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ABSTRACT

Bovine papillomavirus type 4 (BPV-4) induces papillomas in the upper alimentary canal 

of cattle which can progress to carcinomas in animals feeding on bracken fern. Viral 

DNA is rarely detected in either naturally occurring or experimentally induced cancers. 

Similarly, BPV-4 DNA is seldom found in in vitro transformed established cells. These 

results suggest that presence of BPV-4 is not required for progression to or maintenance 

of the transformed state. The frequency with which BPV-4 DNA is lost both in vivo and 

in vitro also suggests that there may be active selection against whole or part of the 

BPV-4 genome. Several BPV-4-transfected established lines were analysed to examine 

whether this proposed negative selection was observable at the DNA level.

In common with previous in vitro studies, BPV-4 DNA was found to be progressively 

lost on continued sub-culture. Analysis of cell lines containing BPV-4 DNA showed 

that there was no overt mutation or rearrangement of viral DNA sequences. The 

apparent wildtype organisation of viral genes included the E8 open reading frame 

(ORF). It was originally hypothesised that this viral ORF, which is the second major 

transforming gene of BPV-4, was an attractive target for negative selection due to the 

detrimental effect observed on transfecting primary cells with BPV-4 E8 DNA.

Previous work also reported amplification and rearrangement of specific host sequences 

in BPV-4-transformed lines. It was therefore proposed that induction of cellular DNA 

amplification may be an important aspect of BPV-4 transformation activity. This was 

investigated in virally-transformed established cells. No BPV-4-mediated DNA 

amplification was apparent in any of the lines, although involvement of cellular regions 

of repetitive sequences in manifestation of such amplification may be indicated.



The co-factors involved in BPV-4-associated carcinogenesis have been identified as 

including the mutagens, carcinogens and immunosuppressants present in bracken fern. 

One of major mutagens present is the flavonoid quercetin. Quercetin has discernible 

effect on BPV-4 transformation in vitro as it synergises with the virus to fully transform 

primary bovine fibroblasts (PalF cells). The work described in this thesis confirmed 

these initial results and extended these findings. Quercetin-treated cells showed a more 

aggressive transformed morphology than untreated transfectants, whether they had been 

transfected with whole genome BPV-4 or sub-genomic fragments. However, whereas 

in non-treated cells the E8 gene was required for anchorage independence, 

quercetin-treated cells containing the BPV-4 E7 gene alone were found to be capable of 

anchorage-independent growth. Conversely, and contrary to expectation, quercetin- 

treated cells transfected with the E8/E7 genes grew very poorly or not at all in 

semi-solid media. The reasons for the antagonistic action of E8 and quercetin are not 

yet understood. Independent of quercetin action, results also provided circumstantial 

evidence that the E8 oncoprotein is responsible for downregulation of gap junctional 

intercellular communication in BPV-4-transformed cells. BPV-4 does not have an E6 

gene and immortalisation of BPV-4-transformed cells is achieved only in the presence 

of an exogenous E6 gene. Quercetin treatment however conferred immortality on cells 

transformed by whole genome BPV-4 or by the E7 gene alone.

The observed synergism between BPV-4 and quercetin was also found to be dependent 

on time of treatment. Treatment of cells with quercetin either immediately before or 

after DNA transfection resulted in an increased degree of cellular transformation 

compared to that seen on lengthening the interval between treatment with the chemical 

and transfection with BPV-4 genes. PalF cells treated with quercetin immediately after 

transfection with the E7 gene were tumourigenic. The tumours grew far more 

aggressively than when cells were treated with quercetin before transfection with whole



genome BPV-4. This indicated that the timing of exposure of viral products and 

quercetin is crucial and that in certain circumstances only the E7 gene is required for 

full malignant transformation.

No discernible mutation was found either as a result of treatment with quercetin and / or 

transfection with BPV-4 genes. However, quercetin was found to cause epigenetic 

changes in PalF cells as measured by transient alteration in phosphotyrosine levels of, as 

yet, unidentified proteins.

These results strongly support the hypothesis that quercetin acts as a co-carcinogen in 

BPV-4-associated carcinogenesis in vivo and suggest that this in vitro experimental 

system provides a useful model for analysis of viral/ chemical co-operation in 

papillomavirus-associated carcinogenesis.
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INTRODUCTION



Chapter 1

INTRODUCTION

1.1 The multifactorial nature of cancer

Carcinogenesis is a multistep process arising from complex interactions between both 

environmental and genetic factors (Pike & Forman, 1991; Henderson et al., 1991 for 

reviews). This results in disruption of normal cellular control and, over time, ultimately 

leads to malignancy. This disease (perhaps more accurately described as collection of 

diseases as there are many different forms of cancer and type of tissue affected) is not 

confined to humans as many multicellular organisms can develop malignancies. 

However as at least one in five humans will develop cancer (Franks & Teich, 1991) it is 

perhaps not surprising that there is great impetus to extrapolate findings from cancer 

studies in other multicellular organisms to that of the human condition - the ultimate 

goal.

Evidence for the multistep nature of carcinogenesis has been gathered from 

pathological / clinical observation of human tumours, direct in vivo experimentation 

using animal model systems and more recently from molecular analysis. 

Epidemiological evidence includes the observation that incidence of the most common 

human cancers increases dramatically with age, analysis of this relationship suggesting 

that 3-7 sequential hits are required (Miller, 1980). The apparent clonal origin of 

malignant growth suggests that cancer arises through the mutation of a single progenitor 

cell followed by clonal expansion and, over time, acquisition of further mutations, fixed 

in turn by further clonal expansion (Nowell, 1976). Eventually the cell accumulates 

enough mutations to make it malignant and in some cases may mutate further allowing 

the malignant cells to invade and colonise distant organs i.e. to metastasise.
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Evidence supporting a multi-hit hypothesis includes data generated from study of 

human cancers of the colon and the cervix. In colon cancers there is clear 

morphological evolution from benign tumours (adenomas) which are small and appear 

almost normal histologically, to malignant tumours which show a high level of cellular 

disorganisation (Sugarbaker et al., 1985). These clinical observations have been 

supported by molecular analyses (Fearon & Vogelstein, 1990). A morphological 

evolution is also seen in cervical carcinomas where lesions are classed according to the 

degree of cellular disruption (Richart, 1968). Similar to findings in colorectal tumours, 

molecular analyses of cervical tumours has indicated activation of cellular genes during 

malignant progression (Riou et al., 1985).

Evidence such as the above and work on animal models points to there being at least 

three discernible stages in the process of carcinogenesis - initiation, promotion and 

progression. Study of the mouse skin model (Hecker et al., 1982) has been of particular 

use as the aetiology of tumour development in this system is well documented and can 

be controlled. This is in contrast to human tumour studies where, in most cases, 

causative agents have yet to be identified. In this classical mouse system initiation 

requires only a single exposure of skin to a carcinogen, such as 

7,12-dimethylbenz(a)anthracene (DMBA). It appears to involve DNA damage, in this 

case carcinogenesis-specific point mutations in the c-Ha-ras gene (Quintanilla et al., 

1986). Promotion, which results in the appearance of benign tumours (papillomas), 

involves multiple exposure to chemical agents which do not damage DNA directly e.g. 

12-O-tetradecanoylphorbol-13-acetate (TPA). This stage is now thought to consist of 

several steps and has been largely associated with epigenetic mechanisms such as the 

activation of protein kinase C (PKC), the direct membrane target protein receptor of 

phorbol esters (Castagna et al., 1982). PKC represents a large gene family of 

isoenzymes which act as Ser/ Thr-specific kinases and play a role in signal
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transduction. This is a process by which cells respond to extracellular signals and 

although there are a number of different ways in which these signals are transduced, all 

pathways result in the regulation or modulation of gene expression (Hug & Sarre, 1993). 

It would be expected that disruption of signal transduction pathways would be of great 

consequence to cells, affecting normal cellular proliferation and differentiation.

A proportion of the mouse skin papillomas induced by initiating and promoting agents 

progress to malignant carcinomas. This third stage, progression, can be regarded as an 

open-ended process as malignant tumours may gain further mutations and become more 

aggressive. Data from the mouse skin model has suggested that tumour progression 

may be due to genetic events, as while genotoxic carcinogens are found to enhance 

conversion of benign papillomas to carcinomas, non-genotoxic tumour promoters do not 

(Hennings et al., 1983).

1.1.1 Risk factors

These studies have successfully shown that in most cases cancer results from a complex 

interplay between environmental and genetic factors. Epidemiology has identified 

broad categories of risk factors. These include physical agents (such as UV light or X- 

rays), chemical agents (both carcinogens and mutagens) and infectious agents. Bacteria, 

fungi, parasitic animals and viruses have all been considered in this last category. Of 

these, viruses have been studied in greatest detail, although there are notable exceptions 

such as recent work implicating infection with the bacterium Helicobacter pylori as a 

co-factor in the development of stomach cancer (Forman et al., 1990; Nomura et al., 

1991; Parsonnet et al., 1991).

Other influences to be considered include the host immune status (Beverley, 1991). For 

example, deliberately immunosuppressed transplant patients and virally- 

immunosuppressed HIV (human immunodeficiency virus) patients have a substantially
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increased risk of developing B cell lymphomas compared to immunocompetent patients 

(e.g. zur Hausen, 1991). HIV patients are also likely to develop otherwise rare tumours 

such as Kaposi's sarcoma at multiple sites (Fauci, 1988). Similarly, genetic 

predisposition to particular forms of cancer is also a risk factor (Ponder, 1990). 

Predisposition is most easily recognised in inherited cancer syndromes which include 

childhood tumours of the eye (retinoblastoma) and of the kidney (Wilms' tumours); 

these examples will be discussed more fully in the next section. Inherited cancer 

syndromes are thought to account for 1-2 % of cancer incidence (Ponder, 1990).

1.1.2 Oncogenes and tumour suppressor genes

Whereas many environmental factors have long been recognised to contribute to 

carcinogenesis it is only over the last 20 years, since the emergence of molecular 

biological techniques, that the identification and preliminary dissection of some of the 

genetic elements involved in cancer has been possible. Study of both in vivo and 

in vitro systems has implicated two classes of genes in cancer - oncogenes and tumour 

suppressor genes. Disruption of the normal activities of such genes appears to be a 

common and important event in the genesis of cancer (Bishop, 1991 for review).

Oncogenes are activated forms of cellular genes (proto-oncogenes) and were first 

described in rapidly transforming retroviruses (Cooper, 1982) where they were 

presumed to be viral in origin. However, further work showed that these oncogenic 

sequences were derived from normal non-transforming cellular DNA picked up by the 

virus sometime during its evolution (Bishop & Varmus, 1982). Study of retroviruses 

has allowed identification and subsequent characterisation of many cellular proto

oncogenes. Such genes encode products which are fundamental to normal cell growth 

and development. These include growth factors, growth factor receptors and proteins 

involved in signal transduction, DNA replication and transcription factors (Teich, 1991).
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As such it is not difficult to imagine that disruption of the balanced regulation of such 

complex processes might result in cell transformation.

Proto-oncogenes can be converted to oncogenes by a variety of events including point 

mutation (Capon et al., 1983), chromosomal translocation (Erikson et al., 1983) and 

amplification (Alitalo et al., 1983). Other events which can lead to activation include 

viral transduction (Neil et al., 1984) and insertion of viral sequences near to proto

oncogenes. For example, examination of chicken bursal lymphomas induced by the 

retrovirus avian leukosis virus (ALV), showed that the proto-oncogene c-myc was 

activated in over 80 % of these neoplasms and that the most frequent site of ALV DNA 

integration in these lymphomas was between exons 1 and 2 of the c-myc gene (Hayward 

et al., 1981). Activation of proto-oncogenes such as c-ras and c-myc, whether through 

direct mutation of their DNA or aberrant expression, has been found in a variety of 

human tumours (Alitalo & Schwab, 1986; Rodenhuis, 1992) indicating the critical role 

of these genes in normal cellular growth and proliferation.

The second class of cancer genes are the tumour suppressor genes (Stanbridge, 1985). 

These, in common with proto-oncogenes, are normal cellular genes although unlike the 

latter, tumour suppressor genes are largely thought to restrain cell proliferation. 

However, whereas oncogenes are thought to contribute to carcinogenesis by being 

activated by dominant mutations, tumour suppressors are thought to contribute to the 

oncogenic process mainly through loss of function. Early evidence for their existence 

came from somatic cell hybridisation studies which showed that fusion of tumour cells 

with normal cells invariably resulted in non-tumourigenic hybrids (Harris et al., 1969; 

Harris, 1985). The observation that somatic cell hybrids had unstable karyotypes, 

frequently lost chromosomes and reverted to tumourigenicity when specific normal 

chromosomes were lost, led to the conclusion that tumour development may arise 

through loss of critical growth-regulating genes. As a result, tumour suppressor
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research focused on the study of these key chromosomes for identification of candidate 

genes. This was achieved by transferring in single chromosomes using the technique of 

microcell transfer (Fournier & Ruddle, 1977). Initial studies showed that genes present 

on chromosome 11 were important in suppressing tumours in both HeLa cells, an 

established human cervical carcinoma line containing papillomavirus DNA, (Saxon 

et al., 1986) and Wilms' tumour cells (Weissman et al., 1987). Similar experiments 

have shown that other chromosomes are also associated with tumour suppression. 

However, as a chromosome contains many genes it was important to be able to 'home in' 

on intrachromosomal regions. Molecular biological techniques have been of particular 

use in this regard. Using a combination of methodologies including cytogenetic 

analyses and restriction fragment length polymorphisms (RFLPs) to implicate 

chromosomal regions of interest, probes can be identified which map to particular 

regions. Such probes are of use as the mutational events which lead to inactivation of 

tumour suppressor genes often involve large scale chromosomal rearrangements and 

deletions encompassing both the tumour suppressor gene and flanking chromosomal 

regions. If these flanking regions are heterozygous in untransformed cells but are 

consistently reduced to the homozygous state in transformed cells, this loss of 

heterozygosity (LOH) suggests the presence of a tumour suppressor gene nearby, the 

loss of which is important in that tumour biology (Hansen & Cavenee, 1987).

Retinoblastoma was the first cancer in which a tumour suppressor gene was identified 

using this combination of cytogenetic and molecular analyses. This disease, which 

results in the formation of ocular tumours, affects young children (Knudson, 1971). 

There are both sporadic and hereditary forms of this cancer which has a world-wide 

incidence of about 1 :20,000. In approximately ten percent of cases tumours are 

heritable (Evans, 1993). It was postulated that development of this rare eye cancer, 

whether familial or sporadic in origin, was due to two successive lesions in the cell 

genome (Knudson, 1971). In sporadic retinoblastoma, i.e. in children with no family
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history of the disease, Knudson argued that both mutations occur somatically in the 

same precursor retinal cell, whereas in familial retinoblastoma one of the mutations is 

acquired from a parent or results during gametogenesis, the second mutation occurring 

somatically. Karyotypic analyses of retinoblastoma tumours showed that a proportion 

of these tumours had a deletion of chromosome 13ql4, suggesting that deletion or 

inactivation of a gene at this site was important in the aetiology of this cancer (Godbout 

et al., 1983; Sparkes et al., 1983). These findings were instrumental in the ultimate 

identification and isolation of the retinoblastoma (RB) gene (Friend et al., 1986; Lee 

et al., 1987). Further studies have shown that the protein encoded by this gene 

(pl05Rb) acts as a negative regulator of cellular proliferation by inhibiting the activity 

of the E2F family of transcription factors. E2F binding sites are present in a variety of 

genes involved in initiating DNA synthesis (Lam & La Thangue, 1994 for review). It 

has also been proposed that pl05Rb may play a role in differentiation (Chen et al.,

1989). Apart from its central involvement in development of retinoblastomas, mutation 

of the RB gene has been observed in osteosarcomas, soft tissue sarcomas and 

carcinomas of the breast, lung and bladder (Weinberg, 1992).

Further evidence for the existence of tumour suppressor genes was provided by analysis 

of Wilms' tumour, another childhood cancer. This malignancy has an incidence of 

approximately 1 : 10,000 and accounts for 85% of all childhood kidney cancer 

(Matsungaga, 1981). As found for retinoblastoma, there are both sporadic and 

hereditary forms of this cancer although hereditary cases are not as frequent. Studies 

indicated that the tumour suppressor gene locus involved in Wilms' tumour mapped to 

chromosome 1 lp l3 (Koufos et al., 1984). However results from other studies suggest 

that other loci are involved in the pathogenesis of this disease. This includes evidence 

for loss of heterozygosity at l ip  15 without involvement of 1 lp l3 (Mannens et al., 

1988; Reeve et al., 1989). The genetics of Wilms' tumour would therefore appear to be
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far more complex than those of retinoblastoma although both involve loss or 

inactivation of tumour suppressor genes.

The importance of tumour suppressor genes is perhaps best exemplified by the tumour 

suppressor gene p53. The importance of this gene's functional activity is indicated by 

the observation that p53 is mutated at high frequency in the development of many 

sporadic human cancers (Harris & Hollstein, 1993). Similarly, germline mutations in 

the p53 gene are associated with Li-Fraumeni syndrome, a disorder that predisposes 

individuals to developing multiple forms of cancer at a young age including breast 

carcinoma, soft tissue sarcoma, osteosarcoma and leukaemia (Malkin et al., 1990; 

Malkin, 1993). Like the product of the RB gene, the p53 protein appears to play an 

important role in negatively regulating progress through the cell cycle. p53 is a 

sequence-specific DNA-binding protein that functions as a transcription factor. The 

transcriptional activity of p53 is essential to its role as a tumour suppressor gene 

(Pietenpol et al., 1994) although it must be considered that novel biological properties 

of the p53 protein may also be involved (Picksley & Lane, 1994).

It has been suggested that in some cases coupled inactivation of p53 and pl05Rb 

proteins may be important for transformation. For example, and of particular 

significance to this thesis, several DNA tumour viruses including certain 

papillomaviruses, encode proteins that bind to and inactivate both p53 and pl05Rb. 

Such inactivation is thought to be critical for transformation by these viral proteins both 

in vivo and in vitro (Van Dyke, 1994 for review). This will be discussed more fully 

later (Chapter 1.2.2).

1.1.3 Viruses

It is estimated that viruses have an aetiological role in approximately 15 percent of 

human cancers world-wide (zur Hausen, 1991). Although essential, viral infection
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alone is not sufficient for development of these cancers and other factors are required. 

Viral contribution can either be direct or indirect. Indirect mechanisms include 

induction of immunosuppression which leaves the host prone to developing diseases, 

including cancers, not directly related to the suppressing virus. A classic example of 

this is seen in patients infected with human immunodeficiency virus (HIV) who show a 

greatly increased risk of developing specific tumours, particularly Kaposi sarcomas and 

B cell lymphomas (Fauci, 1988). As regards direct mechanisms of viral contribution to 

carcinogenesis the most common examples are cancers of the liver and cervix which 

together account for about 80 % of known virus-induced tumours (zur Hausen, 1991). 

Of these, both epidemiological (Trichopoulos et al., 1976) and DNA analyses of liver 

tumours (Nagaya et al., 1987) have linked hepatitis B virus (HBV) infection to the 

development of hepatocellular carcinoma (HCC). Hepatitis C virus (HCV) infection 

may also play a role in the development of this disease (Zavitsanos et al., 1992). 

Similar studies have shown an association between certain types of human 

papillomavirus (HPV) and cervical cancer (zur Hausen, 1976; 1989a). It is certain 

members of the latter family of viruses - the papillomaviruses - which are of direct 

relevance to this thesis and which are therefore considered in greater detail below.

1.2 Papillomaviruses

Papillomaviruses are small DNA viruses which induce tumours in the skin and mucosa 

of a wide variety of animals including man. Although such tumours are predominantly 

benign and often regress spontaneously, some can progress to malignancy. The general 

widespread presence of papillomaviruses within human populations and the observed 

malignant conversion of some of these lesions has accorded these viruses great clinical 

importance. As such this has generated much interest in the study of their genetic make

up and transformation potential.
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Although papillomaviruses show great specificity with regard not only to host species 

but also anatomical site, many types show similar genomic organisation (Figure 1.1). In 

all cases the viral genome is closed circular double-stranded DNA of approximately 

8 kb (kilobase) pairs in size, with all the major open reading frames (ORFs) overlapping 

to a large extent and located on one strand only. These ORFs show notable 

conservation of position and sequence homology between different viral types. Viral 

transcription is unidirectional with viral mRNAs being generated by complex splicing 

mechanisms, some of which encode fusion polypeptides. Functions have been assigned 

to several ORFs by means of deletion-insertion mutagenesis of sub-genomic DNA 

fragments and cDNAs (Campo & Jarrett, 1987 for review). As such the viral genome 

can be roughly divided into three functionally distinct regions. These consist of an 

upstream regulatory region, the long control region (LCR), an early region which 

encodes proteins that control replication and transcription of viral DNA and proteins 

involved in cellular transformation, and a late region that codes for viral structural 

proteins.

1.2.1 Cottontail rabbit papillomavirus

Cottontail rabbit (Shope) papillomavirus (CRPV) was the first model for studying viral 

oncogenesis in mammals (Shope, 1933; Rous & Beard, 1935). In vivo this virus 

induces benign skin papillomas which usually regress, however these papillomas can 

progress to squamous skin carcinomas in up to 25 % of rabbits (Kidd & Rous, 1940). 

Study of this virus has proved useful for, and pertinent to, analysis of the multifactorial 

nature of papillomavirus-associated carcinogenesis as co-factors are involved in 

malignant progression. The important role played by environmental co-factors is 

demonstrated by the limited geographical incidence of CRPV infection, as although 

these rabbits are found throughout the United States it is only animals found in regions 

bordering the Mississippi river which develop CRPV-induced papillomatosis 

(Shope, 1933).
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Figure 1.1 Genomic organisation of BPV-1, BPV-4 and HPV-16. In all cases the viral 

genome is represented as linear and the boxes represent ORFs. The early 

ORFS are designated E, and the late ORFs L. Dashed lines represent the 

long control region (LCR). The first ATG codon in an ORF is indicated by 

a vertical dashed line; ORFs without an ATG codon are represented as thin 

lined boxes.
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The ability of CRPV to induce tumours in experimental animals has allowed 

examination of papillomavirus-induced cellular transformation. Furthermore this was 

the first papillomavirus shown to synergise with chemical carcinogens resulting in 

malignant transformation of CRPV-induced lesions (Rous & Beard, 1935; Rous & 

Friedewald, 1941; 1944).

Examination of CRPV transforming functions in vitro has demonstrated that this virus 

encodes at least three transforming proteins; two encoded by the E6 ORF and one by the 

E7 ORF. Although the functions of these proteins have yet to be elucidated (Meyers 

et al., 1992) the CRPV E7 protein has been shown to bind to the retinoblastoma product 

pl05Rb (Haskell et ah, 1993). Binding of the HPV-16 E7 oncoprotein to this tumour 

suppressor protein is thought to be important to HPV-16-mediated cellular 

transformation (Dyson et al., 1989 and Chapter 1.2.2 below). Similarly, binding of the 

CRPV E7 protein to pl05Rb may be involved in CRPV-mediated cellular 

transformation.

1.2.2 Human papillomaviruses

To date molecular cloning techniques have allowed the identification of over 65 

different types of human papillomaviruses (HPVs) (Van Ranst et al., 1992). These can 

be naturally divided into 2 major sub-groups initially classified by tissue type infected- 

namely cutaneous and mucosal. Approximately equal numbers have been assigned to 

each class. Human papillomaviruses cause a variety of lesions in distinct anatomical 

sites. These range from benign common warts (verrucae vulgares), to the progression of 

some genital flat warts to malignancy. However the degree of site specificity varies 

among types. For example HPV-13 is associated solely with oral lesions 

(Pfister et al., 1983) whereas HPV-11 has been found in both laryngeal and ano-genital 

infections (Gissmann et al., 1983).
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Many of the cutaneous HP Vs have been isolated almost exclusively from patients 

suffering from epidermodysplasia verruciformis (EV). EV is a rare life-long disease in 

which the patient suffers continuous multiple-type papillomavirus infection (Orth, 

1987). Some of these virally-induced lesions can progress to malignancy over time, this 

long 'incubation' being indicative of the requirement of co-factors for full 

transformation. The exact nature of this disease has yet to be elucidated. Lutzner 

(1978) suggested that the high frequency of parental consanguinity in EV patients and 

the observed familial occurrence of the disease pointed to the importance of genetic 

factors in development of this disease. Pedigree analyses of such families suggested 

that EV is an autosomal recessive disorder with both sexes being equally affected. 

However, another mode of EV transmission has also been suggested by the study of a 

family in which only males were affected (Androphy et al., 1985). Pedigree analysis of 

this family suggested an X-linked, recessive inheritance of the disease (Androphy et al.,

1985). EV patients have normal immunoglobulin levels (Lutzner, 1978) however most 

have impaired cell-mediated immunity (Jablonska & Orth, 1985). It is thought that this 

immunologic defect prevents patients mounting a full response to papillomavirus 

infection (Jablonska & Orth, 1985).

However, with regard to percentage of general population affected and thereafter 

progressing to malignant lesions, the mucosal HP Vs, particularly those infecting the 

lower genital tract, pose a greater threat than cutaneous HPVs. As a consequence 

mucosal HPVs have attracted more medical and scientific interest.

HPV infections of the genital tract are now recognised to be among the most prevalent 

sexually transmitted diseases (U.S. Dept, of Health and Human Services as cited by 

Shah & Howley, 1990). Infection often results in production of genital warts. These 

can be either exophytic warts (condylomata acuminata) or the more recently recognised 

but related flat wart (condyloma planum). In males, exophytic condylomas occur on the
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penis, around the anus, on the perineum and, rarely, on the scrotum. In females, this 

type of wart is found at the entrance of the vagina, on the vulva, around the anus, on the 

perineum and, very occasionally, on the uterine cervix where flat warts are found. 

Lesions from both types of warts can be identified cytologically and histologically. 

Although most regress spontaneously or respond to treatment, some recur. Recurrence 

has been correlated to presence of virus in normal epithelium adjacent to the lesion 

(Ferenczy et al., 1985). The role of the immune system in such regression / recurrence 

is not well understood. Evidence to date suggests that human papillomavirus infection 

is controlled by the host's cellular immune response and that the degree of this control 

differs between viral types (Frazer & Tindle, 1992).

Some genital warts, most often flat warts, progress to malignancy. An association 

between papillomaviruses and genital cancer was suggested in the 1970s (zur Hausen, 

1976). The most common, and thus best studied, genital cancer is squamous cell 

carcinoma (SCC) of the uterine cervix. Molecular studies examining the presence and 

expression of HPV genomes in invasive cancers have provided data supporting a viral 

contribution to the development of this disease. These studies have been complemented 

by findings from epidemiological, clinical and pathological examination of cervical 

neoplasms.

Epidemiological studies have demonstrated that infection by genital HPVs and cancer of 

the cervix both share characteristics of sexually transmitted diseases. For example 

cervical cancer is not seen in nuns and other virgins whereas there is a strong link 

between the cancer and early onset of sexual activity, multiple sexual partners and 

multiple kinds of infection (Brinton, 1992). Lesions of the cervical epithelium are 

termed cervical intraepithelial neoplasia (CIN) and are classified as follows:
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CIN-1 - mild dysplasia 

CIN-2 - moderate dysplasia 

CIN-3 - severe dysplasia.

Clinical and pathological evidence suggesting an association between HPVs and 

cervical cancer included the fact that the flat cervical warts seen in CIN-1 are often 

indistinguishable from those resulting from papillomavirus infection. This argument 

was given further credence when analyses of many primary carcinomas, metastatic 

tumours and cell lines derived from cervical tumours were shown to contain HPVs 16 

and 18 or related types of HPV DNA (Lancaster et al., 1986; Ostrow et al., 1982). As 

estimates for the annual world-wide incidence of cervical carcinoma currently stand at

500,000 with about 45% mortality, even with medical intervention (Broker & Botchan,

1986), elucidation of papillomavirus / host interaction is of prime concern for both 

therapeutic and ultimately prophylactic treatments.

Although almost all types of genital tract HPVs are found in mild lesions and sub- 

clinical infections, it is only types 16 and 18 which predominate in invasive cancers. In 

most malignant tumours the viral DNA is integrated and actively transcribed. The 

pattern of viral transcription is less uniform in severe dysplasia than mild lesions. In the 

former, viral transcripts originate from two specific open reading frames, E6 and E7 

(Schwarz et al., 1985), whereas all OREs are expressed in mild lesions (Shah & 

Howley, 1990). In vitro experiments (Phelps et al., 1988; Storey et al., 1988; Watanabe 

et al., 1989) have demonstrated that the transforming proteins of HPVs are encoded by 

the E6 / E7 ORFs. These viral proteins have also been shown to inactivate cellular 

tumour suppressor gene proteins. The HPV-16 E7 protein binds to the retinoblastoma 

protein pl05Rb (Dyson et al., 1989) and the E6 oncoprotein has been shown to bind to 

and promote degradation of the p53 protein (Wemess et al., 1990; Scheffner et al.,

1990). As both p53 and pl05Rb are thought to act as cellular 'policemen', normally 

preventing uncontrolled cellular proliferation, disruption of tumour suppressor protein
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functions may well be critical to the transforming activity of the E6 and E7 ORFs and to 

transformation in general.

In malignant tumours containing viral DNA, integration is specific with regard to the 

virus but not to intrachromosomal locations. Linearisation of the viral genome often 

occurs within the El / E2 region, thus preventing expression of the E2 ORF. In 

HPVs-16 and 18, E2 proteins are known to repress expression from the promoter 

regulating expression of the E6 / E7 ORFs (Cripe et al., 1987; Thierry & Yaniv, 1987). 

Thus inactivation of E2 may allow unregulated expression of the E 6 / E7 ORFs. 

Constitutive expression of these genes is seen in practically all HPV-positive cancers 

and HPV-containing cell lines. The E6 / E7 genes of the high-risk, but not low-risk 

HPVs ('risk' refers to an association with malignant conversion) are capable of 

immortalising keratinocytes in vitro (Diirst et al., 1987; Kaur & McDougall, 1988; 

Schlegel et al., 1988). Although immortalised, these cells are not malignant suggesting 

that co-factors are required for progression to carcinomas. That addition of activated 

ras to HPV-16-immortalised human cervical cells results in full transformation, as 

assayed in nude mice, is further evidence that progression to cervical cancer is multistep 

and multifactorial (DiPaolo et al., 1989).

1.2.3 Bovine papillomaviruses

The clinical importance of HPV-induced lesions has ensured a healthy interest in the 

study of papillomaviruses. Due to difficulties in finding a suitable in vitro system for 

study of human papillomaviruses, early work involved analyses of their animal 

counterparts. The bovine papillomaviruses (BPVs) have been of great experimental use 

although recent work (Ostrow et al., 1990; Schneider et al., 1991) suggests that rhesus 

monkey papillomavirus (RhPV) may provide a better model for human genital virus 

types as RhPV infects the same type of tissue and shows similar in vitro transformation 

characteristics to HPV-16.

16



Bovine papillomaviruses share a number of factors in common with human 

papillomaviruses;

(a) they show great specificity with regard to site of infection

(b) certain viral types are associated with malignant progression

(c) such progression requires interaction between viral, cellular and environmental 

co-factors

An additional advantage in studying animal papillomaviruses is that, unlike the human 

viruses, direct in vivo experimentation is feasible.

To date six bovine papillomaviruses have been identified. These can be divided into 

two sub-groups using such criteria as degree of genome homology, site specificity and 

clinical manifestation (Campo et al., 1980; 1981; Jarrett et al., 1984). Sub-group A 

viruses include BPVs-1, 2 and 5, which cause fibropapillomas. Sub-group B includes 

types 3, 4 and 6 which are purely epitheliotropic. Data from both immunological and 

Southern hybridisation studies show that there is no cross-reactivity / cross-homology 

between the two sub-groups (Campo & Jarrett, 1987).

The ability of the BP Vs causing fibropapillomas to transform somatic cells in vitro, and 

also induce tumours in experimental animals has been of great use in assigning 

functions to particular viral ORFs. In this regard the BPV-1 genome has been studied in 

greatest detail. Transforming activity has been localised to a region covering 69% of 

the genome. Further genetic dissection has identified the relevant genes as E5 and E6 

(Yang et al., 1985; Groff & Lancaster, 1986; Schiller et ah, 1986). The E5 oncoprotein 

is the major transforming protein and has been shown to induce cellular DNA synthesis 

and activate the receptors for epidermal growth factor (EGF), colony stimulating factor 

(CSF-1) (Martin et al., 1989) and platelet derived growth factor (PDGF) (Petti et al., 

1991). BPV-1 E5 protein has also been shown to bind to a 16 kD (kiloDalton) cellular
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protein called ductin. Ductin is a component of gap junctions and also of the vacuolar 

proton channel-forming ATPase (Finbow et al., 1991; Goldstein et al., 1992). The 

second oncoprotein of BPV-1, the E6 protein, contains cys-x-x-cys zinc-binding 

domains (Barbosa et al., 1989) and has transcriptional transactivator activity (Lamberti 

et al., 1990). This gene’s contribution to the transformation process could be via 

deregulation of cellular genes.

Although the BPV-1 E7 protein contains a zinc-binding domain and such binding has 

been shown to be important for the transforming activities of HPVs 16 and 18 E7 

proteins (Watanabe et al., 1990; McIntyre et al., 1993), BPV-1 E7 protein does not 

appear to have a major role in cell transformation. Rather, this protein is involved in the 

control of viral DNA replication and viral genome copy number (Lusky & Botchan, 

1985).

The function of the BPV-1 E8 gene has yet to be established. However, as found for all 

papillomaviruses, the structural proteins of BPV-1 are encoded by the LI and L2 ORFs. 

The major capsid protein is encoded by LI and the minor capsid protein by L2 (Favre 

et al., 1975).

1.3 Bovine papillomavirus associated cancers in vivo

Although BPV-1 has been widely used to study the in vitro biology of papillomaviruses, 

this particular virus is not associated with the development of cancer in its natural host 

in vivo. Of the two BP Vs which are, BPV-2 is associated with bladder cancer (Campo 

et al., 1992) and BPV-4 with cancer of the upper alimentary canal (Jarrett et al., 1978; 

Campo et al., 1980). In both diseases ingestion of bracken fern plays a pivotal role in 

malignant progression. The fern is documented as containing mutagens, carcinogens 

and immunosuppressants (Evans, I.A. et a l, 1982; Evans, W.C. et al., 1982). In the 

case of BPV-2, an epidemiological role for bracken was established as cattle fed
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bracken under experimental conditions developed bladder tumours histologically 

indistinguishable from those found naturally (Price & Pamukcu, 1968; Pamukcu et al., 

1976). The viral factor was confirmed by reciprocal experiments inducing bladder 

cancer by injecting extracts of bovine warts into the organ (Olson et al., 1959); 

conversely production of skin and vaginal lesions were seen in animals treated with 

bladder tumour extracts (Olson et al., 1965). However it was not until more recently 

that the identity of the viral type was confirmed in a series of experiments which also 

examined the synergism between bracken fern and the virus. In these studies 

bracken-fed cattle developed cutaneous warts at the site of BPV-2 injection. They were 

also found to be immunosuppressed and developed bladder cancers indistinguishable 

from those found naturally (Campo & Jarrett, 1986; Campo et al., 1992). 'Bracken-free' 

animals developed skin warts but not bladder cancers. Interestingly some of the 

bracken-fed control animals developed bladder cancers even though they had not been 

injected with BPV-2. Further analysis showed that BPV DNA was present in these 

cancers, suggesting that bracken-induced immunosuppression of the host had allowed 

reactivation of latent virus (Campo et al., 1994a). Sixty-nine percent of the 

experimentally induced bladder cancers analysed were found to contain BPV-2 DNA as 

compared to 46% of field cases which were positive for BPV-2 DNA. The above 

results support roles for both virus and chemical factors in urinary bladder 

carcinogenesis.

Papillomavirus and bracken fern have also been identified as co-factors for cancer of the 

upper alimentary canal of cattle (Jarrett et al., 1978). BPV-4, the viral type associated 

with this disease, induces papillomas in the upper alimentary canal (Jarrett et al., 1978; 

Campo et al., 1980). Although most of these lesions are benign and regress 

spontaneously, some can progress to malignant carcinomas in cattle feeding on bracken 

fern. These cancers are often accompanied by adenomas and adenocarcinomas of the 

lower bowel and urinary bladder cancer. The observation that bracken-grazing cattle
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show more widespread and persistent papillomatosis than animals who have a 

bracken-free diet has been reproduced in controlled in vivo experiments (Campo & 

Jarrett, 1987; Campo et al., 1994b). Of six animals injected in the palate with BPV-4 

and kept on a diet of bracken, three developed cancer of the lower bowel and two of 

these developed cancer of the upper alimentary canal (Campo, 1987; Campo et al., 

1994b). Cancer was not observed in either 'virus-only' or 'bracken-only' control animals 

thus indicating pivotal roles for both virus and fern in malignant progression.

1.4 Bovine papillomavirus type 4

Of the bovine papillomaviruses, BPV-4 has proved a useful model for neoplasia of the 

uterine cervix in humans. It is both associated with a naturally occurring cancer, 

providing in vivo and in vitro systems for experimentation, and is also purely 

epitheliotropic (as seen for the cervical cancer associated HPVs). One major difference 

between BPV-4 and HPVs-16 and 18 is that, unlike the majority of human cervical 

cancers, BPV-4 DNA is rarely found in carcinomas. Whilst not negating its interest to 

cervical cancer studies this fact does raise the question as to whether BPV and HPV 

transform cells by different mechanisms. Ongoing studies of viral / cellular interactions 

in both systems may well clarify this point.

Apart from its obvious usefulness as an in vivo model system for 

papillomavirus-associated carcinogenesis, the transformation biology of BPV-4 in vitro 

is also of interest.

1.4.1 Transformation biology of BPV-4 in established cells

The earliest attempts to study the transforming properties of BPV-4 were carried out in 

established mouse fibroblast cells. The virus was found to transform both NIH3T3 and 

a C l27 sub-line (C127sc) in vitro. Such cells were found to be tumourigenic in nude 

mice (Campo & Spandidos, 1983; Smith & Campo, 1988). In the C127sc study a
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number of experimental parameters were examined. Results showed that, as in vivo, 

several factors contributed to viral DNA-dependent morphological transformation. The 

optimal in vitro conditions included high serum concentrations, presence of the tumour 

promoter 12-<9-tetradecanoylphorbol-13-acetate (TPA), and linearisation of the viral 

DNA within the El ORF, with the additional removal of nucleotides from the 3' end of 

this ORF (Smith & Campo, 1988). It was proposed that the higher frequency of focus 

induction seen with high serum levels was due to the presence of stimulatory growth 

factors allowing expression of the transformed phenotype. The role the phorbol ester 

TPA plays in encouraging progression to the fully transformed state in the above 

experimental system is more difficult to assess as this chemical causes many cellular 

changes including activation of PKC and disruption of intercellular communication 

(Murray & Fitzgerald, 1979; Castagna et al., 1982). It was proposed that linearisation 

or fragmentation of the BPV-4 DNA may have allowed full transformation of cells by 

disrupting viral repressor functions. The E2 ORF, which overlaps the 3' end of the El 

ORF, encodes a protein that acts as a transcriptional regulator and several positive and 

negative control elements have now been identified in the BPV-4 LCR (Jackson & 

Campo, 1991; 1995; McCaffery & Jackson, 1994).

This early work on established mouse lines defined the BPV-4 E7 and E8 ORFs as the 

transforming genes, as a viral fragment containing this region induced focus formation 

(Smith & Campo, 1988). Amplification and rearrangement of specific host sequences 

were also observed subsequent to transfection with BPV-4 DNA (Smith & Campo, 

1988; 1989). It was also noted that viral DNA was absent in the majority of fully 

transformed cell lines. This mirrored findings in vivo where presence of the virus, 

although found in benign papillomas, is only rarely detected in carcinomas (Campo et 

al., 1985). This suggested that although required for induction of the papillomas, 

presence of BPV-4 is not necessary for progression to or maintenance of the 

transformed state.
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1.4.2 BPV-4 gene expression

Numerous BPV-4 transcripts have been identified in both papillomas and virally- 

transformed established cells (Smith et al., 1986; Stamps & Campo, 1988; Campo et al., 

1994c). BPV-4 mRNAs, in common with other papillomavirus transcripts, are 

generated by complex splicing mechanisms. The viral transcripts fall into two classes. 

Those encoded by the early ORFs terminate at the polyadenylation site at nt 4004 of the 

BPV-4 genome and are detectable both in productive papillomas and in transformed 

cells in vitro. Transcripts representing the late ORFs, the second class, terminate at 

either of the polyadenylation sites at nts7155 and 7191 and are only found in 

papillomas.

The BPV-4 El ORF is transcribed into a series of mRNAs. The functions of this ORF 

are not yet characterised and it is not yet known which, if any, of the mRNAs encodes 

the functional El protein.

The E2 ORF is transcribed into a mRNA identified as Q. Q represents only the 3' half 

of the E2 ORF and transcripts corresponding to the full ORF have not yet been 

identified. As found for BPV-1, the BPV-4 E2 protein is involved in both positive and 

negative regulation of viral transcription through interaction with regulatory elements in 

the LCR (Jackson & Campo, 1991; 1995).

The E4 ORF is transcribed into several RNA species. Two of these, the 7E11 and

1.6 kb transcripts, encode a potential E1-E4 fusion peptide, although the region of El 

involved differs between these two transcripts. The 7E11 transcript is most likely to 

encode the E1-E4 fusion peptide described for HPV-1 (Doorbar et al., 1988). The 

HPV-1 E1-E4 fusion protein interferes with cytokeratin assembly (Doorbar et al., 

1991); this may upset normal cellular differentiation and favour production of virion
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progeny (Doorbar, 1991). Although functions of BPV-4 E4 have yet to be elucidated 

they may be similar to those of HPV E4. As found for HPV-1 E4 (Breitburd et al.,

1987) the majority of BPV-4 E4 protein is found in the differentiating layers of 

papillomas, coincident with the vegetative replication of viral DNA (Campo et al., 

1994c).

The E7 and E8 ORFs are transcribed into a 3.0 kb RNA. The proteins encoded by these 

genes are instrumental in cellular transformation and their proposed mechanisms of 

action will be discussed in greater detail later. Both the E3 and E5 ORFs lack an 

initiation codon and these ORFs may well be non-functional.

The structural proteins of BPV-4 are encoded by the LI and L2 ORFs. Two related 

transcripts have been identified; one of 2.8 kb which encodes LI and the second of

4.2 kb which has the capacity to encode both LI and L2. These RNAs are found in 

papillomas but not in transformed cells, a finding consistent with the lack of productive 

vegetative replication of viral DNA in vitro. Although the L3 and L4 ORFs present 

contain ATG start codons their function, if any, is not as yet known.

1.4.3 Transformation biology of BPV-4 in primary cells

More recent work has looked at the biology of the virus in primary bovine fibroblasts 

(PalF cells) derived from foetal palate (Jaggar et al., 1990; Pennie et al., 1993). This 

approach has a number of obvious advantages; i.e. such cells are non-established, come 

from the natural host and although fibroblastic (keratinocytes are the natural target cell), 

are derived from the natural site of infection (Jarrett, 1985).

BPV-4 can morphologically transform primary fibroblasts only in co-operation with an 

activated ras gene (Jaggar et al., 1990). Such cells have an extended life span but are 

not immortal and although capable of anchorage-independent growth are not
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tumourigenic in nude mice (Jaggar et ah, 1990). This indicates that additional factors 

are required for full transformation. Thus this system appears to mimic the in vivo 

situation where the virus requires co-factors for development of the upper alimentary 

canal carcinomas (Jarrett et al., 1978).

As suggested by earlier work in established cells, the transforming functions of BPV-4 

in PalF cells have been mapped to the E7, E8 ORFs (Jaggar et al., 1990). BPV-4 E7 

protein is homologous to the HPV-16 E7 protein (Jaggar et al., 1990; Jackson et al.,

1991). It has two cys-x-x-cys zinc-binding motifs and a potential pl05Rb binding 

domain (Jaggar et al., 1990; G.J. Grindlay, personal communication). These domains 

are important for the transforming activities of the HPV-16 E7 protein (Edmonds & 

Vousden, 1989; Chesters et ah, 1990). Although yet to be studied in detail, BPV-4 E7 

may well have similar functions to the HPV-16 protein. As deletion of the 3' terminal 

third of the E7 ORF abolishes in vitro transformation (Jaggar et al., 1990) evidence 

points to this ORF being the major transforming gene of BPV-4.

A number of observations suggest that the BPV-4 E8 ORF may also contribute to 

transforming activity although its exact role has yet to be determined. 

Immunohistochemistry of alimentary canal papillomas has shown E8 to be expressed in 

the basal and suprabasal layers where little or no vegetative viral DNA replication takes 

place (R. Anderson & M.S. Campo, unpublished results). In conjunction with the 

observation that BPV-4 E8 protein is only detected in young papillomas, this marks E8 

as an early protein. BPV-4 E8 protein encodes a small hydrophobic polypeptide similar 

in length (42 residues) and hydrophobicity to E5, the major oncoprotein of BPV-1 

(Jackson et al., 1991). However, although BPV-1 E5 protein transforms cells in vitro 

(Schiller et al., 1986) BPV-4 E8 does not, and over-expression of this ORF in the 

absence of other BPV-4 genes is lethal in primary cells (Jaggar et al., 1990; Pennie 

et ah, 1993). Although not recognised as a transforming gene per se, E8 contributes to
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the process by conferring anchorage independence (Pennie et al., 1993). In addition, 

both BPV-1 and BPV-4 transformed cells lack gap junctional intercellular 

communication (W.D. Pennie, 1992). BPV-1 E5 oncoprotein has been shown to bind 

the 16kD ductin component of gap junctions (Goldstein & Schlegel, 1990). Recent 

work, using a cell-free in vitro assay system, has shown that BPV-4 E8 protein can also 

bind ductin (A. Faccini, personal communication).

BPV-4 and the other sub-group B viruses BPV-3 and BPV-6, lack a recognisable E6 

ORF (Jackson et al., 1991). This gene has been identified as the second major oncogene 

of many papillomaviruses including both BPV-1 and HPV-16 (Schiller et al., 1984; 

Yang et al., 1985; Miinger et al., 1989; Watanabe et al., 1989). It binds zinc through 

cys-x-x-cys repeats (Barbosa et al., 1989), has been shown to be a transcriptional 

activator (Lamberti et al., 1990), and also to bind to and degrade one of the cell's 

negative regulators, p53 (Wemess et al., 1990). This degradation is through the 

ubiquitin pathway (Scheffner et al., 1990). That BPV-4 does not possess an E6 ORF 

raises the question whether E6-like functions are necessary for BPV-4 transformation. 

Recent work has shown that exogenous HPV-16 E6 can co-operate with BPV-4 to 

immortalise BPV-4-transformed cells (Pennie et al., 1993). However such cells remain 

non-tumourigenic. Current studies are addressing whether other BPV-4 proteins 

complex with p53 protein, or alternatively whether BPV-4 transforming activity can 

bypass the negative regulatory effects of this protein.

1.5 Environmental co-factors in BPV-4-associated carcinogenesis

Elucidation of the interplay among viral, host and environmental co-factors in 

carcinogenesis is of paramount importance for both treatment and prevention of the 

disease. The co-factors in BPV-4-associated carcinogenesis have been identified as 

including the mutagens, carcinogens and immunosuppressants present in bracken fern. 

One of the major mutagens present in bracken is the flavonoid quercetin (Evans W.C.
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et ah, 1982). In vitro studies have shown this compound can bind DNA and induces a 

variety of genetic lesions in both bacterial and mammalian cells (Jackson et al., 1993 for 

review). Quercetin can also induce clastogenic damage (Ishidate, 1988). This last 

observation is of particular significance as bracken-grazing cattle show a wide variety of 

cytogenetic abnormalities (Moura et al., 1988). Although not a carcinogen itself 

(Morino et al., 1982; Hirono et al., 1987), quercetin can act as an initiator in a two stage 

transformation assay in mammalian cells in vitro (Sakai et al., 1990). In addition, 

quercetin has been shown to interfere with phosphorylation/ dephosphorylation 

mechanisms (Van Wart-Hood et al., 1989; Matter et ah, 1992). In light of these early 

studies the possible role of quercetin as an initiating agent in full transformation of 

primary bovine fibroblasts has been undertaken in this laboratory.

BPV-4 transforms PalF cells only in co-operation with activated ras. Although 

morphologically transformed these cells are not immortal and are non-tumourigenic in 

nude mice. Addition of exogenous HPV-16 E6 - one of the major transforming genes of 

HPV-16 but lacking in BPV-4 - to this transfection cocktail confers immortality to 

BPV-4-transformed cells. However they remain non-tumourigenic indicating additional 

events are needed for full transformation. Pre-treatment of cells with quercetin before 

subsequent transfection with BPV-4 and ras resulted in a much more aggressive 

transformed morphology and such cells were found to be tumourigenic in nude mice 

(Pennie & Campo, 1992). These initial results strongly support the hypothesis that 

quercetin acts as a co-carcinogen in the naturally occurring alimentary canal cancers of 

bracken-grazing cattle.
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1.6 Aims

Previous work from this laboratory has provided a continuous source of information on 

the transformation biology of BPV-4 in both established and primary cells. Building on 

this body of information, the specific aims of the work presented in this thesis were:

(a) to investigate whether the routine loss of viral DNA from BPV-4-transfected 

established cells was due to mutation and / or rearrangement of the BPV-4 

genome

(b) to determine whether transfection with BPV-4 DNA resulted in amplification of 

host sequences

and finally

(c) to examine the synergistic relationship between BPV-4 and the flavonoid 

quercetin in primary bovine fibroblasts and to elucidate possible mechanisms of 

quercetin action, whether these be genetic, epigenetic or indeed a combination of 

the two.
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Chapter 2

MATERIALS AND METHODS

2.1 Materials

2.1.1 Antibodies

Sigma Chemical Co., Ltd., Poole, Dorset, England.

Anti-mouse IgG alkaline phosphatase conjugate

Upstate Biotechnology Inc., New York, USA

Mouse monoclonal anti-phosphotyrosine (monoclonal IgG2bk)

2.1.2 Bacterial Hosts

Gibco Europe Life Technologies Ltd., Paisley, Scotland.

E. coli DH5a competent cells

2.1.3 Cells 

Established Cells

C127 cells. This established mouse fibroblast line was maintained in Dulbecco's 

Modified Eagle’s Medium (DMEM) supplemented with 10% foetal calf serum, 

2 mM glutamine, 1 mM pyruvate, 0.375% sodium bicarbonate, 37.5 fig / ml penicillin, 

50 fig / ml streptomycin and 2.5 jig / ml amphotericin B.

C127sc. This is a sub-line of C l27 and contains 5.2 kb of the BPV-1 genome (Smith et 

al., 1993). This line was maintained in DMEM supplemented with 10% foetal calf 

serum, 2 mM glutamine, 1 mM pyruvate, 0.375% sodium bicarbonate, 37.5 jig / ml 

penicillin, 50 |ig / ml streptomycin and 2.5 fig / ml amphotericin B.
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C4Ta2a. This origin of this line is detailed in Smith & Campo (1988) and is also 

described in Chapter 3.2.1.1. In brief, this line is a secondary transfectant line which 

resulted from transfection of C127sc cells with BPV-4 DNA in the presence of the 

tumour promoter TPA. This line was maintained in DMEM supplemented with 10% 

foetal calf serum, 2 mM glutamine, 1 mM pyruvate, 0.375% sodium bicarbonate,

37.5 pg / ml penicillin, 50 pg / ml streptomycin and 2.5 pg / ml amphotericin B.

ID14 cells originated from transformation of C127 cells by BPV-1 virions (Law et al., 

1981). This line was a gift from Dr. P.M. Howley (Dept, of Pathology, Harvard 

Medical School, Boston) and was maintained in DMEM supplemented with 5% foetal 

calf serum, 2 mM glutamine, 1 mM pyruvate, 0.375% sodium bicarbonate, 37.5 pg / ml 

penicillin, 50 pg / ml streptomycin and 2.5 pg / ml amphotericin B.

ID14 transfectants. Derivation of these BPV-4-transfected lines is outlined in 

Chapter 3.2.1.1. Transformed cells were selected by maintaining cultures in the same 

medium as the parental ID 14 cells with the addition of 800 pg / ml of the neomycin 

analogue G418.

AM9 cells were derived from transformation of C l27 cells with BPV-1 DNA (Burnett 

et al., 1988). This line was a gift from Dr. S. Burnett (Dept, of Medical Genetics, 

University of Uppsala) and was maintained in DMEM supplemented with 10% foetal 

calf serum, 2 mM glutamine, 1 mM pyruvate, 0.375% sodium bicarbonate, 37.5 pg / ml 

penicillin, 50 pg / ml streptomycin and 2.5 pg / ml amphotericin B.

AM9 transfectants. These lines were derived from transfection of AM9 cells with 

either whole or sub-genomic fragments of BPV-4 as detailed in Chapter 3.2.2.1. These 

lines were selected by maintaining cultures in DMEM 2% foetal calf serum,

29



2 mM glutamine, 1 mM pyruvate, 0.375% sodium bicarbonate, 37.5 pg / ml penicillin, 

50 pg / ml streptomycin and 2.5 pg / ml amphotericin B, with the addition of 

800 pg / ml G418.

Primary Cells

PalF cells are primary bovine fibroblasts and were routinely grown in DMEM 

supplemented with 10% foetal calf serum, 2 mM glutamine, 1 mM pyruvate, 0.375% 

sodium bicarbonate, 37.5 pg / ml penicillin, 50 pg / ml streptomycin and 2.5 pg / ml 

amphotericin B.

PalF transfectants. These lines were derived from transfection of PalF cells with either 

whole or sub-genomic fragments of BPV-4 as detailed in Chapter 4.2.2.2. Transformed 

cells were selected by maintaining cultures in the same medium as the parental PalF 

cells with the addition of 500 pg / ml of the neomycin analogue G418.

2.1.4 Chemicals

Amersham International pic, Amersham, Bucks., England.

a -32P dCTP 3000 Ci / mmol

BDH Chemicals Ltd., Poole, Dorset, England.

Where possible, chemicals were of analytical grade (AnalaR).

Acrylamide 

fo's-acrylamide 

^-butanol 

Calcium chloride 

D-glucose

Ethylene diamine tetraacetate (EDTA) disodium salt
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Glycerol

Hydrochloric acid 

Magnesium chloride 

Magnesium sulphate 

Napthalene Black

di-Potassium hydrogen orthophosphate anhydrous

Potassium dihydrogen orthophosphate

Sodium acetate

Sodium chloride

Sodium deoxycholate

Sodium dodecyl sulphate (SDS)

Sodium hydroxide 

Tris

Beta Lab., East Mosley, Surrey, England.

Yeast Extract

BioRad Laboratories Ltd., Hemel Hempstead, Herts., England.

TEMED (N,N,N',N'-tetramethylethylenediamine)

Boehringer Mannheim UK Ltd., Lewes, East Sussex, England.

Caesium chloride

DOTAP (N-[l-(2, 3-Dioleoyloxy) propyl]-N, N, N-trimethylammoniummethylsulfate) 

Protease K 

RNase A

James Burrough Ltd., Witham, Essex, England.

Ethanol
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Difco Laboratories, Detroit, Michigan, USA.

Bacto-Agar

Bactotryptone

Fisons Scientific Equipment, Loughborough, England.

Dimethyl sulfoxide (DMSO)

Isopropanol

Fluka AG, Chemische Fabrik CH-9470 Buchs.

Methocel MC 4000

Gibco Europe Life Technologies Ltd., Paisley, Scotland.

All DNA restriction enzymes and appropriate buffer concentrates were obtained from 

Gibco Life Technologies (BRL) unless otherwise stated. The following reagents were 

also obtained from Gibco:

Agarose (ultrapure grade)

Low melting point agarose (ultrapure grade)

lOx Dulbecco's Modified Eagles Medium

Foetal calf serum

lOx F10 (Ham) Medium

200 mM glutamine

Geneticin. G418 sulphate

MEM amino acids solution (5 Ox)

7.5% sodium bicarbonate 

100 mM sodium pyruvate 

Trypsin
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Rathburn Chemicals Ltd., Walkerburn, Scotland.

Phenol (water saturated)

Sigma Chemical Co., Ltd., Poole, Dorset, England.

Ampicillin

Aprotinin

Coomassie Brilliant Blue R

Ethidium bromide

Ficoll

Formamide

Heparin (Type II)

IPTG

Lysozyme

ONPG

Quercetin (3,3',4',5,7-pentahydroxyflavonel dihydrate)

Salmon testes DNA (sodium salt)

Sodium azide

2.1.5 Kits

BioRad Laboratories Ltd., Hemel Hempstead, Herts., England.

Prep-A-Gene DNA Purification Kit

Boehringer Mannheim UK Ltd., Lewes, East Sussex, England. 

Random Primed DNA Labelling Kit



2.1.6 Columns. Membranes. Paper and X-ray Film

Amersham International pic, Amersham, Bucks., England.

Hybond-C Extra 

Hybond ECL nitrocellulose 

Hybond N+

Anderman Co. Ltd., Kingston upon Thames

Schleicher & Schuell Elutip-d columns

Eastman Kodak Co., Rochester, New York, USA

X-ray film (XAR-5)

Whatman International Ltd., Maidstone, Kent, England.

3 MM chromatography paper 

Whatman 1 filter paper

2.1.7 Plasmids

pBV4 contains the whole BPV-4 genome (7.265 kb) cloned into the BamH I site of 

pAT153 (Campo & Coggins, 1982). See Figure 3.5.

pJ4Q16.E6 was a gift from Dr. L. Crawford (Dept, of Pathology, University of 

Cambridge). This plasmid construct is a pBR322 derivative. It contains the HPV-16 

E6 open reading frame (ORF) cloned into the BamH I / EcoR I sites of pJ4Q 

downstream of a MoLV LTR promoter (Storey et al., 1988). The plasmid codes for the 

entire E6 ORF, except for the C-terminal amino acid leucine which is replaced by 

His-Gly followed by a stop codon.

34



pSVE8E7 contains the Xho II fragment of BPV-4 (nts 6487-1274) cloned into the 

BamH I site of pSV2neo (Jaggar et al., 1990). pSV2neo contains the bacterial Tn5 

transposon (which encodes neomycin resistance) under the control of the simian virus 

40 (SV40) early promoter thereby allowing selection of transfected cells in medium 

containing the neomycin analogue G418 (Southern & Berg, 1982). In pSVE8E7 the 

BPV-4 genes are under the transcriptional control of the BPV-4 long control region 

(LCR) although the enhancer in the (SV40) early promoter region may be expected to 

influence their expression.

pT24 is a pUC13 derived plasmid containing the 6.6 kb activated human c-Ha-ra? 

oncogene from the T24 human bladder carcinoma line originally cloned in pBR322 

(Santos et al., 1982). This plasmid construct was a gift from M. O'Prey (Beatson 

Institute, Glasgow).

pZipE8E7 contains the Xho II fragment of BPV-4 (nts 6487-1274) cloned into the 

BamH I site of pZipneoSV(XI) (Jaggar et al., 1990). In pZipE8E7 the BPV-4 genes are 

under the transcriptional control of the Moloney murine leukaemia virus 5' long 

terminal repeat (MoLV LTR). See Figure 3.5.

pZipE7 contains nts 652-1250 of the BPV-4 genome cloned into the BamH I site of 

pZipneoSV(XI) (Pennie et al., 1993). In pZipE7 the BPV-4 E7 gene is under the 

transcriptional control of the Moloney murine leukaemia virus 5' long terminal repeat 

(MoLV LTR). See Figure 3.5.



pZipneoSV(XI) (referred to as pZipneo throughout the text) consists of a Moloney 

murine leukaemia virus (MoLV) transcriptional unit, including the long terminal repeats 

(LTRs), and pBR322 sequences. This construct has a unique BamH I cloning site and 

also contains DNA sequences derived from the transposon Tn5, which encodes 

G418-resistance (neomycin resistance) in mammalian cells (Cepko et al., 1984).

p41XLCR+ contains nts 6710-310 of the BPV-4 genome cloned into the Xho I site of 

p41X (Jackson & Campo, 1991).

pALTER-E8 contains nts 236-590 of the BPV-4 genome cloned into the BamH I site of 

the vector pALTER™-1 (Promega). This plasmid construct was a gift from R. 

Anderson (Beatson Institute, Glasgow).

pA-Sma 1.5 contains 1.5 kb of the bovine c-Ha-ras gene cloned into pUC8. The bovine 

sequences present included intron la  and exon 1 of the c-Ha-ras 1 gene and also some 

satellite-like sequences (McCaffery et al., 1989).

pBov.l6K contains the complete ductin cDNA sequence (465 bp) cloned into the 

Xho I / Xba I sites of pBluescript II SK+. This plasmid construct was a gift from 

A. Faccini (Beatson Institute, Glasgow).

pBSras contains a 576 bp fragment of the murine c-Ha-ras gene cloned into the Sma I 

site of pBluescript II SK+. This plasmid construct was a gift from W. Lambie (Beatson 

Institute, Glasgow).

pBVla contains the whole BPV-1 genome (7.945 kb) cloned into the Hind III site of 

pAT153 (Campo & Coggins, 1982).
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pHSV-pgal contains the E. coli P-galactosidase gene (lacZ) under the control of the 

herpes simplex virus immediate early 4 promoter. This plasmid construct, used as an 

internal control for transfection efficiency in PalF cell transient expression studies, is 

derived from the /acZ-containing plasmid pCHl 10 (Hall et al., 1983). Transcription of 

the lacZ gene is driven by the HSV2 IE-5 promoter obtained from pLW2 (Gaffney et 

a l , 1985).

pIC-ARS consists of a 719 bp fragment containing ARS-like sequences from the 

amplified cellular fragment HL-10 (Smith et al., 1993), cloned into the Pst I / BamH I 

site of pIC20H.

pJ33.6 consists of a 720 bp fragment containing the core minisatellite from A.33.6 

(Jeffreys et al., 1985) cloned into the EcoR I / Hind III site of pUC18.

pJ33.15 consists of a 600 bp fragment containing the core minisatellite from A.33.15 

(Jeffreys et al., 1985) cloned into the EcoR I / Hind III site of pUC19.

pLCRluc contains nts 6710-331 of the BPV-4 genome cloned into the BamH I site of 

the vector pOluc upstream of the luciferase coding sequence (Jackson & Campo, 1995).

pME2 contains 415 bp of the human c-myc gene (nts 4604-5018) cloned into the Pst I 

site of pBR322. This plasmid construct was a gift from Dr. G. Bimie (Beatson Institute, 

Glasgow).

pURE2 contains nts 2979-3814 of the BPV-4 genome cloned into the BamH I site of 

pUR278.
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pURE7 contains nts 647-1250 of the BPV-4 genome cloned into the BamH I site of 

pUR278.

pURLla contains nts 5737-6524 of the BPV-4 genome cloned into the BamH I site of 

pUR278.

pURLlb contains nts 5627-5737 of the BPV-4 genome cloned into the BamH I site of 

pUR278.

pURLlc contains nts 6524-0082 of the BPV-4 genome cloned into the BamH I site of 

pUR278.

pURL2a contains nts 4610-4989 of the BPV-4 genome cloned into the Hind III site of 

pUR278.

pURL2b contains nts 4042-4610 of the BPV-4 genome cloned into the BamH I site of 

pUR278.

pURL2c contains nts 4989-5629 of the BPV-4 genome cloned into the BamH I site of 

pUR278.

Plasmid constructs pURE2 through to pURL2c were gifts from G.J. Grindlay (Beatson 

Institute, Glasgow).

2.1.8 Molecular Weight Markers

Amersham International pic, Amersham, Bucks., England.

Rainbow™ coloured protein molecular weight markers

38



Gibco Europe Life Technologies Ltd., Paisley, Scotland.

Bacteriophage X DNA (EcoR I digested)

Bacteriophage X DNA (Hind III digested)

2.1.9 Research Supplies and Miscellaneous 

Beatson Institute Central Services 

Amphotericin B

L-broth

Kanamycin

Penicillin

Sterile distilled water 

Sterile glycerol

Sterile phosphate-buffered saline (PBS)

Sterile phosphate-buffered saline + EDTA (PE)

Streptomycin

Merck Ltd., Poole, England

Silicone grease

2.1.10 Tissue Culture and Bacteriological Plasticware 

Alpha Laboratories Ltd., Eastleigh, Hampshire, England.

Microfuge tubes

Becton Dickinson Labware, Plymouth, England.

Falcon 1059 polypropylene tubes 

Falcon 2059 polypropylene tubes 

Falcon 2098 polypropylene tubes 

Sterile Plastipak syringes



Becton Dickinson Labware, Plymouth, England, (continued)

18G sterile syringe needles 

60 and 90 mm tissue culture dishes

Bibby Sterilin Ltd., Stone, Staffs., England.

60 and 90 mm bacteriological petri dishes 

Sterile plastic universal containers

Costar Corporation, High Wycombe, Bucks., England

24 well tissue culture plates

DuPont UK Ltd., Stevenage, Herts., England

Polyallomer ultracentrifuge tubes

Gelman Sciences, Northampton, England.

Sterile 0.2 pm Acrodisc filters

Nunc, Roskilde, Denmark.

T25, 80 and 175 cm^ tissue culture flasks 

Cryotubes

2.1.11 Water

Distilled water for the preparation of buffer stocks was obtained from a Millipore 

MilliRO 15 system. Water for protein, enzyme, RNA or recombinant DNA procedures 

was further purified on a Millipore MilliQ system to 18MQ / cm.

40



2.2 Methods

2.2.1 Cell Culture and Transfection

2.2.1.1 Cell Culture

All cell culture work was carried out in laminar flow hoods (Class II Microbiological 

Safety Cabinets; Medical Air Technology Ltd., Manchester, England.) using aseptic 

techniques. Cells were grown in humidified 37°C incubators containing 5% (v/v) C 02 

(Heraeus, Essex, England) and were routinely screened for mycoplasma infection using 

a fluorescent dye technique (M. Freshney, Beatson Institute, Glasgow).

2.2.1.2 Isolation o f Primary Bovine Fibroblasts

PalF cells were isolated as described in Jaggar et al. (1990). Briefly, soft palate tissue 

was removed from bovine foetuses of less than 5 months gestation obtained from 

Glasgow University Veterinary School. The palate tissue was washed in 70% ethanol 

and then dissected into small cubes using crossed scalpels. These cubes (approximately 

2 mm in size) were then placed in 90 mm tissue culture dishes and tissue was allowed to 

adhere to the plastic by placing the dishes in a dry 37°C incubator containing 5% (v/v) 

C 02 for 5 minutes. Medium was then added to each dish, care being taken not to 

dislodge the tissue explants. The explants were fed twice weekly over a period of two 

weeks in which time fibroblasts and keratinocytes grew out of the tissue mass. The 

medium used for both isolation and subsequent routine growth of PalF cells was 

DMEM supplemented with 10% foetal calf serum, 2 mM glutamine, 1 mM pyruvate, 

0.375% sodium bicarbonate, 37.5 p g / m l  penicillin, 50 p g / m l  streptomycin and

2.5 pg / ml amphotericin B. This medium selectively favoured the outgrowth of 

fibroblasts and, as expected, keratinocytes died. After this time the fibroblasts were 

trypsinised and reseeded into large (T175 cm2) flasks. Cultures were expanded and 

stocks of PalF cells were frozen down and stored in liquid nitrogen.



2.2.1.3 Maintenance o f Primary Bovine Fibroblasts in Culture

Cells were fed twice weekly. Old medium was aspirated from sub-confluent flasks and 

fresh medium added. PalF cells were grown until just sub-confluent whereupon they 

were passaged approximately 1 in 4. Replating was performed as follows: for a 

T80 cm2 tissue culture flask medium was aspirated off and the cells washed twice with 

5 ml phosphate-buffered saline (PBS; 137 mM NaCl, 44 mM KC1, 1.4 mM KH2P 0 4,

8.4 mM Na2H P04). The PBS was removed and 1 ml of trypsin solution (0.25% trypsin 

in lx PE buffer; PBS with the addition of EDTA to 1 mM), which had been pre-warmed 

to 37°C, was added to cells. Tissue culture flasks were transferred to the 37°C hot room 

until the monolayer could be detached by gentle agitation. The cells were resuspended 

in growth medium and reseeded at an appropriate density.

2.2.1.4 Viability Staining and Cell Counting

The concentration of cell suspensions was determined using a haemocytometer 

(Improved Neubauer) examined under low-power microscopy. Cells were mixed with 

the dye napthalene black to allow simultaneous appraisal and quantification of cell 

viability. Viable cells are impermeable to this dye whereas dead cells will stain black 

due to dye uptake (Kaltenbach et al., 1958). Trypsinised cells were resuspended in 

medium and 20 pil of this suspension added to a microfuge tube containing 80 pi of 

viability stain (1% napthalene black in PBS). The contents of the tube were gently 

pipetted up and down and 20 pi of the mix added to the counting chamber of a covered 

haemocytometer slide. The slide was placed on a microscope under a 10 x objective. 

The number of stained cells and the total number of cells were counted within a 1 mm2 

area. The average of two counts was calculated per cell line and the sample 

concentration determined, taking into account the area counted, depth of chamber and 

dilution factor of cells loaded. Results were expressed as the number of viable cells per 

ml.
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2.2.1.5 Cell Storage

Stocks of cells were stored long term in liquid nitrogen. Confluent cultures were 

trypsinised, complete medium was added and the cell suspension transferred to a sterile 

universal. Cells were pelleted by centrifugation at 1000 rpm for 5 min at room 

temperature. The pellet was then resuspended at a concentration of approximately 

106 cells/ ml in growth medium containing 10% (v/v) DMSO which acts as a 

cryoprotectant. Suspensions were divided into 1 ml aliquots in 1-2 ml Nunc cryotubes 

and frozen, well insulated, at -70°C overnight to ensure a slow rate of cooling. The 

ampoules were then transferred to a liquid nitrogen bank containing labelled storage 

racks until required. Frozen stocks were recovered by removing the ampoules from 

liquid nitrogen and placing them in a beaker containing water heated to 37°C. Once 

thawed, the cells were pelleted by centrifugation at 1000 rpm for 5 min at room 

temperature, resuspended in fresh growth medium and transferred to 80 cm2 flasks.

2.2.1.6 Quercetin Treatment o f  Primary Bovine Fibroblasts

Four different protocols, QA-QD, were used for the transfection studies in which the 

order and time interval between quercetin-treatment and viral DNA transfection varied 

(summarised in Table 4.8) although the concentration (20 pM) and duration (48 hr) of 

the single dose quercetin treatment was constant. The effect(s) of quercetin on PalF 

cells was also examined in the absence of viral genes. These analyses included 

experiments, described in Chapter 4.5.2.2, 4.5.3.2 and 4.5.4.2, in which actively 

growing PalF cells were treated with five different concentrations of quercetin, namely 

20, 45, 100, 200 and 300 pM. For the 20 pM and 45 pM concentrations the quercetin 

solvent used was ethanol (stock solution: 10 mM stored at -20°C) while for the higher 

concentration experiments (100-300 pM) dissolution in DMSO was necessary (stock 

solution: 100 mM made fresh).
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2.2.1.7 Growth Curves

The growth characteristics of PalF cells grown in medium containing 20 pM quercetin 

were assessed. Control classes consisted of PalF cells grown in complete medium with 

or without ethanol (the quercetin solvent). 2 x 104 cells were seeded per 25 cm2 tissue 

culture flask and cells allowed to settle overnight. After this time cells were counted 

daily over a ten day period with duplicate flasks set up for each time point. For 

counting, medium was aspirated from the flasks and the cells washed twice in 

pre-warmed PBS to remove any non-adherent cells. The adherent cells were then 

trypsinised, resuspended in an appropriate volume of complete medium and counted 

using a haemocytometer. Four counts were performed per class per time point. Data 

are presented as the average count from duplicate flasks.

2.2.1.8 DNA Transient Transfection o f  Primary Bovine Fibroblasts

DNA transfection was performed using the cationic lipid N-[l-(2, 3-Dioleoyloxy) 

propyl]-N, N, N-trimethylammoniummethylsulfate (DOTAP; Boehringer Mannheim 

BCL) following the manufacturer's recommendations. Each reaction contained 5 pg of 

each relevant plasmid DNA (Chapter 2.1.7) plus 2 pg of a plasmid construct containing 

the selectable marker gene for neomycin resistance (pZipneo; Chapter 2.1.7). 

Transfection classes are described in Chapter 4.2.2.2. Reactions were made up to 20 pg 

with sonicated salmon sperm DNA (Sigma). 5 x 105 PalF cells were seeded into an 

80 cm2 flask 24 hr prior to transfection. The transfection mix was as follows; 80 pi of 

DOTAP was diluted up to 250 pi with complete medium in a polystyrene reaction vial. 

DNA (20 pg) was also diluted up to 250 pi with complete medium in a separate reaction 

vial. Both solutions were mixed together and incubated for 10 min at room temperature. 

This mixture was then slowly added to the flask of cells and incubated at 37°C 

overnight. Following withdrawal of the medium, cells were washed twice in PBS and 

fresh complete medium added to the flask. The next day cells were split at a dilution of 

1:2 and allowed to settle for 24 hr prior to selection.
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2.2.1.9 Selection o f Transfected Cells

Cells were selected in medium containing 500 jag / ml G418 for 21-28 days, being refed 

twice weekly. After this time, G418-resistant colonies greater than 5 mm in diameter 

and showing a piled up, transformed morphology were scored (Chapter 4.2.2.3). Where 

appropriate, several colonies were picked from each transfection class.

2.2.1.10 Isolation o f Clonal Populations

Well separated G418-resistant colonies were identified and their position highlighted by 

marking flasks using a permanent marker pen. The cells were then washed twice in 

PBS and, leaving cells covered in 10 ml PBS, the top of each flask was removed using a 

red hot scalpel. The PBS was aspirated off and colonies were ringed using sterile 6 mm 

stainless steel cloning rings. The base of each cloning ring had been dipped in sterile 

silicone grease (Merck, England) prior to placing over colonies thus providing a 

waterproof seal round each isolated colony. A total volume of 100 pi trypsin solution, 

which had been pre-warmed to 37°C, was pipetted within each cloning ring. After 

1-2 min an equal volume of complete medium was added and the cell suspension 

transferred to multiwell plates (Costar) for expansion into cell lines.

2.2.1.11 Growth in Methocel

The ability of a cell line to form colonies in semi-solid media is taken as a phenotypic 

measure of its degree of transformation. Anchorage independence was assayed by 

plating cells in a Methocel based medium. Three grams of Methocel MC 4000 (Fluka) 

was added to 200 ml of sterile water and autoclaved. The Methocel was left to dissolve 

with continual stirring for 2-3 days at 4°C. Following dissolution, 22 ml of 10 x F10 

(Ham) medium (Gibco), 4 ml of 50 x minimum essential amino acids solution (Gibco), 

4 ml of 0.1 M sodium pyruvate, 5 ml of 7.5% sodium bicarbonate and 100 ml of foetal 

calf serum were added to the solution. Cells (2.5 x 105) were added to 10 ml of this 

solution and the mixture added to a bacteriological grade petri dish. Bacteriological
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petri dishes were used to discourage cells from adhering to the bottom of the dishes. 

Cells, tested in duplicate, were left at 37°C for 7-10 days before being scored. The 

efficiency of Methocel colony formation was determined as described in Chapter 

4.2.2.3.

2.2.1.12 Tumourigenicity Assay in Nude Mice

The ability to form tumours is an indicator of full cellular transformation. The 

malignant potential of transformed cells was assayed in nude mice. Four-week old 

female athymic nude mice, strain MF1 nu/nu (Harlan-Olac, Bicester, England), were 

injected subcutaneously with 107 cells suspended in 0.1 ml of complete medium. Three 

mice were injected per assay and examined for tumour growth at 1 week intervals up to 

15-20 weeks post-injection. If no tumour had developed by then the cells were 

considered to be non-tumourigenic.

2.2.1.13 DNA Transfection and Luciferase Expression Assay

Possible quercetin-induced effects on the transcriptional activity of the BPV-4 LCR 

(long control region) were assayed as measured by the enzyme activity of the reporter 

gene firefly luciferase. A luciferase expression plasmid was constructed by cloning 

nucleotides 6710-331 of the BPV-4 genome, a region containing the LCR, into the 

BamH I site of the vector pOluc upstream of the promoterless luciferase coding 

sequence. This construct, pLCRluc (fully detailed in Chapter 2.1.7), was a gift from 

Dr. M.E. Jackson (Beatson Institute, Glasgow). PalF cells were treated with 20 pM 

quercetin for 48 hr either immediately before or after transfection with 15 pg pLCRluc 

+ 5 pg of the control plasmid, pHSV-pgal. Control classes included transfection of PalF 

cells treated for 48 hr with ethanol (the quercetin solvent) and vector alone controls 

(pOluc + pHSV-pgal). After incubation with the transfection solution at 37°C overnight, 

the medium was removed and the cells washed twice with PBS and refed. The cells 

were harvested 48 hr later in Reporter Lysis Buffer (Promega). 300 pi of Reporter

46



Lysis Buffer were used per 80 cm2 flask. Luciferase assays were performed on 50 pi 

aliquots of the cell lysates using the Luciferase Assay System (Promega) according to 

the manufacturer's instructions. Light production was measured for 1 minute using a 

BioOrbit LKB 1251 luminometer. Luminescence values were expressed as millivolts 

per second. P-galactosidase assays (Chapter 2.2.1.14) were used to standardise 

luciferase activities.

2.2.1.14 fi-Galactosidase Assay

The plasmid pHSV-Pgal (described in Chapter 2.1.7) was used as an internal control to 

standardise for transfection efficiency in PalF cells. The levels of p-galactosidase 

activity were quantified by the catalytic conversion of colourless 

o-nitrophenyl-P-D-galactopyranoside (ONPG) to yellow o-nitrophenol. Typically, 

100 pi of cell lysate was incubated with 0.5 ml Solution I (60 mM Na2HP04, 40 mM 

NaH2P 0 4, lOmM KC1, 1 mM MgCl2, 50 mM p-mercaptoethanol) and 0.1ml 

Solution II (60 mM Na2H P04, 40 mM NaH2P 0 4, 2 mg / ml ONPG) at 37°C for 

30-60 min, or until a yellow colour change was apparent. The reaction was stopped 

with 0.25 ml of 1 M sodium carbonate and an absorbance reading taken at 420 nm in a 

plastic cuvette with a path length of 1 cm.

2.2.2 Recombinant DNA Techniques

2.2.2.1 Transformation o f Bacterial Hosts

Commercially available E. coli DH5a competent cells (Gibco, Life Technologies) were 

routinely used to propagate plasmids. Stocks of competent cells were kept at -70°C 

until use. Bacteria were transformed following manufacturer's instructions. After 

thawing on ice, 20 pi of competent cells were aliquoted into a chilled polypropylene 

tube (Falcon 2059) and 1-2 ng of the appropriate plasmid DNA added with gentle 

mixing. The cells were then incubated on ice for 30 min before being heat shocked at 

42°C for 45 seconds. The tube was then returned to ice for 2 min. 80 pi of room
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temperature SOC buffer (2% bactotryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM 

KC1, lOmM MgCl2, lOmM MgS04, 20 mM glucose) was then added and the tube 

transferred to a shaking 37°C incubator for 1 hr to allow expression of the antibiotic 

resistance marker. After this time cells were spread on an L-agar plate containing the 

appropriate antibiotic. The plate was inverted and incubated overnight at 37°C to allow 

colony formation.

2.2.2.2 Glycerol Stocks

E. coli transformants bearing plasmids were stored as glycerol stocks for future 

retrieval. 850 pi of an overnight culture was mixed gently with 150 pi glycerol in a 

sterile plastic 1-2 ml Nunc cryotube and stored at -70°C. A sterile plastic loop was used 

to retrieve an aliquot of cells as and when required.

2.2.2.3 Large Scale Preparation o f  Plasmid DNA

Large quantities of plasmid DNA were prepared using a modification of the method 

described by Bimboim and Doly (1979). Bacteria containing the plasmid of interest 

were streaked onto an L-agar plate containing the appropriate antibiotic and the plate 

inverted and incubated overnight at 37°C to allow colony formation. A single colony, 

picked using a sterile toothpick, was used to inoculate a sterile universal tube containing 

10 ml of Superbroth medium and the appropriate antibiotic. Superbroth medium is 

composed of two solutions-A and B. Solution A consists of 12 g of tryptone, 24 g of 

yeast extract and 5 ml of glycerol made up to a final volume of 900 ml with distilled 

water. Solution B consists of 12.5 g of di-potassium hydrogen orthophosphate 

(K2H P04) and 3.8 g of potassium dihydrogen orthophosphate (HK2P 0 4), made up to a 

final volume of 100 ml. Both solutions were autoclaved separately and combined just 

prior to use. The universal was transferred to a 37°C incubator shaking at 225 rpm for 

approximately 8 hr. This culture was then added to two 1 litre flasks each containing
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500 ml of Superbroth (to allow good aeration), and the appropriate antibiotic, and 

returned to the shaking incubator for 36 hr.

Bacterial cultures were decanted into 250 ml polypropylene centrifuge bottles (Sorvall 

Instruments, DuPont) and cells were pelleted by centrifugation in a Sorvall RC-5B 

centrifuge (Sorvall GS-3 rotor) at 3,000 rpm for 5 min at 4°C. The supernatant was 

removed and the pellets resuspended in a total of 36 ml of Solution I (50 mM glucose, 

10 mM Tris-HCl, 10 mM EDTA (pH 8.0)). Resuspended pellets were pooled into one 

centrifuge bottle and 4 ml of Solution I containing 5 mg / ml lysozyme were added. The 

suspension was mixed gently and left at room temperature for 10 min. 80 ml of freshly 

prepared Solution II were added (0.2 M NaOH, 1% SDS) and the suspension mixed 

gently before being placed on ice for 5 min. 40 ml of cold Solution III (294.4 g KAc 

and 115 ml glacial acetic acid made up to 1 litre in water) were added , the bottle shaken 

rapidly and then returned to ice for 20 min. The flocculate was then centrifuged at

8,000 rpm for 5 min at 4°C in a Sorvall SS34 rotor and the supernatant filtered through 

Whatman 1 paper. The nucleic acid in this cleared lysate was precipitated in 0.6 

volumes of isopropanol and pelleted by centrifugation at 8,000 rpm for 5 min at 4°C. 

The supernatant was removed and the nucleic acid pellet washed with 70% ethanol to 

remove any salt. The solution was centrifuged for a further 5 min at 8,000 rpm at 4°C. 

After discarding the supernatant, the pellet was allowed to dry at room temperature for 

10 min before being resuspended in 8.8 ml of TE (10 mM Tris-HCl, 1 mM EDTA 

pH 8.0).

Ultracentrifugation through a caesium chloride (CsCl) density gradient was then carried 

out to further purify the plasmid DNA. 8.3 g of caesium chloride was added to the 

solution and allowed to dissolve at room temperature. 0.4 ml of a 10 mg / ml ethidium 

bromide solution was added and the refractive index of this solution adjusted to 1.4. 

The solution was transferred to a sealable centrifuge tube and the gradient run in a
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balanced Beckman ultracentrifuge at 55,000 rpm for 16 hr at 20°C, followed by a slower 

run at 40,000 rpm for 1 hr at 20°C. After centrifugation, any contaminating RNA was 

found to have pelleted to the bottom of the tube. Two bands were discernible; the upper 

band contains sheared linear plasmid DNA and residual bacterial chromosomal DNA 

while the lower band contains closed circular plasmid DNA. The top of the tube was 

pierced with an 18-gauge needle and the lower band was gently withdrawn by similarly 

piercing the side of the tube 5 mm below the lower band with an 18-gauge needle 

connected to a syringe. Plasmid DNAs to be used in transfection studies underwent 

further centrifugation through CsCl prior to plasmid extraction.

The removed band was transferred to a 50 ml Falcon tube. 3 ml of TE (pH 8.0) were 

added for each ml of CsCl solution collected. 4 ml of «-butanol were added to this and 

the tube briefly centrifuged at 1,000 rpm for 5 min at 4°C to separate phases. The upper 

butanol layer was aspirated off and discarded. This extraction process was repeated 

three more times and the lower, aqueous phase was transferred to a fresh 50 ml Falcon 

tube. 8 ml of ethanol were added for each ml of original CsCl band solution and the 

tube was placed on ice for 20 min as lower temperatures cause the CsCl salt to 

precipitate. The tube was subsequently spun at 1,000 rpm for 20 min at 4°C and the 

supernatant discarded. Excess liquid was drained from the tube and the pellet was 

resuspended in 500 pil TE (pH 8.0). This DNA solution was then transferred to a 1.5 ml 

microfuge tube and extracted once with phenol / chloroform prior to ethanol 

precipitation. The DNA pellet was finally resuspended in 0.5-1 ml TE (pH 8.0), the 

final volume chosen depending on the size of the pellet. The DNA concentration was 

quantified by spectrophotometry (Chapter 2.2.2.6).

2.2.2.4 Eukaryotic DNA Analysis: Preparation o f Genomic DNA from Cell Lines 

Genomic DNA was isolated from all cell lines using a high salt method of DNA 

extraction (Miller et al., 1988). Cells, grown to approximately 80% confluency in a
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80 cm2 tissue culture flask, were washed twice with PBS, trypsinised and pelleted at

1,000 rpm at room temperature for 5 min in a 15 ml polypropylene tube. The cell pellet 

was resuspended in 3 ml of nuclei lysis buffer (10 mM Tris-HCl, 400 mM NaCl and 

2 mM Na2EDTA, pH 8.2) and digested overnight at 37°C with 0.2 ml of 10% SDS and 

0.5 ml of a protease K solution (1 mg protease K in 1% SDS and 2 mM Na2EDTA). 

After digestion, 1 ml of saturated NaCl (approximately 6 M) was added to the tube 

which was shaken vigorously for 15 seconds, followed by centrifugation at 2,500 rpm at 

room temperature for 15 min. The supernatant, containing the DNA, was transferred to 

a fresh 15 ml polypropylene tube.

2.2.2.5 Extraction with Organic Solvents and Ethanol Precipitation 

DNA samples were further purified by extraction with chloroform and / or phenol to 

remove contaminants that might interfere with subsequent manipulations e.g. residual 

enzyme activities (restriction, nuclease) and detergents. Typically, the initial extraction 

was performed in an equal volume of phenol / chloroform. Phenol / chloroform was 

freshly prepared by mixing equal volumes of 1 M Tris-HCl (pH 8.0)-equilibrated phenol 

and chloroform / isoamyl alcohol (24:1 v/v). The aqueous and organic phases were 

mixed thoroughly by vortexing and then separated by centrifugation in a bench top 

microcentrifuge at 14,000 rpm for 5 min at room temperature. The aqueous phase was 

carefully removed, transferred to a fresh tube and the extraction process repeated. 

Following centrifugation, the aqueous phase was carefully removed, transferred to a 

fresh tube and extracted with an equal volume of chloroform (chloroform : isoamyl 

alcohol, 24 : 1) by vortexing and centrifugation as described above. This was repeated 

to remove any traces of phenol from the upper aqueous phase. After the final extraction 

the aqueous phase was collected for ethanol precipitation.

Ethanol precipitation was used to collect and concentrate samples of DNA, and also to 

remove solute contaminants such as salt. The aqueous solution of DNA was mixed with
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one tenth volume of 3 M sodium acetate, pH 5.2 and 2-2.5 volumes of ice cold ethanol. 

The sample was mixed by inversion and stored at -20°C overnight or, alternatively, 

placed on dry ice for 15-30 min to precipitate the DNA. Precipitated DNA was 

recovered by centrifugation in a bench top microcentrifuge at 14,000 rpm for 30 min at 

4°C. The DNA pellet was washed with 70% ice cold ethanol to remove any traces of 

salt, air dried, and resuspended in an appropriate volume of TE buffer (pH 8.0) before 

quantification.

2.2.2.6 Quantification o f DNA by Spectrophotometric Analysis

The concentration of DNA in aqueous solutions was measured spectrophotometrically. 

Samples were diluted as appropriate in TE buffer and absorbance readings taken at 

260 nm and 280 nm in a quartz cuvette with a path length of 1 cm. The 

spectrophotometer was calibrated using a TE blank. An A260 value of 1 was taken as 

being equivalent to a concentration of 50 pg / ml double stranded DNA. The ratio 

between the readings at 260 nm and 280 nm (A260 : A280) provided an estimate for the 

purity of DNA samples. A ratio of 1.8-2.0 indicated that preparations were essentially 

pure.

2.2.2.7 Restriction Digests

Restriction digests were performed in small volumes using commercially obtained 

buffer concentrates supplied with the enzymes. 1-10 units of restriction enzyme were 

added per pg of DNA, depending on the enzyme used and the number of restriction sites 

present. The total volume of enzyme added did not exceed one tenth of the final 

reaction volume. Small quantities of plasmid DNA (< 5 pg) were digested in a volume 

of 20 pi for 1-2 hr at 37°C. Larger digests were carried out in proportionally larger 

volumes. Double digests were performed sequentially or as a single reaction depending 

on the buffering conditions specified by the manufacturer. Digestion of genomic DNA 

(typically 20 pg) was carried out essentially as described, except that digestion was
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continued overnight. Reactions were terminated by the addition of 0.5 M EDTA 

(pH 8.0) to a final concentration of 10 mM. The digested DNA was then 

phenol / chloroform extracted, ethanol precipitated and resuspended in an appropriate 

volume of TE.

2.2.2.8 Agarose Gel Electrophoresis

DNA restriction fragments were resolved on non-denaturing agarose gels and visualised 

by ethidium staining. Unless otherwise stated, gels were 0.8% agarose made up in 

0.5 x TBE buffer (5 x TBE is 54 g Tris base, 27.5 g boric acid and 20 ml 0.5 M EDTA 

(pH 8.0) made up to 1 litre in water). Gel mixes were prepared in glass flasks by 

microwaving the agarose in the appropriate volume of 0.5 x TBE until all the particles 

had dissolved. The solution was cooled to approximately 50°C and the contents of the 

flask were poured into a gel cast and allowed to set at room temperature. The gel comb 

(well former) was removed and the gel installed in a horizontal sub-marine gel 

electrophoresis tank (Pharmacia) containing 0.5 x TBE. Samples for electrophoresis 

were mixed with one sixth volume of gel loading dye (6 x stock is 0.25% bromophenol 

blue, 15% Ficoll (Type 400)) and pipetted through the TBE buffer into the wells. 

Molecular weight standards (Hind III digested bacteriophage X DNA or Hind III / 

EcoR I digested bacteriophage X DNA (Gibco Life Technologies) were treated in the 

same manner. The samples were resolved by electrophoresis towards the anode. 

Running conditions for 20 cm gels (Pharmacia GNA 200) were 80V for 4 hr and 25V 

for 16 hr. Once run, the DNA fragments were visualised by staining the gel in running 

buffer containing 0.5 pg /ml ethidium bromide with gentle agitation for 30 min at room 

temperature. The gel was placed on a UV transilluminator and a permanent record 

made using a Polaroid camera.
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2.2.2.9 Southern Transfer

5-10 fig of genomic DNA was digested with an appropriate enzyme and resolved by gel 

electrophoresis. After electrophoresis each gel was stained in running buffer containing 

0.5 pg / ml ethidium bromide and photographed. Gels were subsequently destained in 

running buffer without ethidium bromide. The separated DNAs were then transferred to 

a charged nylon membrane, Hybond-N+ (Amersham International pic), following the 

manufacturer's recommended protocol for alkali blotting of DNA. This included gentle 

agitation of the gels in 0.25 M HC1 at room temperature before blotting. This 

depurination step improved transfer of DNA greater than 10 kb in size. After blotting 

gels overnight in 0.4 M NaOH the resulting membranes were air-dried and then baked at 

80°C for 1 hour. Blotted gels were subsequently stained with ethidium bromide to 

check efficient transfer of DNA had taken place.

2.2.2.10 Elution o f DNA Fragments from Agarose Gels

DNA fragments for isotopic labelling (Chapter 2.2.2.11) were recovered from low 

melting point agarose gels. Conditions for digestion of the relevant plasmid construct 

were designed such that the band of interest contained at least 250 ng of DNA. Agarose 

gel concentrations varied according to the size of the fragment of interest. Effective 

resolution was also dependent upon the difference in size between insert and vector 

bands. For most purposes a gel concentration of 0.8% agarose was used. The gel slice 

containing the fragment of interest was excised from the gel using a sterile scalpel and 

was trimmed of excess agarose over a UV source. The gel slice was transferred to a 

microfuge tube which was then placed in a 65°C water bath until the agarose had 

melted. An equal volume of TE (pH 8.0) was added and the solution extracted twice 

with phenol / chloroform and once with chloroform. DNA was concentrated by ethanol 

precipitation and the DNA pellet resuspended in an appropriate volume of TE.
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2.2.2.11 Isotopic Labelling

DNA probes used for hybridisation of DNA (Chapter 2.2.2.9) and RNA 

(Chapter 2.2.3.2) membranes, isolated as described in Chapter 2.2.2.10, were 

isotopically labelled with 20 pCi a -32P using a 'Random Primed DNA Labelling Kit' 

(Boehringer Mannheim) following the manufacturer's instructions. Each labelling 

reaction contained 25-40 ng of DNA. Unincorporated nucleotides were removed by 

passing the labelled reaction through an Elutip-d column (Schleicher & Schuell) as 

described by the manufacturer. Labelled probes were denatured at 95-100°C for 10 min 

and cooled on ice prior to addition to the appropriate hybridisation mix.

2.2.2.12 Southern Prehybridisation and Hybridisation Conditions

For prehybridisation, the baked membranes were put into individual plastic bags and 

25 ml buffer mix was added. Membranes were prehybridised for 1.5 hr in a 65°C water 

bath with constant shaking. The prehybridisation buffer mixture consisted of 5 x SSPE 

(20 x SSPE is 3 M NaCl, 0.2 M NaH2P 0 4, 20 mM EDTA pH 7.4), 5 x Denhardt's 

solution (100 x Denhardt's solution is 2% (w/v) bovine serum albumin, 2% (w/v) Ficoll, 

2% (w/v) polyvinylpyrolidone), 0.5% SDS and 20 pg / ml of denatured salmon sperm 

DNA. After this time 25-40 ng of labelled DNA probe was denatured by heating to 

100°C for 10 minutes and was added to the prehybridisation solution. Membranes were 

hybridised overnight at 65°C with constant shaking.

2.2.2.13 Washing o f  Hybridised Membranes and A utoradiography *

DNA membranes were washed to the following stringency: 2 x  SSC, 0.1% SDS for 

10 min at room temperature to remove unbound probe and then at 0.1 x SSC, 0.1% SDS 

for 30 min ( 2 x 1 5  min) at 65°C. Membranes were then bagged in 2 x SSC to keep 

them moist and exposed to X-ray film with two intensifying screens at -70°C.
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DNA membranes were stripped for reprobing by immersing the membranes in a 

solution of boiling 0.5% SDS and allowing the solution to cool to room temperature. 

Efficiency of stripping was checked by exposing the membranes to X-ray film overnight 

at -70°C.

2.2.2.14 DNA Fingerprinting

Multilocus DNA fingerprinting was carried out using both human minisatellite and Ml 3 

probes.

Electrophoresis and Southern Blotting

This procedure was identical for both DNA fingerprinting methodologies. Restricted 

DNA samples (5 pig per track) were separated by electrophoresis through 20 cm long

0.8% agarose gels in 1 x TAE buffer (50 x TAE is 242 g Tris, 57.1 ml glacial acetic acid 

and 100 ml 0.5 M EDTA made up to 1 litre in water). Running conditions were 40V for 

26 hr. DNA fragments were then Southern blotted onto Hybond N nylon membranes 

(Amersham International pic) following the manufacturer’s instructions; i.e. 

depurination (in 0.25 M HC1 for 15 min), denaturation (in 0.5 M NaOH, 1.5 M NaCl for 

45 min) and neutralisation (in 1.5 M NaCl, 0.5 M Tris-HCl, pH 7.2 for 45 min) 

followed by overnight capillary blotting in 20 x SSC (3 M sodium chloride, 0.3 M 

sodium citrate). Membranes were then briefly rinsed in 2 x SSC, baked at 80°C for two 

hours and finally stored dry until required.

Probes and Isotopic Labelling 

Human minisatellite probes:

Two human minisatellite polycore probes J33.6 & J33.15 (Jeffreys et al., 1985) were 

used. Both probes were isolated from commercially available plasmid constructs 

(Cellmark Diagnostics, Abingdon, Oxon, England). The J33.6 insert (720 bp) was 

cloned into pUC18 and released by digestion with EcoR I + Hind III. The J33.15 insert 

(600 bp) was cloned into pUC19 and was also released by digestion with EcoR I +
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Hind III. Inserts were separated from vector fragments by electrophoresis and isolated 

from the agarose gel using a ‘glassmilk’ isolation procedure (Prep-A-Gene; BioRad 

Ltd). The probes (20 ng) were isotopically labelled with 20 pCi a - 32P dCTP by 

random priming as described earlier (Chapter 2.2.2.11) and denatured (100°C for 

10 min) prior to addition to hybridisation mix.

Bacteriophage M l3 probe

The M l3 probe was isotopically labelled by a partial primer extension reaction using 

commercially available bacteriophage Ml 3 DNA. The method described by 

Wells (1988) was followed:

1. 400 ng of single stranded M l3 vector (Pharmacia), 4 ng of 17-mer universal 

sequencing primer (Pharmacia) and 1 pi of 10 x Klenow buffer were added to a 

microfuge tube. The reaction was made up to a final volume of 10 pi and incubated 

at 58°C for one hour.

2. The tube was spun briefly in a microcentrifuge prior to addition of 10 pi of AGT mix 

(i.e. equal volumes of TE buffer and 0.5 mM dATP, dGTP, dTTP), 6 pi TE buffer, 

30 pCi a - 32P dCTP (3000 Ci /mmol); and 2 U of DNA polymerase I (Klenow 

fragment). The reaction was mixed by gentle pipetting up and down.

3. After incubation at 37°C for 15 min the reaction was stopped by addition of 70 pi 

3 x SSC.

The polymerisation reaction is stopped before it crosses the tandem repeat regions of the 

M l3 genome (positions 1700-1900 and 2300-2500). The new strand (of up to 4.5 kb) 

contains the radiolabelled nucleotides while the proximal 2.5 kb of the M l3 genome, 

including the tandem repeats, remains single-stranded (Wells, 1988). This allows the 

tandem repeats to hybridise to their membrane-bound complements when the labelled 

phage is used as a hybridisation probe. The labelled M l3 DNA was added directly to
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the hybridisation solution, i.e. without denaturing the DNA. It was not necessary to 

remove free nucleotides before use.

Hybridisation and Autoradiography

The same hybridisation / detection protocols were used for the human minisatellite and 

bacteriophage M l3 probes. Hybridisations were carried out in a rotisserie style 

hybridisation oven (Hybaid, England). Heparin-based hybridisation solutions (Wells, 

1988) were used; i.e. prehybridisation solution, 20 ml, pH 7.2 - 50% formamide 

(deionised), 3 x SSC, 0.2% SDS, and 50 pg / ml heparin (Type II); hybridisation 

solution, 15 ml, pH 7.2 - 50% formamide (deionised), 3 x SSC, 5% dextran sulphate, 

0.2% SDS, and 200 pg / ml heparin (Type II). Membranes were prehybridised for 6 hr 

at 42°C and hybridisation was carried out overnight (16 hours) at 42°C. Following 

hybridisation the membranes were washed at low stringency, i.e. 2 washes in 1.5 x SSC, 

0.1% SDS, 40°C for 30 min each. Autoradiography was generally carried out at -70°C 

overnight with one intensifying screen or at room temperature for 1-4 days without an 

intensifying screen. Membranes were later stripped by immersion in 0.1% SDS at 85°C 

for 30 minutes.

2.2.3 RNA Analysis

2.2.3.1 Total RNA Extraction and Quantification

Total RNA was isolated from cells grown to approximately 80% confluency following 

the RNAzol B method of extraction (Biogenesis Ltd., England). Briefly, cells in a T175 

flask were washed twice with PBS and 5 ml RNAzol B solution added directly to the 

flask. The resulting mixture was then transferred to a Falcon 1059 polypropylene 

centrifugation tube and 1 ml of chloroform was added with vigorous pipetting. The top 

of the tube was then covered with Parafilm (American National Can, USA) and the tube 

was left on ice for 15 min to allow phase separation to take place. After this time the 

tube was spun at 10,000 rpm for 15 min at 4°C in an HB-4 rotor in a Sorvall RC-5B

58



centrifuge. The aqueous phase was transferred to a fresh tube and an equal volume of 

isopropanol added. The tube was briefly vortexed before being stored overnight at 

-20°C to allow precipitation of RNA. After precipitation, the tube was centrifuged as 

before and the pellet washed with 6 ml ice cold ethanol (75% in diethylpyrocarbonate 

(DEPC)-treated RNase-free water) with further centrifugation. The RNA pellet was 

resuspended in DEPC-treated RNase-free water and the concentration of RNA was 

measured spectrophotometrically as described in Chapter 2.2.2.6. The spectro

photometer was calibrated using a blank of DEPC-treated water. An A2go value of 1 

was taken as being equivalent to a concentration of 40 pg / ml RNA. RNA samples 

were stored at -70°C.

2.2.3.2 RNA Dot Blots

20 pg aliquots of total RNA from test and control cell lines were dotted onto the 

supported nitrocellulose membrane Hybond-C Extra (Amersham International pic) 

using a Bio-Dot Microfiltration Apparatus (Bio-Rad Ltd.) according to the 

manufacturer's instructions. Once blotted, membranes were baked for 2 hours at 80°C.

2.2.3.3 Prehybridisation and Hybridisation Conditions - RNA

Membranes were prehybridised using the same buffer as for DNA membranes 

(Chapter 2.2.2.12) but in the presence of 50% formamide. Labelled DNA probes were 

denatured as above. Prehybridisation and hybridisation were carried out at 42°C.

2.2.3.4 Washing o f Hybridised Membranes and Autoradiography - RNA

RNA membranes were washed to the following stringency: 2 x  SSC, 0.1% SDS for 

10 min at room temperature to remove unbound probe and then at 0.1 x SSC, 0.1% SDS 

for 30 min ( 2 x 1 5  min) at 65°C. Membranes were then bagged in 2 x SSC to keep 

them moist and exposed to X-ray film with two intensifying screens at -70°C.
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RNA membranes were stripped for reprobing by immersing the membranes in a 

solution of boiling 0.1% SDS and allowing the solution to cool to room temperature. 

Efficiency of stripping was checked by exposing the membranes to X-ray film overnight 

at -70°C.

2.2.4 Protein Analysis

2.2.4.1 Whole cell protein extraction

Cells, grown to approximately 80% confluence in 90 mm tissue culture dishes, were 

washed twice with pre-chilled sterile PBS. The last traces of PBS were removed by 

aspiration. Dishes were placed on ice and 0.5 ml of pre-chilled lysis buffer (100 mM 

NaCl, 50 mM Tris-HCl (pH 7.4), 1% Triton X-100, 0.1% SDS, 0.5% Na deoxycholate, 

lOmM CaCl2, 2m M  phenylmethylsulfonyl fluoride (PMSF) and 1% aprotinin) was 

added per dish. Cells were incubated on ice for 20 min and then scraped, using a 

disposable cell scraper (Costar, England), into pre-chilled screw cap microfuge tubes. 

Tubes were centrifuged in a bench top microcentrifuge at 14,000 rpm for 2 min at 4°C. 

The supernatant from each tube was aliquoted into fresh microfuge tubes (to minimise 

sample deterioration due to repeat freeze-thawing) and stored at -70°C until required.

2.2.4.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

employed to resolve proteins according to their apparent molecular weight. Gels were 

subject to electrophoresis using an Atto Dual Slab E.P. Chamber apparatus. Resolving 

gels were typically 11% with respect to acrylamide and stacking gels were 7% 

acrylamide. A stock solution containing 44% (w/v) acrylamide, 0.8% Ms-acrylamide 

was used for both types of gel. Acrylamide solutions of the required concentration were 

mixed with the appropriate gel buffer to a final concentration of lx with distilled water 

(dH20).
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4x Resolving Gel Buffer (RGB): 1.5 M Tris (pH 8.9), 0.4% SDS 

4x Stacking Gel Buffer (SGB): 0.5 M Tris (pH 6.7), 0.4% SDS

Resolving gels were prepared by mixing the following:

stock acrylamide/ Zu's-acrylamide 13.6 ml

dH20 24.0 ml

4x RGB 12.5 ml

10% ammonium persulphate (APS) 0.40 ml

TEMED 0.15 ml

The gel mix was pipetted between the gel plates and overlaid with water-saturated 

butan-2-ol. After polymerisation (30-60 min) the overlay was removed and the top of 

the resolving gel washed extensively with distilled water. Excess water was removed 

using Whatman 3 MM paper and the appropriate comb inserted before the stacking gel

was poured.

The stacking gel consisted of: 

stock acrylamide/ Zus-acrylamide 3.30 ml

dH20 11.0 ml

4x SGB 5.00 ml

10% APS 0.40 ml

TEMED 0.04 ml

The stacking gel was allowed to polymerise for approximately 30 min. After 

polymerisation the comb was carefully removed and the gel transferred to a gel tank. 

Both reservoirs were filled with lx SDS-PAGE running buffer (lOx SDS-PAGE 

running buffer, pH 8.3: 522 mM Tris, 4% glycine, 1% SDS). Wells were flushed with 

running buffer and bubbles removed from the lower surface of the gel plates before the 

samples were loaded.

61



Protein samples (20 pi aliquots of lysates from 80% confluent T80 flasks) were 

denatured at 100°C for 3-5 min in an equal volume of sample buffer (100 mM Tris-HCl 

(pH 6.8), 20% glycerol, 4% SDS, 2% P-mercaptoethanol and 0.2% (w/v) bromophenol 

blue), chilled on ice and microcentrifuged at 14,000 rpm for 20 seconds prior to loading. 

Gels were run at 100 mA, maximum voltage for 6-7 hours with pre-stained protein 

molecular weight markers (Amersham International pic). Gels were run in duplicate.

Following electrophoresis, the front gel was used for Western blotting (Chapter 2.2.4.3 

below) and the back gel was stained, as follows, with Coomassie Brilliant Blue stain to 

check for equal loading of samples. The back gel was carefully removed from the plates 

and incubated at room temperature in staining solution (0.1% (w/v) Coomassie Brilliant 

Blue in 45 :45 : 10 (v/v) methanol: dH20: acetic acid) for 30-40 min with gentle 

shaking. Subsequently, the gel was destained in 45 :45 : 10 (v/v) methanol: dH20: 

acetic acid for 3-4 hr with several changes of destaining solution.

2.2.4.2 Western Blotting

Proteins extracts were resolved on SDS-PAGE gels together with pre-stained molecular 

weight markers. Proteins were blotted onto Hybond ECL nitrocellulose membranes 

(Amersham International pic) using a Sartorius semi-dry blotting apparatus according to 

the manufacturer's instructions. Briefly, twelve pieces of Whatman 3MM paper and a 

single piece of nitrocellulose membrane were cut to the size of the gel and equilibrated 

in 1 x transfer buffer (60 mM Tris, 500 mM glycine, 16 mM SDS, 20% (v/v) methanol). 

Six pieces of Whatman 3MM paper were placed on the blotter and the gel, which had 

also been rinsed in transfer buffer, was placed on top. The nitrocellulose membrane was 

placed on the gel and covered with the remaining six pieces of Whatman paper. Air 

bubbles were carefully removed and transfer effected at full power (200 mA) for 

approximately 2 hr. The membrane was removed after transfer of pre-stained molecular 

weight markers was complete and marker sizes were highlighted with a soft-lead pencil.
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The nitrocellulose membrane could either be used immediately or alternatively, 

air-dried and stored at 4°C until required.

The nitrocellulose membrane was blocked for 30 minutes at room temperature in 

blocking buffer (3% bovine serum albumin (BSA, fraction V) in PBS, 0.1% NP-40 and 

0.01% sodium azide) with continuous shaking. Primary antibody (mouse monoclonal 

anti-phosphotyrosine antibody; UBI, New York) was diluted 1:1000 in PBS as 

recommended by the suppliers and incubated with the membrane for 4 hr at 4°C with 

continuous shaking. The membrane was subsequently rinsed with PBS, blocked with 

blocking buffer for 10 min and rinsed again in PBS before incubation with anti-mouse 

IgG secondary antibody conjugated to alkaline phosphatase (1:5000) in blocking buffer 

containing 1.5% BSA for 2 hr at room temperature. The membrane was rinsed once in 

PBS, three times in blocking buffer and once in alkaline phosphatase buffer (100 mM 

Tris-HCl (pH 9.5), 100 mM NaCl, 5 mM MgCl2) before development with chromogenic 

alkaline phosphatase substrate. This substrate was prepared by dissolving 16 mg 

nitroblue tetrazolium and 8 mg of 5-bromo-4-chloro-3-indolyl phosphate in 50 ml of 

alkaline phosphatase buffer. Once sufficient intensity of colour had developed the 

reaction was stopped by rinsing the membrane in water.

2.2.5 Statistical Analyses

Statistical analyses were carried out using the 'Analysis ToolPak' within Microsoft 

Excel Version 4.0.
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Chapter 3

TRANSFECTION OF ESTABLISHED MURINE CELL LINES

WITH BPV-4 DNA

3.1 Introduction

BPV-4 is the causative agent of papillomatosis of the upper alimentary canal in cattle 

(Jarrett et al., 1978; Campo et al., 1980). While this virus is necessary in the initial 

stages of tumour formation, and BPV-4 DNA is present in benign papillomas, viral 

DNA is rarely detected in carcinomas (Campo et al., 1985). Similar results have been 

observed in experiments reproducing the malignant conversion of a BPV-4-induced 

papilloma in the renal capsule of a nude mouse (Gaukroger et al., 1991). Although 

BPV-4 DNA was present in the papilloma fronds it could not be detected in the 

carcinoma or in a splenic metastasis derived from the primary malignancy. Analysis of 

cell lines derived from transfection of a sub-line of the established mouse fibroblast line 

C l27 with BPV-4 genes (detailed below), showed that the majority of transformed lines 

did not contain viral DNA (Smith & Campo, 1988). All the above data indicate that the 

virus is required for the early stages of transformation but presence of BPV-4 is not 

necessary for, or may even interfere with, the progression to and maintenance of the 

fully transformed state. A similar situation has been described for transformation of 

C127 cells by human papillomavirus type 6b (HPV-6b) (Morgan et al., 1990). The 

BPV-4 and HPV-6b results are examples of viral transformation by means of a 'hit and 

run' mechanism in which the viral genome although involved in initiating cellular events 

that can lead to the malignant phenotype, may not be consistently maintained or 

transcribed in the transformed cells. Such a mechanism is also postulated for 

transformation by herpes simplex virus and cytomegalovirus (Macnab, 1987).
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In a previous study, transfection of whole genome BPV-4 into C l27 cells gave rise to a 

number of transformed lines, several of which proved to be tumourigenic in nude mice 

(Smith & Campo, 1988). Only nine out of 60 cell lines examined contained BPV-4 

DNA. Comparison of cell line DNAs from early versus late passages showed that 

BPV-4 DNA was progressively lost on continued sub-culture. Viral DNA was not 

detected in the majority of fully transformed cell lines indicating that there was no 

apparent relationship between the continued presence of BPV-4 DNA and the 

transformed phenotype. It was proposed that the persistence of BPV-4 DNA in the 

minority of cell lines was fortuitous and was due to integration into the cell genome. As 

expression of the viral DNA was not detected in these transformed cells the presence of 

BPV-4 sequences was considered to be irrelevant to the maintenance of the transformed 

phenotype (Smith & Campo, 1988).

Further characterisation of the BPV-4-containing lines revealed amplification and 

rearrangement of specific host sequences (Smith & Campo, 1988; 1989). A rearranged 

BPV-4 DNA fragment from one of these lines (a secondary transfectant line C4Ta2a) 

was cloned and analysed (Smith & Campo, 1989). This fragment was found to consist 

of BPV-4 DNA flanked by 'cellular' sequences. These non-BPV-4 sequences 

(designated Am sequences) were sub-cloned and radiolabelled Am sequences were used 

to probe Southern blots of digested DNAs from the various transformed cell lines. 

Sequences homologous to the Am probe were found to be amplified and rearranged in 

all the BPV-4-transformed cells analysed (and also in tumour DNAs derived from 

injection of these lines into nude mice), irrespective of the presence of BPV-4 DNA. 

These amplified sequences were found to be transferred and maintained in other second 

and third round transformants in the absence of BPV-4 DNA (Smith & Campo, 1989). 

In fact C4Ta2a was the only cell line which stably maintained BPV-4 DNA. 

Interpretation of these results led to the proposal that the amplified DNA found in all 

these transfected C l27 cells was activated in response to BPV-4 transformation and that
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this contributed to the maintenance of the transformed phenotype (Smith & Campo, 

1989). Amplification of cellular genes is a frequent event in the progression of pre- 

malignant cells to malignancy (Stark & Wahl, 1984; Alitalo et al., 1986) and is 

commonly found after treatment with carcinogens or viruses (Kleinberger et al., 1986).

However, cloning and sequencing of a DNA fragment detected by the Am probe and 

amplified in a tumour induced by a BPV-4-transformed line, unexpectedly revealed that 

this fragment consisted of 5.2 kb of the BPV-1 genome (nts 7154-4450) integrated into 

a cellular region which showed homology to murine autonomously replicating 

sequences (ARS) (Smith et al., 1993). Studies in yeast have identified ARS elements as 

putative chromosomal origins of DNA replication by virtue of their ability to undergo 

autonomous replication when cloned into plasmids (Struhl et al., 1979; Stinchcomb et 

al., 1979; Chan & Tye, 1980). Similar DNA sequences from other eukaryotes have also 

been shown to function as ARS elements in yeast (Struhl et al., 1979; Botchan & 

Dayton, 1982; Roth et al., 1983; Montiel et al., 1984). Smith et al. (1993) found on 

subsequent DNA sequencing of the Am DNA probe that it too contained BPV-1 DNA 

and mouse sequences. Retrospective analysis showed that the sequences amplified in 

transformed cells were present at single copy level in the parental C l27 line (Smith 

et al., 1993). The parental cells (subsequently termed C127sc) showed none of the 

properties of transformed cells (Smith & Campo, 1988), indicating that the resident 

BPV-1 sequences were 'silent*. Northern analysis of mRNAs from both transformed and 

parental cells showed that while the BPV-1 sequences in the transformed lines were 

actively transcribed, BPV-1 RNA was not detected in the parental line, although as the 

BPV-1 sequences present in these cells were at single copy level this negative result 

could have been due to lack of sensitivity of detection (K. Smith personal 

communication). The origin of the BPV-1 component of these cells is unknown.
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In the above work the possibility that the observed phenotypes were due, in part or 

whole, to the BPV-1 sequences could not be ruled out, although manifestation of these 

effects was dependent on transfection with BPV-4 genes. Although BPV-1 and BPV-4 

belong to different subgroups (A & B respectively) and data from both immunological 

and Southern hybridisation studies show there is no cross-reactivity / homology between 

the two sub-groups (Campo & Jarrett, 1987), it must be considered that the phenotypes 

and behaviour of BPV-4 DNA was due to interaction (whether direct or indirect) 

between the two viral genomes. In the above studies BPV-4 DNA was either absent or 

rearranged and eventually lost (with one exception, C4Ta2a) on continued sub-culture 

(Smith & Campo, 1988). Amplification of integrated BPV-1 sequences and flanking 

cellular sequences was also reported. In light of these findings two separate studies 

were undertaken to investigate the relationship between rearrangement and loss of the 

BPV-4 genome and also BPV-4 dependent DNA amplification in BPV-1-containing cell 

lines.

3.2 Experimental Rationale / Methods

The following experimental work was carried out on DNA extracted from transfected 

cell lines which had previously been derived by a former worker in the laboratory, 

Dr. K. Smith.

3.2.1 Status of BPV-4 DNA in transfected cell lines

The BPV-1 sequences appeared 'silent* in the parental C127sc cells. However, their 

activation post-transfection could well play a role as to whether BPV-4 DNA is lost or 

retained. That such contribution might depend on the level of BPV-1 expression was 

investigated by DNA analysis of various BPV-4-transfected lines derived from 

transfection of a cell line (ID 14) containing episomal, actively expressing BPV-1 DNA. 

Southern blot membranes of DNAs from the above cell lines were screened with whole 

and sub-genomic BPV-4 DNA probes in order to establish whether the frequently
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observed 'hit and run' mechanism of BPV-4-induced cell transformation was due to 

active selection against all or part of the viral genome (and whether the presence of 

actively transcribed BPV-1 affected maintenance / loss of BPV-4 DNA). If selection 

processes are involved, an attractive candidate for negative selection is the BPV-4 E8 

ORF as previous studies have shown that overexpression of this ORF is detrimental to 

primary cells (Jaggar et al., 1990; Pennie et al., 1993).

3.2.1.1 Cell lines

The parental line, called ID 14, originated from transformation of C l27 cells by BPV-1 

virions. The BPV-1 DNA in these cells is actively transcribed, stably maintained at 

approximately 40 genome equivalents per diploid cell and is present exclusively as 

supercoiled or relaxed circular extrachromosomal DNA molecules (Law et al., 1981). 

Five BPV-4 clonal lines (ID1 - ID5) were derived by transfection of ID14 cells with 

10 pg BamH I linearised pBV4 DNA using a calcium phosphate precipitation technique 

(K. Smith, personal communication; pBV4 is detailed in Chapter 2.1.7). A plasmid 

encoding a neomycin resistance gene (pSV2neo) was co-transfected (1 pg) to allow for 

subsequent selection of transfected cells in medium containing the neomycin analogue 

G418 (Gibco, BRL). Transformed cells were selected by maintaining cultures in 

DMEM supplemented with 5% foetal calf serum and 800 pg / ml G418. An initial 

analysis of these lines confirmed the presence of episomal BPV-1 DNA and also 

showed that they contained BPV-4 DNA (K. Smith, personal communication). For two 

of the clonal lines, ID4 and ID5, DNA from early and later passages were compared. 

The BPV-4 status of the late passage cells had not previously been determined.

DNA from the secondary transfectant line C4Ta2a was also analysed. The origin of the 

C4Ta2a line is detailed in Smith & Campo (1988). In brief, C4Ta2a is a secondary 

transfectant line which resulted from an original transfection of C127sc cells with 

BPV-4 DNA in the presence of the tumour promoter TPA. This gave rise to the cell
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line C4Ta. The secondary transfection was carried out using DNA from these C4Ta 

cells, one of the resulting lines being C4Ta2a. This line is anchorage independent, 

shows no contact inhibition and is tumourigenic in nude mice. Unlike the majority of 

BPV-4-transfected cells C4Ta2a was found to maintain rearranged BPV-4 DNA even 

on prolonged sub-culture.

3.2.1.2 DNA A nalysis

Initial probing with whole genome BPV-4 DNA was undertaken to establish the 

presence and status of this viral DNA in transfected cell lines. Subsequent Southern 

blot / RFLP mapping of BPV-4 sequences present in the various cell line DNAs was 

undertaken using a combination of five restriction enzymes (BamH I, EcoR I, Hinc II, 

Hind III and PstI) and seven sub-genomic BPV-4 probes (Table 3.1). The restriction 

enzyme sites in wildtype (i.e. episomal) BPV-4 DNA are detailed diagramatically in 

Figures 3.1-3.4 together with the sequence specificity of each sub-genomic BPV-4 

probe used. The expected detectable fragment sizes for each restriction enzyme / probe 

combination are detailed in Table 3.2.

Total genomic DNA was extracted from the cell lines as described in Chapter 2.2.2.4. 

Generally 10 pg of each restriction enzyme digested cell line DNA and appropriate 

controls were run on 0.8% agarose gels (14 tracks) under standard electrophoretic 

conditions (described in Chapter 2.2.2.8). Each gel contained a X Hind III (500 ng) 

marker lane and a lane containing 1 pg bovine oesophageal papilloma DNA (which 

contains episomal BPV-4 DNA) digested with one of the five restriction enzymes used 

for the RFLP mapping analysis. Two BPV-4-transfected cell line DNAs were analysed 

per gel, with each of the five different restriction enzyme digests being loaded in 

consecutive tracks. At least one track of an appropriate control (either ID 14 DNA for 

ID 1-5 or C l27 for C4Ta2a analyses) digested with one of the five restriction enzymes 

was also included. Due to the large number of separate probings required (i.e. 8-9)
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Table 3.1 List of BPV-4 genomic DNA probes used in the study of C4Ta2a and 
BPV-4 transfected ID 14 cell lines.

Probe Size, region and construct origin3

BPV-4 7.265 kb (whole genome) isolated from pBV4

BPV-4 LCR 866 bp (nts 6710-310) isolated from p41XLCR+

BPV-4 E8 355 bp (nts 236-590) isolated from pALTER-E8

BPV-4 E7 238 bp (nts 669-906) isolated from pURE7

BPV-4 El 2009 bp (nts 1139-3147) isolated from EcoR I 

digested circular BPV-4 DNA

BPV-4 E2 836 bp (nts 2979-3814) isolated from pURE2

BPV-4 L2a 380 bp (nts 4610-4989) isolated from pURL2a

BPV-4 L2b 569 bp (nts 4042-4610) isolated from pURL2b
Equal quantities 

of L2a, b and c

BPV-4 L2c 641 bp (nts 4989-5629) isolated from pURL2c
used for L2 probe

BPV-4 L la 788 bp (nts 5737-6524) isolated from pURLla

BPV-4 Lib 111 bp (nts 5627-5737) isolated from pURLlb
Equal quantities 

of Lla, b and c

BPV-4 L ie 824 bp (nts 6524-0082) isolated from pURLlc
used for LI probe

a All probe constructs are detailed in Chapter 2.1.7
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Table 3.2 Restriction fragment lengths of episomal BPV-4 DNA expected to be 
detected with whole and sub-genomic BPV-4 DNA probes. (Values are 
given in kilobase pairs. Probes are more fully described in Table 3.1 and 
Figures 3.1-3.4).

BPV-4 probes

Digest BPV-4 LCR E8 E7 El E2 L2 LI

BamH I 7.265 7.265 7.265 7.265 7.265 7.265 7.265 7.265

EcoR I 0.233 5.024 5.024 0.233 2.008 2.008 5.024 5.024
2.008 2.008 5.024
5.024 5.024

HincII 0.562 0.835 0.835 0.775 0.562 3.186 1.907 0.835
0.775 1.907 0.835 0.775 3.186 1.907
0.835 3.186
1.907 
3.186

Hind III 0.152 3.511 3.511 3.511 1.345 1.345 2.257 0.152
1.345 3.511 2.257 2.257
2.257 3.511
3.511

PstI 0.075 1.052 1.052 0.227 0.075 0.891 1.077 1.052
0.227 1.723 0.430 0.227 1.317 1.317 1.723
0.430 1.052 0.430 1.723
0.473 0.473
0.891 0.891
1.052 1.317
1.077 
1.317 
1.723
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duplicate gels were prepared. Subsequent Southern blotting, hybridisation and 

autoradiographic conditions were carried out as detailed in Chapters 2.2.2.9-2.2.2.13. In 

all cases hybridised membranes were washed to a final stringency; 0.1 x SSC, 

0.1% SDS for 30 min (2x15  min) at 65°C.

3.2.2 BPV-4-mediated amplification

Analysis of an amplified DNA fragment observed in C127sc cells transfected with 

BPV-4 DNA showed that this amplified region consisted of BPV-1 sequences flanked 

by cellular sequences homologous to autonomously replicating sequences (ARS) (Smith 

& Campo, 1988; Smith et al., 1993). The BPV-1 sequences present encompassed the 

E6, E7, El and E2 ORFs, the origin of viral DNA replication (mapped to nt 7730 ± 100; 

Yang & Botchan, 1990) and part of the upstream regulatory region (the long control 

region; LCR). Cloning and later transfection of this amplified fragment (designated 

HL-10) showed that it was capable of inducing focus formation in C l27 cells but, unlike 

BPV-1 DNA, could only transform primary bovine fibroblasts (PalF cells) in 

co-operation with an activated human Ha- ras gene (Smith et al., 1993). This suggested 

that although the transformation capability of HL-10 resided within the BPV-1 ORFs, 

this ability may be influenced by the incomplete nature of the BPV-1 sequences and / or 

surrounding mouse sequences. The ability of BPV-4 DNA to induce amplification in 

these cells could be due to interaction with the ARS-like sequences or a cellular 

intermediate. However, possible interaction between BPV-4 products and BPV-1 

sequences cannot be excluded. Therefore the following study was carried out in another 

cell line (AM9) which also contained integrated BPV-1 sequences in order to investigate 

whether BPV-4 was capable of amplifying BPV-1 DNA resident in these cells.

3.2.2.1 Cell lines

As already described for the ID 14 work, the following transfected cell lines and DNA 

samples prepared from these lines had been previously isolated by Dr. K. Smith. The
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parental line, AM9, (a gift from Dr. S. Burnett, Dept, of Medical Genetics, University of 

Uppsala) was derived by transformation of C l27 cells with BPV-1 DNA. The BPV-1 

DNA transfected into these cells had a 277 bp deletion between nts 4128-4406. This 

deletion involved the early gene mRNA polyadenylation site and part of the L2 ORF. 

The viral DNA had been digested with EcoR I prior to transfection, thus disrupting the 

El ORF. AM9 cells were found to contain 2-4 integrated copies of the mutant BPV-1 

genome and displayed a flat non-transformed morphology (Burnett et al., 1988).

Nine test clonal lines derived from transfection of AM9 cells with various BPV-4 genes 

were analysed. The viral regions transfected included: 

whole genome BPV-4

a sub-genomic fragment containing BPV-4 E8, E7 

a sub-genomic fragment containing BPV-4 E8 

a sub-genomic fragment containing BPV-4 E7 

a sub-genomic fragment containing BPV-4 E8, E7 

plus part of the LI and the El ORFs - o n e  clone

- one clone

- three clones

- two clones

- two clones

All the above viral genes were transfected as recombinant plasmids, (detailed in 

Figure 3.5) using a calcium phosphate precipitation protocol (K. Smith, personal 

communication). The whole genome BPV-4 construct and the sub-genomic construct 

pATH-H3.6 (see Figure 3.5) were each transfected along with the selectable marker 

gene for neomycin resistance (pZipneo; Chapter 2.1.7). All other constructs already 

contained a gene encoding neomycin resistance. Each reaction contained 10 pg of the 

relevant plasmid DNA (plus, if appropriate, 1 pg pZipneo DNA). Control cell lines 

included two clones from a 'neo only' transfection and cells from a 'mock' (i.e. no DNA) 

transfection. Transformed cells were selected by growing cultures in DMEM 

supplemented with 2% foetal calf serum and 800 pg / ml G418 (see Chapter 2.1.3).
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Figure 3.5 BPV-4 sequences present in transfected plasmid constructs.

Notes: pBV4 contains the whole genome cloned into the BamH I site of pAT153 
(Campo & Coggins, 1982). pZipE8E7 contains the Xho II fragment cloned 
into the BamH I site of pZipneoSV(XI) (Jaggar et al., 1990). pZipE8E7” 
contains the Xho II fragment cloned into the BamH I site of pZipneoSV(XI) 
with a deletion spanning nts 905-1138 - symbolised by an inverted triangle 
(Jaggar et al., 1990). pZipE7 contains nts 652-1250 cloned into the BamH I 
site of pZipneoSV(XI) (Pennie et al., 1993). pAT H-H3.6 contains a Hind III 
fragment cloned into the Hind III site of pAT153 (Smith et al., 1986).

E = early ORFs; L = late ORFs; LCR = long control region; LTR = MoLV 
LTR; neo = neomycin / G418 resistance gene; p ori = plasmid DNA replication 
origin; SV ori = SV40 DNA replication origin. Numbers refer to BPV-4 map 
co-ordinates, thick lines = viral sequences; thin lines = vector sequences.
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3.2.2.2 DNA Analysis

Southern blot membranes of digested DNAs from the above cell lines were screened 

with BPV-4 DNA, BPV-1 DNA, murine ARS sequences and a murine c-Ha-ras DNA 

probe (acting as a loading control).

3.2.2.3 DNA probes 

Whole genome BPV-4

This probe consisted of the full BPV-4 genome (7.265 kb). It was isolated by BamH I 

digestion of the plasmid construct pBV4. Details of this construct are given in 

Chapter 2.1.7.

Whole genome BPV-1

This probe consisted of the full BPV-1 genome (7.945 kb). It was isolated by Hind III 

digestion of the plasmid construct pBVla (Campo & Coggins, 1982). Details of this 

construct are given in Chapter 2.1.7.

murine ARS

This probe consisted of a 719 bp fragment containing the ARS-like sequences 3' to the 

BPV-1 sequences in HL-10. It was isolated by Pst I / BamH I digestion of the plasmid 

construct pIC-ARS (Smith et al., 1993). Details of this construct are given in 

Chapter 2.1.7.

c-Ha-ras

This probe consisted of a 576 bp cDNA fragment covering exons 1-4 of the murine 

c-Ha-ras gene. It was isolated by Not I / BamH I digestion of the construct pBSras (gift 

from W. Lambie, Beatson Institute, Glasgow). This probe was used as an indicator of 

DNA loading levels. Details of this construct are given in Chapter 2.1.7.
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3.2.2.4 Assay conditions

Three restriction enzyme DNA digests (BamH I, EcoR I and Hind III) were carried out 

per cell line. These enzymes were chosen as they have single restriction enzyme sites in 

BPV-1 and have relatively few enzyme sites in the BPV-4 genome. Generation of 

simple banding patterns was required to allow assessment of whether BPV-1 DNA 

amplification had occurred. Likewise, screening of membranes with the BPV-4 probe 

was to investigate the presence of BPV-4 DNA in these cells. Mapping of BPV-4 genes 

was not required.

Total genomic DNA was extracted from the cell lines as described in Chapter 2.2.2.4. 

Approximately 10 pg of each restriction enzyme-digested test cell line DNA and 

appropriate controls were run on 0.8% agarose gels (14 tracks) under standard 

electrophoretic conditions. Each gel contained a X Hind III (500 ng) marker lane and a 

number of control tracks. These included similarly digested DNA from the parental cell 

line, AM9, and digested DNAs from both neo alone transfectants and cells exposed to 

the transfection solutions (in the absence of DNA). Positive control tracks for BPV-1 

DNA contained 10 pg of digested ID 14 DNA, while those for BPV-4 DNA contained 

1 pg of similarly digested bovine oesophageal papilloma DNA which is known to 

contain episomal BPV-4 DNA. Tracks with papilloma DNA also contained 10 pg 

BamH I digested C l27 DNA which acted as a carrier. On average two BPV-4- 

transfected cell line DNAs were analysed per gel with each gel being prepared in 

duplicate. Subsequent Southern blotting, hybridisation and autoradiographic conditions 

were carried out as detailed in Chapters 2.2.2.9-2.2.2.13. In all cases hybridised 

membranes were washed to a final stringency; 0.1 x SSC, 0.1% SDS for 30 min (2x15 

min) at 65°C.
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3.3 Results and Discussion

3.3.1 ID 14 transfectants

In common with previous in vitro studies (Smith & Campo, 1988), BPV-4 DNA was 

found to be initially present in the ID 14 transfectants, but in clones where different 

passages were looked at (i.e. ID4 and ID5) it was found to be progressively lost on 

continued sub-culture (Figure 3.6; tracks 9-11 and 6-8 respectively). In both clonal 

lines no detectable BPV-4 DNA was found by passage 19. These late passage DNAs 

were not analysed further. That the result of BPV-4 transfection was similar in both 

C127sc cells (Smith & Campo, 1988) and ID14 cells (i.e. BPV-4 DNA is lost on 

continual sub-culture) suggests that the level of BPV-1 expression does not influence 

the maintenance of BPV-4 DNA. Whatever the selection process against BPV-4, it is 

still operational regardless of the level of BPV-1 expression.

The amount of BPV-4 DNA present differed between cell lines, ranging from approxi

mately 1-2 copies per diploid genome (lines ID2 and ID3) to greater than 100 genome 

equivalents (g.e.) in line ID4 (Figure 3.7). The high molecular weight bands detected in 

four out of the five cell lines suggests that the BPV-4 DNA is integrated into the cellular 

genome (Figures 3.6 and 3.7). The remaining cell line (ID4) showed multiple bands 

(Figure 3.6; track 9) which is also indicative of integration. However the most 

prominent band observed, which migrated as for oesophageal papilloma (episomal 

BPV-4) DNA, could be due to either episomal or integrated tandemly repetitive viral 

sequences.

Results of the viral mapping of all lines showed no obvious rearrangements within the 

LCR and the E8, E7, LI and L2 ORFs. As previous studies had shown that 

overexpression of the E8 ORF was detrimental to PalF cells (Jaggar et al., 1990; Pennie 

et al., 1993), this ORF was considered to be a prime candidate for negative selection. 

However, as noted above, no evidence from the Southern blot analyses specifically
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1 2 3 4 5 6 7 8 9 10 11 12 13

kb

Figure 3.6 Southern blot analysis of ID14 transfectants and cell line C4Ta2a for 
maintenance o f BPV-4 DNA.

Tracks 2-13 contain 10 pg of BamH I digested DNA. Track 1 contains 
1 fig o f BamH I digested bovine oesophageal papillom a DNA (which 
contains episomal BPV-4 DNA) + 9 pg o f BamH I digested carrier DNA 
(C l27 DNA). The probe used was whole genome BPV-4 DNA (see 
Table 3.1). The positions o f X Hind III digested DNA molecular weight 
markers are indicated in the left margin.

#x denotes passage number post transfection.

23.1 -

9.4 -

6.6 —

4.4

2.3 —
2.0 -
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kb 

23.1 -

9.4  —  

6.6 —

4.4  —

2.3 —  

2.0 —

Figure 3.7 Southern blot analysis of ID 14 transfectants and cell line C4Ta2a for the 
presence and quantification of BPV-4 sequences.

Tracks 1-3 contain respectively 100, 10 and 1 genome equivalents (g.e.) 
o f BamH I digested BPV-4 DNA + 5 pg BamH I digested carrier (ID14) 
DNA. Track 4 contains 200 ng o f BamH I digested bovine oesophageal 
papilloma DNA (which contains episomal BPV-4 DNA) + 5 pg o f 
BamH I digested carrier (ID14) DNA. Tracks 5-12 contain 5 pg o f 
BamH I digested DNA from the indicated cell lines. The probe used was 
whole genome BPV-4 (see Table 3.1). The positions o f X Hind III 
digested DNA molecular weight markers are indicated in the left margin.

#x denotes passage number post transfection.
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implicated the E8 ORF. Thus if E8 functions are selected against this does not happen 

through major deletions of this ORF. However the analyses showed that in all lines 

major rearrangements had taken place between the 3' end of the El ORF and the 5' end 

of the E2 ORF. For example the result of El probing of digested DNAs from line ID4 

is shown in Figure 3.8. Note that the BPV-4-specific bands observed in track 7 are 

markedly different from those seen in the papilloma positive control (track 1) for Pst I 

digested DNA. Similarly, unexpected bands were observed in other digests. The site of 

disruption could be narrowed down to a 661 bp region between the Hind III site (BPV-4 

genome nt 2356) and the Pst I site (BPV-4 genome nt 3017). As, in all cases, the viral 

DNA had been linearised within the El ORF (BamH I site nt 2597) prior to transfection 

this would suggest that the BPV-4 DNA had integrated into the mouse genome via this 

site. It must be noted that this mapping technique is relatively insensitive and that small 

deletions and / or point mutations will be undetected. Likewise small inversions or 

duplications will also remain undetected if they do not affect the sequence recognition 

sites of the particular restriction enzyme used. All that can be stated is that there are no 

major rearrangements within the BPV-4 sequences present in these lines apart from in 

the El ORF which contains the BamH I site.

As regards the secondary transfectant line C4Ta2a, probing of BamH I digested DNA 

from this line with either whole genome BPV-4 or sub-genomic fragments showed a 

band of approximately 7 kb, which is less than the expected 7.265 kb (e.g. Figure 3.6; 

tracks 1 & 3 and Figure 3.9; tracks 1 & 6). This suggested the C4Ta2a line carries a 

deleted form of the viral genome. Digestion of C4Ta2a DNA with Kpn I, an enzyme 

which does not cut within the viral genome, and comparison of the sample's electro

phoretic mobility to that of similarly digested bovine oesophageal papilloma DNA, 

indicated that the BPV-4 DNA present in this cell line had integrated into the cellular 

genome (Figure 3.9; tracks 13 & 14). This confirmed findings of Smith & Campo 

(1988). Although most ORFs appeared wildtype, digestion of C4Ta2a DNA with
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1 2 3 4 5 6 7

23.1 -

9.4  -

6.6 -

4.4  -

2.3 —

2.0 —

0.5 —

Figu re 3.8 Southern blot analysis o f cell line ID4 (passage 4) for the presence and 
status o f BPV-4 E l DNA.

Tracks 2-7 contain 5 pg o f ID4 DNA digested with the indicated 
restriction enzymes. Track 1 contains 1 pg o f Pst I digested bovine 
oesophageal papilloma DNA (which contains episomal BPV-4 DNA) + 
4 pg o f BamH I digested carrier DNA (C l27 DNA). The probe used was 
BPV-4 E l DNA (see Table 3.1). The positions o f X Hind III digested 
DNA molecular weight markers are indicated in the left margin.

*
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vcy.  .  A  <> .V
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\~ Papilloma DNA HI—  C4Ta2a DNA —I (blank) bKpn I H 
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f A<&■

T\ I -
-

Figure 3.9 Southern blot analysis o f cell line C4Ta2a for the presence and status o f 
BPV-4 DNA.

Tracks 6-10 & 14 contain 5 pg o f C4Ta2a DNA digested with the 
indicated restriction enzymes. Tracks 1-5 & 13 contain 200 ng o f bovine 
oesophageal papilloma DNA (which contains episomal BPV-4 DNA) 
digested as indicated + 5 pg o f BamH I digested carrier DNA (C l27 
DNA). The probe used was whole genome BPV-4 DNA (see Table 3.1). 
The positions o f A, Hind III digested DNA molecular weight markers are 
indicated in the left margin.
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restriction enzymes that cut within or on either side of the El ORF showed that this 

region of the viral genome was extensively disrupted, suggesting that the viral DNA had 

integrated into the cellular genome at the viral BamH I site. Hybridisation of 

membranes to whole genome BPV-4 DNA revealed that the expected 2008 base 

pair (bp) EcoRI fragment was absent and a new band of approximately 3800 bp was 

detected (Figure 3.9; cf. tracks 2 & 7). This is in agreement with Smith & Campo 

(1988) who found that this fragment contained BPV-4, BPV-1 and ARS sequences 

(Smith & Campo, 1988; 1989). The authors showed the BPV-4 DNA present in this 

secondary transfectant line appeared to have integrated within the region found to have 

been amplified post BPV-4 transfection.

Using the experimental technique described above it has not been possible to pin-point 

the deleted region suggested by BamH I digestion. As observed for the ID 14 

transfectants, the viral mapping of C4Ta2a detected only a single site of disruption 

within the BPV-4 genome, namely a 661 bp region between nts 2356-3017 of the viral 

genome. This would indicate that the suggested deletion of viral sequences in this cell 

line had occurred within this 661 bp region. This would affect the 3' end of the El ORF 

and /or the 5' end of the E2 ORF. As the C4Ta2a line is unusual in maintaining BPV-4 

DNA it would be of great interest to further identify the suggested deletion site as it 

could be argued that if  there is active selection against the virus, lack of a particular 

viral region in C4Ta2a might render the remainder 'immune' from such selection. 

Alternatively there may be active selection for maintenance of BPV-4 DNA in this line 

due to its site of integration within the cellular genome. Definitive experiments to 

address whether the C4Ta2a cell line does indeed contain a deleted form of the BPV-4 

genome would include running a series of gels both longer in length and at lower 

percentage agarose than those used in the above experiments. If this result is confirmed 

it would be of interest to undertake fine mapping and / or sequencing of the identified 

disrupted 661 bp region.
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3.3.2 BPV-4-induced cellular amplification

Results from the whole genome BPV-4 probing showed that none of the AM9 

transfectants retained BPV-4 DNA (data not shown). Interestingly, although not 

retaining BPV-4 DNA, AM9 cells transfected with the E8 construct survived. This is in 

contrast to the behaviour of primary bovine fibroblasts (PalF cells) transfected with the 

same plasmid construct (Jaggar et a l , 1990; Pennie et al., 1993). Such transfected 

primary cells die more rapidly than control classes. This may be due to inherent 

differences between primary and established lines, most clearly manifest in that 

established lines are immortal whereas primary cultures have limited lifespan. It could 

also be proposed that transfection of the BPV-4 E8 gene into AM9 cells causes 

increased expression of the BPV-1 sequences resident in these cells, resulting in 

transformation and subsequent tolerance of the otherwise 'toxic' effect of BPV-4 E8 

expression.

There was no evidence that amplification of resident BPV-1 sequences had occurred. 

This was quantitatively determined by densitometric scanning of autoradiographs, 

comparing signal intensity of bands seen on probing membranes with whole genome 

BPV-1 DNA (Figure 3.10; Panel A) with those resulting from the murine c-Ha-ras 

probing (Figure 3.10; Panel B). The BPV-1 sequences in the C127sc line described in 

Smith & Campo (1989) and Smith et al. (1993) have an intact origin of replication. As 

such it is possible that the amplification observed in the C127sc transfected cells was 

initiated from this origin by direct interaction with a BPV-4-encoded function, or 

indirectly through BPV-4-directed transactivation of a BPV-1 protein required for DNA 

replication, probably the El protein (Lusky & Botchan, 1986). AM9 cells contain 2-5 

copies of integrated BPV-1 DNA with an intact origin of replication but a disrupted El 

ORF. That no amplification of these BPV-1 sequences occurs after BPV-4 transfection 

gives weight to the proposal that BPV-4 products do not act directly on the BPV-1 

replication origin but may involve BPV-1 El. The ability of BPV-4 to amplify DNA is
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not confined to BPV-1 as it has been observed that transfection of an SV40-transformed 

cell line CLIO (Campo et al., 1978) results in amplification of the SV40 DNA 

(K. Smith, personal communication).

Probing with the murine ARS probe gave general smeared signal with no obvious 

amplification of any region. This inconclusive result does not rule out a role for ARS- 

like elements in BPV-4-induced amplification. Viral integration into ARS-like 

sequences has been described in cells derived from C57BL/6 mice (Agrawal et al., 

1992). The subsequent amplification of both viral and cellular sequences in these cells 

led the authors to suggest that viral integration into ARS sequences may be important in 

establishing the transformed state. Although probing of the AM9 transfectants, which 

are known to contain integrated BPV-1 DNA, with a murine ARS probe did not reveal 

any amplification, the cellular sites of BPV-1 integration have not yet been identified in 

these cells and thus may not even involve ARS-like sequences.

Results from the above two studies involved investigation of the transformation biology 

of BPV-4 in the presence of BPV-1 sequences. Although examination of the presence 

and status of BPV-4 DNA and possible virally-induced amplification of cellular 

sequences in cells which do not contain BPV-1 DNA would be of interest, it was 

decided to focus on the transformation biology of BPV-4 in primary cells derived from 

the viral host species. This formed the main body of work of this thesis, as detailed in 

the following chapters.

90



CHAPTER 4

CO-OPERATION BETWEEN PAPILLOMAVIRUSES AND 
CHEMICAL CO-FACTORS IN CARCINOGENESIS



Chapter 4

CO-OPERATION BETWEEN PAPILLOMAVIRUSES AND 

CHEMICAL CO-FACTORS IN CARCINOGENESIS

4.1 Introduction

Cancer is a multistage, multifactorial process.)

As most cancers are somatic in origin identification of 

environmental factors and their contribution to the carcinogenic process are important 

goals, in that this may allow greater understanding of the cellular and molecular changes 

involved as well as helping direct treatment strategies and thus hopefully reduce 

numbers affected.

Chemicals have been identified as causative factors in both human and animal cancers 

(Farber & Cameron, 1980; Yuspa & Harris, 1982; Yuspa & Poirier, 1988). With regard 

to papillomaviruses, synergism between papillomaviruses and chemical carcinogens 

leading to induction of malignancy was first described by Rous and Beard (1935). The 

particular virus under investigation was an aetiological agent of skin warts in rabbits, 

cottontail rabbit papillomavirus (CRPV) identified by Shope (1933). This virus can 

induce papillomas which can progress to carcinomas in domestic as well as cottontail 

rabbits. Rous and Beard's study showed that painting rabbit skin with tar could result in 

the development of papillomas. However these papillomas usually regressed when 

treatment stopped. Subsequent introduction of CRPV resulted in development of 

malignant tumours. That progression to malignancy was enhanced after treatment with 

both virus and carcinogen suggested some sort of interaction between the two agents. 

Similar results were found using methylcholanthrene (Rous & Friedewald, 1941; 1944).
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Virus recovered from 'viral plus carcinogen' experiments showed no greater 

transformation potential than 'virus only' classes suggesting that the chemical 

carcinogens caused cellular modifications rather than affecting the virus directly.

With regard to bovine papillomaviruses, epidemiological evidence has identified 

bracken fem as an environmental co-factor in both BPV-2 and BPV-4-associated 

carcinogenesis. The fem contains a cocktail of chemicals including immuno

suppressants and mutagens. The immunosuppressants - the pterosides and pterosins - 

belong to the sesquiterpene group while one of the major mutagens, quercetin, belongs 

to the flavonoids, a large and diverse group of organic molecules which are widespread 

throughout the plant kingdom (Evans W.C. et al., 1982). The chemical structure of 

quercetin (3,3',4',5,7-pentahydroxyflavone) is shown in Figure 4.1. Isoquercitrin, 

quercetin's glycoside, constitutes a large part of the flavonoid component in bracken 

(Evans I.A. et al., 1982). On hydrolysis to quercetin, isoquercitrin was found to be 

mutagenic in a variety of Salmonella strains (Evans W.C. et al., 1982). In vitro studies 

have shown that quercetin can bind DNA and induces a variety of genetic lesions in 

both bacterial and mammalian cells (Jackson et al., 1993 for review), including 

clastogenic damage (Ishidate, 1988). This last observation is of particular significance 

as bracken-grazing cattle show a wide variety of cytogenetic abnormalities (Moura et 

al., 1988). Quercetin competitively inhibits binding of ATP by phosphotyrosine 

phosphatases in chick embryo fibroblasts (Van Wart-Hood et al., 1989). Conversely 

this compound has been shown to inhibit the phosphotransferase activity of the Rous 

sarcoma vims src gene product, pp60src, both in vitro and in vivo (Graziani et al., 1983). 

Although not carcinogenic by itself (Morino et al., 1982; Hirono et al., 1987), quercetin 

can also act as an initiator in an in vitro two stage transformation assay in mammalian 

cells (Sakai et al., 1990).
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Previous work has demonstrated the advantages in studying the transformation biology 

of BPV-4 in PalF cells as these cells are primary and are derived from the natural host 

and site of infection. BPV-4 transfection studies in PalF cells have confirmed results 

from similar studies carried out in established murine cell lines and have allowed 

functional mapping of various ORFs of this papillomavirus (described in more detail 

below). Morphological transformation of PalF cells by BPV-4 DNA was found to be 

dependent on co-transfection with an activated ras oncogene (Jaggar et al., 1990). This 

requirement confirmed previous observations that transformation of primary cells 

requires co-operation between two or more oncogenes (Land et al., 1983). Studies 

showed that PalF cells transformed by BPV-4 + ras had an extended lifespan but were 

not immortal. Although capable of anchorage-independent growth, they were not 

tumourigenic in nude mice indicating that additional factors were required for full 

transformation (Jaggar et al., 1990). This appeared to imitate the natural history of 

upper alimentary canal carcinomas in cattle (Jarrett et al., 1978). In the field the 

progression of BPV-4-induced papillomas to carcinomas occurs only in animals which 

are exposed to the mutagenic and immunosuppressive effects of chemicals present in 

bracken fem. Even then this progression may take years to develop (Campo & Jarrett, 

1987). As already stated, quercetin is one of the major mutagens present in bracken 

fem. Results from in vivo studies have shown that although quercetin-treated calves 

infected with BPV-4 vims developed papillomas these did not progress to carcinomas, 

whereas two out of six animals infected with BPV-4 and fed on bracken fem did 

develop carcinomas (Campo et al., 1994b). Animals fed on bracken fem became 

immunosuppressed whereas animals treated with quercetin did not. That 'quercetin- 

treated plus virally-infected' animals did not develop carcinomas may well be explained 

by the immunocompetence of these animals. Transformed cells in these animals may 

well be removed by normal immunosurveillance mechanisms. These in vivo results do 

not negate a role for quercetin in the progression of BPV-4-induced papillomas to



carcinomas but rather confirm that both immunosuppressants and co-carcinogens are 

required for such progression.

A series of experiments were carried out in vitro to examine the possible role of 

quercetin as an initiating agent in full transformation of primary bovine fibroblasts. 

Preliminary experiments, described more fully below, showed that quercetin synergises 

with BPV-4 in vitro (Pennie & Campo, 1992) thus providing a useful and important 

experimental model system for analysis of viral / chemical co-operation in 

carcinogenesis.

4.2 Phenotypic effects of quercetin treatment

4.2.1 Background

In the initial study looking at the effects of quercetin on PalF cells (Pennie & Campo, 

1992), cells were treated with a single dose of quercetin for 48 hours at final 

concentrations of 5, 20 or 45 jiM quercetin. Cells were washed, seeded into flasks and 

one day later were transfected with various test and control DNAs. Co-transfection with 

a plasmid encoding neomycin resistance allowed selection of cells in medium 

containing the neomycin analogue G418. Quercetin treatment did not affect the 

morphology of untransfected, 'neo alone', 'ras + neo' or 'BPV-4 DNA + neo' 

transfectants. As found for untreated BPV-4-transfected cells, there was a requirement 

for co-transfection with an activated ras gene. This indicated that quercetin could not 

substitute for this activated oncogene or for BPV-4 genes, as cells transfected with 'ras 

+ neo' were also untransformed. In this initial analysis (Pennie & Campo, 1992), 

quercetin-treated BPV-4-transformed cells were examined with respect to 

transformation efficiency, morphology, ability to grow in semi-solid media and 

tumourigenicity in nude mice. Results from the 5 pM quercetin treatment class were 

identical to untreated BPV-4-transformed cells, in that cells showed the same 

transformation efficiency as untreated transfectants, showed similar colony morphology,
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were capable of anchorage-independent growth but were non-tumourigenic. Results for 

20 pM and 45 pM quercetin treatment classes showed that although quercetin did not 

increase the number of transformed colonies the cells showed a more aggressively 

transformed morphology than untreated transfectants. That is, these colonies showed a 

greater degree of overlying and piled up cells than untreated transfectants; such colonies 

were described as showing a 'criss-cross' morphology. Results from anchorage- 

independent growth assays showed that transformed cells originally exposed to these 

higher concentrations of quercetin, grew more efficiently in semi-solid media and the 

resultant colony size was much larger than untreated transformed cells. The two 

polyclonal populations, derived from treating PalF cells with 20 pM or 45 pM quercetin 

prior to transfection with whole genome BPV-4 DNA, were also found to be 

tumourigenic in nude mice. This showed that quercetin synergises with BPV-4 

contributing to the full transformation of transfected PalF cells.

The following work not only confirms these results but also extends these findings by 

examining possible synergism between quercetin and sub-genomic fragments of BPV-4. 

Clonal populations were examined to investigate whether they displayed the same 

phenotypic manifestations as previously observed for the two tumourigenic polyclonal 

populations. It was proposed that use of clonal populations would allow more detailed 

analyses and indicate the extent and frequency of quercetin / BPV-4 synergism. Four 

different quercetin treatment protocols were used to address whether the observed 

synergism between virus and chemical was dependent on the timing of BPV-4 / 

quercetin exposure. A number of experimental approaches were employed to examine 

this synergistic relationship more closely and to elucidate possible mechanisms of 

quercetin action, whether these be genetic, epigenetic or indeed a combination of the 

two. Transfection of ethanol-treated (the quercetin solvent) PalF cells with BPV-4 

genes served as a suitable control as well as confirming previously determined viral 

ORF functions in primary cells.
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4.2.2 Experimental Rationale

4.2.2.1 Quercetin Treatment

A stock solution of 10 mM quercetin dissolved in ethanol was stored at -20°C until use. 

The general tissue culture conditions used for PalF cells are detailed in Chapter 2.2.1.3. 

For the majority of cell studies examining quercetin effects, a standard quercetin 

treatment was implemented. This involved pre-treating PalF cells with 20 pM quercetin 

(i.e. 80 pi quercetin stock solution per 40 ml culture medium) for 48 hr, followed by a 

one day interval between removal of quercetin and viral DNA transfection (termed 

protocol QA). Control-treatment consisted of addition of 80 pi ethanol (the quercetin 

solvent) to PalF cells for the same period of time prior to DNA transfection. The 

concentration of 20 pM quercetin was chosen as standard in all experiments as such 

cells looked healthier yet gave the same results as those treated at 45 pM quercetin for 

the same period (Table 4.1; W. Pennie, personal communication). Quercetin-induced 

growth inhibitory effects have been observed in a variety of cell lines (Hosokawa et al., 

1990; Yoshida et al., 1990). There was no significant cytostatic effect on the PalF cells 

treated with 20 pM quercetin over the 48 hour incubation period used in the QA 

treatment. However, differences in growth rates between quercetin-treated, control- 

treated and untreated PalF cells were apparent on longer incubation (Figure 4.2).

4.2.2.2 Transfection Classes

Eight lipofection (DOTAP)-mediated test transfection classes were performed (with 

appropriate controls). These were:

1. PalF cells with whole genome BPV-4 (BPV-4 LCR promoter)

2. PalF cells with E7 and E8 ORFs (BPV-4 LCR promoter)

3. PalF cells with E7 and E8 ORFs (MoLV LTR promoter)

4. PalF cells with E7 ORF alone (MoLV LTR promoter)

5-8. Each of the above classes with addition of HPV-16 E6 (MoLV LTR promoter)
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All the above viral genes were transfected as recombinant plasmids along with the 

selectable marker gene for neomycin resistance (pZipneo) and a plasmid containing an 

activated ras gene (pT24). All plasmids and conditions for transfection and selection in 

medium containing the neomycin analogue G418 are detailed in Chapters 2.1.7, 2.2.1.8 

and 2.2.1.9 respectively. For simplicity, the three different BPV-4 DNA transfection 

types are designated as whole genome BPV-4, E8/E7 and E7 alone throughout the text, 

with the implicit recognition, unless otherwise stated, that they were all co-transfected 

with neo and ras.

Transfection of whole genome BPV-4 confirmed previous work. E7 and E8 genes were 

investigated as they have been identified as encoding the transforming products of 

BPV-4 (Jaggar et al., 1990). While E7 alone transfectants are morphologically 

transformed, PalF cells cannot sustain transfection of the E8 gene alone (Jaggar et al., 

1990; Pennie et al., 1993) and therefore had to be transfected in the presence of the E7 

ORF. Two different constructs containing E8/E7 were available. One was under 

BPV-4 transcriptional control (pSVE8E7), the other under the control of a retroviral 

promoter (pZipE8E7). This allowed examination as to whether the efficiency of 

transformation was linked to the level of expression of this viral fragment. The E6 ORF 

has been identified as the second major oncogene of many papillomaviruses including 

both BPV-1 and HPV-16 (Schiller et al., 1984; Yang et al., 1985; Munger et al., 1989; 

Watanabe et al., 1989). Interestingly BPV-4 and the other sub-group B bovine 

papillomaviruses do not possess an E6 ORF and BPV-4-transformed cells are not 

immortal (Jackson et al., 1991; Pennie et al., 1993). However the addition of an 

exogenous HPV-16 E6 gene has been shown to confer immortality on PalF cells 

transformed by BPV-4 genes (Pennie et al., 1993). Addition of an exogenous E6 gene 

in the present study (transfection classes 5-8 above) confirmed previous results and 

provided novel observations in quercetin-treated (QA) transfectants.
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4.2.2.3 Methods

Control-treated and experimental (QA) transfections were carried out using the same 

passage of PalF cells (approximately 5 passages post-isolation). Each transfection class 

was performed twice in duplicate; i.e. for each transfection class two DOTAP / DNA 

mixes were made, each mix being split 50:50 between two flasks of cells - giving four 

transfected flasks per class. G418-resistant colonies which showed a transformed 

morphology were picked from each class (taking representative colonies from all four 

replicate flasks, - except in the case of BPV-4 whole genome transfectants; see below) 

in order to clonally expand them. In vitro BPV-4 is not a particularly powerful 

transforming virus and this in combination with the difficulties of working with primary 

cells limited the number of clones available for final analyses. Due to the large number 

of different transfection classes being investigated it was decided, for practical reasons, 

to aim to characterise 4-5 clonal lines from each transfection class. In the event, 

generally between 2-4 clones were expanded from each class to the stage where they 

could be fully assayed (some lines were discarded due to contamination problems). In 

each case clones from both transfection mixes were represented. There were a few 

instances among the control-treated transfection classes where this target was not met. 

Due to contamination problems no pSVE8E7-transfected cells were available for 

characterisation and only a single clone from transfection class pZipE8E7 + HPV-16 E6 

was successfully expanded.

In order to repeat the preliminary polyclonal experiment of Pennie & Campo (1992) 

colonies from one of the four BPV-4 transfection flasks were pooled. Individual clones 

were picked from the remaining three flasks. Two quercetin-treated BPV-4-transfected 

polyclonal lines were isolated in similar fashion. Individual clones from this class were 

picked from the remaining two flasks.
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Transformed cell lines from both control-treated and QA transfection classes were 

characterised with respect to morphological transformation, anchorage independence, 

immortalisation and tumourigenicity as detailed below:

Morphology:

Transfection experiments were examined for G418-resistant colonies present at the end 

of a 21-28 day selection period. Two types of colony morphology were observed in the 

transfections. The smaller of the two types measured less that 5 mm in diameter and 

such colonies were termed microcolonies. These colonies were flat and did not look 

morphologically transformed. Furthermore, although G418-resistant, these 

microcolonies could not be expanded and therefore were not scored. The second, and 

more prevalent, type of colony morphology observed consisted of colonies equal or 

greater than 5 mm in diameter. These colonies were termed macrocolonies and showed 

a piled up, transformed morphology. These colonies were counted as having been 

successfully transformed by BPV-4 genes + ras.

Anchorage Independence {Growth in Methocel)

The ability of a cell line to form colonies in semi-solid media is taken as a phenotypic 

measure of its degree of transformation. Virally-transfected lines were plated in 0.9% 

Methocel to test for anchorage-independent growth (see Chapter 2.2.1.11 for 

methodology). PalF cells treated with ethanol (80 pi per 40 ml culture medium for 

48 hr) were used as a control in this assay. The BPV-4-transfected C127sc cell line 

C4Ta2a (Smith & Campo, 1988), which is tumourigenic and grows very efficiently in 

Methocel, was used as a positive control. Cells were examined after 10 days in 

Methocel. The efficiency of Methocel colony formation was determined by plating 

2.5 x 105 viable cells in duplicate 60 mm bacterial petri dishes. Each plate was scored 

for colonies by counting six 1 cm2 areas from each plate. The mean of these twelve
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counts was used to calculate the total number of anchorage-independent colonies, with 

final results expressed as number of colonies per 103 cells seeded.

Immortalisation

Normal cells in culture undergo senescence. It is thought that cellular immortalisation 

(unlimited lifespan) may be one of the major events in neoplastic progression and thus 

was assayed in the present study. PalF cells are primary cells and, as expected, senesce 

on continued culture. Cells from each transfection class were passaged routinely for a 

period of 4-6 months, corresponding to 25-30 passages, or until senescence. Time 

constraints prevented a longer assay period. Control-treated (i.e. ethanol alone) PalF 

cells (+ neo + ras) were used as a control in this assay. These cells were not 

transformed and senesced approximately 4 weeks post-transfection. Cultures that 

continued to proliferate for at least four months after senescence of control cells and 

which survived to assay termination were scored as immortal.

Tumourigenicity

The ability to form tumours is an indicator of full cellular transformation. The 

malignant potential of transformed cells was assayed in athymic nude mice. Four-week 

old female MF1 nu/nu mice (Harlan-Olac, Bicester, England) were each injected 

subcutaneously with 1 x 107 viable cells suspended in 0.1 ml of complete medium. 

Each cell line was injected into at least three animals. The mice were examined for 

tumour growth at one week intervals up to 15-20  weeks post injection. If no tumour 

had developed by then, the cells were considered to be non-tumourigenic.
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4.2.3 Results and Discussion

4.2.3.1 Control (ethanol-treated) BP V-4 transfections 

Morphology

None of the transfection control classes were capable of transforming PalF cells 

(Table 4.2). At best a few microcolonies were observed, but these could only be 

maintained for 1-3 passages. These controls included PalF cells transfected with BPV-4 

+ neo, but without ras, which confirms the requirement for a co-operating oncogene for 

successful transformation of primary cells with BPV-4. Morphologically-transformed 

macrocolonies, however, were observed in all whole genome BPV-4 and sub-genomic 

fragment transfection classes (Figure 4.3). Mean number of G418-resistant 

macrocolonies ranged between 11.25-19.25 per 5 x 105 cells among transfection classes 

(Table 4.2). These mean values were not significantly different from each other (one 

way ANOVA for equality among eight transfection classes, P =  0.207). The results 

show that presence of the BPV-4 E7 gene alone (+ neo + ras) is sufficient to 

morphologically transform PalF cells.

This finding agrees with previous studies. Smith & Campo (1988) reported that an 

approximately 2 kb fragment of the BPV-4 genome containing the complete E8 and E7 

ORFs induced transformation of established cells with the same efficiency as whole 

genome BPV-4. Disruption of the E7 ORF abolished morphological transformation, 

strongly suggesting that this ORF encodes a necessary transforming function. Further 

work has studied this phenomenon more closely. Jaggar et al. (1990) showed that a 

similar fragment of the BPV-4 genome containing the complete E8 and E7 ORFs 

induced transformation in co-operation with activated ras in PalF cells. Deletion of the 

3' end of the E7 ORF abolished morphological transformation, providing further 

evidence of this gene's vital transforming function. PalF cells transfected with this 

E8/E7 fragment gave similar results to whole genome BPV-4 in both focus and 

G418-resistance assays. This indicated that the morphological transformation observed
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Table 4.2 The transformation efficiencya of control (ethanol-treated) PalF cells 
transfected with whole or sub-genomic BPV-4 DNA fragments, with or 
without HPV-16E6 DNA.

Viral genes (+ neo + ras)
Transfection #1 
Flask 1 Flask 2

Transfection #2 
Flask 3 Flask 4 Mean S.D.

BPV-4 17 31 19 10 19.25 ±8.73

BPV-4 + 16E6b 22 15 19 16 18.00 ±3.16

E8/E7 (Zip)c 16 12 15 11 13.50 ±2.38

E8/E7 (Zip) + 16E6 13 9 18 6 11.50 ±5.20

E8/E7 (SV) d 6 9 18 12 11.25 ±5.12

E8/E7 (SV) + 16E6 11 17 12 14 13.50 ±2.65

E7 23 14 18 17 18.00 ±3.74

E7 + 16E6 18 27 17 9 17.75 ±7.36

controls e

neo only 0 0 0 0 0 -

ras only 0 0 0 0 0 -

neo ± ras 0 0 0 0 0 -

BPV-4 + neo 0 0 0 0 0 -

16E6 + neo 0 0 0 0 0 -

16E6 + neo + ras 0 0 0 0 0 -

a Results are expressed as the number of G418-resistant macrocolonies per 5 x 10 5 cells 

b 16E6 = HPV-16 E6 

c refers to pZipE8E7 construct 

d refers to pSVE8E7 construct

e As for viral DNA transfections, PalF cells were control-treated with ethanol for 48 hrs
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Figure 4.3 Morphology o f ethanol-treated PalF cells transformed by whole or sub- 
genomic fragments o f BPV-4 DNA, with or without HPV-16 E6 DNA.

A: BPV-4 + ras
B: BPV-4 + ras + HPV-16 E6
C: ZipE8E7 + ras
D: ZipE8E7 + ras + HPV-16 E6
E: E7 + ras
F: E7 + ras + HPV-16 E6
G: Ethanol-treated PalF cells

The bar indicates 100 pm in all panels.
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in the whole genome BPV-4 transfectants was due to the action of the E8 / E7 products. 

Experiments described in this chapter confirm the above findings and clearly 

demonstrate that the E7 ORF is the major morphological transforming gene of BPV-4 

in vitro.

Anchorage Independence

The assays of anchorage-independent growth are summarised in Table 4.3. Whereas the 

positive control C4Ta2a cells showed growth, normal PalF cells did not grow in 

Methocel. Among the transformed PalF cells only the whole genome BPV-4 and E8/E7 

transfection classes were capable of growth in Methocel (Figure 4.4). All cell lines 

from these four transfection classes (including the single polyclonal line) showed 

anchorage-independent growth (Table 4.3; mean values: 2.12 - 4.04 Methocel colonies 

per 103 cells) but at a lower efficiency than the positive control line (6.76 per 103 cells) 

as indicated by non-overlapping 95% confidence ranges. Where multiple clones were 

scored within transfection classes, statistically significant differences in Methocel 

growth among clones were recorded:

BPV-4 5 clones, 2.82 - 4.04 per 103 cells; one way ANOVA P = 0.016

BPV-4 + 16E6 3 clones, 2.64 - 3.64 per 103 cells; one way ANOVA P = 0.012

E8/E7 (Zip) 2 clones, 2.14-3.38 per 103 cells; two tailed /-test P = 0.009

Given the demonstrated variability among clones within transfection classes, and the 

relatively few clones assayed per class, appropriate caution should be exercised in 

interpreting a quantitative analysis of these results. It was clear, however, that none of 

seven clones transfected with the E7 gene alone showed anchorage-independent growth 

(Table 4.3; Figure 4.4), although all were morphologically transformed (Table 4.2; 

Figure 4.3). This showed that the E7 ORF does not, by itself, encode functions required 

for growth in semi-solid media. Rather it is the addition of an E8 ORF which confers 

anchorage independence on cells as the only transfectants capable of growth in 

Methocel are those classes containing an E8 ORF. However it is not possible to
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Table 4.3 Summary of anchorage independence assay of control (ethanol-treated) PalF 
cells transfected with whole or sub-genomic BPV-4 DNA fragments, with or 
without HPV-16 E6 DNA.

Viral genes 
(+ neo + ras) Clone

Anchorage independencea 
Mean ± S.D. 95% confid. range

BPV-4 Polyclonal 3.02 ±0.90 2.45 - 3.59

BPV-4 1 4.04 ± 0.76 3.56-4.52
2 3.04 ±0.95 2.44 - 3.64
3 3.38 ±0.83 2.85-3.91
4 3.06 ± 1.10 2.36 - 3.76
5 2.82 ±0.82 2.30-3.34

BPV-4 + 16E6b 1 3.64 ±0.88 3.08 - 4.20
2 2.64 ± 0.75 2.16-3.12
3 3.16 ±0.67 2.73 - 3.59

E8/E7 (Zip)c 1 2.14 ±0.72 1.68-2.60
2 3.38 ± 1.28 2.57-4.19

E8/E7 (Zip) + 16E6 1 2.12 ±0.67 1.69-2.55

E7 1 did not grow
2 did not grow
3 did not grow

E7+16E6 1 did not grow
2 did not grow
3 did not grow
4 did not grow

control cell lines

C4Ta2a (positive) 6.76 ±3.32 4.65 - 8.87
PalF did not grow

a Mean number of colonies formed in methocel per 10 cells seeded.

b 16E6 = HPV-16 E6 

c refers to pZipE8E7 construct
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Figure 4.4 Anchorage-independent growth o f ethanol-treated PalF cells transformed 
by whole or sub-genomic fragments o f BPV-4 DNA.

A: BPV-4 + ras 
B: ZipE8E7 + ra?
C: E7 + ras
D: C4Ta2a (positive control)
E: Ethanol-treated PalF cells

The bar indicates 100 pm in all panels.
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determine whether expression of E8 alone is sufficient to confer anchorage 

independence as PalF cells transfected with BPV-4 E8 DNA (+ neo + ras) die under 

G418 selection (Jaggar et al., 1990; Pennie et al., 1993). The lethal effect of E8 

transfection may well be due to inappropriate levels of expression of the viral product. 

When transfected alone (+ neo + ras) the E8 ORF would obviously not be subject to 

regulatory control by other viral genes e.g. the BPV-4 E2 protein (Jackson & Campo, 

1991; 1995). If the level of E8 expression does indeed dictate whether transfected cells 

survive or not, one possible way of circumventing this, thus allowing determination of 

protein fimction(s), would be use of an inducible mammalian gene expression system. 

However, until such experiments are undertaken, it cannot be deduced whether 

anchorage independence is determined solely by the E8 product or results from 

combined action of the E8 and E7 (and possibly other) viral proteins.

Immortalisati on

One clone from each transfection class was assayed. Of the seven classes (including the 

BPV-4 polyclonal line) examined, three showed evidence of immortalisation, i.e. were 

still proliferating after continual subculture of 4-6 months. These were all transfections 

which included HPV-16 E6 DNA. Despite showing other evidence of phenotypic 

transformation, the four transfection classes without HPV-16 E6 did not exhibit 

immortalisation. However the life span of these non-immortalised BPV-4 transfectants 

was extended (to approximately 3 months) compared to PalF (+ neo + ras) controls.

Although the data are limited these results support previous work. Pennie et al. (1993) 

reported that, while incapable of transforming PalF cells by itself or when co-transfected 

with an activated ras, addition of HPV-16 E6 to BPV-4 DNA (+ neo + ras) conferred 

immortality to transformed cells. They also noted that there was still a requirement for 

E8 before cells containing HPV-16 E6 were capable of anchorage-independent growth.
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This was also suggested by the present study (see E7 + HPV-16 E6 transfection class; 

Summary Table 4.4).

Tumourigenicity

Tumourigenicity was detected only in the positive control cell line (Table 4.4). Despite 

showing other evidence of phenotypic transformation none of the virally-transformed 

PalF cells were tumourigenic (Table 4.4). These results concur with the study of Pennie 

et al. (1993) and suggest that additional factors are needed for full transformation of 

PalF cells. This is similar to the in vivo situation where the progression of 

BPV-4-induced papillomas to carcinomas is co-factor dependent.

4.2.3.2 Quercetin-treated transfections 

Morphology

Treatment of untransfected PalF cells with 20 pM quercetin for 48 hours did not affect 

the morphology of these cells. Likewise treatment with quercetin prior to DNA 

transfection (protocol QA) did not lead to morphological transformation of PalF cells in 

any the six control classes (Table 4.5). As was the case for control-treated cells, 

morphologically-transformed macrocolonies were observed in all QA whole genome 

BPV-4 and sub-genomic fragment transfection classes of PalF cells (Table 4.5; 

Figure 4.5). Mean number of G418-resistant macrocolonies ranged between 12.5-16.5 

among transfection classes (Table 4.5). These mean values were not significantly 

different from each other (one way ANOVA for equality among eight transfection 

classes; P =  0.748). Thus, there was no apparent difference between the two E8/E7 

constructs which differed in the origin of their promoters. There was also no significant 

difference in transformation efficiency between QA and ethanol-treated transfectants 

(two tailed t-test for equality between pooled data; P = 0.576). However, there was a 

very obvious qualitative difference between transformed cells from the two treatments. 

QA transformed cells exhibited a more aggressive morphology compared to
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Table 4.4 Control transfections: Summary of phenotypic characterisation of control
(ethanol-treated) PalF cells transfected with whole or sub-genomic BPV-4
DNA fragments, with or without HPV-16 E6 DNA.

Viral genes (+ neo + ras) Clone
Morph.
trans.

Anch.
indep.

Immortal
isation

Tumours in 
nude mice a

BPV-4 Polyc. + + - 0 /3

BPV-4 1 + + _ 0 /3
2 + + nd 0 /3
3 + + nd 0 /3
4 + + nd 0 /3
5 + + nd 0 /3

BPV-4 + 16E6 1 + + + 0 /3
2 + + nd 0 /3
3 + + nd 0 /3

E8/E7 (Zip)b 1 + + _ 0 /3
2 + + nd 0 /3

E8/E7 (Zip) + 16E6 1 + + + 0 /3

E7 1 + _ _ 0 /3
2 + - nd 0 /3
3 + - nd 0 /3

E7 + 16E6 1 + _ nd 0 /3
2 + - nd 0 /3
3 + - + 0 /3
4 + - nd 0 /3

control cell lines

C4Ta2a (positive) + + + 3 /3
PalF “ - 0 /3

+ = positive; - = negative for characteristic, nd = not determined

a No. of tumour bearing animals / number of injected animals 
107 cells were injected subcutaneously into each mouse

b refers to pZipE8E7 construct
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Table 4.5 The transformation efficiency a of PalF cells treated with 20 pM quercetin
prior to transfection (protocol QA) with whole or sub-genomic BPV-4 DNA
fragments, with or without HPV-16 E6 DNA.

Viral genes (+ neo + ras)
Transfection #1 
Flask 1 Flask 2

Transfection #2 
Flask 3 Flask 4 Mean S.D.

BPV-4 10 19 24 12 16.25 ±6.45

BPV-4 ± 16E6b 20 17 14 15 16.50 ±2.64

E8/E7 (Zip) c 17 10 12 11 12.50 ±3.11

E8/E7 (Zip) + 16E6 18 16 17 14 16.25 ± 1.71

E8/E7 (SV)d 12 14 19 6 12.75 ±5.38

E8/E7 (SV) + 16E6 12 8 16 21 14.25 ±5.56

E7 18 10 14 11 13.25 ±3.59

E7+ 16E6 14 20 11 17 15.50 ±3.87

controls e

neo only 0 0 0 0 0 -

ras only 0 0 0 0 0 -

neo + ras 0 0 0 0 0 -

BPV-4 + neo 0 0 0 0 0 -

16E6 + neo 0 0 0 0 0 -

16E6 + neo + ras 0 0 0 0 0 -

a Results are expressed as the number of G418-resistant macrocolonies per 5 x 105 cells 

b 16E6 = HPV-16 E6 

c refers to pZipE8E7 construct 

d refers to pSVE8E7 construct

e Note that these controls used 20 pM quercetin-treated PalF cells
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Figure 4 .5  Morphology o f PalF cells treated with 20 pM qiercetin prior to 
transfection (protocol QA) with whole or sub-genonic fragments of 
BPV-4 DNA, with or w ithout HPV-16 E6 DNA.

A: BPV-4 +  ras F. SVE8E7 + ms + HPV-16 E6
B: BPV-4 + ras + HPV-16 E6 G: E7 + ras
C: ZipE8E7 + ras H: E7 + ras + HPV-16 E6
D: ZipE8E7 + ras + HPV-16 E6 I : quercetin-tnated PalF cells:
E: SVE8E7 + ras J: ethanol-treaed PalF cells

The bar indicates 100 pm in all panels.
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ethanol-treated transformants. This was the case in all classes, regardless of whether 

cells had been transfected with whole genome BPV-4 or only sub-genomic fragments 

E8/E7 (both constructs) or E7 alone (cf. Figures 4.3 & 4.5).

The results for whole genome BPV-4 transfectants concur with those of Pennie & 

Campo (1992) in that cells exposed to quercetin prior to transfection with BPV-4 genes 

show a more aggressive transformed morphology than untreated transfectants. As was 

found for their ethanol-treated counterparts (Table 4.2), transfection of quercetin-treated 

cells with BPV-4 E7 alone is sufficient to cause morphological transformation 

(Table 4.5).

Anchorage independence

The assays for anchorage-independent growth in QA transfectant classes are 

summarised in Table 4.6. The positive control C4Ta2a cells (not quercetin-treated) 

grew well in Methocel whereas the negative control, untransfected PalF cells treated 

with 20 pM quercetin for 48 hours, did not.

Growth efficiency among virally-transformed clones varied both within and among QA 

transfection classes, as found for ethanol-treated transfectants (cf. Table 4.3). Only 

clones within whole genome BPV-4 (one way ANOVA for equality; P = 0.867) and 

BPV-4 + HPV-16 E6 (two tailed t-test for equality; P = 0.075) classes showed similar 

growth. For all other classes there were significant differences among clones of the 

same class (one way ANOVAs or two tailed t-tests for equality; max. P = 0.02). Clones 

within these classes also displayed non-overlapping 95% confidence ranges and / or 

showed no growth at all. As with the results from ethanol-treated transfectants, 

appropriate caution needs to be exercised in interpreting these growth efficiency values. 

Large differences were also noted among the different QA transfection classes. In 

general, transformed clones containing whole genome BPV-4 grew well
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Table 4.6 Summary of anchorage independence assay of PalF cells treated with 20 pM
quercetin prior to transfection (protocol QA) with whole or sub-genomic
BPV-4 DNA fragments, with or without HPV-16 E6 DNA.

Viral genes Anchorage independence a
(+ neo + ras) Clone Mean ± S.D. 95% confid. range

BPV-4 Polyclonal 1 4.68 ± 2.27 3.24-6.12
Polyclonal 2 2.88 ± 0.47 2.58-3.18

BPV-4 1 4.52 ± 1.84 3.35 - 5.69
2 4.84 ± 2.28 3.39-6.29
3 4.88 ± 1.08 4.20 - 5.56

BPV-4+ 16E6b 1 3.88 ±0.80 3.37 - 4.39
2 4.80 ± 1.47 3.86-5.74

E8/E7 (Zip)c 1 0.68 ± 0.54 0.34-1.02
2 1.08 ±0.79 0.58-1.58
3 did not grow

E8/E7 (Zip) + 16E6 1 did not grow
2 did not grow

E8/E7 (SV)d 1 0.66 ± 0.59 0.29-1.04
2 0.78 ± 0.56 0.43-1.14
3 did not grow

E8/E7 (SV) + 16E6 1 did not grow
2 did not grow

(continued over page)
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Table 4.6 (continued)

Viral genes Anchorage independence a
(+ neo + ras) Clone Mean ± S.D. 95% confid. range

E7 1 2.94 ± 1.56 1.95-3.93
2 1.02 ±0.91 0.44-1.60
3 0.74 ±0.64 0.33-1.15
4 1.32 ±0.58 0.95-1.69

E7+16E6 1 2.44 ±0.59 2.07-2.81
2 2.58 ± 1.11 1.87-3.29
3 1.36 ± 1.06 0.69 - 2.03
4 did not grow

control cell lines

C4Ta2a (positive) 6.76 ±3.43 4.58 - 8.94
PalF did not grow
PalF (quercetin-treated) did not grow

a Mean number of colonies formed in methocel per 103 cells seeded.

b 16E6 = HPV-16 E6 

c refers to pZipE8E7 construct 

d refers to pSVE8E7 construct
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(3.88 - 4.84 colonies per 103 cells), though not as efficiently as C4Ta2a positive control 

cells (6.76 colonies per 103 cells). Clones transfected with BPV-4 sub-genomic 

fragments showed poorer growth (0.00 - 2.94 colonies per 103 cells). There was no 

demonstrable difference between E8/E7 (Zip) classes and E8/E7 (SV) classes.

The mean growth efficiency values of QA whole genome BPV-4 clonal classes were at 

the higher end of the range of the combined mean values of ethanol-treated and QA 

transfectants. Although this suggests a tendency for QA derived clones to show 

increased growth efficiency in Methocel, a robust statistical analysis was not possible 

due to the intrinsic variability described above. These QA clones also appeared to be 

larger than their ethanol-treated counterparts, although this was not quantitatively 

analysed (cf. Figures 4.4 & 4.6).

Of particular note was the finding that of eight quercetin-treated clones containing the 

BPV-4 E7 gene (with or without an exogenous HPV-16 E6 gene) seven were now 

capable of growth in semi-solid media (Table 4.6). This contrasted with the results of 

the ethanol-treated PalF transformants (Table 4.3) which showed that transfection with 

E8 was required for anchorage-independent growth of PalF cells. This result suggests 

that quercetin substitutes, in part, for the action of the E8 gene in these transformants. 

Conversely, and contrary to expectation, quercetin-treated cells transfected with E8/E7 

constructs grew very poorly or not at all in semi-solid media (Table 4.6; Figure 4.6). 

The differences between E7 and E8/ E7 cells suggest there is antagonism between E8 

and quercetin.

As described earlier (Chapter 4.2.3.1 - Anchorage Independence) transfection of E8 

DNA alone (+ neo + ras) is toxic to cells. This may be due to unregulated E8 

expression as BPV-4 control elements are not present. Co-transfection with an E7 ORF, 

or when the E8 is in the context of the full BPV-4 genome, overcomes this toxicity.
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Figure 4.6

$8

y

Amchorage-independent growth o f PalF cells treated with 20 pM
qutercetin prior to transfection (protocol QA) with whole or sub-genomic 
fraigments o f BPV-4 DNA.

A: BPV-4 + ras D: SVE8E7 + ras
B: E l + ras E: C4Ta2a (positive control)
C: ZipE8E7 + ras F: Quercetin-treated PalF cells

Thie bar indicates 100 pm in all panels.
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In E8/E7 classes, overcoming this toxicity may be due to differential expression of these 

two viral genes, or that the effects of E7 expression are dominant to those of E8 

permitting continued cell survival. As quercetin has been shown to interfere with 

phosphorylation / dephosphorylation mechanisms (Van Wart-Hood et al., 1989; Matter 

et al., 1992) this may result in increased viral transcription. There may be a threshold 

for E8 expression in cells, above which the toxic effects of E8 become increasingly 

apparent. Although normally controlled by BPV-4 regulatory elements (and also 

cellular transcription factors, (Jackson & Campo, 1995), quercetin may increase E8 

expression levels aibove this threshold. Current work has shown that transcription from 

the BPV-4 LCR is increased in the presence of quercetin (J. Connolly, personal 

communication). The net result of quercetin/ E8 interaction, in the experimental 

conditions employed, may result in selection for cells, which although showing an 

aggressively transformed morphology, are not as transformed as ethanol-treated E8/E7 

transfectants. This; hypothesis is supported by the immortality and tumourigenicity data 

described below.

Immortalisation

The immortalisation data for QA transfectant classes are given in Table 4.7, together 

with a summary o f  all other phenotypic assays undertaken. The negative control, 

-quercetin-treated PalF cells, showed no evidence of immortality. At least one clone 

from each transfection class was assayed. All cells tested from transfection classes 

involving whole genome BPV-4 (one polyclonal and two clonal lines) and E7 (two 

clonal lines) showted evidence of immortalisation, irrespective of whether HPV-16 E6 

was co-transfected.. In contrast no E8/E7 transfectants (seven clones tested) were found 

to be immortal, yet all showed morphological transformation, and some also a degree of 

anchorage independence. There was no apparent difference in results between the two 

E8/E7 constructs used.
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Table 4.7 Test transfections: Summary of phenotypic characterisation of PalF cells
treated with 20 pM quercetin prior to transfection (protocol QA) with whole
or sub-genomic BPV-4 DNA fragments, with or without HPV-16 E6 DNA.

Morph. Anch. Immortal- Tumours in 
Viral genes (+ neo + ras) Clone trans. indep. isation nude mice a

BPV-4 Polyc. 1 ++ + + 3 /8
Polyc. 2 ++ + nd 0 /3

BPV-4 1 ++ + nd 0 /3
2 ++ + + 0 /3
3 ++ + nd 0 /3

BPV-4 + 16E6 b 1 ++ + + 0 /3
2 ++ + nd 0 /3

E8/E7 (Zip) c 1 ++ (+) - 0 /3
2 ++ (+> - 0 /3
3 ++ - - 0 /3

E8/E7 (Zip) + 16E6 1 ++ _ _ 0 /3
2 ++ - nd 0 /3

E8/E7 (SV)d 1 ++ (+) _ 0 /3
2 ++ (+) - 0 /3
3 ++ - nd 0 /3

E8/E7 (SV) + 16E6 1 ++ _ _ 0 /3
2 ++ - nd 0 /3

(continued over page)
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Table 4.7 (continued)

Morph. Anch. Immortal- Tumours in
Viral genes (+ neo + ras) Clone trans. indep. isation nude mice a

E7 1 ++ + nd 0 /3
2 ++ + nd 0 /3
3 ++ + nd 0 /3
4 ++ + + 0 /3

E7+ 16E6 1 ++ + nd 0 /3
2 ++ + + 0 /3
3 ++ + nd 0 /3
4 ++ - nd 0 /3

control cell lines

C4Ta2a (positive) + + + 3 /3
PalF (ethanol-treated) - - - 0 /3
PalF (quercetin-treated) " - 0 /3

(+) = weakly positive; + = positive; ++ = strongly positive; 
- = negative for characteristic, nd = not determined

a No. of tumour bearing animals / number of injected animals 
107 cells were injected subcutaneously into each mouse

*>16E6 = HPV-16 E6

c refers to pZipE8E7 construct

d refers to pSVE8E7 construct
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These overall results differed markedly from the ethanol-treated viral transfectants in 

that presence of HPV-16 E6 was no longer a prerequisite for immortality in whole 

genome BPV-4 and E7-transfected cells. Thus quercetin treatment can substitute for 

addition of HPV-16 E6. That quercetin-treated E8/E7 transfected cells were not 

immortal, even in the presence of an exogenous E6 gene, is further evidence of 

antagonism between quercetin and E8 (see anchorage independence results above). It 

should be noted that this antagonism is not manifest when the E8 ORE is present in the 

context of the full BPV-4 genome. As proposed above, the level of E8 expression at 

any particular point in time may therefore dictate whether quercetin and E8 interact 

synergistically or antagonistically.

Tumourigenicity

Unlike ethanol-treated transfectants, which were all non-tumourigenic (Table 4.4), one 

population of cells from QA viral DNA transfectants was shown to be tumourigenic in 

nude mice (Table 4.7). This was one of the two whole-genome BPV-4 polyclonal lines. 

Synergism between quercetin and BPV-4 can therefore result in the full transformation 

of PalF cells. Tumours arising from injection of these polyclonal cells reached 

maximum size by week 10 and the mice maintained these tumours until the end of the 

20 week experimental period. There was no partial regression of tumours as had been 

previously reported for the tumourigenic polyclonal line described by Pennie & Campo 

(1992). All other classes of transfectants were non-tumourigenic. Although one out of 

two polyclonal populations of BPV-4 cells were tumourigenic, five randomly picked 

clones (with or without HPV-16 E6) were not. That individual clones were not fully 

oncogenic suggests that progression to full tumourigenicity is not a frequent step under 

these conditions of quercetin exposure.

123



4.3 Timing of quercetin treatment

4.3.1 Background

The deleterious effects of continued ingestion of bracken by cattle have been well 

documented. Where possible farmers will move livestock to fern-free pastures. 

However shortages of good pasture can result in cattle feeding on bracken. As has 

already been described, BPV-4 can induce papillomas in the upper alimentary canal of 

cattle. These papillomas can progress to carcinoma in cattle grazing on bracken fern. It 

is thought the fern's contribution to progression is due to the mutagens, carcinogens and 

immunosuppressants present in the plant. Prior to exposure to bracken some cattle will 

be BPV-4 free, others may have a latent BPV-4 infection and yet others will have 

BPV-4-induced benign papillomas. The likelihood of papillomas progressing to 

carcinomas may be dependent on the order and time the animals are exposed to the fern 

and virus. In an attempt to mimic this natural temporal variation between fem ingestion 

and BPV-4 infection, preliminary in vitro studies examining four different quercetin 

treatment regimes were undertaken. These experiments were designed to assess 

whether varying the order and timing of quercetin treatment and viral DNA transfection 

had any effect on the degree and / or frequency of PalF transformation.

4.3.2 Experimental Rationale

4.3.2.1 Treatments

Four different protocols, QA-QD, were used in which the order and time interval 

between quercetin-treatment and viral DNA transfection varied (summarised in 

Table 4.8), although the duration of the single dose quercetin treatment was constant 

(48 hr). In QA, as previously described (Chapter 4.2.2.1) there was an interval of one 

day between removal of quercetin and viral DNA transfection. QA protocol repeated 

the conditions under which synergism between quercetin and whole genome BPV-4 had 

first been described (Pennie & Campo, 1992). Under protocol QB there were 10 days 

between removal of quercetin and viral DNA transfection. If the effect of quercetin was
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Table 4.8 Key to codes relating to timing of quercetin a treatments.

Code Treatment description

QA single dose of quercetin, removed 24 hours before DNA transfection

QB single dose of quercetin, removed 10 days before DNA transfection

QC single dose of quercetin, given 24 hours after removal of DNA

transfection mix

QD single dose of quercetin, given 24 days post-transfection (i.e. after

21 days G418 selection)

Con no quercetin treatment (ethanol only)

a In all cases cells were exposed to 20 pM quercetin for 48 hours.
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epigenetic then by having this extended quercetin-free period, cells would have returned 

to 'normal' state prior to viral DNA transfection. In protocols QC and QD, PalF cells 

were treated with quercetin after transfection. QC cells were treated one day after 

removal of the DNA transfection mix. This examined the phenotypic consequence of 

quercetin treatment on PalF cells which presumably contained actively transcribing viral 

genes. QD cells were treated with quercetin 24 days after viral DNA transfection, 

which included a 21 day G418 selection period. Post-selection the majority of cells 

would contain viral DNA unaffected by any transformation-suppressive behaviour of 

surrounding normal (i.e. untransformed) cells. In certain cases non-transformed cells 

have been reported to inhibit growth of transformed cells (Dotto et al., 1988). In 

addition levels of viral expression and / or virally-induced mutation of cellular genes are 

likely to be different from those found in QC cells. QD protocol allowed the 

examination of the effect of quercetin on cells selected for virally-induced 

morphological transformation.

4.3.2.2 Methods

The same viral DNA transfection classes, experimental procedure (i.e. each transfection 

done twice, and in duplicate), and characterisation criteria as detailed for QA protocol 

(see Chapter 4.2.2 above) were undertaken with QB - QD treatments. A combination of 

clonal and polyclonal populations were examined. Due to time constraints, however, 

resultant QB, QC, and QD transfectants were not characterised to the same extent as 

cells transfected under QA conditions.

4.3.3 Results and Discussion

4.3.3.1 Morphological transformation

Untransfected cells or cells transfected with ras or BPV-4 DNA alone were 

non-transformed, regardless of the timing of quercetin treatment (Table 4.9). This 

showed that quercetin could not substitute for an activated ras gene. Morphological
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Table 4.9 Effect of timing of quercetin treatment (protocols QA-QD) on 
morphological transformation efficiency of PalF cells transfected with 
whole or sub-genomic BPV-4 DNA fragments with and without HPV-16 E6 
DNA.

Viral genes Without HPV-16 E6 With HPV-16 E6

(+ neo + ras) Mean a 95% Confid. range Mean a 95% Confid. range

BPV-4

QAb 16.25 5.99-26.51 16.50 12.30-20.70
QB 15.50 12.75-18.25 ndc
QC 18.25 13.33 -23.17 15.75 11.77-19.73
QDd 16.00 10.97-21.03 13.50 5 .86-21 .14

Controle 19.25 5.36- 33.14 18.00 12.97-23.03

E8/E7 (Zip)

QA 12.50 7.55 -17.45 16.25 13.53-18.97
QB 11.50 5.07-17.93 nd
QC 12.75 5.13-20 .37 15.75 11.57-19.93
QD 14.00 6.54-21 .46 11.00 5.05 - 16.95

Control 13.50 9.71 -17.29 11.50 3.23 - 19.77

E8/E7

QA
QB

12.75
nd

4.19-21.31 14.25
nd

5 .4 -23 .10

QC 15.50 8.95 - 22.05 11.00 8 .76-13 .24
QD 13.00 3.99-22.01 13.00 10.76-15.24

Control 11.25 3.10-19 .40 13.50 9.28 - 17.72

E7

QA 13.25 7 .54-18 .96 15.50 9 .34-21 .66
QB 16.00 9 .13-22 .87 nd
QC 16.50 11.06-21.94 16.50 6.91 - 26.09
QD 11.75 8.22-15.28 14.75 6.19-23 .31

Control 18.00 12.05 -23.95 17.75 6.04 - 29.46 

(continued over page'
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Table 4.9 (continued)

Viral genes Without HPV-16 E6 With HPV-16 E6
(+ neo + ras) Mean a 95% Confid. range Mean a 95% Confid. range

Control lines
(+ neo)

Quer. only 0 0
ras only 0 0
Quer. + ras 0 0
BPV-4 only 0 0
QA +BPV-4 0 0
QB + BPV-4 0 0
QC +BPV-4 0 0

a Results are expressed as the number of G418-resistant macrocolonies per 5 x 105 
cells. Mean values and 95% confidence ranges derived from counts from four 
different flasks.

b Key to quercetin treatments detailed in Table 4.8 
QA data summarised from Table 4.5

c not determined

d In this class, transformation efficiency was scored prior to quercetin treatment. 

e Control refers to non quercetin-treated transfectants (i.e. summary of Table 4.2)
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transformation was assessed after 21 days G418-selection following DNA transfection. 

Therefore, control (ethanol-treated) PalF transfectants and QD transfection classes 

(which were treated with quercetin after this G418-selection period) were equivalent 

with regard to transformation efficiency scores.

Protocols QA-QC had no appreciable effect on the number of transformed colonies 

observed no matter the class of transfection (Table 4.9). However, qualitative 

differences among timing treatments were noted in that QA and QC cells exhibited a 

more aggressive transformed morphology than QB and QD transfectants (Figure 4.7). 

The latter, (QB and QD) displayed a transformed morphology similar to that of ethanol- 

treated transfectants (Figure 4.3). These trends were apparent in all classes of 

transfection (whole genome BPV-4 or sub-genomic fragments). Thus, the shorter the 

interval between quercetin treatment and viral DNA transfection, the greater the degree 

of morphological transformation irrespective of the sequential order of the treatments.

4.3.3.2 Anchorage Independence

The multiple transfection experiments gave rise to a large number of assay classes (and 

cell lines within each class). Only a partial characterisation of these was feasible in the 

time available. Summary data on growth in Methocel of virally-transfected PalF cells 

are given in Table 4.10. As presence of HPV-16 E6 showed no demonstrable role in 

anchorage independence (Chapter 4.2.3.2 above), data from BPV-4 DNA transfections 

with and without exogenous HPV-16 E6 were pooled. Similarly, since comparable 

results were obtained with pZipE8E7 and pSVE8E7 data from these transfection classes 

were also pooled in the summary table.

PalF cells transfected with whole genome BPV-4 originating from protocols QA and 

QC tended to grow more efficiently and form larger colonies in Methocel than their 

ethanol-treated counterparts (see Table 4.10; Figure 4.8). This suggests that
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Figure 4.7 Morphology o f quercetin-treated PalF cells transformed by 3PV-4 DNA 
and activated ras.

(A) treated with 20 pM  quercetin 24 hr or (B) 10 days kefore DNA 
transfection; (C) treated with quercetin 24 hr or (D) 3 week, after DNA 
transfection. (E) DNA transfection but no quercetin.

The bar indicates 100 pm in all panels.
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Tablle 4.10 Effect of timing of quercetin treatment (protocols QA-QD) on anchorage
independence (A.I.) of PalF cells transfected with whole or sub-genomic
BPV-4 DNA fragments.

Methocel colonies 
Viiral genes per 103 cells No. of A.I. lines / No. of lines tested
(+ neo + ras) Range of Means a Polyclonal Clonal

BPV-4
Q A b

(Pooled Data - with and without HPV-16 E6)
2.88-4.88 2 /2 5 /5

QB 3.42 1 /1 -

QC 4.70 - 5.30 2 /2 -

QD 3.00-4.08 2 /2 -
Control C 2.64 - 4.04 1 /1 8 /8

E8I/E7 (Pooled Data - Zip and SV constructs with and without HPV-16 E6)
QA 0.00-1.08 - 4 / 1 0
QB 2.74 1 /1 -

QC 0.00-1.14 2 /4 1 /5
QD 0.00-1.94 2 /2 1 /2
Control 2.21-3.38 - 3 /3

E2
QA

(Pooled Data - with and without HPV-16 E6) 
0.00 - 2.94 7 /8

QB 0.16 1 /1 -

QC 0.90-3.08 2 /2 2 /2
QD 1.16-3.32 3 /3 2 /2
Control 0.00 - 0 /7

Control lines

C4Ta2a (positive) 6.76
PalF (negative) 0 - -

a Minimum and maximum mean values recorded from both polyclonal and clonal lines.

b key to quercetin treatments detailed in Table 4.8 
QA data summarised from Table 4.6

c Control refers to non quercetin-treated transfectants (i.e. summary of Table 4.3)
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Figure 4.8 Anchorage-independent growth o f quercetin-treated PaF cells (protocols 
QA - QD) transformed by whole genome BPV-4 DNA ind activated ras.

(A) treated with 20 gM quercetin 24 hr or (B) 10 days before DN\ transfection;
(C) treated with quercetin 24 hr or (D) 3 weeks after DNA transfetion. (E) DNA 
transfection but no quercetin. The bar indicates 100 gm in all paiels.
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quercetin / BPV-4 synergism is strongest the shorter the time interval between treatment 

and DNA transfection, regardless of their sequential order. Quercetin-treated PalF cells 

from all protocols transfected with E7 alone (with or without HPV-16 E6) became 

anchorage independent (Table 4.10; Figure 4.9). This was in contrast to their non- 

quercetin treated counterparts (Table 4.3; Figure 4.4). This shows that quercetin is 

capable of substituting for an E8 gene in conferring anchorage independence on E7- 

transformed cells regardless of time of treatment. This appears to be a relatively long 

lasting effect as QD populations were capable of such growth. Although quercetin- 

treated E7 classes grew in Methocel, they tended to do so with reduced efficiency as 

compared to the whole genome BPV-4 classes. This suggests that quercetin does not 

fully substitute for an E8 gene. QA, QC and QD E8/E7-transformed populations tended 

to grow poorly or not at all compared to ethanol-treated transfectants (Table 4.10; 

Figure 4.10). No trend could be projected for protocol QB as only a single population 

was assayed. The calculated growth efficiency for this population was, however, 

comparable to that of ethanol-treated E8/E7 transfectants. It may be that a long interval 

between quercetin treatment and viral DNA transfection minimises manifestation of 

quercetin / E8 antagonism.

4.3.33 Immortalisation

Selected populations from protocols QA and QC were assayed for immortalisation 

(Table 4.11). As already described for QA cells (Chapter 4.2.3.2 above), QC whole 

genome BPV-4 and QC E7 alone transformed cells showed evidence of immortalisation 

in the absence of exogenous HPV-16 E6. These populations continued to grow 

vigorously after long-term (4-6 months) continual growth. Although the experiments 

were terminated at this point none of the cultures displayed any signs of senescence. 

Thus quercetin can confer immortality on non-HPV-16 E6-containing cells, both treated 

immediately before (QA) and also immediately after (QC) transfection with BPV-4 

genes. The single QC E7 + HPV-16 E6 polyclonal line assayed was also observed to be
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Figure 4.9 Anchorage-independent growth o f quercetin-treated PalF cells (protocols 
QA - QD) transformed by BPV-4 E7 DNA and activated ras.

(A) treated with 20 |iM quercetin 24 hr or (B) 10 days before DNA transfection;
(C) treated with quercetin 24 hr or (D) 3 weeks after DNA transfection. (E) DNA 
transfection but no quercetin. The bar indicates 100 gm in all panels.
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Figure 4.10 Anchorage-independent growth o f quercetin-treated PalF cells (protocols 
QA - QD) transformed by BPV-4 E8E7 DNA and activated ras.

(A) treated with 20 fiM quercetin 24 hr or (B) 10 days before DNA transfection;
(C) treated with quercetin 24 hr or (D) 3 weeks after DNA transfection. (E) DNA 
transfection but no quercetin. The bar indicates 100 fim in all panels.
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Table 4.11 Effect of timing of quercetin treatment (protocols QA-QD) on immortal
isation o f PalF cells transfected with whole or sub-genomic BPV-4 DNA
fragments.

Viral genes Number of immortal lines / Number of lines tested

(+ neo + ras) without HPV-16 E6 with HPV-16 E6
Polyclonal Clonal Polyclonal Clonal

BPV-4
Q A a 1 /1 1 /1 - 1 /1
QB n d c - - -
QC 1 /1 - nd -
QD nd - nd -
Controlb 0 /1 0 /1 - 1 /1

E8/E7 (Pooled Data - Zip and SV constructs)

QA - 0 /5 - 0 /2
QB nd - - -
QC nd nd nd nd
QD nd nd nd nd
Control - 0 /1 - 1 /1

E2
QA - 1 /1 - 1 /1
QB nd - - -
QC 1 /1 1 /1 1 /1 -
QD nd nd nd nd
Control - 0 /1 - 1 /1

a key to quercetin treatments detailed in Table 4.8 
QA data summarised from Table 4.6

b Control refers to non quercetin-treated transfectants (i.e. summary of Table 4.3) 

c Not determined
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immortalised. This suggests that quercetin and E6 do not act antagonistically. Lines 

transfected with E8/E7 constructs, with or without an exogenous E6 gene, have yet to be 

tested although, as already described, the ability of E8/E7 transfectants to grow in 

Methocel is abolished or reduced in all the quercetin treatment protocols used.

4.3.3.4 Tumourigenicity

Neither PalF cells nor quercetin-treated PalF cells induced tumours in nude mice. 

However five populations of quercetin-treated transfectants were tumourigenic 

(Table 4.12). One of these was the QA whole genome BPV-4 polyclonal line described 

earlier (Chapter 4.2.3.2). Although this polyclonal population was tumourigenic, 

randomly picked clonal lines were not, suggesting that although quercetin and BPV-4 

synergise, resulting in full transformation of PalF cells, this is not a frequent event. One 

polyclonal line of QC cells transformed by whole genome BPV-4 was found to be 

tumourigenic, as were all three populations of QC cells transfected with E7. These 

comprised two polyclonal populations (one with and one without HPV-16 E6) and a 

clonal population (without HPV-16 E6). Tumours arising from injection of these cells 

had growth rates similar to tumours produced by whole genome BPV-4 QC cells. All 

QC tumours grew far more aggressively than QA transfectants, reaching maximum 

permitted size by week 4 (Figure 4.11). In fact the mice had to be killed at this time- 

point due to tumour burden.

Indications are that QC conditions provide the optimal conditions for viral / chemical 

synergism. Three lines of evidence point to this conclusion: a) both clonal and 

polyclonal QC cells are fully oncogenic; b) both whole and sub-genomic BPV-4 

fragments can induce tumours; and c) such growths are far more aggressive than 

tumours arising from QA cells. These results suggest that the timing of exposure to 

quercetin is important in this experimental system.
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Table 4.12 Effect of timing of quercetin treatment (protocols QA-QD) on tumouri-
genicity o f PalF cells transfected with whole or sub-genomic BPV-4
DNA fragments.

Viral genes No. tumour bearers / No. mice tested a (No. of lines tested)

(+ neo + ras) without HPV-16 E6 
Polyclonal Clonal

with HPV-16 E6 
Polyclonal Clonal

BPV-4
Q A b 3 /8  and0 / 3  0 / 9 ( 3 ) 0 / 6  (2)
QB n d c - -
QC 3 / 3  (1) 0 / 3  (1) -
QD 0 / 3  (1) 0 / 3  (1) -
Controld 0 / 3 ( 1 )  0 /15 (5 ) - 0 / 9  (3)

E8/E7 ("Pooled Data - Zip and SV constructs') 
QA - 0 /1 8 (6 ) 0 / 12 (4)
QB nd - -
QC 0 / 6  (2) 0 / 3  (1) nd 0 / 9  (3)
QD 0 / 3  (1) 0 / 3  (1) nd 0 / 3  (1)
Control 0 /6  (2) - 0 /3  (1)

E7
QA 0 / 1 2 ( 4 ) 0 / 12 (4)
QB nd - -
QC 2 / 3  (1) 3 / 3  (1) 2 / 3  (1) -
QD 0 / 6 (2) 0 / 3 (1) 0 / 3  (1) 0 / 3  (1)
Control 0 /9  (3) - 0 / 12 (4)

control cell lines
C4Ta2a (known positive tumourigenic line): - 3 / 3  
PalF (ethanol-treated): 0/ 9 
PalF (quercetin-treated): 0 /9

a 107 cells were injected subcutaneously into each mouse

b key to quercetin treatments detailed in Table 4.8 
QA data summarised from Table 4.6

c Not determined

d Control refers to non quercetin-treated transfectants (i.e. summary of Table 4.3) 

j  - = cell lines not generated
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A) Nude mouse tumour 20 
weeks after injection 
with 107 transformed 
cells (protocol QA).

B) Nude mouse tum our 4 
weeks after injection 
with 107 transformed 
cells (protocol QC).

Figure 4.11 Tumourigenicity o f quercetin-treated, whole genome BPV-4 + ras 
transformed PalF cells.
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4.4 Effect of BPV-4 and / or quercetin on c-Ha-ras and c-myc

4.4.1 Background

As demonstrated above and elsewhere (Pennie & Campo, 1992), BPV-4 will only fully 

transform PalF cells in vitro in the presence of an activated c-Ha-ras gene and chemical 

co-factors. Activation of this cellular proto-oncogene has been observed in naturally 

occurring bovine alimentary canal cancers (Campo et al., 1990), suggesting that this 

gene is a target for chemical carcinogenesis in this system. BPV-4 is not alone in 

requiring co-transfection of an activated oncogene for transformation of primary cells as 

this is also found to be the case for the monkey papillomavirus RhPV and HP Vs 16 and 

18 (Matlashewski et al., 1987; Storey et al., 1988; DiPaolo et al., 1989; Schneider et al., 

1991). The human papillomavirus HPV-16 can transform baby mouse kidney epithelial 

cells when co-transfected with the oncogene v-fos, however these transformed cells 

require glucocorticoid hormones for proliferation (Crook et al., 1989). Continued 

passage of such cell lines can result in hormone-independent lines, analysis of which 

reveals amplification/ overexpression of the cellular proto-oncogene c-myc (Crook 

et al., 1989). Both c-Ha -ras mutations and rearrangement / overexpression of c-myc 

have been reported in cervical cancers (Riou et al., 1988; Crook et al., 1991; Milde- 

Langosch et al., 1991). These two cellular genes would thus appear to be common 

targets in papillomavirus / chemical co-carcinogenesis.

That quercetin treatment does affect phenotypic transformation of BPV-4-transfected 

PalF cells has been clearly shown (Chapters 4.2 and 4.3). However, the mechanism(s) 

of this synergism, be they genetic and / or epigenetic in origin, remain to be established. 

Disruption of cellular genes is a prime consideration, with two attractive candidates 

being the c-Ha-ras and c-myc proto-oncogenes. With this in mind the DNA and RNA 

status of both these proto-oncogenes was examined in both quercetin-treated (condition 

QA) and ethanol-treated PalF transfectants.
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4.4.2 Experimental Rationale

4.4.2.1 Transfectant lines examined

All polyclonal and clonal lines derived from ethanol-treated and quercetin-treated 

(protocol QA) experiments described in Chapter 4.2 were investigated for the presence, 

integrity and expression levels of both c-Ha -ras and c-myc proto-oncogenes. These 

consisted of 19 ethanol-treated PalF transformed lines (1 polyclonal + 1 8  clonal; see 

Table 4.3) and 25 quercetin-treated lines (2 polyclonal + 23 clonal; see Table 4.6). 

Genomic DNA and total RNA were extracted as detailed in Chapters 2.2.2.4 and 2.2.3.1 

respectively. Controls for these analyses were ethanol-treated PalF cells and PalF cells 

treated with 20 pM quercetin for 48 hr, removed and grown for one further day prior to 

extraction.

4.4.2.2 Probe derivation 

c-Ha-ras

Although three different Ha-ras genes have been identified in the bovine genome only 

the c-Ha-ras 1 gene encodes a functional p21 ras protein (McCaffery et al., 1989). The 

ras probe used in the present study was 1.5 kb in length and consisted of intron la, 

exon 1 and some satellite-like sequences. The construct from which this fragment was 

isolated was termed pA-Smal.5 (see Chapter 2.1.7 for details).

c-myc

A bovine-specific c-myc probe was not available for this study. However, as exon 2 is 

highly conserved among species (Van Beneden et al., 1986), a probe (415 bp in length) 

derived from exon 2 of human c-myc, was deemed a suitable alternative. Details of the 

probe and construct (pME2) are given in Chapter 2.1.7.
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Ductin

An indicator of loading levels for both DNA and RNA experiments was required. A 

major difficulty in carrying out work on bovine cells is the current paucity of species- 

specific probes available for this purpose. It was decided to use a bovine ductin probe 

already available in the laboratory. This consisted of the complete ductin cDNA 

sequence (size 465 bp). The relevant construct pBov.l6K is described in Chapter 2.1.7. 

Ductin is a major component of gap junctions. These junctions are involved in 

intercellular communication.

4.4.2.3 Assay conditions 

DNA

Two restriction enzyme DNA digests were carried out per cell line, one using BamH I 

and the second EcoR I. Approximately 5 pg of each digest and appropriate controls 

were run on 0.8% agarose gels under standard electrophoretic conditions 

(Chapter 2.2.2.8). Each membrane was also loaded with similarly digested DNA from 

PalF cells and quercetin-treated PalF cells. In addition two further controls were 

present. One of these consisted of 5 pg HL-60 DNA, acting as positive control for the 

myc probe.. As these membranes were also hybridised to BPV-4 DNA probes, the 

second control was 200 ng bovine papilloma DNA (which contains episomal BPV-4 

DNA) with 5 pg of BamH I digested murine cell line DNA. Subsequent Southern 

blotting, hybridisation and autoradiographic conditions were carried out as detailed in 

Chapters 2.2.2.9-2.2.2.13. A total of seven membranes were required to accommodate 

all samples. These were probed sequentially in the order ras, myc and ductin. In all 

cases hybridised membranes were washed to a final stringency; 0.1 x SSC, 0.1% SDS 

for 30 min (2x15 min) at 50°C. The membranes were later reprobed and washed at a 

higher stringency; 0.1 x SSC, 0.1% SDS for 30 min (2x15  min) at 65°C for reasons 

described below (Chapter 4.4.3.1).
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RNA

RNA was immobilised onto supported nitrocellulose membrane (Hybond-C Extra; 

Amersham International pic) using a Bio-Dot Microfiltration Apparatus (Bio-Rad Ltd). 

RNA dot blots were made using 20 pg total RNA per well. Samples from each line 

were loaded in duplicate in adjacent wells. This replication allowed for possible 

inefficient vacuum filtration in individual wells. RNAs from any one particular class of 

ethanol-treated transfections were loaded onto the same membrane as their quercetin- 

treated counterparts. For example, RNA from ethanol-treated whole genome 

BPV-4-transformed cells were present on the same membrane as RNA from QA whole 

genome BPV-4-transformed cells. Each membrane was also loaded with RNA from 

PalF cells and quercetin-treated PalF cells. In addition two further controls were present 

on each blot. One of these consisted of 10 pg HL-60 RNA, acting as positive control 

for the myc probe. As these membranes were also hybridised to BPV-4 E7 and E8 DNA 

probes, the second control was papilloma DNA (200 ng), which contains BPV-4 DNA 

and therefore acted as a positive control for these genes. Post-hybridisation wash 

conditions were identical to those finally carried out for the DNA membranes i.e. 

0.1 x SSC, 0.1% SDS for 30 min (2x15 min) at 65°C.

4.4.3 Results and Discussion

4.4.3.1 DNA Analyses 

Stringency considerations

It was decided to use the ras DNA probe first, following the stringency wash conditions 

(0.1 x SSC, 0.1% SDS, 50°C) previously described for this bovine-specific probe in 

McCaffery et al. (1989). Similar results were obtained in that both presumed 

ras-specific and repetitive sequences were observed. The same conditions were also 

used for the ductin probe. The myc probe was human-derived, and as a consequence 

membranes hybridised with this probe were initially washed to a lower stringency 

(0.5 x SSC, 0.1% SDS for 30 min (2x15 min) at 50°C) than the ras and ductin DNA
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probes. An overnight exposure indicated that more stringent washes were appropriate 

and were thus carried out to the same stringency as both ras and ductin. Expected 

hybridisation banding patterns resulting from myc and ductin probing were unknown for 

bovine DNA. However, later comparison of the resulting autoradiographs revealed that 

all three DNA probes shared a high proportion of identical bands and also a relatively 

high degree of background smearing (above approximately 6 kb in size) within tracks, 

observed after five day exposure. This was considered to be indicative of excessive 

repetitive sequence detection, which could obscure probe-specific interpretations. 

Following additional probings of these membranes with BPV-4-derived DNA probes 

(used for a separate analysis of these cell lines) it was decided to repeat the sequential 

probings with ras, myc and ductin, increasing the final wash to 0.1 x SSC, 0.1% SDS 

for 30 min (2x15  min) at 65°C. This dramatically reduced the background smearing, 

revealing presumed probe-specific bands. It is these results which are discussed below. 

Six rounds of probing / removal of probe had been undertaken on these membranes 

prior to repetition of the ras, myc and ductin hybridisations. As a result, although 

discernible, signal intensity was sub-optimal. Representative autoradiographs from this 

final set of probings are given in Figure 4.12.

c-Ha-ras probing

Probing revealed a band approximately 13 kb in size in the BamH I tracks and one of 

approximately 16 kb in the EcoRI tracks of control, quercetin-treated and /o r 

transfected PalF DNAs (Figure 4 12; Panel A). Specific signal was observed in all 

bovine DNA tracks but was not detected in either mouse (C127sc; tracks 19 and 20) or 

human (HL-60; track 21) DNAs, confirming the bovine-specific nature of this probe. 

The faint bands of 7.3 kb and 5.0 kb seen in tracks 19 & 20 respectively were residual 

signal remaining from a previous hybridisation with a BPV-4 DNA probe. These 

control tracks were loaded with DNA (200 ng) from a papilloma containing BPV-4 

DNA with 5 pg of mouse (carrier) DNA. The resultant BPV-4 signal in these tracks
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Figure 4.12 Southern blot analysis of control (ethanol-treated) and quercetin-treated 
(protocol QA) PalF transfectants: status o f ras and myc sequences.

Tracks 1-18 & 21 contain 5 jug DNA digested with BamH I (B) or EcoR I (E). Tracks 19-20 contain 
200 ng bovine oesophageal papilloma DNA (which contains episomal BPV-4 DNA) digested with 
BamH I and EcoR I respectively + 5 pg BamH I digested carrier DNA (C l27 DNA). cl. = clone. Panel 
A: probed with bovine c-Ha-ros DNA. Panel B: probed with human c-myc DNA. Panel C: probed with 
bovine ductin DNA as loading control, (probes detailed in Chapter 2.1.7). The positions of X Hind III 
digested DNA molecular weight markers are indicated in the left margin.
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was extremely intense, and was not completely removed by the stripping protocol. It 

must be stressed that this did not interfere with results in the cell line DNA tracks and 

that any signal observed in these samples was probe-specific. The high molecular 

weight band of approximately 23 kb seen in track 12 was due to the incomplete 

digestion of that particular cell line DNA sample. Differences in band intensities among 

tracks could be solely attributed to variations in the amount of DNA loaded in each 

track. The banding profiles obtained from DNA from all virally-transfected lines, 

whether treated with quercetin (protocol QA) or not, were indistinguishable from those 

obtained from untransfected PalF cells or untransfected PalF cells treated with 

quercetin. This indicated that neither transformation of PalF cells by BPV-4 viral genes 

nor treatment with quercetin (with or without BPV-4 genes) affected the DNA status of 

the ras sequences detected by this probe.

c-myc probing

Typical banding patterns observed using myc probe are shown in Figure 4.12; Panel B. 

Overall signal intensity was poor, requiring long autoradiographic exposure times 

(>10 day). The fact that a heterologous (human) probe was used, yet required high 

stringency post-hybridisation washes to strip off repeat DNA signal, was probably a 

major reason for this diminution of signal. Nevertheless, inspection of all 

autoradiographs revealed band signal in all tracks containing bovine or control (mouse 

or human) DNA.

HL-60 DNA (track 21) was run as a positive myc control on all membranes as this 

human promyelocytic leukaemia cell line is known to contain an amplified c-myc gene 

(Dalla Favera et al., 1982). In all cases this human DNA gave the strongest signal. 

BamH I digests gave an approximately 23 kb band while EcoR I digests (e.g. track 21 

Figure 4.12; Panel B) gave a band of approximately 14 kb in size. In both digests 2-3 

smaller and weaker bands, along with background smearing, were observed. Similar
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size and hybridisation patterns have been described for other studies involving human 

c-myc (Dalla Favera et al., 1982; Alitalo et al., 1983). Mouse carrier DNA was present 

as BamH I digests on all membranes (control tracks pertinent to other hybridisations - 

see Chapter 5.2.2). DNA from this murine fibroblast established line resolved a single 

band of approximately 6 kb on c-myc probing (Figure 4.12; Panel B, Tracks 19 & 20). 

This size estimate is close to that (5.6 kb) reported previously for c-myc probed mouse 

DNA BamH I digests (Crook et al., 1989). (The weak 7.3 kb and 5.0 kb bands also seen 

in tracks 19 & 20 are residual signal from a previous probing as explained above.)

All bovine DNAs gave specific signal (Figure 4.12, Panel B, tracks 1-18), albeit weak in 

some cases. BamH I digested PalF DNAs resolved two probe-specific bands, 

approximately 9.5 kb and 6.2 kb in size. EcoR I digests similarly resolved two 

fragments, though of larger size (approximately 20 kb and 15 kb). In the absence of any 

detailed study on bovine c-myc the status of detected bands (whether active myc gene, a 

pseudogene, or myc-like sequences) cannot be established with certainty. However their 

detection following high stringency washes, coupled with the predicted detection of 

appropriately sized c-myc bands in both human and mouse DNAs at this stringency, 

would suggest that bovine c-myc was being detected. There was no observable 

difference in number / size of bands or intensity of signal (allowing for DNA loading 

variations) among control DNAs (ethanol-treated and quercetin-treated PalF) and all test 

DNAs (ethanol-treated and quercetin-treated (protocol QA) PalF viral transformant 

classes). Thus neither transformation of PalF cells by BPV-4 viral genes nor treatment 

with quercetin (with or without BPV-4 genes) resulted in a detectable change in the 

DNA status detected by this c-myc probe.

Ductin probing

Ductin was screened solely as a DNA gel loading and Southern transfer efficiency 

control. BamH I digestion of bovine genomic DNA revealed two bands, one of
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approximately 9.5 kb, the other of approximately 5.0 kb. EcoR I digestion also revealed 

two bands, one of approximately 13.5 kb, the other of approximately 11.5 kb (see 

Figure 4.12, Panel C, tracks 1-18). Human and mouse DNA (tracks 19-21) gave very 

little or no signal. Strength of ductin signal across gels in bovine tracks correlated well 

with other measures of DNA loading (i.e. original ethidium bromide picture of gels, 

intensity of satellite sequences across tracks as observed in initial low stringency 

washes). Thus there was no reason to suspect that observed variation in signal among 

tracks with ras or myc probes was due to anything other than differential DNA loadings.

4.4.3.2 RNA A nalyses

Figure 4.13 shows a representative example of results from one of the RNA dot blots 

probed sequentially with c-Ha-ras, (A), ductin (B) and c-myc (C). This particular blot 

predominantly contained RNA from clonal lines derived by transfection of PalF cells 

with BPV-4 E7 DNA, with or without HPV-16 E6 and with or without prior quercetin 

treatment (protocol QA). (See Figure 4.13 legend for full details.) As detailed in 

Chapter 4.4.2.3 each sample is duplicated on the blot. All blots contained RNA from 

PalF cells (dots Al & A2) and quercetin-treated PalF cells (dots A4 & A5). These gave 

positive signal with all three probes indicating the expression of all three genes.

Each blot also contained duplicate samples of 200 ng BPV-4 bovine papilloma DNA 

(dots FI 1 & F I2) and HL-60 (human cell line) RNA (dots HI 1 & H I2). As illustrated 

in the example autoradiographs (Figure 4.13; Panels A-C), all blots probed with ras 

gave a signal for the bovine papilloma DNA dots (FI 1 & F I2), and a weaker signal with 

ductin and c-myc. Signal from these dots is not unexpected given the bovine DNA 

present. The c-myc probe consistently gave the weakest signal, consistent with the use 

of a heterologous probe and the results of the DNA analyses described above. The 

HL-60 RNAs (H ll & H I2) exhibited strong signal on c-myc probing as expected, but 

also gave strong signal with ras and ductin - despite the bovine-specific nature of both
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1 2 3 4 5 6 7 8 9 10 11 12

A PalF QPalF QA E7 
cl.4

QAE7+16E6
cl.l

B E7 cl.l
E7+16E6

cl.4
QAE7
cl.l

ZipE8E7 + 
16E6 cl.l

C E7 cl.2 E7+16E6
cl.4

QAE7
cl.2

BPV-4
cl.3

D E7 cl.3 E7+16E6
cl.3

QA E7 
cl.2

E
: BPV-4 
: +16E6 
: cl.2

E7+16E6
cl.2

QAE7
cl.3

F ZipE8E7
cl.2

E7+16E6
cl.l

QA E7+16E6 
cl.2

Papilloma
DNA

G ZipE8E7
cl.2

E7 + 16E6 
cl.l

H QA E7+16E6 
cl.4 HL-60

(Key to dot blot autoradiographs on facing page)

Figure 4.13 RNA dot blot analysis of control (ethanol-treated) and quercetin-treated 
(protocol QA) PalF transfectants: status of ras and myc expression.

20 pg total RNA were loaded per well. Samples from each line were 
loaded in duplicate in adjacent wells unless otherwise indicated. 
Controls included RNAs from ethanol-treated PalF cells, quercetin- 
treated PalF cells, HL-60 cells (positive control for the myc probe) and 
200 ng bovine oesophageal papilloma DNA, which contains episomal 
BPV-4 DNA (positive control for viral probing - see Chapter 5.2.2) 
cl. = clone. Panel A: probed with bovine c-Ha-ras DNA. Panel B: 
probed with bovine ductin DNA as loading control. Panel C: probed 
with human c-myc DNA. (probes detailed in Chapter 2.1.7).
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these probes. Previous DNA analyses (outlined above) did not detect homology 

between either the c-Ha-ras or ductin probes and HL-60 DNA under the same high 

stringency post-hybridisation washes used in the RNA analyses. These results may be 

due to the presence of a larger quantity of ras or ductin sequences in 20 pg total RNA 

compared to 5 pg DNA. (If this were the case then it would not be possible to 

distinguish between endogenous ras (bovine) and exogenous (human activated) ras 

expression in any of the transfectant lines.) An alternative explanation may be that the 

signal detected was from non-specific hybridisation to some other component of the 

total RNA solution that was dot-blotted. Probing of the same dot-blot membranes with 

BPV-4 sub-genomic fragments (Chapter 5.3; Figures 5.5 & 5.6) gave no signal from 

HL-60 dots. If detected signal was due to non-specific probe retention then it would be 

unlikely that both ras and ductin probes would 'hybridise' yet neither E7 nor E8 DNA 

would. Nevertheless, without further investigation, the possible non-specific nature of 

signal must be recognised.

Given the observed differences in RNA loading / membrane retention (e.g. Figure 4.13; 

Panels A-C; A1 vs A2 or C7 vs C8) and also the concerns expressed above, only a very 

basic quantitative analysis was considered. By comparing signal strength for any 

individual RNA dot across the three autoradiographs it was possible to comment on 

whether relative levels of ras, myc and ductin were changed compared to control PalF 

RNA. No obvious differences were apparent among any of the transformant classes 

analysed. This would suggest either no change in expression levels, or that expression 

of all three genes was affected to an equal extent.

4.4.3.3 Comments

This aspect of the project was planned as a preliminary investigation of DNA and RNA 

status of c-Ha-ras and c-myc in the various PalF transformed and quercetin-treated cell 

lines. While the DNA analyses indicated that there were no apparent major
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rearrangements or amplification of these genes, under the conditions employed, one 

cannot rule out smaller genetic alterations (e.g. point mutations, inversions, doubling or 

tripling of gene copy number). This would require a much more detailed approach 

including a much better knowledge than is currently available from the literature of 

RFLP / sequences of these particular genes in the bovine genome.

Data from initial RNA studies suggested no major changes in expression of ras or myc 

genes, however a more detailed analysis of these cell line RNAs is required. Repetition 

of these RNA experiments using Northern blots of mRNA from these various cell lines 

would obviously be a more informative approach. Due to time constraints this much 

more labour intensive methodology was beyond the scope of the present study.

4.5 Mechanisms of quercetin action

4.5.1 Introduction

It has been reported that quercetin treatment can result in genetic mutation, including 

clastogenic damage, and in epigenetic events, for example this chemical has been shown 

to inhibit RNA polymerases (Nose, 1984) and disrupt phosphorylation/ 

dephosphorylation mechanisms (Van Wart-Hood et al., 1989; Matter et al., 1992). The 

following set of experiments were carried out to investigate whether genetic or 

epigenetic changes arose subsequent to treatment of PalF cells with quercetin, 

independently of any contribution from BPV-4 genes and an exogenous activated ras.

4.5.2 Cytogenetic Analysis

4.5.2.1 Background

Consistent chromosomal aberrations have been associated with particular types of 

cancers (Solomon et al., 1991). Bracken-grazing animals display large scale 

chromosomal abnormalities (Moura et al., 1988) and it has been shown that quercetin, a 

component of bracken fern, can induce clastogenic damage. Ishidate (1988) observed
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that treatment of a Chinese hamster fibroblast cell line (CHL) with quercetin 

concentrations of between 200-400 pM, induced both an increased level of tetraploidy 

and observable chromatid gaps, breaks and exchanges.

In a previous study of PalF cells, Pennie (1992) found no evidence of clastogenic 

damage at quercetin levels (20 pM or 45 pM) at which synergism between this chemical 

and BPV-4 had been observed. It was decided to extend this work by examining 

whether varying the concentration of quercetin and / or the length of chemical exposure 

had any detectable chromosomal effects on PalF cells.

4.5.2.2 Experimental Rationale

Actively growing (sub-confluent) cultures of PalF cells were treated with five different 

quercetin concentrations, namely 20, 45, 100, 200 and 300 pM for 48 hours. These 

concentrations spanned the levels observed to detect synergism with BPV-4 DNA in 

PalF cells and those which were reported to induce structural chromosome aberrations 

in Chinese hamster cells (Ishidate, 1988). For the 20 pM and 45 pM concentrations the 

quercetin solvent used was ethanol (stock solution: lOmM quercetin) while for the 

higher concentration experiments (100-300 pM quercetin) dissolution in DMSO was 

necessary (stock solution: 100 mM quercetin). In all cases the final volume of ethanol 

or DMSO was made up to 180 pi per 40 ml culture medium. After removal of 

treatment, cultures were washed twice with PBS and fresh medium added. Controls 

were PalF cells and PalF cells exposed to 180 pi ethanol or DMSO (per 40 ml medium).

The karyotypic analysis was carried by Drs. Ruedi Fries and Sabina Solinas (ETH, 

Zurich) who specialise in bovine karyotypic analysis. These same workers had 

performed the previous karyotypic analysis of quercetin-treated PalF cells described by 

Pennie (1992). Sub-confluent flasks of PalF cells were air-freighted to the Zurich 

laboratory after treatment and were examined after one further passage. Q-banded
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metaphase spreads were prepared for all classes and scored both for ploidy level and 

possible chromosomal rearrangements / damage.

4.5.2.3 Results and Discussion

Most PalF cells have a normal diploid complement of 60 chromosomes. The percentage 

of tetraploid genomes observed in these control cells was 7.3 % (Table 4.13). This was 

considered to be within the normal expected range for primary tissue culture cells 

(S. Solinas, personal communication). Both solvent treatments (irrespective of presence 

or level of quercetin) increased the percentage of observed tetraploidy approximately 

two to threefold (Table 4.13). These increases were statistically significant when 

compared to normal PalF cells (x2 tests on diploid : tetraploid ratios; PalF cells and 

ethanol-exposed cells, P = 0.001, PalF cells and DMSO-exposed cells; P «  0.001). 

However within each solvent class there was no statistical difference among control (no 

quercetin) and different quercetin concentrations (x2 tests on diploid : tetraploid ratios; 

ethanol class, P = 0.137; DMSO class, P = 0.862). Similarly there was no significant 

difference in ploidy levels between ethanol- and DMSO-exposed PalF cells (x2 tests on 

diploid: tetraploid ratios; ethanol and DMSO classes, P = 0.123). Thus, while 

differences in ploidy level were observed in the experiment these could be attributed to 

solvent effects rather than quercetin itself. In both cases quercetin-treated PalF cells 

showed higher percentage tetraploidy as compared to their solvent controls. Although 

not statistically significant, one cannot rule out the possibility that this trend may have a 

biological significance. There was no obvious chromosomal rearrangements, gaps or 

breaks observed among any of the karyotypes analysed.

While ethanol has a demonstrable effect on ploidy levels in these cells, this alone does 

not appear to contribute to transformation of PalF cells, as evidenced by phenotypic 

comparison of ethanol-treated versus quercetin-treated virally-transformed PalF cells 

(cf. Tables 4.4 and 4.7). It should be pointed out, however, that the ethanol-treated
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Table 4.13 Results of the karyotypic analysis of quercetin-treated PalF cells.

PalF Cells 
Treatment

Metaphases 
Total scored

Number
Diploid

Number
Tetraploid

Percentage
Tetraploid

PalF cells (untreated) 178 165 13 7.3

Ethanol only control 197 169 28 14.2

+ 20 pM Quercetin 144 118 26 18.1

+ 45 pM Quercetin 117 90 27 23.1

DMSO only control 156 122 34 21.8

+ 100 pM Quercetin 159 118 41 25.8

+ 200 pM Quercetin 96 72 24 25

+ 300 pM Quercetin 63 48 15 23.8
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conditions used in the transfection studies contained only 80 pi ethanol per 40 ml 

medium compared to the 180 pi per 40 ml used in the above karyotypic analysis. 

Perhaps at this lower concentration ethanol would have a reduced effect on the 

proportion of tetraploid cells observed. No obvious structural chromosomal damage 

was observed even at quercetin concentrations 15 x greater than that used in all 

quercetin-treated transfection experiments. At these high levels, such damage was 

noted by Ishidate (1988) in a Chinese hamster cell line (CHL). This may in part be 

explained by differences in assay conditions. CHL cells were assayed immediately 

following quercetin treatment whereas the PalF cells were in transit for several days 

after removal of quercetin and underwent at least one further passage before analysis in 

Zurich. This would inevitably lead to selection against the most damaged cells.

4.5.3 Minisatellite Analysis

4.5.3.1 Background

The human genome contains hypervariable regions of DNA consisting of tandem 

repeats of a short sequence termed a minisatellite (Jeffreys et al., 1985). Many of these 

minisatellites are highly polymorphic, this resulting from allelic differences in the 

number of repeats present. The observed allelic variation is presumed to arise by 

mitotic or meiotic unequal exchanges or by DNA slippage during replication leading to 

gain or loss of repeat units (Jeffreys et al., 1985; 1987). This variation in length can be 

detected by digesting genomic DNA with a restriction enzyme which does not cleave 

the repeat unit, blotting the gels and probing the resulting membranes with radioactively 

labelled minisatellite DNA. The complex pattern of the resulting restriction fragment 

length polymorphism is called the DNA fingerprint (Jeffreys et al., 1985). Highly 

variable minisatellite sequences appear to be ubiquitous among animals and plant 

genomes, including cattle (e.g. Vassart et al., 1987; Georges et al., 1988; 1990).
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Vagnarelli et al (1993) have described the development of a mutation assay in cultured 

mammalian cells based on direct analysis of minisatellite DNA. Chinese hamster cells 

(V79) were treated with the mutagen nitrosoguanidine and individual colonies were 

isolated and expanded. DNA analysis showed minisatellite variation in a number of 

these cell lines leading the authors to suggest that minisatellite sequences are 

hypermutable sites that can be used to detect the mutagenic effect of chemical agents. 

Suzuki et al. (1991) observed similar changes in mouse fibrosarcoma cells treated with 

55 pM quercetin for 48 hours. In light of such applications and findings it was decided 

to examine minisatellite sequences in quercetin-treated PalF cells to determine whether 

or not the flavonoid quercetin causes direct mutation of PalF DNA.

4.5.3.2 Experimental Rationale 

Cell treatments

Control and quercetin treatments (20, 45, 100, 200 and 300 pM for 48 hours) of PalF 

cells followed conditions described in Chapter 4.5.2.2. Following removal of treatment, 

cells were washed twice with PBS and allowed to grow for one further day in fresh 

medium before harvesting and subsequent DNA extraction. This mirrored the quercetin 

treatment used in protocol QA prior to transfection with BPV-4 DNA. DNA was 

extracted from the cells as described in Chapter 2.2.2.4.

Minisatellite probes

Three readily available minisatellite probes were used; human minisatellite probes J33.6 

and J33.15 (Jeffreys et al., 1985) and M l3 bacteriophage DNA (Vassart et a l, 1987). 

The J33.6 (720 bp) and J33.15 (600 bp) probes were obtained from plasmid constructs 

pJ33.6 and pJ33.15 as detailed in Chapter 2.1.7. Wild type single strand M l3 

(Pharmacia) was used as probe template for Ml 3 fingerprinting. In a pilot experiment a 

series of enzymes were used with the above probes to establish which enzyme / probe 

combination gave the most informative banding pattern for analyses. Four enzymes
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commonly employed in DNA fingerprinting studies (Alu I, Hae III, Hinf I and Mbo I) 

were used to digest untreated PalF DNA. Mbo I digests were judged to give the most 

informative DNA fingerprints, i.e. maximising the number of discernible bands, while 

minimising background signal.

Assay conditions

Standard electrophoretic (5 pg digested DNA; 0.5 x TBE, 0.8% agarose) and Southern 

blotting procedures for Mbo I digests of control-treated and quercetin-treated PalF cells 

were undertaken (detailed in Chapter 2.2.2.14). Subsequent assay conditions, 

specifically optimised for the various minisatellite probes (Wells, 1988) were used. The 

J33.6 and J33.15 probes were radioactively labelled (32P dCTP) by random priming 

(Chapter 2.2.2.11), while a primer extension protocol was used for M l3 labelling 

(Chapter 2.2.2.14). A formamide based hybridisation solution was used for all three 

probings (Chapter 2.2.2.14). In all cases hybridised membranes were washed to a low 

final stringency; 1.5 x SSC; 0.1% SDS, for 20 min at 45°C.

4.5.3.3 Results and Discussion

The human minisatellite probe J6.3 detected only 3-4 bands, identical in size in all 

control-treated and quercetin-treated Mbo I digested DNAs (data not shown). This is 

not a particularly uncommon occurrence as individual minisatellite families do not 

occur at the same frequency in all species. Hybridisation of membranes with the 

remaining two probes J33.15 and phage M l3 gave more complex DNA fingerprints 

(Figure 4.14). The J33.15 probe was particularly informative with in excess of 60 bands 

being discernible from the autoradiograph. Phage M l3 probe resolved 14 bands under 

the same hybridisation conditions (Figure 4.14). In both cases, no difference in the 

number or intensity of detected bands could be observed between test and control tracks. 

Thus this assay provided no evidence of quercetin-induced chromosomal damage/ 

mutation in PalF cells even at concentrations 15 x higher than that shown to synergise
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with BPV-4 genes resulting in full transformation of PalF cells. However, it should be 

emphasised that a minisatellite assay of the magnitude employed above would only be 

likely to detect gross and widespread genetic alterations caused by quercetin treatment.

4.5.4 DNA Strand Break Analysis

4.5.4.1 Background

Quercetin is known to bind to both single and double strand DNA (Rahman et al, 

1990). It has also been shown to cause single strand scission in bacteriophage DNA, 

though this is dependent on the presence of both Cu(II) ions and oxygen. This strand 

scission reaction was demonstrated to account for the genotoxic activity of quercetin as 

assayed by bacteriophage inactivation (Fazal et al., 1990). Quercetin has also been 

reported to induce DNA single strand breaks in mouse lymphoma (L5178Y) cells 

(Meltz & MacGregor, 1981).

In the present study the role of quercetin in inducing DNA strand breaks was 

investigated at two levels. First, the ability of quercetin to induce DNA breaks (at 

concentrations known to synergise with BPV-4 genes in PalF cells) was investigated 

using a plasmid DNA mobility assay system (Fitzsimmons et al., 1994). Second, 

possible quercetin-induced DNA damage was measured in PalF cells using both alkaline 

and neutral filter elution assays. This approach has been successfully employed to 

measure single and double strand DNA breaks in irradiated mammalian cells (Kohn 

et al., 1976; Bradley & Kohn, 1979).

4.5.4.2 Experimental Rationale 

Plasmid DNA mobility assay

The ability of agents to induce DNA strand breaks can be detected and partially 

classified by means of a plasmid DNA mobility assay (Fitzsimmons et al., 1994). 

Supercoiled plasmid (sc) is reduced to relaxed circular form (rc) by DNA single strand
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breaks and to linear form (1) by double stranded breaks. These three types of plasmid 

forms have different electrophoretic mobilities in agarose gels and can therefore be 

differentiated, allowing detection of induced DNA damage.

The plasmid mobility experiments were carried out by Charles Walker and Dr. A. Lewis 

(CRC Department of Medical Oncology, Beatson Laboratories, University of Glasgow) 

who routinely carry out such assays. Incubation mixtures contained 1.6 pg supercoiled 

pBR322 DNA in a total volume of 60 pi 100 mM sodium phosphate buffer pH 7.4. 

Various concentrations of quercetin ranging from 0.5-20 pM were added to this reaction 

mix in the presence or absence of 333 pM CuCl2. All quercetin doses were 

administered in 5 pi ethanol. Two control classes were also included, namely plasmid 

in buffer alone and plasmid in buffer with 5 pi ethanol. All reactions were incubated at 

37°C for 60 minutes under aerobic conditions. The reactions were stopped by addition 

of 15 pi stop buffer (5 mM EDTA, 0.5% SDS, 60% glycerol, 0.1% bromophenol blue). 

Aliquots of 25 pi of stopped reaction mixtures were separated on a 1% agarose gel. 

DNA in gels was stained with ethidium bromide and photographed under UV 

transillumination. Densitometric analysis of gel negatives was performed using a 

Molecular Dynamics Laser Densitometer with image analysis software.

Filter elution assays

DNA damage (whether single or double strand) has been successfully measured in 

mammalian cells using the technique of filter elution under either alkaline or neutral 

conditions (Kohn et al., 1976; Bradley & Kohn, 1979). This technique quantifies the 

level of DNA damage by measuring differential elution characteristics of intact versus 

fragmented DNA through a polycarbonate filter. Alkaline pH elution conditions 

measure both single and double strand DNA breaks, whereas neutral pH elution 

conditions measure only DNA double strand breaks.
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For this preliminary analysis elution assays of quercetin-treated and control-treated PalF 

cells were carried out by Dr. J. Russell (Department of Radiation Oncology, Beatson 

Laboratories, University of Glasgow). The technique requires the radioactive labelling 

of DNA in cells for later detection and quantification of possible DNA damage. 

Actively growing (i.e. subconfluent) PalF cells were labelled with 3H-thymidine for 

20 hours. Subsequently radioactive medium was removed, cultures were washed twice 

with PBS, and fresh medium containing control or quercetin treatments added for a 

further 48 hr. Following removal of treatment medium, cultures were washed in PBS, 

trypsinised, resuspended in medium at a concentration of 5 x 105 cells per ml and placed 

immediately on ice to inhibit possible DNA repair. To each elution column one ml of 

cell suspension was loaded per nucleopore polycarbonate filter (pore size 2 pm), and the 

cells lysed (lysis buffer: 2 M NaCl, 0.02 M Na2EDTA, 2% Sarkosyl, pH 10.2). Filters 

were subsequently rinsed with 0.02 M Na2EDTA, pH 10.2. The elution columns were 

then attached to a peristaltic pump and 25-30 ml of either neutral (Tris glycine , pH 7.0) 

or alkaline (0.1 M tetra propylammonium hydroxide, 0.02 M Na2EDTA, pH 12.2) 

eluting buffer was added. Buffer was pumped at 2 ml per hour (i.e. each run lasted 

12-15 hours). At the end of the run, the filters and the eluate were counted using a 

scintillation counter. The fraction eluted (and hence the proportion of the sample 

containing DNA damage) was calculated by comparing this value to the total amount of 

radioactivity present in both filter and eluate. The positive control used throughout 

these experiments was control-treated PalF cells irradiated with 15 Gy (60Cobalt source, 

dose rated 2.7 Gy / min).

Initials attempts at elution assays which involved a full set of quercetin concentration 

treatments (20-300 pM) for two different exposure times (48 and 96 hours), gave 

unsatisfactory results. The recommended 3H-thymidine labelling dose (3.7 kBq / ml of 

culture medium) proved to be too efficient in PalF cells. Counts were considered to be 

too high to quantify accurately. Due to resulting time constraints it was decided to
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repeat the assay only on PalF cells treated with 300 pM quercetin, the highest 

concentration considered. The negative control was PalF cells treated with an equal 

volume of DMSO (the quercetin solvent). For these latter assays the 3H-thymidine 

labelling dose was reduced to 0.74 kBq / ml of culture medium.

4.5.4.3 Results and Discussion 

Plasmid DNA mobility assay

Results showed that quercetin induced single strand breaks in plasmid DNA 

(Figure 4.15). This was visualised by the conversion of supercoiled plasmid DNA to 

the relaxed circular form. No linear plasmid was observed indicating that no double 

strand DNA breaks were induced in this assay. The two control samples, namely 

plasmid alone (track 1) and plasmid plus ethanol (track 10), gave similar background 

levels (approximately 10%) of relaxed circular (rc) form. Increasing doses of quercetin 

led to increasingly higher levels of relaxed circular (i.e. nicked) plasmid. Results from 

the two highest concentrations of 16 pM and 20 pM showed that conversion to the 

relaxed circular form was complete. At the highest concentration it was found that total 

conversion from supercoiled to relaxed circular form was complete within 15 minutes 

post addition of quercetin (Figure 4.16). All reactions were carried out in the presence 

of CuCl2. This requirement for Cu(II) ions was demonstrated by the lack of plasmid 

form conversion in conditions where 20 pM quercetin was included but CuCl2 was 

absent (Figure 4.15; track 9). Although this is an in vitro assay it does indicate that 

quercetin is capable of inducing DNA damage at concentrations equal to and even more 

dilute than that found to synergise with BPV-4 genes contributing to the full 

transformation of PalF cells.

Filter elution assays

Results from both alkaline and neutral filter elution assays of PalF cells treated with 

300 pM quercetin are summarised in Figure 4.17. In both cases there was no
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Figure 4.16 Ethidium bromide stained agarose gel demonstrating the conversion o f 
pBR322 plasmid DNA by 20 pM quercetin from supercoiled (sc) to 
relaxed circular (rc) form over time. All reactions were carried out in the 
presence o f Cu(II) ions and oxygen.
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discernible difference between solvent-treated and quercetin-treated classes. This was 

in contrast to results obtained with the positive control, DMSO-treated PalF cells 

irradiated with 15 Gy 60Co. It has been estimated that approximately 1000 single strand 

breaks and 40 double strand DNA breaks are produced per Gray per cell (Elkind & 

Redpath, 1977), low levels of DNA damage resulting from quercetin treatment may 

therefore not be detectable. Also, some degree of DNA repair cannot be ruled out 

during quercetin treatment and / or prior to lysing of cells on filters. Since no detectable 

difference was found between control and 300 pM quercetin-treated classes repetition of 

this assay at the lower quercetin concentrations was not considered appropriate.

At first, comparison of results from the plasmid mobility and filter elution studies seem 

difficult to reconcile. Whereas quercetin concentrations as low as 0.5 pM induce single 

strand nicks in plasmid DNA, no DNA damage was detectable in cells at 300 pM. This 

apparent discrepancy may be explained not only by detection sensitivity of the 

respective assays but also due to the fact that one is an in vitro assay while the other is a 

measure of DNA damage in a cell system. As the intracellular concentration of 

quercetin in PalF cells is not known the apparent lack of detectable quercetin-induced 

DNA damage could be due to poor uptake of this chemical into the cells. This is 

supported by Hatcher & Bryan (1985) who suggested that apparently contradictory 

quercetin mutagenicity results in Salmonella typhimurium could be explained by the fact 

that oxidation of quercetin outside the cell led to the formation of products that were 

unable to cross the cell envelope.

4.5.5 DNA Adduct Formation

4.5.5.1 Background

The majority of known or potential environmental chemical carcinogens are 

biotransformed before they can interact with DNA, whereupon they form addition 

products or adducts (Miller & Miller, 1981). DNA adducts can be removed by DNA
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repair processes, or in extreme cases by cell death. However, if neither of these 

regulatory processes come into play these DNA lesions may cause mutations which 

become fixed in the genome by DNA replication. Mutations caused by DNA adduct 

formation can subsequently play a part in multistage carcinogenesis (Miller & Miller, 

1981). Quantification of the amount of DNA adducts formed has been used to estimate 

the initiating potential of both known and unknown genotoxic agents (Gupta, 1993).

Exposure to reactive oxygen species (ROS; e.g. OH- , H20 2) has been implicated in 

carcinogenesis (Cross, 1987). Although first studies suggested that ROS could be 

involved in tumour promotion (Kensler & Taffe, 1986), exposure to ROS has shown to 

be genotoxic (Meneghini, 1988). This has stimulated work on the role of ROS in the 

process of initiation (Meneghini, 1988). ROS exposure results in the formation of 

various modified DNA bases (adducts), one of the major products being the 

promutagenic lesion 8-hydroxy-deoxyguanosine (80HdG).

The genotoxicity of quercetin was reported to correlate with its ability to cause DNA 

damage in the presence of Cu(II) ions and oxygen (Rahman et al., 1989). This reaction 

was associated with the generation of ROS including the formation of hydroxyl radicals. 

Fazal et al. (1990), using a bacteriophage model, concluded that the hydroxyl radical 

was the genotoxic agent in this system. Therefore quercetin-treated PalF cells were 

analysed for possible DNA adduct formation in order to investigate whether this 

chemical's contribution to transformation of PalF cells could be explained by 

chemically-induced DNA modification.

4.5.5.2 Experimental Rationale 

Cell treatments

The sample classes tested included; untreated PalF cells, cells treated with either 20 or 

45 pM quercetin for 4 days and their solvent controls (i.e. cells treated with ethanol for

168



4 days). Genomic DNA was extracted from all cultures immediately after removal of 

quercetin and washing of cultures in PBS, using standard DNA extraction methods (as 

described in Chapter 2.22A).

DNA analyses

This work was carried out by Dr. A. Povey (Paterson Institute for Cancer Research, 

Manchester). DNAs from all classes were analysed for the presence of both bulky 

aromatic adducts and also small ROS-induced adducts using a modification of the 

32P-postlabelling technique (Gupta & Earley, 1988). In essence this technique involved 

enzymatic hydrolysis of DNA to 3'-monophosphates, enrichment of aromatic and / or 

hydrophobic adducted nucleotides by butanol extraction (resulting in elimination of 

normal nucleotides) and attachment of a 32P-label to the 5'-hydroxyl end of adducted 

nucleotides. Separation and detection of DNA adducts was by thin layer 

chromatography and subsequent autoradiography. High pressure liquid chromatography 

(HPLC) of samples from the aqueous phase resulting from butanol extraction were 

analysed for possible oxidative damage, specifically the formation of 80HdG. 

Fractions proposed to contain 80HdG were subsequently processed as for the detection 

of bulky aromatic adducts. For both assays, spots present in test but not control samples 

indicated the presence of adducts. The assay sensitivity is approximately 1 adduct /1 0 10 

nucleotides for detection of bulky aromatic adducts (Gupta, 1993) and approximately 

one 80HdG residue per 106-107 dG residues for detection of 80HdG (Povey et al., 

1993).

After detection by autoradiography, adduct spots were excised from the chromatogram 

and radioactivity was measured by Cerenkov counting. Blank spots equal in size to 

adduct spots were also counted and their count rates subtracted from adduct count rates 

to obtain true count values. Adduct levels were calculated by relative adduct labelling 

(RAL) and values finally expressed as attomoles of adduct / pg DNA (Gupta, 1985).



For the 80HdG assay, quantification of adduct levels was based upon Cerenkov 

counting of adduct spots from experimental classes excised from the chromatograms, 

compared to those of known standards. Results were expressed as 

pmoles 80HdG / mol dG (Povey et al., 1993).

4.5.5.3. Results and Discussion

Analysis of the quercetin-treated samples by 32P-postlabelling did not reveal adduct 

formation in either of the quercetin-treated classes (data not shown). Although there 

was not enough sample material to analyse all classes for 80HdG levels three classes 

were assayed. These were 20 C (ethanol alone), 20 Q and 45 C (ethanol alone), giving 

values of 8.0, 12.6 and 11.2 pmoles 80HdG / mol dG respectively. Although there was 

a slight increase in 80HdG levels in the 20 pM quercetin-treated sample compared to its 

control this was not considered to be significant. Thus results from the above assays did 

not show significant experimental evidence of quercetin-induced DNA adduct formation 

in PalF cells.

4.5.6 Epigenetic Effects

4.5.6.1 Introduction

Quercetin has been reported to have diverse biological activities. In addition to the 

mutagenic activity of quercetin in bacterial and mammalian cells (Jackson et al., 1993 

for review) other studies have demonstrated epigenetic effects. For example, this 

flavonoid is known to affect many cellular enzymatic processes such as metabolism of 

cAMP (Graziani et al., 1983). Quercetin has also been shown to inhibit protein 

kinase C (Gschwendt et al., 1984). Contradictory effects on tyrosine phosphorylation 

have been described. For example, quercetin has been shown to inhibit the 

phosphotyrosine activity of the Rous sarcoma virus src gene product, pp60src, both in 

vitro and in vivo (Graziani et al., 1983). Conversely quercetin has been shown to 

synergise with the phosphotyrosine phosphatase inhibitor sodium orthovanadate,
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resulting in greatly increased levels of protein-tyrosine phosphorylation in both 

uninfected and Rous sarcoma virus-transformed chick embryo fibroblasts (Van Wart- 

Hood et al., 1989).

Given the important role tyrosine phosphorylation plays in cell growth, proliferation, 

differentiation and transformation (see Fischer et al., 1992) and the reported effects 

quercetin can have on such phosphorylation it was decided to look at levels of 

phosphotyrosine in quercetin-treated PalF cells.

4.5.6.2 Experimental Rationale 

Transfection classes

PalF cells were transfected with a construct containing the BPV-4 LCR and a reporter 

gene (luciferase) and a second plasmid construct containing a gene encoding 

p-galactosidase. Both constructs are detailed in Chapter 2.1.7. Test classes were 

incubated in medium containing 20 pM quercetin for 48 hours before or after DNA 

transfection (i.e. protocol QA & QC conditions respectively). The control class was 

treated with ethanol alone. Unlike the long-term transfection assays described in this 

chapter, cells from these experiments were harvested 2 days after removal of the DNA 

transfection solution. The experimental protocol is outlined in Table 4.14.

It was planned to carry out dual analyses of these transient transfections to examine both 

protein tyrosine phosphorylation levels in quercetin-treated transfections and to also 

examine whether quercetin's contribution to transfected PalF cells involved changes in 

the expression levels of BPV-4 genes. This latter study was to be tested by monitoring 

the transcriptional activity of the BPV-4 LCR, a region of the viral genome known to 

contain both promoter and enhancer sequences which regulate viral gene expression 

(Jackson & Campo, 1991; 1995). However, expression assays measuring both 

luciferase activity (driven by the BPV-4 LCR as promoter) and P-galactosidase activity
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Table 4.14 Summary of experimental protocol used to examine possible quercetin- 
induced effects on protein phosphotyrosine levels and BPV-4 LCR 
activity in transfected PalF cells .

Day QA Treatment QC Treatment Control

1 + 20 pM quercetin 
(48 hours)

+ ethanol only 
(48 hours)

+ ethanol only 
(48 hours)

3 wash / seed 6 flasks 
cells @ 5 x 105 cells 
(Leave for 24 hours)

wash / seed 6 flasks 
cells @ 5 x 105 cells 
(Leave for 24 hours)

wash / seed 6 flasks 
cells @ 5 x 105 cells 
(Leave for 24 hours)

4
Flasks 1, 2, 5 

Flasks 3, 4, 6

DNA Transfections:
- 15 pg pOluc a + 5 pg HSVpgalc

- 15 pg pLCRluc b + 5 pg HSVpgal

5 wash cells 
+ ethanol only 

(48 hours)

wash cells 
+ 20 pM quercetin 

(48 hours)

wash cells 
+ ethanol only 

(48 hours)

7 Harvest all classes 
Flasks 1-4: for luciferase and p-galactosidase assays 
Flasks 5-6: for protein phosphotyrosine assay

a pOluc - vector alone control
b pLCRluc - vector + BPV-4 LCR (nucleotides 6710-331) 
c HSVPgal - p-galactosidase plasmid (transfection control)
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(driven by an HSV promoter; acting as a positive transcription control for transfected 

DNA) gave very low values. This may suggest that the transfection protocol had been 

unsuccessful. However, similarly poor assay results obtained throughout the laboratory 

at this time, using both PalF cells and other lines and also using constructs which had 

previously shown measurable reporter gene activity, pointed to a more likely problem 

with the common (commercial) lysis buffer used. This work was not repeated, although 

it is now currently being carried out by others. Examination of protein phosphotyrosine 

levels in these cells was still possible.

Protein phosphotyrosine assay

Experimental conditions for the following are detailed in Chapters 2.2.4.1-2.2.4.3. 

Total cell protein was extracted from all classes and equal amounts run on SDS-PAGE 

gels. Samples were loaded onto duplicate gels together with a track containing standard 

protein markers (Rainbow markers; Amersham International pic) and a control track of 

protein from a cell line known to contain elevated protein phosphotyrosine levels (LA29 

cells: chick embryo fibroblasts (CEF) expressing a temperature sensitive \-src Rous 

sarcoma virus mutant; a gift from B. Haefner, Beatson Institute, Glasgow). One gel was 

stained with Coomassie brilliant blue stain to provide a check for equal protein loading 

among samples. The other gel was used for Western transfer onto nitrocellulose 

membranes using a Sartorius semi-dry blotting apparatus according to the manufacturers 

instructions. Subsequent to transfer, membranes were blocked in the appropriate buffer 

prior to incubation with a mouse phosphotyrosine monoclonal antibody (UBI, New 

York). An anti-mouse secondary antibody conjugated with alkaline phosphatase 

(Sigma) was added followed by further buffer washes and final visual detection of 

cellular protein phosphotyrosine levels by development with a chromogenic alkaline 

phosphatase substrate.
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4.5.6.3 Results and Discussion

Preliminary results showed that there appeared to be a change in protein 

phosphotyrosine levels. Phosphotyrosine levels of an as yet unidentified protein 

(approximately 50-65 kD) were slightly increased in the quercetin-treated transfected 

cells in comparison to the ethanol-treated control. Data is not shown as due to high 

background / weak signal it was not possible to discern this band photographically. 

This experiment was repeated on two further occasions. However, on repetition there 

was notable degradation of protein samples preventing analyses. Suitable caution must 

therefore be applied in interpretation of results from a single experiment. However 

continuation of this work by a current PhD student in the laboratory (J. Connolly) has 

indicated both that quercetin treatment (protocol QC) increases BPV-4 LCR activity in 

PalF cells, as measured by luciferase reporter gene activity (see above), and also that 

several proteins show altered phosphotyrosine levels in response to quercetin treatment 

(J. Connolly, personal communication). Thus quercetin appears to have discernible 

epigenetic effects in BPV-4-transfected PalF cells.

174



CHAPTER 5

GAP JUNCTIONAL INTERCELLULAR 
COMMUNICATION



Chapter 5

GAP JUNCTIONAL INTERCELLULAR COMMUNICATION

5.1 Introduction

5.1.1 Gap Junctional Intercellular Communication fGJICf

Gap junctions are specialised intercellular channels which provide cell-cell 

communication between the cytoplasms of adjacent cells in multicellular organisms. 

They can be open or closed (gated). Cell types tend to form homologous rather than 

heterologous gap junctions (Fentiman et al., 1976; Pitts & Burk, 1976) and 'sort out' 

into separate domains (Pitts, 1980). This results in the formation of communication 

compartments with well-defined boundaries (Pitts & Kam, 1985). For example, studies 

of junctional communication pathways in the mouse skin have shown that the stromal 

cells of the dermis form a large, apparently limitless, communication compartment, 

whereas the epidermis is divided into many small compartments (Kam et al., 1986; Pitts 

et al., 1988a). Mapping of these pathways was achieved by microinjection of individual 

cells with a fluorescent dye (Lucifer Yellow CH), which passes through gap junctions 

but not across the non-junctional membrane, and subsequent observation of the extent of 

dye spread. Similar patterns of communication have been observed in human skin 

(Salomon et al., 1988). The permeability of gap junctions to small molecules, such as 

nucleotides, oligosaccharides and second messengers, is thought to be important in the 

homeostatic control of groups of cells in a tissue or organ (Yamasaki, 1990).

Proliferative control in normal epidermis is thought to operate within small units 

(epidermal proliferative units; Mackenzie, 1975) which are very similar, if not identical 

to the epidermal communication compartments (Pitts et al., 1988a) described above. 

Each unit contains one stem cell surrounded in the basal layer by a small number of
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committed cells. These committed cells divide a limited number of times to produce the 

overlying cells which on upwards migration will be eventually lost by desquamation. 

Stocks of committed cells are thought to be maintained by controlled division of stem 

cells. This suggests that there must be some form of feedback mechanism such that the 

division rate of basal cells matches the loss of terminally differentiated cells. Junctional 

communication is a likely candidate for such a scheme and both positive and negative 

mechanisms for growth control utilising junctional communication have been proposed 

(Sheridan, 1976; Loewenstein, 1979). It has been hypothesised that in the epidermis the 

proliferative activity of the basal cells can be modulated, in a skin thickness-dependent 

manner, by loss of growth factor-induced second messengers into the overlying, 

non-dividing cells. If there are sufficient overlying cells the level of second messengers 

(production of which occurs primarily in the basal layers) may not rise to the threshold 

required for initiation of cell division. However loss of overlying cells due to terminal 

differentiation will reduce the cytoplasmic volume available for diffusion of second 

messengers and cell division will occur. In summary, the upper layers act as a sink for 

second messengers and consequently as an effective 'brake' on basal layer proliferation 

(Loewenstein, 1979; Pitts et al., 1988b).

GJIC has been implicated in a number of fundamental cellular processes, for example 

development, differentiation and growth control. Such processes are disrupted in 

cancer. Thus, study of the components of intercellular communication has been a focus 

of recent research. Many cancer cells show decreased GJIC levels (Loewenstein, 1979) 

and such disruption may also be involved in metastasis (Hamada et al., 1988). A 

number of tumour promoters have also been shown to decrease GJIC both in vitro 

(Yamasaki, 1990; Fitzgerald & Yamasaki, 1990) and in vivo (Sugie et al., 1987; Mesnil 

et al., 1988).
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5.1.2 Gap Junction Components

Each gap junction is composed of two connexons, one contributed from each 

communicating cell. A number of proteins are involved in gap junction formation. 

Connexins play a part in gap junction structure and / or control of channel permeability 

(Beyer et al., 1987; Nicholson et ah, 1987; Kistler & Bullivant, 1988). Another family 

of molecules involved in gap junction formation are the cadherins (calcium-dependent 

cell adhesion molecules). The cadherins, like the connexins, are expressed in a tissue- 

specific manner (Jongen et al., 1991) and can act as morphogenetic regulators 

conferring specific cell-cell adhesions and cell sorting mechanisms (Takeichi, 1991). 

However a 16kD protein called ductin is considered to be the major structural 

component of gap junctions (Finbow & Pitts, 1993). This protein is very hydrophobic 

and is thought to contain four transmembrane segments arranged as a four a-helical 

bundle (Finbow et al., 1992). Ductin is also the 'subunit c' or '16 kD proteolipid* of the 

vacuolar H+-ATPase (V-ATPase; Mandel et al., 1988). The vacuolar H+-ATPase is a 

transmembrane proton pump and is responsible for the acidification of organelles such 

as endosomes, lysosomes, synaptic vesicles and Golgi bodies (Nelson, 1992). The 

vacuolar H+-ATPases play a central role in down-regulation of activated growth factor 

receptors as they generate an acidic endosomal pH required for dissociation of ligand- 

receptor complexes as well as targeting these complexes for lysosomal degradation 

(Brown et al., 1983).

5.1.3 Interaction Between Viral Oncoproteins And Ductin

It is known that the E5 oncoprotein of bovine papillomavirus type 1 (BPV-1) binds to 

ductin (Goldstein et al., 1991). This binding appears to be necessary for the 

transforming activity of the E5 polypeptide (Goldstein et al, 1992). Other viral 

oncoproteins such as HPV-6 E5, HPV-16 E5 (Conrad et al., 1993) and HTLV-1 P121 

(Franchini et al., 1993) also bind to ductin. This suggests that ductin is a common 

cellular target for these viral proteins.
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BPV-1 E5-transformed cells show constitutive activation of receptors for epidermal 

growth factor (EGF) and platelet derived growth factor (PDGF). E5 expression both 

stimulates the phosphorylation of the EGF receptor and decreases the down-regulation 

of these occupied receptors (Martin et al., 1989). Similarly this protein has been shown 

to stimulate phosphorylation of the PDGF receptor (Petti et al., 1991). Goldstein et al. 

(1991) proposed that a potential site for E5 action was the endosomal compartment and 

that the association between the BPV-1 E5 protein and ductin in this compartment 

might interfere with proton pump function, resulting in prolonged growth factor/ 

receptor interaction and recycling of receptors to the cell surface. It was proposed that 

such a mechanism of viral protein action might well explain the observed activation of 

cell surface receptors and subsequent mitogenesis in BPV-1 E5-transformed cells. A 

recent study has reported that cells expressing HPV-16 E5 exhibit inhibition of 

endosomal acidification (Straight et al., 1995). However, although yet to be 

demonstrated, the biological activity of BPV-1 E5 protein may depend equally on 

interactions within the Golgi apparatus and / or disruption of intercellular 

communication through binding of BPV-1 E5 protein to the ductin component of gap 

junctions.

The BPV-4 E8 ORF encodes a small hydrophobic polypeptide similar in length 

(42 residues) and hydrophobicity to the BPV-1 E5 protein (Jackson et ah, 1991). 

Immunostaining of PalF cells transfected with BPV-4 genes revealed that the BPV-4 E8 

protein localised in the membrane compartments. The viral protein was found in the 

plasma membrane, the endoplasmic reticulum (ER) and the Golgi apparatus (Pennie et 

al., 1993). This is similar to the BPV-1 E5 protein which is also found in the ER, Golgi 

apparatus and, to a lesser extent, in the plasma membrane (Burkhardt et al., 1989). 

From these observations it is tempting to suggest that BPV-1 E5 and BPV-4 E8 proteins 

share some common function(s).
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The reported binding of BPV-1 E5 protein to ductin prompted preliminary 

investigations in this laboratory as to whether such binding affected GJIC in cultured 

cells (Pennie, 1992). Gap junction mediated cell-cell communication was measured by 

dye transfer analysis. In this study primary bovine fibroblasts explanted from 

conjunctival tissue (CON cells; Smith et al., 1987) were transformed with BPV-1 DNA. 

Results showed that these virally-transformed cells displayed completely disrupted gap 

junctional communication. Untransfected CON cells communicated well. Although not 

direct proof that disrupted cell-cell communication was due to the BPV-1 E5 / ductin 

proteins complexing, it did suggest that reduced communication was a consequence of 

viral transformation. GJIC was also found to be reduced in a cell line (ClOK) which 

although derived from normal cervical tissue was found to be HPV-16 positive 

(Pennie, 1992). Cell line C12K, derived from HPV-16 negative normal cervical tissue 

communicated well (G. Sibbet, personal communication). This provided further 

circumstantial evidence of a viral component to disruption of GJIC. Examination of 

eight PalF lines which had been transfected with various BPV-4 genes + ras showed 

that one cell line displayed disrupted communication (Pennie, 1992). This was a clonal 

line derived from transfection of PalF cells with BPV-4 E8 and E7 ORFs (construct 

pSVE8E7). As the majority of the cell lines examined communicated well this implied 

that either BPV-4 E8 protein did not complex with ductin or that communicating and 

non-communicating cell lines differed in their maintenance of viral DNA or patterns of 

viral expression. The status of viral DNA in the various cell lines was examined by 

Southern blotting followed by hybridisation with BPV-4 DNA probes. Results showed 

that the cell line which showed greatly reduced GJIC maintained multiple copies of 

BPV-4 DNA (including the E8 ORF) while the other cell lines contained no or very 

little viral DNA (less than one genome equivalent per cell).

These results strengthen the hypothesis that the BPV-4 E8 protein complexes with 

ductin resulting in reduced GJIC and that this may be an important aspect of the
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transformation biology of the BPV-4 virus. This led to the following more detailed 

study of GJIC in BPV-4-transformed PalF cells. Due to the observed contribution of 

quercetin to transformation of virally-transfected PalF cells the possible disruption of 

GJIC by this chemical was also investigated.

5.2 Experimental rationale

5.2.1 GJIC Measurement

Micro injection dye transfer can be used to measure GJIC. The small molecular weight 

fluorescent tracer compound Lucifer Yellow CH passes through gap junctions but not 

the non-junctional membrane. After injection into a single cell the extent of spread of 

this dye from the original injected cell to its neighbours provides a measure of dye 

coupling and hence gap junctional intercellular communication. The dye is retained in 

cells that do not possess functional gap junctions or, in cases where GJIC is reduced but 

not abolished, the dye spreads to fewer cells than in well coupled populations.

The technique of iontophoretic injection has been described by Pitts and Kam (1985). 

Single cells were injected with an aqueous solution of 4% w/v Lucifer Yellow CH 

(Sigma). Glass capillary tubes (outside diameter 1 mm) were used to form 

micropipettes which were back filled with this dye solution. The micropipette was 

mounted on a micromanipulator with both manual and electronic control. A silver 

electrode was connected to the micropipette and a second electrode was placed in the 

cell culture medium. When the micropipette tip had entered the cell the dye was 

injected by passing hyperpolarising current pulses (10 nA, 1 Hz, 500 ms duration) 

through the micropipette over a two minute period. All microinjection dye spread 

experiments were carried out by Dr. J.D. Pitts (Beatson Institute, Glasgow).

A variety of PalF transfectants was assayed for the extent of functional gap junction 

intercellular communication. These predominantly comprised the ethanol-treated and
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quercetin-treated (protocol QA) cell lines previously described in Chapter 4.2. Cell 

lines derived from the three other quercetin / BPV-4 protocols (QB-QD; Table 4.8) were 

also examined. Untransfected PalF cells were assayed for the baseline GJIC level. All 

microinjection experiments were carried out on actively growing cultures. A minimum 

of 10 separate injections of single cells, in different areas of each tissue culture dish, 

were carried out. The amount of dye spread was measured on completion of the two 

minute injection and a GJIC value for each cell line was calculated by averaging counts 

from the individual injection sites. Approximately 2 x 106 viable cells were seeded per 

duplicate 60 mm petri dish for each cell line. Cells were allowed to settle overnight 

prior to microinjection. Cells were assayed when sub-confluent but in contact, to 

minimise the proportion of quiescent or dead cells being counted as non

communicating.

5.2.2 BPV-4 DNA and RNA status in GJIC assayed cell lines

To investigate whether GJIC levels in transformed PalF cells correlated with the 

presence and expression of BPV-4 genes , virally-transformed cell lines (ethanol-treated 

or protocol QA treated) were examined at both the DNA and RNA level with 

BPV-4-derived DNA probes.

5.2.2.1 Probe derivation 

Whole genome BPV-4

This probe consisted of the full BPV-4 genome (7.265 kb). It was isolated by BamH I 

digestion of the plasmid construct pBV-4. Details of this construct are given in 

Chapter 2.1.7.

E8

This probe contained nts 236-590 of the BPV-4 genome. This covered the entire E8 

ORF (nts 236-458) and did not contain any other viral ORF sequences. The construct
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from which this fragment was isolated was termed pALTER-E8 (detailed in 

Chapter 2.1.7).

E7

This E7 probe contained nts 652-1250 of the BPV-4 genome. This covered the E7 ORF 

(nts 647-1009) and 357 bp of the El ORF. This E7-containing fragment was released 

by BamH I digestion of the plasmid construct pURE7 (detailed in Chapter 2.1.7).

5.2.2.2. Assay conditions 

DNA

Total genomic DNAs from each cell line were assayed for the presence of BPV-4 genes 

by Southern blot analysis. GJIC levels were measured in cultures of similar passage 

number to those used for the DNA analysis. The Southern membranes employed in this 

analysis were also used for detection of c-Ha-ras and c-myc sequences and have been 

described fully in Chapter 4.4.2.3. Briefly, both BamH I and EcoRI DNA digests 

(5 pg) of each cell line were examined. Each membrane contained a number of test 

lines plus a series of control DNA samples. Controls included similarly digested DNA 

from untransfected PalF cells and quercetin-treated PalF cells. (Digested DNA from the 

human cell line HL-60 was used as a positive control for the c-myc probe.) Positive 

control tracks for viral DNA contained 200 ng bovine papilloma DNA (known to 

contain episomal BPV-4 DNA) digested with either BamH I or EcoR I. Five 

micrograms of BamH I digested DNA from a murine established fibroblast line (C l27) 

was used as carrier DNA in these viral DNA control tracks. DNAs extracted from cell 

lines derived from transfection of PalF cells with whole genome BPV-4 DNA were 

screened with all three BPV-4 probes. E8/E7 transfectant classes were screened with 

both E8 and E7 probes while E7 transfectants were only screened with the E7-specific 

probe. Probe labelling (32P dCTP) and conditions of hybridisation and autoradiography 

were carried out as detailed in Chapters 2.2.2.11-2.2.2.13. In all cases hybridised
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membranes were washed to a final stringency of 0.1 x SSC, 0.1% SDS for 30 min 

(2x15  min) at 65°C.

RNA

GJIC levels in cell lines were measured in cultures of similar passage number to those 

used for the RNA analysis. The RNA dot blots (20 pg total RNA per well) were also 

used for c-Ha-ras and c-myc expression assays and have previously been described in 

Chapter 4.4.2.3. RNA from each cell line was loaded in duplicate in adjacent wells, 

with RNAs from any particular class of ethanol-treated transfections being present on 

the same membrane as their quercetin-treated counterparts. Each membrane also 

contained a set of control samples. RNAs from both untransfected PalF cells and 

untransfected quercetin-treated PalF cells were present. Two further control samples 

were 10 pg HL-60 RNA (a positive control for c-myc expression) and 200 ng bovine 

papilloma DNA (a positive control for BPV-4 probe hybridisation). Post-hybridisation 

conditions were identical to those carried out for the DNA membranes, i.e. 0.1 x SSC, 

0.1% SDS for 30 min (2x15 min) at 65°C.

5.3 Results and Discussion

5.3.1 GJIC: ethanol-treated PalF transfectants

In untransfected PalF cells injected dye spread to an average of 18.4 cells (Table 5.1; 

Figure 5.1). Results from cells transfected with whole-genome BPV-4 (with or without 

HPV-16 E6) showed reduced GJIC compared to control cells (Table 5.1; Figure 5.1). 

This was the case both for all six clonal lines and the single polyclonal line assayed 

(student's t-test pairwise comparisons for equality; maximum P < 0.001). Transfection 

of PalF cells with either E8/E7 or E7-containing plasmids (with or without HPV-16 E6) 

showed a range of GJIC values which were much more similar to control cells than to 

whole genome BPV-4-transformed cells. Some of the cells transfected with E8/E7 and 

E7 alone appeared to show increased coupling as compared to PalF controls (Table 5.1).
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Table 5.1 Levels of gap junctional intercellular communication (GJIC) in control 
(ethanol-treated) PalF cells transfected with whole or sub-genomic BPV-4 
DNA fragments, with or without HPV-16 E6 DNA: Comparison with 
morphological transformation (M.T.), anchorage independence (A.I.) and 
immortalisation (Imm.) studies of the same cell lines.

Viral genes 
(+ neo + ras) Clone

GJIC 
Meana± S.D.

Phenotvpic effects 
M.T. A.I. Imm.

BPV-4 Polyc. 4.7 ± 2.3 ± + -

BPV-4 2 1.7 ± 1.8 ± + nd
3 6.8 ± 3.3 ± + nd
4 7.9 ±2.3 + + nd
5 8.0 ±4.0 + + nd

BPV-4 +16E 6b 1 0.8 ± 1.1 + + +
2 3.7 ± 1.6 + + -

E8/E7 (Zip)c 1 29.0 ±5.8 + + _

2 13.0 ±3.6 + + nd

E8/E7 (Zip) + 16E6 1 35.0 ±6.3 + + +

E7 1 23.9 ±5.4 + _ _

3 11.6 ±4.4 + - nd
4 31.3 ±7.5 + nd nd

E7+16E6 2 18.3 ±9.7 + _ nd
3 15.5 ±6.5 + - +
5 23.6 ±7.3 + nd nd

control cell line

PalF (ethanol-treated) 18.4 ±7.3 - - -

+ = positive, - = negative for phenotype; nd = not determined

a Mean number of fluorescently coupled cells ± standard deviation 

b 16E6 = HPV-16 E6 

c refers to pZipE8E7 construct
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Figure 5.1 Down-regulation o f GJIC in virally-transformed PalF cells as assayed by 
dye transfer analysis.

A & B Control PalF cells 
C & D PalF cells transformed by BPV-4 + ras 
E & F PalF cells transformed by ZipE8E7 + ras 
G & H PalF cells transformed by E7 + ras

A, C, E & G are phase contrast and B, D, F & H are fluorescence 
micrographs. The bar indicates 10 pm in all panels.
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This can be explained by the morphology of transformed cells. Such cells tend to be 

smaller than untransformed cells. Over a given time period, in well coupled cell 

cultures the dye will be able to diffuse into a greater number of small cells as compared 

to cells of larger volume. In the few cases where lower than normal GJIC values were 

recorded (e.g. Table 5.1 E7 clone 3; E8/E7 clone 2) this coincided with observations 

indicating that these particular cell cultures were not as densely populated as others. 

Thus, GJIC values recorded for all E8/E7 and E7 alone cell populations were considered 

as showing unimpaired intercellular communication. While the greatly reduced GJIC 

levels observed for whole genome BPV-4 transformants and the normal GJIC levels 

seen in E7 transformants could support the hypothesis that the E8 protein complexes 

with ductin, the lack of disruption of GJIC in E8/E7 transformants was surprising in that 

it appeared to contradict this theory.

Gap junctional intercellular communication was measured in two cell lines transfected 

with whole genome BPV-4 + HPV-16 E6. Both these lines displayed greatly reduced 

GJIC. Results from Table 5.1 indicated that PalF cells transformed by E8/E7 + 

HPV-16 E6 and E7 + HPV-16 E6 communicated well. Thus there does not appear to be 

a direct link between co-transfection of an E6 gene and disruption of GJIC. Previously 

it has been shown that addition of an HPV-16 E6 gene to PalF cells transfected with 

BPV-4 genes confers immortality (Chapter 4.2.3.1). A direct link between immortality 

and GJIC levels is, thus, not apparent. However, GJIC was assayed 5-6 weeks post 

DNA transfection whereas immortality was assessed over a 4-6 month period. A 

number of clones would have to be tested at the immortality assay endpoint before such 

a causative linkage could be confidently refuted.

As described earlier in Chapter 4.2.3.1 anchorage-independent growth of ethanol-treated 

PalF cells was dependent on transfection with viral DNA containing the E8 ORF (i.e. 

whole genome BPV-4 or E8/E7 constructs). In the above assays whole genome
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transfectants displayed reduced communication while E8/E7 transfectants showed 

normal levels of GJIC (Table 5.1). Thus there is no direct correlation between GJIC 

levels and anchorage independence. Verification of this would require measurement of 

GJIC in cell lines derived from expansion of individual Methocel colonies.

5.3.2 GJIC: quercetin-treated fOAJ PalF transfectants

Treatment of untransfected PalF cells with 20 pM quercetin for 48 hr did not appear to 

affect GJIC as compared to ethanol-treated controls (Table 5.2). Three QA BPV-4 

clonal lines and one polyclonal line were assayed (Table 5.2). All four cell lines 

showed greatly reduced GJIC levels compared to quercetin-treated control cells 

(student's 7-test pairwise comparisons for equality; maximum P < 0.001). The mean 

values obtained for GJIC in these cells lines were not markedly different from those 

observed in their ethanol-treated counterparts (cf. Table 5.1). Therefore, under both 

experimental conditions (i.e. with or without quercetin treatment) transfection of PalF 

cells with whole genome BPV-4 resulted in greatly reduced GJIC levels. Among all 

other transformant classes only one other clone showed evidence of disrupted 

intercellular communication. This was a line derived from transfection of PalF cells 

with the E8/E7 ORFs under the control of the BPV-4 LCR + HPV-16 E6 (construct 

pSVE8E7; Table 5.2) (student's 7-test pairwise comparison for equality; P <  0.001). 

While this E8/E7 result (in conjunction with the whole genome BPV-4 data) tends to 

support the hypothesis that there is direct interaction between the E8 and ductin proteins 

resulting in disruption of GJIC, it should be noted that five other E8/E7-transfected 

clones showed normal levels of GJIC, a result mirrored by all ethanol-treated 

counterparts.

In the ethanol-treated transformant classes there was no correlation between 

co-transfection with HPV-16 E6 DNA and change in degree of intercellular 

communication. Similar results were also obtained for quercetin-immortalised
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Table 5.2 Levels of gap junctional intercellular communication (GJIC) in PalF cells 
treated with 20 pM quercetin prior to transfection (protocol QA) with whole 
or sub-genomic BPV-4 DNA fragments, with or without HPV-16 E6 DNA: 
Comparison with morphological transformation (M.T.), anchorage 
independence (A.I.) and immortalisation (Imm.) studies of the same cell 
lines.

Viral genes 
(+ neo + ras) Clone

GJIC 
Meana± S.D.

Phenotvpic effects 
M.T. A.I. Imm.

BPV-4 Polyc. 1 2.1 ±1.7 + ± ±

BPV-4 1 5.7 ±3.3 + ± nd
2 3.9 ±3.0 + + +

BPV-4 + 16E6b 1 5.5 ±2.9 + + ±

E8/E7 (Zip) c 1 33.7 ±9.8 + (+> _

3 29.3 ± 8.5 + - -

E8/E7 (Zip) + 16E6 1 31.1 ±7.8 + - -

E8/E7 (SV)d 2 23.7 ±7.6 + (+) -

E8/E7 (SV) + 16E6 1 30.5 ± 10.4 + _ _

2 2.1 ±2.1 + - nd

E7 1 19.6 ±6.6 + + nd
3 26.7 ±8.6 + + nd
4 38.8 ± 11.0 + + ±

E7 + 16E6 2 25.0 ±7.0 + + +

control cell lines

4 22.6 ± 6.7 + nd

PalF (ethanol-treated) 18.4 ±7.3 - _ -

PalF (quercetin-treated) 19.9 ±7.4 - - -

+ = positive, (+) = weakly positive,- = negative for phenotype; nd = not determined

a Mean number of fluorescently coupled cells ± standard deviation 
b 16E6 = HPV-16 E6 
c refers to pZipE8E7 construct 
d refers to pSVE8E7 construct
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transfectants i.e. both QA BPV-4 polyclonal and QA BPV-4 clone 2 showed reduced 

GJIC whereas QA E7 clone 4 exhibited normal levels of intercellular communication 

(Table 5.2). These observations suggest that there is no causative link between 

quercetin-influenced immortalisation and GJIC levels, though as stated above, more 

experimental data would be required to confirm this supposition. Quercetin conferred 

anchorage independence on QA E7-transfected PalF cells. These cells retained normal 

GJIC levels (Table 5.2). QA BPV-4 transfectants were capable of 

anchorage-independent growth yet displayed greatly reduced levels of intercellular 

communication (Table 5.2). Thus although quercetin contributes to transformation of 

virally-transfected PalF cells the action of this chemical does not appear to involve overt 

disruption of intercellular communication.

5.3.3 GJIC and BPV-4 DNA / RNA

Results from the microinjection experiments did not appear to support the hypothesis 

that a possible function of the BPV-4 E8 protein in cellular transformation was 

disruption of GJIC through direct complexing with ductin. Although results from whole 

genome BPV-4 (i.e. E8-containing) transfectants showed reduced levels of intercellular 

communication, hence supporting the above hypothesis, results from the 

E8/E7-transfected cells showed (with the exception of one population) that these 

transfectants communicated freely. It was therefore proposed that such apparently 

anomalous results could be explained by inherent differences in the maintenance or 

expression of the E8 gene between communicating and poorly communicating cell 

lines.

Seven whole genome BPV-4-transformed lines were assayed for both GJIC levels and 

viral DNA status. All of these cell lines contained detectable viral DNA when screened 

with the three viral probes (i.e. whole genome BPV-4, E8 and E7 probes). This was 

found to be the case irrespective of whether cells had been treated with quercetin prior
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to transfection (QA conditions) or not (Tables 5.3 & 5.4). With only a single exception, 

viral DNA signal was weak suggestive of low copy number. This in itself was not 

unexpected as data from established cells (Smith & Campo, 1988; Chapter 3) and earlier 

preliminary studies on PalF cells (Jaggar et al., 1990) had reported that viral DNA is 

lost on continued passage. An example of DNA from whole genome BPV-4 PalF 

transfectants probed with the E8 and E7 DNA probes is given in Figures 5.2 A & B 

respectively. Based on the known restriction map of the BPV-4-containing plasmid 

transfected (pBV4; Chapter 2.1.7), BamH I digestion should release a band of 7.265 kb, 

while EcoR I digestion should release a band of 5.024 kb detectable with the BPV-4 E8 

probe. Similar sized bands should also be detected for episomal BPV-4 DNA control 

tracks. These expected banding patterns were observed in test and papilloma control 

tracks (Figure 5.2A). From similar probe/ pBV4 construct/ restriction enzyme 

considerations for the E7 probe screening, one would expect to detect a single BamH I 

band of 7.265 kb while EcoR I digestion should allow detection of three bands (5.024, 

1.833 and 0.233 kb). As derivation of this whole genome BPV-4 recombinant plasmid 

involved linearisation of the viral DNA prior to cloning (Campo & Coggins, 1982), the 

expected detectable band sizes for the E7 probe are slightly different from those seen on 

probing papilloma DNA. Benign papillomas contain episomal BPV-4 DNA. 

Hybridisation of digested papilloma DNA with the E7 probe would detect a single band 

of 7.265 kb for BamH I digests and three bands (5.024, 2.008 and 0.233 kb) for EcoR I 

digests. The signal seen in BamH I tracks of both cell line DNAs and control papilloma 

DNA tracks was as expected (Figure 5.2 B). Although the 5.024 kb band was detectable 

in the EcoR I digested cell line DNA tracks, the 1.833 kb and 0.233 kb bands were not. 

This was thought to be due to lack of sensitivity of detection, explained by the small 

amount of viral DNA present in these lines. E7 probing of EcoR I digested papilloma 

DNA revealed the predicted bands (Figure 5.2 B: track 20).
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Table 5.3 Comparison of gap junctional intercellular communication (GJIC) levels 
and BPV-4 DNA / RNA status in control (ethanol-treated) PalF cells 
transfected with whole or sub-genomic BPV-4 DNA fragments, with or 
without HPV-16 E6 DNA.

Viral genes 
(+ neo + ras) Clone

GJIC 
Mean ± S.D.a

DNA /RNA detection with BPV-4 probes 
BPV-4 E8 probe E7 probe 
DNA DNA RNA DNA RNA

BPV-4 Polyc. 4.7 ±2.3 + + - + -

BPV-4 2 1.7 ± 1.8 + + + + +
3 6.8 ±3.3 + + - + +
4 7.9 ±2.3 + + nd + nd
5 8.0 ±4.0 + + - + -

BPV-4 + 16E6b 1 0.8 ±1.1 + + _ +
2 3.7 ±1.6 + + - + +

E8/E7 (Zip)c 1 29.0 ± 5.8 - - - -

2 13.0 ±3.6 - - - -

E8/E7 (Zip) + 16E6 1 35.0 ±6.3 - - - -

E7 1 23.9 ±5.4 + +
3 11.6 ± 4.4 + +
4 31.3 ±7.5 nd nd

E7 + 16E6 2 18.3 ±9.7 _ _

3 15.5 ±6.5 + +
5 23.6.± 7.3 nd nd

control cell line

PalF (ethanol-treated) 18.4 ±7.3 - - - - -

+ = detected, - = not detected; nd = not determined 
a Mean number of fluorescent cells ± standard deviation 
b 16E6 = HPV-16 E6 
c refers to pZipE8E7 construct
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Table 5.4 Comparison of gap junctional intercellular communication (GJIC) levels 
and BPV-4 DNA / RNA status in PalF cells treated with 20 pM quercetin 
prior to transfection (protocol QA) with whole or sub-genomic BPV-4 DNA 
fragments, with or without HPV-16 E6 DNA.

DNA/RNA detection with BPV-4 probes
Viral genes GJIC BPV-4 E8 probe E7 probe
(+ neo + ras) Clone Meana ± S.D. DNA DNA RNA DNA RNA

BPV-4 Polyc.l 2.1 ±1.7 + + - + -

BPV-4 1 5.7 ±3.3 nd nd nd nd nd
2 3.9 ±3.0 + + - + -

BPV-4 + 16E6b 1 5.5 ±2.9 + + - + -

E8/E7 (Zip)c 1 33.7 ±9.8 - - - -

3 29.3 ± 8.5 - - - -

E8/E7 (Zip) + 16E6 1 31.1 ±7.8 - - - -

E8/E7 (SV)d 2 23.7 ±7.6 - - - -

E8/E7 (SV) + 16E6 1 30.5 ± 10.4 - - _ -

2 2.1 ±2.1 - - - -

E7 1 19.6 ±6.6 _ _

3 26.7 ± 8.6 + +
4 38.8 ±11.0 + +

E7 + 16E6 2 25.0 ±7.0 + +
4 22.6 ± 6.7 + +

control cell lines

PalF (ethanol-treated) 18.4 ±7.3 - - - - -

PalF (quercetin-treated) 19.9 ±7.4 - - - - -

+ = detected, - = not detected; nd = not determined 
a Mean number of fluorescent cells ± standard deviation 
b 16E6 = HPV-16 E6 
c refers to pZipE8E7 construct
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Figure 5.2 Southern blot analysis o f control (ethanol-treated) and quercetin-treated 
(protocol QA) PalF transfectants for the presence o f BPV-4 E8 and E7 
DNA.

Tracks 1-18 & 21 contain 5 pg DNA digested with BamH I (B) or 
EcoR I (E). Tracks 19-20 contain 200 ng bovine oesophageal papilloma 
DNA (which contains episomal BPV-4 DNA) digested with BamH I and 
EcoR I respectively + 5 pg BamH I digested carrier DNA (C l27 DNA). 
cl. = clone. Panel A: probed with BPV-4 E8 DNA. Panel B: probed 
with BPV-4 E7 DNA. (probes detailed in Chapter 2.1.7). The positions 
o f X Hind III digested DNA molecular weight markers are indicated in 
the left margin.
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Further evidence that lack of signal intensity was due to the small amount of viral DNA 

present in these transformed PalF lines was shown by results from probing digested 

DNA from a cell line derived from transfection of ethanol-treated PalF cells with whole 

genome BPV-4. This cell line, called BPV-4 clone 2, was shown to contain multiple 

copies of BPV-4 DNA, and hybridisation with the above BPV-4 DNA probes revealed 

the expected bands (Figure 5.3 A & B; tracks 9 and 10). In order to determine the 

approximate copy number and state of the viral sequences present in this clone a further 

agarose gel / Southern blot was undertaken, and the resulting membrane probed with 

whole genome BPV-4. Approximate copy number was assessed by comparing 

hybridisation signal of BPV-4 clone 2 DNA with that of known standards; namely 1,10 

and 100 genome equivalents of BamH I digested pBV-4 DNA. Each standard was 

loaded in 5 pg BamH I digested murine carrier DNA. The status of the viral DNA 

(whether episomal or integrated) was assessed by comparing BamH I and Kpn I digests 

of cell line DNA. Results showed that BPV-4 clone 2 contained approximately 100 

genome equivalents of viral DNA (Figure 5.4; tracks 3-5 vs 7 & 11). The Kpn I digest 

of this cell line (Figure 5.4; track 11) indicated that the majority (if not all) viral DNA 

present in this line had integrated into the cellular genome at multiple sites, a conclusion 

supported by the banding pattern seen in the BamH I digest track (Figure 5.4; track 7). 

Similar detailed assessment of viral DNA status or copy number was not carried out on 

the other transfected lines. Although these cell lines contained very little detectable 

viral DNA compared to BPV-4 clone 2 they exhibited a similar reduction in GJIC.

Results showed that on screening DNA samples from the nine E7-transfected cell lines 

(whether with or without quercetin treatment and / or an exogenous E6 gene) assayed 

for both GJIC levels and BPV-4 DNA status, seven retained E7 DNA (Tables 5.3 & 

5.4). All nine lines were shown to have undisrupted levels of intercellular 

communication (Tables 5.3 & 5.4). These results showed that although transfection of
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Figure 5.3 Southern blot analysis of control (ethanol-treated) and quercetin-treated 
(protocol QA) PalF transfectants for the presence of BPV-4 E8 and E7 
DNA.

Tracks 1-18 & 21 contain 5 pg DNA digested with BamH I (B) or 
EcoR I (E). Tracks 19-20 contain 200 ng bovine oesophageal papilloma 
DNA (which contains episomal BPV-4 DNA) digested with BamH I and 
EcoR I respectively + 5 pg BamH I digested carrier DNA (C l27 DNA). 
cl. = clone; polycl. = polyclonal. Panel A: probed with BPV-4 E8 DNA. 
Panel B: probed with BPV-4 E7 DNA. (probes detailed in Chapter
2.1.7). The positions of A, Hind III digested DNA molecular weight 
markers are indicated in the left margin.
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Figure 5.4 Determination o f BPV-4 DNA status and approximate copy number in 
the transformed PalF cell line BPV-4 clone 2.

Tracks 3-5 contain standard BPV-4 genome equivalents (g.e.) digested 
with BamH I + 5 pg BamH I digested carrier DNA (C l27 DNA). Tracks 
6-7 & 10-11 contain 5 pg digested DNA as indicated. Tracks 8-9 contain 
20 ng bovine oesophageal papilloma DNA (which contains episomal 
BPV-4 DNA) digested with BamH I and Kpn I respectively + 5 pg 
BamH I digested carrier DNA (C l27 DNA). Track 12 contains 10 
BPV-4 g.e. digested with Kpn I + 5 pg BamH I digested carrier DNA 
(C l27 DNA). The positions o f A, Hind III digested DNA molecular 
weight markers (Track 1) are indicated in the left margin. (Track 2 
contains no DNA).
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the E7 ORF was required for morphological transformation of PalF cells (Tables 4.4 &

4.7), presence of the E7 ORF had no significant effect on the level of GJIC.

Viral DNA could not be detected in any of the nine GJIC assayed cell lines derived from 

transfection of PalF cells with E8/E7-containing plasmids. This was regardless of 

whether these viral genes were under the control of their own promoter (BPV-4 LCR, 

construct pSVE8E7; see Chapter 2.1.7) or a heterologous promoter (MoLV LTR, 

construct pZipE8E7; see Chapter 2.1.7) or whether they had been treated with quercetin 

or not (Tables 5.3 & 5.4). This suggested that either transfection of viral DNA into 

these cells had been unsuccessful or that there was active selection against the 

E8/E7-containing constructs. The first hypothesis can be ruled out as such cells would 

not have been morphologically transformed and would have died during the 3 week 

selection period. With regard to the second hypothesis, previous work has reported that 

BPV-4 DNA was not detected in four PalF lines transformed by E8/E7 plasmids (Jaggar 

et al., 1990). Similar examination of three E8/E7-transfected PalF clones showed that 

only one line retained viral DNA (Pennie, 1992). Thus, considered with the above data, 

PalF cells transfected with E8/E7-containing constructs are less likely to maintain viral 

DNA (or lose it more rapidly) than other classes of transfectants. As seven out of nine 

clones transfected with the BPV-4 E7 ORF retained E7 DNA it is tempting to propose 

that there may be active selection against E8. As such active selection is not apparent in 

whole genome BPV-4 transfectants (all assayed clones retaining E8 sequences) the 

relatively rapid loss of these sequences in E8/E7 transfectants may be due to regulation / 

expression differences of viral genes between these two transfection classes. Given the 

absence of E8 DNA in all E8/E7 lines tested, the normal levels of intercellular 

communication observed in these cells is no longer at variance with the hypothesis that 

a possible function of BPV-4 E8 protein in cellular transformation is the disruption of 

GJIC by virtue of its binding to the 16 kD ductin protein.
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BPV-4 expression studies showed detectable levels of E7 RNA in three out of nine 

whole genome BPV-4-transformed lines and seven out of nine E7-transformed lines. 

These included both ethanol-treated and quercetin-treated (QA) transfectants 

(Tables 5.3 & 5.4). An example of results from hybridisation of membranes with the E7 

probe is shown in Figure 5.5. This membrane predominantly contains total RNAs from 

E7-transformed PalF cells. The demonstrated expression of E7 RNA in seven out of 

nine E7-transformed lines, coupled with the observed normal GJIC levels, excludes a 

role for E7 in disruption of intercellular communication. Although E8 DNA was 

detected in all of the whole-genome BPV-4-transformed lines, E8 RNA was only 

detected in one line (BPV-4 clone 2; Table 5.3; Figure 5.6). This was the clone 

previously found to contain multiple copies of BPV-4 DNA (approximately 100 genome 

equivalents). The relatively weak signal evident for this sample suggests a lack of 

detection sensitivity for the E8 expression assay. Further evidence for this has been 

provided by the fact that E8 protein has since been detected in one of the whole genome 

BPV-4-transformed lines which showed no detectable E8 RNA (BPV-4 clone 5; 

R. Anderson, personal communication). No definitive conclusions, therefore, can be 

drawn from a comparison of overall E8 expression results and GJIC status of the various 

cell lines examined. However, both lines showing positive evidence of E8 RNA 

expression, either directly or indirectly (BPV-4 clonal lines 2 & 5, respectively), also 

show reduced GJIC levels. This is in agreement with the proposed hypothesis that E8 

protein binds to ductin resulting in reduced cell-cell communication.

That GJIC is disrupted in BPV-4-transformed lines which are shown to retain the E8 

gene supports the hypothesis that like the BPV-1 E5 protein, the BPV-4 E8 protein 

(which shares homology with this oncoprotein) binds to ductin disrupting normal levels 

of GJIC. Binding of the BPV-4 E8 protein to ductin has recently been demonstrated 

using an in vitro (cell-free) translation system ( A. Faccini, personal communication). A 

direct cellular demonstration of E8 protein / ductin binding in a 'clean' background
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Figure 5.5 RNA dot blot analysis o f control (ethanol-treated) and quercetin-treated 
(protocol QA) PalF transfectants: status o f BPV-4 E7 expression.

20 |ig total RNA were loaded per well. Samples from each line were loaded in 
duplicate in adjacent wells unless otherwise indicated. Controls included 
RNAs from ethanol-treated PalF cells, quercetin-treated PalF cells, HL-60 cells 
(positive control for the myc probe - see Chapter 4.4.3.2) and 200 ng bovine 
oesophageal papilloma DNA, which contains episomal BPV-4 DNA (positive 
control for viral probing) cl. = clone. The RNA dot blot was probed with 
BPV-4 E7 DNA. (probe detailed in Chapter 2.1.7).
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Figure 5.6 RNA dot blot analysis o f control (ethanol-treated) and quercetin-treated 
(protocol QA) PalF transfectants: status o f BPV-4 E8 expression.

20 pg total RNA were loaded per well. Samples from each line were loaded in 
duplicate in adjacent wells. Controls included RNAs from ethanol-treated PalF 
cells, quercetin-treated PalF cells, HL-60 cells (positive control for the myc 
probe - see Chapter 4.4.3.2) and 200 ng bovine oesophageal papilloma DNA, 
which contains episomal BPV-4 DNA (positive control for viral probing) 
cl. = clone; polycl. = polyclonal. The RNA dot blot was probed with BPV-4 
E8 DNA. (probe detailed in Chapter 2.1.7).
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i.e. in the absence of other viral products would be the ultimate test of the above 

hypothesis. However, this is not as yet possible due to the observed lethality on 

transfecting PalF cells with the E8 gene alone + ras (Jaggar et al., 1990; Pennie et al., 

1993). As proposed in the previous chapter, a possible way of overcoming this could be 

the cloning of this viral gene into an inducible mammalian gene expression system. 

Although transformation is often associated with loss of GJIC (Mesnil & Yamasaki, 

1993) and the BPV-4 E7 ORE encodes the major transforming protein of this virus (as 

measured by morphological transformation of PalF cells), loss of coupling cannot be 

ascribed to this oncoprotein as lines shown to contain and express the E7 gene display 

normal levels of GJIC.

The loss of GJIC through the binding of E8 protein to ductin is supported in a recent 

paper by Oelze et al. (1995). In this paper they describe how transfection of a 

keratinocyte line (HaCat cells) with a recombinant HPV-16 E5 gene also results in 

reduced GJIC. HPV-16 E5 protein localises to the cellular membrane and has also been 

shown to associate with ductin. As BPV-1 E5 (Goldstein et al., 1991), HTLV-1 p l2 ! 

(Franchini et al., 1993) and the E5 protein of both HPV-6 and -16 (Conrad et al., 1993) 

can also bind to ductin this suggests that ductin is a common cellular target for these 

viral proteins. Disruption of normal cell-cell communication may be an early though 

essential part of the transformation biology of these viruses, including BPV-4. Such 

deregulation of GJIC may well 'protect' virally-infected cells by isolating them from the 

tumour suppressive effects of surrounding normal cells creating a permissive cellular 

environment for expression of the viral oncogenic proteins. Once expression of the 

major transforming viral oncogenes has occurred, and a population of transformed cells 

established, there may well be no further selective pressure to directly inhibit GJIC, 

although disrupted intercellular communication may occur at later stages due to 

virally-independent mechanisms of transformation. Reduced cell-cell communication
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Chapter 6

DISCUSSION

6.1 Introduction

Bovine papillomavirus type 4 induces papillomas of the mucosa of the upper alimentary 

canal of cattle. In immunocompetent animals these benign lesions regress 

approximately one year post infection (Jarrett, 1985). However in cattle feeding on 

bracken fern, and consequently exposed to the mutagens, carcinogens and 

immunosuppressants present in the plant, some of these papillomas can progress to 

carcinomas. The critical roles played by both virus and fern in the aetiology of these 

squamous cell carcinomas are a good example of the multifactorial nature of 

carcinogenesis. Furthermore, BPV-4 lends itself to both in vitro and in vivo 

experimentation.

The work described in this thesis involved examination of the transformation biology of 

BPV-4 in both primary and, to a lesser extent, in established cells. Synergism between 

the virus and quercetin, a chemical found in bracken fern and proposed to act as a 

co-factor in BPV-4-associated carcinogenesis, was examined in PalF cells which are 

primary palate fibroblasts derived from the natural host species. Results confirmed 

previous preliminary work carried out in this laboratory describing viral / chemical 

synergism and extended these findings by showing that quercetin also synergised with 

sub-genomic BPV-4 fragments. In general, exposure to quercetin and transfection with 

BPV-4 genes increased the degree of cellular transformation of transfected cells, in 

some cases resulting in induction of tumours in nude mice. The phenotypic 

consequence of viral / chemical synergism was also found to be affected by the order of, 

and time interval between, treatment of cells with quercetin and transfection with viral
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genes. Results from these in vitro studies suggested that this experimental system 

provides a useful and important model for analysis of viral / chemical co-operation in 

papillomavirus-associated carcinogenesis.

6.2 Cell transformation by BPV-4 genes in vitro

Morphological transformation of PalF cells by whole genome BPV-4 or sub-genomic 

fragments was found to be dependent on co-transfection with an activated ras gene. 

This is not unique to BPV-4 as similar conditions are required for transformation of 

primary rodent cells by other papillomaviruses, including the oncogenic HP Vs 16 and 18 

(Matlashewski et al., 1987; Storey et al., 1988). Throughout the text it is assumed, 

unless otherwise stated, that all viral DNA transfection classes included co-transfection 

with an activated ras gene and a selectable gene for neomycin resistance. PalF cells 

transfected with BPV-4 genes were only partially transformed as although they had an 

extended lifespan they were not immortal, and although capable of 

anchorage-independent growth they were not tumourigenic in nude mice. This 

indicated that additional factors were required for full transformation, thus mimicking 

the natural history of upper alimentary canal carcinomas in cattle.

6.2.1 E7 is the major transforming gene of BPV-4

The transforming functions of BPV-4 mapped to the E7 and E8 ORFs (Figure 1.1). The 

E7 ORF was identified as the major morphological transforming gene of BPV-4 in vitro 

as, in the absence of other viral genes, it induced morphological transformation. 

Furthermore, disruption of this ORF abolishes morphological transformation in both 

primary and established cells (Smith & Campo, 1988; Jaggar et al., 1990). The BPV-4 

E7 protein shows amino acid similarity with the HPV-16 E7 protein. Although lacking 

the casein kinase II (CKII) phosphorylation sites found in HPV-16 E7 (Barbosa et al., 

1990), BPV-4 E7 protein contains both putative binding domains for zinc and the 

cellular tumour suppressor protein pl05Rb (Jaggar et al., 1990). These domains are
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important for the transforming capabilities of HPV-16 E7 (Edmonds & Vousden, 1989; 

Chesters et al., 1990); the zinc fingers are essential for the transactivation activity of the 

E7 protein (Phelps et al., 1988) and binding of E7 to pl05Rb effectively prevents 

interaction of this cellular tumour suppressor protein with its normal targets 

(Defeo-Jones et al., 1991; Rustgi et al., 1991). The CKII sites of HPV-16 E7 also 

contribute to the transformation activity of this protein, although they are less critical 

than the pl05Rb and zinc-binding domains (Barbosa et al., 1990).

Although BPV-4 E7 protein binding studies have yet to be done, this viral oncogene 

product may well have similar functions to the HPV-16 E7 protein. This is indicated in 

that, as for HPV-16 (Defeo-Jones et al., 1991; Rustgi et al., 1991), mutations in either of 

the two cys-x-x-cys motifs or the pl05Rb binding domain of the BPV-4 E7 protein 

abolish cell transformation (Jaggar et al., 1990; G.J. Grindlay, personal commun

ication). It could be envisaged that BPV-4 E7-mediated disruption of the normal 

functions of pl05Rb, and the resulting deregulation of cellular proliferative control, 

would provide optimal conditions for the action of other BPV-4 genes by providing an 

expanded and more receptive cellular pool. Rb-binding may be a feature common to the 

oncogenic papillomaviruses as exemplified by the E7 proteins of HP Vs 16 and 18. 

However, further qualification of this statement may be required in that the oncogenic 

potential of a specific viral type may be influenced not only by the presence of a 

particular virally-encoded product, but also by the biochemical properties displayed by 

the protein. For example, although the E7 proteins of HP Vs 6, 16 and 18 all bind to 

pl05Rb, HPV-6 E7 was found to bind this protein less efficiently than the E7 proteins 

of HP Vs 16 or 18 (Barbosa et al., 1990). This may correlate directly with the relative 

oncogenic potential of these viruses. Whereas HP Vs 16 and 18 are associated with 

malignant cervical tumours (zur Hausen & Schneider, 1987), HPV-6 is associated 

predominantly with benign genital warts and is only rarely found in cervical cancers 

(zur Hausen, 1989b). The biological significance of the BPV-4 E7 protein is also
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indicated in vivo as examination of papillomas revealed that E7 is expressed in all 

epithelial layers and in all stages of tumour development (Campo et al., 1994c).

6.2.2 The BPV-4 E8 gene confers anchorage independence

E8 is the second transforming gene of BPV-4. Although BPV-4 E8 had no independent 

transforming potential in this experimental system, co-transfection with an E7 gene 

conferred anchorage independence on transfected cells (Figure 4.4; Table 4.3). 

Manifestation of this phenotype is dependent on transfection of cells with E8 DNA: 

cells transfected with whole genome BPV-4, or a sub-genomic fragment containing the 

E8/E7 ORFs, were capable of anchorage-independent growth whereas cells transfected 

with E7 alone were not. However E8's contribution to transformation can not be 

assessed in isolation as transfection of PalF cells with BPV-4 E8 DNA in the absence of 

other viral genes is lethal to cells (Jaggar et al., 1990; Pennie et al., 1993).

As papillomavirus gene expression is regulated by both virally-encoded and cellular 

transcription factors (e.g. Vande Pol & Howley, 1990) it could be proposed that the 

detrimental effect of transfection of PalF cells with the BPV-4 E8 gene alone is due to 

the absence of such regulatory control. The papillomavirus E2 ORE encodes a 

full-length protein which can act as a transactivator (Spalholz et al., 1985) and also 

truncated proteins, lacking the N-terminal transactivation domain, which repress 

transcription (Cripe et al., 1987). However, under some circumstances the full-length 

transactivator form of E2 can repress transcription (Thierry & Yaniv, 1987). A 

truncated form of the E2 protein has not been demonstrated for BPV-4 (Jackson & 

Campo, 1995), although minor transcripts which have the potential to encode shorter 

form E2 proteins have been detected in BPV-4-induced papillomas (Stamps & Campo, 

1988). The BPV-4 LCR has been shown to contain positive and negative E2-dependent 

and E2-independent transcriptional control elements (Jackson & Campo, 1991; 1995). 

Absence of E2-mediated regulatory control may result in inappropriate levels of E8
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expression, which in turn may result in cell death. Current determination of E8 function 

is restricted by the observed lethality on transfection of this gene, however if the level of 

E8 expression does dictate whether transfected cells survive or not, it may be possible to 

circumvent this experimental limitation by use of an inducible mammalian gene 

expression system. Until there is a suitable assay system in operation it is not known 

whether anchorage independence is determined solely by the E8 product or results from 

combined action of the E8 and E7 (and possibly other) viral proteins.

In contrast to the behaviour of PalF cells, the non-transformed murine fibroblast line 

AM9, which contains integrated BPV-1 sequences, is able to survive transfection with 

the BPV-4 E8 gene alone. Transfection of these cells with BPV-4 E8 DNA may cause 

increased expression of resident BPV-1 sequences, resulting in BPV-1-mediated 

transformation and subsequent tolerance of the otherwise toxic effect of BPV-4 E8 

expression. Conversely, survival of E8-transfected AM9 cells may well be independent 

of any BPV-1 effect, and may be due to inherent differences between established and 

primary cells. For instance, unlike primary cells, transformation of established cells 

with BPV-4 genes does not require co-transfection with an activated ras gene. Current 

studies in the laboratory are examining whether other established cells, namely the 

murine fibroblast line NIH3T3, which does not contain BPV-1 DNA, can sustain 

transfection with an E8 gene. Initial results suggest that this is the case and future work 

proposes transfection of NIH3T3 cells with mutated forms of the E8 gene (V. O'Brien, 

personal communication). This should allow identification and detailed investigation of 

E8-encoded functions.

6.3 Progressive loss of BPV-4 DNA does not correlate with overt mutation or 

rearrangement of viral ORFs

Although similarly associated with a naturally occurring epithelial cancer and 

provisionally proposed to share some protein functions in common with the high risk
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HPVs (e.g. binding of the E7 protein to the pl05Rb tumour suppressor protein), BPV-4 

DNA is not retained during tumour progression in vivo (Campo et al., 1985). Similar 

results have been observed both in controlled in vivo experiments in nude mice 

(Gaukroger et al., 1991) and in established (Smith & Campo, 1988) and primary 

transfected cells (Pennie, 1992). Results from the nude mice experiments, in which 

virus-producing papillomas were induced by implanting BPV-4-infected foetal palatine 

tissue beneath the renal capsule of nude mice, described the spontaneous malignant 

progression of one of 57 virally-induced papillomas. BPV-4 DNA was detected in the 

papilloma fronds but not in the carcinoma or the metastatic deposits found in the spleen 

(Gaukroger et al., 1991).

More recent work used this nude mouse xenograft implant system to investigate the 

interaction of chemical co-carcinogens with BPV-4 in cell transformation (Gaukroger et 

al., 1993). Virus-infected tissue was implanted into mice exposed to the tumour 

promoter TPA or the tumour initiator DMBA, and the growth and neoplastic 

progression of BPV-4-induced papillomas was monitored. Results showed that BPV-4 

synergised with both TPA and DMBA, greatly enhancing both the production of 

papillomas and the frequency of malignant progression. Consistent with previous 

observations (Gaukroger et al., 1991), BPV-4 DNA was not found in the carcinomas. 

These results confirmed the synergism between viral and chemical carcinogens, 

demonstrated that BPV-4 could interact with both a promoter and an initiator and 

showed that loss of viral DNA was observed in controlled experiments.

Results from in vitro transfection studies were similar to the in vivo findings. Analysis 

of established mouse fibroblasts transfected with whole genome BPV-4 revealed that 

although cells were transformed only nine out of 60 cell lines examined contained 

BPV-4 DNA (Smith & Campo, 1988). Comparison of cell line DNAs from early versus 

late passages showed that BPV-4 DNA was progressively lost on continued passage.
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Although several of the transformed lines were found to be tumourigenic in nude mice, 

the majority did not contain detectable viral DNA, indicating that maintenance of 

BPV-4 DNA is not required for development of the fully transformed phenotype. In the 

few lines found to contain BPV-4 DNA, the viral sequences appeared to have integrated 

into the host cellular genome and were transcriptionally silent. These observations led 

to the proposal that presence of these BPV-4 sequences had no bearing on maintenance 

of the transformed state (Smith & Campo, 1988). Similarly, although transformation of 

PalF cells was dependent on transfection of cells with BPV-4 genes (plus an activated 

ras gene) not all cells retained viral DNA (Pennie, 1992).

The frequency with which BPV-4 DNA is lost both in vivo and in vitro, suggested not 

only that viral functions do not appear necessary for tumour progression but also that 

active selection against whole or part of the BPV-4 genome may occur. In vivo, the 

BPV-4 DNA found in benign papillomas is always present in the episomal state. It 

could be argued that the absence of viral DNA in frank cancers is due to 

non-segregation of BPV-4 DNA during successive cell divisions. However if this were 

so, one might expect BPV-4 DNA to be found fortuitously in carcinomas more 

frequently than studies indicate (Campo et al., 1985). Selection against BPV-4- 

containing cells could also result from an immune response, in that cells retaining viral 

DNA might induce an immune response and be removed, whereas cells with no viral 

DNA would survive. Further evidence supporting the proposal that viral DNA may be 

lost as a result of negative selection is provided by data from in vitro studies. Analysis 

of lines derived from transfection of established mouse fibroblasts with BPV-4 genes 

showed that, when detected, the BPV-4 DNA had integrated into the cellular genome 

(Smith & Campo, 1988). Most of these lines lost viral DNA on continuous passage, 

however one line, C4Ta2a, stably maintained its viral DNA content. This line was 

found to contain a deleted form of the BPV-4 genome. If there is active selection 

against the BPV-4, lack of particular viral sequences in C4Ta2a may render this line
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immune from such selection. Due to the observed detrimental effect on transfecting 

primary cells with BPV-4 E8 DNA, it was hypothesised that this viral ORF was a target 

for negative selection.

The BPV-4-transfected established cells in which loss of BPV-4 DNA had previously 

been described were derived from non-transformed parental cells subsequently found to 

contain transcriptionally silent, integrated BPV-1 sequences (Smith et al., 1993). The 

origin of the BPV-1 sequences present in these cells is unknown. Characterisation of 

this line, termed C127sc, revealed that subsequent to transfection with BPV-4 genes, 

amplification of the integrated BPV-1 DNA and flanking cellular sequences had 

occurred (Smith & Campo, 1988; 1989). This phenomenon is discussed in Chapter 6.4. 

Loss of BPV-4 DNA from virally-transformed lines through the action of 

BPV-1-mediated effects could therefore not be discounted. This possibility was 

examined in this current study by using ID 14 cells as the parental line. This line 

contains episomal, actively expressing BPV-1 DNA. Southern blots of DNAs from 

BPV-4-transfected ID 14 cells were screened with a whole genome BPV-4 DNA probe 

to examine cells for the presence of BPV-4 sequences. Results showed that although 

BPV-4 DNA was found to be initially present in the transfectants, and appeared to have 

integrated into the cellular genome, it was lost on continued passage (Figure 3.6). These 

results were similar to those from the C127sc study. Furthermore they indicated that the 

level of BPV-1 expression did not influence the maintenance of BPV-4 DNA.

DNAs from ID 14 transfectants were also screened with a panel of sub-genomic BPV-4 

DNA probes to assess the presence and integrity of individual BPV-4 ORFs. Results 

from the viral mapping showed that there were no obvious rearrangements within the 

LCR and most of the viral ORFs screened, including the E8 ORF. Therefore, if E8 

functions are selected against, as first hypothesised, this does not occur through major 

deletions or major rearrangements within the E8 ORF. Similarly, the proposed negative
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selection against maintenance of viral genes does not act through major rearrangements 

of the LCR or the E7, LI, or L2 ORFs . Major rearrangements were detected over a 

661 bp region between the 3’ end of the El ORF and the 5’ end of the E2 ORF 

(Figure 3.8). However, as all recombinant plasmids had been linearised within the El 

ORF (i.e. within this rearranged region), this suggested that BPV-4 DNA had integrated 

into the cellular genome via this site. As a result of this experimental manipulation the 

possible role this viral region might play in selection could not be assessed.

Although no major rearrangements could be detected within the BPV-4 sequences 

present in these lines, apart from the El ORF, it should be noted that the mapping 

technique used was relatively insensitive. Therefore it is possible that small deletions, 

and / or point mutations would remain undetected. Such DNA lesions might be of 

consequence as to whether BPV-4 DNA was lost or retained. Likewise, small 

inversions or duplications may also be of biological significance, affecting the 

maintenance or otherwise of BPV-4 sequences. Unless such lesions affect the sequence 

recognition sites of the particular restriction enzymes used in the mapping analysis, they 

would also remain undetected.

It was hoped that analysis of the cell line C4Ta2a might indicate possible viral targets 

for negative selection. This cell line is unusual in that, unlike other BPV-4-transfected 

lines, it stably maintains viral sequences. Comparison of BPV-4-specific hybridisation 

banding patterns to those of episomal BPV-4 DNA controls, showed that this line 

contained rearranged viral sequences which had integrated into the cellular genome. 

Although transfected with BamH I linearised whole genome BPV-4, this line appeared 

to contain a deleted form of the viral genome (Figures 3.6 & 3.9). This confirmed 

findings of Smith & Campo (1988). In common with the BPV-4-transfected ID14 cells, 

most of the viral ORFs, including E8, appeared wildtype, while disruption of the El 

ORF suggested that viral DNA had integrated into the cellular genome via the BamH I
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site found in this ORF. As found for the ID 14 transfectants, the rearranged region in 

C4Ta2a was mapped to a 661 bp region between the 3' end of the El ORF and the 5' end 

of the E2 ORF. This suggested that the deletion of viral sequences in this line had 

occurred within this region. Fine mapping and / or sequencing of this disrupted region 

may prove of great interest. If there is active selection against BPV-4, lack of particular 

viral sequences in C4Ta2a may render this line immune from such selection. It must 

also be considered that site of integration within the cellular genome may also influence 

whether BPV-4 is maintained. Analysis of the C4Ta2a line showed that the BPV-4 

DNA in these cells had integrated within a cellular region containing integrated BPV-1 

DNA flanked by sequences homologous to autonomously replicating sequences (ARS) 

(Smith et al, 1993). ARS sequences have been implicated in DNA replication (e.g. 

Struhl et al., 1979). Therefore, one cannot rule out the possibility that either or both 

types of sequence affected maintenance of BPV-4 DNA.

Although the analysis of virally-transformed mouse fibroblasts did not reveal selection 

against the E8 ORF, circumstantial evidence that this may happen was provided by 

analysis of PalF transfectants. Detailed viral mapping of these cell lines was not 

undertaken, however screening of their DNAs with BPV-4 DNA probes revealed that 

although the majority of lines derived from transfection with either whole genome 

BPV-4 or the E7 gene alone contained viral DNA at time of assay (Figure 5.2), viral 

sequences were not detected in E8/E7-transfected lines. Viral DNA was lost regardless 

of whether the E8/E7 genes were under the control of the BPV-4 LCR or the strong 

heterologous Moloney murine leukaemia virus long terminal repeat (MoLV LTR). As 

the whole genome BPV-4 transfectants contained E8 sequences, the loss of these 

sequences in E8/E7 transfectants may be due to differences in levels of viral expression 

and the control of such expression between these two transfection classes. Previous 

work has also reported that viral DNA was either absent (Jaggar et al., 1990) or detected
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only occasionally in PalF cells transfected with E8/E7-containing constructs (Pennie,

1992).

All the above DNAs were examined by Southern blotting. Analysis of these DNAs 

using the more sensitive polymerase chain reaction (PCR) technique with ORF-specific 

primers would allow examination as to whether E8/E7 sequences are indeed absent or 

present at very low levels. Even if such sequences were detected this would still 

indicate significant differences between class of transfection and amount of viral DNA 

present. These results also suggest that the presence of BPV-4 DNA in every cell is not 

required for the maintenance of the transformed state.

It should also be considered that cellular factors present in fibroblasts may not be 

optimal for the activity of BPV-4 genes and this may be of some consequence with 

regard to the maintenance of viral DNA. Repetition of these experiments in primary 

bovine keratinocytes, the natural target cell for BPV-4 infection, would allow 

examination as to whether the behaviour of BPV-4 differed between these two cell 

types. The importance of tissue-specific factors is implicated not only by the strict 

tissue-type specificity of infection observed for the epitheliotropic papillomaviruses in 

vivo, but also by molecular analysis of these viral genomes. Bernard et al. (1989) 

reported that although the promoter activity of the HPV-18 long control region (LCR) 

was observed in keratinocytes, similar activity was not detected in fibroblasts 

suggesting that this viral function was tissue specific.

6.4 BPV-4-mediated amplification

Amplification of cellular genes is a common event during malignant progression 

(Stark & Wahl, 1984; Alitalo et al., 1986). Gene amplification can occur after treatment 

with chemical or physical carcinogens or viruses (Kleinberger et al., 1986). For 

example, an analysis of cervical tumours containing integrated HPV-16 DNA has
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reported amplification of both viral and cellular sequences (Wagatsuma et al., 1990). 

Previous work revealed amplification and rearrangement of specific host sequences in 

BPV-4-transformed lines (Smith & Campo, 1988; 1989) and it was therefore proposed 

that induction of cellular DNA amplification may be an important aspect of BPV-4 

transformation activity. Further characterisation of these lines unexpectedly revealed 

that the amplified ’cellular' locus consisted of 5.2 kb of the BPV-1 genome integrated 

into a cellular region of ARS-like sequences (Smith et al., 1993). ARS elements were 

first described in yeast and have been identified as putative chromosomal origins of 

DNA replication (Struhl et al., 1979; Stinchcomb et al., 1979; Chan & Tye, 1980). 

Similar DNA sequences found in other eukaryotes were also assayed in yeast and it has 

been proposed that they may also be involved in DNA replication (Struhl et al., 1979; 

Botchan & Dayton, 1982; Roth et al., 1983; Montiel et al., 1984). Although 

manifestation of this amplification was dependent on transfection of the C127sc parental 

cells with BPV-4 genes, the possibility that this phenotype resulted from interaction 

(whether direct or indirect) between BPV-4 and BPV-1, BPV-4 and the ARS-like 

sequences or BPV-4 and a cellular intermediate had to be considered. Examination of 

possible interaction between BPV-4 and BPV-1 was undertaken in this thesis using 

another non-transformed parental line (AM9) known to contain integrated BPV-1 

sequences. Transfection of this line with various BPV-4 genes induced morphological 

transformation although none of the resulting transfectants retained BPV-4 DNA. 

Comparison of the BPV-1 sequences present in AM9 and C127sc cells showed that both 

lines contained intact origins of replication but that AM9 cells contained a disrupted 

BPV-1 El ORF. The observation that resident BPV-1 sequences were amplified in 

BPV-4-transfected C127sc cells but not in the AM9 transfectants led to the proposal that 

the transformed phenotype may have resulted from BPV-4 transactivation of a BPV-1 

protein required for DNA replication. The BPV-1 El protein is involved in viral 

replication and would thus be a suitable candidate (Lusky & Botchan, 1986).
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BPV-4-mediated amplification has also been observed in SV40-transformed cells 

indicating that the above results were not unique. The SV40 DNA in these cells was 

integrated into a cellular region of repetitive sequences and both SV40 DNA and these 

flanking sequences were amplified subsequent to transfection with BPV-4 genes 

(M.S. Campo & K. Smith, unpublished data). As already proposed for the maintenance 

or loss of integrated BPV-4 sequences in vitro, the site of viral integration within the 

cellular genome may also play a role in BPV-4-induced amplification. ARS-like 

sequences were part of the amplified region found in BPV-4-transfected C127sc cells 

(Smith et al., 1993). Viral integration into ARS-like sequences and subsequent 

amplification of the viral and flanking cellular sequences has also been described in 

BPV-1-transformed primary mouse fibroblasts (Agrawal et al., 1992). It is therefore 

possible that these cellular sequences could play a part in amplification (and 

establishment of the transformed state) by serving as origins of DNA amplification 

(Zastrow et al., 1989). Although amplification of ARS-like sequences was not observed 

in any of the AM9 transfectants, a role for ARS sequences cannot be ruled out as the 

cellular site of integration in these cells was not known and may not even involve 

ARS-like sequences.

It has been suggested that integration of human papillomavirus DNA into the cellular 

genome may be an important and causative event in the progression of virus infection 

into malignant transformation (Durst et al., 1985; Wagatsuma et al., 1990). Integration 

of viral DNA close to, and interaction with, cellular origins of DNA replication may 

affect transcription of both cellular and viral sequences. Although one could imagine 

this having phenotypic significance in the development of cervical lesions in humans it 

is more difficult to propose a similar mechanism of cellular transformation in BPV-4- 

induced lesions as BPV-4 DNA is episomal in benign papillomas and is rarely found in 

malignant tumours (Campo et al., 1985).
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6.5 E8 disrupts intercellular communication

The 42 amino acid protein product encoded by the BPV-4 E8 ORF is similar in length, 

hydrophobicity and putative secondary structure to the BPV-1 E5 protein (Jackson 

et al., 1991). As reported for BPV-1 E5 (Burkhardt et a l, 1989), BPV-4 E8 protein was 

found to localise to membrane compartments (Pennie et al., 1993). Due to the 

similarities between the BPV-1 E5 and BPV- 4 E8 proteins, it was proposed that these 

two oncoproteins may share some common function(s).

BPV-1 E5 oncoprotein has been shown to bind to ductin, a 16 kD cellular protein 

component of both vacuolar H+-ATPase and gap junctions (Mandel et al., 1988; 

Finbow et al., 1992). Gap junctions are intercellular channels and provide cell-cell 

communication between neighbouring cells. These junctions are permeable to small 

molecules, such as nucleotides, oligosaccharides and second messengers, and this is 

thought to be important in the homeostatic control of groups of cells in a tissue or organ 

(Yamasaki, 1990). The vacuolar H+-ATPase is a transmembrane proton pump and is 

responsible for the acidification of organelles such as endosomes, lysosomes, synaptic 

vesicles and Golgi bodies (Nelson, 1992). These proton pumps play a central role in 

down-regulation of activated growth factor receptors as they generate an acidic 

endosomal pH required for dissociation of ligand-receptor complexes as well as 

targeting these complexes for lysosomal degradation (Brown et al., 1983).

Binding of the BPV-1 E5 protein to ductin appears to be necessary for the transforming 

activity of this viral polypeptide (Goldstein et al., 1992). Other viral oncoproteins such 

as HPV-6 E5, HPV-16 E5 (Conrad et al., 1993) and HTLV-1 pl2* (Franchini et al.,

1993) also bind to ductin. This suggests that ductin is a common cellular target for 

these virally-encoded polypeptides and that abrogation of normal ductin function may 

be involved in induction of cellular transformation.
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BPV-1 E5-transformed cells show constitutive activation of receptors for epidermal 

growth factor (EGF) and platelet derived growth factor (PDGF) (Martin et al., 1989; 

Petti et al., 1991). It has been proposed that the biological activity of the BPV-1 E5 

protein may depend on interaction of this viral protein with ductin, resulting in 

disruption of normal proton pump function (Goldstein et al., 1991). This may result in 

prolonged growth factor / receptor interaction and recycling of receptors to the cell 

surface, thus explaining the observed activation of cell surface receptors in BPV-1 

E5-transformed cells. Increased recycling of growth factor receptors has also been 

observed in cells transformed by HPV-16 E5 (Straight et al., 1993) and it has recently 

been reported that cells expressing HPV-16 E5 exhibit inhibition of endosomal 

acidification (Straight et al., 1995). Activation of growth factor receptors may also be 

an important aspect of the transformation activity of BPV-4 as increased numbers of 

EGF receptors are observed in alimentary canal cancer cells (Smith et al., 1987). 

However the biological activity of BPV-1 E5 protein may also depend on disruption of 

intercellular communication through binding to the ductin component of gap junctions. 

Gap junctional intercellular communication (GJIC) has been reported to be involved in 

cellular differentiation and growth control (Loewenstein, 1979). As such processes are 

disrupted in cancer, disruption of intercellular communication may be a common and 

critical step in establishing the transformed state. Alteration of GJIC is a common 

feature of many cancer cells (Loewenstein, 1979) and disruption of intercellular 

communication may also contribute to the early stages of metastasis (Hamada et al., 

1988). Further supportive evidence for the involvement of GJIC in carcinogenesis is the 

finding that many tumour promoters can disrupt normal levels of GJIC both in vitro 

(Yamasaki, 1990; Fitzgerald & Yamasaki, 1990) and in vivo (Sugie et al., 1987; Mesnil 

et al., 1988).

In light of the reported binding of BPV-1 E5 protein to ductin, levels of GJIC were 

measured in BPV-1-transformed primary bovine conjunctival fibroblasts
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(Pennie, 1992). Results showed that BPV-1-transformed cells showed disrupted gap 

junctional communication as compared to untransfected controls. Although this did not 

provide direct proof that disruption of intercellular communication was due to ductin / 

BPV-1 E5 protein interaction it suggested that reduced GJIC was a consequence of viral 

transformation. Further indirect evidence from analysis of two human cervical cell 

lines-one positive for HPV-16 DNA, the other HPV-16 negative-implicated a viral 

component to disruption of GJIC. Although both lines were derived from normal 

cervical tissue, the cell line positive for viral DNA showed greatly reduced GJIC 

whereas the cell line which did not contain HPV-16 DNA communicated well 

(Pennie, 1992; G. Sibbet, personal communication).

The similarities between the BPV-1 E5 and BPV- 4 E8 proteins mentioned above and 

the proposal that these two oncoproteins may share some common function(s) led to the 

following studies. It was hypothesised that a possible function of the BPV-4 E8 protein 

in cellular transformation was the disruption of GJIC through direct interaction of this 

viral oncoprotein with ductin. BPV-4 E8 protein has recently been shown to bind ductin 

using an in vitro cell-free system (A. Faccini, personal communication). As 

BPV-1-transformed cells had been shown to have disrupted GJIC, PalF cells 

transformed by whole genome BPV-4 or sub-genomic fragments were assayed for 

levels of intercellular communication by microinjection of cells with a fluorescent 

tracker dye. A preliminary study had reported that one of eight lines derived from 

transfection of PalF cells with various BPV-4 genes displayed disrupted communication 

(Pennie, 1992). This led to the more detailed analysis of BPV-4-transformed PalF cells 

described in this thesis. Levels of functional gap junction intercellular communication 

were measured in transformed lines derived from transfection of PalF cells with either 

whole of sub-genomic fragments of BPV-4. These lines were also examined for the 

presence and expression of BPV-4 genes to investigate their possible correlation with 

observed levels of GJIC.
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E7 transfectants communicated freely (Figure 5.1; Table 5.1) and analysis of their 

DNAs revealed that the majority of E7 transfectant lines tested contained E7 DNA 

(Table 5.3). These results showed that although transfection of the E7 ORF was 

required for morphological transformation of PalF cells, presence of the E7 ORF had no 

significant effect on GJIC levels. All whole genome BPV-4-transformed lines, which 

had previously been shown to have disrupted GJIC, contained viral DNA including E8 

sequences (Table 5.3). With the exception of one whole genome BPV-4 transfectant 

which contained multiple copies of the viral genome (Figure 5.4), there was very little 

viral DNA present in these transfected lines. However there was no apparent correlation 

between amount of viral DNA and degree of intercellular communication as comparison 

of results obtained from cells containing low amounts of viral DNA to the single line 

containing multiple copies of the BPV-4 genome showed that these lines exhibited 

similar reduction in GJIC (Table 5.1; Figures 5.2 and 5.3).

None of the E8/E7 transfectants retained viral DNA. This was regardless of whether the 

transfected viral genes were under the control of their own promoter (BPV-4 LCR) or a 

heterologous promoter (MoLV LTR). That these lines were both negative for viral 

DNA and displayed normal levels of GJIC provided further circumstantial evidence that 

disruption of GJIC was mediated by viral proteins.

As regards analysis of viral gene expression, three out of nine whole genome BPV-4- 

transformed lines and seven out of nine E7-transformed lines showed detectable levels 

of E7 RNA (Tables 5.3 & 5.4). The observation that E7 transfectants expressed 

discernible levels of E7 RNA and displayed normal levels of GJIC suggested that 

BPV-4 E7 is not involved in disruption of intercellular communication. E8 RNA was 

only detected in one cell line. This line was derived from transfection of PalF cells with 

whole genome BPV-4. Failure to detect E8 RNA in other lines known to contain E8 

sequences was thought to be due to lack of assay sensitivity as E8 protein was
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subsequently detected in a BPV-4-transformed line which had been scored as negative 

for E8 RNA (R. Anderson, personal communication). Total RNA was used in these 

experiments and detection of viral RNA might be improved by use of mRNA or 

RT-PCR (reverse transcriptase polymerase chain reaction). No definitive conclusions 

can be made from comparison of overall E8 expression and the GJIC status of the 

various cell lines examined. However that the two cell lines shown to express BPV-4 

E8 also showed reduced GJIC levels provides indirect evidence that BPV-4 E8 protein 

down-regulates intercellular communication.

Once again, due to the observed lethality of transfecting PalF cells with the E8 ORF 

alone, direct demonstration of E8 protein/ ductin binding has not been possible. 

Cloning of this viral gene into an inducible mammalian gene expression vector may 

allow further functional analysis of the E8 ORF. Similarly, it may be possible to 

examine this proposed E8-encoded function by transfecting PalF cells with a whole 

genome BPV-4 plasmid construct containing a mutated E8 ORF and measuring GJIC 

levels in these cultures. If these transfectants were found to contain viral DNA, 

including the mutated E8 sequences, yet showed normal levels of GJIC this would 

indicate that disruption of intercellular communication is a function of the E8 protein.

The observation that a number of viral oncoproteins, including the E5 proteins of 

BPV-1 and HP Vs 6 and 16, bind ductin suggests that this protein is a common cellular 

target for these viral products. Deregulation of normal GJIC may be an important 

aspect of the transforming biology of these viruses, isolating virally-transformed cells 

from the suppressive control of surrounding normal cells. The transformation biology 

of BPV-4 may also involve disruption of cell-cell communication as a means of 

establishing cellular transformation. This could result through complexing of the 

BPV-4 E8 protein with ductin. The BPV-4 E8 protein is similar in length and 

hydrophobicity to the BPV-1 E5 protein (Jackson et al., 1991). The BPV-4 E8
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oncoprotein binds ductin as assayed using an in vitro cell-free system (A. Faccini, 

personal communication) and, as described in this thesis, reduced GJIC is only observed 

in cells containing E8 sequences. The proposed mode of action of the E8 protein would 

therefore involve perturbation of GJIC thus effectively removing, or partially removing, 

virally-infected cells from the tumour suppressive effects of surrounding normal cells. 

Hyperproliferation of these cellular 'islands’ could result due to impaired gap 

junction-mediated exchange of hormones, essential metabolites and secondary 

messengers with surrounding cells. Such dysregulation may provide a suitable 

environment for expression of other viral oncoproteins and further proliferation of 

virally-infected cells could ensue. The binding of BPV-4 E7 to the pl05Rb protein 

could contribute to the clonal expansion of virally-infected cells by preventing 

pl05Rb-mediated intracellular tumour suppressive effects. Once a population of 

transformed cells has been established, E8-mediated disruption of GJIC may be 

redundant for, or even deleterious to, the long-term survival of cells. Therefore there 

may be no further selective pressure to directly inhibit GJIC. Such a scheme would fit 

in with the cellular localisation and temporal expression of the E8 protein. In vivo, E8 is 

expressed only in the deep layers of papillomas, where little or no vegetative viral DNA 

replication takes place, and is only detected during the early stages of tumour 

development (Campo et al., 1994c). This proposed model of E8 function would suggest 

that the E8 protein is critical for the induction of BPV-4-mediated cellular 

transformation and papilloma development.

6.6 BPV-4 lacks an E6 gene

BPV-4 lacks an E6 ORF as do the other subgroup B bovine viruses BPV-3 and BPV-6 

(Jackson et al., 1991). The E6 proteins of the oncogenic HPVs 16 and 18 bind to and 

degrade p53 protein and this is thought to be an important event in the transformation 

biology of these viruses (Scheffner et al., 1990). Addition of an HPV-16 E6 ORF to 

BPV-4 genes contributes to cellular transformation by conferring immortality to

222



transfected PalF cells as reported by Pennie et al. (1993) and confirmed in this thesis. 

However the transfected cells are not tumourigenic. That the BPV-4 virus, although 

lacking an E6 gene, is capable of successful infection and propagation in vivo and 

malignant transformation both in vivo and in vitro in the presence of chemical co-factors 

raises the question whether E6 functions are necessary for BPV-4 transformation. 

Similar functions may be provided by another BPV-4 or host protein. As BPV-4 does 

not contain an E6 gene it might be predicted that p53 protein would be unaltered in 

BPV-4-induced papillomas but that p53 mutations, perhaps induced by environmental 

co-factors, may occur during the progression of benign papillomas to carcinomas. 

Alternatively BPV-4 may have evolved another mechanism of evading p53 growth 

suppression.

Recent work examining co-operation between BPV-4 and HPV-16 E6 genes has shown 

that 16E6 possess functions in addition to the inactivation of p53. Transfection studies 

showed that PalF cells transformed with BPV-4, ras and mutant p53 were tumourigenic 

in nude mice only when an HPV-16 E6 gene was also transfected (L. Scobie, 

unpublished data). BPV-4 and 16E6 were also found to co-operate to enhance 

transformation in p53 null mouse fibroblasts, providing further evidence that not all 

16E6 transformation functions are mediated via inactivation of p53. However, p53 

inactivation may play a role in BPV-4-induced cellular transformation as, unlike PalF 

cells, p53 null mouse fibroblasts can be transformed by BPV-4 + 16E6 in the absence of 

ras (L. Scobie, unpublished data).

The bovine p53 gene has been localised to chromosome 19ql 5 (Coggins et al., 1995). 

Examination of p53 protein levels in BPV-4-induced papillomas and carcinomas 

showed that p53 protein levels were elevated in papillomas but not in carcinomas 

(L. Scobie, unpublished data). This coincided with expression of BPV-4 E7 protein in 

the basal and suprabasal cell layers. Papillomas and carcinomas were also screened for
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mutations in the p53 gene using the technique of single strand conformation 

polymorphism (SSCP). Mutations were detected in several carcinomas, however no 

mutations were detected in the papillomas suggesting that mutation of this gene is a 

relatively late event in progression. The apparent stabilisation of p53 protein in 

papillomas and its coincidence with BPV-4 E7 protein expression may be a 

consequence of BPV-4 E7 expression. Elevated levels of p53 protein have also been 

observed in primary human foreskin epithelial cells immortalised by the HPV-16 E7 

protein (Demers et al., 1994). Similarly, stabilisation of p53 protein is induced in cells 

transformed by adenovirus 5 El A (Lowe & Ruley, 1993).

Changes in ploidy have been observed in HPV-associated genital lesions, with the 

degree of genomic instability increasing with worsening histologic diagnosis (Reid et 

al., 1984). Karyotypic analysis showed that biopsies classified as sub-clinical 

papillomaviral infections (SPI) contained cells with diploid genomes, whereas the 

majority of cells from biopsies characterised as cervical intraepithelial neoplasia 

(CIN-1) lesions were polyploid and CIN-2 and CIN-3 lesions were predominantly 

aneuploid (Reid et al., 1984). Altered ploidy has also been observed in HPV-16- 

immortalised human epithelial cells (Durst et al., 1987; Hawley-Nelson et ah, 1989; 

Smith et ah, 1989). These data support a causal relationship between HPV-encoded 

functions and ploidy. Transfection of primary mouse epidermal keratinocytes with 

HPV-16 indicated that induction of chromosomal abnormalities, especially changes in 

ploidy, were linked to expression of the E7 gene (Hashida & Yatsumoto, 1991). The 

HPV-16 E7 protein may be directly involved in genome duplication as expression of 

this viral oncoprotein has been shown to induce DNA synthesis in rodent cells (Sata et 

al., 1989). The observed induction and stabilisation of the p53 protein in HPV-16 

E7-immortalised cells (Demers et al., 1994) may therefore occur in response to genomic 

instability brought about by E7-encoded functions. SV40-transformed cells also show 

chromosomal aberrations (Oksala & Therman, 1974). As both SV40 LT and HPV-16
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E7 proteins bind pl05Rb (Ludlow et al., 1988; Dyson et al., 1989), genome instability 

may result through common mechanisms.

Tightly regulated mechanisms of G1 and G2 cell cycle control appear critical for 

mammalian genome stability (Almasan et al., 1995 for review). As the p53 and Rb 

proteins act as a G1 / S checkpoint, disruption of normal tumour suppressor protein 

functions may lead to inappropriate entry into the S-phase of the cell cycle. If cellular 

DNA is damaged, further replication may result in chromosomal abnormalities. A role 

for pl05Rb in G1 / S progression and genetic instability was suggested by Almasan 

et al. (1995). Using several human tumour lines and gene amplification as a measure of 

genomic instability, the authors found that DNA amplification potential correlated with 

inactivated Rb. Thus inactivation of normal pl05Rb function by complexing of a viral 

protein to this tumour suppressor may not only result in cellular proliferation but may 

also affect genome stability.

HPV-16 and BPV-4 E7 functions are not identical, for example unlike HPV-16 E7 

(Chesters et al., 1990) transfection with the BPV-4 E7 gene alone does not immortalise 

primary cells. In spite of this, the BPV-4 E7 protein may similarly induce chromosomal 

instability. If this were to happen the apparent stabilisation of p53 protein in 

BPV-4-induced papillomas expressing the E7 protein (L. Scobie, unpublished data) may 

occur in response to E7-mediated chromosomal damage. Cytogenetic analysis of these 

papillomas would allow examination as to whether chromosomal abnormalities, 

including changes in ploidy, are apparent in tumours known to express BPV-4 E7 

protein.

6.7 BPV-4 synergises with the flavonoid quercetin

Epidemiological analysis of human cancers has suggested that 35-40 % of cancer deaths 

in the USA could be linked to dietary factors (Doll & Peto, 1981). Such factors,
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including dietary composition, alcohol consumption and cigarette smoking, contribute 

to the carcinogenic process at either the initiation or progression phases, although the 

exact nature of their contribution remain unknown. Dietary factors are also implicated 

in the development of upper alimentary canal cancers in cattle. Bracken-grazing 

animals affected by viral papillomatosis of the upper alimentary tract are at much higher 

risk for the subsequent development of squamous cell carcinomas than animals with a 

bracken-free diet (Jarrett et al., 1978; Campo et al., 1994b). Analysis of the chemical 

composition of this plant has revealed that it contains a complex mixture of mutagens, 

carcinogens and immunosuppressants (Evans I.A. et al., 1982; Evans W.C. et al., 1982). 

Progression of BPV-4-induced papillomas to malignancy is greatly influenced by the 

effects of these chemicals (e.g. Campo et al., 1994b).

One of the major mutagens present in bracken is the flavonoid quercetin (Evans W.C. 

et al., 1982). Flavonoids are a class of phenolic compounds and are ubiquitous in plants 

(Ktthnau, 1976). Quercetin is one of the most widely found flavonoids and is present 

not only in bracken but also in tea, coffee, cereal grains and a variety of fruit and 

vegetables (Kuhnau, 1976). Due to their widespread occurrence, humans and animals 

unavoidably ingest a large amount of these phenolic compounds daily. Numerous 

studies have been carried out to investigate the chemical and biological activities of 

quercetin in both bacterial and mammalian cells in vitro and also in vivo (Jackson et al., 

1993 for review). Results from these studies indicated that quercetin has diverse and at 

times apparently contradictory effects.

Quercetin can bind DNA (Rahman et al., 1990) and has been found to be mutagenic in 

both prokaryotic (e.g. Bjeldanes & Chang, 1977) and eukaryotic (e.g. Nakayasu et al., 

1986) cells. The genotoxicity of quercetin was reported to correlate with its ability to 

cause DNA damage in the presence of Cu(II) ions and oxygen (Rahman et al., 1989). 

These mutations were thought to result through intercalation of quercetin into DNA,
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generation of reactive oxygen species (ROS), including hydroxyl radicals, leading to 

single-strand DNA breaks (Fazal et al., 1990). Similarly quercetin has also been shown 

to bind to protein and in the presence of Cu(II) and other ions, cause fragmentation of 

the protein by a free radical mechanism (Ahmed et al., 1994). Exposure to ROS has 

been implicated in carcinogenesis (Cross, 1987).

Quercetin has also been found to induce DNA rearrangements (Suzuki et al., 1991) and 

clastogenic damage (Ishidate, 1988). This last observation may be of significance to the 

malignant transformation of BPV-4-induced upper alimentary canal papillomas in vivo, 

as cattle feeding on bracken fern show a wide variety of cytogenetic abnormalities 

(Moura et al., 1988). This flavonoid has also been shown to interfere with 

phosphorylation / dephosphorylation mechanisms (Van Wart-Hood et al., 1989; Matter 

et al., 1992). Although quercetin has been shown to synergise with the phosphotyrosine 

phosphatase inhibitor vanadate increasing protein-tyrosine phosphorylation in avian 

cells, this compound has also been reported to inhibit several protein kinases including 

protein tyrosine kinases (Graziani et al., 1983). and also protein kinase C (Gschwendt 

et al., 1984). Such inhibition would be expected to interfere with signal transduction 

pathways.

Quercetin can also act as an initiator in an in vitro two-stage transformation assay in 

mammalian cells, yet the same study reported that this chemical also inhibited 

promotion of transformation by TPA, demonstrating the diverse action of quercetin 

(Sakai et al., 1990). Further to its ability to inhibit promotion by TPA, and contrary to 

its mutagenic activity, quercetin has been shown to inhibit the growth of various cell 

lines derived from human cancers including colon and gastric cancers (Hosokawa et al., 

1990; Yoshida et al., 1990) and squamous cell carcinomas of the head and neck 

(Castillo et al., 1989). This compound has also been reported to arrest gastric tumour 

cells (Yoshida et al., 1990) and leukaemic T-cells (Yoshida et al., 1992) in the G1 phase
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of the cell cycle. This growth inhibitory effect may be due to quercetin-mediated 

disruption of enzymatic processes involved in cellular proliferation.

Results from in vivo studies appear similarly contradictory as although the majority of 

studies reported that quercetin is not carcinogenic (e.g. Morino et al., 1982), Pamukcu 

et al. (1980) reported that quercetin induced intestinal and bladder carcinomas in 

Norwegian rats and Erturk et al. (1983) observed that quercetin significantly increased 

the frequency of liver tumours in Sprague-Dawley and Fischer 344 rats.

Although conflicting results from the various in vitro and in vivo studies examining 

quercetin activities have been observed, this does not negate further analysis of the 

chemical but rather highlights the problems in identifying and elucidating its effect on 

cells. It also indicates that results may be only pertinent to the particular experimental 

system used and that appropriate caution should be made in extrapolating findings to 

other systems.

Quercetin has discernible effect on BPV-4 transformation in vitro as it synergises with 

the virus to fully transform primary bovine fibroblasts (Pennie, 1992). An obvious and 

interesting question therefore was to address whether this compound contributes to the 

transforming process via genetic and / or epigenetic mechanisms. The observed and 

reproducible effects of quercetin treatment on BPV-4-transformed PalF cells in vitro led 

to the studies described in this thesis in order to dissect possible mechanisms of 

quercetin action.

One of the immediate phenotypic effects was that PalF cells treated with quercetin prior 

to transfection with BPV-4 genes showed a much more aggressively transformed 

morphology than untreated transfectants. This was observed in all transfection classes 

regardless of whether cells had been transfected with whole genome or sub-genomic
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BPV-4 fragments (cf. Figures 4.3 & 4.5). Treatment with quercetin, without subsequent 

transfection with viral DNA, did not change the cellular morphology of PalF cells 

compared to untreated controls. Neither did quercetin increase average cellular lifespan 

of these primary cells, as treated PalF cells senesced on continued culture over the same 

time scale as untreated controls. To assay whether quercetin-treated BPV-4-transfected 

cells were more transformed than their non-treated counterparts, clonal, and in some 

cases polyclonal, populations were characterised with respect not only to morphological 

transformation but also with respect to anchorage independence, immortalisation and 

tumourigenicity.

The BPV-4 E8 gene is required for anchorage-independent growth. However 

quercetin-treated PalF cells transfected with E7 alone were also capable of anchorage- 

independent growth (Figure 4.6; Table 4.6). This showed that quercetin could substitute 

for an E8 gene. Quercetin and BPV-4 E8 appear to be antagonistic as quercetin-treated 

cells transfected with constructs containing E7 and E8 showed no or severely reduced 

growth in semi-solid media. Although this detrimental effect is most likely due to 

antagonism between E8 and quercetin this cannot be tested directly as cells do not 

survive transfection of the E8 gene alone (Jaggar et a l, 1990; Pennie et a l, 1993).

Treatment with quercetin also immortalised BPV-4-transformed cells (Table 4.7). An 

immortalised phenotype had previously only been seen in BPV-4-transformed cells 

containing an HPV-16 E6 gene (Pennie et a l, 1993). These results showed that 

quercetin could substitute for addition of an exogenous E6 gene. In the above 

experiments quercetin was found to confer immortality to cells transformed by either the 

whole genome BPV-4 or the E7 gene but not to cells transfected with E8/E7 constructs 

(Table 4.7). This was interpreted as further evidence of antagonism between quercetin 

and E8. These results could be due to inappropriate/ unregulated levels of E8 

expression. The two constructs containing the E8/E7 ORFs are driven in one case by
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the BPV-4 LCR promoter while the other is under the control of the Moloney murine 

leukaemia virus LTR (see Chapter 2.1.7). In the construct containing the whole genome 

BPV-4, E8 and the other viral genes are under the control of the BPV-4 LCR and are 

subject to viral regulatory control, for example through the action of the E2 protein. 

The regulation of E8 expression at any particular point in time may therefore dictate 

whether quercetin and E8 interact synergistically or antagonistically.

The observed synergism between BPV-4 and quercetin is dependent on time of 

treatment with this chemical. Of the four protocols used, in which the order and the 

interval between quercetin treatment and viral DNA transfection were varied, cells 

achieved the most transformed state when treated with quercetin either immediately 

before or after DNA transfection (Table 4.12). Lengthening of the interval between 

quercetin and transfection reduced the degree of transformation, irrespective of the 

sequential order of the treatments. This suggested that the effect of quercetin was due, 

in part, to an epigenetic mechanism of action. PalF transfectants treated with quercetin 

either immediately prior or immediately post-transfection with BPV-4 DNA were 

tumourigenic in nude mice (Table 4.12). Interestingly, the apparent irrelevance of the 

sequential order of the two treatments in inducing full cellular transformation was at 

variance with previous findings that the effect of quercetin on two-stage transformation 

of BALB/ 3T3 cells differed depending on the stage and specific experimental 

conditions under which quercetin was added to the cells (Sakai et al., 1990). The results 

from the PalF system may be explained by the observation that BPV-4 can synergise 

with both tumour initiators and tumour promoters (Gaukroger et al., 1993). However 

qualitative differences were apparent, in that tumours induced by cells treated with 

quercetin immediately post-transfection (protocol QC) grew far more aggressively than 

tumours resulting from injection of cells treated with quercetin immediately prior to 

DNA transfection (protocol QA). That E7 QC transfectants, with or without an 

exogenous E6 gene, were the only sub-genomic classes capable of inducing tumours in
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nude mice (Table 4.12) confirms that the greatest synergism between quercetin and viral 

functions takes place in cells treated with quercetin immediately after transfection. 

Nevertheless, the number of anchorage-independent clones formed by quercetin-treated 

E7 cells were fewer than those obtained with whole genome BPV-4 (Table 4.10), 

suggesting that other viral genes may contribute to the transformed phenotype. It could 

be argued that quercetin's contribution to full cellular transformation is most clearly 

manifest when added immediately post BPV-4 transfection, as such cells will already be 

exposed to the action of viral proteins and significant loss of viral DNA will not yet 

have occurred.

In the presence of quercetin, the BPV-4 E7 gene showed itself to be the major viral 

oncogene as measured by anchorage independence, immortalisation and 

tumourigenicity assays. This may be relevant to papilloma induction and carcinoma 

progression in vivo. Quercetin can substitute for both an endogenous BPV-4 E8 and an 

exogenous HPV-16 E6 viral gene functions in vitro. BPV-4 does not possess an E6 

gene (Jackson et al., 1991) and the important functions carried out by this gene in other 

papillomaviruses (Scheffner et al., 1990; Sedman et ah, 1991) may be provided by the 

quercetin present in bracken. The E8 ORF is expressed in the suprabasal epithelial 

layers during the early stages of papilloma development (R. Anderson et al. in 

preparation). The ability of quercetin to substitute for E8 in vitro may indicate long 

term consequences in vivo as the animals are exposed to the quercetin present in bracken 

long after viral E8 expression in the papillomas has stopped. However, quercetin can 

only substitute for E8 in part. Although quercetin conferred anchorage independence on 

virally-transformed cells in the absence of E8, this chemical had no apparent effect on 

GJIC (Table 5.2). Disruption of GJIC is ascribed to the direct physical interaction 

between BPV-4 E8 protein and ductin, the major structural component of such 

junctions.
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Contrary to previous reports (Ishidate, 1988; Suzuki et al., 1991) no chromosomal 

abnormalities, large DNA rearrangements, DNA adducts or single or double strand 

DNA breaks in quercetin-treated PalF cells were detected (e.g. Figure 4.14). However 

the genetic changes reported by others were observed in established rather than in 

primary cells. Furthermore, the reported chromosomal damage was observed at much 

higher concentrations of quercetin than those used in our experimental system. The 

failure to observe any quercetin-induced mutagenic effects in PalF cells may be due to 

lack of assay detection sensitivity. However, as quercetin was shown to induce single 

strand DNA breaks in a cell-free plasmid DNA mobility assay at concentrations equal to 

and even more dilute than that found to synergise with BPV-4 in PalF cells, this could 

suggest that the in vitro results reflect poor intracellular uptake of the chemical. Hatcher 

& Bryan (1985) and Fazal et al. (1990) suggested that apparently conflicting 

genotoxicity results for quercetin could be explained by oxidation of the chemical 

outside cells, leading to the formation of products unable to cross the cell envelope. The 

above experiments were carried out in order to screen for possible quercetin-specific 

effects. Similar analyses of both quercetin-treated and control (ethanol-treated) 

virally-transformed PalF cells would be of interest.

Activation of the cellular genes ras and myc has been implicated in the progression of 

papillomavirus-transformed cells (Ocadiz et al., 1987; Riou et al., 1988; Campo et al., 

1990; Couturier et al., 1991). However, examination of both control and 

virally-transformed PalF cells, regardless of whether treated with quercetin or not, 

showed that the DNA and RNA status of these two genes remained unchanged 

(Figures 4.12 & 4.13). Although results showed that there was no overt change at either 

the DNA or RNA level in transfectants, findings in a recent paper by Krontiris et al. 

(1993) may prove of some interest as regards further analysis of ras sequences and 

expression in the PalF in vitro system. In this paper the authors describe an association 

between the risk of developing a number of different types of cancer in humans and
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mutations in the HRAS1 minisatellite locus found approximately 1000 bp downstream 

of the H-ras-1 gene. Although they cannot as yet exclude that the rare alleles of the 

HRAS1 minisatellite observed in cancer patients are not just simply markers for risk of 

cancer development as opposed to having an active role in disease pathogenesis, 

Krontiris et al. (1993) propose that such minisatellite mutations disrupt expression of 

nearby genes. This disruption includes the c-Ha-ras 1 gene. Although results from the 

analysis did not point to any changes in ras expression levels in the transfected PalF 

lines, this was looked at using RNA dot blots of total RNA. A more detailed analysis of 

these cells may well be warranted using not only Northern blots of mRNA but also 

probes covering different regions of the c-Ha-ra? 1 gene, including ones immediately 

downstream of the coding sequence.

The ability of quercetin to affect levels of protein-tyrosine phosphorylation (Graziani 

et al., 1983; Van Wart-Hood et al., 1989) was examined in PalF cells. Tyrosine 

phosphorylation is thought to play an important role in cell growth, proliferation, 

differentiation and transformation (Fischer et al., 1992). Preliminary results showed 

that there was a change in phosphotyrosine levels of, as yet, unidentified proteins in 

quercetin-treated cells. This was seen as an increase in intensity of a band running 

approximately between 50-65 kD as compared to the same band in ethanol-treated 

controls. This work has been carried on by a current PhD student in the laboratory. 

Results from this continued work confirm that the phosphotyrosine levels in treated 

cells are altered and extend this initial study by showing that such alterations are 

transient as phosphotyrosine profiles return to normal within eight hours of quercetin 

being removed (J. Connolly, personal communication). The concentration of quercetin 

used and time of exposure in the phosphotyrosine experiments were identical to 

conditions used in the transfection work. That changes in phosphotyrosine levels were 

transient, returning to normal over time, may explain why the synergism between 

BPV-4 genes and quercetin in vitro weakens the longer the time interval between them.
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Recent work has shown that the activity of the BPV-4 LCR is 2-3 times higher in cells 

treated with quercetin after transfection with BPV-4 genes (protocol QC) than cells 

treated with quercetin immediately before transfection (protocol QA) (J. Connolly, 

unpublished data). As these experimental conditions are the most likely to result in full 

transformation of PalF cells these results would appear to support the proposal that the 

effects of quercetin are most clearly manifest in cells already actively expressing viral 

genes.

6.8 Summary

In summary, quercetin appears to cause epigenetic changes in PalF cells as measured by 

transient alteration in phosphotyrosine levels of, as yet, unidentified proteins. 

Identification of these proteins may well provide insight as to the action of quercetin in 

this in vitro system. It may even provide us with a feasible model of the chemical's in 

vivo contribution to cellular transformation in BPV-4-infected bracken-grazing cattle. 

Previous studies have proposed epigenetic mechanisms of quercetin action (Ishikawa 

et al., 1987). In this study mouse fibrosarcoma cells were treated with quercetin in 

order to examine whether this flavonoid could alter the tumourigenic and metastatic 

activity of these cells in mice. Quercetin treatment was observed to have diverse effects 

in that it was found to decrease the tumourigenic potential of some clones while 

promoting the metastatic potential of others (Ishikawa et al., 1987). The authors 

proposed that quercetin might act via an epigenetic mechanism affecting DNA 

methylation. Quercetin was found to cause hypermethylation in these cells, presumably 

inducing changes in gene expression which in some instances resulted in tumour 

regression whereas in others tumour progression was unimpeded.

Although no discernible mutation was found either as a result of treatment with 

quercetin and / or transfection with BPV-4 genes in PalF cells, this may be linked to the 

sensitivity of the experimental assays used. Therefore, at the present time, genetic
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mechanisms of quercetin action cannot be ruled out. What can be said with confidence 

is that the synergism between quercetin and BPV-4 genes in PalF cells is indisputable as 

such cells become fully transformed forming tumours in nude mice. Although 

molecular mechanisms of quercetin action have yet to elucidated, the observed 

contribution to full transformation of BPV-4-transfected cells strengthens the hypothesis 

that this flavonoid is a possible co-factor in BPV-4-associated carcinogenesis in vivo.

Obviously it would be of great interest to repeat these studies in primary bovine 

keratinocytes as these are the natural target cell for infection by BPV-4. Furthermore, 

collagen rafts could be used to examine the effects of quercetin and / or BPV-4 genes on 

keratinocyte differentiation.

This in vitro experimental system has allowed partial functional characterisation of 

BPV-4 genes and provides a useful model system for analysis of viral / chemical 

co-operation in papillomavirus-associated carcinogenesis. The exact nature of the 

observed synergism between BPV-4 and the flavonoid quercetin is not as yet known, 

however a model of cellular transformation could be envisaged in which BPV-4 

provides an initial proliferative stimulus, possibly by BPV-4 E8-encoded disruption of 

cell-cell communication, resulting in removal of normal proliferative control or isolation 

of virally-transformed cells from the growth inhibitory effects of surrounding 

non-transformed cells. Inactivation of pl05Rb through binding to the BPV-4 E7 protein 

will also contribute to proliferation of transformed cells. This expanded cellular 

population would provide a further receptive target for the action of both viral and 

environmental factors, thus increasing the chances of additional genetic damage. 

Quercetin's contribution to the carcinogenic process has yet to be determined. It may, in 

concert with other chemicals present in bracken fern, cause direct mutation of cellular 

genes and / or act via epigenetic mechanisms such as disruption of phosphorylation and 

DNA methylation levels.
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