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Summary

Development and evaluation o f  quantitative methods o f  analysing 
single photon emission com puted tomography blood flo w  images 
o f  the brain .

This thesis presents the investigations carried out on a particular method of functional human 

brain mapping (FHBM) analysis (SPM)1 as to its applicability to a routine nuclear medicine 

neuroimaging department. Principally designed for the investigation into positron emission 

tomography (PET) radiolabelled water studies of normal brain function during 

neuroactivation experiments the technique is still relatively novel for the purposes of 

interpreting single photon emission computed tomography (SPECT) images of brain 

function.

This thesis investigates whether the functional brain mapping technique (SPM) can be 

extended to embrace the widely available imaging technique of SPECT and to determine 

whether this combination can contribute to routine diagnosis of abnormalities in brain 

function and to research investgiations involving functional neuroactivation.

Validation of the image standardisation facility of SPM96 applied to oblique 
or incomplete image data sets.

The image standardisation component of SPM96 was validated by subjecting it to a series of 

challenge conditions created from simulated data. The challenge conditions were chosen to 

reflect those that occur in clinical scans, for example, extreme misalignments to a standard 

reference orientation resulting in axial truncation of the image volume. The results of the 

software performance under these challenges showed that the image standardisation 

component of this software had particular problems correcting for large (15°) rotations in the 

sagittal and coronal planes coupled with severe axial truncation. Modifications to the image

Statistical Parametric Mapping, Prof KJ. Friston. Wellcome department of Cognitive Neurology, Institute 
of Neurology, London, U.K.
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standardisation procedure were made based on these results. This involved the inclusion of a 

rigid body registration step prior to image standardisation and the editing of spurious voxel 

values, created by erroneous interpolation of edge information after re-orientation. The extra 

image registration step required the creation of an ideal CBF SPECT scan (whole brain 

coverage and orientation to a standard reference space) to which all the scans containing the 

challenge conditions were registered. Having established a set of working criteria for use 

with routine " mTc-HMPAO SPECT scans, SPM96 was then applied to images of 

individual patients presenting with symptoms of dementia. The aims were:- a) To 

determine whether SPM maps could be produced which were consistent with the original 

scans, b) To ascertain whether they could assist in the reading of scans by reducing inter- 

rater variability.

Investigation of SPM96 as an aid to the differential diagnosis of dementia 
using 99mTc HMPAO SPECT images of rCBF.

To investigate the usefulness of SPM96 analysis as an aid to the visual reporting of CBF 

SPECT scans it was used to assist in the differential diagnosis of dementia. Usefulness was 

assessed by comparing inter observer reliability for diagnosis of dementia based on 

information from the CBF scans alone compared to diagnosis based on the scans plus 

information from the SPM analysis. The hypothesis was that inter observer reliability 

would be improved with the addition of an objective measure of CBF pattern provided by 

SPM96 analysis. The results obtained from this investigation failed to show any benefit to 

using the additional data provided by SPM96 analysis, however, it may play a role in 

monitoring progression of disease or the therapeutic effects of treatment
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Modification of 99m xc HMPAO SPECT acquisition protocol for SPM type 
analysis of neuroactivation studies: Image quality versus statistical power

To investigate the possibility of using a similar approach to PET i.e. increase the number of 

scans per task and accept poorer individual scan quality for SPECT studies of 

neuroactivation different study paradigms (replication and non-replication) were constructed. 

The different paradigms were created by variation of the image scanning parameters a) 

administered radiation activity per scan (within allowable limits) b) number of scans per task 

and c) scan acquisition time. Simulated neuroactivation experiments were created by the 

addition of pseudo activations to the images acquired under the different scanning 

parameters. Duplicate copies of real scans were made for the purposes of this study, in 

order to have a data set (activated and non-activated) that did not include noise due to natural 

variability of CBF or anatomy between subjects. This imposed condition of no anatomical 

variation makes the distinction between the paradigms clearer by removing noise due to inter 

and intra-subject variability without introducing bias in favour of any particular paradigm. 

The statistical benefits of a replication paradigms versus a non-replication paradigm were 

established by analysing the data sets with the SPM96 analysis. The simulation was able to 

show that when an SPM investigation is used for data analysis, study replication is more 

important than the individual image quality typically available from a high performance 

SPECT system.

Applications of the optimised SPECT acquisition parameters to 
neuroactivation studies.

To confirm the hypothesis that the addition of two further scans, allowing for each condition 

to be replicated (i.e. ABAB), would greatly increase confidence in the results and their 

interpretation, the 4 scan paradigm was used to investigate the stimulation of the vagus nerve 

for the treatment of epilepsy. A four scan design is also advantageous to SPECT studies of 

neuroactivation. The application of two additional scans, could greatly enhance the power 

of investigation of neuroactivation studies involving groups of normal healthy subjects, by 

the addition of one, or perhaps two, additional cognitive conditions (i.e., ABAC or ABCD 

respectively). This would enable more subtle differences in cognitive processing to be
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investigated. To confirm that the addition of a further task can contribute to the teasing out 

of cognitive processes used in memory, a SPECT neuroactivation experiment was designed 

with the 4 scan paradigm to investigate the role of the medial temporal lobe in the processing 

of familiar and novel material.

In conclusion the first part of this investigation established that a voxel-wise analysis does 

not provide any benefit as an aid to differential diagnosis by visual reporting of CBF SPECT 

scans. However, it may provide a possible means for objectively monitoring progression of 

disease or treatment The second part of this investigation was able to demonstrate that SPM 

can be used with SPECT to investigate functional activation studies which have, up to now, 

been considered to be limited to the domain of PET and fMRI. This opens up this type of 

study to a wider research community and establishes a role for SPECT in neuroactivation 

studies for experiments or subjects unsuited to the PET or fMRI environment.

Just as importantly these investigations indicate that this type of statistical mapping is 

applicable to the lower resolution data provided by SPECT and could therefore be applied to 

images of neuroreceptor function, for which radioligands are increasingly becoming 

available, and which can only be obtained with emission tomography.



Preface and Declaration.
This thesis comprises of my own original work carried out during the period of October 
1995 and October 1998 and has not been presented previously as a thesis in any form.

The thesis presents the investigations carried out on the applicability of a particular method 
of functional human brain mapping (FHBM) analysis (Statistical Parametric Mapping 
(SPM96) - K.J Friston, Wellcome Department of Cognitive Neurology, University College 
London, UK) in a routine nuclear medicine neuroimaging department. The results are 
presented from investigations into two broadly defined areas

•  The performance of the SPM method when used with non-optimal CBF 
SPECT images and its use as an aid in the visual reporting of these scans for 
the differential diagnosis of dementia.
•  The optimisation of the cerebral blood flow (CBF) SPECT imaging 
protocol for neuroactivation experiments and its application to two different 
experiments.

Chapter 1 reviews the literature in the field of human brain mapping (FHBM). The first 
section outlines the development of functional human brain mapping in both normal and 
abnormal subjects and includes a short description of normal human brain function with 
regard to autoregulation of blood flow and its coupling with cognitive function. The second 
section provides a more detailed explanation of the various components of a typical FHBM 
analysis including image registration, image standardisation methods and statistical analysis. 
The advantages and disadvantages of the components are also described in order to 
appreciate fully the context in which the subsequent investigations were done.

Chapter 2 lists the various steps involved in using SPECT with SPM and describes the 
image acquisition and processing of images used in the experiments. Chapters 3 - 6  
describe four different experiments linked by the overall theme of validating and optimising 
the methods used when analysing SPECT CBF images with SPM.

Chapter 3 outlines the methods used to create the challenge conditions devised to validate the 
image registration software. The results of these validations are presented and discussed in 
terms of providing the best methods of image standardisation for non-optimal image data 
sets.

Chapter 4 uses the optimal image standardisation method determined in chapter 3 to 
investigate the application of a SPM analysis to images of individual patients presenting with 
symptoms of dementia. The results are presented and the routine use of SPM in a nuclear



medicine department is discussed. The visual reporting of CBF SPECT scans was carried 
out by Prof. D. J. Wyper and Dr J Patterson.

Chapter 5 outlines the methods and challenge conditions used to modify the acquisition 
protocol of CBF SPECT images for analysis by SPM methods, in particular whether 
SPECT studies of neuroactivation might benefit from a similar approach used in PET, i.e. 
increase the number of scans per task and accept poorer individual scan quality. The results 
are presented and discussed in terms of their suitability for use in neuroactivation studies 
using SPECT.

Chapter 6 uses the optimal study design determined in chapter 5 to investigate vagal nerve 
stimulation as a treatment for epilepsy. Patients were recruited for this study by Dr R 
Duncan.

Chapter 7 uses the same design to study the role of the medial temporal lobes in novelty 
detection by contrasting it with their role in the encoding and/or consolidation into long-term 
memory of associative information. Dr D. M. Montaldi recruited the volunteers and 
designed the neuropsychological experiments used in this study.

Chapter 8 outlines the conclusions drawn from each of these experiments and their 
application to the future use of SPECT in functional human brain mapping.
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CHAPTER 1

Development and evaluation
methods o f analysing single photon emission 
computed tomography blood flow images o f  the 
brain.

This chapter outlines the development of functional human brain mapping in both 
patients and normal subjects and includes a short description of normal human 
brain function with regard to autoregulation of blood flow and its coupling with 
cognitive function. This is followed by a more detailed explanation of the various 
components of a typical functional human brain mapping analysis including image 
registration, image standardisation methods and statistical analysis. The 
advantages and disadvantages of each of the components are also described in 
order to appreciate fully the context in which the subsequent investigations were 
undertaken.

1990-1999; The decade o f the brain.
Presidential proclamation 1990(1)

1.1 In troduction

The function of the human brain can now be mapped in vivo by carefully manipulating 

cognitive processes while the subject is being scanned, a process referred to as 

neuroactivation experimentation. The dramatic images produced by the new functional 

human brain mapping methods of analysis might give us the impression that we are
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'seeing the brain thinking' but the subtleties involved in the fractionation of cognitive 

processes using sophisticated experimental designs are not straightforward and the 

understanding of the underlying neuropsychology must not be underestimated. Likewise 

the fact that sophisticated statistical analysis can now be performed at the touch of a 

button must not stop the user having a fundamental grasp of those statistical theories on 

which the analysis is based. The rapid advance in technology may now have outpaced 

the understanding of many clinical scientists traditionally involved in functional human 

brain mapping principally through the investigation of lesions studies.

Inspired by these sentiments this thesis presents investigations carried out on a particular 

method of functional human brain mapping (FHBM) analysis (Statistical Parameteric 

Mapping (SPM) - Prof. K. J. Friston, Wellcome Department of Cognitive Neurology, 

Institute of Neurology, London, UK) with particular emphasis on its applicability to the 

work of a routine nuclear medicine neuroimaging department. Principally designed for 

the analysis of positron emission tomography (PET) radiolabelled water studies of 

normal brain function during neuroactivation experiments the technique is still relatively 

novel for the purposes of interpreting single photon emission computed tomography 

(SPECT) images of brain function. This thesis evaluates and develops the use of SPM 

for use with CBF SPECT images of cerebral blood flow and focuses on two aspects. 

The first part of this thesis investigates whether or not the use of a voxelwise image 

analysis method like SPM can improve the visual reporting of SPECT scans, by 

providing objective data on deviations from a normal reference database. The second part 

of the thesis investigates the statistical analysis component of the SPM method when 

using cerebral blood flow (CBF) SPECT imaging for neuroactivation experiments, to 

determine whether brain state replication is more important than the individual image 

quality typically available from a high performance SPECT system.
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Figure 1.1 Schematic diagram of the functional anatomy of the human brain as derived from lesion 
studies and electrical stimulation of the cortex.

1.2 F unctional H um an Brain M apping

The cutting edge of functional human brain mapping is now remote from interventional 

medicine but this was not always so. The original 'hands on' in vivo neuroactivation 

studies performed by neurologists such as Foerster in the 1920's and then Penfield and 

colleagues in the '30's were very much at the 'cutting edge'. Regarding each operation as 

an opportunity to conduct physiological experiments on the exposed cortex of conscious 

patients, they stimulated areas of the brain and recorded the resulting effects in elaborate 

detail. Penfield's results of electrical stimulation of the cortex are recorded in his book 

'The cerebral cortex of man' (2) which still governs our general views of human brain 

functional anatomy (fig. 1.1).

Even earlier the methods of clinicopathological correlation were used as a method of 

functional mapping, where signs and symptoms were associated with damage or disease



located in a specific region of the brain. The names Broca's and Wernicke's areas are still 

with us today and refer to areas in the brain associated with damage in patients who 

suffered from particular language problems investigated by Paul Broca and Carl Wernicke 

in the nineteenth century. The study of clinicopathological correlation continued 

throughout the latter part of the nineteenth century and most of the twentieth century with 

interested clinicians recording the specific behaviour of patients afflicted with particular 

damage until such time as the patient's brain could be investigated pathologically. Even 

the invasive methods of twentieth century surgeons couldn't provide a complete picture of 

functional anatomy as stimulations of the exposed cortex still only provide surface 

topography: the surface of the cortex being the only part of the brain accessible to the 

scalpel or electrode.

1.3 Neuroanatomy and physiology

Neuroanatomists define the human brain in teRMS of grey matter and white matter, a 

distinction clearly discernible in the structural images provided by magnetic resonance 

scanners (fig. 1.2). The grey matter makes up the cortical layers. The white matter refers 

to the white nerve fibres connecting the two hemispheres together, passing sensory 

signals throughout the cortex.

Grey matter is one of the most metabolically active tissues in the body using almost 

exclusively oxygen and glucose for its function and consequently needing a continuous 

and plentiful supply of blood. A delicate balance of oxygen and glucose concentration is 

required for efficient functioning of the brain and this is entirely dependent on the body's 

ability to regulate the blood supply, a process referred to as autoregulation. During 

autoregulation the cerebral blood volume (CBV) can increase (by vessel dilation) to retain 

a constant rate in cerebral blood flow (CBF). Once maximum vessel dilation is reached 

and total blood volume can no longer increase CBF will fall. Normal mean CBF is kept 

constant by this autoregulation at a level of about 50-60 ml/min/lOOg of brain tissue. The 

normal flow in grey matter is slightly higher than that of the mean, at 65-85 ml/min/lOOg
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Figure 1.2. Axial images showing transverse slices through the basal ganglia. The regions of white and 
grey matter are clearly discernible in the T1 MR image (from a Seimens, Magnetom 1.5T scanner). The 
SPECT " mTc HMPAO rCBF image (from a Strichman Medical Equipment SME810 scanner) shows 
how the differences in metabolic activity of in the two different brain tissues are reflected by their blood 
flow.

and is lower in white matter, at 27-33 ml/min/lOOg. Normal mean perfusion is possible 

down to 20 ml/min/lOOg CBF since the brain can compensate with a corresponding 

increase in oxygen extraction. Autoregulation begins to fail below this at approximately 

15 ml/min/lOOg, causing ischaemia (restriction of blood to the tissue) which if prolonged 

will cause irreversible damage. The disruption of autoregulation through external injury 

or disease has a profound effect on the function of brain tissue. Uncontrolled increases in 

glucose levels after head injury or decreases in blood flow from stenosis of the blood 

vessels occurring in cerebral vascular disease will cause irreparable damage and 

eventually death of the surrounding tissue.

The level of CBF and CBV is clearly related to oxygen extraction rate and consequently 

the function of the brain. More than 100 years ago scientists were able to establish that 

the level of neuronal activity dictated the level of local blood supply in the brain. Later, 

when the imaging of cerebral metabolic parameters was possible using emission 

tomography techniques scientists were able to establish that increased blood flow was 

required for the increase in glucose consumption by the neuronally active areas (3,4). 

Interestingly they also found that the corresponding increase in oxygen consumption was 

slightly smaller than the rise in blood flow (5). As a result of this mismatch between 

demand and supply the blood leaving the activated cortical region is more oxygenated
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than normal, a fact that gave rise to the now rapidly expanding field of functional 

magnetic resonance imaging (fMRI).

The study of CBF, therefore should enable us to investigate brain function in both the 

normal and diseased state. One method of doing this is to radiolabel molecules that can 

cross the fully functioning blood brain barrier (BBB) and so distribute according to blood 

flow in the brain tissue. The emission from these distributed radiolabelled molecules can 

then be picked up by an external detector. The first in vivo images of CBF using 

emission computed tomography imaging were provided by detecting the radioactive 

emissions from inhalation of radiolabelled (15C )02 (6), and intravenous injection of 

H2(150 ) (7,8) using positron emission tomography (PET). With the development of the 

ubiquitous technetium-99m (99mTc) radiochemistry, single photon emission tomography 

(SPECT), a much more widely available technique, could be used to image CBF (9-11). 

Technetium-99m hexamethylpropyleneamine oxime ( " mTc HMPAO) is now a well 

established radiopharmaceutical in nuclear medicine departments for studying CBF in 

various clinical conditions. This radiopharmaceutical has been shown to distribute in the 

brain as a function of regional CBF (iCBF) although the final distribution seems to 

underestimate CBF in regions of high flow (9-11). 99mjc HMPAO is administered 

intravenously and reaches the brain after a few seconds, 5%-6% of the total dose is 

extracted on its first pass through the brain where it becomes trapped in brain tissue due 

to a change in the lipophilicity of the molecule. This whole process takes 40-60 seconds 

allowing some of the tracer to diffuse back across the BBB in the first 2-3 mins after 

intraveneous injection (10). After this, the level of 99mxc HMPAO activity remains 

approximately constant over the next 8hrs (10) so that it is possible to image, much later, 

the actual pattern of blood flow occurring in the brain at the time of the injection. The 

time delay between injection and scanning is limited only by the decay time of the nuclide 

(T1/2 = 6hrs).

SPECT functional brain imaging using 99mjc HMPAO is a powerful clinical tool. 

Several clinical applications are now well documented (12). The study of CBF using
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Figure 1.3. A schematic diagram o f  the steps taken in a functional human brain mapping analysis o f  an 
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ROI - region o f  interest, SD  - standard deviation
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99mjc HMPAO has shown to be relevant to the clinical investigation of dementia, 

epilepsy, stroke and more recently the investigation of cognitive processing in both 

normal and abnormal brains (13-15), referred to as functional human brain mapping 

(FHBM).

1.4 Functional Human Brain Mapping Tools.

A functional human brain mapping investigation consists of:

•  scanning to acquire images,

•  image re-alignment to ensure common orientation,

•  a method of anatomical standardisation for between subject analysis,

•  statistical analysis, using either regions of interest or voxel-wise measurements.

The next section describes each of these components (see figure 1.3) to appreciate fully 

the context in which the subsequent investigations in chapters 3-6 were undertaken.

1.5 Imaging modalities

Advances in neuroimaging technology have meant that high resolution (temporal and 

spatial) functional and structural imaging are now routinely available. Magnetic 

resonance imaging (MRI), x-ray computed tomography (CT) and single photon emission 

computed tomography (SPECT) are now fundamental to the hospital departments of 

radiology and nuclear medicine. Positron emission tomography (PET) although usually 

in residence at centres of excellence (due to high capital and running costs) is nevertheless 

also used for clinical investigation.

X-ray CT is used for structural imaging and is made possible due to the differences in 

linear attenuation of x-rays by different types of body tissue and is excellent for imaging 

bone defects (see fig 1.4). However, contrast agents are needed to image blood flow and 

this method provides almost no contrast between white and grey matter in the brain.
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imaging
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special pulse 
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COST LOW MODERATE HIGH MODERATE HIGH

AVAILABILITY widespread widespread limited widespread limited

SPATIAL
RESOLUTION

<lmm < 1mm 2~3mm 
(very best) 
4-6mm 
(typically)

~ 6mm 
(very best) 
8-9mm 
(typically)

< 1mm

TEMPORAL
RESOLUTION

N/A N/A H2ls O 
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18f f d g
20mins
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seconds
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INTERVAL

N/A

N/A

N/A
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12 (max) 
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4 (max)
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(splitdose)
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unlimited

seconds

INTRUSIVENESS 
OF STUDY 
ENVIRONMENT N/A N/A

MODERATE 
experiments 
must be 
performed 
inside the 
scanner

LOW
experiments 
can be 
performed 
anywhere

HIGH
high
magnetic field 
levels, high 
noise levels 
during
scanning

Table 1.1 Comparative advantages and disadvantages of x-ray CT, MRI, PET, SPECT and fMRI for 
scanning of the human brain.

CT - computed tomography, MRI - magnetic resonance imaging, PET - positron 

emission tomography, SPECT - single photon emission computed tomography, BOLD 

-blood oxygenation level dependent, fMRI - functional magnetic resonance imaging, CBF 

- cerebral blood flow, HMPAO - hexamethyl-propylene-amine-oxime.
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Figure 1.4 Three different kinds of imaging modality of an axial slice taken through the basal ganglia; 
x-ray computed tomography (CT), magnetic resonance imaging (MRI-T1) and emission tomography 
(SPECT).

Conversely MRI (also used for structural imaging) provides very good contrast between 

white and grey matter but poor information on bony structures of the skull (fig 1.4). 

MRI, is able to distinguish between different tissue types by manipulating radiofrequency 

pulses to excite hydrogen nuclei within the body. This is done by detecting the 

differences in the resulting radiofrequency emissions due to the different tissue 

environments from the de-exciting nuclei. Functional imaging techniques PET and 

SPECT are based on the ability to detect gamma rays emitted from the human body after 

the introduction of trace radioactive substances or radiopharmaceuticals. By careful 

design of the radiopharmaceutical a range of physiological parameters in the body can be 

measured. In particular cerebral function can be assessed by measuring blood flow (fig. 

1.4) and volume, oxygen extraction, glucose transport and metabolism, and 

neurotransmitter function. For example, radiopharmaceuticals such as 99mxc HMPAO 

and " mTcECD with SPECT are used to image CBF; and (123I)IBZM is used with 

SPECT, to investigate dopamine receptor function. 18F FDG is used with PET to look at 

glucose consumption, and H2150  and C(150)2 to investigate CBF. More recently MRI 

has been able to provide functional information using a scanning sequence referred to as 

blood oxygenation level dependent (BOLD) contrast (5). This MRI technique can be 

used to detect an increase in oxygen levels of blood leaving a region associated with 

increased neuronal activity in the brain. The small changes in the external magnetic field 

produced by the difference in the magnetic properties of oxyheamoglobin and de-
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oxyheamoglobin can be detected when using the appropriate RF pulse manipulations. 

The advantage of this type of functional imaging over emission tomography techniques is 

that it involves no ionising radiation. However, the high magnetic fields used do pose a 

problem when imaging subjects with metal implants and the loud noise during acquisition 

makes mapping of any auditory stimulation difficult. Although a certain degree of spatial 

information is provided by an emission tomography functional image the anatomical detail 

is not apparent and the anatomical location in fMRI is only referenced to its structural 

MRI acquisition provided there is no movement by the subject between the two. As a 

consequence a method of linking structural information from either MR or CT to the 

functional information obtained from either SPECT, PET or fMR images is crucial.

1.6 Image Registration

Diagnostic imaging often involves combining structural images with sequential functional 

images (fig. 1.5) to monitor the progress and treatment of diseases such as dementia, 

cerebrovascular disease and brain tumours. The wide accessibility to these techniques 

has also allowed neuropsychologists to use them to assess brain function in groups of 

normal subjects. Multiple functional (and sometimes structural) images of each subject 

are required during several cognitive processing tasks to provide information for the 

subsequent analysis. Crucial to both these types of comparison is that the scans be 

aligned to precisely the same orientation so that the observer is looking at exactly the same 

view of the brain across all scans from the subject’s data set or the same view across a 

group of subjects. To achieve this, various methods of image co-registration have been 

developed which reorientate one of the scans (the sample scan) until each anatomical 

location corresponds exactly with the other (the reference scan). This process can be 

extended so that the data is also aligned along an accepted anatomical reference line (an 

aligned reference scan) to allow both inter and intra-modality comparisons.

Image registration is the term used to describe the method of determination of one to one 

mapping between co-ordinates in one (reference) image to those in another (sample)
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Figurel .5 Various different types of data that can be registered (yellow) for different comparisons (white).

image such that the points in each correspond to the same anatomical location. The 

simplest mapping or affine transformation is a rigid body transformation and can be 

described in matrix notation as follows:

fsi)
52

53

VJ

( 1 0  0 XtransN 

0 1 0  Ytrans 

0 0 1 Ztrans 

0 0 0 1 y

(r i \
R2

R3

V  J

S = MR (in matrix notation)

A rigid body transform consists of 6 parameters, 3 rotation and 3 translation, and is used 

when the distance between the points within the sample image is to be preserved for 

example for within subject imaging. The affine transform can be extended to 9 parameters 

to account for scaling differences that may be needed for inter-modality registration. 

Further parameters (usually another 3) can be added to transform differences in overall 

brain shape and are the basis of image standardisation techniques.
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The following sections describe the various techniques used to derive the transformation 

described above beginning with the rigid immobilisation techniques used by surgeons 

performing stereotactic surgery to the more sophisticated techniques utilising voxel 

similarity measures and high speed computing.

1.6.1 Image registration by immobilisation

Immobilisation methods are used to locate brain images in 3D space for the purposes of 

stereotactic surgery and radiotherapy. Surgeons use stereotactic frames bolted to the 

patient's skull, to locate lesions within and across different imaging modalities and to 

locate lesions within their operating space (fig. 1.6). These invasive methods are 

acceptable where a general anaesthesia has already been administered for the subsequent 

surgical procedures. For radiotherapy treatment less invasive methods of immobilisation 

have been developed when patient positioning must be reproducible on a daily basis over 

a treatment of 6 weeks. Immobilisation methods for radiotherapy are based on the fitting 

of individual moulds to either a patient's whole head (16) or their teeth (17,18). 

Published data report that reproducibility of positioning is of the order of 2mm (17-19) 

and sufficient for the purposes of radiotherapy beam treatment. Radiologists and 

surgeons commonly use different types of imaging to assist in diagnosis or in the 

planning of treatment. PET/SPECT imaging of a brain tumour may be required alongside 

the patient’s MRI scan for a better representation of the extent of tumour volume or 

assessment of recurrence. MRI and x-ray CT images may be combined for a patient's 

radiotherapy planning so that better delineation of the brain lesion is obtained from the 

MRI while the CT image provides information essential to radiation dose volume 

calculations. Visualising between modalities when using immobilisation devices is easily 

achieved by fixing external markers to the patient's head frame/holder. The markers can 

then be filled with an appropriate material for visualisation between imaging modalities 

e.g. copper sulphate filled tubes and spheres, glass beads, vitamin E tablets,
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Figure 1.6 shows the use of a stereotactic frame visible in both CT (left picture) and MRI (right picture) 
External markers (or Fiducial points) are used to register these two images of the same patient to one 
another.

oil Filled tubes, staples, polyvinyl alcohol gel markers, spheres/discs of " mTc and v- 

shaped markers of aqueous solutions of gadolinium are all suitable.

1.6.2 Image registration by external landmark matching.

Immobilisation devices are not 'patient friendly' and rigid fixation is unacceptable for the 

ever increasing numbers of serial diagnostic scans being carried out and for normal 

subjects being scanned for research studies where the position of the head in the scanner 

for any one scan is not crucial to the treatment/study process. Neuroimaging scientists 

recognised that if fiducial markers could be fitted to immobilisation frames for 

visualisation between imaging modalities (prospective image registration) they could also 

be used to achieve the registration retrospectively. Evans et al at the McConnell Brain 

Imaging centre in Montreal, as part of their optimisation of techniques for the functional 

imaging of patients (20), developed a method that involved the use of a 'soft frame' on 

which to mount the fiducial markers in conjunction with a rigid head mould immobiliser. 

Thin catheters were mounted on elastic strips which could be pulled over the head and 

held in place by elastic chin straps and Velcro. Other groups (21,22) used the skull as the 

frame and fitted fiducial markers directly to the skin in low movement places such as the
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naison (connection between the nasal and frontal bones of the skull) and the preauricular 

points (just in front of the earholes). Registration of the images is then achieved, after 

acquisition, by the user locating the fiducial markers within both image volumes and a 

computer algorithm finding the minimum distance between these point pairs by some 

iterative minimisation calculation.

1.6.3 Disadvantages o f image registration by external landmark matching.

Although markers have the advantage that inter-modality registration is possible as long 

as the marker is visible in each modality this method has a number of disadvantages. 

First there is the problem of movement of the markers from their position between scans 

which will occur whether they are attached to skin or an elastic strap. Secondly all 

scanning needs to take place on the same day to ensure consistency otherwise semi­

permanent ink/tattoo is used to mark the position of the fiducials before they are removed, 

certainly with some degree of inconvenience to the subject. This movement is not 

insignificant Strother et al 1994 (23) declare that in a comparison of 6 different methods 

including principal axes, surface contours and anatomical landmark techniques "fiducial 

markers that are not rigidly fixed to the skull are inaccurate compared to other 

techniques". Thirdly time taken to locate the markers in each image increases with 

number of markers required for accurate registration. Although no expertise is required 

the task can be lengthy and tedious. The errors associated with the location of the centre 

of the marker due to partial volume effects, interslice gaps in the data and point spread 

functions inherent in tomographic scanning can also effect the accuracy of this technique. 

Some groups have developed methods to combat this (21) but require elaborate 

construction of 3d markers. This solution brings with it its own problems. The larger the 

marker the more they may impinge on the data acquisition. For example oil filled beads 

while ideal for achieving a uniform distribution of isotope cannot be used in MRI because 

the chemical shift induced by the field will introduce distortion in the reconstructed image. 

For SPECT, 57Co is the isotope of choice for markers and has an energy of
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Figure 1.7 shows an example of how internal/anatomical landmarks can be used to register two serial 
MR images from the same patient.

120keV while " mTc, the most commonly used SPECT isotope, has an energy of 

140KeV. Dual energy acquisitions are easily obtainable but care must be taken to make 

the activity in the fiducials hot enough that the markers are not swamped by the scatter of 

" mTc but not so hot as to cause streaking in the main body of the image.

1.6.4 Image registration by internal landmark matching

A solution to some of these problems is to use the brain structure itself. Well defined 

anatomical markers (fig. 1.7) inherent in the brain would avoid errors associated with 

skin movement, repositioning and artefact produced by the marker medium. Evans et al, 

who in 1991 (24) had been using the external fiducial marker technique recognised the 

value of the internal marker method and developed a protocol that used 10-20 anatomical 

landmarks (25). Identification of the landmarks took approximately 20-30 mins. per 

subject and included such structures as; head of caudate, thalamus, frontal, temporal, 

occipital poles, sylvian fissure, occipito-cerebellar junction and the superior lateral aspect 

of the parietal lobe. Other groups using these types of methods included Hill et al 1991 

(26) to register CT and MR images as an aid to radiotherapy treatment planning, and Ge 

et al 1994 (27) by identifying the inter-hemispheric fissure.
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Figure 1.8 Contours used to define the surface of the brain for use in the "head and hat" method of image 
registration.

1.6.5 Disadvantages o f  image registration by internal markers

The biggest errors incurred using this type of image registration are associated with the 

mismatch of information between the different image types. It takes skill and time to 

locate enough common landmarks between an MRI and a CBF SPECT image and is 

therefore not entirely suited to use in a busy routine imaging department where time is a 

premium. Nevertheless, they are particularly good for registering images where there is 

not a substantial amount of overlapping information. An alternative method of 

registration using internal markers is to use the surface of the brain itself (28) (fig. 1.8). 

This surface matching technique is more commonly referred to as the "head and hat" 

method, where a set of points defining the surface contours of the brain in one image (the 

hat) is matched to another set of points defining the surface contours in another image (the 

head). The hat is 'put on' to the head by using the same kind of iterative minimisation 

algorithm that the previous marker methods use. The points to be matched are the 

intersections with the head surfaces of a ray drawn from a contour in the transformed hat 

to the centroid of the head surface contour. Surface contour methods are an improvement 

on point landmarking methods for inter-modality registration of whole brain images since 

the surface of the brain is easy to determine, independent of image type. However, they 

do not perform well in situations where there is not much overlapping information. For



example neither MRI or x-ray CT routinely include the whole head surface. Despite this, 

the technique remains popular, with some modifications such as the automatic detection 

of the surface contours using edge detection algorithms (29,30).

1.6.6 Image registration by voxel similarity methods.

The ultimate goal of any image registration method is that it should be objective and 

robust. By replacing the observer/user with a similarity measurement that can be 

evaluated by computer between the two images, automated methods of image registration 

are the ultimate in objectivity, if not robustness. Methods that allow the accuracy of a 

registration to be assessed by matching corresponding voxels between datasets have come 

to be known as voxel similarity measures. Image registration using a voxel similarity 

method is achieved by optimising a measure or cost function based on pairs of overlying 

voxels.

In 1983 Venot et al (31) used a similarity measurement based on an evaluation of a 

stochastic sign change function in order to centre an image with respect to some standard 

axes to correct for rotation in the axial plane. Mintun et al 1990 (32) subsequently 

exploited this method to correct for rotation in the axial and coronal plane before fitting an 

estimate of axes orthogonal to a line through points defined by anatomical landmarks 

(anterior aspect of the corpus callosum, the most anterior point of the frontal lobe and the 

posterior of the occipital lobe). A similar technique was developed by Junck et al 1990 

(33) using an index of similarity that corresponded to maximisation of the cross 

correlation product between the left and right hemispheres. No attempt was made to align 

the images with respect to standard axes, instead the method was used to ensure the 

registration of serial emission tomography images of the same patient.

Over the next decade a myriad of techniques were developed which used the similarity 

measures of two images as a means of registration; stochastic sign change (34,35), 

correlation function (33), correlation coefficient (36), sum of absolute differences (37),
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optical flow (38), edge detection (29) relative entropy (39), variance (40) and sum of 

squares (41). An excellent review comparing some of these techniques are given in the 

book Interactive Image-Guided Neurosurgery (42) and the Journal of Computer Assisted 

Tomography (1996) "Comparison and Evaluation of Retrospective Intermodality Brain 

Image Registration Techniques" (43).

1.6.7. Disadvantages o f image registration using voxel similarity 

measures.

Criticisms levelled at these methods are that they are computationally expensive and 

cannot be employed for intermodality image registration. The former criticism is now no 

longer applicable with the ultra fast generation of co-processors of the order of 300MHz 

and the manipulation of computer algorithms to perform complex matrix operations 

allows registration of image pairs to be performed in a matter of minutes. The latter 

problem of intermodality registration has been tackled by various groups who have used 

pseudo emission tomography images. In this the structural images (usually MR) are 

transformed into emission tomography images (usually H2(150 ) PET) by assigning each 

tissue type (grey and white matter, CSF) a corresponding PET intensity value e.g. a 1:4 

ratio of voxel values in white compared to grey matter, convolving the image with a 

Gaussian spatial smoothing filter and adding noise to produce a pseudo functional image 

of blood flow. This pseudo functional image can then be registered with the true 

functional image, the transformation parameters of which can then be applied to the true 

structural image to achieve registration with the true functional image. This rather 

ingenious way of dealing with the problem (illustrated in fig. 1.9) is now a firmly 

established method of inter-modality image registration (41,44) although other more 

direct methods are available (39). However, with this method of image registration, 

robustness is still a problem and deviations in normal anatomy or truncation of image 

volume still remain a problem for most of these techniques due to the possibility of these 

types of iterative algorithms getting stuck in a local minimum.
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Figure 1.9 shows how inter-modaiity image registration by voxel similarity measures is achieved using 
pseudo functional images.

The goal of all these image registration techniques is to ensure that the signals measured 

accurately reflect the functional location in the corresponding structures. The algorithms 

described above account for differences in alignment of serial images of the same subject, 

location in reference space for inter-subject comparisons and even account for overall 

changes in brain size and shape. However, there still remains a significant error due to 

differences in individual gyral anatomy between subjects.

1.7  Im age standardisa tion  .

As the number of groups involved in neuroactivation imaging studies increased it became 

clear that a common reference frame with which to compare measurements between 

different subjects and imaging centres was needed (fig. 1.10). Fox et al 1984 (45) using
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Figure 1.10 Illustrates how a common reference frame can be used to compare functional scans from 
different subjects.

z
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Figure 1.11 Show the position of the 'Talairach axes' through the mid sagittal plane. The positive X- 
axis being orthogonal to both Y and Z is orientated out of the page.
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the principles of anatomical landmark image registration developed a method of locating 

functional images within a standard space based on the identification of the line through 

the anterior and posterior commissures (AC-PC line). The orthogonal co-ordinate system 

Fox described had been developed originally by Talairach and Toumoux in 1967 (and 

later published as an atlas in 1988 (46)) to be used in conjunction with an atlas of a 

middle aged, French woman's brain labelled with anatomical references in 4mm thick 

axial slices. This co-ordinate system, now commonly referred to as "Talairach space", is 

set up so that the Y axis runs along the AC-PC line, the Z axis at right angles to this 

through the mid point of the AC-PC to the vertex of the skull and the X axis orthogonal to 

both of these (fig. 1.11). Since the AC-PC line is very difficult to identify on functional 

images Fox et al 1984 (45) transformed the functional data into Talairach space by 

identifying points relative to the AC-PC line. A line drawn through the glabella and inion 

as defined from a lateral skull x-ray film was assumed to be parallel to the AC-PC line 

and used as a reference from which to estimate this line. Results showed that estimation 

of the AC-PC line using this method was robust and that the location of the estimated AC- 

PC line was always rostral to the true AC-PC line and roughly parallel with a mean angle 

1.05°, converging anteriorly. With these adjustments the estimated AC-PC line 

approximated the true AC-PC line well. Since Fox's method required each subject to go 

through an extra procedure, groups wanting to make the whole experience for normal 

volunteers as simple as possible developed methods that avoided the use of structural 

imaging altogether and were able to identify the AC-PC line directly from functional 

images. Friston et al 1989 (47) developed a technique that required the user to identify 

the ventral aspects of the anterior and posterior corpus callosum, the thalamus and the 

occipital pole directly from the coronal slices of a perfusion PET scan. A regression 

calculation was applied to these points to find the best straight line fit which was then 

assumed to be an approximation of the true AC-PC line. Results showed that this method 

agreed well with the accuracies reported by Fox et al in 1985 (45) with the estimated AC- 

PC line being rostral to the true AC-PC line and the mean angle of convergence being 

0.13°. These methods remain popular with modifications to remove user interaction and
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Figure 1.12 The figure above shows how a signal may be 'diluted' when averaging across different 
subjects due to differences in individual gyral anatomy.

extend the algorithms to take account of individual variations in brain shape and structure 

(35,48).

This method of standardising space became fundamental to the expanding field of in-vivo 

functional brain mapping. While the need to locate structure and function within a 

standard reference frame is necessary for individual patient assessment, and in some 

cases their consequent surgery, the facility to match exactly each person's individual gyral 

structure to that of a reference is also important when performing neuroactivation 

experiments across a group of subjects. The standard protocol to maximise the signal 

produced by neuroactivation paradigms is to pool data from multiple subjects. If it were 

possible that all brains could be made identical anatomically by exactly registering them 

with one another then the problem is solved. Unfortunately, even after accounting for 

differences in orientation and size there are still residual errors in individual detail 

anatomy which may have serious consequences for subsequent measurement techniques. 

For a subject with relatively less curvature (red region of interest (ROI) in fig 1.12) than 

the Talairach brain over the frontal lobe, the location of a cortical region as defined by the 

Talairach atlas may in fact lie over extracerebral structures. For an individual with greater 

curvature (blue ROI in fig 1.12) this same Talairach region may lie over white matter. A 

simple solution is to smooth all the images before analysis, using a Gaussian spatial filter 

to reduce this effect of anatomical mismatching by smearing out structures to get more of
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Figure 1.13 A schemtaic of the Rigid body, affine transfoRMS and plastic transformations used for 
image registration.

an overlap between subjects. However, this smearing also has the obvious effect of 

reducing the resolution of the image and diluting the amount of change in measured signal 

in each individual. Groups that had already extended the 6 parameter rigid body 

transformation to a 9 parameter affine transform to allow for scaling in the 3 axes were 

able to extend the transform to 12 parameters (38,49)(fig. 1.13). These 3 extra 

parameters accounted for differences in overall brain shape by introducing shearing 

transformations to the registration method which reduces the problem described above, 

removes the need for such heavy smoothing but leaves the problem of individual gyral 

anatomy, a significant problem when unsmoothed PET images regularly achieve 

resolutions of the order of 6mm.

Matching of images at this level can be achieved using nonlinear or "plastic" 

transformations (bottom row fig. 1.13). These transformations can be carried out by 

matching structures recognisable in both the atlas/template and individual brain image
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anatomical landmarks identified on an MRI 

equivalent landmarks identified on the atlas 

position of matched landmarks

direction of movement of the atlas markers with respect to the MRI markers.

Figure 1.14 shows how a standard brain template outline can be deformed to fit an individual subject's MR 
scan. Slices taken through the midline sagittal plane of a T1 MRI.

such as points or edges representing anatomical structure (50-52) (fig. 1.14). A standard 

schematic anatomical ROI template derived from the Talairach atlas or a cryosectioned 

post mortem brain (see fig 1.14) can be altered to fit the subject's own anatomical 

structure. A computer algorithm records the changes made in the template and applies 

them to the subjects images so that they now look like the standard template. 

Alternatively, automatic techniques based on pixel intensity distribution (48,53) can be 

used to match a subject's images to a standard image template. A standard image is 

obtained by averaging brain images closely representing Talairach space (see fig 1.15). A 

standard distribution of voxel intensity is derived from the standard image, which can 

then be used to map the distribution of voxel intensities from an individual subject's 

image.

Original standardisation techniques relied on the information provided from a single 

subject’s anatomy (46,52,54). However, more recent methods have attempted to define
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Figure 1.15 shows 3D sections through the sagittal, axial and coronal planes respectively of the PET 
CBF template used by SPM96.

the standard template in teRMS of an average of the general population. The PET template 

used by Friston and colleagues to spatially normalise all emission tomography is an 

average of 6 PET H2(150) images obtained routinely that best represented Talairach space 

on visual inspection (Fig. 1.15). Evans and colleagues (25) expanded their single MRI 

template from a single individual to include 50 high resolution MRI 3D brain images on 

which a team of experts defined various gyral and sub-cortical structures. This template 

can be accessed via the internet where a database of both Talairach labels and statistical 

probability  maps of normal anatom ical structure can be found 

(http://ric.uthscsa.edu/projects/talairachdaemon.html) (fig. 1.16). The anatomy as 

defined by the statistical probability maps is based on regions defined by the 50% 

likelihood of finding a particular anatomical boundary within the population of 50 normal 

MR images of the brain.

1.8 Im age analysis

The end point of this image standardisation is to assess the content of the images, either 

qualitatively or quantitatively. The rest of this section describes two different methods of 

obtaining quanititative data from functional images of the brain; region of interest 

measurements and voxel-wise statistical analysis.
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Figure 1.16 shows axial slices (ac-pc -16mm, ac-pc +lm m  and ac-pc +20mm) from the Talairach 
Daemon (http://ric.uthscsa.edu/projects/talairachdaemon.html). The atlas is colour coded according to the 
statistical probability maps based on regions defined by the 50% likelihood o f finding a particular 
anatomical boundary within the population of 50 normal MR images of the brain.

E frontal lobe H  cerebellum occiptal lobe M temporal lobe

1.8.1 Image analysis by region o f interest methods.

In clinical practice, emission tomography scans are valuable tools where qualitative 

features of an image provide diagnostic and prognostic guidance, but problems arise 

when quantitative data is needed. The immense number of individual picture elements 

(pixels) in each scan means that extensive computation is inevitable and the localisation of 

the quantitative measures in teRMS of their anatomical location assumes expertise in 

neuroanatomy. Conventional methods of analysing brain PET and SPECT images 

involve the placement of a number of regions of interest (ROI) on the image and 

measurement of the mean counts within those regions. Global differences in the overall 

number of counts due to differences in administered dose, uptake fraction in the brain as 

well as physiological changes in the subject (mood changes, physical activity) are 

accounted for either by dividing each ROI value by the average global value or by a 

suitable reference region such as a whole slice ROI value or the cerebellum ROI value. 

Regions of interest drawn either directly on to the emission tomography scan or with 

reference to the same individual's anatomical scan provide both data reduction and a 

means of establishing an anatomical reference (fig. 1.17).
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Figure 1.17. a) ROIs drawn direcdy on to a SPECT image of blood flow and b) the regions 
MRI before superimposing on to the same individual's functional image.

drawn on an

1.8.2 Disadvantages o f  image analysis by region o f  interest methods.

The reduction of data by collapsing a group of contiguous pixel values into a single mean 

value although useful as a data reduction step runs the risk of losing potentially valuable 

information. Large ROIs may lump functionally distinct areas together and so 'hide' 

changes or abnormalities affecting only part of the ROI or if a significant change is 

detected the ROI may cross functional boundaries hiding the true location of the change. 

The anatomical localisation aspects of ROI methods also have certain drawbacks. The 

placing of an ROI is entirely dependent on the investigator's ability to identify brain 

structures and a degree of expertise in human neuroanatomy is needed for this. The size 

and shape of the region is also important since the more closely the dimensions of a 

region conform to the area of change the greater the measured magnitude of change will 

be so a small ROI will detect a regional difference with greater sensitivity than a large 

ROI. Small ROIs, however, have greater chance of missing the area of change altogether 

if the placement accuracy is wrong by even a small amount. Similarly an ROI that 

confoRMS precisely to the shape of the structure will detect a change with greater 

sensitivity than a geometrically regular shape, but accuracy of positioning is paramount to 

this sensitivity.
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In an attempt to combat the limitations of traditional ROI methods of analysis, various 

groups began to develop computer based algorithms designed to make the process more 

objective and less time consuming. Junck et al 1988 (33) used an automated routine to 

draw ROIs directly onto the functional image to remove observer bias in the placement of 

ROIs. Following image registration the cortex of the brain was defined by the automatic 

delineation of the outer rim by thresholding of the voxels at 30% of the global mean and a 

concentric ring 1.5cm inwards. Cortical regions were then defined by 8 regions per 

hemisphere approximately 4cm2 with the cerebellum defined manually. Although 

observer bias is removed using this method there remains the problem of these regions 

'lumping' together functionally distinct regions or crossing functional boundaries. Other 

methods removed observer bias and to some extent removed the problem of 'lumping' 

functionally distinct regions together by using ROI templates defined by a standard 

template of brain structure (20,52,55) that could be warped to fit each individual's scan. 

Evans et al 1988 (20) used a high resolution MRI from a single subject and later (25) an 

average of approximately 50 individual MR scans to define a template with 56 different 

ROIs. Seitz et al 1990 (56), Toga et al 1994 (52) and Bohm et al 1989 (55) all used an 

individual cryosectioned human brain at 4 slices per 1mm to define their ROI template of 

over 250 separate ROIs. High speed computers allowed the lookup tables storing the 

ROIs to be easily usable if not completely objective. The template can be scaled and 

translated to fit the individual's anatomy using powerful graphical tools that, although 

automated require a certain degree of user input. Each ROI can be re-drawn, if needed, to 

fit more closely the subjects anatomy before it is superimposed on to the functional 

image. The functional value for each ROI is calculated as the area weighted average 

which can then be grouped into larger anatomical areas if needed. Further volumetric data 

can be obtained by summing these areas over a number of slices from the image. 

Although these methods of using predefined ROI templates do not need the abilities of an 

expert anatomist, Collins et al (25) noted that misplaced ROIs (due to mis-registration) 

could lead to a reduction of 50% in measured signal. The ultimate solution to problems 

of observer bias and the anatomical versus functional structure definitions is the
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development of voxel based statistical analyses, where the regions are effectively reduced 

to single voxels.

1.8.3 Image analysis by voxel-wise methods.

The methods described above stemmed from the need to find quick, reliable and objective 

methods of handling the vast amount of functional data acquired from patient scans. But 

in another branch of assessing human brain function, scientists were looking to find ways 

of measuring the changes in the brain produced not by disease or drugs but by thought. 

In this area there is no preconceived notion of structure. The original electrical external 

stimulation experiments in the early 20th century had been able to map the cortex 

associated with the senses. Indeed the initial "activation" experiments performed on 

normal humans in the early 80's using straight forward paired functional image 

subtraction and ROIs easily detected the robust regional changes that occur in the primary 

sensory and motor cortex due to some external stimulation (32,57). However, the more 

subtle activations of human functions such as memory or learning were proving to be less 

easily detectable using these methods and required a different "top-down " approach - a 

method that did not depend on anatomically defined ROIs. Instead neuroscientists 

exploited the field of parametric statistics in attempts to maximise the potential information 

contained in the tens of thousands of pixels within each scan (57-61).

The small changes in regional cerebral blood flow that must be produced by neuronal 

activity within the brain when performing higher cognitive processing were proving 

elusive and so groups looked towards the traditional methods of functional brain mapping 

for a way to enhance these small changes against the background of noise. Electrically 

evoked potential studies had long been using methods of signal averaging over time as a 

way of finding the tiny electrical signals produced by the brain in response to a particular 

stimulus. Fox et al 1988 (57) used the same principle to average a detected signal over 

space. By averaging the measured signal across multiple images of the same brain state, 

random background noise will cancel out while consistent focal responses will sum and
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therefore increase the signal to noise ratio. Fox's method reported these regions of local 

minima or maxima as spherical ROIs of fixed size placed at the centre of mass of the 

regional change and its location in three dimensional space. The signal was then 

discriminated from noise using omnibus testing by the gamma-2 statistic. Significance on 

a local level was further determined by performing a t-test on voxels in those regions that 

survived the omnibus testing. The advantage of this approach was that by identifying 

only the location and magnitude of change without attributing shape or extent, this 

technique ensured no signal loss implicit in the use of preselected ROIs. Fox's method of 

locating significant blood flow change in space is referred to as change distribution 

analysis (CDA). Other similar voxel-wise analyses developed subsequently 

(58,59,61,62), owe much to the form that Fox's change distribution analysis takes, their 

final form being dependent on the methods of voxel intensity normalisation, modelling 

variance, testing for local significance and experimental design (group comparisons or 

individual subject assessment).

•  Voxel-wise analysis of individual patient data.

This type of analysis involves the comparison of the patient scan with a normal or disease 

reference data set These voxel comparisons can be expressed as Z-scores (the number of 

unit standard deviations from the reference mean) (63), (64) or in terms of a principal 

components analysis (PCA) (65), (66) where the distribution pattern of voxel intensity in 

the patient scan is compared with the known distribution pattern of voxel intensity in the 

reference scans. Significance is assigned to how well the two patterns match. These 

methods rely on one measure (scan) per subject per brain state and use a proportional 

scaling method to account for global voxel intensity differences.

•  Voxel-wise analysis of different groups.

This type of analysis involves the comparison of groups of scans by testing for the 

differences in the means of the two data sets taking in to account the variance in the data. 

The variance is modelled either at a local level for each voxel included in the analysis
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(59,67) or at a global level using an average variance for all voxels included in the 

analysis (61).

1.8.4 Limitations of image analysis by voxel-wise statistical methods.

The disadvantages of using voxel-wise methods for the analysis of functional brain 

images is that they are very sensitive to any pre-processing of the images and underlying 

statistical assumptions made about this data.

Pre-processing of the images includes image registration/standardisation, spatial 

smoothing and removal of global voxel intensity differences. Errors in standardisation of 

the images are assumed random across a group of subjects and are likely to manifest 

themselves as false negative results (type n  errors) in the statistical analysis, a problem 

not confined to voxel-wise analysis (see the ROI definition displayed in fig 1.12 frontal 

lobe curvature). Spatial smoothing is performed prior to analysis to improve the signal to 

noise ratio, with filter sizes ranging from 10mm FWHM - 20mm FWHM for emission 

tomography images. The amount of smoothing affects the estimate of variance used for 

any subsequent statistical analysis; too much smoothing resulting in type n  errors and too 

little smoothing results in type I errors (false positive results). Differences in global 

intensity voxel values must be accounted for (global intensity normalisation) if the local 

changes in voxel values are to be measured. Global differences can be removed either by 

scaling all the images in the data set to some reference voxel value (much like the method 

used in conventional ROI methods) or by including the global differences in the statistical 

analysis itself by modelling it as a confounding covariate in an analysis of covariance 

(AnCova) method. Traditionally scaling has always been the method of global intensity 

normalisation but for normal subjects where the average global voxel value is not going to 

differ much between subjects it is thought that the AnCova model is more appropriate, 

avoiding the occurrence of type n  errors.
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Statistical assumptions made about the data include the use of parametric analysis 

methods that assume that the population distribution from which the sample is drawn is 

known. This assumption is the basis on which the rest of the analysis rests. The 

variance in the images that remains after the pre-processing steps is calculated either at 

each voxel (59) or an average variance is calculated for all the voxels included in the 

analysis (61) before being used in the statistical test at each voxel. A smoothing estimator 

is then used to calculate the variance (61). This estimation of variance will have a 

profound effect on the subsequent test statistic used. Finally there are differences in the 

interpretation of the significant results obtained from an omnibus testing of the data. 

Significance of regions of change in the presence of multiple statistical tests can be based 

either on the number of voxels (extent) (68) reaching significance after omnibus testing or 

on the value of these voxels (height) (59), bearing in mind the non-independent nature of 

the smoothed voxels included in the analysis. The most recent developments in voxel- 

wise statistical analysis include tests for significance based on both extent and height of 

voxels (69,70).

A considerable amount of investigations have been published using these voxel-wise 

statistical methods. Initial reports confirmed the results of brain lesion studies and some 

PET investigations have been cross-replicated but with the number of investigations 

increasing there appear to be more and more discrepancies. Despite the scope for 

differences in the statistical methods described above it would seem that these 

discrepancies may be more to do with the differences in acquisition parameters and 

paradigm design than with the validity of the voxel based analyses themselves (58). This 

method of image analysis was developed for PET and later extended to fMRI 

investigations of neuroactivation where the ability to perform multiple image replications 

of brain states lends high statistical significance to their results. More recently, however, 

investigations are being performed with fewer numbers of subjects and limited numbers 

of replications per brain task. In particular SPECT studies of neuroactivation, where 

there are difficulties in performing replications of tasks due to the nature of the
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radiopharmaceutical used with this technique, are vulnerable to false negative errors due 

to the consequently limited degrees of freedom.

1.9 Plan o f  investigations and aims.

The future of functional brain mapping must include the development of a standardised 

system that includes all of the elements described in this chapter; anatomical location in 3 

dimensional space, the applicability of this method across subjects and imaging modalities 

and the careful design of statistical analysis methods used to isolate regions of the brain 

responsible for particular cognitive processes. But "the exchange of information, the 

credibility of results and the power of these techniques will in part be determined by our 

ability to find standardised, reproducible and accurate methods of analysing data from 

these sources", cautions Mazziotta in an extract from his editorial in a 1984 edition of the 

Journal of Cerebral Blood Flow and Metabolism (71). This thesis describes the 

investigations used to establish - from existing methods - a standardised, reproducible 

and accurate method of analysing data from 99mjc HMPAO SPECT images of cerebral 

blood flow.

Chapter 1 outlined the development of functional human brain mapping in both normal 

and abnormal subjects and included a short description of normal human brain function 

with regard to autoregulation of blood flow and its coupling with cognitive function. 

This was followed by a more detailed explanation of the various components of a typical 

FHBM analysis including image registration, image standardisation methods and 

statistical analysis. The advantages and disadvantages of the components were also 

described in order to appreciate fully the context in which the subsequent investigations 

were done. Chapter 2 lists the various steps involved in performing a FHBM analysis 

with SPECT and describes the image acquisition and processing of images used in the 

experiments. Chapters 3 - 7  describe five different experiments linked by the overall 

theme of validating and optimising the methods used when analysing SPECT CBF with 

SPM. Chapter 3 outlines the methods used to create the challenge conditions devised to 

validate the image standardisation facility. The results of these validations are presented
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and discussed in teRMS of providing the best methods of image standardisation for non- 

optimal image data sets. Chapter 4 uses the optimal image standardisation method 

determined in chapter 3 to investigate the application of a SPM analysis to images of 

individual patients presenting with symptoms of dementia. The object was not to use the 

method to automate the diagnostic interpretation of images but to determine whether it 

could provide an objective measurement of abnormality which might assist in the expert 

reading of scans. The results are presented and the routine use of SPM in a nuclear 

medicine department is discussed. Chapter 5 outlines the methods and challenge 

conditions used to modify the acquisition protocol of "H Tc HMPAO SPECT images for 

analysis by SPM methods, in particular whether SPECT studies of neuroactivation might 

benefit from a similar approach used in PET, i.e. increase the number of scans per task 

and accept poorer individual scan quality. The results are presented and discussed in 

teRMS of their suitability for use in neuroactivation studies using SPECT. Chapter 6 

uses the optimal study design determined in chapter 5 to investigate vagal nerve 

stimulation as a treatment for intractable epilepsy. Chapter 7 uses the same design to 

study the role of the medial temporal lobes in novelty detection by contrasting it with their 

role in the encoding and/or consolidation into long-term memory of associative 

information. The results for each of these neuroactivation studies are discussed in teRMS 

of their contribution to the knowledge of human brain function. Finally chapter 8 

outlines the conclusions drawn from each of these experiments and their application to the 

future use of SPECT in functional human brain mapping.
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CHAPTER 2

Image acquisition and image analysis tools.

This chapter describes the various steps involved in using SPECT with the 
functional human brain mapping software (SPM) including image acquisition, 
image registration, image standardisation, image reslicing, smoothing, global 
normalisation, statistical analysis and statistical inference common to all the 
subsequent investigations (Chapters 3-7).

2.1 Im age acquisition

All images were acquired using the SME 810 Novo (Strichman Medical Equipment) 

dedicated SPECT section scanner which consists of an annular array of 12 detectors with 

an 8 inch diameter field of view. There is no rotation of detectors. Each has a point 

focused 800 hole collimator, and performs 3D rectilinear translations orthogonal to its 

axial direction. Each detector of an opposing pair is responsible for scanning the half 

volume nearest to it and produces an image of the radioactive distribution that is in the 

field of focus, which will also contain additional blurring from regions above and below 

the focal plane. An iterative procedure is then used to back project the data and restore the 

activity lost to attenuation. First the head boundary is determined by fitting an ellipse to 

each slice in the image such that the concentration of the activity is zero outside the ellipse 

and non-zero inside. Then, assuming that the attenuation coefficient is homogeneous 

along the absorption length as the photon travels through the brain tissue, skull and scalp
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Figure 2.1 Schematic arrangement of the detectors and the rectilinear motion during scanning of the 
SME810 brain SPECT gamma camera.

and using a 'Chang like' attenuation correction (72) an attenuation map is constructed. 

This map is constructed for each of the 12 detectors and specifies, for every point in the 

field of view, the probability that a photon emerging from that point will reach the 

detector. The map can be applied iteratively (minimum of 1 iteration and a maximum of 3 

iterations) to the raw data to obtain an estimate of the radio-tracer distribution in the head.

The scans were acquired using either 500MBq 99mxc HMPAO described as 1 unit dose, 

slice thickness is 12mm, scanning time is 120secs per slice (1 unit time), and slice 

spacing 6mm (6mm = lunit separation) or 250MBq 99nrpc  HMPAO (1/2 unit dose), slice 

thickness is 12mm, scanning time is 240secs per slice (2 unit time), and slice spacing 

8mm. These acquisition parameters provide an in-plane resolution of 8mm and 

longitudinal resolution of between 10mm and 12mm. For a full description of this 

scanner and the reconstruction algorithm the reader is referred to the paper "New multi­

dimensional reconstructions for the 12-detector, scanned focal point, single-photon 

tomograph." by Stoddart and Stoddart 1992, Physics in Medicine and Biology (36). 

Optimum scan orientation is approximately parallel to the orbito-meatal (OM) line and 

head movement during the scanning procedure is minimized by subject co-operation and 

assisted by placing foam supports either side of the subject's head which are held in place 

by Velcro. 99mjc HMPAO is injected intravenously while the patients are supine on the
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scanning couch under standard resting conditions of eyes closed and minimum auditory 

stimulus, unless the subject is taking part in an activation task in which case they will be 

injected as the experimental protocol requires. Image acquisition begins approximately 

15mins after injection with a total acquisition time 30-60 mins. depending on the slice 

thickness acquisition parameter and the size of the patient's head. After reconstruction all 

scans are converted to ANALYZE™ 1 compatible format using customised MATLAB2 

scripts (courtesy of MG3) and transferred to a SUN ULTRAsparc4 workstation for 

further process/analysis.

2.2 Image analysis - Statistical Parametric Mapping.

There are several voxel-wise analysis techniques available either commercially or as 

freeware (SPM96, MEDx3.0, IDL, AFNI, Hermes)5. The analysis used for the 

investigations presented here was Statistical Parametric Mapping (SPM95/96). Statistical 

Parametric Mapping (SPM) was originally developed by Karl J Friston and colleagues at 

the MRC Cyclotron Unit, Hammersmith hospital, London, UK. The latest versions, 

SPM95 and SPM96, were developed at the Wellcome department of Cognitive 

Neurology, under the direction of Professor Friston. The software is freely available 

from the web site (http://www.fil.ion.bpmf.ac.uk/spm) and is written both in MATLAB 

code to run on a UNIX platform and C programming language to run on a Windows95 

platform. Online technical support is provided by the group via a mailbase service for all 

users (http://www.mailbase.ac.uk/lists/spm).

SPM is software used for the intersubject averaging of functional brain images and their 

statistical analysis (73). It consists of 3 main modules:

*Mayo Medical Ventures, USA (http://wwwjnayo.edu/bir/analyze/ANALYZE_mainJitml
2The Mathworks Co, UK (http://www.camcontrol.co.uk)
3MG-Dr Mike Glabus, neurophysicist, MRC Brain Metabolism Unit, University of Edinburgh, 
Edinburgh, UK.
4SUN Microsystems, London, UK (http://www.sun.co.uk)
5 SPM96 Statistical Parametric Mapping, Wellcome Department of Cognitive Neurology, Inst, of 
Neurology, London, UK (http://www.fil.ion.bpmf.ac.uk/spm)

MEDx3.0 - Sensor Systems Inc., USA (http://www.sensor.com)
IDL - Research Systems Inc., UK (http://www.rsinc.com)
AFNI - Robert Cox, Biophysics Research Inst., Medical College of Wisconsin, USA 

(http://varda.biophysics.mcw.edu/~cox/indexJitml)
Hermes - Nuclear Diagnostics Ltd., Kent, UK.
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•  module one image registration,

•  module two image standardisation (spatial normalisation) and

•  module three statistical analysis.

SPM uses an automatic and general multidimensional non-linear spatial transformation 

technique to standardise brains from different subjects (49). There are two components 

to this transformation; one is spatial and the other involves the intensity values of the 

voxels within an image. The assumption on which this model is based is that the 

differences between the subject's brain (object image) and the standard brain (target 

image) are slowly varying with position in the images. Any physiological/functional 

differences that we are trying to measure manifest themselves as differences in voxel 

intensity values between the two images which are considered to be rapidly changing and 

can be regarded as residual error (48). The statistical analyses used by SPM are based on 

the general linear model (GLM) (59). In its simplest form it can be described as testing 

for the null hypothesis that two mean images are the same using a paired t-test at every 

single voxel in the mean images. The statistical parametric maps that are produced from 

this type of analysis represent the significance changes in rCBF not absolute or relative 

percentage changes in rCBF. The statistical methods used in this module are parametric 

in nature since it is assumed that the underlying probability distribution of the data is 

known.

2.2.1 MODULE ONE:- Image Registration.

Image registration by voxel similarity methods

Spatial transformations for intra-modality, 
intra-subject registration:-

The spatial transformation used to map the object image on to the target image is an affine 

transform which in its simplest form has 6 rigid body parameters describing translation 

and rotation in space. In order to map one image on to another using a transformation the
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parameters must first be calculated. SPM uses a directed iterative least squares calculation 

to do this. The algorithm used (49) is based on a Gauss - Newton optimisation using a 

first order approximation of a Taylor expansion. Since using only the first order 

approximation of a Taylor expansion means that the solution may become trapped in a 

local minimum, the developers of SPM suggest that the starting estimates of the 

transformation parameters are not too far from the solution. This means that the object 

image must already be fairly close to the same orientation as the target image. In addition 

to these close starting parameters the initial iterative steps are performed with smoothed 

images which also reduce the likelihood of the solution becoming trapped in a local 

minimum. Once the registration is close to optimum the calculation can then be continued 

with the unsmoothed images.

Spatial transformations for inter-modality, 
intra-subject registration:-

To achieve registration between two different imaging modalities SPM changes the 

structural image into a pseudo functional image before using a nine parameter transform 

(6 rigid body and 3 scaling) to register this with the true functional image (41). That is 

the structural images (usually MR) are transformed into pseudo emission tomography 

images (usually of blood flow) by assigning each tissue type (grey and white matter, 

CSF) a corresponding PET intensity value e.g. 1:4 whiteigrey matter, convolving the 

image with a Gaussian spatial smoothing filter and adding noise. This pseudo functional 

image can then be registered with the true functional image, the transformation parameters 

of which can then be applied to the true structural image to achieve registration with the 

true functional image.
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2.2.2 MODULE TWO. Image standardisation.

Image standardisation using a voxel similarity method.

Intensity transformations 
for intra-modality and inter­
subject registration

This component uses a 12 parameter transform (6 rigid body, 3 scaling and 3 shearing) 

and an optional non-iterative non-linear resampling of image data to remove non-linear 

differences in brain shape to match to a standard template. Before this can proceed brain 

template must be defined using one of 4 different options a) template defined by an 

average of 305 MR T1 images b) template defined by the SPM95 template derived from a 

single subject PET scan c) template defined by the SPM96 template of an average of 6 

PET scans d) template defined by the user 6. Option a) is preferred since the final 

statistical parametric maps of brain activation can be referred to the on-line probabilistic 

anatomical maps defined by the Talairach deamon also defined by a subset of 305 MR T1 

images (http://ric.uthscsa.edu/projects/talairachdaemon.hunl)

Once the images have been transformed into perfect anatomical register using the 12 

parameter transform to account for overall differences in brain size and shape the user can 

specify a further optional non-linear spatial transformation that adjusts the object image to 

fit the cortical gyral anatomy of the target image more closely (49). The algorithm can be 

described more simply in terms of reducing it to a function which is based on the integral 

of all pixel values in the template image divided by the integral of all the pixel values in 

the object image and an error term which is then convolved with the original pixel values 

in the object image and a Gaussian spatial filter to reduce the errors in the transformation 

due to rCBF differences. A graphical example of this is given in figure 2.2.

6 References to these options can be found in the SPM documentation at web site 
http://www.fil.ion. bpmf.ac.uk/spm/dox.html
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SPM95 implemented this transformation by calculating the sum over all the rows, 

transforming the image and then summing over all the columns and then transforming the 

image again. This made the assumption that the transformation was commutative i.e. 

rows then columns is the same as columns then rows.

SPM96 extended this model to include 3 dimensions avoiding the error introduced by 

assuming the commutative nature of the method (49). This intensity transformation has 

been described by the developers of SPM as being better suited to adjusting cortical 

anatomical differences rather than sub-cortical differences (48). As a consequence only 

the 12 parameter linear transformation is used for image standardisation of " mTc 

HMPAO SPECT images of CBF used in chapters 3-6.

Intensity transformations for 
inter-modality and inter-subject 
registration:-

There are two ways of applying the method described above to standardise structural with 

functional images a) standardise the high resolution structural image to the MR template 

provided with SPM and then use the same transformation on the corresponding 

previously registered functional image or b) standardise the functional image to the PET 

template provided with SPM and then use the same transformation on the corresponding 

previously registered structural MR image.

Since the object MR image must have contrast/acquisition parameters (of which there are 

a huge number of permutations) very close to that of the template or the standardisation 

algorithm will fail, option b) is preferred

Reslice parameters:- Once image registration and image standardisation has been 

completed the registered object images have to be resliced. There are 3 options for the 

interpolation method a) nearest neighbour b) bilinear c) sine interpolation. Option b) is
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preferred for " mTc HMPAO SPECT rCBF images based on empirical evidence (see 

appendix A) and advice from the SPM developers (personal communication from John 

Ashbumer 26/01/98)7.

2.2.3 MODULE THREE. Statistical Analysis.

Image analysis by voxel-wise methods.

The statistical analyses used by SPM are based on the general linear model (GLM) (59), 

in which a variation in the signal that is being measured can be expressed in teRMS of a 

linear combination of explanatory variables and an error term: i.e.

Y = XB + e (1)

where Y = the response variable (the signal we are trying to measure) X = the 

explanatory variable (cognitive task) B = unknown parameter and e = an error term (that 

includes stochastic noise from the scanner, and biological noise from the subjects, and is 

modelled as a normal distribution).

This means that if the GLM holds true for the data then both data sets will have the same 

distribution and therefore a simple t-test can be used to test for the null hypothesis that 

two mean images are the same using a paired t-test at every single voxel in the mean 

images.

Smoothing:- Before statistical analysis is carried out the images must be spatially 

smoothed using a Gaussian spatial filter so that a) the data conform more closely to a 

Gaussian field model which is used to make statistical inferences about the SPM(t) maps 

produced b) the noise is reduced in the scan by smearing out the signals at higher spatial 

frequencies usually attributable to noise and c) it removes very small differences in the 

functional anatomy between subjects (59).

7SPM-mailbase letter dated Jan/98 at http://www.mailbase.ac.iik/lists/spm/1998-01/0078Jitml
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There is no 'best' smoothing filter, only general guidelines that for the data to be 

compatible with the Gaussian field theory, the full width at half maximum (FWHM) of 

the smoothing filter must be at least twice the voxel size of the original image in all 

directions (61). It should also match the expected extent of the signal (which of course is 

unknown) produced by the change in rCBF. A spatial filter with a small FWHM (i.e. 

less than the extrinsic resolution of the system filter) will preserve amplitude [u] of 

activation but leave some stochastic noise from the scanner and radioactive decay 

processes which will adversely affect the overall signal [c], whereas a larger filter (i.e. 

greater than the extrinsic resolution) will increase the extent, (number of significant 

voxels) [k] of an activation region but may introduce noise from other structures again 

reducing the overall signal [c]. It follows that there must be an optimum filter size for the 

data sets available where u, k and c are at a maximum or in teRMS of the reporting of 

SPM(t) maps pu, Pk and pc are at their most significant where p  is the significance of the 

signal changes in the data.

Review of the literature reveals a range of Gaussian spatial filters used, presumably 

dependent on the machine and/or back-projection method used (which will also include a 

certain degree of spatial filtering). However, it was not possible to simply transfer this 

information supplied by PET or conventional SPECT users of SPM to our data since the 

detector arrangement and performance characteristics of the SME 810 dedicated brain 

SPECT scanner differs from conventional gamma cameras. It was necessary, therefore, 

to decide empirically which filter gave the optimum results for our data sets (see appendix 

A). The optimum filter size determined by our measurements for a unit dose (500MBq) 

of 99mXc HMPAO is 10mm FWHM and for a half unit dose (250MBq) of 99mTc 

HMPAO is 12 mm FWHM.

SPM Experimental Design:- The experimental design is a crucial component in applying 

SPM and there are a number of design options to chose from. The three different designs 

used in this thesis are:

45



•  multi-subject; different conditions, (equivalent to a blocked analysis of 

variance)

•  multi-subject; replication of conditions (equivalent to a blocked 

analysis of variance with replications)

•  compare groups; one scan per subject, (equivalent to an analysis of 

covariance or unpaired t-test)

Contrasts:- Contrasts are used to describe the changes that the experiment is searching 

for and consist of matrices containing a series of l's, - l ’s and 0’s (73). For example, 

once the scans have been selected in order of subject and then condition, a multi-subject; 

different conditions experiment of the form A B C D denoting four different cognitive 

tasks would be constructed in the following way to look at a simple subtraction paradigm.

Tasks
A B C D

contrasts r 1 - 1 0 0
- 1 1 0  0
0 0 1-1
0 0 - 1 1

A-B
B-A
C-D
D-C

All scans of subjects performing 
task A compared to all scans of 
subjects performing 
task B e tc ..

These contrasts could be extended further to look at the difference in the differences (an 

interaction). For example

Tasks
A B C D

contrasts
(A-B)-(C-D) 

(B-A)-(D-C)

Using this simple notation the comparison of conditions can be constructed in such a way 

as to be more than just a cognitive subtraction (74) (see CH 7).
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Global Intensity Normalisation:- Before the difference in means can be calculated some 

adjustment for differences in global blood flow between scans of the same subject and 

scans of different subjects must be made. These global differences can be attributed to 

differences in administered dose and uptake fraction in the brain as well as physiological 

changes in the subject (mood changes, physical activity). All of these changes will 

interfere with the actual rCBF change that is being measured.

Global CBF (gCBF) is measured as the mean value over all intracerebral voxels, where 

the intracerebral voxels are calculated as being the voxels with a value above 80% of the 

global mean of all voxels in the scan. The statistics are then performed on the voxels that 

survive an 80% threshold of the mean gCBF value (grey matter threshold). This means 

in effect that the volume of the brain analysed will be equivalent to that of the smallest 

volume in any individual brain scan included in the analysis. There are two different 

ways that SPM can remove differences in gCBF a) Proportional Scaling and b) Analysis 

of Covariance (AnCova) (59). Proportional scaling removes differences in gCBF by 

scaling all voxels within a scan to the mean gCBF of each scan and assumes the change in 

rCBF will be dependent on the gCBF. AnCova removes differences in gCBF by 

modelling the mean gCBF for each scan as a confounding covariate and so removes most 

of the error variance due to gCBF leaving only the variance due to the differences in 

rCBF induced by the activation task being investigated. This assumes that the measured 

change in rCBF is an additive effect, the size of which is independent of the gCBF, as 

opposed to proportional scaling which assumes the change will be dependent on the 

gCBF.

For the purposes of normalising 99m j c HMPAO SPECT images option a) is preferred. 

The developers of SPM recommend that for qualitative measures of rCBF (such as 99mjc 

HMPAO scans) where the differences in global counts between subjects can be quite 

large, the proportional scaling method is used in preference to AnCova (personal 

communication from Dr Andrew Holmes 02/02/98)8.

8 SPM-mailbase letter dated feb/98 at http://www.mailbase.ac.uk/lists/spm/1998-02/0001.html
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height
threshold

Figure 2.3 shows a 3d representation of a slice through an SPM (t) to demonstrate the difference between 
significance in activation height and activation extent.

Presentation of Results

After smoothing and global intensity normalisation a t-test is performed on every 

intracerebral voxel to produce a statistical map SPM(t) which represents change 

significance. Having computed a t value for each voxel in the data set (SPM(t)) 

constructed using the appropriate experimental design and contrast, the values are 

transformed to the unit Gaussian distribution and expressed as Z-scores (unit standard 

deviations from a mean of zero). These 'maps' are then displayed as maximum intensity 

projections (MIPS) in 3 planes; axial, sagittal and coronal (see fig 2.4). The data can also 

be rendered on to cortical surfaces or MRI sectional planes. To display the SPM(t) MIPS 

a significance threshold must be selected. All voxels surviving the threshold will be 

displayed.

extent
extent threshold
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1.000 (1) 0.000 (795, 8.45) 0 . 0 0 0 (8.45) 0 . 0 0 0 0 . 0 0 0 -36 -62 28

0.000 (555, 8.36) 0 . 0 0 0 (8.36) 0 . 0 0 0 0 . 0 0 0 26 -16 -24

0.000 (212, 8.04) 0.000 (8.04) 0 . 0 0 0 0 . 0 0 0 18 50 4
0 . 0 0 0 ( 6 . 7 4 ) 0 . 0 0 0 0 . 0 0 0 2 6 5 2 4

H e i g h t  t h r e s h o l d  { u } = 3 .0 9 ,  p = 0 .0 0 1  
E x t e n t  t h r e s h o l d  { k } = 3 .2 5 8 e - 0 1  v o x e l s ,  p = 0 . 5  
E x p e c t e d  v o x e l s  p e r  c l u s t e r ,  E { n } = 0 .8  
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V o l u m e  { S } = 1 2 1 9 4 2  v o x e l s  
D e g r e e s  o f  f r e e d o m  =  9
Smoothness FWHM {mm}=3.9 3.9 7.4 

{ v o x e l s }  =  2 . 0  2 . 0  1 .9

Figure 2.4 shows the SPM (t) table printed after a typical SPM96 analysis of 3 individual sample scans 
contrasted with a reference group. See text for details.

Height and extent threshold:- The Z-score map that is produced can be considered 

significant on two levels a) height of change significance of rCBF and b) extent of the 

number of voxels with significant change of rCBF (59) (see figure 2.3 for graphical 

representation of peak significance and extent significance).

Corrected significance (multiple statistical tests):- When performing multiple statistical 

tests a correction must be made for the number of tests being performed. Usually this 

takes the form of a Bonferroni correction i.e. the level of significance divided by the
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number of independent statistical tests performed. In its simplest form this would mean 

that for a voxel-wise analysis the significance level would have to be divided by the total 

number of voxels in the data set, typically tens of thousands and would wipe out any 

statistically reliable activation signals. However, intrinsic resolution of the scans and the 

spatial smoothing filter which is applied to the data prior to analysis means that the voxels 

are not independent of one another. Instead an estimate of smoothness is used so that an 

equivalent number of tests can be calculated and an alternative "Bonferroni type” 

correction for multiple testing is made (59).

Corrected significance based on height and extent:- A further calculation is made that 

combines the significance of the extent of the activation with its height corrected for 

multiple comparisons; so that a change in the voxel height (representing ArCBF) 

although small (<2%) may still be considered a significant region of change if it occurs 

over a significant number of voxels (69).

Statistical Inference:- If one is considering a hypothesis driven experiment where the 

cognitive tasks have been manipulated in such a way that a particular brain region is 

expected to show significant change then the significance threshold can be set at p<0.01 

(uncorrected height threshold) and p=1.00 (uncorrected extent threshold). If the 

experiment is more exploratory then the thresholds can be set at pcO.OOl (uncorrected 

height threshold) and p<0.1 (corrected height threshold) or p<0.05 (corrected extent 

threshold).

Figure 2.4 shows the MIPS viewed on 3 orthogonal sections of a 'glass brain'. To the 

right of this is the contrast representation, in this case ( - 1 1 0  0), and the design matrix 

used commonly by statisticians when performing an AnCova. Below this is the list of 

data defining the location and Z-scores for the most significant voxels surviving a 

predetermined significance threshold. Reading the columns from right to left; column 1 

gives the x, y, z co-ordinates of the most significant voxel in Talairach space, column 2 

lists both the uncorrected significance of the height and the extent of the change in voxel
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value (or ArCBF), column 3 lists both the Z-score and the corrected (for multiple tests) 

significance of the height of the change in voxel value, column 5 lists the Z-score, the 

number of voxels and the corrected significance (multiple tests and extent), column 6 lists 

the significance of the number of clusters of continuously significant voxels detected.

For a more in depth review of all of these steps the reader is referred to 

http://www.fil.ion.bpmf.ac.uk/spm.
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CHAPTER 3

V alida tion  o f  th e  im ag e  s ta n d a rd isa t io n  fa c i l i t y  o f  S P M 9 6  
app lied  to oblique or  incom plete  im age da ta  sets.

This chapter describes the methods used to validate the image standardisation 
facility of SPM96 by performing a series of challenge conditions analogous to 
those present in routine clinical data. Section 3.1 describes the problems inherent 
in validating between subject and between modality image registration in the 
situation in which there is no one-to-one correspondence. Section 3.2 lists the 
steps taken to create the simulated "non-optimal" data sets, i.e. the challenge 
conditions. Section 3.3 describes the assessment of errors and lists the results for 
the overall performance of the image standardisation facility. Section 3.4 
discusses these results in teRMS of finding the optimal method of image 
standardisation for clinical " “ Tc HMPAO SPECT cerebral blood flow images.

3.1 In troduction .

Despite fixed protocols for positioning patients within the field of view of a SPECT 

camera for some seriously ill patients correct positioning is almost impossible. The 

developers of SPM recommend that differences in orientation between scans or with 

respect to a template be no more than a few degrees because of the possibility of the result 

getting stuck in a local minimum. In some seriously ill or elderly patients, positioning 

within the field of view is difficult, and images may have as much as
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Figure 3.1 a show s a section through the mid 
sagittal o f  " mTc HMPAO scan that has a good  
field o f v iew  covering the w hole head.

Figure 3.1 b show s what happens when the 
patient’s head is tilted backwards in the sagittal 
plane (usually caused by the difficulty many 
older patients have in lying on the poorly de­
signed scanning couches when they have a 
marked curvature o f  the spine) which results in 
only the top half o f  the cerebrum being in the 
field  o f  view.

Figure 3. lc  show s what happens when there are 
problem s positioning a seriously ill patient and 
that patient finds it difficult to lie in the scanner 
for any length o f  time. Both the cerebellum  and 
the superior axial slices are m issing from the 
field  o f view.

Figure 3.1 show s how positioning o f  the patient within the confinces o f  the scanner can effect the field o f  
view  and hence the volum e o f  brain contained within the im ages. Figure 3.1 a typical im age from the 
SM Fi81() scanner with good coverage o f  the w hole brain. Figure 3.1b show s what can happen if there are 
problems positioning the patient. Figure 3.1c show s what might happen if  that patient also finds it difficult 
to lie in the scanner for any length o f  time.
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a 20° pitch misalignment from one another or from a standard reference position and 5°- 

10° roll and/or yaw. For a section scanner this results in a loss of data from either the top 

or bottom regions of the brain image data set (axial truncation) and only a small area of 

overlapping data between two images to be registered (be they repeat SPECT/PET scans 

or an ideal template) may be available, as illustrated in figure 3.1. Even for conventional 

rotating gamma cameras positioning of the camera head so that the shoulders of the 

patient are avoided can also result in a loss of information from the lower parts of the field 

of view (the cerebellum). In addition routine MR and CT acquisitions quite often do not 

include the top of the head.

Although whole brain coverage is not essential for the clinical reporting of scans, the 

performance of automated image registration software can be hampered by axial 

truncation. No specific problems have been reported by the developers of SPM96 but 

other developers of image registration software (39) suggest that partial data sets may 

pose a problem for automated registration and the experience of this department suggests 

that in severely compromised data sets there may be a particular problem with alignment 

in the sagittal or coronal planes.

3.1.1 Validation o f accuracy and precision of image registration and 

standardisation methods.

A comprehensive study by Strother et al 1994 (23) comparing the merits of ’correlation of 

similarity' with other methods of image registration found that overall the former method 

was more accurate. Not surprisingly the smallest errors were incurred for intra-modality 

matching, particularly for MR to MR images of the brain. Landmark matching (both 

internal and external) fared particularly badly for inter-modality matching due to the 

difficulties in locating the same points between structural and functional images as well as 

problems locating the centre of a marker in the lower resolution functional images.

The surface contour method performed only marginally worse for inter-modality 

compared with intra-modality matching (2mm for MRI/PET compared to 1mm for

54



MRI/MRI ) but was not as good as the correlation of similarity method (1mm for 

MRI/PET compared to 0.25mm for MRI/MRI).

The above study assessed these techniques by their positional accuracy with reference to 

some standard position rather than by the resultant error in computing the significance of 

change or abnormality. Is a 1° error about the x axis better or worse than a 1mm 

translation along the y axis ? To answer this question it is more appropriate to investigate 

directly the effect of positional errors on the parameters used in this study i.e. the 

resulting change in the number of counts in each ROI (40) or the effect on a typical Z- 

score value in a voxel-wise analysis. However, the validation of image registration 

accuracy is not straightforward. As Pelizzari et al 1994 (75) states, "the measurement 

accuracy of co-registration methods on real human studies is inherently difficult". Even 

for intra-subject, within modality co-registration there can be no one-to-one 

correspondence between the data sets due to the natural variability in cerebral blood flow 

and stochastic noise generated by the radioactive decay processes and the detector 

instrumentation. For inter subject co-registration the individual variations in anatomy, 

despite attempts at standardization, will add to the overall mis-registration. In short there 

is no absolute 'gold standard1 against which image registration algorithms can be tested. 

It is better then to consider precision (or relative accuracy) rather than absolute accuracy, 

when considering image co-registration, as any transformation will have residual errors. 

The best that can be achieved is to compare the final co-registration result achieved with a 

full data set with that obtained during any of the situations where only a compromised or 

restricted data set is available. The key to the use of this method of validation is that the 

full data set becomes the 'gold standard' to which the sample (challenge condition) data 

sets may be compared. To measure the precision in an automated co-registration 

algorithm a single data set (sample scan) is manipulated prior to co-registration to provide 

a series of challenge conditions.
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3.2 M ethods

To create the challenge conditions for testing the image standardisation component of the 

software the following method was used:-

•  Create a reference dataset

•  Create the challenge conditions

•  Determine the optimum image standardisation method

3.2.1 Creating a reference data set

The method used to create the reference data set is fully illustrated in figure 3.2. Because 

there is no known result to these challenge conditions the deviations from a known 

constant condition were used to measure the relative accuracy of the image standardisation 

facility. First a reference database of scans was created to provide the reference data set 

against which each of the challenge conditions could be compared. Ten scan pairs were 

selected from a previous study where each subject had been scanned twice . The scans 

in each of these pairs were co-registered with one another and an average image was 

created from each pair. Each of these 10 average scans were then co-registered to the 

image in the group that was most closely aligned with the ac-pc line orientation. These 10 

re-aligned scans were then denoted as the reference group. To create the sample image, 

the reference group was then averaged into one single scan. The challenge conditions 

were then superimposed on to the sample image. Although the premise in this 

investigation was to monitor the effect of each challenge condition against a known 

reference, the use of an averaged scan as a sample image rather than a single image from 

an individual removed any possibility of a systematic result occurring as a consequence of 

that one individual's anatomy.

3.2.2 Creating the challenge conditions

In order to follow the effects of the challenge conditions on the statistical output known 

changes in rCBF had to be created in the sample scan.
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Figure 3.2. A schem atic How diagram show ing the steps involved in producing the sim ulated data for 
validating the im age standardisation facility in SPM 96.
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The pseudo differences between the scans were achieved by using a customised graphics 

package9, to place a region of 'abnormality' in the sample scan. The image data was 

manipulated in ANALYZE™ format as single images representing axial slices through 

the brain. A region was drawn in the left and right parietal lobes on three axial slices 

through the parietal cortex. The mean value of each of these slices was calculated and 

30% of the slice mean was added to each pixel in the designated region in each slice. The 

slice mean was calculated as the number of counts in those pixels with a non-zero value in 

that slice divided by the area (mm2) within the threshold boundary.

Rotations in the sagittal, coronal and axial planes of varying degrees were introduced 

using the display facility in SPM96.

Axial truncation was achieved using a customised graphics program (mri3d)10 by 

removing slices from the inferior parts of the sample image after introduction of a 

rotation.

DIRECTION OF 
ROTATION

DEGREE OF 
ROTATION

AXIAL
TRUNCATION

sagittal 0° Oslices
6°

coronal 9° 3slices (18 mm)

axial 12° 5slices (30mm)
15°

Table 3.1 gives a summary of all the challenge conditions. Each challenge condition was created from 
different permutations of these parameters e.g. direction of rotation: sagittal, degree of rotation: 15°, axial 
truncation: 3slices (18mm).

3.2.3 Determining the optimum image standardisation method:

Three different methods were examined and are illustrated in figure 3.3.

9xpaint is a Xwindows, UNIX application available with Solaris 2.7.
10customised image display software runs on a UNIX platform, courtesy of Martin Connell, Department 
of Clinical Neuroscience, University of Edinburgh, Western General Hospital, Edinburgh, UK.
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Figure 3.3 A schem atic How diagram show ing the 3 different m ethods used to achieve im age standardisa­
tion under a series o f  different challenge conditions.
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The first method involved image standardisation of each of the challenge 

condition sample images by direct matching to the standard PET template supplied with 

SPM96, linear spatial standardisation function.

The second method used a rigid body registration step prior to standardisation. 

Each challenge condition sample image was co-registered to the reference image (the 

sample image no rotation, no truncation) using a 6 parameter rigid body transform before 

it was matched to the PET template.

The third method includes editing of the final standardised sample image after 

co-registration, standardisation and smoothing to remove spurious data contained in the 

smoothed edges.

3.3.1 Reporting image standardisation results:

The results from each of the challenge conditions were analysed using the "compare 

groups: 1 scan per subject" option where group 1 was the 10 average scans in the 

reference data set and group 2 was a single challenge condition sample scan. Global 

blood flow normalisation was achieved using the proportional scaling option and SPM(t) 

maps were generated using the default thresholding of Pu<0.001, and Pk<0.5 

(uncorrected). Results were calculated in teRMS of the average in absolute change in Z 

score and root mean squared error in location (defined by Talairach co-ordinates) of the 

most significant voxel within the two pseudo lesions with respect to that reported in the 

reference scan. Aggregate errors particular to the method of image standardisation used 

or the challenge condition being corrected were used to provide an overall view of the 

performance of the image standardisation facility.

3.3 Results

Figure 3.4 shows the reference results to which all other subsequent results were 

compared. Figures 3.5 - 3.7 show the results of the 3 different methods of image
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Figure 3.4. Reference result Figure 3.5. M ethodl:- spatial normalisation to
PET template directly.

SPM (t) map of the results o f standardising the
reference image to which all other subsequent SPM (t) map of the results of methodl image 
sample scans were compared. standardisation on the significance and location of

the pseudo lesions.
ZL = 4.84 (x y z)L = -40 -40 52

|AZI = 0.59 RMS(x y z) = 53 mm
Zr  =  4.25 (x y z)R = 48 -56 36

Figure 3.6. M eth o d 2 :- co-registration to 
reference sample image prior to spatial 
normalisation.

SPM(t) map of the results o f method2 image 
standardisation on the significance and location of 
the pseudo lesions.

|AZI = 0.82 RMS(x y z) = 9.8 mm

Figure 3.7. Method3:- editing of smoothed edges 
after standardisation but prior to statistical analysis.

SPM(t) map of the results o f method3 image 
standardisation on the significance and location of 
the pseudo lesions.

|AZI = 0.12 RMS(x y z) = 5.7 mm
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standardisation on the challenge condition; direction of rotation: sagittal, degree of 

rotation: 15°, axial truncation: 5 slices (30mm).

The results from the first method (figure 3.5) show that the image standardisation 

procedure has failed to correct for the rotation in the sagittal plane made evident by the 

fact that the pseudo lesions originally located bi-laterally in the parietal lobes are now 

located in the occipital lobe and the appearance of a further significant lesion in the 

anterior frontal lobes bi-laterally. The size of both the average absolute difference in Z- 

score (0.59) and the RMS error in location (53mm) recorded in this example would 

undoubtedly give erroneous information if the same situation had arisen in a clinical scan. 

The results from the second method (figure 3.6) show that the rotation in the sagittal 

plane has been corrected. This is clear from the large reduction in the RMS error in 

location (9.8mm). However, another problem becomes apparent in this case. The large 

areas of significance produced at the top and bottom of the SPM map are a result of the 

statistical calculation detecting voxel values at the edge of the resliced sample scan volume 

as unexplained variance. The consequence of this is that the significances of the voxel 

values in the pseudo lesion are reduced (causing a larger difference in absolute in Z-score 

than in method 1) with respect to the reference group as a direct affect of the increased 

overall variance of the resliced sample scan. Finally the results of using method 3 on this 

example are shown in figure 3.7. The voxel values produced by the interpolation of edge 

information after reslicing of the sample image are removed by manually editing these 

parts of the scan. This allows the pseudo lesion voxel values to be identified at a higher 

significance level, differing from the original z-score value by just 0.12 but doesn't 

entirely remove the RMS error in location (5.7mm). The residual differences in both Z 

score and RMS could be a result of the interpolation of the voxel values within the lesion 

itself after reslicing and therefore some caution must be observed when interpreting SPM 

maps produced from clinical scans if acquired under the same situations of extreme 

rotation and axial truncation.
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most significant voxel with 
respect to the reference 
sample image determined by 
the m ethod o f  im age 
standardisation used. The 
largest errors are associated 
with the largest volume of 
image removed (5 slices @ 
6mm thick) regardless of the 
image standardisation method 
used. To minimise this effect 
method3 should be used for 
image standardisation.

M ethodl:- spatial 
normalisation to PET 
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Method2:- rigid body 
transform to reference sample 
image prior to spatial 
normalisation.
Method3:- editing of 
smoothed edges after 
standardisation but prior to 
statistical analysis.
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Although the results illustrated in figures 3.5-3.7 are from one of the most extreme 

challenge conditions and consequently show the largest errors, this pattern of being able 

to reduce the error in Z score and location by applying method 3 is consistent for all 

challenge conditions. To gain an overall view of this result all the measurements of 

average absolute differences in Z score were summed over all directions of rotation for 

each axial truncation depending on the method of image standardisation used. For 

example the IAZI for all the rotations sagittal, coronal and axial at 15°, 12°, 9°, 6°, 0° for 

the ax ial tru n ca tio n  o f 30mm w ere sum m ed to g e th e r (e.g . 

0.69+0.74+0.79+0.82+0.09+0.11+0.82+0+0.49+0.48+0.48+0.48 = 5.99) then the 

same for the axial truncation of 18mm and finally for 0mm. These aggregate results are 

shown in figure 3.8 and provide a performance measure of each of the image 

standardisation methods under investigation regardless of the direction or size of rotation 

but affected by the amount of axial truncation present in the sample image. Both figures 

3.8a and 3.8b show that all methods are poor when performed on severely truncated data. 

Method 3 produces the most improvement in terms of Z-score difference but methods 2 

and 3 work equally well with regard to improvement in RMS error in location.

A further overall view of the results of this investigation in to the image standardisation 

facility are shown in figure 3.9 and illustrate the type of situations (challenge conditions) 

that will produce the biggest errors regardless of the method of image standardisation 

used. This investigation shows that because there still remains a residual error in location 

even after using image standardisation method 3, any SPM analysis of images that 

contain a restricted amount of data because of large rotations in the sagittal or coronal 

planes (axial truncation = 30mm and sagittal rotation 15° i.e. no cerebellum) must be 

interpreted with caution. A complete listing of results for each of the challenge conditions 

are included in appendixB.
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most significant voxel with 
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with the largest volume of 
image removed (5 slices @ 
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The results of the investigation in to the spatial normalisation facility of the SPM software 

demonstrated that relying on the spatial normalisation facility (method 1) alone was 

unreliable in situations where starting parameters were far from ideal (axial truncation = 

30mm and sagittal rotation 15° i.e. no cerebellum). Results were improved by 

performing a rigid body co-registration of the sample images to an average " m j c 

HMPAO SPECT reference image prior to spatial normalisation (method 2). A further 

reduction in errors could be made if the smoothed edges (containing spurious voxel 

values) were removed after spatial normalisation but prior to statistical analysis (method 

3).

3.4 Discussion

This study investigated three different methods of image standardisation for use with non- 

optimal image data sets. The chronology of the methods were such that the second 

method was developed as a solution to the problems incurred using the first method (the 

SPM96 image standardisation facility) and the third method was developed as a solution 

to the problems encountered using the second method. They have been presented 

together for clarity.

The method of validation described requires that a full data set becomes the 'gold 

standard' to which the sample (challenge condition) data sets may be compared. To 

measure the precision in an automated co-registration algorithm a single data set (sample 

scan) was manipulated prior to co-registration to provide a series of challenge conditions. 

These challenge conditions were chosen to reflect those present in routinely acquired 

clinical data (large rotations from a standard reference position resulting in axial truncation 

of the image volume). This method is similar to that employed by Minoshima et al 1991 

(35). A series of simulated PET images were used to apply a number of challenge 

conditions, involving both rotations and translations, to a sample image before employing 

a correlation of similarities method (stochastic sign change evaluation) to register this 

sample image to the original reference image. Results show that the precision accuracy 

for this method gave a mean rotational error of 0.03° and a translation error of 0.5 pixels.
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In anticipation of using this method to register images of abnormal brains they also 

simulated various lesions (typical of the clinical groups they would be investigating) 

within the sample image before applying additional rotation and translation. The 

consequential mis-registration errors tended to increase with larger lesion volumes, with 

the largest error (>1.0°) due to rotation in the coronal plane and a single lesion volume of 

32% of the total brain volume. Minoshima et al concluded from this that their method of 

image registration would still perform well in the presence of large lesion deficits typical 

of an abnormal brain. Similarly, Studholme et al 1997 (39) tested the precision of their 

image registration by correlation of similarities method (maximum entropy) by re­

registering clinical images to themselves after the introduction of random rotations and 

translations. An additional challenge of axial truncation of these images was introduced 

to model the problem that section scanners have when trying to obtain images of the 

whole brain. They found the test registrations carried out using their technique failed 

when used on these truncated image volumes. Friston et al 1991 (48) used a similar 

concept of precision accuracy to validate their method of image standardisation by 

measuring the precision with which stereotactic anatomical locations could be defined 

within and between subjects registered to a standard template. They were able to show 

that the residual error after both within subject and between subject matching was reduced 

after a plastic transformation was performed, concluding that better image standardisation 

was achieved by the use of a plastic image transformation. Assumptions needed for 

Friston's method to work are that the functional residual differences, (e.g. the differences 

in rCBF that are actually being measured) are small. This is because the premise on 

which the final image registration result is based is that the observed distribution of voxel 

intensities within the sample image will correspond to that of the reference 

image/template. If this is not the case then differences in rCBF due to lesion deficits, for 

example, may result in the plastic transformation trying to compensate by shifting voxel 

values to fill the gap. This condition has not been explicitly modelled by Friston et al in 

their validation of automated image standardisation.

67



In the present study the image standardisation facility of SPM96 performed adequately in 

the most extreme conditions as long as appropriate modifications to the process were 

made. The maximum errors or changes in Z-score and location were induced by severe 

truncation of volume coupled with rotations in the sagittal plane and the coronal plane 

corrected by spatial normalisation to the PET template alone. For example, for a 

particular challenge of 30mm axial truncation +15° axial rotation the maximum error in 

absolute Z-score in the pseudo primary lesion was IAZI=0.89 and therefore likely to affect 

the acceptance of this region as significant at the default threshold levels of Pu<0.001 and 

Pk<0.5. This errors was reduced to IAZI=0.48 by initially co-registering the sample scan 

with the reference scan prior to spatial normalisation. Although method 2 coped well 

with large rotations the statistical analysis proved a little more sensitive. As a result of the 

initial extreme orientations and missing data new edges appeared in the interpolated and 

resliced data. The new edges become a problem when each image is smoothed prior to 

analysis, 'smearing' the edges and creating spurious voxel values. Despite the 

thresholding of voxels and the masking of images to ensure matching volumes across 

comparisons in the statistical analysis, some of this smeared edge information is included 

in the analysis and inherently includes lower values in these voxels than in the reference 

group. The inclusion of these lower value voxels alters the overall global mean value so 

that the previously significant change in voxels within the lesion is no longer significant. 

Instead it is these 'edge' voxels that are mapped as significant swamping the true lesion 

significance in the main body of the scan. This problem has recently been reported by 

others in the SPM user community (personal communication from B Swartz, 02/04/98)11 

and the next version of SPM (SPM99) will prevent the inclusion of these smeared edges 

in the analysis12. By preventing voxels with zero intensity being included when the 

image is being convolved with a spatial smoothing kernel the creation of false information 

will not occur. In the meantime, however, the only way around this problem is to 

intervene manually and edit the smeared edges from each slice in each individual scan (see 

figure 3.10). These new edited scans can now be run through the same statistical

11 SPM help line letter dated - http://wwwjnailbase.ac.uk/lists/spm/1998-04/0014.html
12SPM technical notes http://www.fil.bpmf.ion.ac.uk/spm/spm99.html
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smeared edges producing spurious 
voxel values

spurious voxel values masked and removed from the 
statistical analysis

Figure 3.10 Shows how the scans were edited to remove the smoothed edges containing spurious voxel 
values from a standardised and smoothed sample scan.

analysis as before, this time without the interference of false information. Further 

correction can be made (reducing the error from IAZI=0.48 to IAZI=0.09) by removing the 

smeared edges from the co-regislered and spatially normalised sample scan. Time taken 

to perform method 3 takes approximately 15 minutes per sample scan.

The biggest changes in location of the voxel with maximum Z-score were of the order of 

55mm and may present a more serious limitation in the location of the primary lesion with 

respect to known anatomical structure, (e.g. a move of 55 mm could place the lesion in 

the occipital cortex instead of the parietal cortex - see fig 3.4 and 3.5) but by following 

the co-registration and editing procedure the RMS error was reduced from 55mm to 9mm 

and in most cases to zero. If there is potential for error (e.g. when analysing images that 

are non-optimal) the facilities provided by SPM96 allow the user to "click" around the 

significant region. Rather than rely solely on the location of maximum Z-score voxel, 

one can use the whole structure of the significant region to determine in which anatomical 

structure most of the contiguous voxels lie. Of course this is subjective and may diminish 

the overall automation of the process unless one recognises that the match between 

Talairach and Toumoux atlas and the template used for spatial normalisation is at best a 

good estimate (personal communication from Karl Friston 23/06/98)13. In recognition of 

the problem of defining a standardised anatomical map Collins et al 1994 (25) set up their

13SPM help line letter dated - http://www.mailbase.ac.uk/lists/spm/1998-06/0076
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own standard map based on the co-ordinate convention used by Talairach and Toumoux 

1988 (46) but with additional information provided by the collection of anatomical data 

delineated by experienced neuro-anatomists from over 50 normal high resolution 3D MRI 

scans. The new atlas is expressed in terms of probability maps and the borders of 

anatomically distinct areas delineated at the 50% probability mark. The reported errors in 

Z score that these results predict for certain starting conditions become less significant 

when one views them in the context of the data provided by Collins and colleagues.

3.5 Conclusion

This investigation showed that when data from a severely restricted (non-optimal) image 

volume of CBF 99mTc HMPAO are to be analysed using SPM96 the image 

standardisation procedure must be modified to include:-

•  a rigid body co-registration between the non-optimal data set and an 

ideal reference optimal data set of the same imaging modality and 

acquistion parameters.

•  manual editing of the voxel values created by the interpolation of edge 

information (this should be after image standardisation and smoothing 

prior to statistical analysis).
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CHAPTER 4

In vestiga tion  o f  S P M 96  as an a id  to the d ifferen tia l  d iagnosis  
o f  dem entia using " m  j c H M P A O  S P E C T  im ages o f  rC B F .

This chapter describes the application of SPM96 analysis to clinical image data 
using the optimal method of image standardisation determined in chapter 3. 
Section 4.1 describes the difficulties in making a differential diagnosis of 
dementia both clinically and with imaging and the benefit that an objective method 
might make. Section 4.2 describes the methods and materials used to establish 
any benefits of using SPM96 on clinical images of cerebral blood flow. Section 
4.4 discusses the role that SPM96 may have in the routine reporting of diagnostic 
images of cerebral blood flow.

4.1 In troduction

In most hospitals the reporting of images is done by an experienced consultant in nuclear 

medicine and neuroradiology (sometimes with the participation of an experienced imaging 

physicist). This is generally sufficient to arrive at the desired interpretation of the image 

being reported. In the specific case of the interpretation of 99mxc HMPAO CBF scans it 

is not difficult to spot the perfusion deficit produced by, for example, a massive cerebral 

infarct, or the typical CBF pattern of a patient in the later stages of dementia of the 

Alzheimer's type (DAT). Even the more subtle differences between an ictal and inter-ictal 

scan of an epilepsy sufferer can, with experience, be reliably detected visually.



However, there are some cases where this is not always so and interpretation of the scan 

is more difficult. For example patients in the earlier stages of DAT might exhibit the 

classical pattern of reduced perfusion bilaterally in posterior temporal and parietal cortex. 

Those patients in later stages of the disease might also have superimposed vascular 

abnormalities that would result in a less obvious match to the typical DAT CBF SPECT 

pattern. Would an objective and consistent method of image analysis be of value in 

interpreting these scans ? This investigation focused on whether the application of a 

voxel-wise image analysis technique (SPM96) could impact on the reading of scans. To 

do this SPM96 was used to aid in the differential diagnosis of dementia from SPECT 

images of CBF. A measure of inter observer agreement was used as an indicator of the 

software's usefulness, where an improved level of agreement would be interpreted as a 

positive finding (less equivocal diagnoses) and a lowered level of agreement a negative 

finding.

The measurement of regional cerebral blood flow (iCBF) using SPECT has been shown 

to contribute to the differential diagnosis of dementia due to the different perfusion 

patterns detected in the classical foRMS of each condition (76-83) and it has been proved 

useful for the differential diagnosis of dementia. SPECT images of probable Alzheimer's 

disease (PAD) as defined by DSMIV R criteria (84) show regional deficits in the parieto­

temporal cortex (sometimes asymmetrical) (42,63,85), those of dementia of the frontal 

lobe type (DFLT) show characteristic reductions in the anterior regions of the cortex 

including anterior aspects of the temporal lobe (86) while multi-focal lesions throughout 

the cortex indicate the presence of dementia of the vascular type (DVaT) (63,87). Using 

these characteristic SPECT rCBF patterns new automated techniques for analysing 

cerebral blood flow scans are being developed with the goal of obtaining an objective and 

accurate method of analysis to enhance the diagnostic performance of this procedure.

A number of automated methods have been reported in the literature (42,63,79,85,87- 

91), with some spectacular results (sensitivity and specificity in some studies of 85-95%) 

but most have relied on testing their methods using patients fulfilling strict clinical criteria
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and in whom diagnositic probability was already high. Those studies less restrictive with 

their patient groupings have found more mediocre sensitivity and specificity of a 

diagnosis based purely on neuroimaging information (sensitivity and specificity of 43- 

60% and 60-75% respectively (92-94)). However, these less successful methods 

although correct in their patient selection used conventional ROI methods of reporting and 

did not take full advantage of the extensive and sophisticated image analysis packages 

currently available free from the internet or commercially (SPM96, MEDx3.0, Hermes) 

for this kind of study.

Very few of the studies listed above had post mortem confirmation of dementia type (with 

the exception of Bonte et al 1997 (90) and Jobst et al 1995 (85)) preferring instead to use 

the diagnosis given clinically at a follow up investigation of between 10 months and a few 

years after initial presentation of symptoms. The present study also lacks post mortem 

confirmation, however, it differs fundamentally from the other studies mentioned. 

Rather than using the new voxel-wise image analysis to improve correct diagnosis of 

dementia the method is being investigated for its potential as an aid to improve the 

consistency of visual interpretation of CBF scans between observers i.e. it assessed the 

confidence rather than the correctness of classifying scans.

Having established a set of working criteria for use with routine 99mTc-HMPAO SPECT 

scans, SPM96 was then applied to images of individual patients presenting with 

symptoms of dementia. The aims were:-

•  To determine whether SPM maps could be produced which were 

consistent with the original scans.

•  To ascertain whether they could assist in the reading of scans by 

reducing inter-rater variability.
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4.2 Methods

4.2.1 Recruitment o f Subjects.

Patients:- 39 patients who had been referred to the Institute of Neurological Sciences by 

"Old Age Psychiatrists" or Neurologists during the period April 1994 to December 1996 

whose differential diagnosis included dementia, were recruited retrospectively for the 

purposes of this study. Ethics permission for the study was given by the Southern 

General Hospital-NHS Trust ethics committee. Scans of patients were included 

regardless of the results of initial investigation and therefore this unselected group was 

typical of those seen routinely in the department for diagnostic assessment of dementia. 

Initial examination included neuropsychological evaluation, neurological examination and 

"m Tc - HMPAO SPECT scan.

Controls:- In order to perform a voxel-wise statistical analysis on each patient a database 

of 32 (number of patients recommended for a reference data base - personal 

communication from Karl Friston, 02/12/97)14 99mTC HMPAO SPECT scans was 

constructed from archived scans of patients referred to the department for investigation 

between March 1993 and March 1998 whose SPECT scans were subsequently reported 

as normal and who had had no further history of neurological investgation. To account 

for systematic differences in rCBF due to age, of approximately 100 scans reviewed only 

scans of the 32 controls over the age of 45 were included, (age range 46-68). Other 

criteria for inclusion concerned the quality of the archived scans; images had to include 

the whole brain (from below the cerebellum to the top of the head) and low extra-cerebral 

uptake. To confirm no missed abnormalities in these scans we used a jackknife analysis 

(63) of testing each scan against the rest of the normal group using SPM96. First, 

normal reference data were calculated from 31 subjects excluding one subject. SPM(t) 

maps of the excluded subject were then calculated in comparison to the normal reference 

data created from the rest of the normal controls. This procedure was repeated 32 times 

to generate individual SPM(t) maps for each normal control.

14SPM help-line http://www.mailbase.ac.uk/lists/spm/1997-12/0009.html
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D em entia o f the A lzheim er’s Type (DAT) -
PL,pTL,(bilateral, occasionally  unilateral) FL involved  in advanced disease,

D em entia o f the A lzheim er’s Type (DAT) - asym m etrical defects

Dem entia o f the Frontal Lobe Type (DFLT) - M ed, Lat iFL (bilateral, obvious  
atrophy) aTL (bilateral)

D em entia o f the Vascular Type (DVaT) - M ultiple small cortical perfusion defects, 
Clear M CA territory (usually the insula), C lassic watershed region infarction.

iPL - Inferior parietal Lobe, pTL - posterior temporal lobe, iFL - inferior frontal lobe, 
aTL - anterior temporal lobe, M ed - m edial, Lat - lateral, M CA - m iddle cerebral 
artery, CBF - cerebral blood flow, SF - sylvian fissure.

Figure 4.1 show s axial slices o f  different 99mTc HMPAO scans o f  C B F to illustrate the guidelines used for 
the categorisation o f  dem entia in terms o f  C B F pattern.
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4.2.2 Data Analysis

Visual reporting:- Qualitative reporting was done using Strichman Medical Equipment 

display software, provided with the scanner, run on an Apple Macintosh computer, 

system 7.5 or less. Each scan was reconstructed and displayed on a colour monitor in 

axial slices at a thickness of 6mm. The SME software allows 3D manipulation of the data 

sets providing a manual adjustment facility, to allow axial slices to be resliced parallel to 

the plane through the anterior and posterior commisure for assessment. The colour scale 

used for display purposes is an 8bit scale with white representing maximum activity and 

blue/black representing minimum. During reporting the colour level was interactively 

manipulated by the observer. Following this review probabilities were assigned to each 

of the following diagnostic categories: dementia of the Alzheimer’s type (DAT), dementia 

of the frontal lobe type (DFLT), dementia of the vascular type (DVaT), some other 

dementia e.g. Korsakoff's (other), normal (normal). The reading of the scans was 

assisted by comparison with an "ideal” 99mjc HMPAO SPECT scan and followed 

specific guidelines as described by Holman et al 1992 (77) and Talbot et al 1997 (78). 

(These guidelines are given in Figure 4.1. along with corresponding CBF SPECT data). 

The "ideal" scan (figure 4.2.) was constructed from 10 scans in the control database, 

spatially normalised to the PET template and then averaged to produce a mean normal 

scan. Images were interpreted by two independent observers, experienced in the 

interpretation of cerebral perfusion images of patients with dementia and normal control 

subjects, using the procedure described above and knowledgeable of the criteria for 

abnormality but without prior knowledge of the clinical data. The location and severity of 

the perfusion defects were noted and a percentage likelihood of final diagnosis as 

interpreted from the rCBF data was reported.

Image processing of individual SPECT data:- Image registration and smoothing was 

performed on each patient’s scan. Any non-optimum starting estimates (see chapter 3) 

had to undergo a certain amount of image processing before statistical analysis could be 

performed. As defined by the results from the previous chapter (Chapter 3 -Validation o f 

the image standardisation facility ofSPM96), this involved a rigid body co-registration of
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Figure 4 .2 . Average normal SPECT scan used for visual reporting, constructed from 10 seans in the control 
database, spatially norm alised to the PHT template and then averaged to produce a mean normal scan-
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each of the non-optimal images to an "ideal" SPECT scan, prior to image standardisation. 

The co-registered and standardised images were then exported to a customised graphics 

package (mri3d) after smoothing so that partial axial slices could be edited to delete the 

spurious voxel information produced by smoothing of edges.

Voxel-wise statistical analysis:- Once the images had been edited the statistical option 

"compare groups, 1 scan per subject" available with the SPM96 statistics module was 

used to compare each individual patient data to a reference data base. These SPM(t) 

results were then used by the two observers in conjunction with the original scans to give 

a revised diagnostic estimate. To quantify the agreement between the 2 observers, a 

Kappa (K) statistic was calculated (95).

4.3 Results.

The results of the percentage differential diagnosis from each of the observers for the 39 

patients are listed in appendix C. Some of these cases are described. Both the original 

CBF scan and the corresponding SPM(t) map are included to demonstrate how typical 

CBF patterns for the five dementia categories are represented in significance space 

(SPM(t)).
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Figure 4.3 show s 10 axial slices from above and below  the ac-pc line o f  a ""Te-HM PAO scan acquired from  a 
patient w hose clinical differential diagnosis included dem entia. B elow  this is the glass brain display o f  the 
results (SPM (t)) calculated by the SPM 96 analysis option '‘com pare groups; 1 scan per subject". The results are 

thresholded at PucO.OOl and Pk<0.5 (uncorrected).

The case show n in figure 4.3 was originally reported by observer 1 (20%  DVaT + 80%  

normal) and observer 2 (100%  normal) based on the C BF SPECT scan information alone. 

This diagnosis remained unchanged with evidence from SPM (t) for observer 1 but changed  

for observer 2 (10% DVaT + 90% normal).

The small areas o f  reduced perfusion in the cortex located by the SPM (t) map are in the area 

o f  the insula in both hem ispheres. This area is often im plicated in cases o f  cerebral vascular 

disease w hich is why observer 1 and 2 reported the possible presence o f  DVaT from evidence  

provided by the SPM (t).
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F ig u re  4 .4  sh o w s  10 ax ia l s lic e s  f ro m  a b o v e  a n d  b e lo w  th e  a c -p c  lin e  o f  a  " “ T c -H M P A O  sc a n  a c q u ire d  f ro m  a 
p a tie n t w h o s e  c lin ic a l d if fe re n tia l  d ia g n o s is  in c lu d e d  d e m e n tia . B e lo w  th is  is the  g la s s  b ra in  d isp la y  o f  th e  
re su lts  (S P M (t) )  c a lc u la te d  by  th e  S P M 9 6  a n a ly s is  o p tio n  “c o m p a re  g ro u p s ;  1 sc a n  p e r  s u b je c t” . T h e  re s u lts  a re  

th re sh o ld e d  at PucO .O O l an d  P k < 0 .5  (u n c o rre c te d ) .

The case show n in figure 4 .4  was originally reported by observer 1 (100%  normal) and 

observer 2 (100%  normal) based on the CBF SPECT scan inform ation alone. This diagnosis 

remained unchanged with evidence from SPM (t) for observer 1 but changed for observer 2 

(10% DVaT + 90% normal).

The sm all areas o f  reduced perfusion in the cortex located by the SPM (t) map are in the area 

o f  the insula in both hem ispheres. Again this prompted observer 2 to report the possible  

presence o f  DVaT from evidence provided by the SPM (t).
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F ig u re  4 .5  sh o w s  10 ax ia l s lic e s  f ro m  a b o v e  an d  b e lo w  th e  a c -p c  lin e  o f  a  " T c - H M P A O  sc a n  a c q u ire d  
fro m  a p a tie n t w h o se  c l in ic a l d if fe re n tia l  d ia g n o s is  in c lu d e d  d e m e n tia . B e lo w  th is  is th e  g la s s  b ra in  d isp la y  
o f  the  re su lts  (S P M (t) )  c a lc u la te d  b y  the  S P M 9 6  a n a ly s is  o p tio n  “c o m p a re  g ro u p s ;  1 sc a n  p e r  s u b je c t” . T h e  

re su lts  a re  th re sh o ld e d  a t PucO .O O l an d  P k < 0 .5  (u n c o rre c te d ) .

The case shown in figure 4.5 was originally reported as DAT by observer 1 (100% ) and 

observer 2 (100%  DAT) based on the CBF SPECT scan inform ation alone. This diagno  

sis was confirm ed with evidence from SPM (t) with observer 1 (100%  D A T ) and observer 

2(1 0 0 %  DAT).

Areas o f  reduced perfusion in the cortex evident in the C BF SPECT scan that match up 

with areas located by the SPM (t) map are labelled with green arrows (A ). T hese areas 

are the parietal lobes (A ) with the right hem isphere being slightly worse than the left and

are consistent with areas associated with DAT reported by other im aging studies.



CA SE 4

r i g h t  l e f t
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F ig u re  4 .6  sh o w s  10 a x ia l s l ic e s  f ro m  a b o v e  a n d  b e lo w  th e  a e -p c  lin e  o f  a " T c  H M P A O  sc a n  a c q u ire d  
f ro m  a p a tie n t w h o se  c l in ic a l d if fe re n tia l d ia g n o s is  in c lu d e d  d e m e n tia . B e lo w  th is  is th e  g la s s  b ra in  d is p la y  
o f  the re su lts  (S P M (t) )  c a lc u la te d  by  th e  S P M 9 6  a n a ly s is  o p tio n  “c o m p a re  g ro u p s ; 1 sc a n  p e r  s u b je c t” . T h e  

re su lts  a re  th re sh o ld e d  a t PucO .O O l an d  P k < 0 .5  (u n c o rre c te d ) .

The case shown in figure 4 .6  was originally reported by observer 1 (30%  DAT +

10% DFLT + 30% DVaT + 30% other) and observer 2 (40%  DAT + 20% DFLT + 20%  

DVaT + 20% other) based on the CBF SPECT scan information alone. This diagnosis  

was later changed, with evidence from SPM (t), to 90% DAT + 10% DVaT by both 

observers.

Areas o f  reduced perfusion in the cortex evident in the CBF SPECT scan that match up 

with areas located by the SPM (t) map are labelled with green arrows (A ,B ). T hese areas 

are the frontal lobe(A ) and bilateral parietal lobes (B) and are consistent with areas asso­

ciated with DAT reported by other im aging studies. Reduced perfusion in the frontal 

lobes has been reported in later stages o f  the disease.



CASE 5 
RIGHT LEFT

F ig u re  4 .7  sh o w s  10 ax ia l s lic e s  fro m  a b o v e  an d  b e lo w  th e  a c -p e  lin e  o f  a  " mT c -H M P A O  se a n  a c q u ire d  fro m  a 
p a tie n t w h o s e  c l in ic a l  d if fe re n tia l  d ia g n o s is  in c lu d e d  d e m e n tia . B e lo w  th is  is th e  g la s s  b ra in  d is p la y  o f  the 
re su lts  (S P M (t) )  e a lc u la te d  by  th e  S P M 9 6  a n a ly s is  o p tio n  "‘c o m p a re  g ro u p s ;  1 sc a n  p e r  s u b je c t” . T h e  re su lts  a re  
th re sh o ld e d  at PucO .O O l an d  P k < 0 .5  (u n c o rre c te d )  in th e  firs t ro w  an d  th en  P u < 0 .0 1  a n d  P k < 0 .5  (u n c o rre c te d )  

in th e  se c o n d  row ..

The case shown in figure 4.7 was originally reported as DAT by observer 1 (100% ) and 

observer 2 (90% DAT + 10% DVaT) based on the CBF SPECT scan inform ation alone. 

This d iagnosis was confirm ed with evidence from SPM (t) with observer 1 (90% DAT + 

10% D V aT ) and o b se r v e r  2 (95%  D A T  + 5% N o r m a l) .

Areas o f  reduced perfusion in the cortex evident in the CBF SPECT scan that match up 

with areas located by the SPM (t) map are labelled  with green arrows (A ,B ,C ). T hese  

areas are the medial temporal lob e(A ), anterior cingulate (B ) and parietal lobe (C ) and

are c o n s is te n t w ith  areas a sso c ia ted  w ith  DAT reported by other im a g in g  stu d ies .
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F ig u re  4 .8  sh o w s 10 ax ia l s lic e s  fro m  a b o v e  an d  b e lo w  th e  a c -p c  lin e  o f  a  WmT c -H M P A ()  sc a n  a c q u ire d  
fro m  a p a tie n t w h o se  c l in ic a l  d if fe re n tia l  d ia g n o s is  in c lu d e d  d e m e n tia . B e lo w  th is  is th e  g la s s  b ra in  d isp la y  
o f  the  re su lts  (S P M (t) )  c a lc u la te d  b y  th e  S P M 9 6  a n a ly s is  o p tio n  “c o m p a re  g ro u p s ;  1 sc a n  p e r  su b je c t" . T h e  

re su lts  a re  th re sh o ld e d  al PucO .O O l an d  P k < 0 .5  (u n c o rre c te d ) .

The case shown in figure 4.8 was originally reported by observer 1 as 90% DFLT + 10%

DAT and observer 2 as 100% DFLT based on the CBF SPECT scan inform ation alone.

This diagnosis was later changed with evidence from SPM (t) with observer 1 (90%

DFLT + 10% DAT) and observer 2 (30% DFLT + 70% DVaT).

Areas o f  reduced perfusion in the cortex evident in the CBF SPECT scan that match up

with areas located by the SPM (t) map are labelled with green arrows (A , B). These areas

are the anterior temporal lobes (A ) - the right is worse than the left - and the anterior

cingulate(B) and are consistent with areas associated with DFLT reported by other imaging

studies. 84
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Figure 4.9  show s 10 axial slices from above and below  the ac-pc line o f  a " mTc HM PAO scan acquired 
from a patient w hose clinical differential d iagnosis included dem entia. B elow  this is the g lass brain display  
o f  the results (SPM (t)) calculated by the SPM 96 analysis option “com pare groups; 1 scan per subject” . The 

results are thresholded al PucO.OOl and Pk<0.5 (uncorrected).

The case shown in figure 4.9 was originally reported as DFLT by observer 1 (100% ) 

and observer 2 (60% DFLT + 20% DVaT + 20% other) based on the C BF SPECT scan 

inform ation alone. This d iagnosis remained unchanged with evidence from SPM (t).

Areas o f  reduced perfusion in the cortex evident in the CBF SPECT scan that match up 

with areas located by the SPM (t) map are labelled with green arrows (A ,B ). These  

areas are the anterior cingulate (A ), and left frontal lobe (B ) and are consistent with 

areas associated with DFLT reported by other im aging studies.
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RIGHT LEFT

Figure 4 .10  show s 10 axial slices from above and below  the ac-pe line o f  a lWmTc-H M PA () scan acquired from 
a patient w hose clinical differential d iagnosis included dem entia. B elow  this is the glass brain display o f  the 
results (SPM (t)) calculated by the SPM 96 analysis option "compare groups: 1 scan per subject”. The results 

are thresholded at PucO.OOl and Pk<0.5 (uncorrected).

The case show n in figure 4 .10  was originally reported as DVaT by observer 1 (100% ) 

and observer 2 (100%  DVaT) based on the CBF SPECT scan inform ation alone. This 

diagnosis remained unchanged with evidence from SPM (t).

Areas o f  reduced perfusion in the cortex evident in the C BF SPECT scan that match up 

with areas located by the SPM (t) map are labelled with green arrows (A , B). T hese  

areas are the right parietal lobe (A ), and right anterior frontal lobe (B). Their 

appearrance is consistent with that associated with DVaT reported by other im aging  

studies.
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CASE 9

RIGHT LEFT

‘H O LLO W ’ LESION

Figure 4.11 show s 10 axial slices from above and below  the ac-pc line o f  a " “Tc-HM PAO  scan acquired from a 
patient w hose clinical differential diagnosis included dementia. B elow  this is the glass brain display o f  the 
results (SPM (t)) calculated by the SPM 96 analysis option "compare groups; 1 scan per subject”. The results are 

thresholded at PucO.OOl and Pk<0.5 (uncorrected).

The case show n in figure 4.11 was originally reported by observer 1 and observer 2 (100%  

DVaT) based on the CBF SPECT scan information alone. This diagnosis remained unchanged 

with evidence from SPM (t).

The area o f  reduced perfusion in the cortex is the site o f the main cerebral infarction in the 

right frontal lobeand is clearly visib le in the SPM (t) map. This case is a good exam ple o f  how  

the thresholding facility that SPM 96 uses to include only intra-cerebral voxel values can fail. 

In this case the values o f  the voxels representing the infarct have such a low  value they are 

not included in the statistical analysis and this results in the lesion  looking ‘h o llo w ’ on the

SPM (t) map (green arrow).
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Figure 4 .12 show s 10 axial slices from above and below  the ac-pc line o f  a 'WmTc-HM PAO scan acquired from 
a patient w hose clinical differential diagnosis included dementia. B elow  this is the glass brain display o f the 
results (SPM (t)) calculated by the SPM 96 analysis option "compare groups; 1 scan per subject”. The results are 

thresholded at PucO.OOl and Pk<0.5 (uneorrected).

The case show n in figure 4 .12  was originally reported by observer 1 (60% DVaT + 20% other 

+ 20% normal) and observer 2 (20% DVaT + 80% normal) based on the C BF SPECT scan 

information alone. This d iagnosis later changed with evidence from SPM (t) to observer 1 

(20% DFLT + 60% DVaT + 20% other) and observer 2 (40%  DVaT + 60% normal).

Areas o f  reduced perfusion in the cortex evident in the C BF SPECT scan that match up with 

areas located by the SPM (t) map are labelled with green arrows (A , B). T hese areas are the

anterior parts o f the temporal lobe bilaterally (A), and the inter-hem ispheric fissure (B).



To quantify the agreement between the 2 observers for the two different reporting 

methods (visual and visual+SPM96), a Kappa (K) statistic was calculated and is defined 

a s :

K = (Po - Pe)/(1 - Pe) (2)

where Po = observed proportional agreement, Pe = chance proportional agreement 

which includes a correction for the fraction of agreements expected by chance. K=1 only 

when complete agreement is observed. Interpretation of the level of agreement is as 

follows; 0.0 - 0.2, slight; 0.2 - 0.4, fair; 0.4 - 0.6, moderate; 0.6 - 0.8, substantial, and 

0.8-1.0, almost perfect. Values below zero represent less agreement than expected by 

chance. The K statistic was computed for between observers agreement of visual 

reporting of " mTc HMPAO SPECT scans before and after SPM96 revised reporting. 

The K statistic was calculated by categorising the diagnosis with the highest score (and 

reassigned a value of one) to be taken as the actual diagnosis for each patient (see 

appendix C). The K statistic for this overall assessment is listed in the first row of Table 

4.1.

Disease observerl 
/observer 2

observerl*
/observer2*

+overall 0.584 0.507
DAT 0.593 0.543
DFLT 0.682 0.4
VD 0.591 0.498
normal 0.54 0.53

Table 4.1. Lists the measured agreement between observers.
+ overall kappa statistics where the highest score in a diagnostic category was assumed to be the actual 
diagnosis and given a value of one.
* using SPM96 results.

K = Kappa 0-0.2 poor, 0.2-0.4 fair, 0.4-0.6 moderate, 0.6-0.8 Good, 0.8-1.00 very good.

The weakness of this calculation is that it takes no account of the degree of disagreement 

since all disagreements are treated equally. Instead a weighted Kappa statistic can be 

calculated where observations near to the diagonal, representing a difference of only one 

category, are considered less serious than those where a discrepancy is two or more
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categories. A weighted K statistic was calculated for the agreement between observers 

for each disease category and are listed in full in appendix C. Results for this test are 

shown in table 4.1 rows 2-4 and give similar values to that obtained from the overall 

measure. In all categories the level of agreement is lowered when using additional 

information from the SPM96 analysis.

The likelihood of diagnosis for each subject given by observer 1 and observer 2 for both 

methods of reporting are listed in appendix C along with the kappa tables and calculations 

used to calculate the levels of agreement between the observers.

4.4 Discussion

Before SPM(t) maps could be calculated for each individual patient a normal database had 

to be constructed. Official bodies responsible for monitoring the administration of 

radioactive substances are understandably keen to keep unnecessary exposure of the 

general population to a minimum. It was therefore not possible to build "from scratch" a 

new database of 99m j c HMPAO scans of the normal general population. Instead the 

database was constructed from archived scans of patients referred to the department from 

neurologists and psychiatrists for the investigation of suspected transient ischaemic 

attacks (TLA) and mild memory problems, between March 1995-March 1998 but whose 

SPECT scans were subsequently reported as normal. Justification of this method is 

needed. Apart from ensuring that the scans included in the database were from 

individuals who were not subsequently found to have any abnormality a jackknife type 

method (63) of testing each scan against the rest of the normal group using SPM96 was 

used to check for rCBF abnormalities that may have been missed by visual reporting 

(there were none). Other criteria for a scan's inclusion in the database included low extra 

cerebral uptake and good coverage of brain including cerebellum.

Further justification for this method of constructing a normal database is obtained by 

reference to the more usual approach of advertising (both internally and externally) for 

volunteers. In this situation we were able to examine retrospectively each scan initially
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reported as normal. There was no bias from the subjects themselves for their reason to be 

included in the study. One has to question the reasons why an individual would 

volunteer themselves as subjects. Family members of patients who wish to contribute 

whatever they can to help their suffering relative are few and far between. It is more 

likely that those presenting themselves as subjects are concerned about their own physical 

and mental health. Only after a lengthy battery of tests, which all subjects recruited for a 

study must undergo, can those subjects who are genuinely worried and may turn out to 

be "not normal'’ be weeded out. Using this method of retrospective selection we were 

better able to establish a representative database of normal CBF scans from our own 

archives without incurring the difficulties involved in subject recruitment

To account for the global differences in cerebral perfusion across subjects it is necessary 

to globally normalise the voxel intensities within an image. There are two options for 

doing this in SPM96; AnCova and proportional scaling (see CH2 pg47). For the 

purposes of this study the proportional scaling method was used in preference to AnCova 

since use of the latter method with data where similar global uptake of the 

radiopharmaceutical cannot be guaranteed is not recommended. In our control group the 

mean global counts ranged from 61.2 to 123.3 and in the patients 33.8 to 128.5. The 

proportional scaling method of accounting for global CBF differences uses whole brain 

as the reference region to which to normalise. Other reference regions commonly used 

include, calcarine cortex, cerebellum, thalamus and basal ganglia (42,63,88,96). 

Although the SPM96 proportional scaling normalisation facility does not allow other 

reference regions to be defined it is possible (using MATLAB scripts, courtesy of MG)15 

to pre-normalise the data prior to SPM analysis and then switch off the normalisation 

facility within SPM96. It was decided however, that this would not be appropriate and 

that global mean value would be used as the normalisation factor for two reasons. 

Firstly, the cerebellum could be rejected as suitable reference regions quite simply 

because in some of the images all or part of this information was missing and in one

15 Dr Mike Glabus Neurophysicist, MRC Brain Metabolism Unit, Royal Edinburgh Hospital, 
Edinburgh, EH10 5HF, UK.
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image the lower part of the calcarine cortex was missing. Secondly, normalising to the 

thalamus and basal ganglia while adequate for assessment of DAT, since these areas are 

relatively spared in the progression of the disease, would not always be appropriate in the 

case of DVaT. For example, small infarcts in the perforators branching from the middle 

cerebral artery will almost certainly result in lowered perfusion in the thalamus. 

Minoshima et al 1995 (63), Bartenstein et al 1997 (42) make allowances for this by only 

using the higher value thalamic activity from either hemisphere. However, this would 

need apriori knowledge of the disease state which would have been unacceptable for the 

purposes of this study.

The results from this study failed to show that SPM could improve/enhance the 

interpretation of CBF scans as an aid in the differential diagnosis of dementia. The study 

results of the inter observer reliability (overall agreement measured K= 0.584 and 

KSpm=0.504) in fact show a slight decrease in overall agreement between the observers. 

This was also reflected in the measurements made using the weighted kappa statistic for 

each disease category. Although SPM aided reporting seemed to increase the amount of 

disagreement between observers overall, anecdotal evidence from both the observers 

suggested that the SPM(t) maps strengthened the confidence of the initial percentage 

probability diagnosis based on evidence from the scan alone and therefore speeded up the 

process of visually reporting the scans. In addition further inspection of the results of 

CBF SPECT scans and their associated SPM(t) maps from 10 cases out of the original 39 

shows that the SPM analysis was robust in detecting blood flow abnormalities in the 

cerebral cortex but that the interpretation of these maps by the two observers could be 

different It is useful to study these cases in more detail.

Case 1 and 2 are good examples of the CBF SPECT scans that were reported normal on 

visual inspection alone. The SPM(t) map detects areas of reduced perfusion (with respect 

to the reference group) in the insula for both scans, an area often implicated in cases of 

cerebral vascular disease. Looking at the scans again it is clear that there is a widening of 

the left sylvian fissure for case 1 and bilaterally in case 2. This may have been initially
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dismissed as localised atrophy in this area consistent with the patients' age but other 

studies using SPM have confirmed that relative blood flow deficits detected in this way 

cannot be attributed solely to the effects of atrophy (97). The SPM results confirmed 

observer l's suggestion that DVaT may be present in easel and introduced the possibility 

of DVaT in case 2. Observer 2 had originally reported both scans as 100% normal but 

introduced the possibility of DVaT on evidence from the SPM(t) for both case 1 and 2.

Case 3 was originally reported as 100% DAT by both observers and remained unchanged 

with the evidence from the SPM(t). This result is interesting because neither the CBF 

SPECT scan or the SPM(t) show any evidence of reduced blood flow in the area of the 

medial temporal lobe an area associated with structural abnormalities detected in CT and 

MRI as decreases in the thickness of the cortex (85). This absence of medial temporal 

lobe reduced perfusion has also been recently reported by a study using PET with 

2(18F)FDG to examine the differences between normal controls and patients with 

probable mild DAT (98,99).

Case 4 is a good example of how an SPM analysis can help in some particular cases 

where the diagnosis based on the CBF SPECT scan remains equivocal. Initially this scan 

was reported by both observers of having an almost equal likelihood of any of the 

dementias [obsl - (30% DAT, 10% DFLT, 30% DVaT, 30% other) obs 2 - (40% DAT, 

10% DFLT, 20% DVaT and 30% other)]. The evidence from the SPM(t) map for this 

case shows significant reductions in the parieto-temporal regions and a slight reduction in 

the medial temporal area, all implicated in DAT and making the likelihood of DAT much 

more probable (90%). The patchy appearance of the rest of the cortex, however, also 

suggests the presence of DVaT superimposed on the classic DAT pattern reflected by both 

observer 1 and observer 2 including it as a possible diagnosis (10%).

Case 5 was originally reported as a definite case of DAT with the suggestion of the 

presence of DVaT by observer 2. The SPM(t) map, however, shows much smaller 

numbers of voxels with significant reduction in the parieto-temporal regions evident in the
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previous two cases, although the abnormalities in the SPECT scan are quite clearly 

located in the map. This SPM(t) map was re-thresholded at a lower significance of 

Pu<0.01 (Pk<0.5) and the classic DAT pattern in CBF became more apparent. This case 

highlights the problems that may occur should an SPM(t) map be used without the 

original evidence from the CBF scan and without the appreciation of the various 

parameters that can be adjusted within SPM96. If an SPM analysis is to be used to 

assess the CBF pattern in an individual patient, as confirmation of an already suspected 

diagnosis, a choice should be made as to what significance threshold should be used. 

The developers of SPM provide the guidelines that, the results of an apriori hypothesis 

can be thresholded at Pu<0.01 and Pk=1.00 but that an exploratory investigation must 

always be displayed at a higher threshold of Pu<0.001 and Pk<0.5. Interpreting these 

guidelines for the SPM analysis of an individual patient's scan, rather than for studies of 

neuroactivation, where groups of scans are analysed together and the changes in blood 

flow being measured are only a few percent, choosing a less strict threshold would seem 

valid. In some cases however, if the blood flow deficit is very widespread an SPM(t) 

map at this level would show almost all the voxels analysed as being significant and 

therefore, hide any predominant pattern. It is more appropriate in this case to use a higher 

significance level. This might give the impression that the choice is arbitrary but the 

guideline should be:-

•  if the possibility of false negatives is to be minimised then a lower 

threshold should be used,

•  if this results in too many voxels being significant and so obscuring 

localised information within the SPM(t) map then a more stringent 

threshold should be applied.

Cases 6 and 7 were both initially reported as DFLT based on the CBF SPECT scan 

information alone. For case 6 the SPM(t) map quite clearly shows the perfusion deficits 

in the anterior cingulate and anterior parts of the temporal lobe both areas are consistent 

with that reported in the literature (100). This result confirmed the diagnosis for observer 

1 but caused observer 2 to change the definite DFLT diagnosis to possible DVaT (70%),
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highlighting that the lack of agreement between the two observers is not that the 

abnormalities are not being detected by them and the SPM analysis but rather it is 

dependent on the interpretation of this information. In the SPM(t) map of Case 7 again 

there is a good correspondence between the abnormalities seen in the cortex and those 

detected by SPM, confirming the original diagnosis for both observers.

Case 8 and 9 are both examples of a definite diagnosis of DVaT quite clearly evident in 

the CBF SPECT scan of both patients and confirmed with evidence in the SPM(t) maps. 

Case 9 shows a good example of a particular problem inherent in SPM when measuring 

gross deficits in blood flow. As described in Chapter 2 pg47 a SPM analysis only 

includes what is considered to be intra-cerebral voxels. The voxel values within this 

lesion fall well below this threshold and are therefore not included in the analysis and as a 

result the lesion displayed looks hollow on the SPM(t) map. The way round this problem 

is to reset the threshold for intra-cerebral voxels using a facility in the SPM software. 

However, for the purposes of this study where the location of the lesion was more 

important than the size this step was not necessary. If, however, the SPM(t) map was to 

be used as a means of measuring the size of the lesion volume then the intra-cerebral 

voxel level would have to be reset and a sensible level would have to be determined.

Case 10 is a good example of where the diagnosis remained equivocal even after the 

information from the SPM(t) was made available. In the first instance both observers 

included the possibility of the presence of DVaT (60% and 20% respectively) based on 

the appearance of the insula regions in the SPECT scan which are often involved when 

infarcts occur in the middle cerebral artery. However, the blood flow deficits detected by 

the SPM analysis appears to put these areas more firmly in the anterior parts of the 

temporal lobe. The SPM(t) map also shows a deficit in the area of the anterior cingulate 

possibly reflecting the widening of the inter-hemispheric fissure clearly evident in the 

CBF SPECT scan. Perfusion deficits in both these areas have been described as typical 

of the CBF patterns seen in patients suffering from DFLT. While observer 1 still gave 

the most likely cause for this CBF pattern to be DVaT the possibility of DFLT (20%) was
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also included based on the SPM(t) result. Observer 2 on the other hand, whose original 

diagnosis had been normal (80%) with the possible presence of DVaT (20%), increased 

the likelihood of vascular dementia as a diagnosis on the evidence from SPM(t) DVaT 

(40%) with normal (60%) remaining as the most likely diagnosis. As with case 6 the 

problem here is not whether this method of using SPM96 is capable of detecting blood 

flow deficits in the cortex of individual CBF SPECT scans but rather the observer's 

ability to use this information to make a diagnosis.

An SPM type analysis of individual patients clearly does not remove the observer 

variability in interpretation. These results may be interpreted therefore, not as the inability 

of the SPM method to find significantly abnormal regions of CBF - indeed the SPM(t) 

maps presented in the results section certainly confirm the validity of the SPM technique 

in detecting areas of abnormal cortical perfusion in individual patients - but rather in 

teRMS of the observers uncertainty in interpreting these patterns with respect to dementia 

type. It might be that in future each observer may have to ascend a learning curve with 

regard to the incorporation of information from a SPM(t) map to the routine visual 

reporting procedure. The "ideal" " “ Tc HMPAO scan created for this study is now being 

routinely used to train junior radiologists and physicists in the visual reporting of CBF 

SPECT scans.

Finally it may be that an objective image analysis software of this kind could prove 

valuable as a way of monitoring the progress of a disease like dementia. Often it is 

difficult to visually interpret the amount of change that has taken place when comparing 

serial diagnostic scans of the same patient. The example in figure 4.13 shows the case of 

a patient whose consultant psycho-geriatrician requested a 99mTc HMPAO CBF SPECT 

scan for confirmation of DAT. The initial scan, without additional information from an 

SPM(t) map, was reported as normal taking into consideration the patient's age.
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Figure 4 .13  a) and b) show 10 axial slices from above and below  the ac-pc line o f  a WmT c-H M PA () scan acquired 
from a patient w hose clinical differential diagnosis included dem entia taken 29 months apart. B elow  this is the 
glass brain display o f  the results (SPM (t)) calculated by the SPM 96 analysis option “com pare groups; 1 scan per 
subject”. The results are thresholded at PucO.OOl and Pk<0.5 (uncorrected).
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However, the clinical symptoms became progressively worse and the patient was re­

scanned at 29 months following. The visual reporting of both scans failed to confirm the 

presence of a progressive reduction in rCBF. On the basis of the results obtained using 

the SPM96 analysis on individual patients suffering from dementia it was reasoned that if 

an abnormality was present in either of the scans it would be detected and the number of 

significant voxels within the abnormality could be used to give an indication of the 

progression of the abnormality. Figure 4.13 shows two CBF SPECT scans of the same 

patient taken 29 months apart with their corresponding SPM(t) maps. The SPM analysis 

was able to detect an abnormality in the right parietal lobe (Zmax = 4.12, no. of voxels = 

421) in the original scan (figure 4.13a), an area associated with CBF patterns reported in 

patients with DAT clinical symptoms by other studies. Figure 4 .13b shows that the SPM 

analysis confirmed the progression of the rCBF decrease located in the area of the right 

parietal lobe (Zmax = 4.61, no. of voxels = 788) and detected an additional abnormality 

in the left parietal lobe (Zmax = 3.65, no. of voxels = 110). The SPM(t) maps confirmed 

the progression of the rCBF decrease associated with progression of clinical symptoms of 

DAT. However, any changes observed between the two maps must be interpreted with 

caution as there is not yet sufficient data on the reproducibility of SPM(t) maps of " “ Tc 

HMPAO scans of the same patient in the absence of physiological change. It is possible 

that a continuing clinical audit over many years, preferably involving histology, could be 

used to re-investigate the findings of this study to determine whether the additional SPM 

information shifted probabilities closer to the correct diagnosis.

4.5. Conclusions.

This investigation failed to show that there was any benefit to using an SPM96 analysis 

of individual patient data as an aid to the differential diagnosis of CBF SPECT scans. 

However, further use of this technique for the analysis of serial SPECT scans of a single 

patient provided evidence that the analysis may have potential for the objective monitoring 

of the progression of disease affecting blood flow in the cerebral cortex.
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•  There is no evidence to support the routine use of SPM96 at present in 

reporting CBF SPECT scans of dementia.

•  SPM96 analysis of serial CBF SPECT scans of the same patient may 

provide an objective way of assessing for progression of disease when used 

in conjunction with both clinical and other imaging information.
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CHAPTER 5

M odifica tion  o f  9 9 m  j c H M P A O  S P E C T  a cq u is i t io n  p r o to c o l  
f o r  S P M  typ e  a n a ly s is  o f  n e u ro a c t iva t io n  s tu d ie s :  Im a g e
quality  versus s ta tis t ica l  pow er.

This chapter describes the investigation to determine empirically whether an 
increase in statistical power, gained by using a scan replication paradigm, is 
significant enough to warrant the use of poorer image quality, due to decreased 
administered activity per scan, in neuroactivation studies. Section 5.1 describes 
the benefits of obtaining multiple images of a subject during one scanning 
session. Section 5.2 lists the materials and methods used for this investigation. 
Section 5.3 presents the results and section 5.4 and 5.5 discuss the implications 
and consequences of using a multiple scan paradigm with SPECT.

5.1 In troduction

These investigations focused on whether CBF SPECT studies of neuroactivation might 

benefit from an approach similar to that used in PET, i.e., increase the number of scans 

per task and accept poorer individual scan quality. When neuroactivation has been 

studied by emission tomography, PET (positron emission tomography) rather than 

SPECT (single photon emission computed tomography) has always been the modality of 

choice due to its higher sensitivity, better resolution and the shorter half life of [150 ] 

water which enables repeated measurements to be made. In practice up to 12 scans can
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Figure 5.1 SPECT has its ow n unique features which make it attractive for neuroactivation  
work. In particular the trapping m echanism  o f  the cerebral blood flow  agents used in SPECT  
cerebral blood flow  (C BF) studies provides the facility o f  performing tasks outwith the con ­
fines o f  the scanner in a more ‘natural setting’ as illustrated in the picture above.
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be manipulated to obtain multiple data sets from one individual subject during one PET 

scanning session (101). SPECT, however, does have its own unique features which 

make it attractive for neuroactivation work. In particular the trapping mechanism of the 

cerebral blood flow agents used in SPECT studies provides the facility of performing 

tasks outwith the confines of the scanner in a more ‘natural setting’ (102) as illustrated in 

figure 5.1. The problems of setting up test equipment to provide tasks for the subjects to 

perform while lying in a scanner is not an insignificant problem faced by users of PET, 

and even more so for functional magnetic resonance imaging (fMRI) (103). The 

resolution of good neuroSPECT cameras is now approximately 7mm so inherently it 

should be possible to use SPECT for neuroactivation work and take advantage of the 

benefits which it offers at the task/scanning interface. The problem of obtaining multiple 

data sets and therefore the ability to assess within subject variance has not been tackled so 

far. To date a serious limitation of SPECT has been the poverty of information on within 

subject variation within the experimental paradigms which have been used. Most studies 

have only involved two measurements - baseline and activation.

The ability to detect change in regional CBF is dependent on (i) the noise in the imaging 

technique (statistical fluctuations, natural variation in CBF, variations in activation 

patterns), (ii) the signal i.e. the magnitude of the activation and the resulting change in 

CBF and, (iii) the measures taken to increase the signal/noise ratio (averaging between 

subjects). Parameter (ii) is unknown but is assumed to be directly related to the cognitive 

task being performed (73). For parameter (iii) the number of subjects can be estimated by 

using power analysis (104) if assumptions are made about the magnitude of activations 

that are expected. However, variations in the exact activation pattern between subjects are 

likely to make this an inexact science and the benefits of an increase in the number of 

subjects is not straightforward (105) since the differences in function and anatomy 

between subjects may start to impinge on the ability to detect change as described in 

parameter (i). These factors pertain to iCBF measurements whether PET or SPECT are 

used as the imaging modality. The main advantage of PET over SPECT has
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been the ability to utilise multiple task within subject repetition paradigms which enable 

different aspects of a task to be studied and more importantly within subject variability of 

measurements to be estimated (104). Conventionally, SPECT studies use a non- 

replication paradigm i.e. one scan for each task (see fig5.2a). In PET studies of CBF it 

is common to obtain multiple data sets from each task, by including up to 12 scans in one 

scanning session (see fig5.2b). It is noticeable that the image quality of an individual 

neuroactivation PET CBF scan is not as good as that of many good quality SPECT scans 

obtained from trapped single photon emitters (IMP, UMPAO and ECD), mainly due to 

the longer data acquisition times which can be used with trapped compounds. 

Nevertheless, when these multiple task PET data sets are processed using a statistical 

parametric mapping (SPM) method, a high level of confidence can be achieved when 

measuring changes in regional functional activity (104).

Kapur et al 1995 (104) have shown using PET that to obtain reliable results for a single 

task design (non-replication paradigm) one should have a minimum of 15 subjects and for 

a repeat task design (replication paradigm) 9 subjects, based on a regional change in 

blood flow of 3% interpreted at a significance threshold of p<0.01. Most reported 

neuroactivation studies using SPECT currently involve 6 - 2 0  subjects performing two 

different cognitive tasks where one scan per task is produced. The total radiation dose 

received by a subject for research purposes is required to be as low as reasonably 

achievable. Most studies in the UK currently use 500MBq per scan although higher 

administered doses are common elsewhere. A few studies have used 250MBq of " “ Tc 

HMPAO per scan for activation studies involving a non-replication paradigm. The lower 

count rate of using half the activity normally available for a single scan can be 

compensated for by using longer scanning times. Image quality is poorer using this dose 

protocol due to the increase in background noise as a consequence of prolonged 

acquisition times, nevertheless successful neuroactivation studies have been completed 

(13-15,106).
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Radiation dose limits impose a ceiling on the amount of activity administered to each 

subject. Within that constraint the only factors available for manipulation are 

administered activity per scan and scanning time. This study investigates whether it is 

possible to manipulate these SPECT parameters in such away as to also obtain multiple 

data sets per cognitive task while achieving a significant return in statistical power when 

analysing data using a statistical parametric method.

5.2 Methods

In order to compare paradigms a controlled activation of known effect is required. A data 

simulation method was used to determine empirically whether an increase in statistical 

power, gained by using a replication paradigm, is significant enough to warrant the use of 

poorer image quality, due to decreased administered activity per scan.

As with chapter 3 the principle adopted in this study was to use 'real' clinical scans and 

superimpose a region of rCBF change on these data. Scans were chosen at random from 

those acquired in every day practice using 99mTc-HMPAO. The scans demonstrated no 

major abnormality. Duplicate copies of real scans were made for the purposes of this 

study, in order to have a paired data set that did not include noise due to natural variability 

of CBF or anatomy between subjects. This imposed condition of no anatomical variation 

makes the distinction between the paradigms clearer by removing noise due to inter and 

intra-subject variability without introducing bias in favour of any particular paradigm. To 

create the different experimental designs for testing the hypothesis the following method 

was used:-

•  Create the acquisition parameters

•  Create the image data sets

•  Create the different paradigms

5.2.1 Creating the acquisition parameters.

The neuroactivation studies were simulated from past and current study protocols using 

the acquisition parameters
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•  unit dose per scan (500MBq) and unit scan time per slice (120 secs)

•  half unit dose per scan (250MBq) and unit scan time per slice (120 secs)

•  half unit dose per scan (250MBq) and double scan time per slice (240 secs)

For each of the three conditions a single SPECT scan was selected as representative of the 

conditions being tested. Scans were chosen at random from those acquired in every day 

practice using " “ Tc-HMPAO. The scans used in the first study simulation (study 1) of 

10 subjects imaged under two cognitive conditions were created from a previously used 

study protocol using an activity of 1 unit dose per scan and standard scanning time. A 

second study (study 2) was simulated as a 1/2 dose scan with standard acquisition time to 

investigate the benefits of a repeat task design in conjunction with the disadvantage of a 

drop of roughly half in the counting statistics. This was done in order that a replication 

paradigm might be offered that would keep the total acquisition time as standard thus 

minimising the discomfort to the volunteer. A further study (study 3) was simulated from 

another previous study protocol where the subjects had received 1/2 unit dose per scan 

with the scan acquisition time adjusted to obtain a similar number of total counts as a unit 

dose scan, however, the total scan time was chosen in light of experience to be the 

maximum acceptable duration of subject compliance. The procedure for study 2 and 3 

simulated a replications paradigm of the activation tasks being investigated and so two 

scans for each condition were created. The maximum total radiation activity received by 

each simulated subject in all three groups was 2 unit doses, an effective dose of 

approximately 9.0 mSv (107). A summary of the study paradigms are given in table 5.1.

Study NO. OF 
SUBJECTS

DOSE UNITS 
PER SCAN

SCANS PER 
SUBJECT

UNITS OF 
SCAN TIME

1 10 1 2 (A 3) 1

2 10 1/2 4 (A,B,A,B) 1

3 10 1/2 4 (A,B, A,B) 2
Table 5.1. Summary of scanning parameters used to simulate 3 different SPECT neuroactivation 
paradigms. All scan paradigms have been designed to deliver the same total radiation dose per subject.
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5.2.2 Creating the image data sets.

The procedure for creating the image data sets is illustrated in figure 5.3. For each of 

these three paradigms simulating regional activations were introduced as follows. An 

exact copy of the original scan was made, in order to have a paired data set to represent 

two cognitive tasks, A and B, which did not include changes between the scans due to 

natural variability in CBF. The activation or difference between the two scans was 

achieved by using a customised graphics package, HIPS (108), to place a region of 

'activation' in the duplicate scan. The image data was manipulated in HIPS format as a 

stack of images representing contiguous slices through the brain. An axial slice through 

the basal ganglia was chosen in which to place the region of activation. A rectangular 

region of interest was drawn in the left frontal lobe of size 9x11x1 voxels (1.56mm 

x 1.56mm x6mm). The mean value of this slice was calculated and to each pixel in the 

designated region was added 3.0% of the slice mean. (The slice mean having been 

calculated as the number of counts in those pixels surviving an 80% threshold of the 

maximum number of counts in that slice divided by the area (mm2) within the threshold 

boundary). Both scans, 'activation' and 'baseline', were then copied another 9 times in 

order to produce 10 SPECT scan pairs in total in order to exclude differences in anatomy 

between subjects. Gaussian noise was added to each of the 20 scans using a HIPS 

software facility, to emulate scanner noise across scans for each subject. The Gaussian 

noise generator function in HIPS adds pseudo-random, independent, identically 

distributed noise to an image. The noise values have zero-mean Gaussian distribution 

and the standard deviation of the noise must be specified. To provide a different 

Gaussian noise distribution for each stack of images a different seed for the pseudo­

random number generators must be provided for each subject. For multiple frames, the 

normal operation of this function is to generate a noise frame for the first frame, and 

randomly permute its rows and columns for subsequent frames. Finally the images were 

re-formatted to ANALYZE™ compatibility for further analysis using SPM95.
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5.2.3 Creating the different paradigms.

The procedure described created a group of 10 subjects each with an activation scan (A) 

and a baseline scan (B) and is referred to as study 1. The same procedure was followed 

with the appropriate modifications; the original scan copied 4 times producing a total of 

40 scans per study to which Gaussian noise was then added as before, to simulate the 

other paradigms involving a total of 4 scans per subject (ABAB). The simulated 

paradigms were then repeated using a 2.5%, 2.0%, 1.5% and 1.0% increased signal 

respectively, in the region of activation.

5.2.4 Reporting the different paradigm results.

In order to establish the statistical effects of the differences between the paradigms, the 

data sets were put through the SPM95 statistics package. Although all the scans were 

copies from an original single scan and therefore not anatomically different, before 

statistical analysis could be performed the scans had to be spatially standardised using the 

SPM95 linear spatial normalisation function and smoothed. Study 1 data was analysed 

using the software option ‘multi-subject and different conditions’ with global blood flow 

normalisation achieved using the proportional scaling option. Studies 2 and 3 were 

analysed using the option ‘multi-subject with replications’, global blood flow 

normalisation as before. The Z-score information was extracted from the SPMt.mat files 

produced by the SPM95 statistical analysis. The mean Z-score calculations were confined 

approximately to those voxels ‘activated’ in the original activation scans by using 

MATLAB.

5.3 Results

Results shown in Table 5.2 are the mean and standard deviation Z-scores for both the 

single task (study 1) and repeat task designs (study 2 and 3). The mean Z-scores for 

study 1 and study 3 were significantly different at p< 0.000001 (independent t-test, one 

tailed) for changes in regional cerebral blood flow of 3.0%, 2.5% and 2.0% . No 

significant differences were found at changes in rCBF < 1.5%. Significant differences

109



were found between the mean Z-scoies for study 1 and 2 at p<0.003 (independent t-test, 

one tailed) for changes in regional cerebral blood flow of 3% and 2.5 % only.

These results indicate that the best experimental design would be one that included 

replications of tasks. Within the limits set regarding the allowable total dose per subject 

the study design including replications combined with higher count rates associated with 

the increased scan time in study 3 gave the optimum Z-score results.

study 1 study 2 study 3 UNPAIRED ONE 
TAILED t-TEST

% change in 
rCBF

Z -sc o re  
mean and std

Z -sco re  
m ean and std

Z -sco re  
m ean and std

significant
differences

3.00% 4.79 +/-0.84 5.83 +/-4.66 8.36 +/- 4.93 pi,3 < 0.000001
pi,2 < 0.003

2.50% 4.15 +/-0.6 5.83 +/-4.66 8.22 +/- 4.91 pi,3 < 0.000001 
pi,2 < 0.0001

2.00% 3.34 +/-0.51 3.8 +/-1.06 5.46 +/- 0.84 Pi,3 < 0.000001 
Pi,2 < N.S.

1.50% 3.32 +/-0.51 2.4 +/-0.24 3.24 +/- 0.93 Pi,3 < N.S. 
Pi,2 < N.S.

1.00% 2.3 +/-0.27 2.4 +/-0.27 3.3 +/- 0.64 p i 3 < N.S. 
PL2< N.S.

Table 5.2. List of mean and standard deviation z-score for successive changes in rCBF in each paradigm 
listed in table 5.1.

5.4 Discussion .

This simulation was able to show that when an SPM investigation is used for data 

analysis, study replication is more important than the individual image quality typically 

available from a high performance SPECT system. Despite a reduction in administered 

activity per scan thus degrading the overall image quality, both studies 2 and 3 showed an 

improvement over study 1 (p<0.003 and p<0.000001 respectively). The reduction in 

administered activity per scan is partly compensated for in study 3 by increasing the 

scanning time. The image quality, however, is not fully restored since the increased 

scanning time also increases the fraction of background noise contained within the signal. 

Nevertheless this method used for study 3 obtains a gain in statistical power over studies
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1 and 2 by using a replication paradigm that far outweighs the disadvantage of poorer 

image quality. This is not necessarily the case for low performance SPECT systems, 

where count rate is more of a limiting factor. However, the introduction of double and 

triple headed gamma cameras, coupled with the higher administered activity allowances in 

the rest of Europe and the US should make it possible for " mTc-HMPAO SPECT to 

make valid contributions to the field of functional human brain mapping by following the 

methods presented here.

The experimental protocol selected for this study used a condition of no anatomical 

variation between scans. This should not affect the relative differences between the 

results of the different paradigms used. It should be noted, however, that the absolute 

significance values obtained are higher than one would expect for a neuroactivation study 

involving a similar number of different normal controls. Although the time taken to scan 

a single slice was defined as an independent acquisition parameter, it was actually defined 

by the total scan acquisition time of one hour which was chosen in the light of experience 

to be the maximum acceptable duration of subject compliance.

Adoption of a four study protocol does undoubtedly introduce logistical difficulties. It is 

important to consider the limiting factors in emission tomography studies of 

neuroactivation. The factors which must be considered are cost, number of volunteers 

who can be recruited, radiation dose, scanning time and consequently acceptable scan 

duration. Clearly a 4 scan paradigm is preferable but if it is not possible to arrange four 

independent scanning sessions then an alternative may be considered. One alternative 

would be to use two split dose studies, where up to one half of the dose is administered 

during one condition, obtaining the first scan, and then, on the same day administering 

the remainder of the dose during the second condition and obtaining the second scan (15). 

Another alternative would be to use two dual isotope acquisition studies. This would 

involve the administration of a half dose of one imaging agent (e.g. 123I-IMP) during 

one condition and then another imaging agent (e.g. " mTc HMPAO) is administered 

during another condition immediately following the first (109). A single scanning
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session with two energy window settings would then be performed to obtain two images 

of the two different conditions. Fundamental to both these techniques, however, is the 

problem of noise from the initial scan/imaging agent interfering with the second 

scan/imaging agent.

A four scan design will be advantageous to SPECT studies of neuroactivation, which to 

date, have used two scan protocols (13,15,110). Within this context, the application of 

two additional scans could benefit neuroactivation studies of both patients and normal 

subjects. With respect to the former, one of the main limitations of the neuroactivation of 

for example, brain-injured patients, is the degree of neuroanatomical variability that is 

often present, even in patients displaying similar clinical or neuropsychological profiles. 

Therefore while grouping patients might be unwise in some circumstances, individual 

patients may present excellent opportunities to test specific neuropsychological 

hypotheses. However, in a two scan single case study, the reliability of the data may be 

limited, and in this case, the addition of two further scans, allowing for each condition to 

be replicated (i.e. ABAB), would greatly increase confidence in the results and their 

interpretation. With respect to the latter, the power of investigation of neuroactivation 

studies involving groups of normal healthy subjects, could be greatly enhanced by the 

addition of one, or perhaps two, additional cognitive conditions (i.e., ABAC or ABCD 

respectively). This would enable more subtle differences in cognitive processing to be 

investigated.

5.5 Conclusions.

This investigation was able to show that when using voxel-wise statistical data analysis, 

study replication is more important than the individual image quality typically available 

from a high performance SPECT system.

•  When using CBF SPECT a 4 scan paradigm with the appropriate 

adjustment in scanning protocol should be used for neuroactivation 

studies.
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CHAPTER 6

A pplica tion s o f  the 4  scan S P E C T  pa rad igm  to neuroactiva tion  
studies: I. Investigation into the mechanisms o f  vagal nerve stimulation  
fo r  the treatment o f  intractable epilepsy, using 99m Tc HM PAO SP E C T  
brain images.

This chapter describes the application of the multiple scan paradigm determined in 
chapter 5 for neuroactivation studies that use 99mjc HMPAO SPECT scans of 
cerebral blood flow. Section 5.1 provides a background to epilepsy and the newest 
form of treatment by stimulation of the vagal nerve (VNS). Sections 5.2 and 5.3 
list the methods and the results of applying the 4 scan paradigm to the investigation 
of the affect of VNS on CBF using an SPM analysis. Section 5.4 discusses the 
benefits of using a repeat task design for this experiment and the implications that 
these results may have on explaining the action of VNS on rCBF.

6.1 In troduction

The previous chapter was able to show that SPECT studies of neuroactivation would 

benefit from a multi-task paradigm even though image quality would have to be 

compromised. This chapter describes the application of the 4 scan paradigm to 

investigate the stimulation of the vagus nerve for the treatment of epilepsy.

Epilepsy is a transitory disturbance of the function of the brain which develops suddenly, 

manifesting in uncontrolled movements or actions, ceases spontaneously and reoccurs at
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Figure 6.1. Schematic representation of the position of the implanted Cyberonics vagal nerve stimulator.

variable frequency in different patients. It is a common disorder affecting as many as 1 in 

200 people in the USA and Europe. Epilepsies can be divided into two broad categories; 

those which are generalised, in which seizures appear to affect the whole brain and often 

have a genetic substrate, and those which are focal, in which seizures originate from a 

specific region (or regions) of the brain. The great majority of adult epilepsies are focal, 

most originating in the medial temporal lobe. About 20% of these are not brought under 

satisfactory control using drug treatment and surgical resection of the discrete region of 

the brain identified as the seizure focus is used in selected patients (111). Functional 

imaging has played a major part in improving the accuracy of localisation of such 

epilepsies, and in reducing the use of invasive (and hazardous) EEG techniques. In 

particular the SPECT CBF tracers (IMP, ECD and HMPAO), due to their unique trapping 

mechanism, provide the only means of imaging brain function during a seizure. 

However, surgery carries significant risks and for many patients is not suitable treatment 

(112) and alternative therapies are needed. One such treatment is the stimulation of the
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vagus nerve using an implantable programmable device to decrease the frequency of 

seizures.

An implanted, programmable (Cyberonics Inc.)16 electronic simulator is implanted in the 

left chest (infraclavicular subcutaneous pocket). The stimulating lead electrode contacts, 

embedded in silicone rubber, are wrapped around the left vagus nerve in the low cervical 

area. The vagus nerve is chosen for its absence of pain sensation. Once implanted, the 

stimulator can be programmed to deliver regular stimulation 24 hours a day regardless of 

seizure activity. Patients can also activate extra 'on demand' stimulation with a handheld 

magnet. Clinical studies have demonstrated VNS therapy to be a safe and effective mode 

of treatment when added to the existing treatment regimen for severe, refractory patients 

with epilepsy. Efficacy ranges from seizure free to no response with about half reporting 

a 50% reduction in seizure frequency (113,114). The side-effect profile includes 

stimulation-related sensations in the neck and throat (112,114).

The mechanism of action through which VNS modulates seizure activity is not clearly 

understood although two theories have emerged. First, the "direct connection" theory 

hypothesises that the anticonvulsant action of VNS is caused by a threshold raising effect 

within specific brain structures (114). The second is the concept that chronic stimulation 

of the vagus nerve increases the amount of inhibitory neurotransmitters and decreases the 

amount of excitatory neurotransmitters, basically calming down "hyperexcited" nerve 

cells and reverting the brain back to its normal patterns (115).

The vagus nerve is known to have connections through the nucleus of the solitary tract 

and so sites receiving projections from this area may also have changes in overall synaptic 

activity during VNS. Since the monitoring of cerebral blood flow using emission 

tomography has been shown to reflect changes in motor, sensory and cognitive 

processes, it should be possible to image the changes in blood flow induced during VNS

16 Cyberonics Europe, S.A., Belgicastraat 2,1930 Zaventem, Belgium.
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and so use this information to provide clues as to the action of VNS on the central 

nervous system and its role in controlling or modifying epileptic seizures.

6.2 M eth ods

To confirm the hypothesis that the addition of two further scans, allowing for each 

condition to be replicated (i.e. ABAB), would greatly increase confidence in the results 

and their interpretation, the 4 scan paradigm was used to investigate the stimulation of the 

vagus nerve for the treatment of epilepsy. Ethics permission for the study was given by 

the Southern General Hospital-NHS Trust ethics committee and ARS AC (administration 

of radioactive substances advisory committee).

6.2.1 Subjects and VNS techniques.

Vagus nerve stimulation blood flow SPECT studies were performed in 6 subjects with 

intractable epilepsy. All patients had consented to participating in the protocol for Vagus 

Nerve Stimulation sponsored by Cyberonics. The group included 2 males and 4 females 

with a mean age of 29.5 range 21 - 39. Imaging was commenced 2 days after 

implantation. The protocol required that each patient had medically refractory epilepsy 

occurring 3 or more times monthly. 1 patient had primary generalised epilepsy causing 

generalised tonic clonic seizures, the remaining 5 patients had localisation related 

epilepsy, causing complex partial seizures. No patients had undergone cerebral resection. 

Each patient received 1 minute of VNS to establish the stimulator current level for each 

patient. The stimulation began at VNS current levels of 0.25mA and was increased to 

just enough to cause sensation in the throat to induce coughing. The shape of the 

stimulating waveform was square wave pulses of 500psecs of duration at 30Hz.

6.2.2 Image acquisition.

Four CBF SPECT scans were acquired in four separate sessions for each subject, 2 scans 

when the stimulator was on and two when the stimulator was off. The time between 

consecutive scans was no less than 2 days and no more than 14 days No seizures 

occurred during injection of isotope but one subject had a seizure during an imaging
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session. The scan was stopped and then repeated. CBF was imaged using 250 MBq of 

" mTc HMPAO (1/2 unit dose) per scan. The images were acquired using the SME 810 

scanner (described in chapter 2) with scanning parameters set at a slice acquisition time of 

240 seconds (2 unit time) and a slice separation 8mm. Injection of 99mTc HMPAO was 

given at 2 mins of stimulation during which time the subject lay without speaking and 

eyes closed in a quiet environment. Patient movement during scanning was minimised as 

described in chapter 2.

6.2.3 Image analysis.

The reconstructed images were converted to ANALYZE™ format, spatially standardised 

and smoothed as described in chapter 2. The statistical analysis was performed using the 

"multi subject: replication of conditions" option to check for the main effect of condition 

as well as the "multi subject: different conditions" to check the validity of a repeat task 

design. Proportional scaling to the global mean activity in each subject was used for 

global normalisation (see chapter 2). All results were displayed at a significance 

threshold of Pu<0.001 and Pk<0.5 (uncorrected).

6.3 Results

The contrasts used in this experiment were designed to look at:-

•  the main effect of condition with repeat scans of tasks. (AA - BB)

•  the main effect of condition with single scans of tasks. (A - B)

•  the validity of repeated conditions. (A - A, B - B)

The first contrast investigated directly the effects (both increases and decreases) of VNS 

on CBF. The second contrast also showed the effect of VNS on CBF but this time with 

only a single scan per condition. This was used to look at the increase in statistical 

significance gained by an increase in the degrees of freedom of using a repeat scan design 

as opposed to a single scan design. The third contrast used a subtraction paradigm to 

check for the null hypothesis between two scans of the same task to confirm that the brain 

state had been replicated.
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6.3.1 The main effect o f condition with repeat scans o f tasks.

Subtraction between activation states (A) and baseline states (B) with replications .

For the main effect of conditions the "multi subject: replication of conditions" option was 

used with the contrast (1 -1) to look for increases in blood flow in the stimulus condition 

with respect to the baseline condition and then (-1 1) to look for decreases in blood flow 

with respect to the baseline condition (figure 6.2).

The Z-score and location of the most significant voxel is listed below each SPM(t) map 

thresholded at Pu<0.001 and Pk<0.5 (uncorrected). For clarity, these maps are 

superimposed onto axial slices of the single MRI T1 template supplied with SPM96.

A -B
-■jf

t :

B -A

:P -  *  •
' H i t

r% ■f
1 Vf  >

z = 64mm z = 68mmz = 60mm

2*activation -2* baseline 
Z= 5.45 K= 7144 voxels 
(xyz) = -32 -90 0 
increased BF in occipital cortex

2*baseline- 2*activation 
Z= 5.07 K= 366 voxels 
(xyz) = -14 -2 64
decreased BF in superior frontal gyrus 
(Brodmann 6)

Figure 6.2 The SPM(t) map of the subtraction of activation and baseline scans are displayed. The map 
on the left hand side shows the increases in rCBF in the activation condition (VNS) relative to the 
baseline condition (rest). The map on the right shows the decreases in rCBF in the activation condition 
relative to the baseline condition.
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6.3.2 The main effect o f condition with single scans o f each task.

Subtraction between activation conditions (Al, A2) and baseline conditions (Bl, B2) 

without replications

For the main effect of four conditions (A l, A2, B l, B2) the "multi subject: different 

conditions" option was used with the contrast of ( 1 0 - 1 0 )  and (0 1 0 -1) to look for 

increases in blood flow in the stimulus condition with respect to the baseline condition 

and then (-10 10) and (0-1 0 1) to look for decreases in blood flow with respect to the 

baseline condition (figure 6.3 a and b).

The Z-score and location of the most significant voxel is listed below each SPM(t) map 

thresholded at Pu<0.001 and Pk<0.5 (uncorrected).

A l - B l
••-l-yk • ....

1 *activation -1 * baseline
Z= 4.17 K= 1417 (xyz) = -28 -94 -8
BF increases in occipital cortex

B l - A l

— i...4 —i

M ; __ i. . . J __J

o s

m

1 * baseline - 1 *activation
Z= 4.47 K= 796 (xyz) = -22 -2 64
BF decreases in L Superior Frontal Gyms

A2 - B2

1 *activation -1 * baseline
Z= 4.18 K= 158 (xyz) = -30 -90 -4
BF increases in occipital cortex

B2 - A2

1* baseline - l*activation 
Z= 4.17 K= 59 (xyz) = -10 -4 64 
BF decreases in L Superior Frontal Gyms 
Brodmann 6.

Figure 6.3a shows the SPM(t) maps of the subtraction of activation from baseline scans on the left and 
the subtraction baseline from activation scans on the right.
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1 *activation -1 * baseline
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BF increases in occipital cortex
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Z= 4.24 K =147 (xyz) = 16 38 56 
BF decreases in R Frontal Lobe.

Figure 6.3b shows the SPM(t) maps of the subtraction of activation from baseline scans on the left and 
the subtraction baseline from activation scans on the right.

6.3.3 The validity o f  repeated conditions.

Subtraction within activation condition (Al, A2) and baseline condition (Bl, B2).

To confirm the replication of conditions, the "multi subject: different conditions" option 

was used with contrasts designed to look at the subtractions between scans of the same 

condition. The SPM(t) maps (figure 6.4) confirm the null hypothesis that there are no 

differences in CBF between scans of the same condition.
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Figure 6.4 Shows the SPM(t) maps produced by the contrast of the subtraction o f within conditions 
(baseline - baseline) and (activation - activation).

6 .4  D iscu ssion .

The results of this investigation into the mechanisms involved in the anti-seizure effect of 

VNS confirm the hypothesis that more robust results can be found by sacrificing image 

quality for statistical power. The SPM(t) maps of the increases in CBF with respect to 

the baseline condition using only 2 scans show that the major activation region shows a 

corrected significance based on extent and height of Pu?k<0.01 thresholded at Pu<0.001 

and Pk<0.5 (uncorrected). With 4 scans this corrected significance improves (to 

Pu,k<0-0001 at the same thresholds) by a factor of 100, strengthening the conviction that 

an activation has occurred. This becomes especially important when considering the 

omnibus nature of this test since there was no apriori definition of activation pattern 

requiring the application of a stringent thresholding to account for multiple statistical tests.

Neuronally active regions in the brain have been shown to be associated with increased 

levels of blood flow and so clues to the actions of VNS on the CNS may be made by

121



witnessing, in-vivo, the effect of VNS on blood flow to the brain. PET studies to date 

show inconsistent findings in response to VNS but this may be due to differences in 

study design, patient population, duration of VNS therapy and other factors confounding 

the measurement of rCBF. One study showed that changes occurred in the ipsilateral 

anterior thalamus and cingulate gyrus but two of the subjects out of five had seizures 

during scanning (116). Another study showed involvement of the ipsilateral cerebellum, 

contralateral thalamus and contralateral temporal lobe cortex but two of these subjects had 

already undergone cerebral resection (117). In a study that investigated patients 

immediately after insertion of the device changes in rCBF were evident bilaterally in the 

hypothalami, insular cortices, and inferior cerebellum as well as increased flow to the 

contralateral thalamus and post central gyrus (118). Furthermore PET studies on the 

sensation of pain in the throat, a side effect associated with the activation of the 

stimulator, have reported the following activation patterns, on the sensation of pain; 

increased blood flow in the central sulcus, bilateral insular cortices and frontal-parietal 

operculum and anterior cingulate gyrus (119). This pattern would seem to account for at 

least some of the activation seen in other studies investigating the VNS alone.

The results of this study into the effect of VNS on CBF does not confirm any of the CBF 

patterns described above. Differences in protocol with regard to the timing between 

imaging and the switching on of the stimulator as well as the randomisation of the 

baseline and activation conditions may well account for these differences. However, the 

location of the main activated region in the occipital cortex might simply be explained by 

the fact that the scanning protocol of eyes closed during the injection of 99mTc HMPAO 

was not adhered to for every subject. A study of the variability of activation results 

during cognitive processing by Crivello et al 1995 (120) point out that if an activation 

occurring in just one subject is very strong it will remain significant even when included 

in the group analysis. Studies of visual stimulation (109,110) have reported rCBF 

changes of between 15-20% in the occipital cortex during stimulation. Measurements in 

the occipital cortex of the 6 subjects (13.12%, 23.24%, 1.35%, 4.08%, 8.6%, 14.91%)
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in this study show that at least 3 of the subjects had a significant increase in the occipital 

region between the two conditions indicating that the protocol had not been adhered to. 

In addition a further study to investigate specifically the differences in rCBF of having 

eyes open compared to eyes closed (appendix D) showed that there was significant 

change in the occipital cortex that did not require the application of intense visual 

stimulation in the eyes open condition. The percentage changes in iCBF associated with 

VNS have not been reported but are no doubt much less than those reported for the 

changes observed in the occipital cortex.

The SPM(t) maps of the decreases in CBF with respect to the baseline condition also 

show a similar increase in corrected significance but in this case the location of the most 

significant voxel in each of these separate contrasts using the single scan design is not 

stable. However, the most significant voxel for the original contrast of the main effect 

using the replication of conditions design is located in the superior frontal gyrus 

(Brodmann area 6) an area known to be affected by the stimulation of the sympathetic 

nervous system as shown by evoked potential experiments in animals (121). It has been 

suggested that these results could be proof that the stimulation of the parasympathetic 

nervous system by VNS causes inhibition in Brodmann area 6 an effect that has not been 

measured by evoked potential experiments (personal comm, from Dr Peter Julu)17. 

Clearly more subjects need to imaged with a tighter control on the visual stimulation 

status to confirm this result

6.5 Conclusion.

This study was able to confirm that SPECT studies of neuroactivation would benefit from 

a multi-task paradigm even though image quality is compromised. This application of a 4

scan paradigm demonstrates that:-
•  it can be used in practice
•  the results are robust (as can be seen in the validity of repeated conditions 
contrast).

17Dr Peter 0 .0  Julu, university lecturer, Department of Neurology, Central Middlesex Hospital, London, 
UK.
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CHAPTER 7

A pplica tion s o f  the 4 scan S P E C T  parad igm  to neuroactiva tion  
studies: II. Contrasting the role o f  the medial temporal lobes in novelty 
detection with their role in the encoding and/or consolidation into long­
term memory o f  associative information.

This chapter describes the application of the multiple scan paradigm determined in 
chapter 5 to neuroactivation studies that use 99mjc HMPAO SPECT scans of 
cerebral blood flow. Section 7.1 provides a background to current opinion of the 
role of the medial temporal lobes in memory processing and an explanation of how a 
typical neuroactivation paradigm might be designed to investigate certain aspects of 
this role. Section 7.2 describes the design of the cognitive tasks and the image 
analysis used to isolate specific components of these tasks. Section 7.3 presents the 
results of applying the 4 scan paradigm and sections 7.4 and 7.5 discuss the findings 
and benefits of using a repeat task design.

7.1 I n t r o d u c t io n

Chapter 5 hypothesised that a multi-task paradigm used with SPECT studies of 

neuroactivation could be greatly enhanced by the addition of one, or perhaps two, 

additional cognitive conditions and that this would enable more subtle differences in 

cognitive processing to be investigated. This chapter illustrates how the addition of two 

additional cognitive tasks to the conventional two-task SPECT paradigm enabled the role
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of the medial temporal lobe in novelty detection to be contrasted with its role in the 

encoding of associative information into long term memory.

There exists good evidence, obtained from PET and fMRI studies, that the encoding of 

information from pictures or faces produces activations within the medial temporal lobes 

(MTL) (122-126). The reliability of this MTL finding is strengthened by the fact that the 

studies adopted a variety of different comparison baselines. However, it remains unclear 

exactly what processes are producing the MTL activations. They could be a result of 

novelty alone, the encoding and/or consolidation of associative information into long­

term memory, or both of these. A recent study using verbal stimuli (127), has concluded 

that the left MTL is responsible for novelty detection and not directly for the processes 

involved in the formation of new associations. While the study used a task which 

manipulated novelty of associations it did not strictly match associative encoding across 

the conditions. The present study manipulated novelty while stringently matching levels 

of associative encoding across novel and familiar conditions, with two major aims:

•  To test whether associative encoding and/or consolidation alone is 

responsible for the MTL activations or whether novelty alone can also produce 

such an activation.

•  To investigate what activation pattern is produced in the frontal and parietal 

cortex when contrasting the processing of novel and familiar stimuli using 

different levels of encoding.

Memory refers to the brain processes of encoding, storage and retrieval of facts and 

events for later use. Traditionally psychologists were confined to cognitive investigations 

of memory (and other cognitive processes) whereby manipulations within memory tasks 

allowed the testing of cognitive hypotheses by observing resultant behaviour under 

different conditions. This type of investigation has been carried out both with normal 

healthy controls and with patients with organic amnesia. The comparison of normal 

subject and patient data in this way has allowed neuropsychologists to investigate the
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neural basis of memory by relating cognitive deficits to underlying neuropathology (128). 

Over the years this type of investigation has been enhanced by developments in structural 

imaging, particularly that of MRI, since this has provided researchers with detailed 

confirmation of the location and extent of the brain lesion. However, lesion research is 

limited for two related reasons. First, human brain lesions are rarely selective to the 

extent that is required for testing specific functional hypotheses. Second, patients with 

selective brain lesions, when they do occur, occur in small numbers and therefore work 

on such patients is limited. The advent of functional neuroimaging and the development 

of techniques to study changes in CBF (SPECT) and corresponding changes in glucose 

metabolism and oxygen extraction (PET and fMRI) known to be associated with areas of 

neuronal activity, neuropsychologists have been provided with a “window to the brain” 

through which they can “observe” the neuronal activity associated with particular 

cognitive processes. In order to do this, however, studies require very careful cognitive 

design to ensure that the cognitive process of interest is indeed ’’isolated” by the 

experiment

The first generation of neuroactivation experiments employed a simple subtraction 

paradigm, where the functional images acquired during one brain state were subtracted 

from the functional images in another brain state (45) in order to isolate the process of 

interest. But this model has it limitations. Although two tasks might be carefully 

designed to isolate a single cognitive process, the standard subtraction paradigm assumes 

that the interaction between this and the other components of the task is negligible, but 

this is probably not the case. Using newly developed voxel-wise statistical analysis 

techniques that are now available the subtraction paradigm can be extended further to 

investigate the interaction between different memory processes (129). By introducing 

more than two tasks into one experiment it is possible to use "cognitive conjunctions" to 

strengthen the power of the activations and "factorial designs" to investigate the 

interaction between processes. A conjunction analysis combines a series of subtractions 

that have a single cognitive process common to all task subtractions (130). A factorial 

design involves investigating two or more factors within a task. The interaction between
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these factors identifies changes in rCBF brought about by another processing demand. 

For example if we consider the difference between naming familiar objects and 

categorising familiar objects compared to naming novel objects and categorising novel 

objects, the single subtractions will tell us about the differences between naming and 

categorising but will not be able to show the effect of the nature (familiar or novel) of the 

objects in the task. A conjunction analysis instead, will show us both the common 

difference between the two tasks i.e. naming vs. categorising, independent of the nature 

of the objects (novel or familiar) and the common difference attributable to the nature of 

the objects independent of the task . A factorial analysis will inform us of the interaction 

between the tasks and the nature of the objects.

7.2 Methods

7.2.1 Subjects

SPECT scans were performed on ten healthy right-handed subjects, 5 male and 5 female, 

age range 27-54. Normal memory performance was established using the Doors and 

People Test (131).

7.2.2 Cognitive Activation tasks

Four conditions were designed to manipulate both level of associative encoding and level 

of novelty. Two forced-choice matching-to-sample tasks were used, in which a sample 

complex scene and two choices were presented simultaneously. Each task was carried 

out under two different conditions of novelty (novel and familiar). The design was 

counterbalanced with respect to stimuli, task order and novelty condition.

Thematic Matching Task (TMI. In this task, the three pictures were different 

perceptually, but similar in terms of meaningful content. However, one of the two 

choices shared a theme (e.g., family life, greeting, instruction) with the sample picture 

which the other picture did not portray. The subjects were required to identify this 

matching picture (left or right) by studying the pictures in a way that would identify
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Figure 7.1 a. The material used in the thematic matching task. In this exam ple the left 
hand im age m atches with the top im age as they are both ice sports

Figure 7.1 b. The material used in the perceptual matching task. In this exam ple the right 
hand im age m atches with the top im age since the left hand im age has been translated to 
the left slightly.
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themes within the pictures, not focusing on individual items alone. The nature of this 

processing therefore involved high level semantic associative encoding.

Perceptual Matching Task (PM1. In this task, all three pictures were extracted from a single 

original picture with the sample and one of the two choices being identical while the non­

matched picture involved a slight shift (vertical or horizontal) from the other two. Subjects 

were required to decide which of the two choices (left or right) was identical to the sample 

picture. The three pictures were identical in teRMS of meaningful content so any attention 

paid to the theme of the pictures would not help discriminate between them and subjects were 

encouraged to use a low level superficial scanning strategy to compare the pictures.

Novelty conditions (familiar (F) and novel fNfi Each task was carried out twice (using 

different stimuli) once with familiar stimuli and once with novel stimuli. Familiarity was 

established by displaying the stimuli to the subjects 8 minutes prior to the activation task, 

subjects were instructed to point quickly and accurately to the centre of activity or interest, in 

each picture. Piloting of this familiarisation procedure ensured that exposure times produced 

equal and high familiarity levels (>90%) across the two matching tasks.

Behavioural data

Following each activation task, performance on an associative recognition test was 

measured to establish the extent of associative encoding that had taken place. The level of 

associative encoding was significantly greater during the Thematic Matching (TM) tasks 

than in the Perceptual Matching (PM) tasks (p<0.0001). Subjects were also debriefed 

regarding their awareness of the use of novel or familiar stimuli in each task. The results 

suggest that subjects were aware when novel stimuli were used. Moreover, subjects' 

thematic matching performance on the TE task was found to be significantly better in the 

familiar condition (p<0.007) compared to novel. This indirectly confirms that subjects 

accurately differentiated between novel and familiar stimuli.
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7.2.3 Image acquisition

1 minute into each cognitive task, a maximum dose of 250 MBq 99mTcHMPAO was 

injected intravenously through a forearm cannula while the subject performed the task. 

Each subject received 4 SPECT scans, one for each cognitive condition. Scanning was 

commenced 15-30 mins after the injection. The images were acquired using the SME 

810 scanner (described in chapter 2) with scanning parameters set at a slice acquisition 

time of 240 seconds (2 unit time) and a slice separation 8mm. Patient movement during 

scanning was minimised as described in chapter 2.

7.2.4 Image analysis

The reconstructed images were converted to ANALYZE™ format, spatially standardised 

and smoothed as described in chapter 2. The statistical analysis was performed using the 

"multi subject: different conditions" option to check for the main effect of condition. 

Proportional scaling to the global mean activity in each subject was used for global 

normalisation (see chapter 2). Clusters of contiguous voxels greater than 40, activated at 

an overall threshold of p<0.01 (uncorrected), with peak z-scores > 3.0, were considered 

significant. All results were displayed at a significance threshold of Pu<0.01 and Pk<1.0 

(uncorrected).

7.3 Results.

The contrasts used in this experiment were set up to look at:-

•  the main effect of associative encoding

•  the main effect of familiarity

•  the main effect of novelty

In order to explore the independent effects of encoding and novelty, as well as the 

interaction between the two, the following subtraction and conjunction analyses were 

carried out.
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7.3.1 The main effect o f associative encoding.

TM familiar (TMp), PM familiar (PMp), TM novel (TMn), PM novel (PMn).
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Figure 7.3b
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Figure 7.2 and 7.3 show the contrasts of the main effect of associative encoding. Figure 7.2a shows the 
SPM(t) map produced by the conjunction analysis (combining TM familiar - PM familiar with TM novel 
- PM novel). Figure 7.2 b and c show the two major activations superimposed on the T1 MRI template. 
Figure 7.3a shows SPM(t) map produced by the single subtraction contrast (TM familiar - PM familiar). 
Figure 7.3 b shows the cerebellum activation superimposed on the T1 MRI template.

This conjunction of contrasts (figure 7.2 - (TM-PM)f + (TM-PM)n) produced activations 

in the left medial temporal lobe (parahippocampal gyrus) and left parietal cortex and are 

displayed above. A subtraction analysis of (TM-PM)f (figure 7.3) produced encoding- 

specific familiarity activations in the left cerebellum. This activation is also displayed 

superimposed on the corresponding axial slices of the T1 MRI template supplied with 

SPM96 (figure 7.2 a, b and figure 7.3 b).
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7.3.2 The main effect o f familiarity

TM familiar (TMp), PM familiar (PMp), TM novel (TMn), PM novel (PMn).
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Figure 7.4 c

Figure 7.4 (a,b,c) and 7.5 show the contrasts of the main effect of familiarity. Figure 7.4 a shows the 
SPM(t) map produced by the conjunction analysis (combining TM familiar - TM novel with PM 
familiar - PM novel). Figure 7.4 b and c show the two major activations superimposed on the T1 MRI 
template. Figure 7.5a shows SPM(t) map produced by the single subtraction contrast (TM familiar - TM 
novel).

This conjunction of contrasts (figure 7.4 - (TMf -TM n ) + (PMf -PMn )) produced 

significant bilateral superior frontal activations activations. A subtraction analysis of 

TM f -TM n revealed that these activations were a result of the encoding-specific 

familiarity condition. These activations are also displayed superimposed on the 

corresponding axial slices of the T1 MRI template supplied with SPM96 (figure 7.4 a, 

b).

Right superior frontal lobe

Left superior frontal lobe
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7.3.3 The main effect of novelty detection

TM familiar (TMp), PM familiar (PMp), TM novel (TMn), PM novel (PMn).
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Figure 7.6 a, b, c show the contrasts of the main effect of novelty detection. Figure 7.6a shows the 
subtraction (PMn  - PMp) and Figure 7.6b shows the subtraction (TMn  - TMp). Figure 7.6c shows the 
conjunction analysis ( combining TMn  - TMp with PMn  - PMp)

This conjunction of contrasts produced no significant activations. Separate subtraction 

analyses also revealed no novelty activations for either task. This finding is clearly 

illustrated in the SPM(t) maps above.

7A  Discussion.

The left MTL is involved in the associative encoding of both novel and familiar stimuli 

[see contrast "The main effect of associative encoding" - (TM-PM)p + (TM-PM)n] as 

reported in the literature (121-126). Novelty alone (when encoding is stringently 

matched) does not produce MTL activations [see contrasts 'The main effect of novelty 

detection' - (PMn-PMf) + (TMn-TMf)], or any other neuroactivation. This suggests 

that novelty itself did not produce the activations seen previously (126,132), but rather
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the processes generally driven by novelty (i.e. spontaneous encoding) did. The left 

parietal cortex is involved in the associative encoding of complex scenes irrespective of 

level of familiarity [contrast conjunction (TM-PM)f + (TM-PM)n ]. While memory- 

related parietal activations have been reported before (124), the strength of this finding is 

remarkable and should encourage further investigation. The activations in the bilateral 

superior frontal regions are involved in the processing of familiar material only, 

irrespective of the level of associative encoding [see contrast "The main effect of 

familiarity conjunction" - (TMf -TM n ) + (PMf -PM n )]. Again, these results are 

consistent with the literature (129, 133, 134, 135) and moreover, the involvement of 

bilateral frontal regions, rather than right-sided frontal regions alone, in processing 

familiar material, both in the encoding and matching tasks, will itself be, an important 

contribution to the literature.

These findings clearly illustrate that

•  the MTL is involved in the associative encoding of pictures, whether novel 

or familiar. Moreover, the results also suggest that

•  the MTL does not respond to the detection of novelty alone as might be 

suggested by the work of Knight 1996 (136).

The use of the 4 condition SPECT procedure allowed these two conclusions to be drawn 

from within one experiment. A 2 condition paradigm could only have addressed one 

question., and two, two-condition experiments would have introduced unwanted inter­

subject variability, and greatly reduced the impact of these important findings.

7.5 Conclusions.

This experiment was able to confirm that a multi-task paradigm greatly enhances the 

power of a SPECT CBF neuroactivation by the addition of two cognitive conditions 

enabling more subtle differences in cognitive processing to be investigated.
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CHAPTER 8

Conclusions

Aim:

Objective 1:

Conclusion 1:

Objective 2:

Conclusion 2:

Objective 3:

and future developments.

To investigate whether the functional brain mapping technique 

(SPM) can be extended to embrace the widely available imaging 

technique of SPECT and to determine whether the combination can 

contribute to routine diagnosis of abnormalities in brain function and 

to research investigations involving functional neuroactivation.

To assess the use of the SPM technique in analysing CBF SPECT 

images of individual subjects, and therefore whether it would be 

applicable to routine diagnosis.

Providing that the procedures described in chapter 3 are followed, 

i.e. rigid body transformation of non-optimal images to an ideal 

CBF SPECT image prior to image standardisation followed by 

manual editing of blurred edges, adequate results were obtained.

To investigate SPM96 as an aid in a specific diagnostic area i.e. the 

differential diagnosis of dementia using 99nrpc HMPAO SPECT 

images of rCBF.

There is no evidence that the use of SPM96 improved inter-observer 

agreement in this study.

To investigate the potential benefits of using a 4 scan paradigm 

compared to a 2 scan paradigm in CBF SPECT neuroactivation
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Conclusion 3:

Objective 4:

Conclusion 4:

studies within the constraints of the total allowed radiation dose per 

subject.

The addition of a replication of condition allowed by the 4 scan 

paradigm significantly increased the statistical power of an SPM 

analysis.

To apply the 4 scan paradigm with a replication of conditions to 

an exploratory study of the affect of vagal nerve stimulation (as a 

treatment for intractable epilepsy) on rCBF and investigate

•  the reliability of the rCBF pattern within the replication of 

conditions

•  the localisation of rCBF increases and decreases produced 

by VNS

Application of the four scan paradigm to investigate the effect of 

VNS on rCBF was able to show that the stimulation of the 

parasympathetic nervous system by VNS causes inhibition in 

Brodmann area 6.

Objective 5: To apply the 4 scan paradigm with multiple conditions to contrast

the role of the medial temporal lobes in novelty detection with 

their role in the encoding and/or consolidation into long-term 

memory of associative information.

Conclusion 5: Application of the multi scan paradigm was able to show that the

medial temporal lobe is involved in the associative encoding of 

pictures, whether novel or familiar and that this activation is not 

due to the detection of novelty alone.

This thesis has shown that the SPM technique originally developed for use with positron 

emission tomography (PET) radiolabelled water studies of normal brain function during 

neuroactivation experiments can be used with 99mTc HMPAO SPECT images.
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The use of SPM for the assessment of individual patient data while not of obvious benefit 

in reporting CBF SPECT scans of dementia, did focus attention on the involvement of the 

temporal lobes in frontal lobe dementia and therefore played a role in the continuing 

eductation of scan interpretation. SPM had no problems detecting the abnormal areas of 

cortical perfusion within the images. The limited benefit found in this study could be due 

in part to the fact that the observers were very familiar with the standard image display but 

had relatively little experience of SPM displays. It is possible that a study like this should 

be repeated in a few years time as familiarity with SPM image presentation grows. This 

could be accelerated by using SPM(t) maps produced from CBF images showing the 

classic patterns associated with a particular dementia type as part of an extended learning 

process of visual reporting for junior radiologists and/or physicists. Familiarity with the 

SPM results could lead to the robust information provided by the SPM(t) map being more 

easily incorporated into the existing knowledge base of disease (including post mortem 

data) and the associated CBF pattern.

The results from this thesis strongly recommend the adoption of a 4 scan paradigm for 

use with CBF SPECT scan studies of neuroactivation. Although adoption of this 

protocol will undoubtedly place an increased demand on the subjects, the ability to gain 

more information for the same effective radiation dose as a 2 scan protocol justifies this 

inconvenience.

When designing neuroimaging experiments consideration must always be made as to the 

most suitable technique available. With the growing availability of fMRI capabilities of 

most MR scanners the newest activation experiments are being designed for this 

environment. The most obvious advantage of this technique is that it involves no ionising 

radiation and potentially an unlimited number of acquisitions per subject. However, there 

are cases where the MR scanner environment is unsuitable. For example, the study 

described in chapter 6 of VNS stimulation as a treatment for epilepsy could not have been 

carried out in a MR scanner. Instead PET could have been the modality of choice but the 

limited clinical application of PET, because of its expense has limited its availability for
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use by most groups and as a consequence those groups using PET find that their access 

to patients is limited. For the investigation of neuroactivation experiments in the clinical 

population SPECT is ideally placed and the trapping mechanism of SPECT blood flow 

tracers also means that neuroactivation experiments can be carried out in a more natural 

setting. The development of this 4 scan technique allows CBF SPECT images to be 

analysed using powerful voxel-wise techniques such as SPM.

This thesis has focused on cerebral blood flow images. The application of SPM methods 

to images of neuroreceptor function may be more important in the future and cannot be 

obtained with MR techniques. The images obtained using tracers such as 123I QNB 

which map muscarinic receptors in the cerebral cortex could be analysed using the SPM 

method. Studies looking at the differences in muscarinic receptor distribution between 

patients suffering from dementia and a normal reference database could be used to 

monitor the progress of a particular treatment For example, covariate analysis of voxel 

intensities could be used to study the relationship between cognitive response to an anti­

dementia drug (e.g. Donepezil18. used in Alzheimer's disease) and receptor binding 

potential.

The results from these investigations, both the individual assessment of clinical images 

and the 4 scan neuroactivation paradigm, have shown that valid results can be obtained 

from 99mTc HMPAO SPECT images of the brain. Although PET has advantages as an 

imaging modality for this type of analysis because of the better resolution and the shorter 

half life of radiolabelled water (enabling repeated measurements to be made) use of SPM 

as developed here can help to make SPECT a viable option. This should not place 

SPECT in direct competition with PET, but it should bring the two modalities closer 

together, each contributing their specific advantages to the study of human brain function.

18 donepezil -Aricept™ Pfizer Inc., New York, NY 10017, USA.
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APPENDIX A

There are 3 options for the interpolation method used to reslice the images after spatial 

normalisation, a) nearest neighbour (Figure A.l) b) bilinear (Figure A.2) c) sine 

interpolation (Figure A.3). Option b) is preferred for 99nrrc HMPAO SPECT rCBF 

images based on empirical evidence. SPM results generated using option a) are noisier, 

i.e. there are more single voxels that are significant. Results generated using sine 

interpolation seem to be no less noisy than using option b) but the registration algorithm 

takes much longer (approx. 30 mins per scan) to compute.
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APPENDIX A

Figure A .I. 3D  section display o f  CBF im age after standardisation where the im ages have been resliced  
using the nearest neighbour interpolation with the corresponding SPM (t) map o f  results below.

Figure A .2 3D  section display o f C B F im age after standardisation where the im ages have been resliced using  

the bilinear interpolation with the corresponding SPM (t) map o f  results below.

Figure A .3 3D  section display o f  C B F im age after standardisation where the im ages have been resliced using  
the sincinterpolation with the corresponding SPM (t) map o f  results below.
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Empirical determination of the spatial smoothing filter

The method used to determine empirically which was the best smoothing filter to use with 

the CBF SPECT scans acquired from the SME810 scanner is described below. To do 

this a dataset of scans was simulated to represent a subtraction paradigm of activation 

minus baseline with 10 subjects with 2 scans each (1 scan per task). A pseudo lesion 

was introduced in order to follow the effects of the different spatial filters on the resulting 

SPM(t). Two different sized lesions were investigated (99 and 199 voxels respectively). 

In the first instance the effect of different smoothing filters was investigated in scans 

acquired using a standard 500MBq dose of Tc99m HMPAO and secondly using a half 

standard dose of Tc99m HMPAO. The results of those investigations are listed below in 

tables A1 and A2.

smoothing 

filter 

xyz mm

LESION SIZE 99 VOXELS 

region size amplitude Zmax * K 

(K) (Zmax)

LESION SIZE 199 VOXELS 

region size amplitude Zmax * K 

(K) (Zmax)

0 N/S N/S

8 129 4.77 615.33 222 6.95 1542.9

10 152 7 .6 7 1 1 6 5 .8 4 2 4 4 8 .0 9 1 9 7 3 .9 6

12 123 7.62 937.26 236 8.2 1935.2

14 104 7.9 821.6 203 8.9 1806.7

16 68 4.52 307.36 165 8.21 1354.65

18 55 4.55 250.25 121 7.94 960.74

20 36 3.74 134.64 88 7.95 699.6

22 N/S 11 4.41 48.51

Table A .l. Data showing effect of smoothing filters on region size and maximum z-score for a 500MBq 

dose scan original activation region size a) 99 voxels and b) 199 voxels (1 voxel = 1.57xl.57x6mm) 

PucO.OOl, Pc< 0.1
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smoothing 

filter 

xyz mm

LESION SIZE 99 VOXELS 

region size amplitude Zmax * K 

(K) (Zmax)

LESION SIZE 199 VOXELS 

region size amplitude Zmax * K 

(K) (Zmax)

0 46 5.51 253.46 104 5.70 592.8

8 188 8.16 1534.08 352 9.95 3502.4

10 207 19.96 4131.72 395 19.57 7730.15

12 2 0 8 2 2 .5 2 4 6 8 4 .1 6 429 28.45 12205.05

14 197 23.51 4631.47 436 26.76 11667.36

16 185 8.73 1615.05 43 2 3 0 .7 8 1 3 2 9 6 .9 6

18 169 8.81 1488.89 399 33.3 13286.7

20 140 7.38 1033.2 355 31.37 11136.35

22 11 5.72 62.92 349 31.22 10895.78

72 5.45 392.4 10 5.14 51.4

Table A.2. Data showing effect of smoothing filters on region size and maximum z-score for a 250MBq 

dose scan original activation region size a) 99 voxels and b) 199 voxels (1 voxel = 1.57xl.57x6mm) 

PucO.OOl, Pc< 0.1

The nature of the statistical analysis carried out in SPM95/96 means that the calculation of 

Z-scores is inherently dependent on the spatial filter used to reduce the variance in the data 

across each image and across all subjects. The empirical results showed that the 

optimum, filter based on maximum region size, is different from that with regard to 

optimum Zmax score. Instead a product of Zmax and region size (Zmax * K) gives an 

overall view of optimum filter size. The optimum filter size for a standard (500MBq) 

" mTc HMPAO dose is determined as 10 FWHM for both sizes of activation. The 

optimum filter size for a half standard (250MBq) 99mTc HMPAO dose is determined as 

12mm FWHM for an activation size of 99 voxels and 16 FWHM for an activation size of 

199 voxels. If the 12mm FWHM spatial filter is used then the error in this choice in 

teRMS of Zmax * K for an estimated ROI of 99 voxels is zero and for 199 voxels is 1091 

(Zmax * Ki6 - Zmax * K12 = 13296 - 12205 = 1091). If the 16mm FWHM spatial filter
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is used then the error in this choice is zero for an estimated ROI size of 199 voxels and 

3069 for 99 voxels (Zmax * K12 - Zmax * Ki6 = 4684-1615 = 3069). Due to the 

unknown size of the activation region in a "real" neuroactivation experiment a choice of 

12mm FWHM filter size was chosen for the half dose scans as it gave the smaller error.
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APPENDIX B
The results are listed below (Tables B 1-3) for each of the challenge conditions analysed 

using the "compare groups: 1 scan per subject" option where group 1 was the 10 average 

scans in the reference data set and group 2 was a single challenge condition sample scan. 

Global blood flow normalisation was achieved using the proportional scaling option and 

SPM(t) maps were generated using the default thresholding of Pu<0.001, and Pk<0.5 

(uncorrected).

METHOD 1

AZ RMS
DIRN. OF AXIAL TRUNCATION

ROTN.
(degrees) 0 18 30

SAG 0 0 0.33 0.89
6 0.09 0.32 0.67
9 0.07 0.3 0.54
1 2 0.46 0.3 0.56
1 5 0.33 0.46 0.59

COR 0 0 0.33 0.89
6 0.09 0.28 0.09
9 0.12 0.27 1.03

1 2 0.17 0.21 1.03
1 5 0.14 0.15 1.05

AX 0 0 0.33 0.89
6 0.03 0.32 0.89
9 0.01 0.33 0.89

1 2 0.01 0.32 0.89
1 5 0.01 0.32 0.89

DIRN. OF 
ROTN.

(degrees)

AXIAL TRUNCATION 

0 18 30

SAG 0 0.00 9.17 52.95
6 0 5.66 52.95
9 0 5.66 52.95

1 2 9.17 52.95 52.95
1 5 52.95 52.95 52.95

COR 0 0.00 9.17 52.95
6 5.66 5.66 5.66
9 5.66 5.66 52.95

1 2 5.66 5.66 52.95
1 5 5.66 5.66 52.95

AX 0 0.00 9.17 52.95
6 0 9.17 43.86
9 0 9.17 43.86

1 2 0 9.17 43.86
1 5 0 9.17 43.86

Table B l. List of all the error teRMS of the average in absolute change in Z score (AZ) 

and root mean squared (RMS) error in location (defined by Talairach co-ordinates) of the 

most significant voxel within the two pseudo lesions with respect to that reported in the 

reference scan for the first method of image standardisation. The first method involved 

image standardisation of each of the challenge condition sample images by direct 

matching to the standard PET template supplied with SPM96, linear spatial 

standardisation function.
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METHOD 2

AZ
DIRN. OF AXIAL TRUNCATION

ROTN.
(degrees) 0 18 30

SAG 0 0 0.33 0.89
6 0.25 0.22 0.69
9 0.23 0.26 0.74
1 2 0.34 0.3 0.79
1 5 0.09 0.34 0.82

COR 0 0 0.33 0.89
6 0.11 0.29 0.09
9 0.07 0.33 0.11

1 2 0.08 0.4 0.82
1 5 0.11 0.59 N/A

AX 0 0 0.33 0.89
6 0.12 0.11 0.49
9 0.12 0.1 0.48

1 2 0.12 0.09 0.48
1 5 0.12 0.09 0.48

RMS
DIRN. OF AXIAL TRUNCATION

ROTN.
(degrees) 0 18 30

SAG 0 0.00 9.17 52.95
6 0 7.48 5.66
9 0 7.48 5.66

1 2 7.48 7.48 9.80
1 5 5.66 7.48 9.80

COR 0 0.00 9.17 52.95
6 0 2 0
9 0 2 2

1 2 0 2 2
1 5 0 2 N/A

AX 0 0.00 9.17 52.95
6 0 4.47 4.47
9 0 4.47 4.47

1 2 0 4.47 4.47
1 5 0 4.47 4.47

Table B2. List of all the error teRMS of the average in absolute change in Z score (AZ) 

and root mean squared (RMS) error in location (defined by Talairach co-ordinates) of the 

most significant voxel within the two pseudo lesions with respect to that reported in the 

reference scan for the second method of image standardisation. The second method 

used a rigid body registration step prior to standardisation. Each challenge condition 

sample image was co-registered to the reference image (the sample image no rotation, no 

truncation) using a 6 parameter rigid body transform before it was matched to the PET 

template.
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METHOD 3

AZ
DIRN. OF AXIAL TRUNCATION

ROTN.
(degrees) 0 18 30

SAG 0 0 0.33 0.89
6 0 0.09 0.36
9 0 0.09 0.21
1 2 0.03 0.04 0.2
1 5 0.03 0.04 0.12

COR 0 0 0.33 0.89
6 0 0.02 0
9 0 0.03 0.34

1 2 0 0.1 0.35
1 5 0 0.24 0.51

AX 0 0 0.33 0.89
6 0 0 0.12
9 0 0 0.09

1 2 0 0 0.1
1 5 0 0 0.09

RMS
DIRN. OF AXIAL TRUNCATION

ROTN.
(degrees) 0 18 30

SAG 0 0.00 9.17 52.95
6 0 9.80 5.66
9 0 9.80 5.66

1 2 0 9.80 5.66
1 5 5.66 9.80 5.66

COR 0 0 9.17 52.95
6 0 5.65 0
9 0 0 2

1 2 0 2 2
1 5 0 2 2

AX 0 0 9.17 52.95
6 0 0 4.47
9 0 0 4.47

1 2 0 0 4.47
1 5 0 0 4.47

Table B3. List of all the error teRMS of the average in absolute change in Z score (AZ) 

and root mean squared (RMS) error in location (defined by Talairach co-ordinates) of the 

most significant voxel within the two pseudo lesions with respect to that reported in the 

reference scan for the third method of image standardisation. The third method 

includes editing of the final standardised sample image after co-registration, 

standardisation and smoothing to remove spurious data contained in the smoothed edges.
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APPENDIX C
Percentage likelihood of diagnosis from CBF SPECT Scan
information only.

Case
no.

obsl
DAT

obs2 obsl
DFLT

obs2 obsl
DVaT

obs2 obsl
Othr

obs2 obsl
Norm

obs2

1 100 90 0 0 0 1 0 0 0 0 0
2 30 40 1 0 20 30 20 30 20 0 0
3 0 0 0 0 90 70 1 0 0 0 30
4 0 0 0 50 0 0 0 0 100 50
5 20 1 0 0 0 40 20 0 0 40 70
6 80 20 0 0 20 80 0 0 0 0
7 100 100 0 0 0 0 0 0 0 0
8 0 90 0 0 1 0 1 0 0 0 90 0
9 0 1 0 50 80 50 0 0 0 0 1 0

1 0 0 0 40 100 60 0 0 0 0 0
1 1 0 0 90 100 1 0 0 0 0 0 0
1 2 0 0 100 80 0 0 0 20 0 0
1 3 0 0 0 0 100 100 0 0 0 0
1 4 0 0 0 0 60 20 20 0 20 80
1 5 1 0 0 0 0 50 70 40 0 0 30
1 6 1 0 0 0 0 70 1 0 0 0 20 90
1 7 0 0 0 0 0 0 0 0 100 100
1 8 0 0 0 0 80 60 20 0 0 40
1 9 20 30 0 0 0 0 0 30 80 40
20 0 0 0 0 50 60 0 0 50 40
21 0 0 0 0 20 20 0 0 80 80
22 20 0 0 20 60 80 20 0 0 0
23 0 0 0 0 20 1 0 0 0 80 90
24 0 0 0 0 100 100 0 0 0 0
25 0 0 0 1 0 70 20 0 0 30 70
26 0 0 0 1 0 0 20 0 0 100 70
27 0 0 0 1 0 50 0 0 0 50 90
28 50 0 0 50 50 50 0 0 0 0
29 0 0 20 20 80 80 0 0 0 0
30 0 1 0 0 0 100 90 0 0 0 0
31 0 20 0 0 0 0 0 0 100 80
32 0 0 0 0 100 100 0 0 0 0
33 0 0 0 30 40 70 0 0 60 0
34 50 80 0 0 0 20 0 0 50 0
35 0 30 0 0 100 70 0 0 0 0
36 0 0 0 0 100 80 0 0 0 20
37 0 0 0 0 20 0 0 0 80 100
38 80 80 0 0 20 20 0 0 0 0
39 0 0 20 1 0 20 80 20 0 40 1 0

DAT - Dementia of the Alzheimer's type, DFLT - Dementia of the frontal lobe type,
DVaT - Dementia of the Vascular type, othr - other dementia, norm -normal (no 
abnormalities)
Table C l. Percentage likelihood of diagnosis from CBF SPECT Scan information only for observer 1 
and 2.
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Percentage likelihood of diagnosis from CBF SPECT scan with 
additional information from SPM analysis

Qxte
no.

obsl
DAT

obs2 obsl
DFLT

obs2 obsl
DVaT

obs2 obsl
Othr

obs2 obsl
Norm

obs2

1 90 95 1 0 0 0 0 0 0 0 5
2 90 90 0 0 1 0 1 0 0 0 0 0
3 0 0 0 0 100 80 0 0 0 20
4 0 0 0 70 0 0 0 0 100 30
5 40 0 0 0 60 20 0 0 0 80
6 80 0 0 0 20 80 0 0 0 20
7 100 100 0 0 0 0 0 0 0 0
8 1 0 100 0 0 1 0 0 0 0 80 0
9 0 1 0 50 1 0 50 80 0 0 0 0

1 0 0 0 50 60 50 0 0 0 0 40
1 1 0 0 90 30 1 0 70 0 0 0 0
1 2 0 0 100 60 0 20 0 20 0 0
1 3 0 0 0 0 100 100 0 0 0 0
1 4 0 0 20 0 60 40 20 0 0 60
1 5 20 0 0 0 70 90 1 0 0 0 1 0
1 6 30 20 0 0 60 20 0 0 1 0 60
1 7 0 0 0 0 0 1 0 0 0 100 90
1 8 0 0 0 0 70 70 30 0 0 30
1 9 1 0 0 0 0 0 0 0 0 90 100
20 50 0 0 0 40 40 0 0 60 60
21 20 0 0 0 20 70 0 0 60 30
22 1 0 0 0 0 70 80 20 20 0 0
23 0 0 0 0 0 0 0 0 100 100
24 0 0 0 0 100 100 0 0 0 0
25 30 70 0 0 70 20 0 0 0 1 0
26 0 0 0 0 20 30 0 0 80 70
27 0 0 20 0 30 1 0 0 0 50 90
28 50 0 0 0 50 70 0 0 0 30
29 0 0 20 0 50 60 30 40 0 0
30 0 1 0 0 0 100 90 0 0 0 0
31 0 0 0 0 0 30 0 0 100 70
32 0 0 0 0 100 100 0 0 0 0
33 0 0 0 0 60 100 0 0 40 0
34 40 0 0 0 40 100 20 0 0 0
35 0 60 20 0 80 40 0 0 0
36 0 1 0 0 0 100 90 0 0 0
37 0 0 0 0 20 1 0 0 0 80 90
38 80 20 0 0 0 80 20 0 0
39 0 0 30 0 30 80 20 0 20 20

DAT - Dementia of the Alzheimer's type, DFLT - Dementia of the frontal lobe type, 
DVaT - Dementia of the Vascular type, othr - other dementia, norm -normal (no 
abnormalities)
Table C2. Percentage likelihood of diagnosis from CBF SPECT Scan and additional information from 
SPM(t) map for observer 1 and 2.
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AGREEMENT OF RESULTS FROM CBF SPECT DATA 
ONLY.

KAPPA calculation for overall agreement (95).

obs2
DAT DFLT DVaT othr norm expected

DAT 3 1 4 (5x4)/39 0.513
DFLT 3 1 4 (3x4)/39 0.308
DVaT 2 1 3 1 2 18(18x1 8) / 3 9 8.308
othr 1 1 (1 x2)/39 0.051
Norm 4 8 12(12x1 6)/39 3.385

5 3 1 8 2 1 1 39 12.56

Table C3a. Frequency table for a kappa calculation of agreement between 2 observers of 
diagnosis from CBF SPECT data only.

K = (sum obs-sum exp)/(N-sum exp)

= (3+3+13+1+81 - (0.51+0.3+8.3+0+3.391
39- (0.51+0.3+8.3+0+3.39)

K =  (28 - 12.56)7(39 - 12.56) = 0.584 moderate agreement

AGREEMENT OF RESULTS FROM CBF SPECT AND SPM(t) 
DATA .

KAPPA calculation for overall agreement
obs2*
DAT DFLT DVaT othr NORM expected

DAT 3 2 5 (5x7)/39 0.897
DFLT 2 2 4 (4x3)/39 0.308
DVaT 2 1 3 3 1 8(18x18)/39 8.308
othr 1 1 (1 x0)/39 0
NORM 2 1 8 1 1 (11x11 )/39 3.103

7 3 1 8 0 1 1 39 12.62

Table C3b. Frequency table for a kappa calculation of agreement between 2 observers of 
diagnosis from CBF SPECT data and additional information from SPM(t) map.

K = (sum obs-sum exp)/(N-sum exp)

= (3+2+13+0+81 - (0.9+0.3+8.3+0+3.11 
39- (0.9+0.3+8.3+0+3.1)

K = (26 - 12.62)7(39 - 12.62) = 0 .507 moderate agreement
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Weighted KAPPA (Kw) calculations for agreement between

observers of diagnosis.

K(w) = (Po(w) " Pe(w))/d “ Pe(w))

and

Wy = 1 - ( l i - j l / g - 1)

where i is the row number and j the column number and g the number of categories or 

rating levels.

Po(w) = (1/n ) ( 2  2  Wij*fjj)

Pe(w) = (1/n2 ) ( 2  2  Wij*Fi*Fj) 

where fy is the entry in the frequency table for row i and column j. 

where Fj is the total number of observations entered in the frequency table for row i. 

where Fj is the total number of observations entered in the frequency table for column j.

Weighted
Kappa

0 1 2 3 4 5 6 7 8 9  10
0 1 0 9 0.8 0 7 0.6 0 5 0.4 0.3 0 .2 0 1 0
1 0 9 1 0.9 0 8 0.7 0 6 0.5 0.4 0 .3 0 2 0 .1
2 0 8 0 9 1 0 9 0.8 0 7 0.6 0.5 0 .4 0 3 0 .2
3 0 7 0 8 0.9 1 0.9 0 8 0.7 0.6 0 5 0 4 0 .3
4 0 6 0 7 0.8 0 9 1 0 9 0.8 0.7 0 6 0 5 0 .4
5 0 5 0 6 0.7 0 8 0.9 1 0.9 0.8 0 7 0 6 0 .5
6 0 4 0 5 0.6 0 7 0.8 0 9 1 0.9 0 8 0 7 0 .6
7 0 3 0 4 0.5 0 6 0.7 0 8 0.9 1 0 .9 0 8 0 .7
8 0 2 0 3 0.4 0 5 0.6 0 7 0.8 0.9 1 0 9 0 .8
9 0 1 0 2 0.3 0 4 0.5 0 6 0.7 0.8 0 .9 1 0 .9
1 0 0 0 1 0.2 0 3 0.4 0 5 0.6 0.7 0 8 0 9 1

Table C4. Weighting values used to calculate a weighted kappa measure of agreement.
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Weighted KAPPA (Kw) calculations for agreement between

observers of diagnosis.

K (w)= (Po(w) " Pe(w)V(l “ Pe(w))

and 

Wy = 1 - (li - jl /  g -1)

where i is the row number and j the column number and g the number of categories or 

rating levels.

Po(w) = (1/n ) ( I  £  Wjj*fjj) 

Pe(w) = (1/n2 ) ( 2 1

where f  is the entry in the frequency table for row i and column j.
Cl* VoUJL W* o f  obro>/oJb\'ers»4 ^ ovj t*

fri* i*i 0-4- H.° Sy ©bMrv voJt*Vw-*» W < •
Weighted 1 °
Kappa

0 1 2 3 4 5 6 7 8 9 1 0
0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
1 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
2 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
3 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
4 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4
5 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5
6 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6
7 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7
8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8
9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9
1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table C4. Weighting values used to calculate a weighted kappa measure of agreement.
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0
1
2
3
4
5
6
7
8
9
1 0

Tat

obs
0
1
2
3
4
5
6
7
8
9
1 0

Tat

obs
0
1
2
3
4
5
6
7
8
9
1 0

ement for the dementia of the Alzheimers type category 
CBF SPECT Scan information only

obs2
0 1 1 0

22 3 1 0 0 1 0 0 0 0 0 27
2 0 1 0 0 0 0 0 0 0 0 3
1 0 0 0 0 0 0 0 1 0 0 2
1 0 1 1 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 1 1

27 3 3 1 0 1 0 0 2 0 2 39
25. Frequency table of agreement for the disease category DAT.
obs2
0 1 2 3 4 5 6 7 8 9 1 0

22 2.7 0.8 0 0 0.5 0 0 0 0 0
1.8 0 0.9 0 0 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0 0.4 0 0
0.7 0 0.9 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

0.1 0 0 0 0 0 0 0 0 0 0.9
0 0 0 0 0 0 0 0 0 0 1

0.91
26. Frequency table of weighted agreement
obs2
0 1 2 3 4 5 6 7 8 9 1 0

676 70.2 62.4 18.2 0 1 3 0 0 10.4 0 0
70.2 9 8.1 2.4 0 1.8 0 0 1.8 0 0.6
41.6 5.4 6 1.8 0 1.4 0 0 1.6 0 0.8
54.6 7.2 8.1 3 0 2.4 0 0 3 0 1.8

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

5.2 0.9 1.2 0.5 0 0.7 0 0 2 0 1.6
5.2 1.2 1.8 0.8 0 1.2 0 0 3.6 0 3.6

0 0.3 0.6 0.3 0 0.5 0 0 1.6 0 2

21. Frequency table of the weighted agreement expected by chance.
Kw = (0.91 -0.78)/(l-0.78) = 0.59

0.78

151



Agreement for the dementia of the frontal lobe type category 
from CBF SPECT Scan information only.
DFLT J

obs2
obsl 0 1 2 3 4 5 6 7 8 9 1 0
0 30 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
2 2 0 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0

32 1 2 0 1 1 0 0 0 1 1
Table 2%. Frequency table of agreement for the disease category DFLT.

obs2
obsl 0 1 2 3 4 5 6 7 8 9 1 0
0 29 0 0.8 0 0 0 0 0 0 0 0
1 0 1 0.9 0 0 0 0 0 0 0 0
2 1.6 0 0 0 0 0.7 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0.6
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0.6 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0

Table C9. Frequency table of weighted agreement
obs2

obsl 0 1 2 3 4 5 6 7 8 9 1 0
0 930 27 48 0 1 8 1 5 0 0 0 3 0
1 55.8 2 3.6 0 1.4 1.2 0 0 0 0.4 0.2
2 74.4 2.7 6 0 2.4 2.1 0 0 0 0.9 0.6
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 12.4 0.5 1.2 0 0.8 0.9 0 0 0 0.7 0.6
7 0 0 0 0 0 0 0 0 0 0 0
8 6.2 0.3 0.8 0 0.6 0.7 0 0 0 0.9 0.8
9 3.1 0.2 0.6 0 0.5 0.6 0 0 0 1 0.9
1 0 0 0 0 0 0 0 0 0 0 0 0

31
2
3
0
0
0
1
0
1
1
0

39

0.953

0.851
Table CIO. Frequency table of the weighted agreement expected by chance.

Kw = (0.953 -0.851)/(1-0.851) = 0.685
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Agreement for the dementia of the vascular type category from 
CBF SPECT Scan information only.
DVaT

obs2
1 0obsl

1 0
62 2 2 3 18 2 7 3 3

1 1 
4 
6 
1 
0 
1 
2
4
5 
2 
3

39
Table C l 1. Frequency table of agreement for the disease category DVaT. 

obs 2
1 0obs 1

0.9 0.8
1 0.9

0.6
0 0.4

0.6 0.5
0.9
0.8 0.8

0 .8
0.7 0.8 0.8 0.7

0 0.8 
0 0.9

0.80.8
0.9

1 0
0.832

Table C l2. Frequency table of weighted agreement 
obs 2

obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 88 19.8 52.8 23.1 19.8 1 1 8.8 6.6 6.6 1.1 0
1 28.8 8 21.6 9.6 8.4 4.8 4 3.2 3.6 0.8 2.4
2 38.4 10.8 36 16.2 14.4 8.4 7.2 6 7.2 1.8 7.2
3 5.6 1.6 5.4 3 2.7 1.6 1.4 1.2 1.5 0.4 1.8
4 0 0 0 0 0 0 0 0 0 0 0
5 4 1.2 4.2 2.4 2.7 2 1.8 1.6 2.1 0.6 3
6 3.2 1 3.6 2.1 2.4 1.8 2 1.8 2.4 0.7 3.6
7 9.6 3.2 1 2 7.2 8.4 6.4 7.2 8 10.8 3.2 16.8
8 8 3 1 2 7.5 9 7 8 9 1 5 4.5 24
9 1.6 0.8 3.6 2.4 3 2.4 2.8 3.2 5.4 2 10.8
1 0 0 0.6 3.6 2.7 3.6 3 3.6 4.2 7.2 2.7 1 8

0.589
Table C l3. Frequency table of the weighted agreement expected by chance.

Kw = (0.832 -0.589)/(l-0.589) = 0.591
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Agreement for the normal category from CBF SPECT Scan 
information only.
norm

obs 2
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 1 8 0 0 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 1 0 0 0 0 0 1
8 0 0 1 0 0 0 0 0 1 0 1
9 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1

23 0 2 1 2 1 1 0 4 1 4
Table C14. Frequency table of agreement for the normal category.

obs 2
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 1 8 0 0 0 0 0 0.4 0 0 0 0
1 0.9 0 0 0 0.7 0 0 0 0 0 0
2 0.8 0 0 0 0 0 0 0 0 0 0
3 1.4 0 0 0 0 0 0 0 0 0 0
4 0.6 0 0 0 0 0 0 0 0.6 0 0
5 0 0 0 0 0 0 0 0 0 0 0.5
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0.6 0.7 0 0 0 0 0 0.7
8 0 0 0.4 0 0 0 0 0 1 0 0.8
9 0 0 0.3 0 0 0.6 0 0 0.9 0 0
1 0 0 0 0 0 0 0 0 0 0.8 0.9 1

0.836
Table C l5. Frequency table of weighted agreement 

obs 2
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 437 0 30 13.3 22.8 9.5 7.6 0 1 5 1.9 0
1 41.4 0 3.6 1.6 2.8 1.2 1 0 2.4 0.4 0.8
2 18.4 0 2 0.9 1.6 0.7 0.6 0 1.6 0.3 0.8
3 32.2 0 3.6 2 3.6 1.6 1.4 0 4 0.8 2.4
4 27.6 0 3.2 1.8 4 1.8 1.6 0 4.8 1 3.2
5 11.5 0 1.4 0.8 1.8 1 0.9 0 2.8 0.6 2
6 0 0 0 0 0 0 0 0 0 0 0
7 20.7 0 3 1.8 4.2 2.4 2.7 0 1 1 2.4 8.4
8 13.8 0 2.4 1.5 3.6 2.1 2.4 0 1 2 2.7 9.6
9 6.9 0 1.8 1.2 3 1.8 2.1 0 1 1 3 10.8
1 0 0 0 1.2 0.9 2.4 1.5 1.8 0 9.6 2.7 1 2

0.639
Table C l6. Frequency table of the weighted agreement expected by chance. 

Kw = (0.836 -0.639)/(l-0.639) = 0.546
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Agreement for the dementia of the Alzheimers type category 
from CBF SPECT Scan and SPM(t) data.
DAT

obs 2
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 22 2 2 0 1 1 0 0 1 0 0 29
1 3 0 0 0 0 0 0 0 0 0 0 3
2 0 0 0 1 0 0 0 0 1 0 0 2
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 2 0 2
1 0 0 1 0 0 0 0 0 0 0 0 1 2

25 3 2 2 1 1 0 0 2 2 1 39
Table C17. Frequency table of agreement for the disease category DAT.

obs2
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 21 1.8 1.6 0 0.6 0.5 0 0 0.2 0 0
1 2.7 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0.9 0 0 0 0 0.4 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0.6 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 2 0
1 0 0 0.1 0 0 0 0 0 0 0 0 1

0.856
Table C l8. Frequency table of weighted agreement 

obs 2
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 672 75 .6 44.8 39.2 16.8 1 4 0 0 11.2 5.6 0
1 64.8 0 0 0 0 0 0 0 0 0 0
2 38.4 0 4 3.6 1.6 1.4 0 0 1.6 1.2 0.4
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 7.2 0 1 1.2 0.7 0.8 0 0 1.8 1.6 0.7
8 0 0 0 0 0 0 0 0 0 0 0
9 4.8 0 1.2 1.6 1 1.2 0 0 3.6 4 1.8
1 0 0 0 0.8 1.2 0.8 1 0 0 3.2 3.6 2

0.686
Table C19. Frequency table of the weighted agreement expected by chance.

Kw = (0.856 -0.686)7(1-0.686) = 0.541
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Agreement for the dementia of the frontal lobe type category 
from CBF SPECT Scan and SPM(t) data.
DFLT

obs 2
obs 1 fc) 1 2 3 4 5 6 7 8 9 10
0 28 1 4 1 0 0 0 0 0 0 0 34
1 0 0 0 0 0 1 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 1 0 1
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 1 2
7 1 0 0 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0

29 1 4 1 0 2 0 0 0 1 1 39
Table C20. Frequency table of agreement for the disease category DFLT.

obs 1
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 28 0.9 3.2 0.7 0 0 0 0 0 0 0
1 0 0 0 0 0 0.6 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0.4 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0.9 0 0 0 0 0.6
7 0.3 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0

0.913
Table C21. Frequency table of weighted agreement

obs 1
obs 2 
0 1 2 tj-co 5 6 7 8 9 1 0

0 986 30.6 108.8 23.8 0 34 0 0 0 3.4 0
1 26.1 1 3.6 0.8 0 1.2 0 0 0 0.2 0.1
2 0 0 0 0 0 0 0 0 0 0 0
3 20.3 0.8 3.6 1 0 1.6 0 0 0 0.4 0.3
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 23.2 1 4.8 1.4 0 3.6 0 0 0 1.4 1.2
7 8.7 0.4 2 0.6 0 1.6 0 0 0 0.8 0.7
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0

0.854
Table C22. Frequency table of the weighted agreement expected by chance.

Kw = (0.913 -0.854)7(1-0.854) = 0.4
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Agreement for the dementia of the vascular type category from 
CBF SPECT Scan and SPM(t) data.
DVaT

obs 2
obs 1 1 0

1 0
0 79 3 2 1 4 4 4 14

7
4
4
2
3 
0 
1
4 
6 
3
5 

39
Table C23. Frequency table of agreement for the disease category DVaT.

obs 2
obs 1 1 0

0.9 0.5
0.9
0.8
0.7

0.9 0.8
0.5

0.9
0.8 0 . 6

0.9
0.8
0.7

0.4 0.5 0
0 0.4 0.5 0.80.2 0.9

0.8
0.61 0

0.79
Table C24. Frequency table of weighted agreement 

obs 2
0 1 2 3 4 5 6 7 8 9 1 0obs 1 

0 
1 
2
3
4
5
6
7
8 
9
1 0

63 18.9 22.4 9.8 4.2 14 11.2 8.4 1.4 0 0
32.4 12 14.4 6.4 2.8 9.6 8 6.4 1.2 0 2.8
28.8 10.8 1 6 7.2 3.2 11.2 9.6 8 1.6 0 5.6
12.6 4.8 7.2 4 1.8 6.4 5.6 4.8 1 0 4.2
16.2 6.3 9.6 5.4 3 10.8 9.6 8.4 1.8 0 8.4

0 0 0 0 0 0 0 0 0 0 0
3.6 1.5 2.4 1.4 0.8 3.6 4 3.6 0.8 0 4.2

10.8 4.8 8 4.8 2.8 12.8 14.4 1 6 3.6 0 19.6
10.8 5.4 9.6 6 3.6 16.8 19.2 21.6 6 0 33.6
2.7 1.8 3.6 2.4 1.5 7.2 8.4 9.6 2.7 0 18.9

0 1.5 4 3 2 10 12 1 4 4 0 35
0.581

Table C25. Frequency table of the weighted agreement expected by chance. 
Kw = (0.79 -0.581)7(1-0.581) = 0.498
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Agreement for the normal category from CBF SPECT Scan and 
SPM(t) data.

norm
obs 2

obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 1 6 0 0 0 1 0 0 0 1 0 0 1 8
1 2 0 0 0 0 0 0 0 0 0 0 2
2 2 0 1 0 0 0 0 0 0 0 0 3
3 2 0 0 0 0 0 1 0 0 0 1 4
4 1 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 0 0 0 0 1 0 0 0 0 3
7 0 0 0 0 0 0 0 0 1 0 1 2
8 1 0 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 1 0 0 1 0 1 3
1 0 0 0 0 0 0 0 0 0 0 1 1 2

25 1 1 0 1 1 2 0 3 1 4 39
Table C26. Frequency table of agreement for the normal category.

obs 2
obs 1 0 1 2 3 4 5 6 7 8 9 1 0
0 1 6 0 0 0 0.6 0 0 0 0.2 0 0
1 1.8 0 0 0 0 0 0 0 0 0 0
2 1.6 0 1 0 0 0 0 0 0 0 0
3 1.4 0 0 0 0 0 0.7 0 0 0 0.3
4 0.6 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0.4 0.5 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0.9 0 0.7
8 0.2 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0.6 0 0 0.9 0 0.9
1 0 0 0 0 0 0 0 0 0 0 0.9 1

0.826
Table C27. Frequency table of weighted agreement

obs 1
obs 2 
0 1 2 3 4 5 6 7 8 9 1 0

0 450 16.2 1 4 0 10.8 9 14.4 0 1 1 1.8 0
1 45 1.8 2 0 1.6 1.4 2.4 0 2.4 0.6 0
2 60 2.4 2.7 0 2.7 2.4 4.2 0 4.5 1.2 0
3 70 2.8 3.2 0 4 3.6 6.4 0 7.2 2 6.4
4 1 5 0.6 0.7 0 0.9 1 1.8 0 2.1 0.6 2
5 0 0 0 0 0 0 0 0 0 0 0
6 30 1.2 1.5 0 2.1 2.4 5.4 0 8.1 2.4 8.4
7 1 5 0.6 0.8 0 1.2 1.4 3.2 0 6 1.8 6.4
8 5 0.2 0.3 0 0.5 0.6 1.4 0 2.7 1 3.6
9 7.5 0.3 0.6 0 1.2 1.5 3.6 0 7.2 2.7 1 2
1 0 0 0 0.2 0 0.6 0.8 2 0 4.2 1.6 7.2

0.632
Table C28. Frequency table of the weighted agreement expected by chance. 

Kw = (0.826 -0.632)7(1-0.632) = 0.53
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Appendix D
The following pages list the the results from an SPM analysis to investigate the impact of 

visual stimulus on CBF, using two groups of subjects. The first group contains five 

patients who were injected with 9 9 m H M P A O  with their eyes shut, the second group 

were injected with their eyes open. The statistical option chosen was ’compare groups; 1 

scan per subject’. The contrast design was (1, -1) and (-1,1). Global normalisation was 

acheived using proportional scaling.

Figure D l. A list of the scan numbers, group number, subject number and the global 

mean voxel intensity scaled to 50 ml/min/lOOg

Figure D2. Design matrix of the SPM analysis described above.

Figure D3. SPM(F) map of the results of an F test on every voxel in the analysis and 

represents any unexplained variance in the data. The contrasts are listed below.

Figure D4. SPM(t) contrast 1 (1 -1) represents the increases in the eyes closed condition 

with respect to the eyes open condition.

pg 5 SPM(t) contrast 2 (-1 1) represents the increases in the eyes open condition with 

respect to the eyes closed condition.
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Statistical analysis

X
0
l i  -g __ Base directory:
c  §" .SB, /homes/abarnes/work_in_progressA/NS/occ_act/nformat

|  |  O Filename Tails

01 : 1 1 52.5178 /snA509B.img
02 : 1 2 46.3219 /snD615B.img
03 : 1 3 46.8641 /snD705B.img
04 : 1 4 50.2058 /snD707B.img
05 : 1 5 51.634 /snD709B.img
06 : 2 1 49.1376/snD699S.img
07 : 2 2 51.7105 /snP157S.img
08 : 2 3 52.3154/snD701S.img
09 : 2 4 47.0633 /snP253S.img
10: 2 5 52.2296/snD719S.img

Images scaled to an overall grand mean of 50 
Gray matter threshold is 80% of the whole brain mean 
Covariates are centered before inclusion in design matrix

SPM96 (abarnes) -  20/04/1999 (15:41)



Design Matrix

I C\JII
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_Qo
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5

6

8

9

10

ii 11 ■

0.5 1 1.5 2 2.5 3 3.5
effects 

Design: Compare-groups: 1 scan per subject 

Global normalisation: Proportional scaling 

Parameters:

2 Condition + 0 Covariate + 1 Block + 0 Confound

= 3 parameters, having 2 degrees of freedom, giving 8 residual df (10 scans).

SPM96 (abarnes) -  20/04/1999 (15:41)



SPM{F} p < 0.05, df: 1.0,8.0

Search volume: 110114 voxels 
Image size: 79 95 34 voxels 
Voxel size 2.0 2.0 4.0 mm 
Resolution {FWHM} 17.2 18.8 19.8 mm

Results directory:/homes/abarnes/work_in_progress/VNS/occ_act/selected_!

Contrasts 1 2

Group_1 1 -1
Group_2 -1 1

SPM96 (abarnes) -  20/04/1999 (15:44)



SPM{Z}
contrast

1 2 3
design matrix

P values & statistics: ../VNS/occ_act/all_scans

se t-le ve l {c} c luster-leve l {k,Z} voxe l-leve l {Z} uncorrected k & Z x,y,z {mm}

0.863  (2 ) 0.247  (224 , 3 .95 ) 

0.908  ( 125 , 3 .14 )

0.187  (3 .95 ) 0.116  0.000  26 - 2  -3 6

0.897  (3 . 14 ) 0.233  0.001 -1 4  34 -3 6

Height threshold {u} = 2.33, p = 0.010 

Extent threshold (k) = 94 voxels, p = 0.299 

Expected voxels per cluster, E{n) = 94.3 

Expected number of clusters, E{m} = 3.5

Volume {S} = 110114 voxels or 276.1 Resels 

Degrees of freedom due to error = 8.0 

Smoothness FWHM (mm) = 17.2 18.8 19.8 

(voxels) = 8.6 9.4 4.9

SPM96 (abarnes) -  20/04/1999 (15:44)



SPM{Z}
contrast

1 2 3
design matrix

P values & statistics: ../VNS/occ act/all scans

se t-leve l {c} c luster-leve l {k,Z} voxe l-leve l {Z} uncorrected k & Z x,y,z {mm}

0.273  (5 ) 0.002 (3555 , 3 .83 ) 0.264 (3 .83 ) 0.000 0.000 -6 -8 8 -8

0.349 (3.73) 0.000 14 -9 2 -4

0.619 (3.46) 0.000 10 -7 6 -8

0.646 ( 103 , 3 .48 ) 0.602 (3 .48 ) 0.278 0.000 -2 6 16 36

0.424 (416 , 3 .3 9 ) 0.698 (3 .39 ) 0.039 0.000 4 -8  60

1.000 (2.46) 0.007 10 -2 0 56

0.749 ( 198 , 3 .37 ) 0.716 (3 .37 ) 0.138 0.000 32 -4 0 56

0.972 (94 , 2 .97 ) 0.969 (2 .97 ) 0.299 0.002 -1 8 -2 4 -2 0

1.000 (2.46) 0.007 -1 4 -3 6 -2 4

Height threshold {u} = 2.33, p = 0.010 

Extent threshold {k} = 94 voxels, p = 0.299 

Expected voxels per cluster, E{n} = 94.3 

Expected number of clusters, E{m} = 3.5

Volume {S} = 110114 voxels or 276.1 Resels 

Degrees of freedom due to error = 8.0 

Smoothness FWHM {mm} = 17.2 18.8 19.8 

{voxels} = 8.6 9.4 4.9

SPM96 (abarnes) -  20/04/1999 (15:44)



Appendix E
The following pages contain copies of the personal communications referred to in the text 

and footnotes, available from the spm mailbase facility for a limited time.

SPM-mailbase letter dated Jan/98 at http://www.mailbase.ac.uk/lists/spm/1998- 
01/0078.html
SPM-mailbase letter dated feb/98 at http://www.mailbase.ac.uk/lists/spm/1998- 
02/000 Lhtml
SPM help line letter dated - http://www.mailbase.ac.uk/lists/spm/1998-04/0014.html 
SPM help line letter dated - http://www.mailbase.ac.uk/lists/spm/1998-06/0076 
SPM help-line http://www.mailbase.ac.uk/lists/spm/1997-12/0009.html
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Re: normalization

ohn Ashbumer (john@fil.ion.ucl.ac.uk)
Hon, 26 Jan 1998 12:25:43 GMT

•  Messages sorted by: [ date ][ thread ][ subject ][ author ]
•  Next message: John Ashbumer: "Bounding Box"
•  Previous message: Andrew Holmes: "Re: Stats"

>111) With regards to the basis functions options in SPM, I had reviewed
> your correspondence with Matthew Brett and S. Kapur... but I would
> appreciate some clarification.
>
> /  thought increasing the number o f basis functions in x, y ,  or z
> would usually improve the solution in each respective axis i.e.
> 4 4 4  will not give as close a mathematical solution as 8 8 8.
> However, sometimes the mathematical solution with more parameters
> is vulnerable to local minima and may not result in the best solution.
> So I thought the best empirical use would be to choose the lowest
> number o f basis functions needed fo r  each axis. 1 would increase
> basis functions from the default until the normalized image no longer
> improved. Improvement could be assessed visually and by choosing
> coordinate points.
>
>
> With this in mind I normalized full head MRls that had been coregistered
> to the SPM96 T1 MRI template (the MRIs are degraded to PET voxel size
> o f about 2X2X3).

You don’t need to work on the degraded resliced MRI. The associated ‘.mat’ 
file contains the information required to map the original MRI to the PET 
images. This information is used by the spatial normalization, enabling 
you to work from the full sized MRI. In fact, one main danger of estimating 
Darameters from the resliced MRI is that there may be artificial edges in the 
resliced image (from where you may have data in the PET images, but none in 
the original MRI). Similarly, it is better to estimate spatial normalization 
parameters from the mean of the PET images that can be generated by the 
realignment routine. This image does not have artificial edges that are 
generated by the ‘masking’.
Another similar issue is what to do with the edge of the FOV. The images are 
smoothed before estimating the registration parameters. Because the values 
outside the FOV are unknown, there are inevitably edge artifacts in the smoothed 
images. In SPM96, the whole of the image is used - including the bits near the 
sdge - and this occasionally causes problems. However, in the next release, the 
bits at the edges will be ignored by the parameter estimation part. This should 
improve the results.

>  /  initially used the default 4 5 4 and noticed that
> the cerebellum seemed stretched in the z axis grossly. Thinking that
> an MRI should have more information than a PET image, I would expect
> better normalization. Thus I thought increasing the basis functions
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> in the z axis would inprove the situation because a better mathematical
> solution from  more basis functions would result in a better template
> solution. Empirically 4 6 9 seemed better but there was still downward
> displacement in the z axis o f  about 4mm in the inferior frontal and
> occipital cortex as compared to template. In general, coordinates
> located seemed no more than 8mm apart.
> I found that 4 6 11 made unpleasant (some z axis distortions?) in the
> temporal cortex giving a wide appearance in the transverse view.

> Does this seem general approach seem rational to you? Would you approach
> this any differently?

rhis approach is rational for the spatial normalization of SPM96. Fit as 
nany parameters as possible until the registration becomes unstable. See 
he answer to Q (#4).

> #2) My other question is what set o f  basis functions do you find  provides
> the best normalization fo r  a coregistered quality MRI? (Consider the
> MRI coregistered by the SPM96 program  -  which probably gives similar
> quality images to our coregistration)

I don’t know for SPM96. There are so many parameters to think of.

>  #3) T1 MRI template with 12 subjects - Would you concur that this seems
> to be the best template ? Why do you think so ?
>
> 12 MRIs have more entropy than 305 averaged MRIs which may provide better
> coregistration. (The 305 have a homogenous cortex with limited information)
>
> Why 12 is better than 1 ? : Maybe 12 provide a spatial distribution that
> will be more likely to have more mutual information with an average subject
> than a single MRI. Based on this, I would anticipate that a greater
> proportion o f  subjects would normalize well to the 12 averaged. I would
> also anticipate that the single MRI template would be better fo r  spatial
> normalization fo r  some but worse fo r  others (a wider variance o f quality
> o f  normalization in the single template normalized images). Could you
> clarify whether you agree with these thoughts and perhaps suggest some
> other reasons?

[ agree with you.

[ think that the voxel values in the template should be unbiased estimates 
Df what the voxel values in spatially normalized images should be. The best 
anbiased estimate I could think of would be the mean of a number of spatially 
lormalized images. The images should be normalized as well as possible to 
within the limits of the spatial normalization routine that is to be used.
Hie more images the better, but I expect that adding much more than about 12 
images to the template would not improve it greatly.
Possibly a slightly better approach would be to model the intensity distribution 
Df the normalized images. Rather than just the mean of the images, the mean and 
covariance of the normalized images could be modelled (possibly by fitting to a



inear combination of ‘eigenimages’ and their associated variances).

\nother issue relates to the choice of what is matched. With T1 MRI, much of the 
natching information is around the ventricles, brain and scalp. Because the 
leformations are only defined by a few hundred parameters, the overall shape 
)f the head (rather than just the brain) tends to be matched. This leads to 
naccuracies in brain matching that result from variability outside the brain.
This is particularly evident for T1 MRI, but less so for PET blood flow images 
where there is less signal in the scalp.
Hie next SPM release will give you an option for weighting the registration so that 
he parameters are just based on the shape of the brain.

> #4) What is a good normalization?

Hiis is a good question for which different people are likely to give different 
answers. I guess for SPM, it is the spatial normalization that gives you the 
oest Z-scores for multi-subject experiments.

[ believe that Bayesian statistics need to be applied in order to obtain a maximum 
i posteriori (MAP) estimate (the single most probable solution), minimum variance 
estimate (MVE - a weighted average of all possible solutions, where the weights 
ire the probabilities that the solutions are correct), or something in between.
With little or no smoothing before doing the stats, then a MAP estimate may be 
preferable, but with more smoothing then I think a solution closer to the MVE would 
be better. Unfortunately, MVE solutions require a lot of computation.

In order to adopt Bayesian statistics, it is necessary to have a good model describing 
the a priori probability distribution of the parameters. This means that by plugging 
is some data that represents the true variability of brain shape, then a better estimate 
af the spatial normalization parameters can be made. This is comparable to a statistics 
test that was sent around our unit a few months ago:
D -------------------     O
You feel perfectly healthy. However, one in a thousand persons of your age group, I 
gender and life style suffer from a specific cancer without showing any clinical I 
symptoms. Therefore you decide to participate in a screening test. I 
The screening test is very reliable. The probability that the test is positive I 
given that the person has the disease is 99%, i.e. only 1% of false negative I 
results. The probability that the test is negative given that the person does not I 
have the disease is 98%, i.e. only 2% of false positive results. I 
You are informed that in your case the result of the test is positive. I 
What is the probability that you actually suffer from the disease? I

o--------------------------------------------------------------  o
By knowing the a priori distribution of the disease (1 in 1000 sufferers), it is possible 
to obtain a much more accurate estimate of the answer (0.047 if you are interested).

A Bayesian solution also requires an estimate of the error that would be made by using 
only a maximum likelihood solution (ML). This is comparable to knowing the false positive 
and false negative error rate in the above example. A bit more work has been done on this 
for the next SPM release (see Neuroimage 6:344-352 (1997)).

The spatial normalization of SPM96 slightly overestimates the a priori variability



)f the parameters, and the errors on the fits are slightly underestimated, so the 
itting may be a little bit under-regularized (although it seemed to work OK at 
he time with our images). This means that the algorithm can have problems when 
t attempts to fit too many parameters. Any modeller will tell you that you can only 
it  so many parameters to any data, and that occasionally any nonlinear optimization 
ilgorithm will mess up - especially when it tries to converge too rapidly. Only when 
>rou start using constraints and priors can you begin to attempt to fit lots of parameters.

Another issue is what to do with voxels that shrink and grow dramatically. This is 
sasier to conceptialize with PET, where the simple question would be:
’Should concentration, or absolute amount of tracer be preserved in the spatially 
lormalized images?"
With lots of warping, the relative volumes of the voxels will be more variable.
The way it is done now results in concentration being preserved. So, if any particular 
-egion shrinks after spatial normalization, this results in the absolute amount of 
racer in this region also shrinking. This may or may not be a good thing.

> I have been assessing our application o f  your normalization process upon
> summed WA Y ligand images over time. 
b>

> I have been sampling the location o f  points on normalized images (finding
> their mean coordinate fo r  each image) In general, the average distance
> between subjects ranges from  2mm (anterior insula) to 6mm (midline posterior
> occipital cortex). The greatest distance between a pair o f  subjects fo r  a
> given point is 10mm.
p>
> How does this compare to water images and M RI images ?

[ don’t honestly know. I haven’t evaluated the registration this way. Most 
of the evaluations have involved looking at the decrease in the residual squared 
differences between the templates and images, as well as a few purely qualitative 
evaluations.

> I am not aware o f  a paper that states mean distances between normalized
> images -couldyou refer me to one? I am aware o f  1991 JCBF by Friston
> et al. which states mean template and image coordinates fo r  points (but
> not standard deviation or greatest distance).

There isn’t one for the current nonlinear spatial normalization of SPM.

> #5) Will SPM actually change the values within voxels?

It will try not to, but when it has to interpolate between 8 neighbouring voxels, 
changes in voxel values are inevitable.

> #6) With regards to interpolation, I am aware that sine interpolation has
> been demonstrated to be the best fo r  MR images. What evidence ( if  any)
> supports the use o f  sine interpolation fo r  PET images?

I think sine interpolation should be better for all images. However, there 
is so much noise in PET images, they are relatively smooth, PET signals are 
usually much higher than fMRI signals, and the degrees of freedom are so much



ower in PET experiments that sine and bilinear interpolation should not make 
»o much difference. However, it is worth noting that when you use sine 
interpolation with PET, you will find that the estimates of smoothness have 
ower FWHMs. This is because bilinear interpolation takes a weighted average 
)f the 8 nearest neighbours - which is essentially a smoothing step.

> Is there any way to choose one kind o f interpolation fo r  choosing the
> location o f resliced data and a different interpolation i.e. nearest
> neighbour or bilinear to the actual values ?

Die estimation of spatial normalization parameters always uses bilinear 
interpolation, whereas you get a choice about how you resample the data.

Regards,
-John

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'

•  Next message: John Ashbumer: "Bounding Box"
•  Previous message: Andrew Holmes: "Re: Stats"



\nC ova & proportional scaling [Was: Basic fMRI 
:ovariates...]

Andrew Holmes (andrew@fil.ion.ucl.ac.uk)
Mon, 2 Feb 1998 10:56:21 GMT

•  Messages sorted by: [ date ][ thread ][ subject ][ author ]
•  Next message: Daniel Welti: "Realign - matlab problems"
•  Previous message: John Ashbumer: "Re: coregister, normalize"

Dear Dr Allison,

You suggested that Dr. Makuuchi employ Global Normalization using 
"Scaling". Please comment on the use o f "Scaling" versus "ANCOVA "for  
Global Normalization. When is each appropriate in the realm o f fM RI 
studies? Why did you suggest "Scaling"?

\nCova and proportional scaling imply very different models for the 
jffect of changes in global measurement. There has been much 
lisagreement and much written about the pro’s and con’s of the two 
ipproaches, but to my mind there’s no general answer as to which is 
jest: It’s a simple case of using the model most appropriate for the 
lata at hand. Here are my general thoughts...

AnCova uses a local linear model for a small range of global values, 
vith constant variance, and assummes activations are additive.
^oportional scaling (followed by Anova) implies a proportional model 
he effect of global changes on regional values, assummes activations 
ire proportional to the underlying global, and (crucially) also that 
/ariance increases with global. This last attribute is oft overlooked, 
nakes a formal comparison of AnCova and Prop.Scale/Anova models on a 
lata set non-trivial, but is really what differentiates the two 
nodels.

[n short: If global measurements vary as a result of a gain effect, 
iuch as scanner sensitivity (fMRI) or introduced activity (PET), then 
he noise should increase with the signal and a proportional model 
vould be appropriate. If global measurements truly reflect a normal 
*ange of an underlying physiological process (i.e.CBF), then there is 
little evidence for globally dependent variance, and the non-linear 
relationship global and regional values is best modelled with a local 
iinear model - AnCova.

' Note that global normalisation implies assessing other changes )
' relative to the global, via the chosen model. In general th en ,)
' you’re in trouble if the global measurement and effects of in terest)
' are correlated. See the Ch3 of the SPMcourse notes for further )
' discussion. )

So, for quantified PET with true rCBF measurements, I’d use AnCova
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within subjects, with a different parameter for each subject (subject 
ipecific AnCova in SPMspeak). With relative "counts" data obtained from 
i tightly controlled input dose, I’d again use subject specific AnCova,
)ut would consider scaling across subjects (prior to AnCova) if there 
ire obvious subject differences. Such a scaling would involve scaling 
ill a subjects images by the *same* factor, such that the Grand mean 
mean of the global means) for each subject was the same. For PET with 
i very variable input dose, the Poisson nature of radioactive decay 
immediately suggests variance increasing with intensity, and hence 
proportional scaling.

With fMRI it’s a bit trickier, mainly because we’re not sure what BOLD 
is actually measuring. However, we’ve found that many (older) scanners 
recalibrate prior to acquiring every image volume. This is clearly a 
gain effect. Empirically, for a tight range of global values, there 
appears to be little difference in the results from a proportional 
scaling and a subject-specific AnCova. I therefore suggested "Scaling" 
to Dr. Makuuchi on the grounds that it’s safest for fMRI in the absence 
of additional knowledge.

For further comments I suggest the SPM course notes (Ch3), and a review 
of the literature. There’s a plethora of assessments for various data 
published, and I look forward to reading of other groups thoughts and 
experience.

Hope this helps,

-andrew

■I-- Dr Andrew H olm es------------------------------ a.holmes@fil.ion.ucl.ac.uk-+
I -________ Wellcome Department o f Cognitive Neurology - I
I ( _J( )()  Functional Imaging Laboratory, Stats & I
\ ) _) )( )( 12 Queen Square, Systems I
I (_) ( _ ) (___ ) London. WC1N3BG. England, UK I
If- --------------------- ----------- -------- http://w w w .fil.ion .ucl.ac.uk/-+
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single subject analyses

SSwartz {BSWARTZ@ucla.edu)
Thu, 02 Apr 1998 14:10:06 -0800

•  Messages sorted by: [ date ][ thread ][ subject ][ author ]
•  Next message: Andrew Holmes: "Re: the filters again"
•  Previous message: Andrew Martin: "Re: Statistics crashes"

[ have been using spm to do single subject analyses and have encountered 
some interesting if vexing problems.
1. A single subject who has hydrocephalus compared to a normal data 
oase shows less activity in the temporal horns of the lateral ventricle 
ireas (interpreted as grey matter, but easily understood). Curiously he 
shows greater activity on the SPM in the atria of the lateral 
ventricles. How can this be?
2. A subject with a large R frontal lobe lesion simply wouldn’t run. We 
tried no affine, our own iterations, etc. The normalization chops off 
the right frontal lobe in a clean line. Our hypothesis is that if a
lesion exceeds the voxel size after smoothing the normalization 
transformation is "funky" but what exactly happens - just curious?
3. Similar to number one. One subject was tested who has a normal 
brain on MR. Unfortunately he was badly positioned during the scan and 
lost large parts of both the basal temporal lobes and the superior 
frontal parietal cortex instead of small parts of both. Tested against
the normal group spm says the normals have greater activity than all of 
the brain that was included in the scan. It says he has greater 
activity at the lower edge of the scan, where it was cut off. Again I 
would like to know how an edge effect can look like too much activity in 
an area that doesn’t really exist and how relatively normal brain can be 
judged as all significantly depressed "between the edges"?

In case it isn’t obvious, we are using a single subjects, 2-conditions,
1 with replications to run the tests, which has worked well in other 
subjects.

Why bother with bad or distorted scans in the first place you ask? Good 
question! Hopefully it will be a learning experience?

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'

•  Next message: Andrew Holmes: "Re: the filters again"
•  Previous message: Andrew Martin: "Re: Statistics crashes"
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(no subject)

ECarl Friston (karl@fil.ion.ucl.ac.uk)
Tue, 23 Jun 1998 15:08:30 +0100

•  M essages sorted by: [ date ][ thread ][ subject ][ author ]
•  Next message: Debbie Hall: "PhD research studentship"
•  Previous message: Debbie Hall: "Re: Talairach vs. MNI space"
•  M aybe in reply to: Lesley Peters: "(no subject)"
•  Next in  th read : nancy c. andreasen: "(no subject)"

Dear Darren,

This is a recurrent issue. The following was posted some time ago 
but remains, I think, a reasonable answer to your question:

I think it is appropriate to re-iterate a few points about standard 
anatomical spaces.

(i) The ’standard’ space into which data are normalized is defined 
operationally by the template employed (not by any atlas or system)

(ii) The Talairach ’system’ is used by most people in the imaging 
neuroscience community. This system is a coordinate referencing 
system and can be used with any template.

(iii) Any template that is used to implement the Talairach system can 
be said to effect a normalization into ’a’ Talairach space.

(iv) The relationship between the template used and the Talairach 
atlas drawings may, or may not, be a tight one. The closer this 
relationship, the better the atlas will serve as a guide for labelling 
the Talairach x,y,z designation.

Clearly to maximize the face (and construct) validity of anatomical 
labels it would best if we all used the same template (and this 
template was as canonical as possible). To this end SPM has adopted 
templates that conform to those used by the ICBM project (USA) that 
will create a probabilistic atlas and that will, possibly, supervene 
over the Talairach atlas in the years to come. This template is based 
on a single subject that has been matched to the MNI 305 average.

In short all the templates available with SPM conform to the Talairach 
system with varying degrees of ’closeness’ to the atlas drawings. They 
are all variants of ’a’ Talairach space. The most recent templates 
have been designed to make them compatible with the MNI 305 average and 
implicitly the ICBM atlases that will ensue in the future.

This is a difficult issue and other comments would be valued.

I hope this helps - Karl

mailto:karl@fil.ion.ucl.ac.uk


Specifically:-

> Dear SPM-folks
>
> A series o f questions have come up regarding the relationship between the
> MNI brain (as provided in SPM96) which defines one version o f "Talairach"
> space and the brain space identified in the 1988 Talairach atlas itself It
> appears these are not the same (the 1988 brain is smaller) and comments to
> that effect were made at HBM98 by Dr. Passingham.
>
> Is there any way to map between MNI space (SPM96) and Talairach-88' space?
> Are there any algorithms fo r  that mapping? How can one compare coordinates
> obtained by matching the MNI template (ala SPM96) with coordinates
> published in the literature supposedly in Talairach space.

There is no unique ’Talairach space’ (see above). Clearly the mappings 
from one ’Talairach space’ to another are easily obtained by 
normalizing the underlying template of one to that of the other. Given 
that the drawings in the T&T atlas do not conform to a ’template’ the 
T&T space is operationally less useful than any other (because its 
relationship to other spaces is less easy to define).

> Many functional imaging studies published today compare results by listing
> "Talairach" coordinates fo r  various studies. The possibility exists that
> one can't compare results in this way at all i f  the brain spaces are
> different. Is there a crisis in normalization?

No. There will be a variance component in the stereotactic metrics due 
to different normalization procedures and the use of different 
templates. The exitance of this component is important but does not 
engender a ’crisis’. This component will be minimized with a 
convergence of nonlinear techniques and when we all adopt the same 
template. This is why we switched to a template that conforms to the 
MNI space and implcitly the ICBM space. The priority for us was to 
promote convergence within the community (not to ensure any backward 
compatibility or contruct validity in relation to a particular set of 
atlas drawings).

With best wishes - Karl

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

•  Next message: Debbie Hall: "PhD research studentship"
•  Previous message: Debbie Hall: "Re: Talairach vs. MNI space"
•  M aybe in reply to: Lesley Peters: "(no subject)"
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Re: n=? normal database

uirl@fil. ion. ucl. ac. uk
Tue, 2 Dec 1997 18:52:22 GMT

•  Messages sorted by: [ date ][ thread ][ subject ][ author ]
•  Next message: hgupta@grip.cis.upenn.edu: "Resplicing necessary?"
•  Previous message: 896371ba@udcf.gla.ac.uk: "n=? normal database"
•  Maybe in reply to: 896371ba@udcf.gla.ac.uk: "n=? normal database"
•  Next in thread: jra@plato.neurology.bgsm.edu: "Re: n=? normal database"

Dear Anna,

> We are about to embark on a study involving the comparison o f
> individual patients to a ’normal ’ database using SPM96. Does anybody
> have any feeling fo r  the number o f scans needed in the normal
> database? I have seen quoted in abstracts from the FIL n but 1 have
> also seen users on the mailing list quoting numbers ofnO. I have
> tried searching the mailing list archives for more info but had no
> luck. I f  anybody could point me in the right direction I would be
> grateful.

I don’t think there is any absolute answer. The more normals you 
include then the more powerful (increased probablity of detecting an 
effect, if it is there, for a given false positive rate) it will be.

There is the ancillary issue of the approximation implicit in 
Gaussianization of the SPM{t} that is special to SPM. This means that 
a SPM analysis is more conservative than the normal t test for very low 
degrees of freedom (e.g. < 16). I like the number n2 but n would 
be acceptable in terms of power. Of course if you detect an effect 
with n=8 then it is perfectly justifiable to report it (as long as you 
don’t try to interpret negative findings and say that the analysis is 
not powerful).

1 hope this helps - Karl

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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