A Configurable
Data Modelling System

Qin Zhenzhou

A thesis submitted to the Faculty of Science,
University of Glasgow
for the degree of Doctor of Philosophy

December 1995

© Qin Zhenzhou, 1995

ProQuest Number: 13832080

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 13832080

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 — 1346

Abstract

User interaction facilities are usually the weakest component of database
management systems (DBMS). They are typically few in number and poor in quality as
compared both to other features of DBMS and to user interaction facilities for other kinds
of software. One cause for this is that adding further mechanisms to a DBMS requires
tedious and repetitive programming effort in the context of a complex system.

The Configurable Data Modelling System (CDMS) attempts to get round this
problem by providing an environment in which interaction facilities can be built more
straightforwardly.

The CDMS considers a user interaction facility to be the pairing of a conceptual
data model with a concrete user interface. The CDMS provides a generic data model,
comprising elements for describing data structures, constraints and behaviour, together
with one menu driven system for creating conceptual models as instances of the generic
model and another for creating user interfaces to each data model thus generated.

This thesis describes the important features of the system. The thesis discusses
the main difficulty in creating such a system; that is, obtaining a consistent and coherent
analysis of all of the components which might be housed in a DBMS.

Apart from a theoretical analysis of the relevant issues, the research presented in
this thesis has also established a prototype to test the theory. The research has been
undertaken in a persistent programming environment. Persistent language technology has
enabled the construction of a sophisticated and well-integrated CDMS. At the same time,
the research has enhanced persistent programming environments with models,
methodologies and tools that are crucial to the exploitation of persistent programming in

construction and maintenance of long-lived, data-intensive application systems.

Acknowledgements

First of all I am indebted to my supervisor Richard Cooper for his continuous
guidance, encouragement, enthusiasm and source of ideas. His support, whatever the
issue, is very much appreciated. I am also grateful to Malcolm Atkinson, Ray Welland and
David Harper for their advice and support.

I would also like to acknowledge my colleagues in Glasgow, in particular Paul
Philbrow, Phil Trinder, Moira Norrie, David Kerr, Daniel Chan, David England, Dag
Sjoberg, Jodo Lopes and Artur Serrano. The discussions with them have helped the
understanding of the issues of this research. Some of the work was performed
collaboratively with Lay Khim Tan, Yng Tai, Daphne Lee and Rowena Lum, whose
collaboration I acknowledge with gratitude.

It is appreciated that the Napier88 system, provided by the St Andrews
persistent programming team, led by Ron Morrison, is an excellent system, without which
the implementation in this research would have been very difficult.

It is the financial support by COMANDOS II (Construction and Management of
Distributed Open Systems, ESPRIT project 2071), FIDE (Fully Integrated Data
Environment, ESPRIT project BRA6309), CDM (Configurable Data Modelling, SERC
Research Grant H17671) and IOPT (Introduction of Process Technology, ICL project) that
made this research possible. '

My wife, He Yu, and my son, Qin Jian, have also shown a level of love and
support which is exceptional and without which this thesis would not have come to be.

Contents

1 Introduction 1
1.1 Database and Database ACCESS ov v vt 1
1.2 Configurable DataModelling 3
1.3 Research Procedure P 7
1.4 Structureof Thesisc.. i, 8
2 The Usability of Database Systems 10
2.1 Databases and Database Systems 10
2.1.1 WhatisaDatabase?c0vi i 10
2.1.2 The Architecture of Conventional DBMS 12
2.1.3 TheActivitiesRequired 14
2.2 UserInterfacetoDBMS 15
2.2.1 StylesofInterface i, 15
2.2.2 Database Programming Languages 16
2.2.3 InterfaceIndependence 17
2.2.3.1 Dialogue Component and Computational Component 17
2.2.3.2 The Advantage of Interface Independence 18
2.2.3.3 Requirements Arising from Dialogue Independence 19
2.2.4 Configuring the User Interface 21
2.3 DataModelling0iiiii i e e 22
2.3.1 WhatlsaDataModel? 22
2.3.2 AnOverviewof DataModels 24
2.3.3 The Object-Oriented Approach 32
2.3.4 The Componentsof DataModels 35
2.3.5 ConfiguringDataModelling 35
2.4 FederatedDatabasesc.iiiiiineininien.. 36
2.4.1 The Characteristics of Federated Database Systems 36
2.4.2 DataSharing Approaches 37
2.4.3 Database Conversion ottt 37
Contents 1

2.4.4 Schema Transformation and Transaction Translation 40

2.5 Conclusionsttt e e e e e 46
3 Configurable Data Modelling System 48
3.1 Motivation and Feasibility 48
3.2 Data Modelling Process and Methodology 49
3.2.1 A Database as an Instance ofaDataSchema 49
3.2.2 A DataSchema as an Instanceof aDataModel 52
3.2.3 The Global Model as Generalisation of Data Models 53

3.3 CDMSSHUCIUIE . . .ottt ettt e e et e e e et e e e et e e e 55
3.4 Modelling Primitives and Data Model Configuration 58
3.5 Dealing with Constraintsinthe CDMS 60
3.6 Dealing with Behaviourinthe CDMS 62
3.7 Interaction Elements and Dialogue Primitives 62
3.8 CDMSFunctionalityt iiinnnnnnnn. 64
3.9 RelatedWork i e 65
4 Constraints in the CDMS 68
4.1 Some Basic Conceptsof Constraintsoviun.n. 70
4.1.1 TheRole of ConstraintsinaDBMS 70
4.1.2 Constraints as Predicates, 71
4.1.3 The Managementof Constraintsvvuu... 71
4.1.4 PlacementofConstraintsociuvueiurn... 72

4.2 Constraints in the CDMS Architecture 73
4.2.1 Some Introductory Examples 74
4.2.2 Constraint Architectureinthe CDMS 75
4.2.3 FurtherExamples 79

4.3 Varieties of Integrity Constraints 84
4.3.1 Schema-Data Constraintsc0uiuen... 85
4.3.2 Model-Dataconstraintsou e, 91
4.3.3 Global Data Constraintsc..uuenenmuneenenn.. 95
4.3.4 MetadataConstraintsuvientnanan... 96
4.3.5 Meta-metadataConstraints, 99

4.4 Constraint Configurationinthe CODMS 101
4.4.1 Constraint Configuration 101
4.4.2 Constraint Specification 105

Contents 2

4.5 Constraint Managementc.v it rnnnann... 108
4.5.1 Some Concepts of Constraint Management 108
4.5.2 Simple Constraint management 110
4.5.3 Constraint Management using Transactions 111

4.6 SUMMATY . .ot v ettt e et et et e et e e 113

S Behavioural Issues 115

5.1 Active Objects in Semantic Data Modelling 116

5.2 Transactionsas ActiveObjects 119
5.2.1 Database Transactionsc.ouieuuneenneen.. 119
5.2.2 Transactions and Concurrency Control 119
5.2.3 Transactions in Relation to Constraints 120
524 Conclusion P 121

5.3 Process Support System e 121
5.3.1 Role-Activity Diagram 123
5.3.2 Process ManagementLanguage 126
5.3.3 Process Support Environment 128
5.3.4 Implementing a ProcessModel 130
5.3.5 Conclusionsc.ouiiiiti 131

5.4 Computation in Database Systems 131

5.5 Active Database Systems i it 134

5.6 Summary of Behavioural Issues, 135

5.7 The Behavioural Aspectof CDMS 136
5.7.1 Categorisation of Active Objects 136
5.7.2 Examples of Configuration of Active Objects 138
5.7.3 Using the Configured Functionality 141

5.8 Conclusions e e 142

6 The Platform for Implementing the CDMS 143

6.1 Persistent Programming Systems i, 143

6.2 PS-algol e 145
6.2.1 OVEIVIEW . . ittt ittt it it e 145
6.2.2 ThePS-algol TypeSystem iieo... 146
6.2.3 UsingPS-algol 147
6.2.4 DISCUSSIONo i it e 148

Contents 3

6.3 Napier88 e e e e 151

6.3.1 OVEIVIEWttt e e e 151
6.3.2 TheNapier88 Type Systemc.cvvnn..... 152
6.3.3 Useof Napier88, 154
6.3.4 DisCUSSIONoi it e e 154

6.4 Napier88 Library i e 155
6.4.1 TheNapier88 Compiler 155
6.42 TheBulkValues i, 155
6.4.3 WIN 156

6.5 The Advantages of the Persistent Approach 158
7 The Design and Implementation 161
7.1 Implementation OVerview iiieennennenn .. 162
7.2 Program Architecture i 163
7.3 TheGlobalModel i 168
7.4 The Instantiation Process, 168
7.4.1 The CreationofaDataModel.......................... 168
7.4.2 AddingtheUserInterface 169
7.4.3 CreatingaSchemaandaDatabase. 170

7.5 Storage StruCtureo vttt it ittt et i 170
7.6 The User Interface to the CDMS Program 173
77 Current Status oot e e e e e 178
7.8 DISCUSSION . . oo vt ittt e 179
8 The Application of the CDMS 180
8.1 Introductionttt 180
8.2 Meta-metadata Syntaxt 181
8.3 Constructing the RelationalModel 185
8.4 Constructing the Entity-RelationshipModel 189
8.5 Constructing the Functional DataModel 195
8.6 ConstructingIFO e 198
8.7 Conclusionsii it e 205
9 Conclusions 206
9.1 Contributionsttt e e 207

Contents 4

9.2 Further Work

Bibliography ...

Contents

Figure 2.1
Figure 2 2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

List of Figures

List of Figures

External Dialogue and Internal Dialogue 18
User Interface Configuration 21
A Schema in the Semantic Binary DataModel 25
A Schema in the Entity-RelationshipModel 26
A Schema in the Functional DataModel 29
ASchemainIFO i 31
Database Conversion Approach 38
Database Systems with Database Conversion Approach 39
Schema Transformation Approach 40
Single ML to Single ML Mappingccoviinen... 42
Multiple MLs to Single ML Mappingcovvivun.... 43
Single ML to Multiple MLs Mappingc..cvvuuenn... 44
Multiple MLs to Multiple MLs Mapping 45
ALibrarySchema i e 50
AlLibraryDatabase 51
ASimplifiecd ERModel 53
The Global DataModel 54
Combination Ability of Connection Types 55
Overall Structure of the CDMS 56
Specialisation of Generic Data Modelling Primitives 59
Interface Definition0 .. 63
Constraint Structure inthe CDMS 71
Constraint Specification 79
Schema Inherent Data Constraints 80
Model Implicit Data Constraintsc.oviuunenn.. 81
Model Inherent Data Constraintso.... 82
Model Inherent Metadata Constraints 83
Global Inherent Meta-metadata Constraints 84
Data Constraints ina Simple ER Schema 85

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11

Figure 6.1
Figure 6.2

Figure 7.1

Figure 7.2
Figure 7.3

List of Figures

A Database Using the Simple ER Schema 85
An Example of Disjoint Specialisation 88
An Example of Covering Specialisation 89
An Example of Disjoint Covering Specialisation 89
An Example of Connection Classes Combination Cardinality 90
Connection Class Cardinality at Type 91
Generalisation of the [IFOModel 93
GeneralisationinanIFOSchema 94
Grouping of the IFOModel, 94
Aggregatingofthe IFOModel 95
AGlobal DataConstraintc.cviniunnennen... 96
Model-Metadata Constraintsc..oivienneen ... 97
AnInvalid Pattern inIFOSchema 99
A Global Meta-Metadata Constraint 100
Configuration of Data Constraints 102
Configuration of Metadata Constraints 104
Specification of ConstraintsinaModel 106
Specification of ConstraintsinaSchema 107
Constraint Suspension and Re-Imposition 111
ASampleRAD e 125
RADNOtAtIONSottt et ettt e e it e e 126
A Sample PML Program, 128
An Action Agenda Window i, 130
ADialogue Window i, 130
ALibrarySchema i 133
AlLibraryDatabase i iy 133
Active Objectsinthe CDMS it 137
Transactionttt e e 138
Thread, Roleand Process 139
Model Manipulation Schemainthe CDMS 140
DeclarationsinPS-algol, ... 147
Declarations in Napier88 152
Program Architecture i 164
Software Modules i 166
Storage StruCtureot e 171

Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13
Figure 8.14
Figure 8.15
Figure 8.16
Figure 8.17
Figure 8.18

Figure 9.1

List of Figures

TheCDMSMainMenu i iiiininennnnn.. 174
A SchemaEditingWindow 176
A Schema Display Window 177
An Interface Editing Window 178
L00) 1] ¢ 1 et 182
Metadata Constraintsottt ennnnnnn 182
Data Constraints (PartI) 183
Data Constraints (PartIT) 184
The Relational Model - Constructs 187
The Relational Model - Metadata Constraints 188
The Relational Model - Data Constraints 188
The Entity-Relationship Model - Constructs 191
The Entity-Relationship Model - Metadata Constraints 192
The Entity-Relationship Model - Data Constraints 193
Exclusive Alternative Relationship, 194
The Functional Data Model - Constructs 196
The Functional Data Model - Metadata Constraints 197
The Functional Data Model - Data Constraints 197
TFO-COnStructso vt v it et it e it ettt et e e e 201
IFO-MetadataConstraintsttt nennennnn 202
IFO - Data Constraints (PartI) 203
IFO -DataConstraints (PartI) 204
Comparison betweenthe CDMS andFDSs 208

1 Introduction

This thesis develops a theory of semantic data modeling, which is based on the
decomposability and reconfigurability of semantic data models and human-computer
interfaces. The theory takes constraints as special values and treats both data structure
and behaviour consistently.

A prototype system is established as the theory is developed. The system
enables its user to configure data models as well as interfaces, to specify data schemata,
and to manipulate data, all in a way which keeps the model apparent.

1.1 Database and Database Access

Database technology grew out of an attempt to facilitate the development of
data intensive applications. The technology factors out the common elements of such
applications, so as to raise data processing quality and reduce redundant work in the
implementation of the applications. Database technology has made a major impact on the

growing use of computers.

A Database Management System (DBMS) provides centralised
functionality for storing, retrieving and updating data in various ways. The architecture of
a DBMS can be discussed in a three-layer framework, which consists of a physical layer, a
conceptual layer and an external layer. The physical layer deals with the details of data
storage; the conceptual layer handles the centralised functionality of the system; the
external layer provides various ways in which different users access the relevant data.

Data, mirroring a particular part of the real world or a miniworld, is
organised in an appropriate data schema; a data schema, reflecting the relatively stable

Chapter 1 1 Introduction

structure of the miniworld, is described in an appropriate data model; a data model
abstracts the common constructs of various miniworlds. Conversely, a data model acts as
a sort of language which is used to describe a variety of data schemata, while a data schema
provides a framework so that the relevant data can be organised in a comprehensible
manner.

One way of thinking about the relationships among model, schema and database
is that a data schema is an instance of the set of structures describable using the relevant
data model, and a database occurrence is an instance of the set describable using the
relevant data schema. In other words, a schema consists of specialisations of components
of a model, whereas a database consists of specialisations of components of a schema.

A trend of recent database research has been the development of semantic
data models. A semantic data model captures the semantics of an application by using
constructs close to those used by human beings to recognise and describe the real world,
thus provides richer data structuring capabilities. Various miniworlds possess distinct
properties. Apart from this, it is possible to describe the same miniworld from different
points of view. It is therefore natural that a variety of semantic data models have evolved,
which differ from each other primarily in the orientation and extent of detail with which
data can be defined [Hull and King, 1987; Peckham and Maryanski, 1988]. Each data
model, as with any particular language, may have its distinct advantages and
disadvantages, meeting special needs of a certain category of application circumstances,
and being preferred by a certain group of database users. In most cases, however, a broad
spectrum of alternatives will probably be available.

A DBMS usually provides a very restricted set of user interfaces and data
models to allow its users to access the relevant schemata and data; that is, to define and
modify the data schemata, as well as to store, retrieve and update the data. For instance, a
relational DBMS might provide a query language and form-interface built on the relational
model together with a schema design tool built on some flavour of ER model. Such a
system therefore has three interaction facilities. A model coupled with an interface forms
an interaction facility to the functionality of a DBMS. Conventionally, in creating a
DBMS, each implementation of a particular interaction facility requires a separate
programming effort.

The Laguna Beach Report and its follow-up state that there is very little research

on 'investigating better end user interfaces to databases or better application development
tools' [Laguna Beach, 1989; Stonebraker et al, 1993]. It seems to be a crucial handicap

Chapter 1 2 Introduction

that constructing a system requires 'a mammoth amount of low-level code', with each
implementation for each interface facility being a distinct programming task. In other
words, the techniques with which DBMSs are implemented are not sufficient for treating

data management and interface management consistently.

One kind of tool which has been designed to overcome precisely this problem is
the User Interface Management System (UIMS) [Hartson and Hix, 1989]. A UIMS
is a piece of software which deals with human-computer interaction (HCI) in a
systematic way. This approach attempts to isolate the dialogue component as a
structured set of interaction elements such as 'input a string', 'output an integer' and so
on. The principal idea here is to sort out the basic dialogue primitives which may be
appropriately selected and coupled with interaction elements to produce suitable interface
for a particular application. The UIMS is designed to allow the user interface to be
customisable. When UIMS methodology is combined with knowledge of database
functionality, it successfully attaches interface configurability to a DBMS [King and
Novak, 1989; Brown et al, 1990].

Cooper extended this idea a step further. In his original paper [Cooper, 1990],
he indicated that Hull and King [Hull and King, 1987] demonstrated that 'semantic data
models are also based on a common set of operations, which could be regarded as primitive
to them in just the same way as "get a string" is to the interface." Then he stated that
'Given a sufficient set of primitive operations, the user could "build" a data model suitable
to the application in hand, rather than be constrained by the data models actually present in
the system'.

The research presented here is an attempt to manage the set of interaction
facilities available in a DBMS by enabling them to be created by configuring out of
components, both the model and the user interface.

1.2 Configurable Data Modelling

In [Cooper, 1990], Cooper outlined the methodology for designing and
constructing a system that provides generic data definition, data manipulation and data
retrieval operations, and generic dialogue primitives for realising these operations, as well
as generic object types, relationships and constraints. A model designer bases his or her
desired data model on such a system by deciding which generic data modelling primitives
should be involved and how these should be specialised in a particular data model; an

Chapter 1 3 Introduction

interface designer bases his or her desired interface on such a system by deciding which
dialogue primitive should be allocated to each interaction element for an operation.

The initial implementation, however, was very limited, dealing only with
graphical operations for designing the structural aspects of a schema. To prove the full
generality of the concepts, it is essential to add data manipulation and querying, and it is
also essential to manage constraints and behaviour. In order to accomplish the latter, it is
necessary to undertake analysis of constraints and behavioural components which is similar
to that achieved by Hull and King for the structural aspects.

The intention of creating the CDMS is to set up a system which is expected to
have the ability to allow its user to describe his or her data structure using suitable data
models, which themselves can be defined within the system, and the ability to allow its
user to access his or her schema and data through suitable interfaces, which themselves can
also be defined within the system. In this way, a single system can be used for a broad
spectrum of purposes by a wide variety of users whose levels of skill and points of interest
will be different. Some usage will involve very detailed facilities for complex operations,
while other usage will be more superficial. Although it is not possible to construct a
complete set of data modelling primitives and dialogue primitives, the CDMS will be based
on generalisation of a number of prominent data models and typical interface styles. In
short, the CDMS is expected to provide proper centralised facilities supporting a number of
interaction facilities, which are built with reference to a central data model and can thus be
created in a single implementation.

In summary, the purpose of the research presented in this thesis is to facilitate
the organisation of and access to semantic or conceptual databases. For this purpose, a
practical theory has been developed. The foundation of the theory, as has been mentioned,
is decomposability and reconfigurability of data models and interfaces. The theory takes
the form of a meta-model called the global model. The global model is made up of
highly abstract and unconstrained constructs for each of the categories of information
which can be modelled using CDMS. The methodology for using the global model is built
around a four level architecture: the global level on the top, the data level at the bottom,
and the model and schema levels between. This theory of semantic data models used in the
design not only deals with the conventional static values but also extends this ability to
dealing with behaviour and constraints, which are all treated here as values in a consistent
manner. Theoretically, this research will provide a framework against which the
comparison of various semantic data models could be conducted; practically, the

Chapter 1 4 Introduction

implementation of the idea offers a relatively easy way to incorporate the behaviour of
various semantic data models into a DBMS.

The extension from the purely structural aspects is necessary to provide a
complete account of data modelling. Constraints are vital since they carry much of the
semantics of an application. The purpose of data modelling is to allow the clear
specification of the miniworld. Constraints should form part of that clear specification
rather than be buried in application code.

Therefore, this research emphasises the integration of the treatment of
constraints within the overall framework. One of the most difficult problems in setting up
the desired system is that there are many categories of constraints which occur scattered
throughout a DBMS, some being inherent properties of the DBMS, others being implicitly
or explicitly specified by individual users. Textbooks tend to spread descriptions of the
categories of constraints available throughout accounts of the various features of database
systems. Integrity constraints get the most thorough treatment, for example, in section
20.2 of [Elmasri and Navathe, 1989]. Ricardo provides a shorter account which includes
the statement 'Most database systems are lacking in their ability to express constraints'
[Ricardo, 1990]. Without such ability, unfortunately, database users would have to carry
out ad hoc programming of their application to ensure that all aspects of the domain being
automated are captured. In order to manage fully the information required by a number of
data intensive applications, the CDMS must be able to manage constraints in a systematic

way.
Similarly, the behavioural aspect of the application needs a clear specification.
The shift to object orientation is a response to the understanding that complex applications
require a system in which the behaviour is more coherently integrated. The CDMS
approach includes the provision of behavioural constructs at the global level which may be
included into the data model. This has several specific advantages:
* the operations which provide access to the data model can be configured;

* constraint management can be configured; and

* behavioural components can be included in the model - for instance triggers,
transactions and exceptions could be included in a particular model.

Chapter 1 5 Introduction

Similar to the idea that a data model can be seen as a language to specify various
data schemata, the global model of the CDMS can be seen as a language to specify
various data models and interfaces. As the global model is the highest level abstraction of
all miniworlds and interfaces in the context of the CDMS, a proper set of specialisations of
components of the global model will constitute a concrete data model or a concrete

interface.

Due to the diversity of the ever changing real world, and the diversity of user
views of this world, it is not feasible to invent an all-embracing system. Therefore, it is
impractical to attempt to set up a single universal data model to encompass all database
applications. Nevertheless, it is desirable and feasible to find a relatively comprehensive
set of data modelling primitives and dialogue primitives and build, based on these, a
practically usable system which will support most prominent data models and interface
styles in present use. That is to say, the CDMS will be based on generalisation of most

existing semantic data models and interface styles.

A prototype has been set up to demonstrate the strength of the theory. The
prototype system involves structural data modelling constructs, relevant constraints, as well
as minimal interface facilities, so that the system will permit its user to configure data
models and interfaces, specify data schemata, and manipulate data, including constraints at
corresponding levels, visibly in the sense described below. The operations which realise
these functions, including transactions for constraint management, will appear in the
system as 'active' values which may be defined in a similar way.

The prototype makes the architecture transparent by making visible the
instantiation history of a value. Thus if a database value is shown, the user can also see
which schema component it is an instance of, which model component the schema
component is an instance of, and which global model component the model component is
an instance of. The reason for this is that it is now possible to get a clear picture of how the
different aspects of the DBMS are related. Clearly a DBMS product incorporating this
architecture would not maintain or show this information, but, for the development of a
theoretical tool, this approach is very revealing.

Using this prototype, a variety of data models may be constructed, for each of
which, again, a number of different interfaces can be matched. In short, this prototype will
support the theory by demonstrating the configuration of different interaction mechanisms.
For each model, relevant schemata and data can be accessed through different interfaces.

Chapter 1 6 Introduction

Communication of schemata and data between different models should be achievable with
no more difficulty than using a federation of heterogeneous databases.

Implementing a CDMS based on the global model will require less effort than
the separate development of a large number of individual DBMSs based on different data
models. Moreover, setting up a CDMS will benefit the following database research
aspects.

1) It will promote research in the domain of semantic data modelling theory.
Using a consistent language to describe various semantic data models, it
abstracts their common characteristics and thus discloses essentials of their
common nature.

2) In practice, it can be used as a platform to implement various semantic data
models including those already existing as well as other novel models which
are describable in the context of semantic data modelling. In this way, the best
suitable data model and interface within the scope of the CDMS may be
obtained to satisfy particular circumstances concerning specific users and
applications.

3) It will offer a basis for further development of the CDMS itself as a result of
the development of the theory and practice in data modelling and human-
computer interaction. Thus, more sophisticated semantic data models, and
other kinds of data models such as object-oriented data models, as well as new
interface styles will potentially be supported in later versions of the CDMS.

1.3 Research Procedure

The start point for the present work was a pilot implementation of the CDMS
concept by Cooper [Cooper, 1990]. This program, written in the persistent programming
language PS-algol, allowed multiple data models to be configured for schema design and
multiple graphical schema representation styles to be configured for each data model. The
limitation was that this version involved neither ability of manipulating data nor ability of
dealing with constraints or active objects.

Chapter | 7 Introduction

from individual data models and incorporating them into the CDMS prototype. Certain

The present work progressed by a technique of extracting general properties

stages can thus be identified:

1y

2)

3)

4)

S)

6)

7

8)

objects, which is unfortunately beyond the scope of a single PhD project. However, its

Implementation of the IFO data model, including data definition, manipulation
and querying facilities, using the persistent programming language PS-algol.

Design of the layered architecture, which consists of global level,
model level, schema level and data level. This architecture replaced
Cooper's ad hoc architecture.

Re-engineering and implementing the prototype based on the design from stage
2 in the more powerful persistent programming language Napier88. The new
system provided fuller coverage of data structuring components with simple
data manipulation and querying facilities.

Extension of the IFO data model to include constraint handling facilities. In
this way an understanding of the more general nature of constraints in a DBMS
was obtained.

The development of a general model of constraints from stage 4.

An extension of the CDMS from stage 3 to manage constraints.

The development of a process modeling tool to gain an understanding of active

objects.

The development of a general model of active objects from stage 7.

The obvious next stage is the extension of the CDMS from stage 6 to treat active

possibility is discussed in the conclusions.

1.4 Structure of Thesis

Chapter 1

In the following chapters, the relevant work will be described and discussed.

8 Introduction

Chapter 2 discusses the main issues of data modelling and human-computer
interfaces, including principles of databases, database systems, database management
systems, data modelling, interface independence, and federated database systems. A brief
overview of data models and database programming languages is also given in this chapter.

Chapter 3 presents the main issues of the Configurable Data Modelling System
systematically. A consistent CDMS structure is developed based on an analysis of data
modelling practice. Sets of generic modelling primitives, interaction elements and dialogue
primitives are described; the problems concerning constraints and active objects are
proposed in the context of the CDMS.

Chapter 4 is dedicated to issues relating to constraints in the CDMS. Based on
the analysis of varieties of constraints in the context of the DBMS, basic forms of
constraints are elicited. Constraint specification, verification and management issues are

then discussed.

Chapter 5 discusses the behavioural issues relevant to databases. Transaction
systems are discussed as an introduction, followed by the presentation of a process support
system. Active objects in semantic data modelling and the CDMS form the main body of
this chapter.

Chapter 6 presents the platform for the implementation of the CDMS. This
chapter describes the implementation tools, introducing PS-algol and Napier88, two
persistent programming languages, and the relevant user interface tools.

Chapter 7 reports on an implementation of the CDMS. The implementation
provides the ability of managing constraints as well as basic constructs consistently in the
context of the CDMS. In this chapter the coherence and consistency of the CDMS structure
is emphasised throughout.

Chapter 8 presents some applications of the CDMS. A number of data models
are constructed within the CDMS to prove the usability of the platform.

Chapter 9 briefly describes the contributions of this work and proposes some
potential future work as conclusions of the project.

Chapter 1 9 Introduction

2 The Usability of Database Systems

This chapter examines the nature of database systems, what they are used for
and how they are used. The start point is the architecture of database systems and a
description of the activities which must be carried out to use them. There then follows a
discussion of the role of the user interface in the use of database systems. This is followed
by a discussion of the use of data modelling in database design together with a survey of
some of the leading data models. The chapter continues with a look at federated DBMSs as
one example of the need for supporting multiple data models consistently, before
summarising in order to motivate the work described in this thesis.

2.1 Databases and Database Systems

2.1.1 What Is a Database?

Databases play an important role in almost all areas in which computers are
used, including scientific research, engineering, medicine, education, business,
administration, and so on. Generally speaking, data may be generated and maintained
either manually or by machine, but databases of large size and high complexity are feasible
only with computers. The word 'database’ is used so widely that we must clarify what a
database is to avoid confusion.

A database is a collection of structured data which are well organised,

implicitly meaningful, and able to be recorded, processed and retrieved. In practice, the
following properties of a database should be emphasised:

Chapter 2 10 The Usability of Database Systems

* A database represents some aspect of the real world called a miniworld. A
database is therefore a logically coherent collection of data values with some
inherent meaning.

* A database is designed, built and populated with data for specific purposes. A
database must therefore have an intended group of real users, including
application programmers, and some preconceived applications.

* A database should be able to reflect changes in the relevant miniworld
dynamically.

* A database is stored using the structures of an internal data model.

A database management system (DBMS) is a software system that enables
users to create and maintain various databases. In other words, a DBMS is a collection of
programs that facilitate the processes of defining, constructing, and manipulating data for
various applications. Defining data implies specifying the types of data to be stored in the
database. Constructing data is the process of storing data on some storage medium that is
controlled by the DBMS. Manipulating data means such functions as querying a database
to retrieve specific data, generating reports from the data, and updating a database to reflect
changes in the miniworld. Databases together with the relevant software are referred to as a
database system.

The database approach is distinguished from the traditional approach of
programming with files by a number of fundamental characteristics. In traditional file
processing, each user defines and implements the files needed for a specific application;
while in the database approach, once a single repository of data is defined it can then be
accessed as required by various users. The main characteristics of the database approach
are the following:

1) Self-containment. A database system contains not only the data in a
database but also a complete definition or description of the database structure,
which is stored in the system catalogue (data dictionary) and called the
metadata. The DBMS software then refers to the catalogue to find the
structure of the data files, the types and storage formats of the data items, as
well as any constraints on the data in a particular database. Thus the same
software is able to access many different databases and work efficiently with
various database applications.

Chapter 2 11 The Usability of Database Systems

2) Program-data independence. DBMS access programs are written to
function independently of any specific files. Owing to the existence of the
system catalogue, in which the structure of data files is stored, there is no need
for the structure of any file to be embedded in the access programs.
Nevertheless the structure of the metadata must be involved in the DBMS
access programs to permit the programs to refer to the catalogue from time to
time. By contrast, in traditional file processing data definition is typically part
of the application programs, hence any changes to the structure of a file may
undesirably require changing all programs which access that file.

3) Data abstraction. A DBMS provides users with a conceptual data
representation that ignores many of the details of data storage. The database
users only need to refer to the conceptual data representation, while the DBMS
automatically extracts the details of file storage from the catalogue. The data
model and the data schema are the main concepts which are closely related with
data abstraction and these will be further investigated later.

4) Support of multiple user views. A database usually has many users who
may be interested in different parts of the data in the same database. A view
may be a subset of the data or it may contain virtual data that is derived from
the database files but is not explicitly stored. A multi-user DBMS should
therefore be able to provide facilities for defining multiple views of a database.
Because the database approach aims at efficient redundancy control in defining
and storing the data, it becomes very important to allow data to be shared
satisfactorily by various users with maintenance facilities, including
concurrency control, access authorisation, backup and recovery, etc, being
available.

2.1.2 The Architecture of Conventional DBMS

A three layer architecture is widely used to separate the physical database
and user applications, the layers being an internal layer, a conceptual layer and an external
layer. The internal layer has an internal schema, which uses a physical data model to
describe the physical details of storage structure and access paths for the database. At this
level, the data is described in terms of the files and disk addresses where the data is to be
found. The conceptual layer has a conceptual schema, which uses a conceptual or

Chapter 2 12 The Usability of Database Systems

implementation data model to describe the logical structure of the database, concentrating
on such concepts as entities, relationships, and constraints, but hiding the physical details
of storage structure and access paths for the database. The external layer or view layer
includes a number of external schemata or user views, each of which describes the part of
the database that a particular user or user group is interested in and hides the rest of the
database.

The three schemata are all descriptions of the data, which actually exist only in
the physical layer. Based on the three-layer architecture a DBMS transforms a request
specified on an external schema into a request on the conceptual schema, then further into a
request on the internal schema for processing on the stored data. Also based on the three-
layer architecture a DBMS transforms a result found on an internal schema into a result on
the conceptual schema, then further into a result on the external schema for viewing. The
processes of transforming requests and results between layers are called mappings.

Data independence is the capacity to change the schema at one layer of a
database system without having to change the schema at a higher layer.

There are two kinds of data independence. The first is logical data
independence while the second is physical data independence. The former means
the capacity of changing the conceptual schema without having to change the external
schema or application programs; the latter means the capacity of changing the internal
schema without having to change either the conceptual schema or the external schema.

The system catalogue of a layered DBMS must include information on how to
map requests and data among different layers. When a schema at some layer is changed,
the schema at the next higher layer should remain unchanged. The only thing having to be
changed is the mapping between the two layers.

A substantial benefit promised by the three-layer architecture is that a conceptual
schema can be realised by multiple equivalent internal schemata on the one hand, and can
be revealed to the user by multiple external schemata on the other, without requiring the
basic DBMS facilities to be programmed more than once. In practice, many valuable data
structures for efficient physical storage have been developed, and the promise of multiple
physical representations each of which produces efficient access in different situations has
been fulfilled. Unfortunately the promise of multiple user interfaces has not been

maintained to the same degree.

Chapter 2 13 The Usability of Database Systems

2.1.3 The Activities Required
Users need to perform a number of tasks with the database, which include:

* Data definition. Database administrators (DBAs) specify the conceptual and
internal schemata of database applications, as well as the external schemata,
i.e. various views, for particular users.

* Data manipulation. Database end-users populate the database and then
update the data as needed.

* Data retrieval. Querying the database is obviously a major function for end-
users.

The data definition activity involves the user in creating a description of the
structure of the data. This description is called a schema. The schema is constructed in
terms of a data model, i.e. a language with constructs which are primarily concerned with
data structure but may also deal with constraints and even behavioural aspects of the data.
As has been discussed previously a data model may concern itself with any of three levels
of the architecture. Even within a level there may be more than one data model available for
use.

Data manipulation and retrieval occur in the context of a data schema and allow
values manipulated in the structures of the data schema. There will be operations to create,
remove, update values, as well as operations which selectively return a subset of the
values.

For each of these tasks the database system will provide suitable languages.

A DBA will have access to a data definition language (DDL) for specifying
the conceptual schema, a storage definition language (SDL) for specifying the internal
schema, and a view definition language (VDL) for specifying user views. Both DDL
and SDL are also used to specify the mapping between conceptual schema and internal
schema, while VDL is also used to specify the mapping between user views and conceptual
schema. The end user will have access to a data manipulation language (DML). The
languages may be presented to the user in a variety of interface styles and it is to these that
attention is now turned.

Chapter 2 14 The Usability of Database Systems

2.2 User Interface to DBMS

2.2.1

of styles: command language interfaces, menu-based interfaces, form-based interfaces,

Styles of Interface

The user interfaces through which a DBMS is manipulated come in a variety

graphical interfaces, natural language interfaces, and so on.

Query languages. The relevant statements in these languages may be used
independently, or they may be embedded in a general-purpose programming
language.

Menus do away with the need to memorise the specific commands and syntax
of a query language.

Forms are usually designed and programmed for naive users as interfaces to

canned transactions.
Graphical interfaces allow data retrieval and manipulation diagrammatically.

Natural language interfaces are expected to accept requests in English or some
other human languages and attempt to understand and process them.

These are appropriate to different classes of users, of whom it is usual to

distinguish:

Chapter 2

Naive end-users need to learn very little about the facilities provided by the
DBMS; they have only to understand the kinds of standard transactions
designed and implemented for their use.

Casual users merely learn a few facilities that they may use repeatedly but
infrequently.

Sophisticated users need to learn most of the DBMS facilities in order to meet
their complex requirements.

15 The Usability of Database Systems

* The system analysts and programmers also design and compose some special
interfaces for specific users.

* In addition, the DBA may have some specific interface to realise some
restricted functions, for instance, changing a schema.

It is desirable for a variety of interfaces to be supplied for the same access
functionality, so that various users and distinct applications will be able to communicate
with the computer in their individually preferred and beneficial way. This is now
potentially possible, but still rarely realised, because this usually asks for a great deal of ad
hoc programming effort.

2.2.2 Database Programming Languages

For the design and support of complex applications, it has become increasingly
clear that the kinds of interface described in the previous subsection are insufficient.
Instead, a combination of programming language and database facilities is required.
Database Programming Languages (DBPL) attempt to provide such a combination.
Some of the kinds of DBPL are discussed briefly here, but the subject will be returned to in
Chapter 6. This chapter describes the implementation framework used for this project and
this framework requires a well engineered DBPL to enable the complex tasks involved to
be tractably accomplished.

The following classes of DBPL can be distinguished:

* Relational DBPL's. These languages embed data types for relations in a
programming language thus allowing the database to be seamlessly
manipulated by a program [Schmidt, 1977].

* Polymorphic DBPL's. These languages, influenced by ML [Milner, 1984],
provide mechanisms which allow generic operations to be produced which

operate against a variety of data [Matthews, 1985].

* Persistent Programming Languages. These languages permit data of any type
to be long-lived [PS-algol, 1987; Morrison et al, 1989], while conventional

Chapter 2 16 The Usability of Database Systems

programming languages restrict the types of long-lived data, e.g. serial files in
Pascal.

* Object-Oriented (O-O) Database Languages. These are either the addition of a
database to an O-O language [Maier et al, 1986; ServioLogic 1987] or the
addition of a programming language to an O-O data model [Lecluse et al,
1988].

2.2.3 Interface Independence

The vigorous development of the computer industry and the rapid
popularisation of computer applications has meant that realising the potential of a modern
computer has become less limited by its computing power than by its power to
communicate with human users, more and more of whom are now people other than
computer professionals. The study of human-computer interaction has therefore been
recognised to be of vital importance.

Interface independence is an important factor in improving human-
computer interaction. The concept is a logical extension to machine independence,
language independence, data independence, etc. It argues for a human-computer
interface/dialogue independent of the rest of the application.

Strictly speaking, human-computer dialogue and human-computer
interface are conceptually different. The former means the communication between a
human user and a computer system, while the latter means the communication medium.
But they will be used synonymously in this thesis just as in most of the literature, for the
two terms are tied together closely in the development process.

2.2.3.1 Dialogue Component and Computational Component

Dialogue independence is a characteristic of an interactive software system
that separates design of the human-computer dialogue software from design of the internal
computational software of an application system. This separation requires that design
decisions affecting only the human-computer dialogue should be isolated from those
affecting only the computational structure of the application. Consequently, the appearance
of the interface to the end user and choices of interaction styles used to extract inputs from

Chapter 2 17 The Usability of Database Systems

and present outputs to the user are transparent to the computational software, modifications
in either causing minimal change in the other.

From the stand of a computer, the human-computer dialogue component
includes the acceptance of inputs from the user and the presentation of outputs to the user;
whereas the other parts of transformation between inputs and outputs comprise the
computational component. Dialogue and computation will thus be distinguished from
each other.

Separation of the dialogue component from the computational component
requires a new interface between them and a new sort of dialogue through the interface.
The computational component uses the dialogue component as an intermediary instead of

communicating directly with the end-user.

The relationships among the major concepts mentioned above can be roughly
illustrated by Figure 2.1.

I I
ﬁﬁ Extemal Dialogue Intemal | Computational
ﬁﬁ Dialogue Component DialI gue | Component
I
| |
Human-computer Intemal
Interface Interface

Figure 2.1 External Dialogue and Internal Dialogue
Internal dialogue is not readily understandable at execution time, but its
representation at design time is essential to interface independence. As long as both
dialogue component and computational component keep consistent with their common
internal dialogue representation, they are free to change without affecting each other.

2.2.3.2 The Advantage of Interface Independence

Early approaches to the development of interactive systems involved close

interspersion of dialogue and computational software and often resulted in an unsatisfactory

Chapter 2 18 The Usability of Database Systems

human-computer interface. Without dialogue independence, both the way in which
dialogue was structured and the details of how it was conducted with the end-user were
usually driven by the computational requirements of the application system. Knowledge of
dialogue details and decisions about interaction styles were intermixed with the
computational component, so that it could be very difficult as well as time-consuming to
modify such a system as the design progresses.

In contrast, dialogue independence permits fast modification, iterative
refinement, and easy maintenance of dialogues to meet users' ever-changing needs,
because a system development approach based on this concept would allow changes to be
limited to the interface component, which is relatively independent of the rest of the
application system.

More attractively, dialogue independence permits more than one interface to be
defined and utilised as required for the same underlying computational component to satisfy
various users' preference. In other words, owing to the independent nature of the
interface, the development of user configurable interface systems become a meaningful
task.

Dialogue independence can also be used as a design abstraction to allow a top-
down approach, focusing first on high-level design issues while postponing commitment to
details.

2.2.3.3 Requirements Arising from Dialogue Independence

First and foremost, a new software development role, the dialogue
developer, now becomes increasingly important. This role is carried out by a human
factors specialist concerned with the design, implementation, and evaluation of the form,
style, content, and sequencing within the human-computer interface. The dialogue
developer is involved in the entire system life cycle, using an understanding of psychology
and human factors principles to build, evaluate and refine iteratively an interface which
permits effective human-computer communication.

Some dialogue development tools require that the dialogue interpreter and
design tools possess considerable knowledge of the style of interaction. This in turn
requires a great deal of programming of new interaction styles, techniques, and devices.

Due to the separate existence of dialogue developers, the need for communication among

Chapter 2 19 The Usability of Database Systems

such developers and implementors will increase. Some new development methodologies
are being developed to deal with this problem. An important concept in human-computer
interface management is a methodology for interactive system development. This
methodology considers interface management as an integral part of the overall development
process and gives emphasis to evaluation in the development life cycle.

Separation of the dialogue part from the computational part leads to increased
internal communication among components, which may cause a decrease in system
performance. To some extent, this can be improved by adopting the system architectures
which allow concurrent execution of the dialogue and computational components, as well
as by using newly developed dialogue supporting hardware. Multi-threaded, direct
manipulation dialogue is more effective than sequential dialogue, for end-users can directly,
visually, and asynchronously perform operations on interface representations of application
objects. However, in this case separation into components can be much more difficult to
accomplish than for sequential dialogue, because the dialogue and computation are often
more closely interleaved, and the two components often share a common data
representation of the interface and application objects. Nevertheless, design decisions
regarding the appearance and behaviour of the interface can often be kept independent of
those for the software manipulating the corresponding data structures.

Representation of the human-computer interface is a mechanism for expressing
and recording the results of dialogue development. Written programs, textual
representation languages and graphical representation languages are various sorts of such
representation measures. Unfortunately, language-oriented representational techniques are
inappropriate for representing direct manipulation style dialogue, for there exist so many
visual and other perceptional aspects requiring representation. A new mechanism is
automated tools for interactive production of the interface representation.

Rapid prototyping as a system development technique provides at least one
early version of the application system, showing the end-user what the interface and the
whole system will look like before it is actually developed. Prototyping, as an extension of
software simulation, increases communication among system designers, implementors,
evaluators, and end-users. It is important to ensure that a high-quality system is developed
through prototyping in situations where the system requirements are complex or uncertain.

The iterative nature of human-computer interface development alters the

conventional linear development life cycle [Hartson and Hix, 1989]. A prototype helps to
solve the problem of end-users' inability to give complete specifications to system

Chapter 2 ’ 20 The Usability of Database Systems

designers, and 'gives the end-user a more immediate sense of the proposed system'
[Wasserman and Shewmake, 1982]. It discloses misunderstandings that occur between
developers and end-users caused by their different backgrounds and experience [Gomma
and Scott, 1981].

2.2.4 Configuring the User Interface

In the context of database systems, two important ideas modify the previous
discussion. Firstly, the computational component of the software as far as the user is
concerned is fairly restricted to the activities described in Section 2.1.3. The user interface
only has to support database design, data manipulation and querying in the context of a
particular data model* .

Secondly, the range of users is great, from those with no particular experience
of computer systems to database specialists. Thus many kinds of interface are desirable.
This particular mix of restricted computation with many users makes it particularly suitable
for a configurable approach to provide the user interface. Instead of resorting to repetitive
coding on an interface by interface basis, it would be better to provide a combinable set of
primitives and frameworks out of which particular interfaces can be developed.

Model with
Model Interface
interaction p-| dialogue
element primitive
-
interaction p-| dialogue
element primitive

Figure 2.2 User Interface Configuration

* Of course there is a great deal more computation in a DBMS, namely storage structures, concurrency
mechanisms, indexing and so on, but these do not involve close interaction with the user.

Chapter 2 21 The Usability of Database Systems

The architecture for such a system is shown in Figure 2.2. A data model
includes a series of interaction elements, each of which will be replaced by a concrete
dialogue primitive as a user interface to the model is configured. This issue will be further
discussed briefly in Section 3.7. The next section, however, discusses the notion of a data
model in detail.

2.3 Data Modelling

2.3.1 What Is a Data Model?

A data model is a group of concepts for describing the structure of a database,
including the kinds of relationships and constraints which may hold on the data to be kept
in the database. Some data models also include a collection of operations for specifying
updates and retrievals on the values in the database. In other words, a data model is a set
of abstraction mechanisms, with associated operators, used to define and manage data
schemata. Data models are the main tool for providing data abstraction, since they hide
details of data storage, which are not needed by ordinary database users.

There have been proposed a diversity of data models, which can be categorised
into three kinds, based on the types of concepts they provide to describe the database
structure. A high level or conceptual data model provides concepts that are close to the
way in which many users perceive data, whereas a low level or physical data model
provides concepts that describe the details of how data is stored in the computer memory.
There is, between the two extremes, another class of data models called implementation
data models, which hide some details of data storage, providing concepts which can be
understood by end users, and which can also be directly implemented on a computer
system. These kinds of data model thus correspond to the three layers in the DBMS
architecture discussed in Section 2.1.2.

The concepts typical of a conceptual data model include entities, attributes and
relationships. An entity is the representation of a class of real-world object in the
database. An attribute is a property of an object. Relationships reflect various
connections among real-world objects. Conceptual data models are usually referred to as
semantic data models [Hull and King, 1987]. These models mainly describe objects
and their inter-relationships and sometimes are referred to as object-based models. One

Chapter 2 22 The Usability of Database Systems

of the most popular high level data models is the entity-relationship model (ER)
[Chen, 1976].

The implementation data models most widely used are the hierarchical,
network and relational models. They are sometimes referred to as record-based
models, because all of them use record structures to represent all data. Records are an
intermediary structure. They are not a direct representation of physical storage since
records may be fragmented about the disk or grouped in a variety of ways. On the other
hand, a record could be considered a conceptual level structure in that records directly
model many of the information structures which require handling. However, record-based
models cannot be considered to be semantic data models since there is a wide variety of
information which is not easy to deal with using record-based models.

A data schema is the description of a database structure in the language of a
data model. Data schemata are not expected to change frequently, and are specified during
the database design phase. A DBMS stores a data schema in the database catalogue as
metadata. This allows the DBMS software to refer to it later in order to find out the
structure of the relevant database as required. The data contained in the database at a
particular moment in time is called a database instance, which usually changes much
more frequently than does a data schema.

A data schema is called the intension of the database instances, and a database
instance can be called an extension of the schema. A data schema is, in essence, a
description of many database instances with the same structure. A schema for a library
database may thus be used by a number of library systems. On the other hand, a data
model can be appreciated as the corresponding database type system, which supports a
number of data schemata by providing common data definition tools. The relationship
among database, data schema, and data model will be further clarified in chapter 3, where

suitable examples will be given.

Incidentally, it should be noted that the word 'model' is sometimes used to
denote a schema by some authors in the sense that a schema is, in fact, a kind of abstraction
of the relevant miniworld with only structural knowledge being considered. It is hence
possible to speak of a library model, meaning the schema for library databases. However
in this thesis the word 'model' will never be used in this sense to avoid confusion.

Chapter 2 23 The Usability of Database Systems

2.3.2 An Overview of Data Models

The network model, the hierarchical model and the relational model,
that is, the so called classical data models, were developed in the early stage of data
modelling practice. The Relational Model [Codd, 1970] proved to be an elegant
framework, in which all kinds of data are described in the form of relations or tables, with
columns named and typed, and rows undistinguished. The mathematical features of the
model have encouraged a great deal of research leading to the optimisation of data storage
and retrieval. Some standards have been established, for instance, the query language SQL
which permits data to be shared between different DBMS. Many business applications can
be described in terms of relations satisfactorily, so that the relational model has become an
effective and efficient medium for data intensive applications which have a relatively simple
nature.

However, the Relational Model is inadequate for many application areas, such
as computer-aided design (CAD), computer-aided manufacturing (CAM),
computer-aided software engineering (CASE), computer-aided engineering
(CAE) and office automation (OA). It is extremely difficult to manipulate objects with
complex structures using the relational model, which, being simple in its underlying
structure, will inevitably enforce a heavy burden on software engineers. The point is, as
Kent indicates [Kent, 1979], the relational model provides two mechanisms for relating
two pieces of data: either they are in different fields of the same tuple, or they are in two
tuples with a common field, which acts as a 'foreign key'. These two mechanisms are each
used for a variety of purposes, thus inducing semantic overloading. Consequently, the
information concerning one object may be distributed over a number of tuples, or may just
be part of the same tuple, and so there is no simple mapping between real world objects and
database values. In fact, the Relational Model fails to provide a consistent way of
describing and identifying single objects. This in turn makes it difficult to construct values
which refer to other values as components or attributes. It quite often becomes too difficult
for someone to understand the function of a part of a relational schema which has been
established by someone else.

The limitations of the classical data models led to the development of models
which strive to capture more of the meaning of applications. Semantic data models
[Hull and King, 1987; Peckham and Maryanski, 1988] provide more abstract concepts,
greatly easing the description of the structure of a database. Thus, within the database
context, powerful facilities are emerging for expressing complex data intensive real-world
applications straightforwardly.

Chapter 2 24 The Usability of Database Systems

Most semantic data models concentrate on a description of the structure of the
database, while others include also an active component. The latter allows a direct and
consistent description of processes with which the database can be manipulated. Many of
the ideas of semantic data models were incorporated into the object-oriented (O-O)
approach, which will be further discussed in Subsection 2.3.3.

The first semantic data model was the semantic binary data model (SBDM)
proposed by Abrial [Abrial, 1974]. This model was intended as a design tool for relational
databases, introducing constructs for describing entity types called categories and binary
relationships between categories. Each database design, such as the one shown in Figure
2.3, proceeds by using these two constructs: objects are grouped into categories (book,
title, and so on) and then categories are interrelated in particular binary relationships
(usually bidirectional). Thus in the figure, borrows and is-borrowed-by are inverse.
Although the SBDM was a very simple modelling system, it set the precedent for modelling
real-world notions in a straightforward manner. It should also be noted that the SBDM
contained a behavioural element - for instance, it was possible to trigger a piece of code by
the creation of an object. Thus even the earliest model aspired to capturing application

behaviour.
amp title
has-name has-titie
is-name-of
is-title-of
54" is-sex-of er:s is-borrowed-by book
1 has-number
is-a iajd-of
has-age has-id is-number-of
age is-address-of‘ has-address nurpber
afidregs
r
has-hou has-city
is-house, is-city-of
catego
is-street-of‘ has-street gory
= treqt oty _— relationship

Figure 2.3 A Schema in the Semantic Binary Data Model
The entity-relationship model (ER), introduced in 1976 [Chen, 1976],

extends the modelling power of the SBDM, although it loses the behavioural component.
It was the model which first popularised the semantic data modelling concept and still

Chapter 2 25 The Usability of Database Systems

remains very popular. Being similar to the Bachman diagrams proposed for CODASYL
databases [Bachman, 1969], the ER model has been used as an off-line graphical design
tool for relational database systems and is increasingly used as the data definition interface
to commercial systems.

In ER, entity sets are equivalent to categories in the SBDM, relationship sets
interconnect entity sets, and atomic valued attributes are allowed on both entity sets and
relationship sets. In addition, this model has the ability to represent different kinds of
entity set. One kind has primary keys and is referred to as a strong entity set; another kind
derives part of their keys from some other entity set and is referred to as a weak entity set.
Entities belonging to a weak entity set are identified by being related to specific entities
from another entity set in combination with some of their attribute values. This other entity
set is called the identifying owner, and the relationship set that relates a weak entity set to
its owner is called the identifying relationship of the weak entity set. All of these are easily
transformed into a relational database schema [Teorey, 1986]. The ER model provides a
relatively straightforward environment for modelling the structure of the objects in a
database. It is easily mastered, but does not provide much depth of description. Figure
2.4 shows a data schema in the ER Model.

ngme loan-person v, loan-book &
's name
title of book

ﬁ‘—m derson boo

p's id umber of book

p's
p's addres
A b
a S

_— A simple attribute

entity

/\\ —’@ complex attribute

O relationship

“““““A component of complex attribute

Figure 2.4 A Schema in the Entity-Relationship Model

Chapter 2 26 The Usability of Database Systems

The semantic data model (SDM) [Hammer and McLeod, 1981] is a very rich
structural data model concentrating on the concepts of entity types and relationships. The
fundamental modelling construct for entity types, called a class, is defined to have a name,
a set of members, a description for documentation purposes, a set of member attributes
affiliated to each member of the class (for instance address), and a set of class attributes
affiliated to the class as a whole (for instance cardinality).

Classes are divided into base classes and non-base classes. A base class is
defined independently, while a non-base class is defined with respect to other classes. If a
class is a base class, then there will be stored data holding the instances of the class. In this
case, whether duplicate members are permitted should be clarified and the set of member
attributes which form the key, if appropriate, should be specified. A non-base class
derives its instances through some form of calculation, such as: grouping, where a
partitioning expression splits a class into a group of sub-classes; sub-classing, which is
realised by a filtering membership predicate; as the intersection of two classes; as the range
of some attribute on another class; or by user-definition.

An attribute can be either mandatory or optional, either single-valued or multi-
valued, either changeable or not, either unique or not, either exhaustive or not, either
derived or independent. There are also several sorts of derived data and constraint types,
and there is an inheritance mechanism between the classes. The SDM is hence very rich in
its modelling capacity, but using this data model sometimes causes difficulty in defining
and perceiving the semantics.

In contrast, the functional data model (FDM) [Shipman, 1981], providing
only a single modelling construct, describes the database in a set of functions mapping
entities to entities. All concepts, including entity types, sub-typing, attributes,
relationships, single-valued and multi-valued data, base data and derived data, even
metadata, are described by functions. Functions in this model can have zero, one, or more
arguments. Entity types are defined by functions with no arguments, whereas attributes of
entities and relationships among entities are defined by functions with arguments. A
single-argument attribute is represented by a single-argument function, whereas a multi-
argument attribute is represented by a multi-argument function. On the other hand,
functions can also be specified as single-valued or multi-valued. Entity types in this model
are arranged in a type hierarchy with automatic inheritance of functions, including attributes
and relationships, from a supertype to all of its subtypes. Derived entity types are defined

by using functions which imitate aggregation, set union and intersection; while derived

Chapter 2 27 The Usability of Database Systems

attributes can be defined by using functions, function composition, or aggregating
functions.

The extended functional data model (EFDM) [Gray et al, 1992], is the
implementation based on the FDM by Kulkarni [Kulkarni and Atkinson, 1987]. The
EFDM offers an interactive user interface to create and manipulate relevant information.
The capabilities of defining both stored data and derived functions, integrity constraints and
views are also provided by the EFDM. The EFDM describes the metadata with the same
constructs used to describe the data. An example of multi-argument function is the function
grade, which has two arguments, student and course, and which indicates that every
student-course pair corresponds a string entity denoting the grade that the student gets for
that course. The function grade, however, should only be defined for those courses in
which the student is enroled. In EFDM, this sort of semantic rule can be described by a

constraint.

Generally speaking, the EFDM offers the following constraints: ISA constraint,
single-valued property constraint, and inverse property constraint; and it allows the
following constraint to be specified explicitly:

» key constraint, which requires that an entity can be identified by a group of
function values taken together;

» disjoint constraint, which requires that the objects of a group of entity types

must not overlap;

* required property constraint, requires that a function must have values for each
argument entity;

* fixed-value constraint, which requires that the values of a function cannot be
changed once they have been created;

e range constraint, which requires that the values of a function can only be

drawn from a limited range.
The EFDM does not offer for capturing such constraints as property induction

constraint, unique property constraint and covering constraint, but the constraint
mechanism of EFDM could be extended easily to handle these.

Chapter 2 28 The Usability of Database Systems

The FDM is a modelling system with both simplicity and great power.
However, a lot of the semantic contents of databases are lost while using the FDM.

Neither is it always clear from a schema what role a given function is playing.

Figure 2.5 shows a data schema in the FDM.

" i
title of book
's name

borrows ~—
ﬁ‘—p'ﬁﬁﬁx——p ersofer_ ~____Ppook

borrows™?

number of book™1

p's a p'sid

A p's address
‘

number of book

S\ iy

a-city

a-street

) entity A base type
e o B

—_— single valued function

—_— multi valued function

Figure 2.5 A Schema in the Functional Data Model

The IFO model proposed in [Abiteboul and Hull, 1987] has three basic
constructs, namely objects, fragments (representing functional relationships) and ISA
(class/subclass) relationships. IFO aims at producing a theoretical framework for
examining the structural aspects of semantic data models by providing a sophisticated
categorisation of types. The model incorporates attributes and type constructors for
grouping and aggregation at a fundamental level and distinguishes between two kinds of
ISA relationships. The model is also used to characterise the propagation of simple updates
and to analyse formally the interplay between constructed types and ISA relationships. The
IFO model is able to represent atomic object types and constructed types. Each of the
atomic types corresponds to a class of non-aggregate objects in the world. There is also a
distinction between atomic types that are abstract and those that are printable. Abstract
types correspond typically to objects in the world that have no underlying structure (at
least, relative to the point of view of the database designer or user) such as person, while
printable types correspond to objects of predefined types that serve as the basis for input
and output such as strings. There is another kind of atomic type - the free type. Free
types are defined with reference to other types by inheritance. There are two complex type

Chapter 2 29 The Usability of Database Systems

constructors. Sets represent multi-valued objects, and aggregates, i.e. records,
represent single objects consisting of component parts. An aggregate can be used to
encapsulate information, for instance, address comprises house, street and city. A set or
grouping construct is used to represent sets of objects of the same type, for instance, class

represents sets of student. This situation is illustrated in Figure 2.6.

The types are connected by various relationships available in the model,
including attribution, component (of a set or aggregate), specialisation and generalisation.
Specialisation represents the notion that type X is a sub-type of Y in the sense that X
inherits the properties of Y and all Xs are also Ys. The specialised type, X will be a free
type, since it is defined relative to the type being specialised. On the other hand,
generalisation creates a free type which is the super-type of a set of other types. It
encompasses the notion that every instance of this type must also be an instance of one of
the sub-types.

IFO allows some local constraints to be specified, such as that a relationship is
1:1 etc. IFO also allows constraints on specialisation relationships, for instance, the
subtypes of a certain type must be disjoint or they should cover the supertype. There are
also global constraints, for instance, the sub-type graph must be acyclic, no type could be
the specialisation of more than one atomic type, and no free type could be specialised and
generalised from some other types simultaneously. IFO places the concepts which were
introduced in the preceding models into a relatively simple framework in which the intrinsic
nature of the constructs is more clearly revealed. This represents the first step towards
analysing data models formally [Abiteboul and Hull, 1987].

Chapter 2 30 The Usability of Database Systems

title

ham . title of bog
p's name loan-person oan-item

number of book

. psid id
 P'ssex / numbpr
sex rs
‘ n ok
p'sa p's addres udept

age ad es abel
‘ norgstugient

a-house a-city

a-stre
ous tregt city

printable > attribution
(%7— set

A abstract specialisation

@(aggregate
O free

Figure 2.6 A Schema in IFO

o

generalisation

For complex applications, it is crucial to use data models which capture the data
structure in a more meaningful way than do the classical models, particularly for non-expert
implementors. Furthermore, it would increasingly be valuable to use the same modelling
tool (or an analogous one) to describe the behavioural properties of the database.
Actually, the worlds of CAD, CAM, CASE, CAE and OA increasingly need the ability to
describe behaviour in the same way as the structure.

Semantic data models, unfortunately, have tended not to address the
behavioural aspects of a data application. The need for more programming power in this
area resulted in the development of database programming languages (DBPL), which
will be discussed in Chapter 7. Nevertheless, two examples of the kinds of data model
which deal with behaviour are introduced in Chapter 5.

To gain understanding of how data models can be implemented, an IFO data
model program was created [Cooper and Qin, 1990]. This program provides a graphical
schema design tool for the creation and manipulation of IFO schemata, and further provides
facilities for populating a database with data and for manipulating and querying the data
using the same graphical interface.

Chapter 2 31 The Usability of Database Systems

2.3.3 The Object-Oriented Approach

The O-O approach absorbs the ideas of semantic data modelling and fixes
them into a structure within which both the behavioural and structural components of an
application can be described at once. The origins of the O-O approach are scattered among
the areas of programming languages [Dahl and Nygard, 1966], database systems [Smith
and Smith, 1977] and artificial intelligence [Hewitt et al, 1973]. Good surveys of the
approach include, for instance, [Stefic and Bobrow, 1985], [Bancilhon, 1988] and [Meyer,
19838].

According to Meyer's definition, O-O design is the construction of software
systems as structured collections of abstract data type implementations [Meyer, 1988].
This reveals the strengths and weaknesses of the approach simultaneously. The strengths
come from its highly modular construction, while the weaknesses are due to the limitation
of the structure of abstract data types. Just as there are information structures which do not
readily lend themselves to modelling by relations, so there are some which are not best
modelled by ADTs.

The main characteristics of an O-O system include the following:

* Object identity - the attributes of a particular object are grouped together; a
unique system-defined identifier is given to each object.

* Referencing - an object may be referenced from any other object via its
identity, and any alteration of the object will be visible to these references.

¢ (Classification - data values with common structure and behaviour are
classified into sets which are referred to as classes.

* Encapsulation - the descriptions of the data structure and behavioural aspects
of a class are grouped together. The data structure is hidden, and the only way
of accessing an object is via a set of operations (methods) which capture the
object's behaviour and which are available publicly.

* Sub-typing - the ability to describe one class as being a more specialised
form of one or more other classes.

Chapter 2 32 The Usability of Database Systems

* Inheritance - both the properties and the behaviour of super-classes are
inherited by each of their sub-classes; they can be further refined in the sub-
class.

* Overriding - the ability to replace inherited definitions by sub-class specific
ones.

* Deferred binding - the ability to refer to the operations of an object,
knowing that at run-time its class will determine which version of the
operations will be used.

Some relevant examples of the approach will now be given.

Simula 67 [Dahl and Nygard, 1966], developed by Dahl and Nygard as a
language for discrete event simulation, demonstrated the properties which are later
associated with O-O languages. Simula 67, being an extension of Algol, has many
features, including the class constructor, which was first seen in this language.

Smalltalk [Goldberg and Robson, 1983], developed at Xerox by a group led
by Kay, Goldberg and Ingalls, used the same concepts as those in a dynamically typed
system. A drawback of Smalltalk is lack of static type checking, so that type errors could
not be detected at the earliest possible time.

The important contribution of Smalltalk, however, is to frame everything in
terms of objects, which brings significant conceptual simplicity. It has also been
implemented in an interpretive way that makes the class hierarchy open for browsing and
modification at run-time. This greatly eases program debugging. In addition, the language
contains the notion of a meta-class, by which it becomes possible to describe class

operations in the same way as instance operations.

C++, designed by Bjorne Stroustrup of AT&T [Stroustrup, 1984}, adds the
notion of classes to C. The language provides complete encapsulation, although some of
the operations in the interface may be declared to be friend operations. That is, the
operations take the relevant object an extra parameter. C++ also provides a single
inheritance hierarchy and virtual operations.

Chapter 2 33 The Usability of Database Systems

Objective C, being a sort of combination of C and Smalltalk, was proposed
by Brad Cox [Cox, 1986]. This language also offers polymorphism and dynamic binding.
In objective C all complex objects are declared to be of the same type, ID.

E [Richardson and Carey, 1987] was extended from C++. E adds a
supplementary sort of class, referred to as the dbclass, with which implementation details,
buffering and pointer control can be added. E attaches persistence to C++ by a special sort
of class referred to as a file, and also a notion of generic classes derived from CLU
[Liscov et al, 1977].

Eiffel [Meyer 1988] attempts to include both the best features of the above
languages and modern concepts of software engineering. Eiffel, incorporating the typed
class world of Simula within a much simpler architecture similar to Smalltalk, possesses
the following characteristics:

Strong static typing. Eiffel indicates that strong typing and O-O
programming can be combined elegantly.

* Assertions. While a class may have invariants specified, an operation may
have pre- and post-conditions specified. The involvement of assertions helps
to ensure the correctness of class descriptions.

* Exceptions. If an operation fails then a retry clause will be executed. If this
fails again or does not appear then the exception will be transmitted to the
calling operation.

* Genericity. Classes with type parameters may be specified, such as STACK
OF [T1], denoting stacks of arbitrary type. Such classes should be instantiated
by producing a type in place of the type parameter.

* Multiple inheritance with name clashes resolved by renaming.

* Dynamic binding and feature overriding. A method may be respecified
in a sub-class and the implementation of the method for a given object will be

selected at run-time.

¢ Deferred classes. The inheritance mechanism is enhanced to include a
special form of the subtyping relationship. Some of the methods of a given

Chapter 2 34 The Usability of Database Systems

class may be specified to be deferred, meaning that implementations of this
method will only appear in subclasses. Such classes, however, may not have
direct instances.

Although many superficial weaknesses of O-O languages have been avoided,
the limitations upon the ways in which application behaviour can be expressed is still
apparent. In any O-O system, all behaviour must be expressed as method code and this can
have serious effects on the directness of the modelling power.

2.3.4 The Components of Data Models
All of the data models discussed are similar in that they all provide a set of
constructs each of which can be instantiated many times to create schema elements. The

constructs are of four kinds:

1) types to hold values - such types may describe sets of values which are atomic
or composite; stored data or derived; objects (i.e. have object identity) or not;

2) relationships between those types;
3) constraints on the ways in which the types can be populated or combined;
4) behavioural constructs which describe some aspect of how the values are used.

It is clear that among all the models discussed, at least the constructs of the first
two of these kinds are all drawn from a very small set of basic constructs [Hull and King,
1987]. Moreover, as will be discussed in Chapters 4 and 5, there is reason to believe that
the same holds true for constraints and for behaviour. A coherent account of all data
models could therefore be created by describing them in terms of the few basic constructs.
This is one aim of the work presented in this thesis.

2.3.5 Configuring Data Modelling
The reason for the wide variety of data models surveyed is that they are each

suitable for particular ap'plications, tasks or user groups. It would therefore be of value for
a DBMS to support a variety of data models at the external level. However, just as for the

Chapter 2 35 The Usability of Database Systems

user interface, repetitive coding of multiple data models would be a high cost. Instead, a

configurable approach is indicated.

The approach which the current work takes is to create a toolkit of modelling
primitives out of which a data model can be configured. Just as for the user interface, this
should be an appropriate approach, which will be described in detail in Chapter 3.

2.4 Federated Databases

Each database system is usually intended for a particular class of data
processing tasks. In an organisation which involves multiple departments and multiple
database systems, although the database systems within a department may be based on the
same data model and the same data language, the systems throughout the departments of
the organisation may well be based on different data models and different data languages.
Thus even within organisations there is likely to be a need to manage a heterogeneous set of
database systems. If information is to be shared between a number of organisations,
clearly the need is even more pressing.

Federated database systems [Hsiao, 1992] are groups of heterogeneous
database systems. Each of these database systems usually has its respective data model and
data language, being supported by distinctive computer hardware, system software, and
professional personnel. They are efficient in their own applications and effective in
upholding their respective integrity constraints and security requirements. Federated
database systems aim to provide data sharing and resource consolidation without violating
the autonomy of individual database systems.

2.4.1 The Characteristics of Federated Database Systems

Generally speaking, federated database systems possess the following
characteristics [Hsiao, 1992]:

1) Multimodel and multilingual support. Federated database systems

encompass a number of databases in different data models and execute

transactions written in various languages.

Chapter 2 36 The Usability of Database Systems

2) Transparent access. A user is able to access each of the heterogeneous
databases as if it were the user’s own database. In other words, a user does
not need to understand the data model of a foreign database, nor does the user
need to write transactions in the data language supported by a foreign database
system.

3) Local autonomy. The owner of each of the heterogeneous databases shares
the database with others without compromising the owner's integrity
constraints, application specificities, and security requirements. In other
words, despite multiple accesses and manipulations made by other users, the
autonomy of each database is maintained.

4) Connection of different hardware platforms including the possible use of
multiple special purpose database machines.

5) Consolidation of the various component databases into a single usable
system with concurrency control, supporting the normal database
functionalities.

2.4.2 Data Sharing Approaches

There are two basic approaches towards data sharing among federated,
heterogeneous databases. These are (i) database conversion, and (ii) schema
transformation and transaction translation, respectively. The former approach
creates copies of the data by transforming the structure between systems. The latter merely
transforms the schema and queries but leaves the data unchanged. These two approaches

will now be discussed in turn.

2.4.3 Database Conversion

To make a database available to a user who is not familiar with the relevant data
model, a theoretical but impractical solution is the database conversion approach, which
directly converts the database into an equivalent database in the data model the user is
familiar with. For example, if a user who is familiar with relational databases wishes to
access a hierarchical database, a hierarchical-relational database converter must be
employed. This must be done to access the hierarchical database system for the intended

Chapter 2 37 The Usability of Database Systems

database, to make a copy of the hierarchical database, to convert the copy into an equivalent
relational database, to load the converted database into a relational database system, and to
allow the relational database user to access the converted database by way of the relational
database system. If the user wishes to update as well as to retrieve the data in the database,
then upon the manipulation being completed, a relational-hierarchical database converter
would in turn be employed to convert the updated relational database back into an
equivalent hierarchical database, which will replace the original database in the hierarchical
database system. This process, however, could be horribly inefficient. The main ideas
regarding database conversion approach are illustrated in Figure 2.7.

>
I

\ database converter :
DBMS using Model1 N Databasq2

-

DBMS using Model2

Figure 2.7 Database Conversion Approach

The database conversion approach provides transparent access to heterogeneous
databases in the federation if a sufficient number of converters are provided, each of which
converts databases from one model to another. Given n models, n(n-1) converters will be
needed in order to provide full transparency. The conversion of a database in a certain data
model to an equivalent database in a semantically richer data model is straightforward, since
semantic constructs of the former are likely to be subsumed by semantic constructs of the
latter. In addition, research results have proved that it is possible to convert a database in a
semantically rich data model to an equivalent database in a semantically poorer data model,
that is, equivalent databases in semantically poor data models can also be created for
databases in semantically rich models. In this case, however, as has been pointed out for

Chapter 2 38 The Usability of Database Systems

the relational model [Teorey, 1986], it may be difficult for the user to understand the
original intention of each part of the converted database.

An example of a federated database system with the database conversion
approach is illustrated in Figure 2.8. The system, which permits full transparent access
and manipulation, consists of three data models.

B database converter

Model 2

Model 1 |- Model 3

Figure 2.8 Database Systems with Database Conversion Approach

The semantic equivalence of the database in one data model and its converted
version in another data model is determined by the converter. The semantics of one data
model may be markedly different from the semantics of the other data model. If one
desires to stay in one's own semantics, without learning the semantics of the other data
model, one will have to accept the semantic equivalence provided by the database converter
on the semantics of the other database in the light of one's own data model and data
semantics.

Database converters generate multiple copies of the same database as required.
‘The autonomy of the original database is safeguarded by the system which supports the
database, but copies in different data models are not supported by the same system. It is
therefore difficult if not impossible to enforce the same integrity constraints, application
specificities and security requirements of the database on its copies. In addition,
simultaneous updates by different database systems on copies of the same database are
difficult to coordinate and control.

A way to minimise this difficulty is to ask a multimodel and multilingual
professional, who understands integrity constraints, application specificities, and security
requirements of the database in its native data model and native data language, to specify

-equivalent constraints, specificities, and requirements on its copies in foreign data models

‘Chapter 2 39 The Usability of Database Systems

and foreign data languages. The viability of local autonomies of federated databases thus
rests with the availability of such an individual.

What is really required to improve this approach is some form of global
management of the features of the individual databases. In such a system, local integrity
constraints, application specificities, and security requirements would be made to hold on

copies and thus be maintained automatically.

2.4.4 Schema Transformation and Transaction Translation

The schema transformation and transaction translation approach changes the
access mechanisms instead of changing the structure of the data. This approach of data
sharing among federated databases is more efficient than the database conversion approach.

In this approach, additional equivalent schemata for a database are generated as
required based on data models other than the original data model, while any transaction
written in a data language other than the original data language has to be translated back into
an equivalent transaction in the original data language for execution. The main ideas
concerning schema transformation and transaction translation approach are illustrated in
Figure 2.9. '

N
¥'____/

schemai NRatabase1
hema transformed/ \

~

transaction translated N

DBMS using Model1

N~

DBMS using Model2
Figure 2.9 Schema Transformation Approach

Chapter 2 40 The Usability of Database Systems

Both capabilities of schema transformation and transaction translation are
essential in this approach. The former enables a database to be viewed in different data

models, while the latter permits a database to be manipulated in different data languages.

Comparing the schema transformation and transaction translation approach with
the database conversion approach, two major differences are as follows:

1) In the conversion approach multiple copies of a database are produced and
maintained, whereas in the transformation and translation approach only
multiple schemata will be generated. The apparent existence of multiple copies
is supported by the maintenance of virtual derived versions.

2) In the conversion approach suitable software is developed for the conversion
of a database in one data model to an equivalent database in another data
model, whereas in the transformation and translation approach proper software
is developed for schema transformation and transaction translation among
various data models and data languages.

There are four different system architectures to facilitate data sharing among
federated, heterogeneous database systems using the schema transformation and transaction

translation approach. These are:

* the single-model-and-language-to-single-model-and-language mapping
(Single-ML-to-Single-ML mapping),

* the multiple-models-and-languages-to-single-model-and-language mapping
(Multiple-MLs-to-Single-ML mapping),

* the single-model-and-language-to-multiple-models-and-languages mapping
(Single-ML-to-Multiple-MLs mapping), and

* the multiple-models-and-languages-to-multiple-models-and-languages mapping
(Multiple-MLs-to-Multiple-MLs mapping).

An example of a federated database system with the architecture of Single-
ML-to-Single-ML mapping with the transformation and translation approach is

Chapter 2 41 The Usability of Database Systems

illustrated in Figure 2.10. The system consists of three data models and offers full

transparent access and manipulation capability.

- gchema transformer
& transaction translator

Model 2

Model 1

Figure 2.10 Single ML to Single ML Mapping

In order to achieve the maximum data sharing in such an architecture, if the
heterogeneity of the federated databases is n, then n(n-1) schema transformers and n(n-1)
transaction translators will be required. As long as this many transformers and translators
are properly formulated and maintained, no user of the system will be faced with any
difficulty when accessing and manipulating the data. In addition, since all changes to a
database are made locally by the local database system, local autonomy can be upheld easily
and effectively by the access and concurrency control mechanism of the local database

system.

A disadvantage of this architecture is that the number of schema transformers
and transaction translators in the federated system will become unacceptably large if the
number of data models involved in the systems is itself large.

An example of a federated database system with the architecture of Multiple-
MLs-to-Single-ML mapping with the transformation and translation approach is
illustrated in Figure 2.11. The system also consists of three data models and offer full
transparent access and manipulation capability.

Chapter 2 42 The Usability of Database Systems

B schema transformer
A transaction translator

Model 2
(as Kernel)

Model 1

Figure 2.11 Multiple MLs to Single ML Mapping

In this architecture, a data model and data language pair acts as kernel model
and kernel language, upon which the sole genuine database system in the ‘federation’ is
based. The other data models just provide alternatives for the users to access and
manipulate the data in the system. As illustrated, if the heterogeneity of the system is n,
then only n-1 schema transformers, and n-1 transaction translators will be needed to
provide fully transparent access and manipulation. Each transformer transforms a schema
in the kernel data model to a schema in a particular non-kernel data model, whereas each
translator translates a transaction written in the data language relating to a particular non-
kernel data model to a transaction in the data language relating to the kernel data model.
Owing to similar reasons to those mentioned for the Single-ML-to-Single-ML mapping
architecture, if the relevant constraints, specifications, and requirements written in a non-
kernel data language can be faithfully translated into equivalent constraints, specifications
and requirements in the kernel data language of the system, then the local autonomy can be
upheld by the access and concurrency control mechanism of the kernel database system.

An advantage of this architecture is that only a relatively small number of
schema transformers and transaction translators are required in order to enable full
transparency of data access and manipulation, while a disadvantage is that existing
databases based on other database models have to be converted into equivalent databases in
the kernel data model.

An example of a federated database system in the architecture of Single-ML-

to-Multiple-MLs mapping with the transformation and translation approach is
illustrated in Figure 2.12.

Chapter 2 43 The Usability of Database Systems

B schema transformer
M~ transaction translator

Model 2
N
Model 1 Model 3
\\

\\ Un ve!sal
Model

Figure 2.12 Single ML to Multiple MLs Mapping

In this architecture, a universal data model and a universal data language are
created artificially and provided to all users for transparent access to and manipulation of
the heterogeneous databases in the federation. With a user’s familiarisation with both the
universal model and the language, the federated database system allows the user to view
any database in the federation as if it were in the universal data model and to manipulate any
database by writing transactions in the universal data language. The data model and the
data language are called universal because they are the only pair of model and language that
provides transparent access to every database in the federation.

A user must learn the universal data model and universal data language to enjoy
the benefit of transparent access to the databases, the models of which the user is not
familiar with. This time, provided the heterogeneity of the federated database is n, then n
schema transformers, and # transaction translators are required for transparency of access
and manipulation in this way.

Again, since all changes to a database are made locally by the local database
system, the local autonomy can be upheld by the access and concurrency control

mechanism of the local database system.

Finally, Figure 2.13 shows an example of a federated database system, which
consist of three data models and provide full transparency of access and manipulation, in

Chapter 2 44 The Usability of Database Systems

the architecture of Multiple-MLs-to-Multiple-MLs mapping with the schema

transformation and transaction translation approach.

- schema transformer
& transaction translator

Model 2
| TN
Model 1 Model 3
\\ ,s"i@v

\ \‘s ﬁs“‘,\“‘
N Intermediate |*&

Model y

Figure 2.13 Multiple MLs to Multiple MLs Mapping

In this architecture, a special pair of data model and data language is created to
act as intermediate model and intermediate language. The Multiple-MLs-to-Multiple-MLs
mapping therefore consists of two consecutive stages, the first stage being a Multiple-MLs-
to-Single-ML mapping and the second stage being a Single-ML-to-Multiple-MLs mapping.
This architecture requires 2n schema transformers and 2n transaction translators to achieve
the maximum data sharing, given that the heterogeneity. of the federation is 7.

The intermediate data model and data language used in this architecture are just
conceptual and virtual, being sufficiently rich in semantics to subsume the others.
Therefore, the intermediate data model and language are similar to the universal data model
and language in the Single-ML-to-Multiple-MLs mapping architecture, but quite different
from the kernel data model and language in the Multiple-MLs-to-Single-ML mapping
architecture.

A goal for using an intermediate data model and data language is access and
concurrency control. Since transparent accesses can only take place after the second stage
of the mapping process, the mapping can validate the access request against the integrity
constraints, application specificities, and security requirements of the given database at the
end of the first stage of the mapping process. All requests, constraints, specificities, and

Chapter 2 45 The Usability of Database Systems

requirements are translated from the users' data model and language into the intermediate
data model and language to facilitate the validation. As long as the transformation and
translation preserve the semantics of the users’ requests, constraints, specificities, and
requirements in the semantics of the intermediate data model and language, the role of the
intermediate data model and language in access and concurrency controls of the two-stage
process is important and necessary.

In the work presented in this thesis, the existence of a universal data model
promises support for multiple data models without the requirement of translators between
each pair of models (requiring n(n-1) translators), instead each model will have translators
between it and the universal model (requiring only 2#n translators to be built). Translation
between two models then require two steps with the universal model appearing as an

intermediate model.

2.5 Conclusions

A DBMS is a software system that supports data intensive applications. In the
early stage, such applications were relatively easy to program as the structure of data used
was kept simple and straightforward. As database technology progressed, however, not
only have the requirements arising from the traditional applications increased, but new
assistance is also demanded for more general and complicated application systems. These
application systems automate complex information processing systems and support a broad

spectrum of activities.

A distinguishing characteristic of data intensive applications is the representation
of a large number of interrelated entities of the application realm. In the database system,
each entity will be represented by a value. The term 'value' here is used in its most general
sense, implying any valid data item of a particular system,; that is, a value may be a simple

one, such as a string or an integer, or a complex one, such as a record or an object.

For example, a particular person might be represented by the group of the string
'Jean' and the string 'SO Grant Street'. Groups of values, which themselves are values,
can also be used to represent relationships between entities. If a particular person entity is
represented by the value p, and a particular book entity is represented by the value b, then
the fact of that person borrowing that book may be represented by the group (p, d).

Chapter 2 46 The Usability of Database Systems

At the end-user level, there are facilities for describing the nature of the values
which arise in a particular application and other facilities for manipulating and retrieving
these facilities. Each of these facilities is provided in the context of the data model in which
the user conceives the data description. The system will then map this description down
into more physical models against which the DBMS is written.

Given the variety of users that a DBMS is expected to support, there is a clear
need to support multiple data models, varying in their degree of detail and appropriateness
to particular applications. One particular kind of database system in which the support of
multiple models is vital is a federated DBMS. Here DBMS built on different data models
are required to share data.

The next three chapters describe an approach to the consistent and coherent
provision of multiple data models. Chapter 3 describes the approach in the context of
structural aspects of the data, while Chapters 4 and 5 describe the management of
constraints and behaviour respectively. Later chapters deal with the formalisation and
implementation of these ideas.

Chapter 2 47 The Usability of Database Systems

3 Configurable Data Modelling System

This chapter supplies a systematic exposition of the concepts underlying a
configurable data modelling system (CDMS).

Section 3.1 explains the motivation and feasibility. Section 3.2 analyses the
data modelling process and methodology. Section 3.3 proposes the CDMS structure.
Section 3.4 introduces data modelling primitives and data model configuration. Sections
3.5 and 3.6 contain, respectively, the approaches dealing with constraints and behaviour in
the context of the CDMS. Section 3.7 describes interaction elements and dialogue
primitives. Section 3.8 summarises the CDMS functionality. Section 3.9 describes some

related work.

3.1 Motivation and Feasibility

Now that a number of semantic data models have been proposed, data
abstraction can now be achieved directly and intuitively based on these user-friendly
models. Nevertheless, a conventional database management system (DBMS) is usually
built upon few specific data models, with few fixed interfaces, hence its usability is
inevitably restricted. Apart from this, each implementation of a specific pair of model and
interface for such a DBMS is traditionally a separate task. This leads to repetitive
programming efforts, which incur labour wastage. .

A user interface management system (UIMS) treats an interface as a
structured group of dialogue primitives, which can be combined flexibly to form
appropriate interfaces according to the designers' choices. By using the UIMS idea more
precisely in the context of a DBMS, a range of interfaces can be built to the same data
model [King and Novak, 1989]. However, the UIMS idea may be further extended to

Chapter 3 48 Configurable Data Modelling System

support the construction of multiple data models out of generic data modelling
primitives. Thus the varying needs of different groups of users can be satisfied.

Judicious analysis of data modelling shows that the various semantic data
models are actually based on a small set of constructs - base values, complex objects,
connections, constraints on their utilisation and combination, as well as data definition and
data manipulation operations [Hull and King, 1987]. In essence, this variety of semantic
data models is based on a small number of common concepts, which can be regarded as
primitive components of the data models in just the same way as interaction elements are

primitive to user interfaces.

Therefore, given appropriate sets of data modelling primitives and
dialogue primitives, as well as appropriate construction regulations, data model
implementors would be able to construct data models that suit various applications, and
interface implementors would be able to construct appropriate interfaces to those data
models. This would satisfy various users, without being restricted by the models and
interfaces actually existing in a particular system or requiring the continual re-programming
of similar functionality.

Such a system is referred to as a configurable data modelling system.

3.2 Data Modelling Process and Methodology

This section articulates the relationship among database, data schema, and data
model, out of which arises the notion of a global data model.

3.2.1 A Database as an Instance of a Data Schema

To use DBMS technology, the structure of a miniworld is described in terms of
a data model and is then referred to as a data schema. The schema is made up of a set of
elements each of which is an instance of one of the constructs in a data model. The schema
is then employed as the framework for the values which make up the relevant database.

To illustrate this, Figure 3.1 shows an ER schema, in which the framework of a

library system is described in terms of related entities with attributes. A number of base
classes, name, id, sex, age, house, street, city, title and number; a number of complex

Chapter 3 49 Configurable Data Modelling System

classes, person, book, address and loan; and a number of connection classes,
person's name, person's id, person's sex, person's age, person's address, title of book,
number of book, address-house, address-street, address-city, loan-person and loan-book
are involved in the schema.

This schema can be used to organise the basic information regarding members,
books and loans relating members and books in a particular library. Broadly speaking, it
can be used to organise the aforementioned sorts of information for any library into a
database.

it
loan-book
loan-person
title of book
" e hooH
number of book
's id
p'sjaddress

a- crty

_ﬂ simple attribute

entity
—>® complex attribute

\/> relationship
.““““,A component of complex attribute

‘
")
“t

a- housg-

& -et
hévke A

III

Figure 3.1 A Library Schema

A database that is made up of instances of the schema components of Figure 3.1
is shown in Figure 3.2, where, for example, ‘Jean' and 'George' are instances of name,
true and false (representing female and male respectively) are instances of sex. In addition,
there are two instances of person, one instance of address, three instances of loan, and so
on. The information expressed by the database is that both a girl named 'Jean', with id
1001, aged 18, living at 50 Grant Street, Glasgow and a boy named 'George', with id
1002, aged 20, living at the same address are members of the library; the library owns
books 'Database’ numbered 5001, 'Programming' numbered 5002 and 'Bridge' numbered
5003; 'Database’ and 'Programming' are currently borrowed by Jean, and 'Bridge' by
George.

Chapter 3 50 Configurable Data Modelling System

In order to make the correspondence between an instance and the class it
belongs to even clearer, the layout of Figure 3.2 deliberately resembles that of Figure 3.1.
Thus, a number of base instances, a number of complex instances and a number of
connection instances are contained in the database, which is itself an instance of the
data schema.

'‘Database’
Je 'Programming’
‘George' ‘Bridge'

t N
rue, AN
false
1001 5001
1 5002

1002
20 @ 5003

ﬁ Grént StGlaédow
ﬂ simple attribute

| ® complex attribute

/N . .
A4 relationship
it component of complex attribute

entity

Figure 3.2 A Library Database

Figures 3.1 and 3.2 are usually referred to as the intension and the
extension graphs of the database. The information which is available for manipulating
the database can be thought of as the combination of these two graphs with an instantiation
link between nodes in the intension graph and nodes in the extension graph. Thus each
element of Figure 3.2 is an instance of an element of Figure 3.1.

Indeed, the database as a whole can be viewed as an instance of the schema
taken as a whole - each value in the database being an instance of an element of the schema.
The database represents one of the many possible states which correspond to the schema.
A database is thus an instance of a schema.

Chapter 3 51 Configurable Data Modelling System

3.2.2 A Data Schema as an Instance of a Data Model

The relationship between a data model and a data schema supported by the
model parallels the relationship between a data schema and a database supported by the
schema. A semantic data model defines sets of base types, complex types and connection
types, of which base classes, complex classes and connection classes in data schemata are

just instances.

A simplified ER model, which is sufficient to support the data schema
represented in Figure 3.1 is illustrated in Figure 3.3. This model includes the base type
simple attribute; complex types entity, composite attribute, relationship; and connection
types attributing, consisting, relating. In the figure, a named triangle denotes a base type,
a named symbol other than a triangle denotes a complex type, and a named edge style
denotes a connection type. More precisely, each directed edge denotes a sub-connection
type, each instance of which connects two instances of the relevant base/complex types in a
particular data schema supported by the data model. This representation is consistent with
the data schema representation of Figure 3.1.

Thus in the previous example, base classes name, id, sex, age, house, street,
city, title and number are instances of the base type simple attribute; complex classes person
and book are instances of the complex type entity; the complex class address is an instance
of the complex type composite attribute; the complex class loan is an instance of the
complex type relationship; connection classes person's name etc are instances of sub-
connection type attributing (from entity to simple attribute); the connection class person's
address is an instance of sub-connection type attributing (from entity to composite
attribute); connection classes address-house etc are instances of sub-connection type
consisting (from complex attribute to simple attribute); and connection classes loan-person

and loan-book are instances of connection type relating.

Chapter 3 52 Configurable Data Modelling System

| g attributing

ALY cons i st i n g

relating

(ke

simple attribute cQmposite attribute

"
S 55

Figure 3.3 A Simplified ER Model

Just as a database occurrence is an instance of a data schema, a data schema is
an instance of a data model. Many schemata may be created, modified and instantiated
against one model, just as a number of databases may be established and maintained against

one schema.

Various semantic data models are common in offering types to be specialised in
order to generate classes as schemata are created. The difference between two particular
models is intrinsically the difference between the number and nature of concrete types they
offer. This difference allows various points of view to determine schema definition, and
various extents of detail to be captured.

3.2.3 The Global Model as Generalisation of Data Models

A CDMS is designed to be a system which coherently and consistently supports
a variety of data models. Thus a CDMS expects to house a majority of the semantic data
models found in the literature in a single environment in such a way that data can potentially
be shared among them. In order to achieve this, some underlying structure is required.
The structure chosen is intended to provide a highly abstract, relatively unconstrained
generic model of which all of the supported data models are instances. Thus this generic
model, referred to as the global data model, stands in the same relation to the data
models as each data model does to the schemata supported by it.

Chapter 3 53 Configurable Data Modelling System

The meta-base type, meta-complex type and meta-connection types
represent the main concepts of the global data model. Meta-types epitomise various types
existing in various semantic data models, thus as a meta-type is specialised, a type will be
created as an instance of it.

—® meta-relating

<~} meta-inheriting
meta-complex

meta-base

Figure 3.4 The Global Data Model

Figure 3.4 illustrates the global data model used to build the CDMS in this
research. The global data model defines the sole meta-base type meta-base; the sole meta-
complex type meta-complex; and meta-connection types meta-relating and meta-inheriting.
In the figure, the triangle and the square denote meta-base and meta-complex respectively,
while each named edge style denotes one of the two meta-connection types permitted by the
global model - meta-inheriting describes an ISA relationship and meta-relating describes
attribution and part-of relationships. This representation is consistent with the data schema
representation illustrated in Figure 3.1, as well as consistent with the data model
representation illustrated in Figure 3.3. The figure also shows the basic constraints which
are built into the global model:

* inheriting can only link the same kind of value - thus base values cannot inherit
from complex values and vice versa;

* there are no other connections between base types.
These are summarised in Figure 3.5.

Referring to the simplified ER model (Figure 3.3), which is an instance of the
global data model, the base type simple attribute is specialised from meta-base, complex

Chapter 3 54 Configurable Data Modelling System

types entity, composite attribute and relationship are specialised from meta-complex, and

connection types attributing, consisting and relating are specialised from meta-relating.

relating types

to base type complex type
from ypP plex typ
llowed -
not allowed - a .
base type a base type may not relate a base t’;ﬁzrrg?g ::\:Zt;éofjn%%?ﬁ lex type:
to a base type from a base class to a complex class
allowed - allowed -
complex type a complex type may relate a complex type may relate
to a base type to a complex type
inheriting types
to base type complex type
from
allowed - not allowed -
base type a base type may inherit a base type may not inherit
from a base type from a complex type
not allowed - allowed -
complex type a complex type may not inherit a complex type may inherit
from a base type from a complex type

Figure 3.5 Combination Ability of Connection Types

3.3 CDMS Structure

Based on the analysis in the previous section, a CDMS is built up using a four
level architecture, which consists of the global level, model level, schema level and data
level. In this architecture, a data model resides in the system as a consistent set of meta-
metadata values in the same way that a data schema does as a consistent set of metadata
values. The overall structure of the CDMS is therefore as illustrated in Figure 3.6. In the
figure, the frameworks of real miniworlds miniworldl and miniworld2 are represented,
separately, by Schemal and Schema2, however, both the schemata are described by the
same data model Modell

Chapter 3 55 Configurable Data Modelling System

Real Worl

miniword1
Conceptual World
Globall Model

/

Global Level Fixed Ipterface /
/]

/|

/]
Model2 I}(erff#32

Z /1
Model Level Modell Integfafet
[]

< /[]

VAN |
Schema2 II /éch#ma4
Z /

Schemat - S(%emaa

/
/

/ /[7 /
Database?2 , /Database4
Daﬂ Databaset Database3
I/ [/ 7

Physical Computer Representation

Sche evel

L

&eta-m etadata __—

Metadata

Data

~
-

Figure 3.6 Overall Structure of the CDMS

e
\

The global level contains the sole global data model, the properties of which
determine the fundamental characteristics and limitations of the CDMS. In other words,
this level offers all generic data modelling primitives, which represent the most
comprehensive concepts of the CDMS and from which components of data models can be

Chapter 3 56 Configurable Data Modelling System

generated. An appropriate group of these specialised components constitute a specific data
model.

The data models supported by the system will include most prominent semantic
data models such as the Entity-Relationship Model (ER), the Semantic Data Model (SDM),
the Functional Data Model (FDM) and IFO, as well as classical implementation data models
such as the Relational Model, the Hierarchical Model and the Network Model, since these
also have a partially conceptual aspect.

The global level also offers dialogue primitives, from which various interfaces
to individual data models can be constructed. The interfaces supported by the system
should include command languages, forms, graph-based interfaces and so on.

At the global level a database engineer (DBE) constructs various data models
and interfaces as desired.

The model level contains all data models which have been constructed within
the system. Each model is essentially a specialised hence restricted set of the components
of the sole global data model. At this level a database administrator (DBA) defines and

maintains various data schemata.

Each particular data model has at least one default user interface attached to it,
while more interfaces may be added to meet various users' needs. In practice both model
design and interface design are closely combined with each other. The default interface
must be constructed at the same time as the relevant model is being defined, and this
interface must not be removed unless the same model is removed. The interfaces are used
to maintain schemata at the model level.

The schema level contains all data schemata which have been constructed.
Each schema is a specialised set of the components of a certain data model. At this level a
database end-user uses one of the interfaces which have been constructed to manipulate the
relevant data.

The data level contains all databases which have been established. Each

database can be considered a specialised set of the components of some data schema.

Chapter 3 57 Configurable Data Modelling System

DBAs and database end-users interact with the CDMS via interfaces created by
DBEs, while DBEs interact with the CDMS via the fixed interface attached to the global
data model.

3.4 Modelling Primitives and Data Model Configuration

Data modelling primitives constitute the global data model. The global data
model represents the highest abstraction of models, schemata and databases which can be
supported within the CDMS, while the data modelling primitives represent the highest
abstraction of all sorts of values which may exist in these models, schemata and databases.
Data modelling primitives incorporate meta-base type, meta-complex type, meta-
connection types and others.

The CDMS contains meta-base as the sole meta-base type. Meta-base
represents the highest abstraction of all base values which are directly representable and
alterable through human-computer interface, it can therefore be specialised as the base type
simple attribute in the ER model, or printable in IFO.

The CDMS contains meta-complex as the sole meta-complex type. Meta-
complex represents the highest abstraction of non-base objects, it can therefore be
specialised as the complex types entity, composite attribute and relationship in the ER
model, or abstract, free, set and aggregate in IFO. An entity in the ER model, an abstract
or a free in IFO represents an object. A set in IFO represents a group of similar objects of
its 'child’, that is, set can be specialised as such a class that each instance of it is a set of
instances of some other class. Types composite attribute, relationship in the ER model,
and aggregate in IFO are, in essence, a Cartesian product over their 'children’, thus, for
example, composite attribute can be specialised as address, each instance of which consists
of three instances, which are specialised from house, street and city respectively.

The CDMS incorporates meta-relating and meta-inheriting as meta-connection
types. These can be specialised as meta-metadata values in the models to be defined,
representing various sorts of connection in the real world. Meta-relating is used to describe
various relationships among values/objects, while the basic meaning of meta-inheriting
concerns duplicate values/objects. This semantics is reflected in Figures 3.4 and 3.5, by
indicating combination patterns among the instances of meta-types as a model is
constructed.

Chapter 3 58 Configurable Data Modelling System

primitives

meta-base

meta-complex

meta-relating

meta-metadata metadata

simple attribute name
id

sex
age
house
street

city
title

number
entity person

book

composite attribute address
relationship loan
attributing person's name
person's id
person's sex
person's age

title of book

number of book

person's address

consisting address-house
address-street
address-city

relating loan-person
loan-book

meta-inheriting

data

‘Jean'
'George'
1001

1002

true

false

18

20

50

‘Grant Street’
‘Glasgow'
‘Database’
'‘Programming’
‘Bridge’

5001

5002

5003

person Jean
person George
book Database
book Programming
book Bridge

address 50 Grant St, Glasgow

Jean borrowing Database
Jean borrowing Programming
George borrowing Bridge

Jean-Jean'
George-'George’

Jean-1001

George-1002

Jean-true

George-false

Jean-18

George-20
Database-'Database’
Programming- ‘Programming'
Bridge- ‘Bridge’
Database-5001
Programming-5002
Bridge-5003

Jean-50 Grant St, Glasgow
George-50 Grant St, Glasgow

50 Grant St, Glasgow-50
50 Grant St, Glasgow- 'Grant Street'
50 Grant St, Glasgow- 'Glasgow’

Jean borrowing Database-Jean

Jean borrowing Programming-Jean
George borrowing Bridge-George

Jean borrowing Database-Database

Jean borrowing Programming-Programming
George borrowing Bridge-Bridge

Chapter 3

Figure 3.7 Specialisation of Generic Data Modelling Primitives

59

Configurable Data Modelling System

Figure 3.7 summarises the generic data modelling primitives, and gives an
example of their specialisation routes in the context of an application of the CDMS. This
example demonstrates the configuration of the Simplified Entity-Relationship Model.

As the Simplified ER Model, which was mentioned above, is configured, the
construct simple attribute in the model is represented by simple attribute along with
attributing; complex attribute by complex attribute along with attributing; component of
complex attribute by simple attribute along with consisting; relationship by relationship
along with relating; while entity by entity singly.

3.5 Dealing with Constraints in the CDMS

As has been indicated above, which elements exist in a data schema restrict the
potential set of data values allowed in all databases framed by the schema; the constructs
contained in a data model restrict metadata values in all data schemata defined by the model;
and the constructs which have been provided in the global data model restrict which
constructs can be placed in a data model. In other words, the limited presence of classes in
particular data schemata, types in particular data models, and meta-types in the global data
model represent constraints at the schema level, the model level and the global level of the
CDMS in some sense.

Referring to Figure 3.1, due to the restricted number of classes in the schema
which describes the structure of the library system, only very basic information can be kept
in the relevant database. In fact, only each member person's name, id, sex, age and
address (consisting of only house, street and city), the title and number of each book
owned by the library, and the person and book in relation with each loan can be recorded in
the database, while information on a person’s education, position and salary, the value of a
book, the starting date and due date of an individual loan, etc, have to be ignored. In order
to contain more details relevant to a library system, the data schema must be expanded to

involve more classes.

Referring to Figure 3.3, because the simplified ER model does not involve a
type similar to free or specialisation in IFO, it is impossible to directly construct a data
schema which involves, say, student and staff as subclasses of person using the ER model.
Moreover, connection type attributing consists of only four sub-connection types:
attributing (from entity to simple attribute), attributing (from entity to composite attribute),

attributing (from relationship to simple attribute) and attributing (from relationship to

Chapter 3 60 Configurable Data Modelling System

composite attribute). Therefore no class specialised from composite attribute and no class
specialised from simple attribute can be connected by a class specialised from attributing at
all. However, a class specialised from consisting may connect a class specialised from
composite attribute and a class specialised from simple attribute, examples of which are that
address is connected by address-house, address-street and address-city to house, street and
city respectively. The reason is that connection type consisting includes the required sub-
connection type consisting (from composite attribute to simple attribute).

Referring to Figure 3.4, which represents the global data model, the fact that
meta-inheriting consists of only meta-inheriting (from meta-base to meta-base) and meta-
inheriting (from meta-complex to meta-complex) reflects that an inherited value/object is
essentially the same as the original. In addition, the fact that meta-relating is not directed
from meta-base to meta-base reflects the independent nature of base values. According to
the definition, meta-base should epitomise all values representable and changeable directly
through the interface; nevertheless, as the technology is constantly developing, the
spectrum of such values is potentially expandable. In the currently implemented CDMS
base values include bool, int, real and string only. For a more complete implementation for
multimedia applications, however, sound and image, etc, should not be excluded.

There are other sorts of constraints in the context of the CDMS. In fact, the
meaning of data in a database is comprehended not only based on the structures that is
accommodated and the names given to the structures, but also based on the constraints on
how the structures can be populated. As a data model is designed, the choice of constructs
provided is made to cope with the payoff between providing highly constrained structures
or providing less constrained structures together with facilities for specifying further
constraints on these structures. For instance, the ER model contains one connecting type
between relationships and entities together with the possibility of asserting cardinality and
participation constraints on this type. A different model might provide different connecting
types for multi-valued and single-valued connections.

From the CDMS point of view, all constraints should be dealt with in a
consistent way with other modelling primitives. The four level CDMS architecture gives a
firm basis for such a way. The global model provides meta-constraint types which can be
used either to create constrained constructs in the model or to embed constraint specification
constructs in the model. Using this framework, how and where constraints arise can be
distinguished properly. At each level there are constraints which are fixed at that level and
facilities for imposing further constraints at the levels below. The relevant issues,

however, will be explored in much more detail in Chapter 4.

Chapter 3 61 Configurable Data Modelling System

3.6 Dealing with Behaviour in the CDMS

The requirement for covering behaviour initially appeared in the field of office
automation, where the need to refer to certain activities as entities in their own right
occurred naturally.

In the context of the CDMS, broadly speaking, any piece of executable program
can be looked upon as a behavioural class, with an execution of it being considered an
instance. It is a useful perspective to view a piece of program as a single denotable 'value'
which can be manipulated, that is, created, stored, modified and removed in the same way
as an ordinary entity.

It is in the style of the CDMS that the model definition, data definition and data
manipulation operations be regarded as behavioural objects. In this way, all of the code
modules which change data, including metadata and meta-metadata, will be managed in a
unified manner, similar to the unification of the management of all of the constraints, which
was proposed in the previous section. The effect of this is that the configuration of a data
model can encompass not only control over the data structuring facilities, but also the
operations with which users use these facilities.

Thus the CDMS provides meta-behavioural types in the global model which can
be used either to embed code into a model or to allow behavioural constructs to be put into
the model. The relevant issues will be discussed in detail in Chapter 5.

3.7 Interaction Elements and Dialogue Primitives

The CDMS provides dialogue primitives which facilitate the operations for
model definition, data definition and data manipulation.

As a model has been defined, the construction of the default interface for the

model should be requested by the system. More interfaces for an existing data model can
be created by repeating the interface definition process.

Chapter 3 62 Configurable Data Modelling System

modelling

primitives meta-metadata correspondence :rii?rlu?t?\llj:s
meta-base printable
meta-complex abstract <>
free O node
set ® shapes
aggregate @
A\
meta-relating attribution |
grouping
aggregation / sgf;zs

meta-inheriting specialisation

generalisation

interaction elements

input an integer

input a string

output an integer

output a string

accept an integer
from keyboard

accept a string
from string editor

print an integer
on screen

print a string
on screen

select a string
from a set of strings

display a set of strings
in a menu then accept
the response

Figure 3.8 Interface Definition

An interface definition process is actually a process where a suitable dialogue
primitive is allocated to each of the interaction element involved in the relevant data model
(Figure 3.8). However, the details on the relevant issues are beyond the scope of this

thesis.

Chapter 3

63 Configurable Data Modelling System

Obviously, the symbols and line styles are limited to those stored in the system,
and a mechanism which will avoid conflicting selections should be involved in the system
design. For every data definition and data manipulation operation, the system provides the
interaction element sequence, the associated action of a selection being either doing nothing
or further providing an appropriate dialogue primitive menu for the DBE to select suitable
dialogue primitives. Real operation procedures will then be generated according to the
DBE's selections, and these will be embedded into the environment corresponding to the
relevant model and interface, which will eventually become ready for use.

3.8 CDMS Functionality

The CDMS provides a component of a database system with which a variety of
data modelling tools can be generated, each potentially with a variety of interfaces.

The facilities which are provided by the CDMS can be divided into four

categories:
* model definition facility, intended for data model implementors;
* interface definition facility, intended for interface implementors;
* data definition facility, intended for data schema constructors;
* data manipulation facility, intended for end-users.

It seems appropriate to refer to both model and interface implementors as
database engineers (DBEs), distinguished from database administrators (DBAs).
Thus, a skilled DBE will construct data models and relevant interfaces through, say, a
menu-driven program which permits the organisation of specialised generic modelling
primitives and dialogue primitives through his or her thoughtful choices among the

possibilities provided by the CDMS. These models and interfaces can then be utilised by
DBAs for data definition and further by database end users for data manipulation.

Chapter 3 64 Configurable Data Modelling System

3.9 Related Work

The idea of providing a system which permits the management of multiple data
models and/or multiple user interfaces has attracted a fair amount of attention by researchers
recently. In this section, a number of pieces of work in this area are reviewed.

The work of Roger King has concentrated on configuring the user interface in
the context of an object oriented data model [King and Novak, 1993]. DBface is a toolkit
which produces a visual framework from the database schema and then permits the user to
specify operations over the data using state transitions. There are therefore two stages in
the process of creating an interface. Firstly, a representation is created which defines three
views: a data view defines how the database will be represented; a schema view defines
how the classes and their connections will be seen; while a hierarchy view defines how the
inheritance hierarchy is viewed. Secondly, the operations are created using components
such as menus and primitive queries and updates. Thus DBface resembles the part of
CDMS which deals with user interaction once the data model has been fixed.

The MOBIAS system developed at US West uses a meta-model to allow a
variety of user interfaces to be developed and to co-exist on the same data [Durand et al,
1993]. MOBIAS has the same sort of four-level model as CDMS with the top level
containing just two meta-constructs: the Data Object Type or DOT which subsumes all
abstract and printable object types; and the Functional Object Type or FOT which subsumes
all relationship kinds. Individual data models then have different kinds of DOT and FOT in
a similar way to CDMS. By implementing user interaction primitives with respect to the
meta-model, MOBIAS can support several different styles - a query language, natural
language, forms and graphical interfaces - and these can then be used for different data
models.

The DEDD (Design Environment for Deductive Databases) system is an
extensible data model with a graphical interface [Radermacher, 1993]. The system presents
a means to design new constructs and to provide graphical interaction tools for them. The
creation of a new construct thus implies a semantic part - defining the nature of the
construct and how it may be interacted with - and a graphical part - how it is visualised and

how user actions initiate the interactions.
Atzeni and Torlone have explored a meta-modelling approach in the context of a

project called INFOKIT [Atzeni and Torlone, 1993]. In a similar way to CDMS, they
assert that the constructs in any data model can be reduced to a few categories: lexical types

Chapter 3 65 Configurable Data Modelling System

(i.e. base types); entity types; aggregations; grouping constructs; functions; and
generalisations. From this they propose a meta-model and a textual language for describing
models in the meta-model. They then go on to tackle the difficult problem of schema
translation between different models. This process is in two stages - from the source
model to the meta-model is trivial since the meta-model subsumes any model, but from the
meta-model down to the target model is more difficult, requiring that the model designer
provides mechanisms for mapping each meta-construct into one or more constructs in the

model.

At the University of Wisconsin, Yannis Ionnidis and his group have been
developing a system, OPPOSUM, for permitting multiple graphical interfaces to co-exist
on the same data [Haber et al, 1994, Haber et al, 1995]. OPPOSUM is built around a
generic data model with primitives, abstract types, attributes and constraints. The
connection between a model in OPPOSUM and a graphical interface to this is called a
metaphor. The main contribution of the work seems to be a full analysis of the nature of
such metaphors and how they may be evaluated.

One final area in which this kind of system emerges is in the design and
implementation of Repositories [Bernstein, 1995]. A repository is a database which is
intended to house design data emerging from a variety of tools and from a variety of
environments. As such, a repository must handle multiple data models since they are
designed to manage the data which is in pre-existing formats without requiring that the
tools that create the data be re-implemented in any way. The repository system being
developed by Microsoft Ltd uses the same four level architecture as the CDMS. It creates a
meta-model which can cope with the models which underpin any of the applications whose
data the repository is intended to handle. Clearly, given the wide variety of models which
it can expect - RTF, SGML, HTML, ER, etc. - the successful design of the meta-model

will be an impressive achievement.

To summarise, the work above is mostly motivated by the recognition that there
is a great deal of commonality between the various data models. This commonality is then
extracted and implemented as a highly abstract data model which can either be extended or
instantiated. By implementing user interaction in the context of the most general model, it
becomes possible to provide a great deal of the work of developing multiple user interfaces
to multiple data models, without repetitive programming. Techniques for adding specific
user interaction for specific operations complete the specification of the user interface.

Chapter 3 66 Configurable Data Modelling System

None of the work described above seems to be advanced enough to deal with
constraints or behaviour in a systematic manner as yet, however. All of the examples at
best hint at constraint management and say nothing about behaviour. So the work
proposed under the CDMS can be seen as an advance in these areas. On the other hand the -
CDMS work can be seen to lag particularly the work of Roger King and of Yannis Ionnidis
in the area of user interface specification, but many of the techniques found in these papers
seem to be directly relevant to the CDMS approach.

Chapter 3 67 Configurable Data Modelling System

4 Constraints in the CDMS

Data in recent database applications such as design databases, multimedia and
office information systems are extensively interrelated in various ways. To support this
interrelation in an easy-to-use manner, rich conceptual structures are needed. As well as
these structures, however, there is also a need to specify restrictions on the ways in which
these structures may be used and combined. Support for integrity constraints in these
applications needs more emphasis than in traditional applications. A systematic approach to
constraint specification and enforcement is therefore required to replace the conventional
unstructured approaches [Cooper and Qin, 1992].

The way in which constraints are treated in a traditional DBMS is deficient as a
significant portion of the behaviour of a data model or a data schema is invisible and hence
difficult to deal with. In addition, the management of constraints which are inherent to the
data model is kept separate from that of constraints which are defined in the data schema,
so they may not be handled in a unified way.

Deductive Database Systems promote constraints to be of primary importance
[Naish and Thom, 1983]. They offer tools for specifying constraints and resolving their
combinations. On the other hand, Frame Based Systems [Fikes and Kehler, 1985] provide
slots for describing constraints on the structure of a database. Both have tended to be
implemented in the context of untyped or dynamically typed environments. There is,
however, a problem with maintaining database software which must wait until run-time
before revealing that a piece of code is trying to use data of the wrong type. If the code is
expected to be used over a long period of time, as is normal with database applications,
then typing errors for infrequently used code may take years to turn up and consequently be
very difficult to rectify. Also, type checking is necessary forever, rather than once only at
compile-time.

Chapter 4 68 Constraints in the CDMS

In achieving the goal of managing multiple data models, each of which may
embody different semantics, the issue of constraint management comes more sharply into
focus, since the semantics of the data models will be largely expressed in terms of
constraints. Thus there arises a requirement to manage both the constraints which are an
inherent part of the data model and the constraints which are expressible in the data model
together in a systematic way.

The specification and enforcement of constraints are essential functions of the
CDMS. When a schema for a particular database application is created, one important task
is to identify the constraints that must hold on the database framed by the schema.
Similarly, when a model is constructed, it is crucial to declare the constraints that must hold
on every schema that is to be defined by the model. System semantic integrity covers
the techniques used to maintain the data model, the data schema and the database in a
consistent state with respect to the constraints defined in the global model, model and
schema. In order to prevent an inconsistent state occurring, the system should perform
semantic integrity verification to determine whether any change will incur a constraint
violation, and if this is the case, what appropriate action shall be taken consequently.

The CDMS is designed to provide a unified way to specify all constraints
whether they act on the data, the schema or the model; whether they reside in the schema,
the model or the global model; and whether they are defined as explicit constraints, are
included by instantiating implicit constraints, or are inherent constraints. Since in the
CDMS all modelling primitives, meta-metadata, metadata and data are treated as uniformly
describable values and all possible constraints can be considered as predicates of one kind
or another, this unified way to specify all constraints should eventually be able to be
reached. The research starts by producing a categorisation of constraints and by identifying
where in the architecture constraints shall reside.

In this chapter, Section 4.1 proposes some basic concepts concerning
constraints; Section 4.2 presents the structure of integrity constraints in the CDMS; Section
4.3 categorises integrity constraints in the context of semantic data modelling; Section 4.4
describes the configuration of constraints within the CDMS framework; Section 4.5
discusses the methods for the management of constraints; and Section 4.6 summarises the
issues presented in the whole chapter.

Chapter 4 69 Constraints in the CDMS

4.1 Some Basic Concepts of Constraints

A database stores information about some part of the real world, or a
miniworld, and, as has been indicated earlier, a miniworld situation is always governed by
some regulations or integrity constraints. Subsection 4.1.1 explains the role of constraints
in a DBMS; Subsection 4.1.2 indicates that a constraint is in essence a predicate;
Subsections 4.1.3 and 4.1.4 introduce constraint management and constraint placement
respectively.

4.1.1 The Role of Constraints in a DBMS

In connection with the DBMS applications, it is usual to distinguish three sorts
of integrity constraints that can be specified and enforced on the data schemata of the
relevant data model [Elmasri and Navathe, 1989]. These are inherent constraints, implicit
constraints and explicit constraints.

Inherent constraints, being part of the specification of the data model,
automatically hold in all the schemata supported by the data model and hence do not need to
be specified as a schema is defined. Implicit constraints are directly specifiable by
facilities incorporated in the data model. In other words, each data model includes a
possible set of implicit constraints that may be represented in a schema. Explicit
constraints are not directly specifiable by measures incorporated in the data model, but
may be explicitly specified and represented in a schema.

Take the ER model as an example, it is inherently established that in any ER
schema every instance of a relationship class relates exactly one instance of each entity class
participating in the relationship class in a specific role, while constraints such as key
attributes on entity classes and structural constraints on relationship classes are implicitly
specifiable in a particular ER schema. Explicit constraints add to an ER schema further
restrictions such as a range restriction on an integer-valued attribute.

In IFO, an inherent constraint on specialisations/generalisations is that every
instance in a subclass must also exist in its superclass, while such constraints as
disjointness or coverage on specialisations are implicitly specifiable in a particular IFO
schema.

Chapter 4 70 Constraints in the CDMS

Thus normally the use of an application is restricted partly by assertions made
by the designer when setting up the schema and partly by decision forced by the data
model. The CDMS brings the management of these together again.

4.1.2 Constraints as Predicates

Each constraint is essentially a predicate, that is, a boolean-valued function
which takes as its argument a subset of the values held by the DBMS. The function value
indicates whether or not the constraint has been violated. For instance,

ac age and (a>0 and a<120)
returns false if any age value lies outside the range O to 120.

Since the DBMS stores metadata as well as data, it is possible to hold
constraints which limit the metadata. For instance,

(X, Y) and 1€ attribution and (X¢ attribute and Y¢ entity)

means that if Y is the class of an attribute of X then X must not be an attribute class and Y
must not be an entity.

In the CDMS, the global model holds a number of templates for different kinds
of constraint. These may be specialised to impose constraints at any of the levels of the
CDMS architecture.

4.1.3 The Management of Constraints

Constraints are predicates which return a boolean value which indicates whether
or not the constraint has been violated. The question arises what should happen if a
constraint is violated. Ideally, there should be a constraint management component of a
DBMS which enables DBMS users to specify clearly what should happen if a constraint is

violated.

Some of the facilities which such a component could provide include:

Chapter 4 71 Constraints in the CDMS

for constraint management. Constraints are scattered through the system and each is dealt

with in

the ability to suspend the effect of a violation;

the ability to re-impose the constraint;

the ability to perform a check of all constraints;

a clear mechanism for indicating how system should recover from constraint
violation; and

the ability to position constraint checks at particular points of the interaction
with the database - check points, transaction boundaries and so on.

In fact, a DBMS typically provides very little in the way of systematic support

an ad hoc manner. By unifying the treatment of constraints, it is hoped that

systematic constraint management is brought a step closer.

4.1.4

identify

Placement of Constraints

In order to start to bring some order to constraint management, it is important to

where in a DBMS the code which embodies each constraint is located. Traditional

options are as follows:

1)

2)

3)

4)

Chapter 4

In the code implementing the data model. This is where the inherent
constraints and generic code for the implicit constraints will reside. In a
program supporting the ER model, for example, there must be a part which
forces attribute values to be printable and another part which has a generic form
of structural constraints that is to be instantiated as appropriate.

In assertions specified by the user.

In application code as code fragments which provide checks on updates as
well as inputs.

Associated with computational values. These constraints are a
supplement to some piece of code and control its behaviour. Thus a

72 Constraints in the CDMS

transaction, for instance, may have as part of its definition some kind of check,
which can be further categorised as:

* pre-conditions or guards, which are restrictions that must hold if the
code is to be executed;

* post-conditions, which if violated cause the effect of the code to be
undone;

* triggers, which instruct the system to take actions when specified changes
are attempted; and

* exceptions, which are error conditions that change the normal flow of
control in a program.

The crucial issue is that constraints which are buried in code are not sensitive to
the kind of management facilities which are required. In order to provide facilities which
allow constraints to be suspended and re-imposed and to allow them to be visible to the
user, it is necessary that they be values in the DBMS. Of the four sorts of constraint given
above, only assertions can readily be treated in this way, although in TAXIS [Mylopolous
et al, 1980], for instance, constraints associated with computed values are also nameable
and thus manageable.

4.2 Constraints in the CDMS Architecture

A database is widely used to maintain information about a particular part of the
real world, as has been explained in previous chapters. A schema is the framework of one
or more databases, while a model is a common language in which schemata are defined.
Semantic integrity constraints are restrictions on data models, data schemata and databases,
ensuring that they reflect the relevant miniworlds accurately.

In the CDMS, a constraint can be categorised by a number of attributes:

1) At which level the constraint acts. A constraint may limit meta-metadata,
metadata or data values.

Chapter 4 73 Constraints in the CDMS

2) Where the constraint is specified. A constraint can be built into the global
model or be specifiable when constructing a model or defining a schema, or
populating a database.

3) What kind of constraint it is. Some constraints restrict the range of some
CDMS value. Others restrict combinations of values. Section 4.3 describes
the varieties of constraint which the CDMS can manage. As a constraint is
essentially a predicate, the form of a predicate decides the kind of constraint.

Following a subsection containing introductory examples, Subsection 4.2.2
describes the first and second of these attributes and how they interact. Clearly constraints
can only act on levels lower than the one in which they are described. Subsection 4.2.3
gives some more extended examples.

4.2.1 Some Introductory Examples

Going back to the library database, here are a few constraints which limit
interaction at the various levels:

1) Suppose one wished to put a photograph of the author of the books in the
database. This requires an image base type but the CDMS does not support
this. This is an example of a constraint acting at the data level which is
embedded in the global model - a global-data constraint.

2) Suppose two people wished to borrow a book jointly. However, the ER
model requires that a relationship instance relates exactly one instance from
each participating entity class, so this is forbidden. This is an example of a
constraint acting at the data level which is embedded in the model - a model-
data constraint.

3) Next, there might be multiple authors of a book, but the schema specified one
author to a book. This is an example of a constraint acting at the database level

which is embedded in the schema - a schema-data constraint.

There are three other types of example:

Chapter 4 74 Constraints in the CDMS

4) It is impossible to define a schema in which a base node inherits from a
complex node. This is forbidden by the global model - a global metadata
constraint.

5) Similarly, it might be best to model the authors, staff members and library
users as sub-classes of a person class, but the ER model does not have
inheritance. Thus a constraint embedded in the model restricts the schema - a
model-metadata constraint.

6) Finally, it is impossible to build a model in which there is a list construct,
because the global model does not offer lists. This is a global meta-metadata
constraint.

Thus all constraints in the CDMS arise in the global model either as inherent
constraints (examples (1), (4) and (6)) or as identifiable constructs (examples (2), (3) and
(5)). The constructs can be used either to embed constraints into a model (examples (2)
and (5)) or become constructs in the model (example (3)). In the latter case the construct
can be used to embed constraints into a schema.

4.2.2 Constraint Architecture in the CDMS

This subsection provides some definitions and categorisations of constraints in
the CDMS.

The most important distinction is between inherent constraints and implicit
constraints. The former are fixed constraints which limit values at a lower level, while the
latter require further specification. Thus an inherent constraint, given a set of values, can
return the value true or false according to whether it is violated or not. An implicit
constraint, on the other hand, has one or more parameters left unspecified. It is provided
as a construct for further specification of lower levels. Global inherent constraints are fixed
in the CDMS system, while inherent constraints at lower levels of the architecture are either
inherited from inherent constraints at higher levels or are produced by instantiating implicit
constraints.

The next categorisation concerns the CDMS level which the constraint restricts.
There are three alternatives:

Chapter 4 75 Constraints in the CDMS

* A data constraint limits the values of the data which may exist in a database -
either by limiting individual data values or by limiting the connections between
data values. Data constraints arise as limitations inherent to the schema of
which the database is an instance, the data model in which the schema was
defined, or the global model.

* A metadata constraint limits the values of the metadata which may exist in a
data schema - i.e. the structures which may be represented in the schema.
Metadata constraints arise either as constraints inherent to the data model being
used to define the schema, or as inherent limitations of the global model.

* A meta-metadata constraint limits the values of the meta-metadata which
may exist in a data model - i.e. the constructs which may be specified in the
model. These are always constraints which are inherent to the global model.

An alternative categorisation is at which level the constraint exists:

* Global constraints occur as part of the CDMS system, either as inherent
constraints limiting all use of a CDMS component, or as implicit constraints,
which are used for defining data models and data schemata;

* Model constraints occur as part of a data modelling component, either as
inherent constraints, limiting all use of schemata and databases built with the
model, or as implicit constraints which can be used to define schemata;

e Schema constraints are inherent constraints of a schema which limit a
database.

Chapter 4 76 Constraints in the CDMS

(" The Global Model (Generic Data Modelling Primitives) ‘\‘

Global Inherent Meta-metadata Constraints

Global Inherent|Metadata Constraints Global Implicit Metadata Constraints

Global Inhgrent Data Constraints Global Implicit Data Constraints

7 |
AM dﬁ(l\/l}ﬁ-metadata)

.

Y&

Model nherent Metadata Constraiy/ l

)4

Model Implicit Data Constraints

Médel Inhegrent Data Constraints

\ "
a A Schemyﬂletadata)

Schema Ir;erent Data Constrainté

7
N
A Database (Data))

N7

f

B constraining f}——— —— — full instantiating
- inheriting -ff—— —— - partial instantiating

Figure 4.1 Constraint Structure in the CDMS
Figure 4.1 shows the whole set of constraints which the CDMS recognises.
The figure shows four different relationships in the CDMS architecture in which constraints

take part:

* Constraining. The end result of a constraint is that it becomes an inherent
constraint which limits the use of the next level down.

* Inheriting. An inherent constraint at one level must also constrain all of the
levels below.

* Full instantiation. If an implicit constraint has all of the relevant parameters
fixed, then it yields an inherent constraint at the next level down.

Chapter 4 77 Constraints in the CDMS

* Partial instantiation. Alternatively, if an implicit constraint is taken down
into a lower level with some or all of its constraints unspecified, then it

becomes an implicit constraint at the lower level.

To take an example, there are the global implicit data constraints which limit the
number of instances of a connection class, IC, which connect to a particular instance. As a
parameterised predicate this looks like:

the connection class cardinality constraints
(IC, MINs, MAXs, MINt, MAXt):=
(MINs<#(IC from a particular source)<MAXs)A
(MINt<#(IC to a particular target)<MAXt)

These constraints are specialised and become embedded in the ER model:

1) As an inherent constraint ensuring that every instance of relationship connects
through an instance of relating to exactly one instance of entity;

2) As the implicit constraint to limit the number in which every instance of entity
connects through instances of relating to instances of relationship.

In order to do these, the first three parameters are specified: IC becomes
relating, both MINs and MAXs become 1, however, the last two parameters MINt and
MAXt are not yet fixed, but are left to the schema designer.

Figure 4.2 shows this in detail and adds the further inheritance of the former

and instantiation of the latter. As a result, every loan relates to exactly one library member,
while every library member can borrow between 0 and 6 books.

Chapter 4 78 Constraints in the CDMS

connection class cardinality constraints at meta-type(meta-relating, 0, n, 0, n)

0<#(instances of a particular instance of a particular meta-relating
frorp a particular instance of the relevant instance of instance of meta-base/complex)<n
global implicit data constraints

O<#(instances of a patticular instance of a particular meta-relating
to a patticular instance of the relevant instance of instance of meta-base/compleg<n
| global implicit data constraints

connection class cardinality constraints at type(relating, 1, 1, 0, n)

1<#(instances of a particular relating from a particular instance l
of the relevant relationship)s1
model inherent data constraints

O<#(instances of a particular relating to a particular instance
_of the relevant entity)<n .
model implicit data constrains

connection class cardinality constraints(/oan-person, 1,1, 0, 6)

1<#(instances of loan-person from a particular Joan)<1
schema inherent data constraints
O<#(nstances of loan-person to a particular person)<6
schema inherent data constraints

- inheriting
- full instantiating - partial instantiating

Figure 4.2 Constraint Specialisation

With this background, the next sub-section provides some fuller examples.

4.2.3 Further Examples
This subsection gives examples of the aforementioned constraints.
Examples of Schema Inherent Data Constraints

Figure 4.3 shows a number of schema inherent data constraints regarding the
library system:

* amember person's age must be between 17 and 70;

* the number of memberships issued by the library must not exceed 1000;

Chapter 4 79 Constraints in the CDMS

* no member person may retain more than six books simultaneously;

* an address must consist of one house number, one street name and one city
name;

* aloan instance must relate to a single person and a single book.

nae a i
1, 1,1

p's name loan-book
o, loan-person
p's sex title of book
ﬂ—person [0,1000] book
p's a 'sid number of book
p's adqress
) iy

[17,70]

t"

a- house -

& a-street
iy
—ﬂ simple attribute
entity

—»@ composite attribute

<> relationship
“““““A component of complex attribute

E LI I T E,

Figure 4.3 Schema Inherent Data Constraints

The first three constraints traditionally appear sometimes as fragments of the
application programs which realise data manipulation and sometimes as assertions specified
on the data, while in the CDMS they will be instantiated from model implicit data
constraints. Thus the model has constructs for specifying such schema constraints - the
constructs being partial instantiations of global implicit data constraints. The last two
constraints are traditionally embedded in the DBMS software, while in the CDMS they are
directly inherited from model inherent data constraints. Thus the model is itself restricted
so that every composite attribute has one connection with each of their components, while
every relationship has one connection with each of the entities they relate. These model
inherent data constraints are themselves full instantiations of global implicit data

constraints.

Chapter 4 80 Constraints in the CDMS

Examples of Model Implicit Data Constraints

Figure 4.4 shows a number of model implicit data constraints of the simplified
ER model:

* asimple attribute class may have integer or string as its instances;
* the total number of instances of an entity class may be a non-negative integer;

* every instance of an entity class may be related by a non-negative number of
instances of the relationship class which relates the entity class.

——® attributing
IARRARRR AR cons i Sti n g

relating

t“‘.\
c&nposite attribute

0
vt

simple attribute

[integer or string]

Figure 4.4 Model Implicit Data Constraints

These constraints are partially instantiated from global implicit data constraints.
That is, they take a global implicit constraint and fix some of the parameters but not all.
The first constraint requires further fixing to determine whether it is an integer or string,
and may have its range restricted. The second constraint can be further specialised by
fixing limits as the number of instances. The third can be further specialised by limiting the
number of connections.

Referring to Figure 4.3, the first three constraints are particular instantiations of
these three model implicit data constraints respectively.

Chapter 4 81 Constraints in the CDMS

Examples of Model inherent Data Constraints

Figure 4.5 shows a number of model inherent data constraints of the simplified
ER model:

* every composite attribute instance of a composite attribute class C consists of
exactly one simple attribute instance from each simple attribute class
participating in C;

* every composite attribute instance of a composite attribute class C consists of
exactly one composite attribute instance from each composite attribute class
participating in C;

* every relationship instance of a relationship class R relates exactly one entity
instance from each entity class participating in R in a specific role.

— attributing
ATTLTRRRRRCRARLY con Si sti ng

relating

1,1

cgmposite attribute

1,1 =

simple attribute

Figure 4.5 Model Inherent Data Constraints
These constraints are also instantiated from global implicit data constraints.
This time, however, they have been completely fixed, so that they provide an absolute

restriction of the schemata.

Referring to Figure 4.3, the last two constraints are directly inherited from the
first and third model inherent data constraints above, respectively.

Chapter 4 82 Constraints in the CDMS

Examples of Model Inherent Metadata Constraints

Figure 4.6 shows a number of model inherent metadata constraints of the
simplified ER model:

* aclass specialised from composite attribute must consist of one or more classes
specialised from either simple attribute or composite attribute;

* aclass specialised from relationship must relate at least two classes specialised
from entity.

Traditionally these constraints are embedded in the DBMS software. Here they
are specialised from global implicit constraints.

—_— attributing
[CERCR LT TeeTeTy cons ist i ng

relating

simple attribute r[c?mposite attribute

e

Figure 4.6 Model Inherent Metadata Constraints
Examples of Global Inherent Meta-metadata Constraints

Figure 4.7 shows an example of global meta-metadata constraints of the global
data model:

* atype specialised from meta-complex must connect at least one other type in an
appropriate way.

There is no traditional mechanism which treats this kind of constraint.

Chapter 4 83 Constraints in the CDMS

— meta-relating
~f— meta-inheriting

meta-complex

1,n

meta-base

Figure 4.7 Global Inherent Meta-metadata Constraints

4.3 Varieties of Integrity Constraints

A constraint represents the semantics of the application. The relevant
constraints must therefore be maintained so as to ensure the consistency of the database
system.

As has been indicated in Subsection 4.1.2, a significant feature of a constraint is
its predicate nature. Based on this, an orthogonal characterisation can be proposed. The
CDMS reduces the great variety of constraints to a small set of predicate forms:

* uniqueness constraint, which requires that no duplicate value is allowed in
a particular collection;

* range constraint, which requires that a value in a particular collection should
belong to a subset of the potential values. This subsumes non-null constraints;

* cardinality constraints, which requires that the total number of a particular
collection should fall within a given range;

* graph constraint, which limits the overall structure of a graph of values, for
instance acyclicity;

» general constraint, which represents any constraint not covered above; an

example of such is the one which requires that at least one instance of staff
must have the position 'secretary’.

Chapter 4 84 Constraints in the CDMS

The rest of this section describes the constraints at each level in detail.

4.3.1 Schema-Data Constraints

As has been indicated before, data constraints restrict the values which data in a
database may take. Generally speaking, each data schema should impose a consistent set
of data constraints, or more precisely, schema inherent data constraints.

title of book

number of book

vzl 1a@
a—house..s 1,1
& astie et

@H&

3
‘\,

U {'"Edinburgh’,'Glasgow’','Stirling'}

Figure 4.8 Data Constraints in a Simple ER Schema

' . '‘Database’
Jean 'Programming’
‘George: 'Bridge'

true % S
false N
' ¢ 1001 5001

18

% 1002 5002
20 @ 5003
ﬁ rant et

Figure 4.9 A Database Using the Simple ER Schema

Chapter 4 85 Constraints in the CDMS

In the context of the CDMS, schema-data constraints can be categorised as
follows.

Base uniqueness holds on a base class and requires that each instance of the
designated class should take a distinct value.

In the schema of Figure 4.8, such constraints hold on base classes name, id,
sex, age, house, street, city, title and number, respectively. Figure 4.9 shows a database

where there are no duplicate instances affiliated to any of these classes.

Base range holds on a base class and requires that each instance of the
designated class should take its value from a given range.

Referring to Figure 4.8, for example, the following constraints hold:
* each instance of age should be between 17 and 70;
* avalid instantiation of city could only be 'Edinburgh’, 'Glasgow' or ‘Stirling’.

Figure 4.9 shows that /8 and 20 as instances of age are both between /7 and
70, and 'Glasgow' as an instance of city does fall within the set of strings 'Edinburgh’,
'Glasgow' and 'Stirling'.

It should be noted that the given range in such constraints might be expressed in
various forms. In the example of Figure 4.8, the range of age is represented by an integer
domain, while the range of city is represented by an enumerative set of strings. Actually,
the concrete form depends on some higher level constraints. This issue will be further
explored later. It should also be noted that non-null is just a special case of base range

constraints, since null is de facto a special value.

Base/complex class cardinality holds on a base/complex class and requires
that the total number of instances of the designated class should fall within a given range.

Referring to Figure 4.8, the following constraints hold:
» the total number of instances of person should be between 0 and 1000;

¢ the total number of instances of loan should be between 0 and 6000.

Chapter 4 86 Constraints in the CDMS

These constraints imply that no more than 1000 persons should be issued
membership of the library; and no more than 6000 loans should be outstanding
simultaneously.

Figure 4.9 shows that person has two instances and loarn has three instances;
that is, the relevant constraints are complied with.

Connection class cardinality holds on a connection class and requires that
the total number of the instances of the designated connection class that are directed from or
to a particular instance of the relevant class should fall within a given range.

Referring to Figure 4.8, for instance, the following constraints hold:

* the total number of the instances of person's name that are directed from a
particular instance of person should be between one and three;

* the total number of the instances of person's id that are directed from a
particular instance of person should be exactly one;

» the total number of the instances of person's id that are directed to an instance
of id should be exactly one;

e the total number of the instances of loan-person that are directed from a
particular instance of loan should be exactly one;

* the total number of the instances of loan-person that are directed to an instance

of person must be between zero and six.

These constraints imply that each person may have up to three names, but must
have a single id; each id must belong to a single person; each loan must relate to exactly one

person; and no person may borrow more than six books at a time.

Now referring to Figure 4.9, in the relevant database each of the two persons
has one name ('Jean' and 'George' respectively) and one id (/00! and 1002 respectively).
Each of the two id's belongs to a single person (Jean and George respectively). Each of
the three loan instances relates to one person instance (Jean, Jean and George,

Chapter 4 87 Constraints in the CDMS

respectively). Each person borrows no more than six books (two and one respectively).
All these comply with the relevant connection class cardinality constraints.

It should be noted that, without violating the schema described by Figure 4.8,
more than one person may have the same name, the same sex, the same age or share the
same address, more than one address may have the same house number, the same street

name or the same city name, and so on, because there is no corresponding constraint held.

Connection classes cardinality holds on a group of connection classes
which connect a common class, and requires that the total number of the instances of the
designated connection classes that connect, appropriately, a particular instance of the
relevant class should fall within a given range.

Particular examples of connection classes cardinality constraints include
covering and disjointness in relation to specialisation in IFO.

Figure 4.10 An Example of Disjoint Specialisation

Refer to Figure 4.10, which shows a part of an IFO schema. A connection
classes cardinality constraint holds on the group which consists of specialisation (from
vehicle to two-wheeler) and specialisation (from vehicle to three-wheeler), requiring that
the total number of the instances of either connection class in the group that are directed
from a particular instance of vehicle should be at most one. This implies that each vehicle
must not be both a two-wheeler and a three-wheeler, that is, two-wheeler and three-wheeler

are disjoint.

Chapter 4 88 Constraints in the CDMS

Figure 4.11 An Example of Covering Specialisation

Refer to Figure 4.11, which shows a part of another IFO schema. A
connection classes cardinality constraint holds on the group which consists of specialisation
(from car to drivable car) and specialisation (from car to faulty car), requiring that the total
number of the instances of either connection class in the group that are directed from a
particular instance of car should be at least one. This implies that each car must be a
drivable car or a faulty car, that is, car is covered by drivable car and faulty car.

Figure 4.12 An Example of Disjoint Covering Specialisation

Now refer to Figure 4.12, which shows, again, a part of an IFO schema. A
connection classes cardinality constraint holds on the group which consists of specialisation
(from car to manual car) and specialisation (from car to automatic car), requiring that the
total number of the instances of either connection class in the group that are directed from a
particular instance of car should be exactly one. This implies that each car must be either a
manual car or an automatic car. In other words, car is covered by manual car and automatic
car, which are disjoint.

A connection classes cardinality constraint will reduce to a connection class
cardinality constraint if only a single connection class is involved in the relevant group.

Chapter 4 89 Constraints in the CDMS

Connection classes combination cardinality holds on a combination of
connection classes which connect a common class, and requires that the total number of the
instances of the combination that connect some instance of the common class and a
particular combination of instances of other relevant classes should fall within a given
range.

title

title of book

book author's name

rice of book

price

Figure 4.13 An Example of Connection Classes Combination Cardinality

Referring to Figure 4.13, which illustrates a part of an ER schema, a connection
classes combination cardinality constraint holds on the combination of title of book and
author's name of book, which are directed both from book but to title and author's name
separately, requiring that the total number of the instances of the combination that connect
some instance of book and a particular combination of instances of title and author's name
should be at most one. This implies that a particular pair of title and author's name is not
permitted to belong to more than one book. In this case, title and author's name act as the
key attributes of book.

Regarding a connection classes combination cardinality constraint, if the
combination involves only one connection class, then the constraint will deteriorate to a
connection class cardinality constraint. In fact, if a key involves only one attribute, then the
corresponding constraint can be denoted by a suitable connection class cardinality

“ constraint straightforwardly. An example can be found in Figure 4.8, where a particular
instance of id is never connected with more than one instance of person’s id; that is, id is
the key attribute of person.

It should be emphasised that a schema-data constraint is essentially a metadata
value, and a metadata value must itself abide by the relevant metadata constraints. As has
been indicated in Subsection 4.2.2, a schema inherent data constraint is either inherited
from a model inherent data constraint or instantiated from a model implicit data constraint.

Chapter 4 90 Constraints in the CDMS

4.3.2 Model-Data Constraints

Model-data constraints, including model inherent data constraints and model

implicit data constraints can, accordingly, be categorised as follows.

Base uniqueness at type holds on a base type and generally imposes a base
uniqueness constraint on every class specialised from the designated type, requiring that
each instance of the class should take a distinct value.

Base range at type holds on a base type and generally imposes a base range
constraint on every class specialised from the designated type, requiring that each instance
of the class should take its value from a given range.

Base/complex class cardinality at type holds on a base/complex type and
generally imposes a base/complex class cardinality constraint on every class specialised
from the designated type, requiring that the total number of instances of the class should
fall within a given range.

Connection class cardinality at type holds on a (sub-)connection type and
generally imposes a connection class cardinality constraint on every class specialised from
the designated (sub-)connection type, requiring that the total number of the instances of the
connection class that are directed from or to a particular instance of the relevant class should
fall within a given range.

—® attributing
B a5 e consisti ng

relating

Figure 4.14 Connection Class Cardinality at Type

Chapter 4 91 Constraints in the CDMS

Referring to Figure 4.14, the following connection class cardinality constraints
hold:

* the total number of the instances of each connection class specialised from
consisting (from composite attribute to single attribute) that are directed from a
particular instance of the relevant instance of composite attribute must be
exactly one;

» the total number of the instances of each connection class specialised from
consisting (from composite attribute to composite attribute) that are directed
from a particular instance of the relevant instance of composite attribute must
be exactly one.

* the total number of the instances of each connection class specialised from
relating (from relationship to entity) that are directed from a particular instance
of the relevant instance of relationship must be exactly one;

* the total number of the instances of each connection class specialised from
relating (from relationship to entity) that are directed to a particular instance of
the relevant instance of entity must be a non-negative integer.

These constraints are indicated in the figure by integer pairs [1,1] and [O,n],
respectively.

Referring to Subsection 4.3.1, where a number of connection class cardinality
constraints are listed, some connection class cardinality constraints are directly inherited
from connection class cardinality constraints at type; some connection class cardinality
constraints are instantiated from connection class cardinality constraints at type. An
example of the former is that 'the total number of the instances of loan-person that are
directed from a particular instance of loan should be exactly one' is inherited from 'the total
number of the instances of each connection class specialised from relating (from
relationship to entity) that are directed from a particular instance of the relevant instance of
relationship must be exactly one'. An example of the latter is that 'the total number of the
instances of loan-person that are directed to an instance of person must be between zero and
six' is an instantiation of 'the total number of the instances of each connection class
specialised from relating (from relationship to entity) that are directed to a particular
instance of the relevant instance of entity must be a non-negative integer'.

Chapter 4 92 Constraints in the CDMS

Connection classes cardinality at type on a group of (sub-)connection
types which connect a common type. This kind of constraint generally imposes a
connection classes cardinality constraint on every group of connection classes. Each of
these connection classes is an instance of one of the designated (sub-)connection types and
connects to a common class. The constraint requires that the total number of the instances
of the connection classes that connect a particular instance of the relevant class should fall
within a given range.

e — generalisation

set aggregate

printable abstract

Figure 4.15 Generalisation of the IFO Model

Referring to Figure 4.15, which shows a part of the IFO model, a connection
classes cardinality constraint at type holds on the group which consists of generalising
(from abstract to free), generalising (from set to free), generalising (from aggregate to free)
and generalising (from free to free), requiring that the total number of the instances of the
instances of (sub-)connection types in the group that are directed to a particular instance of
the relevant instance of free should be exactly one. This constraint is indicated in the figure
by an integer pair [1,1]. This means that generalisation always comes with a covering
constraint.

Chapter 4 93 Constraints in the CDMS

Figure 4.16 Generalisation in an IFO Schema

Now referring to Figure 4.16, which shows a part of an IFO schema, a
connection classes cardinality constraint is actually imposed on the group which consists of
generalising (from car to vehicle) and generalising (from boat to vehicle), requiring that the
total number of such instances of either generalising (from car to vehicle) or generalisation
(from boat to vehicle) directed to a particular instance of vehicle must be exactly one. Thus

car and boat partition vehicle.

grouping

aggregate

printable abstract

Figure 4.17 Grouping of the IFO Model

Chapter 4 94 Constraints in the CDMS

aggregating

aggregate

printable abstract

Figure 4.18 Aggregating of the IFO Model

From Figure 4.17 and Figure 4.18, which illustrate grouping and aggregating
of the IFO model respectively, one can appreciate the unifying approach of the CDMS
owing to its consistent constraint handling capacity. Although both set and aggregate are
specialised from meta-complex, and both grouping and aggregating are specialised from
meta-relating, they have been attached with different constraints and hence represent
distinct semantics. In practice, each instance of sef must be connected by one instance of
grouping (due to a connection types cardinality constraint*); while each instance of
aggregate must be connected by one or more instances of aggregating (also, due to a
connection types cardinality constraint). Moreover, the number of such instances of an
instance of aggregating that are directed from a particular instance of the relevant instance of
aggregate must be one exactly (due to a connection class cardinality constraint at type), but
no similar constraint exists in relation to grouping.

4.3.3 Global Data Constraints

Two global data constraints are as follows.

Connection class cardinality at meta-type holds on a (sub-)meta-
connection type and generally imposes a connection class cardinality constraint on every
class specialised from an instance of the designated (sub-)meta-connection type, requiring
that the total number of the instances of the connection class that are directed from or to a
particular instance of the relevant class should fall within a given range.

* Connection types cardinality constraint will be described in Subsection 4.3.4.

Chapter 4 95 Constraints in the CDMS

—_— .
meta-relating
- meta-inheriting

meta-complex

meta-base

Figure 4.19 A Global Data Constraint

Referring to Figure 4.19, which represents the global data model, the following
constraint holds:

¢ the total number of the instances of a particular instance of a particular instance
of meta-inheriting (from meta-complex to meta-complex) that are directed to a
particular instance of the relevant instance of the relevant instance of meta-
complex should be at least one. This is indicated in the figure by the integer
pair [1,n].

Connection classes cardinality at meta-type holds on a (sub-)meta-
connection type and generally imposes a connection classes cardinality constraint on every
group of connection classes each of which is specialised from an instance of the designated
(sub-)meta-connection type and each of which connects, appropriately, a common
base/complex class, requiring that the total number of the instances of the connection
classes that connect, appropriately, a particular instance of the relevant class should fall
within a given range.

4.3.4 Metadata Constraints

Metadata constraints restrict the values which metadata in a data schema may
take. In the context of the CDMS, each data model should impose a consistent set of
metadata constraints, or more precisely, model inherent metadata constraints.

Chapter 4 96 Constraints in the CDMS

—_—T attributing
TR RRRRRR R consisti ng

relating

simple attribute

Figure 4.20 Model-Metadata Constraints

A number of model-metadata constraints can be found in Figure 4.20. In the
simplified ER model, an instance of composite attribute must be directed by instances of
consisting to at least one instance of single attribute or composite attribute, and an instance
of relationship must be directed by instances of relating to at least two instances of entity.
These constraints are indicated in the figure by integer pairs [1,n] and [2,n].

In the context of the CDMS, model-metadata constraints can be categorised as
follows.

Connection type cardinality holds on a (sub-)connection type and requires
that the total number of the instances of the designated (sub-)connection type that are
directed from or to a particular instance of the relevant type should fall within a given

range.

Referring to Figure 4.20, which represents a simplified ER model, the
following constraint holds:

* the total number of the instances of relating (from relationship to entity) that are
directed from a particular instance of relationship should be at least two.

This constraint implies that each relationship must relate to at least two entities.

Referring to Figure 4.8, where loan-person and loan-book are directed from

loan, the total number of the instances of relating (from relationship to entity) that are

Chapter 4 97 Constraints in the CDMS

directed from a particular instance of relationship is two in the ER schema. The relevant

connection type cardinality constraint is thus well maintained.

Connection types cardinality holds on a group of (sub-)connection types
which connect a common type, and requires that the total number of the instances of the
designated (sub-)connection types that connect a particular instance of the relevant type
should fall within a given range.

Referring to Figure 4.20 again, the following constraint holds:

* the total number of the instances of either consisting (from composite attribute
to simple attribute) or consisting (from composite attribute to composite
attribute) that are directed from a particular instance of composite attribute
should be a positive integer.

This constraint implies that each composite attribute must consist of at least one

simple or composite attribute.

Referring to Figure 4.9, where address-house, address-street and address-city
are directed from address, the total number of the instances of either consisting (from
composite attribute to simple attribute) or consisting (from composite attribute to composite
attribute) that are directed from a particular instance of composite attribute is really a
positive integer (three plus zero, exactly). The relevant connection types cardinality
constraint is thus complied with in this case.

Connection acyclicity holds on a connection type and prohibits any cycle
consisting of instances of the designated connection type.

Referring to Figure 4.21, any group of class instances of specialisation type

must not produce a cycle in IFO data schema, otherwise all involved classes would have to
be identical, which would not be useful.

Chapter 4 98 Constraints in the CDMS

Figure 4.21 An Invalid Pattern in IFO Schema

It should be emphasised that a model-metadata constraint is essentially a meta-
metadata value, and a meta-metadata value must itself abide by the relevant meta-metadata
constraints. As has been indicated in Subsection 4.2.2, a model inherent metadata
constraint is either inherited from a global inherent metadata constraint or instantiated from
a global implicit metadata constraint.

Global metadata constraints can, accordingly, be categorised as follows.

Connection type cardinality at meta-type holds on a (sub-)meta-
connection type and generally imposes a connection type cardinality constraint on every
(sub-)connection type specialised from the designated (sub-)meta-connection type,
requiring that the total number of the instances of the (sub-)connection type that are directed
from or to a particular instance of the relevant type should fall within a given range.

Connection types cardinality at meta-type holds on a group of (sub-)
meta-connection types which connect a common meta-type. This kind of constraint
generally imposes a connection types cardinality constraint on every group of (sub-)
connection types. Each of these (sub-)connection types is an instance of one of the
designated (sub-)meta-connection types and connects to a common type. The constraint
requires that the total number of the instances of the (sub-)connection types that connect a
particular instance of the relevant type should fall within a given range.

4.3.5 Meta-metadata Constraints

Meta-metadata constraints restrict the values which meta-metadata in a data
model may take. In the CDMS, the global data model imposes a consistent set of global
inherent meta-metadata constraints.

Chapter 4 99 Constraints in the CDMS

Meta-metadata constraints can be categorised as follows.

Meta-connection type cardinality holds on a meta-connection type and
requires that the total number of the instances of the designated meta-connection type that
are directed from or to a particular instance of the relevant meta-type should fall within a

given range.

Meta-connection types cardinality holds on a group of (sub-)meta-
connection types which connect a common meta-type, and requires that the total number of
the instances of the designated (sub-)meta-connection types that connect, appropriately, a
particular instance of the relevant meta-type should fall within a given range.

Referring to Figure 4.22, the following constraint holds:

* the total number of the instances of meta-relating (from meta-complex to meta-
base) and meta-relating (from meta-complex to meta-complex) that are directed
from and the instances of meta-inheriting (from meta-complex to meta-
complex) that are directed to a particular instance of meta-complex should be at
least one.

D — .
meta-relating
- meta-inheriting

meta-complex

meta-base

Figure 4.22 A Global Meta-Metadata Constraint
This constraint implies that each instance of meta-complex must at least either

relate to an instance of either meta-base or meta-complex or be inherited from an instance of

meta-complex.

Chapter 4 100 Constraints in the CDMS

4.4 Constraint Configuration in the CDMS

A distinct advantage of semantic data models is that they offer effective methods
for describing semantic constraints. A constraint is a logical condition holding on a schema
so as to be satisfied by all databases framed by the schema. Constraints thus provide a

general means for expressing restrictions in the data model.

In the context of the CDMS, distinguishing levels skilfully and placing
individual constraints at suitable places are important factors which help the system meet
various users' needs, as well as being an advantage for the system's further development.
If a constraint were put at an unsuitably high and general level, the system flexibility and
usability would be reduced, because the low level designers would have no sufficient
choices in this case. Otherwise if a constraint were not put at a level which is high and
general enough, the system would become difficult to use, because the low level designers
would have too many things to specify. The system consistency would be undesirably
compromised in this case, too.

The four level architecture of the CDMS provides a firm basis for constraint
configuration and constraint specification. Using this framework, how and where
constraints arise can be distinguished systematically. At each suitable level there are

constraints which are fixed at that level and facilities for imposing further constraints at the
| next lower level. For instance, the ER model forces simple attributes to be base values and
offers the facility for imposing cardinality constraints on schema.

In this section, Subsection 4.4.1 introduces constraint configuration, while
Subsection 4.4.2 describes constraint specification.
4.4.1 Constraint Configuration

Constraints exist in the CDMS in the same manner as other generic modelling
primitives, hence constraint configuration is essentially a series of constraint

specialisations.

Figure 4.23 shows examples of the configuration of data constraints in a
specific model - a simplified ER model.

Chapter 4 101 Constraints in the CDMS

global-data model-data schema-data
constraints constraints constraints
(primitives) (meta-metadata) (metadata)

ba ni n

meta-base: {bool} simple attribute: true name: true
id: true
sex: true
age: true

house: true
street: true
city: true
title: true
number: true

base range
meta-base: {bool, int, real, string} simple attribute: {bool} sex: {bool}
{int} id: [1001, 2000]
age: [17, 70]
house: [1, n]
number: [0001, 9999]
{real}

{string} name: {string}\{"}
street: {string}\{""}
city: {'Edinburgh’, 'Glasgow’, 'Stirling'}
title: {string}\{*}

L / | | Jinalit
imeta-base: [0, n] simple attribute: {0, n] name: [0, n]
id: [0, 1000]
sex: [0, n]
age: [0, n]

house: [0, n]
street: [0, n]

city: [0, n]
title: [0, n}
number: [0, 9999]
imeta-complex: [0,n] entity: [0, n] person: [0, 1000]
book: [0, n]
complex attribute: [0, n] address: [0, n]
relationship: [0, n] loan: [0, 6000]

connection class cardinality

rmeta-relating: [0, n), [0, n] attributing: [0, n}, [0, n) person's name: 1,3}, [0, n]
person's id: (1,1, [1, 1]
person's sex: [1, 1], [0, n]
person's age: {1, 1], [0, n]
title of book: {1, 3} 1, n]

number of book: [1, 1], [1, 1]
person's address: [0, 3], [0, n]

consisting: [1, 1], [0, n) address-house: [7, 11,1, n]
address-street: [1, 1], {1, n]
address-city: [1, 1,1, n]
relating: [1, 1], [0, n] loan-person: [1, 1], [0, 6]
loan-book: [1, 1, [0, 1]

Figure 4.23 Configuration of Data Constraints

(Chapter 4 102 Constraints in the CDMS

* base uniqueness: Base uniqueness is a global implicit data constraint, that
is, base uniqueness is open for model definition. As the model is created,
meta-base is specialised to form simple attribute, on which the base uniqueness
constraint is imposed (true is a specialisation of {bool}). That is, in all the
schemata to be described by the model, all simple attribute classes will have no
duplicated value. A model inherent data constraint is thus configured in the
model. For the particular schema, this is shown in the figure since all nine
attribute classes have this constraint set to true.

* base range: Base range is another global implicit data constraint. Meta-base
is actually specialised to form four sorts of simple attribute, imposed with
different base range constraints. As meta-base generally requires its associated
data must take values from the set of all booleans, integers, reals and strings,
four sorts of simple attribute require their associated data must take values from
the set of booleans, the set of integers, the set of reals and the set of strings,
respectively. In such a way, four model implicit data constraints are
configured in the model by specialising the equivalent global implicit data
constraint. These have been instantiated in the schema for each of the
attributes.

* base/complex class cardinality: This global implicit constraint permits the
restriction of the number of members of a base or complex class. At the global
level and in the particular model the only restriction is that the number of
members is non-negative. In the schema, for instance, the numbers of
members of person and loan are further restricted to not more than 1000 and
not more than 6000 respectively.

* connection class cardinality: This is another global implicit data
constraint, this time limiting the number of instances at each end of a
connection. In general, meta-relating is unrestricted and remains so for
attributing - i.e. there is no restriction to the number of values of an attribute,
nor the number of times any value can be an attribute. In the schema,
however, this is restricted for each attributing connection. For instance,
everyone has between 1 and 3 names, but the same name can be shared by any
number of people. Consisting connects composite attribute values with their
components and every composite attribute value is defined by exactly one such
connection for each component, while the same attribute value can be

components in any number. At the schema level, this is refined so that every

Chapter 4 103 Constraints in the CDMS

address must have a house number, street and city name, while any street name
in the database must be part of at least one address. Relating connects
relationships to entities. Every relationship instance is connected to one
instance of the participating entities, but any entity can take part in any number
of relationships.

At the schema level these constraints have different effects. That a relationship
value is connected to exactly one instance of an entity is an inherent constraint
of the model and so is inherited at the schema level. Conversely, the ability to
specify how many relationships an entity is involved in is an implicit constraint
in the model. In this case it has been instantiated twice - once to assert that
people can borrow up to 6 books and once to assert that each book can either
be borrowed or not.

global-metadata model-metadata
constraints constraints
(primitives) (meta-metadata)
ecti e cardinalit
meta-relating: [0, n], [0, n] relating: relationship [2, n] - entity [0, n]

nnection types cardinalit

meta-relating: [0, n] consisting: composite attribute [1, n] - {simple attribute, composite attribute}
ti licit
meta-relating: {bool} attributing: true
consisting: true
relating: true

Figure 4.24 Configuration of Metadata Constraints

Figure 4.24 shows examples of the configuration of metadata constraints in a
specific model - again, a simplified ER model.

* connection type cardinality: This is a global implicit metadata constraint,
which restricts the number of connections allowed to any classes. The only
restriction specified in the model is that every relationship must be in at least
two relating connections.

* connection types cardinality: This is also a global implicit metadata
constraint, which is specialised to hold on the consisting connection type so

Chapter 4 104 Constraints in the CDMS

that it connects to at least one component, which may be simple or composite
attribute.

* connection acyclicity is another global implicit metadata constraint, which
is specialised to hold on attributing (since attributes cannot have attributes),
consisting (since a composite attribute cannot be its own component) and
relating (since the connection is from a relationship to an entity), respectively.

4.4.2 Constraint Specification

In all cases, constraints operate by taking a relatively abstract construct and
making it more concrete. In the CDMS, the creation of schema components and of model
constructs operates in exactly the same way; that is, supplying a name and constraining the
values it may take. Since model constructs, schema components and data are all values in
the CDMS store, it becomes possible to unify the treatment of the various kinds of
constraint no matter where they reside.

As has been explained before, all metadata constraints and data constraints exist
in some form at the global level. That is, there are global inherent metadata constraints,
global implicit metadata constraints, global inherent data constraints and global implicit data
constraints in the global model.

When a particular data model is defined, global inherent constraints are
automatically inherited to become model inherent constraints; while global implicit
constraints need to be instantiated to become model inherent constraints or model implicit
constraints. Therefore, during a model definition process, firstly the appropriate base types
and complex types will be defined, secondly the appropriate relationship types will be
defined, thirdly some metadata constraints and some data constraints will be inherited from
global inherent constraints automatically, and finally some other metadata constraints and
some other data constraints will need to be specified using facilities for the instantiation of
the global implicit constraints. As a model is modified, a similar process will be carried
out.

In order to specify a metadata constraint, the model designer selects an entry
from the metadata constraint menu* , which displays the names of all the global implicit

* Note, once again the interface is designed to make explicit the architecture of CDMS and not to provide
usability.

Chapter 4 105 Constraints in the CDMS

metadata constraints, and then the system will provide a dialogue to allow the designer to
input the necessary information. In parallel, in order to specify a data constraint, the model
designer selects an entry from the data constraint menu, which displays the names of all the
global implicit data constraints, and then the system will provide a dialogue to allow the
designer to input the necessary information. When all these are complete, metadata
constraints and data constraints will appear along with other model constructs which
constitute the model; that is, base types, complex types and relationship types.

Figure 4.25 shows a window in which the specification of constraints in a data

model is conducted.

i Fdit Model Lingling)
':@Model pata Constraint {con-car-rel-rel-ent)> from <{relationship) [fmin,fmax] to <entity> [tuin,tw;‘"
Input Parameters: fain;fmax;tmin;tmax F;ma;u;mﬁ 1

r rrwoTe T
L3 tadata Constraints attorel-sin> |4
£ connection Types n-con) <(con-car-att-ent-com> | 4hlcon_con-cow) [
= Complex Types Fentocoms
r@ Bage Types N . * pu-bas> <con-car-att-ent-sim> .con-con-gin>
P wposite atiribute) Lent-sin)> b-con> <con-car-att-rel-com FL 0" oL
<base> (simple attribute> ex> <entity)> Frel-comy (255 F 00 oy <ccn-car-att-re1-li!>l*
<relationship)> [rel-sin l*
[61 traints |
I'[9) Global Metadata Congtraints Y
L [5)_Global Meta-metadata Constraints T
rﬁlgjm:gonnection Types tab-bas-basy ry
F_—_—E._H Yota-bas Meta-Complex Types)., ..., f hr-inh-com-com) E
eta~Base Types =
owplex) > hr-rel-bas-com> e ¥
<base) {{bas-con> 250 - rel-con-bas)> ¥
tcom-bas>]
(Redisplay Global Model) ((Redisplay Model) (B/C Complete) (Connection Complete) (Finish)

Figure 4.25 Specification of Constraints in a Model

Similarly, when a particular data schema is defined, model inherent data
constraints are inherited to become schema-data constraints automatically, while model
implicit data constraints need to be instantiated to become schema-data constraints.
Therefore during a schema definition process, firstly the appropriate base classes and

Chapter 4 106 Constraints in the CDMS

complex classes will be defined, secondly the appropriate relationship classes will be
defined, thirdly some data constraints will be inherited from model inherent data constraints
automatically, and finally some other data constraints will need to be specified using:
facilities for the instantiation of the model implicit data constraints. As a schema is
modified, a similar process will be carried out.

In order to specify a data constraint, the schema designer selects an entry from
the data constraint menu, which displays the names of all the model implicit data
constraints, and then the system will provide a dialogue to allow the designer to input the
necessary information. When all these are complete, data constraints will appear along
with other schema structures which constitute the schema; that is, base classes, complex
classes and relationship classes.

Figure 4.26 shows a window in which the specification of constraints in a data

schema is conducted.

= Edit Schema Librar ‘ﬂ

rr@ Library

_ﬁ

Input Parameters: winjmax F‘”ga]

“‘ﬁl Schema Data Constraint <{bas-car-house)> cardinality [win,max]

“ =) ta Constraints

S 1Fm1 n Classes [" ¢ ipute> chas-car-ages 4
v o] ex Classes

a-city> | 4K attribute> <has-car—ci
T P a e. as-car-city>
@ Base Classes to> <address>| Nohouses \nuno\r:v book

attribute) <bas-car-house>]
(sinple attribute> <age> [4MMy (hook> b-street> Do attribute> <has-car-id> |
¢simple attributed <city> bhip> <loany

[{oan-book> l* TN nusoer

<siwple attribute) choused> {ifb person>
(simple attribute> <id> |

ki = traints

vl —~Metadata Constraints ute> 1.
FR_connection Types
L5 _complex Types

o
@ sase Types Lo
<simple attribute> Centity>

car-att-ent-com> A loute>
t-ent-com> A fcar-att-ent-siny te> |E
to> |

t-ent-simd> car-att-rel-com>

t-rel-com> EZllcar-att-rei-sin>
elationship)> t-rel-sind +H

.
i
€]

L
(Redisplay Hodel) (Redisplay Schema) (Redrav Schema) (B/C Complete) (Connection Complete) (Finish)

Figure 4.26 Specification of Constraints in a Schema

Chapter 4 107 Constraints in the CDMS

After metadata constraints and data constraints are stored, they can be used to
verify metadata and data respectively. The common treatment is to scan the relevant tables
in the context of the relevant environments to detect any conflicts between constraint

definition and the real data, including metadata.

4.5 Constraint Management

The management along with the specification of constraints helps to ensure the
integrity of the database. Now that constraint representation has been separated from
system software and application programs, and has been made visible and manipulable, it
becomes feasible to enable the user to decide the point of time when the constraints should
be enforced. Moreover, it seems reasonable, even imperative, to allow a certain degree of
constraint violation temporarily. For instance, when a person has just been inserted into a
database and the process of inserting the relevant attributes is to be completed, the
constraints that a person must have an age, a sex and so on should be allowed to be
violated momentarily.

The admission of the values which are inconsistent with the constraints that are
supposed to hold must, of course, be controlled in some way. It is therefore essential to
decide what to do when constraints are violated. In other words, at some stage either the
value or the constraint must be altered. An effective mechanism for restricting the time
during which inconsistency is allowed is the transaction.

In this section, Subsection 4.5.1 introduces some basic concepts on constraint
management; Subsection 4.5.2 describes simple constraint management methods; while
Subsection 4.5.3 proposes sophisticated constraint management using transactions.

4.5.1 Some Concepts of Constraint Management

This subsection will clarify some basic concepts regarding the management of
constraints within the framework of CDMS.

Chapter 4 108 Constraints in the CDMS

Access Mechanism and Constraints

In an ordinary DBMS, appropriate access mechanisms are provided to
permit data definition and data manipulation operations, which must not conflict with
any relevant constraints. The target acted on by data definition is the metadata values that
constitute a data schema, while the target acted on by data manipulation is the data values
that are contained in a database. Data definition operations and data manipulation
operations must therefore abide by the requirements on metadata values of the data schema
and data values of the database, respectively. In the CDMS, extra access mechanisms are
supplied to permit model definition operations. The target acted on by model definition
is the meta-metadata values that constitute a data model. Model definition operations must
therefore abide by the requirements on meta-metadata values of the data model.

Constraint Verification

Constraint verification, or constraint enforcement is essential in safeguarding
the integrity of a database system. Traditionally, some constraints are ensured by the
relevant DBMS. For example, a particular attribute of an entity may be declared unique so
that verification will be made by the system on the inserted data. Some constraints are
ensured by programs which update the relevant schema or data. Thus, the metadata
constraints and data constraints will be verified, respectively, when the schema is defined
and when data is inserted, removed or updated.

Verification of constraints is vital in terms of integrity constraint management.
It must be applied where possible violations may affect the integrity of the database.

Recovery from Constraint Violations
The recovery from constraint violation is as important as constraint verification
in terms of integrity constraint management. The DBMS or the relevant programs that
handle the constraints should be able to take the necessary actions if any violation is
detected.

Recovery actions may take the following forms:

* forbidding. The update which causes the violation is rejected right away.

Chapter 4 109 Constraints in the CDMS

* cascading. Further update actions which repair the violation are performed to
make the update acceptable. To illustrate this, take the example of deleting the
person Jean. Because Jean is also a student, student Jean should be removed

at the same time as person Jean is removed.

* suspension and re-imposition. Sometimes, constraint enforcement will be
suspended for a limited period. A questionable update is thus allowed to go
through. An example of this is the temporary removing of the restriction on
the number of books a library member is permitted to borrow. At some stage,
however, if the definition of the database is to retain its meaning, the
inconsistency between the data value and the constraint must be resolved. A
means of identifying the updates that by-passed constraint checks is required to
correct these updates whenever it becomes necessary.

4.5.2 Simple Constraint Management

Some time ago, two projects [Tan, 1991; Tai, 1991] extended the IFO data
model to allow the specification and management of five kinds of integrity constraint.

An interface was implemented to accept implicit and explicit constraints [Tan,
1991]. The five integrity constraints that were handled were uniqueness, range, non-null,
cardinality and general constraints. A general constraint consists of predicates linking
constraints and nodes which are related to each other - the linking being performed by the
usual boolean operators and connectors. For example: a manager's staff number must be
less than 1000.

Chapter 4 110 Constraints in the CDMS

W) Edit Schema Library

e — —_—

2
name an-person 1den-book tle of book
i) ta Constraints B
o lfml. gonnection Classes e attribute) (bas-car-age> L =
Class
@ Base Cl:sses o — acity) | 4ML attribute) cbas-car-city>
- ibute) < 33> a-house> attribute> <bas-car-house> fi:i roager of book
¢siwple attribute) Cage) ’ > <hook> p-street) Eomll, attributed <bas-car-id>
(simple attribute> (cityd [hip> <loan> Py | + T — éw
<simple attribute) chouse 2> il
(simple attributed Schema Data Constraint
suspension?
LLo NSl iy ety 2 b o Foute>
r@ B T JE;V Complex T t-ent-con> 4 flcar-att-ent-sin> ute> [T
ase Typ site attribute> t-ent-sin) car-att-rel-com> T Fibute> *
<simple attribute> Centity) t-rel-com> mis Tttorelosins 4;
elationship) t-rel-sind
i
(Redisplay Model) (Redisplay Schema) (Redraw Schema) (B/C Conplate) (Connection Cowplete) (Finish)

Figure 4.27 Constraint Suspension and Re-Imposition

In the original version of the IFO program [Cooper and Qin, 1990], the two
constraint checking components, after alerting the user to a violation, give the option of
either to forbid or permit the data. The database is thus able to get into a state which
invalidates the constraints. With this version as a platform, the notion of fine control on
suspending and re-imposing constraints as the user requires were implemented [Tai, 1991].
Figure 4.27 shows the case.

4.5.3 Constraint Management using Transactions

A more sophisticated method of constraint management is related to the concept
of transaction [Lee, 1992].

Transactions are traditionally used to group changes together into composite
changes which are considered to be atomic. It is therefore feasible to use transactions as a

Chapter 4 111 Constraints in the CDMS

device to control periods of inconsistency. That is, constraint violations will possibly be

permitted until the end of the current transaction at which point they will be reviewed again.

Using transactions makes the constraint management facilities more powerful.
Considering that a database system should normally allow transient inconsistent states as a
process is running, it is crucial that the process can tell the system whether the integrity
constraints should be verified at each particular point of time. The constraint management
using transactions aims to provide control on the suspension and re-imposition of
constraints as the user desires. For this purpose, the following facilities are essential:

Begin transaction creates:

* alog of changes to be made within the transaction;

» alog of constraint violations which might occur within the transaction;

* alog of constraints to be suspended within the transaction.

Suspend constraints has two forms. One suspends verification of
constraints fully; the other suspends verification of selected constraints.

Re-impose constraints also has two forms. One re-imposes all constraints;

the other re-imposes selected constraints.

Nested transactions. Transactions are allowed to be nested arbitrarily.

End transaction, which will be explained later.

When data definition or data manipulation is in progress, the user may require a
start of transaction, then when any violation is detected, the system will indicate it and ask
the user how to deal with it; if the user wishes to undo it, the system will undo it, while if
the user wishes to pass it, the system will pass it until the end of the transaction. At the end
of a transaction, the system will summarise all violations that occurred within the relevant
transaction and ask the user how to deal with them. The choices include:

* abort whole transaction. Whatever updates have been made during the

transaction will be discarded, with the next outer transaction becoming the

current one;

Chapter 4 112 Constraints in the CDMS

» allow to next transaction means that the user wishes to let the violation go
through. In this case, the violation will be left until the end of the next outer
transaction, where it will be reviewed again, if it is still not rectified.

* repair violations. This is where compensating actions are sought by the
user. Depending on the constraint that was initially violated, the program will
go on to do the necessary repair work. However, in repairing the violation,
the same constraint may be violated again or other constraints may be violated
if more than one constraint is in effect.

Thus, other than aborting the whole transaction, where the logs disappear right
away, all the violated instances in the current transaction will either get repaired or passed
on. If the current transaction is the outmost transaction, the contents of the logs will be
merged with those of the store. Otherwise, the contents of logs will be merged with those
of the next outer transaction.

Only the data which does not violate any constraints should eventually be put
into the persistent store. A full treatment of transactions can only be dealt with in the
context of application behaviour.

4.6 Summary

Semantic integrity constraints make up an important part of accurate
representation of the real world.

A main strength and distinguishing characteristic of CDMS is that it offers
powerful means for expressing semantic integrity constraints. There are various types of
integrity constraints that may hold. The important question is, however, how the
constraints should be categorised and how they should be enforced. Existing systems are
typically weak in this area; that is, most integrity verification is still done by user-written
procedural code, which is not flexible and imposes an extra burden on the programmer,
who must know all the constraints that a transaction may violate and must include checks to
ensure that none of the constraints will be violated. Any misunderstanding, omission, or
error by the programmer may leave the database in an inconsistent state. In addition, it is
difficult to manipulate constraints implemented in this way. There is therefore a need for a

mechanism to specify what constraints the meta-metadata, metadata and data concerning the

Chapter 4 113 Constraints in the CDMS

corresponding data model, data schema, and database must satisfy. It is also beneficial for
the relevant constraint issues to be handled centrally by the system rather than by individual
application programs. In this way, enforcement will be consistent and difficult to get by.
Constraint management using transactions is introduced in this chapter as a potential
sophisticated constraint management method.

The constraints existing at the global level are caused by limitations of the
CDMS as well as by the intrinsic nature of the global data model itself. That is, while most
constraints are intended to reflect the semantics of the global components, some may reflect
unwanted limitations in design and implementation of the system.

Once characterised in this universal pattern, firm and consistent control of how
the constraints are managed becomes possible. Some possibilities have been outlined for
this. One final point needs to be discussed, however, is the issue of efficiency.

The great benefit of programming of constraints as ad hoc code fragments
embedded in the operations is the obvious advantage that the checking can be localised and
made more efficient. However, as the CDMS is implemented in an effective environment
(see Chapter 7) this advantage can be carried over. The description in this chapter has
emphasised the separation of constraints as separate denotable values. This is the logical
view. One of the options which are given at the implementation level is to embed constraint
checks wherever needed, possibly guarded so that they can be suspended. Now the
constraints appear in the code consistently, but identifiably. This implies that application
behaviour is also given to manipulation and it is to this that attention is turned.

Chapter 4 114 Constraints in the CDMS

5 Behavioural Issues

This chapter is devoted to another important concept in the CDMS, the
management of the behaviour of values in a database.

Throughout this chapter, the behavioural aspects of a database are described by
use of the term active object, which represents any kind of value that includes a
component which is code to manipulate the database® .

The need to encompass behaviour in the CDMS actually arises from a number

of considerations:

1) It has long been a goal of semantic data modelling to encompass the description
of behaviour as well as structure.

2) It seems a natural extension to the ability to configure the structure of data to
add the ability to configure how the data is managed.

3) The treatment of constraints has brought up the possibility of configuring the
constraint management process. This means configuring code.

4) Since many kinds of transaction management have been proposed, it seems
sensible to allow transactions to be configurable. Transactions are active
objects.

5) Process modelling is carried out in a way which is similar to data modelling, it
is therefore sensible to unify the two approaches. Again, processes are active
objects.

* Active object used here carries much more meaning than the term usually does.

Chapter 5 115 Behavioural Issues

6) Object-oriented database systems include a behavioural aspect. To permit
object-oriented models to be configurable in the CDMS, active objects must be
involved in the system. Methods are active objects.

7) Active databases include events and actions, both being active objects.

Essentially, any value including a piece of executable code can be thought of as
an active object class, whereas every execution of the code can be thought of as an active
object instance. A piece of program can thus be dealt with as a manipulable 'value' in the
same way as an ordinary entity. A remarkable feature of an active object instance is that it
does not exist statically in the database, but exists dynamically in the system as a running
process. However, the code of which this is an instance can be held in the database.

In this chapter, Section 5.1 reviews active objects in the context of semantic
data modelling; Section 5.2 analyses transactions as active objects; Section 5.3 gives
further examples of active objects by concentrating on a process support system; Section
5.4 describes active objects in database systems; Section 5.5 introduces active database
systems, followed by Section 5.6, which summarises the active object survey in the
previous five sections; finally, Section 5.7 presents the behavioural aspect of CDMS,
followed by Section 5.8, which concludes the chapter.

5.1 Active Objects in Semantic Data Modelling

Originally semantic data models could refer only to passive objects, but later
models, such as TAXIS [Mylopoulous et al, 1980], requirements modelling
language (RML) [Greenspan, 1984] and the event model [King and McLeod, 1984],
extended the notion of the object to cover active objects, such as activities,
processes, and so on. This requirement occurred primarily in the field of office
automation, in which the need to refer to certain activities as denotable entities arose. Thus,
assessment of an insurance proposal is a process with a certain structure, including
constituent activities and associated static objects (information, paperwork etc). It seems
likely that working environments without the facility to describe processes will lose favour
in the development of complex systems. On the other hand, process modelling, in which
processes are described at a high level of abstraction, will gradually become the basis of the
design methodology for a more sophisticated system.

Chapter 5 116 Behavioural Issues

TAXIS [Mylopoulous et al, 1980] is designed for the creation of interactive
information systems. Its main modelling construct is the class, which is used to model
both passive and active objects. The latter include expressions, constraints, transactions,
exceptions and the like. There is an inheritance hierarchy, in which all classes participate,
and an instantiation hierarchy of three levels: tokens, classes and meta-classes, with each
token being an instance of a class and each class being an instance of a meta-class.
Properties are defined on tokens, classes and meta-classes. These represent single facts,
functions from one class to another, and functions from a collection of classes to a single
class, respectively.

A special meta-class is called TRANSACTION_CLASS, which contains class
objects which are not sets of tokens, but are program objects. Such a class consists of a
full specification of the input parameters, local variables, a pre-condition for the transaction
to execute smoothly and a list of sub-actions which constitute the transaction's behaviour.
Here is an example:

TRANSACTION_CLASS RESERVE_SEAT with
parameter_list: reserve_seat: (p, f);
locals p: PERSON;
f: FLIGHT,
i: INTEGER,
prereqs
seats_left. f.seats_left>0
actions
make_reservation:
insert_object_in RESERVATION with
person<p, flightf,
decrement_seats: f.seats_left—f.seat_left-1
assign_aux_vars: i<f.seats_left
returns
rtrn: i
end

The transaction's specification consists of the input parameters and local
variables, a precondition and the actions which constitute the transaction's behaviour.

Transactions are used to model any active component of the system, including
the procedures which define test-defined classes, exception triggers and exception

Chapter 5 117 Behavioural Issues

handlers. TAXIS is a consistent system which uses two mechanisms, inheritance and
instantiation, to model the real world. It has some limitations, and some aspects, like
exceptions, feel somewhat unnatural to use. However, it is very clear as a specification

language.

Requirements modelling language (RML) [Greenspan, 1984] is a by-
product of the TAXIS project. It allows the specification of the entities, activities and
assertions that may be defined for an application in a syntax that is essentially the same as
that of TAXIS.

RML is designed to allow the description of the 'problem situation' rather than
of the 'solution system'. Definitions in RML are designed to be statements of what must
be included in any program which models the application domain.

The event model (EM) [King and McLeod, 1984] is another model which
involves active object descriptions. The EM intends to describe a database by making
statements on the database which are always true. It therefore needs some notion of active
objects to make statements such as 'Event E modified object O at time T'. There are two
types of passive object, which are descriptor objects and abstract objects. The former are
strings and hold identifiers and printable values, whereas the latter are complex objects
consisting of attributes, of which one (the primary attribute) defines the object uniquely.
Attributes are modelled by functions and can be specified to be unique, single-valued, non-
null, exhaustive or the inverse of another attribute. Objects may be sub-typed, by using
restricting predicates or adding more attributes. Events are divided into application events
and perusal events. These model transactions and queries respectively. They may be
parameterised and require the specification of objects to be used in the event and the sub-

actions involved.

Since the CDMS has evolved from a semantic data modelling perspective, these
kinds of 'active' data model show the way forward to extending the CDMS into the active
dimension. The sorts of construct provided by RML and the EM must be instances of the
generic model which underpins the CDMS.

Chapter 5 118 Behavioural Issues

5.2 Transactions as Active Objects

5.2.1 Database Transactions

An atomic database transaction is a logical unit of database processing, or
an execution of a piece of code which performs database access or database update
operations, retrieving or changing the contents of the relevant database. Transactions are
typical of active objects found in traditional database applications. Because a transaction
groups a number of changes to the database into a single atomic unit, it enables a DBMS to
supply facilities which handle changes of varying levels of complexity in the same way.
For instance, transactions can be used in such a manner that concurrency control is
properly organised so that the competitive changes may vary in extent and be combined
without interfering with each other.

5.2.2 Transactions and Concurrency Control

The transactions submitted by the various users may execute concurrently and
may intend to access and update the same database elements. If this concurrent execution is
uncontrolled, it may lead to problems such as an inconsistent database [Papadimitriou,
1986].

In order to avoid this, transactions have four important properties; that is,
atomicity, consistency, isolation, and durability. These properties are also referred to as
ACID [Harder and Reuter, 1983].

Atomicity means that either all of the constituent updates get executed or none
of them do.

Consistency means that transactions preserve the integrity of the database;
that is, the overall effect of a transaction must not result in a database state which violates
integrity constraints. A transaction always transforms a consistent state of a database into
another consistent state of the database, but it does not necessarily preserve consistency at
all intermediate points.

Isolation means that transactions do not interfere with each other. Even
though there will generally be many transactions running concurrently, any particular

Chapter 5 119 Behavioural Issues

transaction's updates are hidden from the others, until that transaction commits. In other
words, for any two distinct transactions T1 and T2, T1 might be able to see T2's updates
after T2 has committed or T2 might be able to see T1's updates after T1 has committed, but
certainly not both.

Durability means that once a transaction commits, its updates survive, even if
there is a subsequent system crash.

The main mechanism which ensures that when multiple transactions are
submitted, they do not interfere with each other so as to produce incorrect results is
concurrency control. Concurrency control ensures that a transaction is either performed
in its entirety or is not performed at all (atomicity), a transaction should not make its
updates visible to other transactions until it is committed (isolation), once a transaction
changes the database and the changes are committed, these changes must never be lost due
to subsequent failure (durability), and an execution of the relevant transactions takes the
database from one consistent state to another (consistency). Another mechanism, the
recovery system is essential for handling transaction failures. This will ensure that for
every transaction that has been started, either all of its updates will be committed or they
will be completely undone with the relevant transaction being rolled back.

5.2.3 Transactions in Relation to Constraints

As has been presented in the previous chapter, another vital use which a DBMS
makes of transactions is the management of constraint violation. Given that it is
sometimes necessary or convenient to violate enforced constraints temporarily, the
transaction is used to limit the scope of the violated condition. A sophisticated control of
violation is made possible by offering the user a mixture of options, including to abort
violating updates, to cascade the effect of an update, and to allow the violation to remain
until the end of transaction [Lee, 1992]. Transactions can be nested. In this case, violation
may be permitted until the end of the outmost transaction.

Alternatively, constraints can be embedded in transactions in the form of pre-
conditions, triggers or post-conditions [Mylopoulous et al, 1980]. Accordingly, updates
are made only in the context of a particular state, or in order to cause repairing actions, or
after their effects are seen to be acceptable. In any case, the effect of updates has been
limited by the existence of constraints. Thus a transaction in this kind of system is

Chapter 5 120 Behavioural Issues

composed of a mixture of updates and constraints. This issue will be further discussed in
Section 5.5.

5.2.4 Conclusion

From the above discussion, it is clear that transactions constitute a significant
category of the constructs which a database system uses. They are used for several critical
facilities and are expected to make the coherent use of a DBMS more straightforward.
They also came in a variety of flavours, each of which is appropriate to certain
circumstances.

Therefore, in configuring a database application, it would be preferable to
configure also the transaction model. In order to achieve this uniformly, a generic model
which encompasses transactions will be required.

5.3 Process Support System

An application in which active objects play an important role is process
modelling.

The modelling of processes within an enterprise is becoming a more prevalent
activity. By creating computer models of its activities, an organisation can expect to find
shortcomings in the current ways of doing things and also create cost-cutting regularity
across the organisation. In some cases, this modelling can be used as the basis for
automating all or part of the processes.

Process modelling is carried out in a way which is very similar to that of data
modelling. Simple graphical or textual languages are used to describe the processes
[ProcessWise, 1993]. Typically, there may then be some way of enacting the processes
with simulated data to watch how the elements of the schema behave. Given that the same
organisation is likely to have a database holding the real information which the processes
are involved with, there is clearly some benefit in tying the process schema and the
database together, but this is rarely done and even if it is done, it usually involves some ad
hoc means of communicating between the two sub-systems. One of the promises of the
CDMS is the ability to create database systems and process modelling systems in the same

Chapter 5 121 Behavioural Issues

coherently organised environment. This should improve the quality of process modelling
significantly.

This section presents a process support system (PSS) developed at ICL
[Bruynooghe et al, 1991], which illustrates the main ideas of process handling. Both
industrial and business systems can be simulated in PSS.

From the process support point of view, process treatment can be divided into
four stages; that is, process capture, process modelling, process enactment and process
control.

* Process capture produces a process description, or a static representation of
a certain process. The significance of process capture is that this enables initial
assessment of the process and hence makes it possible to improve the
effectiveness of the relevant treatment.

e Process modelling means formalisation of the process, which enables
further analysis to be carried out. Necessary changes can thereafter be
designed and implemented, resulting in the process being optimised. Process
modelling is an essential precursor to process automation.

* Process enactment means the automatic execution of a process application
which guides users through the process and provides users with access to their
required tools and data through a consistent, intuitive user interface. At this
stage, the computer takes charge of simulating the whole process and also
allows alteration of the process as needed.

* Process control is the ultimate stage of process support. As a result of
thorough experimentation in the stage of process enactment, an optimised
process control system can be designed and implemented to run effectively and
efficiently.

The PSS developed at ICL is a process enactment system* . Its kernel is a
process control engine (PCE), which provides the appropriate working environment
for process simulation at each point of time. The PCE is programmed in process
management language (PML), which is used to describe the objects upon which the

* PSS was implemented in the same language, PS-algol, which was used in the early stages of CDMS
development.

Chapter 5 122 Behavioural Issues

user might carry out some operations, the type of interaction the user has with the system,
the tool to help the user realise those operations, and the means of communicating changes
to the working environments of the user.

The basic PSS concepts include process, role, activity and interaction. A
process consists of a set of roles, each of which serve particular goals in an executing
process. A role may be subdivided into a number of activity threads which may proceed
concurrently. A thread of activity is actually a sequence of activities, and an
interaction between roles is represented by a connection between an activity in one role
and an activity in another.

As the central factor of process support, process modelling can be realised by
two approaches, or more precisely, two stages; that is, abstract modelling in role-activity
diagram (RAD) and detailed modelling in PML. A process schema can thus be embodied
in a diagrammatic form or in a program form. The PSS supports process description in
PML and process enactment by a sophisticated user involved animation interface.

5.3.1 Role-Activity Diagram

This subsection is devoted to exploring the approach of process modelling
using a RAD. This approach is used to help understanding and reasoning about processes.

Some features of a process in the real world can be described graphically in a
control flowchart (CF) or in a data flow diagram (DFD). The former can express
features such as the order and decision points of the activities, while the latter, without this
ability, is able to express features such as the movement of data, its external sources and
sinks, and the files or databases which hold the stored data.

An ideal process modelling tool should, however, be able to model the essential
properties of a process intuitively and with sound underlying semantics, and its primitives
should correspond to real-world actions. An ideal process modelling tool should also be
able to model the goals, to model the business rules, to model how people achieve the
goals, and to model how people interact to get the job done collaboratively in their different
roles.

Unfortunately, neither a CF nor a DFD is able to model the goals, that is, what
the organisation is trying to achieve; neither CF nor DFD is able to model the business

Chapter 5 123 Behavioural Issues

rules, that is, the limits the business places on people; neither CF nor DFD is able to model

how people interact with each other.

In process modelling, what people do is represented by roles and activities.
Goals are represented by post-conditions of activities. Business rules are represented by
the logic between activities and roles. How people interact is represented by interactions

between roles.

Drawing up a process schema as a diagram helps in the design of a new
process, because the weaknesses in an existing process can thus be identified and possibly
eliminated. Expressing the schema diagrammatically encourages shared understanding of
the existing process, which then helps to ensure proper organisational operation, coherence

and completeness in a set of process.
In a RAD, the process is drawn up as a set of roles. The activities within each

role, which operate on data entities, are shown with their ordering and logic. Interactions
between roles are shown at the appropriate place in the logic.

Chapter 5 124 . Behavioural Issues

Figure 5.1 A Sample RAD

As an example, Figure 5.1 shows an unlabelled RAD for a process involving
four roles. A role is a grey box in the diagram in which threads of activity are shown as
vertical chains. Each chain shows a series of states changed by the activities. The first role
has two threads of activity which initiate and complete the process. The initiating thread
has three activities, the last of which starts a thread of activity in the second role. This in
turn starts threads of activity in the other two roles which eventually feedback to the
completion thread of activity of the first role. In the diagram there are parallel sub-threads
branching from the main thread which mean concurrent processing for the activities which

reside on each of the parallel sub-threads, and there are also alternative sub-threads

Chapter 5 125 Behavioural Issues

whereby which sub-thread follows the main thread depends on the branching condition.

The lines joining two activities belonging to two different roles indicate the interactions

between roles.

A RAD distinguishes various kinds of activity which may be included in a role.

The main kinds are shown in Figure 5.2. The basic activities distinguished are black boxes

which require user involvement and white boxes which do not. By composing these with

conditional and parallel sub-threads, as well as interaction links, processes of arbitrary

complexity can be modelled.

State

An activity
(without user
involvement)

An activity
(with user
involvement)

Identify someone to
carry out arole

A delay or event

b .

=
.
X
+

All OK?

Alternative
sub-threads
depending on
the condition

Parallel
sub-threads
(all followed)

An interaction
between two roles

An interaction
among three roles

The driving party
in an interaction

es (0]

Figure 5.2 RAD Notations

5.3.2 Process Management Language

The Process Management Language (PML) is used to formally describe or

program a process in the context of the PSS, PML is thus central to the PSS.

Chapter 5

126

Behavioural Issues

Six aspects of PML can be identified which help its users to encode processes:

* Concurrent threads of execution: Concurrent threads provide a
convenient abstraction that simplifies the process design task, by enabling each
thread to concentrate on a particular sub-task.

* Dynamic thread creation: The dynamic creation of new threads captures the
unpredictability with which new activities can start within a process.

* Subtyping: The support for subtyping allows operations to be defined that
can be applied to data objects of different but related types.

* Persistence: The persistence provided by the PSS environment relieves the
programmer of any concern as to whether program data is held in primary or
secondary storage.

» User interface: PML allows the user to define a simple relationship between
the state of a process thread and the display its owner sees.

* Tool interface: The ability to start and then transfer data to and from tools
that are running outside the PSS allows the process program to coordinate their
operation with the state of the process.

PML is a strongly typed language, with a class inheritance structure. The class
hierarchy supports three kinds of classes: entities, actions and roles. Entity class
definitions create record types, action class definitions introduce procedures, and role

class definitions act as schemata for subsequent execution thread creation.

A role class definition defines both the data values and the behaviour of its
instances. The data properties are defined in the resources category. Although PML is not
an object oriented language in the usual sense, the role is an object encapsulating its
composing actions and responding to external stimuli or messages, namely, the
interactions it has with other roles. One role can only communicate with another by
sending it a message. Using roles as data encapsulators both simplifies the programmer's

task and makes it less error-prone.

A sample process coded in PML is shown in Figure 5.3. This process involves
two role instances 'rolel' and 'role2', both of which belong to the same role class

Chapter 5 127 Behavioural Issues

‘SampleRole’. Each role instance can accept an integer value from the screen or from the
other role instance, and show an integer value on the screen or send it to the other role
instance when there is one in the relevant role instance.

classes

SampleRole isa Role with

resources
value: String
gp: giveport String
tp: takeport String

actions
getValue:
{GetNew(agendalLabel="supply value', object=value)}
viewValue:
{ViewResource(agendalLabel='show value', object=value)}
when nonnil value
sendValue:
{UserAction(agendalLabel='send value'}; Give(interaction=gp, gram=value)}
when nonnil value
receiveValue:
{Take(interaction=tp, gram=value)}

end with

resources
role1: Role
role2: Role
gp1: giveport String
tp1: takeport String
gp2: giveport String
tp2: takeport String

actions
startSampleRoles:
{UserAction(agendalLabel='Start Sample Roles');
NewInteraction(giver=gp1, taker=tp1);
NewInteraction(giver=gp2, taker=tp2);
StartRole(roleClass=SampleRole, agendalabel='Sample Role 1', roleinst=role1, gp=gp1, tp=tp2);
StartRole(roleClass=SampleRole, agendalabel='"Sample Role 2, roleinst=role2, gp=gp2, tp=tp1)}

Figure 5.3 A Sample PML Program

5.3.3 Process Support Environment

Using common software tools from outside as needed, PSS does all
computerised work in process handling, and guides its user to do the rest. The roles of a
process can be divided into on-line roles, which do not need any resources other than PSS
itself, and off-line roles, which involve PSS users and the software tools existing outside
PSS. Without a PSS, a user would only be able to accomplish particular functions using
separate pieces of software. These functions roughly correspond to the roles, and the user
would have to accomplish most interactive work among these functions. In PSS, owing to
the existence of the tool agent which, as a special role of the corresponding PCE, deals

Chapter 5 128 Behavioural Issues

with the utilisation of the outside software tools, all available software tools can be utilised
in a more convenient and more consistent way. The user agent is another special role of
PCE and it deals with all matters which need users to intervene when the process is
running. Interaction may occur either between two on-line roles, or between one on-line

role and one off-line role.

The PSS has a distributed architecture. The roles of a particular process
are all executed by a single PCE, while each workstation executes an instance of a Ul
server, providing a window management capability that reflects at least one instance of a
tool server that runs in the environment in which the tools executes. The user agent and
the tool agent provide appropriate interfaces to the servers in the outside world.

As mentioned above, the user agent enables the user to access the PCE from a
user server. Each user agent therefore identifies an actual user by name and password.
Those roles that share the same user agent are said to be owned by the user that the agent
identifies. The user agent sends these roles out to the Ul server and enables the user to
participate in the process program.

Parallel to the effect of the user agent, the tool agent offers access to the
environment in which its associated tool server is executing. It allows a tool to be started
and data to be given to and taken from these tools.

A PCE runs in the process support environment (PSE), which is a
persistent working environment and is able to support processes existing for any length of
time. The time within which a process exists equals to the length of the lifetime of what is
enacted by the process. It may take several years or even longer, so a persistent

environment is needed.

In practise, the command 'runpss' starts a PCE, while the command 'xpssui’
starts a user interface server. Once these commands have been issued, a role agenda
window will be displayed, and action agenda windows will be displayed for each active
role. Figure 5.4 shows an action agenda window. The user responsible for a particular
role should accomplish actions by clicking on the relevant action agenda window, then
appropriate dialogue widows will be automatically provided to allow information exchange
between the user and the system. Figure 5.5 shows such a window.

Chapter 5 129 Behavioural Issues

t'@ PSS PCE Team Lsader N

(context @) (view @) ('speciai v)

‘h-l
@ roaavs Appointments I
@ Olsuibuts Subprosiem
=
.,

@ Define Subproblem

gg Team Meeting

h Probiem Oefinition

b

Figure 5.4 An Action Agenda Window

@ Documantatlop"ﬁ
draft had

for review
approved

huthorised

A

—_—i

Authorisation Level ?

D

Figure 5.5 A Dialogue Window

5.3.4 Implementing a Process Model

To be sure that the ideas discussed here coincided with the general philosophy
behind the CDMS, it was decided to embark on an implementation of a process model
using similar techniques to those used for the IFO implementation [Qin, 1993].

The implementation was started by an MSc student [Lum, 1992], but this was
enhanced to enable a user to design a process model using a RAD then carrying out their
transformation into outlines of program in PML.

The success of this implementation created confidence that Process Modelling

and Data Modelling could be combined since many of the underlying techniques are, in

practice, the same.

Chapter 5 130 Behavioural Issues

5.3.5 Conclusions

Process modelling, being an increasingly valuable technique for managing
complex organisations, is similar to data modelling in many respects. PSS makes process
modelling a database application by adding persistence and data models which are primarily
about changes to information. One weakness of current process modelling software is that
it exists in isolation from the actual data being managed by the organisation, for instance,
payroll, orders, etc. It would make process modelling more powerful if the descriptions of
processes and the descriptions of the company's data could be unified.

Again this implies that a uniform generic model covering various kinds of
process model and the static data that the company uses would be valuable.
5.4 Computation in Database Systems

In order to permit the computation which underlies a database application to be
configurable, there is a need to describe the code at some high level of abstraction.

When a user is interacting with a database application, the following code
fragments will probably be needed:

* code implementing the DBMS itself, which includes storage methods,
concurrency control and the like;

* code transforming user actions into database storage and retrieval, for instance,
a query processor;

* queries and updates framed in a query language;

» canned queries or application programs written or embedded in a high-level

language;
* code embodied in 'active objects' if the data model is powerful enough.

Considering the action of requesting a balance at an autoteller. The function is
achieved by:

Chapter 5 131 Behavioural Issues

1) Canned query code which creates a query using code written in the high-level
language;

2) The query is processed and this calls various of the underlying mechanisms.

Ultimately, all of these computations map down into operations which create,
destroy, update and display data or metadata. These operations come in different flavours -
different access methods and different user interactions for instance - but they are all
intended to achieve actions from this small set. So it is useful to create a characterisation of
these operations.

A data definition operation should be taken as an active object class at the
data model level, each instance of which will affect the relevant data schema in the way that
the operation defines. For instance, create a composite attribute should be defined as an
active object class in the ER data model, while each instance of this, namely, an execution
of the relevant procedure, yields a concrete composite class in the relevant data schema, for
example, loan in an ER schema.

A data manipulation operation should be taken as an active object class at
the data schema level, each instance of which will in turn affect the relevant database in the
way that the operation defines. For instance, create a person’s name should exist as an
active object class in the ER schema shown by Figure 5.6, and each instance of this,
namely, an execution of the relevant procedure, yields a concrete attributing instance in the
relevant database, for example, an attributing instance which is directed from the
appropriate person instance to name instance 'Jean'in Figure 5.7.

When using a data model and a schema, these operations are implicitly
available. They are installed as specialisations when a data model is implemented or a
schema is designed. The form they take is not manipulable. Thus, a designer can
determine that a book has a title and a number, but cannot control what form create a book
takes. One of the gains of CDMS is to allow the operations to be manipulable.

Chapter 5 132 Behavioural Issues

a
am loan-book t
's name
loan-person
's sex title of book
se ‘—L'Fe(sc book
number of book
's id
«age p's pddress
% er
adss
a-house™ § b
& a-stﬂ:eet
_ﬁ simple attribute
entity
_>® complex attribute
VAN o
\V relationship
*“““‘“A component of complex attribute
Figure 5.6 A Library Schema
‘Database’
Jea ‘Programming'
'‘Georg ‘Bridge’
true %‘ AN
false N
1001 5001
18 5002

1002

20 ® 5003
&
;6\ g/r nt ot

ﬁ simple attribute
entity
’@ complex attribute

relationship

<

-“‘“““A component of complex attribute

Figure 5.7 A Library Database

In order to allow the configuration of the operations in a particular end-user
application on a database, it will be necessary to include the operations above in the generic

Chapter 5 133 Behavioural Issues

model. In configuring an interface, an important step will be to select which operations are
exported to the user. The CDMS should be able to do this in a uniform manner to the rest
of the configuration task.

5.5 Active Database Systems

A database system was conventionally thought of as a store room that keeps the
information which is relevant to an application and which is accessed by user programs or
through interactive interfaces. Now database systems are extensively used in the areas
which require highly stringent performance as well as the ability of both substantial data
storage and complicated information processing, and the traditional multi-component
environment has proved to be insufficient. This has led to database research in the
direction of more functionality being supported within the database system itself, and has
resulted in database systems with more comprehensive facilities for modelling both the
structural and the behavioural aspects of an application.

An active database system [Paton et al, 1994] supports mechanisms which
can respond automatically to the events occurring either within or outside the system.
Different proposals for active database systems have been made and various applications
for such systems have been suggested.

A conventional DBMS is passive in that system commands, including query,
update and delete and so on, are executed only upon being requested by the user or
application program. This pattern is, however, unable to model some situations
appropriately. Consider a flight database which is accessed by different terminals. It is
desired to add extra flights when the number of spare seats available a fortnight in advance
falls below some threshold value. In order to deal with such situations in a passive
database environment, one approach is to add this function to all booking programs, while
another uses a polling mechanism which periodically examines the number of seats
available. The former, however, causes the functions to be distributed, replicated and
hidden among different application programs; while the latter incurs the difficulty of
selecting an appropriate polling frequency. An inappropriate frequency may in turn cause
either a slow reaction, or an expensive cost, both being unacceptable.

On the other hand, an active database supports such an application by moving

the reactive behaviour from the application or polling mechanism into the DBMS. There it

is able to monitor and react to specific circumstances. In this way, the reactive semantics

Chapter 5§ 134 Behavioural Issues

become both centralised and handled in a timely manner. For this purpose, an active
database system offers a description mechanism.

A common approach for the description mechanism uses rules which may have
the following components:

* event, which describes an occurrence to which the rule may be able to
respond;

» condition, which examines the context in which the event has taken place;

e action, which describes the task to be carried out by the rule if the relevant
event has taken place and the condition has evaluated to true.

A rule with all three of the components is referred to as an event-condition-
action rule (ECA-rule). Most active database systems support ECA-rules.

In some proposals the event or the condition may be either missing or implicit.
A rule without an event is called a condition-action rule, or production rule; while a
rule without a condition is called an event-action rule, or trigger.

Clearly rules add significantly to the power and clarity of a DBMS.
Behavioural aspects of the applications can thus be specified in a straightforward manner.
The CDMS is therefore intended to manage rules. It should be able to achieve this given
that there are constraint and behavioural constructs which can be configured to create the
application semantics.

5.6 Summary of Behavioural Issues

The previous five sections have examined five different sorts of database
perspective in which a behavioural component plays an important role.

Semantic data models aim for a more abstract description of activity.
Transactions are composite active objects in which data definition and data manipulation
operations are clustered and which represent complex changes to the data. Processes in
process models are simulations of real-world dynamic systems in which primitive actions
are organised to mimic the activities involved. Both transactions and processes can thus be

Chapter 5 135 Behavioural Issues

seen as structural concepts equivalent to 'set' or 'aggregate' in the structural modelling
component of the CDMS. Database operations are the fundamental behavioural
elements of the application. Active database systems support mechanisms to respond
to events which take place inside or outside the database system.

The rest of this chapter presents a proposal for extending the CDMS with
behavioural values. This extension is uniform with the preceding chapters and promises a
clear method of incorporating functionality with structure and constraints into the

configuration process.

5.7 The Behavioural Aspect of CDMS

In order that CDMS concepts function properly, there needs to be some way of
bringing these unrelated elements into a common structure. In the CDMS, it is aimed to
unify the handling of the code with the management of data structure.

The CDMS global model includes a number of basic actions to manipulate
instances of the global model structures and to interact with the user. The global model
further allows constructors with which to put these primitive actions together, both with
other actions to form complex actions and with data values to form active values. Finally,
there are frameworks in which the actions can be embedded to produce interface templates
for user interaction.

In the context of the CDMS design and implementation, the main issues relating
to active objects are how active objects should be categorised and how configurability
should be performed within the system.

5.7.1 Categorisation of Active Objects

Active objects in the CDMS can be categorised into base actions and complex

actions.

Base actions are atomic actions in the system and can be subdivided into user
involved actions and non-user involved actions. User involved actions are logical
actions which transmit information to or from the user. They consist of actions such as

input an integer, output an integer, input a string, output a string, select an integer from a

Chapter 5 136 Behavioural Issues

set of integers, select a string from a set of strings, and so on. Each user involved logical
action may have multiple concrete actions instantiating it. This instantiation activity is the
role of the user interface component of the CDMS. Non-user involved actions include
such actions as modify an integer value, retrieve meta-relationship type directory, construct

a relationship type, store a relationship type, initiate a process, and so on.

A complex action represents a combination of a number of actions, which
may include other complex actions as well as base actions. There are four combination
constructors, which are the sequential constructor, the parallel constructor, the conditional
constructor, and the repetitive constructor. The sequential constructor takes a number of
actions and creates one which is the sequence of these actions. The parallel constructor
takes a number of actions and creates one which executes them in parallel. The
conditional constructor takes a number of actions and creates an action in which one of
the component actions will be executed according to the matching test result. The
repetitive constructor takes one action and creates an action which executes it a number of

O action
O action constructor

times.

base action complex action

user action @ non-user action

sequential @ parallel
conditional @ repetitive

= generalising ———— consisting

©®

OO

Figure 5.8 Active Objects in the CDMS

Chapter 5 137 Behavioural Issues

Figure 5.8 shows the global view of the active objects in the CDMS. In the
diagram all of the action types described above are shown in a generalisation hierarchy. At
the top of this hierarchy is an empty action symbol which denotes any unspecified kind of
action. The diagram indicates that an action is either a base action or a complex action and
that a complex action is made up of a constructor and some actions.

As a model is defined, a base action can be specialised from a meta-base action,
and a non-base action can be specialised from a meta-non-base action.

5.7.2 Examples of Configuration of Active Objects

Example 1

In order to manage constraints in a data model, the concept of transaction can be
configured and included in the relevant model:

transaction:=sequence of (action, if constraintsOK then commit else abort)

This process can also be displayed graphically, as in Figure 5.9.

0

commit
transac

transaction

abort

check transac

constraints

Figure 5.9 Transaction
Here a transaction is abstracted as some action (probably a complex action)
followed by a test resulting in either commit or abort. The process of creating a transaction

is similar to that of creating a record out of its components.

Because a transaction is itself an action, the case of nested transactions is
covered by the above definition.

Chapter 5 138 Behavioural Issues

Having designed the transaction model, it becomes possible to add operations
for handling transactions or enhance previously defined operations to manage them.

Example 2

In order to support business processes, such action types that represent thread
of activity, role and process can be configured accordingly:

process:=set of (role)

role:=set of (thread)

thread:=sequence of (action)

Figure 5.10 shows the graphical equivalents of the above.

thread role process

Figure 5.10 Thread, Role and Process

That is, a process is a set of roles, each being a set of threads, each in turn
being a sequence of activities. It is obvious that all these are special actions in the context
of the CDMS which supports active objects.

Example 3

An example of active schema is shown in Figure 5.11, which represents model
manipulation of the CDMS itself, without including the constraint processing part for
simplicity. Model manipulation is shown as the conditional execution of one of create, edit
and remove operations on models. Create, edit and remove leads to the repetition of
operations to create, edit and remove CDMS values respectively.

Chapter 5 139 Behavioural Issues

retrieve
m-base
dir

select
one

read
string

make
b-type

store
b-type

retrieve
m-comp
dir

select
one

read
string

make
c-type

store
c-type

retrieve
m-reln
dir

select
one

retrieve
proper
c-types

select
one

retrieve
proper
types

select
one

create
b-type

S161OI0I6

U

234

D

C

2
/)
read
string

0 select @
odel ' function . g mov
operation 2 , 0
read ‘ "
string retrieve

make
model
env

%

make
r-type

create
mode

0
S

store
model
env

model

eliminate
model

g
=
e

remove

create
r-type

store
r-type

retrieve
b-type
dir

select
one

eliminate
b-type

change
b-type

store
b-type

retrieve
c-type
dir

select
one

eliminate
c-type

change
c-type

store
c-type

retrieve
r-type
dir

select
one

eliminate
r-type

change
r-type

store
r-type

Chapter 5

Figure 5.11 Model Manipulation Schema in the CDMS

140

Behavioural Issues

5.7.3 Using the Configured Functionality

In order to make the operations available to the user, some frameworks need to
be offered in which to construct access to the relevant actions. Although these could
themselves be built out of the basic actions, a considerable amount of repetitive work will
be saved if they are provided as completed components, which may include:

* menu-based framework - the operations constructed as complex actions are
slotted into a hierarchical menu framework - the user interface component of
the CDMS then turns this into a textual or graphical menu interface;

» graphical framework - the operations appear as manipulating the screen

representation of an underlying value graph;

* form-based framework - the operations are tailored to the use of forms for data
input and output and also for schema design (in the manner of Freeform [King
and Novak, 1987]);

* textual language framework - the framework consists of a template for an
interpreter for a textual query language and slots for placing the complex
actions - the user interface component of the CDMS then creates a syntax for
the language [Cooper, 1994].

When delivered to the user, an interaction facility will comprise a set of
available operations built into one of the frameworks outlined above. The approach is
influenced by FaceKit [King and Novak, 1989].

The process for constructing an interaction facility starts by choosing the
framework and then selecting from the set of modelling primitives which are appropriate
for the structures selected to be in the data model. Thus if the base type simple attribute
instantiated from meta-base is included in a data model, then the global createBaseValue
will be instantiated as createSimpleAttribute and included in the set of data manipulation
operations of the model. The relevant details of how the operations are built, combined and
embedded into a query language interpreter are give in [Cooper, 1994], while a brief
description of the same can be found in [Cooper and Qin, 1994].

Chapter 5 141 Behavioural Issues

5.8 Conclusions

Thus it has proved possible to create a small set of descriptive elements of active
objects equivalent to those used for structural features of data items. By putting these
global active objects into the CDMS, the system can support the creation of a wide range of
systems which include active objects. This will include both databases which contain
active values and data managers which have different kinds of operations, for instance it
should be possible to tailor a variety of transaction models. All of this can be configured
using the menu-driven style of the rest of the CDMS.

Implementing models with active objects in a language which has first class
procedures is greatly simplified. Launching an active object is straightforward to program
when it becomes possible to retrieve procedures from structures and then execute them.
Similarly, providing mechanisms for making sub-activity calls is easier.

Chapter 5 142 Behavioural Issues

6 The Platform for Implementing the CDMS

This chapter presents the platform on which the CDMS is implemented. In
order to create an effective implementation of the CDMS, the choice of platform is critical.
The CDMS must manipulate and store data, metadata, meta-metadata and application code.
Therefore a direct representation of each of these is crucial for programming accuracy. The
choice of using persistent programming was made based on the availability of orthogonal
persistence and the ability to treat code as data in persistent systems.

Section 6.1 generally introduces persistent programming systems. Section 6.2
describes PS-algol. Sections 6.3 and 6.4 describe Napier88 and the Napier88 Library,
respectively. Section 6.5, as a summary, discusses the advantages of the persistent
approach.

6.1 Persistent Programming Systems

The main implementation tools used to build the CDMS are programming
languages based on the concept of persistence, together with the persistent store which they
operate against and the libraries which populate the store.

This section introduces the principal ideas which motivate the design of
persistent languages. Two issues dominate the discussion. One is the provision of
consistent support for data with a wide variety of lifetimes - persistence. The other is the
extension of data management to include the management of code as well as data.

The persistence of a value represents the duration for which it is accessible by

a program. This could be as short as the time it takes to execute the block in which a value
is declared, or it could be longer than the process or even the computer system in which the

Chapter 6 143 The Platform for Implementing the CDMS

relevant value is created. Conventionally, programming languages manage short-term or
transient data, while file managers and database systems deal with long-term or persistent
data. Programming languages are designed to enable computation to be described
efficiently, while file systems are designed to enable data to be accessed efficiently. It is
therefore no surprise that the data handling facilities of each vary considerably. In creating
applications which must manipulate short-term data and access long-term data, a great deal
of code must usually be written which bridges the gap between the two. By creating a
system in which long term and short term data are treated in the same way, much of this
coding can be eliminated.

The manner in which persistent languages achieve this is to start with a
programming language model of data, but then to maintain this same model for stored data.
Thus any piece of data which is created as a typed value in a program retains its structure
when it is stored. The two important ideas here are that any value can be stored and that the
structure of the value is not lost when it is stored. Any programming language which
satisfies these principles, which together are called the principle of orthogonal
persistence, is referred to as a persistent programming language (PPL).

The other critical property of persistent languages is that code fragments
(structured into procedures) are first-class values. That is, a procedure can be manipulated
in the same way as any other value. Given the orthogonally persistent nature of the
language, this means that procedures can be stored as procedures rather than by use of
some indirect representation. A persistent language therefore manages a database in which
code and data can be freely mixed. Since a great deal of the CDMS functionality concerns
the management of code, this is an extremely valuable aspect of the support that a persistent
language brings to the implementation.

The next two sections introduce the principal persistent programming languages
PS-algol and Napier88. PS-algol was used in the early stages of the implementation, but
the work was later transferred to Napier88 in order to make use of the more powerful

features of that language.
A formal definition of PS-algol may be found in [PS-algol, 1987] and tutorials

in the use of the language in [Carrick et al, 1987], while an informal definition of Napier88
may be found in [Morrison et al, 1989]

Chapter 6 144 The Platform for Implementing the CDMS

6.2 PS-algol

6.2.1

introduced by the Persistent Programming Research Group (PPRG). It was developed in

Overview

PS-algol was the first of a series of persistent programming languages

Universities of Edinburgh, Glasgow and St Andrews from 1979 to 1987.

powerful and consistent in its treatment of data. The power of the language has been
developed from the existing language features by extending their scope, so that there are no
exceptions to syntactic rules and no arbitrary restrictions on the usage of the language

PS-algol is a block-structured language of the Algol family. It is simple,

components. The language possesses the following principal features:

Chapter 6

orthogonal persistence, which means that data of any type may have any
lifetime;

type completeness, which means that all data types enjoy equal status
within the language, so that there are no restrictions on the construction of
types or on the management of values of these types;

first class procedures, which means that procedures can be manipulated in
the same way as other values - this is implicit in the data type completeness of

the language;

reflection - a callable compiler is available in the language, which means that
new code fragments can be added to a program at run-time;

graphical types - both image handling and line drawing facilities are
provided;

strong typing - each value has a fixed unchanging type;
a mixture of dynamic and static binding and type checking;

an integrated stable store providing persistence by reachability;

145 The Platform for Implementing the CDMS

* associative structures via a standard library.

6.2.2 The PS-algol Type System

Every value in PS-algol has a type which is fixed and statically determinable at
compile time. Values may be divided into three kinds:

» scalar values which are atomic data values;
* composite values which are values composed of component values;

* complex values which have identity and updatable state and are similar to
records in Pascal and objects in Object-Oriented languages.

The scalar types of PS-algol include bool, int, real and string. There are
also scalar types for files, pixels and pictures. The type file enables PS-algol to access
data outside of the persistent store. The type pixel represents a single pixel in a bitmap,
while the type pic is the type of pictures constructed as line drawings in the Cartesian
plane.

Composite types may be created by use of the type constructors:

* the type ct denotes the type of constant values of any variable type T;

» the type #pixel is the type of a rectangle of pixels, or an image;

* proc(ty, ..., T,—>7T) is the type of a procedure having n arguments of any
types 1; ... T, and one result of any type T or, omitting the '—T', no result;

* the type *1 is the type of a vector (or array) of elements, all of the same type 7.

The third kind of value in PS-algol is the complex object, called a structure in
PS-algol, all of which have the same type - pntr. A structure is similar to a record in
Pascal and belongs to a class similar to a Pascal record type. Structures are given a very
important role in PS-algol. They are used for data modelling in a similar way to tables in a
relational database. They are used to organise the persistent store. Furthermore, they are

Chapter 6 146 The Platform for Implementing the CDMS

used to provide the limited degree of polymorphism permitted in PS-algol. The problems
that arise because of this overburdening of a single construct will be discussed later.

6.2.3 Using PS-algol

Values can be introduced anywhere in a program by let declaration clauses.
When a new object is introduced, its name is given, its constancy is determined, its initial
value is designated by an expression, while its type is inferred from the expression. Some
examples of declarations in PS-algol are given in Figure 6.1.

let I=1 !introduces an integer constant

let S:="ABC" !introduces a string variable

let I=image 10 by 10 of off ! introduces an image constant

let Bvec=@1 of bool [true, true, false] ! introduces a vector of booleans

let Add=proc(l, J: int— int) ! introduction of a procedure constant

! body follows on subsequent lines as a
! single block of code
structure Person(name: string; age: int) !introduction of a structure class

let J=Person("Jean",18) ! introduction of a structure value

Figure 6.1 Declarations in PS-algol

This figure shows how let is used to allow values of all of the different kinds to
be introduced in the same way. It should also be noticed how the presence of a colon
before the equal sign indicates that it is a variable that is being introduced - the absence of
the colon means that it is a constant. let clauses can occur anywhere in a program -

wherever a new value is found.

Programming the behaviour of the application uses a similar syntax to Pascal -
with sequences of statements combined into blocks by use of begin ... end delimiters.
There are also similar if, while, for and case statements to provide repeated and
conditional execution. Ultimately code is made out of atomic statements - assignment to
change the values of variables and read and write statements to allow user interaction via
the standard input and output streams and to allow data to be stored and retrieved in files.
User interaction can also occur via the graphical functions. Input comes from a standard
function to read the mouse, while output goes via standard images which hold the current
values of a screen window and the cursor.

Chapter 6 147 The Platform for Implementing the CDMS

A table in PS-algol is a structure which contains a set of one-to-one mappings
from strings or integers to objects of type pntr. The table structure is of particular
importance as it is used by the persistence mechanism of the language. In PS-algol, the
mechanism for making data persist consists of inserting the data into a structure which is
reachable, by following pntr chains, from some persistent root called a 'database’, which
will itself be an object of type pntr. Since any data object may be put into a structure, any
data object may be made to persist and so the provision of persistence is orthogonal to data

type.

To summarise, creating an application in PS-algol consists of writing programs
which contain: the retrieval of values from the persistent store; some computation expressed
procedurally; and the storage of values in the persistent store [Cooper, 1989]. Retrieval
consists of opening the relevant database and following pointer chains from tables,
structures or vectors to the required objects. Storage is only explicitly required if new
values in the store are to be created. Otherwise if any variable value already in the store is
updated the new value will be stored automatically. Creating a new value in the store
consists of creating a reference from an already stored value. Since procedures are first-
class value in the language, building an application is carried out in a modular fashion by
writing programs which store the modules in the persistent store for later re-use.

6.2.4 Discussion

This subsection provides a review of the unusual features of PS-algol, their
value and concludes with some problems of using the language.

The advanced features of PS-algol which do not normally exist in other Algol-
like languages include data type completeness, the graphics facilities, the mechanisms
which provide persistence, first-class procedures, the availability of the compiler as a
function at run time, and the extensible union type pntr for modelling complex objects and
providing a degree of polymorphism.

Data type completeness is a critical feature of PS-algol and has the following
consequences. There can be variables of any type. Any value can be made the component
of an object, can be stored or can be either the argument or result of a procedure. This
gives the application programmer a great deal of freedom in creating and storing data
structures which combine numerical, textual, pictorial and procedural values.

Chapter 6 148 The Platform for Implementing the CDMS

The graphical types bring two primary benefits - an inbuilt model for pictorial
values and the ability to program the user interface. For the purposes of the CDMS, it is
this latter benefit which dominates. Since the CDMS is intended to manage the user
interface, it is of particular value to be able to represent user interface components and,
indeed, the whole interface as values in the language.

The persistence facilities eliminate the need for elaborate coding to ensure that
the complex data structures which embody all of the information managed by CDMS are
stored properly. It is a hard enough task to construct a model, which includes data,
metadata, meta-metadata and the user interface, without having to construct a mapping from
this to the file store as well.

The notion of first-class procedures requires that procedures can be manipulated
in the same way as any other value. In PS-algol, procedures can be the values of variables,
and the argument or result of other procedures.

The principal usage of first-class procedures includes:

* the representation of actions as procedural objects with no restriction on what
can be done with them;

» the production of abstract data type representations of data, since a package of
procedures can be returned from data creation procedures - a table is one
example of this;

* the storage of procedures, which greatly enhances modular and incremental
application development.

Owing to the existence of first-class procedures, it has become possible to
create a function which calls the compiler. A string which represents a procedure can
therefore be passed to the compiling process, which returns the compiled procedure, and
this may then be used in the same way as any of the statically written procedures of the
program. Having the compiler available at run-time is another vital aspect of the support
which PS-algol brings to the implementation of the CDMS. The CDMS works by using
the DBE's choices to guide the generation of user interfaces to the global model. Each of
these interfaces is built as a source string, compiled and added to the set of available
interfaces. Although it would have been possible to create a generic model of the CDMS

Chapter 6 149 The Platform for Implementing the CDMS

environment by use of some form of indirection, this would have been inefficient in
practice. The availability of the compiler makes it possible to create the same program that
a human programmer might have programmed given the DBE's choices - but by automatic
means.

The pntr type, however, causes problems since the type space in PS-algol is
effectively partitioned. There are scalars, vectors, images and procedures on the one side,
and the PS-algol structure classes on the other side. The types of the former are checked at
compile time, while the check of classes is deferred until instances are used. Deferring the
type checking of programs is essential for the incremental development of complex
applications and for allowing applications to be re-bound to new databases [Atkinson et al,
1988]. Thus there are two conflicting uses of pntr - as a data modelling construct for
complex object structures and as a language feature to provide dynamic typing. This
conflicting use of pntr causes two problems:

1) The data modelling is not very precise. For instance, if the Person structure of
Figure 6.1 is to be enhanced with an indication of the organisation that the
person worked for and there existed:

structure Organisation (name: string; address: string)

then Person could be extended to

structure Person (name: string; age: int; worksFor: pntr)

i.e. the worksFor field refers to a structure, but one of completely unspecified
kind. It would be possible to have the worksFor field point to a value of
any class at all, although it should, of course, point to an organisation
value.

2) The polymorphism is partial. It is possible to write a procedure which is
polymorphic over all structure types since all have type pntr. However it is
not possible to make a procedure be polymorphic over any type - int, *bool,
proc (int—string), etc without creating indirection. This is a serious

deficiency which impedes progress on complex programming tasks.

Napier88 fixes these problems by providing two better facilities in place of the
single overburdened pntr type.

Chapter 6 150 The Platform for Implementing the CDMS

PS-algol has proved suitable for various sorts of programming task. Firstly, it
suits writing data-intensive applications. Orthogonal persistence eliminates the burden of
low level data storage from the application programmer's shoulder, while graphical types
enable the creation of user-interface straightforwardly. PS-algol also suits writing database
systems which support semantic data models or object-oriented database systems [Cooper,
1987; Kulkarni and Atkinson, 1987; Cooper and Qin, 1990]. Construction of such
systems uses first-class procedures, as well as persistence and the graphical types.

6.3 Napier88

6.3.1 Overview

Napier88 has passed through a series of versions which are of improved power
and efficiency - version 2.0 appearing in 1994 and version 2.2, the latest, appearing in the
Summer of 1995 [Napier88, 1995]. The work to be described here, however, was carried

out using version 1 of Napier88.

Napier88 inherits much of its style and facilities from PS-algol. The syntax is
very similar. There are first class procedures and the same graphical types. The tightly
integrated stable store is much the same, albeit using a different bulk type as its main
organising feature. The language is data type complete. The principal additions include:

* a much richer type system with a null type, polymorphic types, recursive
types, abstract data types, variant types and environments;

» explicitly declared types;

* multi-entry processes, distribution and concurrency control - not used in
CDMS implementation and not further discussed here.

The Napier88 system consists of the language and its persistent store. The
system is supported by a layered architecture which contains, among other things, the
persistent abstract machine layer and the stable persistent storage layer. The
persistent abstract machine provides the ability to execute Napier88 programs, and also
monitors interaction with UNIX on which Napier88 resides. The persistent store is

Chapter 6 151 The Platform for Implementing the CDMS

populated when the system is installed and is used by the persistent abstract machine itself

for error and event procedures.

6.3.2 The Napier88 Type System

Much of the type system is inherited from PS-algol: the same base types; the
same graphical types; the same vector types. Procedure types are enhanced with type
parameters. Structures become an integrated part of the type system.

One crucial change which has occurred, though, is that types can be explicitly
named by the programmer, and newly named types can appear anywhere that the system
types can. Figure 6.2 shows some type declarations in Napier88. Such declarations can
occur anywhere in a Napier88 program, but are best gathered together in a separate file to
create what is called a declaration set.

The first two declarations in Figure 6.2 are aliases for system types, which can
be used to help document the program. The third declaration shows how procedure types
can be named. The fourth declaration shows how structure types are declared. The second
field is of some user-defined type Address and this is explicit. The type Organisation is
then used in the definition of Personl and Person2, but unlike PS-algol, the worksFor field
can only be an Organisation record.

type StaffNum is int

type Date is string

type AFunction is proc(int, int— int)

type Organisation is structure(name: string; address: Address)

rec type Person1 is structure(name: string;age: int;
worksFor: Organisation; spouse: Person1)

type Number is variant(l: int; R: real)

type Optional[T] is variant(present: T; absent: null)

rec type Person2 is structure(name: string; age: int; worksFor: Organisation;
spouse: Optional[Person2]; extralnfo: any)

Figure 6.2 Declarations in Napier88

The definition of the two forms of Person illustrates another improvement in
Napier88; that is, the ability to define recursive types. Names in Napier88, like most

Chapter 6 152 The Platform for Implementing the CDMS

Algol-like languages, must be declared before they are used. If a type declaration makes
use of itself, this is flagged by the programmer to the compiler by the key word rec.
Mutually recursive types and recursive procedures can similarly be defined.

One extension to the type system is the availability of variant or union types.
The definition of the type Number in Figure 6.2 specifies that a Number is either an integer
or a real - the options are tagged.

Another important facility added in Napier88 is that of parametric types; that
is, types with a component whose type is a parameter. Optional is a variant type which
models situations in which a value may or may not be present. The second alternative uses
the system base type null which is the type of values with no data associated with them.
Null values model missing information, but are also vital to ground recursive values. The
definition of Personl discussed above, although legal, is quite literally valueless. It is
impossible to create an instance of type Personl, since the first instance created requires the
existence of a previous created value for the spouse field* ; a definition like that given as
Person?2 is therefore needed so that the first instance created can have a null spouse.

There are two other system types which are heavily used in the system - any
and env. The type any can be used wherever it is useful to leave the type of a variable,
parameter or structure field undefined until run-time. Again, Person2 has a field for
schema expansion. The extralnfo field can hold values of any type and so different
applications could extend the Person2 type in different ways. Use of an any value requires
an operation to project out its underlying type.

The type env has instances which are environments. An environment is a
container for a set of name-value bindings. Operations an environment allows include the
addition and removal of bindings and bringing bindings into scope of the current program.
Type env is particularly valuable since it is used to organise the persistent store - playing
the same role as the table structure does in PS-algol.

Finally, Napier88 provides an Abstract Data Type mechanism. An abstype
may be used where the data object displays some abstract behaviour independent of

representation type.

* Napier88 does not allow recursive value declaration, one of the main weaknesses of the language.

Chapter 6 153 The Platform for Implementing the CDMS

6.3.3 Use of Napier88

Napier88 is used in a similar way to PS-algol. The syntax is similar with the
addition of a project clause to get values out of variants and any. Once more, the
principal mode of operation is to write programs which access stored values, perform some
computation and then place values into the store. Applications are built out of small
programs which put modules into the store for later re-use. Procedures are first class and

reflection is available in a similar way.
Some differences from PS-algol however occur:
» the richer type system permits more detailed and precise data modelling;

* organisation via the env type permits a greater range of binding styles to be
used;

» the existence of the type any means that deferring the type of an object and the
use of structure types is clearly separated;

* the availability of parameterised types and procedures means that truly
polymorphic programs can be written;

* there is a larger library of system functions - see Section 6.4.

6.3.4 Discussion
The work was switched to Napier88 primarily because of the first point above;
that is, a more precise description could be given of the complex data which CDMS must

manage. In addition, the polymorphism and improved binding mechanism were attractive.

The convenience of using Napier88 Library including WIN facilities is also an
important consideration of making the switch.

The CDMS in this research could be considered, in one respect, an experiment
in the use of Napier88.

Chapter 6 154 The Platform for Implementing the CDMS

6.4 Napier88 Library

The previous section described the language features of Napier88, but one of
the benefits of a persistent language is the ability to extend the power of the language with a
coherently organised library of software components. The library, which is held in the
store, contains all of the usual functions for arithmetic, string manipulation and so on, but
also contains system level functions. Moreover, the library is extensible by any user and
so the Napier88 system evolves largely through the development of new library
components. Adding to a library is achieved by running a program which inserts a new
component in the persistent store; that is, no other reloading or relinking is required.

Among the most important sections of the library for this project are those
dealing with: the compiler and its components; the management of bulk values; and the
window management system, WIN.

6.4.1 The Napier88 Compiler

The Napier88 compiler is provided as a function which can be used at run-time
in a similar way to PS-algol (refer to Subsection 6.2.1). As the language has first class
procedures, this appears as a set of composable procedures for syntax analysis and so on.
Although these were not used separately, the underlying philosophy provided support for
the implementation of CDMS.

6.4.2 The Bulk Values

Bulk values are those which are composed of potentially large numbers of
similarly typed component values - lists, sets, vectors and so on. A large library has been
developed for managing such values [Atkinson et al, 1993b], but the work described here
has made particular use of one such bulk type - the map [Atkinson et al, 1993a]. A map is
made up of a set of key, value pairs and is used to support keyed search. To take an
example from the current work, the set of X is implemented as a map with string keys and
X values; that is, it has type Map(string, X].

The maps library has a great many procedures, but the most important are ones

to: create an empty map; insert a new key, value pair; delete a pair; create a new map by
filtering the contents of an old one; and applying a procedure to every pair in the map.

Chapter 6 155 The Platform for Implementing the CDMS

Maps are used in CDMS to model most of the large structures. There are maps for many of
the collections in the CDMS database.

6.4.3 WIN

Developed on top of the graphical facilities of the Napier88, WIN [Cutts ef al,
1989] is a window management system which provides a mechanism for the distribution of
input events to a group of concurrently active Napier88 programs. Each program is a
procedure that takes an input event as a parameter and performs some action to process the
event. WIN offers the programmer fine control over the distribution of events and indeed
the event distribution system may be reconfigured while it is running.

In the WIN system, an interactive program is built from a number of sub-
programs, each of which responds with an action as a particular input event occurs. Thus,
a simple window-based text editor could be split into programs which:

* insert text;
* adjust the currently selected text;
e select the current view of the text;

* execute particular functions associated with light-buttons, such as cut, copy,
paste and clear.

Each of these operations is activated by a particular event or sequence of events.
The relevant types of events for these programs could be keyboard events, mouse events
over the text area, a scroll-bar area or a light-button area.

These programs are called applications, which are implemented as procedures
taking an input event as a parameter. A typical application is designed to process a limited
class of input events. The programmer provides an associated procedure which tests
events to determine whether the application should accept them. The procedure takes an
event as a parameter and returns a boolean value, true if the application should accept the
event and false if not. The application and its associated procedure are known as a
notification, while the routing of input events to the appropriate applications is performed
by a notifier. An application is connected to a notifier's event distribution system by

Chapter 6 156 The Platform for Implementing the CDMS

passing a notification to the procedure addNotification. This causes the notifier to insert the
notification into an internal list. There is a parameter which specifies the insertion position
in terms of an offset from the front or back of the list. The result returned by the procedure
is another procedure which will, when called, remove the notification from the list.

Events are routed through the notifier's distribution system by passing them to
the procedure distributeEvent. When this procedure is called, the notifier scans its internal
list, passing the new event to the examineEvent procedure of each notification in turn, until
one of those procedures returns true or the end of the list is reached. If one of them does
return true the notifier calls the associated application, passing it the new event, and the
scan terminates. The event is discarded if none of the examineEvent procedures return
true.

The position of the notifications in the list is significant. If there are several
notifications that would potentially accept an event the application of the notification highest
in the list will be the only one to receive it. If the notification that accepts a particular event
is different from the notification that accepted the previous event, the notifier sends a
deselect event to the application of that previous notification and a select event to the current
application before sending the new event to it.

The way in which a notifier is used will depend on the application. There are
single-level notifiers and multi-level notifiers. A simple text editor program could be
programmed using a single notifier. It is also possible to construct hierarchical event
routing structures as a notifier's distributeEvent procedure and a notification's
processEvent procedure are both of type Application. One notifier's distributeEvent
procedure can be registered with another notifier. In fact, the application which deals with
mouse events over the scroll bar could itself be a notifier which routes them to smaller sub-

applications.

A notifier may be reconfigured dynamically. In fact, any programs with access
to the addNotification procedure of a notifier may add notifications to that notifier at any
time, and similarly any programs with access to the procedures returned by addNotification
may remove those notifications. In short, the event routing structure is changeable while

the system is active.
Moreover, the use of notifiers gives an easy way to make applications

persistent, that is, if a notifier is made to persist by arranging for it to be reachable from the
root of persistence, all the notifications and associated applications within its closure are

Chapter 6 157 The Platform for Implementing the CDMS

also made to persist. The application implemented by the notifier can then be restarted by a
program which binds to the notifier and sends fresh events to it.

A notifier receives input events and distributes them among the applications
registered with it but it is not responsible for generating those events in the first place. This
is done by an event monitor which continually polls the keyboard and mouse, generates
appropriate events and passes them to a notifier for distribution. Normally there will be
only one event monitor active at a given time.

Alongside this control mechanism, WIN provides a tool kit of user interaction
objects including menus, scroll-bars, editors, radio buttons and so on. Using these a good
looking interface can be built to a programming functionality - the CDMS is built on top of
WIN for this reason.

6.5 The Advantages of the Persistent Approach

The features described in the previous subsections offer great advantages for
writing applications of large scale. These include the following:

1) Low level data management is dealt with by the system instead of the
programmer. In fact, the components of program concerning data input and
output in a persistent system are redundant. Using PS-algol or Napier88, the
organisation that is imposed on the data in order to handle these within the
program is also the structure in which it is stored. For instance, to store a list
of integers, all that is required is to enter the head of the list into the database.
No recourse to external data handling programs, such as file management
systems, is needed any longer. Actually this is merely an instance of a more
general advantage of using a persistent language; that is, all programming jobs
can be done in the same language.

2) Image and picture objects facilitate the modelling of graphical data. The
existence of the image and picture types permits graphical data to be stored in
exactly the same way as textual or numerical data. It relieves the programmer
from having to invent a coding strategy to handle the graphical data.

3) The graphics facilities also offer tools to produce user interfaces. As a great
deal of attention must be paid to the user interface, having efficient tools to

Chapter 6 158 The Platform for Implementing the CDMS

produce a good interface within the language is therefore of great benefit. This
avoids the problems of forcing unnecessary constraints on programs and of
restricting the kinds of interface that can be generated. These problems are
often caused by using external packages.

4) Strict type checking gives early detection of data misuse. The detection
actually occurs at program compilation time, data loading time or data reference
time; that is, it always occurs before the relevant data is used.

5) First-class procedures facilitate the modelling of actions. As procedures can
also be manipulated in the same way as textual, numerical and graphical data, it
becomes possible to model and store activities. Assertions, conditions or
triggers may also be modelled by procedures which take in values for the
variables and return a boolean result. In addition, objects which are pairs of
condition and action procedures can be composed. It is therefore easy to write
a program fragment which loops, testing conditions and applying the paired
action if the condition is satisfied.

6) First-class procedures support incremental compilation. The languages
provide an ideal framework in which to program the modules. Each module as
a procedure is stored in the persistent store, and can then be retrieved from the
store and accessed by other modules.

7) First-class procedures also support ADT. The essence of the Abstract Data
Type is the restriction of access to data to a limited number of operations which
are pre-defined on it. Since procedures can be put into structures and
structures can be returned as the results of procedures, ADT generating
procedures can be constructed which return a structure containing a package of

procedures.

8) Structure types model complex data. Since PS-algol and Napier88 are data-
type complete, the fields of a data structure can be of any type. This means
that complex data objects can be constructed which combine numbers, textual
information, graphical data, activities and assertions. Furthermore, objects
with a more complicated structure can be modelled by using pointer fields to
sub-objects.

Chapter 6 159 The Platform for Implementing the CDMS

9) The pntr in PS-algol and any in Napier88 permit delayed binding of programs
to objects. It is hence possible to write general purpose procedures which
manipulate objects of various types by packaging the objects of different types
into structures and passing around pointers to those structures. For instance, a
polymorphic list processing package can easily be composed.

10) The run-time compiler supports polymorphism. The run-time compiler allows
programs to be constructed which run against an unbounded set of data
classes. Such programs are written so that they discover the class of data they
are expected to deal with this time and, using string manipulation, merge the
class information with the algorithm and compile the resulting procedure.
Once compiled, the subsidiary program would be stored so that it need not be
regenerated every time an object of that class is encountered.

The next chapter describes, based on the platform described in this chapter, the
implementation of the CDMS, which is the main practical work in this research project.

Chapter 6 160 The Platform for Implementing the CDMS

7 The Design and Implementation

The CDMS is a set of programs which manage data models, interfaces,
schemata and databases. The system is built around a central model - the global model - in
which data structure, constraints and behaviour can be described coherently and
consistently. The programs are designed to allow the user to:

1) create data models by instantiating the global model;

2) manipulate those models;

3) create data schemata by instantiating a model;

4) manipulate those schemata;

5) create databases as instances of a schema;

6) manipulate those databases;

7) determine the user interface to the last four of these facilities.

The creation of a CDMS thus requires the design and implementation of storage
structures and manipulating operations of data, metadata, meta-metadata and user
interfaces. This chapter describes such a design and implementation. Section 7.1 goes into
more detail about the design philosophy. Section 7.2 describes the overall architecture of
the system. Sections 7.3 to 7.5 describe the global model, the instantiation process and
storage structure respectively, while Section 7.6 describes the user interface. Finally, the

CDMS is not complete in every respect and so Section 7.7 describes the implementation
status at the time of writing.

Chapter 7 161 The Design and Implementation

7.1 Implementation Overview

The principal task that the CDMS must support is user driven instantiation from
one level of the architecture to the level below. The result of this instantiation is a tool for
using the instantiated sub-system. The instantiation processing makes use of user choices
to configure the relevant tool.

Thus the system is implemented so that:

the functionality of the system is decomposed into fragments which can be
recomposed easily;

the fragments are parameterised so that user choices can guide the
configuration;

the user choices can be captured;

for each level of the system, there is a framework, or template, into which the
fragments can be fitted;

the system as a whole is built on a structure which allows new tools to be
added and used.

Furthermore, the CDMS has been implemented with a user interface designed to
provide the following:

* all usage of the program is carried out in a unified way;

e at every level full details of the decisions being made are kept consistently
visible.

These two design decisions are appropriate for the current prototype as they
make explicit the underlying architecture and ensure that the behaviour of the system is
continuously observed. It is recognised that these are not appropriate for a delivered
system. It is not usual for the user to manipulate a schema in the same way that the

Chapter 7 162 The Design and Implementation

database is manipulated; it is not possible for the implementation detail of each value to be

continually in view.

7.2 Program Architecture
The CDMS program is designed to capture user choices and use these to guide

the assembly of program fragments into new components. Figure 7.1 shows the way in
which this works.

Chapter 7 163 The Design and Implementation

Global Data Model Data Modelling Dialogue
Data Model Template Primitives Primitives
CDMS .
Main Program User Choices
Model Template metadata
Model .
Proaram User Choices
Data Database
Schema Template Meta)éta
/
Schema - .
Program User Choices
Database Data
—— inputto sl create and manipulate

Figure 7.1 Program Architecture

The program makes use of four main inputs:

* adata model template - this is a framework to be combined with the data

structures and operations which will be determined by the user;

Chapter 7

164

The Design and Implementation

1)

2)

3)

3)

a set of data modelling primitives - these implement the operations which
manipulate instances of the global data model structures - the operations
themselves being instantiated for embedding in a data model;

a set of dialogue primitives - these provide for interaction permitting the

user to input and display values, choose items and so on;

a set of user choices - these are the input by the CDMS user to generate a sub-
system.

The effect of the user choices creates a complete modelling program by

selecting from the set of data modelling primitives;

instantiating the selected items as required;

selecting from the set of dialogue primitives and coupling them with interaction
elements;

embedding them in the appropriate environment.

The template, the data modelling primitives and dialogue primitives, in a sense,

implement the global data model, while the CDMS programs implement the instantiation

process.

Currently the CDMS system is implemented by the following modules (refer to

Figure 7.2):

Chapter 7

'CDMST.N' declares the types to be used in the CDMS;

'TnitCDMS.N' creates the global environment CDMS, its subsidiary
environments gModel, gDialogue, utilities, routines and the map Models, and
then stores the generic data modelling primitives and dialogue primitives into
environments gModel and gDialogue respectively;

'CDMSU.N' stores common utilities to be used in the system into the

environment utilities;

165 The Design and Implementation

* 'CDMSM.N' stores model manipulation programs into the environment

routines;

* 'CDMSILN' stores interface manipulation programs into the environment

routines,

» 'CDMSS.N' stores schema manipulation programs into the environment

routines,

* 'CDMSD.N' stores database manipulation programs into the environment

routines;

* 'RunCDMS.N' runs the system.

RunCDMS.N

CDMSM.N CDMSI.N CDMSS.N CDMSD.N

CDMSU.N

InitCDMS.N

CDMSTN

Figure 7.2 Software Modules
Actually, RunCDMS.N' allows the user to select system functionality.

'Create A Model', 'Edit A Model', 'Display a Model' and 'Remove A Model
are options prepared for DBEs.

When 'Create A Model' is selected, a string editor will be initially provided to
receive the new model's name, and after checking that the name has not already been used
for any existing model, a model editing window will appear on the screen; otherwise, the
string editor will be provided again with some directive message. If an empty string is
inputted, nothing will be done but the global level menu will appear again.

Chapter 7 166 The Design and Implementation

When 'Edit A Model' is selected, a menu including the names of all existing
models will be provided to determine the model to be edited, then a model editing window
will appear on the screen. If 'Cancel' is selected from the menu, nothing will be done but
the global level menu will appear again.

When 'Display A Model' is selected, a menu including the names of all existing
models will be provided to determine the model to be displayed, then a model display
window will appear on the screen. If 'Cancel' is selected from the chooser, nothing will be
done but the global level menu will appear again.

When 'Remove A Model' is selected, a menu including all names of the existing
models will be provided to determine the model to be removed. If 'Cancel' is selected from
the chooser, again, nothing will be done but the global level menu will return.

'Create An Interface', 'Edit An Interface', 'Display An Interface' and 'Remove
An Interface' are options prepared also for DBEs. When any of these four options is
selected, a menu including all names of the existing models will immediately be provided to
determine the model which the relevant interface corresponds to, then they will require the
interface's name in the same way as four model operations described above require the
model's name. Finally, if one of the former three options is selected and an appropriate
name is given, either an interface editing window or an interface display window will be
provided accordingly to continue the process. If 'Remove An Interface' and appropriate
names are selected, the system will simply do so and return to the global menu right away.

Interface manipulations run the programs against the environment uniquely for
the corresponding model.

'‘Create A Schema', 'Edit A Schema’, 'Display A Schema' and 'Remove A
Schema' are prepared mainly for DBAs, while 'Create A Database', 'Edit A Database',
'Display A Schema' and 'Removing A Database' are prepared mainly for database end
users.

Schema manipulations run the programs against the environments for the
corresponding model and an appropriate interface. Data manipulations run the programs
against the environments for the corresponding model and schema, as well as an
appropriate interface. Any model level constraints should be assigned when a model is
created or edited; any schema level constraints should be assigned when a schema is created
or edited.

Chapter 7 167 The Design and Implementation

7.3 The Global Model

1)

2)

3)

4)

5)

The global model consists of:
meta-base and meta-complex;
the meta-connection types meta-relating and meta-inheriting;

the meta-constraint types, including global meta-metadata constraints, global
metadata constraints and global data constraints;

behavioural primitives for input/output and data manipulation; and

dialogue primitives.

7.4 The Instantiation Process

7.4.1 The Creation of a Data Model

The process of instantiating the global model to create a data model starts from

the data model template.

The model builder then submits choices to the program via the interface

described in Section 7.6. The choices take the following form:

model:

Chapter 7

a selection of the global construct to be instantiated;
a name for the instantiated construct;
constraints on the use of the construct.

For example, the following choices are involved in the creation of the ER

168 The Design and Implementation

» select meta-base, call it simple attribute;
* select meta-complex, call it entity;
» select meta-complex again, call it relationship;

» select meta-relating, call it attributing, fix one end to be entity or relationship
and the other to be simple attribute;

» select meta-relating again, call it relating, fix one end to be relationship and the
other to be entity.

By making these choices the following are created:
* abase type attribute;
* complex types entity and relationship;

* connection types attributing and relating with their combination capacities.

7.4.2 Adding the User Interface
The operations as embedded are written in terms of abstract interaction. The
user must select some concrete interaction activities to complete the code. In fact, an option
exists to utilise a default interface.
To change this interface, the user must decide the following:
* the symbol for each base type;
* the symbol for each complex type;

» the line style for each connection type; and

» the other dialogue primitives for each interaction element.

Chapter 7 169 The Design and Implementation

7.4.3 Creating a Schema and a Database
To create a schema, the database designer must start with a data model. The
process of creating a schema is very similar to the process of creating a data model. A data
model has a set of constructs which is structured in the same way as the set of constructs in
the global model.
The instantiation process then consists of choosing with the following steps;
* selecting a data model construct;
* naming the instance.

» providing constraints where appropriate.

The result is a schema program with embedded operations for manipulating any
database in the schema.

Finally, to create a database, the user must start with a data schema. The
process of creating a database is, again, similar to the processes of creating a data model
and creating a data schema.

7.5 Storage Structure

The storage structure of the system is shown in Figure 7.3. All of the CDMS
and its data are held in a Napier88 environment called CDMS, which contains a map, as
well as four sub-environments.

The four sub-environments are:

* gModel, which holds all of the generic modelling primitives;
* gDialogue, which holds all of the dialogue primitives;

* utilities, which contains fundamental procedures of general usefulness;

* routines, which contains CDMS manipulation procedures.

Chapter 7 170 The Design and Implementation

The map is:

* Models, which holds the set of data models, and their affiliated interfaces,
schemata and databases.

gBases
gComplexes
gModel | gConnections
g_mmdConstraints
g_mdConstraints
g_dConstraints
CDMS | gDialogue] gSymbols
glLines
utilities
routings
Models |
= “mBases
| mComplexes
l mConnections iBases
Model4 m_mdConstraints {nterface-l iComplexes
m_dConstraints | iConnections
Interffaces — — —
Schemata — — - sBases

| sComplexes

Schema—| sConnections

s_dConstraints dBases
Databases — — Database<' dComplexes
dConnections

Figure 7.3 Storage Structure

When CDMS is delivered, it consists of the four environments fully populated,
while the map is initially empty and is to be populated by usage.

Chapter 7 171 The Design and Implementation

gModel, in turn, contains the global data model represented by the following
maps:

* gBases - the singleton meta-base type known to the CDMS;

* gComplexes - the singleton meta-complex type;

» gConnections - the set of meta-connection types;

* g_mmdConstraints - the set of global meta-metadata constraints;

» g_mdConstraints - the set of global metadata constraints;

* g_dConstraints - the set of global data constraints.

gDialogues contains the set of dialogue primitives implemented as procedures

and performing such actions as inputting an integer, displaying a string, etc. These are
held in the following maps:

* gSymbols - the set of symbols implemented;

* gLines - the set of line styles implemented.

Each model, when created, contains the model represented by the following

maps:

* mbBases - the set of base types;

* mComplexes - the set of complex types;

* mConnections - the set of connection types;

* m_mdConstraints - the set of model metadata constraints;

m_dConstraints - the set of model data constraints.

Each model also contains the following maps, which, when the model is
created, are empty and to be populated:

Chapter 7 172 The Design and Implementation

» Interfaces - this is a map of interfaces created for the model. A default interface
is created with the model. Each interface is an environment containing the
following maps:

* iBases - a set of correspondences between symbols and base types in the
model - there must be an entry here for every element in mBases;

* iComplexes - a set of correspondences between symbols and complex
types in the model for each entry in mComplexes;

* iConnections - a set of correspondences between line styles and
connection types for each entry in mConnections.

* Schemata - the schemata defined using the model. Each schema is an
environment containing the following maps:

L]

sBases - the set of base classes;

» sComplexes - the set of complex classes;

» sConnections - the set of connection classes;

* s_dConstraints - the set of schema data constraints;

* Databases - the databases framed by the schema. Each database as an
environment then contains the following maps:

* dBases - the set of base values;
* dComplexes - the set of complex values;

e dConnections - the set of connection values.

7.6 The User Interface to the CDMS Program

The capture of user choices has been achieved using a menu-driven interface.

Chapter 7 173 The Design and Implementation

Figure 7.4 shows the CDMS main menu, which allows a CDMS user to choose
the CDMS functions.

As can be seen, the menu provides functions (create, edit, display and remove)
to interact with each of the main components of CDMS. The top four functions support the
maintenance of the set of data models as instances of the global model. The next four
functions support the maintenance of the user interfaces of a particular model and so on.
The help facility will give some useful information on the structure and functions of the
CDMS in general, together with a brief description on all items in this menu in particular.

N — T T T |
Create A Model
Edit A Model
Display A Model
Remove A Model
Create An Interface
Edit An Interface
Display An Interface
Remove An Interface

Create A Schema
Edit A Schewa
Display A Schewa

Remove A Schema
Create A Database
Edit A Database
Display A Database

Remove A Database

Qi) (Eelp)

Figure 7.4 The CDMS Main Menu

The operations all follow a uniform mode of operation:

create operations request a new name and then put the user into an editing
window (described next);

e edit operations request an item by menu and then bring up the editing window;

» display and remove operations also bring up a menu of items and then either
display the item or remove it.

All the editing windows (of which Figure 7.5 is an example) have the same
format - one intended to support the process of instantiation which is the fundamental
mechanism of CDMS. Recall that in CDMS, a database is an instance of a data schema,

Chapter 7 174 The Design and Implementation

which is an instance of a data model, which is, in turn, an instance of the global model.
The overall process of instantiation consists of subsidiary processes of the instantiation of
many individual elements. Thus each of the components in a data model is an instance of
one of the global model components, etc.

An editing window supports this by providing a number of menus of the
components in the higher level in the lower half of the window. The upper half contains a
parallel set of the instances of these components, which have been created. For example, a
schema editing window can be seen in Figure 7.5. A schema is built of instances of data
model components. Thus the lower half of Figure 7.5 shows the menus of the components
in the ER data model, while the upper half of the figure shows the components of a library
schema which is being developed.

There are pairs of menus for each of the main kinds of components: constructs,
connections, constraints and active values. To add a new element to the item being edited,
one of the lower menu options, <O> say, is selected (with the left menu button) and a
name, <N> say, is provided. This results in a new element, <O><N>, being added to the
upper display. Moreover, a complete instantiation history of any component of any item is
maintained, and this can be seen by selecting it with the middle mouse button. For an
instance, in a global level menu, a single description (such as <meta-complex>) might
appear. In a model level menu, items appear such as <meta-complex><relationship>. In
the schema menu, this becomes <relationship><loan>, which can be expanded to show
<meta-complex><relationship><loan> by pressing the middle mouse button. The database
menu contains items like <loan><21>, which can be expanded to <meta-
complex><relationship><loan><21>. Further light buttons are provided at the bottom of
the screen for committing the changes or aborting them.

Chapter 7 175 The Design and Implementation

=

o
W) _— Library
nai /g 1tle
p*g name an-person Tdan~-book tle of book
= ta Constraints . 3
Far . lrﬁ:}l connection Classes o attribute) (bas-car-age) 1+
7] ex Classes
r"@ a-city) 4K attribute> <bas-car-city) -
Base Classes ute> <address> nbyber of book
a-house) attribute> (bas-car-house>
<simple stiribute) (age) |4M chook> p-stroot> [=1, attribute> cbas-car-id>
<simple attribute> <(city>
phip> <loan) oen-book> | T nusber
<simple attribute> <house) f==: <person>

<simple attribute> <id>

= traints
F"_— ~Metadata Constraints to> *
I rTe—p—) nnection Types |, i+ ent-con> 4 bute>
ex 1]
(@ Base Types — . — tront-oom A fearstt-ent-sin) hutey |
site ettribute) t-ent-sin> car-att-rel-cen> il bute |~
<simple attribute> centityy kt-rel-com> o ttorelosie
elationshipy kt-rol-sin)> ¥
L
(Redisplay Model) (Redisplay Schema) (Redrav Schema) (B/C Uonnlote) (Connection Complete) (Finish)

Figure 7.5 A Schema Editing Window

Also shown, in Figure 7.5 is a graphical representation of the schema. This is

merely a passive display of the schema and is not manipulable. The actual graphical icons

and line styles can be varied using a separate interface definition window. At the moment

this is only available at the schema level and database level. Extensions to active displays

of all four levels is possible.

Chapter 7

176

The Design and Implementation

Fm Library]
1tle
tle of book
=
15 Compl
@ Bas X
e < te att: <e nbgber of book
<simple attribu Centity> <cd
¢simple attribu <relati poe é AN
<simple attribut centity> {persony e ' nusher
<simple attribute> <1 ‘
éu ént city
(Redisplay Schema) (Redrav Schema)

Figure 7.6 A Schema Display Window

A schema display window (Figure 7.6) is similar to a schema editing window,
with the only difference being that it doesn't include the menus of its supporting model and
it doesn't permit any schema editing operations. Once more, the model display window,
interface display window and database display window are all similarly structured to the

schema display window.

Chapter 7 177 The Design and Implementation

f 7 Edit Interface Interface 81

Fﬁ]—cmune styluﬂ

[fe) __ complex Symbols
- ymbo. ——— |4
@ Base Symbols ® =
simpie attribute A\ [} —
@ Lines K
[double arrow TR————
g
e nnection Types | single ki)
(%) complex Types e single arrow —_— |¥
t-rel-sin) f
"(5) Base T e
YPe8 [.ite attribute> [o—con—con> =
{simple attribute> <entity) bn-com-sin)]
elationship)> 1-rel-ent) *
Fedisplay Hodel Rodiaplay Interiace (lnish)

Figure 7.7 An Interface Editing Window

Similarly again, an Interface Editing Window is shown in Figure 7.7.

7.7 Current Status

The above description is of a fuller CDMS system. In the present
implementation, the following limitations have been made due to pressure of time:

1) the behavioural aspect is not configurable at all, instead a limited set of
operations are used at every level;

2) afull set of constraints is not available - ideally many more of the constraint
kinds described in Chapter 4 would have been implemented;

Chapter 7 178 The Design and Implementation

3) the facilities for configuring the user interface are not extensive - only a
graphical interface for database design can be configured.

The last point was an outcome of de-emphasising the user interface part of the
work and concentrating on the data modelling aspects. Chapters 4 and 5 describe the
complete strategy concerning constraints and behaviour, while this chapter shows the
implementation approach which should be used to implement that approach.

However, the system as implemented is capable of managing a wide range of
modelling constructs. Data models, schemata and databases can all be created and stored.
The next chapter gives some examples of the use of the implementation.

7.8 Discussion

In the design and implementation of the CDMS, the features of Napier88,
including orthogonal persistence, graphical data types, the ability to model complex
objects, the availability of first-class procedures, especially the environments and reflection
were very helpful.

Environments are extensively used in the current implementation. The global
data model, set of dialogue primitives, models, interfaces, schemata, and databases are all
represented by environments in the CDMS. All programs, which manipulate models,
interfaces, schemata and databases, as well as utility routines of the CDMS are also stored
in environments. On the other hand, reflection was extensively used in the early stage of
the implementation. Napier88 is really appealing for data-intensive applications.

There were some difficulties, however. Such problems, which have largely
been fixed, were experienced during the implementation as slowness, lack of software
engineering tools, and lack of good library. More generally, the lack of inheritance is a
drawback and the following syntactic features: using round brackets for fields, arrays and
procedure calls; lack of recursive values - so one has to use variants to describe recursive
types; lack of a bottom type - one can not use null to stand for a value of any type; and the

packaging required to use any are all ones which once incurred problems.

Chapter 7 179 The Design and Implementation

8 The Application of the CDMS

This chapter demonstrates typical applications of the CDMS. To prove the
usability of the system developed in this research, the constructions of a number of
classical and semantic data models will be presented as examples.

In this chapter, Section 8.1 gives a general introduction on usage of the CDMS
in configuring data models and user interfaces. Section 8.2 gives a formal syntax for the
descriptions as used in Sections 8.3 through 8.6, which describe the constructions of the
relational model, the entity-relationship model, the functional data model, and IFO,
respectively. Section 8.7 concludes the chapter.

8.1 Introduction

Based on the implemented facilities presented in Chapter 7, the usage of the
CDMS can be divided into four stages, which are as follows:

* the configuration of a data model;
* the configuration of an interface for a particular data model;
» the creation of a data schema supported by a particular data model;
» the construction of a database framed by a particular data schema.
Following some necessary preparation in Section 8.2, Sections 8.3 through 8.6

concentrate on the configuration of data models, giving the illustrations of instantiation
paths of the components of the relevant data models. These models can then be used to

Chapter 8 180 The Application of the CDMS

describe, via appropriate interfaces, various schemata and databases, thus supporting
applications occurring in various fields.

8.2 Meta-metadata Syntax

This section gives a formal syntax for the descriptions as used in meta-metadata
columns of the figures in the following four sections.

A model includes three kinds of meta-metadata, which represent constructs,
metadata constraints, and data constraints of the model respectively. These meta-metadata
are specialised from three kinds of modelling primitive, that is, constructs, metadata
constraints, and data constraints of the global model.

Figure 8.1 defines the syntax for the descriptions representing model
constructs; Figure 8.2 defines the syntax for the descriptions representing model-metadata
constraints; while both Figures 8.3 and 8.4 define the syntax for the descriptions
representing model-data constraints.

In all the figures, <base> represents a base type, <complex> represents a
complex type, and <A> represents an atomic type; that is, a base type or a complex type.
Similarly, <relating> represents a relating type, <inheriting> represents an inheriting type,
and <C> represents a connection type; that is, a relating type or an inheriting type. Further
explanations are included in the relevant figures as comments.

Chapter 8 181 The Application of the CDMS

SjuIeLISuo) ejepeleN 2'g ainbi-

<n> Jo saoueysul Jo Bunsisuod ajoAo Aue syqiyoud fans) <>

<XBW}> pue <uWw}> usamiaq aq isnw
<p> Jo souejsuyl Jejnojped e o} ({u‘ * ‘1}31) <> Jo aduelsul
Aue woJ} pajoalIp aie ey} <H> JO S8OUEISU| 8y} JO Jaquinu [e}o} Yy}
<XeWwy> pue <uif> Uasmiaq aq jsnui
({u* - “1}21) <!> jo aouejsul Aue 0} <> J0 aouejsul Jejnotued
© WOJj PajoalIp ale Jey} <O> JO SSoUBISUl 8y} JO Jaquinu [ejo} auy}

<XeW}> pue <ujl}> ussmiaq
8q jshw <Cy/> Jo aouejsul seinoiped e o} <k y> jJo asuejsul
Aue WoJj pajoalp ik Jeuy) <> JO SaduBisul 8y} JO Jaquunu [ejo} ay}
‘<xeuwy> pue <ujwy> usamiaq
8q Isnw <Cy> Jo aouejsul Aue o} <> Jo aouejsul sejnoiped
B WOY pajoalip ale Jey) <O> JO SSOUBISU 8y} JO Jaquunu [e1o) au}

sjuswwod

{uesjooq}
<>

[<xew>‘<uiu>] <y> - {<Uy>* - ‘<ly>}
<0>

{<Uy> - ‘<hy>) - [<xew>‘<uiwg>] <y>
<0>

[<xeuwn>‘<uiug>] <Cy> - [<xewy>‘<uiwy>] <by>
<0>

eljepejaw-elawl

Ayorphoe uoljo8uu0D

Ajjeuipreo sadA} uonosuuoo

Ayjeuipies adA} uonosuuod

saAnwud Bujjjepow

syonnsuon |'g ainbi4

<Cy> Jo 9ouejsul ue
0} <} /> JO 82URISUI UB WOJ) pajoalip St <Bunusyul> Jo aduelsul ay)

<Cy/> JO aouejsul ue
0} <l y> Jo 9ouRlsSUl Ue Wo.j pajoallp sI <bupejal> Jo asuelsul ay)

sjuswwo?d

<Cy> - <ly>
<Bunueyur>

<Cy> - <ly>
<Bupejas>

<xa|dwoo>
<oseq>

ejepejaw-ejaw

Bunuayui-ejaw

Bunejas-ejowl
xo|dwoo-elaw
eseq-elow

saAlpjwd Bujjjapow

(1 ved) surensuo) eyeq ¢'g ainbi4

<xewj> pue <ujuwj>
usamM}aq aq Isnw <y> WoJ} pasieloads sse|o ay} Jo aosuejsul
Jejnoed e oy ({u* - ‘1) 31) <> woyy pasifeloads ssejs
© JO 80UB)JSUI UB WO} pajoalip ale jey} <y> wolj pasijeroads
ssejo sejnoiued e o} ({u‘ - “1}31) <> woly pasierdads
SSE[0 AuR W01} PaJOaIIp pue <H> WOl pasijeoads ae

UoIYM SaSSE[O UO[}OaUU0D B} (e JO SaduBjsuUl 8y} JO Jaquinu [ejo} sy}

<XBWj> pue
<ujwy> usamiaq aq isnw ({u’ - ‘1}a1) <> woly pasieloads
SSE|O B JO 80UB]SUI UB 0} <> WOoJ) pasieioads ssepo ay)
10 souesul Jejnoiped e wouy pajoalp ale jeyl ({u‘ - “1}a1) <>
woyy pasijeloads ssejo Aue 0} <t/> wol} pasieloads
sse|o Jejnoed B woly pajoslip pue <H> wolj pasyeloads ale
UoIYym SOSSE[D UO[}OaUU0d Yy} [[e JO Saduejsul 8y} JO Jequinu [ejo) ay}

<XBW]> PUE <UiW}> Usamaq aq Jsnw <Cly> woly pasiieroads
sse[o 8y} Jo aouejsul senoiyed e o} <> woly pasijeroads sse|o
ay} Jo aouejsul Aue wouiy pajoalp aie eyl <> wolj pasieloads
$SB|9 UOo[}98Uu09 Jejndjped e Jo SaduejsuUl 8y} Jo Jaquinu [e1o} syl
‘<xelwy> pue <ujwy> ussamiaq aq isnw <Cy> woJj pasieloads
sse|[o ayy Jo aouejsul Aue o) </ > wouj pasieloads ssejo ayj Jo
aouejsul Jejnojped e woly pajoslip ale Jey) <)> woly pasijeroads
SSBJO UORO3UUO0I Jejndjued e Jo saouejsul 8y} Jo Jaquinu [0} ay}

<XBW> PUB <UJLW> U9aM]eq aq JSN <> WoJj
pasieloads ssejo xe|dwoo/eseq & J0 SaoUBISUl 8U} JO JaquINU [e}o} ay}

{Buns‘|eas‘iebajul‘'ues|ooq} JO 19SqNS B WOl SNjeA
S)1 @)e] IsnW <aseq> woly pasyeloads sSejo aseq e jo aouejsul Yoea

anjeA JoUlSIp © 8.} ISNW <aseq> Wolj
pesijelnads ssejo 8Seq € JO 9oUBJSU} YOBS Jey) Spuewsp (onJ)} :<eseq>

sjuswwod

[<xew>‘<uiwy>] <y> - {<Uy>* = ‘<ly>}
<0>

{<Uy>* - <by>} - [<xewp‘<uwp>] <y>
<0>

[<xew>‘<uiuy>] <Cy> - [<xew>‘<uiwy>] <by>
<0>

[<xew>‘<ujw>]
<v>

{Buiys‘jeal‘iabajul‘ues|ooq}
<oseq>

{uesjooq}
<oseq>

ejepejaw-elaw

AJi[euipied Sasse|d UoIoBUU0D

Ajljeuipied sse[O uoidaUUOD

Aypeulpreo sseo xajdwoo/aseq

abuel sse[o aseq

ssauenbjun sse|o aseq

saAlwiad Bujjjapow

(It ved) sjurensuo) ereg '8 ainbig

<XBWJ}> pUB <UjW]> U9BMIS] 8 JSNW SISSEJO JUBAS|SN
Ja}0 JO SaduejsU] JO uofjeuiquiod seinoiued e pue sse|o
UOWIWIOD BY) JO BdUEB)SU] BWIOS Joauuod Jey; ({u‘ = |} a1) <y>
wouy pasijeioads sse|o e 0} <y> Woi} pasijeloads sse)o
UOWILIOD B WO} PajoalIp S| PUB <H> WO} pasierdads s
Uolym JO yoea Sasse|o uoljosuuod sy je Jo SISISuod yoiym [<xewn>‘<unuy>] (jiny) {<Uy>* - ‘<by>} - <y>
uoneuIquiod anbjun ay} jo SadUBISUI Y} JO Jaquinu [e}0) sy} <>

<XBWy> pue <ujWj> usamjaq aq }snus sasse|o
JUBASJS1 18YJ0 JO SBDUR]SU} JO UOEUIqWOD Jejnoiied e
pUE SSB|9 UOWWOI Sy} JO 9dUB]ISUl SWOS JoSUU0D Jey) <y>
woyj pesijeloads ssejo uowwod e o} ({u‘ = ‘1}31) <y> wouy
pasi[eoads sse|d e woi} pajoalip St pue <O> woly pasijeloads
SI YdIym JO Yoea SaSSE|d UOI108uu0 ay) JO SISISU0d Yoiym <y> - [<xewp‘<uiy>] {<Uy>* - ‘<by>}
uoijeulquiod Jejnaiyed e Jo SaouBjsul 9] Jo Jaquinu [e)o} 3y} <>

<XBWJ}> PUB <UW}> UBBMIS] 84 JSNW SISSE|O JUBAS|aI
J8Y)0 JO S3dUR}SU| JO uOljeuIquwod Jejndiled e pue ssej
UOWIWOD 8Y} JO BdUB)SUI BWOS Jo8uuod Jey) ({u' - ‘L}a1) <dy>
woy pasieioads sse|o e 0} <> woly pasijeioads

SSE[O UOWWOD B W0} Pajoallp S| pue <)> woij pasijeloads

SI 4OIYM JO Yyora SBSSE|D UOI}08UU0D 8Y) JO SISISU0D Yolym [<xewy>‘<uiwy>] {<Uy>* - ‘<ly>) - <y>
uoieuiquod Jejnoiued e Jo SadueisuU) BY) JO Jaquinu |ejo} 8y} <>
sjuawwod ejepejaw-ejaw

Aljeuipied uoyeulquiod
S8SSE[D UOOBUUO0D

saAljjuid Bujjjepow

8.3 Constructing the Relational Model

The construction of the relational model consists of defining domains, tuples
and relations together with the relationships between these and the constraints which must
hold. Figures 8.5, 8.6 and 8.7 show how this is achieved in the CDMS. Each row shows
one specialisation of a global model construct. The rows in Figure 8.5 show the structural
constructs, while the rows in Figures 8.6 and 8.7 show the metadata constraints and data

constraints respectively.

A domain is a set of base values, which are booleans, integers, reals or strings
and fall within a limited range. Tuples and relations are both complex values; that is, they
are made up of components, but do not have object identity. The only two relationships
existing are those which connect a tuple to its attribute domains and those which group

tuples into relations.

Two metadata constraints limit the ways in which domains, tuples and relations

may combine at the schema level:

* A tuple has one or more attribute domains; the same domain can be attribute of

one or more types of tuple.

* A relation consists of tuples of the same type; all relations having the same
tuple type are of the same type.

The first two data constraints specify the nature of domains, other data
constraints limit relationships at the data level - i.e. what values are allowed in a tuple and

what tuples are allowed in a relation.

* One domain of a tuple has no more than one value; while a domain value may

appear any number of times in different tuples.
e Arelation is a set of tuples; that is, no duplicate tuples are allowed in a relation.

* No two tuples have exactly the same attribute values; that is, the full set of
domain values must be unique and form a candidate key.

Chapter 8 185 The Application of the CDMS

* A subset of domain values may be required unique, thus forming a candidate
key.

A relation should be given a name as it is created.

Chapter 8 186 The Application of the CDMS

SJONJISUO) - [BPON [euoneleY 8yl §'g @inbiy

sjusuodwod sy se sajdn) 0} salejal uolelal e

sajnquyjle syl Se surewop o} sajejal sjdn} e

SanjeA 8SBQ-UoU UIRJUOD suole|al pue sajdny
SaNjeA aseq Sulejuod ujewop e

sSjusawwod

ajdny - uoneal
6uidno.b

urewop - 8|dn}
eynquye

uoiejal
a|dny

urewop

ejepejaw-ejsl

Bunejai-ejowl

xa|dwoo-ejaw
aseq-ejowl

saaiwiad Bugjjepow

Sjurel}suo) ejeq - [Spo jeuoneley ayy /'g ainbi4

Aoy ayepipues e Buiwuo} ‘enbiun paiinbai aq Aew sanjeA urewiop Jo Jasgns e [u‘o] {urewop} - oidm
anjea awes ay} Ajjoexa aney sajdn} om} ou [140] (1ny) {urewop} - ajdn}
Bunpnguye Ajjeulpied UoleUIqUIOD SBSSEJD LOIJ08UUOD
8ouo Ajuo uonejal e o} sbuojag aidny e apym [1L1] aidmy - [u‘Q] uoneas
‘sajdny Jo Jequinu Aue aAey Aew uolijejal e Buidno.b
sajdny ul sewn Jo Jaquinu Aue 1ndoo Aew SNJEA UIBLLOP B Sjiym [u‘o] urewop - [10] aidn}
‘pamol|e SNjeA {Inu ‘anjea auo jsow Je sey ajdn} e Jo ufewiop Jejnolued e Bupnqune Ajljeuipses sse(o uold8UUOD
pajenuelsut 19yUny ag 0} pamojje ale sanjea aseq asayl {Buuis ‘|eas ‘Jebaju) ‘uesjooq}
urewop abuel sse|o aseq
San[eA Jo 18S B S Urewop e {ann}
ujewop ssauanbjun sse|o aseq
sjuawwoo ejepejaw-elaw saaniwiad Bujjjspow

Sjurejsuoy) elepelsiy - |opOoN [euoneleyd ayl 9'g ainbi4

suoljejal pue sajdn) usamiaq Sisixa 8ouspuodsalios suo-0}-auo [1:1] ®ydny - [1] uonejss
Buidnoib
a)dn} auo }SBa)| 1B Ul S UTeWwop E SlIum ‘Ufelop auo ises) je sey sjdn) e [u‘)] urewop - [u‘y] aydn}
Bunngupe Ayeuipied adAy uonosuuod

SUETTHI ejepejaw-ejaw saAiwad Buijjspow

8.4 Constructing the Entity-Relationship Model

The construction of the entity-relationship model consists of defining entity,
weak entity, simple attribute, composite attribute, relationship, identifying relationship
together with the relationships between these and the constraints which must hold. Figures
8.8, 8.9 and 8.10 show the way in which this is achieved in the CDMS. Again, each row
shows one specialisation of a global model construct. The rows in Figure 8.8 show the
structural constructs, while the rows in Figures 8.9 and 8.10 show the metadata constraints
and data constraints respectively.

The main concepts of the ER model are entities with attributes, and relationships
among entities. A weak entity does not have any key attributes of its own. An identifying
relationship relates a weak entity to its identifying entities, so that instances of the weak
entity can be identified. Attributes can be subdivided into simple attributes and composite
attributes.

A simple attribute consists of base values. Composite attributes, entities, weak
entities, relationships and identifying relationships are all complex values. Each of entities,
weak entities, relationships and identifying relationships may have its own simple attributes
and/or composite attributes. Each composite attribute consists of simple attributes and/or
composite attributes. Each of relationships and identifying relationships relates to entities
and/or weak entities.

The power of the ER model is that uses of the constructs are highly constrained.
At the type level, there are connection type cardinality constraints on relating, and
connection types cardinality constraints on consisting and relating:

e An identifyihg relationship relates to at least one weak entity, while a weak
entity is related to at least one identifying relationship.

* A composite attribute consists of at least one simple attribute or composite
attribute.

* A relationship relates to at least two entities or weak entities. One entity or

weak entity is allowed to participate more than once if this entity or weak entity
plays a different role each time.

Chapter 8 189 The Application of the CDMS

* An identifying relationship also relates to at least two entities or weak entities.
Again, one entity or weak entity is allowed to participate more than once if this
entity or weak entity plays a different role each time.

At the class level, there are more constraints. Base class uniqueness constraints
are fixed on simple attributes, whereas base class range constraints are offered as facilities
to be instantiated as a schema is defined. Connection class cardinality constraints on
attributing are also fully offered as facilities to be instantiated as a schema is defined.
Referring back to Figure 4.23 under the line connection class cardinality, for instance,
person's name: [1,3], [O,n] represent a multi-valued attribute, which requires that each
person have one, two or three names. Similarly, person's age: [1,1], [0O,n] represent a
single-valued attribute. In these two examples, null values are prohibited. Person's
address [0,3], [O,n] is another example of a multi-valued attribute. This time, however,
there is no null value prohibition. Number of book: [1,1], [1,1] is an example of
exhaustiveness, which requires that each id must be related to a person. Title of book:
[1,3], [1,n] is an example of overlapping, which states that more than one book may have
the same title.

On the other hand, connection class cardinality constraints on consisting restrict
multi-valued components, while still being offered as facilities for other purposes.
Connection class cardinality constraints on relating hold as model inherent constraints,
requiring that concerning a particular relating class, a relationship (either ordinary or
identifying) instance must relate to exact one entity (either ordinary or weak) instance. In
addition, they are provided as model implicit constraints; that is, their instantiated forms
will represent the structural constraints.

Furthermore, connection classes combination cardinality constraints on
attributing are offered as facilities, which may represent key attributes.

Chapter 8 190 The Application of the CDMS

sjonlisuo) - [spo diysuonejey-Ainug eyl g'g ainbiy

Sol}jus Yeam Jo/pue saliue
0} sejejal diysuonelas Buihuspl Jo diysuonejas e

sejnquie ausodwod Jo/pue sainquile siduls
1O SISISUOD enquie slsodwos e

sajnquye aysodwos 1o/pue sainquie ajdwis aaey few
diysuoiiejas BuiApuepi Jo diysuonetas ‘Apjus yeam ‘Ajus ue

SON|eA 9SEQ-UOU UIBJUOD 8SaY}
sonjeA aseq Jo sisisuod angqupe sjdwis e

Sluawiwod

Ajue yeam - diysuonejal BulApuepi
Amua - diysuonejas buiAjuap;
Ayjus xeam - diysuone|al
fue - diysuonejas
Bunejai
anquye ajsodwod - snquye ajsodwios
anquye ajdwis - sinquye slsodwios
Bupsisuoo
ainguye aysodwos - diysuone|as BuiApuspl
ainguie ajdwis - diysuone|as ButApuapl
sinquyje aysodwod - diysuonejas
© ewnqupe a|dwis - diysuone|al
anguye aysodwoo - Aua yeam
ainquye a|dwis - Ajjus yeem
anquye aysodwod - Ajyua
ainquye ajdwis - Aiua
Bunnquye

diysuonejas Buihuspl
diysuonejal

anquye asjisodwod
Alua yeam

Anue

ainquye sdwis

ejepejaw-elaw

Bunejsi-elaw

xa|dwoo-elaw
aseg-ejow

saAljwiad Bujjjepow

sjurelisuod erepeioN - [9pojN diysuoneey-Aug eyl 6'g ainbig

SONIJUS YoM JOo/pue Saljud oM} Ises| je {Aua yeam ‘Aua} - [u‘z] diysuone)as Buihynuspl
o} sajejal diysuonejas Buijyuapt 1o diysuoitejas {Amua eam ‘Anua} - [u‘g] a_sw:o_gmm@_
upje|al
ainqupe snsodwos 1o anquie ajdwis {sinquye aysodwod ‘synquue sidwis}

2UOo Jsed| Je Jo S)sisuod ainqupe aysoduwiod e - [u“}] sinquye susodwos
Bupsisuoo Ayeuipies sedA} uonosuuod

diysuonejes Buikjuapi auo ises) Je 0] paje|al si Ajjjua yeam e sjiym [u‘1] fmus yeam - [u‘}] diysuoneas Buihjpuapi
‘A1us yeem auo jses| Je o} sajejal diysuonejes BuiAmusp ue Bunejas Ayjeuipses adAy uoposuuoo

sjuswwo? ejepejaw-eglow saAijlwd Bugjjepow

sjurelisuoQ eje(- |opol diysuonejeyd-Ainug syyr Q1'g 84nbi4

shay ajepipued Juasaidas Aew Asyy
‘perenuejsul Bulaq uaym
uoluyap ewsayos o} uado

sjurel}suod [einyonyys yuasaidas Aew Aayy
pajenuelsul Buiaq uaym

‘gouejsul AJjue suo 0} saje|al aosuelsul diysuole|as auo

Buneja. senoned e Jo suus) ul

019 Buiddepano ‘ssausansneyxa
‘sanjeA |Inu jo uoniqiyoid yuasaidal Aew
‘panqiyoid sjusuodwiod panjea-ijnw

o}a Buiddepano

‘SSBUDANISNEBYXD

‘sanjeA {jnu jo uoniqiyo.d

‘sajnguiie penjea-ginw o ajbuls

juasaidas Aew Aay)

‘pajenuelsul bulaq usym
uonuyep ewayds o) uado Ajjny

pelenue)sul Jayuny eq 0} PAMO|[e a1e San|eA aseq asey)

sanjeA Jo 1es e si aingupe ejdwis e

sjuswwod

[u“0] {sinqune syusodwod
‘ainquiie ajdwis} - diysuonejas BuiAyuspl
[u‘0] {einquue sysodwos ‘sinqupe sjdwis} - diysuoneje)
[u'o] {ewnqupe eysodwod ‘sinquye ajdwis} - Anuoe Yeam
[u‘o] {eInquye susodwos ‘e)nquye ajdwis} - Anjus
Bunnquye

[u‘0] Amua xeam - [L‘}] diysuonejes Buihyuapl
[u‘o] Amua - [1°1] diysuoneras Buikjnuspl
[u‘0] Amua yeem - [|°|] diysuonejal
[u‘0] Amue - [1*1] diysuonelas
Bunejas
[u‘o] einquye ansodwos - [L‘0] ainquie ajsodwod
[u‘Q) @inguye sjdwis - [1‘0] sinquye ausodwod
Bunsisuoo
[u‘p] sInqune susodwios - [u‘p) diysuopne|as BuiAyuapl
[u‘0] einquue sjdwis - [u‘o] diysuonejes Buikyusep!
[u‘o] @inquue ausodwod - [u‘p] diysuone|ss
[u‘0] sinquue ajdwis - [u‘Q] diysuoneja)
[u‘o] einquire aysodwod - [u‘p] Alua seam
[u‘0] sinquue sjdwis - [u‘p] Aluae yeam
[u‘g] ainquue aysodwod - [u‘Q] Amus
[u‘0] @inqupe sjdwis - [u‘g] Amue
Bunnquue

{Buuys ‘[eas ‘1abayul ‘uesjooq}
anqupe odwis

{enn}
anguye ojdwis

ejepejaw-glaw

Ajijeulples uoleuIquoo
S8SSE|0 UONOBUU0D

Ajreuiples ssejo uonosuULoo

abuey sseo aseq

ssauanbiun sse[o aseq

saAniwiid Buljjepow

Unfortunately, some useful applications can not be described by the ER model
defined above. One example is shown in Figure 8.11, where a book is only able to be one
of: on order from supplier, at the binder, or on loan to a person. This condition is named
an exclusive alternative relationship.

book
0,1 1

ol1 1,1

1,1 1,1 1,1

order <> binding loan
1,1 1,1 1,1
o,n 0,n 0,n
supplier binder person

Figure 8.11 Exclusive Alternative Relationship

In order to describe this kind of constraint, the model has to be modified and
expanded. Firstly, the connection class cardinality constraint relating: relationship [1,1] -
entity [0,n] should become relating: relationship [0,1] - entity [O,n]. Secondly, the
following connection classes cardinality constraint should be added: relating: {relationship}
- entity [O,n]. The schema then will be constrained by:

order [1,1] - book [0,1];

binding [1,1] -book [0,1];

loan [1,1] - book [0,1]; and

{order, binding, loan} - book [1,1].

These mean that a book may or may not be related to an order, may or may not
be related to a binding, and may or may not be related to a loan, but a book must be related
to one instance from order, binding or loan. Again, this example well demonstrates the
power of the CDMS, within which appropriate data models may probably be created to suit
the various application situations in the real world.

Chapter 8 194 The Application of the CDMS

8.5 Constructing the Functional Data Model

The construction of the functional data model consists of defining printable,
entity, combination together with the relationships between these and the constraints which
must hold. This process is shown in Figures 8.12, 8.13 and 8.14. Each row shows one
specialisation in the CDMS. The rows in Figure 8.12 show the structural constructs, while
the rows in Figures 8.13 and 8.14 show the metadata and data constraints respectively.

The main concepts of the functional data model are entities and functions. In
order to represent multi-argument functions, an assistant type called combination is
included, which is, in fact, the Cartesian product of multiple entities.

At the type level, there are connection type cardinality constraints on combining
and connection types cardinality constraints on function. In fact, a combination, which
combines at least two entities, must have at least one function. An example of combination
is the Cartesian product of student and course. Only by introducing this combination can a
function named grade with both arguments, student and course, be defined. Nevertheless,
if no function is intended to be defined on these, then there should be no reason to
introduce such a combination. It should be noted that one entity can be used more than
once in a given combination if this entity plays a different role each time.

At the class level, connection class cardinality constraints on function are
offered as facilities. These constraints, when being instantiated, may represent various
meanings as commented in the figure. This is similar to the situation of the ER model,
which has been analysed item by item in the last subsection. Connection class cardinality
constraints on combining require that a combination instance always combine exactly one
instance from each combined entity class, while the concept of exhaustiveness, overlapping
can still be represented on the other side as the constraints are instantiated. Connection
classes combination cardinality constraints hold on both function and combining. The
former is a facility, which can be instantiated for representing candidate keys, while the
latter requires that there is one to one correspondence between a combination and its
component entities.

Chapter 8 195 The Application of the CDMS

SJONJISU0Y) - [OPOIN BreQ feuonound a8yl g'g einbiq

SBNUS SUIGUIOD LUOJeUIqUIOD B

uoIjouNy € JO Swia} ul sejdnod abues pue urewop ajgissod

Son[eA 8Seq-Uou UIBIUOD SUOHBUIqUIOD PUe SBIjud
senjeA aseq SulEjuod a|qejund e

sjusawwod

Ayus - uoeurquod
Bujuiquoo

Aus - uoyeUIqUIOD

a|qejund - uoneuIqUOD

Anus - fue

Amue - e|qejuud

s|qejund - Ajjus
uonouny

uoljeuiquod
Ayue

s|qejund

eljepejaw-ejaul

Bunejai-elow

xa|dwoo-ejaw
eseq-elow

saAljjwiad Buljjapow

SjulelISuU0) eleq - [8PO ele(jeuonound sy ¢1°g oinbi4

sajijue Jusuodwoo sy pue uoieUIqWOD

B JO S80UB]SUl Usam}aq 9ouapuodsallod auo-0}-auo
shey ajepipues Juasaidas Aew Asy)

uonulep ewsayos o} uado

sSB|0 Aljua pauIquod yoea wolj
aoue)sul 8UO Ajjoexa SauIqUIOD aouUeRlSUl UOHBUIGUIOD B
oo Buiddepano ‘sssuaaisneyxs
‘sanjea |inu jo uoniqiyold
‘suonouny panjea-jinw 1o ajbuis
yesaidas Aew Asy) ‘pajenue)sul Buieq uaym
uonjuyap ewayos o} uado Ajny

palelUBISUI JBYLIN} 8q O} PAMO|[e 81 SeNn|eA aseq 8say)

senjeA Jo jes e s| ajqejuud e

sjuswwod

[1'1] (uny) {Amus} - uoneuiquiod
Buiuiquioa

[u*0] {Amua ‘siqejuud} - uonreuiquios

[u‘0] {Amua ‘siqejuud} - Ainue
uonouny

[u‘0] Amua - [1°|] uoneuiquiod
Bujuiquiod

[u‘0] Aua - [u‘0] uoneulquiod

[u‘0] e1qejund - [u‘0} uoneuiquod

[u‘0] Ampua - [u‘o] Amue

[u‘g] Amwue - [u*Q] siqejund

[u0] eiqejuud - [u‘0] Awue
uonouny

{Bus ‘leas “18b8)ul ‘ueB|00q}
sjqejund

{enn}
ajqeyund

ejepejauw-ejawl

Ayeulpied uoneulquod
S9SSE|0 UOoI}0oauuod

Ajjeuipres ssejo uodeUU0D

abuel ssejo aseq

ssausanbiun ssepo aseq

saanniwad Bujjjepow

SjulRIISUOY) Blepelal - |OPOIA Ble jeuonound ay| €}°g @inbi4

uoIloUN} 8UO JSES| B SBY UOKBUIqWIOD B

SOIIUS OM]]SS JB SaUIqUIOD UOIBUIGWIOD B

sjuswwod

{Amwus ‘ejgejund} - [u‘}] uoneuiquiod
uolnouny

Aus - [u‘g] uoneuiquod
Buluiquos

ejepejauw-elawl

Anjeuipies sadA} uonosuuod

Ayreuipres adA} uoiosuuos

saaliwad Bujjjepow

8.6 Constructing IFO

IFO is constructed using the global data model in this section. Figure 8.15
shows the construct part. Figure 8.16 shows the metadata constraint part, while both
Figure 8.17 and Figure 8.18 show the data constraint part.

The main concepts of IFO are atomic types - printable, abstract and free; and
type constructors - set and aggregate. In an IFO schema, the instances of these are
properly connected by instances of attribution, grouping, aggregation, specialisation and

generalisation.

Printables are base values. Abstracts are used for atomic objects with no
underlying structure. Free types are inherited from other types. Sets represent multi-
valued objects, and aggregates represent single objects consisting of component parts (refer
back to Subsection 2.3.2).

At the metadata level, there are connection types cardinality constraints and

connection acyclicity constraints.
The connection types cardinality include the following:

* A set node relates to exactly one node by grouping; the node being related to
can be printable, abstract, free, set or aggregate (refer to Figure 4.17).

* an aggregate node aggregates one or more nodes, which may be printable,
abstract, free, set and/or aggregate (refer to Figure 4.18).

* A free node is either specialised or generalised from one or more abstract, free,
set and/or aggregate nodes.

At the class level, there are base class uniqueness constraints, base class range
constraints, connection class cardinality constraints, connection classes cardinality
constraints and connection classes combination cardinality constraints. Their forms are

given in the figures.

Chapter 8 198 ‘ The Application of the CDMS

It is similar to the case in the entity-relationship model that all connection class
cardinality constraints on attribution are fully open to schema definition. As such a
constraint is instantiated, it may represent single-valued attribute, multi-valued attribute,
and possibly prohibit null values at one end, and represent exhaustiveness and overlapping
at the other.

Connection class cardinality constraints on grouping are open to schema
definition. As such a constraint is instantiated, it may represent the range of number with
which an instance of a set groups instances. For instance, a research team relating to
research staff may group 10 to 20 individual research workers.

Connection class cardinality constraints on aggregation require that an instance
of an aggregate node relates to exactly one instance of each associated node (refer to Figure
4.18). That is, for instance, an address which aggregates house, street and city must
consist of one house number, one street name and one city name. Other examples can be
seen in Figure 4.14, where an instance of a relationship class relates to exactly one instance
of each participating entity class. In the same figure, an instance of a composite attribute
class contains exactly one instance of each consisting attribute class.

Both connection class cardinality constraints on specialisation and generalisation
require that an instance of subtype must exist in its supertype, that is what inheritance

means.

Furthermore, connection classes cardinality constraints on specialisation are
open to schema definition. For instance, specialisation: free [0,n] - {free} can be
instantiated to be the following:

» specialisation: vehicle [0,1] - {two-wheeler, three-wheeler] requires that a
vehicle must not be both two-wheeler and three-wheeler, thus the specialisation
is a disjoint one (refer to Figure 4.10).

» specialisation: car [1,n] - {drivable, faulty} requires that a car must be drivable
and/or faulty, thus the specialisation has the covering nature (refer to Figure
4.11).

» specialisation car [1,1] - {manual, automatic] requires that a car must be either
manual or automatic, but not both, thus the specialisation has the disjoint
covering nature (refer to Figure 4.12).

Chapter 8 199 The Application of the CDMS

Connection classes cardinality constraints on generalisation requires that any
generalisation must have the disjoint covering nature (refer to figure 4.15), of which Figure
4.16 is an example.

Connection classes combination cardinality constraints on attribution and
aggregation are both open to schema definition. When such a constraint is instantiated, it
may represent a candidate key. In this case the integer couple [0,n] becomes [0,1]. An
example of this is shown in Figure 4.13, where title and author's name forms a candidate
key of book; that is, no more than one book may have a particular combination of title and
author's name.

Chapter 8 200 The Application of the CDMS

sjonisuod - 04l Gi'g ainbiy

8pou 984 & 0] 8pou xa|dwod e woij pajoallp S| uonesijelsusd e

apou 331} e 0} 8pou xa|dwod e woiy pajoallp S| uolesieloads e

apou Aue 0} apou sjebaibbe ue woyy pajoalp si uoebaibbe ue

apou Aue 0} apou }as e woly pajoalp s buidnaib e

apou Aue 0} apou x8|dwod e Wolj pajoalip S| uoynquie ue

sanjeA aseq-uou ujejuod sapou sjebaibbe pue jas ‘aal) ‘Joesisqe
san|eA aseq sulejuod apou ajqejund e

sjusawwod

981} - a)ebaibbe
081} - 981}

091} - ajebaibbe
281} - 991}

a)ebalbbe - ayebaibbe
o9l} - ayebaibbe

a)ebaibbe - jos
89l} - Jos

a)ebaibbe - ajebaibbe
a2)} - ajebaibbe

alebaibbe - jos
931} - Jos

ayebaibbe - aayy
o8} - 89y}

ajebaibbe - joesnsqe
@8l - oelsqe

991} - }os
‘9al} - JoelISqE

uoyesiesouab

‘991 - 188

‘9944 - JorNISQE

uonesijeloads

“1os - ojebaibbe
‘joelisqe - ajebaibbe
a|qejuud - ayebaibbe

uoiebaibbe

‘1es - jos
‘joelisqe - Jos
sjqejund - 198

Buidnoib

‘1os - ojebaibbe
joensqe - ayebaibbe
s|qejuud - ajebaibbe

es - Jos

Joensge - oS
a|qejuud - jas

‘1os - 981}

‘joelisqe - 994}
a|qejuud - aaly

18s - JoelISQe
‘oel)SqQe - Joelisqe
ajgejund - yoelisqe

uonnguye
a1ebaibbe ‘198
Qal ‘joelisqe
ajgejud

ejepejaw-elaw

Bunusyul-ejow

Bunejai-elow

xa|dwod-ejaw
aseq-ejaw

saAlwud Bujjjepow

SjuleslsuoD erepelsiy - Ol 948 anbid

BWBYDS & Ul 91940 ou wioy} uoljesijesauad jo saouelsul {onun}
uojjesijelauab
BWAYDS B Ul 8]0A0 OU WO} uoyjesietoads jo saduelsul {onn}
uonesijeloads Ayoiohoe uoijosuuod

[u‘i] ealy - {eyebaibbe 1os ‘aaly ‘Joelsqe
uonesijelauab}

sapou sjebaibbe 10/pue Jos ‘@) ‘JoeNSqe BUo ISed| jB 10 {eyebaibbe ‘Jos ‘aauy ‘Joessqe
woly pasijesausb Jo pasiedads Jayla st spou 93l e uopnesije1oads}
sapou ajebaibbe o/pue {e1ebai66e ‘yos ‘@sl) ‘oenisqe ‘a|qejund} - [u‘|] ayebaibbe
195 ‘aay) ‘oelisqe ‘s|qejund auo ises) je sajebaibbe apou sjebaibbe ue uoiebaibbe
Buidno.b Aq spou sjebaibbe {eyeboibbe ‘Jos ‘aay ‘1oelisqe ‘sjqejund} - [L4)1] 19s
10 108 ‘88l oelsqe ‘aiqejuud auo Ajoexa o) seje|jal apou jes e Buidnosb6 Ayjeutpies sadA} uonosuuod

sjuawwod ejepejaw-ejaw saAlwd Gujjjapow

(I ved) sjurensuog ejeq - Ol ZI'g @inbi4

adApadns sy ul sisixa adAigns jo aduejsu) ue

adAuadns sy ul sysixa adAigns Jo souejsul ue

9pou pajeldosse |yoed Jo aduejsul

oje ‘saouejsu; sdnoib jes e jo

aouEB)SUI UB UoIym Yim Jaquinu jo abuel ayy
juasaidal Aew Asy; ‘pajenueisul Bulaq uaym

[1‘0] @31} - [1*}] s1ebaibbe
[1'0l @044 - [1}] @3

[11] @8y - [u‘Q] eyebaibbe
[11] @04 - [u*Q] B3y

[u‘p] eyebaibbe - [1*}] eyebaibbe
[u‘g] @81y - [11)] ereboaibbe

auo Apoexa 0} sajejal syebaibbe ue Jo aouejsul ue

[u‘p] e1ebasbbe - [u‘g] 18s
[u‘o] @ay - [u‘Q] 1os

uoniuyep ewsayos o} uado

o}e Buiddejano
‘ssauaAlsneyxs

‘sanjeA ||nu jo uoniqiyoid
‘sanquye panjea-ynw Jo s|buts
juasaidal Lew Aay)
‘pajenue;sul Buieq usym

[u‘p] eyebaibbe - [u‘g] ayebaibbe
[u‘o] @34y - [u‘p] arebaibbe

[u‘o] syebaibbe - [u‘g] 1os
[u*o] @8y - [u‘0] 1es

[u‘Q) syebaibbe - [u‘Q] aaly
[u‘g] @2y - [u‘Q] @81y

[u‘g] erebaibbe - [u‘p] yoeNiSqe
[u‘p] @844 - [u‘Q] 1oeIISqE

uoniuyep ewsyods o} uado Ajny

pajeljuejsul Jayuny 8q 0} PaMo|[e a1e asay}

senjeA Jo 1es e s| apou s|qejund e

sjuswwod

‘[1'0] @@y - [1*1] 108

r'0] @1y - [11] ensqe
uojjesijeiauab

[11] @ay - [u‘0] 108

1] @3y - [u'Q] 1oeNISqE
uonesije|dads

‘[u‘c] 10s - [1°1] s1ebaibbe

‘[u‘o] wensqe - [1*1] sebaibbe

[u‘o] eiqelund - [1°}] eyebaibbe
uonebalbbe

{[u‘ol 1es - [u‘0] 1es

{[u‘o] wensge - [u‘g] 1es

[u‘o] siqejund - [u‘Q] 188
buidnoib

[u‘ol] 1es - [u‘p] erebaibbe

‘[u‘g] 1eNSqe - [u‘g] elebaibbe

[u‘o] eaiqelund - [u‘g] erebaibbe

f[u‘o] 1es - [u'0] 188

{[u*o] yoesisqe - [u‘Q] Jos

[u'0] sigeluLd - [u‘Q] 1o

{[u‘0] 188 - [u'0] @04

‘{fu‘o] 1oensqe - [u‘Q] @81}

[u‘0] sjgeIuLd - [u‘Q] B8y

‘[u‘o] 1es - [u‘Q] YoeNSqR

‘{u‘g] oeaisqe - [u‘p] 10eSGE

[u‘0] siqejund - [u‘g] 10ensqe
uonnquye

{eimyoid ‘Bus “1ebajul ‘uesjooq}
a|qejund

{ann}
ajqejund

ejepejaw-elaw

Ajfeuipses ssejo uolosUUOD

abues sse|o aseq

ssausnbiun ssej aseq

saAlwiad Bujjjepows

(11 ved) swrensuo) ereq - Ol 818 ainbi4

shay ejepipued yuasaidal Aew Aay) [u‘0] {erebaibbe “as ‘aaly oelnsqe ‘sjqejund} - ayebaibbe
pajenuelsul buiag uaym uonebaibbe
{u‘g] {e1ebeaibbe ‘Jos ‘aal) Joensqe ‘s|qejulid} - sjebaibbe
shey aepipues juasaidas Aew Aay} [u‘o] {eyebaibbe “as ‘aai} ‘oensqe ‘s|qejuud] - j1os
paienueisul Bulag uaym [u‘0] {e1ebaibbe “yas ‘aal) Yoeisqe ‘siqejund} - sayy
uoiuyap ewayos o} uado [u‘o] {erebaibbe “os ‘aal) ‘orlisqe ‘e|qejund} - Joensqe AJjeuipied uoneuIquod
uolnquye S9SSB|0 UO(}O2UU0d
sadAjgns sy Jo auo uj sisixe adApadns jo aouejsui ue [141] o043 - {erebaibbe ‘Jos ‘aaly ‘Joensqe}
uoyesielaushb
oo uoniped ‘ebelarod ‘ssaujulofsip {oay)} - [u‘p] e1ebasbbe {aayy} - [u‘0] 108
jasaidas Aew Aoy pajeiuejsul Buleq uaym {e81y} - [u‘Q)] 281} {oay} - [u‘g] 10eNISqE
uoljuyep ewayos oy uado uonesieloeds Ajjjeulpled S8SSe|d UoI}osuL0D

sjuawwod ejepejaw-ejaw saAnwud Bujjjapow

8.7 Conclusions

The CDMS provides a platform on which different data models and interfaces
can be defined within an integrated environment. This facilitates the following practice:

* Since different models and interfaces can be created and modified in a single
environment without repetitive coding, they can be easily tested and compared
for their suitability to particular applications and particular user groups.

* Potentially, with further development of the system, the data reflecting the
same miniworld should be easier to access from different data models and/or
user interfaces. This has particular relevance as has been analysed in Chapter 2
for federated database systems.

However, the current implementation of the CDMS is still incomplete. The
variety and management of the constraints the system is able to deal with are limited, while

the active aspects are still missing.

A fuller analysis on the contributions and further work will be given in Chapter
9 - the concluding chapter.

Chapter 8 205 The Application of the CDMS

9 Conclusions

This thesis addresses the general issues of how to provide multiple data
modelling facilities in an integrated environment. To this end, the semantic data modelling
methodologies were reviewed, based on which a theory of Configurable Data Modelling is
proposed and this provides a sound ground for the construction of a Configurable Data
Modelling System. The main contributions of the CDMS depend on the decomposibility
and reconfigurability of data models. This approach was then extended to encompass other
data models.

In the context of the configuration of data models, the role of constraints has
been given a strong emphasis. That is, both the configuration of the inherent constraints
and that of the facilities for specifying implicit constraints constitute an important part of the
concept of the configuration of data models. Thus it is possible to constrain the schemata
which can be specified using the data model. Alternatively it is possible to put constraint
specifying facilities into the data model.

Behavioural issues have also been given due attention in this research. In
general, configuring a data model includes configuring the operations with which the user
manipulates the data model. However, owing to time limitation, implementation work on
this respeét has to be deferred into potential further research projects. This will be referred
to in the further work section.

The ability to configure the user interface has also been tested in the system.

However, this has not been the main focus of the work and really requires a significant
effort in its own right - this will be another topic for further work.

Chapter 9 206 Conclusions

The first section of this chapter summarises the contributions of the research
reported in this thesis. The contributions lie not only in the details of the proposed Global
Data Model, but also in the implementation of the demonstratable CDMS.

The chapter concludes with a discussion of current and further research
activities relating to the CDMS.

9.1 Contributions

The CDMS is an unusual DBMS in that it enables users to create and maintain
various data models, data schemata and databases. In short, the CDMS supports the
processes of creating as well as using data models for database applications.

The CDMS approach is distinguished from the traditional DBMS approach by a
number of characteristics. These can be summarised as follows:

1) Self-containment. The CDMS contains not only the data and schema of a
database but also a complete definition of the data model which supports the
schema. Just as a data schema is represented by metadata, a data model is
represented by meta-metadata. The CDMS software describes the
databases, schemata and data models in terms of the meta-metadata. The same
software is thus able to access databases supported not only by different data
schemata but also by different data models.

2) The configurability and management of integrity constraints that must hold
on the metadata and data. This means that the CDMS can carry out
sophisticated treatment of metadata and data correctness to ensure that the
application more accurately reflects the situation of the relevant miniworld.
This can be done automatically to reduce the users' burden.

3) Program-metadata independence. CDMS access programs are written to
function independently of any specific metadata files. Owing to the existence
of the structure of metadata in the system, there is no need for the structure of
any metadata to be embedded in the access programs. Nevertheless the
structure of the meta-metadata must be involved in the CDMS access programs
to permit the programs to refer to the structure of metadata as necessary.

Chapter 9 207 Conclusions

4) Support of multiple data models. A traditional DBMS supports only one or
a few fixed data models, while the CDMS permits various data models to be
configured and then used within its integrated environment. Federated
database systems support multiple data models as well, but in a limited
manner. A comparison between the CDMS approach and the federated
database system approach is given in Figure 9.1 below.

Methodology the CDMS Federated Database Systems
Semantic Datel_ !Vlodel Yes
Supportability
Heterogeneity Flexible Fixed
Kernel Model Yes (deliberately created) Yes for one architecture only
Model Configurability Yes No
Interface Configurability Yes
Model Visibility Yes
Constraint Management Yes

Figure 9.1 Comparison between the CDMS and FDSs
5) Support of multiple user interfaces. A traditional DBMS provides only a
few fixed interfaces, while the CDMS permits the configuration and utilisation
of various interfaces to the same data model and then used within its integrated

environment.

6) Sharing of data. The further development of the CDMS should allow
multiple users to access a database via different data models and interfaces.

The principal contributions of the research are:

1) the creation of a coherent meta-model of the structural constructs found in data

models;

2) acoherent analysis of the nature of constraints in database systems, including
how they are structured and where they are placed;

3) asimilar analysis of the behavioural aspects of database applications from the
operations available to the user through transaction systems down to low-level
details;

4) an understanding of how to manage a variety of user interfaces to the above;

Chapter 9 208 Conclusions

5) the development of an architecture in which the above can be configured
without recourse to low-level programming;

6) the implementation of such a system for managing structure and constraints.

The global data model can also be used in a non-persistent environment owing
to its independent nature.

On the one hand, the CDMS can be implemented in a non-persistent language.
The ability to build interpreters and store them as files covers the reflection. The generation
of a support tool to manage the set of interpreters should cover the software engineering
aspects. On the other hand, non-persistent applications may potentially be generated using
the global data model. The objective contents and inner-relationships of the real world may
actually be abstracted and further analysed based on the constructs and constraints offered
by the global data model. Using the concepts offered by the global data model, for
instance, different data models can be created, their suitability for describing the miniworld
in various application circumstances can be compared with each other, and the data models
can then be refined. No database instance has to be involved in this process at all.

9.2 Further Work

As discussed in Chapter 6 and Chapter 7, the CDMS has been realised in the
persistent programming language Napier88. One of the main achievements of the CDMS
work is the production of a platform for further research and development activities. This
is a consequence of the layered, open architecture which facilitates the further
improvements of individual parts.

The Global Data Model and its realisation in terms of the CDMS, is seen as a
beginning rather than an end. It opens the way for further research work. There are four
general directions of research. These are:

1) supporting more complete constraint configuration mechanisms;
The Global Data Model of the CDMS has a fixed number of facilities for the

configuration of structural constraints. These take two general forms. Firstly,
there are facilities for the configuration of metadata constraints; secondly, there

Chapter 9 209 Conclusions

2)

3)

4)

are facilities for the configuration of data constraints. As has been
demonstrated in Chapter 8, most constraints in prominent semantic data models
can be supported by these facilities, but there remain some that cannot.
Connection classes combination cardinality constraints have been proposed,
but not implemented as yet; while FDM general constraints and the like still
have not been analysed in depth. It is intended that a more complete
mechanism for the configuration of both metadata and data constraints should
be provided in future versions of the CDMS.

supporting more sophisticated constraint management mechanisms;

In Chapter 4, a brief description of a general mechanism for checking and
managing violations of the constraints was given, but these functions have not
been realised fully. It is expected that a sophisticated constraint management
sub-system will be developed and involved in future versions of the CDMS.

supporting configuration of operation activities involved in the system itself as
behavioural aspects;

The behavioural aspect of the CDMS has been hardly touched in the current
CDMS implementation. To implement this in the context of the CDMS, careful
analysis and synthesis must be done. Chapter 5 constitutes a significant
advance in this respect, however, more detailed work is vital to allow the work
so far carried out to be realised fully. In particular, the management of
constraints can only be achieved effectively by integrating their checking within
code fragments - for instance using transaction systems. Moreover, the
integration of process modelling with DBMS would be more easily achieved.

support for user interface configuration.

The effective delivery of the functionality described above demands effective
user interfaces. The DBMS community has severely lagged user interface
research and even now is approaching the provision of user interfaces in an ad
hoc manner. The CDMS approach promises a coherent account of all user
interaction with graphical, form-based or textual elements.

The idea of providing a database system in which it is possible for advanced

users to determine the ways databases are managed is a new one. This thesis has provided

Chapter 9

210 Conclusions

considerable evidence that such a system can be realised. In order to achieve this, the
fundamental activity must be to categorise and analyse the ways in which users conceive of
the information they are managing. This include three principal aspects: how the
information is structured; how it is constrained; and how it is used. The work presented
here has made a significant contribution to this activity by providing a coherent account of
these three areas, as well as formally specifying and implementing large parts of the result
of these analysis.

Chapter 9 211 Conclusions

Bibliography

[Abiteboul and Hull, 1987]
S. Abiteboul and R. Hull, TFO: A Formal Semantic Database Model', ACM TODS, 12, 4, 525-565,
December 1987.

[Abrial, 1974]
J.R. Abrial, Data Semantics', Data Base Management, North-Holland, Amsterdam, 1-59, 1974.

[Atkinson et al, 1988]
M.P. Atkinson, R. Morrison and O.P. Buneman, '‘Binding and Type Checking in Database
Programming Languages', The Computer Journal, 31, 2 99-109, 1988.

[Atkinson et al, 1993a]
M.P. Atkinson, P.W. Trinder and D.A. Watt, ‘Bulk Type Constructors', Fide/93/61, 1993.

[Atkinson et al, 1993b]

M.P. Atkinson, P.J. Bailey, D. Christie, K. Cropper and P.C. Philbrow, 'Towards Bulk Type
Libraries for Napier88', Fide/93/78, 1993.

[Atzeni and Torlone, 1993]
P. Atzeni and R. Torlone, 'A Metamodel Approach for the Management of Multiple Models and the
Translation of Schemes', Information Systems, 18, 6, 349-362, 1993,

[Bachman, 1969]
C.W. Bachman, 'Data Structure Diagrams', Data Base, 1, 4-10, Summer 1969.

[Bancilhon, 1988)
F. Bancilhon, 'Object-Oriented Database Systems', Proc of the ACM SIGACT-SIGART Conference on
the Principles of Database Systems, Austing, Texas, May 1988.

[Bernstein, 1995]
P.A. Bernstein, Microsoft Corp, for VLDB 1995.

{Brodie et al, 1984]

M.L. Brodie, J. Mylopolous and J.W. Schmidt (eds), 'On Conceptual Modelling', Springer-Verlag,
New York, 1984.

[Brown et al, 1990]

A.W. Brown, R.K. Took, W.G. Daly, 'Design and Construction of Graphical Interfaces using Surface
Interaction', Proceedings of the 8th British National Conference on Databases, York, England, Pitman
Publishing, 128 Long Acre, London WC2E 9AN, London, England, 243-262, July 1990.

[Bruynooghe et al, 1991]

R.F. Bruynooghe, J.M. Parker and J.S. Rowles, 'PSS: A System for Process Enactment', ICL
Kidsgrove, Staffordshire, ST7 1TL, UK, 1991.

[Carrick et al, 1987]

R. Carrick, A.J. Cole and R. Morrison, 'An Introduction to PS-algol Programming', Persistent
Programming Research Report 31, Universities of Glasgow and St Andrews, 1987.

Bibliography 212

[Chen, 1976]
P.P. Chen, 'The Entity-Relationship Model - Toward a Unified View of Data', ACM TODS, 1, 1, 9-
36, 1976.

[Codd, 1970]
E.F. Codd, 'A Relational Model of Data for Large Shared Data Banks', CACM, 13, 6, 377-387, June
1970.

[Cooper, 1987]
R.L. Cooper, 'Applications Programming in PS-algol', Persistent Programming Research Report 25,
Universities of Glasgow and St Andrews, 1987.

[Cooper, 1989]

R.L. Cooper, 'Persistent Languages Facilitate the Implementation of Software Version Management',
Proc of 22nd Annual Hawaii Conference on System Sciences, (ed. B.D. Shriver), vol II, Software, 56-66,
January 1989.

[Cooper, 1990]
R.L. Cooper, 'Configurable Data Modelling Systems', Proc of 9th International Conference on the
Entity Relationship Approach, 35-52, Lausanne, October 1990.

[Cooper, 1993]
R.L. Cooper (ed), 'Interfaces to Database Systems 1992', Proc. 9th International Conference on the
Entity Relationship Approach, Lausanne, Switzerland, 35-52, October, 1990.

[Cooper, 1994]
R.L. Cooper, 'Configuring Database Query Languages', Proc. 2nd International Workshop on Interfaces
to Database Systems, P. Sawyer and R.L.Cooper (eds), Springer Verlag, 1994.

[Cooper and Qin, 1990]

R.L Cooper and Z. Qin, 'An Implementation of the IFO Data Model', Data Modelling Research at
Glasgow University 1990-1, R.Cooper (ed), Technical Report CS 91/R14, Department of Computing
Science, University of Glasgow, 17-24, August 1991.

[Cooper and Qin, 1991]

R.L. Cooper and Z. Qin, 'Constraint Management in a Configurable Data Modelling System', Data
Modelling Research at Glasgow University 1990-1, R.Cooper (ed), Technical Report CS 91/R14,
Department of Computing Science, University of Glasgow, 25-38, August 1991.

[Cooper and Qin, 1992]

R.L. Cooper and Z. Qin, 'A Graphical Data Modelling Program with Constraint Specification and
Management', Advanced Database Systems, P.M.D.Gray and R.J.Lucas (eds), Lecture Notes in Computer
Science 618, Springer-Verlag, 192-208, July 1992.

[Cooper and Qin, 1994]

R.L. Cooper and Z. Qin, 'A Generic Data Model for the Support of Multiple User Interaction
Facilities', Proc of 13th International Conference on the Entity Relationship Approach, Manchester, 351-
368, December 1994.

[Cooper et al, 1987]
R.L. Cooper. M.P. Atkinson, D. Abderrahmane and A. Dearle, 'Constructing Database Systems in a

Persistent Environment', Proc. 13th International Conference on Very large Databases, Brighton, England,
117-126, September 1987.

[Cox, 1986]
B.J. Cox, 'Object Oriented Programming: An Evolutionary Approach’, Addison-Wesley, Reading,
Mass, 1986. '

[Cutts et al, 1989]

Q. Cutts, A. Dearle, G. Kirby and C. Marlin, '"WIN: a Persistent Window Management System',
Persistent Programming Research Report 73, Universities of Glasgow and St Andrews, 1989.

Bibliography 213

[Dahl and Nygard, 1966]
O. Dahl and K. Nygard, 'Simula, an Algol-based Simulation Language', CACM, 9, 9, 671-678,
September 1966.

[Draper and Waite, 1991]
S.W. Draper and K.W. Waite, Iconographer as a Visual Programming System', 1991.

[Durand et al, 1993]
J. Durand, H. Brunner, R. Cuthbertson, S. Fogel, T. McCandless, R. Sparks and L. Sylvan, 'Data
Model and Query Algebra for a Model Based Multi-Model User Interface' in Cooper, 1993.

[Elmasri and Navathe, 1989]
R. Elmasri and S.B. Navathe, 'Fundamentals of Database Systems', Addison Wesley, 1989.

[Fikes and Kehler, 1985]
R. Fikes and T. Kehler, 'The Role of Frame-Based Representation in Reasoning', Communications of
the ACM, 28, 9, 904-920, September 1985.

[Goldberg and Robson, 1983]
A. Goldberg and D. Robson, 'Smalltalk-80: The Language and Its Implementation', Addison Wesley,
Reading, Mass, 1983.

[Gomma and Scott, 1981]

H. Gomma and D.B. Scott, Prototyping as a tool in the specifications of user requirements. Proc of
the 5th International Conference on Software Engineering (San Diego, Calif, Mar), ACM/IEEE, New York,
1981.

[Gray et al, 1992]
P.M.D. Gray, K.G. Kulkarni and N.W. Paton: 'Object-Oriented Databases: a Semantic Data Model
Approach', Prentice Hall International Series in Computer Science. Prentice Hall, 1992.

[Greenspan, 1984]
S.J. Greenspan, 'Requirements Modelling: A Knowledge Engineering Approach to Software
Requirements Definition', Technical Report CSRG-155, University of Toronto, March 1984.

[Hammer and McLeod, 1981]
M. Hammer and D. McLeod, 'Database Description with SDM: A Semantic Database Model', ACM
TODS, 6, 3, 351-386, September 1981.

[Harder and Reuter, 1983}
T. Harder and A. Reuter, Principles of Transaction-Oriented Database Recovery', ACM Comp. Surv.
15, No. 4, December 1983.

[Hartson and Hix, 1989]
H.R. Hartson and D. Hix, 'Human-Computer Interface Development: Concepts and Systems for Its
Management', ACM Computing Surveys, 21, 1, 5-92, March 1989.

[Hewitt ez al, 1973]
C. Hewitt, P. Bishop and R. Steiger, 'A Universal ACTOR Formalism for Artificial Intelligence', Proc
of the International Joint Conference on Artificial Intelligence, Palo Alto, California, August, 1973.

[Hsiao, 1992]
D.K.Hsiao, 'Federated Databases and Systems', VLDB Journal, 1, 127-179 and 2, 285-310, 1992.

[Hull and King, 1987]
R. Hull and R. King, 'Semantic Data Modelling: Survey, Applications and Research Issues', ACM
Computing Surveys, 19, 3, 201-260, September 1987.

[Kim, 1989]

W. Kim, 'A Model of Queries for Object-Oriented Databases', Proc. 15th International Conference on
Very Large Databases, Amsterdam, Netherlands, 423-430 September 1989.

Bibliography 214

[Kent, 19791
W. Kent, 'Limitation of Record-Based Information Models', ACM TODS, 4, 1, 107-131, 1979.

[King and McLeod, 1984]
R. King and D.McLeod, 'A Unified Model and Methodology for Conceptual Database Design', in
Brodie et al, 1984.

[King and Novak, 1987]
R. King and M. Novak. 'Freedom: A User-Adaptable Form Management System', Proc. the 13th
International Conference on Very Large Databases, Brighton, England, 331-338, September 1987.

{King and Novak, 1989]
R. King and M. Novak, 'FaceKit: A Database Interface Design Toolkit', Proc. the 15th International
Conference on Very Large Databases, Amsterdam, Netherlands, 115-123, August 1989.

[Kulkarni and Atkinson, 1987]
K.G. Kulkarni and M.P. Atkinson, Tmplementing an Extended Functional Data Model using PS-
algol', Software Practice and Experience, 17, 3, 171-185, March 1987.

[Laguna Beach, 1989]
The Laguna Beach Participants, 'Future Directions in DBMS Research', ACM SIGMOD Record, 18, 1,
17-26, March 1989.

[Lecluse et al, 1988]
C. Lecluse, P. Richard and F. Velez, '02, an Object-Oriented Data Model', Proc of the ACM SIGMOD
International Conference on Data Management Systems, Chicago, 424-433, June 1988.

[Lee, 1992]
D.S.H. Lee, 'Adding Constraint and Active Rule Management to A Semantic Data Model', MSc
Dissertation, University of Glasgow, September 1992.

[Leler, 1988]
W. Leler, 'Constraint Programming Languages: Their Specification and Generation', Addison-Wesley,
1988.

[Liscov et al, 1977)
B.H. Liskov, A. Snyder, R. Atkinson and C. Schaffert, 'Abstraction Mechanisms in CLU', CACM,
20, 8, 564-576, August, 1977.

[Lum,1992]
R. Lum, 'Process Modelling', MSc Dissertation, University of Glasgow, September 1992.

[Maier et al, 1986]
D. Maier, J. Stein, A. Otis and A. Purdy, 'Development of an Object-Oriented DBMS', Proc ACM

Conference on Object-Oriented Programming Systems, Languages and Applications, 472-482, September-
October 1986.

[Matthews, 1985]
D.C.J. Matthews, 'Poly Manual', SIGPLAN Notices, 20, 9, September 1985.

[Meyer, 1988]
B. Meyer, 'Object-Oriented Software Construction', Prentice-Hall International Series in Computer
Science, 1988.

[Milner, 1984]
R. Milner, 'A Proposal for Standard ML', Proc of the 1984 Symposium on Lisp and Functional
Programming, Austin, Texas, 1984,

[Morrison et al, 1989]

R. Morrison, F. Brown, R. Connor and A. Dearle, 'The Napier88 Reference Manual', Persistent
Programming Research Report 77, Universities of Glasgow and St Andrews, 1989.

Bibliography 215

[Mylopoulous et al, 1980]
J. Mylopolous, P.A. Bernstein and H.K.T. Wong, 'A Language Facility for Designing Database-
Intensive Applications', ACM TODS, 3, 2, 185-207, 1980.

[Naish and Thom, 1983]
L. Naish and J. Thom, 'The MU-PROLOG Deductive Database', Technical Report 83/10, Department
of Computer Science, University of Melbourne, 1983.

[Nassif, Qiu and Zhu, 1990]

R. Nassif, Y. Qiu, J. Zhu, 'Extending the Object-Oriented Paradigm to support Relationships and
Constraints', IFIP Working Group 2.6 Workshop on Object-Oriented Databases: Analysis, Design and
Construction, Windermere, England, July, 1990.

[Papadimitriou, 1986]
C. Papadimitriou, 'The Theory of Database Concurrency Control', Computer Science Press, 1986.

[Paton et al, 1994]
N. Paton, R. Cooper, H. Williams and P. Trinder, 'Advanced Database Systems', Prentice Hall, 1994.

[Peckham and Maryanski, 1988]
J. Peckham and F. Maryanski, 'Semantic Data Models', ACM Computing Surveys, 20, 3, 153-189,
September, 1988.

[ProcessWise, 1993]
ICL Ltd, ProcessWise Documentation, 1992,

[PS-algol, 1987]
'The PS-algol Reference Manual - Fourth Edition', Persistent Programming Research Report 12,
University of Glasgow and St. Andrews, 1987.

[Qin, 1993]
Z. Qin, 'Integrating Process Modelling within a Configurable Generic Data Modelling System',
IOPENER,Vol 2, no 2, 11-15, Dec 1993.

[Radermacher, 1993]
K. Radermacher, 'An Extensible Graphical Programming Environment for Semantic Modelling", in
Cooper,1993.

[Ricardo, 1990]
C. Ricardo, 'Database Systems: Principles, Design and Implementation', McMillan, 1990.

[Richardson and Carey, 1987]

J. Richardson and M.J. Carey, 'Programming Constructs for Database System Implementation in
EXODUS', Proc of the ACM SIGMOD International Conference on Data Management System, San
Francisco, 208-219, May 1987.

[Schmidt, 1977]
J.W. Schmidt, 'Some High-level Language Constructs for Data of Type Relation', ACM TODS, 2, 3,
247-261, 1977.

[ServioLogic, 1987]
ServioLogic Corporation, 'Programming in OPAL', 15025, S.W. Koll Parkway, 1A, Beaverton,
Oregon 97006, 1987.

[Shipman, 1981}
D.W. Shipman, 'The Functional Data Model and the Data Language DAPLEX', ACM TODS, 6, 1,
140-173, March 1981.

[Smith and Smith, 1977]

J.M. Smith and D.C.P. Smith, 'Database abstractions: Aggregation and Generalisation', ACM TODS,
2,2, 105-134, 1977.

Bibliography 216

[Stefic and Bobrow, 1985]
M. Stefic and D.G. Bobrow, 'Object-Oriented Programming: Themes and Variations', The Al

Magazine, 40-62, 1985.

[Stonebraker et al,1993]
M. Stonebraker, R. Agrawal, U. Dayal, E.J. Neuhold and A. Reuter, 'DBMS Research at a
CrossRoads: The Vienna Update', Proc VLDB19, 688-692, Dublin, August 1993.

[Stroustrup, 1984]
B. Stroustrup, 'The C++ Programming Language', Addison Wesley, Reading, Mass, 1984.

[Sutton, 1991]

S.M. Sutton, 'A Flexible Consistency Model for Persistent Data in Software Process Programming
Languages', to be in Implementing Persistent Object Bases: Principles and Practice (eds A. Dearle, G.M.
Shaw and S.B. Zdonik), Morgan Kaufmann, 1991.

[Tai, 1991]
Y. Tai, 'The Constraint Management Project’, MSc Dissertation, University of Glasgow, September
1991.

[Tan, 1991]
L.K. Tan, 'Constraint Management in A Configurable Data Modelling System', MSc Dissertation,
University of Glasgow, September 1991.

[Teo, 1991]
L.N. Teo, 'Form Management', MSc Dissertation, University of Glasgow, September 1991.

[Teorey, 1986]
T.J. Teorey, D. Yang and J.P. Fry, A logical design methodology for relational databases using the
extended entity-relationship model, ACM Computer Survey 18, 2 (June), 197-222, 1986.

[Wasserman and Shewmake, 1982]
A.L. Wasserman and D.T. Shewmake, 'Rapid prototyping of interactive information systems', ACM
SIGSOFT Softw. Eng Notes, 1-18, December 1982.

[Zloof, 1977]
M.M. Zloof, 'Query-by-Example, A New Data Base Language' in IBM Systems Journal, 16, 4, 324-

344, 1977.

IVERSTY

id
RARY

P

Bibliography 217

