialization

Form element strain matrix 
and elasticity matrix [D]

A fo stp jf-

Yes 

Reform

3
F otm element stiffness matrix [k]

Assemble structural stiffness matrix [K] 
and store [K]

No
\ Assemble force vector

Solve for displacements

Calculate element strain

Calculate element stress and 
accumulated stress

Calculate element principal stresses

Linear Analysis only ?

Any cracking or yielding ? ̂ >-

Yes

No

Calculate unbalanced residual forces

No -<^ Convergence O K  ?

Print out results

More load increment ?

( j T ^ )

Fig. 4.3 flow Chart for Linear and Nonlinear Reinforced Concrete Analysis.
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CHAPTER 5

COMPARISON BETWEEN THE PREDICTIONS OF 3-D AND 2-D 

FINITE ELEMENT MODELS

5.1 Introduction

Reinforced concrete beams are usually analysed as a plain stress problem; i.e. 

the stresses in the direction normal to the plane of the beam are neglected. The 

prediction of the behaviour of reinforced concrete Tee beams may probably be 

affected by neglecting these stresses. The three dimension (3-D) analysis is more 

general than the two dimension (2-D) analysis. But when the finite element

method is used, the 2 -D  finite element model is preferable to the 3-D  one. This 

is because of the considerable saving of cost and time. The main purpose of this 

chapter is to answer the following question. Is it acceptable from the accuracy

point of view to use a 2-D  finite element model instead of a 3-D  one to 

predict the behaviour of reinforced concrete beams?

To answer the above question a number of structures have been analysed

and the results of 2 -D  and 3-D models have been compared. The structures 

chosen for the analysis are; a plain concrete prism, a reinforced concrete

rectangular beam with and without web reinforcement, and a Tee beam with web 

reinforcement.

5̂ 2, Features of the 3-D and 2-D versions used in the analysis

The 3-D  finite element model used in the present analysis was developed by 

Elnounu (1985). This model was used to predict the ultimate loads of rectangular 

and flanged shear wall-floor slab connections with or without shear reinforcement.
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The results showed good agreement with the experimental values. Later, this 

model was used by Bari (1987) to study the ultimate strength of shear wall-floor 

slab junctions reinforced for flexure and shear subjected to monotonic and reversed 

cyclic loading; and by Musavi (1992) to study the punching shear strength of 

unbonded prestressed flat slabs at edge column junction.

The 3-D  model and the 2-D  model used in the analysis have the following 

common features:

• Based on a smeared representation of cracks. Orthogonal cracks approach is

adopted.

• Use of tension cut-off criterion for concrete.

• Neglecting the compression softening of concrete.

• Assuming shear retention factor (3 as a function of the strain normal to the

crack plane.

• Deal with the reinforcement as embedded bars.

• Use of force convergence criterion.

• Newton -  Raphson method is used in the numerical analysis.

• Use of the same algorithm. Updating the structure stiffness matrix at the second

iteration of each increment only and not at every iteration.

• Use of Gauss-Lagendre integration method with full integration ( 3 x 3  Gauss

points for 2 -D  and 3 x 3 x 3  Gauss points for 3-D).

• Use of a constant Poisson's ratio v (= 0.15).

The differences between the two models are explained below.

3-D  M ode l:

In addition to the common features with the 2-D  version mentioned above, 

the other features of the 3-D  model are as follows:

• Based on Kotsovos yield criterion for concrete.

• Assuming the tensile strength of concrete vanishes after tensile stress of f t'/ 2 .

This value has been modified to be f t\ This is because when the model was
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used to analyse an element under uniaxial tensile stress the predicted failure 

stress was half of the value given in the data as a tensile strength of 

concrete.

• Assuming the shear retention factor p as a function of the average strain sm

(=(£| + £ 2  + £3 )/3 ) as follows:

P = £  —  > 0 (5.1)

where B is a constant (=0.4).

2-D  m odel:

The 2-D  finite element version used in the present analysis has the following 

different features:

• Based on Kupfer yield criterion for concrete.

• Assuming the shear retention factor p as a function of the strain normal to the

crack e„  as follows:

P = £  —  > 0 (5.2)

To see the difference between the assumed uniaxial stress-strain relationship 

of concrete in the 2-D  model and that in the 3-D model, a plain concrete cube 

element (100 x 100 x 100 mm) was analysed. The assumed uniaxial compressive 

strength is 30.0 MPa. The cube is analysed with conditions of supports as shown 

in Fig. 5.1a. The applied load is uniformally distributed on the finite element edge 

in the 2 -D  analysis and on the horizontal plane in the 3-D  analysis. The 

stress-strain curves of the cube in this case are shown in Fig. 5.2. From this 

figure, it can be seen that the difference between the two models is very small 

UP to the peak of stress, after that the 2-D  model assumes a perfect plasticity 

until strain equal 0.0035, while in the 3-D  analysis the calculation is stopped at 

the peak of stress.
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100 m s

Fig. 5.1a Plain concrete cube under uniaxial compression

Fig. 5.1b Plain concrete cube under confinement.
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Fig. 5.2 Uniaxail stress strain curve of concrete
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Fig. 5.3 Stress-strain curves for concrete (effect of confinement)
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The cube is re-analysed again to see the effect of confinement. In this case 

the cube is restrained from all the directions except the direction of the applied 

load (Fig. 5.1b). The compressive stress-strain curve is shown in Fig. 5.3. From 

this figure, it can be seen that the difference between both of the two curves is 

very small up to the assumed uniaxial compressive strength. After that, the gain 

of the strength in the 3-D  model (10% of the uniaxial compressive strength) is

more than that in the 2-D  analysis (only 3%).

5.3 Prediction of the behaviour of a plain concrete prism

Before using the two models to predict the behaviour of reinforced concrete

beams, a plain concrete prism has been analysed.

A prism from many plain concrete prisms tested by Niyogi (1974) has been

chosen for analysis. This prism has been analysed before by some Authors; e.g.

Vidosa, et al. (1991a) using a 3-D  model; Bedard and Kotsovos (1986) and 

Gajer and Dux (1988) using a 2-D  model. The dimensions of the prism were

203.2 x 203.2 x 406.4 mm. It was loaded simultaneously from top and bottom

over one half of the end faces with equal sizes of plates (see Fig. 5.4). Due to 

symmetry, in 2 -D  analysis one-fourth of the prism is analysed, while in 3-D  

analysis only one-eight of the prism is analysed. Fig. 5.5 shows the mesh used 

in both of the 2 -D  and 3-D  analysis.

The experimental failure of this prism took place at 65% of the cylinder

compressive strength f c ' (fc ' = 26.9 MPa, ultimate bearing stress = 17.4 MPa). 

The experimental load deflection curve is not reported by Niyogi.

The prism has been analysed using 4 isoparametric elements with the following

data:

fc  = 26.94 MPa, 

f i =  2.80 MPa,

E = 26000 MPa,
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203.2

Rigid neel platen

406.4

IT
Ripd Meet platen

Fig. 5.4 Niyogi's plain concrete prism
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Fig. 5.5 Finite element mesh for Niyogi's plain concrete prism
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v = 0.15 

B = 0.4

Convergence tolerance of 4%

The two models underestimated the failure load. The predicted failure load 

from the 3-D  model (about 48% of f c\ 74% of the experimental failure load) is 

lower than that predicted from the 2-D  model (about 59% of f c\ 91% of the

experimental load). This can be explained according to Vidosa, et al. (1991c) as 

follows. The application of the central strip loading at both ends of the prism

produces tensile stresses perpendicular to the axis of the structure that have a

significant influence on the ultimate load. The 2-D representation allows for some

of these stresses, while it neglects those stresses perpendicular to the plane of

the prisms. The 3-D  representation and triaxial model may remove this

shortcoming, and avoid the artificial gain in strength arising through plane-stress 

modelling.

Fig. 5.6 shows the predicted stress-displacement curves. From this figure, it can

be seen that the predicted stress-displacement curve using the 3-D  model is 

nearly the same as that predicted using the 2-D  model.

Using a 3-D  model, Vidosa, et al. analysed this prism. They predicted a failure

load between 57% and 75% of f c' depending on factors being investigated. These 

factors are the crack propagation procedure, the adopted finite element mesh and

the type of finite element used. Using the same type of element (20-noded 

isoparametric brick element with 3 x 3 x 3  Gauss points) as in the present analysis

and the same mesh (2 x 1 x 2 ) but with the single-crack approach (which allowed

for certain number of cracks to occur per iteration, for example, two new cracks 

per iteration), they predicted a failure load of 0.57% of f c'. Although Vidosa, et al.

reported that the tensile stresses perpendicular to the axis of the prism have a

significant influence on the ultimate load, in their paper no attempt was made to

study the effect of tensile strength of concrete on the prediction. Moreover they

did not even mention the value of the tensile strength taken in their analysis.
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ChapterA Comparison between the predictions o f 3-D and 2-D finite element models

Gajer and Dux (1988) analysed this prism by a 2-D  model. Their result

confirmed the result of Bedard and Kotsovos (1986) using 2 -D  model with single 

crack approach (allowing for the formation of only one new crack per iteration) 

that failure of the prism began at a stress greater than f c' and was due to 

progressive crushing of concrete. One can explain this overestimated prediction as 

due to taking the tension softening of concrete into account directly by Gajer and

Dux and indirectly by Bedard and Kotsovos. The single crack approach can be 

considered as a form of tension softening (see Phillips 1992). This is because 

preventing certain Gauss points within an element from cracking even though the 

stresses violate the strength envelope means that stresses are retained within the 

system, which are then released in a controlled manner in subsequent

iterations. This is similar to tracing a strain softening in which stress is gradually 

released as a crack opens. Taking tension softening into account delays the 

failure after the tensile stresses reach the maximum allowable strength.

When Gajer and Dux repeated the analysis with a different numerical method 

(modified Ramm's method instead of load controlled secant-Newton method) the 

analysis became unstable at stress about 62% of f c' from which they considered

this stress as the predicted ultimate stress (Fig. 5.7a). No attempt was made by 

Gajer and Dux to repeat the analysis without taking the tension softening into

account. On the other hand when Bedard and Kotsovos repeated their analysis 

without any restriction on the formation of the cracks, they obtained predicted

ultimate stress around the experimental one (56% to 78% of f c' depending on the 

value of shear retention factor p.see Fig. 5.7b).

Fig. 5.8a shows the predicted deflected shapes and the crack patterns at some 

load stages before failure. From this figure, it can be seen that both the two

models predict the same type of failure. As in the experiment, the failure starts 

with the formation of vertical cracks under the applied load at the middle of the 

prism. A horizontal crack in the outer zone has been observed in the 3-D

predicted crack patterns. These cracks occur because of differential vertical
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Fig. 5.7a Predicted stress-displacement curves for Niyogi’s prism 
(Gajer and Dux 1988).
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Fig. 5.7b Predicted ultimate bearing stress for Niyogi’s prism 
(Bedard and Kotsovos 1986).
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13.7 MPa 14.8 MPa 15.4 MPa
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15.9 MPa
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12.7 MPa ,  12.9 MPa

11 MPa

S-D)
'idosa, et al. (1991a)

><
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<b)

14 M Pa 15 MPa

Fig. 5.8 Predicted crack patterns and deformed shapes for 
Niyogi’s prism
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deformations (Vidosa, et al. 1991a). The predicted crack patterns at some 

increments are shown in Fig. 5.8a. Neither Bedard and Kotsovos (1986) nor Gajer 

and Dux (1988) reported the predicted crack pattern. The crack patterns predicted 

by Vidosa, et al. (1991a) are shown in Fig. 5.8b in which the cracks formed at 

most of the Gauss points. This might be due to the difference in the assumed

shear retention factor (they assumed a constant value of 0 .1 ).

To see the effect of the number of Gauss points per element on the result, 

the prism has been analysed with 2 x 2 x 2  Gauss points for the 3-D  model and 

2 x 2  for the 2-D  model. Figures 5.9 to 5.11 show the predicted stress-deflection 

curves and the predicted crack patterns from the two models at different

increments. An increase of the predicted load has been observed; e. g. the 

predicted failure load increased from 48% of f c' to 61% of f c' in the 3-D

analysis. The same behaviour has been reported by Vidosa, et al. (an increase

from 57% of f c' to 72% of

Figures 5.12 to 5.14 show the effect of the constant B in equations 5.1 and 5.2

on the results. In 3-D  analysis, the effect of B is significant when 2 x 2 x 2

Gauss points is used (increase B from 0.4 to 0.99 increases the predicted failure 

load by about 16% of while it has no effect on the results when 3 x 3 x 3  

Gauss points is used (the same curve in Fig. 5.9). In 2 -D  analysis, the effect of

B is less significant (see Figs. 5.13 and 5.14).

The effect of convergence tolerance is shown in Fig. 5.15. This figure shows that 

the convergence tolerance of 0.1% and 4% give nearly the same result (difference

of 2 % of the experimental failure load).
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Fig. 5.9 Stress-displacement curves for Niyogi's prism (effect of No. of Gausss points)
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Fig. 5.11

Comparison between the predictions o f 3-D and 2-D finite element models

14.8 MPa 15.4 MPa

15.9 MPa 16.4 MPa

Predicted crack patterns and deformed shapes using 2x2x2 Gauss 
points (3-D analysis).

14.3 MPa 14.5 MPa
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Fig. 5.12 Stress-displacement curves (effect of B)
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Fig. 5.13 Stress-displacement curves (effect of B)
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Fig. 5.14 Stress-displacement curves (effect of B)
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Fig. 5.15 Effect of convergence tolerance.
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z A Prediction of the behaviour of a rectangular beam without web 
reinforcement

The beam OA-1 chosen for the analysis was one of the twelve beams

tested by Bresler and Scordiles (1963). This beam has been tested by many

authors, e.g. Bedard and Kotsovos (1986) using a 2-D  model; Vidosa, et al. 

(1991a) using a 3-D model. The beam is shown in Fig. 5.16. This beam had

a/d ratio of 4.0. It had a span of 1828.8 mm with cross-sectional dimensions

556.3 x 310.0 mm. The longitudinal reinforcement consisted of four bars with a 

total area of 2588.0 mm2 placed in the bottom of the beam at two levels. The

beam was subjected to a central concentrated load and failed in a brittle manner

in shear without yielding of the longitudinal reinforcement. The experimental failure 

occurred shortly after the formation of the critical diagonal tension crack as a 

result of longitudinal splitting in the compression zone near the load point and

also by horizontal splitting along the tensile reinforcement near the end of the 

beam. The failure occurred at a load of 333.6 kN  with a mid-span deflection of

6.7 mm. Fig. 5.17 shows the crack pattern obtained from the test.

Fig. 5.18 shows the finite element mesh used for the analysis of the beam. The

same finite element mesh (consists of 14 isoparametric elements) is used for both

the 2-D  and 3-D  analysis. Due to symmetry, only one-half of the beam is used 

in the analysis.

The beam is analysed with the following data:

fc  = 22.6 MPa 

f t ' = 2.57 MPa 

V = 0.15 

E = 23800 MPa 

fy  -  555.5 MPa 

Es= 218040 MPa
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556.3

3657.6

All dimensions in mm
429.3

63.5
63.5

Fig. 5.16 Details o f beam OA-1

309.9

Fig. 5.17 Observed crack pattern for beam OA-1.
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2x278.15

228.6 6x304.8

All dimensions in mm

(a) 2-D finite element mesh

2 x 2

All dimenisons in mm

(b) 3-D finite element mesh

Fig. 5.18 Finite element mesh for beam OA-1
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The numerical failure loads obtained from the 2-D  and 3-D  analysis are about

100% and 105% of the experimental failure load, respectively. The numerical failure

load is the load corresponding to the last convergent increment after which the 

displacements become very large compared to the displacements at the last

converged increment. In the analysis sometimes at certain increment the maximum

number of iterations (50 iterations) reaches while the norm of residual forces is

still greater than the convergence tolerance (4%). Despite this, the convergence 

occurs but at a slow rate such that the norm may reach to about 5 % or 6 % at

the last iteration. Also the displacements are not too large. This should not be 

considered as a numerical failure.

The predicted load-deflection curves obtained from the 2-D and 3-D  analysis are

compared with the experimental curve in Fig. 5.19. By comparing the predicted 

failure loads and the load - deflection curves obtained from the two models it can 

be concluded that both of the 2-D  and 3-D  analysis give nearly the same

degree of accuracy in predicting the behaviour of the beam under analysis.

The predicted stresses obtained from the two models, at a Gauss point under the

applied load near the middle of the beam, are plotted at all increments up to the 

numerical failure (see Fig. 5.20). From this figure, it can be seen that the

stresses obtained from the 3-D  model, at all increments, in the direction normal

to the plane of the beam (Y-direction) are very small (less than 1.0 MPa) in

comparison to the stresses in the other two directions (X and Z). This may

explain why the 3-D  analysis result did not differ much from that obtained from

the 2 -D  analysis.

•n Figs. 5.21 to 5.25, the predicted crack patterns and deformed shapes obtained 

from the two models are shown at different increments. The displacements are

magnified by 20 times. The cracks are plotted at the Gauss points. The crack is

represented by a line. Its direction is normal to the maximum principal stress and

■ts length is proportional to the strain normal to the crack at this Gauss point.

One line per Gauss point means single crack occurred at this point, two lines
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Fig. 5.19 Load-deflection curves of beam OA-1
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perpendicular to each other at a Gauss point means double cracks occurred,

asterisk (*) symbol means three perpendicular cracks occurred (for 3-D  analysis

only), and a small square (□) means that the concrete at this Gauss point

crushed (i.e. the yield criterion has been violated).

Fig. 5.21 shows the crack patterns at load level of 50% of the experimental

failure load of the beam (load factor = 0.50). In the crack pattern obtained from

the 3-D  model more cracks formed than in that obtained from the 2 -D  model.

The crack patterns at load factor = 0.75 are shown in Fig. 5.22. In the crack

pattern obtained from the 2-D  model, double cracks are shown at most of the

Gauss points near the level of longitudinal reinforcement (Fig. 5.22a). In the

observed crack pattern (Fig. 5.17) only some double cracks have occurred. Fig.

5.22b shows that the cracks reached the support region which is not supported

by the observations in the experiment. In Fig. 5.23, the crack patterns obtained 

from the two models are plotted at a load factor = 0.95. This increment is the

last converged increment in both the 2-D  and 3-D  analysis. Therefore, the load 

at this increment is not considered the numerical failure load since the

displacement at the next increment (load factor = 1 .0 0 ) is not much larger than 

that at this increment. Nearly-horizontal cracks at this increment have reached the

top of the beam in the shear span, in both the 2-D  and 3-D  analysis (the

critical cracks occurred in the experiment at load factor about 0.80). Fig. 5.24

shows the crack patterns at a load equal to the experimental failure load (load

factor = 1.00). As mentioned above, the maximum number of iterations is reached

at this increment without achieving the condition of convergence (i.e., the norm of 

residual forces is still greater than the convergence tolerance, 4%). Most of the

Gauss points in the shear span have cracked, but the beam still can carry more

load. At load factor = 1.05, the displacement in the 2-D  analysis becomes very

large with respect to the displacements at load factor = 1 . 0 0  (e.g.; the mid-span 

deflection increased from 8.93 to 145.1 mm). Fig. 5.25 shows the crack patterns

and the deformed shapes at a load factor = 1.05 (in Fig. 5.25a displacements
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Fig 5.21 Crack patterns and deformed shapes of beam OA-1 at load factor = 0.50:
(a) 2-D; (b) 3-D (displacements magnified x 20).
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Ho

X
X
*
□

single crack : 

double crack: 
triple crack (3-D only): 
crushing of concrete :

Fig 5.22 Crack patterns and deformed shapes of beam OA-1 at load factor -  0.75:
(a) 2-D; (b) 3-D (displacements magnified x 20).
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Fig 5.24 Crack patterns and deformed shapes of beam OA-1 at load factor -  1.00:
(a) 2-D; (b) 3-D (displacements magnified x 20).
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(a) 2-D, load factor = 1.05 (displacements magnified x 2).

(b) 3-D, load factor = 1.05 (displacements magnified x 20).
Jingle crack : 

ouble crack: 
riple crack (3 -D  only): 

rushing of concrete :

(c) 3-D, load factor =1.10 (displacements magnified x 2).

Fig. 5.25 Crack patterns and deformed shapes of beam OA-1.
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are magnified only 2 times). At this load factor, the concrete at most of the

Gauss points has crushed. In the 3-D analysis (Fig. 5.25b), the displacement

increments at load factor = 1.05 are still small, therefore, the concrete at one

Gauss point under the applied load has crushed and double cracks occurred at

some Gauss points in the shear span. The convergence at this increment has 

been achieved in the 3-D  analysis only. At load factor = 1.10, the calculations 

stopped in the 2-D  analysis due to appearance of negative pivot in the stiffness 

matrix. In 3 -D  analysis, the convergence did not occur, the displacements became 

very large (Fig. 5.25c, displacements are magnified only 2 times), three cracks

occurred at many Gauss points, and the concrete crushed at many Gauss points. 

The negative pivot appeared at a load factor = 1.15.

By looking at the stresses in the longitudinal reinforcement, at none of the Gauss 

points on any bar has there been yielding up to the numerical failure load (load 

factor = 1.00 in 2 -D  analysis and = 1.05 in 3-D  analysis). In 2-D  analysis, the

maximum stresses at load factor = 1.00 was 325 MPa (about 58% of the yield 

stress of steel). This stress in 3-D  analysis was 356 MPa at load factor = 1.05. 

Both the 2 -D  and 3-D models predicted similar crack patterns, deformed shapes 

at the numerical failure load, and stresses in the longitudinal reinforcement, and it

is easy from the above to conclude that the mode of failure of this beam is

shear and not flexure.

Bedared and Kotsovos (1986) and Vidosa, et al. (1991a) predicted the behaviour

of this beam (beam OA-1). In the former paper using 2-D  finite element version, 

they overestimated the failure load of this beam. This was when they used the

single crack approach and when this restriction on the cracks was removed they 

underestimate the failure load by about 40%. This result was obtained using

constant shear retention factor = 0.5. In the second paper using a 3-D  finite 

element version, 7  runs were performed on this beam with different parameters all

°f them using the single crack approach. The predicted failure load was between 

15% to 90% of the experimental failure load. One comment on the analysis by
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Vidosa, et al. (1991a) should be mentioned here that despite their using a 3-D

model which is very expensive compared to 2-D  model, they approximated the 

representation of the beam by neglecting the concrete cover and putting the

longitudinal reinforcement in one layer instead of two.

The large difference in predictions by the 2-D  model reported by Bedard and 

Kotsovos or in those reporting by Vidosa, et al. using a 3-D  model may reflect 

that the problem is not 2-D  or 3-D model, but it is how to adjust all

parameters that affect the prediction to get the best result, and this cannot be

predicted without the analysis of a large number of beams.

More discussion on this beam is presented in the next chapter.

5.5 Prediction of the behaviour of a rectangular beam with web 
reinforcement

A beam (A -1) from the twelve beams tested by Bresler and Scordiles (1963) 

is chosen for analysis. Beam A-1 is nearly similar to beam OA-1, that has been

analysed in the previous section, except for the use of web and compression

reinforcement. The cross-sectional dimensions of the beam are 561.3 x 307.3 mm. 

The stirrups consist of 6  mm deformed bars with a spacing of 210.0 mm and the 

compression reinforcement consists of 2 bars of 10 mm diameter (Fig. 5.26). The 

use of the web and compression reinforcement increased the experimental failure

load from 333.3 kN  (the experimental failure load of beam O A -1 ) to 467 kN.

The beam is analysed using the following data:

fc  = 24.1 MPa

f t  = 2.65 MPa

V = 0.15

E = 23800 MPa

For tension reinforcement:

f y  = 555.5 MPa , Es= 218040 MPa
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Fig. 5.26a Details o f beam A -l
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Fig. 5.26b Observed crack pattern for beam A-l.
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For compression reinforcement:

f y = 345.7 MPa, Es= 201480 MPa 

For web reinforcement:

f y v = 325.7 MPa , Es= 189750 MPa

The same finite element mesh used for analysis of beam OA-1 is used here

(Fig. 5.18). Both of the two models underestimated the failure load of this beam.

The predicted failure loads from the 2-D  and 3-D models are 90% and 80% of 

the experimental failure load, respectively.

Fig. 5.27 shows the predicted load - deflection curves obtained from the two

models. The predicted curves are more flexible than the experimental curve. The 

stresses at a Gauss point under the applied load near the middle of the beam

are shown in Fig. 5.28. Like the beam OA-1, the stresses in the direction

normal to the beam plane are very small compared with the stresses in the other 

two directions (X and Z directions).

The predicted crack patterns and deformed shapes are plotted in Fig. 5.29 to Fig. 

5.32. Fig. 5.29 shows the crack patterns and deformed shapes at load factor = 

0.5. The beam behaves at this increment as the beam OA-1 at the same 

increment, most of the Gauss points at the bottom of the beam have cracked. At 

load factor = 0.75 (Fig. 5.30), nearly horizontal cracks occurred in the top half of 

the beam which indicates that the critical shear cracks have already occurred (the 

critical shear cracks occurred in the experiment at load factor = 0.57). In 3-D

analysis, at this increment (load factor = 0.75) convergence did not take place.

The rate of convergence was very slow. The norm of residual forces reached

4.76% at the maximum number of iterations allowed (50 iterations).

Fig. 5.31 shows the cracks and the deformed shapes at the numerical failure 

loads predicted from the 2-D  (load factor = 0.90) and 3-D (load factor = 0.80) 

analysis which clearly indicate that shear is dominant.
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Fig. 5.27 Load-deflection curves of beam A-1
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The longitudinal reinforcement hasn't yielded up to the numerical failure load in 

both the models which supports the predicted failure mode concluded from the 

crack patterns and deformed shapes that the beam failed in shear. The stresses 

in the reinforcement obtained from both two models showed no large difference. 

For example, the maximum stresses obtained from the 2-D  and 3-D  models in 

the longitudinal reinforcement at load factor = 0.75 are 321.6 and 328.6 MPa and 

at load factor = 0.80 are 350.7 and 345.7 MPa, respectively. In 3 -D  analysis, 

the stresses in the horizontal legs of stirrups did not exceed 35 MPa up to the 

numerical failure.

This beam has been analysed by Bedard and Kotsovos (1986) using 2-D  finite 

element model and by Vidosa, et al. (1991b) using a 3-D  finite element model.

Bedard and Kotsovos, using the single crack approach and constant shear 

retention factor = 0.5, predicted a failure load nearly equal to the experimental

one which is considered an excellent result. However, by comparing their predicted 

load-deflection curve (Fig. 5.32a) with the present predicted load - deflection curves 

from the 2-D  model in Fig. 5.27, it can be seen that the two curves are nearly 

the same up to about 80% of the experimental failure load. After that, the

present predicted curves stopped while the predicted curve by Bedard and

Kotsovos continues but stiffer than the experimental curves which might be due to 

assuming a high constant shear retention factor and using the single crack

approach in their model.

Using a 3-D  finite element version, Vidosa, et al. (1991b) predicted a failure load 

of about 96% of the experimental failure load of this beam. Their predicted load- 

deflection curve is more flexible than that of Bedared and Kotsovos (Fig. 5.32b).

This is because they neglected the concrete cover to the tension reinforcement in

their finite element discretization and also due to taking less shear retention factor 

(0-1). From the above it can be concluded that the assumed value of shear

retention factor and the accurate representation of the beam under investigation
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Fig. 5.32 Predicted load-deflection curves for beam A-l.
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may have more significant effect on the prediction than the effect of using a 2-D  

or 3-D version.

More discussion on this beam is presented in the next chapter.

4 fi Prediction o f the behaviour of a Tee beam

In this section a comparison between the 2-D  and 3-D  models is made on 

a Tee beam (beam ST1) from those tested by Taylor (1966). Due to the triaxial 

state of stresses in the flange one could expected a large difference between the 

results of the 2 -D  and 3-D analysis. But this did not happen as will be shown

below.

The beam has a span of 3099 mm and a cross-section as shown in Fig. 5.33. 

It is subjected to a central concentrated load. The amount of web reinforcement 

in one half of the beam is different from (about 80% of) the amount provided in 

the other half. All stirrups are 6  mm diameter at a spacing of 88.9 and 114.3 

mm in the two halves of the beam, respectively. Tension reinforcement consists of 

five 16 mm deformed cold-worked mild-steel bars. Three of the longitudinal bars 

were continuous to the ends of the beam while the other two bars were stopped 

at distance of 6 8 6  mm from the supports. Two 22 mm mild-steel bars were used 

as compression reinforcement. The beam was designed to fail in shear, but it 

reached its maximum flexural capacity although wide cracks in shear span near 

the ends of the stopped-off bars were observed. The experimental failure load 

was 13 2  kN.

Fig. 5.34 shows the finite element mesh used for the analysis of the beam. In 

2-D analysis the mesh consists of 36 elements, while in 3-D  analysis 48 

elements are used. Due to symmetry, only one-half and one-fourth of the beam

are used in 2 -D  and 3-D  analysis, respectively. The beam is analysed using the 

following data:
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top longitudinal steel In all beams: tw o  22.2 mild-steel bars

rd L

- 7
three 15.9 c .w .m *. bars two 15.9 c.w.m.s. bars 1828.8 long

3657.6

All dimensions in mm

spacing of stinups in left side = 114.3 
spacing of stirrups in rigth side = 88.9

304.8
25.4 cover to top 
longitudinal bars

12.7 cover between bars

cover to  bottom  longitudinal 
bars: 25.4

114.3

Fig. 5.33 Details o f beam ST1.
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T "

8 2x114,3
x  »

228 ,6  11x145.5

(a) 2-D

All dimensions in mm

(b) 3-D

Fig. 5.34 Finite element mesh for beam ST1.

163



Chagter5_ Comparison between the predictions o f 3-D and 2-D finite element models

f  = 25.9 MPa

J ' = 2.74 MPa

V  = 0.15

£ = 25000 MPa

For tension reinforcement:

f y  = 441.6 MPa , Es= 190000 MPa 

For compression reinforcement:

f y  = 278.0 MPa , Es= 190000 MPa 

For web reinforcement:

f y „ =  290.0 MPa , Es= 190000 MPa

In 2-D analysis when the beam stiffness matrix is only updated at the second

iteration of each increment, numerical problem (iterations did not yield a convergent 

solution, since the stresses orthogonal to the cracks were always larger than the

maximum allowable residual stress criterion) was observed at load factor = 0.4

and the numerical failure occurred at load factor = 0.45. This numerical problem 

also faced Vidosa, et al. (1991a) when they used intial stiffness matrix or stiffness 

matrix updated every three iterations in the analysis of beam OA-1. The analysis 

of beam ST1 was repeated with updating the beam stiffness matrix at every 

iteration. The calculation in the two models reached load factor = 0.95 without

any trouble. This increment was the last converged increment in both the 2-D

and 3-D analysis. In 3-D  analysis, despite the convergence tolerance (4%) was 

not be achieved at load factor = 1 . 0 0  but the displacement increments were not 

very large and the rate of convergence was very slow (the norm of residual 

forces reached 10.3% at the last 50th iteration. In 2-D analysis, a negative pivot 

appeared in the beam stiffness matrix at load factor = 1.00. The predicted failure

loads from the 2-D  and 3-D  analysis are 95% and 100% of the experimental 

failure load, respectively. The load-deflection curves are shown in Fig. 5.35. As

observed in the analysis of the previous two beams (beams OA-1 and A-1), the
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ChagterJL Comparison between the predictions o f 3-D and 2-D finite element models

predicted load-deflection curve obtained from 3-D model is slightly stiffer than that 

obtained from 2-D  model.

The crack patterns and deformed shapes at load factors = 0.5; 0.75, and 0.95

are shown in Figs. 5.36 to 5.38. Unlike the predicted crack patterns of beams

OA-1 and A-1 which failed in shear, the crack patterns of beam ST1 show that

the ’lengths' of shear cracks are less than that of the flexural cracks (the crack 

length is plotted proportional to the strain normal to the crack plane).

The stresses in concrete obtained from the two models at a Gauss point under 

the applied load are shown in Fig. 5.39.

Fig. 5.40 shows the stresses in the flange under the applied load in the Y - 

direction. The maximum compressive stresses in this direction did not increase 

beyond 3.0 MPa.

The two models predicted nearly the same stresses in the reinforcement. For 

example, the maximum stresses in tension reinforcement at load factor = 0.85

obtained from 2 -D  and 3-D  models are 430 and 428 MPa, respectively. In both

the models, the tension steel started to yield at a load factor = 0.90, i. e. 

before the numerical failure which indicates that the beam failed in flexure.

5J Conclusions

From the comparison between the predictions of 2-D  and 3-D  finite element 

versions that has been made in this chapter on four types of structures, the 

following conclusions can be drawn.

• The difference in the predictions of failure load did not exceed more than «-1 0 % 

in any case which indicates that the use of 2 -D  finite element version instead

of 3-D  one is safely acceptable. The 2-D  version is preferable because of 

the considerable saving of cost and time.
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Fig. 5.39 Stresses at a Gauss point under the applied load (ST1)
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, Adjustment of the factors that affect the prediction in the model itself is more

significant for the correct prediction than the choice of 2-D  or 3-D  model.

• Updating the stiffness matrix at certain iteration only may cause numerical

problems.

• Increase in the assumed value of shear retention factor more than 0.4 may lead

to overestimation of the failure load.
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CHAPTER fi

PRELIMINARY PARAMETERIC STUDY

fi 1 Introduction

The comparison, which has been made in chapter 5, between the 

predictions of 2 -D  and 3 -D  finite element models led to the conclusion that 

2-D finite element model is sufficient for predicting the behaviour of reinforced 

concrete beams. The aim of this chapter is to find out the features of this 

2-D finite element model that gives good prediction of the behaviour of any 

reinforced concrete rectangular beam. To determine this finite element model, 

many parameters that affect the prediction should be studied. One can classify 

the parameters affecting the final results into two classes. The first contains 

material parameters such as compressive strength of concrete, tensile strength 

of concrete, Young's modulus, shear modulus and shear retention factor, 

stress-strain relationships of concrete, and yield strength of reinforcement. The 

second class contains numerical parameters such as the numerical method used 

in calculating strains and stresses, the number and the size of increments, the 

maximum number of iterations in each increment, the convergence criteria, the 

mesh size, the type of element used in the analysis, the number of Gauss 

points per element, and other parameters such as simulation of supports and 

applied loads. Twelve beams will be analysed in this chapter. These beams

were tested by Bresler and Scordelis in 1963. The main purpose of analysing

Bresler and Scordelis's beams in great detail is to find out the important

Parameters which have a significant effect on the prediction of these beams.



ChapterA Prelim inary parametric study

From this preliminary study, it was found that the material parameters have 

more effect on the prediction than the numerical parameters. Therefore, the 

concentration in this chapter will be on material parameters. Five parameters 

which many think have a significant effect on the prediction will be studied. 

These parameters are:

(i) shear retention factor,

(ii) tensile strength of concrete,

(iii) magnitude of the strain corresponding to the peak stress in the stress- 

strain curve of concrete in compression,

(iv) tension softening of concrete, and

(v) compression softening of concrete.

6.2 Analysis of Bresler and Scordelis's beams

In their famous paper, Bresler and Scordelis (1963) tested a series of 12

beams. These tests were designed to provide (at that time) needed data 

regarding the shear strength of beams. From these twelve beams, there are

four beams which have attracted the attention of investigators during checking 

the validity of their finite element models. These beams are O A-1, A -1 , OA-

2, and A -2 .

All beams were of rectangular cross section and had the same nominal over­

all depth of 553 mm (Fig. 6.1). Main longitudinal reinforcement consisted of 

from two to six 28 mm diameter high strength steel deformed bars [fy = 555

MPa) placed in two or three levels. The nominal effective depth was 457 mm. 

All stirrups were made from 6 mm intermediate grade steel deformed bars (fyv 

= 326 MPa). Three beam widths 152, 229, and 305 mm and three simple 

span lengths 3658, 4572, and 6401 mm were used (Table 6.1). All beams

were loaded at midspan. The beams have normal to low percentages of web
? Areinforcement (r f =  0, 0.33, 0.48, and 0.65 N/mm , where r = = cross-

y b.s
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Fig. 6.1 Dimensions of cross sections of Bresler and Scordelis's beams

Table 6.1 Data of Bresler and Scordelis's beams

Beam Length

(mm)

Cross-
section

(mmxmm)

d

(mm)

a /d f c

(MPa)

P

(%)

Stirrups

Failure
mode

Ultim ate  
shear force

(kN)

Spacing

(mm)
rfyv

(MPa)

OA-1 3657.6 310x556 461 3.97 22.56 1.81 - - D-T 1 6 7 .0
OA-2 4572.0 305x561 466 4.90 23.74 2.27 - - D-T 1 7 8 .0
OA-3 6400.8 307x556 462 6.94 37.61 2.74 - - D-T 1 8 9 .0

A-1 3657.6 307x561 466 3.92 24.08 1.80 209 .6 0.33 V-C 2 3 3 .5
A-2 4572.0 305x559 464 4.93 24.29 2.28 209 .6 0.33 V-C 2 4 4 .5
A-3 6400.8 307x561 466 6.91 35.05 2.73 209 .6 0.33 F-C 2 3 4 .0
B-1 3657.6 231x556 461 3.95 24.77 2.43 190.5 0.48 V-C 2 2 1 .5
B-2 4572.0 229x561 466 4.91 23.18 2.43 190.5 0.48 V-C 2 0 0 .0
B-3 6400.8 229x556 461 6.95 38.78 3.06 190.5 0.48 F-C 1 7 7 .0
C-1 3657.6 155x559 464 3.95 29.60 1.80 209 .6 0.65 V-C 1 5 5 .5
C-2 4572.0 152x559 464 4.93 23.81 3.66 209 .6 0.65 V-C 1 6 2 .5

_ C -3 6400.8 155x554 459 6.98 35.05 3.63 209 .6 0.65 F-C 1 3 4 .5

9
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sectional area of stirrup over the product of beam width and spacing of 

stirrups) and normal to high shear span depth ratios [a/d = 4, 5, and 7).

Beams O A -1, O A -2, and O A-3 are without shear reinforcement. Beams A -1 , 

A -2, and A -3  are identical to Beams OA-1, OA-2, and O A -3, respectively,

except for the presence of shear reinforcement (6 mm diameter; f  = 326 MPa) 

and the top bars (13 mm diameter; f y -  346 MPa). High-strength longitudinal

steel reinforcement was used in all beams to minimise the possibility of

flexural failure. To prevent bond failure due to possible insufficient anchorage 

after the formation of diagonal tension cracks, special anchor nuts were 

attached to the longitudinal bars. All beams were tested under centre-point

lead. Nine of the twelve beams failed in shear and the remaining three beams

failed in flexure.

General behaviour o f  a l l the twelve beams: Typical flexural cracks appeared first, 

following by the appearance of diagonal tension cracks, usually in the middle

third of the over-all beam depth and at various sections along the span. With

further increase in load these diagonal cracks extended both upwards and

downwards. The general modes of failure observed in this series of tests

were: diagonal tension (D-T), shear-compression (V-C), and flexure-

compression (F-C ) failures, defined as follows.

• D -T : Typical crack pattern for D -T  failure is shown in Fig. 6.2a. This

type of failure was observed in all the beams without shear reinforcement.

The failure was sudden and occurred as a result of longitudinal splitting in

the compression zone near the load point, and also by horizontal splitting 

along tensile reinforcement near the end of the beam.

• V-C: Typical crack pattern for V-C failure is shown in Fig. 6.2b. This

type of failure was observed in intermediate span beams with shear

reinforcement. Failure developed without extensive propagation of flexural

cracks towards the compression zone in the centre portion of the span and
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Fig. 6.2 Typical crack patterns of Bresler and Scordelis's beam.
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it occurred by splitting in the compression zone and without splitting along 

the tension reinforcement.

• F-C: Typical crack pattern for F-C  failure is shown in Fig. 6.2c. This type 

of failure was observed in long span beams with adequate web 

reinforcement. Failure occurred by crushing of the compression zone near 

midspan. Flexure cracks continued to extend upward until a sudden 

compression failure occurred. Unfortunately, Bresler and Scordelis did not 

measure the strain in the bars.

The observed load-deflection curves for the twelve beams are shown in Fig.

6.3.

Analysis o f  the beams,:

First, the beams will be analysed with the 2 -D  finite element version used

in chapter 5. The features of this version are as follows :

• Representation of the stress-strain relationship of concrete under compressive

force using curve fitting method (Equations 3.1 and 3.3). The value of

strain zcc at the peak of stress i f f )  is 0.0025 and the maximum

compressive strain Zmax is 0.0035 (Fig. 6.4).

• The failure criterion for concrete is assumed to follow the Kupfer-Hilsdrof

criterion

• The intermediate surfaces will be with an intermediate strength {fcc) replacing

the ultimate strength (fcr). An empirical form for f cc is used (Equation 3.4).

• Smeared cracking model.

• Tension cut-off criterion, i. e. the concrete is unable to carry tensile stress

after cracking.

• The shear retention factor P is taken as a function of strain normal to the

crack plane (see Sec. 6.2.1 for more details).

• Reinforcement is simulated by embedded elements. The bar carries load in its

axial direction only. An elastic-perfectly plastic behaviour is assumed.
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• Perfect bond between steel and concrete.

• Using tangent stiffness method (updating of tangent stiffness matrix at each

iteration).

• Convergence is checked by comparing the residual 

external applied loads.

forces to the total

The following are kept fixed for all the beams.

• Only one half of the beam is used in the analysis.

• The load steps for all cases in the first three increments will be 10% of

the experimental failure load of the beam under analysis and 5% of the

experimental failure load for the remaining load steps until the numerical

failure, i. e. the accuracy of the prediction is ±5%.

• The convergence criterion is based on the residual forces, the convergence

tolerance is 4%.

• The predicted failure load is the load at the last converged increment.

• The maximum number of iterations per increment is 50 iterations.

• The concentrated loads and reactions at the supports are simulated as

distributed loads on an element edge.

• The poisson's ratio is kept equal to 0.15.

• Young's Modulus is taken according to ACI code as;

E  = 5000 y[~f c' in MPa

• At the beginning, the tensile strength of concrete f t  will be taken as 

reported in Bresler and Scordelis's paper.

• Beams O A -1 , A -1 , B -1 , and C-1 are modelled by 36 elements. Beams

OA-2, A -2 , B -2 , and C -2  are modelled by 42 elements. Beams O A -3 , 

A -3 , B -3 , and C -3  are modelled by 57 elements (see Fig. 6.5).
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4P/6

P/61

OA-1: 3x185

A-l: 3x187

B-l: 3x185

C-l: 3x186

P/61

228.6 127 9x179.2 mm 152.4

4P/6I

m

A-2: 3x186

B-2: 3x187

C-2: 3x186

P/61

2286  127 152.4

(C)

4P/6

P/61

228.6 127 16x186.5 mm 152.4

I---- |---f

Fig. 6.5 Finite element idealization.
(a) Beams OA-1, A-1, B-1, and C-1
(b) Beams OA-2, A-2, B-2, and C-2
(c) Beams OA-3, A-3, B-3, and C-3
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6.2.1 Effect of shear retention factor

The shear retention factor P is taken as a function of the tensile strain

normal to the crack as follows

P = B £cr /  sn > pmjn

where zcr is the tensile crack strain; s„ is the fictitious tensile strain normal to

the crack plane; and B and pmjn are numerical constants. Four values for

these two constants will be studied (see Fig. 3

Case (1) p = 0.1 > 0.0

Case (2) P = 0.4 /  £« > 0.0

Case (3) p = 0.5 /  s„ > 0.1

Case (4) p = 1.0 ecr /<=« > 0.5

6.2.1.1 Beams without shear reinforcement

Figures 6.6 to 6.8 show the load-deflection curves for the four cases of the 

shear retention factor P for the three beams without shear reinforcement OA- 

1, O A-2, and O A-3. The results of the prediction are shown in Table 6.2.

From Table 6.2, it can be seen that the effect of P on the load-carrying

capacity is very significant for these beams. The difference in the predicted

failure load between Case (1) and Case (4) for beam OA-1 is about 80% of

the corresponding experimental failure load. This difference decreases for beam

OA-3 to about 35% of the corresponding experimental failure load. The best

prediction of the failure load for these beams is given by Case (1), the mean

value of the predicted to the experimental failure loads in this case is about

0.92.
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1.75
Casc(l): ^= 0 .1  > 0

1 0  m m
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C u e (3): 0 = 0 .1  —  > 0.1
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ExperimentCase (3)Case (2) Case (4)Case (1)
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Fig. 6.6 Load-deflection curves for beam OA-1 (effect of shear retention factor p).
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Case(l): 0 = 0 1 - 2 -  > 0
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Fig. 6.7 Load-deflection curves for beam OA-2 (effect of shear retention factor p).
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0.1 -2- > 0
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Mid-span deflectiom (mm)

Fig. 6.8 Load-deflection curves for beam OA-3 (effect of shear retention factor p).
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Although the lowest value of P gives a good prediction of the failure load, as 

will be shown below it fails to predict to good accuracy the load-deflection 

curve (Figs. 6.6 -  6.8) and the crack pattern (Figs. 6.9 - 6.10).

In this study, the prediction of the mode of failure of a beam will depend 

on the following aspects:

(1) Crack pattern : Cracks are plotted at the Gauss points. Single crack is 

represented by a symbol — . The length of the two lines of this symbol 

and the spacing between them are proportional to the strain normal to 

the crack at this Gauss point. The direction of the lines is normal to the 

maximum principal tensile stress. Adding another symbol (=*=) perpendicular 

to the previous one means doublecrack occurred at this Gauss point.

Small solid square (■) symbol means that the concrete at this Gauss 

point has crushed. In the predicted crack pattern, if the cracks, as 

represented using convention explained before, in the shear area are larger 

than that in the flexure region then the failure of the beam is shear dominant.

(2) Deformed shape of the beam : The deformed shape consists of the mesh 

of elements after deformations. The mesh elements are plotted after

adding the displacements (magnified by a suitable factor) to their 

coordinates. The deformed shape of beams clearly indicates those beams 

failing in flexure and those failing in shear.

(3) Stress in concrete in compression zone: The stress-strain curve of

concrete in the compression zone near mid-span of the beam will be

plotted to see if the stress of concrete reached the compressive strength 

before the numerical failure or not. In beams failing in shear-compression 

or flexure-compression, this stress should reach to the compressive 

strength of concrete before or at numerical failure.

(4) Stresses in tension steel: Yielding of tension steel near mid-span of the 

beam before numerical failure indicates that the beam may fail in flexure.
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(5) Stresses in shear and compression reinforcement (if exist): Yielding of

some points of stirrups arranged diagonally from the load point to the 

support indicates that the beam failed in shear. While yielding of the 

compression steel before numerical failure indicates that the beam may fail 

in either shear-compression or flexure-compression.

The predicted behaviours of the three beams without shear reinforcement (OA- 

1, O A -2, and OA-3) are similar, therefore only the predicted behaviours of 

beam OA-1 will be discussed.

The effect of P on the prediction of the crack pattern for beam OA-1 is 

shown in Figs. 6.9 and 6.10. In Fig. 6.9, the crack patterns and deformed

shapes are plotted for the four cases of P at the same load factor (L. F.= 

0.95). When the value of p is low (Case 1), all the Gauss points in the 

lower parts of concrete section of the beam crack. Moreover, the number of

Gauss points at which double cracking occurs near the longitudinal 

reinforcement increases. By increasing the value of P, the number of Gauss 

points at which the cracks occur reduces. By comparing the observed crack 

pattern (after ignoring the horizontal splitting in the compression zone and 

along the reinforcement) with the four predicted crack patterns, it can be seen 

that the crack pattern of Case (2) is the nearest to the observed crack 

pattern for this beam. In Fig. 6.10, The crack patterns and deformed shapes 

at the last converged increment are plotted for the four cases of P for beam

OA-1. It can be noticed that inspite of the fact that the whole span of the 

beam has cracked for the higher three cases of P, still the beam carried loads 

until the compression zone near the mid-span load crushed. This crushing happened 

due to the compression strain in concrete exceeding the assumed maximum

strain (0.0035). The principal compressive stress-strain curve of concrete at a 

Gauss point, under the load point is shown in Fig. 6.11 for the
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four cases of (3 . From this figure, it can be seen that the primary failure is

caused by the crushing of the concrete in the compression zone near the load 

(the strain reached 0.0035) which results in the development of diagonal 

cracks running towards the mid-span load which leads to the experimental 

failure mechanism reported by Bresler and Scordelis (D-T  failure). This supports 

the conclusion of Ottosen (1982) when he studied the beam O A -2. He

assumed that the strain at the peak compressive stress equals 0.002 and he

noticed that the compressive strain near the mid-span load reached more than 

this value before the numerical failure of the beam.

Fig. 6.12 shows the principal compressive stress distribution (stresses greater 

than 2 MPa) using the lower and highest value of (3 (Case (1) and Case (4)). As 

shown in this figure, the higher value of (3 leads to smaller stresses especially 

in the lower part of the beam. This naturally leads the beam to resist higher

load before failure.

In Fig. 6.13, the stresses in a longitudinal bar from the lowest level (main

reinforcement is placed in two levels) are shown for the four cases. At the 

same load factor (for example load factor = 0.90), the stresses in the bar at 

the middle of the beam are nearly the same for the four cases of P which

indicates that the value of P doesn't affect the magnitude of the stress in the 

steel. This means that in the bending region, P is not important. For all the

four cases of P, the steel has not yielded up to about 155% of the 

experimental failure load of the beam, while in the highest case of P (Case 

4), the steel started to yield at about 160% of the experimental failure load.

This indicates that the beam did not fail in flexure. Also the dependency of 

the predicted failure load on the value of P supports the view that the beam 

fails in shear.

The important question now after this result is why did the prediction 

overestimate the observed failure loads for these beams especially when a high
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Fig. 6.12 Principal compressive stress distributions at load factor -  0.95 for beam OA-1 
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value of the shear retention factor is used ? Is it only because of the shear

retention factor or is there something else either in the implied input data or

in the program itself which causes this overestimating ?

• From the input data, it can be seen that the tensile strength (modulus of 

rupture of concrete which has been taken from Bresler5> paper is higher

than any calculated tensile strength taken from any code. But this leads to 

other question; does the tensile strength have a great effect on the

prediction? The answer to this question is given in Sec. 6.2.2.

• From the program, the important numerical result which has been noticed 

during the analysis is that the maximum compressive strain which has been

taken as 0.0035 is quite big especially since there are no stirrups in these 

beams to confine the concrete to reach this value. This point will be 

considered in Sec. 6.2.3.

The second question is why was the predicted load-deflection curve more 

flexible than the experimental one even for a high value of shear retention

factor (Figs. 6 .6 -6 .8 ); was it due to neglecting the tension stiffening or 

tension softening in concrete ? To answer this question the effect of tension 

softening of concrete will be studied in Sec. 6.2.4.

6.2.1.2 Beams with shear reinforcement

In Figures 6.14 to 6.22, the load-deflection curves for the nine beams with 

shear reinforcement are plotted for the four cases of p. For all the beams, 

the lower the value of P more flexible the load-deflection curve. In these

beams, the effect of P is less significant than in the beams without shear

reinforcement, especially for the three beams A -3 , B -3 , and C -3  which failed 

•n flexural compression mode. The results of prediction of the nine beams are

shown in Table 6.3. The difference between the mean values of the ratios of 

the predicted to the observed failure load for Case (1) and Case (4) is about

193



T
ab

le
 

6.3
 

E
ff

ec
t 

of
 

sh
ea

r 
re

te
n

ti
o

n
 

fa
ct

o
r 

in 
be

am
s 

w
ith

 
sh

ea
r 

re
in

fo
rc

e
m

e
n

t
Chagter6_ Preliminary parametric study

Di
ffe

re
nc

e 
be

tw
ee

n 
Ca

se
 

(4
) 

an
d 

C
as

e(
l)

(% 
of 

the
 

ex
pe

rim
en

ta
l

fa
ilu

re
 

lo
ad

)

o
in

in
ro 20 40

o
ro

o
CN

in
CN

o
z o

CN

'O9

CD

<u
1
U 1

.3
5

1.
 0

5

1
. 

00

1
.1

5

0 
. 9

5

1.
 0

5

1.
 0

5 in
00
o 0

.9
5

1.
 0

4

14
 

.2

I

lCD Ca
se

 
(3

)

1
.2

0 o
o
i—I 0

.9
5

1
.0

5

0 
. 9

0 o
o

H 1.
 0

5 in
00
o

06 
‘ 0 0 

. 9
9

1
0

.5

4>
Oh
X

W

T3
u■»-»

•3

Ca
se

 
(2

)

0
1

*1

0
.9

0

0.
 9

0

0.
 9

5 in
00
o 1.

 0
0

1.
 0

5 o
00
o 0

.8
5

0
.9

3

1
0

.0
m
Oh

Ca
se

 
(1

)

in
00
o

o
V*
o

o
00
o 0 

. 7
5

0 
. 6

5 in
00
o

0
8

*0

0
.6

5

0.
 7

5

0 .
 7

6 t"

r -

no
de

£ U u U U U U U U U
J3
’3
Uh

> > Pm > > Pm > > Pm

•X
'o'

1

3 
. 8

6

3
.7

3

4 
. 3

4

3 
. 9

9

3 
. 7

6

4 
.2

2

4
.2

2

3 
. 9

3

3  
.8

6

<U

id
ar

d
 

d
e

v
ia

ti
o

n
 

(%
)

I

00
o

CN 24
 

.2
9

35
 

. 0
5

24
 

. 7
7

23
 

. 1
8

38
 

. 7
8

2
9

.6
0

23
 

. 8
1

35
. 

05

>

S
1)

s 4-*
in

a
/d

CN
cn

ro
cn . 9

1

. 9
5

. 9
1 m

on
in
Ch

ro
CJ\

00
cn

ro ID ro VO ro to

E
ro
OJ

rH CN ro H CN ro rH CN ro
PQ < < < PQ PQ PQ u u U

194



P
re

di
ct

ed
/ 

E
xp

er
im

en
ta

l 
fa

ilu
re

 
lo

ad
ChagtedL Preliminary parametric study

1.50
0.1 -2- > 0Case(l):

10  m m-oI
o

§ 1.25

Case(2): £ = 0 .4  -2 -  > 0

Case(3): £ =  0 .5 -2 - > o.l
jo
<0 Case(4): £ =  1.0 -Z -  > 0.5
C01
£

1.00

uJ

0. 75a.

0.50

0.25
Case (2)Case (1) Case (3) Case (4)

Experiment

Numerical

0. 00

Mid-span deflectiom (mm)

Fig. 6.14 Load-deflection curves for beam A-1 (effect of shear retention factor p).
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Fig. 6.15 Load-deflection curves for beam A-2 (effect of shear retention factor p).
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Fig. 6.16 Load-deflection curves for beam A-3 (effect of shear retention factor p).
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Fig. 6.17 Load-deflection curves for beam B-1 (effect of shear retention factor p).
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Fig. 6.18 Load-deflection curves for beam B-2 (effect of shear retention factor p).
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Fig. 6.19 Load-deflection curves for beam B-3 (effect of shear retention factor p).
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Fig. 6.20 Load-deflection curves for beam C-1 (effect of shear retention factor p).
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Fig. 6.21 Load-deflection curves for beam C-2 (effect of shear retention factor p).
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Fig. 6.22 Load-deflection curves for beam C-3 (effect of shear retention factor p).
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28% of the observed failure loads. Except for Case (1), the results for the

other three cases are of acceptable accuracy. The mean values and standard 

deviation for the four cases are (0.76, 7.7%), (0.93, 10.0%), (0.99, 10.5%),

and (1.04, 14.2%), respectively.

The predicted behaviours of the beams having the same a /d  ratio are similar. 

Therefore only the predicted behaviours of three beams with different a /d  ratio 

(A -1 , A -2 ,  and A -3 )  will be discussed.

Results of beam A-1 [a/d = 4.0]:

In Fig. 6 .14 , the predicted load-deflection curves using the four cases of P 

for beam A -1  are plotted against the observed curve. The predicted load- 

deflection curve using Case (1) is more flexible than the observed curve up to 

the numerical failure, while the predicted curves using the other three cases of 

P agree well w ith  the observed curve up to about 80% of the observed 

failure load. A fte r that the predicted curves become stiffer and increasingly 

stiffer as the minimum value of P (P min) increases. This stiffening in the 

predicted curves might be due to assuming a minimum value of P (which

remains constant) even after reaching a very large w id th  of the crack.

Figures 6.23 to  6.27 show some numerical results fo r beam A -1  for the four 

cases of p. These results are; the crack patterns and deformed shapes at the

last converged increments, the stresses in the stirrups at the last converged 

increments, the s tress-stra in  curves of concrete at a Gauss point under the 

applied load, the stresses in the compression steel fo r several increments, and 

the stresses in a longitudinal bar from the tension steel.

CasaliH

Fig. 6 .23 shows the crack patterns at the last converged increments. The 

crack pattern of Case (1) agrees to  a certain extend w ith the observed crack 

Pattern at failure in that some cracks penetrated the compression zone at the
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middle of the beam and some horizontal cracks appeared in th is zone (this

indicates tha t failure starts in compression zone). However, the predicted 

crack pattern of Case (1) disagrees w ith the observed crack pattern in that 

except near the load, no cracks occurred above the lower th ird. The predicted 

stresses in the stirrups are shown in Fig. 6.24; the position of the points at 

which the stirrups yielded does not correspond to the correct position of the

diagonal cracks that appears in the observed crack pattern. Fig. 6.26 shows 

the stresses in the compression steel which indicates that it started to  yield 

before numerical failure. The tension steel has not yielded at any point (which 

means no flexure failure, Fig. 6 .27). From the above, it can be concluded tha t 

the failure is nearest to be Shear-Compression.

Case (2):

Using Case (2) of (3, the results for beam A -1  are also shown in Figures

6.23 to 6 .27 . In this case, the program overestimated the failure load by 

about 10% (Table 6.3). The crack pattern and deformed shape at the last

converged increment (L.F. = 1.10) are shown in Fig. 6.23. From the figure, it 

can be seen tha t the diagonal cracks dominate and penetrated the compression 

zone up to  the top of the beam although the beam can still carry load. Many 

points in the stirrups yielded in the shear span (Fig. 6.24). The compression

steel started to  yield at L.F.= 1.0 (Fig. 6.26), and the main steel has not

yielded (Fig. 6.27). This leads one to conclude that the predicted failure mode 

is Shear-Compression.

£ase (3):

Figures 6 .23 to  6.27 show the results of Case (3) for the same beam A -1 .

Nearly the same results as for Case (2) but w ith  overestimating of the failure

load by about 20% (Table 6.3).
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Casfi-141:

In Case (4) of P, not only the prediction overestimated the failure load by

about 35% (Table 6.3), but also the predicted mode of failure changed to be

Flexure-Compression instead of Shear-Compression. Although Fig. 6.23 shows 

good prediction of the crack pattern in this case, the stresses in stirrups do 

not indicate clearly that these cracks are critical shear cracks (Fig. 6.24). Also, 

the tension steel has yielded before the numerical failure (Fig. 6.27).

In all the four cases of P, the numerical failure was due to the strain in the

compression zone under the load point exceeding the assumed maximum strain 

(0.0035). Fig. 6 .25 shows that at the last converged increment, the 

compressive strain is near to 0.0035 for the four cases of p.

Results of beam A-2 [a/d = 5.0]:

The numerical results of beam A -2  are shown in Figures 6 .28 to  6.32,

while the load-de flection  curves for the four cases of P are shown in Fig.

6.15. Except for Case (1) for which the predicted failure load is 70% of the

experimental failure load, the predicted failure load is reasonable fo r the other 

cases (90%, 100%, and 105% of the experimental failure load, Table 6.3). As

for beam A -1  (Fig. 6 .14), the predicted load-deflection  curve for beam A -2

using Case (1) is more flexible than the observed curve, while the predicted

curves using the other three cases of P agree well w ith  the observed curve 

up to about 80% of the observed failure load. A fter that the predicted curves

become s tiffe r. The predicted crack patterns for the four cases agree well w ith  

the observed one (Fig. 6.28), the best result is obtained using Case (2) which 

predicted both the horizontal cracks in the compression zone near the load and

the double cracks at the level of tension steel near the middle of the beam

and near the support. The shear cracks are clear in the predicted crack 

patterns, many points on the stirrups have yielded in the shear span (except
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Fig. 6.28 Crack patterns and deformed shapes for beam A-2
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in Case (4), Fig. 6 .29). The compressive strain at Gauss point under the 

applied load nearly reached the maximum strain at the last converged 

increment (Fig. 6.30). The compression steel has yielded before the numerical 

failure (Fig. 6.31). In none of the cases has the tension steel yielded before 

numerical failure (Fig. 6.32). All these facts indicate that the predicted mode 

of failure is Shear-Compression which agrees w ith the experimental mode of 

failure.

Results of beam A-3 [a/d = 7.0]:

The reported mode of failure of beam A - 3  is Flexure-Compression which is 

different from  the reported mode of failure of the previous tw o  beams (A -1  

and A -2 ) .  Despite th is, it can be seen that there is big sim ilarity between 

the tw o  modes of failure (see Fig. 6.2). In none of the four cases of P, is

the experimental failure load of this beam overestimated. All the predicted

load-deflection  curves are more flexible than the observed curve (Fig. 6.16).

The difference between the predicted failure loads of Cased) and Case (4) is 

about 20% of the observed failure load (Table 6.3) which means tha t the 

behaviour o f the beam does not seriously depend on the assumed value of P,

indicating tha t the mode of failure is not shear failure. The results for th is

beam using the four cases of P are shown in Figures 6.33 to 6 .37. The 

predicted crack patterns are shown in Fig. 6.33. W ith different degree of

accuracy, all of them predicted the observed crack pattern. In Case (3),

horizontal crack occurred in the compression zone which did not occur in Case

(1) and Case (2). When Case (4) was used, concrete at tw o  Gauss points in

the compression zone had crushed. Also by using Case (4) none of the 

stirrups has yielded up to the last converged increment (Fig. 6 .34). The

compressive stress-stra in  curves at a Gauss point under the applied load fo r

the four cases are shown in Fig. 6.35. The tension steel has yielded before

the numerical failure only by using Case (4) (Figs. 6.36).
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It is interesting to notice that an increase in the value of P delays the yield

of the compression steel (compare for example the stresses at L. F. = 0 .80  

in Figs. 6 .37). This was observed in all the beams w ith compression steel.

The above results of the nine beams lead to a question; w hy did this

stiffening in the predicted load-deflection curve happen after about 75% of the

observed failure load when a high value of P is taken into account, although

this value gives an improvement (or increase) in the predicted failure load. The 

answer to  this question might be that the high value of P gives an artificia l

(not real) increase in the stiffness of the beam which increases the predicted

failure load.

6.2.2 Effect of tensile strength of concrete

The values of uniaxial tensile strength of concrete used in Sec. 6.2.1 to

predict the behaviour of the twelve beams have been taken from  Bresler and

Scordelis's paper (modulus of rupture of concrete). These values were obtained 

from the beam test by loading the 152.4 x 152.4 x 508 mm beams at the 

third points o f an 457 .2  mm span. There are many equations in the literature

which relate the tensile strength of concrete w ith the modulus of rupture (see

for example Raphael 1984; Neville 1986).

The analysis o f the twelve beams were repeated using different values of the

uniaxial tensile strength for tw o  reasons. The first reason is tha t since not all 

the previous experimental works tested or reported the tensile strength of

concrete, so, there is a need to estimate this value from other properties of 

the concrete. The best property used to calculate the tensile strength is the 

uniaxial compressive strength of concrete f c f because it is usually tested and 

reported in the experimental works. The second reason is to see the e ffect of 

this parameter on the prediction of the present finite element model.
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There are many empirical equations which estimate the tensile strength from 

the cylinder compressive strength f c \  One from these equations is taken from

A C I  Code.

/ /  = 0 .54  f f c ' MPa

6.2.2.1 Beams without shear reinforcement

The predicted load-deflection curves using the value of f t ' = 0 .54  y j~ fc ' 

for the three beams w ithou t shear reinforcement for the four cases of P are 

shown in Figs. 6 .38 to  6.40, and the predicted failure loads are shown in 

Table 6.4. From Figures, as expected, that for all beams and for all cases of 

P the load-de flection  curves become more flexible than the corresponding 

values in the previous results, This is because all values of f t ' used in these 

runs are less than that used in the previous runs (mean value of f t ' is about 

68% of the previous one). The effect of change of f t ' on the predicted 

failure load is d ifferent from one beam to another and also from the case of 

one value of P to another. For example, the e ffect of using a lower value 

of f t * on beam O A -1  using Case (1) of p decreases the predicted failure load

by about 10% of the observed failure load, this decrease becomes about 35%

for the same beam when Case (2) of P is used. While for beam O A -3 , there 

is no e ffect of change of f t ' on the prediction using cases (2) & (4).

The crack patterns and deformed shapes for the beam O A-1 for three cases 

of P at the last converged increment are shown in Fig. 6.41. By comparing 

the crack patterns and deformed shapes of Fig. 6.41 w ith  the corresponding 

crack patterns and deformed shapes (using value of f /  reported in the paper) 

of Fig. 6 .10 , it can be seen that in Case (1), more cracks occurred in the 

shear span above the bottom  third of the over-a ll beam depth. In Case (2), 

the cracks formed at the top of the beam in the whole shear span and the
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Experiment
/ '  = 2.57 MPa 

/ '  = 4.00 MPa
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Mid-span deflection (mm)

Fig. 6.38 Load-deflection curves for beam OA-1 (effect of tensile strength of concrete ft).
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Fig. 6.39 Load-deflection curves for beam OA-2 (effect of tensile strength of concrete/,')-
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Fig. 6.40 Load-deflection curves for beam OA-3 (effect of tensile strength of concrete f ) .
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Observed

•t

Case (1): /?=o.i ^  > 0

L. F.= 0.85

/Single crack 

Double crack ^
Crashing o f concrete B

Fi9- 6.41 Crack patterns and deformed shapes for beam OA-1 after reduction in //
(displacements magnified x 10).
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%  6.42 Crack patterns and deformed shapes using Case (2) of (3 (beam OA )
(displacements magnified x 10).
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mesh elements at the top of the beam deformed upward. In Case (3), the

same behaviour as Case (2) is observed. It can be seen also (from Fig. 6 .41)

that case (2) represented what happened at the top of the beam at failure

(Buckling of the concrete in the compression zone w ith nearly horizontal crack 

above the longitudinal steel reached to the beam end. In Fig. 6 .42, the crack

patterns and deformed shapes are shown for Case (2) at tw o  load factors 

(0.90 and 0 .95). A t load factor = 0.90, no cracks has formed at the top of

the beam. A t load factor = 0 .95, although the cracks reached the top of the

beam, still the beam can carry more load. The displacements of the top

elements of the fin ite element mesh indicate that the failure occurs as a result 

of longitudinal splitting in the compression zone near the load point. The

compressive strain of 0 .0016 in this increment at a Gauss point under the

load point did not exceed the assumed maximum strain of 0 .0035 . If one 

remembers tha t the main reason of failure of this beam is the crushing of the 

compression zone, this may explain why the beam did not fail by these large

shear cracks.

6.2.2.2 Beams with shear reinforcement

The predicted load-deflection  curves for beams w ith  shear reinforcement are 

shown in figures 6.43 to 6.51. The predicted failure loads are shown in Table 

6.5. In general, the predicted load-deflection curves using the calculated values 

of / /  are more flexible than that predicted using the values of f t ' reported in 

Bresler and Scordelis's paper. Also, the effect of change of f t ' on the

predicted failure load is insignificant for these beams. The maximum difference 

in the prediction for any beam at any case of (3 does not exceed more than 

10% of the observed failure load. Although the mean value of the reduction in

f t  was about 38%, the mean value of the reduction in the predicted failure 

•°ads is about 1-4% of the observed failure loads.
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1.50
Case(l): £ = 0 .1 - 2 -  > 0

10 mm
Case(2): 0 = 0 .4  - 2 -  > 0

1.25
Case(3): £ = 0 .5 - 2 -  > 0.1

1.0 - 2 .  > 0.5

1.00

0.75

0.50

0.25 Case (1) Case (2) Case (4)Case (3)
Experiment
f /  = 2 65 MPa 

f ;  -  3.86 MPa
0.00

Mid-span deflection (mm)

Fig. 6.43 Load-deflection curves for beam A-1 (effect of tensile strength of concrete '̂).

1.50
Case(l): £=0 .1  -2 -  > 0

< -------10 mm------>J
Case(2): £ = 0 .4 - 2 -  > 0

1.25
Case(3): 0 = 0 .5  - 2 -  > 0.1

LO 22 . > 0.5

1.00

0.75

0.50

 J_________

Experiment
f  — 2.66 MPa 

f , ' =  3.73 MPa

0.25
,yCase (1) Case (3) i Case (4)Case (2)

o.oo
Mid-span deflection (mm)

Fig. 6.44 Load-deflection curves for beam A-2 (effect of tensile strength of concrete f ).
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1.50
C u c(l): P =  0.1 - 2 -  > 0

<— 10 mm—
0.4 Zz- > 0

1.25 - Case(3): ^ = 0 .5  - 2 -  > 0.1

Case(4): /? = L 0  —— > 0.5

=3 0.75

0.50
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Experiment
f  = 3.20 MPa 

f ,  = 4 34 MPa
Case (1 ) \ f  Case (2) Case (3) i f  Case (4)

0.00
Mid-span deflection (mm)

Fig. 6.45 Load-deflection curves for beam A-3 (effect of tensile strength of concrete

1.50

10 mm
Case(2): ^  = 0.4 -=2- > 0

1.25 -■
Case(3): £ = 0 .5 - 2 -  > 0.1

> 0.5

1.00

0. 75
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0. 25
Case (1) Case (2) Case (3) Case (4)

Experiment
f  -  2.69 MPa 

f !  -  3.99 MPa
0. 00

Mid-span deflection (mm)

Fig. 6.46 Load-deflection curves for beam B-1 (effect of tensile strength of concrete f f).

230



Pr
ed

ic
te

d/
 

E
xp

er
im

en
ta

l 
fa

ilu
re

 
loa

d 
Pr

ed
ic

te
d/

 
E

xp
er

im
en

ta
l 

fa
ilu

re
 

lo
ad

nhapter 6_ Preliminary parametric study

1.50
Case(l): £ = 0 .1  -2 -  > 0

< -------10 mm___ >
Case(2): £ = 0 .4  - 2 .  > 0

1.25-
C«se(3): £ = 0 .5  - 2 -  > 0.1

Case(4): £ =  L0 - 2 -  > 0.5
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0.75
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0.25 / /  Case (4)/ Case (2)/ /  Case (1) Case (3)
Experiment
f t ' = 2.60 MPa 

f ;  = 3.76 MPa

0.00
Mid-span deflection (mm)

Fig. 6.47 Load-deflection curves for beam B-2 (effect of tensile strength of concrete f ).

Case(l): £ = 0 .1  - 2 -  > 0
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Case(2): £ = 0 .4  - 2 -  > 0

1.25-
> 0.1
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0.50
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Case (3) / Case (4)Case (1) Case (2)
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Mid-span deflection (mm)

Fig. 6.48 Load-deflection curves for beam B-3 (effect of tensile strength of concrete/,')■
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1.50

10 mm
Case(2): £  = 0.4 -2 -  > 0

Case(4): £  = LO > 0.5

1.00

0.75

0.50

0.25 Case (4)/  Case (2) Case (3)Case (1)

0.00
Mid-span deflection (mm)

Fig. 6.49 Load-deflection curves for beam C-1 (effect of tensile strength of concrete//).
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Case(l): £ = 0 .1  -2 -  > 0

< -------10 mm___ >
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1.25-
Case(3): £ = 0 .3  > 0.1

Case(4): £ =  LO > 0 .5

1.00
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Case (4)Case (3)Case (1) Case (2) Experiment

f /  =  2.64 MPa 

f  = 3.93 MPa

0.00
Mid-span deflection (mm)

Fig. 6.50 Load-deflection curves for beam C-2 (effect of tensile strength of concrete/ ) .
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1.50
Case(l): 0 = 0 .1  - ^  > 0

10 mm.
Case(2): 0 = 0 . *

1. 25 -■
Case(3): 0 = 0 .5  -2 -  > 0.1

Case(4): 0 =  LO - 2 -  > 0.5

1.00
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0.50
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Experiment
f ;  = 3.20 MPa 

f !  = 3.86 MPaCase (4) |Case (3)Case (2)Case (1)
o. oo

Mid-span deflection (mm)

Fig. 6.51 Load-deflection curves for beam C-3 (effect of tensile strength of concrete f r).
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An important point to note is that for all the beams with and without shear 

reinforcement, the scatter in the results decreases by using A C I equation 

(Tables 6.4 and 6.5). Therefore, since the tensile strength of concrete 

calculated from A C I equation gives less scatter in the prediction of failure 

loads than that reported in Bresler and Scordelis's paper, the rest of the

analysis will be based on this equation in calculating f t '.

6 .2 .3  Effect of the value of the compressive strain at peak stress

From the analysis of the three beams without shear reinforcement, it was 

noticed that the primary reason for failures was the crushing of concrete due 

to the compressive strain exceeding the assumed maximum strain of concrete 

(£max = 0.0035). The failures of these beams occurred at a load level more 

than the observed failure loads for the last three cases of P (see Table 6.2).

In this section, the stress-strain relationship of concrete will be modified in 

the model such that the maximum compressive strain £max will be equal to

the compressive strain at peak stress £cc. The value of £cc will be variable as 

a function of the cylinder compressive strength f c' as following (Fig. 6.52a).

^max = £cc = y/~fc /  2500

where f c' in MPa. The load-deflection curves after this modification for the 

twelve beams are shown in Figs. 6.53 to 6.64 and the predicted failure loads, 

the mean value, and standard deviation are shown in Tables 6.6 and 6.7. 

From the figures, it can be seen that the predicted load-deflection curves are 

nearly the same as that predicted using constant £cc (0.0025) for most of the 

beams. However, change the value of £cc has significant effect on the

predicted failure loads. Table 6.6 shows the change in the predicted failure
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=  J 7 C 12500e, e. £’cc 'max

Fig. 6.52a Stress-strain curve of concrete in compression without softening.

= 0 .0 0 5 £

Fig. 6.52b Stress-strain curve of concrete in compression with softening.

235



Ta
bl

e 
6.

6 
E

ff
ec

t 
of

 
co

m
pr

es
si

ve
 

st
ra

in
 

at 
pe

ak
 

of
 

st
re

ss
 

in 
be

am
 

w
ith

ou
t 

sh
ea

r 
re

in
fo

rc
em

en
t.

Chapter 6       Preliminary parametric study

T3
(U

h-jo
■3a>
a>Xi

DO
•S

<u

T3CDJO

I

O
o
CN

oo
to

to

o \°
LO

o \°
LO
rH

o \°
in
rH

oV>
O
ro

o\<>
in

o \°
m

o \°
CN
CN

o \°

w
T31)

03uI-H
P h

00c• rHC/33
• s

1
• rH
,cd_Std_

to

o 
o

P (N
O
CTi

i n
CTi

O
O

m i n
oo

i n CN
o

ro
oo

o
CN

JiS.
P h
X

W
T3

T3
cd
O

f tO a>
T J p

I/O »/0 CN m
o  o  
o  o
©  ©

uo
oo

m n n
rH

O
CN

o

m
o

oo
ro

Ph 4-i

fi
o

p<u Lh
« ■§ 

Lm
S-H
c3
<D

OO

cj
<L>to

CO.

§«o
CN

QJ
CQ

3

oo
o
o

CN

<U
CQ

3

ro

0)
CQ

3

o
CN
O
O

CN ro

(D
CQ

5

to

0̂
II

s ;

a
I

a
I

<D
CQ

in
CN

LD

CN
CN

I

<o

ro
LD

CN

ro
CN

CN
I

<o

QJ
CQ

3

m
CN
o
o
o

rH
ro
ro

LD

o
ro

roi
<O

CN

QJ
CQ

3

ro

QJ
CQ

3

P
cd
QJ
£

CN

QJ
CQ

3

ro

236



T
ab

le
 

6.
7 

E
ff

ec
t 

of
 

co
m

p
re

ss
iv

e 
st

ra
in

 
at

 
pe

ak
 

of
 

st
re

ss
 

in 
be

am
s 

w
ith

 
sh

ea
r 

re
in

fp
rQ

e
in

e
n

t,
Chagter6   Preliminary parametric study

o
o fm _o

£ <N3 22—• _3
cd•O

1
£

t£5

i
<L>
Q> II B

■cV eu O t>
5 c O

COc 3 w
V
§

I "w
u■3 o O o o o LD m LO Ln o o o in Ln Ln o o m o m in o o m

*§ 8 03 03 rH rH rH T—1 rH i—i rH rH rH rH rH rH 03 03 rH i—i i—1 rH
sD
Q

■3o
S

CO
o
v?

O
O
«/■>
CN

&
00
§

w
’5)

IIuoX )
u

cd
o m Ln Ln Ln in O O O m o in m in O in Ln in o o o o in in m

+-<
o

• rH <u
CO
II

r - 00 (T\ rH m O 00 CTi LO 00 00 cr> in l> 00 CTi m LO O' CO i> 00 G\ o

X )
0) 3 8 o o o rH o O o O o o o o o O O O o o o o o o o rH
t-l

!cdL|H
5

W

• &D
&

H
• rH

W C/3
a •T)

X ) <N m
X5 cd o o
<D <3 <=> o LD m Ln m in m m m o o in Ln o Ln o Ln in m o Ln in in m O
ts ^  O

8  ii

©
II

r * o rH 03 L0 00 Ch o t> cn CTt cn o CT\ o o LO 00 CT\ 00 CTi o rH

t>
£

3 o rH rH rH o o o rH o o O o o o rH rH o o o o o o rH rH
X h p  jg
cd o  fc 

c+H W W

C
o• *“
c —-s •—v —-v ■—-s —X —n —v -—s. — s — s —N ----s --- N ■— X ----N --- N --- X — s —' s -----s.

<u Vh r-H CN ro f~H CNl on M CN ro H CN ro <~H CN ro M CN ro■4—1
<us- 2

o X I.
b <2 QJ CD CD QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ QJ
<D CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ

03 OS CCS os 03 03 03 03 OS OS OS 03 03 03 03 03 03 OS OS 03 03 OS 03 03
C/3 O O o U O U u U U U O O U u O U O o CJ U U o O C j

II o O o o CO m
JJ

o
u->
(N
\

03
O

Ol
O

03
O

03
O

rH
O

03
o

w
II

O O O O O o

O O O O O o
S

w

, 1/-* LD LD O cn O r o
c 1

LD LO 03 LD LD LO

Jl 03 03 ro 03 03 r o

—

00 <J\ Ln O 00 00
a O 03 o I> rH o-

1 in ro 00
03 03 r o Ol 03 r o

rH 03
1

r o rH Ol r o
c. 1 i 1 1 i

cc < < < PQ PQ PQ

—

237



T
a

b
le

 
6.

7 
E

ff
e

c
t 

of
 

c
o

m
p

re
s

s
iv

e
 

s
tr

a
in

 
at

 
p
e
a
k
 

of
 

s
tr

e
s
s
 

in 
b

e
a
m

s
 

w
it
h
 

s
h

e
a
r 

re
in

fo
rc

e
m

e
n

t 
(c

o
n

ti
n

u
e

d
Chapter6.   Preliminary parametric study

o
o
<N

I si
s .  I

5 Pif o
3  CO

1 "a 
3 5o _w _

m m o
CN

in m o
i—i LO

rH
00

O
o
in
<N

• W)
&-S
w s Q

TJ M T3 gS
(O o 

0)
T> |<D ,3
o-jg.

L>o
CO

o

Ln
o

l h

LD
o o

CN
LO

LO

00
r o

rH
rH

CO

• 00 
P h  C3

x *5 
w  3

'S
(U o•4—* H
.a <u

m in 
CN rn
o  o  
o  o  
o  o

m
cn

Ln
o

Ln
00

o
00

o
CTi

CN
i>

o
CO

V
° ? o £co (0

[>

00
o

CN

p
o

• t-H

cs
-  sD Q

CN cn CN oo CN ro CN ro CN ro

M CCL
<0
X3GO

CD
CO

o

CD
CO

5

CD
CO

5

QJ
CO

5

CD
CO

5

CD
CQ

5

<D
CO

5

CD
CQ

5

CD
CO

5

CD
CO

5
o
oin
<N

U-o
to

o
CN
O
O

O

CN
O
O

5
in

CN

LD

CN

P
CQ

rH
00
r o
CN

CN
I

u

o
CN

ro

Ln
o

Ln
r o

r o
i

U

£
s:
o

"§
g

£

238



ChagterJL Preliminary parametric study

1.75
Case(l):

10 m m•o(0
o
<D
5 C«k <3):

(0 Case(4): f i = l 0  —  > 0.5
C(0
6
|
aXHI
S 1.00<u
■v
2a

0.75

0.50

Experiment

0.25
Case (4)Case (2) Case (3) e = 0.002J; £nCase (1)

0.00

Mid-span deflection (mm)

Fig. 6.53 Load-deflection curves for beam OA-1 (effect of ecc, emax).
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Fig. 6.54 Load-deflection curves for beam OA-2 (effect of ecc, emax).
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Fig. 6.56 Load-deflection curves for beam A-1 (effect of ecc, emax).
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loads for beams without shear reinforcement due to the decrease in zcc % The 

mean values of reduction are between 5-22% of the observed failure loads. 

Table 6.7 shows the results for beams with shear reinforcement. All the mean values 

of the prediction are conservative. The mean values of reduction in the failure 

loads which were predicted using constant maximum strain (Ecc =0.0025) are 

between 8% and 16% of the observed failure loads. In fact, only in two beams 

(A-1 and B-3) using Case (4) of P was the failure load overestimated. Using Case (1) 

or Case (2) of p, none of the failure loads of all beams (with or without shear 

reinforcement) was overestimated (see Tables 6.6 and 6.7).

Now, the time has come to choose only one case of P to continue the 

analysis. From the previous analysis, it can be concluded that the lowest and

highest case of P did not give reasonable results either in predicting the load- 

deflection curve or the failure load while the remaining two cases gave an

acceptable results. Because there are some factors (tension softening and

compression softening of concrete) still to be studied and these factors may

probably increase the predicted failure load, so, Case (2) (P = 0.4 s c r  /  s n >

0.0) will be chosen to continue the analysis.

6 .2 .4  Effect of tension softening of concrete

In conforming with experimental evidence and like most of the previous 

works, since the beginning of using the finite element method in prediction of

structure response, the ascending portion of the tensile stress-strain curve is 

assumed to be linear. In this work, preliminary study of the descending portion 

of the tensile stress-strain curve as a linear curve (reaches to zero stress at 

a strain equals ten times of the crack strain) gave unsatisfactory result and

so, the descending portion will be taken as a function of the strain normal to
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the crack plane (non-linear curve). Three equations of the descending curve 

will be studied (Fig. 6.65)

Equation (A) a = (scr /  s „ )  / /

Equation (B) a = J~(£cr /  e„) f t '

Equation (AB) a = (scr /  En + (Ecr /  £„)) / / / 2

6 .2 .4 .1  Beams without shear reinforcement

The predicted load-deflection  curves for the three beams w ithou t shear 

reinforcement using the three equations are shown in Figs. 6.66 to 6.68. From 

these Figures, it can be seen that all the predicted load-deflection  curves are 

in good agreement for the three beams. In general, the predicted load - 

deflection curve using equation B to represent the tension softening of 

concrete is s tiffe r than that using the other tw o  equations (A and AB). Also,

the predicted load-deflection curve using equation AB is stiffe r than tha t using

equation A. The predicted failure loads are also in good agreement (Table 6.8); 

the mean values of the ratio of the predicted failure loads to the observed 

failure loads using the three equations (A, AB, and B) are 0 .97 , 1.0, and

1.02, respectively. Neglecting the compression softening of concrete did not 

make the result worse. This may be explained as fo llow . Since there are no 

stirrups to  confine the concrete and the failures of these beams are brittle and 

sudden, the compression softening of concrete does not take place.

It can also be seen that there is an increase in the predicted failure load

because of taking the tension softening into account. This increase in the 

predicted failure load varies from 5-25% of the experimental failure load (see

Table 6.8).

The predicted crack pattern and deformed shape using the three equations are 

nearly the same. In Fig. 6.69, the crack pattern and deformed shape for 

beam O A - 2  (using Eq. AB) are shown at three different load factors (L.F.=
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0.50, 0.95, and 1.00). At L.F.= 0.50, the crack pattern is in good

agreement with the observed; the quarter span of the beam near the support

has no cracks. The crack pattern at L.F.= 0.95 shows that the flexural cracks

reach the centre line of the beam in the shear span; no cracks occur near

the supports. At the last increment at which numerical instability occurred

(L.F.= 1.00), a crushing in the compression zone under the load point occurred 

while a large nearly horizontal cracks appear above the middle of the beam. 

This indicates that the main reason for failure is the crushing of concrete in

compression zone under the load point. This can be seen from the stress-

strain relationship at a Gauss point in the compression zone and close to the 

load point (Fig. 6.70). Fig. 6.71 shows the stresses in the longitudinal steel;

the maximum stress in the bar at the last converged increment (L.F.= 0.95) 

does not exceed 55% of the yield stress.

These satisfactory results for these three beams without shear reinforcement

makes it possible to conclude that further investigation of shear failure of 

beams without shear reinforcement is not required.

6 .2 .4 .2  Beams w ith shear reinforcement

Figs. 6.72 to 6.80 show the predicted load-deflection curves of the beams 

with shear reinforcement. It can be seen from these figures that the predicted

load-deflection curves agree well with the observed load-deflection curves up 

to the numerical failure which occurs at a load level less than the observed 

failure load. As for beams without shear reinforcement, the predicted load- 

deflection curve for these beams using equation B to represent the tension 

softening of concrete is stiffer than that using the other two equations (A and 

AB). Also, the predicted load-deflection curve using equation AB is stiffer than

that using equation A. The mean values of the predicted to the observed
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Fig. 6.65 Assumed stress-strain curve of concrete in tension

1.2

Eq. B

1
Eq. AB

0.8
Eq. A

0.6

0.4

0.2

0
5 25 3010 20150

Normal strain / Initial cracking strain

Table 6,8 Effect of tension softening of concrete in beams without shear reinforcement

Beam
fc

MPa

/,' = 0.54/7/

MPa

E/nax ecc

f c ' / 2500

Without
tension
softening

Predicted / Experimental failure load

EQUATION

(A)

EQUATION

(AB)

EQUATION

(B)
OA-l 2 2 . 6 2 . S I 0 . 0 0 1 9 0 . 95 1 . 1 0 1 . 0 5 1 . 0 0

OA-2 23 . 7 2 . 6 3 0 . 0 0 2 0 0 .70 0.  95 0 . 9 5 0 . 9 5

OA-3 3 7 . 6 3 . 3 1 0 . 0 0 2 5 0 . 8 5 1 .  00 1 . 0 0 0.  95

Mean value 0 . 8 3 0.  97 1 . 0 0 1 . 0 2
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.10

Strain
Fig. 6.70 Principal compressive stress-strain curve of concrete at Gauss 

point under the applied load (beam OA-2).
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Fig. 6.71 Stresses in tension steel at different load factors (beam OA-2).
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failure loads of the nine beams with shear reinforcement using the three 

equations (A, AB, and B) are 0.73, 0.74, and 0.76, respectively (Table 6.9).

This underestimation of the prediction could be because of ignoring the

confinement produced by stirrups in increasing compressive strength of concrete 

above f c' or because the compression softening of concrete was neglected. To 

see which of these two parameters was the responsible for this poor

prediction, these parameters will be studied in the following sections.

N . B ,i

In the remaining part of analysis, the stress-strain relationship of concrete in the

tension softening portion will follow equation (AB) which gave satisfactory results

for most of the twelve beams.

6.2.5 Effect of compressive strength of concrete

The analysis of the nine beams with shear reinforcement was repeated after 

using compressive strength of concrete which is higher than f c' by 28%. The 

object of considering this increase in strength is to allow for some effect of

confinement of concrete due to stirrups. Many investigators have assumed

compressive strength of concrete higher than f c ' (see for example Stevens, et al. 

1991; Vecchio 1992 and Fig. 3.6). Table 6.10 shows the results of the

prediction for the nine beams. It can be seen that the increase in the

predicted failure loads is small (5-10%  of the experimental failure loads). The

predicted load-deflection curves are shown in Figs. 6.81 to 6.83. From these

figures, it can be seen that the predicted load-deflection curves of some

beams are in general closer to the experimental load-deflection curves (beams 

A-3, B -1 , C — 1, C -2 , and C -3) while in some beams the load-deflection

curve became stiffer than the experimental curve (beams A -1 , A -2 , B -2 , and

B-3).
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6.2.6 Effect of compression softening of concrete

Many experimental works prove that the softening in compression exists (see 

Figs. 3.4 - 3.6), but the typical stress-strain relationship which describes exactly 

the behaviour of concrete after the compressive stress reaches the peak is still 

not available. Also, there is no agreement on the maximum compressive strain 

of concrete. A straight line with a very small slope for the descending portion 

will be assumed and some values of maximum compressive strain will be 

studied as follows.

(1) when f J  is used (see Fig. 6.52b):

(0 .1 -8 ) _ _
^  c ((\ 1 \  ' £ £max(0 .1 -8  cc)

where E c c  is the strain at maximum stress.

Two values of £max have been taken; 0.005 and ten times Ecc 

(approximately 0.020). The latter might occur when concrete is well 

confined (see Fig. 3.4-6)

(2) when 1.28 f c' is used:

CT= L2* f c m V  B\  : 6 <  Emax(0.1 -Sec)

and two values of Emax have been taken; 0.004 and 0.005.

Table 6.11, shows a comparison between these results and the results when 

the compression softening was neglected. From this Table, it can be seen that 

taking compression softening into account increased the predicted failure load 

by about 10 - 50% of the corresponding experimental failure load. An increase of
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£max from 0-004 to 0.005, increased the mean value by 5%. When zmax 

increased from 0.005 to 10.8CC (about 0.020) the mean value increased by 

17%. The best mean value (0.98) was obtained by using compressive strength 

of concrete = 1 .2 8 ^ ' and zmax= 0.005, although the standard deviation was 

not the best (10.6%). The mean value and the standard deviation using 

compressive strength = f c' and £max= 0.005 are (0.88, 9.4%) . In this case it 

can be seen that all the predicted failure loads except for beam A-1 are 

conservative. Using compressive strength = f c’ and £wax= 10. 8CC, the mean 

values and standard deviation become (1.05, 12.8%). These results of Table 

6.11 show that there is an interaction between the maximum compressive 

strength and the maximum compressive strain and any increase in one of them 

leads to an increase in the predicted failure load.

The predicted load-deflection curves are shown in Figs. 6 .84 -85 . From these 

figures, it can be seen that assuming high value of maximum compressive 

strain £max (even 10 times the strain at the peak of stress scc, Fig. 6.84a-c)

makes most of the predicted load-deflection curves continue in the same trend 

as the experimental curves and delays failure which means that the reason of

failure of these beams is the crushing of compression zone.

In the following, the predicted behaviours of some beams using compressive 

strength of concrete = 1.28 f c’ and £max= 0.005, which gave the best mean 

value, are presented.

Figs 6.86 to 6.90 show the predicted crack pattern and the stresses in 

stirrups, compression, and tension reinforcement for beam A-1 .  The crack 

patterns at two load factors are shown in Fig. 6.86 which show good 

agreement with the observed crack pattern. The principal compressive stress- 

strain curve of concrete at Gauss points under the applied load is shown in 

Fig. 6.87, in which the compressive strain nearly reached the value of Smax

( = 0.005). The points at which the stirrups have yielded are arranged diagonally 

in the shear span from the support to the load point (Fig. 6.88). The
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Observed

L. F.= 1.00

Single crack /

Double crack r

Crushing o f concrete B

L. F.= 1.10

Fig. 6 .8 6 Crack patterns and deformed shapes for beam A-1
(displacements magnified x 10).
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Fig. 6 .8 9  S tresse s  in com press ion  s tee l a t d iffe re n t load  fa c to rs  (beam  A -1 ).
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Fig. 6.90 Stresses in tension steel at different load factors (beam A-1).
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compression steel has yielded under the load point before the numerical failure

(Fig. 6.89). The tension steel hasn't yielded at any point up to the failure

(Fig. 6.90). From the above it can be concluded that the mode of failure is Shear-

Compression as reported in Bresler and Scordelis's paper.

The predicted crack patterns for beam A - 2 at two load factors (0.90 and 

0.95) are shown in Fig. 6.91. Inspite of the fact that large shear cracks 

occurred at L.F.= 0.90, still the beam carried loads until the compressive

strain in the compression zone under the load point reaches £wax (Fig. 6.92). 

The predicted stresses in the stirrups agree well with the observed mode of 

failure (Fig. 6.93). The compression steel has yielded under the load point before 

numerical failure (Fig. 6.94a) and no yield occurred in the tension steel (Fig. 

6.94b). The predicted failure mode for this beam is Shear-Compression. The 

main reason of failure is, like beam A-1, the crushing of concrete in the 

compression zone under the load point.

Beam A-3, as reported in Bresler and Scordelis's paper, failed in F-C mode.

In Fig. 6.95, the predicted crack patterns and deformed shapes at three 

different load factors (0.90, 1.00, and 1.05) are shown. The lengths of shear 

cracks (which are plotted proportional to the strain normal to the crack) are 

equal to the lengths of the flexure cracks (and not like beam A-1 and A-2

where lengths of shear cracks are larger than that of flexure cracks). Also, 

the deformed shape of the beam indicates a ductile behaviour. The stress-

strain relationship of concrete at Gauss point in the compression zone under

the load point indicates that the concrete entered the softening zone at load 

factor =  0.90 (Fig. 6.96). Most of stirrups started to yield late at Load 

factor =  1.00 (Fig. 6.97). The compression steel has yielded at Load factor 

= 0.90 (Fig. 6.98a). The stress in tension steel nearly reached yield stress at 

the last converged increment (Fig. 6.98b). The reason for failure is the 

crushing of concrete due to increase in the compressive strain of more than

£max ( =  0.005). The predicted failure mode is nearer to Flexure-Compression.
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Fig. 6.95 Crack patterns and deformed shapes for beam A-3
(displacements magnified x 10).
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In all the nine beams, a small nearly-horizontal crack occurred in the predicted 

crack patterns at the top of the beam near the load point at the last 

converged increment (see Figs. 6.86, 6.91, 6.95) which agrees well with the 

observed.

An interesting point has been noticed in this group of beams is that the 

predicted failure load of beam C -2  did not reach the experimental value for 

any of the analysis carried out. In the following section, the reasons for it are 

explored.

Figs. 6.99 to 6.106 show the results of the two beams B-2 and C-2.  The

differences between these two beams are the width of the cross-section 

(228.6, 152.4 mm respectively) and the spacing between the stirrups (190.5, 

209.6 mm respectively). These differences make the tension reinforcement ratios 

equal 2.43% and 3.66% and the shear reinforcement ratios equal 0.243% and 

0.366% respectively. The predicted failure load for beam B -2 (which is 90% of 

its experimental failure load) is better than that of beam C -2  (which is 80% 

of its experimental failure load). Beam B-2 shows the same behaviour as 

beam A -2  in the prediction (compare Figs. 6.99 - 6.102 with Figs. 6.91 - 

6.94). Beams A- 2 ,  B-2,  and C- 2  have the same a/d  ratio. Beam C -2  has

the highest tension reinforcement ratio (3.66%). As shown in Fig. 6.105, a 

sudden increase in the compressive strain between increment number 12 (L.F.=

0.75) and increment number 13 (L.F.= 0.80) is observed. This sudden increase 

did not happen in beams A -2  and B-2 (Figs. 6.92, 6.100). Since the main

reason of the failure is the crushing of compression zone so, the weakness in 

the prediction of the failure load of this beam may be because of the 

assumed stress-strain curve of concrete.
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To see if the above explanation is acceptable or not, beam C -2  was rerun 

by assuming compressive strength of concrete equals two times f c' (47.6 MPa) 

and with £max of 0.007. The predicted load-deflection for beam C -2  is 

shown in Fig. 6.107. It can be seen from this figure that the predicted load- 

deflection curve is nearly the same as the observed one. Also, the predicted

failure load is the same as the experimental one. This result means that the 

assumed stress-strain curve of concrete might represent the high degree of 

confinement of the compression zone under the load point which makes the 

concrete in compression zone can carry compressive stress twice f c\ Or this 

result may state that there was inaccurate measurement of f c ' in the 

experiment. Fig. 6.108a shows the principal compressive stress-strain curve of

concrete at a Gauss point in the compression zone under the load point. From 

this figure, it is clear that the stresses in the compression zone reached the 

assumed compressive strength up to the assumed maximum compressive strain 

ewax. In Fig. 6.108b, the crack pattern and deformed shape are plotted for 

beam C -2 . This crack pattern is in very good agreement with the observed

crack pattern which indicates that the assumed compressive strength of 

concrete is not far from the actual behaviour.

By repeating the analysis of beams B-2 and A - 2 after assuming a 

compressive strength of concrete equals 1.5 f c ' for beam B -2  and 1.25 f c' 

for A - 2 (this assumption is related to the cross-sectional area, or to the 

width of the beam since the depth is nearly the same) with £max of 0.007, 

the predicted failure load became equal to the experimental failure load in the 

two beams (Fig. 6.107). This may mean that there is a relation between the

stress-strain curve of concrete or the degree of confinement and the cross- 

sectional dimensions.

295



Chapter 6 Preliminary parametric study

peo| 0 jn|!ej |B̂ U0 iuu0 dx3  /p0pip0Jd

296

Fi
g.

 6
.1

07
 

Lo
ad

-d
ef

le
ct

io
n 

cu
rv

es
 

for
 

be
am

s 
A

-2
, 

B-
2,

 a
nd

 
C

-2
.



Chapter 6
Preliminary parametric study

?
§ -40

(/>(/)<D
W
0)>

a
E
8
(CQ.
O
c
I—
CL -10

Ob MO -Ob 001
Strain

Fig. 6 .108a P rinc ipa l com pressive s tress-stra in  curve  o f concre te  at G auss 
p o in t under the app lied  load (beam  C-2).

Observed

of concrete ■

Fig. 6.108b Crack pattern and deformed shape for beam C-2
(Load factor = 1.00, displacements magnified x 10).

297



C hapte jA Preliminary parametric study

Figs. 6.109 to 6.111 show a comparison between the results of the present 

model with that of some previous finite element models. A comparison

between the load-deflection curves of six of Bresler and Scordelis's beams 

predicted by the present model (using f c' to represent the compressive strength 

of concrete and £max= 0.005, Fig. 6.52a) and that predicted by the model of 

Balakrishnan, et al. (1988) is shown in Fig. 6.109. This figure shows that the 

two models have similar degree of accuracy.

For the purpose of comparison with Vecchio (1989) and Stevens, et al.

(1991), The analysis of beam A-1 was rerun including the self-weight of the

beam. The convergence tolerance was 4% for the first seven increments (up to 

50% of the observed failure load), 2% for the next five increments (up to

75%), and 1% for the rest of increments. The predicted load-deflection is

shown in Fig. 6.110b, while the predicted crack pattern and deformed shape 

are shown in Fig. 6.111c. The predicted load-deflection curve has the same 

degree of accuracy as that predicted by the above two models (Fig. 6.110a). 

Vecchio did not report the predicted crack pattern in his paper. The crack 

patterns predicted by the model of Stevens, et al. are shown in Fig. 6.111b. 

In the crack patterns of Stevens, et al., nearly all the flexural cracks at the

bottom third of the over-all beam depth changed their direction which does 

not agree well with the observed, also in the crack pattern of Stevens, et al.,

in which the cracks locations and spacing are arbitrary, the cracks reached the

top of the beam before failure.
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fi.3 Conclusions

• The last version of the present model predicted the behaviours of the 

twelve beams to an accuracy equal to or better than the previous models. 

The prediction of the load-deflection curve, the crack pattern, and the 

stresses in the steel was to an acceptable accuracy for the twelve beams. 

The concrete material input data required is the compressive strength of 

concrete f c ' only. The other properties viz. Young's modulus E, tensile 

strength f t \  the maximum compressive strain of concrete scc at the peak of 

stress are calculated from f c' as fo llow :

E =5000 / / c'

/ /  = 0.54 / / c'

Ecc = -ffc/ 2500

where f c ' in MPa

For beams with shear reinforcement, compression softening of concrete is 

taken into account by assuming a straight line with very small slope and 

maximum compressive strain of 0.005. For beams without shear reinforcement 

no compression softening is assumed.

• For beams failing in shear, the effect of shear retention factor P is very 

significant in beams without shear reinforcement, while it is less significant 

in beams with shear reinforcement.

• The tensile strength of concrete f t ' has a small effect on the prediction of the 

failure load and the mode of failure.

• Taking tension softening of concrete into account improves the prediction of 

load-deflection curve. It has significant effect on the prediction of failure 

load of beams without shear reinforcement (10-25% of the failure load of 

beam) while it has insignificant effect on the prediction of failure load of 

beams with shear reinforcement. The following equation for the descending

MPa

MPa
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portion of the stress-strain curve of concrete in tension gave satisfactory 

results.

a  = ( lCr / * n  + yT(*cr /  e J  J f t  / 2  in MPa

• The value of the compressive strain at the peak of stress in the stress-

strain relationship of concrete scc has a significant effect on the prediction 

(up to 25% of the failure load of beam).

• The compression softening of concrete has a significant effect on the load- 

carrying capacity of beams with shear reinforcement. Taking the 

compression softening into account increased the predicted failure loads of 

the nine beams with shear reinforcement by 15-20% of their load-carrying 

capacity.

• For beams with shear reinforcement with small spacing of stirrups, i.e. well 

confinement of concrete, assuming compressive strength of concrete (=kfcf, where 

k is factor greater than 1.0) which is higher then f c' gave good results for most of 

the beams. However, the failure load of some beams became overestimated by

about 15%. For beams without shear reinforcement and for beams with shear

reinforcement with spacing of stirrups greater than half of the effective depth of 

beam, assuming compressive strength of concrete of f c' gave good results.
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CHAPTER 7

PARAMETRIC STUDY CONTINUED

7.1 Introduction

In chapter 6, a 2-D  finite element model was developed to predict the behaviour 

of reinforced concrete beams. The model was adjusted to get the best prediction 

of the behaviours of twelve beams tested by Bresler and Scordelis (1963). In this 

chapter, an attempt is made to investigate the model further by studying beams 

from other sources. Only reinforced concrete rectangular beams have been studied 

in this chapter. A study of other types of beams will be presented in the next 

two chapters. More than one hundred and fifty beams have been analysed. The 

beams studied were taken from three previous experimental works; Krefeld and 

Thurston (1966b), Clark (1951), and Mphonde and Frantz (1984). These beams 

covered important variables affecting the shear strength of reinforced concrete 

beams such as: shear span to depth ratio a/d, amount of shear reinforcement, 

effective depth and width of beam, and compressive strength of concrete. Most of 

the beams failed in shear. The beams which failed in flexure were studied for 

the purpose of comparison.

L.2 Data of beams 

7.2.1 Krefeld and Thurston's beams

Krefeld and Thurston (1966b) tested over 200 reinforced concrete beams subjected 

to concentrated and distributed loads, among them there were 44 beams with 

shear reinforcement. All the beams with shear reinforcement, in addition to 4 

beams which have the same properties as the beams with shear reinforcement but
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without shear reinforcement have been analysed. Also, the first 27 beams without

shear reinforcement reported in the paper have been analysed. There was no 

specific reason for selecting these as opposed to others. The dimensions of the

beams and the methods of loads application are shown in Fig. 7.1. Table 7.1 

shows the data required for the analysis of beams without shear reinforcement. 

These beams had a range of a/d ratio from 2.35 to 6.0, a range of f c' from 

16.5 to 30.2 N/mm2, and a range of tension reinforcement ratio p from 0.8 to 

5.1%. The data required for the analysis of beams with shear reinforcement are 

shown in Table 7.2. These beams had a range of a/d ratio from 3.89 to 6.0, a 

range of f c ' from 15.7 to 48.5 N/mm2, and a range of p from 2.22 to 3.41%. 

The spacing of stirrups s was from 88.9 to 533.4 mm and the product of the 

percentage of shear reinforcement r  (=ASv/b.s) and the yield stress of stirrups fy ,  

was from 0.21 to 1.67 N/mm2.

The experimental load-deflection curves of the beams have not been reported in 

the paper. Six types of failures have been reported by Krefeld and Thurston as 

follows (see Fig. 2.9):

DT: Failure occurred due to a diagonal crack at nearly constant slope to the

top surface of the beam.

DT-S: A sliding type failure along a diagonal plane above or at the end of a

horizontal crack in the compression zone.

DT-C: A crushing disintegration failure above or at the end of a horizontal crack 

in the compression zone.

DT-R: A failure associated with a relative rotation of adjacent segments at the

end of horizontal portion of diagonal tension crack in the compression 

zone which has extended close to the top surface. In many cases a thin 

layer of concrete above the horizontal crack buckles upward.

7-C: Flexure-Compression.

F~T: Flexure-Tension.
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Chapter 7
Parametric study continued
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Chapter 7
Parametric study continued
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Chapter 7 Parametric study continued
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Chapter 7 Parametric study continued

The beams have been analysed using different finite element meshes depending 

on beam dimensions (see the last Column in Tables 7.1 & 7.2 and Figs. 7.2 & 

7.3).

7.2.2 Clark's beams

Clark (1951) tested 62 beams all of them had a/d  ratio less than 2.5. Among

these beams, 12 beams were without shear reinforcement. Only 4 of the beams 

with shear reinforcement were loaded by mid-span loads, the other beams were 

loaded by two concentrated loads at equal distances from the supports. Different

positions of the two concentrated loads from the supports were used to obtain

different a/d  ratios for beams with the same total span. The stirrups were placed 

in the shear span only. The dimensions of the beams and types of loading are 

shown in Fig. 7.4. All of the beams failed in diagonal tension, but in some

beams yielding of the longitudinal reinforcement or compressive failure of the 

concrete occurring at about the time as the diagonal tension failure made the

primary cause of failure difficult to determine. The experimental load-deflection 

curves and the crack patterns of some beams have been reported (Figs. 7.5 &

7.6).

In the analysis, the beams (62 beams) have been divided to 22 groups. Each

group has the same properties except the concrete compressive strength f c' (the

difference in f c' is not large). Data for the beams are shown in Table 7.3. The

finite element meshes used in the analysis are shown in Fig. 7.7.

7.2.3 Mphonde and Frantz's beams

Mphonde and Frantz (1984) tested three series (19 beams in total) of beams 

without shear reinforcement with three a/d  ratios; 1.5, 2.5, and 3.6. They studied 

the effect of a very wide range of concrete compressive strength (designed to be

between 21 and 103 MPa). All beams except one had the same tension

reinforcement ratio (p = 3.36%). This high ratio was used to ensure that a shear
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Chapter 1 Parametric study continued
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Fig . 7 .5  L oa d -d e fle c tio n  cu rves  o f C la rk 's  beam s 
(1 in. = 25.4 mm, 1 lb = 4.448 N)
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chapter 7 Parametric study continued
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Fig. 7.7 Finite element meshes for Clark's beams.
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2 -»7 4 , - * 6 (only 3 - 3c)

Fig . 7 .8  D im ens ions  o f M phonde  and  F ra n tz 's  beam s and  typ e  
o f load ing  (1 in. = 25 .4  mm).

Arch rib fa ilu re

15-lb
o/6  ■ 1.5
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Fig. 7.9 Typical crack patterns of the three series of Mphonde & Frantz's beams.
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Chapter 7 Parametric study continued

3x112.2

P/6 F T
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p ig. 7 .10  F in ite  e le m en t m eshes fo r  M p honde  and  F ran tz 's  beam s
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Chapter 7 Parametric study continued

failure rather than a flexure failure took place in all the beams. The dimensions 

of beams are shown in Fig. 7.8. Three typical failure crack patterns for the three 

a/d series have been reported (Fig. 7.9). At failure longitudinal splitting along main 

reinforcement was present in all the beams. But very careful observation of the 

actual failure sequence showed that the longitudinal splitting did not initiate the 

final failure. For beams with a/d ratio of 1.5 there was a much greater variation 

in the measured ultimate failure load than for beams with a/d  ratios of 3.6. 

Mhponde and Frantz referred this scatter to the way inclined cracking developed 

at different a/d  ratios. In beams with a/d  ratio of 1.5, the initial inclined crack 

develops suddenly along almost its entire length. The initial crack location is 

critical and it determines if much arching action can develop or if the capacity is 

increased only slightly as the inclined crack punches through the top face of the 

beam and so very little arching action develops. Experimental load-deflection 

curves have not been reported in the paper.

The beams data required for the analysis are shown in Table 7.4. The finite 

element meshes used in the analysis are shown in Fig. 7.10.

7.3 Analysis of beams

Initially, the last version of the model which was developed in chapter 6 will be 

used to predict the present reinforced concrete rectangular beams. This version 

has the following features.

• The stress-strain relationship of concrete in compression is assumed as shown 

in Fig. 7.11. In the analysis of beams without shear reinforcement, no 

compression softening is assumed (Fig. 7.11a). In the analysis of beams with 

shear reinforcement, a straight line with very small slope is assumed for the 

descending portion as follows (Fig. 7.11b).
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Chap te r 7 Parametric study continued

CJ = f c'(0.1 - E) /  (0.1 - £ < m a x (7.1)

^ c c ~  V f c  /  2500 ; e m a x =0.005.

where f c ' in M P a

• The stress-strain relationship of concrete in tension is assumed as shown in 

Fig. 7.12. The tensile strength of concrete f t ' is estimated from the 

compressive strength of concrete f c ' as follows (Fig. 7.13).

The equation which represents the descending portion of the stress-strain 

curve is.

Two values of ztmax will be stuided in this chapter; a very large value (which

was assumed in the model of chapter 6) and 20 zcr (which is arround the

yield strain of steel).

• The shear retention factor P is assumed as a function of the strain normal to

the crack s„ as follows (Fig. 7.14).

f t M P a (7.2)

tmax (7.3)

P = 0.4 ^  > Pmi„ ; Pm,„ = 0.0 
s „

min ~ (7.4)

• Young' s modulus is taken as follows.

E M P a
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Chapter 7 Parametric study continued

a
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10

(a)
£■cc

a

10

(b)
e

Fig. 7 . 1 1  A ssum ed  s tre ss -s tra in  cu rve  o f co nc re te  in co m press ion
(a) for beams without shear reinforcement
(b) for beams with shear reinforcement

1 c rcr
( 7 =  —

0
3020100

s A r

Fig. 7 .12  A ssum ed  s tre ss -s tra in  cu rve  o f co nc re te  in T e n s io n
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Chap te r 7 Parametric study continued

In this chapter also, a study on the effect of the tensile strength of concrete / /  

and the minimum value of the shear retention f>min is presented.

The initial load Pini for all beams is taken as follows.

pini = 0 6 fy As/(a/<d)

This initial load is about 70% (0.6/0.87) of the flexure capacity of the beam (for

two point loading, Moment = Pa, P = load, a = shear span, flexure capcity = f y A s 

(0.87gO, d -  effective depth). The beam which reaches its full flexure capacity takes 

about 26 increments (1.45 of the initial load).

7.3.1 Beams without shear reinforcement: Tables 7.5 to 7.7.

The results of prediction for beams without shear reinforcement are presented in 

Tables 7.5 to 7.7. In these tables, there are four basic sets of runs. In Column 

(A), the ratios of predicted to the experimental failure load using the model of

chapter 6 are presented. Column (B) shows the results after assuming ztmax = 

20ecr (Fig. 7.12). In Column (C), the analysis was repeated after taking the 

tensile strength of concrete f t ' from the following equation (Fig. 13).

The object of using this equation is to obtain lower values of tensile strength than the 

given by Eq. 7.2 (/"/ = 0.54 y ffc ')  because analysis has shown that obtaining / /

from Eq. 7.2 gave higher prediction than the experiment. Column (D) shows the 

results after assuming that the minimum value of shear retention factor fimin (see

equation 7.4) is equal 0.05.
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7.3.1.1 Results of Krefeld and Thurston’s beams: Table 7.5

The results of Krefeld and Thurston's beams without shear reinforcement are shown in 

Table 7.5. The results in Column A of this Table are obtained from the model of 

chapter 6. The results are acceptable for all the beams except for three beams 

(4A3, 11A2, and OCabs-ll) in which the experimental failure load is overestimated 

by more than 30%. The mean value of the results and the standard deviation are

1.06 and 15.8%, respectively. When ztmax was taken = 208cr, nearly the same 

results as of Column A were obtained (Column B). The beams which were 

slightly affected by the value of ztmax were those having a/d  ratio less than 4.0.

The mean value and standard deviation in this case are 1.04 and 13.7%,

respectively. When the tensile strength was calculated from equation (7.5), a

decrease of about 10% in the mean value was obtained with standard deviation

9.4% rather than 13.7% (compare Columns B and C). The strength of one of the 

beams was overestimated by more than 10%. The results in Column D are 

obtained by assuming minimum value of shear retention factor (pw/„ = 0.05). As 

shown in this column, this small value of p increased the predicted failure load 

of some beams by more than 25% (beams 4A3 and OCabs-ll).

7.3.1.2 Clark’s beams: Table 7.6

Table 7.6 shows the results of Clark's beams without shear reinforcement. As for 

Krefeld and Thurston's beams (Table 7.5), the more conservative result for Clark's 

beams was obtained by using equation (7.5) for estimating f t '. Also less scatter in 

the results was obtained by using this equation. By comparing Column C and D

it can be seen that increasing f>min from zero to 0.05 increased the mean value 

of the predicted failure loads by 15%.

7.3.1.3 Mphonde and Frantz’s beams: Table 7.7

The results of Mphonde and Frantz's beams (without shear reinforcement) are 

shown in Table 7.7. In this Table there are six sets of runs. To see clearly the

effect of f t ' and P on the results, in addition to the basic four sets of runs
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Chapter 7 Parametric study continued

(Column A, B, C, and D), there are two other sets; one by assuming f t ' = 0.1 

f c' (Column BO, Fig. 7.13) and the other (Column E) by assuming constant shear

retention factor (P = $min = 0.4).

In these beams the effect of limiting the tension softening of concrete at strain 

etmax = 20ect was significant (compare Column A and B). A decrease in the

mean value of about 9% was obtained. In beam 15-3a a decrease in the

predicted failure load of 28% of the experimental failure load was obtained. 

Comparing the results of Columns BO, B, and C, in which the only difference

was in the assumed values of / / ,  it can be seen that the effect of / /  on the

predicted failure load was very significant. For example in beams 11-3b,c the

predicted failure load decreased from 1.88 to 0.88 of the experimental failure load 

by changing the value of / /  from 0 .1 ^ ' (7.48 MPa) to (2.94 MPa). Also,

it can be seen that the lower the assumed value of f t \ less the scatter in the

results. In beams which failed in diagonal tension and having a/d  ratio of 3.6,

the higher the value of compressive strength of concrete f c\ higher the predicted

failure load. This high prediction reduced as the values of f t ' decreased. This can

be seen in the first five rows of table 7.7. In Column A, the predicted failure

load varied from 0.81 for beam 3-3b to 1.85 for beams 11-3a,b, while in column

C for the same beams the predicted failure load is around 0.85.

With regard to p, in general, the results of all beams were seriously affected by 

its value. An increase in the value of pmin from zero to 0.05 increased the

mean value of the results by about 38% (compare Columns C and D). In beam

11-3a,b, the predicted failure load increased by 100% of the experimental failure

load when f imin changed from 0.0 to 0.4 (Columns C and E). Although high

value of f>min generaly overestimate the predicted failure load, for three beams

the predicted failure loads were underestimated (7-1, 11-1, and 1 5 -1b). The

reported mode of failure of these three beams was arch-rib (see Fig.7.9). This

type of failure occurred in beams with a small a/d ratio (1.5) and it does not
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Chapter 7 Parametric study continued

always occurs. Mphonde and Frantz tested two beams with the same properties

but one (beam 15 -1a) failed in shear flexure mode at a low load while the 

other beam (15-1 b) failed in arch-rib mode at a load which is greater by 80%.

As mentioned earlier, this type of failure depends on the location and the 

direction of inclined critical crack. It seems that from the numerical point of view 

that, unlike the other types of failures, higher the assumed value of (3 more

accurate the predicted failure load for those beams.

7.3.2 Beams with shear reinforcement: Tables 7.8 and 7.9.

7.3.2.1 Krefeld and Thurston's beams: Table 7.8.

Table 7.8 shows the results of Krefeld and Thurston's beams with shear

reinforcement. In these beams the effect of limiting the tension softening of

concrete at strain ztmax = 20scr was insignificant (compare Column A and B). 

Column C shows the results after using equation (7.5) for f / .  The results

improved for most of the beams which failed in shear. The mean value

decreased from 1.14 to 0.97 with standard deviation 11.9% rather than 20.1%. 

Only for three beams were the failure load overestimated by more than 20%. By

increasing from zero to 0.05, the results became the worst results for these

beams. The mean value increased to 1.16 with standard deviation of 23.1%.

7.3.2.2 Clark's beams: Table 7.9.

Table 7.9 shows the results of Clark's beams with shear reinforcement. Column A 

shows the results using the model of chapter 6. The mean value and standard 

deviation 0.97 and 9.4%, respectively. Column B shows that the effect of limiting

the tension softening of concrete at strain ztmax = 20ecr was very small, a

reduction of only 4% in the mean value was obtained. Columns B and C show

that the effect of f t ' was very small. The results were good for all cases. The 

best result was with using equation 7.5 for / /  and assuming $min = 0.05, the
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Chap te r  7 Parametric study continued

mean value and standard deviation are 1.01 and 7.7%, respectively. Unlike Krefeld 

and Thurston's beams, it can be seen that increasing pmin from zero to 0.05

improved the results of Clark's beams.

The predicted failure loads are plotted against the experimental failure loads for all 

beams in Figs. 7.15-17. Fig. 7.15a shows the results using the model of chapter 

6. Fig. 7.15b shows the results after taking £tmax= 20scr in the stress strain curve

of concrete (see Fig. 7.12). The results after taking f t ' as from equation 7.5 are

shown in Fig. 7.16. In this case if the predicted failure load is assumed to be 

80% of the numerical failure load, all the predicted failure loads will be 

conservative. After increasing f>min to be 0.05, the results are shown in Fig. 7.17.

7.4 Prediction of failure mode

Ten types of failure have been reported by Krefeld and Thurston, Clark, and 

Mphonde and Frantz. In the following some of these types of failure have been 

analysed to see how accurately the present finite element model predicts the 

mode of failure. The prediction of the mode of failure depends on the following

(see Sec. 6.2.1.1):

- the deformed shape of the beam,

- the crack pattern,

- the stresses of concrete in the compression zone, and

- the stresses in the reinforcement.

Beams OCa.bs-l {DT-R failure)

Beams OCa and OCb were two of Krefeld and Thurston's beams (series S-l) 

which failed in DT-R failure type. These two beams were without shear 

reinforcement and similar in everything except for a slight difference in the cylinder 

compressive strength f c' and the reported failure load. There were eight beams
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Chap te r 7 Parametric study continued

similar to these two beams but with shear reinforcement (first four rows in Table

7.2). The difference among the eight beams was in the spacing of stirrups.

Beams OCa and OCb were analysed as one beam (noted by OCabs-l in Tables

7.1 and 7.5) using the average f c'. The predicted failure load was equal 95% of

the average experimental failure load of the two beams (Table 7.5, Column C).

The reported critical shear loads for the two beams were 92% and 97% of the

experimental failure loads. This means that the beams failed just after the

formation of the critical shear cracks. The predicted crack pattern and deformed

shape at the last converged increment (load factor 0.95) are shown in Fig. 7.18.

No critical shear cracks has formed up to this increment. The stress-strain curve 

of concrete in the compression zone at a Gauss point near the mid-span is

shown in Fig. 7.19. The stress of concrete reached a value which was higher

than the value of f c* at the last converged increment because of the biaxial 

compression state. The predicted stresses in the longitudinal reinforcement at the 

last three increments are shown in Fig. 7.20. The bars haven't yielded up to the

numerical failure. This was the only sign to indicate that the beam failed in

shear. The observed maximum steel stress was reported only for one beam which

was 93% of the steel yield stress. The predicted maximum steel stress was 79% 

of the steel yield stress.

Beam 23.5 (F-T  failure)

Beam 23.5 was similar to beams OCabs-l (which was analysed above) except for 

the presence of stirrups. The stirrups changed the failure mode to be Flexure-

Tension rather than shear failure. The experimental failure load was 121.9 kN  

which was higher than that of beam OCabs-l by about 20%. The predicted 

failure load of this beam was in good aggreement with the experimental failure 

load in all cases (0.99 of the experimental failure load, see Table 7.8) which
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Single crack 

Double crack 

Crushing o f concrete

Fig. 7 .1 8  C rack pa tte rn  and  de fo rm ed  shape  o f beam  O C a bs -l 
(displacements magnified x 20)
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Fig. 7.21 Crack pattern and deformed shape of beam 23.5 
(displacements magnified x 20)

-50 — r...  !
COa.2
a(00)

...

a.
|  -20 -
o
15
Q .

c  - 1 0  - -

a!

0.000 -0.001 -0. 002 -0 .0 03  -0. 00<t -0 .0 0 5
Strain
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under the applied load (beam 23.5)
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means that the model predicted with good accuracy the additional load carried due to the 

existence of the stirrups. The good result supports the conclusion of chapter 6 that 

the concrete crushes when it reaches the peak of stress in beams without 

stirrups while in beams with stirrups the concrete is assumed to work up to a 

compressive strain of 0.005. The predicted crack pattern and deformed shape at 

the last converged increment are shown in Fig. 7.21. The crack pattern is very 

similar to that of beam OCabs-l. The stress-strain curve of concrete at a Gauss 

point in the compression zone near the mid-span of the beam is shown in Fig. 

7.22. The failure occurred because the maximum compressive strain of concrete 

reached the assumed value (0.005). In Fig. 7.23, the stresses in the longitudinal 

reinforcement at the last three increments are shown. The bars have yielded at 

the last increment which indicates that the beam failed in flexure, although some 

stirrups yielded at the last increment (Fig. 7.24).

Beams OCa.bs-ll (DT-R failure)

Beams OCa and OCb in series S-ll of Krefeld and Thurston's beams failed in 

DT-R failure type which has been defined earlier. These beams were without

shear reinforcement having the same properties including the compressive strength

of concrete. The experimental failure loads of these two beams were 293.6 and 

266.9 kN\ i.e., one was higher than the other by about 10%. The reported critical 

shear loads were 94% and 97% of the experimental failure loads. These two 

beams are denoted here as OCabs-ll. There are 34 beams similar to these two 

beams but with shear reinforcement (beams number 9-37 in Table 7.2). The

predicted failure load of beam OCabs-ll was 106% of the average of experimental 

failure load (Table 7.5, Column C). The predicted crack pattern and deformed 

shape at the last converged increment (load factor = 1.06) are shown in Fig. 

7.25. The critical shear cracks have formed at this increment. The stress-strain 

curve of concrete at a Gauss point near the mid-span is shown in Fig. 7.26.
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The stresses in the longitudinal bars at the last three increments are shown in 

Fig. 7.27 which shows that the bars did not yield up to the numerical failure.

The reported maximum steel stresses for these two beams were 61% and 58% of 

the steel yield stress which has been predicted very well as shown in Fig. 7.27.

Beams 29a-1.b-1 (DT-R failure)

Beams 29a-1 and 29b-1 were two of Krefeld and Thruston's beams which failed 

in DT-R failure type. These beams were similar to beams OCabs-ll except for 

the stirrups. The stirrups increased the ultimate load by about 14% but didn't

change the mode of failure. The two beams were analysed as one beam. The 

predicted failure load for this beam was higher than the average of the 

experimental failure loads by 22% (Table 7.8, Column C). The predicted crack

pattern and deformed shape are shown in Fig. 7.28 which shows clearly that the

beam failed in shear. The stress-strain curve of concrete near mid-span is 

shown in Fig. 7.29. The stresses in one bar at the last three increments are

shown in Fig. 7.30 which shows that the steel did not yield. The measured

maximum steel stresses for these two beams were 51% and 83% of the steel

yield stress. The predicted one was about 78% of the steel yield stress. The 

stresses in the stirrups at the last increment are shown in Fig. 7.31 which shows 

that the Gauss points at which the stirrups have yielded are arranged diagonally 

from the load point to the support.

Beams AO (D T  failure)

Beams AO were three of Clark’s beams without shear reinforcement which failed 

in pure diagonal tension (D-T)\ i.e., the tensile reinforcement hadn't  yielded up 

to the time of diagonal tension failure. The beams were similar in everything 

except for small differences in the values of f c' (21.5, 26.0, and 23.7 MPa). The 

reported failure loads for these beams were 178.1, 215.9, and 238.1 kN,
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Double crack

Crushing of concrete ■

Fig. 7.28 Crack pattern and deformed shape of beam 29a-1 ,b-1 
(displacements magnified x 20)
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respectively. The difference between the lowest and highest failure load was about 

34% of the lowest one. The predicted failure load was 98% of the average of

the three experimental failure loads (Column B in Table 7.15). The observed crack 

pattern is shown in Fig. 7.32. Also, the predicted crack pattern and deformed 

shape at the last converged increment are shown in this figure. Good agreement

is shown between the predicted and the observed crack pattern. The stress-strain 

curve at a Gauss point in the compression zone near the mid-span of the beam

is shown in Fig. 7.33. The predicted stresses in a bar at the last three

increments are shown in Fig. 7.34. The tensile reinforcement did not yield up to

the numerical failure.

Beams A1 (D-T failure)

Four beams with shear reinforcement were tested by Clark under the designation 

A1. The beams failed in pure diagonal tension at different levels of load although

they had the same properties except for slight differences in the values of f c '

(24.7, 23.7, 23.4, and 24.8 MPa). The experimental failure loads for these four

beams were 444.9, 418.3, 444.9, and 489.4 kN  with an average of 449.4 kN.

The predicted failure load (404.5 kN) was 90% of the average of the experimental 

failure loads (Column B in Table 7.9). The observed and predicted crack pattern 

are shown in Fig. 7.35 which show good agreement. The stress-strain curve of

concrete at a Gauss point in the compression zone under the load point is 

shown in Fig. 7.36 which shows that without the compression softening portion, 

the beam could fail at increment 14 (about 75% of the ultimate failure load)

because of crushing of concrete in the compression zone (due to increase the 

compressive strain more than the assumed strain). The predicted stresses in the 

tension steel and stirrups are shown in Figs. 7.37,38. The stresses in the tension

steel were much less than the yield stress up to the numerical failure which 

indicates that the beam failed in shear.
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Fig. 7.32 Crack pattern and deformed shape of beam AO 
(displacements magnified x 20)

-50

I
(A -30

CLE8 -20
s.oc -10ol

0.000 -0.001 -0.002 -0.003 -0.004 -0.005
Strain

Fig. 7.33 Stress-strain curve of concrete at Gauss point 
under the applied load (beam AO)

1.00

</>22
|  0.75

L. F.= 
. 0.96 
r  0.95 
■ 0.91(0

(A

0.50

Ik 25

0.00
150012009003000

Position from beam end (mm)

Fig. 7.34 Stresses in tension reinforcement at the last
three increments (beam AO)

351



St
re

ss
 

/ 
Yi

eld
 

st
re

ss

Chapter 7_ Parametric study continued

Observed

Single crack /
Double crack

Crushing of concrete ■

Fig. 7.35 Crack pattern and deformed shape of beam A1 
(displacements magnified x 20)
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Chapter 7 Parametric study continued

The predicted load-deflection curves are plotted against all the experimental curves 

that have been reported by Clark in Fig. 7.39. Most of the reported load- 

deflection curves were not complete; i. e., the reported curves were not plotted 

up to the reported failure loads. Also, the load-deflection curve of beam C3 was 

extended beyond the reported failure loads of this beam which probably indicated 

that there was some error in reporting.

7.5 Conclusions

In this chapter, an attempt is made to establish the generality of the 2 -D  finite 

element model which was developed in chapter 6 and the following conclusions 

can be drown:

• The best prediction was for beams with shear reinforcement with a small 

spacing of stirrups (less than half of the effective depth).

• Both the shear retention factor and the tensile strength of concrete had a very

significant effect on the prediction of beams without shear reinforcement which 

failed in shear, especially beams with a small a/d ratio.

• Increasing the assumed value of shear retention factor improved the predicted 

failure loads of beams with shear reinforcement and having a small a/d  ratio.

• It is difficult to predict the failure load of beams without shear reinforcement

and having a small a/d  ratio and high value of cylinder compressive strength. 

This is because in this type, beams with the same properties may fail in

different ways.

• The model developed in chapter 6 with limiting the tension softening of

concrete at strain equal to 20 times the initial crack strain and taking the 

tensile strength of concrete / /  equal (in MPa) gave good results.
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CHAPTER 8

PRESTRESSED CONCRETE BEAMS

8.1 Introduction

This chapter presents the results of analysis of prestressed concrete beams using 

the 2-D  finite element model developed in chapter 6. More than sixty prestressed 

concrete beams have been analysed. These beams were with and without shear 

reinforcement having a/d  ratio from 1.12 to 5.8. The beams without shear 

reinforcement . were tested by Arthur (1965) while the beams with shear

reinforcement were tested by Elzanaty, et al. (1986b).

8.2 Arthur's beams

Arthur (1965) tested 50 prestressed concrete I-beams without web reinforcement. 

His work was concentrated on the diagonal cracking failures and the development 

of a rational semi-empirical expression for predicting the diagonal cracking load 

and not the ultimate load. He reported that although the ultimate shear loads

carried by the beams exceeded the diagonal cracking loads in about 80% of the 

tests, the amount of this excess could not be predicted with any degree of 

confidence and he suggest that the ultimate shear load for design purposes 

should be taken as the diagonal cracking load.

Arthur tested five types of beams. The difference among these types was in the

cross-section dimensions and the existence of a solid end-block. Two types (A 

and B) had solid end-blocks 304.8 mm long, while the other types (C, D, and

E) had no end-blocks. All the beams were 2896 mm long. Due to the change of



Chap te r 8 Prestressed concrete beams

the cross-section dimensions, a/d ratio varied from 1.12 to 4.57. The beams

dimensions are shown in Fig. 8.1. All the beams were tested under symmetrical

two-point loading on a span of 2591 mm. The prestressing reinforcement was

eighteen 2.64 mm diameter for type A and nine 5.08 mm diameter for types B-E.

The average initial prestress was approximately 6.9 MPa. The nominal initial

prestressing force, after elastic compression loss, was about 117.4 kN for type A

and about 176.1 kN for the other types. Arthur hasn't reported the load-deflection

curves but only the final crack patterns of some beams. Six types of failures

were observed. Their definitions are as follows:

• DC failure: This type of failure was observed only at short shear span, a/d

< 2.52. A crack formed from the support to the load point, and the failure

was complete without any other signs of distress developing.

• DC/WD failure: This is a web distortion failure which occurred at all ratios of

a/d (1.12 -  4.57). It occurred when web tension formed a series of multiple

cracks in the shear span.

• DC/WD/F failure: In this type, web distortion failures showed a further

development, collapse being delayed until compression failure began in the top

flange concrete under the load point. The range of a/d ratios for this type of

failure was from 2.24 to 4.57. If a flexural shear crack was present together

with the web tension cracks, (SC) designation was added and this type of

failure was called DC/WD/F (SC). The flexural shear cracks occurred only 

when a/d ratio was 4.57.

• DC/WD/T failure: This occurred when failure of the tension steel occurred

near mid-span, after diagonal cracking in the shear span. This type of failure 

occurred when a/d ratio was 4.57.

• WC failure: This failure took place by crushing of the web in beams of a/d

ratios of 1.12 and 3.36.

• SC failure: This type of failure initiated by a flexural crack in the shear

span.
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The data of the beams required for the analysis and the results of analysis are 

shown in Table 8.1. The finite element meshes used for the analysis are shown 

in Fig. 8.2. At the first increment, the total effective prestressing force was applied 

on the beam end as a horizontal compressive force. This force was divided into 

two components. The two components were applied at the top and the bottom of 

beam as a distributed load and were proportional to the number of wires at the 

top and the bottom of beam. The stress-strain relationship of prestressing 

reinforcement used in the analysis was obtained by subtracting the value of the

effective stress Gp from the stress as shown in Fig. 8.3. The value of Gp is 

equal the effective prestress force Pe, after allowance for all prestress losses, over 

the cross-sectional area of the prestressing reinforcement Aps (c7p = Pe /  Aps).

The ratios of the predicted over the experimental failure loads of Arthur's beams 

are presented in Table 8.1. These runs were obtained by using the 2 -D  finite 

element model developed in chapter 6. The results in general are good. Only

the predicted failure loads of two beams (B4 and C4) were overestimated by

more than 25%; B4 by 40% and beam C4 by 90%. The worst prediction was for 

beam C4. This beam was the only beam in type C which was tested only once. 

The other beams were tested at least twice to measure the cracking shear force. 

By comparing the properties of beams C4 and C5 (Table 8.1), it can be seen that 

all the properties are the same except for an increase in f c' and the effective

prestressing force of beam C5 by about 17% and 10% more than those of beam 

C4. Therefore, beam C4 failed just after the formation of critical shear crack at a 

load of 62.3 kN, while beam C5 failed at a load which is higher by about 74% 

(108.5 kN).

The mean value of the ratios of the predicted over the experimental failure loads of 

the all beams was 1.02 with standard deviation of 20.3%. By excluding beams B4 

and C4 the mean value and the standard deviation became 0.99, 13.3%, respectively.
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Chap te r 8 Prestressed concrete beams

This result is considered as a good result for beams without shear reinforcement. 

The predicted failure loads are plotted against the experimental failure loads in

Fig. 8.4. If the predicted failure load is taken as 80% of the numerical failure 

load all the predicted failure loads except for two beams (B4 and C4) will be 

conservative.

To study the mode of failure of Arthur's beams, the predicted behaviours of some

beams will be presented. The predicted failure mode will depend on four 

considerations;

a) the deformed shape of the beam,

b) the crack pattern,

c) the stresses of concrete in the compression zone, and

d) the stresses in the reinforcements.

Beam A1 ( DC/WD/F failure)

The ratio of the predicted over the experimental failure load of beam A1 was 

0.95. It failed in DC/W D/F  failure type. The cracking shear force for this beam 

was about 80% of the ultimate shear force. The observed crack pattern is shown

in Fig. 8.5a. Fig. 8.5b-e shows the predicted crack patterns and deformed shapes
r

of the beam at some load factors. At load factor = 0.80 (Fig. 8.5b), no critical 

cracks has formed. The shear cracks started at a load level equal 0.85 of the

experimental failure load (Fig. 8.5c). This load was higher than the observed

critical cracking load by about 5% of the experimental failure load. At load factor

= 0.90 (Fig. 8.5d), although the shear cracks became very large, the beam 

carried more load. Arthur reported that in this type of failure the collapse was 

delayed until compression failure began in the top flange concrete under the point 

load. The predicted crack pattern and deformed shape at the last converged 

increment (load factor = 0.95) are shown in Fig. 8.5e. Comparing Fig. 8.5a with
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Chap te r 8 Prestressed concrete beams

Fig. 8.5e it is seen clearly that the observed crack pattern was predicted to a 

good degree of accuracy. The stress-strain curves of concrete at a Gauss point 

near the mid-span and a Gauss point under the load point are shown in Fig. 

8.6a. This figure shows that the stresses in the compression zone are less than

f c' up to the numerical failure. Fig. 8.6b shows the stresses in prestressing wire 

at some load factors. The steel was under nearly constant compressive stress at 

the beginning of vertical loading due to the existence of the axial force. By 

increasing the applied vertical load, most of the Gauss points on the steel started 

to carry tensile stresses. This behaviour of the prestressing steel was observed for 

the all beams. The tensile stresses were far from yielding up to the numerical 

failure load. From Fig. 8.6, it can be seen that the cause of failure was not the

crushing of concrete in the compression zone or the yielding of tension steel. This 

leads to conclude that the beam failed in shear. To see how the beam failed,

the distribution of the principal compressive stresses (stresses greater than 3 MPa) 

are plotted in Fig. 8.7. In Fig. 8.7a, the distribution of the principal compressive 

stresses are plotted at load factor = 0.1. At this level of load, nearly all the 

principal compressive stresses were horizontal. The maximum stress was 7.71 MPa 

and its location was near the end of the beam. At load factor = 0.50 (Fig. 8.7b),

in the constant bending region, the principal compressive stresses (greater than 3 

MPa) disappeared from the bottom of the beam and developed at the top of the 

beam. In the shear area, the stresses became inclined and arranged diagonally 

from the support toward the vertical load point. At load factor = 0.95 (last

converged increment, Fig. 8.7c) the neutral axis moved up due to the flexural

cracking and the compression zone depth became smaller. The maximum principal 

compressive stress, which reached the value of f c\ was located in the shear area

(in the compression thrust between the support and the vertical load point) and it

was the cause of failure.
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Beam A2 ( DC/WD failure)

Beam A2 failed in DC/WD failure type at a load of 49.8 kN. This load was

also the critical cracking load for this beam; i.e. the beam failed quickly when the 

critical shear cracks formed. The predicted failure load of this beam was equal to

its experimental failure load. The observed crack pattern is shown in Fig. 8.8a. In

Fig. 8.8b, the predicted crack pattern and deformed shape at the last converged 

increment (load factor = 1.00) are shown, no shear cracks have formed up to this 

increment which agreed well with the observed behaviour. At increment 18 (load

factor = 1.05) the displacements were nearly infinity so that the deformed shape 

couldn't be drawn. By reducing the increment step after increment 17 to 1% of 

the initial load, the numerical failure occurred at load factor = 1.02. The deformed 

shape at load factor = 1.01, at which the convergence was not achieved and the

displacements were large, is shown in Fig. 8.8c which shows the large 

displacements that occurred in the elements in the shear span and under the

load point. Comparing this predicted deformed shape with the observed crack 

pattern (Fig. 8.8a) shows reasonable agreement. The stresses in the prestressing

steel at some load factors are shown in Fig. 8.9 and the stress-strain curve of

concrete at a Gauss point under the load point is shown in Fig. 8.10. These two 

figures show that the beam failure did not occur due to stresses exceeding neither 

in the compression zone nor in the tension steel. The beam failed in shear.

Beam E1 ( DC/WD failure)

This beam also failed in DC/WD failure type as the beam A2 described above. 

The a/d  ratio was 4.57 for beam A2 and 2.8 for beam E1. The observed crack 

pattern is shown in Fig. 8.11a. The predicted crack patterns and deformed shapes 

of this beam at the last two load factors (1.00, 1.05) are shown in Fig. 8.11b,c. 

The predicted crack pattern agreed well with the observed one. The predicted 

stress-strain curve of concrete at a Gauss point under the load point is shown in
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Fig. 8.12 and the predicted stresses in the prestressing steel at some load factors 

are shown in Fig. 8.13.

Beam A5 I DC failure)

Beam A5 had a a/d ratio of 2.28. It failed in DC failure type at a load of 97.9 

kN. The critical cracking load was equal to the failure load. The predicted failure 

load of this beam was higher than the experimental one by 15%. Fig. 8.14a shows

the observed crack pattern. Fig. 8.14b shows the predicted crack pattern and 

deformed shape at a load factor = 0.90, where no critical cracks formed. At a load 

equal the experimental failure load, the predicted crack pattern shows clearly the 

formation of the critical shear cracks (Fig. 8.14c). Despite this, the beam continued 

to carry more load up to a load factor of 1.15. Fig. 8.14d shows the crack 

pattern and deformed shape at this load level. The beam failed when the 

concrete in the compression zone under the load point crushed (Fig. 8.15). The 

predicted stresses in the prestressing steel at some load factors are shown in 

Fig. 8.16 which shows that the stresses are much less than the yield stress.

Beam A20 ( DC/WD FT failure)

Beam A20 failed in DC/W D/T failure type. Only two beams failed in this type of 

failure (A20 and A21). This beam was tested twice. The critical cracking loads in

the two tests were the same (equal to 82% of the failure load). The predicted 

failure load was lower than the experimental one by 15%. The predicted crack

patterns and deformed shapes at the last two increments (Load factors of 0.80 

and 0.85) are shown in Fig. 8.17. The stress-strain curve at a Gauss point 

under the applied load is shown in Fig. 8.18. Because the predicted failure load 

was less than the experimental one, no failure in the tension steel occurred as 

reported in this type of failure (Fig. 8.19), while the diagonal cracking in the

shear span was very clear (Fig. 8.17b).
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Beam C2 iW C  failure)

Beam C2 was tested twice. Two critical cracking loads and only one failure load 

have been reported for this beam. The two critical cracking loads were about

29% and 60% of the failure load which was 280.2 kN. This beam C2 failed in 

WC failure type. The predicted failure load of this beam was higher than the 

experimental one by 15%. The predicted critical cracking load was 65% of the 

experimental failure load. Fig. 8.20a shows the predicted crack pattern at load

factor = 0.65 at which the shear cracks started to form. The predicted crack 

pattern at a load equal to the experimental failure load is shown in Fig. 8.20b 

whereas the predicted crack pattern at the last increment (load factor = 1.15) is

shown in Fig. 8.20c. The predicted stress-strain curves at a Gauss point near 

the mid-span and under the load point are shown in Figs. 8.21. The predicted 

stresses in the prestressing steel at some load factors are shown in Fig. 8.22.

Beam D2 ( S C  failure)

Beam D2 failed in shear compression at a load of 100.5 kN which is 1.33 of 

the cracking shear load. The ratio of the predicted to the experimental failure of 

this beam was 0.90. The observed crack pattern is shown in Fig. 8.23a. The

predicted crack patterns and deformed shapes at the last two increments (load 

factors of 0.85 and 0.90) are shown in Fig. 8.23b,c. It is clear from Fig. 8.23 

that the model predicted the mode of failure of this beam to a good accuracy.

The flexural cracks started to propagate towards the load point and at the level

of the reinforcement the cracks propagated towards the support. The stress -  strain 

curve of concrete at a Gauss point near mid-span is shown in Fig. 8.24. The 

predicted stresses in the steel are shown in Fig. 8.25. These stresses are less

than the yield stress up to the numerical failure indicating that the beam failed in 

shear and not in flexure.
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8.3 Elzanaty. et al's beams

Elzanaty, et al. (1986b) tested 34 prestressed concrete beams using concrete with 

compressive strength up to 83 MPa. Half of these beams were designed for 

flexure-shear cracking (Cl series) and half for web-shear cracking (CW series). 

The beams were with and without shear reinforcement. Only the beams with 

shear reinforcement (16 beams) have been analysed here.

The beams were 4572 mm long with a span of 3810 mm. Two cross-sections 

were used. The beams had a constant a /d  ratio (3.8 for CW series, and 5.8 for 

Cl series). The reinforcement consisted of prestressed and unstressed. The 

prestressed reinforcement was 15 mm diameter made up of low-relaxation seven-  

wire Grade 270 strands. The area of this wire was 142 mm2 (the area was

taken from Seraj, et al. 1992). The stress at 1% extension was 1760 MPa. The

unstressed reinforcing bars used were deformed bars having yield stress of 434 

MPa for longitudinal reinforcement and stirrups, and smooth round bars of 6 mm 

diameter having yield stress of 379 MPa for top reinforcement. Single legged 

stirrups in the form of J" were used. The horizontal projection was placed 

alternately left and right in the flange (see Fig. 8.26). The beams were loaded by 

two-point loading. Unfortunately Elzanaty, et al. didn't give the shear span, the 

position of reinforcement, or the effective depth. The figures used were measured 

from the figures in the paper. Seraj., et al. (1992) analysed beam CW12 using 

a shear span of 1310 mm which was used here for the analysis of series CW 

beams. This shear span was calculated assuming that the effective depth is the

distance from the compression face to the centroid of the prestressed steel. Fig. 

8.26 shows the details of the beams.

The data required for the analysis are shown in Table 8.2 and the finite element 

meshes used are shown in Fig. 8.27.

The ratios of the predicted over the experimental failure loads are presented in 

Table 8.2. The mean value and standard deviation were 1.04 and 7.7%, respectively. 

All the predicted failure loads except two are within the range of 0.95 -  1.10 of
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Chapter 8 Prestressed concrete beams

the experimental failure loads. The predicted failure loads of these beams are 

plotted against the experimental failure loads in Fig. 8.28. This figure also 

presents the predicted failure loads of Arthur's beams.

Seraj, et al. (1992) predicted the behaviour of beam CW12, using a 3 -D  finite 

element model. In their analysis, the prestressed and unstressed main steel were 

smeared to the element edges and the compression steel were placed at the top 

edge of the beam. They predicted a value of failure load equal 323.38 kN which 

is 15% higher than the experimental failure load (281.11 kN). Seraj, et al. referred 

the higher predicted failure load to the modelling of the stirrups. This was 

because they assumed symmetrical stirrups in order to keep, as they said, the

computational efforts within the limit of available resources, while in the test the 

stirrups were arranged alternately in the flange. This modelling of stirrups, as they 

explained, introduced an additional confinement of the concrete. No attempt was

made by Seraj, et al. to rerun the beam again without this part of stirrups to 

support their explanation.

Using the present 2 -D  finite element model the predicted failure load of beam

CW12 was lower than the experimental failure load by about 5%.

The predicted crack patterns of Seraj, et al. at some increments are shown in 

Fig. 8.29. Elzanaty, et al. haven't reported the observed crack patterns of the 

beams but they mentioned that no cracks occurred up to the diagonal cracking

load which for this beam was 170.8 kN. Seraj, et al. predicted a diagonal

cracking load (182.8 kN) which is closer to the observed diagonal cracking load 

than the one predicted here (210 kN).

In Figs. 8.30 to 8.34, the predicted behaviours of beam CW12 are presented. Fig.

8.30 shows the predicted crack patterns and deformed shapes at some load 

factors. At the first increment (in which only the prestressed force was applied,

Fig. 8.30a), the beam deflected upward. At load factor = 0.65 (Fig. 8.30b), the
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Chapter 8 Prestressed concrete beams

beam deflected downward but without the formation of any cracks. At load factor

= 0.75 (Fig. 8.30c) the diagonal critical cracks occurred along the whole length of 

the shear span with an angle in the range 23 -30  degrees to the horizontal. With 

increase in the applied load, these parallel diagonal cracks propagated towards the 

loading point and the support and also the flexural cracks formed in the shear 

span. Fig. 8.30d shows the crack pattern and deformed shape at the last 

converged increment (load factor = 0.95) when the increment step was 5% of the

experimental failure load. From this it can be concluded that the beam failed in 

shear. By reducing the increment step after 0.95 of the applied load to 1% of 

the experimental failure load rather than 5%, the predicted failure load became 

equal to 0.98 of the experimental failure load. The crack pattern and deformed 

shape at that load level are shown in Fig. 8.30e in which the diagonal cracks

became extensive. Also, the flexural cracks in the shear span near the loading 

point propagated towards the loading point. All these predicted behaviours were

observed in the experiment.

Comparing the predicted cracks pattern of Seraj, et al. (Fig. 8.29) with that

predicted here (Fig. 8.30), it can be seen that representing the crack by a line 

with its length related to the strain normal to the crack makes the predicted 

crack pattern more clear than representing it by a line related to the mesh 

element dimensions as in the predicted crack pattern of Seraj, et al.

The predicted stresses in the prestressed, unstressed, and compression steel are 

shown in Fig. 8.31. Seraj, et al. haven't quoted the stresses in any reinforcement

to compare with the present analysis. The predicted stresses in the prestressing 

and non -  prestressing steel were much less than the yield stress up to the

numerical failure. The predicted stresses in the stirrups are shown in Fig. 8.32. 

The stirrups started to sustain load after the formation of diagonal crack and 

started to yield before the numerical failure. The numerical failure occurred due to 

the compressive stress of concrete in the compression zone under the applied 

load equal to f c'. This can be seen in Fig. 8.33 which shows the stress-stra in
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curve of concrete at a Gauss point under the applied load and near the m id- 

span of the beam.

Fig. 8.34 shows the distribution of the principal compressive stresses (greater than 

5 M P a )  at some load factors. Fig. 8.34a shows this distribution before the vertical 

load was applied (only the prestressing force was applied at this increment). Most 

of the stresses were horizontal and in the lower part of the beam. At Load

factor = 0.50 (Fig. 8.34b), the stresses started to disappeared from the bottom of 

the beam near the m id-span and developed in the upper part of the beam. The 

stresses in the shear area became inclined toward the load point. At load factor 

=0.75 (Fig. 8.34c), the depth of compression zone near m id-span started to 

decrease and the values of the stresses in the shear area were nearly equal to 

the values of stresses in the compression zone under the load point. At the last 

converged increment (load factor = 0.95, Fig. 8.34d), the stresses in the shear 

area nearly reached the value of f c ' as those in the compression zone under the 

load point. The principal compressive stresses in the shear area of this beam 

were more uniformly distributed than those stresses in beam A1 which was

without shear reinforcement (compare Fig. 8.7 with Fig. 8.34).

The predicted load -  deflection curve is plotted against the experimental one which 

was taken from Seraj, et al. (Fig. 8.35b). This predicted curve was modified since

at the first increment in which only the prestressed force was applied, the beam 

deflected upward, and not downward, by about 2 m m . This was because the 

prestressed force was placed under the centre line of the beam. This deflection 

(2 m m ) was subtracted from the deflection obtained at all increments. The predicted

load -  deflection curve of Seraj, et al. is shown in Fig. 8.35a.
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8.4 Conclusions

From the analysis of prestressed concrete beams it can be concluded that:

• The prediction of the behaviour of beams with shear reinforcement is better

than that of beams without shear reinforcement.

• Representing the crack to be proportional to the strain normal to the crack

leads to clarity of crack pattern than representing it by a constant line or a

line which is proportional to the mesh element dimensions.
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CHAPTER 9

REINFORCED CONCRETE TEE-BEAMS 

9.1 Introduction

In Chapter 5, a reinforced concrete Tee-beam  was analysed using 3 -D  and 2 -D  

finite element models and it was found that the 2 -D  finite element model is 

sufficient to predict the behaviour of this type of beam. In this chapter, more than 

twenty reinforced concrete Tee-beam s have been analysed using the 2 -D  finite

element model developed in chapter 6. These reinforced concrete Tee beams were 

with and without shear reinforcement having a /d  ratio varying from 3.3 to 10.4. 

The beams without shear reinforcement were tested by Kotsovos, et al. (1987), 

whereas the beams with shear reinforcement were tested by Taylor (1966).

9.2 Kotsovos. et al's beams

Kotsovos, et al. (1987) tested three types of reinforced concrete Tee beams. The 

beams were without shear reinforcement. Type I and II beams were 6600 mm

long with a shear span of 2500 mm, whereas type III beams were 3200 mm long 

with a shear span of 800 mm (Fig. 9.1). All the beams had the same Tee 

cross-section at mid span and a rectangular cross-section 200 mm wide x 290 mm 

high after the supports to the beam ends. In type II beams the rectangular

section extended to a distance of 1000 mm from the supports. The beams were 

under-reinforced with two 20 mm diameter high yield deformed steel bars (fv = 

540 MPa). The bars were welded at the ends onto steel plate to eliminate the 

possibility of anchorage failure. Also six 8 mm diameter mild steel links were used

after the supports to prevent splitting along the interface between the steel bars 

and concrete.
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Type I and II beams were subjected to tw o-point loading. Type III beams were 

subjected to both tw o-point and s ix-po in t loading. Two beams in each beam type 

were tested under the same loading configuration (i. e. a total eight beams were 

tested). Table 9.1 shows the data required for the analysis and Fig. 9.2 shows 

the finite element meshes used. Different thicknesses for the elements were taken 

depending on the element location. For example, the thicknesses of the elements 

which lie at the flange or at the rectangular cross-section were taken equal to 

200 mm.

Kotsovos, et al. reported the load-deflection curves for type III. In this type, two 

beams were tested under tw o-point loading and two beams were tested under 

s ix-po in t loading. In this reported load -  deflection curves, there was about 16 kN 

and 30 kN differences in the ultimate loads of the pair of beams with the same 

type of loading. This difference represents about 27% of the lower ultimate loads, 

which indicates that there was considerable scatter in the experiments.

Using the 2 -D  finite element model developed in chapter 6 and taking the tensile 

strain at which the tensile stress becomes zero ,£tmax , to be equal the yield 

strain of steel (see Fig. 7.12), the results of analysis are shown in Table 9.1. 

The mean value and standard deviation for the four beams were 1.05 and 14.7%, 

respectively. The worst prediction was for beam type II, the predicted to the 

experimental failure load was 1.25. Despite this it was noticed that at a load 

level a little greater than the ultimate load (load factor = 1.05), a large deflection 

was observed and also the number of iterations required for convergence in this 

increment was about 45 iterations (at other increments the number of iterations 

required was in the range of 1 -8  iterations), which means that a large number 

of cracks occurred at that level.

To predict the mode of failure of beams, the following points will be looked at in 

greater detail:
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Fig. 9.2 Finite element meshes for Kotsovos, et al's beams.
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• the crack pattern and deflection shape of the beam,

•  the stresses in the longitudinal reinforcement at some increments.

• the stress-strain curve of concrete at a Gauss point under the applied load

o r /  and at a Gauss point near mid span, and

• the stresses in the compression steel and in the stirrups, if they are present, at

some increments.

In the following, a brief summary of the predicted behaviours of the four beams 

are presented.

Beam KOTI

The results of the analysis of beam type I are shown in Figs. 9.3 to 9.6. The

observed crack pattern after failure is shown in Fig. 9.3a. The predicted crack

pattern and deformed shape at the last converged increment (load factor = 1.00) 

are shown in Fig. 9.3b. Fig. 9.3c shows the deformed shape at increment 18

(load factor = 1.05) at which the convergence has not been achieved, both the

crack pattern and deformed shape are drawn in Fig. 9.3d. It is clear from this

figure that the beam failed in shear. Large vertical displacements are shown in 

the elements which lie in the shear span above the middle of the beam and a 

combination of nearly horizontal and double cracks are observed also in this 

region. Comparing Fig. 9.3a and Fig. 9.3d shows that the predicted crack pattern

is in good agreement with the observed one. The stresses in the longitudinal 

reinforcement (Fig. 9.4) supports the fact that the beam failed in shear, since the 

bars haven't yielded up to the numerical failure load. The three curves drawn in

Fig. 9.4 are for the three load factors 0.95, 1.00, and 1.05. Fig. 9.5 shows the 

stress-strain curves of concrete at a Gauss point under the applied load (Fig.

9.5a) and at a Gauss point near the mid span (Fig. 9.5b). These curves show

that The stress of concrete has not reached the value of f cf up to the numerical

failure. All these signs indicate that the beam failed in shear.
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(a) Observed

8 5  2 5  31 0 7 9 4  
B1 K  A  f  - 17

(c) L. F. = 1.05

(d) L. F. = 1.05

Single crack 

Double crack

Crushing of concrete H

Fig. 9.3 Crack patterns and deformed shapes of beam KOTI
(displacements magnified x 10)
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Fig. 9.5 Stress-strain curves of concrete at a Gauss point (beam KOTI) 
(a) near mid-span (b) under the load point
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Beam KOTII

In Figs. 9.6-8, the predicted behaviours of beam type II are presented. Fig. 9.6a

shows the observed crack pattern for this beam after failure. Figs. 9.6b-d show

the predicted crack patterns and deformed shapes at three load factors (1.00,

1.05, and 1.25). By comparing these crack patterns and deformed shapes with

those of beam KOTI (Fig. 9.3), it can be seen that the critical cracks in beam

KOTI started from the support while in beam KOTII these cracks started from a

distance of about 1000 m m  from the support. This is because over this length

the cross section of beam KOTII is rectangular (see Fig. 9.1) and not Tee as in 

beam KOTI. Also in both beams KOTI and KOTII, no critical cracks occurred up

to a load factor = 1.0. At a load factor = 1.05, the critical cracks occurred in

both the beams but only beam KOTI failed, while beam KOTII continued to carry 

more load up to a load factor = 1.25. Fig. 9.7 shows that the stress at any 

point on the bar hasn't reached the yield point even at a load factor of 1.25.

The stress-strain curves of concrete at a Gauss point under the applied load and

at a Gauss point near mid span are shown in Fig. 9.8. The stress in concrete

is much less than f c\ From the above it can be concluded that the beam failed 

in shear.

Beam KOTIII2

This beam is type III where the load was applied as a two-point loading. The 

observed crack patterns at a load of 24 kN and after the failure are shown in

Fig. 9.9a-b, while the predicted crack patterns at a load factor = 0.65 (total load 

= 24.05 kN) and at the last converged increment (load factor = 1.05) are shown in

Fig. 9.9c-d. From Fig. 9.9d only, it can be concluded that the beam failed in 

shear. The stresses in the bar support this conclusion (Fig. 9.10). Also the

stress-strain curves at Gauss points under the applied load and near the mid 

span show that the stress in concrete is less than f c’ (Fig. 9.11).
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Fig. 9.9 Crack patterns and deformed shapes of beam KOTIII2
(displacements magnified x 10)
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Fig. 9.12 shows the distribution of the principal compressive stresses at two load 

factors (0.2 and 1.05). From this figure it can be seen that the cause of failure 

was the crushing of concrete in web in the shear area due to the compressive 

stress exceeding f c\

Beam KOTIII6

This beam is type III where the load was applied as six-point loading. Fig. 9.13a

shows the observed crack pattern after the failure. The predicted crack pattern is

shown in Fig. 9.13b. The stresses in the bar are shown in Fig. 9.14 and the

stress-strain curve at a Gauss point near the mid-span is shown in Fig. 9.15.

From these figures, it can be concluded that the beam failed in shear.

9.3 Taylor's beams

Taylor (1966) performed, on nine beams, 23 tests. All the beams were 3658 m m  

long. Some beams were tested only once, while some were tested two or three

times depending on the mode of failure of the beam. Beams for which the

maximum flexural capacity was reached (this was indicated by the strain readings 

for the steel bars) the test was repeated again after reducing the shear span. In 

the first group A of nine beams, eight beams failed in flexure, while the mode of 

failure of the remaining beam was anchorage failure. In test B (which consists of 

the eight beams failed in flexure in test A), two beams failed in shear and the 

others failed in flexure. In test C (six beams), three beams failed in shear and

three failed in flexure. Thus a total 23 tests were performed. The shear spans of 

the three tests were 1600, 1143, 914 m m , respectively (Fig. 9.16). In Test A, the

load was applied at mid-span. In Tests B and C, two point loads were applied.

All the beams had the same cross-section. The difference was in the 

reinforcement ratio, type of steel, and spacing of stirrups (Fig. 9.17).
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Fig. 9.13 Crack patterns and deformed shapes of beam KOTIII6 
(displacements magnified x 10)
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Fig. 9.15 Stress-strain curve of concrete at a Gauss 
point near mid-span (beam KOTIII6)
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Test A

5 ft 3 in.5 ft 3 in.

4 in.

_____________________  . J q

4 In.

----------------------------------r h--------------------------------------

T -
11

4 ft 3 in.

4 in.

r

4 ft 3 in.

4 in.

h i

------------------- ------------------------------- r V
t i

L  J
3 ft 4 in. 3 ft 4 in.

Fig. 9.16 Types of loading for Taylor's beams 
(1 in. = 25.4 mm)
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In each beam the amount of shear reinforcement in one half differed from the

amount provided in the other half (one being approximately 80% of the other). 

The greater amount was designed to enable the full flexural capacity to be 

attained when the beams were centrally loaded over a span of 3200 mm.

Although the title of Taylor's paper is 'Some shear tests on reinforced concrete T beams with

stirrups, in seventeen out of twenty-three tests the beams failed in flexure and only 

five beams failed in shear. Also, the difference between the shear failure and

flexure failure was not very large. For example, he classified the crack width to 

six descriptions; fine, prominent, very prominent, wide, very wide, and very

extensive and he considered the shear failure occurred only when the crack was 

described as very extensive (in one beam when web crushing occurred). Also, he

reported that the beams which failed in shear had also reached, or were very 

near to, their ultimate flexural capacity. So, some difficulty in the prediction is to

be expected in distinguishing clearly between the shear failure and the flexural 

failure for these beams.

The data of the beams required for the analysis are shown in Table 9.2. The

finite element meshes used are shown in Fig. 9.18. The ratios of predicted over 

the experimental failure load are shown in Table 9.2. The results of prediction of 

the failure load were good, the mean value and the standard deviation of the 23 

tests were 0.97 and 5.4%, respectively.

Taylor reported the observed crack patterns after failure for two beams only, beam 

ST1 under test A and B (named here as ST1A and ST1B) and beam ST2 

under test C (named here as ST2C). Also, Taylor reported the load-deflection 

curves for beams of test A.

In the following, a brief summary of the predicted behaviours of beams ST1 and 

ST2 are presented.
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Fig. 9.18 Finite element meshes for Taylor's beams.
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Beams ST1A&ST1B

The observed crack patterns after failure for beam ST1 under test A and B are

shown in Fig. 9.19a,b. Fig. 9.19a shows the crack pattern of test A where the 

beam failed in flexure, whereas Fig. 9.19b shows the crack pattern of test B 

where the beam failed in shear. The predicted crack patterns at the last 

convergent increment for the two tests A and B are shown in Fig. 9.19c,d. The 

difference between the two patterns is small, but the shear cracks in test B are 

slightly larger than that in test A. In Fig. 9.20, the stresses in the continuous

longitudinal bars at the last three increments are shown for the two tests. Again, 

a small difference between the results of the two test are observed. But in test 

A, the stresses in the bar is higher than those in test B, also the bar has

yielded at the last two increments in test A. Fig. 9.21 shows the stresses in the

cu t-o ff bar. The stress in the bar in test A is higher than in that in Test B.

Fig. 9.22 shows the predicted stresses in the stirrups at the last converged 

increments. The circle at a Gauss point means that the stirrup yielded at this 

point. The stresses in the compression steel and the stress-strain curves at a 

Gauss point under the applied load are shown in Figs. 9.23 and 9.24.

Beams ST2A. ST2B. and ST2C

Taylor reported the observed crack pattern after failure for beam ST2 in Test C 

only (Fig. 9.25c). The predicted behaviours of the three tests (A, B, and C) of

beam ST2 are shown in Figs. 9.25 to 9.29.

Fig. 9.25 shows the crack patterns. The shear crack in the crack pattern of test

C is more critical than the shear crack in the crack patterns of tests A and B.

The stresses in the tension steel at the last three increments are shown in Fig. 

9.26. Again like beam ST1 in case of flexural failure (beams ST2A, ST2B), the 

tension steel has yielded at the last two increments while in shear failure (beam 

ST2C) the steel has yielded at the last increment only. The stresses in the

compression steel at the last three increments are shown in Fig. 9.27. As the
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(b) Observed 
(Test B)
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Single crack 

Double crack

Crushing of concrete

Fig. 9.19 Crack patterns and deformed shapes of beam ST 1
(displacements magnified x 10)
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Fig. 9.25 Crack patterns and deformed shapes of beam ST2
(displacements magnified x 10)
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supports move toward the mid-span, the stresses in the compression steel change 

from compression to tension above the support. The stresses in the stirrups at 

the last converged increments are shown in Fig. 9.28. The stress-strain curves at 

a Gauss point under the applied load are shown in Fig. 9.29.

Finally the observed and predicted load - deflection curves for three beams (beams 

ST1, ST6, and ST9) are plotted in Fig. 9.30. The predicted failure loads are 

plotted against the experimental failure loads in Fig. 3.31. Assuming the predicted 

failure load of a beam equal to 80% of the numerical failure load makes all the 

predicted failure loads of the Tee beams conservative.

9.4 Conclusions

• In this chapter, the 2 -D  finite element model developed in chapter 6 has been

used to predict the behaviour of reinforced concrete Tee beams with and 

without shear reinforcement. The results of prediction of the ultimate loads and 

the mode of failures are in a good agreement with the experiments in most 

of the cases.

• In some cases the model was not able to distinguish between the shear failure
V,

and the flexural failure, and this is not completely the fault of the model but 

due to the vague description of the mode of failure of the beam.
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 General conclusions

The main conclusions from the results presented in this thesis can be summarised

as follows:

1. From the comparison that has been made between 2 -D  and 3 -D  finite

element models it was found that, the 2 -D  finite element model is sufficient

to predict to good accuracy the behaviour of reinforced concrete rectangular 

and Tee beams. The stresses in the direction perpendicular to the plane of 

the beam are not large enough to significantly affect on the prediction of 

the beam's behaviours. It was found that adjustment of the parameters that 

affect the prediction in the model itself was more significant for the correct 

prediction than the choice of 2 -D  or 3 -D  model.

2. From studying the effect of shear retention factor, p, the following general 

conclusions can be drawn:

• Large value for P may lead to an overestimation of the failure load. It

may also lead to the predicted mode of failure for beams which fail in 

shear being flexural rather shear.

• Assuming P as a function of the strain normal to the crack is more 

acceptable than assuming it as a just numerical constant especially for

* the analysis of beams which failed in shear.

• In the finite element model which took the tension softening of concrete

into account, the effect of P was more significant than in that model 

which was based on tension cut-off criterion. This was because the two
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models created different states of stresses after cracking. This dependency 

of (3 on the model itself explains why most of the previous finite

element models concluded conflicting results about the effect of [3.

In some classes of beams the following conclusions can be drawn:

• Beams without shear reinforcement:

- In beams having a small a/d ratio, P had a very significant effect on

the prediction of the failure load (25 -  125% of the experimental failure

load).

- In beams having a high value of compressive strength of concrete, p

had a very significant effect on the prediction of the failure load (up to 

100% of the experimental failure load).

• Beams with shear reinforcement:

-  In beams having a high a/d ratio and high percentage of shear 

reinforcement (which was expected to fail in flexure), P had little or no effect

on the predicted behaviours.

-  In beams having a small a/d ratio, P had a significant effect on the

predicted failure load (10 - 25% of the experimental failure load).

3. From a study of the effect of tension softening of concrete on the prediction 

of the behaviour of reinforced concrete beams the following conclusions can 

be drawn:

• Taking tension softening into account was economical because it reduced 

the number of iterations required to achieve convergency.

• In beams with shear reinforcement having a high a/d  ratio and high

percentage of shear reinforcement, taking tension softening into account 

had very little effect on the predicted failure load, the mode of failure,

and the load deflection curve.
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• In beams without shear reinforcement having a high a/d ratio, taking 

tension softening into account had little effect on the predicted failure 

load although it improved the load deflection curve

• In beams without shear reinforcement having low a/d  ratio taking tension

softening into account had a significant effect on the predicted failure 

load (20-35% of the experimental failure load). Also in these beams the 

strain at which the tension softening was terminated had a significant 

effect on the predicted failure load.

4. From a study of the effect of tensile strength of concrete on the prediction 

of reinforced concrete beams:

• In general, the less the assumed value of the tensile strength the less 

the predicted failure load. Also, the less the assumed value of tensile 

strength the less the scatter in the prediction.

• The tensile strength of concrete had very little effect on the prediction of 

the behaviour of beams having a high a/d ratio and high percentage of 

shear reinforcement which failed in flexure.

• It had a significant effect on the prediction of the behaviour of over 

reinforced beams without shear reinforcement which was expected to fail 

in shear

• It had a very significant effect on beams without shear reinforcement 

having a/d ratio less than 4.

5. From a study of the effect of maximum compressive strain of concrete it 

was found that:

In beams without shear reinforcement assuming the concrete to be crushed 

immediately after it reached the peak of stress with a maximum compressive 

strain £max of

Emax~ 2500

gave good results.
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In beams with shear reinforcement assuming the concrete to be crushed

when the maximum compressive strain cmax reached to a value of 0.005 

gave satisfactory results.

6. From a study of the effect of compression softening of concrete the following 

conclusions can be drawn:

•  This effect was more important in beams having a high percentage of

shear reinforcement, a high value of a/d ratio, and a low value of the 

compressive strength of concrete.

•  The shape of the curve in the descending portion of the stress-strain

relationship had less effect on the prediction than the value of the

compressive strain at which the concrete was assumed to be crushed

(£wax)-

7. From the analysis of reinforced concrete T-beams it was found that:

• The essential features of the behaviour of Tee beams were predicted to

a good accuracy using the 2 -D  finite element model. Neglecting the

stresses variation in the flange had no significant effect on the prediction.

• The prediction of the behaviour of Tee beams with shear reinforcement

was more accurate than the prediction of the behaviour of beams without 

shear reinforcement.
c . . /

8. From the analysis of prestressed concrete beams the following conclusions 

can be drawn:

• Like the reinforced concrete rectangular and Tee beams the prediction of

the behaviours of beams with shear reinforcement was better than the 

prediction of the behaviours of beams without shear reinforcement.

• Assuming the effective prestressing force as a constant horizontal load

applied to the beam in the first load step seemed to be acceptable.

Also modifying the stress strain curve of the prestressing reinforcement by 

subtracting the effective prestress and treating it as unstressed steel

reasonably simulated the actual behaviour.
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9. From Fig. A1 (Appendix A) it is clear that the mesh used in the analysis is fine 

enough for the results to be only marginally affected by mesh dependency.

10. Finally, this thesis introduces a 2 -D  finite element model which can be used 

to predicted with satisfactory result the behaviour (e.g.; the ultimate load, the 

load-deflection curve, and the mode of failure) of reinforced and prestressed 

concrete beams. In this model the concrete and steel are modelled as 

follows:

• Concrete: is assumed to be elasto- plastic in compression and linear elastic in 

tension with a softening in both tension and compression as follows:

(i) Compression: The stress-strain relationship of concrete in compression is 

assumed as shown in Fig. 10.1. In the analysis of beams without shear 

reinforcement, no compression softening is assumed (Fig. 10.1a). In the 

analysis of beams with shear reinforcement, a straight line with very small 

slope is assumed for the descending portion as follows (Fig. 10.1b).

where f c ' in MPa

(ii) Tension: The stress-strain relationship of concrete in tension is assumed 

as shown in Fig. 10.2. The tensile strength of concrete f t ' is estimated 

from the compressive strength f c ' as follows.

The equation which represents the descending portion of the stress-strain 

curve is.

£ < 0.005 (10.1)

ecc= I  2500

f t MPa (10.2)

(10.3)
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where zcr is the initial cracking strain of concrete and zs is the yield

strain of steel used (s5~20 zcr for normal steel and 50 zcr for prestressing

steel).

(iii) Shear: After cracking, the shear retention factor p is assumed as a function

of the strain normal to the crack zn as follows (Fig. 10.3).

• Steel: is assumed to be elastic perfect plastic in tension and compression with 

the maximum stress equal to the yield stress. Fig. 10.4 shows the stress-

strain curves of the normal and the prestressing steel.

The results of the model for more than two hundrads reinforced and prestressed

concrete beams with and without shear reinforcement are shown in Fig. 10.5.

10.2 Recommendations for future work

This section recommends further work as follows:

1- Although the present equation (Eq. 10.4) used for shear retention factor gave

acceptable results in most of the cases there is a need to study other

equations obtained from the shear tests on concrete.

2 - The compressive strain at which the concrete is assumed to be crushed

needs more investigation. It is believed to be related to the percentage of

reinforcement in reinforced concrete structure.

3 -  Further extensive analysis of the available test results, particulary for beams with

shear reinforcement needs to be completed.

P = 0.4 ^  > 0.0
S yj

(10.4)

•  Young's modulus of concrete is taken as follows.

E M Pa
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G
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0.005 £/ 2500

Fig. 10.1 Assumed stress-strain curve of concrete in compression
(a) for beams without shear reinforcement
(b) for beams with shear reinforcement

1 ■crc rcr=  —

0
0

e / / £ cr

Fig. 10.2 Assumed stress-strain curve of concrete in Tension
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P = G/Q
1.0 —
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Fig. 10.3 Shear retension factor p
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Fig. 10.4 Assumed stress-strain relationship for reinforcement 
(a) Prestressed (b) Ordinary
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Appendix A 

Effect of number of elements on the prediction
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Fig. A1 Effect of number of elements on the prediction.
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