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SUMMARY

The primary objective of the current research presented in this thesis was to 
develop a rationally-based structural design procedure for SWATH type vessels by 
applying reliability analysis and reliability-based optimisation techniques.

Firstly, the primary loads for PATRIA, a built SWATH ship, were calculated by 
a theoretical method developed by Chan (1990,1991). The response amplitude 
operators of loads in regular waves were calculated by a three-dimensional oscillating 
source distribution method in association with linearised potential theory. A program, 
SPEC, was developed to carry out spectral analysis and to calculate extreme design 
values as well as instantaneous pressure distribution in the submerged parts of the 
vessel. Furthermore several factors, such as load combination and longitudinal side 
force distribution, which are important in structural analysis, were discussed.

Having determined the primary loads acting on PATRIA, a series of finite 
element analyses was carried out aimed at increasing the understanding o f the 
structural behaviour of the ship, and establishing a simplified model for system 
reliability analysis and multiple criteria optimisation.

At the component level the existing ultimate strength formulations for plate 
panels and stiffened plates were discussed and calibrated by using a considerable 
amount of experimental and numerical data. A new algorithm for stiffened plates was 
proposed. The reliability of plating and stiffened plates was then evaluated by using 
AFOSM, SORM and Monte Carlo simulation methods to investigate the accuracy of 
these methods for these types of limit states equations. It is found that Guedes Soares’ 
formulae and Faulkner’s method are the best for plate panels and stiffened plates 
respectively. The results for failure probability from SORM are much better than 
those from AFOSM. In these cases the AFOSM always underestimates the failure 
probability. The largest relative errors of failure probability and reliability index 
reach -45.1% and 7.4% respectively. Considering the nominal nature of reliability 
index the difference between the two methods is so small that the values obtained 
from AFOSM are acceptable in practice.

At the system level the conventional p -unzipping method was extended by 
introducing a discarding process in searching for significant failure modes of the



structural system. The extension could save computational time when the combined 
load effects are considered in the analysis. The method was then used to analyse a 
typical frame in PATRIA. In the analysis the combined load effect including buckling 
was considered. It is found that the most critical part is in the haunch area, and all the 
critical sections in the identified significant failure modes are in the haunch area. 
Hence it may be said that more attention should be paid to the haunch area. The 
buckling has a moderate effect on system reliability in this particular case, and should 
be considered in the analysis.

Finally, the reliability-based optimisation techniques were used to achieve an 
efficient design. Various reliability-based optimisation formulations and their 
associated problems were first discussed. An algorithm, in which the component and 
system reliability indices could be balanced, was proposed. The proposed strategy 
was then applied to optimise the one-dimensional model for the transverse cross-deck 
frame in PATRIA. It is found that:
• The algorithm works very well. Computational time in the analysis is not a

problem because the system reliability calculation is only applied to the 
optimum structure.

• The original design is quite close to the optimal one, so the margin for
optimisation is small. It is of interest to note that the system reliability index for 
the original structure is only 3.756, while it is 4.712 for the optimum structure, 
at the same time the optimum one is 13% lighter than the original one.

• The haunch area is confirmed as the critical part. From the values of design
variables of the optimum structure, it is observed that increasing the thickness of 
the side shell is the most efficient way to improve the safety in this area. 
Because the dimensions of the flange were fixed during optimisation, their effect 
on the safety is not investigated in this study. The dimensions of the flange 
might be an important factor influencing the safety because increasing of the 
area of the flange would shift the neutral axis toward the flange so that the 
maximum stress in the flange would decrease.



NOMENCLATURE

CHAPTER 1 and CHAPTER 2

P f = Failure probability
= Failure probability predicted by Monte Carlo simulation 

Pfl = First order approximation of the failure probability
Pf2 = Second order approximation of the failure probability
f  ( x x n)  = The joint probability density function of the random variables
F (x j,...,x n)  = The distribution function of the random variables

n = The number of the random variables
M (or Z) = Safety margin equation
X = { x 1,.. .,x n|  = The vector of the random variables

X* = The design point in original space
U = {uj,..., un} = The vector of the random variables in standard normalised space
U* = The design point in standard normalised space
P(«) = The probability of an event
0 (» ) = The standard normal distribution function
p = Reliability index
mi ( or p j) = The means of the basic random variables xs
a,- = The standard deviation of the basic random variables Xj
kj = The main curvatures of the failure surface
ebe2 = The relative errors of first and second order methods respectively
FPk = Linearised plasticity condition at the kth failure element
Rk = The resistance of the kth failure element
wk = The plastic section modulus of the kth failure element
Ak = The cross-sectional area of the kth failure element
cry = The yield stress
ciyi = The yield stress of the ith section

crei = The buckling stress of the ith section
d = The factor to consider the effect of buckling
Fxi, F^ = The nodal forces of the ith section in x and y direction

respectively 
= The bending moment of the ith section 

x t = The vector of nodal forces
5, = The vector of nodal displacements in local co-ordinate system
5 = The vector of nodal displacements in global co-ordinate system
8 * = The vector of elastic nodal displacements in local co-ordinate

system
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5 J = The vector of plastic nodal displacements in local co-ordinate
system

K t = The stiffness matrix of an element
K = The total stiffness matrix
Kfr) = The reduced stiffness matrix of an element
xj(r) = The equivalent nodal forces vector with opposite sign
L = The external loads vector

= The fictitious loads vector in global co-ordinate system 
K^p) = The total stiffness matrix at pth failure stage
K(0) = The total stiffness matrix of the original structure
|K(0)| = The determinant of the original total stiffness matrix

Fj = The failure event corresponding to M t < 0

P^Fi n  Fj)  = The failure probability of the intersection of Fj and Fj

O n(#) = n-dimensional normal distribution function
P = Reliability index vector
p = The correlation vector among the variables Xj
b = Rosenblatt transformation matrix
Pfp = Failure probability of a parallel system
Pp = Reliability index of a parallel system

M* = Equivalent safety margin
P* = Reliability index of the equivalent safety margin
a c = Sensitivity factor vector of the equivalent safety margin
A p^ = increment of reliability index at the ith stage
Ps = Reliability index of the structural system
Pfo = The upper bound of the failure probability
Pjl = The lower bound of the failure probability

CHAPTER 3

Fj(i= l,..,6 ) = The six components of primary loads defined in Fig. 3.1
M = The ship’s mass
y G = The transverse distance of the centre of gravity of one hull to

the ship’s centreline

1kl= ilk

i4S = The product moment of inertia of one hull about the longitudinal
. and vertical ship centrelines

i5 6  = The product moment of inertia of one hull about the vertical ship
centreline and the neutral axis of the cross-deck



£ j (j=l ,...,6) = Motion amplitudes for each direction

= The acceleration of body motion in the jth direction 
8 j = Phase angles for each direction

Fjp,FjS = Fluid forces on port and starboard hulls due to quasi-hydrostatic
and hydrodynamic pressure in the jth direction

to = Frequency
S ( cd)  = The wave spectral density function
Sr(a>) = The response spectral density function

RAO = The response amplitude operator
nij = The jth order moment of response spectrum
g = Gravity acceleration
U = The characteristic wind speed at 19.5 metres above sea level
N = The number of observations
8 = The bandwidth parameter
T = duration of specified sea in hours
mQ = area under response spectrum

m2, m4 = 2nd and 4th moment of response spectrum respectively
a  = risk parameter
k = number of encounters with a specified sea in ship's lifetime
y n = The most probable extreme value
y n = The design extreme value
ay = The vertical acceleration
aL = The lateral acceleration

CHAPTER 4

ctc = Critical buckling stress of a plate
a 0  (or a 0p) = Yield stress of the plate material

ct0s = Yield stress of the stiffener material
a 0e = The effective yield stress of the stiffened plate
crp = Proportional limit stress

E = Young’s modulus
Ej = Structural tangent modulus in compression
v = Poison ratio
a  r (or a  ) = Residual stress of the plate

crr = Non-dimensional residual stress, <j t = —

= Residual stress in the stiffenerrs

r| = As-welded residual stress factor defining width = r| t of yield



8. =
tension zone in plate elements each side of weld 
Central deflection of the plate

s „ = Non-dimensional central deflection of the plate,

5 0s = Initial stiffener deflection

b Osl » b Os2
= Initial stiffener deflections in adjacent stiffeners respectively

e = Load eccentricity
b = The width of the plate
t = The thickness of the plate
a = The length of the column
hw = The height of the web

tw = The thickness of the web
As = Area of the stiffener
At = Area of the cross section

Aw = Area of the web
Af = Area of the top flange

Ae = Effective area of the stiffened plate

Zp = The distance from the neutral axis to the plate

Zs = The distance from the neutral axis to the stiffener
H = The distance from neutral axis of box to mid-thickness

P
_

of the plate 
Plate slenderness

Pc = Effective plate slenderness
X = Stiffener slenderness

= Ultimate strength of clamped plate

<I>S = Ultimate strength of simply supported plate

<*x = Compressive stress in x-direction

CTxu = Ultimate compressive stress in x-direction

CTy
= Compressive stress in y-direction

CTyu
= Ultimate compressive stress in y-direction
= Compressive strength of the plate

♦ b = The strength of an unwelded plate

A<|>b = Strength reduction due to residual stress
<J>p = Ultimate strength of a plate predicted by Faulkner’s method

^ca = Ultimate strength of a plate predicted by Carlsen’s method
= Ultimate strength of a plate predicted by Guedes Soares’ method

b e m
= The maximum effective width

b e m R = The maximum effective width with residual stress

b e = Effective width

be0 = The effective width at strain equal to zero

b e 0 R = The effective width at strain equal to zero with residual stress

ix



b e2R = The effective width at strain equal to two with residual stress
beco = The effective width at large strain

= Compressive stress at the edges
= Ultimate stress of a stiffened plate
= Pinned Euler stress of a column

rce = Effective radius of gyration for column collapse
r = Radius of gyration for column collapse

i; = Effective moment of inertia

K = The tangent effective width of the plate

R r = The factor considering the residual stress effect on the plate

R y = The factor considering the biaxial compression effect on the plate

R x = The factor considering the shear stress effect on the plate

M = Safety margin equation
x mm = Model uncertainty factor

<*s = External loads effect

Pf = Failure probability
P

fmon = Failure probability predicted by Monte Carlo simulation

Pf, = First order approximation of the failure probability

Pf2 = Second order approximation of the failure probability

ei.e2 = The relative errors of first and second order methods respectively

P, = Reliability index

CHAPTER 5

K, = Torsional constant

lyy = Second area moment about y-axis
I7 7 = Second area moment about z-axis
A = Cross-sectional area

^ay = Effective shear area in y-direction
Sa, = Effective shear area in z-direction
CTmax = The maximum transverse stress in the deck
a nom = The average transverse stress in the deck
b ,b e = The hull breadth and effective breadth at transverse section
L = Spacing of the frames
u, V = Deformations in x- and y-direction

R, = Resistance of a section

Ps = Reliability index of the structural system

Pfc = The upper bound of the failure probability

P«L = The lower bound of the failure probability



CHAPTER 6

C(d,X) = The objective function referring to cost or weight
d=(dlv..,dn) = Design variable vector
X=(xlv..,xnr) = Random variable vector
P = Reliability index
Pci = Reliability index of the ith critical section
Pcia = Allowable reliability index of ith critical section
Ps = System reliability index
Psa = Allowable system reliability index
PR s = Residual system reliability index
PR sa = Allowable residual system reliability index
dj = The ith design variable
d ^ , d “ = The lower and upper bounds of the ith design variable
nc = The number of constraints in the optimisation
n = The number of design variables
Mp = The number of the failure modes
ml = The number of external loads
M = The safety margin equation
u = The design point in standard normalised space
p = Density of the material

= The yield stress of the ith section

a ei = Buckling stress of the ith section
Rj = The resistance of the ith failure element
w4 = The plastic section modulus of the ith failure element
Aj = The cross-sectional area of the ith failure element
Fxi, Fyj = The nodal forces of the ith section in x and y direction

respectively 
= The bending moment of the ith section 

xt = The vector of nodal forces
y = Factor to considering the effect of buckling
ay = nodal force at the ith section in x direction caused by unit load

of the jth external load 
Cy = nodal force at the ith section in y direction caused by unit load

of the jth external load 
by = Moment at the ith section in z direction caused by unit load

of the jth external load
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CHAPTER 1 INTRODUCTION

1.1 GENERAL

SWATH (Small Waterplane Area Twin Hull) is a novel concept. Its 
geometric features, comparing to other types of vessels, are shown in Fig. 1.1. 
Because of its good seakeeping performance, large deck area, large transverse 
stability, high sustained speed at most headings to ocean wave, and the low vertical 
motion and acceleration amplitudes, which are important for deck operations, it is 
widely used in a variety of fields such as naval, ferry, strategic positioning, 
surveillance, oceanographic and hydrographic survey, personnel transport, offshore 
patrol, offshore range support, mine warfare, towing and vertically deployed aircraft 
platform etc. On the other hand, SWATH has some disadvantages, namely, extreme 
weight sensitivity (structural weight reaches about 40% of the displacement), large 
draught and freeboard (to avoid heavy slamming in the wet-deck), potential for upper 
hull and lower deck impact, unusually large beam ratio, relatively slow speed in calm 
water, high construction cost. SWATH concept is weight critical, which means that 
the structural design can not be too conservative.

Since the introduction of reliability method in ship and offshore engineering in 
the early 70's, it is widely recognised as a powerful tool to develop a rational design 
procedure, especially for an innovative structure.

The thesis aims at developing some general tools for reliability analysis, 
including component and system reliability methods, and reliability-based optimum 
design. The developed methods are then applied to SWATH ships to identify the 
critical parts and to approach a rational design.

1.2 THE STATE-OF-THE-ART OF RELIABILITY METHODS

Reliability analysis techniques have been rapidly developed in past decades. 
Reliability methods may be classified as reliability at component level and reliability 
at structural system level. If only one failure surface is involved in analysis, it is
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defined as component level. If more than one failure surface are involved, it is 
defined as system level.

1.2.1 Component Reliability Methods

Reliability analysis was developed first for structural components. At present 
most of the codes are developed based on component reliability, although some of 
them tried to take system reliability effect into account. The component reliability 
methods have been maturing for the past decades in the sense that arbitrary accuracy 
could be achieved by existing methods (combining FORM, SORM and Monte-Carlo 
simulation).

It is well known that for time-independent problems of reliability analysis, the 
probability of structural failure may be defined as:

Pf  X n ^ l - f o n
F (1 .1 )

where f(x1,...,xn) is the joint probability density function of the basic variables

X = {Xl,...,xn}. F is the failure domain. Due to the complexity of the joint probability 
density function and the failure domain, the above integral is hardly obtained for most 
of the practical cases. Therefore, approximate methods have been sought.

Existing methods could be divided into the following catagories according to the 
way the failure surface is represented.

(1) The First Order and Second Moment method
(2) The Second Order method
(3) Simulation-based Method.

Some researchers think that the FORM/SORM and simulation-based methods 
are competitive and tried to figure out which is better. In fact, these two methods 
have their own advantages and disadvantages. In the situation where the failure 
surface is smooth and is not too strongly non-linear, the FORM/SORM is better. In 
other cases, where the number of variables is large (e.g. greater than 20) or the failure 
surface equation is so irregular that the FORM/SORM can not be successfully
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applied, the simulation-based method is superior to FORM/SORM. Therefore, 
FORM/SORM are complimentary.

The First Order and Second Moment Method (FORM)

The first order and second moment method was introduced by Lind and Hasofar 
and extended to more general situations by Fiessler and Rackwitz (it is also called 
Advanced First Order and Second Moment Method -AFOSM).

The basic idea of the method is to transform the variables X = {x1,...,xn} to the 

standard normalised space U = {ui,...un} first. Then in the space u> the failure surface 

is linearized at the so-called design point u* • So,

Pf ! = P(M 5S 0) = J f ( x 1,...,x n)dx1...dxn
F

=  p f a T ( u  -  U *  j <  0 j  =  p ( a T U + p  £  o )

= <I>(-P) (1-2)

where p  = a TU* is the shortest distance from the failure surface to the origin in 
standard normalised space, and is called reliability index. Pf is failure probability. M

is safety margin equation.

The advantages of FORM are:

(1) The computing time is short
(2) The design point specifies the region which contribute most to the total 

probability
(3) For a linear limit surface and normal basic variables, the method is exact.

The disadvantages of the method are:

(1) As in general optimisation procedures, it may quite often be questionable 
whether or not the obtained solution is actually the minimum (reference is made 
to the typical problem of the global minimum of optimisation procedure)

(2) It is not possible to estimate the error of approximation
(3) There is a drastic increase in error with increasing dimension of the problem
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(4) For some "algorithms", as discussed in Dolinski, (1983), the results even depend 
on the ordering (numbering) of the random variables for the case of mutual 
dependence (of course, if general non-linear constraint programming is used, the 
ordering should not affect the solution).

As to the above disadvantages, in order to diminish the errors in FORM, one 
needs to investigate various orders of basic variables and various initial points for 
optimisation procedure.

In principle, the (3 can be obtained by any general non-linear optimisation 
method, but their accuracy and efficiency are quite different in some cases. Liu and 
Kiureghian (1991) have investigated the performances o f most optimisation 
algorithms for reliability calculation. It is found that the Fiessler and Rackwitz 
algorithm and a Sequential Quadratic Programming method show good accuracy and 
efficiency.

Chen and Lind (1983) proposed a method for more accurately calculating 
reliability index by probability integration using a three-parameter normal tail 
approximation to a non-normal distribution for each random variable. It is claimed 
that the method is faster and more accurate than Rackwitz-Fiessler’s algorithm.

Another algorithm was derived by Wu and Wirsching (1987). A weighting 
function is chosen to get an optimum equivalent normal distribution and a least- 
squares method is used to fit a high quality three-parameter normal cumulative 
distribution function to a non-normal distribution function.

Mebarki et al (1990) presented a so-called ‘new level-2 method’ in which the 
failure domain is replaced by a hypercone, and the bounds of failure probability can 
be obtained. But the procedure to find the parameters of the hypercone is difficult and 
the evaluated bounds are not narrow.

Second Order Method (SORM)

As summarised above, the FORM is accurate only when the failure surface is 
flat. If the failure surface is non-linear or the basic variables are not all normally 
distributed, the approximation from FORM may not be acceptable. In these cases, the 
second-order reliability analysis should be used. In the second-order method, the 
failure surface is represented by a second-order surface at design point, usually a

4



paraboloid or a sphere. Several methods for this purpose have been derived 
(Breitung, 1984; Fiessler, et al, 1979; Tvedt, 1984 and 1985; etc.).

In all these methods the paraboloid is fitted either to the principal or the main 
curvatures of the failure surface at the design point. They are defined by the 
eigenvalues of the matrix of second-order derivatives of the surface. Calculation of 
the second-order derivative matrix is time-consuming and 'noise' may be introduced to 
the limit-state surface.

Kiureghian et al (1987) presented an alternative paraboloid fitting procedure by 
using point-fitting techniques. Although this method sounds less accurate than others, 
due to the omission of the off-diagonal elements in second order derivative matrix 
from the theoretical point of view, the advantages of the method could be summarised 
as follows:

(1) It is easy to implement and requires less computation for large number of 
variables

(2) It is insensitive to noise in the failure surface
(3) It coincidentally takes account of the effect of higher order terms of the limit

state surface along the co-ordinate system
(4) It facilitates the use of Tvedt's formula
(5) The error is stable and reasonably small.

Because there are singularities in the formulae of Breitung (1984) and Tvedt 
(1984) an exact integral algorithm was derived by Tvedt (1988). Combined with 
saddle point integration technique, the method can obtain exact failure probability in 
the numerical sense.

A more efficient algorithm was proposed by Kiureghian et al (1991), in which 
the principal curvatures of the limit state surface at design point are determined by an 
iterative scheme without computing the second-order derivative matrix or solving the 
eigenvalue problem. The curvatures are calculated in the decreasing order of their 
magnitudes, which is also the order of their importance in reliability analysis.

Cai and Elishakoff (1994) presented a new analytical approximation for the 
second-order method which is presumably applicable to most cases. The singularity 
problem mentioned above can be overcome in this method.
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The AFOSM and SORM are applied not only to single failure surface but also to 
series or parallel systems. Various first-order approximations for series and parallel 
systems can be seen in Baker and Thoft-Christensen (1982) and Hobenbichler and 
Rackwitz (1983).

Madsen (1985) incorporated the second-order formula, derived by Tvedt (1984), 
into Ditlevsen’s bounds formulae to achieve a narrower bounds for a series system. 
The joint failure probability in any two modes is evaluated at a joint p -point instead 
of at local p -point. Bennett (1987) reported some favourable experiences to this 
method.

Hohenbichler et al (1986) employed the joint p-point idea to derive an 
asymptotic second-order approximation for a parallel system. This formula is very 
efficient and accurate. Later this method was extended to the multi-normal 
integration by Gollwitzer and Rackwitz (1988).

Simulation-based Method

As discussed in the foregoing sections, FORM/SORM are now widely used in 
many practical situations. If the distribution function of X in Eq. (1.1) is not 
differentiable and/or the failure domain cannot be represented by linear or quadratic 
form, FORM/SORM concepts are no more suitable for computing the integrals as Eq. 
(1.1). In some cases FORM/SORM can not give satisfactory results. One of the most 
attractive alternatives, no doubt, is by applying importance sampling techniques first 
proposed by Shinozuka (1983).

Importance sampling is an extension of Monte Carlo simulation. The idea of 
Monte-Carlo simulation is quite straightforward. Due to lack of theoretical attraction 
and being computationally costly, this method has not been extensively studied by 
structural engineers until the 1980’s.

At present there are more than forty different papers, such as Schueller and Stix
(1987), Harbitz (1985), Hohenbichler and Rackwitz (1988), Verma et al (1989), 
Bucher (1988), Karamchandani et al (1989), Melchers (1990), Ibrahim (1991), 
Karamchandani and Cornell (1991), Schueller et al (1989), Yasuhiro and Ellingwood 
(1993), and many others, on importance sampling techniques covering about ten
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different schemes, some of which differ only in details and implementation. A good 
review can be seen in Melchers (1990).

Engelund and Rackwitz (1993) carried out a benchmark study on importance 
sampling techniques in structural reliability. The existing methods are classified into 
four groups:

* Direct method (Shinozuka, 1983; Ibrahim, 1991; Fu and Moses, 1987; Schueller 
and Stix, 1987; Melchers, 1989; Harbitz, 1985);

* Updating method (Hohenbichler and Rackwitz, 1988; Schall et al, 1988);
* Adaptive method (Bucher, 1988; Melchers, 1990; Karamchandani et al, 1989; 

Wu, 1992; Ang et al, 1991)
* Spherical sampling (Ditlevsen et al, 1990; Bjerager, 1988).

It is concluded that it is not possible to identify one of the methods as being the 
best under all circumstances. In practical applications the selection of an importance 
sampling method should be based on the available knowledge about the specific 
problem.

1.2.2 Structural System Reliability Methods

It has been recognised for many years that a fully satisfactory estimate of the 
reliability of a structure must be based on a structural system reliability analysis 
because most real structures possess redundant strength. The failure of one 
component (element) usually does not cause the collapse of the whole structure. Only 
in the cases of statically determinant structures, where the failure of any single 
component will give rise to the loss of the total structure, it is sufficient and 
reasonable to evaluate the reliability of the structure system by a component method.

Structural engineers are always concerned about:

1) What is the reliability level of the system? How much difference between 
system reliability and the reliability of each element?

2) What is the relationship between the system reliability and the redundancy of 
the structure?
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3) Which element has the highest probability to fail first? Which element will 
follow the failure after the occurrence of first failure?

4) How sensitive is the system reliability when the main variables change?

System reliability methods are useful tools for solving the problems mentioned above.

Structural system reliability methods may be classified as analytical methods 
and approximate methods. The analytical methods consist of Numerical Integration, 
Simulation-based Methods, Reduced Space Approach and Response Surface Based 
Approach. All the analytical methods can only be applied to relatively simple cases 
such as classic frames. For complicated structures only the approximate methods are 
applicable to. Approximate methods are composed of Failure Path Approach, 
Survival-Set Approach and Plasticity-Based Approach. The Failure Path Approach 
can be divided into Incremental Load Method, P-Unzipping Method as well as 
Branch-and-Bound method, which are the most widely used methods in practice. 
Discussions in this study will focus on the Failure Path Approach.

Structural system reliability analysis has three main steps:

1) Modelling the structure and defining the random variables;
2) Searching the failure modes of structure;
3) Evaluating the system reliability.

A good review in these aspects can be seen in Karamchandani (1987), Lee 
(1989), Moses (1990), Bjerager (1990), Nikolaidis and Kapania (1990), Moses and 
Liu (1992), Baker and Vrouwenvelder (1992), Moan (1994). Some recent 
developments will be described below:

Physical modelling

In the early structural system analysis only truss and beam elements can be used. 
This means that a structural system should initially be idealised by truss or beam 
elements. Although some types of offshore structures, such as fixed jacket platforms, 
could be reasonably modelled by truss or beam elements, nevertheless when such



simplification is applied to a continuous structure, the results obtained from this 
analysis are not convincing. Lee (1989) made it possible that the ultimate strength 
formulae for structural assemblies, such as stiffened cylinder and box girder, could be 
directly used in the safety margin equations of the structure system. This 
improvement makes the system reliability more realistic for the continuous structures 
such as TLP, but on essence his method is still belong to this catagory.

The real breakthrough which makes system reliability methods applicable to a 
continuous structure is the work done by Murotsu et al (1991, 1993, 1994). In these 
papers, a spatial plate element model was successfully used to analyse the main hull 
girder of a 150,000 DWT bulk carrier. The yield and buckling failure modes are 
included in the failure criteria. But such a representation of failure criteria needs to be 
checked against experimental or numerical data.

How to consider post-failure behaviour of the structure in reliability analysis is 
another important issue which needs to be carefully considered. For truss structures a 
two-state model was initially used by many researchers. Sorensen (1987) and Moses
(1988) introduced a multi-state elements and subject to proportional loads. In these 
methods, the possibility that the direction of incremental deformation may change and 
the element may regain its elastic stiffness is neglected, and load decrements are not 
explicitly included in the analysis. Karamchandani (1990b) presented another multi­
state model in which the load decrements were explicitly taken into account and an 
element may change state during a load decrement. Both proportional and non­
proportional loads can be applied in the approach. But the approach has only been 
applied to limited and highly idealised situations. Further validation is needed. Wu 
and Moan (1989, 1991) proposed a multi-state model by piece-wise linear relations.

For a frame structure (beam elements), development follows the sequence that 
only single load effect (bending moment) was first considered in the formation of 
plastic hinge in the structure, then combined load effect (the interaction of bending 
moment and axial force) was taken into account. A rigorous model, which considers 
the interaction of bending moment and axial force and plasticity consistent post­
failure behaviour, is non-linear. If this model is directly used in the reliability 
analysis, the procedure is much more complicated and even impractical. Therefore 
some approximations need to be introduced to simplify the calculation. Thoft- 
Christensen and Murotsu (1986) presented a linear axial force and moment interaction 
model with plasticity consistent post-failure behaviour. This model was successfully 
applied to many real structures (Murotsu et al, 1989,1990,1991,1992, etc).
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Karamchandani (1990b) proposed a model in which the yield surface is non­
linear as long as the section is in its initial elastic state. Once the forces reach the 
yield surface and a hinge forms, the non-linear yield surface is replaced by a linear 
surface which is tangent to the non-linear yield surface at the point where the hinge 
forms. The inelastic strain rates are normal to this linearized surface and the forces in 
the yielded section are constrained to lie along the linearized surface.

Searching for significant failure modes

Due to the great number of failure modes for a complicated structure, it is not 
practical to include all possible failure modes in analysis. Therefore, in practice, only 
the modes which mainly contribute to the system collapse are taken into account. 
These modes are referred to as the most likely or the most important or the most 
significant failure modes, or the stochastically dominant failure modes.

The existing procedures to identify the significant failure modes are Monte 
Carlo Simulation Method (Edwards et al, 1985); Utilisation Ratio-based Method 
(Moses, 1982); Truncated Enumeration Method (Melchers and Tang, 1984); P- 
unzipping and Branch-and-Bound method (Thoft-Christensen and Murotsu, 1986), 
which are two widely used methods, p -unzipping method is faster than Branch-and- 
Bound algorithm, but there is no guarantee that all the important failure modes are 
included in the final stage. Branch-and-Bound algorithm is more rigorous, but more 
computational time is expected.

Xiao and Mahadevan (1994) extended the truncated enumeration method for 
ductile structural systems. The proposed method makes use of the statistical 
correlations between different member limit states to impose groups of hinges at each 
selection level instead of one plastic hinge at a time, as used in previous studies, thus 
making the search for significant failure modes very rapid.
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Evaluation o f  system reliability

A structural system is usually modelled by a series system consisting of parallel 
systems. The evaluation of failure probability of such a series system is very difficult 
because the correlations among these parallel systems are not easy to be determined. 
This problem was overcome by introducing an 'equivalent safety margin' (Gollwitzer 
and Rackwitz, 1983).

Another problem is to evaluate multi-normal integral, which is an essential 
calculation in system reliability analysis. Hohenbichler and Rackwitz (1983) skilfully 
transformed a n-dimensional normal distribution function to n number of one­
dimensional normal distribution functions, but its accuracy is not satisfactory in some 
cases.

Tang and Melchers (1987) extended this method by introducing an inverse 
Rosenblatt transformation and using Newton-Raphson method to find design point. 
The extended method improves the accuracy of the original method.

Gollwitzer and Rackwitz (1988) applied the findings in Hohenbichler et al 
(1986) to the original method of Hohenbichler and Rackwitz (1983). This is a 
second-order method, and its accuracy is much better than the original one.

Enevoldsen and Sorensen (1992) investigated the efficiencies of several 
optimisation algorithms for calculation of multi-normal integral by Gollwitzer and 
Rackwitz's algorithm. An optimality criteria-based algorithm was used, and efficient 
active set strategies were developed. The algorithm seems to be stable and fast.

Pu and Das (1993) have compared the above methods, and it was found that 
Tang and Melchers' algorithm has more or less the same accuracy as Gollwitzer and 
Rackwitz's.

In addition, Zhu (1993) derived a numerical integration method which possesses 
high accuracy. But its application to high dimension is not investigated in the paper.

The system reliability can finally be evaluated by Ditlevsen’s bounds. Due to 
the development in multi-normal integration technique, the efficiency and accuracy in 
this aspect is improved in the past few years, and it is possible to apply high-order 
bound techniques to achieve narrower bounds.
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Feng (1989) used one-, two- and three-order joint probabilities to calculate the 
failure probability of a system. It is more accurate than Ditlevsen's bounds.

A general form of the n-order upper and lower bounds was derived by Greig 
(1992), and an exact integration algorithm in simple recursive form was developed 
and used to evaluate multi-normal integral. Furthermore the third- and fourth-order 
bounds were calculated by the proposed method. Compared with second-order 
results, the method gives narrower bounds, the integration algorithm is accurate and 
also efficient when the dimension is less than five. For the cases that the dimension is 
greater than (and equal to) five, Tang and Melcher's method is preferable.

1.3 THE STATE-OF-THE-ART IN SWATH STRUCTURAL DESIGN

As can be seen in Fig. 1.1, a SWATH has more complex geometry than a mono­
hull ship. As a consequence, there are more basic design parameters and more load 
combinations for the design. The basic design parameters for a SWATH are volume 
of displacement, volume of hull, length overall, breadth overall, design draught, 
depth, hull dimensions, hull submergence, strut thickness, etc. Normal range of these 
parameters are fully discussed in Gore (1985); MacGregor (1986); and Djatmiko 
(1992).

The midship section of a conventional mono-hull is controlled by four 
parameters, namely, breadth, depth, draught and area coefficient. The midship section 
of a SWATH is determined by nine parameters which give rise to complexity and far 
more choices. The definition of the nine parameters, as well as their functions in 
structure, are shown in Table 1.1. Among the nine parameters, only two, namely the 
depth of the box and depth of the haunch, are determined by strength consideration.

The results in Loscombe (1989) show that the peak stress at the haunch-box 
junction increases 21% with 21% reduction of box depth, and a 21% increase in box 
depth results in 13% reduction in peak stress. Not much difference in peak stress is 
observed when the depth of the haunch is changed, although the stress distribution 
curve shifts a little.
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Table 1.1 Definition of parameters of cross-section (Loscombe, 1989)
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According to the stress characteristics of the structure, the whole ship can be 
divided into three typical parts, say, box structure, haunch/strut and lower hull. In the 
box structure the direct stress caused by transverse vertical moment remains more or 
less to the same level (Stirling, 1988; Loscombe, 1989). Based on the fact that the 
box structure is the main part resisting the side force, the transverse framing system is 
obviously preferred. The most important parameter in this part is the depth of the 
box.

Haunch/strut is a critical part because the peak stress occurs in the junction of 
haunch and strut, and the stresses in the junction of haunch and box structure are also 
relatively high. Because both the stress level and the weight of a longitudinal 
arrangement are not larger than the corresponding values when using a transverse 
arrangement in this area, a longitudinal framing system was recommended by 
Loscombe (1989) for convenience of construction.

The lower hull design is governed by two load cases, namely, hydrostatic head 
o f water (assumed to be 1.2 meters above the main deck), and the load caused by 
drydocking condition (Sikora, 1988). Load cases which affect local details are:

* slamming pressure at the intersection of lower hull and strut
* a slow speed ship collision with a pier
* a horizontal bending of the lower hull about the fore and aft ends of the struts.

Considering the ease of construction, the cylinder form is preferred for the
lower hull. It is shown that the ring frame stiffeners were more efficient than 
longitudinally stiffened cylindrical structures (Sikora, 1988).

In addition, great care should be paid to the design of bulkheads, due to the 
fact that the maximum side force was resisted mainly by bulkheads and their 
associated shell, the plating and scantlings offering relatively little support. Because 
of shear lag effects, the effective breadth factor for the bulkhead is relatively small, 
less than 50 times the plating thickness either side of the bulkhead (Chalmers, 1989). 
Design of bulkheads was governed by maximum side force on the lower hull.

It is recognised that the demand on SWATHs by commercial operators and 
government (the Navy) is relatively limited due to their comparatively higher capital 
expenditure required for construction. Betts (1988) pointed out that the higher 
construction cost of a SWATH is attributed to the larger size of the ship 
(approximately 20-30%) compared to a mono-hull with an equivalent capability in
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carrying out a certain mission. Therefore reducing structural weight is thought to be 
an efficient way to increase the payload of a ship. A report by Sikora and 
Dinsenbacher (1990) on the design study of a notional 9,000 tonne SWATH suggests 
that a 10% structural weight reduction could be expected to result in a 16% increase in 
range, or a 24% increase in payload. For this reason, various efforts were then 
undertaken by researchers world-wide to solve the problem of effective structural 
design by examining all possible alternatives on the general and detailed structures.

The possible ways to reduce structural weight or production cost are as follows:

* The production of the structural components may be improved by slightly 
modifying the initial structural arrangement into a much simpler configuration 
(Covich, 1986; DeVries, 1991);

* Adopting longitudinal framing is likely to achieve 3 to 12 % structural weight 
saving (Gupta and Schmidt, 1986);

* Properly arranging transverse bulkhead spacing and introducing partial 
bulkheads in high shear areas (Sikora, 1988);

* Use of high strength steels (Sikora, 1988; Aronne et al, 1974);
* Use of lightweight materials, such as aluminium alloys, hybrid (steel-aluminium 

combination) and glass reinforced plastics (GRP) (Loscombe, 1987, 1988, 
1989).

As summarised by Djatmiko (1992), there exist several general SWATH 
structural design programs, which are as follows:

* DTNSRDC ASSET/SWATH program (Mulligan and Edkins, 1985);
* US Navy Structural Synthesis design Program (SSDP) (Aronne et al, 1974);
* DREA CEN Program for SWATH Ships (Nethercote and Schmitke, 1982);
* UCL SWATH Structural Design Program (Walker, 1984);
* USCG Small SWATH Structural Design (Holcomb and Allen, 1983);
* Loscombe's Small SWATH Structural Design (Loscombe, 1987, 1988, 1989);
* Rule-based SWATH Structural Design (ABS, 1990).

Most of these design programs can only be used in the early stages of design. In 
actual preliminary design, a more sophisticated design approach needs to be used.

Takeuchi et al (1985) at Japan Marine Science and Technology Center 
(JAMSTEC) presented a design procedure which could be used for detail design. In 
this program primary and secondary loads are evaluated by theoretical methods, the

15



global and local strength are then checked. In global analysis the three-dimensional 
finite element analysis was carried out.

ABS has carried out extensive research on SWATH. Based on these works a 
design procedure for any proposed SWATH vessel was recommended by Liu (1989) 
which involves the following steps:

1) Seakeeping and wave load analysis

2) Wave impact analysis

3) Stress analysis by finite element method

4) Fatigue analysis

5) Hull vibration analysis

In the 'stress analysis by finite element method' stage, both three-dimensional 
and two-dimensional models should be generated. Firstly, a coarse three-dimensional 
finite element model representing the whole ship including the deckhouse was 
generated to calculate the overall structural responses of the vessel to the predicted 
maximum sea loads so that appropriate boundary conditions can be obtained for input 
to the two-dimensional finite element analysis. Due to the coarseness of the mesh, the 
stresses obtained from the three-dimensional analysis could not be viewed as the 
actual stresses. It only provides proper boundary conditions for the finer two- 
dimensional finite element analysis. Secondly, in order to get the accurate stresses in 
the critical locations, a finer two-dimensional finite element model was performed, in 
which the boundary conditions are from the three-dimensional analysis. The load 
cases, which should be considered in the finite element analysis, are:

1) Still water condition
2) Maximum prying side force in beam sea
3) Maximum squeezing side force in beam sea
4) Yaw splitting moment in bow quartering sea

Due to the requirement of the finite element analysis, the instantaneous 
pressure distribution on the submerged part of the vessel must be obtained by using an 
'equivalent wave system'. For load cases 2, 3 and 4, the hydrodynamic pressure 
distributions obtained through the equivalent wave system with the proper vertical 
and lateral inertial forces are superimposed on the static Stillwater loads to achieve an 
equilibrium.
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It might be said that adequate design tools already exist to build SWATH 
ships for any desired role now. At the moment there is a need to calibrate those 
design tools against full-scale data and to develop reliability-based structural design 
tools to permit efficient design and enable valid trade-off to be made between cost and 
weight. For developing rational design procedure of SWATH, the past experience in 
mono-hull (Faulkner and Sadden, 1979) and in offshore structures (TLP) (Lee and 
Faulkner, 1989) could be transformed to this case.

1.4 THE AIMS AND SCOPE OF THE THESIS

A structural design usually involves many activities, such as selection of 
configuration, determination of main particulars (length overall, depth, etc), selection 
of material, and so on. Recognising the considerable amount of work involved and 
limit of time, not all of these aspects are covered in the present study. The purpose of 
the thesis is to develop some general tools for reliability analysis, including 
component and system reliability methods, and reliability-based optimisation. The 
developed methods will be applied to a SWATH ship in order to identify the critical 
parts and thus establish a rational design. The flowchart of the present work is shown 
in Fig. 1.2.

In Chapter 2 reliability methods for both component and structural systems are 
developed. Because the Advanced First Order and Second Moment Method 
(AFOSM) is only accurate when the failure surface is linear, the Second Order 
Method (SORM) and Monte Carlo Simulation Method are also developed to check 
the accuracy of AFOSM and further decide whether or not the SORM needs to be 
used in SWATH structure. In structural system reliability the p -unzipping method is 
extended by introducing a discarding process in order to save computational time, and 
the combined load effect is considered in the analysis. The developed methods are 
then applied to a few cases to check the validity of the programs.

Prediction of primary loads on SWATH is obviously a very important aspect in 
structural design, which will be discussed in Chapter 3. Firstly, the motions and loads 
in regular waves will be calculated by the program MARCHS, which was developed 
and calibrated against many experimental data by Chan (1990, 1991). Then spectral 
analysis techniques are used to predict the design extreme loads and accelerations, and 
the 'equivalent wave system' is introduced to calculate the instantaneous pressure 
distribution on the submerged parts of SWATH, which is needed for finite element
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analysis. Also discussed in this Chapter are some important issues, such as load 
combination, longitudinal distribution of side force, etc.

As in conventional mono-hulls, stiffened grillages are also common components 
in SWATH ships. To rationally determine local safety level of a SWATH, accurate 
prediction of ultimate strength of stiffened plates is an important task. Fortunately 
considerable research has been carried out in past decades. In Chapter 4 the existing 
formulae for prediction of ultimate strength of plate panels and stiffened plates in 
compression are fully calibrated and compared, and a new algorithm for stiffened 
plates is proposed. The best formulae (in the sense of small scatter and bias) are 
chosen, based on the study. Furthermore, the reliability analyses of plating and 
stiffened plates are carried out by AFOSM, SORM and Monte Carlo Simulation, 
which are developed in Chapter 2, in order to investigate the accuracy of AFOSM and 
SORM.

In Chapter 5 a typical transverse frame in a built SWATH is firstly idealised by 
a series of finite element analyses, in which three-, two-, and one-dimensional models 
are generated. The reliability of the idealised frame system is then calculated by an 
extended p -unzipping method, and the combined load effect is taken into account in 
the analysis. Through this analysis the critical parts and the most probable failure 
modes for this frame are identified. The information obtained gives good insight for 
the designer.

To achieve maximum safety at minimum cost is always the aim of our research. 
Applying reliability-based optimisation techniques to SWATH ships is the task of 
Chapter 6. Firstly, the algorithms for elementary and system reliability-based 
optimisation and the associated problems with these algorithms are discussed. An 
algorithm, in which the requirement of both component and system reliability can be 
balanced, is proposed, and it is applied to the typical frame obtained in Chapter 5. It 
is found that an efficient design could be achieved by using this technique.

Finally, review of the present work is made in Chapter 7. The thesis ends by 
describing the main conclusions of the present work and recommendations for future 
research in structural system reliability and reliability-based optimum design.
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Fig. 1.1 Cross-section shape of SWATH ship (Gupta and Schmidt, 1986)



C E D

Optimise the 
structure

Input the offset 
of the SWATH

Wave environment 
(wave spectrum, etc)

Calculate reliability of 
the structure system

Calculate the reliability 
of primary components

Calculate motions 
& hydrodynamic 
loads in regular waves

Predict design extreme 
loads, accelerations at 
specific position_____

Determine the 'equivalent wave' 
& calculate instantaneous 
hydrodynamic pressure

Predict structural responses (stress& 
strain, etc) by three-dimensional model, 
further establish two- and one-dimensional 
model

Fig. 1.2 The Flowchart of the Present Study
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CHAPTER 2 RELIABILITY METHODS

2.1 INTRODUCTION

The reliability analysis concept was initially introduced in the field of aircraft, 
civil engineering structures and so on. Now it is widely applied in aeronautical, 
nuclear engineering, electrical and electronic engineering, civil engineering and 
marine structures. Tremendous advances have been made in the area of structural 
reliability methods and reliability-based design. Recently the incorporation of 
probabilistic concepts into design code of marine and civil structures has been 
observed. The probabilistic concepts were first introduced by the Norwegian 
Petroleum Directorate (NPD, 1977; Fjeld, 1977). In 1984 the Conoco-ABS Rule Case 
Committee developed a reliability-based model code which led to API RP2T and 
Bulletin 2U and 2V. There is a trend that developing a new design code will be based 
on reliability analysis, and the existing codes are re-developed based on this concept.

In this chapter, a general tool for component and structural system reliability 
analysis will be developed, and its validity will be checked by applying it to a few 
simple cases.

2.2 COMPONENT RELIABILITY METHODS

As described in Chapter 1, the failure probability of a structural component for a 
time-independent problem could be approximately evaluated by FORM (or AFOSM) 
and SORM. However Monte Carlo simulation method can give much more accurate 
results than those from FORM/SORM.

In this section the FORM, SORM and Monte Carlo Simulation Method will be 
developed, and applied to two cases to verify their validity.
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2.2.1 The First-Order and Second Moment Method (FORM)

Among various algorithms for component reliability analysis, Fiessler and 
Rackwitz's algorithm, which shows good accuracy, efficiency and robustness, is the 
best. Therefore this algorithm is used in the present study. The procedure is briefly 
described below.

If x i, X2 , ... xn are the n independent variables involved in a structural design 

problem, a general expression for any limit state equation for the structure is

where the nature of g depends on the structural type and limit state under consideration. 
The failure surface is given by

and a linear approximation to this can be found by using the Taylor series expansion

Z = g(xb x2, ...,xn) > 0 (2.1)

Z=0

n

(2.2)

where

evaluated at the unknown design point

x = (x 1,x2, ... ,xn)

If mi and represent the means and standard deviations of the basic variables xi, the 
mean value of Z is



and the standard deviation

= X { g i(x+)a i}"

1/2

(2.4)

a z may be expressed as a linear combination of CTj ‘s as follows:

(2.5)

where

<*i =
gj(x )gj

^ { gj (x‘ )0j}
j=l

172

(2 .6)

ar£ referred to as sensitivity factors since they reflect the relative influence of each 
design variable on the model.

If the reliability index p of the design is defined as mz /  ctz , then from equations 

(2.3) and (2.5)

* » 9fe
2 / mi —xi)g i(x )

P = J ----------------------11
X a igi(x*)a i
1

(2.7)

from which it follows

£  gi (x* )(mj -  x* -  ajpG j) = 0 
1 (2.8)

The solution of this equation is
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%
Xj = mj -  (XipCTj for all i (2.9)

and x* is referred to as the ‘design point’. It corresponds to the point of maximum

probability of failure density when all the variables are normally distributed. For given 
values of m^Oj and p, equation (2.9) can be solved in conjunction with equation 

(2 .6).

Finally, the probability of failure for the structure is:

Pf =<E>(-p) (2.10)

where <I> is the normal distribution function.

If any of the design variables has non-normal distributions, a transformation is 
necessary.

Suppose that the variables xi have density function f(xj) and distribution function

F(Xi). The basic idea of the transformation is to let the original density function and 
di§tribution function of the variable xi be equal to that of a normal variable at the design 
point. That is:

F(Xi) = <I>
r *

x i ~ m i
N

(2 .11)

f  * N  ̂
X; -m -

a a N

so, one can get

(2 .12)

f(x i)

(2.13)

(2.14)
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where mf*, of* are the mean and standard deviations of the equivalent normal 

distribution, F is the cumulative distribution function of and fN is the normal 

probability density function.

2.2.2 Second-O rder M ethod (SORM)

The point-fitting method proposed by Kiureghian et al (1987) is used because of 
its efficiency and compatibility to most of existing formulae. Details of this 
procedure will be presented below.

The Available Formulae for Second Order Methods

The existing formulae which are used to calculate the second-order reliability can 
be summarised as follows:

B feitung’s formula

where Pc is the second order approximation of the failure probability, p is the 
reliability index. lq are the main curvatures of failure surface equation. When p 

approaches infinity, PG approaches Pf. n is the number of random variables.

Tvedt’s formulae

Tvedt (1984, 1985) has derived three formulae, which are called three term 
formula, single-integral formula, and double-integral formula.

If the paraboloid is defined in the rotated space by

n-1

i=l (2.15)
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yn = P + |y 'TAy' (2.16)

then three term formula is expressed as:

pf 2 *  T1 +  t 2 +  t 3 (2.17)

where

n-1

T i= « i> (-p )n ( i + pk i)
i=l

- 1/2

^2 = [P®(~P) — <t>(P)} n ( i + pk ir / z - n ( i + ( p + i )ki)
i=l

i—l/2 n-1
- 1/2

i=l

T, = (p + l)[p<l>(-p)-<t>(p)] n(i+Pkj-i/2-Rejn(i+(p+j)k.)-i/2
i=l i=l

in which j = ->/—1

It can be seen that the first term is the same as that in Breitung’s formula. The last 
two terms may modify the result of Breitung’s formula when P is small. Three term 
formula works well except for the case in which a curvature is close to the curvature of 
a circle with centre at the origin and radius p. This is because there are singularities in

the formula for kj = —i  and kj = . In addition, if P is small, the results by

Breitung’s formula approach the first-order results O (-p), and the last two terms do 

not always provide a good correction.

Single integral formula is expressed as:

Pf2 -  <K -P )I> i Re
i=l

det
f  ([ 9 \l/2 ^ ^
I + |( p 2 + 2si) + j

- 1/2

(p2 +2sj)
1/2

(2.18)
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where the summation represents a k-point Gauss-Laguerre quadrature approximation 
with weight G)j and abscissas ŝ .

Double-integral formula is expressed as:

O O  O O  J  fn
o 0 i=l V

pf2 = ^=-<l>(-P)Re J Jn rp{ l +  (p2 + 2s)1/2k i + V 2iuki'|

^52 + 2sj  ̂ ex p ^ -s-u 2jdsdu (2.19)

where rp{.} denotes the root with positive real part

Exact integral formula is expressed as

Pf2 -  0>(p)Re
/ 2 Ni/2jj°exp[(t+p)2 / 2 n-1

n ( i - t x k i)
i=l

- 1/2 dt
(2.20)

Applying saddle point integration technique to this formula could achieve any 
accuracy in numerical sense.

Hohenbichler and Rackwitz* s formula

- 1/2

(2 .21)

This formula is asymptotically equivalent to Breitung’s because for large p,

<K-P)
3>(-p)

approaches p.
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The Point-Fitting Procedure

For a point-fitting procedure, the basic variables X = are first

transformed into standard normalised space Y = {yj,...,yn} by

Y = T(X) (2.22)

then the variables Y are transformed to a rotated space Y by an orthogonal 
transformation.

Y = RY (2.23)

i
This can be done by Gram-Schmidt algorithm. In the rotated space, yn axis passes the 

design point So the n-th row of R is selected to be Y* /  (3-

The approximate paraboloid is defined as:

j n-1 t2

y" = P + 2 (2-24)

2(n-l) number of points, which is in the neighbourhood of the design point, are 
selected along the co-ordinate axes in the rotated space in the manner shown in Fig.

2.1. So, the co-ordinates of the selected points are {0,..,± k p ,..,ri-j-i J . The parameter k

is pre-selected as:

k _ [ l  for |3<3.0
K “ \ 3/p for |3>3.0 (2.25)

n±i is determined by the following iterative procedure.

1) give an initial trial point

yi = {0,..,±kp,..,p} (2.26)

The sign of the performance function g(X) then determines whether ^±1 are greater or
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smaller than p.

2) get the second trial point

y'2 = {o,..,±kp,..,(l + 0.5k2)p} forgj > 0 (2.27a)

or y 2 = jo,..,±kp,..,(l-0.5k2)p} for gj < 0 (2.27b)

3) do iteration till convergence is achieved

^3 = 'Hi “  Si
Si “  %2

(2.28)

This iteration generally converges within three steps.

Then the principal curvature ai is determined by

^  1 + P x a j 2 ^ 1  + p x a_ i + p x a+i (2.29)

where

a±i = 2(n± i-P )/(kp)' (2.30)

Having got the principal curvatures, the second-order approximation of failure 
probability could be obtained by any of the formulae mentioned above.

It is worth noting that the accuracy of the point-fitting method is the worst when 
a l= a2=...=an-T Therefore, if this occurs, try another transformation scheme.

2.2.3 Monte Carlo Simulation Method

The original Monte Carlo simulation method is adopted in the present study.
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Assume Xp i=l,...,n are independent variables and their distributions are known. The 

limit-state function is defined as:

M = g(x1,...,xn) (2.31)

It is likely to simulate the probability distribution of M by progressively building 
up a large sample.

Then the failure probability may be estimated in several ways. When the sample 
number ns is large, a simple way is

Pf = P(M < 0 )=  H m k/ ns (2.32)

where k is the number of M < 0.

2,2.4 Application to examples

The AFOSM, SORM and Monte Carlo simulation method described in the above 
sections have been implemented in Unix system. Validity of the program is verified by 
two examples.

The first example is taken from Thoft-Christensen and Baker (1982). The safety 
margin equation is expressed as:

Example 1

g(X) = x^2 -  78.12x3 (2.33)

all the variables are normally distributed. Their parameters are:

Fxl=2.0*107 kN/m2 a xl=o.5*107 kN/m2

M-x2=10~4 . m4 a x2=0.2*10“4 m4

F x3=4 kN a x3 = l kN

3 0



The reliability index P=3.29, the design point is: 

X*=3.29*(-0.97,-0.18,0.17)

So, the failure probability by AFOSM and SORM are respectively

pfl=0.4935*10"3

pf2=0.5998*10"3

In addition, Monte Carlo simulation was carried out. The sample size is 100,000. 
The result is:

Pfmon=0.79*10‘3

From the above results, it can be seen that the second-order result is slightly better than 
AFOSM's. Their relative errors are:

=  Pfl ~ Pfmon _  0 5 -° -7 9  = _3g 6%
1 P ^  0.79fmon

=  Pf 2 ~ Pfmon = 0-6-0.79 _  _241%
2 P. 0.79fmon

Example 2

The second example is taken from Kiureghian et al (1987).

g(X) = X j +  2x2 + 2x3 + x4 -  5x5 -  5x6 q .34)

The variables Xj are independent and lognormally distributed with the means 

p., =...= p 4 =120, p 5=50, fi6=40, and standard deviations a 1= .= < j4=12, a 5=15, 
and ct6=12.
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The results are:

Pfl=0.9433*10'2

Pf2=1.213*10'2

Pfmon=1-2 1*10"2
e 1=-22.0%
e2=0.25%

In this case, the results from SORM are much better than those from AFOSM.

2 .3  SYSTEM RELIABILITY METHODS

In this section a structural system reliability method is developed. The p- 
unzipping method will be extended by introducing a discarding process, which could 
save computational time. The linearized plasticity condition is used to establish the 
safety margins which are automatically generated by computer. The significant failure 
modes of the structure are identified by the extended p-unzipping method, and the 

system reliability index is then evaluated by Ditlevsen's bounds.

2.3.1 Basic Assumptions

1) Only the loads and material strength of the structure are treated as random 
variables, the remaining, such as geometrical variables, are deterministic.

2) The failure of the structure is defined as the formation of a mechanism.
3) The members of the structure are uniform and homogeneous and to which only 

concentrated forces and moments are applied. So critical sections where plastic 
hinges may form are the joints of the members and the points at which the 
concentrated loads are applied. The numbers of critical sections are given in the 
way that for element k the number of its left and right end are i=2*k-l and j=2*k 
respectively.

4) A section is failed if its plasticity condition FPk=0 is satisfied.
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2.3.2 Automatic Generation of Safety Margins

The plasticity condition is expressed as:

M
+

(  p
PV cr y

=  1
(2.37)

It is quite complicated to directly use the above form to define the safety margins. 
So the linearized form is used.

The linearized plasticity condition considering the interaction of bending moment 
and axial force including the buckling effect can be expressed as follows:

Fpk = Rk _ C kxt = 0 (k = i '^ ) (2.38)

where:

R k =  a y k w k

wk the plastic section modulus 

a yk the yield stress of the member

CT = d -Ais ig n (Fxi),0 ' Sign (M Zi) '0/0,0A.V l

c T = 0 ,0 ,0 ,d-J-signfF A o^ ign fM ^ l

d is the factor to consider the effect of buckling. It is equal to

{1 for tension
f°r compression
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tfe i  is the buckling stress of the member

A. the cross-sectional area of the member

x = F .,F  .,M  .,F  .,F  .,M  . is the nodal forces in the member.i y xi yi zi X] yj zjy

The above plasticity condition is clearly shown in Fig. 2.2.

After a section of the member has yielded, the relation between the nodal forces 

x t and displacements vectors of the member can be derived by plastic theory.

The total displacement 5t of the member is assumed to be comprised of an elastic 

displacement and a plastic displacement

5 t =8« + 8P = S *+ 5P + 8P (2.39)

Based on the plastic deformation theory, the plastic deformation is expressed in the 
form:

9F.
8 P = X .— i- = -X.C.

1 *dx 1 1  (2.40-a)

9F.
8P = > ..- J - = -X.C.

1 Jdxt 1 1  (2.40-b)

in which ^  and j are factors to indicate the magnitude of plastic deformation. When 

section i (or j) is elastic, ^  (or ;) =0.

The nodal forces are expressed as:

xt = Kt5? = Kt(St - Sf ) (2-41)
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Substituting Eq. (2.39) and (2.40) into Eq. (2.41)

xt = K t5t + W i + XiK tCi (2-42)

Substitute equation (2.42) into equation (2.38)

V W V W i  + W  l = 0 (2.43-a)

R . - C ^ K t5 t + X.KtC. + X.KtC .) = 0 (2.43-b)

Substitute the equation (2.43) into equation (2.42), then re-arrange the resulting 
equation in the form:

xtr ) + (- x t r)) = K tr>5t (2.44)

in which

'(r)
xt is the equivalent nodal force vector with opposite sign; 

(r) is the reduced member stiffness matrix.

The expressions of x ^r\  , X. and depend on the status of the member.

1). when the member is elastic

X. =X.  = 0 
1 )

K<r) = Kt

x't(r) = 0
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K t =

EA
0 0 -

12EI 6EI
L3 L2 

4EI

Sym.

EA 
L

0 -

0

EA

0 0

12EI 6EI
L3 L2

6EI 2EI

L2 L

0 0

12EI 6EI
L3 L2 

4 El
L . (2.45)

2). When the left-end has failed

X. = 0 
1

^ = ( R i - c [ K t8t) / ( c [ K tC )

K<r>(„ k <l>) =  I K t  -  K t C i C ? K t  /  ( c T K t C i ) ductile
brittle

x ’(r)f  ^
= x t 

V /
=lRiK tci/(cIK tci) ductile

brittle

EA 1____ EA 3Cl

L 1 + p  L 2(1+p)
3EIl + 4p

K(tL) =

Sym.

_ EA- ^ 1
1+13 L 1+p

6EI P EA 3CL
L3 1 + P L2 1 + P

4EI p
L 1 + p

L 2(1+ P)
CL EA — =
1 + p

EA 3C
=r -E A

L 2(1 + p) 2(1+p) 
3 E I1 + 4p 3E Il + 2p
L3 1 + P L2 1 + P
6EI p 
L2 1 + P 

EA 1 EA 3Cl

L 1 + p L 2(1+ p)
3EI1 + 4P 
L3 1+P

2EI p
L 1+ p

CL EA —-=
1 + P_ 

3E Il + 2p
L2 1+P 

3EI 3 + 4p
L 3(1+ p)
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P / C L Ri

i 3R.
1 + p 2L

P / C L R;

1 + 6 2L

(2.46)

When right end has failed

X± = 0

Xj= ( Rj - c j Kt 5 t ) / ( c j Kt c j)

K <r>(=  K (R>j =  | K t  -  K t C j C f K t  /  ( c j K t C j ) ductile
brittle

.'(r)‘t =  X . = .RjKtCj /  c jKt CD(Cj Kt Cj ) ductile
brittle

EA 1 

L 1 + (X

EA 3CR 

L 2(1 + a )  
3 E I 1 + 4a  

L3 1 + a

Sym.

EA'
EA

2(1 + a )  
3EI l  + 2a  

L2 1 + a  
3EI 3 + 4a  

L 1 + a

L 1 +  a  
EA 3CR 

l 2(1 + a)  
CR-EA----------

2(1 +  a )
EA 1 

L 1 + a

EA 3CR 

L 2(1 + a )  
3 E I 1 + 4 a  

L3 1 + a  
3 E I l + 2 a

1 +  a
R

L
EA 3C

L 2(1 + a )  
3 E I l + 4 a

L3 1 + a

EA-
( l  + a)  

6EI a  

L2 1 + a  
2EI a  

L 1 + a
CR-EA------

1 + a  
6EI a

L2 1 + a  
4EI a

L (1 + a)



'(r)
x t  = x t  =

g / c  Rj 
1 + a  L 
1

1 + a  2L

1 + a  2 
a / C R Rj 

1 + a  L 
 1 3Rj

1 + a  2L
1

 RjL l  + a  J (2.47)

4). When both ends have failed

where

G 1 =
C iK tC i

c jK t Ci

C -K tC j
c|KtCjj

-1

H = C±Kt
C jK t

ductile
brittle

x ’(r)t = x.
T  - 1 r  i  

%
0

ductile
brittle
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EA 3 

L %
EA }(cL -  cR)
L £

12EI p + a - 2y 
L3 \

Syra.

-EA-3C

12EIP- Y 
L2 \  
12EI P 

L \

EA 3 
L \

EA <cL- c R)

3C
EA-

EA 3 

L \

EA 3 ( c L - C R )

L 5
12EI p + a - 2y
L3 %
12EI P-y

%
EA <cL-c « )

L -  £12EI P + a - 2y

EA-
3C

K
12EI a-y 

L2 * 

12EI Y
L t

3CR -EA---
I

12EI a - y
~ L2 * 

12EI a

'(r) ,B x tl ; = x t  =

4p + 2y R i  4 a + 2 y  Rj

cl l c r l

3(1+  2 a  + 2y) R j 3 ( l  + 2(3 + 2y) Rj

L + _  ? L 
2(p + 2y)3 + 4a  + 2 y R' ■R.

4p + 2y R i   ̂ 4a  + 2y Rj

Cr L% Cl L %
3(1 + 2 a  + 2y) 3(1 + 2]3 + 2y) R j

5§
2(a  +  2y)

I (2.48)

in which

R i =  w iCTyi

R,. = s i g n ( M z . ) R i

CL =  d ^ - s i g n ( M z i ) s i g n ( F x i )
J\. J-J

p = ^ ( c L)2
4 1  V /

Rj = w jc yj
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R' j = s i 9 n (Mz j ) Rj

CR =  d - ^ - s i g n ( M z j ] s i g n ( F x j )

A ,L2 / d \2
a  =  — — (cRY 

41 v '

y = M l (clc r \
41 v '

\  -  3 + 4(p + a  + y)

In above equations if the factor'd' is always taken as 1, then the formulae are reduced 
to the case in which only interaction of bending moment and axial force is considered. 
Again if the c R = CL = 0* the formulae are for the case that only bending moment is 
considered.

In general, a safety margin Mi could be expressed as:

Mi  = Ri “ c i x t  (2.49)

in which

x t  = k(tr)5t +x'^r) (2.50)

In the structural analysis, the equation for the structure is expressed as: 

k (r)5 = L + R (r) (2.51)

where

k (r) is the reduced total stiffness matrix

5 is the displacement in global co-ordinate system

L is the external loads
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R (r) is the equivalent nodal force vector transformed to the global co-ordinate 
system. It is evaluated by:

R ( r ) = - f TTx; r)
t= i

T is the transformation matrix 

From equation (2.51)

8  = k ( r r l (L + R(r>) (2.52)

then the displacement for a member can be obtained by

8 t  = T x k (r,t 1(L + R (r))
(2.53)

Hence

x t  = k '.r)T x k |r); 1 (L + R |r)) + x'<r)

= b t (L + R <r>) + x'^r)

Finally the safety margin equation (2.49) can be expressed as: 

= R i - C l [ b t (L + R (r)) + x^r)]

f  n >
R i- C T b t + x'<r)

ft II

= Ri _ C i b t L + C i b t £ T Tx'<r>-x'<’
t= l

m P - l
Ri  ^ a iJcRk

j= l k=l

(2.54)

(2.55)
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where Lj are the external loads, m is the number of external loads, p is the number of 
hinges, by and a^ are the coefficients of external and fictitious loads respectively.

2.3.3 The Extended P-U nzioping Method

Because there are a large number of failure modes for a complex structure, it is 
impossible to identify all the failure modes in the system reliability. So only significant 
failure modes, which contribute most of the failure probability of the structure, are 
considered in the analysis. An extended p-unzipping method is devised to identify the 

significant failure modes. This consists of a selection and a discarding process. 
Firstly, the original P-unzipping method is used to find out the failure paths, then a 
discarding process is introduced to discard the failure paths whose failure probabilities 
are very low.

Process o f selection

Firstly the structural analysis is carried out by a linear elastic finite element 
program. Then safety margins for all the failure elements are constructed, as 
described in the foregoing sections. The reliability indices for all failure elements are 
calculated by AFOSM, and the elements whose reliability indices fall into the interval 
[Pmin 5 P min + AP(1)J are selected as the critical failure elements at level 1 .

Secondly, each of the critical failure elements at level 1  is assumed being failed 
in turn, and the structural analysis is carried out again. At this stage, the stiffness 
matrix of the failed member is replaced by the reduced stiffness matrix and the 
equivalent nodal forces are applied to the structure as the fictitious loads. Then safety 
margins for the remaining elements are constructed and reliability indices are 
calculated again, and the elements whose reliability indices fall into the interval 
[Pm/n »Pmin + Ap(2) j are selected as the critical failure elements at level 2.

Thirdly, the above operations are repeated until the formation of a mechanism. 
The criteria for the formation of mechanism is:



where k (p) is the total structure stiffness matrix at pth failure stage, and k (0) is the 
original total stiffness matrix. s 1 is a constant for determining the plastic failure of the 
structure. £ i is chosen as 0.01 in the study.

Process o f discarding

If the failure probability of the identified failure path is very small, the failure path 
is excluded. The failure probability of a failure path could be expressed as:

Pf  = P
^ m1  ̂ r mA ^

O j ^ o  = p O j
U =1 )  U =1

(2.56)

where is the number of components in the ith parallel system, Mj is the safety 
margin of the jth component in the parallel system, Fj is the set of events 
corresponding to Mj < 0. Due to the fact that:

u =i j
(2.57)

the criterion for discarding is that if any p(f i  n  Fj J in a failure path is less than b2 then

the failure path is precluded. Now £ 2  is set to be 10"24.

It is worth mentioning that the discarding process introduced here does not need

any more computation, because p(Fi  n F j) are evaluated in the calculation of multi­

normal distribution function, which is needed in finding the equivalent safety margin of
a.parallel system. Details are explained in the following section.

2.3.4 Multi-Normal Integration

The evaluation of multi-normal integral is frequently required in structural system 
reliability. It is defined as:
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(  n
®n ( M = p  r i xi ^ p i (2.58)\ i= l /

where:

O n (») is n-dimensional normal distribution function

p is the correlation matrix among the variables Xi

P(.) is the failure probability of an event.

Although it is possible to estimate the exact value by a numerical integration 
technique, it is impractical when the dimension is large. For example, if five-point 
integration for one-dimension is adopted, the number of evaluation of function will be 
5 1 0  for a ten-dimensional multi-normal integration. Therefore in practice, if n is greater 
than 5, an approximate method is preferred. Much effort has gone into finding an 
efficient approximate method with acceptable accuracy for last decade (Hohenbichler 
and Rackwitz, 1983; Hohenbichler, 1981; Gollwitzer and Rackwitz, 1988; Tang and 
Melcher, 1987).

The basic idea for these methods is to transform a n-dimensional integration to n 
number of one-dimensional integrations. Therefore in these cases the number of 
evaluation of function is 5 times n, instead of 5 to power n (it is assumed that a five- 
point integration is used for one-dimensional integration).

The existing methods are fully discussed by Pu and Das (1994). Based on this 
investigation, Tang’s algorithm is used in the present study. Besides its accuracy and 
efficiency, another advantage of this method is that the intermediate results in the 
method could be fully used in the discarding process of the extended P-unzipping 

method. The method will be briefly described below.

Firstly, the correlated variables X were transformed into an independent standard 
normal space U by.the so-called Rosenblatt transformation.

X = b x U (2.59)
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where

b =

11
b 21 b 22

b b 0 ... b. nl n2 nn.

11=1

b 21 ~  P21 b 22 . V 1 b 21

bil “  pil , i=3,...,n

(  i_1 ^
Pij - Z bikbjk
 ̂ k=l '

b * = b,
, i=3,...n

r i-i n 1/2
b , =

v i=i y

So, substituting equation (2.59) to (2.58)

(  n >| f n i \

<Dn (P,p) =  P P M  Pi =  P
n

y  b . . u . - p .jLu 1) J r i ►<0
\i= l  J i i=i . H J

= P

r n i \

n E b y U j - P i  < 0 ■to ^ P i

ii=2 > ! y
p(ui ^ pi) (2.60)

Because Uj is independent to u. (i=2,...,n), the conditional probability in 

equation (2.60) can be expressed as:



( n i \

p n Y b . . u . - p .  < 0  
r ?  J 1
J=1

ux <Pi ►

i j=2 /

= p

= p

n

n
i=2

n
i=2

b.1u 1+ Y b . . u . - p .  < 0il 1 J L /  l j  ) r i

b . ^il
- l

f i H u i ) l+ I b i i V fii s 0
j=2

= P H h .(u )  < 0
Vi=2

n in z aijuj-Pi2,Exs°
Vi=2j=l

where

i=2

i= 2 ,. . . ,n

For estimation of the conditional probability in equation (2.60), 
Rosenblatt transformation was carried out as follows:

r i \

P'T7 = P i,E x
* Y b . . u . - p .  <o^  ij j k i ^Ui<Pi

V j =1 )

p ( x i - P i< ° |x i< P i )

P ( x . < p . n x 1 < p ]) / P ( x 1 < p 1)
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(2.62)
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= <&(p1/p./p.1)/® (P 1) (i=2,...,n) (2.63)

P f,E x  =  ® _ 1 K e x ) (2 -6 4 )

The joint failure probability in Eq. (2.63) is used for discarding process in the 
extended (5-unzipping method. For the calculation of new correlation coefficients, the

Newton-Raphson algorithm is used. h. (u) in equation (2.62) can be rewritten as:

h (u l ' v ) = d jO "1 (o fP j)o (u i )) + d 2v  -  Pi (2.65)

where

d l = b il » d 9  = V l~ b 2il and V = Y b  u. /d 0
1=2

assume

8 iul) = ®_1W P lH ui)) (2.66)

The problem of finding p* in equation (2.65) is equivalent to

2
m in P* = u 2 + V 2 (2.67)

subject to

h(Ul,v )  = 0

Therefore

G(ul) =  d P*2 /  dui = d2ui + (“ P i+ dig(ui ))d !g  K ) =  0 (2.68)
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The Newton-Raphson algorithm is used to find the root of equation (2.68).

u k+i = u k -  G (ujk ) /  G ^U ^) (2.69)

G’(ui ) = d2 -dAs"(ui)+di2k ui)g"(ui)+g'(ui) (2.70)

where

g’(u l) = o (p i )exp g(ui) - u j  /  2
a

(2.71)

g"(ui)= g '(ui){g(ui)g’(ui ) - ui} (2.72)

.*2Having got the point Uj , at which p reaches its minimum, the sensitivity factors for 

Eq. (2.65) can be obtained by:

9h.

a.. =
( \ 2"n

I 3h.i

k=lV K

1/2

(2.73)

where

Oh.
— L =  b . .  
au.

)
for j=2,...,n

3h

Ou

then the correlation factors rki between h. (u) can be calculated by:
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k,l =2,...,n

repeat the procedure, one can get

(2.74)

2.3.5 Equivalent Safety M argin

As mentioned in the foregoing section, the structural system is modelled as a 
series system of parallel systems. In order to evaluate the reliability index of the 
structural system, the probability of failure of each parallel system and the correlation 
between the parallel systems need to be calculated. For evaluation of the probability of 
a parallel system the multi-normal integration techniques can be used. Correlation of a 
pair of parallel systems is not easily evaluated because the safety margins of the parallel 
systems are in general not linear. So the equivalent safety margin of a parallel system, 
suggested by Gollwitzer and Rackwitz (1983), is used.

Suppose that there are n elements in the parallel system, and the safety margins 
for each element are expressed as:

in which Uj are independent standard normally distributed variables, are reliability 

indices for all safety margins.

The failure probability of the parallel system can be evaluated by:

m

(2.75)j=i

Pfp=(I>n(-M (2.76)

So, the reliability index for the parallel system is:
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Pp =-<K-1(On (-p ,p)) (2.77)

where:

P = (Pl,P2,"vPn) 

P=[pij] = [« iT«j]

The equivalent safety margin is defined in the form of:

m
Me = a f  u x + a | u 2 + ■ • •+ a*  u m + p® = £ a f  u ± + P'

i=l (2.78)

its reliability index pe is equal to Pp and its sensitivity factors against changes in basic 

variables are the same as the original parallel system.

Let the basic variables vector U be increased by a small increment 

e = (e1,e2,* • vem)- The corresponding reliability index for the parallel system is:

f ( r n
Pp (e) = - C - 1 P n -

l i=1

m
£ a i j (u j + e j ) + pi ^ 0  
.3=1

= - 0  1(<t>n( -p -a e ,p ) )

Apply the similar operation to equivalent safety margin m0 > 

Pe (e) = - 0 _1f<I>(-pe -  a®Te)l

= Pe + a eTe = a f  ej. + a |e 2 + — + a® em + p® 

in Eq. (2.79) and (2.80), let Pe (0) = Pp (0), one can get

(2.79)

(2.80)
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The values of a® are evaluated by numerical differentiation in the following way:

1). giving e = ((),••,£.^,0,~,o) in turn for all basic variables where £i=0.1, evaluate 

the

Pp(e) = - 0 “1(<I>n(-p -c te /p)) , and

app
de±

5pP
2). Normalise the according to Eq. (2.81).

2.3.6 Evaluation of Structural System Reliability

Finally the structural system reliability is defined as a series system of parallel 
systems. The failure probability of the system is expressed as:

A Au
i=l

m in
0 =1

\ \
< 0 = P

J)
U
i=l

m in*
U=1

(i)

J)
(2.82)

where n is the number of mechanisms, mi is the number of failure events in a parallel 

system. Because there are many mechanisms for a complex structure, the value of n is 
taken as the number of significant mechanisms identified in the analysis.

It is difficult to calculate the exact failure probability, Ditlevson’s bounds



technique is used in the present study.

Due to the fact that multi-normal integration is time-consuming, some researchers 
set the mi equal to one, so Eq.(2.82) become a weakest link system. Although such a 
definition could avoid to do any multi-normal integration, it is too conservative for the 
high redundant structures. A better approximation is proposed here, which is 
expressed as:

P ^ m a x P f l F !
1=1 V j=i J (2.83)

This definition could save much computational effort and the result would be better than 
a weakest link system.

Let’s compare Eq.(2.82) and (2.83). If equation (2.82) is used, in order to get 
the equivalent safety margin the number of evaluation of multi-normal integration is 
(mi+1) for each parallel system, so for the system, the number of evaluation of multi-

n
normal integration is (n^ + 1)- On contrary, if equation (2.83) is used, for every 

i= l
parallel system only one multi-normal integration is expected, so for the system only n 
integration is needed. Moreover there is no need to calculate the bounds, which is also 
time-consuming.

2.3.7 Application to a F ram e S tructure

The program has been used to calculate the system reliability of a portal frame 
structure to show its validity. This frame was frequently investigated by many 
researchers to validate their methods and was also used to check the program. The 
results for three conditions, a) only bending moment is considered; b). interaction of 
bending moment and axial force is considered; c). interaction of bending moment 
axial force including buckling effect, are obtained in order to find out the difference 
among these assumptions.

In the analyses, only the loads and the strength of the sections are treated as
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random variables, the remaining variables are assumed deterministic. All the loads 
and resistances of sections are assumed to be independent.

The frame is shown in Fig. 2.3, and the parameters are listed in Table 2.1.

Table 2.1: Parameters for the portal frame

Element Cross-sect. Inertia Resistance
ends area moment (mean value)

No. Ai(m2) Iz(” 4) Ri (kNm)

1,2 4.0 x l O -3 3.58 x l O -5 75
3,4 4.0 x l O -3 4.77 x l O -5 101
5,6 4.0 x l O -3 4.77 x l O -5 101
7,8 4.0 x l O -3 3.58 XlO-5 75

P i=20 kN P2=40 kN cov(Rj)=0.05 cov(Pi)=0.3

E=210 GPa a y=276 MPa

1) The case where only bending moment is considered

AP^1) is set to be 3.0, and A p ^  (i=2,3...) 1.0. The system reliability of the 

portal frame is 2.49, while the reliability index at level 1 is 1.296. So it is obvious that 
the structural system reliability is much higher than those of components. The failure 
tree is shown in Fig. 2.4. The total number of mechanisms is 25. The failure modes 
identified in the analysis are shown in Fig. 2.5.

The values of Ap(l) are very important in the P -unzipping method. If the values 

are too small, it is possible to fail to identify all the significant failure paths. If the 
values are too large, the number of mechanisms identified in the analysis will be too 
many, this would waste computational resources. There are no rules in selecting a
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proper value of Ap(l), which is determined by trial.

For the portal frame if AP(l) (i=2,3...) is set to be 1.8 instead of 1.0 in the 
previous analysis, the total mechanisms identified are 55. The reliability index for the 
structure system is the same as that in the previous analysis.

It is found that although the number of mechanisms in the second analysis is 
much larger than that in the first one, the final failure probability of the system is almost 
the same. This is because the reliability indices of the extra mechanisms in the second 
analysis are so large that they hardly influence the failure probability of the structural 
system.

2) The cases where interaction is considered

As described in the foregoing sections, the linearized plasticity condition is used 

in the analysis. A p ^  is set to be 3.0 and A p^=1.0 . For simplicity the buckling 
strength of the section is assumed to be seventy percent of the yield stress.

The failure trees in these cases are similar to the previous one, so they are not 
shown here. The results are summarised in Table 2.2.

Comparing the results in Table 2.2, it can be seen that:

* The results agree well with those in the published papers. The failure probability
of the most critical failure path is 6.580xl0'3 for bending moment only in Thoft- 
Christensen and Murotsu (1986).

* The reliability index of the system by considering the interaction of bending
moment and axial force is slightly smaller than that when only bending moment 

is considered.
* The system reliability index in the case where interaction of bending moment

and axial force including buckling effect is considered is smaller than the others. 
This is mainly due to the fact that the failure element 7, which has the highest 
failure probability, is in compression in this case.

* The system reliability index evaluated by Eq. (2.83) is slightly larger than that
by Eq. (2.82). It is obvious that it is a good approximation.
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Table 2.2: Results of the portal frame

BO* B+A* B+A+B*

Ps 2.48881 2.31999 2.25090

Pfu 6.4099e-3 1.017 le-2 1.2197e-2

PfL 6.4098e-3 1.0170e-2 1.2196e-2

Pi 1.296 1.166 1.101COeg oo 
C

O
. 2.48874 2.32011 2.25104

* BO means bending moment only
B+A for interaction of bending moment and axial force
B+A+B for interaction of bending moment axial force including buckling effect
Pi is the reliability of the structure at level 1

28Ps is the reliability index evaluated by Eq.(2.83)

2 .4  D ISC U SSIO N S

The structural system reliability analysis of a portal frame is carried out. The 
safety margins of the structure are automatically generated by computer, in which the 
effect of interaction of bending moment and axial force including the buckling effect is 
investigated. It is found that:

1) The results obtained by the program agree well with those in published papers.
-j

The failure probability of the most critical failure path is 6.580x10' for bending 
moment only in Thoft-Christensen and Murotsu (1986).

2) The reliability index under pure bending is much larger than those when the 
interaction is considered. So the interaction must be considered in the analysis.

3) The effect of buckling strength on system reliability depends on whether the 
element with the highest failure probability is in compression. It is 
recommended that the effect of buckling is always taken into consideration, and 
such calculation does not need much computational time.

4) The system reliability evaluated by the methods in Eq. (2.83) is a good 
approximation, although it is slightly over-estimated.
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Fig. 2.1 Fitting of paraboloid in rotated standard space (Kiureghian et al, 1987)

Fig. 2.2 Linearised plasticity condition
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Fig. 2.3 Portal frame

<5 ' 0 <j}> ■°-----------0---------------- ?,

Failure mode 1 Failure mode 2
2.49 2.912

Failure mode 3 
_ L  2.910

Failure mode 4
2.954 j>_

Fig. 2.5 Identified failure modes of the portal frame
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Fig. 2.4 The failure tree of portal frame (bending only)
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CHAPTER 3 PRIMARY LOADS ON SWATH SHIPS

3.1 INTRODUCTION

To design a structure with adequate but not excessive safety, one of the 
important problems is to accurately predict the loads on the structure. It is found that 
the structural weight heavily depends on the loads exerted on it (Stirling et al, 1988).

The loads on the SWATH can be classified as primary loadings and secondary 
loadings. The primary loadings are those which affect the structure as a whole and 
determine the general configuration and scantlings of the vessel. The secondary 
loadings govern the local scantlings and structural details. It may be said that the 
primary loads could be accurately predicted by existing methods (Chan et al, 1992) 
from the engineering point of view, while for the determination of secondary loads 
considerable work still needs to be done.

The Naval Architecture and Ocean Engineering department of the University 
of Glasgow has been actively involved in the research of SWATH ships since the 
early 80’s. Chan (1990, 1991) has developed a program, MARCHS, which can be 
used to predict the motions and loads of both mono- and twin hull ships. But for the 
purpose of structural design, gaps still exist. Firstly, in structural design various 
extreme values are needed. A spectral analysis method is expected. Secondly, the 
horizontal and vertical inertia forces are two important components. If the horizontal 
inertia force is in the same direction as hydrodynamic side force, the situation could 
be worse. For the same reason the vertical inertia force could increase the maximum 
shear force at the junction of cross-structure and haunch. So the horizontal and 
vertical accelerations should be calculated. Finally, if  the concentrated loads are 
directly applied to the structure in the finite element analysis, the stress concentration 
in the lower hulls is severe. So the instantaneous pressure distribution should be used 
when high accuracy is expected.

The aims of the chapter are to fill these gaps and extend the existing programs 
to a module which could generate the data for finite element analysis. Therefore, 
firstly the program, MARCHS, was used to calculate the response amplitude 
operators of primary loads on a built SWATH (PATRIA) in regular waves. Another 
program was then developed to carry out spectral analysis of motion responses, 
accelerations and loads. In addition, due to the requirement of finite element analysis,
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a so-called ‘equivalent wave system’, as suggested by Reilly et al (1988), was 
adopted to calculate the instantaneous pressure distribution at the submerged part of 
the hull. Furthermore, several other factors which should be considered in structural 
analysis are also discussed in the chapter.

3.2 PRIMARY LOADS

3.2.1 Components of Primary Loads

Like all conventional monohull ships, there exists a longitudinal bending 
moment which can be calculated by static balance. But it is not so important as in the 
monohull. The primary loads, which govern the structural design in SWATH, are the 
transverse loads acting in the longitudinal plane through the centreline. They are 
defined as longitudinal shear FI, side force F2, vertical shear force F3, prying 
moment F4, pitch torsional moment F5, and yaw splitting moment F6, as shown in 
Fig. 3.1.

Considerable work has been carried out over the years to predict the primary 
loads on SWATH. It was found that the most critical loading is the side force in 
beam seas at zero forward speed. Although the side force in quartering seas is not the 
largest, the yaw splitting moment is likely to cause problems since the superposition 
of the side force and yaw splitting moment. It was recommended that both the side 
force in beam seas and the yaw splitting moment should be considered in the 
structural analysis (Reilly et al, 1988; Liu, 1989; ABS, 1990).

Another important component of wave induced loads in structural design is 
the vertical shear in box structure. It is caused by the pitch difference between the 
two lower hulls and the vertical inertial force of the structure. The maximum occurs 
at the junction of the cross structure and the haunch.

As to the combination of all the primary loads, Chalmers (1989) suggested 
that the combination listed in Table 3.1 can be used, but no sufficient evidence 
supports this combination. The best way to take into account the load combination is 
to use the 'equivalent wave system' (Reilly et al, 1988) in structural analysis. Firstly, 
a finite element model, which represents the whole ship including superstructures, is 
carried out for both critical load cases in association with the 'equivalent wave
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system'. A finer mesh representing some critical structures is then generated. In the 
finer model, its boundary conditions were taken from the results of the coarse model.

Table 3.1: Combination of loads

Heading Transverse

Bending

Transverse 

Box Shear

Longitudinal

Bending

Torsion

Beam Design Design 0.15 Design 0.25 Design

Bow quarter 0.8 Design Design 0.8 Design Design

Head/Following 0.15Design Design 0.1 Design 0.1 Design

The 'equivalent wave system' is the wave, whose period is that at which the 
largest critical load occurs, and it results in the same extreme design value obtained 
from the spectral analysis. At the same time, by using the 'equivalent wave system' 
the instantaneous pressure distribution at the submerged part of the hull can be 
obtained. Details will be discussed in the following sections.

3.2.2 Available Methods for Determination of Primary Loads

The existing techniques, which are used to calculate the primary loads, can be 
classified as empirical formula, analytical method, and experimental test.

There are several empirical methods (Sikora et al, 1983; ABS, 1990; Sikora, 
1988; Luedeke et al, 1985; Betts, 1988) to predict maximum expected design side 
force for SWATH, among which Sikora's algorithm was recognized as the best one.

Theoretical prediction of wave loads was pioneered by Lee and Curphey at the 
David Taylor Naval Ship Research and Development Center (DRNSRDC) (Lee and 
Curphey, 1977). Later Reilly et al (1988) combined the strip theory and sink source 
distribution methods to calculate the wave induced loads. It has good agreement with 
the results from the model tests. Because of the interaction between the two lower 
hulls, the strip theory was not suitable for SWATHs from a theoretical point of view.
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In the late 80's three-dimensional panel theory appeared (Chan, 1991; Kobayashi and 
Shimada, 1990). It was confirmed that the interaction between the two lower hulls is 
strong, especially when the ship is at zero speed and in beam sea. The forward speed 
reduces the effect of this interaction (Kobayashi and Shimada, 1990).

In addition, experimental tests, thought to be the most reliable tool, could be 
carried out to determine the loads. Since it is a costly activity no sufficient 
experimental data was available until now. No attempt was made here to 
comprehensively summarize the existing methods. It has been done by Miller (1991).

Since the 1980's, the Naval Architecture and Ocean Engineering department 
of the University of Glasgow has been actively involved in the SWATH research. In 
the early 90's Chan developed a program, MARCHS, in which three dimensional 
potential theory was used. It was verified that the program developed by Chan (1990, 
1991) can accurately predict the wave induced loads.

In the present study, the program MARCHS was used to calculate the wave 
induced loads on a built SWATH 'PATRIA'. A three dimensional oscillating source 
distribution method, in association with linearised potential theory, was used in the 
program. The local co-ordinate system is defined in Fig. 3.1. The x-axis points at the 
ship bow and the o-xy plane is at the mean free surface, and the z-axis vertically 
upward through the centre of gravity of the ship. The wetted body surface was 
discreted into many panels in which the oscillating sources were assigned to simulate 
the fluid field.

The viscous damping has also been considered by using an empirical method 
based on the cross-flow approach because the viscous damping effect is of importance 
when wave-making damping is no longer the dominant factor. Because of the 
peculiar shape of SWATH the surface waves in vertical oscillation are not so large 
that the viscous effect should be considered in the seakeeping calculation.

The program consists of HULSUR, HULPLOT, HULDAT, MOTION, and 
WVLOAD. The program HULSUR is used to expedite the discretisation of the 
wetted body surface for general hull form of a marine vehicle having one longitudinal 
plane of symmetry. The HULPLOT is for plotting the surface on the screen to check 
if there is any irregular and erratic input. The HULDAT is for inputting the data 
which will be used in the MOTION. After running the MOTION, first- and second- 
order hydrodynamic forces and the first-order motion responses can be obtained. For
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SWATH, the program WVLOAD should be run to get the forces in the longitudinal 
cut through the centerline. Details are shown in Chan (1991, 1990).

Because of the symmetry o f the hull, the expression of lateral loads can be 
simplified at the midpoint in the longitudinal plane through the centreline. Either part 
of the twin-hull could be used in calculation of lateral loads in longitudinal cut. At 
present the port was used in the computation, and the effect of the starboard was 
replaced by the six components of the lateral loads.

Wave induced loads consist of:

a) Mass or inertia force, including acceleration effect
b) Incident wave or Froude-Krylov force
c) Diffracted wave force
d) Radiated force
e) Quasi-hydrostatic force due to vertical motion.

The first item is obtained by multiplying the mass by acceleration. The rest are 
calculated by integration of the hydrodynamic pressure over the wetted hull surface.

As presented by Chan (1991), the six components of primary loads defined in 
Fig. 3.1 can be expressed as follows:

(3.1a)

(3.1b)

(3.1c)

(3. Id)
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F5 *54^4 *56^6 2 ^ ? (3.1c)

*65^5 2  F(6s) (3. If)

In which

M is the ship's mass
yG the transverse distance of the centre of gravity of one hull to the ship's

centreline

* 4 5  the product moment of inertia of one hull about the longitudinal and

vertical ship centrelines 

*5 6 the product moment of inertia of one hull about the vertical ship

centreline and the neutral axis of the cross-deck

£, • the acceleration of body motion in jth direction

F. ,F. fluid forces on port and starboard hulls due to quasi-hydrostatic and 
JP JS

hydrodynamic pressures in jth direction.

3.2.3 Extreme Value and Spectral Analysis

For structural design, it is necessary to predict the possible maximum value of 
loads to which a vessel may be subject during its lifetime. The extreme value must be 
determined by considering all sea conditions, ship speed and heading combinations 
which might be encountered during the vessel's lifetime, together with the frequency 
of occurrence of each of these combinations.

At the moment there are two approaches which could be used to do such 
work, namely long term and short term prediction. It seems that the long term 
prediction is more reasonable. It was also found that the extreme values predicted by 
the short term method has good agreement with those by the long term techniques 
(Ochi, 1978). Therefore the short term method was adopted in the study.
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Spectral analysis techniques can be used to calculate the various statistical 
averages of structural responses. If a sea energy spectral density function is denoted 
by S(co), then the response spectral density function can be obtained by:

S',, (co )  = (RA O)2 Ŝ co )  (3.2)

In which

S', (0 0 )  is the response spectral density function;

RAO the response amplitude operator.

then the various orders of moment of response spectrum can be calculated

oo

rrij -  jco7 x Sr (co )̂ /co 
0

In the spectral analysis the Pierson-Moskowitz spectrum, which is based on 
the wave measurement in the Atlantic Ocean, was used. The spectral density function 
is expressed as:

2
C Y  \S ( go)  = — F-exp 

co

0.0081 
0.74

9.81 ms"1
is the characteristic wind speed at 19.5 meters above 
sea level in ms" 1.

A relationship exists between wind speed and significant wave height for a 
particular sea. The relations of these two parameters at Atlantic Ocean are shown in 
Table 3.2 (Lewis, 1967).

in which
a  =
P =

g = 
U
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Table 3.2: Relation of wind speed and wave height

Wind speed(knots) Wave height(m)

16
24
31
42.5
49.0

2
3
4 
6 
7

A program was developed to perform spectral analysis and to calculate the 
extreme values by Ochi’s formulae (1973, 1978).

It is assumed that: (a) random sea is a steady-state Gaussian (normal) process 
with zero mean, (b) response to waves is linear, (c) the spectrum bandwidth is less 
than 0.9.

The most probable extreme value is expressed as:

y „ =  :■* in i ------ = = = N >
I 1 + V 1 — 8 )

(3.4a)

The design extreme value is:

X 0.5

(3.4b)

where

N is the number of observations,

3 6 o o r f  l+ T T (3.5)

s is the bandwidth parameter s = 1----------
V m0mA
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T is duration of specified sea in hours 
mo is area under response spectrum

m2, m4 are 2nd and 4th moment of response spectrum respectively 
a  is risk parameter
k is number of encounters with a specified sea in ship's lifetime

Substituting Eq.(3.5) into Eqs.(3.4a and 3.4b), the most probable extreme 
value and the design extreme value are expressed as:

It is of interest to note that the extreme values are no longer a function of the 
bandwidth parameter.

3.2.4 Instantaneous Pressure Distribution

Due to the requirement of the finite element analysis, the instantaneous 
pressure distribution calculation is carried out. An 'equivalent wave system' 
suggested by Reilly et al (1988) was adopted.

The 'equivalent wave system' is a wave with the period at which the maximum 
response of critical loads occurs, and it will give rise to the same extreme wave- 
induced load obtained from short-term extreme value statistics. It is recommended 
that both the side force in the beam sea and the yaw splitting moment in quartering 
sea should be treated as critical loads (Reilly et al, 1988). At present only side force 
in beam sea was considered since the side force is worse than the yaw splitting 
moment in most cases.

3600r m. (3.6a)

3600r m . (3.6b)
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3.3 RESULTS OF PATRIA

In this section a case study was described. All calculations were carried out 
on a built SWATH (PATRIA), which was designed by FBM Marine Company and 
launched in 1989. It is now in operation as a passenger ferry between Madenia and 
Porto Santo, off the Spanish coastline. Its principal dimensions are shown in Fig. 3.2, 
and its main particulars listed in Table 3.3.

Table 3.3: Particulars of PATRIA

Displacement 169 tonnes
Mean draught, t 2.7 m
Lower hull length 31.05 m
Length of the strut 28.6 m
Overall length 36.50 m
Lower hull diameter Hd 1.8 m

Single strut
Strut width Ts 1.0 m
Submerged strut height Ds 1.1 m

Box width B 13.0 m
Cwp (water plane coefficient) 0.80
Strut height Sh 1.65 m
Box depth Db 1.0 m

Section depth D 5.9 m
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3.3.1 Seakeeping

The motion responses of the ship were calculated by the program MOTION. 
Five headings, namely, 0°, 45°, 90°, 135° and 180° were considered. The speed of 
the ship is zero. The significant wave height is 3 metres. The motion responses in 
different wave directions are shown in Figs. 3.3 to 3.7 and the different average 
values of the responses are listed in Table 3.4.

It was shown that the motion characteristics of PATRIA are good. The 
significant heave is just 1.67 metres and roll 0.158 rad.
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Table 3.4: Motion responses

Dir. Mode m0 Average
*

Significant
**

Surge 0.676 1.0275 1.644

Sway 0.00 0 0

0° Heave 0.524 0.905 1.448

Roll 0.00 0 0
Pitch 0.0086 0.11625 0.186

Yaw 0.00 0 0

Surge 0.39 0.78 1.248

Sway 0.2 0.55875 0.894

45° Heave 0.58 0.9525 1.524

Roll 0.004 0.07875 0.126
Pitch 0.0057 0.09375 0.15
Yaw 0.0005 0.0275 0.044

Surge 0.0201 0.1775 0.284

Sway 0.44 0.82875 1.326
90° Heave 0.69 1.03875 1.662

Roll 0.0063 0.09875 0.158

Pitch 0.0018 0.0525 0.084

Yaw 4.2E-06 0.0025 0.004

Surge 0.302 0.6875 1.1

Sway 0.207 0.56875 0.91

135° Heave 0.697 1.04375 1.67

Roll 0.0036 0.075 0.12
Pitch 0.0027 0.065 0.104

Yaw 0.00049 0.0275 0.044

Surge 0.582 0.95375 1.526

Sway 0.00 0 0

180° Heave 0.675 1.0275 1.644

Roll 0.00 0 0

Pitch 0.0048 0.08625 0.138

Yaw 0.00 0 0

Average = 1.25

Significant = 2.0
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3.3.2 Loads

The response amplitude operators of the six force components defined in 
section 3.2.1 were calculated and shown in Figs. 3.8 to 3.12 and the different extreme 
values are shown in Table 3.5 in which the Maxi is the 'most probable extreme value', 
the Max2 'design extreme value' with a value of 0.01 of the risk parameter in one sea 
state and Max5 'design extreme value' in the lifetime (it is supposed that the ship 
meets ten times the specified sea in its life time). mQ is the area under the response

spectrum.

It is indicated th a t:

* The largest side force and bending moment occur in the beam seas.

* The side force in beam seas is 2180 kN, which is in good agreement with the 
design value (2030 kN) previously used by design company. A similar check is 
made for the maximum transverse bending moment at mid transverse frame with 
the 2-D FE model result. A bending moment of 7.98* 10^ kNm obtained from 
the wave loading program compares well with the FE output of 8.13*10^ kNm.

* The results obtained from the first group of formulae are slightly smaller than
those from the second group. The difference in the results may be caused by the
bandwidth effect of the response spectrum which was considered only in the
second group of formulae.

* The largest yaw splitting moment occurs at bow quartering sea.

* Although the side force in beam sea is 2.76 times that in the bow quartering sea, 
nevertheless the yaw splitting moment in bow quartering sea is 6.9 times that in 
the beam sea. So it is possible that the combination of the loads in bow 
quartering sea is also as critical as in beam sea.

* The largest pitch torsional moment, which is relatively small, also occurs at beam 
sea. It is not therefore so important as the side force and yaw splitting moment.
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Table 3.5: Extreme values

Dir. Force m0 Maxi Max2 Max3

Force 1 0 0 0 0

Force2 2.3E+08 62000 78000 84000

0° Force3 0 0 0 0

Force4 7.6E+09 360000 440000 480000

Force5 0 0 0 0

Force6 2.9E+10 700000 870000 950000

Force 1 3.5E+08 76000 95000 100000

Force2 2.2E+10 600000 750000 810000

45° Force3 2E+09 180000 220000 240000

Force4 2.9E+11 2100000 2700000 2970000

Force5 1.22E+10 444000 556000 605000

Force6 1.6E+12 5200000 6460000 7010000

Force 1 167000 1650 2070 2250

Force2 1.55E+11 1610000 2010000 2180000

90° Force3 4.61E+09 273000 342000 372000

Force4 2.09E+12 5910000 7360000 7980000

Force5 1.76E+10 534000 669000 727000

Force6 3.61E+10 782000 971000 1050000

Force 1 3.45E+08 75800 94400 103000

Force2 2.05E+10 585000 729000 791000

135° Force3 2.7E+09 208000 261000 284000

Force4 2.34E+11 1980000 2460000 2670000

Force5 1.07E+10 416000 521000 566000

Force6 1.7E+12 5380000 6680000 7240000

Force 1 0 0 0 0

Force2 6.26E+08 103000 128000 139000

180° Force3 0 0 0 0

Force4 1.93E+10 569000 708000 768000

Force5 0 0 0 0

Force6 1.6E+10 520000 647000 701000
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Combinations of transverse bending moment (F4), side force (F2), vertical shear 
(F3), and yaw splitting moment (F6) are shown in Table 3.6, based on the results in 
Table 3.5. Although it is too early to give a simplified load combination for design, it 
is suggested that the combination shown in Table 3.1 is too conservative.

Table 3.6: Combination of loads

Heading Transverse
bending

Side force Vertical shear Yaw splitting moment

0° 0.06M 0.04M O.OFs 0.13My

45° 0.37M 0.37F 0.65FS 0.97My

o 0 M F Fs 0.15My

135° 0.33M 0.36F 0.76FS My

180° 0.10M 0.06F O.OFs 0.1 OMy

3.3.3 Accelerations

Due to the requirement of the determination of the inertia force in structural 
analysis, the vertical and lateral accelerations were calculated.

Because only motion responses were outputs from the program 'MOTION', an 
interface needs to be developed to calculate the accelerations, which are evaluated by 
the following procedure:

Since the motions can be expressed by:

x e
(3.7)

in which

j = 1,6 for six directions of motion 

^j are motion amplitudes for each direction

e j are phase angles for each direction
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co is encountered frequency

So, accelerations in each direction can be calculated by:

-if cot+e. ] 
x e  V JJ (3-8)

where ^ j are accelerations for each direction

Therefore, the vertical and lateral accelerations at a location with co-ordinates 
(x,y) can be obtained by:

av = ^3 + iM Xy - ^ 5 XX (3.9)

aL = ^2 + ^ 6 XX (3.10)

where

is vertical acceleration 

aL is lateral acceleration

To investigate the effect of the roll on the vertical acceleration in the beam sea, 
the accelerations at four points were calculated and their maximum values are shown in 
Table 3.7. The co-ordinates of the four points are (0.0, 0.0), (-6.8, 0.0) ,(-6.8, 5.0), 
(-6.8, 2.5) respectively.

From Table 3.7 it can be seen that the vertical acceleration in point 3 is larger 
than those in points 4 and 2 at the wave incident angles 45° and 135°, but is even 
smaller than those in points 4 and 2 in beam sea. At heading and following seas, they 
are equal to each other. This means that the effect of roll on vertical acceleration does 
not always increase the vertical acceleration due to the difference in phase angles of 
different motion modes. In addition, because the sea condition used in structural 
analysis is beam sea, only the heave and pitch accelerations were considered in the later 
calculation.
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Table 3.7: Accelerations at different points

Dir. Accel. m0 Maxi Max2 Max3

0°
Pointl 0.264 2.075 2.595 2.82
Point2 0.911 3.872 4.836 5.252
Point3 0.911 3.872 4.836 5.252
Point4 0.911 3.872 4.836 5.252

45°
Pointl 0.315 2.269 2.837 3.083
Point2 0.636 3.226 4.033 4.381
Point3 0.782 3.571 4.466 4.853
Point4 0.696 3.373 4.218 4.583

90°
Pointl 0.455 2.73 3.42 3.71
Point2 0.47 2.78 3.47 3.77
Point3 0.418 2.62 3.27 3.55
Point4 0.424 2.64 3.3 3.58

135°
Pointl 0.475 2.789 3.487 3.788
Point2 0.59 3.109 3.886 4.221
Point3 0.645 3.247 4.06 4.411
Point4 0.606 3.149 3.937 4.277

180°
Pointl 0.525 2.943 3.674 3.989
Point2 0.671 3.323 4.15 4.507
Point3 0.671 3.323 4.15 4.507
Point4 0.671 3.323 4.15 4.507

It was also indicated that the significant values of the vertical and lateral 
accelerations at point 2 in beam sea, at which the mid-frame was taken in structural 
analysis, are 1.37 (m/s^) and 0.95 (m/s^), only 14% and 9.7% of gravity acceleration 
respectively.

In addition, the accelerations at fore and after perpendiculars as well as the 
gravity centre are shown in Table 3.8 and typical RAO of accelerations at above 
points are shown in Fig. 3.13. In Table 3.8 the 'G.C.' is the gravity centre, 'F.P.' the 
fore perpendicular, and 'A.P.' the after perpendicular.

The results in Table 3.8 show that the largest vertical acceleration occurs at 
the after perpendicular in following sea. Its significant value is 3.734(m/s^), reaching 
38% of gravity acceleration. But the vertical acceleration in beam sea is not so large
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as that in following sea. The maximum, which occurs at fore perpendicular, is 2.332 
(m/s^), about 23.8% of gravity acceleration.

The lateral accelerations in quartering and beam seas do not vary rapidly, 
especially in beam seas. Their significant values are around 1.0 (m/s^), 10% of 
gravity acceleration.

Table 3.8: Accelerations

Vertical Acceleration Lateral Acceleration

Dir. Position mo Average Signif. mo Average Signif.

0°
G.C. 0.264 0.6425 1.028 0 0 0
F.P. 2.315 1.9025 3.044 0 0 0
A.P. 3.484 2.33375 3.734 0 0 0

45°
G.C. 0.315 0.70125 1.122 0.092 0.37875 0.606
F.P. 2.083 1.80375 2.886 0.181 0.53125 0.85
A.P. 2.266 1.88125 3.01 0.326 0.71375 1.142

90°
G.C. 0.455 0.84375 1.35 0.229 0.59875 0.958
F.P. 1.36 1.4575 2.332 0.236 0.6075 0.972
A.P. 0.937 1.21 1.936 0.223 0.59 0.944

135°
G.C. 0.475 0.86125 1.378 0.097 0.38875 0.622
F.P. 1.102 1.3125 2.1 0.273 0.6525 1.044
A.P. 1.171 1.3525 2.164 0.234 0.605 0.968

180°
G.C. 0.525 0.90625 1.45 0 0 0
F.P. 1.745 1.65125 2.642 0 0 0
A.P. 1.61 1.58625 2.538 0 0 0

3.3.4 Instantaneous Pressure Distribution

The pressure distribution was calculated by using the equivalent wave system 
mentioned in the above section. As can be seen in Fig. 3.9, the peak position of side 
force RAO is at the ©=1.2, which corresponds to the wave period of 5.236 second, 
and the maximum value is 1.62e3(kN). So a wave of 5.236 second wave period and 
1.25 metres wave amplitude, which results in a total of 2.03e3(kN) side force, was 
used to calculate the pressure distribution. In order to seek the worst wave position 
the resultant force of pressure distribution at five phase angles, namely, cot =0, 71 /2,

76



71, 2^ /3 and 2 ^ , were calculated. The resultant force of the hydrodynamic pressure 
of the port hull at x=-6.8 meters at five phase angles are 48.33, 22.68, -48.33, -22.68, 
and 48.33 kN respectively. The pressure distributions corresponding to the five phase 
angles were shown in Fig. 3.14. The positions of the points in the figure are shown in 
Fig. 3.15. It is found that the largest side force occurs at ©t =0 and n corresponding 
to the prying and squeezing force respectively. The results agree well with those in 
Reilly etal(1988).

Another important parameter which should be considered in the design is the 
longitudinal distribution of the side force. Due to a lack of experimental data one can 
not get it from the existing experiment now. Sikora and Dinsenbacher (1990) carried 
out a sensitivity study of the stresses to variations in longitudinal distribution of side 
force. Three types of distributions, namely, uniform, trapezoidal and sinusoidal, were 
assumed to calculate the stresses at different points. There was not much difference 
in the stresses for three kinds of distributions. So Sikora and Dinsenbacher suggested 
that the uniform distribution could be used when analysing the whole ship. For 
conservative consideration, 10 percent of margin could be added when only one 
section was analysed.

Because the stresses are strongly dependant on the geometry of the structure it 
was not expected that the conclusion would be applicable to all structures. To 
investigate the longitudinal distribution of the side force, the longitudinal distribution 
of the hydrodynamic pressure in the port hull was calculated and the results are shown 
in Fig. 3.16. It can be seen that the largest force (55.75kN) occurs near the mid-ship 
and decreases toward the ends. The average is 36.11 kN, so the maximum is 1.54 
times the average value. The results agree well with those in Kobayashi and Shimada 
(1990) except for a little fluctuation near the mid-ship. Therefore it may be said that 
the sinusoidal distribution is more realistic than the uniform distribution.

For completeness, the pressure distributions at x=-15.77, -14.05, -9.35, -1.85,
0.65, 3.15, 5.65, 8.15, 12.75, 14.65 meters were also shown in Figs. 3.17 to 3.26, and 
their resultant forces in different phase angles shown in Table 3.9. Zsf  is the exertion

point of resultant force.
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Table 3.9: Resultant force of hydrodynamic pressure at port hull

Posi.(m)

-15.77
cot 0 7t/2 n 3^/2 27t

Resultant force 0.392e3 0.082e3 -0.392e3 -0.082e3 0.392e3
Zsf -1.797 -1.797 -1.797 -1.797 -1.797

-14.05
cot 0 71/2 7t 37t/2 271

Resultant force 0.1813e5 0.0713e5 -0.1813e5 -0.071 le5 0.1813e5

Zsf -0.967 -0.924 -0.967 -0.924 -0.967

-9.35
cot 0 71/2 71 3™/2 27T

Resultant force 0.42 le5 0.1841e5 -0.42 le5 -0.1835e5 0.42 le5
Zsf -1.048 -1.019 -1.048 -1.019 -1.048

-6.85
cot 0 7t/2 71 3?t/2 27t

Resultant force 0.4833e5 0.2268e5 -0.4833e5 -0.2267e5 0.4833e5
Zsf -1.05 -1.022 -1.05 - 1.022 -1.05

-1.85
cot 0 7t/2 71 371/2 271

Resultant force 0.552 le5 0.2756e5 -0.552 le5 -0.2749e5 0.5521e5
Zsf -1.041 -1.017 -1.041 -1.017 -1.041

0.65
cot 0 7t/2 7t 37T/2 27t

Resultant force 0.5575e5 0.2277e5 -0.5575e5 -0.277e5 0.5575e5
Zsf -1.041 -1.017 -1.041 -1.017 -1.041

3.15
cot 0 Tt/2 7t 3^/2 271

Resultant force 0.5496e5 0.2678e5 -0.5496e5 -0.2672e5 0.5496e5
Zsf -1.041 -1.016 -1.041 -1.016 -1.041

5.65
cot 0 rc/2 n 37T/2 27T

Resultant force 0.5292e5 0.2476e5 -0.5292e5 -0.2496e5 0.5292e5
Zsf -1.031 -1.005 -1.031 -1.005 -1.031

8.15
cot 0 71/2 n 3^/2 271

Resultant force 0.5067e5 0.226 le5 -0.5067e5 -0.2255e5 0.5067e5
Zsf -0.9901 -0.9624 -0.9901 -0.9623 -0.9901

12.75
cot 0 71/2 7t 3^/2 27T

Resultant force 0.1844e5 0.074e5 -0.1844e5 -0.074e5 0.1844e5
Zsf -0.9571 -0.9257 -0.9571 -0.9256 -0.9571

14.65
cot 0 n /2 71 3^/2 27T

Resultant force 0.256 le3 0.056e3 -0.256 le3 -0.056e3 0.2561e3
Zsf -1.802 -1.817 -1.802 -1.817 -1.802
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From Figs. 3.17 to 3.26 it was shown th a t:

* The pressure distributions keep more or less the same nature near the central 
parts, except for the far ends.

* The pressure distributions at phase angle ©t =0.0 and 71, which correspond to 
prying and squeezing force respectively, are symmetric to the x-axis. Hence 
in structural analysis when the loadcase is switched from prying to squeezing, 
only the sign of the pressure needs to be changed.

3.4 DISCUSSIONS

Prediction of primary loads on SWATH is of prime importance in structural 
design. In the present study the primary loads were calculated by a validated program 
developed by Chan. Another program, SPEC, was developed to carry out spectral 
analysis and to calculate extreme design values. Several factors which are important 
in structural analysis were discussed. Based on these analyses the following 
conclusions may be drawn:

* The largest side force occurs in beam seas. The wave length, at which the 
largest RAO of side force occurs, is about four times the width of the ship.

* Although no experimental data is available to verify the analytical results, 
good agreement exists between the calculated side force and that used by the 
FBM Marine Company.

* The longitudinal distribution of the hydrodynamic forces shows that the 
interaction between the two hulls is strong, and the uniform distribution of 
side forces suggested by Sikora and Dinsenbacher (1990) is not suitable in this 
case. A sinusoidal distribution is preferred based on the results.

* Load combinations suggested by Chalmers (1989) seem to be too conservative 
in this case. More cases need to be calculated to establish simple and accurate 
load combinations for design.
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Fig. 3.1 Definition of primary loads and co-ordinates system
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Fig. 3.7 RAO of motion responses in wave incident angle 180°
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Fig. 3.8 RAO of loads in wave incident angle 0°
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Fig. 3.9 RAO of loads in wave incident angle 45*
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Fig. 3.11 RAO of loads in wave incident angle 135°
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CHAPTER 4 ULTIMATE STRENGTH AND RELIABILITY 
ANALYSIS OF STIFFENED PLATES

4.1 INTRODUCTION

Stiffened plates are common structural units in bridges, ships and offshore 
structures. Although research into stiffened plates started back in the last century, a 
large number of notable theoretical and numerical studies have been carried out since 
1970.

Shown in Fig. 4.1 is a typical stiffened plate which consists of plate and 
longitudinal stiffeners as well as strong transverse stiffeners (girders).

The failure modes of a stiffened plate in compression are:

1) plate failure
2) stiffener-plate column failure; it can be divided into two modes

a) plate_induced failure
b) stiffener_induced failure

3) torsional failure of the stiffener
4) overall grillage buckling.

The plate failure may occur before or after the failure of column-like failure, 
which affects the stiffness and the effective width of the plating associated with the 
stiffener. Failure modes 3 and 4 should be avoided due to the quick loss of strength 
in the post-buckling region. To prevent torsional buckling, the ratio of the web height 
to thickness is generally kept being less than 10. Overall grillage buckling is usually 
avoided by provision of stiff transverse frames and support from minor bulkheads and 
pillars.

Since the behaviour of the plating strongly influences the performance of 
stiffened plates, the features of the plating will be studied first in the following 
section.

A vast amount of research has been carried out since 1970. The state-of-the-art 
in this field was well summarised by Faulkner (1975b) and Guedes Soares and 
Soreide (1983). Since then, some new formulae have been published. Unfortunately
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all these formulae were calibrated separately and it is difficult to compare these 
works. Therefore it is necessary to calibrate the strength formulae on the same 
database because the uncertainty in strength formulation is important in structural 
reliability analysis. In addition, with the increasing understanding of plate panels, it 
is possible to incorporate the recent research results in plating into the formulation of 
stiffened plates.

Probabilistic methods are increasingly being used in the analysis of plating and 
stiffened plates. But all the analysis were carried out usually by Advanced First 
Order Second Moment method without investigating its accuracy of results. With the 
development of reliability techniques, the Second Order Method (SORM) is not so 
time-consuming as before. It was recommended that in practice the accuracy of the 
AFOSM and SORM needs to be checked for a particular problem first, and then one 
can decide whether or not the SORM should be used.

In this chapter the existing formulae for prediction of ultimate strength of plate 
panels and stiffened plates under compression are calibrated by using a large amount 
of experimental and numerical data. A new formula for stiffened plates is proposed. 
Secondly, the reliability analysis of plate panels and stiffened plates is carried out by 
using AFOSM, SORM and Monte Carlo simulation to investigate the accuracy of the 
methods.

4.2 BEHAVIOUR OF UNSTIFFENED PLATES

Plate elements are the main parts in stiffened panels. Because the global failure 
of the stiffened panels is usually avoided by design, the interframe failure of the plate 
stiffener assembly or failure of the plate elements between stiffeners are main failure 
modes. The prediction of plate strength is also a prerequisite for assessing the 
strength of stiffened plates.

4.2.1 The Parameters which Influence the Strength

The parameters which influence the strength of plates are plate slenderness, 
residual stress, initial distortion, boundary condition, plate aspect ratio and types of 
loads.
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1) Influence of plate slenderness

Plate slenderness is the most important factor, which is the non-dimensional 
variable that results from the Bryan expression for critical buckling load o c of an 

infinitely long thin, elastic plate with simply supported edges.

Gc _  47t2E ( t^ 2 _3.61
<T0 1 2 (1 -v2)o0 VbJ P2 (4 ! )

In ship plates P can vary from 1 to 5 with the corresponding value of plate strength 
changing from yield strength to 40% of its value. So the plate strength can change by 
as much as 60% over the useful range of slenderness.

2) Influence of distortion and residual stress

Stiffeners are usually connected to the plate by welding. This action results in the 
distortion and residual stress, which are called initial imperfections.

A widely used residual stresses distribution is shown in Fig. 4.2. To obtain 
equilibrium in the plate, the residual stress is expressed as:

A typical initial deflection profile is shown in Fig. 4.3. The initial deflection 
gives rise to a decrease in the rigidity and ultimate strength of plates. It is found that the 
same deflection shape as the buckling mode has the most significant weakening effect.

In some cases the local deformation in plates is likely to have a much more 
significant influence in compressive strength than the overall distortion, even if its 
amplitude is smaller than overall deflection (Dow and Smith, 1984; Smith, 1981).

Through a large number of experiments on frigates, Faulkner (1975) suggested 
that the mean value of plate central deflection can be calculated by:

2*n

(4.2)

t (4.3a)
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= 0.15B'
t

for t < t, 6 > 3
W

(4.3b)

_Q _= KpJ
t ,

for t > tw (4.3c)

where K=0.12 for frigates and 0.15 for merchant ships.

Carlsen (1977) pointed out the initial deflection in most cases meets: 

t 200 t (4.4)

Based on the experimental measurements, Smith and Davidson et al (1987) 
classified the initial imperfection as slight, average and severe, which is shown in 
Table 4.1.

Table 4.1: Assumed imperfection levels

Level Initial deflection 

50

Residual stresses 
•

a r
Slight 0.025 p2 0.05

Average o .ip 2 0.15

Severe 0.3 P2 0.3

It is shown that in the practical range of plate slenderness the reduction of plate 
strength due to the presence of distortions or of residual stress can be as much as 20% 
to 23% of the perfect plate strength. If both types of imperfections exist 
simultaneously, it leads to up to 50% reduction of plate strength. It is worth 
mentioning that the effect of both imperfections is not equal to the sum of the effect of 
each imperfection considered separately.

3) Influence of boundary condition

The boundary conditions for loaded edges are classified into two extreme 
situations: simple supports and clamped supports. Other conditions can be treated in

1 0 8



between them. For unloaded edges, the conditions are grouped into three : constrained, 
restrained, and unrestrained. In the first two cases the edges are forced to remain 
straight, which does not happen in the unrestrained case. For restrained conditions no 
displacements are allowed in the transverse direction as opposed to the other two 
situations.

Boundary condition is another relatively important factor. As shown by Guedes 
Soares (1988b), the ratio of the strength of clamped plates <}>c to the strength of the 

corresponding simply supported ones <j>s has the mean value of 1.09 with a standard 

deviation of 0.08. A good regression was obtained relative to the slenderness.

—  = 0.82 + 0.14(5
4>s (4.5)

with a correlation coefficient of 0.85. It shows that when the (3 varies from 2.5-3.5, 
the strength of clamped plates is 15% to 30% higher than simply supported ones.

The effect of the unloaded edges is shown in Fig. 4.4. It shows that in-plane 
restraint has a strengthening effect of 5 to 10%, depending on plate slenderness and 
magnitude of initial imperfections.

4) Influence of the aspect ratio

Plate aspect ratio also needs to be considered. The strength of plates is not very 
sensitive to the changes of aspect ratio. Typically the plate strength changes by 5% as 
the aspect ratio varies from 0.6 to 1.0. But the aspect ratio of the plate becomes 
important when dealing with the shape of initial imperfections.

As shown in Fig. 4.5, the minimum buckling load occurs between 0.7 and 0.8 of 
aspect ratio. In the situation that the aspect ratio is greater than one, the plates tend to 
be stiffer and stronger but have a steeper post-collapse unloading as shown in Fig. 4.6.

5) Influence of combined loading

Generally the loads which should be considered in the design are longitudinal 
compression, transverse in-plane compression, shear, bending moment and lateral 
loading.
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Although the effect of the combined loading can be reasonably predicted by 
numerical methods, the formulae for design still need to be improved further.

Effect of biaxial compression

Based on the experimental results of Becker et al (1970), a parabolic interaction 
relationship was proposed as follows (Faulkner et al, 1973):

+
xu

r  O  *

y
a

v yu ;

= 1

(4.6)

where

a  = a .  yu 0
0.9 L9 
p2 + ap

1 - 0.9
P>1 ap  > 1.9 (4.7)

taken from the French Bureau Veritas solution for a pinned plate.

The load-capacity is considered to be reached when the stress field at any edge 
satisfies the plasticity condition:

2 2 2O = 0 + 0 - 0  o  cy x y  x y (4.8)

On this principle, Becker and Colao (1977 ) proposed an interaction curve

R2 + R 2 - R  R =1x y  x y (4.9)

in which:

X U

a

y o yu
( 4 . 10 )
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A more general interaction relation is recommended by Davidson et al (1989)

R2 +riR  R + R 2 =1x x y y (4  n )

where “H is defined to vary with plate slenderness from -1 (the von Mises ellipse ) at 
plate slenderness 0.5 to -1 at plate slenderness 3.3.

Bradfield et al (1993) have recently presented a group of experimental data. 
Having compared the existing interaction curves with their experimental data, they 
suggested that a two-segments interaction relation may be better than a single one. At 
the moment Davidson's method is preferable.

Effect of lateral load

The lateral load will cause a deflection of cylindrical shape with dimensions 
equal to the plate side. So the effect of lateral load could be in either direction. For 
square plate, it weakens the strength because the caused deflection has the same shape 
as the dominant buckling mode, for rectangular, its effect is adverse.

For the large lateral load, 12% reduction in strength was found when the 
hydrostatic pressure is up to 190 m water column (Carlsen, 1977).

Smith et al (1991) utilised finite element models to investigate the influence of 
lateral load. The effect of lateral load is shown in Fig. 4.7. It can be seen that its 
effect is remarkable in panels with high column slenderness and plate slenderness.

When the lateral pressure is above a critical load, a linear interaction curve was 
assumed by Faulkner et al (1973) as follows:

a c(p,y) t q x 1

a c(y)c ^ x p  (4.12)

and the fix-ended boundary condition should be used in this region.
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4.2.2 Available Strength Formulae

Post buckling behaviour of plates loaded in compression has been studied in 
great detail. Many design methods using empirical solutions are now available. A 
good review can be found in Faulkner (1975b). Since then, several new methods 
have been published. Vilnay and Rockey (1981) proposed a generalised effective 
width formula based on the numerical results of Frieze et al (1976). A good 
agreement with Frieze's results was found. Rhodes (1981) employed a simple method 
to generate the load-shortening curve of plate loaded in compression. Although there 
is good agreement with some numerical methods for perfect plates, the results for 
imperfect plates, especially when initial deflection is over 30% of plate thickness, are 
not so satisfactory. Adopting the same idea as Vilnay, Bonello et al (1991) presented 
a strength modelling for unstiffened plates in which two characteristic points in load-

shortening curves were defined. Because two parameters (b and  b ^) in the 
procedure are still obtained from two groups of curves derived from numerical load- 
shortening curves, this method seems to be unsuitable for design. Guedes Soares

be explicitly considered, based on the existing experimental and numerical data. 
Chapman and Dowling associates (1991) derived an empirical formula for plating.

Because the main purpose of Rhodes and Bonello’s methods is to establish the 
post-buckling curves, they are not suitable for design. The discussion will therefore be 
focused on other methods.

4.2.2.1 Faulkner’s method

The strength of a welded rectangular plate is given by:

(1988b) developed a formula, in which the initial deflection and residual stress could

<1>F= —  = <f>b -A<t)b
°0 (4.13)

(4.14)
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where o m and (Jo are the plate compressive strength and the yield stress respectively, 
<j>b is the strength of an unwelded plate, and A<J)b represents the reduction of strength 

due to the weld induced residual stress.

P P

where

d b [g0P = —-y —  —the plate slenderness;

—Young’s modulus

the constants are:

aj=2.0 and a 2 = 1 . 0 for simply supports

aj=2.5 and a2=1.56 for clamped supports

The residual stress c r can be obtained by:

’r _ 2ri
o 0  (b / 1) -  2rj

a,P'

a4 + P r(1- P r)P
for 0 S |3 < 1.9 /

^  = 1.0
E

for p > 1 .9 /^ p T

(4.15)

(4.15a)

(4.15b)

(4.16)

(4.17a)

(4.17b)

In which



a p — proportional limit stress 

Faulkner (1975a) advised that the pr is generally adopted 0.5.

The constants a 3  and 3.4 depend on the boundary conditions

a3 =3.62 3 4  = 13.1 for simple supports

a3=6.31 a4=39.8 for clamped supports

Faulkner’s method does not account explicitly for the level of initial imperfection.

4.2.2.2 Carlsen’s method

His method is expressed as:

^ca ^b
1 1  °-7V

1 +  Or / O 0 A  P
(4.19)

where

is given by Eq. (4.16), <}>b is given by Eq. (4.15), but the constants in

which are:

aj=2.1 a2=0.9 for simple supports

• 6n
5o = f

$ 0  —the maximum amplitude of distortions.

In this method the plate slenderness, residual stress and initial imperfection are 
explicitly accounted for.
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4.2.23 Guedes Soares* method

The method presented by Guedes Soares is based on a refined Faulkner's 
method and has two forms. One is:

<t>G =[l.08<(>b] 1.07-0 .99 A<t>b
<t>b

l-(0 .6 2 6  -  0.12ip>

0.76 + 0.01ri + 0 .2 4 ^ -  + 0.ip for P> 1.0 (4.20)

The other form is:

<t>G = [l.08<t>b]
1.08(])b

(l + 0.0078n) l - (0 .6 2 6 -0 .1 2 iP )^ -

0.665 + 0.00611 + 0.36^2-+ 0.14P fo r  p  >  1 .0 (4.21)

The method can account explicidy for P,T| and 8q. The terms in the first bracket 
predict the strength of perfect plates, the first and second bracket predict the strength 
of plates with residual stress, the first and third bracket indicate the strength of plates 
with initial deflections and the fourth term should be used for plates that have both 
initial deflections and residual stress.

The <}>b and A<j>b are calculated by Eq. (4.15) and (4.14) respectively.

Strictly speaking, these equations should only be applicable to simply supported 
plates. However, when using the coefficient in Eq. (4.15b) to quantify <|>b, they can 

also be applicable to the clamped plates.

The disadvantage of the method is that it estimates the maximum strength, 
ignoring the strain at which the maximum value occurs, which is very important for the 

.case with sharp load shortening curves.
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4.2.2A Vilnay's method

Vilnay and Rockey (1981) designed a procedure to generate the generalised 
effective width by using the load-shortening curves from well controlled numerical 
analysis. This method can theoretically calculate the effective width at any strain.

When there are no residual stresses, the maximum effective width occurs at the 
strain equal to 1.0. It is expressed as:

b
- j ^ =  B0(l.75-0 .5p) + 0 .262p-0 .4  (4m22)

where

Bq = 0.36255q + 0.9425 w hen 5Q < 0.7 (4.23a)

Bq = 0.28Q +0.83 w hen 8Q > 0.7 (4.23b)

and the effective width at strain equal to zero is:

-S2. = 1.063-0.53380 w hen 8q < 0.4 (4.23a)

— = 0 .9 4 3 -0.2338q w hen 8^ > 0 .4  (4.23b)

b e0
subject to limit that “ is not great than 1.0.

The effective width at large strain is:

^  = 0 .72-0 .060

When residual stresses exist, the effective widths at different strains are presented 
as follows:
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The effective width at strain equal to zero is:

b eOR _  b e0 ( b

b b ^ b (4.25)

and at strain equal to 1.0 is:

and the effective width at strain equal to 2.0 is:

e2R _  e<*> |
b b (4.27)

where

k = 0.8(3 -0 .5

The maximum effective width is determined by comparing the values at strain 
equal to 1.0 and 2.0.

4.2.2.5 Imperial College's method

Chapman et al (1991) presented a strength formula which consists of two parts. 
The first part is used to calculate the strength of simply supported constrained panels

1 9with sinusoidal imperfections of amplitude of 8Q = 0.1(3 and compressive residual

stresses of 20% of yield stress (based on a yield stress of 245 N/mm^, and Young's 
Modulus of 205000 N/mm^). It is expressed as:

a
0

(4.28)
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The second part aims to get a modification factor which takes into account the 
effect of the imperfection and residual stresses other than those assumed in the above 
equation. The average non-dimensional uniaxial compressive stress in a constrained 
panel buckling in a square plate mode is:

GX =
k 4 ji2E 7t2E f8

l + k 12(l- v 2 )  lb J  o Q 8aQ
a )  (k2 + 2 k )

(4.29)

and the non-dimensional stress at the longitudinal edges of the panel is given by:

k + 2k° xe ~ ° x + g_ I b I V*' 1 — I (4.30)

The effective width is expressed as the ratio of the average stress (<?x ) to the edge

stress (Gxe)- For residual stresses greater than 10% of yield, the value of this ratio at

twice yield strain is considered to be the maximum value. For the zero residual 
stresses the ratio is at yield strain. For intermediate levels of residual stress, linear 
interpolation between the two values is used.

Therefore the modification factor applied to the first part is defined as the ratio of 
the maximum effective width obtained from the second part for the real initial 
imperfection (including the deflection and residual stresses) to that for the average initial 
imperfection assumed in the first part.

The value obtained from the above procedure is for simply supported 
constrained panels. For unconstrained panels the following expression can be used 

(Smith etal, 1987):

constrained _ _ _ _ „
= 0.95 + 0.05(3 (4 31)

unconstrained
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4.2.3 Calibration and Comparison of the Existing Methods

In order to evaluate the existing methods, all the formulae mentioned above are 
calibrated against the existing experimental and numerical results (Smith et al, 1987; 
Moxham, 1971; Dwight and Moxham, 1969; Ueda et al, 1975). The results are 
shown in Tables 4.2-4.6 and Fig. 4.8-4.12.

Table 4.2: Model uncertainty factor of Faulkner's method

Experiments Number of Minimum Maximum Mean c .o .v

Source Cases Value Value Value

Moxham 56 1.05 1.64 1.22 0.109

Dwight 33 0.93 1.55 1.09 0.155

Ueda 54 0.77 1.65 1.03 0.214

Smith 57 0.996 1.42 1.26 0.084

Total 200 0.77 1.65 1.159 0.163

Table 4.3: Model uncertainty factor of Carlsen's method

Experiments Number of Minimum Maximum Mean C.O.V

Source Cases Value Value Value

Moxham 56 0.87 1.68 1.15 0.154

Dwight 33 0.83 1.23 1.02 0.101

Ueda 54 0.85 1.28 1.011 0.084

Smith 57 1.06 1.44 1.246 0.06

Total 200 0.829 1.68 1.117 0.138
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Table 4.4: Model uncertainty factor of Guede Soares’ method

Experiments

Source

Number of 

Cases

Minimum

Value

Maximum

Value

Mean

Value

C.O.V

Moxham 56 0.92 1.33 1.06 0.086

Dwight 33 0.84 1.32 0.99 0.126

Ueda 54 0.77 1.22 0.98 0.091

Smith 57 0.85 1.212 1.073 0.07

Total 200 0.774 1.329 1.031 0.101

Table 4.5: Model uncertainty factor of Vilnay* s method

Experiments

Source

Number of 

Cases

Minimum

Value

Maximum

Value

Mean

Value

C.O.V

Moxham 56 0.83 1.23 1.053 0.117

Dwight 33 0.778 1.134 0.989 0.098

Ueda 54 0.62 1.174 0.871 0.188

Smith 57 0.868 1.202 1.047 0.069

Total 200 0.62 1.231 0.99 0.147
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Table 4.6: Model uncertainty factor of IC's method

Experiments

Source

Number of 

Cases

Minimum

Value

Maximum

Value

Mean

Value

C.O.V

Moxham 56 0.532 1.02 0.788 0.209

Dwight 33 0.454 1.015 0.794 0.197

Ueda 54 0.469 1.015 0.864 0.132

Smith 57 0.834 1.083 1.015 0.053

Total 200 0.454 1.170 0.893 0.200

From the above Tables and Figures, it is clearly shown that:

1) In the whole range Guedes Soares' method is the best. Its mean value is 1.031 
and coefficient of variation 10.1%. Its skewness is fairly small [see Fig. 
4.10(b)]. The slope of the linear regression line is only -0.042.

2) Although IC's method showed very good results compared to Smith's numerical
data nevertheless, on the whole, it is not as good as Guede Soares' formula. The
method presents very good accuracy for plates with moderate initial deflection
and residual stresses. But when initial deformation is equal to zero, its accuracy
is questionable. From Eqs. (4.27) and (4.28) it is shown that, when the initial
distortion is equal to zero, the average compressive stress is always equal to the 
edge stress. This means that be is equal to 1.0, which leads to an unacceptable

modification factor defined in the procedure. In addition, the method showed 
very large skewness [see Fig. 4.12(b)].

3) Vilnay’s method [Fig. 4.11(b)] shows almost no skewness, and its mean value is 
the closest to one (0.990) among all the methods. But its coefficient of variation 
(0.147) almost reaches the margins (0.150) recommended by Faulkner (1991). 
From Fig. 4.11 (b) it can be seen that a few of the points lie far away from the 
unit (say, below 0.75).
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4 .3  BEHAVIOUR OF STIFFENED PLATES

Due to the interaction of different failure modes, the situation for stiffened plates 
is much more complicated than for plate panels. As pointed out in the section 4.1, if 
the failure modes 3 and 4 are excluded by properly selecting the dimensions of the 
stiffened plates, the behaviour of the stiffened plates can be represented by assemblage 
of the stiffener and its associated plate with effective width. In this way the problem is 
simplified.

The behaviour of the column assemblage can now be exactly (in numerical 
sense) analysed by numerical methods (finite deference or finite element). Some 
researchers (Chalmers and Smith, 1992; Smith et al, 1991) advocated that the 
numerical methods could be directly used in design in the way that the whole load 
shortening curves are generated and stored in the computer in advance, then the 
ultimate strength of a stiffened plate can be obtained by interpolation from the stored 
data. Furthermore, the numerical method was directly used to establish the safety 
margin equation in reliability analysis (Bonello and Chryssanthopoulos, 1993b).

Although it is likely that the numerical analysis could be directly used in design in 
the near future, nevertheless, the relatively simple analytical formulations are still
preferable in the design at present. So discussions will focus on these simple formulae.

4.3.1 Parameters influencing the strength

The parameters might be classified as geometrical and imperfection parameters. 
The main geometrical parameters which influence the strength are as follows:

Geometrical parameters

a) stiffener slenderness X,
b) plate slenderness p

c) ratio of stiffener to cross-sectional area As / At

d) ratio of top flange to web area Af /  A^

e) cross-sectional slenderness of the stiffener
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Imperfection parameters

f) initial stiffener deflection 5qs

g) relative stiffener deflection 5qsi /  5qS2

h) initial plate deflection 8q

i) compressive plate welding stresses a rp

j) axial welding stresses in the stiffener G

k) yield stress

1) Slenderness of plate and stiffener

These are the most important parameters which influence the strength of the 
stiffened plates. Their effects are shown in Figs. 4.13, 4.14, 4.15. For low stiffener 
slenderness, failure is attributed to plastic crushing of the cross-section while, for high 
slenderness, failure with rapid load relaxation occurred beyond initial compressive 
yielding at the top of the stiffener. Rapid increase of stress on top of the stiffener 
occurs when the stiffness is reduced due to loss of plate stiffness, i.e. plate buckling. 
Such interaction is considerable for low stiffener slenderness, 0.3-0.5. For high 
stiffener slenderness 1.5, the magnification of the stiffener stresses is primarily due to

general column instability (<?m / crQ just reaches 0.5).

Smith et al (1991) suggested that the stiffener slenderness used in the structures 
is better to be less than 0.4 due to a sharply peaked form of load-shortening curves 
when X is great than 0.6, and plate slenderness is less than 1.5 in order to reduce the 
sensitivity to the variation of some parameters. Such restriction will result in a cost 
and structural weight penalty.

2) Ratio of stiffener to cross-sectional area

The effect of this factor is shown in Fig. 4.16. Its influence on strength is 
remarkable at the low stiffener slenderness and high plate slenderness reaching 40% in 
some cases, but is small in most cases. A value of As /  At=0.2 is typical of ship 

construction.
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3) Ratio of top flange to web cross-sectional area

The effect is shown in Table 4.7. The increase of the ratio does not mean an 

increase in the strength. The effect is quite small.

Table 4.7: Strength of stiffened panels (Carlsen, 1980)

Geometry Strength, ov/ oc

Notes

Modified 
Perry-Robert­

son (P-R)
Num­
erical °P-R

°Numk b / tP a {/ A p /4 r/ A w PI | SI

0-3 30 0-3 0-8 0-931 0-897 10-872 1-029 —

0-5 30 0-3 0-8 0-913 0-826 0-807 1-024
1-0 30 0-3 0-8 0-740 0-571 0-575 0-993
1-5 30 0-3 0-8 0-397 0-335 0-325 1-031

0-3 55 0-3 0-8 0-663 0-827 0-667 0-994
0-5 55 0-3 0-8 0-644 0-762 0-618 1-042
1-0 55 0-3 0-8 0-506 0-527 0-473 1-070 Basic cases
1-5 55 0-3 0-8 0-291 0-309 0-303 0-960 T-profile

0-3 80 0-3 0-8 0-512 0-758 0-540 0-948
0-5 80 0-3 0-8 0-494 0-698 0-516 0-957
1-0 80 0-3 0-8 0-385 0-483 0-393 0-980
1-5 80 0-3 0-8 0-230 0-283 0-264 0-87]

0-3 30 0-125 0-8 0-938 0-858 0-889 0-965
1-0 30 0-125 0-8 0-776 0-509 0-523 0-973
1-5 30 0-125 0-8 0-405 0-305 0-318 0-959 Reduced
0-3 80 0-048 0-8 0-489 0-645 0-536 0-912 A t/ A  p ralk
1*0 80 0-048 0-8 0-402 0-349 0-335 1-042
1-5 80 0-048 0-8 0-216 0-214 0-238 0-899

0-3 55 0-3 0 0-670 0-802 0-710 0-944 A (/ A w —
1-0 55 0-3 0 0-514 0-484 0-463 1-045 Flat bar

imperfections: plate, arv/o0 = 0 -2, n-op = 0-016 
Stiffener, on/ c 0 = 0 , kos = 0-0015c 

Yield stress, o0 = 320 N /m m }
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4). Initial stiffener deflection

The effect of the parameter is shown in Fig. 4.17. The strength decreases with 
the increase of the initial stiffener deflection. Such effect is small when Jt=0.3, but 
obvious when ^=1.0 and 1.5. Up to 26% strength reduction was found at X=l-5 and 

b/t=55 (Rhodes, 1981).

5) Relative stiffener deflection 8 osi /  5 oS2 *

The definitions of 50si  and S0 s 2  are shown in Fig. 4.18. This parameter is used 

to measure the interaction between adjacent stiffeners. The ratio 8 qsi /  6 qS 2  was found

to have a mean value of 0.25. Its effect on compressive strength is shown in Fig. 
4.19. Such effect is high when the structure is slender. When stiffener slenderness is 
less than 0.4, the effect is relatively small. The severest effect occurs at 8 osi /  SoS2 ='  * •

6 ) Initial plate deflection

The effect of the initial plate deflection is primarily reflected by reducing the 
maximum strength of the plate, further the effective width associated with the stiffener. 
Its effect is shown in Fig. 4.20. The strength reduces 5-10% when the plate distortion 
increases from 0.005b to 0.015b, the smaller percentage reduction for slender 
structures, i.e. for high values of X and P-

7) Compressive residual stresses in plating

The primary influence of the plate welding stresses is to reduce the axial stiffness 
of the plates and the effective width associated with the stiffener. The effect of plate 
welding stress is shown in Figs. 4.21 and 4.22.

For the cases with low plate slenderness, the effect of increasing the welding 

stresses beyond (0 . 1 -0 .2 ) is negligible, while the strength continues to drop for 

increasing residual stresses in the cases with slender plates.
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For slender plates, residual stresses reduce the stiffness of the plate even for low 
compression, causing magnification of the bending stresses, while for stocky plates, 
reduced stiffness occurs only for high compression. In the case with a slender 
stiffener, A,=1.0, and stocky plate, b/t=30, the plate residual stresses did not influence 
the strength at all because stiffener-induced failure occurred before the plate reached its 
buckling compression.

8) Residual stresses in the stiffener

Residual stresses in the stiffener are difficult to determine due to their randomness 
nature. Both compression and tension may occur in the top of the stiffener. There are 
three types of assumed residual stress distributions shown in Fig. 4.23.

Assuming constant compressive welding stress in the web, a 3 to 5% of yield 
stress reduction in the strength was obtained (Carlsen, 1 9 8 0 ) when the <jrs / c q = 0 A .

9)  Yield stress

Yield stress has little effect on the non-dimensional compressive strength, shown 
in Fig. 4.24.

Two important issues involved in the selection of different parameters in the 
design formula should be considered.

a) Determine the effective width for the stiffened plate

Although there are some good formulae to determine the effective width in 
maximum compression of the plate, few formulae can be used to calculate the effective 
width when the compression is below the maximum compression. Unfortunately, for 
plates with moderate residual stress, the maximum strength is reached for in-plane 

compression when e / eQ= l.5-2.0 while, except for very stocky stiffeners, the stiffener

itself will collapse by compressive yielding on top of the stiffener before the plate has 
reached its maximum load. Therefore, from a theoretical point of view, the effective 
width should be determined by iterative equilibrium analysis or incremental analysis.
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b) Interaction between adjacent stiffener span

The primary interaction effect between adjacent stiffener spans is due to the plate 
flange buckling, causing a larger reduction in out-of-plane stiffness for the stiffener 
element deflection away from the plate flange than for the adjacent elements deflecting 
in the opposite direction. The former element will thereby cause deteriorating end 
moments on the stiffener-induced elements and is itself somewhat restrained by the end 
moments.

The increased out-of-plane deflection magnification due to plate buckling may be 
considered as the result of:

i) reduced effective Euler stress giving larger magnification factor,
ii) eccentricity of end loads due to larger buckling induced shift of neutral axis at the 

midspan than at the ends;
iii) restraining end moment due to smaller lateral deflection in the SI span.

The eccentricity effect could be treated as a modified initial stiffener deflection.

4,3.2 Existing Methods

Guedes Soares and Soreide (1983) has comprehensively studied all the existing 
methods. From their study, it was concluded that Faulkner’s method gives better 
prediction. Since then, two methods have been presented by Gordo and Guedes 
Soares (1993) and Chapman et al (1991). Because the main purpose of Gordo's 
method was to derive approximate load-shortening curves of stiffened plates, it is not 
discussed here.

In addition, Faulkner’s formulae are extended by incorporating the recent research 
results in plate panels. It is called the ‘proposed method’ later.

4.3.2.1 Faulkner's formula

This method is based on that of Johnson-Ostenfeld's formula. The ultimate 
strength is expressed as:
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c  a$ = -JL = _£.
°0  a 0

A + b  x ts e
A + b x t  s

(4.32)

where

05 s. = 1 - I 5 l

°0 4 °E
o c > 0 .5anE 0 (4.33a)

a o 0 o
o c S0.5<rnE 0 (4.33b)

where

°E =
7i2 x E x r 2 ce

rce —A s + be x t (4.34)

and EIe is the buckling flexural rigidity of the stiffener. The tangent effective width of
t

the plate ( b ) is given by:

_
b

r i

R,

XR,

0 < pe < 1 (4.35)

The effective width of the plate is related to the slenderness as follows:

b

_2_

Pe
R_

P i
XR, P e ^ l  

0 < pe < 1 (4.36)

where
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R = r

1- 2ri

1-

^b/t-2n 
2r\

^b/t—2ti

. PStl 

, o<p<i (4.37)

when the biaxial compression and the shear stress are in the presence, the effective 

width should be reduced by the factors and Rx.

R = 1 -  y
f  CT ^y

a
v yu;

(4.38)

R = x 1 -
f  \ 2  ̂

X

VTo ;

1/2

(4.39)

where

E

E
£■ = <

3.62p"
\ 2

13.1 + 0.25p 
1

for 0 < p < 2.7 

for p > 2.7 (4.40)

4.3.2.2 Carlsen's Method

Carlsen (1980) proposed a formulation which is based on the Perry-Roberston 
formula adopting the criteria of initial yielding in the outer fibres. The mean stress for 
plate-stiffener combination is given by:
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(  I---------------------  ^
1 + ̂  + Y - t/(1 + C + v )2 - 4 ;

°0  A t 2 C
(4.41)

where

^ = °0
a E (4.42)

_ x ^Os _ ^Os x z 
W r2 (4.43)

(4.44)

The plate is considered to be fully effective when calculating (*E and the section 

modulus W. Both plate-induced and stiffener-induced failure should be considered.

For plate-induced failure

Considering the effect of eccentricity of end loads due to larger buckling induced 
shift of neutral axis at the midspan than at the ends, the V in the equation (4.43) should 
be expressed as:

(4.45)

where

f At
Ôse == ̂ Os zp "7 1 (4.46)

in which,

Zp is the distance from the neutral axis to the plate, and
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S0s = 0.0015a (4.47)

A ( = b x t  + As ( 44g^

A — b x t “I- A / a jq\e e s (4.49)

be 1.8 0.8
b -  (3 p2 ,max 1.0 (4.50)

For stiffener-induced failure

v  =  _ 0L _ _ t  (4 5 1 )

where

Zj: distance from the neutral axis to the top of the stiffener. 

b
= 1*1— 0.1 XP , max 1.0 (4.52)

Assumptions adopted in the method are as follows:

a) Full plate width is used in the calculation of the Euler stress and radius of 
gyration.

b) The eccentricity effect due to the shift of neutral axis caused by plate buckling is 
considered as the initial stiffener deflection for plate induced failure, but not for 
stiffener-induced failure.

e =  Zp
r A  '  
- ^ - 1  
A

V e j

c) The stiffener deflection amplitude is always equal to 0.0015a.
d) The effective width of the plate is calculated by different formulae for plate and

131



stiffener induced failure. The initial deflection and residual stress of the plate are 

assumed as 0.01b and 0.2<*q respectively,

e) A reduction factor of 0.95 is introduced to reflect the effect of the residual stress 

in stiffener (&TS /  <*0=0.1).

4.3.2.3 Imperial College's formulation

This formula proposed by Imperial College is also based on the Perry-Robston's 
formulation . Both compression and lateral pressure were considered in the method. 
Only the formulae in compression are presented here.

The ultimate stress of a single column is expressed as:

(4.53)

where

a oe • the effective yield stress of the material

: the Euler buckling stress of the effective column 
V : parameter pertain to the effective imperfection in the column

(4.54)

in which

z distance from the neutral axis to the point where the check is applied 

8ose the effective imperfection which consists of two parts

(a) initial imperfection (column mode) 5os-specified tolerance=a/constant
2

(b) loading eccentricity due to overall girder bending e = re /  H

where H is the distance from neutral axis of box to mid-thickness of plate. For isolated 
stiffened plates, H is taken as zero.

1 3 2



The ultimate stress will be taken as the minimum value from the plate-induced 
failure and stiffener-induced failure.

For nlate-induced failure

Two points should be checked in this failure mode. One is the plate yielding in 
compression, another is the stiffener yielding in tension. So, the parameter z in 
equation (4.54) should be both Zp and z^

$ 0 s e  = §os + ac x e for plate check (4.55)

^Ose = “ ($0s + a c x e ) for stiffener check (4.56)

where

ac is the factor for taking account of the reduced effect of loading eccentricities in 

continuous (multi-bay) stiffened plates. It is assumed to be 0.5.

a oe in equation (4.53) will be:

a oe -  °op for plate check

-  ~ a os for stiffener check

where

%  : the nominal yield stress of the plate material (in compression)

~ ° os : the nominal yield stress of the stiffener material (in tension).

For stiffener-induced failure

The point at which check should be applied is the stiffener yielding in 
compression.

^Ose = ^0s
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where

CT0S : the nominal yield stress of the stiffener material (in compression).

The parameters concerning the effective section are defined in Fig. 4.25, and be is 

obtained by:

b e ^ „  1.16—  = 0.23 + —— 
b p

0.48 0.09
 s -  + ---

p: (4.57)

4.3.2.4 Proposed method

With increasing understanding of the behaviour of plate panels, it is important to 
incorporate the recent research results in plating into the formulae of stiffened plates to 
achieve better prediction. As seen in the previous sections, Guedes Soares’s 
formulation gives the best ultimate strength prediction of plate panels. So these 
formulae were adapted to Faulkner’s formulation.

For completeness, all the formulae are presented here. The ultimate strength of 
stiffened plates is expressed as:

a a
<|) = -JL = _S.

°0  °0

A + b x ts e
A + b x t  s

(4.58)

where



where

° E  =

n 2  x E x r 2 ce

rce —As + b e x t (4.60)

and EIe is the buckling flexural rigidity of the stiffener. The tangent effective width of
i

the plate ( be) is given by:

—  x R r , x R 5 x R¥  

r t i x R 8 x R t, 3

Pe — 1 

0 ^ p e < l (4.61)

The effective width of the plate is related to the slenderness as follows:

= jl.08x<t)b XRn XR5 XRllS Pe ^  1
b  1 l . 0 8 x R n x R 5 x R 1l5 0 < P e S l (4.62)

where

b a
P = “ A —e t V E

2 1

^  Pe Pe' (4.63)

A<t>b ^
1.08x(j)b

(l + 0.0078T|)
(4.64)

Rg = 1 —(0.626 —0.121pe ) - ^ (4.65)

1 3 5



8n r.R^g = 0.6 65 + 0.0 0 6T1 + 0.3 6-^- + 0.140e 

in which A(j)b is obtained by Eq. (4.14).

(4.66)

4,3.3 Calibration and Comparison of the Methods

As done in the foregoing section, the above methods are calibrated against the 
existing experimental and numerical data. The results are listed in Table 4.8-4.11 and 
Fig. 4.26-4.32.

Table 4.8: Model uncertainty factor of Faulkner’s method

Experiments

Sources

Number 

of cases

Minimum

value

Maximum

value

Mean

value

c .o .v .

Home( 1976,77) 20 0.822 1.562 1.039 0.158

Faulkner(1976) 24 0.924 1.146 1.030 0.066

Dorman(1973) 12 0.835 1.024 0.943 0.060

Smith(1975) 7 0.924 1.534 1.228 0.197

Total exp. 63 0.822 1.562 1.039 0.143

Smith(1991) 70 0.881 1.013 0.948 0.031

Smith(1991) 70 0.969 1.259 1.135 0.063

Total numer. 140 0.881 1.259 1.041 0.104

Total 203 0.822 1.562 1.041 0.117
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Table 4.9: Model uncertainty factor of Carlsen’s method

Experiments

Sources

Number 

of cases

Minimum

value

Maximum

value

Mean

value

C.O.Y.

Home(1976,77) 20 0.980 1.404 1.133 0.108

Faulkner(1976) 24 1.014 1.715 1.215 0.127

Dorman(1973) 12 0.928 1.081 1.007 0.044

Smith(1975) 7 0.917 1.498 1.202 0.191

Total exp. 63 0.917 1.715 1.148 0.137

Smith(1991) 70 0.911 1.230 1.040 0.063

Smith(1991) 70 0.992 1.795 1.354 0.129

Total numer. 140 0.911 1.795 1.197 0.171

Total 203 0.911 1.795 1.182 0.163

Table 4.10: Model uncertainty factor of Imperial’s method

Experiments

Sources

Number 

of cases

Minimum

value

Maximum

value

Mean

value

c .o .v .

Home( 1976,77) 20 0.772 1.293 1.018 0.118

Faulkner(1976) 24 0.795 1.660 1.030 0.204

Dorman(1973) 12 0.843 1.022 0.953 0.062

Smith(1975) 7 0.881 1.214 1.030 0.105

Total exp. 63 0.772 1.660 1.012 0.151

Smith(1991) 70 0.712 0.894 0.808 0.075

Smith(1991) 70 0.913 1.064 0.993 0.043

Total numer. 140 0.712 1.064 0.901 0.118

Total 203 0.712 1.574 0.931 0.132
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Table 4.11: Model uncertainty factor of the Proposed method

Experiments

Sources

Number 

of cases

Minimum

value

Maximum

value

Mean

value

c .o .v .

Home( 1976,77) 20 0.809 1.345 1.004 0.109

Faulkner(1976) 24 0.806 1.128 0.965 0.080

Dorman(1973) 12 0.840 1.062 0.973 0.075

Smith(1975) 7 0.926 1.264 1.085 0.116

Total exp. 63 0.806 1.345 0.992 0.099

Smith(1991) 70 0.747 1.011 0.887 0.075

Smith(1991) 70 0.898 1.258 1.079 0.090

Total numer. 140 0.747 1.258 0.983 0.129

Total 203 0.747 1.345 0.986 0.120

From these Tables and Figures, it can be seen that:

• Fauklner's method is the best one with the mean value of 1.041 and coefficient of 
variation of 11.7%, although it shows slight skewness with the slope of -0.268.

• Imperial College’s method has relatively large coefficient of variation which 
reaches 0.142, although it shows no skewness at all.

• Although the proposed method shows the best prediction if only the experimental 
data are included in the calibration [Fig. 4.30-4.32], on the whole, the results 
only have more or less the same accuracy as Faulkner’s method.

Having studied the details of the calculation, the following points are worth 
mentioning:

• The coefficient of variation is very small for a single source of experimental or 

numerical data, but it becomes large when all sources are included in the
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calibration. So any low C.O.V. from relatively few sources needs to be checked, 
because any unrealistic low C.O.V. could lead to an untruly high reliability index 
in reliability analysis.

In recent years there is a trend to use the numerical data to calibrate the strength 
formulae without considering the errors involved in the numerical calculation. 
Although it is an acceptable way when experimental data are not sufficient, 
nevertheless two points should be kept noted. Firstly, the numerical data have 
also uncertainty. Figure 4.33 and Table 4.12 taken from Smith et al (1991) 
clearly show the accuracy of the numerical calculation. If these data are used to 
regress the mean and C.O.V. of the numerical method (of course the sample is 
too less, but one can get insight from it), it gives the mean of 1.121 and C.O.V. 
of 0.071. Secondly, a numerical method usually has better consistency, which 
no doubt leads to low C.O.V.

The differences between Carlsen's method and Imperial College's method are:

a) In IC's method, the check applied to outer fibre of the stiffener is introduced 
for plate-induced failure.

b) For consideration of column imperfection, initial imperfection of the stiffener 
is assumed to be always 0.0015a in Carlsen's method. In IC's method either the 
actual initial imperfection of the stiffener or the tolerance in Rules (when the 
actual imperfection is unknown) is used.

c) For consideration of eccentricity due to the loss of plate effectiveness in plate-

e — Zp
induced failure, an item

- i - 1
A

V e j
is introduced in Carlsen's method. A

similar term is used to take account of the effect of box girder height in IC's 
method. But from the formula it can be seen that, for an isolated plate eg. H=0.0 
this term is equal to zero. This means that in this case the effect of the loss of the 
plate effectiveness is not considered in IC's method.

In some cases, the failure mode in experiment is plate-induced failure, but the 

failure mode calculated by Carlsen's method is the stiffener-induced failure. Such 
mismatch is caused by the assumption that the initial stiffener deflection is equal 
to 0.0015a.
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Although Faulkner’s method is the best one, it gives poor prediction when the 
initial imperfection (including residual stress in plate, initial deflection in stiffener 
and load eccentricity) is large.

Table 4.12: Details of test panels and correlation of theoretical and 
experimental compressive strength (Smith et al, 1991)

Scurce Panel
No ni a.

I n i t i a l  Deformation
Plating

Resicuai
Stress
c* c /co

A,/A 6 A
Lateral
Pressure

Q(m)

Conmressive Strenoth a♦ u

P la t in c  
sear, 

w / t0 ■ * x  '

Stringers

Expt.

Theoretical  Values

mean 
*01/ a

S A  1 1 '  01
Average

Imperfections
Actual  

Imperfect! cr.

Ref 19 la 4 4 0.0060 0.0007 0.7 - 0.30 2.67 0 .24 0 0.76 0.65 C.69
lb 4 4 0.0077 0.0011 - - 0.30 2.72 0 .2 3 10.2 0.73 0.57 0.57
2a Q 3 0.0044 0.0025 - 0.48 C.29 1 .42 0 .4 2 4.8 0.91 0.81 0.81
2b 9 0.0060 0.0010 - 0.33 0.30 1 .48 0 .4 2 0 0.83 • 0.82 C.82
3a 0 0.0093 C.0028 0.2 0.38 0.19 1.68 0 .7 0 2.0 0.69 0.69 0.63
3d 2 3 0.0150 0.0019 - 0.8 0.43 0.19 1.68 0 .7 0 0 0.61 0.71 0.50
4a 11 4 0.0081 0.0023 0.5 0.38 0.22 1 .41 0 .54 0 0 .82 0.80 0.75
4b 11 4 0.0063 0.0008 0.5 0.41 0.22 1 .43 0 .5 3 5 .5 0 .83 0.73 0.76
5 4 4 0.0100 0.0008 -0 .4 0.16 0.19 3 .31 0 .4 5 0 0 .72 0.51 0.55
7 4 4 0.0094 0.0007 - 0.08 0.19 3 .42 0 .5 2 0 0 .65 0.49 0.52

Ref 24 Al 4 4 - 0.0028 -0 .67 0.08 0.43 1 .47 0 .2 8 0 0 .90 0.86 0.76
A2 3 4 - 0.0028 -0 .67 0.06 0.38 1 .94 0 .3 0 0 0. 68 0.76 0.58
A3* 4 4 - 0.0028 -0 .67 0.11 0.43 1 .5 0 0 .3 3 0 0.84 0.86 0.75
A4* 3 4 - 0.0028 -0 .67 0.06 0.38 1 .9 0 0 .3 4 0 0 .73 0.77 0.67
Bl 4 4 - 0.0028 -0 .67 0.09 0.43 1 .4 7 0 .2 8 0 0. 88 0.86 0.77
B2 3 4 - 0.0028 -0 .67 0.09 0.38 1 .9 8 0 .3 1 0 0.70 0.77 0.65
B3* 4 4 - 0.0028 —0.67 0.12 0.43 1 .56 0 .3 5 0 0 .7 9 0.84 0.73
B4* 3 4 - 0.0028 —0.67 0.14 0.38 1 .9 0 0 .3 5 0 0 .73 0.79 0.65
Cl c 4 - 0.0028 —0.67 0.14 0.48 1 .2 2 0 .2 7 0 0.94 0.89 0.80
C2 4 4 - 0.0028 —0.67 0.19 0.43 1 .4 9 0 .2 8 0 0.87 0.86 0.77 ■
C3 3 4 - 0.0028 -0 .67 0.17 0.38 1 .8 4 0 .2 9 0 0.81 0.79 0.70
C4 5 4 - 0.0028 —0 .6 / 0.46 0.48 1 .2 4 0 .2 8 0 0 .90 0.88 0.79

* Flat-bar stiffen ers
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4 .4  RELIABILITY ANALYSIS OF STIFFENED PLATES

Some researchers have been applying the probabilistic methods to stiffened 
plates, but they only used the Advanced First Order Second Moment Method (AFOSM) 
to calculate the reliability index without investigating the accuracy. It is well known 
that the AFOSM is only accurate when the safety margin equation is linear. When the 
non-linearity in the limit state expression is large, the results from AFOSM are usually 
very poor. So, in practice, for a specific problem, a wise way to carry out reliability 
analysis is first to investigate the accuracy of the AFOSM and SORM (Second Order 
Reliability Method), then decide whether or not the results from the AFOSM are 
acceptable from an engineering point of view. Therefore the programs developed in 
Chapter 2 are used to evaluate the failure probability of stiffened plates.

The safety margin equation is expressed as follows:

M = ®0Xm<t>m- a s (4.67)

where

g o yield stress of the material
Xm model uncertainty factor
<j)m non-dimensional strength of the structure
Gs  external loads effect

4.4.1 Reliability Analysis of Unstiffened Plates

Six cases, whose plate slendernesses vary from 1.011 to 3.111, are selected to 
carry out the reliability analysis, in which both Faulkner’s and Guedes Soares’ strength 
formulae are studied. The values and probability distribution types of the basic 
variables used in the analysis are listed in Table 4.13. The reason for the selection is 
stated below.

141



Table 4.13: Values and types of the basic variables

Basic

variables

Prob.

distrib.

GOV

(%)

Mean Values
Casel Case2 Case3 Case4 Case5 Case6

b
(mm)

Normal l 800 700 600 400 320 260

t
(mm)

Normal 4 10 10 10 10 10 10

(N /  mm2 )

Log-
Normal

8 313 313 313 313 313 313

E

(N /  mm2 )

Log-
Normal

4 207000 207000 207000 207000 207000 207000

*n Normal 7 4.5 4.5 4.5 4.5 4.5 4.5

50 / 1 Log-
Normal

1.161 0.889 0.653 0.290 0.186 0.123

Xm Normal 10.1 1.031 1.031 1.031 1.031 1.031 1.031

(N /  m iO

Gumbel I 20.0 75 75 75 115 125 130

1) Width and thickness of the plate

It is widely recognised that the width of the plate has very low C.O.V. Some 
researchers treated it as a deterministic variable. It might be more reasonable to assume 
one percent of C.O.V., and a four percent of C.O.V for thickness of plate sounds 

reasonable.

2) Yield stress and Young’s modulus

There is not much argument for these two parameters. It is agreed that they have 
lognormal probability distributions with 8 and 4 percent of C.O.V. respectively.
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3) Residual stress

There are two possible ways to determine it. One way is to assume a constant

Faulkner (1975b) suggested mean values of ‘H of 4.5 - 6.0 with a coefficient of 
variation of 0.07 -0.10 for marine structures after fabrication and low values of 3.0- 
4.5 after shake-out at sea.

Recently Bonello et al (1991) presented another way to determine the Tl, based 
on the regression from experimental data. The ‘H is expressed as:

T!r is the mean value of if which is treated as deterministic and determined by:

Arj is a normal zero-mean basic variable with a standard deviation calculated by:

This means that the coefficient of variation of T| could reach 0.52 when b/t=100. It is 
quite high.

In the present study, T| is assumed to be constant with coefficient of variation of
0.07.

4) Initial imperfection 50 / 1

Faulkner (1973, 1975b) suggested that the mean value of 50 / t  could be 
obtained by:

value of T| across the b/t range, which leads to a rapid decrease of residual stress o r .

Tl = riR + Ari (4.68)

where

(4.69)

(4.70)
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—  = 0.120^1 
t V t ; for t <t (4.71)

Its coefficient of variation varies typically from 0.60 for stocky plates to 0.30 for 
slender plating.

Another model was derived by Bonello et al (1991). The 8 0/b is divided into 

two parts:

*0 = r s ° i + APHb _ b _R . b _ (4.72)

where

b R is the mean value and deterministic

(4.73)

b has a zero-mean and its standard deviation is:

8o
b

0 .6 7 5 -0 .0 0 4
b

I A/ s    U.D  /  J - U . U U 4  ---- , a  ~ a \A(s«/b) b U J J  (4-74)

In the present study Bonello’s model was adopted.

5) Model uncertainty factor

The model uncertainty factor is assumed to have normal distribution. Its mean 
and coefficient of variation are obtained from the previous section.

6) External loads effect

Because the long-term extreme values are usually used in ship design the Gumbel 
I distribution is adopted in this case. The mean values are determined in the way that
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the reliability index obtained in the calculation is near 3.0, which is the target reliability 
in most situations. The coefficient of variation of the external load effect is assumed to 
be 20%.

The results of the reliability analyses are presented in Table 4.14 and Figures. 
4.34 and 4.35. In the Table the ©i (i=l,2) are the relative errors of the AFOSM and 
SORM, which are evaluated by:

_  Pfi Pfm y-i
i  p X1UU (4.75)

where % i  (i=l,2) are failure probabilities of first and second order calculation. pfm is 
the value from Mote Carlo simulation.

From the Table and the Figures, it is found that:

• The results from SORM are much better than from AFOSM. The AFOSM and 

SORM underestimate the failure probability in all the cases. The largest relative 
error reaches -45.1% for AFOSM and -26.4% for SORM in the high plate 
slenderness when Guedes Soares’ formula is used.

• In most cases the relative errors of SORM are nearly half of those of AFOSM.

• The relative errors of reliability index are within ten percent for all the cases. The 
largest errors are 7.4% for AFOSM and 3.8% for SORM.
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Table 4.14: Results of reliability analysis of plating

Casel Case2 Case3 Case4 Case5 Case6

1st order 0.2113e-2 0.1751e-2 0.8076e-3 0.l034e-2 0.8l85e-3 0.1004e-2

2nd order 0.2830e-2 0.2284e-2 0.1026e-2 0.1601e-2 0.l056e-2 0 .1183e-2
■g Pf Simulation 0.3846e-2 0.306e-2 0.1432e-2 0.l506e-2 0.1168e-2 0.1324e-2
o

2 ei -45.1 -42.8 -43.6 -31.3 -29.9 -24.2
Vs
ok. e2 -26.4 -25.4 -28.4 6.3 -9.6 -10.6
C3
O

CO 1st order 2.861 2.920 3.153 3.080 3.149 3.089
t>
<u 2nd order 2.767 2.836 3.083 2.948 3.074 3.040
=3

o Pr Simulation 2.665 2.741 2.982 2.967 3.044 3.006

ei 7.4 6.5 5.7 3.8 3.4 2.8

^2 3.8 3.5 3.4 -0.6 1.0 1.1

1st order 0.6757e-2 0.3098c-2 0.104U-2 0.1241e-2 0.6499e-3 0.5321e-3

2nd order 0.8338c-2 0.3857e-2 0.1321e-2 0.1646e-2 0.8759e-3 0.7083e-3

■g
.C % Simulation 0.799e-2 0.366e-2 0.1228e-2 0.l536e-2 0.788e-3 0.652e-3
o

-15.4 -15.4 -15.2 -19.2 -17.5 -18.4
«
V.
t>
s

«2 4.4 5.4 7.6 7.2 11.2 8.6

1st order 2.470 2.737 3.078 3.026 3.216 3.273
-
esU. 2nd order 2.394 2.664 3.007 2.939 3.129 3.191

P~ Simulation 2.409 2.682 3.029 2.960 3.160 3.215

el 2.5 2.1 1.6 2.2 5.6 1.8

e2 -0.6 -0.7 -0.7 -0.7 -1.0 -0.7



4.4.2 Reliability Analysis of Stiffened Plates

Similarly, the reliability analyses of stiffened plates are carried out. Ten cases, 
shown in Table 4.15, are selected. The principle for such selection is the same as that 
in section 4.4.1. The strength of a stiffened plate is predicted by Faulkner’s method 
and the proposed method. The results are shown in Tables 4.16 and 4.17 and Figures 
4.36 and 4.37.

From the tables and figures, it is observed that:

• The failure probabilities obtained from SORM are much better than those from

AFOSM. The relative errors of the SORM are usually very small, the largest is 
3.7%, while the largest relative error of AFOSM is -22.8%.

• The differences in reliability index between the two methods are not remarkable.

• The AFOSM always underestimates the failure probability in these situations.

• The relative errors of Faulkner’s and the proposed method have the similar level
for AFOSM, but for SORM the former has better accuracy. A possible reason for 
this is that, in the proposed method, the deflection of plate is explicitly 
considered, and the deflection is assumed to be log-normally distributed in the 
reliability analysis. So the failure surface in the standard space might have 
stronger non-linearity in the latter case. This would lead to a larger error.
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4 .5  CONCLUSIONS

Stiffened plates are common components in ships and offshore structures. It is 
very important to accurately predict the strength of stiffened plates. Because the 
uncertainty in strength is very important in reliability analysis of a structure, it is crucial 
to find out the correct model uncertainty factor in the reliability analysis.

The behaviour of plate panels and stiffened plates are fully discussed. The 
existing strength formulae were then calibrated by a large number of experimental and 
numerical data. It is found that Guedes Soares’ formulae and Faulkner’s method are 
the best for plate panels and stiffened plates respectively. A new formulation for 
prediction of the strength of a stiffened plate was proposed which combines these two.

Furthermore, the reliability analyses of plate panels and stiffened plates were 
carried out in which the AFOSM, SORM and Monte Carlo simulation are applied. It is 
found that the results for failure probability from SORM are much better than those 
from AFOSM. In these cases the AFOSM always underestimates the failure 
probability. The largest relative errors of failure probability and reliability index reach 
-45.1% and 7.4% respectively. Considering the nominal nature of reliability index the 
difference between the two methods is so small that the values obtained from AFOSM 
are acceptable in practice.
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Fig. 4.1 Definition of stiffened plates (DNV.1982)
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Fig. 4.2 Residual stress in stiffened panels (Smith et al, 1991)
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( a )  REFERENCE AXES FOR PLATE ELEMENT

(b) TYPICAL INITIAL DISTORTION PPOFJLE

Fig. 4.3 Initial deformation of plating (Smith et al, 1991)
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Fig. 4.4 Effect of unloaded edge in-plane restraint on square plates 
in uniaxial compression (Frieze et al, 1976)
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Fig. 4.13 Effect of stiffener and plate slenderness (Carlsen, 1980)
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Fig. 4.14 Effect of stiffener and plate slenderness (Carlsen, 1980)
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Fig. 4.15 Effect of stiffener and plate slenderness (Smith et al, 1991)

162



l a )  A s /A  s  0 - 10

0-8

0-6

3-5

0-2

0-2 0*6 0-8 1-0 1-2

(b)  A$/A = 0*4

Fig. 4.16 Effect of ratio of stiffener to cross-sectional area (Smith et al, 1991)
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Fig. 4.17 Effect of top flange to web cross-sectional area (Carlsen, 1980)
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Fig.4.24 Effect of yield stress on compressive strength (Smith et al, 1991)
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Fig. 4.30 Results of Faulkner's method from experimental data

173



1.000

.xp
0.800-

0.600-

0.400

0.200-

0.000
0.000 0.250 0.500 0.750 1.0001.000 Pred

Xm

1.750

1.250

1.000

0.750

0.250- v = -0.403x + 1.293

0.000
0.000 0.500 0.7500.250 1.000 Pred

Fig. 4.31 Results of Imperial College's method from experimental data

174



1.000

00
0.600 do n

0.400-

0.200-

0.000
0.200 0.400 0.6000.000 1.000

1.750

1.250-

1.000

0.750-

0.250 y = -0.105x + 1.066

0.000
0.600 0.800 1.0000.4000.000

Fig. 4.32 Results of proposed method from experimental data

175



0-6

0-t

CK 0-6 
D A T A  C U R V E S

o-e

Fig. 4.33 Correlation of numerical and experimental results (Smith et al, 1991)
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CHAPTER 5 STRUCTURAL SYSTEM RELIABILITY
ANALYSIS OF PATRIA

5.1 INTRODUCTION

Due to the complexity of the geometry of SWATH, the simple beam theory 
could no more be easily applied to calculate even the primary stresses in the structure. 
It is necessary to carry out the finite element method to fulfil such work. Since the 
appearance of the finite element method, it has gradually been recognised as a reliable 
and powerful tool in the structural analysis and other fields. With the improvement of 
commercial FE software and the emergence of the high speed computer, it is possible 
to evaluate the stresses in a complicated structure. But because there is a considerable 
amount of work involved in the preparation of input data and post-processing of the 
obtained results, three dimensional computation is extremely time-consuming and 
costly.

Although some researchers have tried to model the whole ship by finite element 
method, the meshes used in their analyses were so coarse that the results from this 
work can only be used as the boundary condition in a finer mesh. For the purpose of 
getting realistic stresses in the structure, further finer finite element analysis should be 
carried out.

As can be seen in Chapter 2, structural system reliability analysis is a powerful 
tool, but it is computationally time-consuming and costly. During the system 
reliability analysis the finite element analysis is repeatedly carried out to 
automatically establish the safety margins at different stages. For a complex 
structure, such as SWATH, it is impossible to carry out system reliability analysis by 
directly using a three-dimensional model. So some simplifications have to be 
introduced.

Murotsu et al (1990, 1991) has applied the system reliability techniques to a 
SWATH ship. In the analysis the whole ship was modelled by spatial beam frames to 
which only the wave induced side force was applied. The transverse sections were 
modelled by a series of transverse beam elements and the lower hull, as well as the 
decks, were modelled by longitudinal beam elements. The critical failure paths were 
shown to be around the middle part of the ship.
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The aim of this chapter is to apply the system reliability techniques developed in 
Chapter 2 to a typical transverse frame in the middle part of a built SWATH ship. 
Firstly, the selected frame structure will be idealised by a one-dimensional model 
through a series of finite element analyses. Then a structural system reliability 
method will be applied to the one-dimensional model. The critical sections in the 
transverse frame are identified through this analysis.

5.2 MODELLING OF A TYPICAL FRAME SECTION OF PATRIA

5.2.1 Ship Particulars

The various particulars of the PATRIA are:

Displacement 169 tonnes
Mean draught, t 2.7 m
Lower hull length 31.05 m
Overall length 36.50 m
Lower hull diameter Hp> 1.8 m

Single strut
Strut width Ts 1.0 m
Submerged strut height Ds 1.1m

Box width B 13.0 m
Cwp (water plane coefficient) 0.80
Strut height Sh 1.65 m
Box depth Db 1.0 m

Section depth D 5.9 m

The dimensions of the ship are shown in Fig. 5.1.

5.2.2 Materials

The structure is made up of aluminium and the various allowable stresses in 
frame structure for structural design are as follows. This will depend on the location 
of the material, i.e. whether it is at welded zones or not.
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Alloy Bending (N/mm^) Shear (N/mm^)

AlMg4.5Mn(5083)NS8 145 82
AlMg4.5Mn(heated zone) 97 54
AlMgSi 1-T6(6082)HE30 145 81
AlMgSi 1-T6(heated zone) 70 40

A stress usage factor of 0.67 has been used in the design.

Stress usage factor = design stress /0.2% welded proof stress.

5.2.3 Three-Dimensional Model

A three-dimensional model, which represents the structures between frame 8- 
12 of PATRIA, is shown in Fig. 5.2. The model includes four frames and one 
bulkhead spaced at 1250 mm. Thus the length considered is 5 meters between frames 
8-12. Due to symmetry of the structure, only half hull extending to the mid-point is 
considered. Both the upper and lower decks are of 4 mm stiffened extruded sections, 
the stiffeners being spaced longitudinally at 333 mm approximately. Between frames 
and bulkhead, there are two transverse stiffeners of aluminium section bulb extending 
up to just outboard of the haunch. The arrangement of the stiffeners in the upper and 
lower deck is shown in Fig. 5.3, and the dimensions of all the stiffeners used in the 
structure are shown in Table 5.1. The geometric properties of the stiffeners are shown 
in Table 5.2, in which Kt is torsional constant, Iyy second area moment about y-axes, 
Izz second area moment about z-axes, A section area, SAy effective shear area in y- 
direction, SAZ effective shear area in z-direction.
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Table 5.1: Dimensions of stiffeners

Designation 365 243 184 161
Overall width (mm) 300 300 300 300
Plating thicknesses (mm) 3 4 4 6
Total depth (mm) 68 52 52 52
T-bar width (mm) 25 20 50 50
Web thickness (mm) 3 3 4 4
Flange thickness (mm) 5 4 5 9
Weight (kg/m) 3.27 4.05 4.61 6.82
Inertia (cm^) 59.05 24.85 53.14 75.7
Modulus (cm^) 10.71 4.99 12.20 18.31

Table 5.2: Geometric properties of stiffeners

Stiffener Type Kt(mm4) Iyy(mm4) Izz(mm4) A(mm^) SAy(mm2) SAz(mm2̂

161 12939 93950 78840 598 148 148

184 3001 52310 85720 422 172 172

243 822.7 2766 50090 212 132 132

Bulb Angle 22680 8899 270800 529 244 244

Type 3 853.3 213.3 21333.3 160 160 160

The model consists of QSI4 shell elements and BMS3 beam elements. The 
total element number is 4360, and total node number is 4558. The loads were applied 
to the lower hull of frames and bulkhead as concentrated loads.

Apart from the enormous amount of time spent on the preparation of input 
data and processing of obtained results, computation time at a PC 486 is around seven 
hours.

The deformation of the structure is shown in Fig. 5.4. Figures 5.5(a) and 
5.5(b) show the transverse stress distribution in the upper deck at mid-frame and 
bulkhead respectively. The transverse bending stresses remain more or less uniform 
inboard of the haunch, while the maximum occurs just after the junction of cross­
structure and inner haunch due to decrease in stiffness of deck in the absence of

1 8 2



transverse stiffeners. The stress decreases afterwards which follows the bending 
moment in the deck structure. The stress distributions in the lower deck at mid-frame 
and bulkhead are also shown in Figs 5.6(a) and 5.6(b).

Distributions of transverse stresses at various sections of x=-475, -2650,-3400, 
-4390, -5400, -6000, 6480 mm, as well as of y=-10, -500, -990, -1010, -1800,-2200, 
-2580, -2620, -3400, -4100 mm, are shown in Figs 5.7(a) to 5.7(r) respectively. 
From these Figures, shear lag effect can be investigated and the effective breadth at any 
transverse section can be calculated using the following formula:

b/2
a  x b  = | a  xdz max e J nom

-b/2

where a max and a nom are the maximum and average transverse stress respectively in 
the deck, b and be are the hull breadth and effective breadth at transverse section. The 
effective breadth at mid-frame in the upper deck is shown in Fig 5.8. It can be seen 
that there is not much decrease in effective breadth of deck inboard of haunch, while 
there is some effect at just outboard of haunch. An interesting phenomenon, which is 
worth mentioning here, is that the stresses of the upper deck outboard of haunch at the 
frames and bulkhead are less than those at mid-space in the Figs 5.7(d) and 5.7(e). To 
investigate this effect, another three-dimensional model, in which the transverse 
stiffeners in the decks were deleted, was created. It is found that this phenomenon is 
attributed to the discontinuity of transverse stiffeners in the decks.

Transverse stress distributions along inside and outside haunch at bulkhead 
are shown in Figs 5.9(a) and 5.9(b). The maximum transverse bending stresses at 
different areas are shown in Table 5.3 along with the results from two-dimensional 
and one-dimensional model for comparison, which will be discussed later. The 
equivalent stresses contours at longitudinal bulkhead are shown in Figs 5.10.
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Table 5.3: Maximum Transverse Bending Stresses at Different Areas

Location 3D Model 2D Model ID Model

End Frame Upper Deck 65.9

Lower Deck -60.3

Mid Frame Upper deck 55.3 51 51.8

Lower Deck -60.1 -61.1 -59.9

Bulkhead Upper Deck 59

Lower Deck -63

Inside Haunch (at midframe) 98/-59.0 132.6/-59.6 104.6/-54.9

Outside Haunch (at midffame) -98.5/59.3 -156.8/63.3 -151/65

Inside Strut -56.0 -55.06

Outside Strut 57.9 59.28

5.2.4 Two-Dimensional Model

Having obtained effective breadth from three-dimensional calculations, a two- 

dimensional model representating the mid-frame in the three-dimensional model was 

generated. The mesh was shown in Fig. 5.12, and the deflection in Fig. 5.13. The 

web plate was represented by membrane and the flange and associated shell by bar 

elements. Total element number is 467, and total node number is 375. Computation 

time is only about 10 minutes on a PC 486.

The key step in making the two-dimensional model equivalent to the three- 
dimensional model is to get the correct effective breadths ‘be’ at different parts in 
transverse direction. Under the condition that no three-dimensional results are 
available, the following empirical formula can be used to estimate the effective 
breadth.
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In which be is effective breadth, b full breadth, 1 spacing of the frames considered. The 
effective breadths at decks inboard and outboard of cross-structure, inner and out 
haunch, inside and outside strut, and lower hull were calculated by using the above 
formula and listed in Table 5.4. The locations in Table 5.4 were marked in Fig. 5.12. 
Details are shown in Das and Pu (1993).

Table 5.4: Effective breadths at different parts

Location By Formula By 3D results Error (%)

1 6058 6058 0

2 3580 5000 28

3 3862.5 4550 15

4 3493 3384 3

5 3052

6 1525

In addition, the effective breadths have been calculated based on the three- 
dimensional results, and listed in Table 5.4 for comparison. Unfortunately, the stress 
distribution can not be used to calculate the effective breadth at lower hull because the 
side force was applied as a concentrated force at the hull, so the stress concentration at 
these areas is strong.

From Table 5.4 it is shown that the empirical formula is accurate in the area 
where the stress level changes slowly, but not in the area where stresses change 
rapidly. Furthermore, the effective breadths were compared with the results in 
Stirling (1988). There is much difference due to the discrepancy in the geometry of 
the two structures.

In Figs 5.14(a) and (b) the transverse stress distributions along the top and 
bottom decks of the mid-frame are shown respectively. It is shown that there is good 
agreement of the stress distribution between the three- and two-dimensional model. 
The stresses at various positions of the structure for the two-dimensional are shown in 
Fig. 5.15, and the maximum value in Table 5.3.
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The results in Table 5.3 show that the stresses in decks and shell of haunch 
agree well, but there is much difference in the flange of the haunch. The difference 
was caused by adopting average effective breadth in the haunch area. In fact, as can 
be seen in Fig. 5.8(b), the effective breadth at the junction of haunch and strut is 
smaller than average. This means that the actual neutral line of the beam near the 
junction of haunch and strut is closer to the central point of the web plate. In other 
words, the actual difference between the stress at flange and shell is not as large as 
that shown in two-dimensional analysis. So, it may be said that the two-dimensional 
analysis exaggerates the stress concentration in haunch area. Whereas, on the whole, 
the two-dimensional results agree well with three-dimensional results.

5.2.5 One-Dimensional Model

A one-dimensional model was created to represent the mid-frame. Its mesh is 
shown in Fig. 5.16. There are thirty four two-dimensional beam elements. Total 
node number is thirty two. Computation time is about 2 minutes on a PC 486.

Strictly speaking, some parts of the frame are not suitable to use the beam 
elements to simulate, some techniques need to be adopted in the process. Because the 
junctions of the lower deck and the haunch and the junctions of the haunch and the 
strut are much stronger than the other parts, rigid ends elements (Hughes, 1983) 
should be used. Unfortunately, such elements are not accommodated in LUSAS, so 
in the present study, these parts were represented by beam elements with larger 
geometric properties. In addition, from Fig. 5.15, it can be seen that the strut behaves 
like a whole beam. Hence, the geometric shape was changed to a single line, as seen 
in Fig. 5.16. Furthermore, the properties of the elements 9, 10, 14 and 15 were 
assigned an extremely large value in order to simulate the real situation.

The moment diagram of the one-dimensional model is shown in Fig. 5.17. 
The stress distribution in the deck line is shown in Fig. 5.18. There is a good 
agreement between the two- and one-dimensional results. In addition, the largest 
stress value in the haunch is -151, which is close to the two-dimensional result. The 
deformation of the one-dimensional model is shown in Fig. 5.19. The deflections of 
several points of one- and two-dimensional models are listed in Table 5.5. The 
positions of these points are marked in Fig. 5.18.
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Table 5.5: The deflections of different points

Location Deformation
2D(u/v)(mm)

Deformation
lD(u/v)(mm)

Error(u/v)(%)

Point 1 0.24/-35.6 0.3/-33.4 20/6
Point 2 80.3/-23.7 65.2/-22.7 19/4
Point 3 58.6/-5.4 54.1/-9.1 8/68
Point 4 0.14/-9.62 0.25/-9.28 78/4

Point 5 13.4/-14.9 13.9/-21.6 4/45

5.3 LOADS

The loads considered in the system reliability analysis are wave induced loads, 
buoyancy, structural weight and superimposed loads including acceleration effects. 
Details of the calculation are presented in Chapter 3.

The statistical properties of the loads are listed in Table 5.6. How to apply the 
above loads is shown in Fig. 5.20. The boundary conditions are due to symmetry for 
central line node and restrained in vertical direction at ship side node to absorb 
unbalanced vertical force. All the loads are applied in the form of concentrated loads 
in order to reduce the total number of load cases, which is an important factor 
affecting the computational time.

Because the haunch and upper box parts are crucial parts in the SWATH the 
lower hull and strut were excluded from the system analysis.
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Table 5.6: Loads used in the analysis

Type of the loads Mean value(N) c o v

Side force (F10, F1X) 81636 0.2
Buoyancy (F9) 56567.5 0.2
Weight of upper part (Flf F2) 18798.8 0.0
Weight of lower part (F3) 18798.8 0.0
Vertical inertial force of upper part (F4 , F5) 1642.3 0.2
Vertical inertial force of lower part (F6^ 1642.3 0.2
Lateral inertial force of upper part (F7) 1149.8 0.2
Lateral inertial force of lower part (F8) 1149.8 0.2

5.4 SYSTEM RELIABILITY ANALYSIS OF THE ID-MODEL

The method developed in Chapter 2 is used in the present analysis. The 
configuration and element number of the one-dimensional model used in the 
calculation are shown in Fig. 5.20 (it is noted that the total number of elements in this 
model is different from the model shown in Fig. 5.16). The model in Fig. 5.16 was 
originally generated for the multiple criteria optimisation in Zanic et al (1993), where 
the wave induced load and buoyancy were applied in the form of instantaneous 
pressure distribution. In system reliability analysis all the loads are applied in the 
form of concentrated loads, so the element number can be further reduced. The 
parameters of the structure are presented in Table 5.7.

To simulate the stiff joints in the structure, the following elements, 9, 10, 14, 15, 
16, 17, 20 and 21 are assigned a very large geometrical properties. In order to 
investigate the effect of buckling strength, both cases, interaction of bending moment 
and axial force, interaction of bending moment and axial force including buckling 
effect are calculated. The results are shown in Table 5.8. The system reliability 
indices for both cases are 4.113 and 3.756 respectively, and the failure paths 
identified in the calculation for the case B+A are shown in Fig. 5.21, in which the 
number inside the circle is the number of critical section, the value above the circle is
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for that critical section, the value on the right of the last circle for a failure path is the 
reliability index for that failure path.

It is seen that the most critical section in the structure is section 35 which is in 
the haunch area, and the failure path with the highest failure probability is 35-37-36- 
38. It is interesting to note that all the sections included in the identified failure paths 
are in the haunch area. This is attributed to the fact that the dominant load in the 
structure is side force, the remaining components of the loads play a less important 
role.

Table 5.7: Parameters of the model

1
Element
No.

Cross-sect.
area
A^mm^|

Inertia
moment
I 2(mm4)

Resistance 
(mean value) 

R^(N • mm)

Coef. of 
correl.

P

1,2,3,4, 
5,6,7,8 0.4803e4 0.324e8 2.6207e7 0.0

11,12,13 1.177e4 0.2129el0 1.0073e9 0.0

18,19 0.650e4 0.3717e8 6.1716e7 0.0

22,23 1.400e4 0.285el0 1.2900e9 0.0

24,25,26 1.6120e4 0.3392el0 1.5179e9 0.0

1 8 9



Table 5.8: Results of SWATH

B+A* B+A+B*

Ps 4.113 3.756

Pfu 0.19498e-4 0.862625e-4

PfL 0.19498e-4 0.862622e-4

B+A for interaction of bending moment and axial force
B+A+B for interaction of bending moment and axial force including buckling
effect
pf u is the upper bound of the system 

pf L is the lower bound of the system 

Ps is the reliability index of the system

5 .5  CONCLUSIONS

Structural system reliability method is applied to a typical cross-deck frame in a
built SWATH ship. The interaction of bending moment and axial force including the
buckling effect is considered in the analysis. It is found that:

* The two-dimensional model is less time-consuming than the three-dimensional
model, and has good results when the effective breadth can be accurately obtained 
from the empirical formula. So for a conceptual study of a new type of design, it 
is suggested that a three-dimensional model between critical parts of the structure 
should be carried out first to establish the effect of shear lag for eventual feedback 
to a two-dimensional model. Thus a rational design procedure, both for the frame 
and bulkhead, can be established, which is less time consuming and cost 
effective.

* The most critical part in the typical frame is section 35 in the haunch area. The
finding is the same as that by the conventional deterministic method.

* The buckling has a moderate effect on system reliability in this particular case,
and should be considered in the analysis.

* All the critical sections included in the significant failure paths are in the haunch 
area. Hence it may be said that more attention should be paid to the haunch area.
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CHAPTER 6 STRUCTURAL SYSTEM RELIABILITY INDEX-BASED
OPTIMISATION OF SWATH SHIPS

6.1 INTRODUCTION

There are usually many design parameters to be calculated in a structural design 
process. The aim of a design is to achieve maximum safety with minimum cost. 
Conventional optimisation, which is generally used in practice, is a deterministic 
process (Arora, 1990; Olhoff, 1983 and Venkayya, 1978). It has been observed that 
the optimum structures obtained through deterministic optimisation do not necessarily 
have high reliability (Das and Frieze, 1982; Feng and Moses, 1986b). Hence it is 
likely that the failure probability of the optimum structure does not satisfy the 
reliability criteria. The optimisation based on reliability concepts will have more 
consistent safety in the structure system.

The object of reliability-based design is to achieve a uniform and consistent 
reliability within a structural system. The advantages of reliability-based design could 
be summarised as follows (Thoft-Christensen and Baker, 1982):

* it can treat the uncertainties or errors of all variabilities in strength and loading 
in a more rational way, and thus provide a better framework for safety 
evaluation of a structure

* it tends to lead to a balanced design and allows the engineer to check the design 
(or the code) against the influence of the stochastic parameters of resistance, 
loading variables, etc

* it provides a logical framework for the choice between alternative solutions with 
a subjective acceptance of the estimated probabilities as degree of belief in the 
reliability of the structure.

There are two types of reliability-based optimisation formulations, one is the 
component reliability index-based optimisation, another is the system reliability 
index-based optimisation. Most work in reliability-based optimisation in the last 
decades is based on the elemental reliability, such as Murotsu et al, 1983; Enevoldsen, 
1994; Madson and Hansen, 1991; Nikolaidis and Burdisso, 1988; and others. In the 
analysis the reliability indices, which are usually evaluated by AFOSM method, for 
all the critical elements are restricted to an acceptable range, eg. greater or equal to
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3.0. It may be said that this method could be applied to practical cases without many 
problems.

The progress in system reliability index-based optimisation is relatively slow, 
because the computational time is then a big problem. As mentioned in Chapter 2, the 
structural system reliability analysis itself is time-consuming, and much time is spent 
on searching for significant failure modes and on multi-normal integration (if it is 
necessary). During the process of optimisation, the design variables are changed in 
each iteration, and the system reliability index of the structure needs to be re­
evaluated. Because of the amount of calculation the method is only applied to 
relatively simple cases, although much effort has been made by researchers, such as 
Thoft-Christensen and Murotsu, 1986; Enevoldsen and Sorensen, 1993; Feng and 
Moses, 1986a and 1986b; Frangopol and Fu, 1989; etc.

In this chapter, various formulations for reliability-based optimisation and the 
possible problems associated with these formulations are discussed. A new algorithm, 
in which the component and system reliability requirements can be balanced, is 
proposed, and the typical frame of a built SWATH ship is optimised by the proposed 
method.

6.2 OPTIMISATION BASED ON ELEMENTARY RELIABILITY INDEX

The formulation for elemental reliability-based optimisation is expressed as: 

min C(d,X) (6.1)

subject to Pci ^  Pda (i=l,...,nc) (6.2)

d \  < d i <d'‘ i=l,...,n (6.3)

where C(d,X) is the objective function referring to cost or weight, d is design 

variable vector, X is random variable vector, pci is the reliability index o f ith critical 
section, pcia is the allowable reliability index for the ith critical section, dj' and d “ 

are the lower and upper bounds of the ith design variable.
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The safety margins of constraints in Eq.(6.2) could be transformed from the 
deterministic requirements (Nikolaidis and Burdisso, 1988; Thanedar and Kodiyalam, 
1992; etc) or established using a plasticity condition by a finite element method 
(Murotsu, et al, 1983). The reliability indices of the constraints could be evaluated by 
AFOSM method. Nikolaidis and Burdisso (1988) found that if the Mean Value First 
Order Second Moment is used the results might be wrong in some cases. The method 
developed in Chapter 2 is used in this case.

The optimisation problem in (6.1)-(6.3) can, in principle, be solved by any 
general non-linear optimisation method. But its efficiency and robustness are very 
important because in practice safety margins of constraints for a large structure are 
usually generated by the finite element method. It has been shown that the Sequential 
Quadratic Programming method has many advantages over the others (Arora, 1990; 
Tseng and Arora, 1988a and 1988b). The method developed by Schittkowski (1985) 
is a very efficient and robust algorithm, which is used in the present study. The first- 
order derivatives of reliability index of constraints can be calculated by the method 
suggested by Bjerager and Krenk (1989).

design point in standard normalised space.

|vm(u |  js already calculated in the AFOSM. The could be evaluated by a
<70

semi-analytical method, or a numerical method, or the techniques suggested by Santos 
(1991) and Zotemantel(1991).

6 .3  OPTIM ISATION BASED ON THE SYSTEM RELIABILITY INDEX

The formulation for this problem is expressed as:

dp _  1 3m

where M is the failure surface equation, 0 is a deterministic parameter and u is the

min C(d,X) (6.4)

subject to ps (d ,x )> p sa (6.5)
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(6.6)

Most of the early works in this aspect have a common limitation that the 
significant failure modes of the structure system are known a priori. In practice this is 
hardly the case for a complex structure. So it may be said that all these methods have 
only academic value. Various formulations are fully discussed by Thoft-Christensen 
and Murotsu (1986).

If the significant failure modes are generated during the optimisation, the 
calculation of system reliability is time consuming. Hence, if the formulations (6.4)- 
(6.6) are directly used in the optimisation, at each iteration the system reliability index 
needs to be evaluated again. Furthermore, the computation of first-order derivatives 
of the constraint is also repeated in each iteration. If they are computed by numerical 
differences, it is not only very computationally expensive but also inaccurate in many 
cases because of approximations during the process. Sometimes it could also cause 
convergence problems.

Another possible problem is that actually in the process of calculating system 
reliability, only significant failure modes are included in the evaluation. So at different 
iteration, the significant failure modes are, generally speaking, not the same. This does 
not meet the convergence requirement for optimisation. So the optimisation may not 
converge. Fortunately, in practice, the significant failure modes identified in system 
reliability analysis tend to be stable after a few iterations.

In the past decade, much effort has been made by some researchers to solve these 
problems. Murotsu et al (1994) established an alternative to the original formulation 
and is expressed as:

nun C(d,X) (6.7)

subject to (6.8)

(6.9)

where

Pip are the reliability indices of the ith failure mode
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Pipa arc the allowable values for the ith failure mode
Mp is the number of the failure modes.

This formulation is based on the fact that the system reliability index depends on 
the reliability indices of all significant failure modes and the correlation between them. 
It is observed that the ratio of the system reliability index to the minimum reliability 
index of significant failure modes varies within a very small range for a specific 
structure.

A failure mode is introduced in the analysis only when it is active. Such a 
technique could save computational time. Because only bending moment is considered 
in the analysis, the safety margin of a failure mode can be expressed by the safety 
margin of the last failed hinge. In this case, the safety margin is a linear combination of 
resistances and external loads, so the failure probability of a failure mode could be 
evaluated by AFOSM (see Eqs. 12&13 in Murotsu et al, 1994). In Eq. 12, the 
coefficient a i r k , b i j do not vary when the design variables are changed during the

optimisation. That means the coefficients for the safety margins of failure modes only 
need to be generated once during the analysis. It should be pointed out that the above 
mentioned good features do not exist when the interaction of bending moment and axial 
force including buckling effect is taken into consideration. In this case each failure 
mode should be modelled as a parallel system which consists of all the failed elements 
in that failure path.

A similar formulation is derived by Enevoldsen and Sorensen (1993) for more 
general cases. The original formulation was also transformed to the same form as 
above. The differences are: (1) the failure modes in the constraints are actually parallel 
systems. (2) The allowable values for constraints can be adjusted by the Constant 
Objective Function Method or the Bounds Iteration Method in such a way that the 
system reliability index meets the original requirement. This guarantees that the original 
system reliability index is within the feasible region at the price of more computation. 
In addition, a semi-analytical method was derived to calculate the first-order derivatives 
of the constraints in the analysis which is very attractive.

Takada et al (1993) presented a method which could be applied to space truss 
structures. The constraints are first linearized by the Taylor expansion, then the 
optimisation formulation is transformed to a linear programming problem, which can 
be solved easily by a general package.
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Liu and Moses (1991) advocated that, not only the system reliability index, but 
also the redundancy (e.g. system reliability of damaged structure) should be included in 
the formulation because the system reliability level could be very low after the failure of 
a member if the redundancy is not considered. A bridge was optimised by this 
formulation. Similar formulations were also used by other researchers such as Feng 
and Moses (1986a and 1986b); Frangopol and Fu (1989), but these formulations were 
only applied to relatively simple cases.

It may be said that a complete reliability-based optimisation formulation should be
expressed as:

min C(d,X) (6.10)

subjectto P c i - P c i a  (6.11)

Ps *  Psa (6.12)

Pr,s ^  pR ,sa (6.13)

d ^ d i S d V  i= l n (6.14)

where (3RfS and pR,sa are residual system reliability and its allowable value 

respectively. The reliability of some important components, system reliability, and 
residual system reliability are included in this formulation.

6 .4  PROPOSED ALGORITHM FOR SYSTEM RELIABILITY-BASED 
OPTIMISATION

As mentioned before, a complex structure usually possesses reserve strength. 
This means that the failure of a component does not result in the collapse of the 
structure. So it is widely recognised that the structural system reliability index should 
be considered in optimisation. But the application of this is limited in some simple 
structures.

On the other hand, if only the system reliability index is used in optimisation, it is 
likely that the reliability indices of some components are too small, say less than 2.0 or
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even lower. Leaving the component reliability indices in such small values might not 
be a good idea, and may in practice increase the need for repair costs. In addition, 
some components in a structure may be so important that the failure of these 
components could render the structure unserviceable - possibly even leading to 
progressive collapse associated with cracking, etc. Furthermore, directly solving 
formulations (6.4)-(6.6) is very time-consuming. Therefore it is necessary to find an 
alternative in which the component and system reliability could be balanced.

An algorithm in which both component and system reliability are considered is 
proposed. The possibility of using such an idea was first pointed out by Thoft- 
Christensen and Murotsu (1986), but it was not there fully developed.

The proposed procedure is as follows:

Step 1 Set initial allowable reliability indices in Eq.(6.2). Solve the problem (6.1)- 
(6.3)

Step 2 Calculate the structural system reliability of the optimum structure in Step 1

Step 3 Check if the system reliability meets the requirement. If yes, stop the 
calculation; if no, adjust the allowable reliability indices in Eq.(6.2), then 
repeat Steps 1-3 until the system reliability requirement is met

Adiustine the allowable reliability

The efficiency of the proposed algorithm depends on the way the allowable 
reliability is adjusted. A heuristic procedure is established. It is observed that the 
structural weight (or cost) is only affected by the active allowable reliability indices in 
Step 1 and the structural system reliability strongly depends on the reliability of the 
failure paths with the highest failure probability, which in turn rely on the components 
with the smallest reliability index. Based on the above facts, the procedure to adjust the 
allowable reliability indices is:

1) Select the sections which are in the active constraints in Step 1

2) Select the sections which are included in the failure paths with the highest failure
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probability

3) The sections, whose allowable reliability indices will be adjusted, are those 
appearing in both 1) and 2)

4) Put the selected sections into nine groups according to their current allowable 
reliability indices, then adjust the allowable reliability indices according to the 
desired direction.

In the program, the allowable reliability indices are adjusted in an interactive way 
so that designer’s experience and preference could be applied. The flow chart of the 
program is shown in Fig. 6.1.

6 .5  TARGET RELIABILITY IN THE OPTIMISATION

Determination of target reliability is a very important and difficult step in 
reliability-based optimisation. In the current rules only component reliability is 
considered and the system effect factor is set to one. The target reliability is determined 
by social and economic considerations. The social considerations are dominant for 
assessing the acceptable risks of collapse of primary structural components, which 
could have serious consequences to lives or the environment (i.e. with reference to the 
ultimate limit states). The economic considerations are dominant for assessing the 
acceptable risks of loss of quality of the structure, increased maintenance and repair

Group No.
1
2
3
4
5
6
7
8 

9

2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0
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costs, permanent or temporary interruption of normal service operations (i.e. with 
reference to the serviceability limit states).

Faulkner (1984) has studied the target reliability for various steel structures, 
which are shown in Fig.6.2. It is observed that the reliability for merchant ships and 
British frigates vary in a very large range. A value of p=3.0 for frigates and 3.0 to 4.0 

for merchant ships was recommended.

It should be mentioned that the above target values were determined neglecting the 
redundancy effect. It is found that a non-redundant structure would need a higher 
safety margin than a redundant one to achieve the same acceptable level of damage 
tolerance. So if the system reliability index is considered in optimisation, the 
requirements for component target reliability could be relaxed to some extent. As can 
be seen in Fig. 6.2, in rare cases the reliability index of a ship is below 2.0. Therefore 
a value of P =2.0 might be a reasonable lower limit for the proposed optimisation.

Unfortunately, so far there is not a general rule to select the allowable system 
reliability index. Designer’s experience and preference still play an important role in the 
process. Liu and Moses (1991) used 4.5 as the target system reliability index to 
optimise a bridge. From the results in Lee (1989) and Lee and Faulkner (1989), it is 
seen that when component reliability index is equal to 3.0 and n=1.5 (n is defined as 
the ratio of the mean system collapse load to the mean component collapse load), the 
corresponding system reliability index is 4.64, assuming the resistance and load effect 
are log-normally distributed. It seems that 4.5 is an acceptable value.

6 .6  APPLICATION TO A SWATH SHIP

A typical frame of a built SWATH ship is optimised by the proposed algorithm. 
Its particulars and loading applied on it were shown in Chapter 5. The weight of the 
structure is used as the objective function, and the fourteen constraints are that the 
reliability indices at fourteen critical sections, which are marked in Fig. 6.3, are greater 
than or equal to their allowable values. Also shown in Fig. 6.3 are the eight design 
variables di,...,dg, whose lower and upper bounds in optimisation are listed in Table

6. 1.

2 4 8



Table 6.1: Design variables and their ranges (mm)

Variables Low Bound Upper Bound
dl 3.5 6.0

d2 3.5 6.0

d3 800 1200

d4 3.5 6.0

d5 150 300

d6 4.0 8.0
d7 150 300

d8 4.0 8.0

The objective function in Eq.(6.1) is expressed as:

C(d,X) = p [ [ l250 x (dx + d 2) + d 3 x d 4] x 650 0

+ [200 x d 5 + d 6 x 7 5 8 .3 + 750]x  836.9

+[2 0 0 x  d7 + d 8 x 7 5 8.3 + 7 5 0]x 8 3 6.9} 15)

The safety margins for the fourteen constraints are automatically generated by 
computer in the similar way in Chapter 5. The value of 750 in Eq. (6.15) is the area of 
flange in the haunch part. At present the plasticity condition is used as the failure 
criteria of critical sections, and the interaction of bending moment and axial force 
including the buckling effect is considered in the analysis. Only the loads and 
material strength are treated as random variables, the others are deterministic. So the 
safety margins are expressed as:

Mi  = o y iwi (d )-C T x t  ( i= i  14) (6.16)

where:

C- = w -i (d) /  \ /  \

^ A ^ d ) s 1 g n 'Fx i ) 0 s l 9 n (M zi) (6.17)

Y is the factor to consider the effect of buckling.
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f 1 for tension
^ ~~ W yi  /  <7e i  for compression (6.18)

tfe i  is the buckling stress of the member

xt = (Fxi Fyi Mzi) is the nodal forces in the member. (6.19)

The nodal forces can be expressed by external loads as follows:

ml

Fxi —
j=l

ml

Fyi — 2^cij(^)fJj 
j=l

(6.20)

(6.21)

(6.22)

ml

Mzi = jtdjLj
j=l

where ml is the number of external loads.

so the safety margin in Eq.(6.16) is re-arranged as:

ml f / j\ 'I
M± =  a y i wi ( d ) -  l | ^ ^ t ^ y s i g n ( F x i )a i j (d) + s ig n (M z i )b i j (d ) |L j (g 23)

Then the reliability indices are calculated by AFSOM method. Because the first 
derivatives of the constraints are needed in the optimisation they are evaluated by the 
method suggested by Bjerager and Krenk (1989).

dp _ 1 3m

d9 ~ | v m (u *)| 96  (6.24)
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where 0 is a deterministic parameter, at present it is a design variable d^, k=l,8. u* is 

the design point in standard normalised space.

| V m ( u * ) |  i s  already calculated i n  AFOSM. From Eq.(6.16), the i s  equal to

3m 3w i (d) |9 C i  p t 9x t  I
3 0  y i _ 3 0  1 “ a e -  1  _ 3 0 _  1 <6 2 5 >

where:

^  = |y sign (F x i ) /A^Cd) 0 o | (6.26)

_ f e e l  9Fy i  ^M2j
39 I 39 30 39 I (6'27)

0W j(d) 0Ai (d) 0Fx i  ^Fy i  0M_i 
The derivatives ~ a e  ’ " a T ’ "ae  ’ and in Eqs*(6.25)-(6.27) are

evaluated by the numerical difference method. It is worth mentioning that, in 
calculating the last three derivatives, the finite element method needs to be called again, 
therefore much computational time will be spent on this operation.

In Step 1 the initial allowable reliability indices are assigned as 3.0, then the 
problem (6.1)-(6.3) is solved. The flow chart of the program is shown in Fig. 6.4 
where:

NLPQL a general non-linear mathematical programming program by a sequential 
quadratic algorithm developed by Schittkowski (1985)

NLFUNC a user supplied subroutine for calculating the objective and constraint 
functions at the given design variables

NLGRAD a user supplied subroutine for evaluating the gradients of objective and 
constraints at the given design variables

MOMENT for calculating the geometrical properties of a I section
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FEM the general finite element program, which is used to generate the safety
margins of constraints

AFOSM advanced first order second moment method, which is used to evaluate
the reliability indices of constraints.

The optimum values for eight design variables are shown in Table 6.2. The 
convergence history is shown in Fig. 6.5. It is observed that only constraint 14, which 
is shown in Fig. 6.3, is active, constraint 13 is close to zero (0.21), the other 
constraints are much greater than zero.

Table 6.2: The optimum structure in Step 1

Design Variable Weight

d l d2 d3 d4 d5 d6 d7 d8

Original 4.85 4.85 1000 4 200 6 200 6 487.7

Optimal 3.5 3.5 1000.5 3.5 213.9 7.53 202.8 5.83 429.6

In Step 2 the system reliability of the optimum structure in Step 1 is evaluated 
by the method in Pu and Das (1994). The system reliability index of the optimum 
structure is 4.712, which is higher than that (3.756) of the original structure.

Other important information obtained from the analysis is the sensitivity factors 
, which clearly show how the reliability index of each critical section varies with the 
change of each design variable. The sensitivity factors of the optimum structure are 
listed in Table 6.3, and are defined as the first derivatives of constraints to design

f  An \
variables

dP;
j = 1,...,14, k =

dd
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Table 6.3: The sensitivity factors of the optimum structure

Constn

No.

Design Variables

dl d2 d3 d4 d5 d6 d7 d8

1 0.9856 0.9856 0.0124 0.4054 <io-10 <10-10 <io-10 <10'10

2 0.9856 0.9856 0.0124 0.4054 <10-10 <10"10 <10"10 <io-10

3 0.9856 0.9856 0.0124 0.4054 <10_1° <10'10 <10'10 <10-10

4 0.9856 0.9856 0.0124 0.4054 <10‘10 <io-10 clO-10 clO-10

5 0.9900 0.9900 0.0125 0.4002 0.0026 0.0086 -0.0008 0.0018

6 1.0199 1.0199 0.0129 0.4122 0.0027 0.0092 -0.0010 0.0021

7 1.0199 1.0199 0.0129 0.4122 0.0027 0.0092 -0.0010 -0.0021

8 1.0615 1.0615 0.0134 0.4289 0.0029 0.0103 -0.0011 -0.0024

9 1.0615 1.0615 0.0134 0.4289 0.0029 0.0103 -0.0011 -0.0024

10 1.1073 1.1073 0.0143 0.4440 -0.0013 -0.0049 0.0005 0.0007

11 -0.1795 -0.1795 -0.0039 -0.0483 0.0159 0.0463 0.065 0.320

12 -0.0618 -0.0618 -0.0013 -0.017 0.0177 0.066 0.0408 0.225

13 0.0987 0.0987 0.0022 0.0268 0.0351 0.0892 0.0073 0.009

14 0.0695 0.0695 0.0015 0.0189 0.0379 0.1084 0.0091 0.029

From Table 6.3, it is seen that:

* The design variables d^, k=5,..,8, have hardly influenced the reliability index of

the upper box part, so the optimisation of this part could be carried out 
separately.

* The design variables d^, k=l,...,4, have relatively small effect on the haunch 

area, so the optimisation of the haunch part can also be carried out separately 
without much loss of accuracy.

* The most efficient way to increase the safety in the haunch area is to increase the 
thickness of the side shell in this part.

If the target system reliability index is set to be 4.5, the optimum structure could 
be accepted as the final optimum structure, because the present system reliability 
index is 4.712, which is very close to the target. Of course, a closer value of system 
reliability index can be achieved by adjusting the allowable reliability index at section 
14. Nevertheless in practice, it is not really worth carrying out more calculations to 
level out such small differences.
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6 .7  CONCLUSIONS

Various reliability-based optimisation formulations are discussed in this chapter. 
Although it is recognised that the formulation (6.10)-(6.14) might be the most rational 
one in the sense that the safety levels of important components, system reliability and 
residual system reliability are considered, nevertheless the application of these 
formulations is still at its early stage, computational time being the main problem. For 
this reason a new algorithm in which the component and system reliability indices could 
be balanced is proposed, and it is applied to the optimisation of a typical frame structure 
in a built SWATH ship. It is found that:

* The algorithm works very well. Computational time in the analysis is not a
problem because the system reliability calculation is only applied to the optimum 
structure in Step 1.

* The original design is quite close to the optimal one, so the margin for
optimisation is small. It is interesting to note that the system reliability index for 
the original structure is only 3.756, while it is 4.712 for the optimum structure, at 
the same time the optimum one is 13% lighter than the original one.

* The haunch area is confirmed as the critical part. From the values of design
variables of the optimum structure, it is observed that increasing the thickness of 
the side shell is the most efficient way to improve the safety in this area. Because 
the dimensions of the flange were fixed during optimisation, their effect on the 
safety is not investigated in this study. The dimensions of the flange might be an 
important factor influencing the safety because increasing of the area of the flange 
would shift the neutral axis toward the flange so that the maximum stress in the 
flange would decrease.

On the whole, reliability-based optimisation is a powerful tool to achieve efficient 
designs.
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1 GENERAL

The primary objective of the current research presented in this thesis was to 
develop a rationally-based structural design procedure for SWATH type vessels by 
applying reliability analysis and reliability-based optimisation techniques. Due to the 
limited availability of documents about existing SWATH ships, the analyses were 
only applied to one built SWATH, the M.V. PATRIA.

Firstly, the primary loads for PATRIA were calculated by a theoretical method. 
The response amplitude operators of loads in regular waves were calculated by a 
three-dimensional oscillating source distribution method in association with linearised 
potential theory. The various extreme design values were then evaluated by spectral 
analysis.

Having determined the primary loads acting on PATRIA, a series of finite 
element analyses was carried out aimed at increasing the understanding of the 
structural behaviour of the ship, and establishing a simplified model for system 
reliability analysis and multiple criteria optimisation.

At the component level the existing ultimate strength formulations for plate 
panels and stiffened plates were discussed and calibrated by using a considerable 
amount of experimental and numerical data. A new algorithm for stiffened plates was 
proposed. The reliability of plating and stiffened plates was then evaluated by using 
AFOSM, SORM and Monte Carlo simulation methods to investigate the accuracy of 
these methods for these types of limit states equations.

At the system level the conventional p-unzipping method was extended by 

introducing a discarding process in searching for significant failure modes of the 
structural system. The extension could save computational time when the combined 
load effects are considered in the analysis. The method was then used to analyse a 
typical frame in PATRIA, the critical parts and possible failure paths were identified 
through the analysis.

260



Finally, the reliability-based optimisation techniques were used to achieve an 
efficient design. Various reliability-based optimisation formulations and their 
associated problems were first discussed. An algorithm, in which the component and 
system reliability indices could be balanced, was proposed. The proposed strategy 
was then applied to optimise the one-dimensional model for the transverse cross-deck 
frame in PATRIA.

The function of this final chapter is to summarise the principal conclusions in 
the present study and to identify the possible promising research areas.

7.2 PREDICTION OF PRIMARY LOADS

Prediction of primary loads is a very crucial step in the structural design 
process. To bridge the gap between hydrodynamicists and structural engineers, 
several important issues related to primary loads were discussed. Having calculated 
the response amplitude operators in regular waves by using MARCHS (Chan, 1990), 
a spectral analysis program was developed to evaluate the various design extreme 
values, and an ’equivalent wave system' was adopted to generate the instantaneous 
hydrodynamic pressure distributions, which could be directly used in finite element 
analysis. This was demonstrated in Zanic et al (1993). Based on this analysis, the 
following conclusions may be drawn:

* Although no experimental data is available to verify the analytical results, good 
agreement exists between the calculated side force and that used by the FBM 
Marine Company when designing PATRIA.

* The largest side force occurs in beam seas at zero forward speed. The wave 
length, at which the largest RAO of side force occurs, is about four times the 
width of the ship. This is the dominant load component in structural design.

* Although the side force in this beam sea is 2.76 times of that in the equivalent 
bow quartering sea, nevertheless the yaw splitting moment in the bow quartering 
sea is 6.9 times of that in the beam sea. So it is possible that the combination of 
the loads in bow quartering seas is also as critical as in beam seas.
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* The largest pitch torsional moment, which is relatively small, also occurs in 
beam seas. So it is not so important as the side force and yaw splitting moment.

* The longitudinal distribution of the hydrodynamic forces shows that the 
interaction between the two hulls is strong, and the uniform distribution of side 
forces suggested by Sikora and Dinsenbacher (1990) is not suitable to this case. 
A sinusoidal distribution is preferred based on the results.

* Load combinations suggested by Chalmers (1989) seem to be too conservative 
in this case. More cases need to be evaluated to establish a simple and accurate 
combination approach for design loads.

7.3 ULTIMATE STRENGTH AND RELIABILITY ANALYSIS OF PLATE 
PANELS AND STIFFENED PLATES

Plate panels and stiffened plates are also common structural elements in 
SWATH ships as in mono-hull ships. To efficiently design these components is a 
prerequisite for achieving rational design of the whole ship. The model uncertainty 
factor is always one of the important factors which affect the reliability level of 
structures (Frieze, 1986; Faulkner, 1991). To select the best ultimate strength 
formulae (in the sense of small bias and coefficient of variation of the model 
uncertainty factor) for panels and stiffened plates, the existing strength formulae were 
calibrated by using a considerable amount of experimental and numerical data. A 
new approach for stiffened plates was proposed by incorporating Guedes Soares' 
formula for plate panels into Faulkner's formula for stiffened plates. Furthermore 
reliability analysis of panels and stiffened plates were carried out by AFOSM, SORM 
and Monte Carlo simulation methods. It was found that:

* Guedes Soares’ formulae and Faulkner’s method are the best for plate panels 
and stiffened plates respectively. The proposed formulae have only more or less 
the same accuracy as Faulkner's original approach.

* The results for failure probability from SORM are much better than those from 
AFOSM. In these cases the AFOSM always underestimates the failure 
probability, and the largest relative errors of failure probability and reliability 
index reach -45.1% and 7.4% respectively. Considering the nominal nature of
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the reliability index the difference between the two methods is so small that the 
values obtained from AFOSM are acceptable in practice.

7.4 STRUCTURAL ANALYSIS AND SYSTEM RELIABILITY ANALYSIS 
OF PATRIA

The finite element analyses of PATRIA were carried out to increase the 
understanding of the structural behaviour and establish a simplified model for system 
reliability analysis. Various models at different level were generated.

In structural system reliability analysis the combined load effect was considered. 
Because buckling is a common failure mode in SWATH ships the interaction of 
bending moment and axial force including buckling effects is considered in the 
analysis. In this case the safety margin equation of the last formed plastic hinge can 
no more be used as the safety margin equation of the failure path. So an efficient 
multi-normal integration method must be used to establish the 'equivalent safety 
margin equation' for a failure path (parallel system). In the study, Tang and Melcher's 
algorithm (1987) was adopted because of its accuracy and efficiency, and its 
intermediate results can be fully used in the discarding process in the extended p - 
unzipping method. The developed method was then applied to a typical frame which 
is idealised by a one-dimensional model of PATRIA.

Through these calculations it was found that:

* The two-dimensional model is less time-consuming compared to the three- 
dimensional model, and has good results when the effective breadth can be 
accurately obtained from the empirical formula. So, for a conceptual study of a 
new type of design, it is suggested that a three-dimensional model between 
critical parts of the structure should be carried out first to establish the effect of 
shear lag for eventual feedback to a two-dimensional model. Thus a rational 
design procedure, both for the frame and bulkheads, can be established which is 
less time consuming and more cost effective.

* The most critical part in the typical frame is the section in the haunch area. This 
finding is the same as that by conventional deterministic methods.
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* The buckling has a moderate effect on the system reliability index in this 
particular case, and should be considered in the analysis.

* All the critical sections included in the significant failure paths are in the haunch 
area. Hence it may be said that more attention should be paid to design in this 
area.

It should be pointed out that the bulkheads and their associated plating are the 
main structures to resist the side forces. Evaluating the system reliability of 
bulkheads and optimising them would be even more significant than that of frames. 
Unfortunately, these present techniques can not do this so far.

7.5 RELIABILITY-BASED OPTIMISATION

Having assessed various reliability-based optimisation formulations, a new 
algorithm was proposed. In this method the reliability requirements of critical 
components and the structural system are dealt with separately. This avoids repeated 
calculations of system reliability in conventional methods.

The method was used to optimise the typical cross-deck frame in PATRIA. It 
may be said that:

* The algorithm works very well. Computational time in the analysis is not a
problem because the system reliability calculation is only applied to the 
optimum structure in step 1.

* The original design is quite close to the optimal one, so the margin for
optimisation is small. It is interesting to note that the system reliability index 
for the original structure is only 3.76, while it is 4.71 for the optimum structure, 
at the same time the optimum one is 13% lighter than the original one.

* The haunch area is confirmed as the critical part. From the values of design
variables of the optimum structure, it is observed that increasing the thickness of 
the side shell is the most efficient way to improve the safety in this area. 
Because the dimensions of the flange were fixed during the optimisation, their 
effect on the safety is not investigated in this study. The dimensions of the 
flange might be an important factor influencing safety because increasing the
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area of the flange shifts the neutral axis toward the flange so that the maximum 
stress in the flange would decrease.

7.6 RECOMMENDATIONS FOR FUTURE STUDY

The Department in the University of Glasgow has been actively involved in 
research of SWATH ships since the early 80's. Much experience in both prediction of 
primary hydrodynamic loads and preliminary structural design has been acquired. It 
is significant to integrate all the existing programs within the department as a 
comprehensive and sophisticated program, which can be used to analyse a structure in 
the detail design stage. This could greatly increase the synthesis capacity of the 
Department. The organisation of the program is shown in Fig. 7.1. Most of the 
modules in the proposed program are ready for integration (only interfaces are 
expected). With the completion of an ongoing research project, Hydro-Structural 
Design of SWATH Ships, it is likely that the slamming force module will be ready 
for use soon.

In all the existing structural system reliability methods many assumptions are 
introduced in the analysis. It is necessary to investigate the errors which result from 
these assumptions and the applicable ranges of these methods. Karamchandani
(1990) has made a good start, but further work needs to be done on this aspect.

Most practical structures experience cyclic loads in their life span. It is 
important that dynamic effects are considered in the analyses. The response surface 
method combined with importance sampling techniques might be a promising method 
to carry this out. In addition, this method can be used to analyse structures with plate 
elements.

As mentioned before, computational time for reliability-based optimisation is 
still a problem when the structure is complicated. How to increase the efficiency of 
the algorithm needs to be further explored. It is observed that much computation is 
spent on the calculation of the objective function and constraints as well as their 
derivatives. Deriving some analytical or semi-analytical methods to evaluate the 
derivatives of the constraints is obviously a promising research area. On the other 
hand, fuller use of the rapidly developing computer techniques is another way to 
improve the efficiency.

265



It is noted that the calculation of the objective function and constraints are 
independent operations, so parallel processing techniques could easily be applied to 
this case. Assuming that the objective function and M constraints are sent to M+l 
processors during the analysis, at least (M+l)*70% ‘speed-up’ could be achieved.

There are (M+1)*N derivatives to be calculated where N is the number of 
design variables. If numerical difference is used to evaluate the derivatives, (M+1)*N 
function calls are needed. Hence a total of (M+1)*N*70% ‘speed-up’ is expected in 
these calculations. This represents a huge saving in computational time.

In addition, during the calculation of derivatives, the finite element package is 
called once for each of the N design variable. So the method suggested by Santos
(1991) and Zotemantel (1991) can be used to save computational time in this case.

7.7 CLOSING REMARKS

The study presented in this thesis aims at developing a rationally-based 
structural design procedure for SWATH type vessels by applying reliability methods 
and reliability-based optimisation techniques. The structural system reliability 
analyses and reliability-based optimisation of a typical frame of a built SWATH were 
successfully conducted, and some useful information was obtained through the work. 
Due to the limitation of the present techniques, the bulkheads, which are the main 
components resisting the side force in SWATH, can not be analysed. Hence the 
results presented here are far from complete. Further work needs to be done. It is 
hoped that the work presented within this thesis will be useful in pursuing further 
research and in the development of SWATH technology.
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