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Abstract

Longitudinal and lateral surface superlattices were fabricated on GaAs 

heterostructures. Most devices were made on shallow materials to exploit the 

proximity of the two dimensional electron gas to the surface, although some 

devices were fabricated on deeper material to compare their behaviour with the 

results obtained from devices fabricated on shallow material. The superlattices 

were fabricated on Hall-bars enabling four probe measurements to be made. 

Measurements were made at temperatures of 20 K, 4.2 K or 1.5 K depending on 

the requirement of the experiment and the measurement system used.

Longitudinal superlattices were fabricated using negative resist techniques. In this 

process a periodic array of resist strips was deposited along the channel of a Hall- 

bar parallel to the direction of current flow. An overlying Schottky gate was 

deposited on the array. Bias was applied to confine the electrons electrostatically 

under the resist. As negative bias is further increased the channels of electrons 

become squeezed and should show evidence of one dimensional quantum 

confinement, although no evidence of one dimensional confinement was seen in 

the samples fabricated in this work. The values of negative voltage which define 

the points at which electrons are depleted from the ungated areas (the cut-off 

voltage) and gated areas (the threshold voltage) are compared to theory. It was 

found that, due to complicated factors inherent in the fabrication process, the data 

did not agree well with models which predict the cut-off voltage.



Lateral surface superlattice samples were fabricated using positive resist. This 

technique leaves strips of metal which cross the Hall-bar channel perpendicular to 

the direction of current flow. Superlattices were fabricated with periods down to 

60 nm, the smallest period yet reported. Using lateral superlattices allows an 

estimation of the potential in the 2DEG induced by the surface gate, from the 

analysis of a series of oscillations in the longitudinal magneto-resistance 

measurement which are known as commensurability oscillations. The variation of 

this induced potential with gate bias was also studied. This was found to vary 

depending on the type of barrier material used. Shallow AlAs barrier material has 

a layer of screening electrons around the donors. This screening layer reduces the 

induced potential in the 2DEG. This layer of screening electrons is not present in 

shallow AlGaAs barrier material so larger induced potentials are observed using 

these samples. A secondary aim, measuring the smallest period superlattices, was 

to enter a purely quantum regime where new physical effects are predicted. The 

devices with the smallest periods did not show any evidence of quantum effects 

and the possible reasons for this absence are discussed.

After the failure of the longitudinal negative resist samples to give consistent 

values of cut-off voltage, a third type of gate structure was fabricated, called a 

finger superlattice. This finger structure is similar to a lateral superlattice but was 

designed so that the strips of metal did not completely cross the channel, which 

allows access to the bulk regions between the metal fingers. These samples were 

fabricated using positive resist techniques and were used to compare the cut-off 

voltages with two theoretical models. The theoretical models differ in the 

boundary conditions assumed at the ungated areas, which lead to quite different 

results. The longitudinal superlattices did not give conclusive evidence of which 

model was correct because of the unquantifiable effect of gate bias through the 

resist ribs. The finger superlattices were fabricated to overcome this problem, and 

offer strong evidence that one model, the ‘frozen surface’ model, correctly 

describes the behaviour of ungated GaAs at low temperatures.
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Chapter one.

Introduction and outline.

1.1 Introduction
This thesis will present experimental work carried out in Glasgow University from 

October 1992 until October 1995 using shallow heterostructures with patterned gates 

to modulate the two dimensional electron gas. Most of the work carried out was a 

continuation of experiments begun by previous students in Glasgow, M. Kinsler with 

longitudinal superlattices and R. Cusco with lateral superlattices.

In conventional heterostructures the conducting layer is about 100 nm from the 

surface. Material recently grown in Glasgow has the conducting layer only 28 nm 

from the surface. It was hoped to exploit this development in two ways, firstly by 

increasing the magnitudes of the potentials in the conducting layers and secondly 

bringing the 2DEG closer to the surface allows devices with feature sizes of less than 

100 nm to be investigated.

Transport by electrons in multiple narrow conducting channels was investigated. 

Exploiting the increased potential from the surface gate on shallow materials, it was 

hoped to observe evidence of quantum transport in the wires. Devices were fabricated 

by use of high resolution negative resist (HRN) ribs with an overlying Schottky gate. 

A negative voltage applied to this gate should define narrow channels of electrons 

underneath the strips of resist. The existence of quantum transport is probed by 

orthodox conductance and capacitance techniques, and by equivalent measurements in 

a magnetic field. Because of problems inherent in the fabrication process for HRN rib 

longitudinal wires, a fundamental question remained unresolved after the completion 

of the longitudinal wire work. This problem concerned the surface condition of 

ungated areas at low temperatures. There are two models describing the surface
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condition, known as the ‘pinned’ and ‘frozen’ models, and these predict rather 

different experimental behaviour. However, it was not possible to differentiate 

between them unambiguously because the gate on top of the resist strips has some 

unquantifiable effects. A side elevation of a wire formed by HRN ribs is shown in fig 

1.1a).

Devices were also fabricated with positive resist using a large period lateral surface 

superlattice where the metal strips do not completely cover the channel (there is a ten 

micron gap left down one side of the channel leaving the areas between the fingers 

open to the bulk area of the 2DEG). This type of gate is called a side gated finger 

superlattice. A side elevation of a wire formed by two fingers of a side gated 

superlattice is shown in fig 1.1b).

HRN

Gate

GaAs ^  
heterostructure

Fig 1.1 a) An electron wire 
formed by HRN ribs with an 
overlying gate. A negative 
voltage applied to the gate 
depletes electrons from under 
the areas where the gate is in 
contact with the surface

GateGate

GaAs ^  
Heterostructure,

Electrons in the 
2DEG

Fig 1.1 b) An electron 
wire formed by two strips 
of gate metal. A negative 
voltage applied to the gate 
depletes electrons from 
under the gates first, 
forming the wire

Experiments on electron transport under small period lateral surface superlattices 

lying completely across the channel were also performed. Magneto-resistance 

measurements on these devices allow a determination of the magnitude and variation 

of the potential induced by the gates with gate bias. The potential could be determined 

using three different features in the magneto-resistance data. These were (i)
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commensurability oscillations, (ii) a low field peak which defines the start of the 

commensurability oscillations and (iii) a quadratically increasing background 

magneto-resistance. A comparison of the potentials obtained from deep and shallow 

materials and the attenuation mechanisms present in different barrier materials will be 

made. An additional motivation of these experiments was to reduce the period of the 

superlattice to a small enough value to observe new quantum effects. When the 

magnitude of the Fermi wavelength is equal to half the period of the superlattice, 

quantum considerations become important and it has been widely predicted that new 

quantum mechanical structure will be observed. The period of the lateral surface 

superlattice required for these new effects is of the order of 50 nm which is at the limit 

of current technology. Using an electron beamwriter it was possible after many 

attempts to fabricate surface superlattices on devices with a periodic structure of 

60 nm. Data from these devices will be presented in this work.

1.2 Thesis outline.
In Chapter 2 fabrication techniques will be explained. The wafers were grown in the 

Dept, of Electronics and Electrical Engineering in the University of Glasgow. Chapter 

2 then explains the different device structures used in the experiments and the 

fabrication steps used to make the different gate geometries, some of which are at the 

limits of current technology, will then be discussed.

Chapter 3 will outline the different experimental techniques and apparatus used to 

make measurements. These involved cooling devices and making magneto- 

conductance, magneto-capacitance, and orthodox conductance and capacitance 

measurements in two cooling systems, an Oxford Instruments He4 cryostat with a 

variable temperature insert and a CTI Cryogenics closed circuit cryocooler, in the 

Department of Physics and Astronomy in Glasgow University.
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Chapter 4 gives the theory behind the behaviour of the layers used in the experiments. 

The layers used and the theoretical ideas are common to all the measurements made 

with the different periodic gate configurations. Chapters 5 and 6 deal with the 

experiments carried out in this work, Chapter 5 with experiments on longitudinal 

surface superlattices formed using HRN ribs with an overlying Schottky gate. An 

alternative design for the formation of longitudinal wires is then presented using side 

gated fingers. Chapter 6 presents experimental work using small period lateral surface 

superlattices. The layout of the two experimental chapters is similar. In an 

introduction, there is some theory specific to the chapter and predictions of what was 

expected to be observed in the measurements. The following section deals with the 

types and dimensions of material, gate structure and Hall-bar. The next section 

contains details of the measurements made and presents the experimental data and 

results. The last section contains a summary of the results, a discussion and 

conclusions. Chapter 7 collects the main conclusions of the thesis.

1.3 Review

1.3.1 Introduction

Work in this thesis is a continuation of previous work by R. Cusco [3] on lateral 

superlattices and by M. Kinsler [1] on longitudinal wires formed by use of negative 

resist. In her work, Kinsler found evidence of ID quantisation in one device fabricated 

on deep material. Cusco showed that the magnitude of the potential which modulates 

a two dimensional electron gas from a lateral surface superlattice could not be 

explained by electrostatic perturbation alone, using either the pinned or frozen models. 

He found that the model that gave a more accurate representation of the magnitude of 

the potential observed was based on a combination of potential induced by mechanical 

strain and electrostatics.
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1.3.2 Electrons in narrow quantum wires. Experiments of M.

Kinsler.

Kinsler set out to measure quantisation in narrow multiple quantum wires on deep 

heterostructures. The 2DEG (two dimensional electron gas) in these heterostructures 

was approximately 100 nm from the surface. This material was of very high quality 

with electron mobilities of greater than 100 m2V '1s '1.

The devices were fabricated in a form similar to field effect transistors but with a 

periodic array of resist ribs under the gates. A diagram of the form of a device is 

shown below in fig 1.2.

420pm

strips of resist ____ • , • _  u
■(400nm 600nm wide)  «oUnon Bench

P I  ohmic contact Q  gate

Fig. 1.2. Diagram of the device structure used by M. Kinsler in her 
experiments on multiple quantum wires.

Resistance, capacitance, magneto-resistance and magneto-capacitance measurements 

were made on a large number of devices. Only one device showed evidence of one

5



dimensional quantum confinement in a measurement of magneto-resistance. This is 

shown below in fig 1.3

20

10

o
320

1/B(1/T)

®—  Vg=0V 
*—  Vg=-0.6V 
*—  Vg=-0.85V

Fig 1.3. M. Kinslerls experiments with longitudinal wire devices showed 
deviation in the Shubnikov de Haas minima vs. Landau index traces. The 
sample was A216, bulk doped with an AlGaAs barrier and with the 2DEG 
100 nm below the surface.

M. Kinsler also found that that the voltage where the electrons were removed from the 

areas under the resist (the cut-off voltage) could be best described by a model [2] 

known as the ‘pinned’ model. M. Kinsler found that the more physically realistic 

model known as the ‘frozen’ model gave poorer agreement. These models are 

discussed with reference to the present work in section 5.1.3.1.
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1.3.2 Potential modulation under lateral surface superlattices. 

Experiments of R. Cusco. And co-workers [3,4].

R. Cusco et al [3,4] made a systematic analysis of the origin and form of the potential 

under lateral surface superlattices. He found that the potential is due to a combination 

of the effects of electrostatics and mechanical strain. R. Cusco then made a study of 

the dependence of the potential on gate bias, the period and the mark to space ratio of 

the gate array. The devices used by Cusco et al. were of a shallow type where the 

electrons were roughly 35 nm from the surface, and a deeper type where the electron 

gas was roughly 100 nm from the surface. The shallow AlAs barrier devices had a 

higher mobility than is expected for an electron layer so close to a donor layer. This is 

due to a layer of electrons round the donors which screen the conducting layer from 

the full random potential of the donors. The superlattice arrays were prepared using 

electron beam lithography and measured at low temperatures (of the order of 4.2 K) 

using standard a.c. lock in techniques. A range of superlattice periods were measured. 

It was found that the strain model could account for the presence of second harmonics 

observed in the magneto-resistance measurements, although the agreement with the 

magnitudes of the perturbation was less good. The variation of potential with gate bias 

was also studied shown in fig. 1.4 below. Fig 1.4 shows the variation of the perturbing 

potential with gate bias for four devices.

-  A685 (100nm) 
A685 (120nm) 
A685 (180nm) 
A601 (270nm)

u.Ui
>0»

0.01

0.001 0 0.25-0.75 -0.5 -0.251
Gate voltage

Fig 1.4. Variation of potential with gate bias for four devices measured in 
Glasgow. The samples used for these experiments were shallow AlAs barrier 
materials. From [4].



The results show the magnitude of the potential initially decreasing with negative bias 

then increasing sharply at a bias of around -0.45 V. The sharp increase is attributed to 

the point where electrons are depleted from a screening layer around the ionised 

donors, the full electrostatic potential from the gate then acts on the conducting layer. 

The initial reduction in potential with bias could not be explained by the strain model 

alone. It was thought an additional attenuation mechanism was responsible for this 

behaviour.
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Chapter 2
Fabrication.

2.1 Introduction
In this chapter the facilities required and procedures adopted to fabricate our small 

gate superlattice structures. The wafers used were grown by molecular beam epitaxy 

(MBE) and consisted of a series of AlAs, AlGaAs and GaAs layers grown in such a 

way as to confine a layer of electrons below the surface. This layer of electrons is 

known as a two dimensional electron gas or 2DEG. Non-rectifying contacts to this 

layer, known as ohmic contacts, were made and conducting paths between ohmic 

contacts are defined by etching away unwanted areas of semiconductor.

The devices were fabricated as ‘Hall-bars’. Fig 2.1 shows a schematic view of a Hall- 

bar. The contacts are arranged so that current i is passed through two outer contacts 

remote from the area of interest and voltage V is measured from a separate pair of 

contacts situated on either side of the active area. The Hall-bars used were designed 

with various dimensions. The only critical feature was that the end current contact was 

at least 3 times the channel width from the nearest voltage contact. Gates were 

fabricated in the centre of the Hall-bar and connections made from the contacts 

between the voltage pads.

n J

t
> 3 x Lv

□ □

.........H

e-Ly-»

r T h ~

i «---------

Fig 2.1 Schematic diagram of 
a Hall-bar
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Devices were fabricated using epitaxial techniques. An array of devices was fabricated 

(typically 6 by 6) to maximise throughput. Patterns were written using an electron 

beam writer (described in section 2.2.2) which was capable of writing with different 

spot sizes and resolutions so that both large areas and very small features could be 

exposed. Positive and negative resists were used to define patterns. The positive 

resists used were both of PMMA (poly-methyl methacrylate). BDH Chemicals 

supplied one of 180000 average molecular weight and another called Elv was supplied 

by DuPont Co. with an average molecular weight of 360000. The chemical 

composition of one repeat unit of PMMA is shown below in fig 2.2. [1].

CH2

----------- CH2  C -----------------

COOCH2

Fig 2.2 The chemical composition of one unit of PMMA.

A positive resist is one in which the area exposed to the electrons is made sensitive to 

removal. The electrons do this by breaking the long chain polymers into smaller units. 

The smaller molecules are more susceptible to being dissolved by solvents known as 

developers. Negative resist acts in the opposite way. Areas exposed to the electron 

beam remain after development. Positive resists are used in this work to leave areas 

without resist in defined patterns. If metals are then evaporated onto the sample, they 

are then in contact with the semiconductor in these defined areas and separated by the 

resist layers outside. The sample is then exposed to a chemical which attacks and
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removes the remaining resist. The result is then that some areas of semiconductor are 

metallised and other areas are left unmetallised. To do this reliably it is helpful to use 

bi-layer resist. This method involves spinning and baking on two resist layers, the first 

a high concentration BDH layer and the second a lower concentration Elv layer. This 

system has the advantage that after development an overhanging resist profile is 

obtained because the developer acts faster on the lower molecular weight BDH resist. 

The overhang profile is desirable as an aid to removal of the unwanted adjacent resist 

areas in the process known as ‘lift-off. Lift-off is achieved using acetone which 

attacks the resist via the exposed sidewalls. Bi-layer resist profiles ensure the 

sidewalls are not covered in metal and hence open to the acetone. The lift-off process 

is shown schematically below in fig 2.3

- = ? F9 H
Resist profile after exposure Resist and metal after Metal left after ‘lift-off
and development evaporation

Fig 2.3 Stages of evaporation and ‘lift-off

2.2 Fabrication facilities.

2.2.1 Molecular beam epitaxy.

The substrates used were grown in the University of Glasgow MBE suite in the 

Department of Electrical and Electronic Engineering. The facility consists of two 

MBE machines, labelled A and B. Machine A is used exclusively for GaAs/AlGaAs
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structures and had produced, prior to 1992, some very high quality material. Machine 

B is also used so grow other III-V semiconductors such as InGaAs and AlInAs and 

consequently GaAs/AlGaAs from machine B is generally of less good quality 

(because some of the indium contaminates the GaAs/AlGaAs samples and causes a 

high number of impurities). Most of the samples used in this work originated in 

machine A.

2.2.2 Clean room facilities.
All fabrication facilities were located in the Department of Electrical and Electronic 

Engineering, University of Glasgow. Fabrication was carried out in a clean room. The 

clean room contained two clean room cabinets (equipped with a variable speed 

substrate spinner, an ultrasonic bath and a variable temperature water bath), two ovens 

and a Plassys automated deposition evaporator. A separate clean room contained a 

rapid thermal annealer (RTA).

Pattern writing was carried out by a Leica Cambridge Beamwriter EBPG-5 system 

which could be operated at 50 kV or 100 kV cathode voltage. This cathode voltage 

accelerates electrons which originate from a tungsten filament heated to 2300-2700°C. 

The 100 kV facility allowed very fine features to be written because the number of 

backscattered electrons is minimised giving better resist profiles after development. 

Electromagnetic lenses focus the beam to a spot in the sample plane. Too great a 

variation in height across the sample surface will lead to an unfocussed spot so a laser 

detection system is used to eliminate this possibility. To use this system it was 

necessary to include accurate information of the thickness of the sample. This was 

measured with a digital micrometer on receipt of the wafer.

Other items of equipment used included an ultrasonic bonder, S800 and S900 

Hitachi scanning electron microscopes and a D.C. probe station for checking the 

quality of ohmic contacts.
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2.3 Fabrication techniques.

2.3.1 The design of the devices.
Hall-bars and gate structures were designed using a CAD package called Wavemaker. 

These patterns were translated into a format usable by the electron Beamwriter and 

combined together with a ‘job file’. The pattern file contained details of areas to be 

written by the beamwriter and the job file contained details of pattern orientation and 

electron dose.

The devices were designed with orientation marks. These 'alignment marks' are used 

by the beamwriter to place the pattern with sub micro-metre accuracy in the correct 

position on each Hall-bar. Initially the alignment marks were written in the same level 

as the ohmic layer i.e. the ohmic contacts were written at the same time as the 

alignment marks and so they were processed with each other. A detailed description of 

device design using the hierarchical cell structure of Wavemaker can be found in the 

handbook [2]. However, fabricating ohmic contacts and alignment marks at the same 

time proved to be disadvantageous, as it limited the maximum annealing temperature 

(because the ohmic layer became lumpy after annealing, leading to poor alignment). In 

the later devices, the alignment marks were evaporated separately using metals not 

sensitive to the annealing process. It is this later, more successful process which is 

described below.

2.3.2 Device preparation.

2.3.2.1 Substrate cleaning.
On receipt from the MBE grower, the substrate was cleaved using a diamond scribe 

into pieces approximately 10 mm x 10 mm for ease of handling. The samples were
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cleaned in preparation for deposition of an ohmic layer. The following chemicals and 

procedures were used:

2 minutes ultrasonic agitation in trichloroethylene or optoclear 

2 minutes ultrasonic agitation in methanol 

2 minutes ultrasonic agitation in acetone 

30 s rinse in isopropylalcohol, then blow dry with nitrogen.

Initially trichloroethylene was used, but latterly a switch was made to ‘optoclear’

(a commercial degreaser/cleaner) when trichloroethylene was banned as an ozone 

depletant.

2.3.2.2 Ohmic layer.
After cleaning, the sample was immediately coated with 15 percent solution of BDH 

(in chlorobenzene), spun at 5000 revs/min for 1 minute, baked for one hour at 180°C, 

coated with 4 percent Elv solution (in xylene), spun at 5000 revs/min for 1 minute and 

baked overnight at 180°C.

The sample was then submitted to a beamwriter technician with an instruction sheet 

for writing. This enabled the beamwriter operator to clamp and mount the sample in 

the beamwriter with the correct orientation. The samples were written by electrons 

accelerated by 50 kV with an exposure dose of 300 (xC/cm2 and a spot size of 400 nm. 

After writing, the samples were processed as soon as possible. Firstly they were 

developed with 1:1 IPA:MiBK [isopropyl alcohol:methyl isobutyl ketone] for 60 s at 

23°C. This removed the resist on the areas of the sample which were to be coated with 

the metals that comprise the ohmic contacts. The sample was then deoxidised using 

roughly a 1:4 mixture of hydrochloric acid and de-ionised water immediately prior to 

being placed in the evaporator. The following metal films were then evaporated onto
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the sample: 8  nm Ni

120 nm Ge 

130 nm Au 

80 nm Ni 

250 nm Au

The thin Ni layer allowed the Ge to adhere to the surface of the GaAs. The purpose of 

the Ge layer was to form a contact with the 2DEG. This was done by annealing at 

temperatures up to 400°C which diffused the Ge into the wafer, forming an alloy with 

the GaAs and a contact between the 2DEG and the thick Au surface pad [3]. The 

purpose of the intermediate Ni layer was to form a eutectic alloy which improves the 

properties of the Au pad. The sample now comprised areas of ohmic contacts where 

the metal was in contact with the surface of the sample, and other areas where the 

metal was separated by a layer of resist. Lift-off was carried out in warm acetone at 

45°C by placing the sample in a beaker of acetone, which was itself placed in a water 

bath. This method was found to give the quickest lift-off leaving the required areas 

coated with the metals.

Fig 2.4 shows areas defined for the four patterns used in this thesis. Pattern A was a 

pattern designed by Chris Barton, a previous PhD student, and pattern D was designed 

by Dr. Elef Skuras (a post doctoral research assistant) in the Physics Department. 

Patterns B and C were designed by the author. The patterns are not all drawn to the 

same scale.
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Fig 2.4 Ohmic level patterns

2.3.2.3 Alignment marks.
In the bottom left hand comer of the patterns in fig 2.4 there can be seen some small 

square markers (the dimensions are either 40 pm square or 30 pm square). These were 

used to align the next level which was the alignment layer. The resist layers used in 

this process were the same combinations as for the ohmic layer. This layer was written 

using an 80 nm spot with an exposure dose of 300 jiC/cm2. Evaporation and lift-off 

were carried out in a similar way to the ohmic layer, with the metals being 30 nm
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NiCr and 150 nm Au. Annealing could then be carried out. This was done on the 

RTA. After many attempts, it was found that the optimum recipe for this process was 

the temperature and annealing time that gave the ohmic contacts a lumpy and cracked 

look under a microscope. This was normally a temperature of 390°C for 60 s. The 

ohmic alignment marks were then unusable for the next layer but the separately 

deposited alignment marks were still smooth and gave good alignment.

After completion of the alignment level, the samples were checked on the D.C. 

probestation using a two probe measurement. A good sample had a DC measurement 

of the order of typically 300 Q - 1 kX2 resistance dependent on the distance between 

the gold pads probed.

2.3.2.4 Isolation.
This process defines the channel and isolates gate connections from ohmic contacts. 

The resist combinations were the same as that used for the ohmic layer. The patterns 

were written with a 400 nm spot with 300 p,C/cm2  exposure dose. After development 

an ammonia based etch was used to dig trenches in the material which provide the 

isolation. The composition of the etch was 200 parts water/4 parts ammonia (67% 

ammonia solution in water)/1.5 parts hydrogen peroxide (35% hydrogen peroxide 

solution in water). This gives an etch rate of 100 nm per minute and so for the deeper 

material the etch time was 1 minute and for the shallower material 30 s was used. 

Fig 2.5 shows the isolation patterns used for Hall-bars A-D (as defined in fig 2.4). Lx 

and Ly are as defined in fig 2.1. The patterns are not drawn to the same scale (as each 

other or as those in fig 2.4). Pattern A is shown with a 100 pm channel width, 

although some Hall-bars were made with the channel width Ly reduced in the gate 

region to 20 pm for particular longitudinal wire and superlattice experiments. At the 

end of this stage the samples were again measured on the DC probestation to check 

the ohmic contacts. For a good device, the resistance would have increased to about
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2 0 -  30 k£2 at this stage and a straight line would be observed on the I-V curve, 

indicating an ohmic response to the measurement.

i c \  N

Etched channel Lx = 90 pm 
Ly = 100 pm

\ 7/

 ^
/  /  \  \  \

Tl

/  /  \/  L   \ V 7>-r jj

TYPE A

[Etched channels 
Lx = 32 pm 
Ly = 10 pm

TYPE B

Etched channels 
Lx = 300 pm 

I Ly = 200 pm

Etched channels
Lx = 300 pm, Ly = 200 pm

TYPEC TYPED

Fig 2.5 Isolation Layers
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2.3.2.5 Gated areas and connections.

2.3.2.5a) Longitudinal wires
These were written using negative resist. The negative resist was a type known as 

HRN (high resolution negative resist) diluted in chlorobenzene to 4 percent. The 

sample was spun at 5000 rpm for one minute and baked overnight at 120°C. The resist 

was then exposed to electrons accelerated through 100 kV, to minimise backscattering 

and with an exposure dose of 500 |iC/cm2  and a 12 nm spot size. Development was 

with a 1:1 mixture of IPA and MiBK for 20 s at 23°C followed by a 20 s rinse in IPA, 

repeated twice and followed by blowing dry with nitrogen. This procedure gives 

optimum wire profiles [4] (optimum meaning that maximum resist is cleared from 

unexposed areas). After exposure to an electron beam, HRN is not affected by 

acetone, so the overlying gates and connections could be fabricated using an acetone 

lift-off without destroying the wires. The gates and connections were fabricated using 

the same procedure as the ohmic contacts but with a gate metal of 12 nm Ti and 

15 nm Au.

2.3.2.5b) Small period Superlattices.
These were written using positive resist. This resist was a lot thinner than that 

previously used, comprising 2.5 percent BDH and 2.5 percent ELV each spun on at 

5000 rpm, with a one hour bake at 180°C between layers followed by an overnight 

bake. Resist thickness here is important. Figs 2.6 (a)-(c) show schematically the 

results after lift-off for different thicknesses of resist.

If the resist is thinner than the evaporated metal, then there will not be enough 

clearance after development to allow the acetone to lift-off adjacent strips of metal. 

This is shown schematically in fig 2.6 (a). If the resist is too thick then when the 

development process takes place the sidewalls of adjacent strips will also be 

developed, collapsing the resist strips. After evaporation and attempted lift-off, this 

situation is characterised by areas comprising a few superlattice periods of solid metal
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and other areas with no metal as shown in fig 2.6 (b). The desired effect is shown in 

fig 2 . 6  (c) with only uniform strips of metal remaining after lift-off.

resist

1 <----------- metal

Fig 2.6 (a) pig. 2.6 (b) Fig 2.6 (c)

Fig. 2.6 Results of attempted lift-off with various resist thickness 
a) resist too thin, b) resist too thick, c) ideal lift-off.

To obtain the optimum metal profile, many exposure tests were made on bulk 

material. The optimum exposure dose and development time were determined by 

fabricating a series of superlattices, each with the exposure dose increased by a known 

amount. The small period strips were written using 100 kV to ensure maximum 

resolution. Extremely high exposure doses, of the order of 4500 pC/cm2 with a spot 

size of 12 nm were used to write the wires. Development was with 4:1 IPA:MiBK for 

25 s. The gate metal was 20 nm NiCr. Connections to the superlattice were made 

using the method for the ohmic contacts (above), but with gate metal of 12 nm Ti and 

15 nm Au. These connections were normally made outside the channel but for the 

deeper material it was necessary to bring the connections onto the channel (as is 

shown in Chapter 6 , Fig 6.2) because of breakages when the narrow strips of metal 

climb onto the channel up an etched height of 1 0 0  nm.

2.3.2.4c) Large period superlattices and finger superlattices.
These were written using positive resist. The resist comprised 4 percent BDH and 4 

percent ELV each spun at 5000 rpm, with a one hour bake at 180°C between layers 

followed by an overnight bake at 180°C for both layers. The samples were written 

with an exposure dose of 600 pC/cm2  with an 80 nm spot using electrons accelerated
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through 50 kV. Development was with a 4:1 mixture of IPA:MiBK for 20 s. The 

evaporated gate metal was 50 nm of NiCr. Side connections were made to the lattices 

with the same recipe as for the small period superlattices.

2.4 Preparation of samples for measurement.
During the steps in this section an earthing bracelet was worn to prevent electrostatic 

damage to the devices.

2.4.1. Scribing and mounting of samples on 18 pin packages.
The samples in the array typically had a 0.5 mm gap between them to allow the 

devices to be separated. This was done using a diamond scribe. The individual 

samples could then be mounted using a contact adhesive on an 18 pin package. The 

package and sample are shown schematically below in fig 2.7. Also shown are the 

gold wires used to connect the package to the sample. These were 40 p,m diameter and 

were bonded using the ultrasonic bonder.

Fig 2.7. Package and sample showing wire bond connections
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2.4.2 Connection to measurement equipment.
The package could now be mounted on the measurement rod. The three measurement 

systems used all a had permanent sample holder onto which the package could be 

mounted without soldering. This consisted of a recess the same shape as a package 

with a number of gold plated sprung copper pins. A thumb-screw and polythene plate 

pushes the package onto the pins, making the connections.
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Chapter 3

Experimental techniques

3.1 Introduction.
This chapter will discuss the experimental apparatus employed to measure the devices 

whose fabrication was described in chapter 2. The reasons for cooling samples are 

briefly discussed and the two cooling systems which were used, situated in the 

Department of Physics and Astronomy, will be described. Transport and capacitance 

measurement techniques will be outlined.

3.1.1 Transport measurements.
Heterostructures are designed specifically to reduce scattering from ionised dopant 

impurities by separating the conducting channel from the donors with a spacer. The 

dominant scattering mechanism then limiting the mobility at high temperatures is 

from inelastic collisions with phonons or lattice vibrations [1]. At low temperatures 

the energy available to generate phonons, kBT, is reduced. This is too small for optical 

phonon emission [2] and also reduces acoustic phonon scattering. The dominant 

scattering mechanism is then from ionised donors in the remote doping plane or from 

interface roughness if the lattice matching is poor, or in a poor material from residual 

impurities in the channel. The cryogenic equipment used was equipped with a 

superconducting magnet which enabled magneto-resistance measurements to be 

carried out.

3.1.2 Capacitance measurements.
Shallow and deep AlGaAs barrier materials are designed with the doping layer remote 

from the conducting channel. At low temperatures charge in the donor layer is trapped 

in the ground states of isolated substitutional donors, in distorted configurations 

known as DX centres. A measurement of capacitance between the channel and a 

surface gate as a function of gate voltage should be a measurement of the amount of
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charge in the conducting layer. Capacitance measurements were carried out on deep 

and shallow AlGaAs barrier materials at low temperatures, for longitudinal and finger 

superlattice samples. Measurements of the capacitance were also carried out where the 

sample was subject to a perpendicular magnetic field linearly varying with time 

(magneto-capacitance measurements).

3.2 Cryogenic equipment.

3.2.1 Oxford Instruments cryostat with Variable Temperature 

Insert.
Transport measurements were made at 1.5 K or 4.2 K and capacitance measurements 

were carried out at 1.5 K using an Oxford Instruments cryostat situated inside an 

electrostatically screened room. The cryostat could be used with a dilution refrigerator 

insert or with a variable temperature gas flow insert (VTI). The VTI was the one used 

for measurements in this thesis. Fig 3.1 [3] is a schematic diagram of the insert 

showing the position of the VTI rod.

A continuous flow of He4  is supplied to the sample space via a needle valve. To obtain 

a temperature of 4.2 K the needle valve is opened fully, the sample space pumping 

line is closed and the sample space is vented to the helium return line which allows 

the sample space to fill with liquid helium. This temperature could be further reduced 

to 1.5 K by opening the pumping port and reducing the pressure above the helium. 

The sample space temperature was monitored using a calibrated Rh-Fe resistor in 

thermal contact with the sample. There was also a heating unit on the capillary inlet to 

allow access to a stabilised temperature in the region of 1.2 K to 100 K, but this 

facility was not required for these measurements.
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Fig 3.1 Schematic diagram of a VTI rod and insert

The cryostat had a superconducting magnet sitting in a bath of He4 in its base. This 

was controlled, via a RS232 connection, by a remote Oxford Instruments 120A, 10V 

power supply unit PS 120-10 situated outside the screened room. The magnet was used 

to generate fields up to 12.7 T in the sample space. The magnetic field was swept 

linearly at a rate of around 0.01 T/minute for low field measurements and up to 

0.3 T/minute for fields to 12.7 T.
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For resistance and magneto-resistance measurements, the samples were mounted on 

the VTI rod with 14 connections to a spring loaded connector. On the box at the top of 

the rod, 14 switches connected the sample wires either to an earth position or direct to 

a connecting socket. This allowed the gates to be connected to earth to protect them 

from high transient voltages during switching of equipment. A short length of cable 

connected the socket to the pre-amplifiers used for resistance measurements. These 

were situated next to the cryostat inside the screened room.

For capacitance measurements, a different VTI rod was used. This had 5 coaxial leads 

running from the top connector box to the spring loaded sample connectors. The top 

connector box has five small coax type connectors (known as SMB connectors) which 

were connected to a Hewlett-Packard HP4274 multi frequency LCR meter. The 

HP4274 was situated near the cryostat inside the screened room.

Illumination can be used to free electrons trapped in the donor layer. This technique 

results in an increase in the carrier concentration in the conduction layer. Both VTI 

rods were fitted with an LED to illuminate the sample. Initially the LED was situated 

on the end of the VTI next to the sample. Later this arrangement was changed because 

of difficulty in operating the LED at low temperatures. The LED was mounted close 

to the top of the sample rod and light was transmitted to the sample via an optical 

fibre. Illumination with either system never proved to be advantageous for the samples 

measured. The data presented in this thesis were taken after cooling in the dark, and 

without any pre-illumination.

3.2.2 Closed circuit system.
A CTI Cryogenics Model 21 cryocooler was used to cool samples to temperatures 

between room temperature and 20K. Cooling was achieved by expansion of helium 

gas through two cold stations situated in a cold head. A two stage rotary pump was 

used to pump out the sample space. A pressure of less than 0.05 torr was obtained in 

the sample space before cooling was started.
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A diagram of the cooler arrangement is shown below in fig 3.2. [4].

5 co-ax leads
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Sample
space
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Temperature 
control and 
monitoring

Cold
Head

Compressor
unit

Fig 3.2 Schematic diagram of the closed circuit system

It was possible to measure the temperature of the sample using a Si diode in thermal 

contact with the sample. The temperature could be stabilised at any value between 

20K and room temperature using a differential amplifier which monitored voltages 

from the diode and a pre-set supply, and fed back power to a heater until the 

difference in the voltage values was zero. In practice however the equipment was 

usually operated at the lowest possible temperature, which was at or slightly below 

20K.
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3.3 Measurement equipment

3.3.1 Resistance and magneto-resistance measurement equipment.
Measurements were carried out using very low currents and voltages to avoid the 

generation of hot electrons due to high electric fields. The use of Phase Sensitive 

Detection (PSD) enables low excitation signals to be used with a very good signal to 

noise ratio. The PSD equipment used was two EG&G PARC 5210 PSDs connected to 

the sample via a connection circuit and two EG&G PARC model 113 pre-amplifiers. 

The cryostat, pre-amplifiers and measurement circuit were enclosed in a screened 

room. Connections to and from the screened room passed through filters in the 

screened room wall to minimise coupling of unwanted r.f. radiation to and from the 

sample via the measurement leads. The resulting system is shown below in fig 3.3. 

This is an overall view of the measurement system, a detailed view is shown in Fig 

3.4. The letters a, b, c, d, e, f, and g correspond to points on fig 3.4.

18 Pin BNC-Fischer Adaptor
SCREENED ROOM

EG&G
PSD pre-amppre-amp

EG&G
PSD

osc

Gate
voltage
supply

HP
3245A

Low pass 
filters

sample

Fig 3.3 Screened room and measurement circuitry
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Also shown in fig 3.3 is the gate bias circuit which consisted of a Hewlett-Packard 

3245A universal voltage source. The magnet, PSDs, and voltage source were 

controlled via an IEEE488 bus from a computer. The measurement programmes for 

the computer were written as Turbo-Pascal routines by Dr. Elef Skuras and others. 

For transport measurements, a sinusoidal excitation signal at a frequency of 

approximately 18Hz was used, drawn from the internal oscillator of one of the PSDs. 

The excitation signal was reduced from 200 - 600 mV by a factor of about 1000 in the 

measurement circuit and then fed to the sample via a 10 kQ high stability resistor. The 

measurement circuits on the PSDs monitor voltages from the circuits a) across the 

1 0  kD resistor, which is effectively the current through the sample, and b) across two 

voltage terminals, which is the voltage in the required measurement area. This four 

terminal technique eliminates the effect of contact resistances to the sample.

This is shown schematically below in fig 3.4.

t ( to PSD

e

DC gate 
^voltage

f c
g

■l-i ^
to kn

d

a b
supply and
reduction
circuitry.

0  to PSD

Fig 3.4 Four terminal measurement circuit.
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The PSDs measure the oscillator signal in a narrow band around a pre-set reference 

frequency. The signal is amplified and applied to a phase sensitive detector operated at 

the reference frequency. The phase sensitive detector gives a time dependent response 

to frequencies different from the reference frequency and a d.c. output at the reference 

frequency. The unwanted a.c. components are attenuated by an internal low pass filter

[5]. The computer monitors the values from the PSDs as a function of gate bias or 

magnetic field and stores the values as resistance and voltage or magnetic field in 

turbo Pascal (binary) format. These files were converted from Turbo-Pascal to ASCII 

format using a programme written by Mr B. Bums and were then plotted using an ‘off 

the shelf’ plotting programme called Easy-plot.

3.3.2 Capacitance measurements
Capacitance measurements were carried out using a Hewlett Packard 4274A Multi

frequency LCR meter. The measurement was a two terminal one with the ‘high 

current’ and ‘high voltage’ connected together and then via coax and BNC connectors 

to the gate of the sample. The ‘low current’ and ‘low voltage’ leads were connected 

together and then to as many of the ohmic contacts as was possible. In practice, 

because of the limited number of coax leads available (five on both the VTI and 

closed circuit systems) and because more than one device or gate was mounted on the 

18 pin holders, there were normally two gate connections and three ohmic contacts 

available. Ohmic contacts were normally selected to be on either side of the gate (to 

minimise series resistance in the channel) and extra gates of devices not being 

measured were connected to the measurement low of the circuit. This is to eliminate 

errors in the capacitance measurements because the additional leads would otherwise 

draw current which is not measured at the input of the capacitance meter.
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Fig 3.5 Diagram of measurement arrangement for capacitance 
and magneto-capacitance measurements

The coax outers were connected together and to earth in the connection box. The HP 

4274A was computer controlled via an LEEE488 bus using Turbo-Pascal programmes. 

One measurement program allowed capacitance to be recorded as a function of d.c. 

voltage applied to the device, and a second recorded capacitance as a function of 

magnetic field. The measurement programmes also allowed measurement parameters 

to be entered such as oscillator frequency (usually set at 100kHz), oscillator voltage 

level, time between measurements, number of averages and gate bias levels. The 

capacitance meter measures the AC response to an applied sinusoidal measurement 

voltage. Two parameters are generated depending on the circuit mode selected. Any 

sample can be approximated by either a resistor in series with a capacitor or a 

conductor in parallel with a capacitor. The series mode should be used for low 

impedance samples and the parallel circuit for high impedance samples. The circuit 

mode used in all our measurements was the parallel one and hence the parameters 

measured were parallel conductance and capacitance. If the inappropriate 

measurement system was chosen, e.g. in a device where the main components of loss 

were in the series connections or 2DEG, the data could be converted to series form 

using conversion equations given in the operating manual [6]. The conversion
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equations used are shown below for conversion of parallel conductance (Gp) to series 

resistance (Rs), and for parallel capacitance (Cp) to series capacitance (Cs) . This is 

shown below in fig 3.6.

Gp

Fig 3.6. Parallel to series circuit conversion

Cs = (Gp 2  + G32Cp2)/co2Cp 

Rs = Gp/(Gp2  + od2 Cp2)

Rs

Cs

(3.1)

(3.2)

Here co is 2jtf where f is the measurement frequency. To measure capacitance as a 

function of gate bias, the AC measurement signal is superimposed on a DC bias 

voltage, which was also generated by the capacitance meter
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Chapter 4

General theory of III-V semiconductor materials 

and heterostructures.

4.1 Crystal structure and doping.
In conventional semiconductor devices the transport of electrons through the device is 

impeded by ionised impurities which are introduced to give an artificially higher 

concentration (as compared to an intrinsic or undoped semiconductor where electron 

concentration is independent of the number of impurities) of electrons (for n type 

devices). These impurities act as scattering centres, decreasing the mobility. To reduce 

this effect, structures are used where the doping layer is separated from the conducting 

channel. This process is called modulation doping and is the basis of the modulation 

doped field effect transistor (MODFET). These devices can be made with gallium 

arsenide (GaAs) and aluminium gallium arsenide (AlxGai.xAs where x denotes the 

aluminium fraction) layers to take advantage of the low effective mass (m*  = 0.067rae) 

of an electron in GaAs.

GaAs and AlGaAs can be lattice matched, which eliminates the effect of scattering due 

to trapped charge and interface strain, such as that found at the interface between the 

semiconductor and the SiOi insulating layer in a metal oxide semiconductor field effect 

transistor. The crystal structure of GaAs is shown below in Fig. 4.1 [1] and consists of 

two interpenetrating, face centred cubic sublattices, alternately Ga and As, displaced by 

a quarter of the distance along the diagonal of the cube.

Fig 4.1 The structure of a GaAs crystal
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An AlxGai_xAs crystal structure is similar to the GaAs structure but with some of the 

gallium atoms replaced at random by aluminium. In MODFETS, doping is introduced 

by depositing silicon into an AlxGai.xAs layer. Silicon is an amphoteric dopant which 

acts as a donor in low concentrations. The silicon atoms sit substitutionally on gallium 

sites in the lattice. The extra electron has an ionisation energy of 7meV if a simple 

hydrogenic model is used for the binding energy. However, it is widely accepted that 

the Si dopants do not behave in this way and instead have an ionisation energy of 

around 150meV in Alo.3 Gao.7 As. These donor centres are known as ‘DX’ centres. DX 

centres are widely believed [2,3] to be ground states of isolated substitutional donors in 

a distorted lattice configuration, which can be stabilised by trapping two electrons. The 

lattice distortion comes about if a Si bond is broken and the Si moves to an interstitial 

site near three As atoms. Four different DX levels have been resolved in Si doped 

Alx Gai.x As, whereas there is only a single DX level in GaAs. This suggests that in 

AlxGai_x As, the energies of the DX centres are dependent on the number of A1 atoms 

near the Si donor. The trapping of electrons is also strongly temperature dependent. At 

low temperatures, the most important feature of the DX centre is that there is a barrier 

to charge moving in or out of the centre. The result is that charge is trapped in the 

centres below about 150K and there is a barrier to charge entering the DX centre below 

50K. It is however always possible to excite electrons out of DX centres by 

illuminating the sample.

4.2 Band structure of GaAs and the formation of the 2DEG.
The crystal is a three dimensional periodic array of atoms. Each atom has a potential, 

and this periodic potential gives rise to energy bands in the energy spectrum, of which 

the most important for us are the conduction band and the valence band. These bands 

are separated by a region of the energy spectrum which designates energies that the 

electrons in the solid cannot possess. This region is known as the band gap and has a 

(minimum) energy difference of Eg_
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Fig. 4.2(a) shows a simplified schematic diagram of n-doped AlxGai_xAs and undoped 

GaAs bandstructures. In reality there are 4 valence and 4 conduction bands which have 

a complex shape. The shape varies with position inside the Brilloun zone, labelled by 

the crystal momentum k. A GaAs crystal has a conduction band minimum and valence 

band maximum at k=0 .

n-doped AlGaAs undoped GaAs
'Vacuum level

Xn X

"gn

----------------------->k

Fig 4.2(a) The energy bands of n-doped AlGaAs and undoped GaAs showing 
the position of the chemical potentials jin and jll.

In fig 4.2(a) Ecn and Evn are the conduction and valence band edges in the AlxGai_xAs 

layers. Ec and Ew are the conduction and valence band edges in the GaAs layers. (in and 

|i are the chemical potentials in the AlxGai_xAs and GaAs layers. The chemical 

potentials are set by the doping level, %n and % are the electron affinities in the 

AlxGai_xAs and GaAs layers.

When the two semiconductors are joined together, an empirical model known as the 

Anderson model [4] can be used to analyse the electron energy bands at the junction 

between the two materials. The basis of this model is that the conduction band 

discontinuity is AEC.
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4 £ c = X„ - X  (4.1)

The valence band discontinuity is AEV.

AEy = Egn-Eg- AEC (4.2)

With no bias applied the chemical potential is constant through the device. A schematic 

diagram of the resultant band structure is shown in Fig. 4.2(b)

Vacuum level 4

2DEGAE{.

AE,

Fig. 4.2(b) Conduction band diagram of joined undoped GaAs and n-doped 
AlGaAs crystals

The Anderson model shows that joining the materials together results in the formation 

of a built-in potential e Vo across the junction and that the band offset in the conduction 

band between the n-doped AlxGai_xAs and the undoped GaAs forms a potential step. 

Electrons separated from the donors form a two dimensional electron gas at the 

interface in a roughly triangular potential well of a width of a few nanometres. Energy 

levels in this well are quantised. They are restricted by the potential in the z direction
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(perpendicular to the interface) but are free to move parallel to the interface in the x 

and y directions. To find the energy levels in this well, the time independent 

Schrodinger wave equation (SWE) must be solved.

[-h2/2m*( V2)+ V(z)] f'Oo'.z) = E V (x,yj)  (4.3)

The wavefunction *F(r) is made up of plane wave components in x and y and some 

function dependent on z .

Y(r) = exp(ikxx)exp(ikyy)u(z) (4.4)

substituting 4.4 into 4.3 cancelling exponential terms and defining

e = E - [ ( h \ 2/2m*) + (h% 2/2m*)] (4.5)

reduces 4.3 to

[~h2/2m, (c?ldz2) + V(z)]u(z) = eu(z) (4.6)

This is a SWE in one dimension. To solve this the potential that the electrons move in,

V(z) must be found. There are two contributions, the electrostatic potential 0(z), and the

band offsets. 0(z) is found from Poisson’s equation,

d 2(p{z)/dz2 = - p(z)/£r£o (4.7)

where er and eQ are the permittivity of the material and free space respectively and p(z) 

is the charge density which is itself made up of two components, the charge density 

from any external potential from impurities plus any gate bias applied and the charge 

density of other electrons. With no gate bias, and assuming the GaAs to be impurity 

free, this leaves the charge, from all other electrons, on a given electron j

p(z) = -elk  u{z)\2 (k*j) (4.8)
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which must be summed over all other electrons. This p(z) is dependent on u(z). The 

wavefunction u(z) is required to find V(z) and to solve Schrodinger’s equation V(z) 

must be found. So Poisson’s and Schrodinger’s equations must be solved self 

consistently. This can be done analytically by approximating the potential as a 

triangular potential well as in Fig. 4.3, or numerically for the most accurate results [16].

triangular approximation
wavefunction

actual potential

Fig. 4.3 Approximation of the potential well as a triangular potential.

In fig 4.3 the potential in the region of the interface is approximated by a triangular 

potential well shown with one energy level occupied. (High mobility structures are 

designed to have only one z energy level occupied because scattering of electrons from 

one level to another leads to a drop in mobility.)

Using the triangular well approximation, which is reasonably accurate for the lowest 

energy level which has a wavefunction close to the interface, V(z) = eFz where F  is the 

electric field. Wavefunctions and energy levels can be found by substituting this V(z) 

into Schrodinger’s equation.

Assuming that the wavefunctions and energy levels have been found numerically or 

analytically as outlined above, the total energy is given by

E = [(tfkx2/2m*) + ( j 2ky2/2m*)] + e„. (4.9)

Three numbers kx , ky and n (n=l for the case in fig 4.3) label the states and for each 

value of n, there is a 2DEG called an electric sub-band. The density of states or D(E) is
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defined as the number of allowed energy states per unit energy and per unit area. For a 

two dimensional system

D(E) = g ^ m ' n ^ K  (4.10)

The energy levels and density of states is shown in Fig. 4.4 for the first two levels in a 

two dimensional system, with the spin degeneracy gs = 2  and the valley degeneracy gv 

= 1 for GaAs.

Energy E
▲ * k

Energy E

kx or ky D(E)

Fig. 4.4 Energy levels and density of states for a 2DEG.

At zero temperature electron states up to energy Ef are occupied; this is known as the 

Fermi energy. The electron sheet density «2 d = EpD(E) and the Fermi wave vector 

&F= (2 /T/l2d)1/2-

In practice an undoped spacer layer is grown between the doping layer and the 2DEG 

in order to reduce the effect of scattering from the random potential from the ionised 

donor centres and an undoped GaAs cap is added to prevent oxidisation of the AlGaAs 

donor layer. This structure then forms the basis of the heterostructures used in 

experiments described in this thesis.
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4.3 Transport in the 2DEG.
Electrons in the 2DEG are free to move in two dimensions. With no electric field 

applied, they move randomly in the x-y plane. These electrons are scattered from 

impurities in the conducting layer or from the potential from ionised donors. The 

average distance between collisions is called the mean free path t  and the average time 

between collisions the mean free time rc. If an electric field E  is applied each electron 

experiences a force so that

F = -eE (4.11)

then an additional velocity is superimposed on the random thermal motion of the 

electrons. This velocity is the drift velocity v„. To find this drift velocity, the 

momentum applied to the electron (4.11 multiplied by rc) is equated with the 

momentum gained by the electron in the same period (m*vn). The resultant expression 

for v„ is

vn =-(&Tc/m*)E  (4.12)

The drift velocity is proportional to the applied field and the proportionality factor is 

defined as the mobility jn = (erclm*). The electron sheet density «2 d and the mobility ji 

define the Drude conductivity o = e r i2dlu~

A large mobility gives a high drift velocity which is generally desirable. To achieve a 

large fi, a low effective mass and a large time between collisions are required. The first 

condition is satisfied by the low effective mass of electrons in GaAs and the second is 

satisfied in ‘pure’ GaAs with low impurity scattering and the doping layer separated 

from the conducting channel by an undoped spacer layer. The most important 

mechanism then limiting the mobility at normal temperatures is scattering from lattice 

vibrations or phonon scattering. Scattering from lattice vibrations is reduced by cooling

the devices. Devices in this work were cooled to liquid helium temperatures.

The transport of an electron through the 2DEG is determined by the mean free path i. 

Using this length scale three regions of transport can be defined: Fig. 4.5(a) shows the
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case of ballistic transport. In this regime there is no scattering by impurities of the

electron over the area (which has a length L and width W). The electron scatters

elastically from the constriction boundaries and the scattering angle is not changed.

Part of this thesis will detail experiments made in which electrons are forced through

channels with the boundaries made electrostatically. Scattering from these electrostatic

constrictions at low temperatures should be elastic.
<--------------------------------------------  L ---------------------------------------------------------------►

Fig. 4.5(a) Electron transport through a constriction in the ballistic regime £ > W,L

In a regime where the length scale of the device is much larger than £ the diffusive 

regime is dominated by a series of scattering events. Fig. 4.5(b) shows the trajectory of 

an electron in this regime. At high temperatures transport is generally diffusive.

Fig. 4.5(b) Electron transport through a constriction in the diffusive regime 
where £ < W,L

A third regime can be distinguished, which is known as the quasi ballistic regime. In 

this regime, the transport is mainly ballistic, with a few random scattering events, and

L

W
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W < t  < L. The regime is sometimes known as the mesoscopic regime, because the 

exact configuration of scattering centres is important.

4.4 Layer Structure of samples used.
In all experiments the samples used were grown by Molecular Beam Epitaxy (MBE). 

The materials used were grown in order to trap a gas of electrons in the material at the 

interface between layers of semiconductors. The semiconductors used were lattice 

matched gallium arsenide (GaAs), aluminium arsenide (AlAs), and aluminium gallium 

arsenide (AlxGai.xAs). [The aluminium fraction, x in all material used was 30%; the 

term AlGaAs will be used from now on to mean Alo.3 Gao.7 As].

A conventional deep GaAs-AlGaAs heterostructure is shown in Fig. 4.6

2DEG

17nm GaAs Cap

50nm AlGaAs 
Bulk doped with Si.

92 nm

25nm AlGaAs spacer

GaAs substrate

Fig. 4.6 Layer structure of a deep sample.

Recently layers have been grown at Glasgow where the 2DEG interface is only 28 nm 

from the surface. These layers offer advantages over the conventional layer described 

above due to the proximity of the conducting layer to the surface. A surface gate should 

give a larger and better defined potential in the conducting layer, and allow smaller 

gate feature sizes. The structure of these layers is shown in Fig. 4.7, for designs with 

AlGaAs and AlAs barriers.
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! transport layer

Fig 4.7 AlGaAs barrier sample 
(top) and AlAs barrier sample 
(bottom)

IT
AlGaAs (4ML)

With the deeper structures electron mobilities of greater than 100 m2 V '1s' 1 have been 

achieved. In the shallow structures studied in this work mobilities of up to 40 m2 V‘1s 1 

were measured for the AlAs barrier structure and up to 18 m2 V'1s' 1 were measured for 

the AlGaAs barrier structure. Much materials research [5] has been carried out in 

Glasgow into the shallow structures and many layers have been grown. The highest 

mobility layers grown at Glasgow have had mobilities of 80 m V ’s' 1 for the AlAs 

barrier materials and 30 m2 V'1s' 1 for the AlGaAs barrier material. The proximity of the 

conducting layer to the donors leads to increased scattering due to the ionised impurity 

potential, which is the main factor in reducing the mobility of the shallow structures. 

The mobilities observed for AlAs barrier samples are greater. This is thought to be due 

to a layer of parasitic electrons around the doping layer which, although making a 

negligible contribution to transport, screen the conducting layer from the full potential 

due to the donors. The AlGaAs barrier samples however also have higher than 

expected mobilities. An estimate using the Bom approximation with a remote plane 

11 nm from the conducting layer [6 ] gives the mobility as 6  m V 'Y 1. The increased 

mobility seen experimentally is attributed to correlations in electron occupation of the 

donors [5].
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4.5 Band Structure of an AlGaAs/GaAs heterostructure.
Fig. 4.8 shows the conduction band energy of a deep (a) and shallow (b) heterostructure 

as a function of depth into the sample.

4------►*- + 4 -----------------►

92nm

Fig. 4.8(a) Conduction band structure of a deep sample.

5 doping layer

eVb

dd

28nm

Fig. 4.8(b) Conduction band structure of a shallow sample.

Energy

L

Here c is the thickness of the cap layer, d is the thickness of the donor layer and s is 

the thickness of the spacer layer.

The band structure through the device can be used to derive values of important 

parameters in the layers. A parameter of interest is the threshold voltage Vt defined as 

that negative voltage applied to a surface gate which removes all the electrons from the 

channel. At this voltage n,2d is zero and the bands are flat in the channel. This is shown 

in fig 4.9 below.

Fig 4.9 
Conduction 
band profile 
at threshold

eVi
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jig and jis are the chemical potentials in the surface gate and the semiconductor 

respectively. The model developed by Long et al [7] to describe the electrostatics of 

deep material makes the following assumptions: 1. On the surface of the sample there 

is a Schottky barrier formed by a metal semiconductor contact which pins the 

conduction band energy at a height eVb above the chemical potential. 2. There is a 

conduction band discontinuity AEC between the AlGaAs and GaAs layers. 3. Only one 

subband is occupied. 4. There is a doped region where the conduction band is pinned 

at an energy Em above the chemical potential. This region is shown as d '  in Fig 4.8. 

Such behaviour results from the DX model referred to in section 4.1. Using this model 

Long et al found that the electron density in the channel n2d with no gate bias

n2d = [(A£c - Edd)£oV[(s/£a + a/e^e2] (4.13)

where a is the effective width of the 2DEG (of the order of 8 nm) and ea and £g are the 

dielectric constants of the AlGaAs and GaAs regions. The threshold voltage is given by 

vt(F) where (F) indicates that the sample is at low temperatures and charge in the region 

of d ' is frozen into the DX centres. Using simple electrostatics the threshold voltage 

was found to be:

-e vt(F) = e1 n2d [de g+ die a+ s/e a+ a/eg] !e  ̂ (4.14)

These values agreed well with experimental data for deep materials [7]. Skuras et al [5] 

applied this model to the shallow materials and found good agreement for the values of 

vt(F) and n,2d for the AlGaAs barrier material but not for the AlAs barrier material. This 

is thought to be due to the layer of charge in the AlAs spacer region which does not 

then act as a neutral region. The most obvious manifestation of this is in the threshold 

voltage, which is larger for AlAs samples, implying that, when a negative bias voltage 

is applied, the free charge in the AlAs barriers is removed first. Once this free charge is 

fully depleted, only then are electrons removed from the channel and the threshold 

reached.

47



4.6 The 2DEG in a magnetic field
In order to probe the effects of patterned gates on the 2DEG, it is useful to apply a 

perpendicular magnetic field. This leads to the quantisation of energy levels in the 

2DEG, the Landau levels. In the 2DEG shown in Fig. 4.10(a) a magnetic field B  is 

directed along the negative z axis.

2DEG.

Fig. 4.10(a) Segment of 2DEG 
sample of dimensions / x /

L= 3 2 1 o

j Fig. 4.10(b) Distribution of 
j the states in k-space

Prior to the application of the magnetic field, the electron states were uniformly

distributed as an infinite array of points in the x-y plane in k space [8 ], with spacing

between the states of 2idl (where I is defined in fig 4.10(a)). With the application of 

magnetic field, states of higher and lower energies condense into rings of constant 

energy and move tangentially to these lines, as schematically shown in Fig. 4.10(b). In 

real space, this results in circular motion. The angular frequency of this motion is the 

cyclotron frequency

C0c=eB/m* (4.15)

and the energy is quantised into levels of

£ l = ( L +  \l2)ficoc * where L = 0,1,2,3... (4.16)
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As the magnetic field increases it can be seen from equation 4.15 and 4.16 that the 

spacing of the energy levels increases. The situation for three occupied Landau levels 

below the Fermi energy is shown in Fig. 4.11. for T  = 0 K (in reality the energy states 

occupied broaden out reflecting thermal, impurity and disorder broadening).

Full states Empty state

D(E)

Fig. 4.11 Landau level distribution at T= 0 K 

The quantisation of energy into Landau levels manifests itself in different ways 

depending on the combination of measurement contacts. The 2DEG samples are 

fabricated as Hall-bars and current passed through the sample. Different measurements 

of voltage can be made, shown as V2 t,VL anc  ̂Vh in fig 4.12.

Fig. 4.12 Schematic representation of a Hall-bar showing important measurement 
configurations.
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M easurements are made at temperatures of 4.2 K or less in a magnetic field linearly 

varying with time. A measurement of I/Vu is a two terminal measurement and shows a 

series of plateaux in units of e2/h. Measurement of VJI  is a longitudinal measurement 

and reveals a series of oscillations called Shubnikov de Haas (SdH) oscillations. In this 

work, measurements with this combination of contacts are referred to as SdH type 

measurements. Measurements of //VH again reveal the quantum Hall effect which 

shows up as quantisation in units of e2/h.

The most complete explanation of the effects seen in the measurements above comes 

from the concept of edge channels. When a magnetic field is applied, electrons travel 

down the Hall-bar in helical paths. In k-space electrons occupy orbits determined by 

the magnitude of the magnetic field. Near the edges of the channel, and around 

potential fluctuations in the bulk, the electrons travel in edge states. Edge states 

correspond to electrons in skipping orbits which interact with one side of the Hall-bar. 

Edge states move in opposite directions on opposite sides of the Hall-bar. This is 

shown below in fig 4.13.

E F +  (J. E p  +  g

E f  E f

Fig 4.13 Hall-bar carrying current in edge states, also shown are localised 
states in the centre of the Hall-bar due to potential fluctuations in the bulk.
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In the presence of a chemical potential difference 8 ji each edge channel carries a 

current of (e/h)§n which contributes hie2 to the Hall resistance [9] and in the case of 

local equilibrium this is the same as the two terminal resistance [10]. This assumes that 

each edge channel corresponds to one spin split Landau level. A two terminal or Hall 

measurement shows an increasing resistance quantised in steps of hie2.

A SdH measurement reveals a series of oscillations periodic in 1 IB with a spacing 

given by A(l/B).

A(IIB) = gsgve/hn2d (4.17)

Here grs and gv are the spin and valley degeneracy and have the values 2 and 1 

respectively.

This measurement of V\JI versus B allows an estimation of the carrier concentration 

/i2 d» The minima in the oscillations correspond to the situation where all the current is 

carried in edge channels. For strongly confined and well separated edge channels, there 

is no electron back-scattering and hence the longitudinal resistance falls to zero.

Fig 4.14 below shows another view [10] of the edge channels. The edge channels are 

formed where the Landau levels rise at a boundary of a constriction (either defined 

electrostatically or by etching). The intersection of the Fermi energy with the nth 

Landau level forms the edge channel.

n=2

n=l

Fig. 4.14 E-x plot of the Landau levels in the channel of a Hall-bar
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From Fig. 4.14 it can be seen that, for small potential fluctuations in the bulk of the 

sample, only states in the highest Landau level contribute to the conductance. The 

above simple theory is a one electron picture which does not take into account electron- 

electron interactions or screening effects in the presence of a magnetic field.

The one electron picture shown in Fig 4.14 suggests that the two terminal conductance 

should increase abruptly. When a bulk Landau level passes through the Fermi energy. 

However such steep steps are not seen experimentally either for bulk Hall-bars [11] or 

in short clean channels such as point contacts [1 2 ], and so the simple edge state picture 

needs to be developed further. A qualitative theory was proposed by Beenakker and 

Chang who divided the 2DEG at the boundary into alternating strips of compressible 

bands corresponding to the edge channels in fig 4.14, and incompressible bands [13]. A 

quantitative picture was developed by Chklovskii, Shklovskii and Glazman (CSG) [14] 

for an electrostatically defined boundary between the edge of the 2DEG and the bulk. 

CSG found that the position and width of the strips of incompressible fluid could be 

calculated from the density of the 2DEG in zero magnetic field.

Fig 4.15 is a representation of the self consistent electrostatic picture. Fig 4.15a) Shows 

a top view of the 2DEG near the gate (the edge of the gate corresponds to x = 0 in Fig 

4.15) with the arrows indicating the direction of current flow, fig 4.15b) shows the 

bending of the electrostatic potential and the Landau levels and Fig 4.15c) the electron 

density as a function of distance to the middle of the depletion region. With the 

application of magnetic field CSG found that narrow strips are formed along lines 

where an integer number of Landau levels are occupied. CSG called these strips dipolar 

strips.
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a)

b)

c)

n(x)

2nL

nL

incom pressible strips

com pressible strips

Fig. 4.15
Representation of 
2DEG at the edge of 
the channel. Taken 
from CSG [14].
Here •  represents a 
filled state ®  a 
partly filled state and 
O  an empty state, 
a) shows a top view 
of the 2DEG near 
the gate, b) shows 
the bending of the 
potential and the 
Landau levels and c) 
shows the electron 
density as a function 
of distance to the 
middle of the 
depletion region.

According to CSG the dipolar strips produce a steep drop in the electrostatic potential 

which brings the next Landau level to the Fermi energy. The relationship between the 

widths of adjacent compressible and incompressible strips does not depend on strip 

number, magnetic field or gate voltage, provided that the widths are greater than the 

magnetic length, (lm = (fileB) ). The electron density distribution changes from being 

step like to having much smaller steps quantised at « l  and 2 « L  ( « l  i s  the electron
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density for one completely full Landau level) superimposed on a background which is 

the electron density at zero magnetic field.

Chklovskii, Matveev and Shklovskii (CMS) [15] proposed a quantitative electrostatic 

theory for an electrostatically defined channel such as a point contact. The description 

of the situation at the edge of the constriction is not substantially different from the half 

plane in CSG, but they divided the state of the channel into a C (compressible) or an I  

(incompressible) state depending on whether the centre of the channel was occupied by 

a region of compressible or incompressible liquid. The /  states lead to plateaux in the 

Hall conductance at values of e2/2nfi multiplied by the filling factor analogous to that 

defined in the one electron representation. Joining these narrow plateaux are much 

wider regions where C states are dominant. Here the conductance is not quantised. 

Experimentally a situation is found somewhere between the one electron theory and the 

CMS theory. CMS attribute this to disorder in the channel.
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Chapter 5

Measurements on electrostatically formed longitudinal wire arrays. 

5.1 Motivation and introduction.

5.1.1 Motivation.
In this chapter measurements made on electrostatically formed multiple quantum wires 

will be described. The first aim of these measurements was to find out if there was any 

evidence of one dimensional quantisation of energy when the electrons were trapped 

in channels less than 250 nm in width. All quantisation experiments were carried out 

on devices made with multiple HRN ribs. Several devices were measured. 

Quantisation was not observed although there was strong evidence that the wires were 

formed. Evidence will be presented that the lack of quantisation was due to inherent 

problems with the fabrication process and also the low mobility of shallow AlGaAs 

materials.

A second aim of the experiments in this chapter was to clearly differentiate between 

two models which are used to predict the cut-off voltages of the wire arrays. These 

models, which are known as the ‘pinned’ and ‘frozen’ models, differ in the boundary 

conditions describing the ungated GaAs surface condition used in the calculation of 

the cut-off voltage. The experiments using HRN ribs did not give conclusive results in 

this area and so an additional type of device was fabricated. This new type of device 

consisted of a periodic array of strips of metal formed using positive resist techniques 

(no HRN was used in the fabrication of these devices so they are different to those 

devices which were used for the quantisation experiments). These later devices gave 

convincing evidence that the frozen model correctly describes the surface condition of 

the ungated GaAs.
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5.1.2 Introduction.

5.1.2.1 HRN longitudinal wires devices.
The fabrication of narrow channels using wet etching, the process used to define 

channels in Hall-bars, is not reliable below 1pm because of irregularities in the 

exposed sidewalls of the structure [1]. The technique chosen to investigate ID  effects 

in narrow longitudinal wires uses a gate split by negative resist ribs. The 

electrostatically formed wires are fabricated using strips of negative resist with an 

overlying Schottky gate. In order to probe for one dimensional confinement the 

negative resist wire patterns were fabricated on Hall-bars. A schematic diagram of this 

arrangement is shown in Fig. 5.1.

Ohmic contact

Etched channel

Resist rib

Schottky gate

Fig 5.1 Diagram of Hall-bar and gate arrangement for 
measurement of electrostatically formed wires.
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Detail is shown of the negative resist wires running underneath the gate. When a 

negative voltage -Vg is applied to the gate, electrons in the 2DEG are initially depleted 

from the areas where the gate is in contact with the cap, leaving electrons in channels 

defined by the negative resist. This is shown schematically in Fig. 5.2.

Negative 
resist

2DEG - 1  t

Gate metal -V9

GaAs cap 
^___  AlGaAs layer

8 doped layer. 
AlGaAs spacer

- GaAs substrate

Fig 5.2 Diagram of resist profiles and gate arrangement. The vertical dimension is 
accentuated with respect to the horizontal dimension for clarity.

For comparison purposes devices were also fabricated without the resist ribs but with 

the same overall dimensions. These devices are referred to as ‘big-gate’ devices.

5.1.2.2 Side gated finger superlattice devices.
Side gated finger superlattices are strips of metal fabricated using positive resist 

techniques and are formed perpendicular to the direction of current flow. The fingers 

do not traverse the full width of the Hall-bar. This means that the areas between gate 

fingers are open to the ungated bulk of the channel and charge can flow into and out of 

these regions in response to changes in gate bias. Although the fingers are laid laterally 

across the Hall-bar, this ready access to the regions between means that these devices 

act analogously to ‘longitudinal’ wire arrays. A plan view of the important details of 

the Hall-bar and a few periods of the finger superlattice (there are typically 100 or 120 

periods) is shown in fig 5.3 below.
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Length
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w i d t h

> 4
10|im lOfim

Fig 5.3 Schematic diagram of gate fingers on Hall-bar with detail of gate layout.

Detail is shown in fig 5.4 of the gates on the surface of the GaAs, a side elevation of 

fig 5.3. With no gate bias, the 2DEG is uniformly distributed below the gate shown in 

Fig 5.4 (a). A negative bias is applied until electrons are depleted from below the 

gated areas. This region is termed the ‘gate region’ and the bias voltage defining this is 

V, as shown in Fig 5.4 (b). As the bias voltage is increased, a point Vc is reached, 

shown in Fig 5.4 (c), where all electrons are depleted from beneath the ungated 

regions; this defines the ‘tail’ region. Making Vg more negative than Vc defines the cut

off region.

^g = 0 Vg = V t Vg = Vc

2DEG

Fig 5.4 (a) Fig 5.4 (b) Fig 5.4 (c)

Fig 5.4 a) - c) Schematic sectional view of the 2DEG for values of Vg
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These devices were fabricated to test whether the ‘frozen’ or ‘pinned’ model better 

describes the surface of the GaAs. Two problems were found in making the same test 

with the HRN devices. The first was the presence of metal on top of the resist. This 

part of the gate was believed to produce a bias which depleted the electrons under the 

HRN ribs when bias was applied. Secondly there was the problem of the poor profile 

of the HRN ribs, because of the areas exposed by backscattered electrons during 

writing in the electron beamwriter. Positive resist has a much better profile after 

development and the subsequent lift-off produces strips of metal very close to the ideal 

picture seen in fig 5.4.

5.1.3 ID Transport.
5.1.3.1 HRN longitudinal wires background theory.

A one dimensional electronic system is one whose energy levels consist of a set of 

defined ID quantum subbands. Electrons have only a free dispersion in the y direction. 

The energy levels are given by

e \k y )  = n2 k 2!2m* + e x + B z (5.1)
(i,j = 0 , 1 ,2 ,3......)

The gate voltage which confines an electron to the wire produces a force varying 

approximately linearly with lateral position. This leads to a parabolic confining 

potential. Laux et al [2], using self consistent band structure calculations, found that 

the confining potential for electrons has a parabolic shape for a small number of 

electrons. Screening then flattens the potential making it more ‘U’ shaped. Increasing 

ID densities in the wire reduce the subband separation [3]. In the case of only a small 

voltage applied to the gates, or if there is an additional screening layer present, there is 

only a variation of carrier concentration under the gate. Regions of high carrier 

concentration correspond to lines where wires will eventually be formed. These 

regions of high carrier concentration are separated by strips of lower concentration, 

which eventually become the regions that are fully depleted of electrons. For the
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limiting case where regions of charge under resist strips and gates are the same, this 

situation is indistinguishable from the case of electrons under a large plane gate.

The density of states in a ID system is given by

p(E) = il(2m */E  - £ „ ) ] l / 2  (5.2)

A system with four occupied ID subbands is shown below in Fig. 5.5; all states below 

Ef are filled

E] e 2 e 3 e4 E

Fig 5.5 Quasi-ID wire density of states with four sub-bands occupied

The application of a perpendicular (to the sample surface) magnetic field leads to 

mixed magneto-electric sub-bands. This occurs when the circulating electron waves 

can interact with both of the boundaries. The critical field Be for the formation of 

these sub-bands is that which the wire width (W) is equal to the cyclotron diameter [4].

Bc = [h(2n2ilK)m VeW (5.3)

At fields greater than Be the behaviour is that of a 2DEG.

Using resistance, magneto-resistance, capacitance, and magneto-capacitance 

measurements, it was hoped in this work to detect one dimensional confinement in 

wires formed using the HRN split gate technique on shallow AlGaAs materials.
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5.1.3.2 Resistance measurements.
A four terminal longitudinal measurement of resistance as a function of negative gate 

bias shows an increasing resistance. As the gate is made more negative with respect to 

the 2DEG, electrons are depleted from the 2DEG and this reduces the carrier 

concentration. With the split gate technique, the areas underneath the Schottky gate are 

depleted first. When the electrons are fully depleted from under the gate this defines 

the threshold voltage Vt . With increasing negative bias, the areas under the resist strips 

are squeezed by a combination of the potential from the side and through the resist 

layer above the electrons. Eventually when all electrons are depleted the cut off 

voltage, yc , is reached. Davies [5] developed models for the ratio VJVt, depending on 

the GaAs surface conditions, for a single split gate wire formed electrostatically as 

shown schematically in Fig. 5.6. The thickness of the HRN ribs is approximately 

60 nm, and to use these models it must be assumed that the effect of the gate through 

the resist is negligible.

gate

GaAs

n-AlGaAs

AlGaAs

GaAs wire

Fig. 5.6 Diagram showing critical dimensions of a single 
split gate electrostatically formed wire

With no bias applied, all chemical potentials in the system are equal. When negaative 

bias is applied to the gate, the behaviour of the device depends on what assumptions 

are made about the response of the semiconductor surface. There are two extreme 

models which have been applied, the “pinned surface” model and the “frozen surface 

model”. In the former, the chemical potential at the surface in the ungated regions is 

assumed to remain unaltered at a value defined by the surface states, whilst the
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chemical potential in the area under the gate changes in response to the applied 

potential. This potential difference between gated and ungated areas forms the wire. 

Using the boundary conditions (that the free surface is an equipotential and the electric 

field tends to zero as z tends to infinity) and solving Poissons’s equation, the ratio of 

threshold voltages can be estimated. For this model, known as the ‘pinned’ model,

Vc/V t = {1 - (2arctan(a/ ^ / ) ) / ^ } ' 1 (5.4)

Here a and d are defined in Fig 5.6. The problem with this model is that charge must 

move from the 2DEG to the surface in response to a change in Vg to keep the free 

surface an equipotential. This is feasible at room temperature, but is unlikely when the 

device is cooled to typically 1.5 K (because of the Schottky barrier at the surface).

The other model, known as the Frozen model [6 ] treats the surface like a dielectric 

with a fixed charge density. On biasing the gate no charge is exchanged with the 

2DEG. The surface boundary condition is that the normal derivative of the potential 

5<{>/8n =0 , giving

VJ V, = ((a/d)2 + 1 ) 1 /2  (5.5)

The above results are for a single wire. Recently the calculation has been extended to a 

periodic structure for the pinned condition [7]. The result for the pinned surface is

VJ Vi = 7r[ 2arctan(tanh(/R//2(a+ & ) ) ] ‘ 1 (5.6)

A value of VJVt for the frozen model is obtained by finding a solution [8 ] which, 

matches the boundary condition and is a solution of Laplace’s equation

VJ Vt = {2(a+b)/7td}.cosh'l {[cosh(7zd/2(a+b))].[cos(m/2(a+b))Y1} (5.7)

Measurements of conductance as a function of gate voltage should show two regions 

corresponding to 0 > Vg > Vt and Vt > Vg > Vc . By comparing the results from the

63



experiments on longitudinal channels of electrons formed using HRN ribs and lateral 

channels formed using side-gated finger superlattices to the above models, it was 

hoped to determine whether pinned or frozen surface conditions better describe the 

surface of GaAs at low temperatures.

5.1.3.3 Magneto-resistance measurements
a) Shubnikov de Haas measurements.

Here the magnetic field is swept from zero at a fixed rate (0.15T/minute or 

0.3T/minute were used for these measurements). The gate bias is fixed at a value 

between zero and the cut-off voltage. The longitudinal resistance across the gated 

region is measured. A measurement of resistance at a given gate voltage as a function 

of magnetic field will be referred to as a SdH (type) measurement.

A SdH measurement of an ungated Hall-bar shows a series of oscillations, whose 

period is dependent on the carrier density. When a SdH measurement is made on a 

gated region with bias there are two regions of differing carrier concentration in series. 

This is reflected in the SdH measurement as mixture of two oscillations corresponding 

to the two regions. The values of the carrier concentration under the gate can then only 

be recovered by using Fourier transform techniques. The SdH measurements were 

Fourier transformed by first interpolating to give data equally spaced in 1/B then 

applying a fast Fourier transform routine.

Most evidence of confinement effects in ID systems [9,10,11,12] has been seen using 

longitudinal measurements. In a 2D system, the minima of the SdH oscillations are 

periodic in 1/B. As the magnetic field decreases, an ever increasing number of 

oscillations are found (in principle). In a ID system however the number of subbands 

occupied at zero field is finite. Only a finite number of magneto-electric sub-bands 

are formed and hence SdH oscillations occur which are no longer linear in 1/B. The 

critical field Bc for the formation of these hybrid magneto electric sub-bands is given
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by (5.3). Well above this critical field the cyclotron radius is smaller than the 

constriction and the electrons behave as in an unbounded 2DEG.

The first observation of this effect was made by Berggen et al [12]. Berggen et al 

noted deviations in the minima of SdH oscillations from the positions expected for 

bulk behaviour, when their wire width was estimated to be between 250 and 150 nm.

For surface gated wires such as those fabricated in this chapter where the gate bias is 

set in the region 0 > Vg > Vt, the effect is approximately as for a 2DEG under a planar 

gate. In this thesis a planar gate is referred to as a ‘big-gate’. For a gate bias value of Vi 

> Vg > Vc, the wires form and narrow. For well defined wires, edge channels propagate 

down the wires if the wire is sufficiently wide. As negative bias is applied to the gate 

the number of propagating edge channels is reduced as the bias approaches the cut-off 

voltage. Recently [13] deviations in minima of 1/B vs. Landau index plots of wires 

formed using multiple HRN ribs have been seen on high mobility deep material by M. 

Kinsler.

b) Haug measurements [14]

For these measurements, the magnetic field is set to a minimum of the bulk 

longitudinal magneto-resistance SdH trace. This minimum corresponds to an integer 

filling factor in the ungated area. When the gate bias is swept towards cut-off, the 

resistance increases and shows plateaus at quantised values. Such measurements of 

resistance as a function of gate voltage for a given magnetic field will be referred to as 

Haug (type) measurements. Ng edge channels pass under the gated region (either under 

the gate for Vt < Vg < 0 or through the wires for Vc < Vg < Vt ) and Nw in the bulk 

region. The four terminal longitudinal resistance is given by [14]

Rl = [h/2e2U \/N t - 1INV ] (5.8)
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The positions of the plateaux given by (5.8) are used to obtain the carrier 

concentration as a function of bias. This is a simpler method of finding out how the 

carrier concentration varies with bias than the SdH technique because it is not 

necessary to further process the data using Fourier transform methods.

As the gate bias is made more negative, it might be expected that the resistance 

increase monotonically, (as 5.8 predicts). However, in practice, the resistance dips 

after a plateau and then rises again. A theory for this behaviour has been put forward 

by Haug [15], based on competition between backscattering from and tunnelling 

through localised states in the barrier region, which suggests, as observed in 

experimental work, that some edge states that are totally reflected may be partially 

transmitted as the barrier height is further increased.

5.1.3.4a Capacitance measurements of HRN devices.
The capacitance is a measure of the free charge in the system. The dynamic 

capacitance is defined to be C = SQ/5V where Q is the total charge and V is the 

voltage applied to the gate. A measurement of integrated capacitance as a function of 

voltage gives an estimate of the total movable charge in the system, including any 

charge in the AlGaAs doping layer. If all charge can be moved at the measurement 

frequency, then the carrier concentration «2 d can be calculated from Q/A= ri2&e = -jCdV 

calculated for Vc < Vg < 0.

For an ideal 2DEG of zero thickness, Stem [16] showed the channel capacitance is 

directly related to the density of states

A/Cc = 7^o/er£o + \/(e2dn/dfi) (5.9)

where A is the area of the capacitor, y a numerical constant of order unity, Zo the 

average position of the electrons in the channel and £r the relative dielectric constant 

of GaAs. Assuming A, y, Zo, and & are constant, Stem showed that magneto- 

capacitance data could be inverted to extract dn/dju, the thermodynamic density of 

states of a 2DEG at the Fermi energy.
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Smith et al. [17] used capacitance measurements to show confinement effects in back- 

gated multiple wire devices. These were fabricated by etching a periodic array of lines 

in the cap layer and depositing a surface gate. The wires were then formed 

electrostatically by applying a bias voltage. A differential measurement of capacitance 

vs. gate bias between the surface-gate and a back-gate revealed oscillations which 

were explained by Stem’s theory, modified to correspond to the ID case. The structure 

of this device is different to that used in this work, which may be important in the 

explanation of the absence of oscillations in devices measured in Glasgow [18].

A simple model was calculated by Long et al [19] for the capacitance for a 2DEG in a 

bulk doped device fabricated with a plane gate and measured at low temperatures 

(1.5 K). This model assumes that no free charge exists in the dopant layers.

C/A = £0{aJ£g + s/£a + d/£a+ c/£g}'1 (5.10)

where £<, is the permittivity of free space, £g and £a the relative permittivity of GaAs 

and AlGaAs respectively, A the area of the electrodes, a the effective thickness of the 

2DEG (assumed to be 8 nm), s the thickness of the spacer layer, d  the thickness of the 

doping layer and c the thickness of the cap layer. (5.10) is the series combination of 

the different layers in the structure. This relation can also be derived from (5.9) by 

assuming an effective thickness of the 2DEG of value a. Capacitance measurements 

were made on several devices with different layer thicknesses and the values of 

capacitance will be compared with the predictions of (5.10).

A measurement of capacitance as a function of gate bias will show a decreasing 

capacitance as the bias goes negative, reducing the charge density beneath the gate. A 

measurement of the capacitance of a wire device should show two regions 

corresponding to gate and wire depletion. If these two regions are not seen, then 

whether wires have been formed is questionable. The two regions are shown 

schematically in figure 5.7.
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C(pF)

V(volts)

Fig. 5.7 Representation of a possible capacitance measurement 
of a multiple parallel wire device showing critical values.

Theoretical values of Vc /Vt have been derived from electrostatics and were given as 

(5.6) for a pinned surface and (5.7) for a frozen surface. Experimental values of Vc and 

Vt are taken from the measurement graphs at positions shown on fig. 5.7. In fig. 5.7 

Region B corresponds to the charge depleted under the gate region and region A the 

charge under the HRN wires. The areas A and B should be approximately in 

proportion to the appropriate areas of the device. For example for a device where the 

ratio of gate area to wire area is 1:1, it is expected that the areas of each region JCdV 

(which is a measurement of charge) should be the same. Carrier concentrations that 

were obtained by estimating JCdV of the whole region can be compared to carrier 

concentrations that were obtained from SdH calculations. The charge JCdV was 

estimated using the integral function on the graph program easyplot for the total 

hatched area in fig. 5.7. Also shown in fig 5.7 is Cb, the capacitance of leads and 

connections, which is subtracted to give the actual capacitance of the device 

Cm = C0 - Cb.
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5.1.3.4b Capacitance measurements of side gated finger superlattice 

devices.

Side gated finger superlattices were also investigated mainly using capacitance-voltage 

techniques as described above). In addition resistance and magneto-resistance 

measurements were made. These are not as useful as the capacitance measurements 

but do give confirmation of the cut-off voltages and zero-bias carrier concentration. 

The experimentally derived values of Vc /Vt and the areas under the C-V curves (as 

shown schematically in fig 5.8) were determined and will be compared with the 

theoretical results (as described above in section 5.1.3.4a).

C(PF)

V,V(V) Vc

Fig. 5.8. Schematic diagram of typical measurement showing 
capacitance and voltage values.
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5.1.3.5 Magneto-capacitance measurements.
A measurement of capacitance of a large gate as a function of magnetic field shows 

minima periodic in 1 IB, similar to SdH oscillations in magneto-resistance 

measurements. These minima can be used in a similar way to the magneto-resistance 

SdH oscillations to estimate the carrier concentration [21]. The minima occur because, 

when the magnetic field is set so that when the Fermi energy is between two Landau 

levels, the capacitance measured is that between the gate and the edge channels, which 

is much less than that to the bulk of the 2DEG.

For gates on HRN ribs, it was expected that the application of bias would change the 

edge channel capacitance due to the formation of edge channels along the multiple 

parallel wires. If the wires were successfully formed the capacitance in the minima 

should reflect this increased edge channel capacitance.
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5.2. Materials and structures.

5.2.1 Materials and gate structures used for the fabrication of HRN 

longitudinal wire devices
All materials used in this work were 28nm depth shallow AlGaAs barrier materials 5- 

doped with 2 x 1016 m~2 silicon atoms for A707 and 4 x 1016 m'2 silicon atoms for 

A909 and A866. Measurements were carried out on different gate geometries. A 

summary of the design dimensions of the wire devices measured is shown below in 

table 5.1.

Device
number

Gate
length
[pm]

Gate
Width

[pm]

Gate 
Area 
[xlO9 m2

Resist rib 
width 
[nm]

Rib
Period
[nm]

A707
#1,2,3 20 100 2 100

250
Big-gate

500
500

A866
#2 20 200 4 200

Big-gate
2000

A909
#2,3 50 200 10 200

Big-gate
2000

Table 5.1 Critical dimensions for the devices measured in this chapter.

For comparison purposes devices were measured without the resist strips but with the 

same overall dimensions. These are referred to as ‘Big-gate’ devices.
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5.2.2 Materials and Structures used for side gated finger superlattice 

structure devices.
Three materials were used for the finger superlattice work.

A909 is a shallow AlGaAs material already used in the longitudinal wire work 

detailed previously; the layer structure was shown in fig 4.7 .

B591 is an AlGaAs intermediate depth material. The layer structure is shown below in 

fig. 5.9. A648 is a deep bulk doped sample. The layer structure is shown in fig 4.6.

2DEG (interface 
depth 57.8 nm)

Fig. 5.9. Layer structure of intermediate depth sample B591.

The gate layout measured in most cases was of “gate on” type. "Gate on" refers to how 

the side connection to the superlattice is made. In this type of device “on” means that 

the connection came up onto the top of the channel for a distance of 10 microns across 

the channel (this was shown in fig 5.3). Other gate types referred to as "gate off' 

devices were also measured. Here the gate connection was made off the channel and 

only the strips of the gate are present on the channel; this device is shown in Fig 

5.10(a). Gate-off devices gave poorer results on A648 and A909 devices, probably due 

to breaks in the gate strips as they rise up to the channel height from the etched area. 

For comparison purposes, devices were fabricated on A648 with other designs of 

gates. One pattern was fabricated in the same position as a finger superlattice but 

consisted of a continuous gate covering all the channel apart from a 10 |im uncovered

surface________
10 nm GaAs______
16 nm AlGaAs 
1 ML GaAs 
4x l0 lb m S i  atoms
1ML GaAs_______
31 nm AlGaAs

GaAs substrate.
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strip down one side. This is referred to as a ‘partial’ gate and is shown in fig 5.10(b). 

Another design of gate completely covered the channel and had the same length as in 

Fig 5.10 (a) and 5.10 (b). This is referred to as a ‘big-gate’ and is shown in fig. 5.10

(c)

 H <—
1 0 pm

Fig 5.10(a) Fig 5.10(b) Fig 5.10(c)
‘Gate-off device ‘Partial’ gate device ‘Big-gate’ device

Fig 5.10 Detail of Hall-bar channel with variations in gate configurations referred 
to in the text

The devices were fabricated using different Hall-bar designs. A909 and A648 were 

fabricated using Hall-bar D. (See chapter 2, Fig 2.5 for Hall-bar types). Each Hall-bar 

had two areas where a gate structure could be measured. These designs also had three 

Hall-bars per alignment mark, allowing a total of 6  options for different types of gates. 

On these devices the fingers were 50nm thick NiCr and the connecting gate was 27 nm 

Ti/Au. The B591 devices were fabricated using Hall-bar C. The channel width was 

200 pm, but there was only one gate per Hall-bar. Two Hall-bars were fabricated side 

by side with one being a gate-on device and the other a gate-off. Here the fingers and 

connecting gate were 50nm thick NiCr evaporated at the same time. The gate 

connection contact to the thick gold pad was 27nm Ti/Au.

The finger dimensions in all cases were designed to be 1 pm wide with a 2 pm period 

giving a 1:1 mark:space ratio. A summary of the gate structures measured is shown 

below in table 5.2.

1 0 pm
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Device
number

Gate
type

Gate
width

(|4 m)

Gate(finger)
length
(\im)

Gate 
Area 

(xlO ' 9  m2)

A909
# 1 , 2 on 2 2 0 190 2 2 . 0

B591
# 1 ,2 ,4,5 on 180 190 18.0

off 180 190 17.1

A648
#2,3 on 2 2 0 190 2 2 . 0

#4 partial 2 2 0 190 41.8
big 2 2 0 2 0 0 44.0

Table 5.2 Table showing critical dimensions of gate structures 
measured. ‘Gate length’ and ‘gate width’ are defined in fig.5.3
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5.3 Measurements.

5.3.1 Experiments with HRN longitudinal wire devices.

5.3.1.1 Measurement of A707 devices.

Three devices labelled #1,2,3 were measured from this chip. All three consisted of 

three gates in a row on the same type A Hall-bar (Hall-bar types are shown in chapter 

2. This particular design used 100 pm channel width). The dimensions of the gates and 

wires are shown in table 5.1. The magneto-resistances of devices #1 and #3 were 

measured on the VTI rod at 1.5 K, the zero field resistance of #2 was also measured. 

The capacitances of devices #1 and #2 were measured in the closed circuit system at 

20 K. The capacitance of device #3 was studied at 77 K. The distance between voltage 

probes (that is one pair on either side of the gate) for these devices was 90 pm and 

resistance between voltage probes of about 70 Q giving a typical low temperature 

mobility at 1.5 K of 14 it̂ V 'V 1.

a) Cut-off voltages.

Threshold voltages were obtained from the capacitance and from conductance 

measurements as a function of gate voltage. Graph 5.1 shows the conductance 

measurements, and 5.2 shows the capacitance measurements for device A707#l. Table 

5.3 shows the comparisons of cut-off voltages for the three devices (taken from the 

capacitance measurements) with the pinned and frozen theories for a superlattice. To 

predict the cut-off voltage, the carrier concentration must be used. In all calculations 

of Vc for the three devices measured, the carrier concentration used was that obtained 

from the low temperature SdH measurements. The SdH carrier concentration was 

found to give the least error, estimated at not more than ±0 . 1  x 1 0 15 m‘2.
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Device
A707

Gate
Carrier 

concentration 
(xlO15) m’ 2  

±0 .1 x l 0 1 5 m ' 2

Measured fVl Theoretical TV1
v t
±0 . 0 2

Vc
±0.05

vt
±0 . 0 1

vc<p)
±0 . 0 1

V c™
±0 . 0 1

# 1 Big-gate 5.6 -0.42 -0.30
lOOnm wires 5.8 -0.42 -0.80 -0.31 -1.03 -0.55
250nm wires 5.7 - -2 . 2 0 -0.31 -2 . 2 2 -1.26

# 2 Big-gate 5.7 -0.80 -0.31
lOOnm wires 5.7 -0.80 - 1 . 0 0 -0.31 -1.03 -0.55
250nm wires 5.7 -0.40 -2 . 0 0 -0.31 -2 . 2 2 -1.26

#3 Big-gate 5.6 -0.60 -0.30
lOOnm wires 5.6 -0.70 - 1 . 1 0 -0.30 -0.99 -0.53
250nm wires 5.6 - -1.70 -0.30 -2.15 - 1 . 2 2

Table 5.3. Comparison of measured and theoretical cut-off voltages. The 
estimated positions of Vc and Vt are shown in fig 5.7.
Ideally the estimates of voltage were taken at a position half way down 
the slope associated with that cuf-off voltage. As in fig 5.1 100 nm 
wires. When this was not clear (as in fig 5.1 250 nm wires data) the 
estimate was taken at the bottom of the slope associated with that 
voltage.

b) Capacitance measurements.

Measurements for A707#l are shown in graph 5.2. The magnitudes of the capacitance 

compared to theory at zero gate bias using equation 5.9, and the calculations of carrier 

density obtained by integrating the area under the capacitance curves (measured at 

~17K), compared to those measured using the SdH measurements (measured at 

~1.5 K), are shown below in table 5.4.
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Device
A707

Measured 
Capacitance 

pF 
±0.1 pF

Theoretical 
Capacitance 

pF 
±0.1 pF

Capacitance 
Carrier Density 
(xlO15) m ' 2  

±0 . 2  x 1 0 15 m ' 2

SdH
Carrier Density 
(xlO15) m ' 2  

±0 . 1  x 1 0 15 m ' 2

# 1

lOOnm 2.9 6.3 5.0 5.8
250nm 0 . 8 6.3 5.0 5.7
Big-gate 3.1 6.3 4.2 5.6

# 2

lOOnm 1.9 6.3 5.4 -

250nm 1 . 8 6.3 7.9 -

Big-gate 2.4 6.3 9.8 -

#3
lOOnm 2.3 6.3 5.0 5.6
250nm 1 . 1 6.3 5.0 5.6
Big-gate 3.0 6.3 5.2 5.6

Table 5.4 comparison of measured and theoretical capacitance plus comparisons of 
carrier density obtained from SdH and capacitance measurements.

The comparison of carrier densities from measurements taken at different 

temperatures in table 5.4 is valid, because the measurements are all made below the 

DX freezing temperature (150 K).

c) Magneto-resistance measurements.

Shubnikov de Haas Measurements

Devices A707#l and A707#3 were measured on the VTI for different gate biases and 

varying magnetic field. Graph 5.3 shows a series of SdH measurements for 250 nm 

wires on device A707#l. Graph 5.4 shows a Fourier transform of a SdH measurement 

of 250 nm wires on A707#l with a gate bias of Vg=-0.6 V. The Fourier transform 

shows two main peaks which correspond to the gated and the ungated areas. The lower 

of these peaks can be used to give an estimate of carrier concentration under the gated 

region. These values will be used together with the Haug measurements to see how the 

carrier concentration is being depleted under the gate.
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d) Haug measurements.

Devices A707#l and A707#3 were measured using the Haug technique. Haug 

measurements for the three gates on A707#l are shown in graph 5.5. Theoretical 

values of from (5.8) are indicated, which correspond to the Landau levels Nw = 3, 

Ng= 2 and Nw= 3, Ng= 1. The positions of the plateaus are used to estimate the carrier 

concentration as a function of gate bias. A plot of the carrier concentrations vs. gate 

bias is shown in Graphs 5.6 for devices A707#l and A707#3. The majority of the data 

comes from the Haug measurements, but some points obtained from the Fourier 

transforms of the SdH plots are also added. Graphs 5.6 shows that there is good 

agreement between the carrier concentration calculated from the Haug and SdH 

measurements. Big-gate and 250 nm wires data decrease linearly up to the cut-off 

voltage. The lOOnm data, particularily for A707#l, behaves differently. The carrier 

concentration decreases with bias towards a point more negative than the observed 

cut-off voltage. However before that point is reached there is a sharp decrease to zero 

carrier concentration at the cut-off voltage.

5.3.1.2 Measurements of the A866 device.

One device was measured, device #2. It consisted of two type C Hall-bars side by side 

on the same chip (one wire device, one gate device). The dimensions of the gate and 

wires are shown in table 5.1. These Hall-bars were fabricated at the same time and 

cooled at the same time, under the same conditions. The Hall-bars were 200 pm wide 

with a distance between voltage probes of 300 pm, giving a resistance of 260 Q. This 

leads to a mobility at low temperatures (1.5 K) of about 8.5 n^V 'V 1 for these devices, 

which is rather low, even compared with the other devices measured, probably 

because this layer was grown towards the end of a cycle before the MBE system was 

cleaned.
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a) Cut-off voltages.

Cut-off voltages were obtained from conductance-gate voltage measurements, as 

shown in Graph 5.7. On this device there is clear evidence of a shoulder on the wire 

data; and the formation voltage of the wire can be seen at the point at which the big- 

gate cuts off, at about -0.27 V, indicating that electrons are being squeezed into wires. 

The theoretical and measured cut-off voltages are shown in Table 5.5. The carrier 

concentration values are those obtained from SdH measurements.

Device
A8 6 6

Gate
Carrier 

concentration 
(xlO15) m ' 2  

tO.lxlO1 5 m ' 2

Measured [V] Theoretical [V]
vt
±0 . 0 1

Vc
±0.05

v t
±0 . 0 1

Vcw
±0 . 0 1

v cirv
±0 . 0 1

# 2 2 0 0 nm wires 
(2 fim period) 
Big-gate

4.3

4.4

-0.27

-0.27

-0.38 -0 . 2 2

-0.23

-1.29 -0.65

Table 5.5 Comparison of measured and theoretical cut-offs for the A8 6 6  

device. The positions of estimate of Vc and Vt are shown in fig 5.7.

b) Shubnikov de Haas measurements.

SdH measurements were made for zero bias on both gates of A866#2. In addition a 

SdH sweep was made in a region of interest past the gate cut-off voltage at -0.28 V to 

get an estimate of the carrier concentration in this region. The carrier concentrations 

obtained are shown in graph 5.8.

c) Haug measurements.

A866#2 carrier concentration data obtained from Haug measurements are plotted in 

graph 5.8. Here the Haug carrier concentration data is similar for the big-gate and the 

wire. The carrier concentration under the area of gate on GaAs (between the HRN 

ribs) and the big-gate depletes in a similar way. Of interest in the Haug data for the 

A866#2 wire is that there is evidence of structure past the gate cut-off. A curve is 

shown for B=2.2 T in graph 5.9.
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5.3.1.3 Measurement of A909 devices.

Two devices were measured from this chip labelled #2,3. These devices consisted of 

two gates on the same type D Hall-bar. Gate and wire dimensions are shown in table 

5.1. The magneto-resistance of device #2 was measured on the VTI. Capacitance and 

magneto-capacitance of this device, and of device #3, were also studied on the VTI 

capacitance rod. The distance between voltage probes for these devices was 300 pm 

and resistance between voltage probes of 138 £2 giving a low temperature (1.5 K) 

mobility of 13.2 n ^V 'V 1.

a) Cut-off voltages

Threshold voltages were obtained from the capacitance measurements. Graph 5.10 

shows a capacitance measurement and graph 5.11 shows a conductance measurement 

for device #3. Table 5.6 shows a summary of the theoretical and measured cut-off 

voltages for these devices. The carrier concentrations were obtained from the SdH 

measurements at low temperatures.

Device
A909

Gate
Carrier 

concentration 
(xlO15) m ' 2  

K).1x1015 m' 2

Measured [V] Theoretical [V]
vt
±0 . 0 2

Vc
±0 . 0 2

v t
±0 . 0 1

VC(P)
±0 . 0 1

VC(F)
±0 . 0 1

# 2 2 0 0 nm wires 
Big-gate

5.3
5.4

-1.35
-0.40

-1.50 -0.27
-0.28

-1.58 -0.80

#3 2 0 0 nm wires 5.2 -0.43 -0.75 -0.27 -1.58 -0.80

Table 5.6. Theoretical and measured cut-off voltages for A909 samples. The 
positions of Vc and Vt are shown in fig 5.7.

80



C
on

du
ct

an
ce

(p
.S

) 
C

ap
ac

ita
nc

e 
(p

F)

25

20

A909#3 V,

- 1.0 -.8 -.6 -.2-.4

Gate voltage (V)

Graph 5.10. Capacitance measurement of A909#3

A909#3 V(-

-.2-.4-.6

Gate voltage (V)

Graph 5.11. A 9 0 9 # 3  conductance measurement.



b) Shubnikov de Haas measurements.

Devices #2 and 3 were measured on the VTI and the carrier concentrations were 

obtained from SdH and Haug measurements. These are shown in Graph 5.12 for both 

wire and gate devices.

c) Capacitance measurements

Capacitance-voltage studies were made of a longitudinal wires device (device #3) and 

a big-gate device (device #2). The measurement for the wire device was shown in 

graph 5.10.

The magnitudes of the capacitance compared to theory at zero gate bias using (5.10) 

are shown in table 5.7. Also shown are the calculations of carrier density obtained by 

integrating the area under the capacitance curves (measured at ~17 K), compared to 

the values obtained using the SdH measurements (measured at ~ 1.5 K).

Device
A909

Measured
Capacitance

pF
±0.2dF

Theoretical
Capacitance

pF
±0.6pF

Capacitance 
Carrier Density 

(xlO15) m ' 2  

±0 . 2  x 1 0 15 m ' 2

SdH
Carrier Density 

(xlO15) m ' 2  

+0 . 1  x 1 0 1 5 m' 2

#3
2 0 0 nm
wires

23.9 31.3 6 . 1 5.2

# 2

Big-
gate

28.7 31.3 6.5 5.4

Table 5.7 comparison of measured and theoretical capacitance plus 
comparisons of carrier density obtained from SdH and capacitance 
measurements.
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d) Magneto-capacitance measurements.

The wire gate on device #3 and the big-gate on device #2 were measured on the 

capacitance VTI rod. Measurements of capacitance against magnetic field at given 

gate voltage (analogous to SdH measurements) for device 3 are shown in graph 5.13. 

Measurements of capacitance against gate voltage at given fields (analogous to Haug 

measurements) are shown in graph 5.14.

5.3.2 Experiments with side gated superlattice devices.

5.3.2.1 Measurements of the A909 devices.
Two devices labelled #1 and #2 were measured from different Hall-bars. The devices 

were fabricated at the same time on the same piece of material.

The gates that gave the most consistent results (with each other and between repeated 

gate measurements) were the gate-on devices and data will be presented from 

experiments on these devices. Gate-off devices gave poor results which are thought to 

be due to broken gate connections where the strips step over the edge created by the 

etch process defining the channel. All experiments were carried out at 1.5K on either 

the capacitance or the resistance VTI rods. The distance between voltage probes was 

300 pm for these devices giving a resistance of 180 Q and a mobility of 9.5 m2V 'V1 
at a measurement temperature of 1.5 K.

a) Capacitance measurements

Measurements of capacitance as a function of gate bias for the two devices are shown 

in graph 5.15. The graphs show the capacitance starting at a high value (which should 

be comparable to the geometric one obtained from equation 5.9), then dropping 

rapidly to a point defined by a bias voltage, Vt. The capacitance then decreases at a 

slower rate until it reaches a point near Vc when it falls more rapidly to a background 

capacitance defined by the capacitance of connections and leads to the device.
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Table 5.8 below summarises cut-off voltages obtained from measurements of 

capacitance for the two devices. The carrier concentration was obtained from the low 

temperature SdH measurements.

Device
A909

Gate
Carrier 
concentration 
(x lO 15) m ' 2  

±0 . 1 x l 0 15 m ' 2

Measured [V] Theoretical [V]
vt

±0.05
Vc

± 0 . 2 0

vt
±0 . 0 1

Vc(1>>
±0 . 0 1

Vc(h)
±0 . 0 1

#1 gate on 5.5 -0.50 -4.93 -0.28 -7.80 -4.37

# 2 gate on 5.3 -0.50 -4.70 -0.27 -7.51 -4.21

Table 5.8 Comparison of threshold and cut-off voltages using the pinned and frozen 
theories. The estimated positions of Vr and Vt are shown in graph 5.15.

The value of actual measured capacitance at zero bias (Cm=Co - Cb) can be compared 

to the capacitance obtained from equation 5.9 and the carrier concentration obtained 

from the SdH measurements can be compared to the carrier concentration obtained 

from the area under the curves (areas A+B in fig 5.8). These data are summarised in 

table 5.9 below.

Device
A909

Measured 
Capacitance 

pF 
± 0.2 pF

Theoretical 
Capacitance 

pF 
± 2 pF

Capacitance 
Carrier density 

(x lO 15) m' 2  

±0.2 xlO 1 5 m' 2

SdH 
Carrier density 

( xlO15) m‘2  

tO .l xlO 1 5 m ' 2

# 1 13.2 6 8 . 8 1.5 5.5

# 2 15.2 6 8 . 8 1.9 5.3

Table 5.9 Comparison of measured and theoretical capacitance, and carrier 
concentrations obtained from magneto-resistance and capacitance 
measurements.
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b) Resistance and magneto-resistance measurements.

Both devices were measured on the resistance VTI to confirm threshold voltages (Vt) 

and for an estimate of carrier concentration from the SdH oscillations.

The resistance measurements show threshold voltages which are the same as the 

threshold voltages observed in the capacitance measurements (-0.5 V) . Graph 5.16 

shows resistance as a function of gate bias for measurements from each side of the 

channel. The differences between the two measurements reflect the increased path that 

the electrons are forced to take around the gate when measured from the gate-on side 

above threshold. The gradual increase in resistance when the gate bias is made more 

negative than Vt is a result of the 10 pm channel shown in fig. 5.3 being squeezed. 

Graph 5.17 shows magneto-resistance measurements. These are used to find the zero 

bias carrier concentration.

5.3.2.2 Measurements of the B591 devices.
Four B591 devices were measured, labelled #1,2,4 and #5. Both gate-on and gate-off 

type gates were measured. Devices were measured in the closed circuit system at 20K 

and on the VTI resistance and capacitance rods at 1.5 K. From the magneto-resistance 

measurements it was found that the mobility of a typical device was 2 0  m2V 'V1 (a 

resistance of 200 Q, with voltage probes 300 pm apart at a measurement temperature 

of 1.5 K).

a) Capacitance measurements

All four devices were measured on the closed circuit system at temperatures of about 

20 K. Three devices, #2, 4 and 5, were measured on the capacitance VTI rod at 1.5 K. 

Typical measurements are shown in graph 5.18. The measurements are similar to those 

made on A909, with a rapidly decreasing capacitance at Vt and a more gently sloping 

decrease to Vc. However, whilst Vt is in good agreement for all devices, there is a 

considerable disparity between measured values of Vc for four devices, including a 

difference in the value derived from the C-V curve of device #2 measured at 1.5 K and
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17 K. Also of note is one feature, common to all B591 devices but which was not 

observed on the A909 or A648 devices. This is the additional plateaux observed on the 

curves near Vt.

The cut-off and carrier concentrations from all measurements of the devices are 

summarised below in table 5.10.

Device Gate
Carrier

concentration Measured fVl The.nretical ["\(]
B591 (xlO15) m ' 2  

±0 . 1 x l 0 1 5 m ' 2

vt
± 0 . 0 1

Vc
± 0 . 2 0

v t
± 0 . 0 1

VC(P)
± 0 . 0 1

VC(F>
± 0 . 0 1

#1 (17K) gate on -0.25 -2 . 0 0

#2 (18K) 
(18K) 

(1.7K)

gate on 
gate off 
gate on 2.7

-0.25
-0.25
-0.25

-0.84
-1.62
-1.35 -0.26 -3.98 -2.24

#4 (17K) 
(17K) 

(1.6K)

gate on 
gate off 
gate off 2 . 6

-0.25
-0.25

-0.25

-3.22
-3.40

-2.90 -0.25 -3.83 -2.15

#5 (17K) 
(17K) 

(1.5K)

gate on 
gate off 
gate off

-0.25
-0.25
-0.25

-2.26
-3.25
-3.20

Table 5.10. Measured and theoretical cut-off and threshold voltages for 
B591 devices. The positions of estimate of Vc and Vt are shown in fig 5.8.

Table 5.11 shows the capacitance at zero bias compared the capacitance calculated 

from theory (using equation 5.10). Also shown is a comparison of carrier 

concentrations obtained using the area under the capacitance curves, compared to the 

SdH values for devices #2 and 4.
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Device
B591

Measured
Capacitance

pF

Theoretical 
Capacitance 

pF 
± 1.2 pF

Capacitance 
Carrier density 

( xlO15) m ' 2  

±0 .2 x l 0 1 5 m' 2

SdH 
Carrier density 
( xlO15) m ' 2  

±0 . 1 x l 0 1 5 m ‘ 2

# 1  gate on 25.0 30.1 1 . 8

# 2  gate on 25.2 30.1 2 . 0 2.7
gate off 23.9 28.6 1 . 8

#4 gate on 25.1 30.1 1 . 8

gate off 23.2 28.6 1 . 8 2 . 6

#5 gate on 24.9 30.1 1.9
gate off 23.3 28.6 2 . 0

Table 5.11. Comparison of theoretical and measured capacitance, and 
carrier concentration measured from the SdH and capacitance data.

b) Resistance and magneto-resistance measurements.

The resistance of device #2 (gate-on) was measured as a function of magnetic field 

and gate voltage on the resistance VTI rod. The threshold voltage from this 

measurement is shown in graph 5.19 and is smaller than that observed in the 

capacitance measurement (-0.16 V compared to -0.25 V). The magneto-resistance 

plots show an increase in resistance at zero magnetic field as the gate bias is made 

negative. The SdH oscillations in the magneto-resistance measurement are unaffected 

by gate bias and reflect the bulk device outside the gate.
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5.3.2.3 Measurements of the A648 devices.

Two A648 gate-on devices labelled #2 and #3 were measured. In addition, a large gate 

device was measured, #4. This device had both a big-gate and a partial gate. Devices 

were measured on the VTI capacitance or resistance rods at 1.5 K. Using the carrier 

concentration from the SdH measurements, it was calculated that these devices had a 

mobility of 47 m2V ‘V1 at 1.5 K. The voltage probes were 300 pm apart and at zero 

magnetic field, the resistance measured was 77Q .

a) Capacitance measurements.

All three devices were measured on the VTI capacitance rod at 1.5 K. Graph 5.20 

shows capacitance as a function of gate bias for the two A648 devices. The shape of 

the capacitance curves of the A648 devices is similar to the A909 devices, with a steep 

cut-off at Vt followed by a more gradual decrease in the capacitance until Vc is 

reached, when there is a sharp drop. The big-gate and partial gate showed only a sharp 

decrease in the capacitance at the cut-off voltage. The partial gate had a slightly larger 

magnitude of Vt. A summary of the results is shown below in table 5.12.

Device
A648

Gate
Carrier 

concentration 
( xlO15) m' 2  

±0 .1 x l 0 1 5m ' 2

Measured \V] Theoretical [V]
vt

±0.05
Vc
± 0 . 2

v t
±0 . 0 2

VC(P)
±0 . 0 2

VC(F)
±0 . 0 2

# 2 gate on 2.5 -0.40 -2 . 2 0 -0.37 -3.60 -2.04

#3 gate on -0.40 -1.90

#4 big-gate
partial

-0.40
-0.45

Table 5.12. Comparison of measured and theoretical cut-off and threshold 
voltages for A648 (deep) devices.
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Table 5.13 shows comparisons of measured and theoretical capacitances together with 

comparisons of the charge densities obtained from the area under the capacitance 

curve and from the SdH measurement.

Device
A648

Measured
Capacitance

pF
±0.5pF

Theoretical 
Capacitance 

pF 
± lpF

Capacitance 
Carrier density 
(x lO 15) m' 2  

±0 .2 x 1 0 1 5m ' 2

SdH 
Carrier density 
( xlO15) m’ 2  

±0 . 1 x l 0 1 5m ‘2

# 2  gate on 9.0 24.1 2 . 1 2.5

#3 gate on 6 . 8 24.1 2 . 2

#4 big-gate 41.4 48.1 2.3
partial 39.1 45.7 2.3

Table 5.13. Comparison of measured and theoretical capacitances, and comparison 
of carrier concentrations obtained using SdH data and capacitance data.

b) Resistance and magneto-resistance measurements.

The resistance of device #2 was measured as a function of gate voltage and magnetic 

field on the resistance VTI at 1.5 K. The resistance measurements are shown in graph 

5.21. Magneto-resistance measurements were made which enabled a calculation of 

zero gate bias carrier concentration to be deduced.



5.4 Summary and discussion

5.4.1 Summary and discussion of HRN longitudinal wire data.

5.4.1.1 Introduction
Three devices were measured with different gate geometries. All three layers were of 

a similar type, shallow AlGaAs material with the interface 28 nm from the surface. 

The first layer measured was A707, this had less doping than A8 6 6  or A909 but the 

highest mobility. The next devices were on the an A8 6 6  layer which had the poorest 

mobility. Two Hall-bars were measured, one with gate on HRN ribs and another 

control device with the same overall dimensions but with no HRN ribs. The final 

devices that were measured were A909 #2 and #3. A909 was a wide channel device 

with the channel width 200 pm and with a mobility less than that of A707 but greater 

than that of the A8 6 6  devices.

5.4.1.2 Cut-off voltages.
It was expected that, by comparing the cut-off voltages to those predicted by the 

pinned and frozen models, it would be possible to differentiate clearly between the 

two. From the data, it was hoped to see a formation voltage similar to the cut-off 

voltage for the big-gate, and comparable to the theoretical cut-off obtained from either 

equation (5.6) or (5.7). The measured values of Vt were in reasonable agreement with 

the theoretical values, taking into consideration that the model was developed for deep 

bulk materials, and the values are also in good agreement with other big-gate 

experimental results measured using devices fabricated on shallow materials grown in 

Glasgow [22].

The measured cut-off voltages, Vc were also compared to the calculated values from 

the two models. For A707 devices, the measured Vc values lie in a range from mid

way between the two models tending towards the pinned values. A 8 6 6  and A909
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devices showed better agreement with the frozen model. A909 #2 was an exception 

showing larger values of both Vt and Vc than predicted by the theoretical models.

The results are ambiguous and do not seem to support either the pinned or the frozen 

models, but there are complicating factors. The first is that there must be some effect 

of the gate on top of the resist. This will lead to the Vc measured being less than 

expected due to the depletion of the electrons in the wire areas. This may also be 

partly to blame for the non-formation of continuous channels of electrons (ID electron 

wires). Secondly, there is an additional problem due to the fabrication process. When 

the wires are written, backscattered electrons expose areas of resist between the wires. 

This effect have been most important for large markrspace ratios and in the worst case 

may have meant that there was a complete covering of thin resist in the areas of GaAs 

between the wires. This would explain the poor results for the A707 devices where 

there are large variations between measured values of Vc and Vt between the big-gate 

devices and the various wire devices. SEM work could not prove that this was 

happening because of the poor contrast between resist and GaAs. However, in the 

optical microscope, there was a slight difference in shading in the spaces between ribs 

increasing from the edge to the middle of the patterns. This would correspond to resist 

increasing in thickness closer to the middle of patterns, where the number of 

backscattered electrons is higher.

The later devices such as A8 6 6  and A909 with smaller markrspace ratios showed 

better agreement between values of Vt measured on gates and wires, indicating that 

the resist contamination problem was less severe on these devices. The exception was 

the A909#2 wire device, which showed much larger Vc and Vt values, indicating there 

was probably an additional surface contamination problem under this gate.

In conclusion the results from this section tend to support the frozen rather than the 

pinned model, but do not supply a definitive answer. It is difficult to quantify the 

effects of the resist between wires, or the possible effects of metals on top of the resist, 

which are inherent in the use of HRN electrostatically formed wires.
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5.4.1.3 Magneto-resistance measurements.
Magneto-resistance measurements were used as a probe of how the electrons are 

behaving underneath the gate. Evidence of ID behaviour was looked for in the SdH 

and Haug measurements. Firstly the SdH measurements were examined for any 

deviation of the positions in the minima. There are no significant deviations in the 

positions of minima plotted as 1/B vs. Landau index for any of the devices measured 

(graphs 5.22 shows plots for devices A866#2 and A909 #2). Secondly the SdH and 

Haug measurements were used to give the carrier concentration for various bias 

voltages. For the A707 devices (graphs 5.6), there is good agreement between the SdH 

measurements and the Haug measurements. The 250nm wires data is similar to the 

big-gate data, the carrier concentration decreases linearly towards the cut-off voltage 

given in table 5.2. This is consistent with a nearly uniform HRN layer right across the 

device, with relatively little thinning between the wire regions. The lOOnm wires are 

slightly different. Here the carrier concentration decreases linearly towards a voltage 

greater than the cut-off and then falls very rapidly towards the actual cut-off voltage. 

This is evidence of wire formation in these devices with the carrier concentration 

remaining high under the HRN ribs until squeezed by the side potential. This is 

confirmed by the capacitance data, where a double cut-off can only be seen clearly for 

the 1 0 0  nm data.

The A866#2 data (graphs 5.7) shows similar values of threshold voltage. The two 

measured values of Vt, from gate and wire devices, are clearly in the same place, with 

an extra cut-off (Vc) corresponding to the cut off for the wire. This is a more “hopeful” 

device for showing ID behaviour. However, the plot of the SdH minima vs Landau 

level index did not show any evidence of ID behaviour (graph 5.22)), when the gate is 

biased in the region beyond Vc where the wires ought to be formed. The carrier 

concentration plots (graph 5.8) are more interesting. The variation of the carrier 

concentration with bias decreases linearly towards Vt but with the SdH trace showing 

a higher carrier concentration in the region Vc<Vg<Vt, corresponding to electrons 

trapped underneath the resist. In addition, in the Haug plots (graph 5.9 shows a plot for
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B= 2.2T), there is evidence of an extra plateau in the wire region (at around Vg = - 

0.27 V) suggesting a region of high charge concentration under the wire corresponding 

to this plateau.

Graph 5.12 shows all the carrier concentrations obtained from the A909 devices. 

Device #2 shows good agreement between SdH and Haug measurements, but the 

threshold voltages are in poor agreement with the measurements on the big-gate 

devices. This suggests a surface contamination problem, perhaps again involving non 

lift-off of HRN in unexposed areas. Device #3 shows a decreasing carrier 

concentration towards the gate cut-off, but there is no evidence of extra charge under 

the wires in the Haug data, as is suggested from the cut-off data, where a region 

corresponding to possible wire formation is seen. This may reflect the dimensions of 

the device, where the wire area is only 1 / 1 0 th that of the total area.

5.4.1.4 Capacitance as a function of gate bias.
On A707 #1,2,3, A909 #3 (wire) A909 #2 (gate) capacitance was measured as a 

function of gate bias. The aims of these experiments were firstly to check for ID 

behaviour in the wires and secondly to obtain confirmation that the devices were 

behaving as expected, i.e. the carrier concentration obtained from the capacitance 

graphs (from JCdV) gives a value of charge and hence carrier concentration equivalent 

to that obtained from the SdH measurements. In addition to this, the amount of charge 

in the two regions should be in proportion to the areas covered by resist or gate. With 

reference to fig 5.7, for a device with a 1:1 mark space ratio (such as the A707 with 

250 nm wires and 500 nm period), area A should be the same as area B. For a gate 

structure comprising 200 nm wide wires with 2000 nm period, like the A909 device, 

the area corresponding to the wires should be 1 / 1 0 th of the area corresponding to the 

gate.

A909 # 3 was measured at 1.5K and the A707 devices #1,2,3 at 17K in the closed 

circuit system. No oscillations in the C(V) measurement were seen on the A909 device
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data when 8 C/8 V of the measurement was calculated and plotted. The A707 devices 

were also checked and no oscillations were found, though ID behaviour is less likely 

in these devices since these experiments were carried out at 17K. These results are in 

agreement with the magneto-resistance measurements, where no ID effects were seen. 

There are two reasons for this. Firstly, the existence of resist between wires combined 

with the effect of the gate on top of the resist ribs will reduce with difference in 

potential between gated and ungated areas. The difference in potential is now that 

between two poorly differentiated areas; one with a gate on resist 60 nm thick and 

another on resist of unknown thickness. This reduces the likelihood of seeing ID 

effects because, with the potential ‘flattened out’, wires are not formed and the 

situation is closer to that of a 2DEG with only weak modulation. In this case ID 

effects are not likely to be seen [23]. In addition to this, if the backscattered electrons 

exposed areas of resist in a random fashion there would be a variation in the width of 

the wires leading to pools of charge separated by depleted areas.

The measured values of capacitance at zero gate bias can be compared to the 

theoretical values obtained from (5.10). These were shown in table 5.4 for A707 and 

table 5.7 for A909. The values for A707 are low and in poor agreement with the 

theoretical values (half or less than half the theoretical values), although looking at the 

two right hand columns of table 5.4, it can be seen that for A707 #1 and #3 which 

were also measured using the SdH technique, there is good agreement between the two 

measurements of the carrier concentrations. The values for the A909 devices are in 

closer agreement with the theoretical figure (compared to the A707 devices). These 

were shown in table 5.7. The values of zero gate voltage capacitance are 76 percent of 

the theoretical for the wire device and 92 percent for the big-gate device. The carrier 

concentrations are also quite close to those obtained from the SdH values.

The relative amounts of charge in the wire and gate regions of the A707 and the A909 

device are compared to the expected values for the geometry of the device in table
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5.14. For the 100 nm A707 wires, there is clearly a double cut-off for each of the three 

devices. The amount of charge in the wire region should be l/5th of the total. For the 

250nm device there is only clearly a double cut-off for device number 2, for which the 

wire charge should be half the total.

Device/gat<
wire 

i charge 
(xlO'12)C

total
charge
(xl0‘12)C

percentage
(±1.5%)

expected percentage 
(from geometry)

A707
#1 lOOnm 0.39 1.59 24.5 2 0 . 0

#2 lOOnm 
250nm

0.26
1.43

1.72
2.53

15.1
56.5

2 0 . 0

50.0

#3 lOOnm 0.29 1.60 18.1 2 0 . 0

A909
#3 200nm 0.75 9.78 7.7 1 0 . 0

Table 5.14 Comparison of percentage of charge in wire regions compared to the 
theoretical value from the geometry of the wire structures. The error of 1.5% is 
estimated from the areas of charge under the CV plots.

For devices A707 #1 and #3 250 nm wires, there are no indications of separate wire 

and gate regions and so the data are not presented in table 5.14. There is good 

agreement between the experimental values and the geometrical percentages in table

5.14. This is in contrast to the very poor agreement between theory and experiment for 

the zero bias capacitances in tables 5.4 and 5.7. The low values of zero bias 

capacitance are compensated by the larger cut off voltages which keeps the carrier 

concentration correct. These results can be best explained by the presence of surface 

contamination, most likely a thin variable layer of the HRN, exposed during 

fabrication by backscattered electrons or left after development. It is difficult to 

ascertain the thickness and spread of the resist because the contrast in a SEM between 

HRN and GaAs is very poor.
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5.4.1.5 Magneto-capacitance data.

The A909 gate (# 2) and wire (#3) samples were measured on the capacitance VTI 

rod with a varying magnetic field at fixed bias voltage (analogous to SdH 

measurements) and at fixed magnetic fields with a varying bias voltages (analogous to 

Haug measurements).

Magneto-capacitance data can be used in a similar way to the magneto-resistance data 

to find how the carrier concentration varies with gate bias. The magneto-capacitance 

measurements give a carrier concentration of 5.6 x 101 5 m 2 (±0.2 x 101 5 m‘2) at zero 

bias which compares very favourably with the value of 5.2 x 1015 rn 2  

(±0.1 x 1015 m'2) from the magneto-resistance SdH measurements for the wire device. 

For the gate device the carrier concentration for the magneto-capacitance measurement 

was 6 . 2  x 1 0 15 m*2 (±0 . 2  x 1 0 15 m'2) which also compares quite favourably with the 

SdH magneto-resistance measurement of 5.4 x 1015 m'2 (±0.1 x 1015 m’2).

The extra charge seen in the capacitance graph 5.10 for Vt < Vg < Vc indicates the 

formation of wires in this device. Haug and SdH type magneto-capacitance 

measurements show no evidence of ID effects. SdH type measurements are presented 

in graph 5.13 for 4 values of gate bias. The curves for Vg=0 and -0.4 V are in the gate 

region (Vg > Vt). The shifts in the minima show the variation of carrier concentration 

under the gate. The lower two curves are for a gate bias chosen so that the C(V) curve 

is on the wire region (Vt < Vg < Vc), and past the wire region (Vg < Vc). The minima 

observed in these two curves are at the same values of magnetic field. It was hoped 

that magneto-resistance oscillations in the wire region would give information on the 

increased number of edge channels running under the gate along the lines of HRN 

strips. Instead, they seem to indicate that the edge channel capacitance is so small that 

the sum of the capacitance to the bulk area plus the capacitance to the edge channels 

running along the boundary between ungated and gated areas is much larger than the 

capacitance of the edge channels within the device.
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5.4.2 Summary and discussion of the side gated superlattice data. 

5.4.2.1 Introduction
Qualitatively the data for side gated finger superlattices presented in this chapter were 

in good agreement with theoretical models. Quantitatively however, there are some 

fairly serious problems with the data. The most important problems are the reduced 

capacitance at zero bias in the A909 and A648 devices, and the large range of Vc 

values observed in the B591 devices.

5.4.2.2 Capacitance, resistance and magneto-resistance data
In all measurements (tables 5.9, 5.11, 5.13), the observed capacitance was less than 

that predicted theoretically. The poorest data are those obtained for the A909 devices. 

These values are about a quarter of the calculated values and are in poor agreement 

with each other. The values from A648 which show better agreement between devices, 

but are still less than half the theoretical values. The four B591 devices show excellent 

agreement with each other, but in all cases the measured values are about 5 pF less 

than the theoretical values.

All the devices were fabricated using the same techniques. The gate metal used was 

50nm of NiCr. Since this is a relatively thick layer of material it was thought that it 

would be enough to prevent breakages where strips of metal make a connection from 

the etched area onto the channel (in the case of gate off devices). One possible reason 

for the missing capacitance would be breakages in the wires either on the channel, 

either physically (due to some separation between two areas of strip which are 

supposed to be connected) or electrically, (from an area of high resistance due to some 

impurity problems). In the case of the gate off devices, problems could also have 

arisen where the fingers rise onto the channel. However S.E.M. photographs of the 

devices proved that physical breakages were not present. It seems likely that the
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problem is an electrical one of lack of connection down the fingers, perhaps due to 

impurities in the gate metal.

The mark:space ratio was nominally 1:1 for all the devices. Thus, for a gate off device 

the ratio of charge in the gate area (region 'B' in fig 5.8) to that in the tail plus gate area 

(region 'A+B' in fig 5.8) should be 50 %. For the gate on devices, there is slightly more 

gate region due to the gate covering part of the channel, hence the increased expected 

value of 53 percent.

Ratios for measurements of the integrated charge under the C(V) graphs are shown in 

table 5.15. The measurement temperature is 1.5 K unless otherwise stated.

Device/gate wire
charge
dC

total
charge

dC

percentage
±1.5

expected percentage 
(from geometry)

A909
1 on 5.3 20.9 25 53
2 on 6 . 6 2 0 . 6 32 53

B591
1 on (17 K) 7.9 12.5 63 53
2 on 5.6 1 1 . 1 50 53

off (18K) 4.9 11.7 42 50
4 on (17K) 5.3 17.1 31 53

off 5.0 15.7 32 50
5 on (17K) 5.4 14.7 37 50

off 5.4 13.8 39 53

A648
2  on
3 on

2.7
3.5

7.3
7.7

37
46

53
53

Table 5.15. Comparison of measured and theoretical ratios of integrated 
charge under gates to total integrated charge.
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The ratios in table 5.15 show that the A909 and A648 data are in poor agreement with 

the expected values, with less charge in the wire than in the gate regions. Total charge 

and C0  values are also low for these devices (Table 5.10). The B591 devices show 

better agreement between experiment and theory for Co and Vt, but poor agreement 

with Vc . The percentage charge under the gate is in better agreement with theory for 

the B591 devices, but varies considerably from device to device. It can be seen from 

tables 5.15 and 5.10 that the poor agreement of the percentage value is not correlated 

with the variation of Vc.

The metal strips forming the fingers were examined using a SEM. No breakages were 

found. The low observed values of the A909 and A648 capacitance are most likely due 

to poor electrical connections to the superlattice as a result of an impurity problem 

with the evaporated NiCr gate. The B591 devices were fabricated before the A909 

and A648 devices. In the Plassys evaporator, the NiCr metal source was changed to 

one from a new manufacturer in the time period between the fabrication of the B591 

devices and the other two, and this may have been associated with the subsequent 

problems.

It is possible that the variations in Vc and the relative charges in the gate areas for 

B591 devices are due to local variations in doping density in the channel. These 

variations would have to be localised on a scale much smaller than the gate 

dimensions (180 pm x 190 pm) so as not to be detected by the SdH measurements 

which were consistent with each other (and with other devices measured). A B591 

device with a small period superlattice was measured and is reported in chapter 6 . It
i c 'y

had a carrier concentration of 2.5 x 10 m' in excellent agreement with devices 

measured in this chapter.

5.4.2.3 Cut-off voltages.
The data obtained from the three devices was presented in tables 5.8, 5.10, and 5.12. 

The measured values for the A648 devices show the best agreement with each other 

and with the frozen surface model, this value being within 0.5V of the measured one.
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The values for the A909 devices agree with each other but are more ambiguous 

although still tending towards the frozen theory.

The B591 devices show the biggest range of values of Vc, whilst Vt is in excellent 

agreement with theory. Again these measurements of Vc are much closer to the frozen 

than the pinned theory, with the theoretical frozen calculation lying in the middle of 

the range of measured values. All the results of Vc/Vt from the devices in chapter 5 

(longitudinal wires on HRN and side gated superlattice) are shown in graph 5.23. Also 

plotted are theoretical curves for the different markrspace ratios.

20

-  1:9 Frozen -f
-  1 -4 Frozen 

"1:1 Frozen □
1:1 Pinned

A909 SL □

15

1 0

B591 SL

A909 W1A648 SL

A866 WI

0

6020 400

a'/d

Graph 5.23. Theoretical curves and experimental values of Vc/V, from chapter 5.
Here a' is the period of the superlatticc and d the depth of the 2DEG. WI refers to a wire 
measurement and SL a side gated superlattice measurement. 1:1, 1:4 and 1:9 arc mark:spacc 
ratios
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5.5 Conclusions.
Overall the results of the experiments on the longitudinal wires in this chapter did not 

fulfil the main objectives. These were firstly to find evidence for ID effects in 

longitudinal wire arrays formed electrostatically on shallow materials. A secondary 

aim was to differentiate between the pinned and frozen models which describe the 

ungated areas of GaAs. The lack of evidence of ID effects has been shown to be most 

likely due to fabrication problems in producing uniform wires, together with poor 

material which manifested itself in the poor mobilities (and hence low mean free 

paths) seen in the three devices used. Steps to try and improve the chances of the 

observation of ID effects were made initially by reducing the number of periods and 

increasing the spacing between resist strips. The most recent devices had an increased 

number of periods and gate length but a very small mark to space ratio. A full set of 

capacitance and magneto-capacitance studies were carried out. The capacitance 

measurements showed that there was an accumulation of charge under the resist strips 

but magneto-capacitance and magneto-resistance measurements did not show these 

electrons behaving one-dimensionally. Problems with controlling the HRN profile 

made it difficult to draw unambiguous conclusions from the data, and this technique of 

wire production is not likely to be of much use in the future.

The pinned/frozen argument was also unresolved because of fabrication difficulties. 

The experiments on the three side gated finger superlattice devices supported the more 

physically realistic frozen model for the behaviour of ungated surfaces of GaAs at low 

temperatures.
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Chapter 6
Experiments on lateral surface superlattices.

6.1 Motivation and Introduction.

6.1.1 Motivation.
In this chapter measurements on lateral surface superlattices will be described. The 

periodic potential from the superlattice modulates the channel in a direction 

perpendicular to the current flow in a Hall-bar. At very small periods, new physical 

effects are predicted. Among other measurements, data will be presented in this 

chapter from a lateral surface superlattice with a period of 60 nm. This is the smallest 

period yet reported using this type of gate structure. In addition, the relative 

magnitudes of electrostatic and strain induced potential can be calculated using the 

experimental magneto-resistance data and these results will be compared with recent 

models. It was found that the potential from strain modulating the 2DEG (via the 

deformation potential) could not account for the magnitude of the potential or its 

variation with gate bias. An alternative coupling scheme based on the piezo-electric 

effect was found to be the most likely mechanism for the observed magnitude and 

variation of the potential with gate bias.

6.1.2 Introduction.
Lateral surface superlattices comprise a periodic array of strips of metal which are 

fabricated using positive resist and cover the channel of a Hall-bar perpendicular to 

the current flow direction. A schematic diagram of this arrangement with detail of the 

superlattice is shown below in figure 6 . 1 .
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Ohmic contact

Etched channel

~ 50 NiCr strips forming 
superlattice with period a

Fig 6.1 Plan view of Hall-bar showing detail of gate arrangement.

Detail of the gate arrangement is shown in the diagram below. There were two types 

of superlattice design, one where the superlattice connections were made off the 

channel (shown in fig 6.2 a) and another design where the superlattice connections 

were made on the channel (shown in fig 6.2 b).

r  i ' i f

lips

.
.

fig 6.2 (a) Representation 
of gate connections 
showing ‘gate-off’ 
arrangement.

■ tepS
B ill

mm

fig 6.2 (b) Representation 
of gate connections 
showing ‘gate-on’ 
arrangement.
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Lateral surface superlattices were made with different periods ranging from 2000 nm 

to 60 nm on deep and shallow AlGaAs/GaAs and AlAs/GaAs heterostructures. Most 

effort was concentrated on the smaller period superlattices on shallow materials. 

Resistance and magneto-resistance measurements were made at 4.2 K using the VTI.

6.1.2.1 Magneto-transport measurements.
Low field magneto-resistance (MR) measurements reveal a series of oscillations first 

observed by Weiss [1]. These oscillations have their origin in a semiclassical effect 

which is a result of the crossed electric and magnetic fields. When the cyclotron orbit 

is commensurate with a period or number of periods of the potential imposed by the 

superlattice, the oscillations (known as Weiss or commensurability oscillations, CO) 

are observed. At the extrema of the orbit, the electron experiences an electric field 

from the superlattice which is additive in the direction parallel to the equipotentials, 

but cancels for perpendicular motion. The additive electric field results in a drift in 

the guiding centre motion of the electron at a drift velocity, Vd [2]. This guiding centre 

motion can be understood in terms of the drift velocity, (1/B2 )(ExB) [3], experienced 

by an electron in the crossed electric and magnetic fields. In the case of a weak 

periodic potential e V /E f«  1, the electron will experience alternating signs of ExB 

drifts. The time average of the drift velocity along a cyclotron orbit is obtained by 

integrating the electric field along the orbit, Vd(T) = (2jzB)~x J0 27td<j)E(y+Rsin<t)) where Y 

is the coordinate of the centre of the orbit, R is its radius and (|) is the angular 

coordinate round the orbit. Vd is enhanced or reduced depending whether E(Y+R) and 

E(Y-R) have the same sign or the opposite sign. This is shown in fig 6.3. for an 

oscillation where E(Y+R) and E(Y-R) have the same sign and so drift is enhanced.
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X

Fig. 6.3 A potential grating, generating a potential V in the 2DEG. The 
superlattice period is a. A cyclotron orbit is shown superimposed on the 
superlattice.

The overall effect is to enhance the motion of the orbits parallel to the superlattice for 

values of B where the cyclotron orbit diameter is (approximately) equal to one or 

more periods. These oscillations are labelled by k where k = 1 corresponds to the 

electron orbit diameter which is approximately equal to one period of the superlattice, 

k = 2  an electron orbit is approximately equal to two periods of the superlattice etc.

Fig 6.4 is a typical graph of a magneto-resistance measurement. It shows 

commensurability oscillations with their k values, a low field magneto-resistance 

peak marked by the label Be and SdH oscillations.

Beenakker [2] showed that the fractional change in the MR for the nth harmonic of 

the surface potential Vn is given by:

8p/p = (eVn/EF)1{nl2laRc)co^1 {(2m Rc)/a - 71/4} (6.1)
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Fig 6.4. Typical magneto-resistance measurement showing 
significant features for a device with a 200 nm superlattice on A448 
(deep material).

Here Sp/p is the fractional change in the magneto-resistance, EF is the Fermi energy, I 

the electron mean free path, a the fundamental period of the superlattice and Rc is the 

cyclotron radius. This result is extremely useful because it allows the magnitude of 

potential Vn 'seen' by the electrons in the 2DEG to be calculated. This potential was 

calculated by differentiating equation 6.1 with respect to magnetic field. The 

magneto-resistance data were also differentiated (using the plotting program, 

Easyplot) to find the peak change in resistance. The value for the change in resistance 

obtained from Easyplot was divided by the zero field resistance of the area under the 

gated region. This value was then substituted for the term 6p/p in equation 6.1. The 

other terms in 6 . 1  are known or can be calculated and the value of Vo is obtained. 

This technique using the derivative was adopted to remove any linear magneto- 

resistance variation from the data and hence enhance the accuracy with which the 

amplitudes could be deduced.
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Three problems with the Beenakker formula have been identified by B0 ggild et al. 

[4]. 1) The low field oscillations die away more quickly than is predicted by (6.1) as 

magnetic field is reduced. 2) The low field peak marked as Be in fig 6.3 is not 

observed in magneto-resistance curves generated from (6.1). 3) At high magnetic 

field a large quadratic magneto-resistance is observed for large values of Vo. B0 ggild 

et al explained point 1) as being the result of small angle scattering. They used a 

Monte Carlo technique and, by adjusting the modulation strength and a parameter 

xt/xs, a theoretical curve was drawn and compared to experimental data. Here xt is the 

momentum (transport) relaxation time and xs is the unweighted scattering time which 

is dominated by small angle effects. B0 ggild et al. showed that the most likely cause 

of the reduction in low field CO was due to the parameter xs . This has little effect on 

low field resistance but can easily scatter an electron from one resonant orbit to 

another. Electrons with higher k values travel further (higher k corresponds to lower 

magnetic field and hence a larger cyclotron radius) and so have more chance of being 

scattered.

Point 2) The low field resistance peak was attributed by B0 ggild et al to open 

electron trajectories. This peak had been previously studied by Beton et al [3] who 

found that Vb could also be calculated from this low field resistance peak. Beton et al 

found that the peak was due to streaming orbits where the electrons do not obtain 

sufficient momentum to overcome the electrostatic force of the applied Vo and the 

electrons stream parallel to the equipotentials. This peak defines the start of the semi- 

classical magneto-resistance oscillations since an increase in magnetic field past this 

point gives the electrons enough effective energy to overcome the electrostatic force. 

The streaming velocity is very close to the Fermi velocity (vf) and these trajectories 

make a large contribution to the magneto-resistance. The critical field Be at which 

oscillations first appear was estimated as

Be = 2nVo/avf (6 .2)



This was confirmed by Muller et al [5] to within a factor of the order of unity. 

Previous work in Glasgow [6 ] has shown Vo calculated from Be to be larger than and 

in relatively poor agreement with the value of Vo obtained from the CO.

The third problem, point 3) which was identified by Boggild et al. for large values of 

Vo was tackled by Geim et al [7] who found that this effect could be explained by a 

more complete form of Beenakker’s formula (6.1). The difference in carrier 

concentration between the gated and ungated regions leads to a distortion of the 

cyclotron radius and a drift in the guiding centre along the direction of the 

superlattice equipotentials. Geim et al. found that in the limit a »  Rc

Sp/p = 1 + (eVo/Erf.a/Rcf (6.3)

for a one dimensional lateral superlattice. This one dimensional case suggests a B2  

dependence, which was observed in Geim’s experiments. Geim et al. also found 

experimentally that in the same region a two dimensional surface superlattice had a 

linear variation with B.

6.1.2.2 Possible variation of V0 with gate bias.
The origin of the potential Vo was initially assumed to be mainly electrostatic. 

Experiments with Vg = 0 also revealed CO [6 ] and this was assumed to be due to a 

built-in voltage Vbi as a result of the change in the Schottky barrier height between 

metalled and unmetalled areas. The expected variation of the potential with bias for 

this simple model is shown below in fig 6.5. Vbi can in principle be positive or 

negative and it should be possible to cancel Vbi by applying an external potential.

I Vo I

>+V,
-V,

Fig. 6.5 Potential variation with gate bias for an ideal layer with no screening.
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The most obvious problem with this simple model is that it does not take into account 

the screening effects of electrons in the donor layer or in the 2DEG. This is especially 

important for shallow AlAs materials. In shallow AlAs materials, a layer of electrons 

is believed to be present around the donors. Thi: shifts the threshold voltage because 

the screening electrons must be depleted first. This is shown in fig. 6 . 6  for two 

AlGaAs barrier and two AlAs barrier materials grown in Glasgow [8 ].
8

6

B416

4

2

0
-0 .2 ? 0-0 . ?1

Fig 6 .6 . Carrier concentrations with bias for AlAs and AlGaAs barrier materials measured in 
Glasgow by Skuras et al. [8 ]

This layer of electrons makes a negligible contribution to transport but increases the 

mobility of the electrons in the conducting layer. This increase is obtained because 

the layer screens the full random potential from the ionised donors and increases the
2 1 1  2 1 1mobility from an estimate of about 20 m V' s' to the values of over 60 m V' s' 

observed [9]. For these layers, the effect of an electrostatic potential will be reduced 

as the bias is made more negative until the screening layer of electrons is depleted. 

This in turn introduces an additional problem because the Beenakker formula predicts 

that the CO are directly proportional to the mean free path. As negative bias is 

applied, removing screening electrons will reduce the mean free path and hence the 

amplitude of oscillations, particularly at high k values. In forward bias the positive 

voltage will add electrons to the screening layer under the gates further reducing Vo.

A possible variation of the potential with bias is shown in fig 6.7 below. This would
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be applicable to a CO with a low k value which is unaffected by a low mean free 

path.

IV0  I

Fig. 6.7 Estimated potential 
variation with gate bias after 

* v g screening for Vbi> 0

Davies and Larkin [9] calculated the electrostatic potential with screening for the 

pinned and frozen models (for descriptions of pinned and frozen boundary conditions 

see chapter 5, section 1.3.1) and compared the results to experimental data. Their 

calculations suggested a potential rather larger than observed for devices fabricated 

on shallow AlAs (assuming Vbi = 100 mV). The material used, A601, was of the 

same dimensions and grown in the same MBE machine as the shallow AlAs barrier 

material in this work, A858 and A881. The only difference was in the doping 

concentration. A601 was doped with 4 x 101 6 m ' 2 Si atoms and A858 and A881 were 

doped with 7 x 101 6 m ' 2  Si atoms. The experimental data [6 ] also showed evidence of 

a very strong second harmonic indicating an anharmonic potential which also could 

not be explained from the pinned or frozen electrostatic models. A model in better 

agreement with the experiments developed by Davies and Larkin was based on a 

potential originating from elastic strain from differential contraction between the 

metal gates and GaAs. This arises because the device is rapidly cooled after 

evaporation of the Ti/Au gates at high temperatures. The strain then couples to the 

2DEG through the deformation potential. This model gave the agreement with the 

results but the magnitude was still out by a factor of 2. The discrepancy was thought 

to be due to lack of knowledge of the surface conditions during the deposition of the 

evaporated metal. In fact, because the screening effects of the electron gas were 

omitted from these calculations, it is now believed that the results of the strain model 

are even further astray, by at least a factor of ten.

-V, o

in



A possible variation of the potential with gate bias for electrostatic and strain 

contributions is shown below in fig. 6 .8 , for an AlAs device. Here the strain and

negative electrostatic contributions are in addition (this is predicted for the

differential contraction between Ti gates and GaAs [9]) and the resultant potential is 

shown by the bold line.

flVol
  Resultant potential

_______ Strain potential

  Fig. 6 .8 . The estimated potential
profile with gate bias including
strain, electrostatic potentials and the

► Vg effect of screening.-vg 0

A factor not considered in the Davies strain analysis is the piezo-electric effect. 

Piezo-electric effects due to stress from Schottky gates [10] give rise to a volume 

charge density which can significantly change the characteristics of surface gated 

devices, such as FETs fabricated on GaAs. The resultant shift in threshold voltage is 

dependent on the growth direction of the substrate and orientation of the Hall-bar. For 

example a Hall-bar fabricated on a (100) substrate is fabricated along a natural cleave 

which could be [0 1 1 ] or [0 1 1 ] and the sign of the predicted piezo-electric potential is 

opposite for these two cases.

6.1.2.3. Prediction of new quantum effects.
The motivation for fabricating superlattices with very small periods was due to the 

prediction of new quantum mechanical effects such as minibands with accompanying 

Bloch oscillations. Theoretical calculations [11,12] predict the observation of 

quantum mechanical effects if the period of the lateral surface superlattice is reduced 

below the Fermi wavelength. Shallow AlAs barrier materials typically have a carrier 

concentration of 3.5 x 1015 m ' 2 corresponding to a Fermi wavelength of 

approximately 40 nm, while shallow AlGaAs barrier materials have a higher carrier
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concentration of the order of 6  x 1015 m ' 2  which corresponds to a Fermi wavelength 

of 30 nm. Initially experiments were concentrated on the shallow AlAs barrier 

materials since the Fermi wavelength is closer in these devices to the minimum 

experimental superlattices period of 60 nm. The application of negative gate bias will 

reduce the carrier concentration and bring the Fermi wavelength close to the applied 

periodic potential of the superlattice. An additional consideration is the amount of 

potential ‘seen’ by the electrons in the 2DEG. A potential of 5-10 meV is estimated

[13] to be required to see quantum effects.

An interesting extension of the work on lateral superlattices is to fabricate a two 

dimensional surface superlattice. When a magnetic field is applied to a device with a 

two dimensional surface superlattice, a remarkable energy spectrum known as the 

Hofstadter Butterfly is predicted [12]. This fractal structure is a result of the internal 

resolution of subband structure of the Landau levels. Observations of these effects 

are predicted for B « IT and a = 50nm. In this work, data is presented on a 

superlattice formed by two lateral surface superlattices fabricated so that the second 

superlattice lies at right angles on top of the lower one. This results in a periodic array 

of squares which form a two dimensional surface superlattice. The period of the 

square superlattice fabricated in this work was 1 0 0  nm.

6.2 Materials and structures.
Devices on deep bulk-doped material (as shown in fig 4.6) were made with 

superlattices which had periods between 1000 nm and 200 nm. Shallow AlAs 

materials (shown in fig 4.7) were used with superlattices of periods 100 nm and 

60 nm. Measurements were also attempted on a range of shallow AlGaAs materials 

using 60 nm period superlattices. These did not show any evidence of the semi- 

classical CO. Details of materials, Hall-bar type and gate structures for which 

measurements were completed are shown in table 6 . 1 .
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Device/barrier
type

2DEG 
interface 
depth (nm)

Carrier conc. 
(xlO15) m' 2

Hall-bar type 
(see fig 2.3)

Gate period 
(nm)

mfp
(pm)

A448 Deep 92 2 . 8 B 2 0 0 10.3
AlGaAs 2.7 B 300 9.2

A659 Deep 92 2.9 A 2 0 0 1 2 . 0

AlGaAs 3.0 A 300 12.4
3.0 A 400 11.9
2.9 B 300 7.2

Deep
A648 AlGaAs 92 2.5 D 1 0 0 0 7.7

A858 Shallow 28 3.5 B 60 2 . 6

AlAs 3.6 B 1 0 0 2.9

A881 Shallow 28 3.3 B 1 0 0 4.0
AlAs

B591 Intermed 57 2.5 B 60 1.5
-iate AlGaAs

A916 Shallow 38 5.3 B 60 1.3
AlGaAs

B466 Shallow 38 5.4 B 60 5.0
AlGaAs

Table 6.1 Materials types and gate dimensions of devices measured in chapter 6 .

6.3 Measurements.
Resistance and magneto-resistance measurements were taken using the VTI for all the 

devices in table 6.1. Cut-off voltages were obtained from the resistance 

measurements. Magneto-resistance measurements revealed series of CO and SdH 

oscillations. A useful tool in analysis of the magneto-resistance data is to take the 

Fourier transform (FT) of the curves. (A description of the FT process is given in
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Chapter 5, section 1.3.2). In the FT of measurement curves there is a peak typically at 

6-7 T which is as a result of the SdH oscillations. This peak can be used to find the

carrier concentration. Lower field peaks are a result of the CO. The positions of the

CO minima in the magneto-resistance curves can be compared to theoretical values

[4] given by

2RC = (n - 1 /4 ) 0  (6.4)

When the fundamental of the potential, Vo, is large, higher harmonics may appear, 

though only the second harmonic is strongly present in any of the data. It occurs at a 

position of 2  x where Bo is the position of the first harmonic given by,

B0 = ft(8 7 tn )'n/ea (6.5)

In the analysis to obtain the potentials using (6.1), an Excel spreadsheet was used and 

the graphs of the potential against gate bias were also produced using Excel.

6.3.1 Measurements on deep bulk doped materials (A448, A659 and 

A648).

a) A448 devices.

The first measurements were carried out on this very high quality material which had 

a very large mobility. The device consisted of two type B Hall-bars side by side both 

fabricated on the same chip at the same time. There were enough connections on the 

header to measure both devices so they were both studied in the same cooling cycle. 

Unfortunately the gate connections to these devices appeared to be faulty. Applying 

an increasing negative gate bias did not cut-off the channel on these devices, but only 

caused an increase in the resistance by about 4 ohms. However the magneto- 

resistance measurements revealed many CO. Plots of A448 #1 are shown in graph 

6.1. Of note on these graphs is the strong second harmonic for the 300 nm period

115



R
es

is
ta

n
ce

 
oh

m
s

70

60 300 nm

60

200 nm40

300nm period 
200nm period30

20
.40 .1 .2 .3

M a g n etic  field (T )

Graph 6 .1. SdH measurements of A448 200 nm and 300 nm superlattices



device which is absent in the 200 nm device. This is observed much more clearly in 

the Fourier transform of these curves shown in graph 6.2. The magnitudes of the 

peaks for these devices were analysed, and the potentials obtained are shown in table 

6.2 (pg 123).

b) A659 device.

This device consisted of a type A Hall-bar with channel width reduced to 20 Jim in 

the region of the gates. There were three gates in series and here the gate connections 

came up onto the Hall-bar ensuring a gate connection (as shown in fig 6.2b)). The 

lattices were designed to have 200 nm, 300 nm, and 400 nm periods with differing 

mark:space ratios of 1:1, 1:2 and 1:3 respectively. The devices actually fabricated 

had the “mark” slightly bigger than designed (the width of one of the gate strips was 

estimated to be 120-130nm). This was due to the backscattered electrons (used to 

expose the resist during electron beam lithography) over-exposing neighbouring 

strips. The channels cut off as expected, all gates reaching threshold voltage below 

-0.7V. Graph 6.3 shows the magneto-resistance plots for the 400 nm superlattice. The 

oscillations are superimposed on a positive magneto-resistance and increase in 

magnitude with negative gate bias. The rate of increase of this background positive 

magneto-resistance also increases with negative gate bias. The 200 nm data showed 

CO at zero bias and this decreased when negative bias was applied to the gate, 

whereas the 300 nm data were similar to the 400 nm data. The 400 nm data showed 

the strongest CO the Fourier transform is shown in graph 6.4. All this data were 

analysed and the potentials were calculated. Table 6.2 (pg. 123) shows values for zero 

bias and non zero gate biases for the 400 nm superlattice. Graph 6.11 shows the 

potentials calculated from the amplitudes of two oscillations for the 400 nm 

superlattice.

c) A648 devices.

These devices were fabricated at the same time as the finger superlattices (described 

in the previous chapter) and were intended for comparison with the finger devices.
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Graph 6.2. Fourier transform of A448 data 300 nm (top) and 200 nm (bottom). 
The peaks at 5.8 T are from SdH oscillations.



R
es

is
ta

n
ce

 
oh

m
s

400

300

200

100

0
1.00 J2 .4 6 .8

M a g n etic  field (T)

Graph 6.3 SdH measurements of 400 nm A659 sample.
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Two devices were made using the Hall-bar D design pattern (which has a 200 pm 

channel width). One had a 1 pm period superlattice and the other a 2 pm period 

superlattice with 1:1 mark space ratio. These periods are very high for the observation 

of CO but it was thought they might show CO because of the large mean free path in 

this high mobility layer. These devices showed a strongly increasing magneto- 

resistance but no sign of a series of CO, either in the raw data or in the Fourier 

transform.

6.3.2 Measurement of shallow AlAs materials (A858, A881)

These experiments were made on Hall-bars of type B, which had a narrow 10 pm 

channel.

a) Two 100 nm superlattices were measured on A881. One was of the standard type 

and the other a variation where another longitudinal lattice was placed on top of the 

lateral one to produce a series of periodic squares. This was an idea of Dr Elef Skuras 

for generating a short period square superlattice. It had been hoped to fabricate more 

of these on different materials with 60 nm periods if time had permitted. The device 

with the square superlattice was fabricated on the same chip as the 1 0 0  nm lateral 

superlattice.

The 100 nm device had a cut-off of -3 V. Graph 6.5 shows a series of curves for 

various bias voltages from +0.5 V to close to cut-off at -2.5 V. The SdH oscillations 

are superimposed on the CO from about 0.7 T. The CO decrease in amplitude with 

negative gate bias, as shown in graph 6 .8 . The Fourier transform of a curve at Vg=0 is 

given in graph 6 .6 , and shows a strong fundamental with a little second harmonic. 

The theoretical position of 1st harmonic B0  and 2nd harmonic 2Bq are indicated by 

pointers on the graph.

The 100 nm square device had a cut-off of -1 V and a series of magneto-resistance 

plots were measured for different gate biases. The curve obtained from the Fourier 

transform of the zero gate bias plot is shown in graph 6.7. The CO were analysed 

directly for both devices and a typical plot of potential Vo vs. gate bias is shown for k
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= 6  in graph 6 . 8  where it can be seen that Vo decreases and then increases with 

negative bias. Potentials at zero gate bias are shown in table 6.2. for both the 100 nm 

square and the 1 0 0  nm lateral devices.

b) 60 nm and 100 nm lateral superlattices on layer A858.

The first A858 device had a cut-off voltage of -0.65 V and produced very strong CO. 

The amplitude of these CO increase with negative gate bias. This device had a period 

of 60 nm, believed to be the shortest period superlattice ever reported. A 

measurement for zero gate bias is shown in graph 6.9 and the Fourier transform is 

shown in graph 6 . 1 0  with arrows showing the theoretical positions of the 

fundamental and 2nd harmonic peaks. The magnitudes of the potentials deduced from 

zero bias curves are shown in table 6.2. Potentials as a function of gate bias are 

shown in graph 6 . 1 1  for two oscillations, together with plots of potentials from one of 

the deep devices (A659, 400 nm) for comparison.

Two devices with lOOnm superlattices were measured. They had the same cut-off 

voltages and similar CO which decreased with the application of negative gate bias. 

These CO were similar to A881 100 nm lateral data.

6.3.3 Measurements of shallow AlGaAs devices (B591, A916, B466).
Four devices with a superlattice period of 60 nm were measured in this category. The 

magneto-resistance measurements on these devices did not show any sign of CO, 

although it was possible to cut-off the channel by applying negative bias to the gate.

6.4 Summary and discussion.

6.4.1 Introduction
There were two main objectives of this work. The first was to make a study of the 

strength of the potentials, Vo, seen by the electrons through different layers. This 

information was obtained by analysing the CO using the Beenakker formula.
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Secondly, it was hoped to probe for the existence of quantum effects predicted when 

the applied periodic potential was close to the Fermi wavelength. The first objective 

was partially met. Information was obtained as to the size and origin of Vo from 

experiments on deep AlGaAs and shallow AlAs materials. However, disappointingly, 

experiments on the devices fabricated on shallow AlGaAs materials did not reveal 

any CO. No evidence of quantum effects was seen on either of the shallow device 

types so the second objective was not achieved.

6.4.2 Experiments that showed semi-classical behaviour
a) Analysis to obtain Vo using Beenakkers formula.

Experiments on A448 (graphs 6 .1 and 6.2) showed strong CO on both 200 nm and 

300 nm devices. The CO did not vary with gate bias. These CO were analysed and 

gave potentials of 0.14 mV and 0.21 mV respectively. The lack of effect of gate bias 

on the zero magnetic field resistance and the strong CO are evidence that there are 

breakages in the strips of metal making up the superlattice. This occurs where they 

climb onto the channel from the etched area through a height of 100 nm. The material 

is deep, too deep for harmonics due to the strain potential to be evident. The observed 

CO most likely reflect some charging effects of the isolated superlattice together with 

a possible a strain component. Of interest in this device is the strong second harmonic 

element in the 300 nm data which is a result of the 1:2 mark:space ratio having a 

much stronger second harmonic element than the 2 0 0  nm which has a 1 : 1  mark:space 

ratio.

To overcome the problem of the broken connections, devices were fabricated with 

gate connections on top of the channel (fig 6.2). The A659 device consisted of a 

series of three gates on an A type Hall-bar with reduced channel width of 20 |im. 

These superlattices were fabricated for mark:space ratios of 1:1, 1:2, and 1:3 to 

investigate further the extra harmonic content. The CO observed in these devices 

were obscured by a rapidly increasing positive quadratic magneto-resistance. The rate 

of increase of this magneto-resistance becomes larger with negative gate bias. This is
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shown on graph 6.3 for the 400 nm device. These results are in agreement with the 

predictions of Geim et al [7] who found that the increase in magneto-resistance is the 

result of differing carrier concentrations between gated and ungated areas.

The A659 CO were analysed and potentials obtained from them. In the 200 nm 

superlattice data, there is evidence of CO at zero gate bias and when analysed these 

gave a small Vo of 0.06 meV. This possibly reflects a small component of strain 

potential due to a larger width of metal on this gate. SEM work showed that the gate 

strips had been overexposed due to the effect of the proximity of neighbouring strips, 

and the mark: space ratio was greater than expected. This effect was most acute on the 

200 nm device. When bias is applied to the gate of this device the CO die away. The 

reason for this behaviour is not understood.

The 300 nm and 400 nm superlattices have no CO at zero gate bias and increasing 

CO amplitudes with negative or positive gate bias. It was hoped to compare the 

results of devices fabricated on deep materials with those obtained on shallow 

materials to show how the effect of the proximity of the electron layer to the 

superlattice leads to an increased value of Vo in the 2DEG. Graph 6.11 shows a 

comparison of the potentials deduced from two oscillations of the 400 nm A659 data 

and two oscillations from the 60 nm A858 experiment (shallow AlAs barrier 

material). It can be clearly seen from this data that the origin of Vo is different for 

shallow devices compared to deep devices. For shallow devices, the potential 

increases at a much smaller rate with negative or positive gate bias. For the deep 

devices on the other hand, Vo is dominated by the potential due to charging the gate, 

bias since it increases rapidly and linearly with negative gate bias.

The effect of small angle scattering can be seen on the k = 3, 400 nm data where the 

rate of increase of the potential decreases at large negative gate bias values. This is 

because the k = 3 oscillation has a larger cyclotron radius than k = 2 and the electrons
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are more likely to be scattered. The observed CO become smaller as the effective 

mean free path is reduced at negative bias, in agreement with B0 ggild et al [3].

The other shallow AlAs barrier lateral superlattice devices have a similar value of Vo 

to the A858 devices at zero bias. However, the effect of gate bias differs between 

devices fabricated at different times. With some devices, such as the A858 60 nm 

period superlattice devices mentioned above, Vo increases slowly with bias. In others, 

such as A881 shown in graph 6.8, Vo decreases with bias. Other shallow AlAs barrier 

devices measured at Glasgow showed a marked decrease then increase of potential 

with increasing negative gate bias [6]. One of my devices, the 100 nm square on 

A881, shows this dip then rise in the potential with negative gate bias. The potentials 

deduced for the square superlattice device for all analysable experimental traces for k 

= 6 are also shown in graph 6.8. The amplitude and number of the CO are not 

otherwise significantly different from the truly lateral (as defined in section 6.1.2) 

A881 100 nm device (they have the same Bo, harmonic content and similar Be). This 

device was fabricated with the lateral superlattice first, then the longitudinal 

superlattice evaporated as a separate layer afterwards. The first layer seems to be 

dominating the transport with the second level in poor contact with the surface, 

although it may provide a better connection to more strips of the lateral superlattice 

producing the shift in threshold voltage (-3 V for lateral, -1 V for the square).

The decrease then strong increase, with negative gate bias, in the magnitude of the 

potential observed in other devices measured in Glasgow is seen in graph 6.8 for the 

square superlattice device. The strong rise in Vo at large negative biases corresponds 

to the full unscreened electrostatic potential from the applied negative gate bias acting 

on the 2DEG once the screening electrons have been depleted.

However the initial reduction in potential with bias is more difficult to explain. Here 

there is strong evidence for the dominant potential at zero bias being of opposite sign 

to the applied bias. When negative bias is applied it acts in opposition to the zero bias
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potential, reducing the magnitude of the potential seen by the electron layer. Because 

strain interacting via a deformation potential cannot account for the magnitude or the 

sign of Vo it seems unlikely that this is the dominant mechanism. The potential is 

more likely to be due to strain coupled to the 2DEG via the piezo-electric effect. The 

piezo-electric effect successfully explains the two types of variation with gate bias 

seen in Glasgow. The variation of Vo with negative gate bias is dependent on the 

device orientation and the electrostatic component either subtracts (shown in fig 6.9) 

or adds (shown in fig 6.10).

0

Fig 6.9 Resultant potential 
for the Piezo- electric 
potential opposing the 
electrostatic potential

0

Fig 6.10 Resultant potential for the 
Piezo-electric potential adding to 
the electrostatic potential

b) Analysis of Vo using the low field peak Be-

Potentials obtained from the low field magneto-resistance peak Be (equation 6.2) are 

shown in table 6.2 and compared with values calculated from the amplitude of the 

oscillations (equation 6.1).
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Device 2DEG depth 
[nm]

Period
[nm]

Gate voltage 
[V]

Vo (Beenakker) 
(± 0.02) [mV]

Vo (Beton) 
(±0.04) [mV;

A448 92 200 no gating 0.14 0.30
300 no gating 0.21 0.45

A659 92 400 0 0 0
-0.2 0.60 0.87
-0.3 1.01 1.18
-0.4 1.30 1.50

300 0 0 0
200 0 0.06 0

A858 28 60 0 0.21 0.05
100 0 0.39 0.27

A881 28 100
100

(SQuares)

0
0

0.62
0.54

0.55
0.56

Table 6.2 showing Vo calculated from Beenakker (equation 6.1) and 
Beton (equation 6.2). Be was obtained from the low field peak in the 
magneto-resistance data and used in equation 6.2 to find Vq.

It can be seen from table 6.2 that the potentials obtained from the low field magneto- 

resistance peak using (6.2) are generally in reasonable agreement with Vo obtained 

from the CO. The best results are for A881 which are very close. The agreement 

between the potential calculated from equations (6.1) and (6.2) for the A659 400 nm 

device is good, both in magnitude and in trend with gate bias.

c) Calculation of Vo using the positive quadratic magneto-resistance.

The A659 devices showed rapidly increasing magneto-resistance, which closely 

followed the B 2 behaviour predicted by Geim et al [7]. The potentials were obtained 

from this quadratic term for the 400 nm device. (A magneto-resistance trace was 

shown in graph 6.3). This device best meets the required condition a »  Rc. Graph
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6.12 shows the potentials calculated from the equations of Beenakker (6.1), Beton et 

al. (6.2), and Geim et al. (6.3). The magnitudes of the potentials increase 

approximately linearly with gate bias and show reasonable agreement.

d) Prediction of the position of B0 using equation 6.4.

Equation 6.4 predicts the position of minima in the CO for a given period of 

superlattice. By considering two minima n and n + 1, writing Rc in terms of B , then 

substituting A(l/£n-l/Z?n+i) and subtracting to eliminate n, equation (6.4) was 

rearranged to give: a = {2h(27Di2d)m }/eBo. Using the measured value of the peaks in 

the Fourier transform, the periodicity of the CO may be compared to the actual 

physical value for the device (the actual period written by the beamwriter is very 

accurate). Periods obtained from devices measured are shown below in table 6.3.

Device a (actual) 
(nm)

Bo
(T)

Carrier Cone. 
(xlO15) m'2 

± O.lxlO15 m'2

a (calc.) 
(nm)
±5 nm

A448 300 0.644 2.7 266
200 0.935 2.8 186

A659 200 0.995 2.9 180
300 0.680 3.0 265
400 0.528 3.0 342

A858 60 3.220 3.5 59
100 2.020 3.6 100

A881 100 1.886 3.3 100
100 (squares) 1.790 2.9 99

Table 6.3 Table showing comparison of fabricated and measured period a.

Equation (6.4) accurately predicts a for the smaller periods, with agreement becoming 

less good as the period increases, e.g. the 400 nm A659 device is in very poor 

agreement. It is not known why this is the case. Possible reasons such as hysteresis in

124



2.3

+
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0.8

0.3
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Vg (V)

O  Geim et al 

A  Beenakker, k~ 2 

+  Beton et al

Graph 6.12. Comparison of 400nm potential calulated using 3 different theories



the measurement system or varying harmonic content were investigated. Hysteresis 

was investigated and discounted because there was found to be no difference between 

measurements at the beginning of a series of measurements and after a series of 

measurements. Harmonic content was discounted because there was no difference in 

the error between devices which do have a large harmonic content (such as A448 

300 nm superlattice device) and those which do not (such as the A659 300 nm 

superlattice device).

6.4.3 Experiments which did not show semi-classical behaviour.
a) Deep A648 devices with large 1000 nm period superlattice.

The largest periods of superlattice fabricated were 1000 nm and 2000 nm on both 

deep and shallow materials. These failed to show CO. The main motivation for these 

experiments was for comparison with the results of the finger superlattices in the last 

chapter but it was also hoped to observe CO, especially with the deep devices. The 

mean free path is larger than the applied potential period in these devices but still no 

CO were observed, although a peak which may correspond to Be was seen. The 

strong positive magneto-resistance seems to suggest a strong potential from the 

superlattice in the 2DEG even at zero bias. These devices are of the same period as in 

the experiments by Geim et al [7] who also observed little evidence of CO and a 

strong magneto-resistance. The strong positive magneto-resistance was also observed 

in the shorter period A659 devices (see the section above). The strong positive 

magneto-resistance has its origin in the difference in carrier concentrations between 

gated and ungated regions distorting the cyclotron radius and leading to drift of 

guiding centres along the equipotentials. However unlike the experiments by Geim et 

al. or the A659 measurement, the magneto-resistance observed varies linearly rather 

than with the square of magnetic field.

b) Shallow AlGaAs barrier materials

After the failure of shallow AlAs small period devices to show miniband effects, 

several small period shallow AlGaAs barrier devices were prepared with a 

superlattice period of 60 nm. These devices failed to show any signs of classical CO,
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with or without bias. The reason for this is unclear. The cut-off voltages of these 

devices were not consistent with each other and were much larger than predicted 

theoretically. This suggests that there are problems with the connections to the 

superlattice, either where the gate comes onto the channel or in the superlattice itself 

(on the channel). SEM photos do not show any significant breaks in the fingers on the 

channel. Breaks at the edge of the channel are more difficult to see. However, if such 

breaks were present, then it is likely that some CO would be observed (as with the 

deep A448 devices, where the superlattice charges to some voltage giving strong CO 

Even with some kind of breakage in the superlattice, it would be expected (as was 

seen on the shallow AlAs barrier material devices) that some kind of non-electrostatic 

modulation (such as strain coupling through the piezo-electric effect or the 

deformation potential) would be present. This is not so, and is a mystery since recent 

work [14] found that strain effects are also present in deep AlGaAs materials.

Two of these devices did show a quadratic magneto-resistance as observed by Geim 

et al [7]. These devices were analysed and Vo obtained. This analysis should not be 

exactly applicable here, because here at IT, where the analysis was made Rc ~ a and 

the analyses of Geim et al. requires a »  Rc. However the potentials obtained do vary 

linearly with gate bias, and as expected are larger for the shallower AlGaAs layer 

A916 (up to 4.5mV) than for the intermediate depth layer B591 (up to 2.5mV). As 

noted above, it is likely that the superlattice is not well defined, most likely due to 

breakages where the strips climb from the etched areas to the channel. Equation 6.3 is 

independent of a, the superlattice period, so the positive magneto-resistance observed 

could be a result of random connected strips, which would explain the lack of CO.
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6.5 Conclusions.
The aims of the lateral superlattice experiments were to investigate the origin and the 

strength of the periodic potential Vo in shallow materials, and to push towards the 

limit in which the period of the superlattice is close to the Fermi wavelength. The 

investigations of Vo have been partially successful, with a number of layers measured 

and the origin of the potential investigated. In deep devices the electrostatic potential 

resulting from the applied gate bias was found to dominate. This potential was 

calculated from measurements of one device using three different methods. 

Reasonable agreement between the three approaches was found both in magnitude of 

the potential and variation with gate bias. The results from the deep devices were 

compared to measurements of devices fabricated on shallow AlAs barrier materials, 

where the dominant source of the potential is thought to lie in a strain field caused by 

differential contraction between the gates and the surface of the GaAs during 

fabrication. It had been originally intended to compare the experimental results with 

the Davies and Larkin model. However when screening was included the model 

based on a deformation potential coupling via the strain could not account for the 

magnitude of the potential observed, or the variation of Vo with gate bias. The 

dominant source of potential is now believed to be due to strain coupled via the 

piezo-electric effect. None of the devices showed quantum effects, although splitting 

of the Landau levels has recently been seen by the Munich group [15] in an array of 

antidots formed on the layer B466, a shallow AlGaAs sample used in this work for 

the 60 nm superlattices.
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Chapter 7
Conclusions

7.1 Introduction
In this work many layers were patterned and characterised. A few were found to be of 

good enough quality to fabricate gate structures on them. The resulting devices 

consisted of either a longitudinal type using HRN resist ribs and an overlying 

Schottky gate, or strips of metal fabricated in a periodic array across the Hall-bar 

channel.

Initially shallow AlGaAs barrier samples were used for the longitudinal work and 

shallow AlAs barrier materials were used for the superlattice work. Later a number of 

lateral superlattice devices were fabricated on shallow AlGaAs barrier material and 

some were also fabricated on conventional deep bulk doped materials (which also 

had AlGaAs barriers).

7.2 Devices measured for experiments with a gate structure using 

HRN (High resolution negative resist).
Three sets of devices with HRN longitudinal wire structures were measured. These 

were fabricated on Hall-bars. Measurements were made at 1.5 K.

The main purpose of these measurements was to find evidence of ID confinement. 

Magneto-resistance data was examined for evidence of quantum confinement in the 

wires. The threshold voltages of the devices were compared to values from a simple 

model which was derived from electrostatics. The cut-off voltages were compared to 

the theoretical values obtained from two models, assuming respectively ‘pinned’ and 

‘frozen’ surfaces. It was expected that the results of the experiments would give
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conclusive evidence as to which model correctly described the behaviour of the 

devices at low temperatures.

The first devices (fabricated on sample type A707) consisted of 100 or 250 nm wide 

HRN strips with a 500 nm period across a channel 100 Jim wide. The measurements 

on these wires did not show any evidence of ID confinement. The threshold voltages 

were not consistent between devices and did not agree well with the theoretical value 

obtained from simple electrostatics. The results of the measurements of cut-off 

voltage also did not agree well with the values predicted by either of the two 

theoretical models (the pinned and frozen models).

The second set of devices measured (on sample type A866) were fabricated with a 

channel width of 200 pm. The gate structure on these devices was of 2000 nm period 

with 200 nm wide HRN strips. These devices also failed to show any evidence of ID 

confinement. Resistance measurements on these devices showed a consistent value of 

Vt for wire and big-gate devices. This value of Vt was also in better agreement with 

the theoretical Vt than for the A707 results. The cut-off voltages were in poor 

agreement with the cut-off voltages calculated from either the pinned or the frozen 

model.

The last set of devices measured with HRN ribs were fabricated on the layer A909. 

These were of the same structure as the A866 devices, but this time used a Hall-bar 

with a 200 pm channel width. These devices did not show any evidence of ID 

quantum confinement. The cut-off and threshold voltages did not show good 

agreement with the values obtained from theoretical models.

In conclusion, none of the experiments carried out with HRN longitudinal ribs 

showed any evidence for ID quantum confinement. Experimental measurements of 

threshold and cut-off voltages were inconsistent between nominally identical devices, 

or agreed poorly with the threshold and cut-off voltages obtained from theoretical 

models. We believe the poor results obtained from these devices were due to surface
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contamination problems. The most likely source of this contamination was HRN 

exposed by backscattered electrons during the writing of the wire ribs.

The problems encountered with fabrication suggest that longitudinal wires fabricated 

with HRN are unlikely to be of any use in the future.

7.3 Devices fabricated with a gate structure consisting of a periodic 

array of fingers
After the unsuitability of the HRN longitudinal devices for testing theoretical models 

of the cut-off voltage was shown, gate fingers were fabricated which would 

electrostatically confine electrons in narrow wires without the need for HRN. They 

could not be used for ID measurements because of the layout of the gate structure. 

These devices were fabricated with positive resist and consisted of a periodic array of 

fingers connected together at one side of a Hall-bar channel. There was a space 

between the ends of the fingers and the other side of the Hall-bar channel which 

allowed access to the regions between the fingers for electrons from the ungated areas 

of the Hall-bar.

The first measurements on devices with a gate structure to this lateral finger design 

were on two devices fabricated on sample A909. This was a shallow AlGaAs barrier 

material. These devices had threshold voltages which were consistent for the two 

devices, but which did not agree well with the values calculated from the simple 

model derived from electrostatics. The cut-off voltages were also consistent for the 

two devices, and were in better agreement with the frozen model than the pinned 

model. The measured and theoretical capacitance of these devices were in very poor 

agreement, suggesting that there were breakages in some of the fingers.

The second set of finger measurements were carried out on devices fabricated on an 

intermediate depth material, B591. These devices showed very good agreement 

between theoretical and measured threshold voltages. The cut-off voltages from these
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devices were in closer agreement with the frozen model. There was, however, a large 

variation in the measured values of cut-off voltage between devices. There was good 

agreement between the theoretical and the measured values of capacitance.

The last device measured in this series was fabricated on a “standard” deep sample, 

A648, bulk doped and with AlGaAs barriers. There was good agreement for these 

devices between the calculated and measured values of threshold voltage. Measured 

cut-off voltages showed better agreement with the frozen theoretical values. The 

agreement between measured and calculated capacitances is not good on these 

devices.

Two big-gate devices were also measured using sample A648. These devices had 

capacitance values which were in better agreement with theoretical capacitances than 

the finger devices. It is likely that the reason for the low capacitance values observed 

for A648 finger devices is due to breakages of the fingers.

These measurements support the hypothesis that the more physically realistic frozen 

model correctly describes the ungated areas of GaAs at low temperatures. There were 

problems with the measurements in that the capacitance values measured on devices 

using samples A648 and A909 gave very poor agreement with theory. The most 

likely explanation for this is breakages of some fingers of the NiCr gates.

7.4 Measurements on Lateral surface superlattice devices.

The primary objective of the measurements of lateral surface superlattices was to try 

and find evidence of new physical effects. These effects are predicted when the 

period of the lateral surface superlattice is of the order of 50nm. An additional 

objective was to study the variation of the potential with bias for different depths of 

two dimensional electron gas and types of barrier material.
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Lateral surface superlattice gates were fabricated on Hall-bars. Deep AlGaAs bulk 

doped layers, shallow AlGaAs barrier layers and shallow AlAs barrier layers were all 

used. Magneto-resistance measurements were made. By analysing the amplitudes of 

the commensurability magneto-resistance oscillations (CO), the potential induced by 

the gates could be derived.

On the deep layers, superlattices were fabricated with periods of between 200nm and 

2000nm. CO were observed on devices fabricated with superlattice periods of 

between 200nm and 400nm. The perturbing potentials deduced were found to vary 

linearly with gate bias. Two other techniques were also used to derive the potentials 

induced by the gates, a) analysis of the low magnetic field peak in the magneto- 

resistance due to open streaming orbits and b) analysis of the background quadratic 

magneto-resistance. The three methods for finding the potential gave consistent 

results.

On the shallow AlAs barrier layers superlattices were fabricated with periods of 

60nm and lOOnm. No quantum effects were seen in measuring these devices. This 

was most likely because of the layer of electrons around the donors screening the two 

dimensional electron gas from the electrostatic potential. Information about the 

magnitude and variation of the potential with gate bias was obtained from the 

magneto-resistance measurements using Beenakker’s formula. All the measurements 

on AlAs barrier devices showed CO at zero bias. The potential obtained from these 

measurements is calculated to be of the order of 0.5 mV. This modulation was due to 

the electrostatic potential which results from strain. This strain had its origin in the 

different rates of cooling of the NiCr gates and the GaAs crystal surface after the 

evaporation of the gates. This strain was coupled to the 2DEG either via the 

deformation potential or the piezo-electric effect. When negative bias was applied,
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the magnitude of the potential either increases or decreases slowly. The sign of this 

variation in potential was dependent on the device measured. It could not be 

explained by the strain being coupled via the deformation potential and this variation 

provided evidence that the strain is coupled via the piezo-electric effect. This is 

because device orientation on the crystal determines whether the potential from the 

applied bias will add or subtract to the potential from the strain. As the bias was made 

more negative a sharp increase in the potential was seen on one device measured. 

This sharp increase corresponded to a point where the layer of electrons around the 

donors was depleted.

The variation of potential with gate bias observed is consistent with previous work on 

devices fabricated on shallow AlAs barrier materials.

Some 60 nm period superlattices were also fabricated on shallow AlGaAs barrier 

materials. Shallow AlGaAs barrier materials have a lower mobility but have an 

advantage over shallow AlAs materials in that the electrostatic potential from gate 

bias is not significantly screened by the layer of electrons around the donors. Several 

60 nm superlattices were fabricated on shallow AlGaAs materials. These did not 

show any sign of classical commensurability oscillations or quantum effects. This 

was most likely due to breakages in the superlattice where it climbed onto the surface 

of the Hall-bar channel.
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