
UNIVERSITY
of

GLASGOW

Departm ent of
Computing Science

GIST

Reconnaissance:
a widely applicable approach

encouraging well-informed choices
in com puter-based tasks

Aran Edward Lunzer

Submitted for the degree of Doctor of Philosophy

September 1995

© Aran Lunzer 1995

ProQuest Number: 13832533

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13832533

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

'lit')
lOiil
(2 ^ j)

[9U
l ? I ' T n r ■ ^ f

LG

A bstract

The aim of this thesis is to propose and demonstrate a novel approach to human-computer
cooperation in exploratory tasks, that encourages the pursuit of thorough explorations and
thus increases the likelihood of finding the best available results.

The thesis identifies a class of computer-supported tasks—such as artifact design, decision
analysis, data presentation, and many kinds of retrieval—that all involve an exploration
among alternative result specifications to find one whose outcome best fits the user’s current
needs. Such explorations cannot be automated, but must be directed by the user. Since
there is typically no way of knowing in advance what results are available, the user must
continually trade off the effort required for further exploration against the unknown chance
of discovering results preferable to those found so far. The more arduous the exploration
is perceived to be, the greater the user’s tem ptation to accept early results without due
consideration of alternatives.

By using a new illumination zone model to analyse existing systems, the root of the problem
is characterised as a lack of support for visualising the trade-offs between results in terms of
the criteria tha t the user feels are significant at the time. Reconnaissance—in the familiar
sense of using scouts to examine unknown territory—provides a suitable metaphor for the
task of instructing a computer to generate a range of results, to summarise them according
to the current set of criteria, and to collate these summaries into a single visualisation.

A challenge in supporting computer-based reconnaissance is the provision of a convenient
interface tha t integrates the requesting, viewing and comparison of result summaries. An
implemented example of reconnaissance support shows tha t the parallel coordinates plot
ting technique can be extended into an interactive form that meets this challenge. Tests
carried out on this implementation, which provided reconnaissance facilities for an existing
document formatting system, confirmed tha t more thorough explorations were indeed en
couraged. The tests also brought to light additional, unforeseen advantages to the use of
result ranges and summarisation.

Summary contents

1 Introduction 1

2 Thesis framework concepts 7

3 Computer support for opportunistic exploration 29

4 The Reconnaissance approach 75

5 Computer-assisted illumination of result spaces 99

6 Using parallel coordinates as a reconnaissance interface 127

7 InteracTjjX: Adding reconnaissance to processing 157

8 Suggestions for follow-on research 193

9 Review of the thesis contributions 212

A Usage of the term ‘formal’ 225

B Questions for measuring BTjgX experience and approach 228

Glossary 232

References 236

iii

Contents

1 Introduction 1

1.1 Motivation ... 1

1.1.1 Scenario: at the travel agent .. 1

1.1.2 The problem: under-informed outcom e.. 2

1.1.3 The activity: opportunistic exploration of a result s p a c e 3

1.2 Thesis s tru c tu re ... 4

2 Thesis framework concepts 7

2.1 Human-driven delegation ... 8

2.1.1 The user only delegates tasks tha t can be satisfactorily formalised . 8

2.1.2 The computer explicitly supports both user activity and delegation . 10

2.1.3 The user needs to change dynamically the delegation boundary . . . 15

2.2 The Illumination Zone M o d e l... 16

2.2.1 Activities within e x p lo ra tio n .. 17

2.2.2 The Illumination Zone m o d e l .. 18

2.3 The effort-accuracy tradeoff in opportunistic search 24

2.3.1 Overview of the effort-accuracy fra m e w o rk 24

2.3.2 Decision-strategy characteristics affecting effort and accuracy 26

2.3.3 Opportunities for improving decision p e rfo rm a n c e 27

iv

C ontents v

3 Computer support for opportunistic exploration 29

3.1 In troduction ... 29

3.2 Exploration s t r a te g ie s ... 30

3.2.1 Trial and e r r o r .. 31

3.2.2 Computer critiquing or im p ro v in g .. 34

3.2.3 Refinement from illumination of available progress directions 38

3.2.4 Refinement by human critiquing of computer-generated results . . . 46

3.2.5 Dynamic queries and other browsable result m a p p in g s 53

3.2.6 Summary: support for thorough opportunistic exp loration 62

3.3 A formalisation/delegation taxonom y.. 63

3.3.1 Specificity of supported t a s k s .. 63

3.3.2 Degree of computer control over task progress....................................... 66

3.3.3 Trends in the ta x o n o m y .. 68

3.4 Opportunistic delegation.. 69

3.4.1 Programmable environments and construction k i t s 69

3.4.2 Systems that attem pt to deduce users’ goals .. 72

3.4.3 Opportunistic form alisation ... 73

3.5 C onclusions... 74

4 The Reconnaissance approach 75

4.1 In troduction ... 75

4.2 The travel agent re v is i te d ... 76

4.2.1 W ithout reconnaissance.. 76

4.2.2 W ith reconnaissance.. 80

4.2.3 W hat has reconnaissance provided? ... 85

4.2.4 An im portant note to users of query services 85

C ontents vi

4.3 Reconnaissance encourages well-informed exploration...................................... 86

4.3.1 Illum ination.. 86

4.3.2 Evaluation .. 86

4.3.3 C onsolidation... 87

4.3.4 Summary: benefits of reconnaissance.. 88

4.4 W hat kind of exploration space can be reconnoitred?...................................... 89

4.4.1 Constraints on the result s p a c e .. 89

4.4.2 Constraints on scout dep loym en t... 91

4.5 Can reconnaissance serve a useful role in the d o m a in ? 92

4.5.1 Ability to specify reconnaissance... 92

4.5.2 Motivation to specify reconnaissance . . . 93

4.6 Can a reconnaissance interface be built for the d o m a in ? 94

4.6.1 System m o d e l.. 94

4.6.2 Illum ination.. 95

4.6.3 Evaluation .. 96

4.6.4 Consolidation s u p p o r t .. 97

4.6.5 Overall delegation c o n tro l .. 97

4.7 C onclusions... 97

5 Computer-assisted illumination of result spaces 99

5.1 In troduction... 99

5.2 Study 1: Topic-matching guided by concept-map reg ions................................ 100

5.2.1 C o n c e p t.. 100

5.2.2 Scenario .. 101

5.2.3 Applicability of delegated illum ination ... 103

5.2.4 T rac tab ility .. 105

C ontents vii

5.3 Study 2: Perspectives by reform ulation... 106

5.3.1 C o n te x t ... 106

5.3.2 S c e n a r io s ... 108

5.3.3 Applicability of delegated illum ination ... 116

5.3.4 T rac tab ility .. 117

5.4 Study 3: Trading-off perspectives by batched p ro cess in g 117

5.4.1 C o n te x t ... 117

5.4.2 Scenario: Perspectives of a shared c a le n d a r ... 118

5.4.3 Applicability of delegated illum ination ... 124

5.5 Option spaces and measurement spaces .. 124

5.6 C onclusions... 126

6 Using parallel coordinates as a reconnaissance interface 127

6.1 In troduction ... 127

6.2 The parallel coordinates presentation te ch n iq u e .. 128

6.2.1 Development and applications... 128

6.2.2 Fundamental p ro p e r tie s ... 130

6.2.3 Applications in data visualisation... 137

6.3 Requesting and manipulating reconnaissance r e s u l t s 146

6.3.1 Specifying a reconnaissance ran g e ... 147

6.3.2 Specifying reconnaissance con ten t... 152

6.3.3 Trade-off analysis.. 155

6.3.4 Detailed examination of interesting re su lts ... 156

6.4 C onclusions... 156

C ontents viii

7 InteracTjX: Adding reconnaissance to]AT[7jX processing 157

7.1 In troduction ... 157

7.2 Implementation and evaluation p ro c e d u re .. 159

7.3 Suitability of DT̂ rjX for addition of reconnaissance .. 162

7.3.1 The need for result-space exploration in working with I^T^X.............. 162

7.3.2 An extensible, industry-strength s y s te m .. 164

7.3.3 Availability of subjects who understand the d o m a in 166

7.4 Challenge 1: Can reconnaissance serve a useful r o l e ? ... 167

7.4.1 Is there an opportunistic exploration to be perform ed?........................ 167

7.4.2 Is the user motivated and able to specify an illumination range? . . 172

7.4.3 Can the user specify a set of system-measurable result properties? . 173

7.5 Challenge 2: Can a suitable reconnaissance interface be b u i l t? 174

7.5.1 Specifying a reconnaissance ran g e ... 175

7.5.2 Specifying reconnaissance con ten t... 178

7.5.3 A suitable reconnaissance display fo rm at.. 180

7.5.4 Exploration p ro g ress .. 183

7.5.5 Characterisation using the Illumination Zone M o d e l 184

7.6 Challenge 3: Does reconnaissance encourage accu racy? 186

7.6.1 Impact on typical use of 186

7.6.2 Effort and accuracy .. 187

7.6.3 New opportunities and challenges... 188

7.7 C onclusions.. 189

7.7.1 Adding reconnaissance to a trial-and-error a c t iv i ty 189

7.7.2 How reconnaissance support was r e c e iv e d ... 190

7.7.3 Further ex p erim en ts .. 191

C ontents ix

8 Suggestions for follow-on research 193

8.1 Further implementations in diverse d o m a in s ... 193

8.2 Developing generic reconnaissance-support facilities.. 198

8.2.1 Supporting applications that were not designed for reconnaissance . 198

8.2.2 Providing a reconnaissance-aware interface t o o l k i t 199

8.2.3 The constituent activities of reconnaissance.. 201

8.3 Testing the impact and value of reconnaissance.. 209

8.3.1 Factors affecting selection and pursuit of reconnaissance...................... 209

8.3.2 Observations and subjective estimates of effort and accuracy 210

8.3.3 Coping with far-flung ex p lo ra tio n s ... 211

9 Review of the thesis contributions 212

9.1 Identification and analysis of under-informed o u tc o m e 212

9.2 Reconnaissance: a ‘middle ground’ in form alisation.. 214

9.2.1 W hat has been s h o w n ... 214

9.2.2 Potential scope of ap p licab ility ... 218

9.3 Option-space reconnaissance using parallel coord ina tes 220

9.3.1 W hat has been s h o w n ... 220

9.3.2 Demonstration of enabling te c h n iq u e s .. 222

9.4 C onclusions... 223

9.4.1 Problem identification and analysis ... 223

9.4.2 The Reconnaissance concept .. 224

9.4.3 Option-space reconnaissance using parallel coord inates......................... 224

A Usage of the term ‘formal’ 225

B Questions for measuring I£TeX experience and approach 228

C ontents

Glossary 232

References 236

List of Figures

1.1 Dependency relationships between thesis chapters... 5

2.1 A representation of the characteristics of partially delegatable activities. . . 12

2.2 The component activities in pursuing an ex p lo ra tio n 17

2.3 Illumination Zone model for user-driven exploration of a result space 18

2.4 Illumination Zone Model for flight booking.. 22

2.5 Illumination Zone Model for document formatting.. 23

3.1 Illumination Zone Model for computer-based critics.. 35

3.2 Illumination Zone Model for retrieval by reformulation...................................... 39

3.3 Helgon, a specification-by-reformulation to o l .. 40

3.4 HIBROWSE ... 42

3.5 Galois lattice navigation t o o l .. 43

3.6 Illumination Zone Model for Cooperative Computer-Aided Design................. 46

3.7 Layout of a M utator result d is p la y .. 48

3.8 The Dynamic H om efinder.. 54

3.9 F ilm F in d e r .. 55

3.10 Illumination Zone Model for dynamic qu ery ... 56

3.11 The Attribute Explorer, on a house-search data s e t ... 58

3.12 A taxonomy of exploration t o o l s ... 64

xi

LIST OF FIG U R E S xii

4.1 Flight results in a table .. 81

4.2 Parallel-coordinates representation of two flights ... 82

4.3 Reconnaissance results showing 58 flights with cost < £600 83

4.4 Filtered and reordered parallel-coordinates d i s p la y ... 84

4.5 Illumination Zone Model for reconnaissance... 94

5.1 A new set of concept connections added to Custard 101

5.2 Some suggested connections based on one term from figure ? ? 102

5.3 A further result, reached after refinement of in te re s ts 103

5.4 A Fog browser, set up for easy item c a te g o risa tio n .. 109

5.5 PerspEx: Retrieval by Reformulation for finite searches 114

5.6 PerspEx: Perspectives by Reformulation for potentially unbounded searches 115

5.7 Early attempts: no acceptable s lo ts ... 119

5.8 Later: too many indistinguishable alternatives.. 120

5.9 Three criteria used in co m b in a tio n ... 121

5.10 Setting up for lookahead ... 122

5.11 Results from lookahead (adjuster details o m itte d)... 123

5.12 Specifying illumination as a combination of option values................................. 125

5.13 Specifying candidate-result evaluation in terms of a set of measurements. . 126

6.1 Parallel axes for R N , when N = 5 ... 131

6.2 The line-point d u a l i ty .. 131

6.3 Examples of collinear points mapped onto parallel coordinates...................... 133

6.4 The IBM Parallel Visual Explorer .. 138

6.5 PVE, showing focus f e a tu r e .. 139

6.6 PVE, showing ‘flow’ q u e ry 140

6.7 PVE scatter p l o t .. 141

LIST OF FIG U R E S xiii

6.8 WinViz on accident s ta t is t ic s .. 143

6.9 WinViz (for Lotus 1-2-3) on loan-decision s t a t i s t i c s 144

6.10 The Attribute Explorer (also shown on p .??).. 146

6.11 The Influence Explorer, for light bulb tolerance p re d ic t io n s 147

6.12 Representing option specifications on parallel a x e s ... 148

6.13 Temporarily switching off option values to reduce reconnaissance range . . . 149

6.14 Adding a value to option A for further reco nna issance 150

6.15 Two examples of adding a new option to the search ... 151

6.16 Representing measurements on parallel a x e s .. 152

6.17 Using measurement values to exclude results from d is p la y 153

6.18 Changing the sensitivity of scales D and E .. 154

6.19 Three result summaries on parallel a x e s ... 155

7.1 Stages in InteradTjrjX implementation and te s t in g ... 160

7.2 Components of a processing s e tu p .. 165

7.3 Document variation by insertion of alternative s t r i n g s 176

7.4 Document variation by definition and use of variables 177

7.5 Requesting a global and a local m easu rem en t... 179

7.6 A display of four r e s u l t s .. 181

7.7 A simple result list, supporting result selection for viewing or reprocessing . 182

7.8 A complete InteracTgXdisplay, while working on the tutorial example 183

7.9 Major components of an InteracTgX s e tu p .. 185

8.1 Component levels in the ACE arch itectu re.. 201

8.2 A breakdown of reconnaissance support within InteracTjrjX............................. 202

8.3 Support for relevance-feedback IR with divergence d e tec tio n 203

9.1 An updated version of figure ??, showing the effect of reconnaissance. . . . 216

Acknowledgements

Obviously the major thanks go to Phil Gray and Steve Draper (my supervisors) and
Prances Clark (my analyst)—whose roles, predictably, have overlapped quite a bit. The
greatest help has been their constant faith and patience; Phil, in particular, has undertaken
some epic missions to lead me out of various research quagmires.

My research was funded under EPSRC studentship 91308610, while the pain of giving up
a salary in return for a student grant was greatly reduced by the generosity of my father
Raph. I am also extremely grateful to my erstwhile IBM manager John Carter for his
understanding, interest and assistance both during and since my time in his group, and to
John Patterson for helping me find time to finish the writing-up.

The departm ent’s computers have been a joy to use, thanks to the care of the technicians and
support staff (as well as much personal assistance from Duncan Sinclair). In particular, I
can’t imagine what I would have done without the Smalltalk-80 VisualWorks environment1,
which made it a pleasure to build my own note-keeping system and the various prototype
tools used in this research.

This thesis owes a lot to Alastair Reid and Will Partain for their assistance throughout the
implementation of InteracTjjX; likewise to all the other test victims. Also to Chris Johnson
and the three members of my viva panel, for lots of constructive feedback.

The city of Glasgow, its (original) University, and this department have all turned out to
be great places and great sources of support and friendship. I couldn’t list all the people
around here who have become important to me, so I’ll start by thanking the other members
of the night shift (or 24-hour shift)—notably the recently-Doctored Alex Ferguson—for their
whacky but reassuring company, and then give special mentions for Trish, Sharon, Mark3,
Jackie, Nicola, Niall & Guy, and of course [blush] Susan.

Finally, huge thanks (from a distance) to Raymond M. Smullyan, mathemagician and
philosopher, whose Taoist writings help make a lot more sense of Everything.

1 VisualWorks is a registered trademark of ParcPlace Systems, Inc.

Declaration

The material presented in this thesis is the product of the author’s own independent research
carried out at Glasgow University, under the supervision of Phil Gray of the Department
of Computing Science and Steve Draper of the Department of Psychology.

A description of the idea and implemented proof-of-concept of ‘reconnaissance’ as defined
in this thesis has been published as a conference Technique Note (Lunzer, 1994), and also
made available in longer form in a 1995 anthology of research from GIST, the Computing
Science departm ent’s interactive systems group.

xv

Chapter 1

Introduction

1.1 M otivation

The problem tha t motivates this thesis might be stated as follows:

How can a computer support exploration in a large unfamiliar search space,
where narrowing the search too quickly based on early impressions might cause
many of the best available results to be missed?

1.1.1 Scenario: at th e travel agent

Last year I visited a travel agent to book a plane flight from Glasgow to Los Angeles, about
a month in advance. Here is an approximate account of what happened:

• Instead of printed timetables, my travel agent (like most others) now uses a computer
service tha t can locate all available seats, on all scheduled routes of all the major
airlines, for many months into the future. The system handles a vast store of dy
namically updated information, and must serve a high rate of enquiries from booking
agencies and airlines around the world. To help keep the responses timely, the inter
face available to most travel agents will only handle very narrow queries—typically,
specifying precisely the departure and destination cities and a single desired date of
travel.

• Cost is im portant to me, and the travel agent and I soon made a significant discovery:
my journey fell near a change in pricing season. We discovered tha t on November 1st

1

1.1. M otivation 2

most fares were a full 20% less than their equivalents the day before. This is a discount
worth getting, so we decided to concentrate just on November flights.

• The computer system held at least 40 alternative official routes for this journey. But
when we looked in detail at the seats that were available on my preferred date we found
tha t the cheapest ones involved lots of intermediate stops, or arrived inconveniently
late at night. So we started to explore the alternatives—such as paying slightly more,
travelling via different cities in which I have friends or family I could visit, or changing
my journey dates slightly. This involved running several extra queries.

Note tha t the designers of the query system could not have predicted the set of queries
that I decided to run, because the alternative dates and cities that I was prepared
to consider were entirely particular to me and to the occasion. Furthermore, some
alternatives were only chosen in response to the results I obtained from the earlier
queries.

• Eventually I found an available seat, with an acceptable set of compromises on date,
price and cities. Many of these factors were far from what I initially requested—so
was it really the compromise I would have been happiest to make? In particular, what
if I hadn’t made the early decision not to look for October flights? Despite the price
change, there might happen to have been a seat available on October 31st, on a flight
that suited me better than the compromise I ended up accepting.

• But after spending almost half an hour focussing in on the available compromises,
the travel agent and I shared a strong distaste for going right back to the beginning
and starting on an alternative branch of the exploration—remembering that the date
marked a change in season, so there may have been substantially different schedules
to be explored.

• So I booked the seat we had found; the transaction was complete. But I was not
entirely happy...

1.1.2 T he problem : under-inform ed ou tcom e

The travel agent and I had examined a number of alternative flights, and had arrived at
a rationale for evaluating the advantages and disadvantages of each in the context of the
desired journey; this took a lot of time and cognitive effort. But despite this effort we knew
nothing about the flights just outside the range of our search, and we might have missed a
better alternative.

1.1. M otivation 3

In particular, near the start we narrowed the space of alternatives to be evaluated by making
the decision to look only at November flights. The reasoning seemed clear-cut at the time,
but with all the compromises we had to make thereafter this original decision became open
to question.

The query system’s interface strongly encourages a selective form of progress, by which the
user can be seen as following a narrow path through the search space. In relation to all the
results that would potentially be of interest our eventual choice was an u n d e r-in fo rm ed
o u tc o m e1; the decision was based on evaluating a range of candidates that might not have
constituted a good representative sample.

P u t simply, the risk of an under-informed outcome can be reduced by pursuing a th o ro u g h
ex p lo ra tio n . This term should not be taken to imply an exhaustive exploration; there may
be far too many results to examine and, as is the case in this scenario, most are known to
be entirely irrelevant. Instead, the ideal case of a thorough exploration is one in which all
promising directions of search are pursued, rather than having to rule out some directions
for no reason other than a lack of time. Because of the costliness of time itself this ideal
might never be reached, but the aim of this thesis is to bring computer users one (significant)
step closer.

1.1.3 T he activ ity: op p ortu n istic exp loration o f a resu lt space

The activity of searching for a flight from a database is just one example of a general class
of activities tackled with the help of computers, that is referred to within this thesis as
o p p o r tu n is tic e x p lo ra tio n of a re su lt space.

R e su lt space

As used in the thesis, ‘result space’ is a theoretical concept meaning the enumeration of all
possible results that can be produced by a given computer-based system in response to a
result specification supplied by a user. This concept is intentionally more general than the
bounded form of search space explicitly embodied in a database of flight details, or in a
document base accessible through an information-retrieval system. As a radically different
example, a computer-assisted architectural design system can be seen as providing access
to a potentially infinite result space of building designs that may be articulated by use of
the system’s facilities.

1 Terms having specialised meanings within the thesis are introduced in bold type, and are gathered in
the glossary on page 232.

1.2. T hesis structure 4

An im portant implication of this concept can be seen as a generalisation of the distinction
between indexed and non-indexed properties in a database search: when the user supplies
a result specification that expresses certain desired characteristics, the results produced by
the computer may have additional properties tha t are just as im portant to the user as the
ones tha t were specified. But just as a flight reservation service might not provide any
facility for requesting all destinations that can be reached within five hours’ flying from
Glasgow, so an architectural design system may be unable to produce all apartm ent designs
having less than 50 metres of internal wall. Therefore it is up to the user to direct the
computer to reveal parts of the result space; to do this the user must control just those
properties that can be included in the specification.

Opportunistic exploration

This thesis is concerned with tasks in which a user is approaching a result space with
the intention of finding within it one or more results tha t are particularly suited to that
user’s current needs. More specifically, the thesis addresses tasks in which, as illustrated
in the scenario above: 1) the computer system cannot be designed in advance to predict
result-specification details that will be of interest to the user, 2) even the user cannot
know in advance what will constitute a good result or a worthwhile compromise between
different result properties (whether part of the specification or not), and 3) the user cannot
make reliable predictions about the result properties tha t will be obtained from a given
specification. In such tasks the user must therefore engage in an exploration of the result
space, which will be opportunistic in that the user decides its course at the time—according
to a developing understanding of what the result space holds.

1.2 Thesis structure

The goal of the thesis is to propose and demonstrate a novel approach to human-computer
cooperation tha t alleviates the problem of under-informed outcome in opportunistic explo
ration of result spaces.

As has already been indicated, opportunistic explorations occur in a wide variety of domains
in which computers are applied; a primary concern in pursuing the thesis was therefore to
limit the range of domains to which the thesis proposals are aimed to apply. To this end,
figure 1.1 emphasises the key role played by chapter 2 in which are defined the framework
concepts underlying the thesis: the human-driven delegation constraint on human-computer
interactions, the illumination zone model (developed specifically for the thesis) for analysing

1.2. T hesis structure 5

Concepts

Surveys

Implementations

Review

InteracTeX

Opportunistic
exploration

Reconnaissance

Parallel
coordinates

Result-space
illumination

Chapter 8
suggested research directions

Chapter 9
thesis contributions

Introduction
Under-informed outcome

Chapter 2
Human-driven delegation
Illumination Zone Model
Effort-accuracy tradeoff

F ig u re 1.1 Dependency relationships between thesis chapters.

the circumstances leading to under-informed outcome, and the effort-accuracy tradeoff that
provides guidance on how to influence users to pursue more thorough explorations.

Although the illumination zone model is presented as an a priori structure tha t is then
adapted to a range of domain-specific embodiments, its design is largely a reflection of
themes th a t emerged from a survey of a wide range of existing opportunistic-exploration
systems. The survey, presented in chapter 3, is thus necessarily more illustrative than
critical—one corollary being that it contains more descriptive m atter than would a purely
critical review.

Chapter 4 injects the main novel concept of the thesis: the reconnaissance approach to
human-computer cooperation. Reconnaissance is a powerful technique for tackling real-
world explorations; chapter 4 illustrates how reconnaissance could improve the effectiveness
of one particular form of computer-based search, and then uses the illumination zone model
to analyse the general strengths of the approach. The chapter concludes with a set of
requirements for successfully applying reconnaissance to opportunistic result-space explo
rations.

The first major pieces of computer-system design and implementation carried out as part
of this research are described in chapter 5. The work is reported as a number of case stud

1.2. T hesis structure 6

ies, examining the applicability of reconnaissance-like search support in various domains.
Although none of these individual studies was felt to be a suitable basis for a major evalua
tion of reconnaissance within the scope of the thesis, many valuable ideas emerged from the
design activity. A sub-class of explorations was identified for which reconnaissance could
be represented straightforwardly, and could be supported by developing a novel interactive
form of the parallel coordinates display formalism to address the challenge of letting the
user request and compare a large set of summarised results.

Chapter 6 expands on the use of parallel coordinates as a basis for a reconnaissance inter
face, starting with an extensive survey of the development and properties of the parallel
coordinates technique. Since the proposed adaptation was found to be novel, the role of
the survey is not so much to critique existing embodiments as to demonstrate the power of
parallel coordinates as an underlying representation. It is therefore highly descriptive, and
this section may be skipped by any reader who is prepared to take on trust the assertion
that the representation offers great potential for data analysis and understanding. The
second part of the chapter then addresses the design requirements for the interactive form
of parallel coordinates display required to support reconnaissance.

Chapter 7, drawing on the concepts from chapter 2, the findings from the implementation
work reported in chapter 5, and the design proposed in chapter 6, describes in detail the
analysis, implementation and evaluation work undertaken in adding reconnaissance support
to the activity of document-formatting within the document preparation system.
The chapter describes the iterative development of the reconnaissance framework and the
specialised facilities for document formatting, drawing on the experience of existing J^T^X
users to progress the ideas from an initial demonstration-level prototype through to the
hands-on tutorial that was used in the final round of evaluations. The chapter’s conclusions
bring together various lessons towards future attem pts to implement reconnaissance for this
or similar domains, showing the perceived impact on the conduct of the underlying activity,
the applicability of the chosen interface design, and a number of areas in which further work
appears likely to produce interesting findings.

The final chapters consolidate the thesis contributions. Chapter 8 sketches out some research
directions that follow on naturally from this work, while chapter 9 summarises the main
findings of the thesis and their significance to the design of computer-based exploration
systems.

Chapter 2

Thesis framework concepts

In order to impose some practical bounds on the range of influence claimed for the thesis,
this chapter introduces three ‘framework concepts’ characterising the approach to be taken.

First, the human-driven delegation constraint stakes out as the area of interest just those
computer-based explorations in which the exploration effort is divided between user and
computer, but in which the user is always explicitly in control of the moment-to-moment
details of tha t division.

Second, the illumination zone model declares a particular pattern of progress in explo
rations, and a framework of cooperating components tha t support such progress. This
model was developed specifically for use in the thesis. The model is intended to be general
enough to apply to a wide variety of application domains, but to have components with
sufficiently specific functions to enable their embodiments to be identified and compared
between systems serving diverse domains.

Finally, the effort-accuracy tradeoff is what Payne, Bettm an and Johnson (1993) propose
as a key to human behaviour in decision tasks in which greater ‘accuracy’ of choice can
only be obtained at the cost of greater ‘effort’ in evaluating the available alternatives.
Their framework, described in section 2.3, provides the motivation for the straightforward
approach adopted in this thesis: in order to reduce the risk of under-informed outcome,
simply provide users with a low-effort means to perform simple but effective evaluations of
a large range of alternatives.

7

2.1. H um an-driven delegation 8

2.1 Human-driven delegation

This section declares and explains the restriction of this thesis to considering explorations
in which the user is explicitly and actively in control of all delegation of activity to the
computer. The argument proceeds in the following stages:

1. Only activities tha t can be formalised to the user’s satisfaction should be delegated
to a computer. As part of this, it must be clear to the user which of the activities
have been delegated.

2. Many tasks necessarily involve a mix of unformalisable and formalisable (and hence
delegatable) activities, so the computer system must allow both levels of activity to
take place.

3. Opportunistic explorations, in particular, are likely to have the nature of being semi-
formal—that is, to require the ability to change dynamically the boundary between
formal processing by the computer and informal processing by the user.

2.1.1 T he user on ly delegates tasks th a t can b e satisfactorily form alised

The degree to which a computer can be delegated to carry out activities on the user’s behalf
hinges on the extent to which those activities can be expressed formally.

W ithin alternative sub-disciplines of computer science the term ‘formal’ currently has a
number of interpretations of varying nuance and strength; as explained in appendix A
the sense intended within this thesis is ‘represented on a computer in a way tha t allows
operations tha t are meaningful to the user to be performed computationally’.

How much of the task can be formalised?

One possibility is tha t the whole of some task—at least within a boundary tha t includes
enough to be useful—can be formalised, and can therefore be delegated fully (i.e., ‘auto
m ated’). The user is left with the job of supplying the raw materials and extracting the end
results. Winograd and Flores (1986) point out that man-made systematic domains, such as
the stock-market world of shares, options and futures, provide entirely appropriate domains
for such formalisation:

‘Computers are wonderful devices for the rule-governed manipulation of formal
representations, and there are many areas of human endeavour in which such

2.1. H um an-driven delegation 9

manipulations are crucial. In applying computers appropriately to systematic
domains, we develop effective tools.’

(p.174)

But there are many examples of computer systems tha t over-stretch the legitimate ap
plication of formal processing. In the past few years, for example, some word processors
have been sold with ‘grammar checking’ as a feature. The manufacturers claim tha t these
systems can analyse English grammar, detect phrases th a t do not appear to conform to
accepted ‘rules’, and even offer suggestions for improvement. But the analysis of natural
language is notoriously computationally hard, so it is no surprise tha t these systems make
a lot of mistakes; they do not live up to the claim of successful formalisation of this activity.

And at the other end of the spectrum entirely are tasks that are deemed to be completely
unformalisable, such as creative design. In such domains computer systems are relinquished
to the role of uninformed assistants, because the generality of the task is deemed to preclude
formalisation either a priori or in use.

How much does the user want to formalise?

At some level, there may not be a choice: if information is to be represented on the computer
at all, it must be expressed in a way that can be handled formally to some extent. For exam
ple, even apparently free-style recording of sounds is typically represented as synchronous
sampling of signal level.

Additionally, if the user wants to gain from the ways in which a computer may help by
performing routine work such as high-speed repetitive processing of large volumes of in
formation, the information has to have a precisely defined formal representation. And the
user needs to be satisfied that a given formal representation of some information contains
enough of the intended meaning so that mechanised processing of it will produce meaningful
results.

One source of reluctance to formalise arises when the user will be required to perform
a conversion between his or her normal way of thinking about the information and the
system’s formalism; the effort required for the conversion might weigh heavily against the
potential benefits of formalisation.

2.1. H um an-driven delegation 10

Some advantages and problems of hidden formalisation

Many computer systems are designed to relieve the user of concerns regarding what should
or should not be formalised, by maintaining and updating their formal representations of
user and task in an internal, hidden form. One way of characterising such systems (often
identified as ‘intelligent’ or ‘adaptive’) is that they hide from the user the full extent of
the delegation that the system has taken upon itself. This can cause problems. As Hook,
Karlgren and Waern (1995) state:

‘When introducing intelligent interface techniques into an application, one must
be aware of the risks inherent in such solutions. These evolve from the fact
that an intelligent interface will change: it will automatically and sometimes
actively adapt to the perceived needs of the user. Unless carefully designed, these
changes may lead to an unpredictable, obscure and uncontrollable interface...
Systems that act too independently, e.g. knowledge based systems or intelligent
interfaces, have not been acceptable to users (Berry & Broadbent 1986, Meyer
1994).’

(original emphasis)

There has been work on reducing the obscurity of adaptive systems—Hook et al., for ex
ample, present their own adaptive help interface using the ‘glass box’ approach (du Boulay,
O’Shea & Monk 1981; Karlgren, Hook, Lantz, Palme h Pargman 1994), which gives users
the feeling of being able to look through to the workings of the system to see what it
has deduced. Work in a similar direction in the field of Demonstrational Interfaces (e.g.,
Cypher et al. 1993) includes presentation of anticipation information in the interface of
Eager (Cypher, 1991) to show the user how the system has generalised the ongoing activity.

To simplify the goals of this thesis, however, any system that makes its own calculations
regarding the delegation appropriate at each moment—even if the user has the means to
observe what has happened—is excluded on the grounds of being undesirably complex.
This thesis addresses issues that arise when the user has explicit control over delegation;
incorporation of assistance offered by adaptive systems can be addressed in future work.

2 .1 .2 T he com pu ter ex p lic itly supports b o th user a c tiv ity and d elegation

Norman (1988, p. 184) draws attention to ‘. .. two different ways of getting a task done. One
way is to issue commands to someone else who does the actual work: call this “command

2.1. H um an-driven delegation 11

mode” or “third-person” interaction. The other way is to do the operations yourself: call
this “direct manipulation mode” or “first-person” interaction. The difference between these
two is like the difference between being driven by a chauffeur and driving an automobile
yourself.’ He goes on to suggest that for computer systems ‘Both forms of interaction are
needed. Third-person interaction is well suited for situations in which the job is laborious
or repetitive, as well as those in which you can trust the system (or other person) to do the
job for you properly. . . . But if the job is critical, novel, or ill-specified, or if you do not yet
know exactly what is to be done, then you need direct, first-person interaction.’ (emphasis
added).

Winograd and Flores (1986) note corresponding distinctions in the literature on manage
ment and decision making—such as the identification of ‘structured tasks’ tha t could be
described to a computer using rules, contrasted with ‘unstructured tasks’ for which rules
could not be formulated. But they cite Keen and Scott-Morton (1978) as identifying the
in-between area of ‘semi-structured’ tasks: ‘with some degree of recurrence but not so much
tha t one can fully specify the relevant rules’, and as seeing this as the relevant area for
computer aid to human decision making.

To some extent this mix arises in any computer system that is designed to support an
activity in which the range of potential user goals is infinite, but analysis of the domain
has revealed tha t a useful subset of goals appears to be supportable by provision of some
form of constructive mechanism such as a query language, programming language or a kit
of parts. This characterisation probably accounts for the majority of all computer systems.

Relationship between delegated and user activities

Figure 2.1 is a schematic view of the zones of delegation between a client and a provider
(for example, but not restricted to, a user and a computer) in some partially delegatable
domain of activity. The regions have the following meanings:

• black box

Aspects of the activity that the client would be unable or unwilling to perform, and
is therefore content to accept as ‘black box’ services from the provider. This tends
to be activity of general application within a domain, but of a level of specialisation
in which the client may not even be qualified to participate. Examples would be
the chauffeur’s driving skill, including choice of gears and evasion of obstacles; in the
travel agent case it would include the details of composing queries to the centralised

2.1. H um an-driven delegation 12

unexplained

goals

F ig u re 2.1 A representation of the characteristics of partially delegatable activities.

flight database and interpreting the results. The client just asks for the service, and
trusts the provider to get on with it without further prompting.

• d e leg a ta b le services

These are aspects that, being known in advance to be the sort of services that clients
require, the provider is able to perform at the client’s request. For example, a chauffeur
should be able to undertake the navigation between places chosen by the client; a travel
agent should be able to perform the appropriate consultations to inform a client about
options for travel between given cities around a particular date. This level is more
specific to the goals of the client, so the provider waits to be told which of its services
are wanted.

• u n ex p la in ed goals

This is the level of activity that cannot be delegated, because it is not within the
realm of the activity itself but is governed by external influences that mean nothing
to the service provider. For example, a client’s choice of places and dates for making
journeys.

A computer-based example of the above levels can be illustrated with respect to storage of
a user’s data: the black box incorporates activity such as the allocation of files to sectors
on a hard disk; delegatable services include listing, moving and deleting files; unexplained
goals would include the user’s reason for deleting files X and Y but not Z.

2.1. H um an-driven delegation 13

The three arrows marked A, B and C represent different specific tasks tha t a client may
request. The different thicknesses of the regions passed through by tasks coming in from
different directions represent the degree of abstraction introduced above the raw ‘black box’
facilities. So task A represents a task with a high degree of unexplained reasoning but
involving a fairly direct call on the black box services: for example, a client who has figured
out the one way he could attend an afternoon wedding on the same day as a dinner party
400 miles away may ask ‘are there flights from Gatwick to Prestwick on Saturday evenings?’.
Task B, by contrast, can be solved almost completely by use of a relatively high-abstraction
service: for example, ‘please book flights to allow me to spend one day in each of our three
overseas offices next week’. Task C is a direct call on the black box services—perhaps ‘is
there a seat on the next London flight?’.

Indispensability of ‘unexplained’ user activity

Among the tasks that can be characterised according to the above division of labour is the
class of m ulti-attribute problems dealt with by Bertin (1981). He recommends an approach
based on building, evaluating and manipulating a ‘graphic’ containing the data pertaining
to the problem. Although he acknowledges that the display, manipulation and some aspects
of the evaluation of the graphic might be delegated to a computer, he firmly distinguishes
two classes of information involved:

1. Intrinsic information, this is, the internal relationships revealed by the
image;

2. Extrinsic information, tha t is, the nature of the problem and the inter
play of the intrinsic information with everything else. And, by definition,
everything else is that which cannot be processed by machine. Extrinsic
relationships cannot, by definition, be automated. They are, however, of
fundamental importance in interpretation and decision-making. Thus, the
most important stages—choice of questions and data, interpretation and
decision-making—can never be automated.

(p.9, original emphasis.)

The importance of making available extrinsic relationships in computer-based presenta
tions is also discussed by S0rgaard (1988). His example is seat reservation in trains; he
suggests tha t it makes a big difference to a potential traveller whether seat position is de
scribed simply using terms such as ‘window’ or ‘aisle’, ‘facing’ or ‘back’, or is shown on
a diagrammatic seating plan. The diagram does not even need to be particularly rich to

2.1. H um an-driven delegation 14

enable an unpredictably large number of implicit relationships tha t the passenger may re
gard as im portant—such as proximity to the end of the carriage, or to a ‘smoking’ section,
or position relative to a buffet car. In a parallel situation, Casner (1991) admits as an
‘important limitation’ the inability of his BOZ system’s rendering component to make use
of domain-specific conventions such as seat layout in an airline reservation system.

The need for delegated and user activity in result-space exploration

However much a user is dependent on the computer for generating the results to be viewed
in the course of a result-space exploration, it can be seen that unexplained user activities
will usually be crucial as well. The user’s concern is to direct the exploration to the level
of being able to identify one or several individual results that are comparatively ‘good’ for
the user’s current needs. But only the user can judge ‘goodness’, and only the user can
make the necessary opportunistic decisions on how to try to work around undesirable result
properties that may be found. Illustrating with the example of the architectural design
system, typical issues include the following:

• results can only be judged in the context of what is available

For example, an architect’s evaluation of some apartm ent layout will be affected by
features of the other layouts that axe discovered to be feasible (in addition to any
absolute factors such as budget limitations).

• the user cannot predict all potential result problems

For example, an architect may discover that some suggested layout causes an unex
pected infringement of an obscure planning regulation.

• problems may require indirect, user-chosen modifications

A planning regulation may be infringed through a combination of factors; the architect
has many parameters to juggle, none of which is directly responsible for the problem.
Because of this, it may not even be possible for the architect to know if a proposed
modification will resolve the problem, other than by trying it out.

• problems cannot necessarily be solved in isolation

Finding one way to resolve one problem may inadvertently give rise to another.

As will be seen in the survey in chapter 3, some recent developments in the fields of database
search and information retrieval can be characterised as belated acknowledgement of this

2.1. H um an-driven delegation 15

potentially opportunistic nature of searches—moving away from these fields’ traditional
implicit assumptions that users only ever engage in searches for which they have a fixed
information-seeking goal, known at the start of the search. In the case of databases, the
designs of systems such as Rabbit (Williams, 1984; reviewed in section 3.2.3) explicitly
recognise tha t the user might not know even what kind of data are available to be found.
Information retrieval systems such as NRT (Sanderson & van Rijsbergen, 1991; reviewed in
section 3.2.4) likewise acknowledge that a user may not be able to guess details of documents
that would be relevant, but after looking through a few results might then be able to identify
those tha t are more or less interesting.

2 .1 .3 T h e user needs to change dyn am ically th e d elegation boundary

Consider the changing need for delegation within the flight-booking scenario: At the be
ginning the travel agent and I submitted specific, narrowly defined queries for particular
dates and routes, because we did not know how easy or difficult it was going to be to find
a seat. And as the initial results revealed various problems, we had to be there to make
judgements on alternative queries to try. But eventually, once we had worked out various
alternative compromises that might be acceptable, it became tedious to have to try each
combination of compromises in turn; it would have been more satisfactory to be able to
delegate a whole batch of compromises and filter all the results using the criteria we had
discovered to be relevant. Then again, later still—perhaps when checking on details of a
few flights of roughly equal acceptability—we would want to engage in an even more narrow
and detailed form of query than at the start.

This is a simple illustration of a need for what may be called opportunistic delegation—
the ability to define opportunistically some additional level of delegatable services that
the user has come to realise would be useful for the task in hand. Lai, Malone and Yu
(1988) sympathised with this need for systems tha t are flexible in this way; they identified
a category of semiformal systems, as follows:

‘We define a semiformal system as a computer system tha t has the following
three properties: (1) it represents and automatically processes certain informa
tion in formally specified ways; (2) it represents and makes it easy for humans
to process the same or other information in ways that are not formally specified;
and (3) it allows the boundary between formal processing by computers and
informal processing by people to be easily changed.’

2.2. T he Illum ination Zone M odel 16

In terms of the elements of figure 2.1, the user needs to be able to make opportunistic
extensions to the ‘delegatable services’ region for the system being used, so tha t a task that
is being pursued no longer has such a large ‘unexplained goals’ segment.

Thus the culmination of the call for human-driven delegation is the identification of a need
for facilities by which the user can define, on the fly, additional opportunistic delegation.
Respecting the view that delegation should only be achieved by means of explicit formalisa
tion, the requirement becomes that of opportunistic formalisation. But then, formalisation
of a task—according to the definition being used in the thesis—simply involves equipping
the computer with rules that it can follow to achieve the task. Stated another way, the user
must be given facilities—at some level—by which to ‘program’ the exploration system.

2.2 The Illumination Zone M odel

To assist in analysing and comparing the activities supported in a wide range of computer-
based opportunistic explorations I have developed the il lu m in a tio n zone m odel. This
was after examining various other models for computer-supported exploration, including
(roughly in order of increasing specificity):

• The Information Access Model that underlies the concept of Information Workspaces
(e.g., Robertson, Card & Mackinlay, 1993).

• MIE—a Model of Information Exploration (Ahlberg & Truve, 1994), based on the
Seven Stages of Action model (Norman, 1986).

• A model relevant to the search paradigm in computer-assisted design (Woodbury,
1991), in which the human information processing model (Card, Moran & Newell,
1983) is supported by a computer in the role of the external memory component.

• The functional modules of systems supporting ‘Specification by Reformulation’ (Yen,
Neches, Debellis, Szekely & Aberg, 1991).

• A system architecture for cooperative computer-aided design—specialised to the Flats
architectural-design example (Kochhar, 1994).

None of these provides a suitable combination of representing the significant pools and
flows of information as well as the stages of progress in the search. In addition it was
advantageous to be free to use non-standard names for the model’s various components,
to avoid pre-conceptions of meaning and thus to let the model describe as broad a range

2.2. The Illum ination Zone M odel 17

of domains as possible. As will be seen in chapter 3, the Illumination Zone Model is a
way to show many similarities, and some subtle distinctions, between the support offered
by systems designed for some highly disparate domains—domains that have not, to my
knowledge, been previously identified as a family.

The key to the usefulness of this model is, as the name suggests, the ‘illumination zone’ itself.
As will be explained in the following pages, the illumination zone is an abstract component
that can be identified at the heart of a wide range of exploration systems. Basically it is
the store for a ‘working set’ of results that are available for the user to view and compare.
The nature of a given system’s illumination zone—e.g., the number of results it can hold,
and the way its contents are made available to the user—plays a crucial role in determining
the system’s supportiveness for thorough exploration of a result space.

2.2.1 A ctiv itie s w ith in exp loration

The model is designed to describe explorations that proceed according to cycles of illum i
n a tio n , ev a lu a tio n and conso lida tion , as explained below.

initiate

illuminate

consolidate

evaluate

terminate

F ig u re 2.2 The component activities in pursuing an exploration

The explorations of interest in this thesis can be characterised by analogy with a traveller
exploring an unknown terrain, who would engage in the following activities:

• I llu m in a tin g the available ways ahead

At each step of the way, the traveller performs the actions necessary to obtain some
information about what is ahead—i.e., the range of alternative directions available.

2.2. T he Illum ination Zone M odel 18

• E v a lu a tin g what has been illuminated

When information is obtained about the available directions it must be evaluated.
During this stage the traveller may choose to revert to requesting more illumination.
Eventually the information is used to reach a decision o n ...

• C o n so lid a tin g progress

Based on the evaluation of the available directions ahead, and the knowledge of the ter
rain tha t has been encountered so far, the traveller consolidates by deciding a) whether
the exploration is finished, and if not b) which of the available directions to follow
(the choice usually includes the chance to retreat to an earlier location).

2.2.2 T he Illum ination Zone m od el

result-space
illuminator

display
generator

EXPLORATION CONTEXT
FIXED BASE DATA INTERACTIVE DISPLAYILLUMINATION ZONE

candidate [specification
v results J options y

(result-specific
\ controls

generic
controls

illumination
specification search

history
display

^specification

information flow
command ' hand-built '

4 l
\ commands juser-initiated command flow processor

F ig u re 2.3 Illumination Zone model for user-driven exploration of a result space

Figure 2.3 is a schematic of the components tha t make up computer support for a user-
driven exploration, showing the flow of information under user control. The components’
functions can be summarised as follows:

• All the tasks can be characterised as a user requesting the illumination of results that
can be obtained from a stable body of fixed base d a ta , by supplying an illu m in a tio n
spec ifica tio n to some resu lt-sp ace illu m in a to r.

2.2. T he Illum ination Zone M odel 19

The abstract term ‘illumination’ is intended in a broad sense, encompassing the re
trieval or generation of individual candidate results and also the illumination of
characteristics of the result space as a whole, in terms of specification options
tha t could be used for future illuminations. All the illumination information can be
regarded as residing in an abstract place that is the illum ination zone itself.

Note the reference to ‘retrieval or generation’ in the above description. In some
domains the results already exist within the base data—for example, in Information
Retrieval or database search—but the model is more general than that: the base data
may provide merely some material that assists in generating results. Examples later
in this section will illustrate both concepts.

The illumination specification includes a notion of the current viewpoint, which
comprises whatever information is needed to describe the user’s ‘location’ in the
exploration—e.g., the latest version of a design.

• The illumination needs to be converted into a visible form, to which end a display
generator acts in accordance with a user-controlled display specification to pro
duce an interactive display.

Since the illumination doesn’t necessarily include the details of how it was requested,
the display generator needs to have access not just to the illumination zone but to
the entire exploration context, which also includes the illumination and display
specifications and also whatever form of search history the system may record.

• The user determines the retrieval and display specifications, and hence the operation
of their respective engines, by interaction with a command processor.

The instructions to the command processor may be hand-built, such as requests
typed on a ‘command line’, or launched from generic controls or result-specific
controls embodied in the presentation in the system’s interactive display. Like the
display generator, the command processor may interpret the user’s commands by
reference to any information held in the exploration context.

The exploration sub-activities described above are considered to be carried out by the
components of the model as follows:

Illumination

An ‘illumination’ request is handled by the result-space illuminator. It may produce candi
date results or specification options (or both), depending on the domain and what the user
requests.

2.2. T he Illum ination Zone M odel 20

Illumination by direct retrieval of candidate results is the most straightforward kind. The
user makes some request, and is presented with one or more results corresponding to the
request—for example, a set of alternative flights or floor plans. The generation of the results
may take quite some time—several seconds, or even minutes—but there are benefits to the
user in having many results in the illumination zone at once, rather than only being able
to encounter them one at a time.

For some domains, the user has to be able to make the first illumination request without
any knowledge of the results that are going to be available. The flight search is an example:
the user has to declare at least the broad region in which this exploration is going to occur,
by constructing a query tha t includes, say, departure and arrival airports and a date. The
corresponding first set of candidate results will then guide the user in deciding on subsequent
requests to make.

The nature of any available specification-option information differs from system to system,
and includes the following types:

• a listing of permissible parameters that are available for illumination—e.g., all the
different classes of ticket that are represented in a flight database;

• a context-sensitive listing of alternative parameters available in the current exploration
state—e.g., production rules that could be applied to some existing state of a floor
plan;

• measurement of some aspect(s) of a result implied by the current viewpoint, or of the
results that would be retrieved if the user were to choose each of various alternative
retrievals—e.g., the floor area of the current working design, or a list showing some
file directories and, against each, the total size of the files within it.

Evaluation

The user has to view the illumination information in order to evaluate it, so evaluation is
the chief responsibility of the display generator.

As will be shown in the survey of existing exploration systems, a particularly im portant
aspect of evaluation is the comparison of alternative results and/or directions of search.
In most cases comparison is greatly facilitated by being able to view all the alternatives
simultaneously, side by side. Therefore, for making comparisons it is of great importance
whether the system allows the information of interest to be accommodated within the
illumination zone at the same time.

2.2. T he Illum ination Zone M odel 21

C o n so lid a tio n

Consolidation is the act of moving on in the exploration. It is manifested in the illumination-
zone model as a change in the current viewpoint.

There are many forms of consolidation. An example tha t one might consider to constitute
‘advancing’ in the exploration would be when the user decides to adopt some part of the
illuminated result space in the new viewpoint, such as by picking one of the candidate
architectural designs to be the seed for the next illumination. A ‘retreat’ in the exploration
may be signified by the user relaxing a constraint tha t was previously a part of the viewpoint
description, presumably having decided tha t the search space in tha t direction is not worthy
of more detailed investigation.

In systems that support exploration by successive refinements tha t are all accumulated in
a search history, the user may request explicitly to revert to an earlier state. But with
respect to a system that has no built-in model of search progress (e.g., the flight database)
it is only in the mind of the user tha t there can be a distinction between advancing and
retreating—as far as the system is concerned, all tha t happens is tha t the user supplies one
illumination specification after another, guided by reasoning tha t is never expressed.

S am p le a p p lica tio n s

To illustrate how these components can be identified in existing examples of exploration,
and to give an impression of the breadth of exploratory interaction the model is capable of
representing, here axe three example activities:

1. A ccessing a q u e ry se rv ice fo r fligh t sea t av a ilab ility as illustrated in the thesis
introduction. The user’s goal is to find information revealing a suitable available flight.

Here the base data represents the repository of all flight and reservation information,
and the illumination specification is simply the user’s current flight query. Many
flight reservation systems offer little opportunity for the user to affect the display of
retrieved flight details—perhaps no more than scrolling through results one screen-full
at a time. The result-specific controls may be rudimentary, such as showing alongside
each flight an index number tha t the user can type to call up detailed information on
th a t flight.

Multiple pages of results can be thought of as being brought into the illumination
zone simultaneously in response to a user’s query, and revealed a page at a time in
response to commands that affect the display specification but not the illumination

2.2. T he Illum ination Zone M odel 22

Flight details

Reservations

textual
query

scrolling,
selected flight

information flow
[hand-built '

queries
---------1user-initiated command flow

database

engine

simple display

generator

processor
command

Flight and fare listing

Details o f selected flight

scrolling,
detail request

Available flights
matching current query

F ig u re 2.4 Illumination Zone Model for flight booking.

specification—because as far as the user is concerned the illumination (‘flights from
X to Y on date D’) remains constant, and the illuminated results remain accessible
until the next query is specified. But the results from a new query will take over the
illumination zone, replacing the previous ones and making it harder for the user to
view them again.

Note tha t this might not be how the system is implemented: perhaps the query is only
processed in stages, waiting after each page of results to see whether the user wants
more; indeed it may involve multiple stages of result fetching and caching. There
may be no single storage location that corresponds to an illumination zone. But that
is not my concern. The crucial observation is tha t there is a qualitative distinction
between the level of commitment involved in (a) browsing through the results within
the scope of the current illumination, and (b) moving on to illuminate another part
of the result space.

2. C h an g in g p a ra m e te rs th a t co n tro l th e fo rm a ttin g o f a g iven d o cu m en t
with the aim of finding a satisfactory layout (e.g., sensible pagination, placement of
figures)1.

lrThis is probably not a common scenario in document processing but, as I found in my experiments (see
chapter 7), it certainly does happen. More often, an author is given a style guideline and has to massage
the document to suit the style; that is also an example of exploration, but a different one.

2.2. T he Illum ination Zone M odel 23

Document contents

Style definitions

'undo ’ | [scrolling,
record 11code display

form at
settings

information flow

user-initiated command flow

WYSIWYG
generator

formatting

engine

processor
command

1paragraph style' 1 global

\change requests/ \ controls

WYSIWYG document view
The document, formatted
using the current settings

F ig u re 2.5 Illumination Zone Model for document formatting.

For this exploration the base data contains the definition of the document: its text,
figures, headings, paragraph boundaries, etc. The illumination specification consists
of the formatting details such as the margin settings, font selections, line separations
and so forth. Obtaining illumination corresponds to formatting the document; the
formatting engine can be considered to deliver into the illumination zone the full
descriptive form needed for a display generator to produce a WYSIWYG online pre
sentation. The display specification simply determines details such as scrolling, if the
document it is too big to be seen in a single display, and whether or not the display
should include non-WYSIWYG aspects of the document such as control codes.

An interactive WYSIWYG word processor display constitutes a powerful example of
result-specific controls; the user can request a large range of commands by acting on
the displayed text as well as on the adjustment widgets in a ‘ruler’.

But, again, the user is faced with a clear distinction between the impact of commands
tha t affect just the display specification, such as scrolling from one page to another,
and those that cause the document to be reformatted, such as an adjustment to
the margin settings. The latter causes the document in the illumination zone to be
replaced, although typically there is an ‘undo’ facility tha t enables at least a single
step of reformatting to be undone if the user dislikes its effect.

2.3. T he effbrt-accuracy tradeoff in opportunistic search 24

3. E x p lo rin g a rc h ite c tu ra l d esign a lte rn a tiv e s such as the sizes, shapes and ar
rangement of rooms in an apartm ent of given overall shape. The goal is bound to
involve satisfaction of planning regulations, as well as finding a layout that will be
convenient and pleasant as a living-space.

The base data for a computer-supported cooperative design system (e.g., the Flats
system, reviewed in section 3.2.4) consists of rules that embody the basic knowledge
about what is possible and permissible in designing a building—such as the minimum
useful sizes for various kinds of room (including connecting passages), standard widths
of doorways, and higher-level rules such as regulations relating to areas without any
external wall. Each illumination generates a set of alternative plans tha t are differ
ent refinements of a single partially developed plan. The illumination specification
includes the current state of the plan as the viewpoint, alongside the user-suggested
directions for progress. In the Flats system there are various display facilities for the
user to browse the generated alternatives, and to accept one of the designs as the next
stage of development of the plan.

2.3 The effort-accuracy tradeoff in opportunistic search

In their book The Adaptive Decision Maker, Payne, Bettman and Johnson (1993) propose a
framework for discussing a tradeoff tha t is invoked, consciously or unconsciously, by decision
makers faced with more alternatives than they can afford to examine in detail. This section
describes various parts of the framework that are relevant to the aims of this thesis.

2.3 .1 O verview o f th e effort-accu racy fram ew ork

Payne et al. identify the domain of their study as ‘decision making’, stating one of the
characteristics distinguishing this activity from other forms of problem-solving as being
th a t ‘decision problems are generally ill-defined about exactly how the final goal state is to
be characterized’. Although this thesis is not intended to be restricted to activities whose
goal is a ‘decision’ on a single result, the unpredictable nature of the journey and arrival
point are characteristics shared with their decision-making model.

The decision-maker’s behaviour is regarded as proceeding according to decision strategies.
Formally, a decision strategy is defined as ‘a sequence of mental and effector (actions on
the environment) operations used to transform an initial state of knowledge into a final
goal state of knowledge where the decision maker views the particular decision problem

2.3. The effort-accuracy tradeoff in opportunistic search 25

as solved.’ Different strategies achieve this goal by calling on different atomic operations,
and different ways of combining them. For example, two of the strategies examined in the
book are the ‘weighted additive rule’, in which the decision proceeds by calculation and
comparison of detailed quantitative scores of every result, and the ‘satisficing heuristic’
which involves qualitative evaluation of successive results against those seen previously,
until one result seems unlikely to be bettered. The first requires a great deal of calculation
and comparison, leading to a thorough appreciation of the relative merits of all results
(high effort rewarded with high accuracy), whereas the second requires much less effort but
exhibits the flight-booking scenario problem of potentially missing good results (low effort,
with potentially low accuracy).

The main thesis of the book is that when faced with a decision problem, a decision maker
who is familiar with a range of such strategies will choose a strategy that, for the particular
task and result set being considered, offers sufficient accuracy at an affordable level of effort.
This choice is opportunistic in that it may need to take into account the ongoing discovery
of the available results: for example, a strategy must be rejected if it is found to be unable
to produce clear distinctions between those results. Payne et al. offer evidence suggesting
tha t strategy choice is a rational, justifiable response to what the decision maker perceives
as the likely effort and likely accuracy obtainable from available strategies.

Although Payne et al. present many precisely specified strategies such as the two mentioned
above—to illustrate some of the different approaches available—they acknowledge tha t in
any real task it would be unusual for any such strategy to be followed to the letter. It is
more usual for a decision maker to engage in a sequence of operations tha t can be seen
as an assembly of elements from many known strategies, and for this sequence to have ‘a
less than coherent overall structure’. Overall, however, the operations chosen reflect the
decision maker’s position regarding the effort-accuracy tradeoff.

It is noted that there are many contextual influences on a decision maker that can guide
the attitude towards appropriate levels of effort and accuracy, and hence choice of decision
strategy. To be punctiliously ‘accurate’ in some kinds of decision may involve emotionally
stressful tradeoffs that a decision maker would prefer to avoid; by contrast, in other situa
tions the decision maker must be careful to choose a strategy tha t can later be justified to
the people it affects. But Payne et al. note their expectation tha t ‘constraints on accuracy
are much less common influences on strategy selection than constraints on effort’—in other
words, i t ’s less typical for a decision maker to have to seek the best possible solution than
to be obliged to make a decision within constrained time.

In the next section I review some of the characteristics of strategies tha t are described,
showing ways in which effort and accuracy are influenced by choice of strategy. Then I

2.3. T he effort-accuracy tradeoff in opportunistic search 26

describe their view on what it takes to influence a decision maker to seek greater accuracy,
and finally the component of this persuasion that derives purely from the nature of the
provided decision-support artifacts.

2.3 .2 D ecision -stra tegy characteristics affecting effort and accuracy

Payne, Bettman and Johnson identify the following general properties of choice strategies:

• Compensatory vs. noncompensatory

Noncompensatory strategies involve discarding a result as soon as it is found to score
badly on any attribute, while compensatory strategies allow good scores on other
attributes to be weighed in the result’s favour. My flight-booking scenario included the
noncompensatory move of discarding all October flights early in the search. Although
noncompensatory processing will tend to involve a lot less effort than painstaking
tradeoff of all attributes, it can lead to the elimination of potentially good results
early in the decision process.

Payne et al. note tha t switching to a noncompensatory strategy is a common response
to time pressure in decision making, as is filtration: simply cutting out some parts of
the potential range of hypotheses or actions considered.

• Consistent vs. selective processing

Closely related to the previous property, this is a measure of whether the amount of
information examined for each result or attribute is the same, or whether it varies from
one to the next. Noncompensatory strategies, for example, are usually selective in that
only the results retained at each stage are subjected to further levels of examination.

• Alternative-based vs. attribute-based processing

Alternative-based strategies involve evaluating each result by examining many of its
attributes together before advancing to examine the next result, whereas attribute-
based processing involves examining how several results compare on one given a t
tribute before looking at the next attribute. Russo and Dosher (1983) are quoted as
suggesting that attribute-based processing is cognitively easier.

• Formation of evaluations

Some strategies involve assembling an overall evaluation for each result, taking all its
attributes into consideration, whereas in others the results are judged (e.g., compared)
on the basis of just a subset of their attributes. Clearly attribute-based strategies

2.3. T he effort-accuracy tradeoff in opportunistic search 27

would tend to fall into the latter category, although in theory the result evaluations
could be accumulated on the basis of one attribute at a time.

• Quantitative vs. qualitative processing

The reasoning operations that are used within a given strategy may be predominantly
quantitative, such as the multiplications and additions used in the weighted additive
rule, or qualitative, such as the judgement relative to ‘aspiration levels’ that is used
in the satisficing heuristic.

2.3 .3 O pp ortun ities for im proving decision perform ance

Payne, Bettm an and Johnson point out that the choice of decision strategy is not just deter
mined by the theoretical effort and accuracy involved in the various alternative approaches,
but is influenced by the more person- and context-sensitive issues of availability, accessibil
ity, processability, and perceived benefits of each candidate strategy. The strategies that are
available might be just those of which the person has prior knowledge, obtained through
experience or training; accessibility (ease of calling a strategy to mind) is also influenced
by prior experience; processability can be affected by considerations such as the decision
information only being available in a format that would be cognitively hard to manipulate
in the way required for a particular strategy. The perceived benefits of a strategy include
the perception—which may be distorted, as outlined below—of the strategy’s effort and
accuracy characteristics.

Overall, one cannot simply expect that awareness of a strategy suited to the task in hand will
be sufficient incentive for it to be employed. Payne et al. propose the following as necessary
conditions for take-up of a strategy, and suggest typical reasons for these conditions not
being satisfied:

• A belief that the present strategy gives less than the desired accuracy

There are many reasons for a decision maker to fail to appreciate that a given strategy
is less accurate than is wanted. The first is overconfidence:

‘Indeed, one of the most well-established errors in judgment is the overconfi
dence bias. . . . Therefore we hypothesize tha t individuals may overestimate
the accuracy they will achieve with particular decision heuristics. If true,
this suggests that people may select heuristics that will save effort but not
produce the expected level of accuracy.’

(Payne, Bettman and Johnson, p.209)

2.3. The effort-accuracy tradeoff in opportunistic search 28

Another reason is that it is simply very difficult to know how well one is doing—or
how well one might do with an alternative strategy—compared with an inaccessible,
theoretical ‘normative’ model of task performance. On the other hand, it is relatively
easy to get a feel for the level of effort being expended. As a result, effort may be
overweighted relative to accuracy in strategy selection. Paese and Sniezek (1991), for
example, report that increased effort can lead to increased confidence in judgement
without accompanying increases in accuracy.

• Being able to see that there is an alternative better strategy

Tversky and Kahneman (1981), in their studies of how people ‘frame’ particular deci
sions, suggest that subjects ‘are normally unaware of alternative frames and of their
potential effects on the relative attractiveness of options.’ In later work (Tversky
and Kahneman, 1990) they also note tha t people attem pt to save effort by process
ing a problem as originally presented, rather than looking for alternative views or
approaches that might be more helpful.

• A belief that one is capable of executing the new strategy

An individual may feel unable to execute a strategy for reasons such as the difficulty
of performing the required calculations, or of keeping track of goal plans in working
memory, or for external reasons such as time pressure or heavy levels of distraction.

In summary, a decision maker may either fail to realise that a change in strategy is needed,
or may see the problem but feel unable to rectify it. For a strategy to stand a good chance of
being picked up it must be clearly available and executable. But the way a task is presented
can have a forcing role in guiding strategy use: Kleinmuntz and Schkade (1993) observe
that even static displays such as price lists and menus can influence strongly the selection of
decision strategies, by virtue of characteristics such as the form, organisation, and sequence
of presented information. A computer-based system that only offers particular facilities
may leave its users little or no choice among strategies, so the provision of facilities—and
the users’ reaction to them—must be evaluated with care.

This thesis addresses the development of a new kind of high-level strategy for tackling
opportunistic searches. The work of Payne et a l suggests tha t when a strategy is available
and executable, and evidently offers an advantageous effort-accuracy tradeoff compared
to the others available, users are likely to choose the advantageous strategy. Thus the
development of a novel strategy that clearly provides a relatively low-effort means to perform
a wide range of evaluations—even if the total effort over the course of the exploration will
not obviously be lower—does stand a good chance of being adopted by users, and therefore
improving the accuracy of the exploration.

Chapter 3

Computer support for
opportunistic exploration

3.1 Introduction

This chapter reviews a selection of computer systems that are designed for domains that in
some way involve result-space exploration. The aim is to reveal and analyse the features
that are liable to engender an under-informed outcome in an opportunistic exploration of
available results.

Section 3.2 contains a detailed analysis of fourteen different kinds of computer-supported
exploration, grouped into five categories. The analysis addresses the division of exploration
effort between user and computer: what the computer can and cannot do, and what the
user would therefore have to do to pursue a thorough exploration in the domain being
served. The point being illustrated is that even systems with ingenious domain-specific
features for harnessing the computer’s processing speed and flexibility in pursuit of good
results can still provide poor support for the legitimate user goal of being thorough. To
explore the hypothesis that the key issue in thorough exploration is tha t of illumination,
the analysis is couched in terms of the Illumination Zone Model and its accompanying
three-stage exploration cycle as introduced in section 2.2.

Section 3.3 then considers exploration systems from an alternative direction, addressing the
relationship between the specificity of domain a system serves and the facilities it provides
for the user to formalise (and hence delegate) exploration sub-tasks. In section 2.1 it is
suggested tha t exploration requires opportunistic delegation, and that this implies tha t
the system must be semiformal. This review examines whether there are any exploration

29

3.2. E xploration strategies 30

systems that combine semiformal delegation behaviour with the kind of task-generality
necessary to support exploration.

Finally, section 3.4 contains a survey fleshing out an issue briefly touched on in section 2.1—
that opportunistic delegation tends to imply a form of programming. The aim of the survey
is to show that programming can take a number of alternative forms, and certainly need not
be as arduous and abstract as the learning and use of a traditional programming language.

3.2 Exploration strategies

As described above, the tools reviewed in this section axe organised into categories. These
categories each correspond to a different exploration strategy. Like the decision strategies
considered by Payne, Bettman and Johnson (1993) (as described in section 2.3), the ex
ploration strategies constitute alternative approaches to a result space—differing in terms
of which results are examined, how many are examined (what proportion of the ‘space’),
what sort of evaluations and trade-off decisions are made and when, and so on. However,
the analysis presented here does not parallel Payne et a/.’s investigation into how a decision
maker selects one of many strategies that could be pursued on a particular decision. Explo
rations made using a computer-based tool are overwhelmingly guided by the facilities that
the tool provides: a user is only minimally free to choose between alternative approaches to
the result space. Therefore the ‘strategies’ are simply the principal modes of use supported
by various kinds of computer system.

Because of the generality of result-space exploration, this survey cannot hope to cover all
examples that may be relevant to the thesis. However, the survey does address systems
drawn from many diverse topics within the field of human-computer interaction; even to
rationalise this scope of existing research is an unusual and worthwhile goal. In the future
it would be valuable to incorporate other specialised fields of computer application—such
as dynamic system simulation, theorem proving, and rule-based analysis—to understand
whether they offer radically more powerful approaches or are essentially limited by similar
constraints to the systems examined below.

Each strategy is described under the following headings:

• Examples

Systems that embody the strategy, including a characterisation of one example in the
form of the illumination zone model.

3.2. E xploration strategies 31

• Exploration progress

Pursuit of the strategy in terms of the illumination, evaluation and consolidation ac
tivities. For each activity I characterise the typical support provided by the computer
system, and what a user therefore has to do to achieve a thorough exploration.

• Opportunity to delegate

A summary of the overall balance of exploration effort and initiative between user
and computer, and the appropriateness of this balance with respect to the kinds of
domain in which the strategy appears.

3.2.1 Trial and error

A minimal form of exploration ‘strategy’ is the use of trial and error—i.e., the user keeps
trying different specifications until a satisfactory result has been found.

Examples

• A simple database interface

An example of the trial-and-error strategy is the flight-search scenario tha t was used
for illustration in section 1.1.1. That scenario assumed the existence of a simple form
of database query tool, used by the travel agent.

• A document formatter

As was noted in section 2.2.2, the refinement of a document’s formatting in an in
teractive word processor can be seen as an example of result-space exploration. But
a typical general-purpose word processor has no formalised facilities for pursuing an
exploration as such, so a user wishing to experiment with formatting a document in
different ways is obliged to follow a trial-and-error approach.

The analyses of these systems into illumination-zone components are shown in figures 2.4
(p.22) and 2.5 (p.23) respectively.

Exploration progress

• Illumination

The region to be illuminated must be specified explicitly by the user. For a simple
database interface the specification is typically in the form of a textual query, with a

3.2. E xploration strategies 32

specialised syntax for which the user is given no on-line assistance. A word processor’s
formatting commands, by contrast, may be made available for interactive perusal and
selection through menus, dialog boxes (e.g., ‘style sheets’), direct-manipulation ruler
lines and tool bars; a new illumination request is implied by each alteration of a format
parameter, or of a set of related parameters as in a style.

As shown in figure 2.4, the illumination zone only holds the results of the current
query. The number of results from a database depends on the correspondence between
the query and the data, and is therefore largely unpredictable—although a user with
experience in the exploration domain can often make an educated guess at the likely
level of response for a given query. The user needs to find a balance between having
so few results tha t each iteration provides a negligible amount of insight into the
exploration, and having too many to be able to evaluate them (as discussed below).
Thinking up and expressing a query in a complex database language can represent
quite a large effort, for each query.

Because some document format changes can be requested simply by the push of a
button, each illumination request can require considerably less effort than for the
database. However, since each illumination request replaces the previous one there is
only ever a single version of the document on view. There is no theoretical barrier to
allowing multiple results, but there are at least the following strong pragmatic rea
sons: firstly, because the document is displayed in its entirety it may be prohibitively
expensive in system resources to show multiple versions; secondly, since the document
display is an interactive direct-manipulation environment, having multiple alternatives
would create the tough challenge of providing a robust and understandable means of
handling consistency between them.

• Evaluation

Result display is typically restricted to a single format, ‘controllable’ only in term s of
scrolling the display if it is too large to be presented as a whole.

Because the illumination zone contains just one set of results, and the systems tend to
support little if any search history (see below), there is no way to obtain a display that
combines results corresponding to different specifications—unless one is a subset of the
other, of course. Apart from the opportunity, discussed below, of using ‘undo’ facilities
to revisit earlier illumination results, comparison between results must be carried out
entirely by the user, by use of memory or even external notes if appropriate.

• Consolidation

A trial-and-error database system does not provide the means for a user to feed
aspects of the results from one request into the specification of another. The two ends

3.2. E xploration strategies 33

of the process are deemed separate, with the user performing the opportunistic task
of deciding what alternative requests to try if the results are not satisfactory.

Systems that lack an explicit model of progressive exploration are unlikely to main
tain a search history. But many word processors maintain the limited form of history
needed to support an ‘undo/redo’ facility, and therefore allow relatively easy compar
ison of the document state before and after a given change. However, even systems
with multiple-level ‘undo’ support typically maintain only a single thread of changes;
if a user undoes a succession of changes and then starts on a different direction from
before, the ‘redo’ information is discarded. Accumulating information on the state of
exploration progress, including the best result properties found so far, is entirely the
user’s responsibility.

Slow progress through the result space, and poor support for keeping track of the
results that have been seen, make it especially challenging for the user to decide when
to stop searching—i.e., to make an informed decision on the likelihood of finding better
results in a continued search.

Opportunity to delegate

One reason for a designer to provide a system that supports only trial-and-error explorations
is that the supported activity is too general to be able to predict the kinds of exploration
a user may want to undertake. The systems therefore provide facilities at a low level of
abstraction, making them flexible but not labour-saving.

The user has to specify each request by hand and to evaluate every result in detail, and is
given no help in reformulating requests using previous results. There is no ‘exploration con
tex t’ to support a developing state of progress, or even to support comparison of successive
results.

Both the database and the word processor make thorough exploration costly in terms of user
actions and mental operations. The designers’ expectation appears to be th a t somehow users
will be satisfied with less than a thorough exploration. User experience helps to maximise
the effectiveness of a cursory search—for example, the travel agent who has a good ‘feel’
for the airline schedules and the way they tend to get booked up. But the over-confidence
tendency discussed in section 2.3.3 suggests that the actual accuracy obtained will often be
lower than users are aiming for, or believe they have achieved.

Both systems examined also require users to know what requests are available, and to have
some idea of the effects that such requests should be expected to achieve. For the word

3.2. E xploration strategies 34

processor the presence of menus and buttons that ‘afford’ particular actions is a help; for
the database an insufficiently trained user will be in trouble, as pointed out by Fischer and
Nieper-Lemke (1989):

‘People who attem pt to use a complex information store on a computer encounter
a number of problems: They do not know what information exists or how to
find information, they get no support in articulating a question, and they are
unable to phrase their question in terms that the system understands.’

This particular source of difficulty in pursuing an exploration is addressed by the ‘direc
tion illumination’ strategy (section 3.2.3), which includes Fischer and Nieper-Lemke’s own
approach to the problem.

3.2.2 C om puter critiqu ing or im proving

Some systems can assist a search by evaluating and perhaps ‘polishing’ results proposed
by the user. Design-assistance systems with these capabilities are referred to by Kochhar,
Marks and Friedell (1991) as critic-based and improver-based respectively.

Fischer, Lemke, Mastaglio and Morch (1991) provide a detailed discussion of critiquing
systems for what they call cooperative problem solving. Their opening claim is tha t ‘cooper
ative problem-solving systems help users design solutions themselves as opposed to having
solutions designed for them .’ Any design articulated on such a system is immediately anal
ysed, in a process that Fischer et al. refer to as the artifact ‘talking back’ to the designer.
This usually consists of generating a list of design shortcomings tha t the designer may not
have the experience or skill to notice.

Critiquing systems reviewed by Fischer et al. include the following:

• Janus, for assisting in the design of residential kitchens;

• Framer, that can help with the development of tools with window-based user interfaces
by advising on conflicts with pre-coded style guidelines;

• LISP-Critic, which suggests improvements to LISP code to make its execution more
efficient, or to make the code easier to read and maintain.

3.2. E xploration strategies 35

Improvers mentioned by Kochhar et al. include:

• a ‘beautifier’ for network diagrams (Pavlidis and Van Wyck, 1985), in which boxes
and their connections are aligned and squared up, and have minor overlaps and gaps
removed;

• the Designer system (Weitzman, 1986) for creating graphical interfaces to instructional
systems, which includes facilities for recognising and tidying subobject relations based
on similarity, proximity and repetition.

explanation
requests

information flow
1 design '
H l
\ refinements /

- - -«<=:-c - -— - > user-initiated command flow

Design rules

Rule explanations

Resolution procedures

critics and

improvers

critique

displayer

processor
command

Explanation requests

Design-change execute/ignore

Critique listing
Explanations

Critiques

Textual explanations
Suggested design changes

F ig u re 3.1 Illumination Zone Model for computer-based critics.

Figure 3.1 shows the components of a critiquing system, which supports the following pat
tern of activity:

1. The user articulates a proposed design. This design can be thought of as the current
viewpoint of the exploration.

2. The illumination process consists of evaluating the user’s design against a knowledge
base of design rules. This is performed by one or more computer-based critics.

The critics are simply an abstraction of processing elements that each analyse the
proposed design according to a particular pre-built design rule. When one of its rules
is contravened, a critic generates a critique by retrieving the appropriate explanation
from an argumentative hypertext component that is linked to the rule base.

3.2. E xploration strategies 36

3. All the critiques are gathered and presented to the user; since some of the rules may
be classified as mandatory while others are merely optional recommendations, the
system may ensure that the mandatory ones appear at the top of the display.

Some systems’ critics can be equipped with resolution procedures for solving simple
problems—such as the lack of a menu bar in a user interface design. The display for
such a critique can provide an easy way for the user to apply the suggested change.
Fischer et al describe the presentation of critic messages in Framer as follows:

‘Each message produced by Framer is accompanied by up to three buttons:
Explain, Reject, and Execute. The Explain button displays an explanation
of the reasons the designer should consider this critic suggestion; it also
describes ways to achieve the desired effect. Optional suggestions have a
Reject or Unreject button depending on the state of the suggestion. The
Execute button accesses the advisory capability of Framer, which is available
for issues that have a reasonable default solution.’

4. Having evaluated and understood the system’s suggestions, and possibly incorporated
them into the ongoing design, the user iterates the process by specifying a further level
of provisional design for critiquing by the system.

Instead of providing a detailed critique, an improver is typically empowered to go ahead with
changes to the design suggested by the rules in its rule base. The result of the illumination
is therefore an updated version of the supplied design, which the user can then update and
iterate if wanted.

Exploration progress

• Illumination

A critiquing system deals with only one result—a critique of the proposed design—
at a time. This ‘illumination’ is generated entirely by the computer system. Some
critiquing systems incorporate passive critics, that have to be invoked explicitly by
the user when the design has reached a stage on which some feedback is desired. Other
systems have active critics that ‘watch over the user’s shoulder’ and generate critique
messages as soon as rule violations axe detected. Typically the user does not have a
choice over which rules are checked.

Each critic presents an explanation of the rule tha t is deemed to have been con
travened. As well as helping the user understand what is wrong with the current

3.2. E xploration strategies 37

proposed design, this explanation can clearly guide the user’s future design attem pts
and can thus be seen as illuminating aspects of the result space that were presumably
unknown to the user.

• Evaluation

A critiquing system supports evaluation of the design against the rules in the rule
base. It does not make it easy for a user to try alternative designs and evaluate them
against each other.

• Consolidation

Where a rule contravention has an obvious solution, the critiquing system can offer the
user a push-button way to resolve the problem. If invoked, this updates the proposed
design and may change the set of rules it now contravenes. The system can update
the critique list accordingly so the user does not try to resolve problems tha t no longer
exist.

Contravention of rules for which there is no unique obvious resolution requires further
design activity by the user, and a further round of critiquing in case new problems
have been introduced.

Result-space coverage

Critiquing is essentially just a way of helping a trial-and-error search by providing good
reasons for or (more usually) against the results that the user proposes. It helps the user
to become aware of some pitfalls in the result space, but only those that are stumbled into;
if the design contains no problems, according to the system’s definitions, it offers no advice
such as alternative designs. Thus if a user already has a number of alternative designs in
mind a critiquing system will help point out which of them have particular failings, but
there is no explicit support for generating or comparing such alternatives.

Opportunity to delegate

A critiquing system only takes on the parts of design analysis tha t its own designers felt
could be unambiguously codified in rules. As such it can incorporate a large body of design
rules and guidelines, that would otherwise require a great deal of user effort to check and
enforce. All creative design ideas, however, are considered the inviolable domain of the user.
An exploration of a large number of alternatives would require a large amount of user effort.

3.2. E xploration strategies 38

3.2.3 R efinem ent from illu m in ation o f available progress d irection s

Introduction to refinement-based strategies

Many different kinds of system can be seen as embodying a model of search as result
specification refinement, in which the user starts with a vague retrieval specification and
progressively adds constraints until the specification precisely describes what is wanted.
Both this section and section 3.2.4 illustrate different forms of search that support this kind
of strategy.

But note tha t refinement implies more than simply letting the user build up a progressively
clearer idea of what is wanted. When a system provides explicit support for refinement it
does so by placing great emphasis on constant movement forward by expressing additional
constraints. So whereas someone in the course of searching for a flight may haphazardly
wish to submit a request involving a completely different date or route, just to confirm an
expectation or venture a wild guess, the user of a refinement-based system is discouraged
from such behaviour. This effect, and its influence on searching, will be pointed out in each
of the systems reviewed below.

Examples

The first refinement-based strategies to be examined are those whose support simply involves
helping the user to see the alternative ways in which the current specification could be
refined.

• Retrieval by reformulation

Retrieval by reformulation was first explicitly supported in Rabbit (Williams, 1984),
and developed further in Helgon (Fischer Sz Nieper-Lemke, 1989). The concept was
inspired by the descriptions model of human remembering (Norman & Bobrow, 1979),
which accounts for the way people appear to recall items from very long-term memory
(such as the name of an erstwhile classmate) by considering the first related items
that come to mind, and using specific properties of those items in successive cycles of
refinement to point the way to the target.

In arguing for the applicability of the reformulation approach to computer-based re
trieval, Fischer and Nieper-Lemke pointed out that ‘The interaction paradigms for
dealing with complex information stores (as well as databases) have often been based
on the unfounded assumption that people using these systems approach them with a

3.2. E xploration strategies 39

precisely described task. But in most problem-solving and information retrieval tasks,
the articulation of a precise task is the most difficult problem.’ In other words, users
might not even know what they can ask for until they have seen some examples of
what is available. The job of a retrieval-by-reformulation system, therefore, is to help
the user refine the notion of what is wanted by reference to properties observed in
example results.

Database

result criteria, | [example selection,
parameter queriesJ ^ parameter selection^

information flow
/ _ f hand-built '

-----------1 I
\ criteria juser-initiated command flow

access engine

database result and
parameter view

generator

processor
command

All items matching criteria

Parameter ranges

Browsable result list
Example result in detail

Parameter range enquiries \

Criteria reformulations j

F ig u re 3.2 Illumination Zone Model for retrieval by reformulation.

Figure 3.2 is an illumination-zone representation of a retrieval-by-reformulation sys
tem. Using Helgon as an example, a search proceeds as follows:

1. The user supplies initial result criteria that at least specify the kind of item that
is wanted. For example, ‘a flight’.

2. The database access engine retrieves all the items that match the current criteria.

If the database is large and the query only minimally constrained the number
of matching items may be far too large for them all to be displayed; the system
may impose a practical limit on the number of items actually enumerated in the
illumination zone.

But until the final stages of the search the user is not expected to examine all
the matching items in detail, but just to examine some for examples of further
ways to constrain the search...

3.2. Exploration strategies 40

3. A display is constructed to show a list of matching items, with a single example
item (e.g., the first in the list) expanded in detail. This detailed presentation
will reveal to the user some of the attributes tha t are used to describe items in
the database, and the values for the attributes possessed by the example item.

The user can interact with the display to select from the list alternative example
items for detailed presentation.

4. While there remain too many items in the list for the user to find the ‘ideal’ item
for the current need, the user needs to continue the refinement by expressing
additional constraints. The system provides various commands for updating the
result criteria by interacting with items and attributes shown on the display.

E xam ple of th e M atching Item s

THING
LITERATURE
TECHREPORT

A a r o n s o n C a r r o l l l 9 8 6

AUTHOR A .A a r o n s o n J . M . C a r r o l l
T IT L E The A nsw er I s i n t h e Q u e s t io n : A P r o to c o l

S tu d y o f I n t e l l i g e n t H e lp
IN STITU T IO N IBM
ADDRESS Y o r k to w n H e i g h t s , NY

O p eratio n o n ‘ IBM*:

List a lte rn a tiv e v a lu e s in th e d a ta b a s e
List a lte rn a tiv e v a lu e s in th e m atch ing item s

IProhibit this v a lu e I
R eq u ire th is v a lu e --------------------------------------
S how th is item

F ig u re 3.3 Helgon, showing reformulation options. (From Fischer & Nieper-Lemke, 1989)

For example, in figure 3.3 a Helgon user searching for technical reports in a pub
lication database has been shown an example (the first report in the database).
Among the attributes displayed for this example is the INSTITUTION, which
in this case has the value ‘IBM’. Having requested the pop-up menu on this
attribute, the user has been given a range of available operations. In this case
the user is not interested in reports from IBM, and by refining the query to pro
hibit this attribute-value combination can ensure tha t the next iteration will be
narrowed by excluding such reports. Being able to select from a menu in this
way saves the user the trouble of learning the syntax for the underlying query
language, or the available attribute names or values.

To assist in deciding what the constraint should be, the user can request a listing
of all the values of that attribute that appear in the data. Figure 3.2 shows this
activity as the submission of ‘parameter queries’ to the database engine, resulting
in additional ‘parameter ranges’ information in the illumination zone.

3.2. E xploration strategies 41

In Rabbit (the first retrieval-by-reformulation system) additional criteria could
only be introduced by menu-based interaction with displayed item attributes.
An advantage of this restriction was that a user could never specify an invalid
constraint. But in Helgon the restriction is relaxed, allowing users to add hand-
built criteria. For inexperienced users the menu-based reformulation mechanism
remains easier and safer, but experienced users who know how to express some
constraint directly are saved the trouble of having to find a display of the attribute
they wish to constrain.

Experienced users may also wish to take advantage of other commands tha t can
be invoked by use of a command line. For example, a user who is interested in
finding technical reports from the University of Colorado, but who is unsure of
how the institution name may have been abbreviated (e.g., ‘U. Colorado’), can
find out by typing the word ‘Colorado’ and requesting a search for all stored
Institution objects that include this substring.

5. The user decides when to request a new retrieval corresponding to the updated
result criteria, having made as many additions or alterations to the criteria as
are wanted. Progress continues from step 2.

The eventual goal is to arrive at criteria tha t will deliver into the illumination
zone a small set of items that includes the best item for the current need.

One limitation of Helgon’s facilities is that there is no way to tell how large a difference
to the search a given reformulation will make. How many of the reports have IBM
as their institution? If it were only a tiny percentage of the retrieved sample there
would be little point in going to the effort of ‘prohibiting’ tha t value; one might get
more worthwhile selectivity by constraining, say, the year of publication instead.

The systems described below provide examples of such information.

• Helping the user distinguish alternative refinements

An example of a system that goes some way to overcoming blindness to the impact
of a reformulation is HIBROWSE (Pollitt, Ellis, Smith and Li, 1994), an enhance
ment of the earlier Query-by-Menu DBMS query system (Pollitt, 1986). As well
as listing the values available for a selected attribute, HIBROWSE can maintain
context-specific summary lists for a number of attributes, showing against each of
the attribute values the number of current candidate results having tha t value. Fig
ure 3.4 shows one of these summary windows at two stages in a query for hotels from
a large commercially-maintained database1. This window shows the distribution of

1The UK Hotel Groups Directory, a relational database maintained at the Hotel and Catering Research
Centre at the University of Huddersfield.

3.2. Exploration strategies 42

tourist board areas
name hotels

South England 1109
Midlands 591
North England 510
Scotland 415
Channel Islands 175
Wales 39
Northern Ireland 15

(a)

tourist board areas
name hotels

South England 38
North England 11
Scotland 8
Midlands 5
Northern Ireland 1
Channel Islands 0
Wales 0

(b)

F ig u re 3.4 Contents of a HIBROWSE summary window (a) at the start of a search, and
(b) after the search has been narrowed. (From Pollitt et al., 1994)

candidate results against the ‘tourist board area’ attribute: before any constraints are
applied there are clearly candidates available in all areas, while at a later stage (when
the user has narrowed the query by requiring large, 4- or 5-star hotels) the summary
shows that some areas are no longer in the running at all while others have changed
relative number of candidates. W ithout this information, a user might have wasted
effort by trying to require or exclude hotels in Wales or the Channel Islands, or have
failed to appreciate that prohibiting the South England items removes over half of the
remaining candidates.

A further apparently useful level of illumination is demonstrated by Godin, Gecsei and
Pichet (1989) in their prototype interface to an information retrieval domain struc
tured using a Galois lattice. The lattice relates couples containing a set of documents
and a set of terms, where the term set is the largest set of terms tha t will result in the
retrieval (by boolean query) of exactly the document set. Restricting to the largest
term set keeps the overall size of the lattice manageable, and makes the transitions
between elements correspond to minimal refinements of the query.

Godin et al. illustrate the system with a very small database of art images containing
six items (numbered 1 to 6), each with up to five terms describing the topic, artist
and location of the original painting. In the resulting lattice two connected elements
are the pairs ({1,2,3,4}, {Venus}) and ({3,4}, {Venus, sleep}), from which we can tell
that: a) there is no search term that, in addition to ‘Venus’, will be satisfied by the
four images {1,2,3,4}, and b) there is no set of terms tha t will result in retrieval of
sets {1,3,4} or {2,3,4}.

3.2. E xploration strategies 43

More general queries
Number of queries: 2
4 documents 3 documents
Venus sleep

Current query

2 documents

Venus

Documents of current query \
Doc. ID. KEYWORDS ATTACHED
3 Giorgione Venus sleep
4 Delvaux Tate Gallery Venus sleep

More specific queries |

Number of queries: 2
1 document 1 document
Giorgione Delvaux

Tate Gallery

F ig u re 3.5 Contents of the main interface at one stage in navigating a Galois lattice (From
Godin, Gecsei & Pichet, 1989)

Figure 3.5 shows a snapshot of the contents of the main windows in the prototype
interface, during a search in which the user has reached the element containing doc
uments 3 and 4. This shows that, as well as information on possible ways to narrow
the search (window 3), this interface provides information on how to generalise (win
dow 2). In this case reducing to just the ‘Venus’ term gives the set {1,2,3,4} in
accordance with deduction (a) above; reducing to just the ‘sleep’ term gives a set
containing three documents although this cannot be either of the cases mentioned in
deduction (b).

If an analogous interface were available for the hotel search, one example of a use for
it would be in taking the results at stage (b) in figure 3.4, constraining the search
to Wales (with its currently empty result set) and obtaining an illumination of the
constraints whose relaxation would restore the query to a non-zero size.

There is a separate issue as to whether this particular lattice structure provides a
model that users find intuitive. Godin, Missaoui and April (1993) report on a promis
ing but small-scale experiment comparing user performance with the Galois lattice
against navigation in a manually built hierarchy or pure Boolean querying.

Another prototype interface, that illuminates the possible directions of progress in
both the specialisation and generalisation directions but does not reveal the impact on
result set size, is the Aggregation/Generalisation Hierarchy implementation discussed
by Weiland and Shneiderman (1993).

3.2. E xploration strategies 44

Exploration progress

• Illumination

The ‘direction illumination’ strategy is distinguished by its form of illumination, in
that the displayed results contain or can be supplemented with information about
available ways of refining the result specification. Direction illumination can be re
garded as making available within the illumination zone some summary information
about features of the result space just beyond the current viewpoint.

In some systems the direction illumination has a fixed form tha t is generated auto
matically—for example, the Galois lattice specialisation and generalisation summaries
shown in figure 3.5.

In retrieval-by-reformulation systems some direction information is provided implic
itly in the display of result characteristics beyond those tha t were used as item-
specification criteria. Williams (1984) explains tha t Rabbit has a knowledge base
allowing it to display the attributes tha t are ‘associated with the generic categories
the user is committed to in his query’. For example, when a user has only specified
that the item sought is a product the illumination shows just cost and manufacturer
attributes, but if the user then narrows the specification to computer the results are
shown with the additional computer-related attributes display, memory and so on.

Helgon additionally allows the user to make explicit requests for information about
parameters and their values. This is a lower level of support tha t is more flexible than
the examples above, but cannot necessarily provide as much help with evaluation.

All the reviewed systems only support an illumination zone containing the results and
direction illumination relating to a single viewpoint—i.e., a single result specification.
When the user changes the viewpoint the new illumination takes the place of the old.

• Evaluation

As was noted for the trial and error strategy, the fact that the illumination zone can
only contain information relating to a single viewpoint makes this strategy poor in
its support for comparative evaluation between results. W hat some of the systems do
provide is information that can help the user make comparative evaluations of nearby
regions of the result space as a whole. For example, the HIBROWSE display of result
counts against property values helps the user to compare alternative directions, and
hence to avoid straying into a region that has no results or wasting time by specifying
criteria tha t have insignificant impact.

3.2. E xploration strategies 45

In terms of expended effort against expected accuracy, such information helps to
increase the efficiency of effort deployment. But because the available information
cannot be tailored to reveal particular properties of the results themselves, there is
an unavoidable risk that the regions a user decides not to explore might happen to
contain the best results.

• Consolidation

The provision of direction illumination lends support for two aspects of consolidation:
1) the system has an explicit manifestation of the available directions for refinement,
so the user can specify the desired change just by pointing to the appropriate displayed
element, and 2) when the display includes information by which to discriminate the
different directions, the user can make an informed choice from among them.

Result-space coverage

Because the premiss of result-specification refinement is tha t the search can be focussed
progressively to reach a narrow specification that includes just a few supposedly optimum
results, such strategies inevitably require the user to rule out large areas of the result space.
Furthermore, the motivation to minimise effort in the search encourages the adoption of
dramatic filtering steps, chosen with a minimum of evaluation effort between each step.
This brings a high risk of under-informed outcome. To some extent, direction-illumination
systems may even exacerbate this effect.

Opportunity to delegate

Direction illumination is suitable for domains for which the designer cannot predict the
nature of the user’s overall goals, but can predict the nature of information the user needs
in order to decide on a direction of progress. Either this information is made available au
tomatically without request, or some query facilities are provided. This provides assistance
in performing comparative evaluation of some aspects of a local region of the result space,
but can only be provided for one location at a time—so as with the trial-and-error and
computer-critiqued forms of investigation, for evaluating diverse results the user just has to
remember the properties of the results that have been seen. Finally, consolidation is easily
expressed to the system, but only in some domains is its effect predictable.

3.2. E xploration strategies 46

3.2 .4 R efinem ent by hum an critiqu ing o f com p u ter-generated resu lts

The systems reviewed in the previous section can illuminate the available directions of
progress because exploration is taking place within an existing, pre-structured space of
results. By contrast, in tasks such as computer-aided design the subtlety and variety of
available options lead to a result space whose overall layout cannot be pre-defined or enu
merated.

E xam ples

• C o o p e ra tiv e C o m p u te r-A id ed D esign

Kochhar (1994) describes the Cooperative Computer-Aided Design paradigm (CCAD)
in which—like the ‘direction illumination’ approach—the computer presents alterna
tives to the user, who then makes critical design decisions. The key to coming up with
a valid, finite set of alternatives from an infinitely rich search space is for the computer
to generate alternatives on the fly, based on a short-range foray from a user-selected
‘viewpoint’.

Generative rules

Fixed constraints

scrolling,
close-up

^ information flow
' nascent-design' H I
\ refinements ,

- - K < 1— - > user-initiated command flow

design layout
generator

design

generator

nascent design,
desired properties,

rule constraints

processor
command

Browsable design collection

Close-up view

1 scrolling and 1 new design '
v close-up control l \ selection j

■ 1 / -

Candidate designs

F ig u re 3.6 Illumination Zone Model for Cooperative Computer-Aided Design.

Figure 3.6 represents a CCAD system using the illumination zone model. Kochhar’s
description of exploration progress using CCAD is as follows:

3.2. E xploration strategies 47

1. The user provides an initial nascent design to serve as a starting-point. The
construction of this design is outside the scope of the exploration, and may even
be performed using a different system.

In the generic illumination-zone terminology, the nascent design constitutes the
current viewpoint.

2. The user specifies to the computer some desired properties of the developed
design, in terms of constraints on the design and/or on the generative rules used
in its derivation.

These instructions and the nascent design make up the illumination specification.

3. Using some production formalism suited to the domain being supported (e.g., a
generative grammar), the design generator develops alternative evolutions of the
nascent design that are consistent with the constraints specified by the user, and
any domain-specific fixed constraints—for example, in designing architectural
plans the fixed constraints would include building regulations.

The designs are collected in the illumination zone.

4. The design layout generator presents the candidate designs arranged according
to properties selected by the user, and provides facilities for obtaining a close-up
view of a few of the designs side by side.

5. The user selects one candidate design as being the most promising. This design
becomes the basis for the next iteration.

As was the case for the start of the process, at this stage the user may call on
modelling facilities tha t are separate from the search support, to make modi
fications that are not suitable for, or don’t need, exploration. When the next
piece of exploration is to be undertaken, the latest design takes the place of the
previous nascent design.

Steps 2 to 5 are repeated until the user is satisfied with the completed design.

Kochhar gives details of a tool called Flats, a prototype CCAD system for the design
of small architectural floor plans. The user is able to control the scope of the system’s
design generation by means of facilities that Kochhar refers to as constraint-based
design pruning, design-rule restriction, grammar programming and resource bounding.

The description of Flats includes a system architecture schematic which is analogous
to the illumination zone model, the main difference being the explicit inclusion of the
independent modelling system as the source of the nascent design tha t is supplied to
the design generator. Kochhar also places CCAD within a taxonomy of models for
division of labour in computer-supported design tasks, as developed in his ongoing

3.2. E xploration strategies 48

work with colleagues (see Kochhar & Friedell, 1990 and Kochhar, Marks h Friedell,
1991). Woodbury (1991), reporting from the perspective of the architectural design
profession, gives formal bases for many aspects of the search paradigm, an approach
to computer support in design that would encompass CCAD. As an exemplar of the
paradigm he describes LOOS (e.g., see Flemming, 1989 and Flemming, Coyne, Glavin,
Hsi & Rychener, 1989), a system for setting up exhaustive searches for designs that
can be meaningfully approximated by a set of non-overlapping rectangles.

• E v o lu tio n a ry dev e lo p m en t

Another system that generates alternatives for the user to evaluate is M utator (Todd
& Latham, 1992), a tool for creating artistic 3-dimensional graphical sculptures based
on constructive solid geometry.

b+d + r l b b+d + r2

b+d + r3 b+d b+d - r3

b+d - r2 b + 2*d b+d - r l

F ig u re 3.7 Layout of a M utator display of a starting-point and eight alternative mutations,
for comparison by the user. Code: b=previous best; d=direction vector; r l-3 are random
m utation vectors.

A M utator sculpture is composed of geometric primitives such as coils, cylinders and
spheres, tha t can be merged and distorted in various ways. At each iteration the
tool mutates the current state of the design by applying randomised changes to the
parameters {genes) that determine the size, orientation and distortion of each of
its parts. M utator can support various forms of generation of mutations, including
facilities for steering and marriage under user control, and various displays to allow
the user to evaluate, compare and critique the alternative mutations. Figure 3.7
shows a layout for presenting eight mutations based on a specified best version from
the previous generation, a direction determined by aggregation of all positive and
negative critiques supplied by the user, and three alternative random mutations whose
effects in opposite directions is presented at the diametrically opposed points.

3.2. E xploration strategies 49

W hat is especially interesting about M utator is that its simple conceptual model
and user interface support the development of highly complex sculptures—containing
dozens or even hundreds of primitives, each with many properties. Although it is
possible for a user to access and alter the alphanumeric file containing the specification
of a model, working on a complex sculpture in this way would be prohibitively time-
consuming and frustrating. By working with M utator a sculptor does not even need
to learn how to edit a computer file, let alone understand the mathematical model-
definition language.

Allowing the user to steer the direction of exploration simply by selecting the candidate
result or results most closely embodying the desired direction of progress is a powerful
technique, known as relevance feedback. As long as the user perceives tha t progress is
induced in the desired direction, the complexity of the underlying mathematics needed
to achieve this can be concealed.

• Relevance Feedback

Another domain in which relevance feedback has been implemented successfully is
free-text information retrieval, as exemplified by NRT (the News Retrieval Tool—
Sanderson & van Rijsbergen, 1991). NRT allows users to search a news item database
for articles dealing with topics of interest, but rather than requiring articles to be
categorised using keywords, and the user to build a machine-centred query in terms
of such keywords, NRT supports retrieval of free-text items using free-text queries.

Each NRT retrieval results in a ranked list of documents tha t the system has evaluated
as matching the query. The interface allows the user to retrieve and examine the full
text of the matching documents, and to indicate one or more as being most relevant—
i.e., the best match with what the user is hoping to find. This feedback is translated
by the system into additional guidance to the retrieval engine, so in most cases the
next retrieval will result in a list of documents in which the ones most similar to the
indicated best matches are ranked most highly. Repeated selection and retrieval will
strengthen the relevance weightings, bringing to the top of the ranking more and more
documents that are like the ones the user has selected, until eventually the top entries
in the list might all be documents the user has already rated highly.

The simplest level of NRT interface hides from the user how all of the following tasks
are actually performed:

— analysing the free-text query used to start the exploration;

- matching available documents against the provided query;

3.2. E xploration strategies 50

— producing a list of the best matching documents, ranked in order of decreasing
correlation with the query;

— reformulating the query to take account of the user’s selection of the documents
that are closest to what was wanted.

There is a further level of interaction that NRT can provide for the use of more
proficient users: an adjustable display of the intermediate form of the query, which
consists of key terms that each have a weight on a continuous range from strongly
negative to strongly positive. This can help the user to understand and correct some
errors in NRT’s interpretation of the intention of the supplied query and feedback.
For example, although NRT is able to handle free-text queries it does not analyse the
grammatical structure of either the query or the stored articles. Negation in a query
(e.g., ‘computer news not relating to American companies’) goes undetected, biassing
the results in the opposite sense from what is wanted. In this case use of the key
term display would allow the user to detect the problem, and change from positive to
negative the weighting attached to the term ‘American’.

• Interactive Knowledge Discovery

Knowledge Discovery (KD) systems are used to search very large data repositories for
unexpected patterns that may constitute worthwhile knowledge for the user. They
are used, for example, in analysing financial and insurance records on a nationwide
scale to find correlations between supposedly unconnected transactions tha t might
indicate a trail of fraud. In their overview of the topic, Frawley, Piatetsky-Shapiro
and Matheus (1992) identify the main challenge as reducing the noise constituted by
discovered knowledge that is uninteresting to the user:

‘. .. a system might discover the following:

If At-fault-accident=yes Then Age>16.
To the system, this piece of knowledge might be previously unknown and
potentially useful; to a user trying to analyze insurance claims records, this
pattern would be tautological and uninteresting and would not represent
discovered knowledge.’

One approach to this problem is for a user or designer to guide the search, by sug
gesting what kinds of trend to look for and where to try looking. But many KD
developers take the view that such guidance removes the system’s ability to find in
formation that is completely unexpected—which, by the same token, is potentially
the most valuable. So the system should find as much ‘knowledge’ as it can, and then
let the user separate the interesting from the uninteresting items. The role of a user

3.2. E xploration strategies 51

in an interactive KD system is therefore to evaluate the system’s suggestions and use
feedback to steer the search away from areas that were simply gaps in the pre-coded
domain knowledge.

Exploration progress

• Illumination

The human critiquing strategy is useful in domains whose result spaces are large and
of unfathomable structure, so the user will never be able to make an explicit request
for illumination of a particular region. Instead, the user specifies guidelines tha t the
system uses to arrive at a set of results that have some desired properties.

The number of results shown in each illumination step depends on the resources that
are available. M utator is restricted by the need to lay out graphical designs on screen.
Flats uses organised layouts of reduced-detail plan displays, so the limiting factor
is not screen space but the number of designs the user is prepared to examine and
compare. NRT, likewise, could produce a ranking that includes every document in its
corpus—but the user is only expected to be interested in a few tens of entries.

• Evaluation

The main point of a human critiquing system is that the system can generate alter
natives but only the user can judge their suitability. Evaluation is entirely up to the
user, typically requiring detailed examination of the presented alternatives.

Finding the best illuminated result is crucial in a CCAD system such as Flats, since
it becomes the next version of the working design. Even though the results are all
nominally ‘on view’ together, making trade-offs between results that are arbitrarily
distributed over the view can still demand a large amount of cognitive effort from
the user. This effort can be partly alleviated if the user can request tha t results be
ordered (or mapped onto a spatial plane) according to some formalised characteristics,
so that at least some of the result attributes are directly reflected in the organisation.
In addition the user can select a particular small set of the results for detailed viewing
to help decide between them.

In M utator the selection of a ‘best design’ from the alternatives does not commit the
user to that particular design, but to the direction of evolution that it embodies with
respect to the previously selected best design. It is therefore especially im portant for
the user to be able to compare the designs against the starting-point as well as against
each other. This is facilitated by a layout such as that shown in figure 3.7.

3.2. Exploration strategies 52

Detailed contrast between results is not a crucial issue in NRT. The retrieved news
articles are listed showing their headlines; if the user is not sure whether or not some
article is relevant, its full text can be requested.

• Consolidation

Even more than the direction illumination strategy, the human critiquing systems
support consolidation by reference to the results tha t have been displayed. Indeed,
some systems provide no other way to guide the exploration.

Because the domains are large and unpredictable, the effect of a consolidation request
is no easier for the user to follow than is the process involved in generating a set
of candidate results. In a large corpus NRT is certainly effective at finding articles
that are textually similar to those selected by the user, but there is no way of telling
how many other articles that are just as relevant to the desired topic have been rated
poorly because they use different terminology.

The discarding of large portions of the result space is more plainly noticeable—though
not necessarily more drastic—in the use of CCAD, in which each consolidation step
involves rejection of all but one of the suggested designs. But at least in this case the
user can make hand-built modifications to the design and could therefore add desired
features that happen to be missing from the design that is otherwise the winner.

Result-space coverage

Being another refinement-based strategy, human critiquing relies on discarding all but a
single direction of exploration. Because it is used in domains tha t are too large to be
enumerated exhaustively, there is no way to provide the user with a feel for the regions of
potential results that have been missed.

In some systems the user is given facilities for guiding the illumination to exclude results
that are known in advance not to be useful, but those results tha t are illuminated must
be viewed in the system’s default presentation style. Where the judgement of a result
depends on detailed examination, the effort involved in performing these examinations will
discourage evaluation of a large number of results.

Opportunity to delegate

The user delegates illumination (result generation), which can be constrained according to
those factors that the user knows in advance and tha t the designer built into the result

3.2. E xploration strategies 53

generator. The outcome, which may include many results that are undesirable but could
not be described as such to the result generator, must be evaluated entirely by the user.
Each illumination generates a number of results that can be from diverse points in the
result space, so there is some scope for interesting side-by-side comparisons. Feedback for
consolidating exploration progress is expressed in terms that make it easy for the user to
specify, but difficult to predict how the exploration will be affected.

3.2 .5 D ynam ic queries and other brow sable resu lt m appings

This section reviews some systems that support a strategy based on dynamic, user-controlled
browsing of a mapping of an entire result space.

Examples

• Map-based dynamic queries

Some of the leading work on the use of result mappings is that embodied in the
Dynamic Query (DQ) tools pioneered at the University of Maryland2.

Figure 3.8 is a view of the Dynamic Homefinder, a system for potential home-buyers
to explore properties on the market—in this case in Washington, DC. The homes
shown as dots on the map are just those that satisfy the ‘query’ defined by the user
using the sliders on the right: here the homes must have from two to four bedrooms,
and cost between $160,000 and $380,000; the query has also been constrained to
include only the ‘house’ properties (rather than townhouse or condominium), and to
require a garage (other features are Fireplace, Central Air Conditioning, and New
construction). Finally, the homes are constrained to be within specified distances of
the two reference points ‘A’ and ‘B’, which the user might have placed at office and
school locations.

The power of the system comes from the apparently instantaneous update of the
view (e.g., within 100 milliseconds) in response to changes in any constraint. For
example, as the user drags the ‘Dist to B’ slider to the right, additional dots appear
at the expanding perimeter of an imaginary circle centred at B. Since the display
depends only on the current positions of the sliders, and not on any query ‘history’,

2 A review of the principles, early work and suggested research directions can be found in (Shneiderman,
1993); for details of the tight coupling extension discussed below see (Ahlberg & Shneiderman, 1994) and
(Ahlberg &; Truve, 1994). Ahlberg and Wistrand (1995) introduce IVEE, a tool for automating the creation
of new DQ interfaces for new database domains. The original development of the HomeFinder is covered in
(Williamson & Shneiderman, 1992).

3.2. E xploration strategies 54

Dist to f t

Reset Quit

Dynamic
HomeFinder

F ig u re 3.8 The Dynamic Homefinder for homes in and around Washington, DC. For
orientation the map shows the city boundary, whose south-west edge is defined by the
Potomac river. The ‘yellow dots’ mentioned appear as dark grey in this image. From
(Shneiderman, 1993)

all constraint changes are reversible. This means there is no risk in experimenting:
the user can change a constraint quickly or slowly, skimming or scanning; if the result
is pushed through and beyond an interesting value, the user just needs to back off the
change until that value is found again.

The essence of this interface is the manifestation of search parameters in a direct
manipulation form, which Ahlberg and Shneiderman (1994) summarise as involving:

— visual representation of the world of action, including both objects and actions;

— rapid, incremental and reversible actions;

— selection by pointing (not typing);

— immediate and continuous display of results.

The ye 1 low dots aboue are hones in the DC area f<Vou nay yet More infnrnation on a hone by sel
Vou nay dray the 'A' and 'B * distance Markers to office or any other location you want to live neai
Select distances, bedrocms, and cost ranges by dragging the corresponding slider boxes on the right.
Select specific hone types and services by pressing the labeled buttons on the right.

C n d

Features:

n g e « c H e w

3.2. E xploration strategies 55

The issues that need to be addressed for dynamic queries to be implemented in any
candidate domain are summed up by Ahlberg, Williamson & Shneiderman (1992) as
follows:

‘A good visualization must be found, such as a map, an organization chart,
or a table, with good color combinations for highlighting. The control panel
manipulating the query must be placed in a logical way to reduce eye and
mouse movement. Sliders must be implemented so they are easy for novice
users to use. . . . The search time must be immediate so that users feel in
control and have a sense of causation.’

"Murder on the Orient Express

G o ld finge r Never Say Never Again f i k g
Hunt for Red October T h e _ W

Name of the Rose, Thetm
** Diamonds are Forever Tj*|e . aLi
Great Train Robbery, The Tltie ALL .

j J
A B C O EF G H IJl M NOP R S T W I

: Connery, Sean

AB C D E F C H J K t M NOP R S TW Z

Wan Who^Would^BeKing, The** MedicineMan A rtess:A L L ^
Offence, The

’ A B C 0 E F C H J K t M NP ft S T W 2

Robin & Marian Director: ALL

AB C O P C H J K I M N P f i S T W/ Z

Length: 59 276
0 450

in m m
M ^ ---------------------- A i . - . E . t r o r r I i A i - A . - * H o f T o r j Cocvf

y 4 /
u

Drama | Mystery! Com e Action War Copyright (C) 1993 HCH

F ig u re 3.9 The FilmFinder (from Ahlberg & Shneiderman, 1994)

The FilmFinder, shown in figure 3.9, extends basic DQ with tight coupling. As usual
in DQ, when the user specifies a constraint on some scale—e.g., that only films made
before 1935 are of interest—all the other films disappear from view. But with tight
coupling, all the scales are also updated so they contain just the values that occur
within that reduced set of films—so in this case the ‘Director’ slider would no longer

3.2. E xploration strategies 56

include, say, Francis Ford Coppola. The idea is that the user is interested in incre
mental narrowing of the search space, so the system should help by revealing only
the constraints tha t will still leave some results on view. Some implications of this
assumption are addressed later.

Unlike homes in the HomeFinder, films do not have an obvious spatial mapping
that most users will want to use. So FilmFinder includes a ‘starfield display’, a
2-dimensional spatial layout tha t can be based on any mappings tha t will be of inter
est to the user and tha t will give reasonable result separation—in this case, the x-axis
shows the date and the y-axis a measure of film popularity.

Database

Parameter names/ranges

\ Mapping information >

permitted
parameter ranges

information flow

user-initiated command flow

live parameter-
range variation

processor
command

result and parameter-

range retrieval engine

result-map and slider

display generator

! Dynamic parameter variation i

I Parameter range consolidation !

^ ---------- 1 ------------' J

Dynamically updated map
Direct-manipulation sliders

All permitted results

Encompassed parameter ranges

F ig u re 3.10 Illumination Zone Model for dynamic query.

Figure 3.10 shows one way of describing (tightly coupled) DQ using the illumination
zone model. Because basic DQ explicitly seeks to remove the user’s perception of a
distinction between result retrieval and display, the concept of an ‘illumination zone’
as an intermediate stage is unnatural. However, when using tightly coupled DQ the
illumination zone serves a natural purpose of holding the subset of results tha t is
currently perm itted by the narrowed settings of the sliders.

Explorations using a tightly coupled DQ system necessarily involve notions of iteration
and search progress tha t are more constrained than the behaviour of basic DQ, and
care must be taken to ensure tha t the user understands the implications of each step.
An exploration proceeds as follows:

3.2. E xploration strategies 57

1. Initially the illumination zone contains all results, and the display generator
presents sliders that all show the full available ranges of their parameters.

2. The user can pick up a slider to experiment with dynamic, reversible variation
in the constraints on the parameter it affects. While the slider remains under
the user’s control the set of results contained in the illumination zone remains
fixed, but the display generator excludes from the result map display those that
fall outside the instantaneous parameter bounds set by the slider.

The provision of tight coupling suggests tha t during this time not only the result
map should be changing, but the other sliders too. But Ahlberg and Truve
(1994) found that users have enough trouble concentrating on the impact of
their selections on the starfield display; having all the other elements of the
display continuously updated constituted a distraction whose cost outweighed
the benefits. They have proposed that it is therefore not appropriate for the
other sliders to be adjusted dynamically during use of a slider.

3. When the user releases the slider being moved, this constitutes a greater level of
commitment to the parameter range controlled by tha t slider. This is therefore
deemed to be an appropriate stage at which to update all the other sliders to show
ranges that are consistent with the newly set range of the adjusted parameter.

But the further question arises as to whether to update the slider tha t has just
been moved. For example, if the user has just made a choice from the ‘Director’
slider, the only way to make tha t slider fully consistent with the current set
of displayed results is to reduce its own range to just the selected value. But
Ahlberg and Truve note that this would have a highly undesirable consequence:
if the user’s selection of the director had been merely tentative—as all dynamic
query selections are allowed to be—it is unacceptable to remove the possibility
of trying an alternative. So while the user is experimenting with just a single
slider, its range remains unchanged from the state tha t was in force when the
user picked it up.

4. When the user, having moved one slider, starts moving a different slider, this is
deemed to finalise the setting on the earlier one. At this stage, therefore, the
range on that previous slider is updated to be consistent with what has been
selected—for example, showing just a single selected director.

Compared with the dynamic movement of sliders this is a relatively irreversible
action—a consolidation in the exploration progress. Its impact is therefore appro
priately represented in the illumination zone model as a change to the contents
of the illumination zone itself.

3.2. E xploration strategies 58

• V ariab le-sp ace m app ings

Another example of a dynamic query interface is the prototype A ttribute Explorer
(Tweedie, Spence, Williams & Bhogal, 1994). Following the example of the Dynamic
Query research team, Tweedie et al. chose to demonstrate the system on a house-
search scenario. But the Attribute Explorer, being designed for multi-dimensional
domains in which it would be pointless to have to nominate a single pair of parameters
from which to construct a 2-D mapping, dispenses with the DQ approach of having a
separate map and sliders.

Type of H ouse Price (£1000) No. of Bdrms

*000
0*00
0*00
0*00
0000
0000
*000
*00000
*00000
000000
*00000
*00000
000000
000000
0000
0000
0000
0000
0000
0000
0000
*000000000000000
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
00000000
*0000000
*0000000

000
000
000
00000
00000
00000
00
0*
00
00*0
0000
0000
0* 0*00*00**0000**0
a a a a a a a
A A A A A A A
A A A A A A A
a a a a
a a a a
A A A A
A A A A A A
A A A A A A
a a a a a a
A A A A A A A
A A A A A A A
A A A A A A A
A A A A
A A A A
A A A A

6

5

4

3

2

1

h
a
a
a
*Ad
A A
A A
A A

A
0 0 * A A
00 A A A
00 A A A
00 A A A
00 A A A
O O A A A A A
O O A A A A A
O O A A A A A
O O A A A A A
O O A A A A A
A A A A A A
A A A A A A

A A A A A A A
A A A A A A A
A A A A A A A
O A A A
A A A A
A A A A
A A A A
A A A A

Garden (feet)
IhA

220

200

180

160

140

120

100

80

60

40

r

Dist. from St.(mins)

A A
A A
A A A
A A A
A A A
OA
OA
A A
00 A
O A A
O A A
0 0 0 0 A
0 0 0 0 A
000 A A000AAA
0*0AAA
O O A A A A
O O A A A
O O A A A
OA A A A
O A A A A A A A A
O A A A A A A A A
O A A A A A A A A
O A A A A A A A
O A A A A A A A
A A A A A A A A
O A A A A A A
A A A A A A A
A A A A A A A

60

45

30

15

00 A A
00 A A
*0 A A
00 A A
O A A A
O A A A
O A A A
00 A
00 A
O A A
O A A A
O A A A
O A A A
O A A A
O O A A A
O O A A A A OAAAAA
OAAAAA OAAAAA
0 A A A A A
0 A A A A A
O A A A A A A A
O A A A A A A A
O A A A A A A A OAAAAAAA
O A A A A A A A
O A A A A A A A
OAAAAAAA

F ig u re 3.11 The A ttribute Explorer, working on a house-search data set. The user has
asked to highlight all homes in roughly the £140,000 to £180,000 price range.

The A ttribute Explorer display is based solely on a representation of the parameter
ranges, all the results being displayed in stem-and-leaf plots along the parameter axes.
This allows it to show trend and correlation information among the variables, as is
seen in figure 3.11. Each of the small house symbols that make up the histograms
corresponds to an individual house instance, so as well as seeing at a glance tha t very
few (precisely five) of the properties have six bedrooms, it is clear tha t the selected
price range encompasses only one of those properties—most properties in tha t range
having three or four bedrooms instead.

3.2. E xploration strategies 59

Note that this histogram-based result display does satisfy Ahlberg, Williamson and
Shneiderman’s (1992) requirement, expressed above, that ‘the control panel . . . must
be placed in a logical way to reduce eye and mouse movement’. It may be regarded
as a significant contribution that this is achieved without the system designer having
to become involved in selecting a specialised map-based visualisation that would suit
the properties of the particular results.

• Information workspaces

An alternative form of result mapping is exemplified by the Information Visualizer
project being pursued at Xerox PARC. An initial definition of the aims of this work is
given in (Card, Robertson & Mackinlay, 1991), and a progress report in (Robertson,
Card k Mackinlay 1993). Some recent additions to the tool portfolio are described
in (Rao k Card, 1994) and (Mackinlay, Robertson k DeLine, 1994). Themes being
followed in this work include:

— maximising the capacity of the ‘information workspace’—the cache of data that
is within the user’s immediate grasp—for various generic structures and infor
mation types including hierarchies, time-based data, document collections;

— construction of novel 3-D mappings tha t can be accessed effectively on a 2-D
screen, including various forms of ‘fish-eye view’ that appear to map distant
surrounding context into distant portions of the display;

— facilities for smooth change of viewpoint around and within 3-D models, respect
ing cognitive characteristics of users such as susceptibility to disorientation as a
result of sudden changes.

Exploration progress

• Illumination

The speciality of DQ tools can be seen as letting a user explore the properties of a
large number of results, quickly and without great effort, by interactive sweeping of
an illumination region back and forth across the result space.

The results must either exist already, or must be generatable instantaneously. Because
of the ever-increasing processing power of desktop computers, the scope of the kinds
of result that can be generated within the necessary time constraints is growing.
In addition, specialised techniques can be applied in particular domains in which
processing can be localised to the level at which it can be performed quickly but will
still be informative to the user: for example, in some painting and page-layout tools

3.2. Exploration strategies 60

the interface controls for adjusting some parameters no longer employ the dialog-box
style of picking a setting and pressing an ‘Apply’ button, but instead provide sliders
tha t dynamically update the presentation of at least a small sample area sufficient for
the user to judge the overall effect.

But there remains a research issue in figuring out how to support interactive variation
along more than one dimension at a time—to provide effective illumination of an
area or volume, rather than just along a line. Interaction widgets tha t can map
continuous variation in two or three dimensions offer some possibilities, although their
additional modes of freedom compromise two im portant aspects of interacting with
single-dimensional sliders: (1) the exhaustiveness of the coverage, in tha t it is not
feasible to move a selector through every point in a m ultidimensional space; (2) the
reversibility, in that if the selector is moved through some point tha t gives rise to a
particularly interesting result display, it is not necessarily easy for the user to back
up and find that point again.

• Evaluation

The approach embodied in dynamic browsing tools is to utilise the human perceptual
ability to make comparisons based on rapid incremental changes to the presentation
of a supposedly constant underlying object or scene. Thus, although the Dynamic
Homefinder cannot illuminate different parts of the result space simultaneously, the
user can gain an understanding of the influence of any single result param eter by
varying it and observing the corresponding changes in the display.

The Attribute Explorer feature of having static plots of result distribution along each
dynamically variable parameter scale provides a simple but useful additional level of
trade-off visualisation, since the user can see at a glance the global distributions that
in normal DQ would require experimentation with each of the property sliders in turn.

• Consolidation

In plain Dynamic Query (e.g., the Dynamic Homefinder) the user is free at all times
to narrow or broaden any aspect of the specification; there is no explicit notion of
commitment attached to a narrowing of the exploration focus. But the addition
of tight coupling brings the issue of progressive commitment as the range of each
parameter is reduced.

The fact that dynamic query can (currently) only be pursued along one dimension
at a time militates against keeping open a variety of options. Rather than attem pt
ing a painstaking sweep across interacting ranges of multiple parameters, the user is
encouraged to narrow the search by constraining dimensions independently.

3.2. Exploration strategies 61

Result-space coverage

The effort in finding out about a large number of results is obviously far reduced for systems
that can support DQ—but only along one dimension at a time. The evident ‘mechanical
advantage’ of the technique inevitably leads it to be applied to tasks with the largest result
spaces, that are also likely to be multi-dimensional; in such domains, illumination according
to one parameter at a time, however rapid, still requires enormous user effort in order to
achieve a good proportion of coverage.

Tightly coupled DQ is subject to a task- and domain-specific issue concerning the implica
tion of receiving an empty query result. In some tasks an empty result is entirely unhelpful,
while in others it serves the purpose of highlighting tha t there are no results having the
specified criteria. The motivation for tightly coupled DQ is to save the user from having
to trawl the entire range of some parameter once an existing constraint has narrowed the
values it could take and still produce some query results. For example, having selected that
a movie should be from before 1935 the user can be saved an enormous amount of fruitless
wandering through the ‘directors’ scale if it immediately excludes those people who were not
being directors—perhaps weren’t even alive—in the specified time range. But the effects
are more wide-reaching and might not always be what the user wants. In this example,
the user might indeed be interested to distinguish between those directors who were not
yet alive and those who had just not yet started their careers—perhaps they had a period
of acting before they started directing. By analogy, a lending-library database tha t only
displayed the books currently on the shelves, deliberately hiding loaned-out books on the
grounds that showing them would suggest they were now available for borrowing, would
sometimes be extremely irritating.

Opportunity to delegate

Dynamic Query is currently only suited for domains in which:

• the parameters the user will want to vary are known in advance (for example, being
the columns in a database);

• there is a suitable result-display mapping (that may also need to be designed in
advance) on which the impact of changing any param eter is readily discernable;

• the results can be produced and mapped quickly enough to allow interactive variation;

3.2. E xploration strategies 62

• the result space includes trends (rather than being entirely stochastic) on at least
some dimensions, so the user stands a chance of locating preferable regions within
those dimensions of variation;

• the result space does not involve extremes of trade-off reversal, such tha t narrowing
on the basis of a good region for one parameter might inadvertently rule out the very
best results when considered on the basis of other parameters.

3.2.6 Sum m ary: support for thorough op p ortu n istic exp loration

Summarising the above, how would a user wishing to undertake a thorough opportunistic
exploration find the supportiveness of systems supporting each strategy? There are two
main issues to this: (1) Thorough exploration involves looking at a large number of results,
so it is important to note which of the aspects of exploration would have to be carried out
entirely by the user for each result. (2) Because the exploration is opportunistic, any system
facilities that cannot be extended or redefined on the fly are likely to be unsuitable at least
some of the time.

1. Trial-and-error:

Exploration is entirely up to the user; no aspects can be delegated to the system.

2. Computer critiquing:

The user is entirely responsible for illumination. Evaluation is handled by the com
puter, but normally assumes pre-determined evaluation criteria; it is theoretically pos
sible (but probably laborious) for the user to build or extend the evaluation rule-base
opportunistically to deal with new criteria that are found to be of interest. Consoli
dation support, if any, is likewise restricted to pre-coded rules for resolving detected
problems; real moving-on in the exploration is up to the user.

3. Direction illumination:

In this case the user is entirely responsible for evaluation. The computer provides basic
facilities for illumination and consolidation, but they are usually fixed and therefore
too restricted for an opportunistic exploration.

4. Human critiquing:

Again the user is responsible for evaluation. The computer is specialised to supporting
wide-range illumination, and interpretation of the user’s critique to assist in consol
idation, but again these facilities may be too restrictive if the user wishes to pursue
unexpected exploration directions.

3.3. A form alisation /delegation taxonom y 63

5. Dynamic queries:

Although some mechanical advantage is offered for both illumination and consolida
tion, evaluation is usually entirely up to the user.

Every strategy makes it laborious to examine many results because of lack of delegation
support for either illumination or evaluation of results (or both). A lack of support for
opportunistic illumination prevents the user from obtaining mechanised help in illuminating
whatever region of the result space appears to be promising. A second impediment is the lack
of support for evaluation in the form of detailed, trade-off-based comparison of an arbitrary
collection of ‘best so far’ results: this kind of comparison, which is best supported by a side-
by-side presentation of the candidates, requires mechanised support in summarising results
according to properties tha t axe found to be of discriminatory value, and arranging arbitrary
collections of such summaries into a single display (unachievable with most consolidation
facilities) so they can be compared side by side.

3.3 A form alisation/delegation taxonom y

The preceding section has suggested tha t the principal cause of problems in carrying out a
thorough search is a lack of opportunity for the user to delegate to the computer—either
to carry out repetitive variations on requests, or to collate results for viewing side by side.
As noted in section 2.1.1, the capability of a computer system to allow delegation depends
on the extent to which the activity can be formalised, i.e., expressed using a notation, and
operations for manipulating the notation, tha t can be represented on the computer.

Some tasks are more difficult to formalise than others. This section expands on the issues
surrounding the chance to formalise exploration in a given domain.

Figure 3.12 is a mapping of the systems reviewed in this chapter, correlating the specificity
of the tasks they are designed to support against the extent to which the system dictates
the direction of task progress. The following subsections explain these scales.

3.3.1 Sp ecificity o f su p p orted tasks

Every man-made tool can be seen as occupying some position on a scale from general-
purpose to fixed-function usage. The more specific the intended usage, the more the tool
can be designed to suit the task—consider, for example, a vegetable peeler compared with
a cook’s knife—but the more constrained the possible uses of the tool.

3.3. A form alisation /delegation taxonom y 64

GOO
s -O,

3O-
Boo

<u<DHGO
T3

(human research assistant)

active critics

passive critics

BOZ

improvers

opportunistic

delegation

interactive KD

Mutator

NRT
drawing by demonstration

Flats

Helgon

FilmFinder

Attribute Explorer

Dynamic Homefinder
Information Visualizer

uncustomised database

Microsoft Word

HIBROWSE

manual CAD

Galois lattice search

flight search
(magnifying glass)

(‘Ernie’)

(compass)

general-purpose domain-specialised goal-specialised fixed-function

specificity of supported tasks

F ig u re 3.12 A provisional taxonomy of exploration tools, showing task-specificity against
automation. The items at the corners, in parentheses, are intended as archetypes for the
extremes of the two dimensions; ‘Ernie’ (Electronic Random Number Indicator Equipment)
performs the single fully automated task of drawing winning numbers in the UK’s weekly
Premium Bond draw. The dotted box represents the region of this space within which all
‘semiformal’ systems would reside (see text, p. 68).

3.3. A form alisation /delegation taxonom y 65

In our taxonomy of computer support for exploration, the closest to a general-purpose
tool would be one that supported any domain whose data could be expressed in a simple,
standard format—for example, a completely uncustomised interface to a relational database.
A domain-specialised tool is one suited to a range of exploration activities within a given
domain, such as text processing; a goal-specialised tool incorporates specific models of what
a user is likely to be trying to achieve, rather than just providing operations to be invoked
(by analogy, declarative rather than procedural support). Finally, a fully fixed-function tool
would support just one task, guiding the user to a result using a method that is hard-coded
into its design.

Nardi and Johnson (1994) have made a start on illuminating this scale, conducting a study
of users’ preferences for generic vs. task-specific tools for preparing and maintaining pre
sentation slides. One of their expectations was that, like a dedicated chef, people for whom
slide-making was an important and frequent task would spend the money and make the effort
to learn how to use specialised slide-making tools rather than making do with generic tools
such as text formatters or ‘painting’ packages. But their findings included, firstly, tha t the
generic/specialised scale is not clear-cut and, secondly, that the professional slide-makers
in their study group were often not using specialised tools, because although nominally
supporting every part of the slide-making task these tools often had only mediocre support
for particular aspects such as production of high-quality illustrations. Nardi and Johnson
summarised their findings as follows:

‘W hat we call “task-specific” software programs today really only support some
subtasks relevant to a given goal. . . . We found tha t professional slidemakers
creating fancy presentations prefer using collections of interoperable tools. Their
usage pattern suggests a modular set of interoperable software services as an
alternative to individual highly task-specific programs, which often fall short on
some crucial subtask necessary for getting a job done.’

Moving up the scale involves making progressively firmer predictions about what the user
is trying to achieve. But Suchman (1987) provides some alarming examples of how difficult
it is for a tool to be built to deduce a user’s intentions even once a particular operation
has been invoked. In particular she reveals some findings from the testing of a newly
developed photocopier that incorporated a sophisticated advisory message system. The
copier’s software included a model of all its operations, including all predictable problems,
e.g., interruption due to a paper-jam, and user-initiated exceptions such as aborting an
unfinished copying job. But during the testing, situations frequently arose in which the
copier software’s model of its status, and the advisory messages it was therefore displaying,
were at odds with the user’s perception of the state of the task.

3.3. A form alisation /delegation taxonom y 66

So although a photocopier designer can be certain tha t the system will only ever be called
on for a well-defined range of domain-specific tasks—i.e., related to copying rather than, say,
providing timed lighting for photographic purposes—it is still difficult to predict the detailed
goal-specific intentions of a user who is performing a particular task. Above all, it may be
impossible for the designer to foresee all the ways in which the user might misunderstand
what needs to be done, or simply decide to change intentions part-way through a task. And,
as is shown in the transcripts from Suchman’s experiments, just this level of unpredictability
can be enough to cause the user serious confusion in fairly common situations.

3.3.2 D egree o f com pu ter control over task progress

The grades on the second scale are described moving down the scale, i.e., in increasing order
of ability for the user to apply task-specific control:

• A u to m a tic —the user expresses some properties of the exploration, and the system
constructs a solution that achieves, without further human intervention, some goals
that the user did not express explicitly. This can be broken down according to the
level of these goals:

Automatic deduction of end goals, in which the user-provided specification is analysed
to deduce the properties desired of the eventual outcome. An example is B oz (Casner,
1991), a tool for building tailored presentations of a given data set according to the
user’s description of the task to be performed with the presentation.

An ‘improver’ is an example of automatic deduction of short-range goals, in which
the user’s intended goals are deduced only at a local level based on a fully specified
starting-point in the ‘exploration’. An example is the page layout rules encoded in
the algorithms of text-formatting tools3. Rather than specifying in detail the position
of every word on a page, an author merely defines the higher-level organisation of the
document (such as paragraphs and headings) and lets the tool calculate precisely how
much white space, justification, hyphenation, etc., are needed to produce presentable
pages of output.

• S te e ra b le —the system’s behaviour does not presume user goals, but if steered by
the user the system can perform more than need be specified explicitly.

The systems reviewed in section 3.2.4 (p. 46) mostly fall into this level. Like the
text-formatting algorithms mentioned above, the processing models of these systems

3The TgX system, which embodies a particularly detailed model of typographic design—including itera
tive algorithms for exploring alternative line-break and page-break locations—is described in chapter 7.

3.3. A form alisation /delegation taxonom y 67

can be highly complex, and thus beyond what the user would be able or willing to
understand and specify explicitly.

The great advantage of this kind of support is tha t highly complex tasks can be
controlled through relatively simple interfaces.

The main drawbacks are:

— A user who does have explicit result requirements may have no facilities for
expressing them directly.

For example, an artist using M utator may find tha t a particular section of one
of the presented sculptures has evolved in a very appealing way, while the other
parts of that mutation are undesirable. But the system provides no way to retain
or reject subsections of the workpiece.

— There are often hidden limitations of the underlying model.

For example, as reported in section 3.2.4, NRT’s apparent ability to cope with
natural-language queries can be let down by its lack of grammatical analysis.

• In s tru c ta b le —the user specifies, in terms of abstractions, precisely what the system
is to do.

Whereas steerable systems allow only indirect specification that must pass through
hidden levels of interpretation, instructable tools are those that provide an explicit
formalism for the user to constrain the search space. The Flats system (also described
in section 3.2.4) is arguably on the border of this and the previous category.

The power of instructable systems depends on the specification language; it must be
sufficiently expressive, and the user must be prepared to use it. There have been some
notable success stories in the provision of languages for end-users (e.g., spreadsheet
macro languages).

• M ech an ised —the user is saved effort in specifying the desired direction of progress,
but without the use of explicit abstractions.

This covers tools such as the Dynamic Query systems, based on ‘direct engagement’
facilities, and those that at least provide result-specific controls making it easy for the
user to use one set of results to specify the next step in the search.

• Fu lly m a n u a l—the exploration is deemed so user- and task-specific tha t the tool
provides no assistance in guiding any exploration.

3.3. A form alisation /delegation taxonom y 68

3.3.3 Trends in th e taxon om y

In reality a complex tool has various components tha t inhabit different parts of both the
specificity and automation scales, and may also support some activities tha t are hard to
characterise as ‘exploration’—for example, a word processor with format adjustment, out
lining facilities, and a spelling-checker. But since the goal here is to shed light on how the
scales as a whole are related, the taxonomy has been drawn by thinking up tools tha t in
some capacity occupy a given location in this Cartesian space.

One trend in the systems that are reviewed is tha t most of the examples at the top end of
the automation scale are those with the largest search spaces, such as the creative design
systems. The user could not hope to explore such domains in detail, and the automation
can be seen as reducing the effective complexity of the search space to a level at which,
like the database searches, it is deemed to be tractable. But this involves two debatable
assumptions: firstly that the reduction of the search space is safe—i.e., not throwing away
all or most of the good results—and, secondly, tha t presenting the user with a search space
that is still of comparable complexity to a traditional database will result in a suitably
accurate search.

The region bounded by the dotted box in figure 3.12 represents the scope of the definition of
semiformal provided by Lai, Malone and Yu (1988) and reviewed in appendix A. Restating
their definition, the criteria for a system to be considered semiformal are as follows:

1. it represents and automatically processes certain information in formally specified
ways;

2. it represents and makes it easy for humans to process the same or other information
in ways that are not formally specified;

3. it allows the boundary between formal processing by computers and informal process
ing by people to be easily changed.

The implication of the automation scale is tha t the tools at the high end are so specialised
for automation tha t they do not fulfil requirement 2; these tools were therefore identified
in section 3.2 as encouraging under-informed outcomes by cutting down the search space
without giving the user the opportunity to make necessary choices. Similarly, the tools
placed at the low end are those that give insufficient support for property 1, and thus risk
under-informed outcomes because they leave the user too much of a burden. In order to
provide flexibility in the boundary between formal and informal processing there must be
some form of instruction, or at least steering—but note tha t the converse implication is not

3.4. O pportunistic delegation 69

necessarily true: provision of these facilities does not imply flexibility, as we see in systems
like M utator that have rigidly defined roles.

The region marked ‘opportunistic delegation’, into which none of the surveyed tools seems
to fit, is the region of interest for this thesis: tools that can support semiformal interaction,
but without being specialised to the extent that would allow the designer to predict the
users’ goals. The following section reviews some forms of computer system tha t can be
characterised as providing this level of support.

3.4 Opportunistic delegation

Opportunistic delegation requires that the computer-based ‘assistant’ doesn’t merely have
a fixed repertoire of capabilities, but can be instructed to undertake new forms of labour-
saving activity that the user realises would be useful for some task in hand.

3.4.1 P rogram m able environm ents and con stru ction k its

In many domains of computer use it has already been recognised that it is not just the
people who develop systems for other users who can benefit from being able to ‘program’
the computer—that is, define novel forms of processing that the computer is to provide for
them. In the words of Nardi (1993):

‘We have only scratched the surface of what would be possible if end users could
freely program their own applications... As has been shown time and again,
no m atter how much designers and programmers try to anticipate and provide
for what users will need, the effort always falls short because it is impossible to
know in advance what may be needed... End users should have the ability to
create customizations, extensions, and applications... ’

(p.3)

Spreadsheets are a domain-specific but highly popular example of end user programming,
their power and flexibility being derived from their grid-like framework and automatically
maintained one-way constraint mechanism. Less specialised are the various ‘scripting’ toolk
its that allow personal-computer users to mechanise aspects of their day-to-day work.

Eisenberg and Fischer (1994) argue that the market in domain-oriented design environments
(such as tools for creating charts and other graphics) has evolved into unmanageably feature-
bloated systems that should be replaced by programmable design environments (PDEs), in

3.4. O pportunistic delegation 70

which the hundreds of individual specialised features can be replaced by an integrated
programming language and supportive development tools.

Nardi and Zarmer (1993) suggest that a large proportion of information-intensive appli
cations can be realised with the help of computational building blocks they call visual
formalisms: diagrammatic displays with well-defined semantics for expressing relations.
As an example they demonstrate the power of a highly general ‘table’ visual formalism
as an application framework: providing the ‘cell’ as a unit for displaying, manipulating
and providing programmed relations within application data (like a more general form of
spreadsheet); providing rows, columns and more general regions for organisation, and so on.
Johnson, Nardi, Zarmer and Miller (1993) present the prototype Application Construction
Environment (ACE) that is based on development with visual formalisms, and they express
clear views on who they believe should be doing this development:

‘Traditional UI tools suggest a methodology in which applications are imple
mented for users by professional programmers and designers... Spreadsheets,
on the other hand, suggest a very different methodology in which users are the
primary implementers of applications... ACE is intended to foster a methodol
ogy more like that fostered by spreadsheets. It puts users at the center of the
development process.’

(p.53, original emphasis)

Nardi and Zarmer (1993) reported on the accumulation of the Visual Formalisms Library,
the goal of which is ‘to give developers high-level functionality for developing applications
for creating, structuring, modifying, editing and browsing information—not just providing
static displays.’ At that stage they had implemented four visual formalisms: a panel (a
container for other visual objects, e.g., suitable for creating dialog boxes); a table (men
tioned above); a graph (for handling objects with explicit relations, e.g. useful for displaying
hierarchies or circuit layouts); an outline (providing the structure and operations of a tradi
tional outline processor). For assembling applications from these formalisms, Johnson et al.
noted tha t although much of the construction could be handled with a framework-integrated
extension language there would sometimes be a need for some use of a low-level language
(in their case, C++) for creation of novel object types. When low-level programming is
necessary, it inevitably compromises the accessibility of the toolkit to general end-users.

Smith and Susser (1992) discuss their own prototype, the Component Construction Kit
(CCK), tha t demonstrates the feasibility of developing standardised ‘pluggable’ components
such as a text editor, a spreadsheet cell, and non-visual elements such as a database retrieval

3.4. O pportunistic delegation 71

component or a spelling checker. As far as possible, their goal is for the selected components
to be connected automatically by detecting conformance of their typed and keyword-coded
inputs, outputs and operations. (In an appendix to their chapter, Smith and Susser list
a number of examples of component-based construction kits, including Bill Budge’s well-
known Pinball Construction Set from 1983.)

Clearly, the major challenges in providing a form of toolkit are (1) the design of a set of
component parts (or language concepts) tha t provides sufficient expressiveness and flexi
bility, and (2) provision of a suitable mechanism by which the user instantiates and draws
together the parts needed to describe new processing capabilities.

Easing the transition from user to programmer

There is lively HCI research addressing the design of systems tha t can support some form of
programming, but without imposing an offputting distinction between programming facili
ties and the straightforward interactive use of pre-defined system commands. The End-User
Programming working group of a recent workshop (Myers, Smith & Horn, 1992) expressed
their area of concern as being ‘the transition from the pure user level, which is typically
a non-programming task, to some sort of programming. Situations where this would be
desirable include automation of a repetitive task; extension of the current application to
perform a function not anticipated by the original program designer; or simply to customize
the application and its user interface to different requirements or personal taste .’

Smith and Susser (1992), from the same workshop (also quoted above), argue tha t the
transition can often be approached as a need for ‘tailoring’ the provided facilities:

‘Every user’s job is different. Users know what they want to do; developers can
only guess. It will not be sufficient in the future just to give people fixed sets
of functions packaged as inflexible applications. We must provide people with
tailorable sets of functions, which they can mix and match on a task by task
basis. In fact, the term “application” probably needs to be replaced by some
other term such as “task environment” ’.

(p.35, original emphasis)

Smith, Ungar and Chang (1992) acknowledge tha t a user may approach a system with a dif
ferent set of thoughts and goals when attem pting to change its behaviour rather than simply
to use it, but they note tha t the current tendency for programming to be described using
a different language from the use (e.g., a textual language rather than direct-manipulation

3.4. O pportunistic delegation 72

operations) necessarily imposes an intrusive need to learn explicitly how to ‘mention’ in
terface elements in the programming language. They give some examples of systems that
avoid this ‘use-mention’ distinction, and they argue that ‘the lack of distinction between use
and mention means tha t designers can easily incorporate all functionality, even “program
ming” as part of their interfaces. It also means that users are able to smoothly grow into
programmers, and are able to tailor their interfaces to their individual tastes and needs.’

3.4.2 System s th a t a ttem p t to deduce u sers’ goals

Current research includes a broad area that can be seen as tackling the need for oppor
tunistic delegation not by empowering the user to express what is wanted, but rather by
equipping the computer system to deduce the same. This is a characteristic of, for exam
ple, programming by demonstration systems (e.g., see Cypher et a l, 1993). Such systems,
though proving increasingly powerful and useful in their particular domains, are not of
interest within the scope of this thesis. The first reason, as expressed in section 2.1, is
my interest in keeping the user firmly in control of task progress. The second reason is
that their capabilities are necessarily limited to those for which the user’s intention can be
analysed as fitting some previously formalised pattern: this goes against my conception of
opportunistic delegation, since the user may have in mind some pattern of operation that
the designer had not predicted, or may even be following some direction of investigation
without having any expressible ‘intention’ at all.

However, one of the qualities that is seen as an advantage of this form of system is tha t the
user does not need to learn any form of language for explaining intentions to the computer.
It is as if the computer is ‘watching over the user’s shoulder’; when the computer’s analysis
of the user’s actions reveals some operation tha t could be formalised, it offers to do so. If
this is the only form of assistance available then any time when the computer is not offering
to help, the user should assume tha t no assistance is available for the task being performed.
Thus there is neither opportunity nor need to switch between ‘use’ and ‘programming’
modes. Although this unexpressed form of assistance gives many opportunities for subtle
‘misunderstandings’ between the user and the computer’s algorithms, research continues on
defining domain-specific systems in which the programming can realistically be achieved
without such mode-switching: Myers, Smith and Horn (1992) report tha t ‘programming-
by-example systems show that there is potential to allow a class of programming tasks to be
handled without having to describe low-level details in a separate “programming” mode.’

The following section reveals some other approaches tha t have this desirable property of
avoiding any intrusive distinction between ‘programming’ and ‘use’.

3.4. O pportunistic delegation 73

3.4 .3 O pp ortun istic form alisation

The forms of opportunistic delegation described in section 3.4.1 provide a means for the user
to describe what is wanted using some form of parts kit that, because it can be assembled
in many ways, allows flexible control over a subtle and rich variety of facilities. But the kit
itself remains constant; all the user can vary is the way the pieces are assembled, and the
data they are used to process.

A complementary approach is to provide facilities tha t effectively allow the user to augment
the kit of parts, providing new formal components to assist in the processing. A hard
(unfriendly to end users) way to do this is by the use of low-level programming techniques,
such as the C++ additions sometimes needed for ACE. An easier means, tha t is available in
some domains, could be termed opportunistic formalisation.

The key to opportunistic formalisation is the distinction that is normally drawn between the
processing facilities and the data on which they act. Most systems’ processing facilities have
fixed limits as to the details of the data they can recognise and process—for example, a word
processor tool for automatically numbering document sections would not normally pay any
regard to the wording of the section titles. But in some cases the user may wish aspects of
the data to be used to assist the processing. For example, in the Lotus Agenda PIM most of
the text of the individual items is stored ‘as is’ without being analysed, but if the user decides
to create a new named note category, e.g., ‘Tennis’, any note in which the category name
appears can be coerced automatically to become a member of the category. A more refined
and controllable generalisation of this procedure is incremental formalisation, as reported
by Shipman and McCall (1994). Their Hyper-Object Substrate (HOS) system is designed
to help users handle large bodies of textual information tha t is entered in raw (informal)
form—typically because the users don’t yet know what useful formalisable properties it
contains—and can later be transformed by user-driven identification of properties tha t are
felt to be useful to formalise:

‘As formalization proceeds, progressively more of the following are identified:
1) ‘chunks’, i.e., meaningful units, 2) relevant attributes, values and relation
ships, 3) associations between chunks, attributes, values and relationships, 4)
constraints, 5) generalizations (both rules and inheritance relationships), and 6)
aggregate constructs.’

Users axe not compelled to pursue formalisation to any particular degree, or within any
time-frame—but the more they do, the more they can use the information-structuring fa
cilities provided within HOS. An example cited by Shipman and McCall is the Interactive

3.5. C onclusions 74

Neuroscience Notebook (INN) developed as a class project, which allows student neurosci
entists to collect and organise their evolving information on the subject of neuroscience.

Another interesting example of opportunistic formalisation is Mander, Salomon and Wong’s
(1992) system for supporting casual organisation of information using a ‘pile’ metaphor. The
authors had noted the way people tend to create piles of papers as a way of temporarily
organising them prior to filing them away permanently, and decided to implement a proto
type system to explore creation and manipulation of ‘piles’ of multimedia documents. Piles
could be created, shuffled and merged without needing to have a formal structure—indeed
a dishevelled appearance and ad hoc ordering of piles often helped users remember their
contents. But the system also provided facilities for formally assisting with certain kinds
of operations—for example, a pile could have an attached ‘script’ determining the criteria
that would make a given subset of the documents eligible for membership of the pile. The
user could therefore induce novel system capabilities by deciding to attach additional formal
characteristics and criteria to particular documents and/or piles.

3.5 Conclusions

This chapter has reviewed various exploration strategies, demonstrating how they are each
suited to domains in which assumptions are made tha t would not be valid, in general, for an
opportunistic exploration. A user must be able to delegate all three major sub-activities of
exploration in order to obtain a thorough view of a result space without excessive burden,
and in the case of an opportunistic exploration this implies tha t all three activities will have
to be delegated while the exploration is in progress. The goal of this thesis has thus been
set at finding a means for all this opportunistic delegation to be expressed.

Chapter 4

The Reconnaissance approach

4.1 Introduction

Reconnaissance is a powerful technique for applying resources to an exploration in which the
explorer doesn’t know at the outset what might be found, but always has some idea of where
might be worth examining next and what to note in this examination. By delegating small
steps of progress and observation to nimble scouts who return with summary reports, the
explorer is able to make crucial comparisons between the various available directions. The
decision on where to direct the main effort can be made on the basis of these comparisons.

Definition (from the Concise Oxford Dictionary, Eighth edition):

reconna issance

1. a survey of a region, especially a military examination to locate an enemy
or ascertain strategic features.

2. a preliminary survey or inspection

One aspect of reconnaissance that helps make it resource-efficient is that the observations
can be made without the scouts having to know how the information contributes to the over
all task; indeed, they don’t need any strategic understanding of the exploration. Therefore
the concept of computer-based reconnaissance, introduced by this thesis, puts the computer
in the role of the scouts—being instructed by the user to visit locations in a result space
and to report back some measurements of the results that are found.

75

4.2. The travel agent revisited 76

Definition (for the purposes of this thesis):

(re su lt-sp ace) reconna issance

• a survey, consisting of measurements taken from the results tha t arise in a
region of a result space, used to ascertain features of the result space

The basic concept of result-space reconnaissance is first illustrated by revisiting the flight-
booking scenario used in chapter 1. Then section 4.3 fleshes out a non-computing scenario to
illustrate how reconnaissance in general contributes to the pursuit of thorough exploration,
and section 4.4 specifies some characteristics that make an exploration domain amenable
to the use of reconnaissance. The final sections return to the m atter of using reconnais
sance in a computer-based exploration, outlining the challenges tha t must be addressed in
implementing that support.

4.2 The travel agent revisited

This section illustrates the potential impact of a form of reconnaissance on the scenario de
scribed in the first chapter—first by showing a typical sequence of illumination-evaluation-
consolidation cycles that might occur with the existing level of support, and then by showing
how a reconnaissance-based illumination might help.

4.2 .1 W ith o u t reconnaissance

W ithout reconnaissance the search consists of a trial-and-error sequence of queries to the
database, evaluation of what has been found, and consolidation decisions based on how the
search is proceeding. The travel agent and I pursued steps much like the following:

1. Query: n o n -s to p flights, G lasgow -*LA X , out on O ct 31st, staying 7 days.

Result: The only available seats on non-stop flights are full-fare (lowest is approx.
£600 return). By selecting a seven-day visit we were hoping to find deals for about
half tha t price.

2. Query: as previous, except travel on N ov 1st

Result: Again the only available seats are full-fare, but the lowest is much cheaper
(approx. £480). We see that the reduction is due to the scheduled decrease in fares
on transition to the quieter November period.

Decide: DISCARD PREFERENCE FOR OCTOBER FLIGHTS

4.2. T he travel agent revisited 77

3. Query: as previous, except travel on N ov 2nd

Result: No improvement over November 1st.

Decide: RESPECT W EAK PREFERENCE FOR NOVEM BER 1ST;
DO N O T IN SIST ON NON-STOP FLIGHTS

4. Query: allow stopovers, revert to N o v em b er 1st

Result: Many more flights available-

• cheapest is £340 but the outbound journey has two stopovers, takes a long time
overall (21 hours) and arrives too late (11 p.m.)

• another at £380 departs 6 a.m., one stopover of 4 hours

Some routes have no seats only because the segment from Glasgow to the first stop is
full. Many of these are via London, where I have family so I wouldn’t mind finding
my own way there. So ...

Decide: T R Y SEPARATE NON-STOP FLIGHT FROM LONDON;
REM EM BER TO CHECK ARRIVAL TIME AND ELAPSED TIM E

5. Query: n o n -s to p flights, L ondon (H e a th ro w /G a tw ic k)—»LAX, N ov 1st

Result: Only business class available, because return flights are full.
But some airlines will allow return from a different nearby city, so ...

Decide: T R Y RE TU R N FROM SA N FRANCISCO

6. Query: . . .

At this point in the search we are looking for flights out of London, but returning from San
Francisco. Since step 4 we have only been requesting a single outbound travel date, even
though it is only weakly preferred to the day after—and is actually less desirable than my
original hope of 31st October.

Now that we are finding that November flights are rather full, we can see tha t the com
promises we might have to accept may make up for the differences in pricing. Indeed,
we may have more hope of finding remaining seats on October flights exactly because the
price changes are putting off most people. So we ought to run London queries for all three
acceptable departure dates.

But the idea of finding additional possibilities by coming back from San Francisco might
apply to Glasgow flights, too: another set of queries to run.

4.2. The travel agent revisited 78

The cost of running lots of different queries

As well as the time taken to specify the query and for it to be processed, we need to consider
the effort involved in evaluating the results. Imagine a system that produced the following
style of information for each query1:

Depart From To Return From To Stops
31 Oct GLA LAX 07 Nov LAX GLA <= 1 The query

1: min. fare UKL 595 Lowest round-trip fare available

Flight Leave Arrive Equip
UY4567 GLA 650A LHR 810A 757
BB 987 1010A LAX 150P 747

1st leg of outbound journey
2nd (final) leg

BB 988 LAX 530P LHR 1230P+ 747
UY4568 130P GLA 250P 757

1st leg of return journey

2: min. fare UKL 631 Next available fare

Flight Leave Arrive Equip
FU 53 GLA 100P LAX 340P 767

FU 812 LAX 230P YYZ 650P L10
FU 28 810P GLA 925A+ 767

Direct outbound flight

2-leg return

3: min. fare UKL 635

etc. . .

This display shows compatible combinations of outward and return journeys. For each
pair, the system has found the lowest fare that can still be booked on those flights2. The
flights are listed in ascending order of price, which is assumed to be an im portant factor.

xThe information available, and the way it is requested and displayed, differ depending on the service and
front-end being used. In this example the flight details and the format of their presentation axe make-believe
but plausible, although I have not yet seen a system that performs pairing of outbound and return flights.
For busy routes the same seat price may be available on many alternative pairs of flights run by a given
airline on the same dates, so the system might allow the user to customise whether all such combinations
are shown separately, or bundled and summarised.

2There may be fares that axe lower, but for which the traveller does not qualify. This scenario assumes
that the user can separately specify the relevant criteria—e.g., is a student; ‘stand-by’ not acceptable.

4.2. T he travel agent revisited 79

In this case the cheapest fare is £595, for a journey tha t includes a single stopover in each
direction. The next fare in this list is about £35 more expensive, but has the attraction of
a direct outbound flight.

Some of the factors that the travel agent and I decided were im portant can be read directly
from this presentation—such as the departure and arrival times. But it does take time and
effort to extract this information, and even more so for derived information such as total
duration of the journey. If the trade-offs are im portant to us, we may feel we need to look
through and compare many results from each query.

Trial-and-error selection of queries

As shown by this example, there can be a great cost in time and mental effort—part of this
effort being the decisions on which queries to run and which not to run. These decisions
are made on the basis of a developing feel for where the worthwhile results are likely to
be—but with a discrete-valued quantity such as seat availability such ‘feel’ is (with all due
respect for travel-agents’ experience) never more than a guess. For example, in the above
scenario we have requested a trip of exactly seven days, even though the cheap fares usually
apply over a week or more. Since the flights are sometimes only full in one direction, as we
found in step 5, perhaps the return flight on the following day would be available instead.
W ithout running the query we will never know, but just how many of these queries are we
prepared to submit and examine?

Because we have to make each query and analyse each result separately, the economics
of time and effort strongly discourage thorough searching. In picking a path through the
result space we therefore become highly selective, basing our decisions on the results tha t
we happen to find. But this evidence is just a form of sampling, and in this case cannot be
extrapolated with confidence: flights being full on two consecutive days does not remove
the chance of a free seat on the third day.

As illustrated in the following section, the provision of reconnaissance gives a clear and
dramatic reduction in the effort required to carry out extensive sampling; in addition,
its assistance in comparing the results should give the user increased confidence in the
accuracy of judgements made. Informally this suggests that when reconnaissance is available
a decision-maker will select a more thorough search strategy than without, and will make
search decisions that are correspondingly better informed.

4.2. The travel agent revisited 80

4.2 .2 W ith reconnaissance

The essence of computer-based reconnaissance, as introduced at the start of this chapter,
is to delegate to the computer the evaluation of all results in a specified region of the result
space, requesting a summary of the results in terms of measurements that will assist in their
comparison.

The above scenario has reached a stage in which the travel agent and I are willing to consider
flights tha t leave on any of three dates, from either Glasgow or London, and tha t return
after seven or eight days from either Los Angeles or San Francisco. We have also noted
that the ‘measurements’ of interest for comparing flights include the time and duration of
the journey, as well as the cost.

Requesting a reconnaissance foray

This is an ideal situation in which to request reconnaissance: simply instruct the computer
to perform queries using all combinations of these alternatives, and to report the various
measurements of all corresponding results. So we specify a reconnaissance foray covering
the following query parameters:

parameter date from city destination stay return from max. stops

alternatives
31 Oct
1 Nov
2 Nov

Glasgow
London

Los Angeles 7 days
8 days

Los Angeles
San Francisco

1 (each way)

The total number of queries we would have to request if we played out all these combinations
by hand is 3 * 2 * 2 * 2 = 24.

Then we need to specify the journey properties that we want the system to extract from
the textual query results and present in the summarised display. Some of them, such as
the dates of outbound and return travel, will have been forced by the query specification;
others are the details that we previously had to read by eye from each result. The combined
set of properties is as follows3:

property out from return from cost/£ leave at arrive at length stops
example 1 Nov GLA 9 Nov SFO 565 11:15 17:30 14:15 1

3To keep the example manageable, the times and journey length will only be displayed for the outbound
portion of the journey.

4.2. The travel agent revisited 81

Having specified the queries and the result properties of interest, we can ‘sit back and relax’
while the system submits the queries and aggregates all their results. If we do wait for all
the results to appear, nominally we may expect 24 times the normal length of delay; in
practice, caching of results and the ability to run many of the queries in parallel may reduce
the time needed. Additionally, the system might let us start to look at results as soon as
the earliest ones arrive.

A nalysing th e re su lts

The next stage of progress is for us to compare the results and decide which represents the
best combination of properties—or, equivalently, the least undesirable compromises. The
search has taken on the character of a multi-variate exploratory data analysis, and can be
supported by some of the many techniques that have been developed for computer-assisted
graphical display of multi-variate data.

date from return rfrom cost leave arrive length stops
V

1 2 Nov LON 10 Nov LAX 280 15:55 18:55 11:00 0
2 2 Nov LON 10 Nov SFO 312 12:30 15:30 11:00 0
3 1 Nov GLA 9 Nov LAX 320 13:20 19:45 14:25 1
4 1 Nov GLA 8 Nov SFO 320 13:20 19:45 14:25 1
5 2 Nov GLA 9 Nov SFO 320 13:20 19:45 14:25 1
6 2 Nov GLA 9 Nov LAX 320 13:20 19:45 14:25 1
7 2 Nov LON 10 Nov LAX 325 13:30 19:35 14:05 1
8 1 Nov LON 8 Nov LAX 325 13:30 19:35 14:05 1
9 1 Nov LON 8 Nov SFO 325 13:30 19:35 14:05 1

10 2 Nov LON 9 Nov SFO 325 13:30 19:35 14:05 1
11 1 Nov GLA 9 Nov LAX 330 12:15 18:55 14:40 1
12 2 Nov LON 9 Nov LAX 335 16:55 00:40 15:45 0
13 1 Nov LON 8 Nov SFO 338 13:45 17:30 11:45 0
14 1 Nov LON 8 Nov SFO 341 13:45 17:30 11:45 0
15 2 Nov LON 9 Nov LAX 341 13:45 17:30 11:45 0
16 1 Nov LON 9 Nov LAX 341 13:45 17:30 11:45 0
17 1 Nov GLA 9 Nov SFO 350 13:20 15:40 10:20 0
18 1 Nov GLA 9 Nov LAX 362 13:20 22:58 17:38 1
19 2 Nov GLA 10 Nov LAX 362 13:20 22:58 17:38 1
20 1 Nov GLA 8 Nov LAX 362 08:15 15:30 15:15 1
21 2 Nov GLA 10 Nov LAX 362 08:15 15:30 15:15 1
22 2 Nov GLA 10 Nov SFO 388 11:00 17:30 14:30 1
23 1 Nov GLA 9 Nov LAX 388 11:00 17:30 14:30 1
24 31 Oct GLA 8 Nov LAX 395 13:20 19:45 14:25 1
n r

F ig u re 4.1 (Part of) a table of flight results, sorted by cost

4.2. The travel agent revisited 82

Probably the most straightforward kind of display is a table. A portion of the flight search
results presented in a table may appear as in figure 4.1. Even a static tabular display
affords some forms of analysis, such as rapid scanning to find the cheapest or quickest
journey (provided that the table is of reasonable size). But when the table is produced in
an interactive system, its effectiveness can be increased dramatically by capabilities such as
re-sorting based on the values in various columns.

But for representing multi-dimensional data the field of Exploratory Data Analysis has
developed many alternatives to the table, each providing advantages for particular forms
of analysis. As will be discussed in chapter 6, one representation tha t has become very
popular in recent years is parallel coordinates. The parallel coordinates technique presents
data using axes that, instead of being arranged orthogonally in a notional hyperspace of
as many dimensions as there are axes, are laid out in parallel on the 2-D plane. A data
point is represented by a polyline tha t runs from one end of the array of axes to the other,
intersecting each axis at the place determined by the data point’s value for tha t variable.

2 Nov - -

1 Nov . .

31 Oct

r 1

! 20 ..

6 O f/. ■ 6pm . 6pm - .
/ / t t \ -/ ✓

* i ■
\ N \

/ / ^ "Sh" .
/ / 500 . 12 ! y < 2 : \ x \ s>.̂

/ / t / \ s ' ; \ ' ' ' ' 1-5. . ./ / * f \ X \
/ / \ y N

\ \
/ 400 . 6am . 6am . \

t \
/

\ •

300 . 0 ! ! o ;

\ *

! 1 0 . .

Date Cost Leave Arrive Length/hours

F ig u re 4.2 Parallel-coordinates representation of two flights

Figure 4.2 shows a representation of some properties of the two outbound flights shown in
the result list on page 78. The display makes it easy to see some of the trade-offs involved:
that the less expensive flight leaves much earlier than the other, but because of the longer
journey it arrives only a little ahead.

4.2. The travel agent revisited 83

2 Nov

1 Nov

31 Oct

LON:

GLA"

10 Nov.*

Nov:
\ 'y /

>')<
! x' \

/ / 8 Noy,'
• t - >y

7 N ov'-'

600

SFO

LAX> 'V iiii!;::! 6am

300

24 t 24 2 2 t

^ lsr

O T JT l ■ ■ ! / v | ■

\ ! ’ / / \\

Date From
250 1 0 1

Return R From Cost Leave
0

Arrive

\Yf

10
Length Stops

F ig u re 4.3 Reconnaissance results showing 58 flights with cost < .£600

When the full results of our reconnaissance are displayed on parallel coordinates, it becomes
much harder—in many cases, impossible—to follow any single item’s plot through all the
axes. Figure 4.3 shows just the flights on which seats are available for below £600, of which
there are still 58. But even this busy display makes salient some useful information4:

• the results seem to fall roughly into four bands of cost, with a promisingly well-
populated band below the £400 mark;

• flights in the lowest cost band all leave in the afternoon, and appear to be quite evenly
spread between returning from San Francisco or Los Angeles;

• overall journey times vary little, other than the expected delay introduced by addi
tional stops, although...

• . . . there are a few conspicuous outliers, such as the allegedly non-stop flight that
takes nearly 16 hours.

As with tabular presentations, an interactive support environment can enhance the power
of the display. For example, one may be able to re-order the axes to highlight useful
correlations, and to filter the results by cutting out those that pass through particular parts
of the display. Figure 4.4 shows the state of the display at a moment when its user has re
ordered the axes, and has also blocked from view all journeys tha t return via San Francisco,

4Please note that although the sample data are intended to be plausible they are guaranteed not to
represent any existing pricing structure.

4.2. T he travel agent revisited 84

SFO

LAX

9 l̂ OV ;

/ /8 Nov,-

7 Nov

24-
1

I 22- 600

\ \ 6pm ■■ LON,,-
/

1
500

1;

■ / f \ \ " ■ / *; \ \ 18 ■

1 Nov> M i ■
\
\ '‘n / /

"x '> ■■X // ’ \ \ ' 400 / /
/ / — — /

y
* '14 •

6am ■ GLA* 6am| 1 :............ -0-
31 Oct ■ \

300

0 ■ ol 1 , 0 . 250-
R From Return Date Leave From Arrive Length Cost Stops

F ig u re 4.4 Axes re-ordered and filtering applied (5 flights)

or cost more than £400, or arrive outside the hours of 6 a.m.-6 p.m. Of the five results
that escape these restrictions, it is immediately apparent that:

• no flight is available on 31st October, but on both the. other dates there is the choice
of flying from Glasgow or London

• the flights leaving Glasgow are all before noon, whereas those from London are all
(both) at about 2 p.m.

• the cheapest flight is also the quickest

Since the results only show a summary, the user is likely to want to examine in detail the ones
that appear to be interesting. This inspection might reveal further flight properties that
are relevant to the exploration, but which may or may not be expressible on measurement
scales. In fact there are various categories of property:

• Measurable and worth constraining: e.g., the cost, as used in figure 4.4 to filter the
results.

• Measurable but not worth constraining: e.g., the number of remaining seats (as long
as it is non-zero).

• Not expressible as a measurement: e.g., the movies to be shown.

4.2. The travel agent revisited 85

4.2 .3 W h at has reconnaissance provided?

• I llu m in a tio n

The first benefit of reconnaissance in this scenario is in letting the user be certain
that, within the specified range of criteria, all possible results have been found. For
example, unless the user relaxes some more constraints there is definitely no way to
obtain a flight for less than £280, nor to arrive in Los Angeles in mid-morning.

• E v a lu a tio n

When it comes to evaluating the results that fall within the range of illumination, the
collection of summary information about all results helps the user to focus in detail on
just the ones that appear most promising. For example, the user can see tha t setting a
price constraint of £400 will retain a reasonable sample of candidates worthy of more
detailed examination—but that if this batch contains no good results the £400-450
range contains a further cluster that can be considered as a fall-back option.

• C o n so lid a tio n

The wide evaluation perspective gives the user some strong guidelines for deciding on
how to proceed with the search. For example, if a flight is found that is satisfactory
in all major criteria, and costs £330, the user may take note of the price distribution
and decide not to pursue the search further since any potential price advantage can
only be marginal.

4 .2 .4 A n im p ortant n ote to users o f query services

I f the reader is a subscriber to an online flight enquiry service, or the equivalent in some
other domain, please do n o t implement your own naive form of reconnaissance without
consulting the service provider! No service or network can sustain an order-of-magnitude
leap in query submissions, nor is this necessary. Large commercial databases support highly
efficient resolution of the required form of query— essentially (a O R b) A N D (c O R d) —so
the 24 alternatives suggested in the example above could usually be expressed in a single
request. The results would be received in about the same overall turnaround time as for a
fully-constrained query. You just need to agree a suitable query syntax with the provider.

4.3. R econnaissance encourages w ell-inform ed exploration 86

4.3 Reconnaissance encourages well-informed exploration

Having shown the impact of one possible form of reconnaissance applied to a particular
scenario, I now wish to explain in more general terms how the reconnaissance concept
constitutes a promising approach to supporting thorough exploration.

For illustration I will consider the case of some people shipwrecked on an uninhabited
shore—who have landed with a large cargo of home-making possessions but need to decide
where would be a good place to set them up.

4.3 .1 Illum ination

The castaways need to find out about their surroundings. Rather than proceeding to explore
in a single group, taking all their possessions with them, it is more efficient if they can
divide into small scouting parties that set off in different directions, eventually returning
to a central point to report their findings. The scouts can travel light, simply needing to
observe the terrain for features that will help decide where to strike a permanent camp.
Separate scouting parties can explore independently to cover many directions at the same
time.

At first it may not be clear which directions merit detailed exploration, so there may be
preliminary forays in which the scouts are merely asked to report the overall lay of the
land—e.g., existence of hills, rivers, forests—so that on subsequent missions they have a
better idea of what is available and what factors need to be resolved (e.g., how close to a
river they can find the shelter of a forest).

W ith a limited number of people and a limited amount of time it is not practical to attem pt
a detailed survey of a large area, but by accumulating centrally the information from succes
sive explorations the group can attain an impression of which areas hold the most promise.
It is still possible that some good locations will fall between or beyond the explored areas,
and therefore fail to be noticed, but in an unpredictable territory reconnaissance at least
makes it practical to search over a wide area and thus reduce the danger of being attracted
by local highlights that are not impressive in the overall scheme.

4 .3 .2 E valuation

Although each scouting mission may reveal information tha t is of value in its own right,
it is the centralised collation of all the reports that enables the powerful feedback-driven

4.3. R econnaissance encourages well-inform ed exploration 87

expansion of knowledge about the area as a whole. As well as an emergent impression of
the overall layout, reconnaissance supports the opportunistic discovery of criteria by which
to compare findings, and the available ranges of performance on these criteria. This is
crucial for the above-mentioned need to gauge each superficially attractive finding against
the overall context, and to instruct scouting parties on what to record from their future
missions. For example, the settlers may discover that there are different kinds of nearby
forest, some affording better shelter or easier availability of building materials than others.

One of the unpredictable features of reconnaissance-based exploration is tha t when a crite
rion like this is discovered to be important it may or may not be possible to deduce from
the earlier reports how they score on this measure: the earlier scouting parties were not
aware of the existence of the comparative criterion, but they might have recorded (or re
membered) enough information to fill in the relevant detail. In some cases scouts will have
to re-trace their previous missions to pick up the additional information, although this can
obviously be limited to the missions that were at least broadly valuable and in which—in
this example—there was a sighting of any forested land at all.

Consistency in reporting is crucial to obtaining maximum value from the centralised collec
tion of scouts’ reports, since it enables detailed comparison of all the results. The decision
makers can notice and weigh up the trade-offs between the sites that have been found,
repeatedly re-evaluating them with alternative priorities in mind but without having to
re-visit them.

But the reconnaissance reports are, after all, only summary analyses of the sites. For a
full evaluation of any site the whole group of decision makers may need to visit it, to
see its special features tha t nobody had thought to request from the scouting parties, or
that could not be summarised in a report (e.g., aesthetic qualities of the surroundings).
The point of having the reconnaissance is that this full-scale kind of evaluation will only
be carried out on the sites for which the comparatively cheap scouting missions reported
favourable combinations of criteria and trade-offs.

4.3.3 C onsolidation

The use of reconnaissance makes a dramatic difference to the method by which the decision
making group as a whole makes progress in its decision. Many search techniques commit the
searcher in a way tha t would be analogous to moving the whole landing-party, possessions
and all, each time a favourable or unfavourable location is discovered. By contrast, when
using reconnaissance the group can make ‘progress’ simply in terms of adjusting the working

4.3. R econnaissance encourages w ell-inform ed exploration 88

set of directions in which scouts are dispatched, and the level of detail they are asked to
gather before returning.

The Dynamic Query systems reviewed in chapter 3 also offer the user the chance to evaluate
a range of directions before making a heavy commitment to just one. But DQ can only be
used for domains in which the directions can be illuminated instantaneously, allowing the
user to move so rapidly between them tha t it is possible to keep in mind all the relevant
differences. Reconnaissance gets around this need for instantaneous illumination: after the
one-time effort and delay of instructing and waiting for the scouts, measurements from
all the explored regions are brought together and can be viewed simultaneously no m atter
how far apart they originated. Reconnaissance can thus be seen as enabling instantaneous
trade-off analysis for domains in which each result may take a significant length of time
to generate. It is an issue in the management of the reconnaissance to ensure tha t the
report-assembly delays are not so long tha t they outweigh this benefit.

4 .3 .4 Sum m ary: benefits o f reconnaissance

The use of reconnaissance encourages thorough search because it allows efficient use of
the resources at the decision maker’s disposal. Rather than examining in full detail some
haphazard subset of the search space, the resources can be applied incrementally in acquiring
a context-specific understanding and evaluation of a wide range of available results. The
incremental nature allows the decision maker to start with minimal prior knowledge of the
layout or comparison criteria of the result domain.

Efficiency is also encouraged by the independence of the scouts once given their mission
instructions. This allows multiple forays to happen in parallel, while the decision maker
attends to other tasks or starts to evaluate the reports from the scouting missions that
return earliest.

The key to the benefits of reconnaissance is that information about disparate parts of the
search space is brought together before the decision maker, by scouts who do not need an
understanding of the decision as a whole but only the ability to follow simple instructions.

In terms of the effort-accuracy trade-off, reconnaissance clearly ought to encourage greater
thoroughness: the user is spared some of the main sources of wasted effort (repetitive result
requests, and the full-scale evaluation of results that turn out to be completely unsuitable),
and has a cheap way to obtain a well informed view of the decision space and hence to make
sensible judgements about decision accuracy.

4.4. W hat kind of exploration space can be reconnoitred? 89

4.4 W hat kind of exploration space can be reconnoitred?

Not all explorations are amenable to the reconnaissance approach. In this section are
described a set of constraints on the exploration task tha t will enable the explorer to deploy
reconnaissance. Examples are given showing how these constraints may arise in computer-
supported explorations.

Note that it is not claimed that these are minimal conditions required for implementing any
kind of reconnaissance—merely that a domain must satisfy these constraints to support the
straightforward form of reconnaissance demonstrated in this thesis.

4.4.1 C onstraints on th e result space

• Results must be consistent over tim e.

When a scout provides a report of the result found in some location, that report must
be reliable for as long as the decision maker may want to act upon it—i.e., until the
result is permanently discarded from consideration. Up to tha t point scouts may be
sent back to the location to gather further information about it; for my model of
reconnaissance-supported decision-making it is im portant that the latter information
always builds on what was known before, and never contradicts it.

Certainly, reconnaissance could be provided in dynamic domains, such as live plotting
of various alternative futures in Air Traffic Control, but the need for timely refreshing
of the reconnaissance result presentation introduces issues beyond the scope of this
study.

• Reconnaissance must not cause undesirable side effects.

The decision maker should not feel restricted in the use of reconnaissance, so it is
important that the reconnaissance itself does not have undesirable side effects. In
particular, and related to the previous point, the running of scouting missions should
not in itself alter the result space in unpredictable ways.

This constraint has obvious practical illustrations: for example, you can’t run ATC
reconnaissance by trying one set of flight plans then telling all the pilots to back up
and start again.

• Result space must be amenable to sampling.

If the results obtainable by reconnaissance apply only to pin-point locations within
the search space, and give no clue as to the properties of nearby alternatives, even

4.4. W hat kind of exploration space can b e reconnoitred? 90

reconnaissance cannot perform an effective job of ‘illuminating’ the search. This would
be the case, for example, in an ill-conceived flight search database tha t required the
specification of a precise flight time (e.g., 9.14 a.m.) and only responded with flights
departing at exactly that time: even knowing the flight information for 1,000 different
minutes of a particular day would not tell you which flights you had failed to find.

When sampling a domain using an effectively continuous parameter, such as a coeffi
cient in a financial model, the sampling constraint becomes one of requiring the model
to have regions that are well behaved, rather than being entirely stochastic. Then,
for example, if some measurement is found to have changed sign between two points
the decision maker may reasonably expect tha t a more detailed search of the region
will locate an informative crossover or discontinuity.

• Results must be amenable to non-expert summarising.

There must be aspects of the results that can be measured by scouts, and tha t will help
the decision maker to evaluate them—rather than a domain such as tha t of M utator,
in which the results can only be judged by full examination by the decision maker.

• Summaries must be amenable to collation.

Since there may be many scout reports to evaluate, the decision maker needs to be
able to organise them for efficient reference and comparison. This strongly favours
some form of coded symbolic report summary; consider, by contrast, the effort that
would be required in judging trade-offs between reports tha t were only available as
recorded speech.

In some cases analysis will only be practicable if the reports can be clustered into cat
egories based on their measurements. But the decision maker does not need to define
in advance the borderlines that will delimit useful categories; like the other aspects
of understanding the search space, categories can be deduced as the information is
accumulated.

• Unseen areas must be predictable enough to ‘bootstrap’ the exploration.

The decision maker must be able to start with at least enough knowledge of the nature
of the search space and its results to instruct the first scouting missions; thereafter,
the scouts’ reports and occasional full result examination will furnish the bulk of
knowledge about the domain.

A simple example of provision for this initial level of knowledge in a computer domain
is the use of command menus.

4.4. W hat kind of exploration space can be reconnoitred? 91

4.4 .2 C onstraints on scout deploym ent

• Scouts must be capable of independent operation.

The scouts must be able to follow instructions from the decision maker to visit a
specified location in the domain and to bring back a report containing specified mea
surements of the result found there.

It is important to recognise the level of instruction that is involved here. In particular,
it is a crucial property of the reconnaissance approach that the decision maker does
not need to explain to the scouts why the information has been requested. In this
sense reconnaissance takes the ‘cooperative’ approach to the delegation problem, as
described by Fischer, Lemke, Mastaglio and Morch (1991):

‘Automating a task or delegating it to another person requires that the task
be precisely described. Most tasks involve many background assumptions
that delegators are incapable of describing. The cooperative approach elim
inates the need to perfectly specify tasks. Instead, the cooperating agents
incrementally evolve an understanding of the task.’

Although I would not claim that a computer-based reconnaissance system constitutes
a party capable of ‘understanding’ a task, it is the case tha t the information assembled
from the scouting missions is what forms the basis of the decision maker’s evolving
understanding of the decision space. The fact tha t the scouts can only follow sim
ple instructions fits perfectly with the decision maker not yet having anything more
complex to request.

So the user of the computer system specifies the range of locations to be visited and
the measurements to be taken, without needing to specify which of the locations, or
what values of the measurements, are likely to be preferable.

• Scouts must return within an acceptable delay period.

The decision maker must be willing to accept periods of being unable to make any
progress, while waiting for scouts to return with information for analysis. Part of this
issue is the decision maker’s ability and willingness to attend to other activities, so
that delays are not experienced as lost time.

In specifying the range of locations to be explored by scouts the decision maker must
decide how large and how finely divided a search is appropriate for the task being
addressed, given the time that it will take to gather the results.

The impact of these delays can be alleviated if scouts’ reports can be viewed incre
mentally, so the earliest ones can be analysed while others are still being generated.

4.5. Can reconnaissance serve a useful role in th e dom ain? 92

• Instructed scouts can be called off if necessary.

In some cases the most efficient way to instruct the scouting teams is to define blanket
coverage of a large region. But if some scouts are able to return earlier than others
their reports may reveal that some of the other missions are bound to be uninterest
ing. Being able to recall the scouts from those missions, and perhaps instruct them
immediately for other missions, makes a big difference to efficiency of resource use.

4.5 Can reconnaissance serve a useful role in the domain?

As Norman (1991, pp.19-22) points out, providing additional computer support for some
task rarely leaves the nature of the task unchanged. The adaptation of a computer-based
exploration to include the increased level of delegation embodied in reconnaissance is not
merely an issue of surface-level interaction details, but defines new roles for computer and
user. The difference is analogous to the change in approach needed in any pursuit when
moving from independent action to the use of an assistant.

This section addresses some requirements and implications of using reconnaissance, that
affect its applicability to opportunistic exploration in various domains5. The issue at stake
is whether the user is able and motivated to specify a reconnaissance foray that would be
workable and useful.

4.5.1 A b ility to specify reconnaissance

• Ability to choose a worthwhile and practicable reconnaissance foray

In tasks within the given domain, can the user tell what will be a worthwhile range
of the result space to illuminate, and what measurements of the results will be worth
reporting?

The specification of reconnaissance involves both the 1) reconnaissance range—i.e., a
region of the result space in which all the results are worth exploring, and 2) recon
naissance content—i.e., a way of summarising the results tha t are found. It would
be understandable if a user were interested in one but not the other—i.e., wanting
to view in full detail all the results from a particular range, or to define summarising
techniques to be applied to individually chosen results—but reconnaissance explicitly
involves both.

5Note that there is nothing implicit in the definition of reconnaissance that restricts its use to explorations
that axe opportunistic—it’s just that this thesis is only addressing opportunistic explorations, because they
are more challenging than those that can be pursued according to a pre-determined strategy.

4.5. Can reconnaissance serve a useful role in th e domain? 93

In an opportunistic exploration, useful range and content will not be known in advance
but must be deduced on the basis of early findings. But in some domains there may be
standard ‘bootstrapping’ forays that will usually provide good starting information.

A further issue is whether the kind of reconnaissance the user wants is practicable—
for example, not overwhelmed by problems of scale—but tha t is typically a domain-
specific issue, and therefore beyond the scope of this thesis.

• Ability to express what is wanted

Can the designers of support for the given domain provide a convenient formalism for
expressing the kinds of range and content that are likely to be of interest?

Because the reconnaissance approach is by definition a way to derive value from scouts
who may not be able to understand the goals of a search, the facilities for guiding
computer-based reconnaissance are necessarily of a low level of abstraction. The user
just needs a way to express the set of result-space locations to be examined, and the
measurements to be taken from the results.

4.5 .2 M otiva tion to specify reconnaissance

• M otivation to view result summaries

In this domain, can the results provide useful summaries for evaluation?

Although the user may need to view the full detail of a result to make a final decision,
reconnaissance might still be useful at the earlier stages when there are large numbers
of candidate results under consideration. Obtaining a collated summary of results—
for example, as illustrated with the flights shown in figure 4.3 on p .83—can make a
dramatic reduction in the effort needed to evaluate and compare them.

• M otivation to make an investment of effort

In the given domain, is the investment of effort in requesting reconnaissance repaid
by the benefits of the result presentation that is eventually obtained?

The use of reconnaissance is an explicit activity tha t requires the user to think about
the exploration at an abstracted level, rather than pursuing it at a moment-by-moment
detailed level. Making a reconnaissance request involves cognitive effort in figuring
out what to request and how to express it in the system’s terminology, as well as
the manipulative effort of communicating the request to the computer. While the
reconnaissance is being processed the user has to wait (although this delay is alleviated
if results can be displayed incrementally as they are generated). Overall, the benefit
of the reconnaissance has to outweigh these costs.

4.6. Can a reconnaissance interface be bu ilt for the dom ain? 94

4.6 Can a reconnaissance interface be built for the domain?

In this section I describe the characteristics of the components required to provide computer-
supported reconnaissance for a given domain.

4.6 .1 S ystem m odel

Result space

current specification,
reconn, range,
reconn, content

report filtering
and highlighting,

detail requests

information flow
 ̂new reconnaissance '

v range/content specsyuser-initiated command flow

result generator detail view generator

processor
command

reconnaissance engine reconn, display generator

Reconnaissance reports
Collated reconn, reports
Requested detail views

1 Reconn, report manipulation
[Detail requests
v Further reconn, requests

F ig u re 4.5 Illumination Zone Model for reconnaissance.

Figure 4.5 shows the underlying form of reconnaissance support in terms of the illumination
zone model. The main features are:

• R eco n n a issan ce eng ine an d re su lt g e n e ra to r

The reconnaissance engine accepts a current specification as a starting point, and
calls upon the domain-specific result generator to obtain all the results in a specified
reconnaissance range, measuring them each according to the reconnaissance content
specification to produce reconnaissance reports.

• R eco n n a issan ce d isp lay g e n e ra to r

The display generator controls the construction of the interactive display tha t allows
the user to evaluate and compare all the reconnaissance reports in a single, collated
form. It calls upon the domain-specific detail view generator to produce detailed
displays of individual results that the user requests to view in full.

4.6. Can a reconnaissance interface be built for the domain? 95

• C om m an d p rocesso r

Some form of command processor is required to coordinate the user’s requests for
illumination, reconnaissance-display manipulation and creation of detailed result dis
plays. Because of its central role, the command processor will generally be respon
sible for maintaining all information within the exploration context, which includes
the illumination zone. The illumination zone must be able to hold however many
reconnaissance reports the user wishes to evaluate alongside each other.

4.6 .2 Illum ination

As implied by the travel agent scenario fleshed out in section 4.2, reconnaissance can play
the role of adding a higher level of illumination onto an existing computer-based exploration
activity. Then, rather than being constrained to the limited illumination-zone characteris
tics of a system that supports a traditional exploration strategy, a user can collate results
sampled from the illumination zone at a wide range of times using the reconnaissance in
terface as a front end.

This potential separation of functions is signified in figure 4.5 by the separation of the result
generator and detail view generator from their higher-level reconnaissance controllers. But
depending on the degree of integration of reconnaissance into the domain, they may or
may not be separate software components. There are two principal alternative models for
support, that I call reconnaissance shell and integrated reconnaissance:

R econna issance shell su p p o rt

The travel agent example assumes the use of a reconnaissance shell tha t exists separately
from the existing flight-retrieval database. When the user requests flight information that
would normally correspond to a large number of separate queries the reconnaissance shell
submits each query to the database in turn, collecting textual results tha t are then parsed
and processed to obtain the information the user requested about each flight. Reconnais
sance summaries are collated using a parallel coordinates display tha t has no specialisation
to its role of presenting flight information (beyond the designation of axes with appropriate
ranges and markings).

The main advantages of implementing reconnaissance as a shell are: 1) the ability to reuse
complex components such as the parallel coordinates display, and 2) the ability to adapt
existing software systems to provide reconnaissance support, in the ideal case without having
to make any changes to the system itself.

4.6. Can a reconnaissance interface be built for th e domain? 96

A disadvantage that may be overwhelmingly important, as mentioned in section 4.2.4, is
tha t explicit submission of multiple result-generation requests may be extremely inefficient
compared with a way in which the full range of results in a reconnaissance foray could be
generated by the existing system with just a little adaptation. The existing system may
be able to cope with the full complexity of the reconnaissance range specification, or the
content specification, or both.

Integrated reconnaissance support

In some domains it may make more sense to integrate reconnaissance fully—indeed, in
some it may be impractical to provide reconnaissance support any other way. In essence
it was easy to propose a front-end to a flight database because the queries are simple text
strings; a range of queries can be created simply by specifying sets of alternative textual
terms to be plugged into various parts of the query. But if the reconnaissance were being
applied to the design of architectural plans or engineering designs, tha t are typically built
on direct-manipulation drafting systems, text-baaed specification of reconnaissance ranges
would have limited power. Taking measurements is even more likely to need domain-specific
support: imagine the limitations of taking measurements from a CAD system by analysing
the pixel values of the image displayed on-screen after a design change.

4.6 .3 E valuation

The main evaluation requirement for reconnaissance is a display generator tha t can show
all the reports in the illumination zone in a collated form to support comparison between
them. There must also be a means for the user to obtain detailed result views on demand,
to check result features tha t could not be mapped into the summarised display or to find
additional features that can be mapped in subsequent forays to provide more informative
illumination.

Reconnaissance display format

The need to examine and compare many results at once suggests tha t a symbolic sum
mary representation is required. In general, this representation may be required to show
measurements of multiple independent parameters for each result, and also the location of
the result in the search space—typically expressed as a further collection of independent
settings. So the representation should be able to handle multiple results tha t each occupy

4.7. C onclusions 97

a place on multiple dimensions of location and measurement. This may sound like a recipe
for information overload, but not if the presentation is designed appropriately; we may take
encouragement from Tufte (1990, p.50):

‘High-information displays are not only an appropriate and proper complement
to human capabilities, but also such designs are frequently optimal. If the
visual task is contrast, comparison, and choice—as so often it is—then the more
relevant information within eyespan, the better.’

The display should be interactive, offering features such as filtering and highlighting of
results to help the user analyse the trade-offs they embody. In addition the display should
provide interactive facilities for requesting the detailed result views, and for specifying
additional reconnaissance forays in result-space regions tha t are represented on the display
but have not yet been illuminated.

4 .6 .4 C onsolidation support

A vital ingredient for opportunistic exploration is the freedom to pursue the search in
whatever order turns out to be convenient for the task in hand. As part of this the user
must be able to maintain a portfolio of alternative directions of exploration, which is why
the illumination zone must be able to support disjoint regions of illumination gathered from
multiple reconnaissance forays.

4 .6 .5 O verall delegation control

The chief challenge in providing a reconnaissance system tha t users will welcome is to come
up with a way of formalising the task such that the requesting of delegation arises naturally
alongside facilities by which results are presented and manipulated.

4.7 Conclusions

In chapter 3 I pointed out the problems that arise from a lack of opportunistic delega
tion in the three key computer-based exploration activities: illumination, evaluation and
consolidation. In this chapter I have demonstrated that the concept of reconnaissance pro
vides a model for such delegation: illumination assistance is available as opportunistically
requested ‘scouting missions’ to regions of the result space; evaluation is assisted by being

4.7. Conclusions 98

able to request particular measurements of each result, and collating all these ‘scout re
ports’ to support comparison and trade-off analysis; consolidation is assisted by the ability
to continue gathering and collating reports until the explorer is confident of being able to
make a well-informed consolidation commitment.

I have outlined how reconnaissance could be applied to computer-based exploration, and
pointed out the main technical challenges involved in implementing it. The next chapter
presents my examination of various forms of computer-based task tha t could make use of
reconnaissance-like illumination based on range and content specification.

Chapter 5

Com puter-assisted illum ination of
result spaces

5.1 Introduction

Chapter 4 outlines various characteristics that determine whether a given computer-based
activity is amenable to reconnaissance support. The fundamental requirement is tha t the
user be able and motivated to delegate to the computer the illumination of a region of some
exploration domain. This chapter presents my early investigations into delegating parts of
opportunistic information-handling tasks to a computer; it was this work th a t led to the
realisation of the importance of wide-ranging illumination of a result space, and hence to
the idea of reconnaissance.

The unifying concept in the various studies described below is tha t of harnessing the com
puter’s capability for high-speed generation of alternative results, while giving the user
sufficient control over search direction and scope to prevent the presentation of excessive
amounts of information to be viewed and analysed. In line with the wish to maintain the
user’s understanding and feeling of control at all times (as stated in section 2.1), I only
considered approaches in which the computer’s contributions, and the reasoning by which
it was proposing them, would always be explicitly clear to the user. Each approach therefore
needed two complementary components: (a) an explicit mechanism for autom ated genera
tion of candidate results, controlled by (b) an explicit mechanism for the user to guide and
filter the result-generation process.

The following three sections of this chapter describe the investigations in term s of separate
case studies, addressing the following tasks:

99

5.2. S tudy 1: Topic-m atching guided by concept-m ap regions 100

1. Searching for overlap between topic areas in a keyword-based note system.

2. Reformulation-based search for rule combinations tha t define useful organised views
of semi-structured data items.

3. Processing many alternative specifications (as a ‘batch’) to illuminate the results avail
able in a visualisation based on multiple inter-related options.

For each case I describe the proposed context and scenarios of use, showing how a large-
scale user-directed search could be applied. I also explain my judgements relating to the
eventual choice of domain on which to test out the thesis claims.

The first study deals with a domain tha t inherently involves the management of a large
result space. The latter two are domains tha t involve trial-and-error activities for which
the running of a range of alternative attem pts could help the user to experiment; in terms
of the reconnaissance integration models described in section 4.6, these would be cases in
which use of a reconnaissance shell might be appropriate.

Section 5.5 then generalises the last of the case studies by identifying a category of explo
ration domains in which reconnaissance forays can be requested in terms of an option space
and a measurement space. Such domains are attractive as being particularly amenable to
the provision of a simple form of reconnaissance support.

5.2 Study 1: Topic-matching guided by concept-m ap regions

5.2.1 C oncept

Figures 5.1 to 5.3 illustrate a scenario in the use of a computer-based assistant for maintain
ing and using a set of personal notes. This scenario was part of a proposal developed in the
early stages of my investigations into how a computer might support semiformal activities.

The system tha t I proposed to develop, called Custard, was to make use of a concept
related to the mind map as developed by Buzan (1982). Mind maps were Buzan’s proposal
for a way of taking notes on paper, that he claimed as both more economical and more
memorable than a long-hand, linear style of recording. The key feature of mind maps is
the use of compact but highly descriptive terms—typically single keywords—that the note-
taker writes and connects with lines to build up a structure representing a set of related

5.2. S tudy 1: Topic-m atching guided by concept-m ap regions 101

concepts1. This structure is supposedly quicker to put on paper than long-hand sentences,
and the result is a map that reflects the person’s understanding of a topic’s key concepts
and how they inter-relate—so although it is possible for other people to pick up some
information from a mind map, the map is likely to mean a lot more to the original author.

In the Custard proposal it was suggested that a computer-based medium for mind maps
could be implemented, in which the computer could perform operations on the keywords
used. The scenario elaborated here shows the proposed application of search techniques
within Custard, based on literal matching of strings to suggest associations between the
various occurrences of any keyword that appears in more than one place2.

5.2 .2 Scenario

research notes

paper computer
memory

linear mind-map home-grown PDA?gIBISsemi-structured
HyperCard

Smalltalknotebooks Custard
Mark's reference stack

Fog

F ig u re 5.1 A new set of concept connections added to Custard

The context of the scenario is tha t of a user who has already been using Custard for some
time, and is now adding some new notes on the topic of—as it happens—what kind of
notebook or computer system to use to store general research-related notes. The new set
of notes includes the small region of connected concepts shown in figure 5.1.

Underlying the provision of keyword-matching facilities in Custard is the idea tha t by
highlighting concepts that have already been used elsewhere, and showing the regions of
the map space where they are found, the system can remind the user of common ground
shared with other topics. This is intended to help the user to realise how the current topic
relates to others, and thus engender a more thorough understanding of the issues at stake.

Tn contrast with the diagrams used here, Buzan suggests a more compact representation in which the
terms are written along the connecting lines. Also not shown here, but recommended by Buzan to help
increase the memorability of each mind map, is the incorporation of different colours, memorable sub-layouts
such as lists or other shapes, and small diagrams.

2 For this simplistic example it is assumed that the map author can be completely consistent in the choice
of keywords to describe particular concepts.

5.2. Study 1: Topic-m atching guided by concept-m ap regions 102

i d e a p r o c e s s o r sh y p e r t e x t

c a r d - b a s e d
f u l l - t e x t n o d e s

T o o lB o o k1 G u id e
N o t e C a r d s

I n t e r m e d i a
l o c a l d o c u m e n t a t i o n

M a c i n t o s hd y n a m ic m e d i a U n i x
s c r i p t i n g l a n g u a g e

S y s t e m 7

i S i m p l e T e x t S h a r e d d i s k s
F i n d e r

P r i n t i n g
NFS

AUFS
A p p l e T a l k

i n t e r f a c e b u i l d e r s
D e p a r t m e n t n e t w o r k

M a c i n t o s h U n ix PC

T o o lB o o k v i s u a l W o r k s N e X T S te p

F ig u re 5.2 Some suggested connections based on one term from figure 5.1

Having entered the new set of connected concepts, the user requests a retrieval of other
topics that might relate to them; the system scans the note space for other occurrences of
keywords that appear in this ‘query’ set. Figure 5.2 is a representation of some of the results
generated in this case, that were found because of a match with the keyword ‘HyperCard’.
The figure shows three separate parts of the existing note space: a) some notes on hypertext
systems; b) some documentation available within the user’s department; c) notes on various
interface-construction tools.

The results would not necessarily be presented in isolation, as shown here. Where a match
falls at a point within a large map of concepts it may be best to show a form of ‘fish-eye’
view (e.g., Sarkar and Brown, 1992) of the whole map, focussed on the matching concept(s)
but allowing the user dynamic control over the extent of the region that is displayed in
detail.

Of these results, the user decides that only the first is actually relevant to the current topic.
The result includes a mention of the concept of ‘idea processors’, that the user decides
merits further investigation. Selecting that term in the presented diagram, and specifying
that it is of interest, leads Custard to find and display the further region shown in figure 5.3.

5.2. Study 1: Topic-m atching guided by concept-m ap regions 103

text processors

document processorsidea processors

offline processinginteractivedecision support
personal information managers

structure-based WYSIWYG
HTMLLaTeX

Microsoft Word
argumentation toolsLotus AgendaThoughtPattern outliners voice annotationfolding editors

COPE gIBIS

F ig u re 5.3 A further result, reached after refinement of interests

In this figure Custard highlights two of the terms: the recently selected ‘idea processors’,
and the term ‘gIBIS’ that appeared in the user’s original entry. The occurrence of the
‘gIBIS’ term implies that this region would have been seen anyway in the first round of
results—if the user had continued to look through them. A real implementation would
require an efficient strategy for ordering the presentation of results, and for the user to
decide when to follow up discovered concepts. This section of the notes relates to various
forms of text-manipulation tools, and helps to remind the user that some tools provide
facilities for outlining and voice annotation, both of which might be useful with regard to
keeping research notes. Custard has served its purpose in guiding the user to an expanded
set of concepts that are related to the original ideas.

5 .2 .3 A p p lic a b i l i ty o f d e le g a te d i l lu m in a t io n

The aspect of Custard that is illustrated here is its potential for supporting the broadening
of a user’s ideas on a topic that has not been addressed in the notes before, but has some
overlap with topics that were considered and recorded in the past. By doing this, Custard
is intended to perform the role of a ‘creativity assistant’.

Note, however, that the aim is not to promote ‘divergent thinking’—an approach that
involves consideration of as broad a range of concepts as possible, emphasising precisely
those that are not evidently related to the original idea. Techniques based on this approach
have been seen as useful ways to induce creative thought (e.g., Adams, 1987), but their
effectiveness has been questioned by, for example, Weisberg (1986):

5.2. S tudy 1: Topic-m atching guided by concept-m ap regions 104

‘Perhaps the most important assumption supporting the belief in brainstorming
is the belief that divergent thinking is crucial in creativity. However, there is
much evidence to indicate that this is not correct.’

(p.67)

Weisberg uses the work of Koestler (1964) to describe an alternative approach to the achieve
ment of creative synergy of ideas:

‘Koestler proposed the term bisociation for the process whereby previously un
related ideas are brought together and combined. Bisociation is contrasted with
association by Koestler, since association refers to previously established con
nections among ideas, while bisociation involves making connections where none
existed before.

‘According to Koestler’s theory, ideas exist in interrelated sets, or matrices. In
normal conscious, associative, thinking, one idea leads to another idea within the
same matrix. In situations demanding creative thinking, however, the thinker
must move from one matrix to another.’

(p.22)

Correspondingly, the aim of Custard is not to shower the user with concepts picked at
random, but to attem pt to encourage bisociation between whole topic areas tha t appear to
have some concepts in common.

Requesting illumination

The kind of illumination performed by the system is a search among the body of existing
notes, bringing to the user’s attention those maps, or sub-regions of larger maps, tha t appear
to deal with some of the concepts that the user has indicated as being of interest. Rather
than the statistical methods used in modern information retrieval systems to estimate a
‘score’ for the relatedness of portions of free-form text, Custard was intended to work only
by finding explicit matches between keyword concepts. Any match would indicate a region
of potential interest to the user, and the system would not be designed to attem pt to
differentiate results on the basis of some calculated prediction of likely level of interest.

The automation of the search allows it to be pursued exhaustively, matching against each
in tu rn of the query keywords. In a system containing notes tha t have accumulated over
some time (amounting, perhaps, to tens of thousands of concepts), the search may give rise

5.2. S tudy 1: Topic-m atching guided by com cept-m ap regions 105

to a large number of results. Many results might be based on spurious matches between
concepts tha t appear the same to the system, but a ren ’t, and many others will be valid but
of no interest at all to the user on this occasion. A tuser hoping to benefit from the potential
connections that are highlighted therefore needs an effective way to filter the results, cutting
out all the ones that are seen to be irrelevant.

My hypothesis was that the structure of the ‘mind m aps’ would provide an appropriate and
sufficient generalisation mechanism for filtering th e results. For example, when presented
with an uninteresting region of an existing map, such as result (c) in figure 5.2, the user
can set an explicit range on the map as being of no interest in this search. That will cause
the system to filter out of its results, including th e results it may generate in subsequent
steps of the search, any segment for which the focuis falls within the rejected region.

This specification mechanism is a form of relevance feedback, similar in some respects to the
approach used in the News Retrieval Tool described on page 46. But I felt that the Custard
approach, based on explicit rejection of regions of th e potential result space, would have an
effect that was easier for the user to understand th a n the statistical term-weighting mecha
nism employed by NRT, and would be endorsed by users as a mechanism tha t maintained
their confidence in the thoroughness and clarity of the search.

5 .2 .4 Tract ab ility

Testing out the use of an exhaustive human-controlled search in this domain posed the
following challenges:

Supporting consistent, understandable m atching

The attraction of the clarity of the computer’s actions in performing only precise matches
between keyword concepts had to be weighed against the difficulty for the user in maintain
ing a consistent vocabulary of keywords. One of the benefits cited by Buzan for the mind
map technique is the fluency with which ideas can be recorded, since the writer does not
need to take the time to form the thoughts into grammatical sentences; this fluency would
certainly be compromised if the system required th a t each concept be chosen to fit into a
carefully maintained vocabulary. It is possible, however, that this kind of selection might
be acceptable if it were carried out not at the tim e of the initial generation of the ideas,
but in a later ‘consolidation’ stage. This would fit w ith Buzan’s recommendation tha t after
an author has completed the rapid initial recording of a map of connected ideas, the result

5.3. S tudy 2: Perspectives by reform ulation 106

should be transcribed into a neater form of map—this time with the benefit of hindsight to
guide the layout, and to allow the author to increase the salience of the key ideas.

Providing obvious and adequate return on investment in using the system

As well as the technical challenge in providing a means to view a large note domain on
a standard computer screen, it was clear that making the user examine in detail even a
constrained sample of regions of the space might prove overwhelmingly tiring. In terms of
the effort-accuracy tradeoff, even with the computer assistance the user would be required to
expend a large amount of effort for an uncertain improvement in accuracy; it was apparent
that it would be difficult to design experiments in which the accuracy motivation was
sufficiently strong for the technique to show its benefits.

5.3 Study 2: Perspectives by reformulation

5.3.1 C on text

I observed that there is a broad class of tasks in which a user has a collection of computer-
held data items, each possessing a number of formalised properties, and needs to assemble
a view of the items that reveals some information about the collection. But it is not
always easy to know which view will reveal the information tha t is wanted—as reported by
Rieman, Davies and Roberts (1992) with regard to their task of helping choose the papers
to be accepted for a conference:

‘. .. we generated a bevy of final reports showing the ratings of each paper, sorted
and selected every way we could imagine might be useful. Which were the papers
that all reviews praised? Which were the ones that no one liked? Which had
produced conflicting reviews? Which were borderline? How did the data break
down by subcommittee? Were there any subcommittees tha t were overloaded?

‘I t ’s im portant to understand that we had only a vague appreciation of these
questions during design of the database. Custom reports defined at tha t time
would have missed the mark by a wide margin. During the month of data
entry, the subcommittee composition and definitions had shifted, the ratings
had raised new questions, and the plan for managing paper selection had become
more concrete. But the reports we finally generated were appropriate and, as
the committee members later told us, very useful.’

5.3. S tudy 2: P erspectives by reform ulation 107

A computer-generated structured view can serve many of the roles tha t would be served
by a physical organisation of the items if they were concrete rather than stored on the
computer. The following are some examples of such roles, and some advantages tha t can
accrue from working with a computer-held representation:

• distributing the items into groups whose members usefully ‘belong together’

An example is the common working practice of dividing one’s mail into topic-specific
folders. On a computer-generated display, one way to present this kind of organisation
is using a linear list that is partitioned into sections representing the groups.

An advantage of working with data held on a computer is tha t any organisation
that can be described in terms of formalised item properties (such as tags identifying
the sender, topic and urgency of an e-mail note) can be built dynamically by the
computer system. Thus items do not need to reside in a single location, as they would
in a physical organisation, but can take their place within any number of alternative
organisations that can be assembled quickly on demand. The system could maintain
a library of rules or procedures for generating different organisations, and allow the
user to switch rapidly between different views—without requiring the effort tha t is
involved in rearranging physical items, and hence reducing the risk of feeling stuck
with an imperfect organisation because it would take too much effort to move all the
items again.

• supporting simplifications or generalisations about the item collection

One kind of simplification is to work with a subset of the items—for example, a group
that has been arranged to contain just those papers for which some referee reports
are still missing. Placing items into some form of ordering can also be a good way to
simplify their handling—for example, sorting items by date to make it easy to locate
the most recent ones, and to allow generalisations such as ‘all items beyond this point
are overdue’.

Again, if the construction of views can be described in formal terms, a computer
system can allow the user to see a variety of views on demand. This is the capability
that turned out to be so useful once the referee reports had been gathered in the
scenario quoted above.

• arranging items so they form a coherent whole

Examples of this kind of organisation include event schedules (e.g., for a conference
or a teaching timetable) that avoid problematic clashes, or the layout of newspaper
articles to fill the available space in a convenient way.

5.3. Study 2: P erspectives by reform ulation 108

This is a form of task in which computer support can be especially useful: if the
desired constraints can be described formally, the computer can perform a search
among a large number of alternative possibilities and show only the valid arrangements
it discovers.

Note that even where the construction of views is mechanisable, their interpretation might
not be; the system does not necessarily incorporate any formal model for what the user
is trying to do with the information on display. So in cases in which it is not known in
advance which view will reveal information that is of interest, the user must embark on a
search among the available mappings. My aim, in this case study, was to investigate how
computer assistance might be provided for reducing the burden of this kind of search.

5.3.2 Scenarios

First domain: N ote management

To try a different approach to the domain of computer-supported note management, I
examined the support provided in the Agenda personal information manager (PIM)3.

One of the activities supported explicitly by Agenda is the assignment of individual note
items into user-created categories, and the use of these categories to define views containing
subsets of the notes. A view is built by specifying the subset of notes it is to include, and the
basis for ordering them. The subset is defined by selecting the categories of which an item
must or must not be a member in order to be included; the ordering is defined by selecting
the categories to be used in sorting or partitioning the view. Items can also be sorted on
the basis of properties such as an associated date. So, for example, one could build a ‘To
Do List’ view by requesting all items that are categorised as a Commitment but are not
in the category signifying Low on the importance scale; the view could be partitioned into
separate regions for items that belong to the Teaching, Research, or Home categories, and
within each region the items could be sorted according to the Due Date property so that
the most urgent appear at the top.

But what about the kind of view structure that could not be defined in advance, but
would require some experimentation? For example, given a set of items referring to articles
relevant to my thesis, could I easily explore different ways of selecting and ordering these
items in search of a suitable structure for the ‘Related Work’ section of a paper or report?
I implemented a system with some of the capabilities of Agenda, called Fog, on which to

3Agenda is a product of Lotus Development Corp., and is described in (Kaplan et al., 1990).

5.3. Study 2: Perspectives by reform ulation 109

[X] (B4) expanded fog on (reviewCategory) {235] Mil [g g] |
v v
BibPlain
creationTim e
in te rac tionP arad i
interfaceBuilding
review

y ear
- Priority -

File o u t

R e fre sh

D e s e le c t

gm

JL
J j
_lJ
j J
j J

=P106 G raphical T ech n iq u es in a S p re ad sh e e t for S pecifying U ser In te rfaces - M yers..

M yers, B.A. (1991) ‘G raphical T echn iques in a S p re ad sh e e t for S pecifying U ser In te rfaces’ in P ro c ee d in g s of ACM CHI
’91, 2 4 3 - -2 4 9

D escribes th e work on C32 (CMU’s C lever and Com pelling C ontribution to C om puter S c ie n c e in CommonLisp w hich is
Custom izable and C h aracte rized by a C om plete C o v erag e of C o d e and C on ta ins a C o rn u co p ia of C rea tive
C o n stru c ts , b e c a u s e it Can C rea te Complex, C orrect C o n stra in ts th a t a re C o n s tru c ted C learly and C o n cre te ly , and
are Com m unicated using Columns of Cells th a t a re C onstan tly C a lc u la ted so th ey ^C h an g e C on tinuously and C an ce l
Confusion.)

s e a rc h paradigm eq op i/f bldg e u p comp m Priority y ear tex t

566 1989 =P148 Visualizing M ulti-V aria te R elations w ith Parallel C o o rd in ates - Inselberg
636 1984 =P169 Parallel C o o rd in ate s for M ulti-d im ensional D isp lays - Inselberg...
589 true true — Program ming by D em onstra tion , and th e res t of G arnet - M yers et al
403 true true true High 1993 =P M arquise: C rea ting Com plete User In te rfaces by D em onstra tion - M yers et
606 true true true High 1993 =B W atch W hat I Do: Program ming by D em onstra tion - C ypher et a l ...
607 true true true true High 1991 =P E ager: Program ming R epetitive T asks by Exam ple - C ypher..

H i t r u e

217 true M edlui 1992 =P 6 D em onstra tlonal In terfaces: A S tep B eyond D irect M anipulation - M yers.
423 M ediui 1992 =P D ec lara tiv e Program m ing in a P ro to ty p e - ln s ta n c e System : O b je c t-O rie n te c 1
298 1992 =P 34 D em onstrational Interfaces: Coming S o o n ? - M yers et al
331 true true Mediui 1989 =P 67 T each in g a M ouse How to Draw - M aulsby & Witten...
648 true true — Semiformal system s
647 true true true High 1992 =P Experim ents with Oval: A Radically Tailorable Tool for C o o p era tiv e Work -

-

F ig u re 5.4 A Fog browser, set up for easy item categorisation

perform experiments—and also to serve as the medium for maintaining my real day-to-day
Ph.D. notes. Figure 5.4 shows a Fog browser view that has been tailored for the specific task
of assigning article reviews among six topic categories that I felt represented a worthwhile
partitioning of the related work. The columns containing entries flagged as t r u e allow
category membership to be toggled on and off just by mouse-clicking in the cell relating a
given note and category. As can be seen from the list in the figure, my choice and allocation
of categories leads to substantial overlap between them (items appearing in more than one
category)—so here is a potential opportunity for search assistance: perhaps the system,
by examining the unions and intersections between the category membership, can derive
a structure that partitions the collection into manageable families of related items. These
families would guide my construction of sections of the review.

The suggested task was certainly a candidate for mechanised generation of alternatives, but
it was not clear that many of the potential results would be meaningful, or that there would
be a natural way for the user to steer a progressive search. The doubt arose from the large
conceptual gap between the formally specified task (perform set operations on the members
of a number of categories) and the informal goal (find a good order in which to discuss

5.3. Study 2: Perspectives by reform ulation 110

related pieces of work); building a framework that would bridge this gap was a challenge
in itself, and was beyond the scope of what I was aiming to demonstrate. So I decided to
focus the case study onto a domain in which the user’s goals would map more directly onto
a formalisable specification—as described below.

Although I eventually decided against using it as the basis for my experimental work, I
have continued to rely entirely on the Fog system throughout the Ph.D. At the time of
thesis submission the system provides instant access to approximately 700 items amounting
to 3MB of text, including all article reviews and the source for the thesis itself. I
have also continued extending Fog’s capabilities over the years; the latest extension was
the implementation of an ‘outlining’ facility to ease the editing and re-ordering of subsec
tions within large documents. Fog runs in the Smalltalk VisualWorks environment, from
ParcPlace Systems, Inc.

Second domain: Calendar management

In working with a computer-based version of one’s appointment calendar, it may be useful
to be able to construct various kinds of constrained view—such as the following:

• appointments within some date or time range—e.g., being in the same day, or same
week, or within the coming month;

• a summary showing just one repeating time slot—e.g., only the Mondays, or only the
instances of a particular research group meeting;

• only the appointments tha t belong to some category, such as the teaching commit
ments;

• only showing the days that satisfy some calculable criterion—e.g., having at least
three hours of unbooked time during office hours.

Having observed tha t many computer-based calendars provide very limited facilities for
taking advantage of the potential flexibility offered by dynamic view construction, I investi
gated ways to provide greater choice. It appeared that one way to do this, w ithout making
the facilities so complex that users would have difficulty understanding the formalism, would
be to support a programming by demonstration approach—although I would need to take
care to ensure tha t the conclusions reached by the system were clear to the user.

A forerunner of programming-by-demonstration was the Basil drawing-by-example system
(Maulsby & W itten, 1989). Basil allows users to compose figures from geometrical objects

5.3. S tudy 2: P erspectives by reform ulation 111

and constraints, but without having to learn in advance any constraint-expression formalism.
Instead, the user proceeds by constructing the visible elements of the figure using simple
graphical primitives, and Basil adds the constraint specifications implicitly. But sometimes
the system detects that two or more alternative rules could account for what the user
had done. For example, a user may draw a line for which it is ambiguous to the system
which of the supported forms of constraint is supposed to determine the line’s end-point
position—is it meant to be at that absolute location, or constrained relative to the start of
the same line, or constrained relative to one of the nearby objects? Basil presents a dialog
box containing a list of the possibilities, and waits for the user to select the one that best
describes the intention on this occasion. All but the first option are alternative ways to
generalise the user’s specific action, i.e., the drawing of a line between two particular points
on the diagram. Note that the active intervention of the system does not save the user
from having to specify the desired rule explicitly, but merely from having to think up how
it should be expressed.

Similarly, I felt tha t it should be feasible for a user to build structured views of appointment
subsets without having to know the necessary rule language. I considered scenarios for a
system tha t would allow a user to build a view, and would attem pt to find all the alternative
generalisation rules that were consistent with the user’s actions. Were there to arise some
ambiguity the system, like Basil, would present the alternative options for the user to select
what was intended.

As a simple example, consider a user who wishes to build a view containing all the appoint
ments tha t fall on Mondays. A way to demonstrate what is wanted is to start building
a view containing some of the items that will eventually be members, and to wait for the
system to suggest the intended rule. If the user starts by selecting a single appointment
from each of two successive Mondays (and if they happen to be instances of the same weekly
commitment) the system might offer the following choice of rules:

Category
absolute: category = Teaching
relative: categoryl = category2

Time
absolute: startTime = 1400
absolute: duration = 60
relative: startTimel = startTime2
relative: durationl = duration2

They all (both) have this exact category
or is it just that the categories are the same?

Further valid but irrelevant generalisations

5.3. S tudy 2: P erspectives by reform ulation 112

Date
a b s o lu te : weekday = Monday This is the rule the user was after
a b s o lu te : month = November Followed by lots more red herrings
a b so lu te : y ear = 1992
r e la t iv e : weekdayl = weekday2
r e la t iv e : monthl = month2
r e la t iv e : y e a r l = year2
r e p e a t : 7 days

Even this trivial example produces a lot of alternative rules from which the user has to pick
the intended meaning. Like the approach in section 5.2, of filtering results by excluding
whole regions of notes, a way to boost the efficiency of user control over the generation of
candidate rules is to make use of hierarchical categories of rule—for example, tha t both
s ta rtT im e and d u ra tio n evaluations come under the Time heading. Since the user can
specify tha t the rule of interest has nothing to do with—in this case—either the Category-
or Time-related properties, a large proportion of rule checks can be suppressed. In a more
realistic scale of domain, with dozens or hundreds of object characteristics to check, hierar
chical constraint on rule-checking would make a big difference.

But on examining further scenarios, including some based on inequalities rather than iden
tity comparisons, it became clear that it was futile to attem pt to base the system on an
exhaustive search for matching rules (whether or not a satisfactory hierarchical rule clas
sification could be found). To provide support for any of the more interesting cases the
rule search would have to be unbounded. So the challenge was to find a way to let a user
obtain useful feedback from a search that, if left to proceed of its own accord, could not be
guaranteed to generate the desired result in a finite time.

Assuming that one can successfully classify the search paths hierarchically, one way to
tackle this problem is for the search to be structured as a tree tha t is visited breadth-first,
and for results to be presented as soon as they are found. Then the user can be given the
opportunity to steer the search by deflecting it away from those branches of the tree that
count as false leads on this occasion. This kind of steering could be supported using an
interface similar to that of the retrieval by reformulation systems such as Helgon (described
in section 3.2.3), since the domains share the following features:

• At each iteration the system may find and present a long list of potential results, but
the user may decide how to refine the search on the basis of detailed examination of
just one or two of those results. The rest of the list would typically be ignored.

5.3. Study 2: Perspectives by reform ulation 113

For an unbounded search the ‘rest of the list’ might not be enumerable in full. But
as soon as enough results have been generated for the user to decide how to refine
the search specification, the enumeration at the current level of specification can be
suspended.

• In the early stages of the search the user’s expectation in examining sample results is
not that the desired final result will have been found, but tha t the results will reveal
the factors that are available for steering the search.

In Helgon the samples reveal the structure of the items held in the database-—in
particular their property names, types and value ranges. In a rule-generation search
the revealed factors will be the names of the rules and predicates tha t have been tested
successfully against the user’s actions.

Figures 5.5 and 5.6 show some features of PerspEx4, a prototype framework tha t I built
for experimenting with my proposals for rule-based retrieval. As a sample domain I used
a collection of objects representing my regular weekly appointments, and implemented a
simple set of primitives for building different perspectives (ordered or partitioned lists) of
those objects.

Figure 5.5 shows two stages in the use of the part of PerspEx tha t deals with straightforward
retrieval by reformulation:

• In the top part of the figure the user has selected as the search domain the collec
tion called a llA pp ts , that contains all the appointment objects, and has not applied
any other constraints. All the members of the collection therefore appear in the list
box titled cand ida tes. W ithin that list the user has selected the appointment with
the name g i s t .e x tra , causing all known properties of that appointment object to
be shown in the cand ida te p ro p e r t ie s box. Some of the displayed properties are
part of the object’s definition—such as the startTim e and finishTime—but others are
derived, such as the o v erlap s property that is true in this case for just the two other
appointment objects that this one overlaps. Every appointment object additionally
has the isA ppt and isO b jec t properties. The user has selected the derived property
pm, which means that the appointment is in the afternoon, and is about to transfer
this into the selection criteria as a property that is to be mandatory.

4The name stands for Perspective Explorer—a tool for exploring the construction of alternative perspec
tives of a given set of data. As usual I built the interface using the Smalltalk VisualWorks environment,
and for a logic-based search engine I found a free beta-test implementation of Logic and Objects (an object-
oriented extension of Prolog) that I was able to control from Smalltalk by way of an inter-process ‘socket’
connection.

5.3. Study 2: Perspectives by reform ulation 114

Criterion builder
domain

all Appts

item criteria

J2J

Search

Hi

query: ® and Q or

candidates

j W auto - search

fp_group
fr i d ay _p ract i c al
fr id a y ju to r ia l
gcas_group
gist

v" gist_axtra
gum
ir_group
lunch
moming_coffee
ps_group
research_corner
tea

candidate properties

Hi label dept
day friday
startTime 13
finishTime 14

overlaps gcas_grou|
overlaps lunch
isAppt
isObject

Xl ± i— J>J
Xl

Criterion builder ~
domain

all Appts

item criteria

X pm

<Jx_ J>J

Search

Hi

XJ

query: ® and O or

candidates

j Rt auto-search

fm_group
fp_group
fri d ay_p ract i c al
friday ju to r ia l
gcas_group
gist

> / gist_extra
gum
ir_group
ps_group
research_corner
tea
tu e s d a y ju to r ia l

candidate properties

Hi day friday
pm
overlaps lunch
isAppt
isObject

£l Hi— Jli

id

XJ

F ig u re 5.5 PerspEx: Retrieval by Reformulation for finite searches

• The lower part of this figure shows the outcome of the above action: pm is now listed
as a criterion to be satisfied by any object X for it to be included in the candidates
list, and the list is correspondingly depleted. This time the user has selected two of
the appointments, so the candidate p r o p e r t ie s view only shows those properties
that are true for all (both) the selected items: the facts that they are both on Friday,
both in the afternoon, and both overlap lunch.

Figure 5.6 shows a different search as seen in the full PerspEx window (figure 5.5 shows
views of just the top part). The main feature of interest is the list on the left entitled
p e r sp e c t iv e c r i t e r i a , whose contents represent a sequence of logic-programming clauses
that can express a complex meta-logical search. The criteria in this example have the
following effects:

5.3. Study 2: P erspectives by reformulation 115

PerspEx H a
Connection Data

Criterion builder -
domain candidates

timeProps

item criteria

Search

candidate properties

j ■ auto -search

am
evening
finishTime
pm
startTime

! <J=- J>J

query: ® and O or

Transfer cril
Perspective builder

a
Look for another solution?

! Continue Abandon

perspective criteria

DeptAppts := all Appts select ((X label dep t)
timeProps includes Predicate
Partitioning := DeptAppts partition Predicate
Groups := Partitioning size

Refresh Gear

J>J
perspective

±1

J2J
vj

variables of interest
Partitioning Predicate Groups

secondary variables
V

false (afternoon_coffee cakes fm_group fp_group g c a s d -
J y .
J Predicate: am

1
J

true (morning_coffee) Groups: 2

I J
<1— I2J

F ig u re 5.6 PerspEx: Perspectives by Reformulation for potentially unbounded searches

• DeptAppts := allA ppts s e l e c t ((X la b e l dept))

This clause assigns to the variable DeptAppts a collection containing just the appoint
ments that satisfy the bracketed list of item criteria—in this case, each must have the
value dept as its la b e l property.

• timeProps inc lu d es Predicate

For this clause to be satisfied, the variable named P red icate (because of how it will be
used below) must be unified with one of the values found in the collection timeProps.
As it happens, the contents of this collection is currently on view in the upper half of
the tool window; they are the names of the various known time-related predicates.

5.3. S tudy 2: P erspectives by reform ulation 116

• P a r t i t io n in g := DeptAppts p a r t i t i o n P re d ic a te

This is the clause defining the perspective itself: it causes the P a r t i t io n in g variable
to hold the representation of a partitioning of the selected appointments according
to the currently chosen predicate. A partitioning is represented by a set of (key, list)
pairs in which the key is the value of the predicate and the list is all the items with
that particular value. There are therefore as many pairs as there are distinct values
of the chosen predicate among the sample items.

• Groups := P a r t i t io n in g s iz e

This assigns to the variable Groups the size of the partition set—i.e., the number of
pairs.

• (not shown in the figure) Groups>l

Although not shown on this example, it is also possible to add pure Prolog clauses
to the list. Since all the clauses must evaluate successfully for a result to be declared
valid, this statement would cause the search to reject any partitioning in which all the
items fell within a single group.

The state of the tool in the figure is that it has just generated one perspective tha t meets
all the criteria, and is showing what values were assigned to the variables of interest to
allow this to occur. Pride of place goes to the P a r t i t io n in g , displayed in a list window
at the bottom left. The list at bottom right displays the two other variables tha t the
user has requested—showing tha t this perspective is the one obtained by partitioning the
department-related appointments according to their satisfaction of the am predicate, and
that it contains two groups.

Overlaid on the main window is a dialog box allowing the user to control whether the system
should attem pt to find another solution or abandon the search immediately—in this version
of the prototype, results are only generated one at a time. One way to use the system, like
the standard reformulation approach in Helgon, would be to stop the search as soon as the
solution being examined has a property tha t sparks an idea for an additional criterion to
help narrow the search. '

5.3.3 A p p licab ility o f delegated illu m in ation

This study suggested that there is a class of domains for which ‘perspective exploration’
could be helpful, having the following features:

5.4. Study 3: Trading-off perspectives by batched processing 117

• The domain consists of discrete information items, and a way of mapping them into
a perspective under user control.

• The user cannot tell in advance how a given mapping will work out.

• The user can instrument some aspects of the generated perspective to provide mea
sures of goodness.

• In cases for which there is a formalisable way of comparing a measure of goodness,
the system can be instructed to provide illumination in which the perspectives are
ranked according to that measure, or even to select the ‘best’ available from a batch.

• In cases for which there is no formal criterion for judging a measured aspect, the
summarised illumination still saves the user from having to inspect the perspective
itself to obtain the value of those aspects.

5.3 .4 T ractab ility

Perspective exploration is clearly a rich area of research to investigate, and PerspEx was
useful as a vehicle for starting these investigations. I examined some aspects of the task and
the tool in detail, but eventually reached the conclusion that, like the mind-map domain,
the multiplicity of novel aspects to the approach would make it difficult to amass evidence
relating specifically to the search-control ideas.

5.4 Study 3: Trading-off perspectives by batched processing

5.4.1 C on text

One characteristic of the reformulation approach described in the previous study is that it
is still difficult for the user to compare the layout and properties of a number of alternative
perspectives. The PerspEx interface allows the user to select just one perspective at a time
to be viewed in detail, and although it might be extensible to allow the arrangement of a
few perspectives side by side on the same display, supporting comparison in domains that
give rise to dozens of alternatives would still be impractical.

The hypothesis that I wished to explore was tha t the side-by-side comparison issue would be
easier to solve in a perspective-exploration task in which the alternatives can be considered
to lie in a regular multi-dimensional space—for example, when each perspective is defined
by a particular combination of values for a fixed set of variables.

5.4. S tudy 3: Trading-off perspectives by batched processing 118

5.4.2 Scenario: P ersp ectives o f a shared calendar

A shared calendar has the potential for needing perspective exploration—for example, to
help locate a suitable time to hold a meeting between a given collection of people.

This scenario assumes the existence of a simple centralised calendar-management system
through which all appointments of the members of a university departm ent can be in
spected. Each appointment is identified with a particular time and place, and is tagged
with a category such as teaching, laboratory demonstrating, departmental meeting or other
meeting. It is assumed that nobody’s schedule includes any double-bookings.

One of the staff members, John Psmyth, has been asked to set up a weekly meeting for a
new interest group that has been created, scheduling it to avoid conflict with the intended
participants’ existing commitments as far as possible. This is not a task tha t can be defined
formally in advance, since it is not known how difficult the scheduling is going to be.
Psmyth’s task will be very easy if there turn out to be one or more times of the week
when all the proposed attendees are currently free. But in a busy departm ent it is more
likely that even the least disruptive slot still requires one or two people to alter an existing
commitment, and there might be a value judgement to make as to who might be asked to
put up with what kinds of inconvenience, or some consultations to make before arriving at
a decision. In addition the competing commitments might not be the same throughout the
term, so some potential slots would only create an occasional conflict.

Psmyth starts by specifying the people who need to be present, and requests a mapping of
the working week in which each potential hour-long slot is shown in white if it is free of
bookings, and black where any of the required people has an existing commitment. The
result (shown in figure 5.7(a)) contains a few free slots, but Psmyth can see at a glance
that all the indicated times would be unacceptable. He doesn’t have to tell the system tha t
the proposed slots are unacceptable, let alone explain why; he simply ignores them, and
continues by trying to shed some light on the areas currently shown in black.

Rather than the yes/no question of whether any of the required people has a booking for
each time slot, one way to indicate the degree of inconvenience involved for each time would
be to show how many of the people have conflicting appointments. If i t ’s only one person,
perhaps he or she can be asked to rearrange that commitment.

This involves specifying a translation from the number of clashes to the shading of the
slot’s representation. Figure 5.7(b) shows a possible representation for this; if there are ten
people, the number of existing bookings can be shown on a scale from zero to ten. The
interface can allow the user to colour portions of the scale to correspond to the way each

5.4. S tudy 3: Trading-off perspectives by batched processing 119

TuMday Wednesday Thursday FridayMonday Monday Tuesday Wednesday Thursday

3:00 pm

People
disrupted

means a booking exists an adjuster means two or more bookings

(a) (b) (c)

F ig u re 5.7 Early attempts: no acceptable slots

slot is displayed; this simple example has just two colours divided by a movable pointer.
W hen Psm yth sets the adjuster as shown—meaning tha t any value of 2 or above (i.e. any
slot for which there are two or more bookings) is mapped to black, while the slots with only
one booking are now left white as well as the unbooked ones—the result is figure 5.7(c).
This turns out to offer no useful alternatives either.

Psm yth continues moving the adjuster up, and the view of the working week is updated
accordingly (this being a form of dynamic query, as reviewed in section 3.2.5). Very little
changes at first, but when the white area of the adjuster reaches 5 the display suddenly
contains large areas of white, as shown in figure 5.8. So now he has a new problem: how
to discover which of these slots, each involving up to five clashing appointments, might in
fact cause less disruption than the others.

To help discriminate the clashes’ seriousness, Psmyth calls on two additional factors:

• apo log ies acc ep tab le

This is the number of occasions, during the timescale of interest, for which a clashing
appointment is permitted.

W ithout this factor, the system is registering a clash for anyone whose existing ap
pointments clash with the candidate slot in even one of the weeks of term. Setting the
‘apologies acceptable’ to 2, say, will prevent any clash being registered for an attendee
who would only has a previous engagement on one or two of the meeting’s slots.

5.4. S tudy 3: Trading-off perspectives by batched processing 120

Monday Tuesday Wednesday Thursday

9:00 am

10:00 am

11:00 am

12:00 pm

1:00 pm

2:00 pm

3:00 pm

4:00 pm

5:00 pm

6:00 pm
People

disrupted 7>00

F ig u re 5.8 Later: too many indistinguishable alternatives

• flexible co m m itm en ts

This governs which kinds of existing appointment are to be considered potentially
reschedulable, and therefore not a serious form of clash.

Again, without this factor the system is taking the pessimistic view that any clash
at all is a serious rescheduling problem. But this need not be the case—for exam
ple, asking someone to move an existing appointment is more likely to be successful
if the activity is a personal ‘housekeeping’ task than if it is a university teaching
commitment.

In this case Psmyth decides to distinguish four categories of commitment, in the
following order of decreasing importance:

1. teaching

2. department meeting

3. laboratory demonstrating

4. other

Deciding on an order of importance allows the categories to be placed on a linear
adjuster, like the other criteria. In this case, the black area applies to those commit
ments that the user considers are not worth trying to reschedule for the sake of the
meeting—such as a teaching slot. The white area represents kinds of appointment
tha t the user feels stand a good chance of being reschedulable.

5.4. S tudy 3: Trading-off perspectives by batched processing 121

Psmyth might have known in advance of these criteria for narrowing the search—for exam
ple, tha t clashing appointments come in a variety of categories—but he could equally well
have encountered them when examining the details of the early results, as in retrieval by
reformulation systems.

leaching

dept meeting

demonstrating

Flexible Apologies People
acceptable disrupted

12:00 pm

1:00 pm

2:00 pm

3:00 pm

4:00 pm

5:00 pm

6:00 pm

7:00 pm

Monday Tuesday Wednesday Thursday

i

F ig u re 5.9 Three criteria used in combination

An example of setting the three criteria he now has, and the resulting perspective, is shown
in figure 5.9. The way the criteria are combined to determine the displayed colours for each
slot is as follows:

• only appointments more important than ‘other’ are considered disruptive

• iff an attendee has disruptive appointments tha t overlap the proposed time on more
than one occasion during the term, he or she is considered to have a clash

iff more than four people have a clash the slot is coloured black

Psmyth examines the new results. He knows that the early, late, and lunchtime slots would
be extremely unpopular with the group. By selecting in turn each of the other apparently
free slots he can see the details of known clashes. For example, he discovers tha t the slot
at 9 on Monday is only a problem for one of the group members, on just three occasions
this term—but since the person is the group’s organiser and the conflicting appointments
are im portant meetings, that slot cannot be used. Similarly, the other suggested slots each
involve im portant commitments for vital members of the group.

5.4. S tudy 3: Trading-off perspectives by batched processing 122

To find other candidate times Psmyth is going to have to change his criteria, one way being
to relax the degree of constraint on some or all of the scales he has set up. The question is,
which form of constraint-relaxation will give the most useful benefit? If he put the number
of acceptable absences up to three, would the view become flooded with available times? If
it did, could he narrow it productively by tightening the constraint on the number of people
with other forms of clash? There is no way of telling, from what he has seen so far, which
slots are going to turn out as the easiest to accommodate.

But the system can help. It can do the job of trying different combinations of constraints,
figuring out automatically which slots become available in each case.

Before asking it to do so, Psmyth selects all the slots that he knows are not of interest—
all the 8 a.m., 12 p.m. and 6 p.m. times, and the six others that are white in the latest
view—and marks them as unavailable. He then calls up an evaluator, which is similar to an
adjuster but is used for deciding the validity of a result rather than the output format, and
links it to a function that counts the acceptable slots—i.e. the ones that would be white if
displayed. He sets this evaluator to accept any value from 1 to 10 (there’s no point being
left with more than ten appointments to sort out). In addition he sets maximum levels of
tolerance for the other three parameters. Figure 5.10 shows this setup, and figure 5.11 the
outcome of running the lookahead facility.

Monday Tuesday W ednesday Thursday

teach ing

o th e r

C oun t o f

acceptab le

slots

Flex ib le

com m itm en ts

A po log ies

a ccep tab le

People

d isrup ted

m eans d on’t try this slot

F ig u re 5.10 Setting up for lookahead

5.4. S tudy 3: Trading-off perspectives by batched processing 123

teaching

dept mtg

demonstrating

other

4

,3
/

\
X

Flexible
commitments

Apologies
acceptable

People
disrupted

Acceptable

slots

F ig u re 5.11 Results from lookahead (adjuster details omitted)

The result is displayed on the adjusters themselves, in the form of a parallel coordinates
display. Each line connecting the adjusters represents a consistent set of param eter values.
For example, the current state of the calendar has generated a line that starts half way
up the left-hand scale and passes through the remaining scales just above the 1, 4 and 3
points respectively—this showing that, i f ‘demonstrating’ and ‘other’ commitments are to be
regarded as open to negotiation, and people with one (or no) known conflicting appointment
are not a concern, then there are three slots that each involve disruption for four people.
Plotting all the lines on top of each other makes it difficult to see all these individual
relationships but points out the generalisations—for example, tha t whatever allowances are
made there is no slot for which fewer than two people’s schedules are disrupted. The tool
should let the user inspect individual results, for example by highlighting just the results
that pass through selected points, and should also make it easy to obtain the corresponding
perspectives so the user can see which slots are being proposed.

One im portant aspect of this result, as far as Psmyth is concerned, is the fact tha t there are
lines passing through the ‘people disrupted’ scale at the ‘2’ and ‘3’ levels. These show that,
given some combination of allowances, there are slots that will cause disruption to only two
or three people. The system has done the work of trying all the combinations of criteria,
so it can show that although these particular slots do require demonstrator commitments
to be altered they do not involve making any allowance for occasional absence.

5.5. O ption spaces and m easurem ent spaces 124

5.4 .3 A p p licab ility o f delegated illu m in ation

This proposal provided the further insight tha t it would often be valuable for the user to be
free to use a given piece of illumination in a variety of ways. For example, the appearance
of the free lunchtime slots could simply be ignored, or explored for clues on how to narrow
the search, or used to specify directly that these slots are not of interest.

In addition it was attractive how easily the user could request a change from user-driven to
delegated exploration, by virtue of the slider controls also being capable of indicating the
desired illumination range.

The lookahead idea led directly to the idea of reconnaissance, of course. In particular this
scenario suggested the ease of providing a useful kind of illumination in a domain for which
the inputs and the measurements could each be shown on a linear scale such as a slider.
These criteria were further developed into the concepts of option spaces and measurement
spaces, as described below.

5.5 Option spaces and measurement spaces

In some computer-supported domains each result can be described by its value for each of
a fixed set of options. Figure 5.12 represents the requesting of result illumination in such
a domain by specifying a combination of option values or ranges. In the figure, option A
is a choice the user might normally select from a menu, such as the required class of a
flight; B is a boolean choice such as whether or not a text formatter should perform right-
justification; C is a numerical value such as the width of text between margins. Many of
these domains also allow the illumination request to include an option scale representing a
measured property of any results that are found: for example, option D in the figure might
be specifying the acceptable range of transfer times between connecting flights. Depending
on the task domain and the specified option values a single combination of options and
constraints may lead to zero, one, or many candidate results.

In such a domain, a simple form of reconnaissance range can be described by specifying
a number of acceptable alternative values for each option. An example of this is the re
connaissance range requested in the scenario in section 4.2, which was expressed as three
alternative departure dates, two alternative departure cities, and so on. I refer to the range
implied by the combinatorial expansion of all specified values for a set of options as an
o p tio n space.

5.5. O ption spaces and m easurem ent spaces 125

constraint D

illumination
specification

candidate
result

F ig u re 5.12 Specifying illumination as a combination of option values.

The specification of reconnaissance content can also be handled as a set of independently
handled dimensions. Figure 5.13 shows the relationship between option selections made by
a user and the properties of a corresponding candidate result. Now tha t results are being
measured, each result’s actual value for parameter D—which will be within the constrained
range specified on D as an input—is likely to be one of the measurements of interest to
the user. Measure E is numeric, such as the proportion of white space on some page of
a formatted document; F is a discrete-valued measure for which there is an unpredictable
but limited range of possible values, such as alternative airlines; G is a boolean test such
as whether a candidate home includes air conditioning. The notional region defined by
combinatorial expansion of all possible values for a given set of measurements can be called
a measurement space.

Figure 5.13 also shows how each candidate result within an option space/measurement space
illumination can be summarised using a multivariate data item tha t correlates the chosen
option values with the discovered measurements. Production of a collated report of a set
of candidate results summarised in this way can therefore be handled as simply a task of
multivariate data presentation.

tiny
bijou
small
massive

option B option C

5.6. Conclusions 126

t in y

b ijo u

s m a ll

m a s s i v e

false

true

option B option C constraint D —*- measure D

candidate
| result

opt A:
opt B:
opt C:

measure G

measure E
measure F

o p t io n A

f a l s e

t r u e

illumination
specification

result
summary

A : t in y

B : tr u e

C : 3 .2 5

D: 4 5

E: 0 .8

F: b a r

G : f a l s e

F ig u re 5.13 Specifying candidate-result evaluation in terms of a set of measurements.

5.6 Conclusions

This chapter recounts the various studies I pursued in the early stages of my thesis work,
which can now be seen as domains for which reconnaissance would be useful but complex
to implement and test.

One of the most valuable outcomes of these studies was the identification of option spaces
and measurement spaces, a simple means for expressing reconnaissance in a promisingly
wide range of task domains. The ability to express results from such domains as mul
tivariate data items transforms the challenge of providing a collated representation of a
reconnaissance foray into one of producing a multivariate data display. An example of a
flexible multivariate representation is the parallel coordinates technique, tha t has already
been used for illustrative purposes at various points in this thesis. The next chapter reviews
the development of this technique and some of its existing computer-based implementations,
to assess its suitability as the representation for a reconnaissance support system.

Chapter 6

U sing parallel coordinates as a
reconnaissance interface

6.1 Introduction

Having demonstrated that the results from reconnaissance in at least some kinds of task can
be expressed as multivariate data items, and noting that the parallel coordinates presenta
tion technique is a powerful way to handle multivariate data, it was decided to investigate
the feasibility of producing a parallel-coordinates-based reconnaissance system.

The first part of this chapter is a review of the parallel coordinates representation, and
various existing interactive embodiments of it. This is a detailed survey intended primarily
to demonstrate the power of the representation. In particular, because use of this represen
tation is only slowly pervading the commercial and academic domains, the survey begins at
a basic level by describing some of the simple ‘emergent’ properties of parallel coordinate
diagrams; maybe in a few years such explanations will have become as unnecessary as it
would now be to explain how to detect clusters and correlations in a two-axis scatter plot.

A further purpose in providing a detailed survey is that the interface implemented within
the main evaluation exercise (described in chapter 7) inevitably contains only a subset of
the latest interactive features developed for parallel coordinates. The survey allows the
reader to appreciate the potential of the technique beyond the capabilities of the particular
instance that is demonstrated.

Section 6.3 then shows how an interactive version of parallel coordinates, with various
specialised facilities, could support the activities involved in pursuing reconnaissance.

127

6.2. T he parallel coordinates presentation technique 128

6.2 The parallel coordinates presentation technique

This review of the existing work on parallel coordinates is structured as follows:

1. an overview of the development of the technique, and ways in which it is being used
and developed;

2. a description of the fundamental data-analysis activities supported by a parallel-
coordinate mapping—i.e., what kinds of relationship between mapped items appear
as visual features that are easily detected by a person. This section includes a brief
comparison with other ways of presenting multi-variate results;

3. a review of various existing exploratory data analysis tools (including two commercial
products) based on interactive parallel-coordinates displays.

6.2.1 D evelop m en t and applications

General development

The recent development of the parallel coordinates visualisation technique is mainly driven
by the work of Alfred Inselberg and others, working at the University of Southern California
and at IBM’s Los Angeles Science Center. The primary emphasis of their work has been
in the field of computational geometry (the early work of the group includes Inselberg 1981
and 1985a), but they have also explored various applications in decision support. Inselberg,
Dimsdale, Chatterjee & Hung (1993) provide a bibliography of some of the most significant
recent developments, while Inselberg & Dimsdale (1994a, 1994b) give a thorough review of
the mathematical properties that underlie all uses of the technique. Another thorough but
more application-oriented overview is (Inselberg & Dimsdale, 1991).

Further work in computational geometry

Chatterjee’s thesis (Chatterjee, 1995) presents a parallel coordinates method for visualising
multi-dimensional polytopes1, and then explores the application of these techniques to linear
programming problems. Also see (Inselberg, Reif & Chomut, 1987).

1 Polytopes are generalisations of 2-D polygons to N dimensions, i.e., connected regions in N-space bounded
by hyperplanes (definition from Inselberg, Dimsdale, Chatterjee & Hung, 1993).

6.2. The parallel coordinates presentation technique 129

M ultivariate data visualisation and analysis

Many researchers have investigated the power of the parallel coordinates display for ex
ploratory data analysis. For an excellent introduction to this area see (Wegman, 1990);
other work includes the thesis by Chomut (1987), and some simplifications for expression
of confidence intervals proposed by Magleby, Burton & Scott (1991). The WinViz multi
dimensional data visualisation tool, described in (Lee, Ong & Sodhi, 1995a) and reviewed
below in section 6.2.3, has also been used to assist in visualising the rules generated by
automated knowledge discovery in a large result database (Lee, Ong & Sodhi, 1995b).

Also described below are the A ttribute Explorer demonstration (Tweedie, Spence, Williams
& Bhogal, 1994) and its derivative, the Influence Explorer (Tweedie, Spence, Dawkes & Su,
1995). These incorporate a form of parallel coordinates presentation in which the result
items are shown in stem-and-leaf plots along each axis.

Computer-based multivariate representations that exhibit some of the properties of parallel
coordinates include Eick’s (1994) data visualisation sliders and Chimera’s (1992) value bars.

Process modelling

As well as supporting visualisation of multivariate domains, the parallel coordinates rep
resentation can facilitate various forms of calculation. Examples include decision analysis
techniques such as multi-objective programming (Ng, 1991) and data envelopment analysis
(Desai & Walters, 1991), although the latter should be read in conjunction with Inselberg’s
(1985b) insights into how the mathematical properties of the representation can help in
modelling the decision task as one of staying within the bounds of a hypersurface.

At a more concrete level yet, Inselberg and Dimsdale (1994b) describe patents pertaining
to a parallel coordinates tool specialised to the performance of route-planning calculations
in air-traffic control.

Commercial products

Computer-based adaptations of parallel coordinates appear in various tools, including the
statistics software packages BMDP, Systat and NCSS. Two of the most recent products
to emerge are aimed at general markets—both are designed for producing visualisations of
existing bodies of m ultiattribute data, and include various means for building displays and
manipulating, marking and filtering results:

6.2. T he parallel coordinates presentation technique 130

T h e P a ra lle l V isua l E x p lo re r developed by the Software and Visualization Solutions
group of International Business Machines Corporation (IBM), Yorktown Heights, NY.

W inV iz developed by the Information Analysis group at the Singapore Information Tech
nology Institute (ITI).

Some of the special features of these products are reviewed in section 6.2.3.

6 .2 .2 F undam ental properties

An intuitive use of parallel coordinates for representing a collection of multi-variate data
points has already been illustrated in the examples in section 4.2.2, including the sequence
of figures starting with figure 4.2 on page 82.

But to understand some important characteristics offered by a parallel-coordinates presen
tation one must become familiar with some of the basic properties of the mapping. In the
following explanations I use the terminology employed by Inselberg, Dimsdale, Chatterjee
and Hung (1993) and by Inselberg and Dimsdale (1994a):

‘In the Euclidean plane R 2 with rry-Cartesian coordinates, N copies of the real
line labeled X \ , X 2, - - ’ , Y/v are placed equidistant (e.g., one unit apart) and
perpendicular to the x-axis. They are the axes of the parallel coordinate sys
tem for R n all having the same positive orientation as the y-axis. A point C
with coordinates (ci, C2 , . . . , cat) is represented by the complete polygonal line
(i.e., the lines of which only local segments are shown) whose N vertices are at
(i — 1, Ci) on the Yj-axis for i = 1 , . . . , V .’

Figure 6.1 shows the representation of a single point C. Note tha t the polygonal line C
includes the complete lines, extended through and beyond the dotted segments shown here,
and not just the portions between the axes.

T h e lin e -p o in t d u a lity in m ap p in g s o f tw o d im ensions

The next im portant property is easiest to demonstrate for mapping 2-dimensional data,
where it manifests itself as a duality between lines and points in the Cartesian and Parallel
Coordinates plots.

6.2. T he parallel coordinates presentation technique 131

0

F ig u re 6.1 Parallel axes for R N, when N = 5. From Inselberg et al., 1993.

(d,ma}+b)(0,a.

M /-m ’ 1-m .

Xi

F ig u re 6.2 The line-point duality

6.2. T he parallel coordinates presentation technique 132

Consistent with the convention adopted above, I refer to a point in the Cartesian space using
a capital letter (e.g., P) and a line using a lower-case letter (e.g., I). Their representations
in the Parallel Coordinates space are referred to as P and I respectively.

Figure 6.2 shows two points on a line

I : x 2 = m x i + 6, \m\ < oo

and their corresponding lines on parallel axes. The point where those lines intersect, and
where all lines representing points on I will intersect, is shown as

': (r ~ ' r5-)\1 — m 1 — m J

where d is the distance chosen as the separation between the adjacent axes.

Spotting linear relationships

Notice that the position of the point I relative to the axes only depends on m and 6, the
determinants of the line I. In particular the gradient of I, determined by the coefficient m,
governs the position of I relative to the axes X±, X 2 :

• For m > 1, as in the example in figure 6.2, 1/(1 — m) is negative—i.e., the intersection
occurs to the left of X \. As m reduces, approaching 1, I moves further and further
left and the lines P i , . . . Pn become closer and closer to being in parallel.

In this region of m the values on the line are exhibiting a positive correlation between
their two variables. When the lines are exactly parallel the variables change in lock
step; the common slope of the lines on the parallel coordinates only depends on the
offset, 6, of one variable from the other2.

In figure 6.3, case (a) shows a line with a slope close to 1 (in this case just greater
than 1; if the slope were just less than 1, the meeting point would be to the far right
of the axes).

As m —>• 0 0 , I is tending towards a vertical line at constant and I moves onto the
X \ axis. This is shown as case (b).

2 For the sake of consistency, parallel lines can be modelled as meeting at ideal points whose theoretical
positions are determined by the lines’ slope. See Inselberg & Dimsdale (1994a) for a description of one way
to handle the parallel-coordinates mapping as a projective plane based on a hemisphere, which allows ideal
points to be modelled as appearing on the hemisphere’s equator.

6.2. T he parallel coordinates presentation technique 133

x . x .

• • •

X X X X

X x. x2

X

Xi

X

x2

X

(a) (b) (c) (d)

F ig u re 6.3 Examples of collinear points mapped onto parallel coordinates: (a) m « 1.2;
(b) m = oo; (c) m = 0; (d) m « —1. (The figures are not drawn to scale.)

• For 0 < m < 1, the intersection occurs to the right of the axes. This is still a positive
correlation, but in this case X \ is growing more quickly than X^-

As m approaches 0, I is tending towards a horizontal line at constant X2, as shown in
case (c) in the figure.

• Finally, for m < 0 the intersection occurs between the two axes, appearing at the
half-way point when m = — 1. Such a situation, shown as case (d), corresponds to
negative correlation: as one variable increases the other decreases, leaving a tell-tale
crossover point between the axes.

A result of these conditions is that when plotting a number of data points tha t are approxi
mately collinear with respect to two of their variables, the parallel coordinate mapping will

6.2. T he parallel coordinates presentation technique 134

contain a region of lines that all pass through or near a particular point on the diagram.
In a real-life data analysis task there may be many small independent regions of linearity,
which will appear as groups of lines that pass through different common points. The per
son performing the analysis has to develop the skill of being sensitive to detection of such
groups—unless interactive assistance is available, as described in section 6.2.3.

Basic statistical interpretations supported

Wegman’s (1990) excellent review of the technique includes a basic vocabulary of ‘statistical
interpretations’ supported by parallel-coordinates displays. They include:

• linear relationships as described above

• overall correlation structure between adjacent variables based on the degree
to which obvious crossovers, converging lines, parallel lines are evident in the spaces
between axes

• inter-variable cluster relationships both between adjacent variables and, provided
the data lines are not packed too densely, traceable through to other variables

• distribution such as detection of the mode of the results, appearing as the most
dense bundle of paths seen to flow as a group through the diagram.

The paper includes a compelling illustration of the application of these techniques in the
analysis of a data set relating to 74 different models of automobile plotted on five data
dimensions.

Support through interactive alteration

Although parallel coordinates can be used as a static, paper representation, many additional
capabilities are opened up when the plot is performed on a computer and an interactive
interface is provided.

Wegman notes the following kinds of support:

• axis normalisation For a given data set the user may find tha t all the points have
a similar value for one or more of the variables, and therefore pass through narrow
regions on the corresponding axes. This makes it hard to distinguish the results on
the basis of those variables, so it may be useful to re-scale such an axis so the data of
interest are distributed over the full axis height.

6.2. T he parallel coordinates presentation technique 135

• d iffe ren t p e rm u ta tio n s o f variab les In a plot of n variables (without duplication),
n — 1 pairwise correlations are visible at any time out of the total of n(n — l)/2 .
Wegman shows that the minimum number of permutations needed to ensure that
every pairwise combination has been seen is (n + l) /2 —for example, for ten variables
you would need six permutations. In a typical case, however, the user’s understanding
of the problem domain will rule out many of the correlations as uninteresting.

• rev e rs in g th e sense o f som e axes Because of the tell-tale crossover points, a
negative correlation between two axes can be easier to detect by eye than a positive
one; conversely, in some cases a lack of crossovers will help to isolate distinct regions
of correlation. Reversing the sense of alternate axes in the display will reverse the
sense of all displayed correlations, and may bring to light some relations tha t were
previously obscure.

Wegman also introduces variations on the plotting technique, using aggregation and density
plots, th a t are suited to working with very large data sets for which the user’s goal is less
likely to be the identification of individual results than the discovery of overall correlation
structures between variables.

R e la tio n sh ip to o th e r m u lti-v a ria te p re se n ta tio n s

Many techniques have been developed for helping people to visualise, and hence understand,
multivariate data. It is a vast area of study, into which I can only hope to provide a few
pointers. The techniques considered first are those that help the user to spot individual
results with characteristics that are salient, or are simply of interest at the time, out of a
large sea of data. Others emphasise the search for overall trends in the data.

One of the most memorable techniques emphasising the representation of individual items is
the use of faces with varying features, as proposed by Chernoff (1973) and Flury & Riedwyl
(1981)3.

Tufte (1990) provides an attractive and informative historically based review of information
presentation techniques—but his examples are all static displays, in which there is a clear
goal to communicate a particular known message in the data (and perhaps to obscure other
possible messages). By contrast, in the tradition of exploratory data analysis launched by
Tukey (1977), the idea is that through the manipulation of the way a data set is visualised

3 More recent work includes an evaluation of Flury-Riedwyl faces by De Soete (1986), and an interface
developed by Curtis and Scarfone (1992) using which they claim to be able to map either 17 or 34 distinct
variables to a face depending on whether or not it is constrained to be symmetric.

6.2. T he parallel coordinates presentation technique 136

users of data may discover information they did not realise was there. Since the nature of the
information is not known in advance its detection and presentation cannot be automated;
the presence and interaction of the person is crucial, as Bertin (1981) stated:

‘Graphics offers the means of going beyond what can be automated. We can
find numerous methods for automating the diagonalization of a matrix, but
we will never find methods for automating the conception of the most useful
subsets. Graphic permutations can only be carried to their conclusions by the
“decision-maker” himself.’

(p.21, added emphasis)

Bertin’s own technique was based on a tabular ‘graphic’ representation tha t makes it easy
for the user to perform visual analysis to discern rows and columns with similar or inverse
properties. By physically rearranging the table the user can build up large overall patterns
revealing some trends in the data that were (a) originally hidden, and (b) of interest to
this particular user. Bertin, at least initially, performed his work either on folded and
marked strips of card, or using large arrays of domino-style pieces representing the data.
Computer support for this approach has since appeared—e.g., M arsh’s (1992) Interactive
Matrix Chart.

So now we are clearly in the domain of techniques for spotting trends among data, rather
than especially salient individuals. But the Exvis visualisation environment (Grinstein,
Pickett & Williams, 1989) is claimed to combine the two approaches: users create landscapes
of small iconographic representations of the individual data points, where each character-like
‘icon’ may vary in a number of abstract but salient features, such as the orientation of a main
stem or the angle and shape of various branches. The user is expected to gain impressions of
the data set from the overall ‘texture’ of the resulting display, as well as possibly having his
or her attention drawn to individual icons that have interesting shapes. Iconographer (e.g.,
Waite, 1991) provides an interactive environment in which a user can experiment with the
construction of iconographic displays such as these, altering the mapping of data variables
to icon characteristics and placement until a revealing presentation is discovered.

As Tufte notes (1990, p.38) a display that conveys information at the panoramic as well as
at the ‘micro’ level is a combination the human visual-processing systems seem well adapted
to using. Parallel coordinate displays possess this property too, and correspondingly possess
the constraint that where results are very densely packed the task of discerning individual
entities becomes difficult.

There is also a branch of representations that condense the display of multiple dimensions
by using projection, whether onto a single 2-D display (e.g., see Vetschera, 1994) or onto

6.2. T he parallel coordinates presentation technique 137

a m atrix of scatterplots each showing correlations between different variables (e.g., see
Cleveland and McGill, 1984). Scatterplot matrices, like the parallel coordinate presentation,
can be drawn for an arbitrarily large number of dimensions—as long as you have the display
space. An important landmark in an alternative direction—the use of computers to provide
dynamic visualisation techniques—is the collection of papers assembled by Cleveland and
McGill (1988).

Wegman (1990) provides some direct comparisons between the parallel coordinate and other
representations, in particular pointing out the way it avoids some pitfalls in projection-based
techniques. But overall he regards the parallel coordinate representation ‘as complemen
tary to scatterplots. . . . Because of the projective line-point duality, the structures seen
in a scatterplot can also be seen in a parallel coordinate plot.’ He suggests tha t a major
advantage of the parallel coordinate representation over the scatterplot matrix is the linkage
provided by connecting points on the axes, which is difficult to duplicate in the scatterplot
matrix. In favour of the scatter plot he notes that it uses a comparatively small amount
of ink for each result, so one would expect results to be less prone to becoming cluttered
and indistinguishable than the mass of lines on a parallel coordinate plot. But he briefly
describes some of the computer-based parallel coordinate density plot techniques that he
implemented to overcome this problem.

6.2 .3 A pp lications in data v isualisation

The IBM Parallel Visual Explorer

Figures 6.4 to 6.7 show views of an IBM visualisation and data analysis package that
was announced at the end of 19944. The package is a straightforward implementation of
the parallel coordinates method, with an environment that supports various query and
manipulation tools for analysing the presented data.

The information used here is taken from an overview on the IBM World Wide Web site,
and from the User’s Guide for Version 1, Release 1.0 of the product.

Figure 6.4 shows a plot of 384 ten-dimensional data items corresponding to various financial
measures collected each Monday over a seven-year period. The user has applied two separate
‘range’ queries on the YEAR scale, to highlight the results corresponding to the years 1986
and 1992. The corresponding result lines are re-drawn in a colour designating each query,

4IBM Announcement Letter No. ZP94-0897 dated December 20, 1994: Program Number 5765-469 IBM
Parallel Visual Explorer for AIX. Note that the product makes widespread use of colour for distinguishing
data items; here the colours can only be shown as shades of grey.

6.2. The parallel coordinates presentation technique 138

'

Fi
gu

re

6.4

Th
e

IBM

Pa
ra

lle
l

V
is

ua
l

Ex
pl

or
er

,
wo

rk
in

g
on

a
set

of

we
ek

ly
fin

an
ci

al

m
ea

su
re

s
fro

m
the

Ne

w
Yo

rk

cu
rr

en
cy

m

ar
ke

ts

co
ve

rin
g

the

ye
ar

s
19

85

to
19

93
.

On

th
is

di
sp

lay

the

us
er

ha

s
sp

ec
ifi

ed

tw
o

in
de

pe
nd

en
t

qu
er

ie
s.

6.2. The parallel coordinates presentation technique 139

while the other results remain plotted in black. In this example the user can see that 1986
(actually plotted in yellow) was characterised by a strong dollar—showing low values on
the exchange-rate scales against BPS (British Pound), GDM (German Deutsche Mark) and
YEN—and low stocks, as shown by SP500 (the Standard and Poor’s Index). By contrast,
in 1992 (plotted as light blue) the dollar was relatively weak and the British Pound highly
volatile, and throughout the year gold prices were low and stocks high.

'ariabies View|?<

F ig u re 6.5 The data narrowed to contain just the results identified by query q l in the
previous figure. A new query has been applied at this lower ‘focus level’.

In figure 6.5 the user has isolated the 1986 data points by ‘focussing in’ on the results of
the query previously shown as q l and plotted in yellow. Now a fresh set of queries can be
applied. Here the user has set up a range query bracketing a five-week section of the WEEK
scale, and can slide this bracket up and down the scale interactively to highlight the results
from different times in the year.

The queries shown so far are examples of ‘range’ query, enabling selection of a range of
values on one or more axes. PVE also supports other forms of query specification:

• slice: a more general form of range, in which the markers can be placed in the space
between axes

6.2. The parallel coordinates presentation technique 140

• w edge: in which the markers are not constrained to be vertically one above the other.
The results selected are those whose lines pass above the upward-pointing marker but
below the downward-pointing one.

• flow: for selecting results whose lines, between two particular axes, have a slope
within a specified angular range

ParaBel visuai Explorer - ■7../../u$r/{pp/pvei,samples/currerK:y.dat

i Q uery V ariables Viewport

I T oTW iiSj —

Wmm

F ig u re 6.6 A ‘flow’ query, selecting results whose line slopes fall within the specified range.

Figure 6.6 shows an instance of a ‘flow’ query placed between the BPS and GDM scales.
The highlighted lines appear to be converging, suggesting a linear relationship. This can
be confirmed by requesting a scatter plot of these two variables, as shown in figure 6.7.
Note that the slope of the linear relationship is just a little less than 1 (i.e., just below 45
degrees), which is what one would expect from a convergence point to the far right of the
two axes concerned.

PVE also contains many other facilities supporting the specification of queries and derived
variables, permutation of variables, automated clustering, etc. One powerful interactive fea
ture is the facility for adjusting the specification of queries either on the parallel coordinate
display or on a derived scatter plot.

6.2. T he parallel coordinates presentation technique 141

-i Scatter plot of BPS and GDM - pve2d1j

BPS ^ | 1,38938 p

-

GDI

Dismiss

0.7139

*

*

0/XM8S

v(|

F ig u re 6.7 A scatter plot of the results selected in figure 6.6

An insight into the range of data analysis activities for which PVE is expected to be of
value is provided by the following guidelines that appear in the PVE User’s Guide5 for
users undertaking exploratory data analysis. The main headings and recommendations are
as follows:

1. Set a goal: W hat are you trying to find in the data?

It is noted, however, that you don’t need to establish formal hypotheses regarding
what you might find: ‘the PVE method can be efficiently used to identify hypotheses
from data sets without the need for establishing a hypothesis beforehand.’

2. Organise the data

The guide recommends separating the dependent variables from the independent ones,
and placing variables that are very closely related consecutively.

3. Correct the scaling and locate missing values

4. Identify and explain outlying values

If using the tool to discover qualitative trends in typical data, it is im portant to re
move the values that represent unusual cases. ‘A valuable feature of PVE is that
the specification of what constitutes an “outlier” does not need to be specified for
mally (such as “more than two standard deviations from the mean”). Rather, data
points that appear to be visually far away from other data points can be selected for
examination and analysis.’

5IBM Publication no. SC28-9742-00

6.2. T he parallel coordinates presentation technique 142

5. Permute variables and look for relationships

Look for variables that have high correlations—positive or negative.

6. Identify and explain categorical data

In other words, find sets of data that appear to form a category—appearing on the
display as ‘bands’ of lines either meeting an axis or crossing the space between axes.

7. Determine effect of different flow angles between consecutive variables

This is just one particular hint for finding categories of data, by using the provided
facilities for selecting groups of results according to the slope of flow between two
axes.

The guidelines include some further practices that are suggested to be particularly useful
in data sets containing clearly distinguished independent and dependent variables:

• Cluster identification—looking for separate clusters of lines that are closely correlated
over a range of independent variables.

• Range queries on dependent variables, to discover which clusters tend to lead to which
dependent-variable values.

• Identifying alternative independent variable values that arrive at the same dependent
variable values.

• Inversion of some variable scales to make trade-offs more salient. Depending on the
data set it might be useful to give all the dependent variables the same sense with
respect to the user’s goals (e.g., so good results are high on every scale), or conversely
to invert the senses of alternate variables, since crossings can be easier to detect than
regions of parallel flow.

W inV iz

The WinViz Multidimensional D ata Visualisation tool is now bundled as part of the Lotus
1-2-3 spreadsheet6. WinViz is also shipped as part of the Business Intelligence Suite, a set
of data analysis tools marketed by Information Builders Inc. (IBI) of New York, NY.

The following information is taken from an overview available at the Singapore Information
Technology Institute’s World Wide Web site, and from two papers (Lee, Ong & Sodhi 1995a,
1995b)7.

6Release 5 for Windows, initially for Asia/Pacific markets only; a product of Lotus Development Corp.
7Again, the tool’s display makes use of colours for distinguishing results. Here they appear as grey.

6.2. T he parallel coordinates presentation technique 143

W inV iz - [MDV Tool @ D a t a s e t : ACCPED.MASJ
«* File Edit O p t io n s W in d o w Help

r> I r» »gsiui 1 r p c o n p | s p d l m t | T ota l
7 0 H ISlit ht

I
1

/ Fenr ale \

Seri

\

Wit

Diy

P

eoh iiin

4 0 H nil-

—A ttn& utc- 8 EKfulalo

— 0 1 2

F igure 6.8 WinViz, showing a query on a set of accident statistics.

Figure 6.8 shows a set of 1579 records of traffic accidents involving pedestrians. In total
there are seventeen attributes, of which only five are currently on display: the age and
gender of the injured pedestrian, the extent of injury, the road condition (wet or dry) and
the speed limit at the accident location.

Apart from the pedestrian age, the displayed dimensions are all discrete attributes with just
a few values. If every result were plotted as a polygonal line the display would become very
hard to decipher, so although WinViz does support such plotting its facilities are optimised
instead for dealing with ‘group bars’ containing multiple results. The tool provides an
interactive ‘partitioning’ feature for dividing a scale such as ‘age’, with an arbitrary level of
detail, into a useful set of groups if wanted.

Each scale represents the distribution of the results among its discrete groups by the width
of the group bars to the left of the centre-line of the axis. For example, the user is currently
pointing to the ‘Male’ group bar, which can be seen to represent a slightly larger portion
of the results than does the ‘Female’ bar. Accurate results relating to the bar currently
under the mouse pointer are displayed at the far bottom-right of the picture, here showing
the ratio of the number of results in the bar (951) to the total number of results (1579),
expressed also as a percentage.

6.2. The parallel coordinates presentation technique 144

The bars to the right of each axis are for showing correlations between each group and a set
of alternative ‘classes’ identified by the user. In this figure the user has identified the three
alternative levels of pedestrian injury as the classes of interest, so every group has three
bars on the right of the axis with widths showing the proportion of the overall data set
that falls within each of the classes. It is apparent that the predominance of ‘slight’ injuries
applies universally over the data set, although in this particular form of presentation the
‘70kmh+’ bar is too narrow for us to make any visual judgement. One way to look in more
detail at this part of the results is to create a query:

Three of the group bars in the figure are overlaid with cross-hatch boxes, having been
selected by the user: ‘Male’, ‘Killed’ and ‘70kmh+’. Their selection constitutes a query,
selecting only those results that have all the chosen properties. The box labelled Query/Bar
near the bottom right-hand corner of the display shows that just eight out of the 951 ‘Male’
victims were killed on high-speed roads.

WINVIZ @ CREDIT1.WK4 : (A:A1..A:KI26}
bKAN r E P ^ « Io v H BOUGHT J ~SEX jMARRlio]"" ArI a T o t a l

m e a l * © t r u

Q t v e T y /S <
1 0 4

F igu re 6.9 WinViz (for Lotus 1-2-3): A set of loan-decision statistics.

Figure 6.9 shows a more complex display but on a smaller set of results, relating to loan-
granting decisions. In this case the specified query (results for which ‘Employed’ is ‘Yes’)
constitutes the majority of the results. Each bar in the display shows the proportion of
its results satisfying the current query as the shaded portion, while results not satisfying
the query appear as the white strip at the outer edge of the bar. The classes selected for
correlation are the ‘Yes’ and ‘No’ values of the ‘Granted’ scale. So, looking at the ‘Sex’

6.2. T he parallel coordinates presentation technique 145

scale, for example, we can see tha t a greater proportion of the female than male applicants
were non-employed, and that all (or virtually all) the females who were not employed are in
the ‘not granted’ category. The full query capability of WinViz is described in (Lee, Ong,
Toh & Chan, 1995).

As well as supporting fully user-driven exploration, Lee, Ong and Sodhi (1995b) show
the results of integrating WinViz with a tool for Knowledge Discovery in Databases8 that
derives generalisations from a data set and displays them on WinViz for evaluation by
the user. For example, the program might develop the rule: ‘IF P_AGE < 41 THEN
P JN J = Slight [83.6%]’. This rule would be displayed using the P_AGE constraint as a
query criterion, and highlighting the expected P J N J result so the user could see at a glance
which of the results did or did not conform to the generalisation.

The A ttribute Explorer and Influence Explorer

An im portant alternative to the group bar concept used in WinViz—although not as well-
suited to dealing with large data sets—is the ‘stem-and-leaf’ style of plotting used in the
prototype Attribute Explorer (Tweedie, Spence, Williams &; Bhogal, 1994) and the Influence
Explorer (Tweedie, Spence, Dawkes & Su, 1995).

The stem-and-leaf plot is a well-known data presentation technique, in which—as described
by Tufte (1990, p.46)—each data point simultaneously states its value and fills a space.
Tufte shows an example of a train timetable:

hour m inutes
5 06 18 31 46 58

9 06 12 15 19 24 30 34 40 45 49 53 59

. . . in which it is clear at a glance that there are fewer trains in the hour following 5 a.m.
than 9 a.m., before you even think of looking in detail at the precise times.

Figure 6.10 shows the A ttribute Explorer, a system for data exploration (already described
on page 58 in chapter 3). Each of the small house symbols that contributes to the histograms
on the scales corresponds to an individual house instance, providing visualisation of trends
and, when results are selected using the sliders, correlations between the scales. A symbol
can also be selected individually, causing the corresponding data instance’s polygonal line
to appear joining its positions on each scale.

8The C4.5 inductive learning program (Quinlan, 1993).

6.3. R equesting and m anipulating reconnaissance results 146

Type of House Price (£1000)

{eZ m\

* * * o
* * * 6eoeooooo
0000
0000
00
0000
0000
0000
0000
0000
0000
0000
*0000000
*0000000
* 0000000
*0000000
*0000000
* 0000000*0000000

220

200

18o'
16(4

140

120

100

80

60

40

000
000
000000000000000000************************************000000000000000000000
0000
0000
000
0000
00000000

No. of Bdrms

6
Garden (feet)

1ho
220

(T

00
00
00
00
*0****00***000***000***000***000
***00000
***00000
***00000
***00000
* * * 00000
*000000*000000000000000000000000000
*000
0000
0000
0000
0000

200

180

160

140

120

100

80

60

40

Dial, from St .(mine)

r

00
00
000
000
000 *0
*0
00
* * 0
*00
*00
* * * * 0
* * * * 0
* * * 0 0 ***000 ***000
**0000 **000 **000
*0000 00000000
* 0 0 000000 *00000000
*0000000
*0000000 00000000
*000000 0000000 0000000

60

45

30

15

r

0000**00**00
* 0 0 0
*000
*000**0**0*00
*000
*000
*000
*000**000
**0000
*00000
*00000
*00000
*00000
*00000
*0000000
*0000000
*0000000
* 0000000
*0000000
* 0000000*0000000

F ig u re 6.10 The Attribute Explorer (also shown on p.58).

The Influence Explorer, shown in figure 6.11, takes this style of display further. It includes
rules for colouring the result blobs according to their satisfaction of multiple range criteria—
with special salient colourings for those that satisfy all the criteria relating to the ‘param eter’
scales, or all those relating to ‘performance’ scales, or all of both sets. A detailed description
of the meaning of the colourings seen here is given in (Tweedie, Spence, Dawkes h Su, 1995);
a general explanation is not yet available.

6.3 Requesting and manipulating reconnaissance results

The foregoing review shows that the parallel coordinates presentation is a powerful formal
ism for displaying, manipulating and analysing multivariate data. But a reconnaissance
system requires some specialised facilities beyond those needed for analysis of an existing
body of data. In accordance with the needs identified in section 4.6 it is now shown how
an interactive parallel-coordinates formalism might provide a substrate for supporting the
following user tasks:

1. specifying a reconnaissance range, and opportunistic extension of the range

2. specifying the reconnaissance content—i.e., the measurements to be taken from each
result—and opportunistic extension of the content

3. viewing and comparing result summaries to identify available trade-offs

4. selecting particular candidate results for detailed examination

6.3. R equesting and m anipulating reconnaissance results 147

[Perform ances

X

IS
■ X Xxxx

fccxa

x■
X X

Xb-:x>

m « »

smx * s

Main E ffects Line S p ecification
Button Button Button

_ .< "

■■■ ■ ■■■

■ • X X B X B

F ig u re 6.11 The Influence Explorer. This diagram shows two stages in the exploration; the
larger (overlapped) window is the later stage, when the user has specified some parameter
and performance criteria.

6.3.1 Specifying a reconnaissance range

Since the reconnaissance support is for use in a domain that can be explored in terms of
option spaces, a reconnaissance range corresponds to a range of option-value combinations.
In the domain represented in figure 5.13 on page 126 the user can choose values for each of
the options A, B and C; one form of search that may be useful is an exhaustive permutation
of alternative values for these parameters. Figure 6.12 represents a case in which a user
has shown interest in three out of the four values for option A, both values for option B,
five discrete points on the scale for option C, and two acceptable ranges for constraint D.
Selecting these values from a menu, a ‘switch’ control, and two numerical ranges respectively
can be achieved with standard dialog-box style controls; the selected values can then be
mapped, as shown in the figure, onto independent scales that will appear in the parallel
coordinates representation of the search.

6.3. R equesting and m anipulating reconnaissance results 148

o p t io n A

t in y

b ijo u

s m a l l

m a s s i v e
option B option C constraint D

tin y -- 4.0 - -
false - - 60 < D < 70 --

3.5 - -

bijou - - 3.0 - -

2 .5 - -
true - - D < 45 - -

m assive - - 2 .0 - -

F ig u re 6.12 Representing option specifications on parallel axes

The most straightforward way for the system to undertake a reconnaissance foray using

extent of evaluation, as suggested below.

O p p o r tu n is tic ex ten sio n o f reco n n a issan ce ran g e

The user may be given various forms of control over the range of option-value combinations
for which reconnaissance is obtained, such as:

• incremental search over the selected option values

As described above, the initial bounds of the search may be specified by selecting a
set of options to vary, and a hand-picked set of values to try for each option.

The system can be designed so tha t it is easy for the user to request the reconnaissance
necessary to illuminate all unexplored value combinations. Alternatively there may be
facilities for the user to request partial searches, which in some domains would allow
the avoidance of some needless exhaustive search in regions that can be discovered
early on to be unproductive—e.g., when certain combinations of options A and B are
found to be uninteresting, no m atter what values might be specified for C and D. A
simple way to do this is to allow the user temporarily to switch option values into
or out of the search. For example, in figure 6.13 the user has switched off three in-
between option values so tha t the reconnaissance illuminates just a broad selection of

the selected values is to explore all combinations, in this case totalling 3 * 2 * 5 * 2 = 60
alternatives. Alternatively the user can be given facilities for controlling the order and

6.3. R equesting and m anipulating reconnaissance results 149

t i n y - -

b i j o u) (

f a l s e

t r u e - -

m a s s i v e - -

4 .0 - -

3 . 5 > (

3 .0 —

2 . 5 > <

2.0 —

6 0 < D < 7 0 - -

D < 4 5

B

F ig u re 6.13 Temporarily switching off option values to reduce reconnaissance range

the option space; when the results are analysed they may be found to indicate that
some of the switched-off values hold more promise than the others.

This example of reduced search examines 2*2*3*2 = 24of the total 60 combinations,
so if processing each combination takes an appreciable amount of time the incremental
reconnaissance strategy can reduce dramatically the delay in obtaining some results.
It is up to the user to balance the time savings against the physical and cognitive
effort of selecting options to switch into and out of the search, and the possibility
that im portant results will be missed. Note, however, tha t the need to expend effort
to reduce search thoroughness acts as a counterbalance to the normal effort-accuracy
trade-off; the most thorough reconnaissance foray is the one tha t requires the least
effort to request. This observation alone suggests an opportunity for a set of exper
imental investigations into how users prefer to handle reconnaissance under various
conditions.

A more sophisticated way to refine the range of search would be to allow the user to
express constraints on the combinations, such as specifying that only when option A
has the value ‘tiny’ is the range ‘D < 45’ of interest. Supporting such extensions would
present further interface design challenges—but this is to be expected: after all, a fully
expressive form of reconnaissance support would need the power of a fully expressive
query language, and there are still many active research issues in the provision of
visual-programming techniques for such languages.

It should also be noted that the description here is influenced by the commitment,
declared in chapter 2, to systems in which the user has explicit control over every
aspect of progress. There are many opportunities for interesting extensions based on
more adventurous forms of cooperation, such as reconnaissance refinement driven by

6.3. R equesting and m anipulating reconnaissance results 150

automated adaptive response to trends in the early results. Such extensions could be
powerful, and presentable in a way tha t does not confuse users—but they are currently
relegated to the domain of ‘further work’.

• adding further values to existing option scales

tiny- F - tiny- F~ - -
false,! ___

\ ' s ~ ' 4 _ bijou-
false

bijou -

trye> ---------- '
small -

^ K

tryeS
massive - massive -

A B A B

before: reconnaissance completed “ small” added: reconnaissance has a new gap

F ig u re 6.14 Adding a value to option A for further reconnaissance

Continuing with the same abstract search example, the user may decide to extend
the reconnaissance beyond the three values of option A tha t were originally chosen
for illumination. The addition of the previously ignored value ‘small’ does not affect
any of the results illuminated so far, so the extra value can simply be added to the
option A scale, as shown in figure 6.14. The value can be added in its normal place
in the ordering of possible values, as shown in the figure; using the same ordering as
the option menu is probably a good idea for helping the user understand the display.

The gap in the reconnaissance coverage that is opened by the addition of the value
is of the same form as when a user switches in a value tha t had temporarily been
removed from consideration. Facilities for requesting the reconnaissance necessary to
fill the gap should be the same in both cases.

• adding further option scales

Having viewed early results the user may decide to take control over additional options
in the search. In the case of a database retrieval this would correspond to constraining
the value on some previously unmentioned parameters of the candidate results, such as
the date of construction or the floor area of homes for sale. In a task such as document
formatting the additional options would typically be customisations of parameters
that are otherwise defined to have default values, such as the typeface or the inter
line spacing.

6.3. R equesting and m anipulating reconnaissance results 151

-tiny-black

blue --
bijou

green - -
true.'

massivered--

H A B

inclusion of previous default

4000- tiny -
false 7

3000- /

bijou - -

2000- /

true.-
1000- ---------massive-

~-----

J A B

partial overlap with previous values

F ig u re 6.15 Two examples of adding a new option to the search

Depending on the details of the exploration, adding a new factor might correspond to
a subtle extension to the result-space region to be illuminated, or it may conversely
correspond to moving the entire region. In the very worst case it would have the
effect of making the previously discovered results irrelevant to the continuing direction
of exploration. Going back to the castaway example: if the decision makers were
suddenly to abandon the assumption that the groups was to settle in the new place,
and decided instead that they should investigate striking camp somewhere where they
could build boats in which to sail for home as soon as possible, any existing survey
information would at least be evaluated with a radically altered set of priorities;
some of the reports from scouts who had been sent inland would suddenly become
uninteresting. By contrast, if the additional consideration were merely a particular
interest in examining all hill-top sites, the reconnaissance may have already covered
most of these places.

It should be left up to the user to determine what happens to existing results when a
new scale is added, by making provision on the new scale for the display of the previous
searches. Figure 6.15 shows the outcome of two different scale additions on the search
as represented at the ‘before’ stage of figure 6.14. On the left, option H represents
the addition of colour to a search in which the default assumption corresponds to the
use of black. Since there is a ‘black’ node on the new scale, all the existing results
are retained and can be plotted as passing through tha t point. On the right, the
addition of option J marks a decision to specify in numerical terms the quantity that
was previously represented in discrete categories by scale A. In this case the lowest
value on the new scale corresponds to the value implied by ‘massive’, so the previous
results corresponding to ‘tiny’ and ‘bijou’ no longer have any place in the display and
have been removed. Scale A itself will have to be discarded to allow the larger values
on J to be reported, but at least part of the earlier reconnaissance can be retained.

6.3. R equesting and m anipulating reconnaissance results 152

false
true

measure G

false --

true --

F ig u re 6.16 Representing measurements on parallel axes

As shown in figure 6.16, the various suggested kinds of measurement can be mapped onto
scales for presentation in a parallel coordinates display. Many exploratory systems provide
some standard result measurements, such as the total page count in a WYSIWYG word
processor, or at least the facilities for requesting measurements, such as the area ratio of
two rooms in a candidate floor plan. So an environment may already have the facilities for
requesting the measurements that are of interest to the user; the requirement for recon
naissance is to let the user identify the measurements that are to be automatically derived,
isolated and plotted for each candidate result.

An example of an interface facility for letting a user request reconnaissance measurements
would be a suitable entry in a pop-up menu available on fields displaying measurement
values.

O p p o rtu n is tic ex ten sio n o f reconna issance co n ten t

Pursuit of an exploration also requires that the user have facilities to change the scouts’
instructions regarding the result measurements to be taken. Like the illumination facilities,
support takes various forms:

6.3.2 Specifying reconnaissance content

measure D measure E measure F

1 . 0 -

0.5 -

fo o --

bar-

baz-
40 -

30 - 0 -

6.3. R equesting and m anipulating reconnaissance results 153

40 -

_fpo-

:jb»'

baz^--_

\ false-

frtis'1

before: no filtering

70

4o

40 -

0.5

0 H

'CTjar-
\ false X

b a z T - - - _
't'ruV

removing results with E<0.625 or G=false

F ig u re 6.17 Using measurement values to exclude results from display

• result filtering by measurement value

Although initially the user may specify measurements to be reported, without knowing
whether or not they will provide useful evidence for discriminating between the value
of available results, once some results have been seen the discriminatory power of
some measurements may become apparent. In the castaways’ scenario the decision
makers may decide to remove from consideration any reports tha t score badly on
these measures, and to instruct future scouting missions not to submit their reports
for collation if they fail to meet the criteria. Note that because these are criteria
based on the discovered results the scouting missions will still have to be sent to find
those results—by contrast with a decision to reduce the range of options considered,
as discussed in section 6.3.1, which allows the decision maker to cut down the number
of scouting missions dispatched. Nonetheless, the ability to delegate to the scouts
the decision on whether the reports are worthy for consideration can save a lot of
evaluation effort on the decision makers’ part.

Figure 6.17 shows how this may be represented on the parallel coordinates display:
having seen that several results attain the desirable high values on measure E, and
the ‘true’ condition for G, the user has requested to remove from the display those
results tha t score badly on E or fail on G.

• altering measurement sensitivity

Another aspect of the discovery of the effectiveness of measurements is learning how
precise a value it is worth asking the scouts to measure and report. Figure 6.18 shows
two changes tha t a user might request: aggregating the range of measurement D
into a few discrete categories (which are still independent of the constraints on D

6.3. R equesting and m anipulating reconnaissance results 154

1.0

6 0 - 6 9

'5 0 - 5 9

4 0 -4 & -

3 0 - 3 9

/ 0 . 7 5

0 .6 2 5

f o o -

bat
> x s

b a z - - -

f a l s e ^

t r u e '

D E F G

F ig u re 6.18 Changing the sensitivity of scales D and E

specified in the retrieval), and focussing scale E on just the reduced region of interest
so that results’ relative performance within this range can be compared more easily.
Requesting the changes must automatically update the display of existing results, as
well as affecting how future results will be plotted.

Scale F which, as defined in the previous chapter, represents a measurement tha t can
take ‘an unpredictable but limited range of values’ (such as airlines offering a service
on some route), must be capable of extending itself automatically as previously unseen
values are found. Clearly this is only practical as long as there are no more possible
alternative values than can fit comfortably onto a displayed scale.

• adding further measurement scales

Like the addition of option scales, the decision to make additional measurements can
have a dramatic impact on the usefulness of results that have already been obtained.
In some cases the new measurements may already be available from the previous recon
naissance, merely needing to be expressed in the new way. In other cases the previous
reports will not serve to provide the new measures, so either the user must manage
without having those measures for all results or must dispatch reconnaissance to re
visit the earlier sites and take the new measurements. For certain domains it would
be feasible and appropriate for the system automatically to dispatch the necessary
reconnaissance to fill such gaps; in others—especially where gathering reconnaissance
is expensive in terms of resources—it would be better just to indicate the gaps but to
make it easy for the user to give the necessary orders.

6.3. R equesting and m anipulating reconnaissance results 155

6.3 .3 Trade-off analysis

1.0 -

" T% " " -
\ fal§ff -

W true'*

4.0#
*

,'$.5 -' 0

" X 3.0 -
0 '

0 '
.^2 .5 -

_______ \
■ M

4 0 -

' " • ■ ■ ' / I
0 \0 \

fo °»

bafj

bjiz-
'traff J -

-- 2.0
30 - 0 -

A B C D E F G

F ig u re 6.19 Three result summaries on parallel axes

Figure 6.19 shows a simple plot containing just three results, derived from different option
combinations. The user can make some comparisons by eye from this plot, and can see
correlations such as the apparent inverse relationship between factors C and D, but for
detailed analysis some interactive assistance is bound to be necessary: for a start, the figure
indicates a basic facility for highlighting a result by pointing to it (using the arrow pointer),
which can help to resolve display ambiguities such as that caused by the convergence of
two results on scale B. Additional interactive facilities such as those found in the systems
reviewed in section 6.2.3 are likely to be useful: for example, the ability to highlight or
colour selected ranges of results, or to reorder the scales to show alternative correlations.

The display shows the result-generation options in the same form as the result measure
ments. This suppression of the implementation-imposed distinction between options and
measurements can be helpful, since they all count as properties of the results: for example,
a user is likely to want to correlate flight cost against travel date, regardless of the fact
that the date had to be supplied as an ‘option’ value while the cost is only available as a
‘measurement’.

This is just one example of the (desirable) practice of providing inter-referential input/output
(Draper, 1986)—also a factor in the provision of equal opportunity interfaces (Thimbleby,
1990). The overall aim, as discussed in section 9.3.2, is to avoid unproductive distinction
between what constitutes an ‘input’ to a system and what constitutes an ‘ou tpu t’; in this
case the inputs are acting as a useful part of the output.

6.4. Conclusions 156

6.3 .4 D eta iled exam ination o f in teresting resu lts

Part of the practice of reconnaissance-based exploration is that the decision maker needs to
examine in detail some of the results whose properties have been summarised by the scouts.
Since it is by interaction with the parallel coordinates display that a user identifies which
of the results are interesting enough to merit such detailed investigation, it is desirable
that the facility for requesting the investigation is triggered through the same interface: for
example, there might be a pop-up menu that allows the user to request the full details for
the currently highlighted result.

As was noted in section 4.6, the generation of detailed result displays will usually need to
be handled by a domain-specific display engine—for example, showing the full WYSIWYG
view of a document whose structure has been summarised on the parallel coordinates display.

6.4 Conclusions

This chapter shows how the parallel coordinates presentation technique is suited to the
handling of the information generated by reconnaissance that can be expressed using op
tion space/measurement space dimensions. It has also outlined how one might build an
interactive framework supporting the necessary opportunistic construction of a display that
supports the core facilities required to perform reconnaissance.

The next chapter reports on the implementation of such a framework and the associated
pieces needed to support a particular approach to document formatting, and the tests
that were carried out to confirm that existing users of the formatting tools found the
reconnaissance a powerful and useful addition.

Chapter 7

InteracTgX: Adding reconnaissance
to lATJjjX processing

7.1 Introduction

This chapter documents the implementation and testing of a prototype interface based
on reconnaissance, carried out to explore the feasibility and impact of casting an existing
activity into the necessary form for reconnaissance to be applied.

There had been some discussion as to whether it would be better to use the time available on
a single large-scale implementation exercise, or a number of smaller ones covering a variety
of domains. It was decided that a single domain would be addressed; since the addition
of reconnaissance raises questions and challenges at many levels, a single project stood a
better chance of throwing light on a worthwhile range of these issues.

The fundamental need was to find a domain in which users would be involved in explorations,
and for which under-informed outcome would be a recognisable problem. Further criteria
used in selecting the domain were as follows:

• A non-retrieval domain

As illustrated by the examples suggested so far, reconnaissance can be applied either
in a domain such as database retrieval that explicitly deals with exploration, or one in
which the exploration is only implicit. Having already explored some of the issues in
providing reconnaissance in the travel agent (retrieval-based) scenario, the alternative
represented a more interesting challenge and would show the wider applicability of
the illumination-zone analysis.

157

7.1. Introduction 158

• Extending an existing industry-strength tool

In chapter 5 (particularly section 5.4) are discussed some design issues relating to
contrived example domains of my own invention. When it came to implementing a test
domain, however, there was a concern that any system I could build from scratch in
the available time would necessarily support only a simple level of tasks. By contrast,
finding an activity that was already supported with an ‘industry-strength’ tool, that
could be extended to provide reconnaissance features, would offer the opportunity to
apply reconnaissance to tasks of realistic complexity.

• A domain with existing local practitioners

Working in a domain for which there was an existing local community of users would
give the opportunity to canvass their opinions on the kind of reconnaissance support
that would be appropriate, and to obtain feedback on the impact of reconnaissance,
once implemented, on their typical modes of use.

Section 7.2 summarises the course of the development and evaluation of InteracTjrjX, showing
the assistance obtained from existing experienced LXÎ jK users. Then section 7.3 begins the
analysis of what was discovered, starting with a brief overview of the features tha t made
document-formatting in a suitable domain to address in this thesis; readers familiar
with may wish to skip this section. Sections 7.4 to 7.6 then address the findings of the
study, in terms of the various challenges posed by the reconnaissance proposals—namely:

• Challenge 1: Can reconnaissance serve a useful role in this domain?

Section 7.4 examines this with respect to the requirements noted in section 4.5,
namely:

- Is there an opportunistic exploration to be performed?

- Is the user motivated and able to specify a range of results to illuminate?

- Can the user specify a set of system-measurable result properties?

• Challenge 2: Can a suitable reconnaissance interface be built?

Section 7.5 reviews the requirements noted in section 4.6, using the interactive parallel
coordinates approach proposed in chapter 6:

- Can useful illumination be handled by defining an option space to be explored
and a measurement space within which to place all the results?

7.2. Im plem entation and evaluation procedure 159

— Can the results be collated to allow the user to perform the kinds of trade-off
analysis that are wanted? In addition, can the user view and compare a small
subset of results in detail?

— Can the system support exploration in the directions the user wishes to cover,
collating results from disjoint parts of the result space if necessary?

- Can the system provide convenient control over the progress of the exploration?

• Challenge 3: Does reconnaissance encourage accuracy?

Section 7.6 reports on the test subjects’ overall reactions to the addition of reconnais
sance to a system with which they were already familiar:

- W hat impact is there on the users’ typical mode of use?

— How is the extra effort involved in pursuing reconnaissance perceived in relation
to the extra accuracy it can bring?

- W hat further incidental changes did the addition of reconnaissance bring?

Finally, section 7.7 summarises the findings from this work, and the implications for future
efforts to build systems with reconnaissance facilities.

7.2 Im plem entation and evaluation procedure

Figure 7.1 shows the three main stages of progress in developing and evaluating InteracTgX
(also portraying their significance towards the three challenges declared above):

• The first stage was a feasibility study to confirm that DT^jX processing could be
controlled satisfactorily, and aspects of its output instrumented, from a tool built in
the Smalltalk development environment.

This nascent reconnaissance framework was biassed to maximising the range of options
and measurements that could be requested, by using the full expressive power of raw
Smalltalk expressions. The use of Smalltalk syntax, which is not widely known, as well
as the absence of convenient abstractions, meant tha t at this stage it was impractical
to set up tests in which subjects could use the system for themselves.

To obtain feedback without having to run such tests, the system was explained and
demonstrated to two experienced DTf^X users—using a simple contrived formatting
example. The subjects were canvassed for their opinions on the kinds of option and
measurement they believed would be required to make up a useful ‘toolkit’ for general
DTeX use.

7.2. Im plem entation and evaluation procedure 160

Challenge Implementation Evaluation Materials

f F easib ility s t u d y ^ \
P ro to type d e v e lo p m en t

months

In te rface ex tensions
. 3 months .

P ilo t te st L aT eX usage questionnaire
(subjects I & 2)

L aT eX usage questionnaire
In te racT eX tutorial

C on tinued
personal use

/ ^ s i m p l i f i c a t i o n ' s ,
o f syn tax and facilities

2 months

Demonstration &
Requirements capture

(subjects 1 & 2)

(subjects 3 ,4 ,5 , 6)

T u torial

F ig u re 7.1 Stages in InteracTgX implementation and testing

• On the basis of the demonstration feedback the main period of implementation began,
adding a basic level of facilities to enable the most im portant of the requirements that
had been suggested for ‘real’ formatting tasks. Eventually the system, although it
still required Smalltalk incantations that were too obscure to explain to test subjects,
was sufficiently flexible to be demonstrated at work on the subjects’ own documents.
A pilot test was run, calling on the same two users as before. The test involved the
following phases:

A. A pre-arranged set of questions was put to the subject, to obtain a measure of
his level of use and experience with

B. The subject was asked to call up one of his own previously formatted ETfjjX
documents, and to show how, using his normal ET}7jX setup, he would go about
re-formatting the document to meet some contrived but reasonably realistic new
constraint—i.e., a dramatically altered page size.

For this phase I had drawn up a second set of questions, that were fairly open-
ended and aimed to provide a view of the subject’s attitude towards the costs and
benefits of producing well formatted documents. However, having encouraged the
subjects to ‘think aloud’ while performing the task it was found tha t there was
no need to ask all the questions formally: some were answered along the way.

7.2. Im plem entation and evaluation procedure 161

C. In the absence of the subject, the InteracTgX framework was extended to include
specific support for as many as possible of the processing options and measure
ments tha t the subject had been seen to use. This typically took a few days.

The subject was then shown the extended facilities, demonstrating how recon
naissance would offer a different way of going about the same formatting task,
and was prompted to answer a third set of questions regarding the perceived
effectiveness of the approach.

The sets of questions for which I wanted answers are in appendix B. Some were
answered in the subjects’ thinking aloud, while others had to be posed directly.

Basing the demonstration on one of the subject’s own documents, and a task tha t had
already been attem pted without the help of reconnaissance, had the desired effect of
impressing the subjects with the potential power of the technique. They were able to
suggest further facilities tha t they believed would be useful. But both subjects stressed
that for any serious analysis of the impact of reconnaissance they would have to be
able to drive the system for themselves; that the top priority in further development
should be a dramatic simplification of the interface to make this possible.

The results from phases A and B contribute towards the overall evaluation of chal
lenge 1: the existence of a role for reconnaissance in use. These results are
therefore reported in detail in section 7.4 below. The phase-C results, on the other
hand, are found in section 7.6 dealing with challenge 3: the overall impact of recon
naissance on result quality.

• The feedback from the pilot test was sufficient to guide an extensive re-design of
the system, to allow the most commonly used facilities to be made much easier to
specify. This made it feasible to develop a hands-on tutorial based on a fairly complex
formatting scenario, introducing all the main capabilities of InteracTgX so subjects
could reach an understanding of what it might do for their own work.

Four further experienced users of IXI^X were approached. As in the pilot-test stage,
each subject was first asked to demonstrate the facilities he or she typically used in
ETfrjX, and to answer the questions from phases A and B above. Then the tutorial was
worked through in ‘think aloud’ fashion, followed by a further solicitation of comments
in similar fashion to the use of the phase C questions.

There was a lot of material to cover. Subjects typically spent 3.5 hours in total on
the evaluation, split into two sessions to prevent excessive fatigue and to allow the
novel ideas to ‘sink in’ a little. Again, the results from this section are split between
sections 7.4 and 7.6 as appropriate.

7.3. Suitability of lAT^X for addition of reconnaissance 162

Calling the test participants ‘subjects’ perhaps fails to give them sufficient credit for the
contribution they were being asked to make: these people were assisting in the iterative
design of a complex extension to a rich existing environment. The fact tha t they were all
experienced users of BTj^X ensured that they were familiar with the basic task being sup
ported, and—as it turned out—had their own catalogues of typical formatting problems. As
well as validating the comprehensibility and usefulness of the implemented InteracTgX facil
ities, these subjects were therefore able to provide additional ideas on further development
directions for reconnaissance support in this domain.

The facilities described in section 7.5 are from the final stage of development, as used in
the tutorial.

7.3 Suitability of L T̂^X for addition of reconnaissance

7.3.1 T he need for result-space exp loration in w orking w ith IXtJjjX

To help clarify why the use of IXQnjX is more like an opportunistic exploration than an
imperative definition of the desired output, I include here my interpretation of the main
points of ‘IXIjgX philosophy’. The overriding principle is ‘leave typographic design to the
experts’, so readers who are attuned to a more hands-on, WYSIWYG approach to document
preparation might find the following a little disconcerting. But there is certainly room for
debate; it is not clear what proportion of the I#I]eX community is actually prepared to
adhere to the letter of the law in pursuit of officially sanctioned formatting.

Leave typographic design to the experts

BTfjjX is a software tool for allowing authors with little or no skill in typography to produce
documents formatted in accordance with many of the complex and stringent typographic
conventions that have developed over centuries of publishing. Some of these conventions
are concerned with minute details of placement of each character within a line of text,
while others relate to higher-level issues such as the formatting of paragraphs, sections and
chapters.

The author of a document is saved from having to consider or even understand such details,
by working at the level of logical design. In the case of a bulleted list, for example, the
author merely needs to declare a set of items to be members of the same list, and the
system will produce a list that conforms to design standards for such lists as previously
defined and expressed by an expert typographic designer.

7.3. Su itab ility o f for addition o f reconnaissance 163

The alternative—tools that give authors direct control over the visual design of their
documents—is claimed to cause many problems when the authors are untrained in ty
pography. Such systems may allow an author to produce a document tha t appears visually
pleasing, but this is not enough:

‘Most authors mistakenly believe that typographic design is primarily a question
of aesthetics—if the document looks good from an artistic viewpoint, then it is
well designed.’

(Lamport 1985, p.6)

Good typographic conventions, Lamport argues, have evolved to make a document as easy as
possible for a reader to understand. Naively designed documents, even if visually appealing,
are likely to contain many typographic mistakes tha t cumulatively burden the reader; even
if the reader can discern the meaning, the effort required to do so will be needlessly greater
than in the well-formatted case.

T h e sy stem w ill need he lp in m ak ing design trade-o ffs

Every line of text produced by ETjrjX is proportioned and laid out to the highest possible
standards—and if those standards cannot be met a warning message will be produced. But
the conventions it embodies are only those that can be expressed as mechanistic generali
sations, so unlike a human typesetter (and in common with all other computer-based text
formatters, as far as I am aware) ETfrjX cannot make higher-level decisions based on the
meaning and intent of the material being formatted. For example, if a list does not fit onto
a single page, ETeK cannot detect whether it would be less disruptive to a human reader
for the page break to occur between a given pair of items rather than one item earlier or
later.

For this reason the user sometimes needs to provide hints to ETgX as to how to resolve
problems that might arise. ETfTjX includes various commands for coercing the formatting
algorithms to give priority to constraints tha t are additional to those implied by the doc
ument’s logical structure. These can be used, for example, to encourage or force line and
page breaks to occur in places that the author feels would be the most appropriate.

If used heavy-handedly, these coercions can give the author excessive control of the visual
design of the document—potentially sabotaging some of the efforts of the typesetting al
gorithms. Used appropriately, however, a beneficial synergy of subjective judgement and
typographic precision can result.

7.3. Su itab ility o f I^TeX for addition o f reconnaissance 164

Create first, polish later

Lamport quite reasonably claims that:

‘DTfj}X was designed to free you from formatting concerns, allowing you to con
centrate on writing. If, while writing, you spend a lot of time worrying about
form, you are probably misusing DT£}X.’

(P- 8),

. . . and he later goes further, suggesting:

‘Don’t worry about line and page breaking until you’re ready to prepare the
final version. Most of the bad breaks that appear in early drafts will disappear
as you change the text.’

(p.87)

. . . although here it is not clear whether he is claiming that the bad breaks tend to ‘disappear’
because of changes you were going to make anyway, or simply reminding you to get used to
the idea of changing your text to make this happen.

7.3.2 A n exten sib le , in d u stry-stren gth sy stem

Some software systems are much easier to extend than others; with the programming tools at
my disposal I needed to find a system that had some form of powerful external programming
interface.

Unlike the highly self-contained text formatting programs available on the departm ent’s
Macintosh computers, DG^X offered great promise of extensibility. The key to this is that
the TgX processing engine1 is controlled entirely by the contents of files tha t the user
instructs it to consult, and tha t since these are all plain text files they are easily editable.
Figure 7.2 shows the standard DT^X setup.

^ o te: is not a separate processing tool, but a simplifying layer of commands defined using the
TgX language. As far as Tf̂ X is concerned, a document that uses hTgX is simply calling on the la tex macro
file as well as any others it requires.

7.3. Suitab ility o f Î T ĵX for addition o f reconnaissance 165

heavy border indicates a file tha t can b e bu ilt by the user

file
.dvi

file
.log

styles,
extns

figs

file

high-resolution
printer

Tex LaTeX

TeX

(xdvi/ghostview)

co m er m ark indicates a file in p lain tex t form

F ig u re 7.2 Components of a T^K/IM]eX processing setup

Specify ing a lte rn a tiv e in p u t op tio n s

In normal use of Î T]eX, all the user’s text and formatting instructions for a given document
are contained within a single file (the . te x file). This file can contain all of the following
kinds of instruction to the T^jX engine:

• the document text, including its structure information (headings, lists, etc.);

• instructions to pull in additional files containing other elements of the document, such
as figures, that have been prepared independently;

• instructions to pull in files that specify the formatting style to be used;

• instructions to set values of parameters used by the selected style;

• instructions to override macros defined by the style.

The valuable implication of this is that the full range of customisation tha t a user will
typically use can be offered simply by controlling the content of this one file.

T ak ing m e asu re m en ts o f th e o u tp u t

The main result of processing a document is the .d v i file, containing typeset pages in a
‘device-independent’ format that can then be interpreted by further tools to drive printers or

7.3. Su itability of 1AT)eX for addition of reconnaissance 166

online viewers. In addition TjgX produces a log file (. log) containing diagnostic information
regarding the processing of the document. In normal use the main purpose of this file is
to help the user determine the cause of any errors or warnings tha t may have arisen; when
there are no errors the file contains little information. However, there are various adjustable
settings (set using instructions within the document, as usual) tha t allow a user to cause
additional information to be logged, such as detailed tracing of the actions of the line- and
page-breaking algorithms. In addition the user can cause messages to be written to the log
by embedding special macros in the input; these macros can refer to variables tha t are made
available by TgX, and that reflect the position and state of the typesetting at the instant
when the surrounding text is being processed.

Having these logging facilities seemed likely to be all I would need to provide rich measure
ment facilities. In fact, as reported in section 7.5, there were some unexpected limitations
in the power of both the range and measurement specifications.

Providing a reconnaissance-control front end

Although there are some front-end systems that are specialised to the creation and editing
of lAI^X documents, our department’s Unix installation of T^jX does not include any. I
was therefore free to create my own front-end to the processing engine, which I did—
as usual—using Smalltalk. As well as being a general-purpose application development
environment, Smalltalk has all the facilities necessary for launching and communicating
with other processes such as T]eX.

7.3.3 A vailab ility o f subjects w ho understand th e dom ain

In the department of Computing Science there is a large community of users of IATgX, with
varying levels of experience and differing principal reasons for using the system—such as:

• the opinion that its typesetting is of higher quality than tha t of the alternative tools
available here;

• a need to typeset large amounts of mathematics, for which lAT^X has particularly
powerful facilities;

• a frequent need to conform to explicit style guidelines, e.g., for conferences, which are
often expressed in the form of a IAIjnjX style.

I was already a lATgX user myself, but having access to people with much more experience
of the system was of great assistance throughout the development of InteracT^X.

7.4. C hallenge 1: Can reconnaissance serve a useful role? 167

7.4 Challenge 1: Can reconnaissance serve a useful role?

The first task in the investigation was to seek confirmation that users of I^T ĵX typically en
gage in opportunistic exploration of a result space, and tha t there is a risk of under-informed
outcome—i.e., tha t users are aware that greater accuracy might be obtained through greater
effort, but are not motivated to be thorough. In addition I had to confirm that, as defined
in section 4.5, the user is (a) motivated and able to specify a range of results to illuminate
before making a choice, and (b) able to specify a set of result properties tha t could be
measured to provide informative summaries of the results.

7.4.1 Is th ere an op p ortu n istic exp loration to b e perform ed?

To supplement my own experience with all test subjects were interviewed about their
patterns of using the system. As described in section 7.2, they were also asked to show how
they would carry out a sample formatting task on one of their own documents. They were
asked to select a document that was typical of their use of KT^K and whose formatting
fitted, as far as possible, the following criteria tha t affect the level of likely difficulty in
producing good formatting:

• too large for the formatting to be predictable

Around 20 pages was found to be sufficient to make it impractical to predict the
impact of any significant change throughout the document.

• both subjective and formalisable result properties

The need here was for a mix of structures in the document—perhaps a few figures, lists,
or formulae amongst the text—firstly to ensure that there would be some document-
specific formatting issues rather than just the perennial concerns of widows and or
phans, and secondly to make it clear that the reconnaissance was not aiming to reveal
all details of the processing but just those that could be expressed with the available
measurement facilities.

• non-formalisable freedom of variation

The subject would need to think up aspects that could be varied to fix formatting
problems. To motivate this, the sample document should be for the consumption of
people other than its author.

7.4. Challenge 1: Can reconnaissance serve a useful role? 168

The test procedure used for each of the subjects was as follows:

1. First the subjects were asked to report on the main issues tha t had arisen in the
formatting of the document, and how these had been handled. They were also asked
to comment on how satisfied they were with the formatting as it stood.

2. For any aspects with which they felt dissatisfied, they were asked to explain what had
led them, or forced them, not to find fixes to these problems.

3. Then a simple but significant change was applied to the task goals: a substantial
change in the size of printing area available on each page. This alters the page-
break positions T]eX will select throughout the document, and was intended to return
the pagination to the kind of arbitrary state users are likely to find when they first
seriously address a document’s formatting.

4. The subjects were asked to format the document with the new page size, but no other
alteration to the input, and to comment on what—if anything—they now felt needed
to be fixed.

5. They were then asked to make the fixes they felt were necessary, until the point at
which they were satisfied with the outcome.

The subjects were also asked to comment on the extent to which this sample of activity
was representative of their normal use of]#I)eX. Most of the subjects identified strongly
with the test scenario, having experienced the anguish of completing the formatting of the
‘final version’ of a document only to be hit later by a significant and unavoidable imposed
change to its style or content. These experiences normally related to conference papers.

One subject noted that because the test scenario did not have a realistically high external
motivation he was not as motivated as normal to find the best possible way of presenting his
document (a conference paper). In particular, when he has to squeeze a paper to contain
only the most important points in the limited available space he normally uses a strong
mental picture of the paper’s topics to decide how the text can be expanded or contracted
to best express these points. So whereas at one point in the test he adjusted the layout
simply by adding a blank line to an example code segment, he would normally have wanted
to use that precious space for another line of terse explanation. He still insisted on fixing
the problems he found, but using the approach that he would normally apply to a less
important form of document.

The following sections describe some of the characteristics tha t were observed to lead to a
need for opportunistic exploration.

7.4. C hallenge 1: Can reconnaissance serve a useful role? 169

User cannot predict and pre-empt all potential result problems

The complexity of the typesetting task makes it very difficult for a human to predict with
any accuracy how a bulk of information will turn out, once laid out on the page in accordance
with good typographic conventions. This is part of the reason for Lam port’s exhortation
not to worry about layout while creating a document’s content: it takes time and energy,
and most of the places where a problem might arise will tu rn out to be problem-free anyway.

In standard implementations of T̂ }X, a document is prepared in a source file tha t contains
both the text and the formatting instructions. The intended result is a document printed
on a very high resolution printer. To get an accurate representation of how the document
will appear once typeset the user must run the T^jX processing engine on the source file,
although it is not usually necessary to go to the extent of printing each attem pt on paper:
a representation of typeset text and pictures can be viewed in some detail on a graphical
computer display, allowing some text processing tools to provide WYSIWYG displays of
the formatted output.

However, whether or not a tool offers incremental re-formatting of text as it is changed, the
effect of even a small change to the input can have unpredictable impact for the following
kinds of reason:

• sensitive algorithms

There are many hidden trade-offs involved in T^X’s calculations of where to break
lines and pages. The addition of a single character may tip the balance determining
where to break a line, and hence perhaps a page. Some of the test subjects noted that
they find ET]eX’s placement of ‘floating’ items such as figures especially brittle.

• style changes

Any change to a style parameter that is used in many places in the document, such
as the indention at the start of a paragraph, has a multiplied chance of causing the
kinds of disruption described above.

• knock-on effects

Clearly a change that has any significant effect on local formatting may also have
knock-on effects in any later portion of the document. In some cases changes can
affect earlier parts of a document, too—for example, in a document th a t includes
cross-referencing to named sections or figures a change to one of these names will
affect all places where it is referenced.

7.4. Challenge 1: Can reconnaissance serve a useful role? 170

Typical formatting problems that the subjects reported experiencing (and considered im
portant to try fixing) include the following:

• (Subject 2) exceeding a publisher-imposed page count

• (SI, S2) code examples and figures not on the same page as their references

• (SI, S2) code examples that were broken across pages, in inconvenient places

• (S5) proofs broken across pages, although they are often long (and their position in
the text is fixed) so it’s hard to see how they could be improved

• (S5) some pages had large white-space gaps at bottom

• (S5) some pages were sparsely filled, because of default additions around list items
and examples; would have been wanted to compress them a little

• (S5) bad line breaks within the formatting of the bibliography

P ro b lem s m ay req u ire in d irec t, user-chosen m o d ifica tions

Because of the goal of leaving as many as possible of the formatting decisions to lATfTjX,
most suggestions the user can make should be specified as hints rather than commands.

For example, if the author is especially concerned at finding tha t a paragraph of just a few
lines is broken across a page boundary, the recommended approach is not to force a page
break just before the offending paragraph but to mark the text as an im portant block not
to break. When T ĵX comes to the point at which it weighs up the decision on where to end
the page in question, the author’s strong hint may tip the balance in favour of a different
layout: T ĵX may be able to squash or expand the page to include or exclude the whole
paragraph, or there may be some more radical alternative such as changing the position of
some nearby ‘floating’ item such as a figure.

If the hint fails to have any impact, the author has to decide whether to take responsibil
ity for the visual layout by using one of kXÊ jX’s firm commands, or to make some other
attem pt to appease the formatter’s punctiliousness by changing the order or content of the
information to be typeset.

An alternative the author might consider is changing some global parameter. For example,
if the document has the problem that it is taking up a little too much space—just spilling
over onto a part-filled page, or perhaps filling half a page in what will be a double-page

7.4. Challenge 1: Can reconnaissance serve a useful role? 171

spread—the user may be prepared to try using a smaller font or wider margins throughout
the document. Of course, many such adjustments would go against the spirit of L^TgX.
As Subject 1 put it: ‘The whole point of BT]eX is tha t we [as document writers] are naive
about formatting; we don’t know as much as the providers of styles.’

The subjects’ opinions on suitable modifications included the following:

• (S2) reluctant to override any features of the externally-imposed style, although felt
that subtly adjusting the spacing between major sections would probably be accept
able

• (SI) finding problems relating to the use of someone else’s macro, was reluctant to
interfere with it

• (SI) considered turning code examples into figures, so they float and therefore don’t
get broken across pages (but raising the issue of becoming separated from their de
scriptions). Opinion: ‘floating figures tend to turn up in the right sort of place’

• (S2) figure placement could sometimes be fixed by moving the figure’s declaration
relative to the text

• (S5) faced with a short list (5 items) split across pages, might try forcing a page break
before it or finding earlier text to expand or contract

• (S5) faced with a widowed list item, would try removing some text from some previous
section where it looked like room could be created—possibly shortening the abstract
four pages previously!

Problems cannot necessarily be solved in isolation

The changes an author makes to fix one problem are likely to have effects on other parts
of the document. This is, of course, always true in the case of a global change, but even a
local change can have knock-on effects of unpredictable magnitude depending on the degree
to which the area around the ‘fix’ can absorb the change.

It is therefore true tha t a change in one place may cause some other problem to disappear—
and perhaps some new problems to emerge. This can be especially dramatic for global
changes; in a small document it is sometimes the case that some combination of global
settings will produce formatted output that is almost or completely free of problems. But
how likely is the author to find that combination, even if it exists?

7.4. C hallenge 1: Can reconnaissance serve a useful role? 172

The approach of making only local changes, and working through the document strictly
in sequence—re-formatting after each change, to see where the next fix is needed—will
certainly clear up problems. But it is still worth staying in the realm of ‘hints’, rather than
explicit commands, in case there is a change imposed in the future—such as the need to
remove a section—that affects a large section of the document. An example of the kind
of problem to avoid is the addition of explicit page-breaks, which can result in unexpected
breaks part-way through pages if there is a later change.

Subject 2, having made various changes to fix some problems, then found on a later page a
problem that he perceived as more important than the others. He therefore undid all the
previous changes, and made different ones tha t avoided the side effect that had caused the
particularly bad problem.

T ry in g la rge n u m b e rs o f a lte rn a tiv e s is expensive

Each change to the document needs to be specified, submitted for processing, and the results
viewed. Even if each iteration takes only a few seconds the author is unlikely to have the
patience to try more than a few dozen attem pts altogether.

Subject 5 noted tha t if an experimental change doesn’t make the required difference she
usually wants to restore the document to its previous state. This makes experimentation
expensive.

7.4.2 Is th e user m otivated and able to specify an illu m in ation range?

The options the user may be prepared to vary, and the acceptable ranges for these options,
are likely to be specific to the document and could not be predicted by a tool’s designer.
For example, in some cases the user has great freedom in setting style parameters such as
line spacing, font size, margin width, etc., but cannot alter the content; in other cases the
style may be tightly constrained by an external requirement, but the user is prepared to
change the order or even content of the document to produce what the user judges to be a
preferable overall outcome.

Many of the adjustments the subjects commonly used were capable of being supplied me
chanically, rather than the user having to make every change by hand:

• S ta n d a rd g lobal fo rm a ttin g choices such as picking a font name, size, and docu
ment style to be used for the document as a whole.

7.4. C hallenge 1: Can reconnaissance serve a useful role? 173

• U b iq u ito u s p re se n ta tio n choices such as turning on or off individually a forced
page-break before any of the major sections, or a frame box that can be added to each
figure.

• D isc re te s tep s in a n u m erica l value such as line spacing, margin sizes, tab posi
tions, scaling values for a figure.

(S5) had spent many hours on formatting, dominated by maths alignment: trying
different line break positions, tab positions, font size (within a single proof).

None of the subjects in my sample were in the habit of adjusting the param eters that
are used to fine-tune DTj^X’s various control algorithms. But some of the formatting
options offered by DT]eX, such as \ l in e b re a k [n] and \p a g e b re a k [n] , and \s lo p p y
and its partner \fu s sy , are implemented simply as coarse variations in penalty and
threshold values. There is no reason why an author should not create half-way versions
of these commands using explicit numerical values, and use InteracTpjX to try many
different values to discover when the balance of the formatting alternatives changes.
Depending on the details of the calculation being performed at the particular point
being adjusted, such changes may sometimes be swamped by other factors. But in
some cases it may turn out that the formatting is sensitive to subtle changes in the
weighting, so the author will discover a number of additional potential outcomes.

• A lte rn a tiv e p lacem en t o f te x t frag m en ts where the fragment might be some text
or a formatting command, thus allowing simple reordering of items (entire chapters,
if wanted), or alternative places to break a line of mathematics, etc.

(S2) experimented with moving a single-line paragraph from the start of one section
to the end of an earlier one.

• S pecialised a lte rn a tiv e versions o f a g iven te x t frag m e n t when the user does
not mind which of the versions is used, but is interested in whether a desirable knock-
on effect is induced. Or wanting to retain the original form of a sentence tha t has
been savagely cut to fit—in case the shortening turns out not to be worthwhile.

7.4.3 Can th e user sp ecify a set o f system -m easu rab le resu lt p roperties?

W hat concerns the user regarding the output will depend on the content of the document,
as well as its structure. For example, although a formatting tool might generally discourage
page-breaks from occurring where they would maroon a single line of a paragraph or item
in a list, the level of the user’s concern is just as likely to relate to juxtaposition of concepts.
A computer-based tool, with no ability to ‘understand’ these issues, might at least allow

7.5. C hallenge 2: Can a suitable reconnaissance interface be built? 174

the user to provide hints—overlaid on the document structure—for example specifying that
page-breaks would be highly undesirable in certain regions.

The following are some categories of features in the formatted output that commonly caused
concern for the test subjects, and that could easily be measured by the system rather than
requiring human inspection.

• Position of page breaks relative to particular document regions such as
whether sections that the user wants to be continuous (e.g., code examples, lists,
short paragraphs) are broken across pages, or whether points tha t ought to be seen
together (e.g., a figure and some text that refers to it) are separated by having to turn
the page.

(S5, S6) it would be good to have some more standard measurements, e.g. start and
end pages (or number of pages) of each major section

• Position of salient document elements relative to page breaks such as noting
when a major section heading appears near the bottom of a page, or tha t a section
ends near the top of a page thus leaving a large (and measurable) area of unused
space.

(S5) it would be good to have standard measurements checking the various ways in
which the positioning of, say, a single-line equation falls at a bad point

• Degree of ‘badness’ of typesetting warnings so tha t rather than having to look
through all warnings that may be reported, or to adjust the sensitivity of the warning
generator, the user can see a summary of just how bad the warnings are.

7.5 Challenge 2: Can a suitable reconnaissance interface be
built?

Having obtained a large amount of evidence pointing to a role for reconnaissance in doc
ument formatting, I was faced with the challenge of implementing the necessary software
components to provide reconnaissance support. As defined in section 4.6, these are:

• a result-space illuminator that can accept the kind of range specifications tha t the
user is prepared to supply, and can make the kinds of measurement requested in the
content specification;

7.5. C hallenge 2: Can a su itab le reconnaissance interface be built? 175

• a display generator and interactive display that can present a collated summary of
the results to allow the user to evaluate them, and in particular to make tradeoff
judgements between them;

• a command processor to handle the user’s requests for illumination, summary-display
manipulation and access to detailed displays, and to maintain an illumination zone
that can hold however many results the user wishes to illuminate and to evaluate
alongside each other.

7.5.1 Specifying a reconnaissance range

Principal requirements

As reported in section 7.4.2, the initial studies of LMjgK usage revealed tha t it would be
useful to support the following kinds of option:

1. overall document style choices, such as font size;

2. alternative, equally acceptable wordings for parts of the text, e.g., to change the size
of a paragraph if it will help the overall layout;

3. adjustment of numerical values used to specify figure sizes, tab positions, etc.;

4. optional characteristics of individual document elements, such as the constraints on
placement of each ‘floating’ item (e.g., figures), or whether a given section of example
code may be split by a page break;

5. alternative orderings for sections of text, e.g., the items in a list or even sections in a
chapter;

6. correlated changes in different parts of the text.

To be represented as a dimension in an option space, each kind of option must be controllable
by selecting a single value out of many (as if from a menu of alternatives). The principal
characteristic of TT^X tha t makes this easy to achieve is that all the text and formatting
commands for a document are specified in a single source file in a plain ASCII format.
This allows alterations to be specified merely by changing some sections of the character
sequence that makes up the file. Figure 7.3 shows how a facility for allowing specified places
in the file to take one from a menu of alternative character strings is sufficient to handle the
first four requirements in the above list, and figure 7.4 shows how the other requirements
can also be- controlled by selection from menus.

7.5. C hallenge 2: Can a su itab le reconnaissance interface be built? 176

\documentstyle[

fo n t

lOpt
llpt
12pt

]{article}

Text can easily have

howMany? ?
some
a number of
a multiplicity of
an enormous variety of

alternative wordings

and figures can be specified with alternative sizes:

\psfig{figure=figure3.ps,width=

And now some quoted code:

\begin
b reak a b le?

[allowbreaks]

lines of code
\end{code}

fig 3 s iz e

= 5mm }
20mm
2. 5in

{code}

F ig u re 7.3 Document variation by insertion of alternative strings. (In this and subsequent
examples, the strings that are destined to end up in the file are shown in the heavier
font.)

F acilities p ro v id ed in In teracT jjK

Since users are accustomed to specifying the content and formatting of their docu
ments as markup in a textual source file it seemed logical and convenient for the Inter acT^X
facilities to be specified in the same way. However, to allow the maximum flexibility in vary
ing any part of the markup the InteracTgX specifications are handled using an independent
syntax that is interpreted and stripped out in a pre-processing stage, the outcome of which
is a standard DT^jX markup file. In addition, since some instructions to InteracTgX do not
have any obvious place within the main document markup the user can place them in a
separate ‘expression’ file.

7.5. C hallenge 2: Can a suitable reconnaissance interface be built? 177

define sectionA = T h i s i s o n e s e c t i o n o f t e x t , d e f i n e d a s " s e c t i o n A " . I t ' s q u i t e s h o r t .

define sectionB = H e r e i s a n o t h e r s e c t i o n , d e f i n e d a s " s e c t i o n B " , w h i c h g o e s o n a n d o n a n d .

T h e a b o v e d e f i n i t i o n s a l l o w r e o r d e r i n g b y m e n u s e l e c t i o n :

shortSectionFirst?
<sectionA> <sectionB>
<sectionB> <sectionA>

W h i l e t h e f o l l o w i n g d e f i n i t i o n , i t s e l f c o n t r o l l e d b y a m e n u . . .

numWeapons

define weapons = two
three
many

f two: " O u r t w o

. . . c a n b e u s e d t o c o r r e l a t e a l t e r n a t i v e s : case weapons of s three: " O u r t h r e e

^ many: " A m o n g s t o u r

r two: a n d s u r p r i s e ! "
w e a p o n s a r e f e a r case weapons of < three : , s u r p r i s e a n d r u t h l e s s e f f i c i e n c y ! "

Lmany: , s u r p r i s e , . . "

F ig u re 7.4 Document variation by definition and use of variables

As examples of the syntax that is used to define options, here are the definitions for the
alternative values of ‘font’ and ‘breakable?’ shown in figure 7.3, and the interface controls
that InteracTgX generates as a result:

\ document style [|< %choose 11 font"

I < yes

>| (code)

[allowbreaks]> c 1 2 p t
□ □ o o □

10pt llpt 12pt f o n t b r e a k a b l e ?

>|] {article} 1 2

Hi a 1 0 p t h i a. n o
%choose "breakable?" p □ o p □ □ D O P □ O □

1< no I> I m b l l p t
P O O P 0 o

■ b y e 3
□ O P □ O P

The nested I < . . . > I bracketed sections in the second example are for associating the
mnemonic names ‘no’ and ‘yes’ with the alternative text substitution values being defined:
in this case the ‘no’ alternative is the empty string, which results in the default unbreakable
format, while the ‘yes’ alternative adds an optional parameter to allow breaks.

7.5. Challenge 2: Can a suitable reconnaissance interface be built? 178

Limitations

While it is true that taking control of the content of the .te x file gives access to all the
customisation normally available in building a document file, this level of customisation is
itself rather patchy. For example, it is straightforward to adjust the amount of white space
to be inserted before each paragraph in a document, with a single-line macro invocation
such as:

\setlength{parskipH4pt}

By contrast, the specification of the amount of white space to be inserted before the first
member of a list of items—intuitively a similar kind of customisation—is not available for
independent adjustment, since it is embedded within the definition of the l i s t environment.
That definition appears in one of the style files, and although it is possible to gain control
of a factor such as the spacing by overriding the entire definition, that presupposes that the
author of the document knows exactly which style is being used, and hence the full form of
the definition that must be replaced. Then if a user decides to try an alternative document
style, the previous way of adjusting the list definition might no longer work.

Of course, the standard I£T]eX styles are written from the viewpoint tha t authors should
not be seeking arbitrary control over such related properties. But it is not an inherent
limitation in Tj±jX, so it would be perfectly possible for a style designer to develop a suitably
anarchic style that provided a large number of parameters for control by the author of a
document.

7.5.2 Specifying reconnaissance content

Principal requirements

The variety of measurements that my test subjects suggested the system could take was at
least as rich as the range of options they wanted to specify—but a lot more challenging to
implement, since was designed to provide an algorithmically perfect output and to
leave it to the user to make any subjective judgements about whether the rules had failed
to suit the document. It became clear, however, that providing the following simple kinds
of measurement would at least constitute a powerful starter set:

1. reporting the page number, and the position on the page, occupied by a given piece of
the document. There are many kinds of information tha t can be derived from these
measurements, including:

7.5. C hallenge 2: Can a suitable reconnaissance interface be built? 179

• the overall size of the document, and whether it finishes on a mostly-empty page;

• the positions of salient elements such as the start and end of major sections, and
hence warnings about a section having its heading near the bottom of a page, or
ending near the top of a page;

• the separation between related points in the document, such as a figure and the
place(s) where it is referenced, or a set of items that should all appear on the
same page, or an item that the user wants to appear on a single line.

2. measuring the length of each typeset page, to reveal whether the formatting has left
large white-space gaps;

3. analysing any warning messages that are generated, so the user can judge whether
the degrees of ‘badness’ reported warrant concern.

F acilities p rov ided

I decided that all the measurement facilities, like the processing options, would be specified
in textual format. There are two main categories of measurement: ‘global’ measures that
apply to the document as a whole (e.g., the length of the document, and the number of
warning messages), and site-specific measures that present information about individual
features within the document. The latter require the insertion of ‘anchor points’ within the
source markup to identify the features to be measured.

I< %measure "Global" "Last Page %" >1 Last Page % |

\begin{verse} m g I
o o a a c a |

|< "limerick 3" I An old man who came from... * 20...
a n a o n vs

40 ...
a » a r.s a »

As the spelling makes poets so waoghaire.>l n o n d'b o
■ 80 ...\end{verse) g o g a g g
■ 100. _ 0 0 3 3 C Dl< %measure "limerick 3" P= >1------------------------------------ ------------

F ig u re 7.5 Requesting a global and a local measurement

Figure 7.5 shows, firstly, a request for the global measurement called ‘Last Page %’ which
measures how full the last page is (as a percentage of the available text area). The figure
also shows the insertion of the anchor points identifying a section of the text as ‘limerick 3’,
and the corresponding request for the measurement ‘P = ’ concerning this section, which
generates a boolean value that represents whether or not the two ends of the section appear

limerick 3 P- \

m true
□ a a o a i3

m feJse
□ G £ a a

7.5. Challenge 2: Can a suitable reconnaissance interface be built? 180

on the same page of output. On the right of the figure are the two scales generated by
InteracTgX to show these measurements. For simplicity of implementation all InteracTgX
scales are made up of discrete elements, so the nodes on the percentage scale represent
ranges of possible values; there are facilities for the user to request a customised set of
gradations, if wanted.

Limitations

Like the limitations in freedom to adjust formatting parameters, there turned out to be
some unexpected constraints on the information that can be made available by way of the
log file. In particular the log file cannot report reliably the eventual physical position, on
the typeset output, of any part of the document; this is a corollary of the method by which
T̂ rjX determines the best position for each page break.

It was clear tha t this kind of measurement is the most valuable of all, so an alternative
means of finding the information—making use of the DVI output file rather than the log—
was developed after much experimentation (and much help from Alastair Reid, then working
in the department of Computing Science, Glasgow).

As for the means of requesting the measurements, the need to insert and edit complex ex
pressions within the document was regarded as laborious. Subject 2 suggested alleviating
the problem by providing macros in a tailorable editor such as emacs. Subject 6 suggested
that the commands should be generatable using commands in the graphical reconnaissance
interface itself. I believe there is a need to support both, to allow for different user prefer
ences; the challenge is to make the alternative facilities compatible with each other.

7.5.3 A su itab le reconnaissance d isp lay form at

The sections above have included some examples of the graphical representation used for
option and measurement scales. In this section I show how the scales are assembled in a
form of parallel-coordinate display, and how the results of processing are presented on that
display. The overall presentation is derived from a mix of features found in the interactive
parallel-coordinates systems reviewed in chapter 6, combined with some unique additional
features designed to suit the reconnaissance task.

All features proposed in section 6.3 are supported. The following sections highlight some of
the more im portant ones.

7.5. Challenge 2: Can a suitable reconnaissance interface be built? 181

C o lla tin g m u ltip le re su lts

fo n t breakable? ttmerick 3 P= LastPdge %

1 2
■ a 10pt

2 d a a a C' c
La no

\ / 2 a a a a u n
■ true

\ 1 e s o n a c
o . . .

/ 2 a d a a o x
■ b n p t

1 OD2 3 CC
✓' \ m b yes

/ 2 c a s c s c o
* false

3 d &M □ .S3 □
/ m 20 ...

a a a o a x
...........

■ c I 2 p t
1 a a a a a □

/ \ \ * 4 0 . . .
x 1 a c a a a x

m 60 ...
I d e a a a »

■ 80 ...
c c o a d x

w 100
a c o a o x

F ig u re 7.6 A display of four results

Figure 7.6 shows the display after the system has processed the document in four alter
native forms. The combinations of input options that have been processed can be seen
from the lines joining the first two scales; the availability of particular values for the two
measurements of interest can be seen from the lines joining their scales.

Rather than following Tweedie et aV s (1994) approach of using a histogram to show the
distribution of results among the nodes on a scale, the number of results passing through
each node is displayed on its left. The advantages of this is that it requires less space
and is better for showing distributions that have wide variation (e.g., 3 results having one
value, 100 results having the next). The main disadvantage is the comparatively low visual
impact.

V iew ing op tions and m e asu re m en ts in th e sam e fo rm at

The option and measurement scales are represented in the same way, to allow the results
to be evaluated according to trade-offs that can involve a free mix of both kinds of result
property. As is seen in figure 7.6, the option scales are numbered to help the user remember
which ones they are. This seemed to work adequately well.

H ig h lig h tin g subse ts o f re su lts

A mechanism for marking interesting sets of results is provided by the six marker buttons
visible as small squares on each node, which allow independent control of six different colours
of marker. The user has switched on the right-most (green, seen here as black) marker on
the 60. . . node, so all results passing through this node—in this case just one—pick up

7.5. C hallenge 2: Can a suitable reconnaissance interface be built? 182

the green mark, and all the other nodes that they pass through show a green outline on the
right-most marker button. In this case the marking lets the user see that the result with
the fullest last page was the one generated by the combination of ‘12pt’ and ‘yes’ options.

Switching on the same marker on more than one node is the way to mark results that satisfy
combinations of criteria, and by using the different marker colours in concert the user can
explore many forms of trade-off. Additional display features that assist in such analysis
include the ability to re-order the scales, and to ‘switch off’ individual nodes to filter their
results out of the view (as suggested in sections 6.3.1 and 6.3.2) using the buttons that are
seen in figure 7.6 as the large dark blobs at the left of each node.

E xp lo ring a lte rn a tiv e co rre la tio n s

All scales can be ‘dragged’ sideways using the mouse, and ‘dropped’ between two other
scales to reorder the view.

V iew ing re su lts in d e ta il

Processed results

A.A
A.B
B.A

■ C.B

F ig u re 7.7 A simple result list, supporting result selection for viewing or reprocessing

To request to view a result in full detail—using a high-resolution graphical display tool such
as xdvi or ghostview —the user first needs a way to select the result. In InteracTgX each
result is given a name based on the option values used to generate it; the one highlighted
in figure 7.6 would be named C.B since it passes through the ‘c’ and ‘b ’ nodes of input
options 1 and 2 respectively. Figure 7.7 shows the format of the list of presented results,
which includes a display of the markers that currently apply to each one; in this case C. B
stands out because of the green blob against its entry.

7.5. Challenge 2: Can a suitable reconnaissance interface be built? 183

InteracTgX allows the user to create high-resolution views of any number of the results,
and—subject to the limitations of the user’s workstation screen—to compare them side-by-
side if wanted. This is an advantage over the default setup of DT^X; unless the user makes
a special effort to copy the DVI file at appropriate moments, only the latest version of the
formatting of a document can be viewed at a time.

7.5 .4 E xploration progress

fnteracTeX A: ../latex/expt-psfig 110
File Trials Results View Markers

line spacing author height fig width

1 2 3 4
a 1°pt | , ■

3
true

: • L x o a |\
m a 1.5 true I

C : X a X \\
■ o . . . 1 ***»

3 O 3 X ;s c 1
1 in

/ 10
true

:V. □ 8 a
a

Iv
3.25m

■ b
12 " p ta n o | 77

M
21 fa,? U v

m b 1.45 false IV
■ a ■ |V,

■ 2 0 ... 1 ■ b
• •: i / 24

1,5in
■ a a a

| Z ■
14

false 1 ’■'N « b
I v y 8

4in
□ □ □

12°
12pt \ /

Q a a 1
I " . ■ c
\\ ' 6

1.4
si -o n n i

\:V 2
4 0 ... \/; j ■ C

x r.i n | ,/
2in \ y ■ c

'V 8
4.5in
r ; one

\ m d
.V e

1.35
•n vi □ o a rf 60 ... V i

3 0 B ■ : □ 1 /
\« d Sin

\\ ■ e
\ 6

1.3
; • ana f ! h

80 ... /
■ u a |

® e 5.5in

\» f
6

1.25
V: : a a a 1 ■ TSU

Pending trials ■ P R O C E S S Processed results

B o .c .B .aa
B.D.C.C.a.a
S.D.C.O.aa
BE.C.B.aa
B.E.C.C a s
8 6.C D.a.a
CO.CB.m
C D C.C.%.*
C D.C.D.3.3
C.E.C.B.aa
C.E.C.C.a.a
CE.C.O.aa j

3

— > marker

histogram

30

B C.C B a a 2 4 -----------------
B.C C.C.a.a
B.C.C.D.a.a 18
C.C.C.B.a.a
CC.C.C.a.a 12
C.C.C.D.a.a
BF.C.B.a.a 6
B.F.C.C.aa
B.F.C.D a.a

J~ :

»»■ C.E B.B.a.a
• ■ C E B.D.a.a

C.DB.C.aa
B.D B.D.a.a
BE.B.C.a.a

■ «* C.E B.C.a.a
BOB B a a marker

» BEB.D.aa histogram
■ *« C D.B.B.a.a
■ ■ C.D.B.D.a.a

B EBB a a 30
« BD.B.C.a.a
• B.C.B.C.a.a 24 ----------
«■ C.C.B B.a.a

• C.C.B.C.a a 18
B.C.B.D.a.a

■ C.C.B D a a 12 B
B.C B B.a.a

• C F B.C.a.a 6
• B.F.B.D.a.a I I IC.F.B.D.a.a 0 ... I l l

Output

1 font size
a sec 2 ex 1 @top

2 line spacing
a s sec 2 ex 2 @break
ta sec 2 end V%

3 author height
a Draft sec P-

4 fig width

■ o TeX Error#
5 RotFig sec break
B Ack sec break
Last Page %
Min Page %

<|— l>l

F ig u re 7.8 A complete InteracTgXdisplay, while working on the tutorial example

Specify ing a re su lt range

Each node on any scale can be enabled or disabled by the user. When an option node is
enabled, InteracTjrX automatically sets up a search range that includes the enabled node in
combination with all combinations of enabled options on other scales. All these combina
tions are added to the pending t r i a l s list seen at bottom-left in figure 7.8.

7.5. C hallenge 2: Can a su itable reconnaissance interface be built? 184

Launching a reconnaissance foray

The pending list contains all option combinations tha t the user has enabled but not yet
processed. Processing begins when the user selects some (or all) entries in the list and clicks
the PROCESS button. Processing stops when there are no more selected entries in the list,
or can be halted by the user pressing the PROCESS button again.

Interactive viewing and control of progress

All formatting is carried out in the background, so the interface remains active at all times.
One benefit of this is that each result appears on the display, for examination by the user,
as soon as its processing is completed. Another is that the course of the reconnaissance can
be steered dynamically: InteracTgX picks the next trial to process by taking the top-most
selected entry in the pending list, so the user can choose not to process some of the pending
combinations either by disabling an option node (which removes the affected list entries)
or, more selectively, by un-selecting specific entries in the list.

Display ‘housekeeping’

A facility that was found to be important for helping the user to manage the display is the
ability to hide scales from the display if they were temporarily not needed on view. The
untitled list at the bottom right of the InteradTjjjX window contains all the scales; in that
list, the entries above the thick black line are the ones currently on view in the main display.
The user can drag-and-drop entries within this list as an alternative way of changing the
order of scales, including changing the visibility of a scale by moving it from one side of
the black line to the other—or even dragging the black line to a different position in the
ordering.

7.5.5 C haracterisation using th e Illu m in ation Zone M odel

Figure 7.9 shows an adaptation of figure 4.5 (p.94) to show the components of the InteracTgX
setup. Note the portrayal, at far right, of user interfaces tha t are independent of the
reconnaissance facilities: one handling the editing of the two input files (as described on
p. 176—here shown as x y z .te x t and xyz.expr) and the other handling the ‘previewing’ of
a document in WYSIWYG detail. As expected, on the left is the embedded connection
from the reconnaissance engine to the document formatting services.

7.5. C hallenge 2: Can a su itable reconnaissance interface be built? 185

3 5

Oo

Fi
gu

re

7.9

M
aj

or

co
m

po
ne

nt
s

of
an

In
te

ra
cT

gX

se
tu

p

7.6. Challenge 3: D oes reconnaissance encourage accuracy? 186

7.6 Challenge 3: Does reconnaissance encourage accuracy?

7.6.1 Im pact on typ ical use o f DT]eX

The need for exploration

All of the subjects acknowledged that IATgK formatting has a frustratingly inconsistent
nature. When a document can be arranged to fit pages in a convenient way the outcome is
excellent; when the system cannot arrive at a way to do this the outcome is disappointing.
Furthermore, whereas some problems turn out to be simple to resolve, others tu rn out to
be much more difficult.

I observed that this unpredictability has led many of the subjects to develop somewhat
defensive strategies for resolving formatting problems. For example, they tend to em
ploy cautious modifications—changes whose impact is relatively predictable—and to work
through the document carefully in section order so as not to disturb the pieces tha t are
already ‘fixed’. They are also wary of making changes that would be difficult to undo,
in case they reach a dead end in their search and want to revert to the best compromise
encountered along the way.

It was not surprising to see these defensive strategies, but I was impressed at the degree of
pragmatic effectiveness some subjects appear to have achieved. This suggests tha t although
reconnaissance makes it feasible to embark on explorations of arbitrary boldness, it is still
likely that a strategy of educated, document-specific suggestions will be more productive
than one of shaking everything up in the hope of landing on a fortuitous combination.
Indeed, my own experience with InteracTgX included a few occasions of frustration on
running an extensive range of experimental options and finding that, for the document in
question, these options offered no improvements at all.

That said, all the subjects noted the support for rapid execution and evaluation of alter
native ways of processing, and expected that working with reconnaissance would encourage
them to explore more options than without. Subject 1, in particular, noted how effectively
the collated result presentation allows one to narrow in on the results of interest.

Coping with externally imposed changes

The tutorial, like the original study reported in section 7.4, drew the subjects’ attention to
the scenario of externally imposed changes (such as having to use a different page size, or
remove a large section) for a document that has already been formatted once. All subjects

7.6. C hallenge 3: D oes reconnaissance encourage accuracy? 187

agreed that such situations were common and normally presented a heavy burden, and that
reconnaissance could certainly be of assistance.

In particular, subjects 5 and 6 noted that having already been through the document
once, defining an exploration range in terms of alternative acceptable processing options
for various points, there was a chance that simply revisiting those same alternatives would
be enough to find an outcome that suits the modified constraints. Going further, subject 5
suggested that in some cases the user may know in advance that a variety of formats will
be needed, and could prepare for this need by building into a document some alternatives
for aspects that were perceived to be good ways of making the document adaptable.

Subject 4 saw the main benefits of reconnaissance as applying to very large or complex
documents—otherwise there was little to gain, she felt, because in a small document an
experienced user will be able to solve most kinds of problem by inspection, seeing where
adding or removing a few words of text will make the necessary difference.

7 .6 .2 Effort and accuracy

Although all the subjects felt that pursuing reconnaissance should lead to better results,
most expressed some form of concern about the effort involved in doing so.

Subject 2, for example, expected that documents he would produce using InteracTgX would
be better than normal because alternatives can be tried faster; he would try more alter
natives, and he believed this would often bring to light a better outcome than might have
been found if only a few alternatives were tried. However, he saw a danger that people
would play too much—more than would be justifiable by the improvement in results. Al
though acknowledging that this was not entirely the ‘fault’ of the interface, he suggested
the risk could be reduced by attention to the level of facilities in the option and measure
ment toolkit—e.g., providing ‘canned’ sets of typical changes that are known to work well
together.

Many subjects noted that the addition of reconnaissance brought the need for a new kind of
effort: deciding what aspects of the output to measure and what aspects of the specification
to try changing. Subject 3 regarded this as a worthwhile development of a new skill.
Subjects 2 and 4 noted the effort as being in addition to, rather than instead of, the typical
challenge of figuring out how to provide hints that will coerce into producing a
better result. But subject 5 suggested that over the development and refinement of a whole
document the additional effort might amount to no more than would have been expended
in a traditional cycle of problem detection and fixing—and would bring the compensatory

7.6. C hallenge 3: D oes reconnaissance encourage accuracy? 188

benefit that, once defined, the adjustments and measurements are an investment that can
decrease dramatically the effort needed to make a whole range of changes in the future.

Subject 4 was especially concerned at the cognitive effort of working with the highly ab
stract multivariate result presentation—having to keep in mind the correspondence between
each scale on the interface and the variation in formatting that it represents. She made
some suggestions towards a more integrated form of reconnaissance support, specifically for
document formatting, that would involve active correlation between the manipulation of
options and a WYSIWYG display of the affected region(s) of the output.

7 .6.3 N ew op p ortu n ities and challenges

The facilities that were added to enable reconnaissance—being able to measure output
formally and to run batches of trials—also enable various ways of working other than the
originally intended form of reconnaissance.

Most subjects expected that they would add options and measurements along the way, if
it were cheap (for example, implemented as a specialised LM̂ jX-like tag set). The fact that
with reconnaissance these additions do not commit you to anything, but just allow you to
leave open an option or to indicate a potentially valuable measurement, makes this practice
more likely to be worthwhile than the actively discouraged habit of creating large numbers
of hints to

Subject 6 expected that each user would develop a favourite set of options and measurements
to be added automatically, for example to investigate the possible benefit of introducing
explicit page breaks before any major sections. Many of these would take on the nature
of features such els ‘conditional page breaks’, offered by some text formatting tools—but
with the advantage that the tool would not seek to resolve each option individually but
explore a wide range of combinations. These could then provide a safety net of available
alterations, to assist in resolving further stages of options and measurements that the user
would introduce after examining the particular features of a given document.

Subject 4 noted that if large numbers of reconnaissance options are generated as a matter of
course, it becomes especially important for the interface to help the user understand what
each choice or measurement relates to—for example, with facilities for managing just the
critical working set of options and measurements.

7.7. Conclusions 189

7.7 Conclusions

The implementation and evaluation reported in this chapter provided various levels of feed
back on the value and applicability of reconnaissance.

7.7.1 A dding reconnaissance to a trial-and-error a c tiv ity

• Discovering a useful set of components

With the help of existing users, it turned out to be feasible to create a set of
option and measurement facilities that would act as a toolkit covering a broad range
of formatting issues.

But because some facilities turned out to be particularly challenging to graft onto the
existing UTfj}X tools, there was only time to implement a relatively small proportion of
the requirements that were identified. A designer with more opportunity to change the
existing tools (for BTgX this would simply require greater proficiency with the TfrjX
language) should be able to produce a much more comprehensive set of reconnaissance
facilities.

• Applicability of the option space/m easurem ent space characterisation

Because I wanted to explore the feasibility of presenting reconnaissance using the form
of interactive parallel coordinates display suggested in chapter 6 ,1 was only interested
in supporting reconnaissance forays of a convenient form for such a display—i.e.,
having a range defined as an option space, and content defined as a measurement
space.

Using an option space imposes the restriction that every trial submitted for processing
be described in terms of a value for each option scale. Although I found plenty of useful
document-formatting scenarios that can be expressed naturally in this form, there are
others for which it is inconvenient. For example, it is hard to express contingent
options such as ‘either include this single paragraph, or a list of the following items—
in which case the list should take one of these three orderings’. InteracTgX’s facilities
do at least allow a user to work around this restriction, in that using option marking
can be used to highlight meaningless trials at the ‘pending’ stage and then to select
them as unprocessable.

In short, future implementations of integrated reconnaissance facilities for domains
such as document formatting will need a better way of overcoming this inconvenience,
perhaps based on an entirely different way of requesting reconnaissance.

7.7. C onclusions 190

• Providing a mechanism for expressing reconnaissance requests

In the case of it was reasonable for reconnaissance requests to be expressed in
textual form, alongside the users’ document markup; existing users of lAT^X are ac
customed to such abstractions, and to learning complex syntax rules and mechanisms.
But although this simplified the implementation, it was not well integrated with the
graphical interface aspects. Again, a developer of an existing graphically based text
formatter would be in a better position to integrate reconnaissance controls with the
existing interface.

• Integrating reconnaissance with an ongoing development activity

InteracTgX has proved to be good for the task of revising the format of an existing
document. As well as the testing, I have used it to refine some of my own work (and
expect to use it for producing the fair copy of this thesis). This is the principal kind
of task for which I designed the system, and is similar in nature to the isolated kinds
of exploration task that are usually tackled with retrieval systems.

However, one of the elements of feedback from the test subjects was a strong expec
tation that options and measurements could profitably be added throughout the de
velopment of a document. InteracTgX does already include many features that would
facilitate ongoing development of a repertoire of options and measurements for a given
document—for example, being able to introduce new options and measurements, and
to hide those that represent issues that are (at least temporarily) resolved—but its
current level of manual enabling and disabling of options would make it quite hard
work for the user to revisit a large number of options. This is one of the motivators
for introducing a further level of reconnaissance-control programmability.

7 .7 .2 H ow reconnaissance support was received

• Recognition of its usefulness

The findings suggest that reconnaissance could indeed be a useful additional level
of support in this opportunistic domain. The subjects were able to give examples
of formatting variations they would like to explore, and measurements that would
allow the effects to be summarised. Although I did not have the opportunity to
implement all their suggestions in time for the tests, the subjects were able to identify
various problems in their existing tasks that they felt would be alleviated by use of
the reconnaissance technique.

7.7. Conclusions 191

• W illingness to accept additional effort for improved quality

Although the subjects felt that reconnaissance could bring quality improvements that
would be worth the additional effort, the tests that were carried out could not provide
evidence showing a clear net gain. Part of the problem is the difficulty in predicting
the cost of pursuing reconnaissance; clearly it saves repetitive effort in evaluating a
large number of alternatives, but some subjects were concerned that the cognitive
effort involved in deciding what alternatives to explore would weigh heavily against
the potential advantages.

• Other ideas sparked by the reconnaissance facilities

A finding that I regarded initially as merely obscuring the feedback on the reconnais
sance implementation might, instead, be seen as the most significant result obtained
from this work. That is the recurring suggestion that the facilities I had provided to
support reconnaissance would have a more general role in the ongoing pursuit of a
range of possibilities, and not just in exploring ahead at moments of indecision.

Having analysed the burden imposed by many exploration techniques I developed the
reconnaissance approach to assist users in finding which options, out of a wide choice,
offer the more promising routes forward from the current point in an exploration. The
generalisation of this approach takes into account the fact that what is often needed
is a look back, to revisit those options that have not yet been positively discounted
and that might have become more valuable in the light of progress since they were
first examined.

The principal enabling techniques of reconnaissance are: 1) the use of enumerated
options to express a range of results worthy of consideration, 2) the use of measure
ments to summarise results that are generated, and 3) the collation of result reports
to allow tradeoff analysis. Taken with the generalisation of continuously revisitable
options, these are simply what you need to show a form of opportunistically generated
‘map’ of a complex result space. This concept is potentially as widely applicable as
reconnaissance itself, and certainly represents an intriguing area for future work.

7.7.3 Further experim en ts

The difficulties encountered in grafting onto HT̂ jK the various controls and measurements
that were wanted left relatively little research time available for evaluations and further
iterative development. It is likely that the choice of a less complex domain would have
allowed a larger number of tests and iterations, and perhaps even a longitudinal study of
working practices being altered by the provision of reconnaissance.

7.7. Conclusions 192

However, the richness of the DTf̂ X environment, including the complexity of users’ existing
working practices and their perceptions of the exploration challenges, has allowed even this
initial investigation to bring to light many issues that are likely to be useful in future efforts
to implement reconnaissance in the same or other domains.

Directions for further development and investigation based on the InteracTgX example,
which I feel will continue to be a valuable exemplar for the more general applicability of
reconnaissance, include the following:

• obtaining quantitative measures of the relative levels of effort exerted, time spent,
quality of document eventually accepted, and confidence about quality, with and
without the use of reconnaissance;

• investigating whether users wait to find problems with formatting a particular docu
ment, or—as was suggested in the feedback so far—develop standard sets of options
and measurements;

• investigating at what stage users start to have difficulty keeping a mental picture of
what the reconnaissance display represents, and seeing whether they develop strategies
for handling the problem as manageable sub-parts;

• seeing how users react if a sizeable reconnaissance foray reveals no especially suitable
results—do they: put in checks that are more lenient? try other degrees of variation?
just give up and accept a poor result?

Chapter 8

Suggestions for follow-on research

The InteracTgX implementation and evaluation reported in the previous chapter has served
as a ‘proof of concept’ for the use of reconnaissance in one form of opportunistic exploration.
In addition to further development and testing of InteradTpX, this thesis sets the scene for
various directions of research relating to the more general exploitation of reconnaissance.
This chapter describes some of those research directions.

Section 8.1 addresses the investigation of further domains in which reconnaissance may be
useful. I outline four potential applications of the technique that axe different from those
considered so far, and that bring to light various potential roles for reconnaissance that may
be found worthy of further investigation. The findings from such implementations will be
important to the research proposed in section 8.2, which is to address the architecture and
construction of generic facilities to assist designers in enabling reconnaissance for diverse
application areas. Finally, section 8.3 outlines some of the challenges involved in quantifying
the impact of reconnaissance, by observing users’ reactions and evaluating its influence on
the effort-accuracy tradeoff in their work.

8.1 Further implementations in diverse domains

As outlined in section 4.5, result-space reconnaissance can be expected to serve a useful
role in a wide range of opportunistic explorations. A primary goal in further research is to
ascertain which computer-based tasks can be characterised as involving explorations of a
suitable kind. Within this thesis, chapter 4 illustrates how reconnaissance could be applied
to a straightforward search within a flight database, while the InteracTgX implementation

193

8.1. Further im plem entations in diverse dom ains 194

demonstrates an alternative form of exploration that arises implicitly in choosing the for
matting for a document. The following examples describe other potential ways of applying
reconnaissance.

1. Exploring the implications of weighting-based preferences

There are many computer-based tools that perform calculations based on ‘weightings’
specified directly or indirectly by the user. But these weightings, typically expressed
as numerical values between zero and one, can be non-intuitive to a decision-maker
who needs to make trade-offs between factors of fundamentally different type—such
as price, engine power and luggage capacity of a new car.

As one attempt to alleviate this problem, Vetschera (1994) describes MCView, a tool
for exploring alternative rankings of multi-attribute results according to variation in
the weights and aspiration levels assigned by the user to each attribute. A novel
feature of MCView is that it allows the user to indicate specific ‘holistic’ preferences
between results—assertions of the form that some result P is definitely preferred to
some other result Q—and then to request that the system execute an ‘estimation
function’ to determine a preference representation (an assignment of weights and
aspiration levels to the attributes) that is compatible with as many as possible of the
expressed individual preferences. Since there may be many representations that are
equally compatible—e.g., in terms of how many of the holistic preferences they enable
to be satisfied—the system is designed to take into account the existing representation
and to select the closest of the available solutions. The approach therefore works
best when the preferences are changed in a steady refinement from the user’s initial
estimates.

A consequence of this is that MCView does not provide good support for a decision
maker who wishes to explore several widely disparate preference representations—for
example, being undecided as to whether to look for a car that is spacious even if a bit
sluggish, or one that is powerful for its weight but is still cheap to run. It would be
arduous for a user to make separate requests in order to force the estimation function
to work from each of these different starting points.

A way of using reconnaissance in such a task would therefore be to show, for each
proposed addition to the holistic preference specifications, the alternative estimation-
function results that would arise for each of the user’s specified base-level preference
representations. The kind of summary information that the user may wish to see for
each alternative outcome might be a list of the holistic preferences that failed to be
reconciled in each case.

8.1. Farther im plem entations in diverse dom ains 195

2. Progressive development of alternative artifact designs

A similar approach to the above could be used within the more concrete task domain
of constructing interactive presentations. For example, a presentation designer may
wish to let the viewer choose between various levels of presentation (overview or detail,
each with or without spoken commentary), and may be undecided on how to organise
the information in a way that will allow the viewer to find convenient paths through
related topics. An example of alternative organisations would be a hierarchy that
could be based on different primary and secondary information characteristics—e.g.,
course information arranged by faculty and then by degree level, or the other way
round. For each organisation it is clear where the information for a particular faculty
and degree will fit once it has been prepared, so the authoring system can allow a
designer to provide the details just once and will then automatically slot them into
their appropriate places in the candidate organisations. Summaries of the designs, as
they are assembled, should be based on measurements that will allow the designer to
notice undesirable features of the presentation as a whole, such as excessive delays in
pre-fetching (e.g., from CD-ROM) all the materials a viewer might decide to select
from a particular screen. Being alerted of designs that are failing on such a criterion
may help the designer to choose between the alternative organisations, or may prompt
a change in presentation content or format to relieve the detected problem.

3. Measuring divergence of query refinements in relevance-feedback IR

When a user of the News Retrieval Tool (NRT, described in section 3.2.4) specifies
just one of the retrieved articles as being particularly relevant to the search, the next
retrieval will be biassed towards other documents that contain the same key terms.
A potential hazard is that if the document uses a rather restricted terminology for
the user’s intended subject area, the bias will bring up only other documents that
use the same terminology. But if the user selects a number of documents as being
relevant, the system produces a single retrieval specification that takes into account
the key terms of all the selections. If the documents all use a consistent terminology
there is the same danger as before, but if they use radically different terminology their
combined effect may be weakened. In the worst case the reformulation would fail to
constitute a meaningful refinement of the query.

Reconnaissance support could be applied to alert the user to the need to pursue
the retrieval in independent directions rather than attempt to merge the relevance
feedback into a single path. For this it may be sufficient to show the user whether,
for a given set of documents that are relevant, the various retrievals that would result
from feeding-back each document individually would contain a significantly different

8.1. Further im plem entations in diverse dom ains 196

set of highly-ranked documents from the retrieval that would result from the combined
feedback. Any document that clearly stands out from the crowd may deserve to be
handled as a separate query. (Whether the system makes it easy to pursue parallel
queries, for example by supporting disjunction, is a separate issue.)

4. Behaviour analysis for modelled system s

When working with a mathematical model, for example as embodied in a sales-
strategy spreadsheet or a weather simulation, it may be important to know whether
the model’s outcomes are excessively sensitive to the starting values of some param
eter (s), or of some coefficients within the model. Similarly, a rule-based model in an
expert system might be excessively sensitive to the initial axiom assertions or the use
of alternative reasoning strategies. If the user can specify those parameters or axioms
whose values are open to some doubt, a reconnaissance foray that re-evaluates the
model under all significant combinations of value perturbations can be summarised
to provide information on the stability of the model. If some parameter turns out to
be critically important the user may wish to pay close attention to its value.

The first two examples illustrate a form of reconnaissance that is subtly different from the
domains considered in the earlier chapters. Previous examples, such as the flight search,
emphasised the pursuit of progress by extension of the range of cases illuminated—e.g.,
trying alternative departure dates or cities. The examples above, by contrast, show that it
can be useful to have a fixed range of illumination—namely, the various alternative designs
being explored—but to keep re-evaluating the results within that range in the face of ongoing
development of the information base from which the alternatives are derived. This is not
to say that the different emphasis constitutes a clear-cut categorisation of reconnaissance
types; in any given embodiment of reconnaissance a user may wish to pursue an exploration
that includes elements of both. Indeed, the use of such a combination is implied by the
InteracTgX test subjects’ suggestion of maintaining a portfolio of alternative settings for
re-evaluation, in case later updates alter the balance in previously explored trade-offs.

The latter examples also illustrate a potentially important distinction in the nature of re
connaissance: rather than reporting directly on the attributes of results produced by the
underlying process (i.e., some matching documents or some predicted values), reconnais
sance can be used to provide information about the state of the user’s exploration as a
whole.

But note that all the proposals so far satisfy the constraint, declared in section 2.1, that this
thesis should only address applications in which exploration progress is directed explicitly

8.1. Further im plem entations in diverse dom ains 197

by the human user. There are various ways of going beyond this constraint that may turn
out to be powerful and useful, including the following:

• Reconnaissance under programmed control

Programming abstractions could be introduced to raise the available level of control
of reconnaissance pursuit. Effectively this increases the complexity of the instructions
to the ‘scouts’, so it is typically only relevant once the user has gained some details of
the nature and layout of available results. Then the user may request, for example,
that as soon as a result satisfying a given condition is found within some region of
the option space the search within that locality should be suspended—or that the
search should be diverted to alternative regions based on what has been discovered.
Providing such additional programmability, yet retaining the user’s feeling of control
and comprehension of the search progress, will be a substantial challenge for designers
of reconnaissance-based interfaces.

• Reconnaissance under heuristic control

In some task domains users are prepared to accept computer assistance driven by
heuristics, because the complexity of the domain makes an analytical approach im
practical. Such complexity could arise in attempting to use reconnaissance in an
especially large result space, so there may be cases in which the generation of the re
connaissance missions themselves can usefully be entrusted to a mechanism that the
user does not fully understand. A ‘genetic algorithm’ approach, for example, would be
able to work through a large number of reconnaissance missions, pruning the explo
ration by cutting short missions into regions of the option space for which the results
are seen to have converged1. Again, the main challenge in designing such support
will be in providing appropriate interaction between the heuristic and user-controlled
aspects of reconnaissance pursuit.

Supporting a useful range of approaches to reconnaissance will be a crucial factor in de
signing generic components that can be used in many different domains. In addition there
are issues, essentially orthogonal to the above, relating to the nature of the underlying
exploration itself—for example, whether the exploration is monotonic or may require back
tracking, is bounded or unbounded, has results that vary smoothly or stochastically over the
input ranges of interest, and so on. But all these factors relate principally to the question
posed by section 4.5: Can reconnaissance serve a useful role? Having established a role in a
given domain there is still the challenge, as raised in section 4.6, of implementing software

d ece n t work on genetic algorithms is reviewed by Srinivas and Patnaik (1994).

8.2. D eveloping generic reconnaissance-support facilities 198

components to provide the necessary facilities. The following section explores some of the
generalisations that will help in addressing this challenge.

8.2 Developing generic reconnaissance-support facilities

With the experience gained in developing reconnaissance for various domains, it should be
feasible to design generic software components that ‘factor out’ common facilities required
for reconnaissance support. Such components could then be provided within system con
struction environments, easing the task of implementing reconnaissance where it would be
useful.

Section 4.6 introduced a broad distinction between reconnaissance provided by means of
a ‘reconnaissance shell’ and that implemented in an ‘integrated’ form. These are just the
extremes of a complex spectrum of potential integration of reconnaissance facilities with
domain-specific software. Although the idea of a shell is attractive in that it would allow
reconnaissance to be added to an existing application without further work by its designers,
in many cases such facilities would offer severely restricted capabilities. The following
subsections therefore explore some of the issues involved in encapsulating reconnaissance
facilities within reusable components.

The first subsection addresses the extent to which shell-based facilities could obtain access
to data and commands in systems that have no built-in reconnaissance support. Then I
describe how an application developer might obtain additional support simply by using an
application-construction toolkit whose components include abstractions that are relevant
to reconnaissance. The final subsection, by considering a breakdown of reconnaissance into
its constituent activities, illustrates some of the variation that can arise in the most general
cases.

8.2.1 Su pportin g app lications th a t w ere not designed for reconnaissance

As explained within chapter 7, a useful feature of ETfrjX as an implementation domain was
the ability to create InteracTgX as virtually a pure reconnaissance shell. Apart from some
minor macro redefinitions the ETfrpC engine required no alteration to play its part. And since
ErgX is directed by purely textual input, requesting alternative results simply corresponds
to supplying alternative pieces of text. When a system produces purely textual output, as
do typical flight-booking databases, it may be similarly straightforward for a reconnaissance
shell to take measurements from the results.

8.2. D eveloping generic reconnaissance-support facilities 199

It is not only text-based systems that can offer this level of accessibility. The Triggers pro
gramming system produced by Potter (1993a, 1993b) is a demonstration of the potential
for providing control and measurement of systems that have an entirely graphical inter
face. Triggers provides capabilities for pattern matching among the pixels displayed on
a computer screen, and for simulating use of the mouse and keyboard to invoke opera
tions. Its capabilities appear promising for adaptation to the specification and analysis of
reconnaissance forays.

There are inevitable limitations to surface-level access to a program’s operation—i.e., access
based on nothing more than what the user would normally be able to look at, or to specify. A
limitation that was experienced in building InteracTgX is that the range of aspects accessible
to the user may have gaps and inconsistencies. Another issue is the potential difficulty of
reconstructing formalised information from a format that has been designed for human
consumption. Finally, a practical limitation for a front-of-screen approach such as Triggers
is the delay and distraction involved in displaying intermediate results on screen for analysis,
rather than being able to process them all behind the scenes.

However, with regard to the difficulty of information reconstruction it should be noted that
in some cases of reconnaissance it would be acceptable not to analyse the output; locating a
piece of graphical output and displaying it ‘as is’ might be the best approach. For example,
a user experimenting with values in a spreadsheet might be particularly interested in a
derived result that is hard to ‘see’ in the figures but would show up clearly in a line graph.
If the spreadsheet can plot this graph, and the result measurement can be defined in terms
of locating and copying the relevant small region of the graph (e.g., enough to show the
trend during one particular month), then the results from a reconnaissance foray could be
assembled as a palette of these small regions for the user to view and compare.

8.2.2 P rovid ing a reconnaissance-aw are interface too lk it

A further degree of reconnaissance integration could be achieved, without significant burden
on the designers of a domain-specific tool, if they can build its interface using a construction
kit whose components automatically incorporate some reconnaissance-enabling features.

For example, a user presented with a menu listing various alternative parameter values
may be able to indicate (e.g., using some form of ‘shift-click’) each of the entries that are
potentially of interest, and have them accumulated in an option scale on a reconnaissance
display similar to InteracTgX’s parallel coordinates view. Likewise, ‘shift-clicking’ on a
field within an information display could register that parameter as being a measurement
of interest as part of the reconnaissance results, and lead to a measurement scale being

8.2. D eveloping generic reconnaissance-support facilities 200

created. Similar facilities could be provided for registering interest in positions or regions of
direct-manipulation controls such as sliders, data selections, or even the movement/resizing
handles on graphical objects.

To support this level of interaction, the interface components need to incorporate appli
cation semantics of the level suggested by Johnson (1992) in his proposal for selectors.

The characteristics that distinguish selectors from typical ‘widget’ components include the
following:

• Selectors encapsulate application semantics, so their underlying values can serve both
as application variables and as state variables for the interactive controls.

This is what would enable a reconnaissance control system to interpret a user’s selec
tion as referring to a parameter choice or measurement within the application, rather
than just a mouse-click on a particular part of the display.

• They embody independent details determining their presentation, so the same under
lying value can be presented in multiple selectors having different roles.

In particular, independent definition of the roles of the overall selector and its sub
components (e.g., a one-from-many choice, and the individual options on offer) would
enable the selector to be reconfigured to have an appropriate appearance and be
haviour when transferred into a reconnaissance-control role.

Figure 8.1 shows the role played by selectors in the Application Construction Environment
(ACE) as reported by Johnson, Nardi, Zarmer and Miller (1993). The middle level is the
key to the ACE architecture, embodying components that are intended to allow application
construction by people who are not professional programmers: local developers are domain-
specific experts who can be expected to create their own applications if the necessary com
ponents can be ‘plugged together’ or controlled and coordinated using a straightforward
‘formula language’. The other elements in this middle layer are the application data types,

which encode the semantic and display behaviours of the general and domain-specific data
types that are to be manipulated, and visual form alism s.

Nardi and Zarmer (1993) describe visual formalisms as objects that ‘provide a specific ori
enting framework in which to cast an entire application. For example, a spreadsheet, a
specialized table, allows users to develop applications in which the relations between nu
merical quantities are laid out and organized within the rows and columns of the spreadsheet
table. The spreadsheet provides a structure into which a model is cast.’ This capability
of visual formalisms is due to their embodiment of ‘strong representational, editing and
browsing capabilities in reusable objects that can be specialized for specific applications.’

8.2. D eveloping generic reconnaissance-support facilities 201

used by

End Users

Local Developers

Programmers

Figure 8.1 Component levels in the ACE architecture, with examples taken from an
Intensive Care Unit patient-monitoring system (after Johnson et a l , 1993).

The ACE project is targeted at specialist local developers who will create additional systems
from time to time as new needs are recognised. But the form of construction afforded by
a kit of application data types, visual formalisms and selectors is exactly the level that
is needed each tim e a user seeks to perform reconnaissance over some opportunistically
chosen collection of selector options and application-variable values. A ‘reconnaissance
panel’ visual formalism could be used as the framework for the overall coordination of a
reconnaissance foray, while the selectors and their associated data-specific displays would
take their places in some form of interactive display structure (which might be a parallel
coordinates formalism, or some alternative) to allow the user to perform the necessary
analyses.

Now that an appropriate level for the provision of reconnaissance-enabling components has
been identified, the next section addresses in greater detail the roles that these components
will have to fulfil.

8 .2 .3 T he con stitu en t a c tiv ities o f reconnaissance

Figure 8.2 shows the principal components required for supporting reconnaissance, using
the structure of InteracTgX as an example. The grey-scale colouring used for each code
rectangle indicates whether it represents a facility that is a) fully generic—i.e., contains

components

End User Programming

e.g. patient-monitoring flowsheet

Application Visual Selectors
Data Types Formalisms

e.g. date, e.g. table, e.g. 1-from-N,
person, graph, M-from-N,

blood pressure panel date subranges

ACEKit

8.2. D eveloping generic reconnaissance-support facilities 202

display generatorreconnaissance engine
obtain ' build '

sum m ary display

obtain

result range

obtain

detail view
r e s u l t s u m m a r y

r e p o r t sm easurem ents

prepare one trial derive m easures add results

detect m arkers build scales

f o r a y d e f i n i t i o n

evaluate

results

define

result range

define

m easurem ents

[mark/filter/reorder] parse text input p a rse text input

displayr e s u l t i n p u t p a r s e r

request

reconnaissance

request

detail view
generic

[select trials] [pop-up menu]

hybrid genera te trials

r e c o n n a i s s a n c e c o n t r o l p a n e l

command processor
Key

Figure 8.2 A breakdown of reconnaissance support within InteracTgX. Each round-
topped box represents a software component that lets the user perform the activity named
in its heading. The plain or shaded rectangles represent program components or (in square
brackets) supported user actions; multiple rectangles represent distinct pieces of code that
are all required.

no behaviour particular to the domain being controlled, or b) a hybrid built especially to
combine the needs of reconnaissance and of the domain, or c) a capability that is ‘internal’
to the existing implementation but fulfils some reconnaissance role. Since InterabTgX is
essentially a reconnaissance shell, the only parts that count as internal to the underlying
system are those responsible for processing a single formatting ‘trial’ and for creating a
full-detail view of a result. However, several of the parts are—at least in principle—generic
reconnaissance-support facilities that could be used in other domains.

By way of contrast, figure 8.3 shows the reconnaissance support as envisaged for an imple
mentation of the information retrieval (IR) divergence-detection feature proposed in sec
tion 8.1. In this domain the user is not required to make a special request for reconnaissance,
nor to define the measurements that are to be taken. The result summary information is
likewise integrated with the existing display. Thus almost all the facilities need to be of the
‘internal’, application-specific variety.

8.2. D eveloping generic reconnaissance-support facilities 203

hybrid

Key

request

reconnaissance

define

result range

[select relevant docs)generate trials

reconnaissance engine
obtain

result range

obtain

m easurem ents
u m q u e - d o c u m e n t

c o u n t s

a l t e r n a t i v e

r e f o r m u l a t i o n s

generic

display generator

evaluate

results

[compare)

build obtain
summary display detail view

show counts get fus results

' request ^

[pop-up menu]

integrated display and command processor

Figure 8.3 Support for relevance-feedback IR with divergence detection.

To provide further explanation of these figures, the following three sections describe the
implementation of the major organising units, as defined in section 4.6 and shown here as
dashed boxes. A fourth section illustrates some dimensions of potential variation in recon
naissance support, by sketching out a few ideas for alternative implementation approaches
that may be useful in particular domains. Finally, there are some comments that indicate
the challenge of trying to reuse existing program code at this early stage, before a range of
applications has been implemented.

Command processor

The command processor is responsible for coordinating the provision of reconnaissance, by
allowing the user to perform the following actions:

• Define result range

This is the task of identifying which parameters the user is interested in varying,
and which values to apply to them2. In InteracTgX the user embeds this information
within the DTgX source using a textual markup language that is interpreted by a
specialised parser. In the proposed IR example the range is defined implicitly by the
user’s selection of several documents to be used in relevance feedback.

2It, is referred to as ‘result range’ just for brevity. Of course the user specifies reconnaissance in term s of
a range of input variation, w ithout necessarily knowing what range of results this will generate.

8.2. D eveloping generic reconnaissance-support facilities 204

• Define measurements

This is the identification of measurements that are to be taken from each result to
allow summarisation. In InteracTgX this, like the result definition, is achieved using
the dedicated textual markup language. For the IR example the measurement is
(unusually for reconnaissance) entirely pre-defined, so there is no need for explicit
support.

• Request reconnaissance

Since the pursuit of reconnaissance can consume a large amount of time and computing
power, the user should be given a level of control that encourages an appropriate level
of consideration before embarking on a foray. This idea corresponds to the principle
of commensurate effort as discussed by Thimbleby (1990, p.359), the goal of which
is to minimise regret by discouraging designs in which small actions by the user can
have a large associated cost. In the case of InteracTgX, all the pending trials are
accumulated in a list whose length the user can judge, and processing begins when
the user selects some or all of the list entries and presses the ‘process’ button. But the
danger of incurring excessive cost—for example, by having selected a thousand trials
to be processed—is mitigated by support for halting the processing, adjusting the
selections and restarting. All these controls appear on the InteracTjrjX reconnaissance

control panel, that also contains and integrates the summary-result display.

It is a significant feature of InteracTgX that, as can be seen in figure 8.2, the user’s
reconnaissance range and measurement specifications are not handled directly by the
command processor but are passed first to the display generator. The summarised-
result display is built before reconnaissance has taken place, which allows the same
display elements to be used both to control the requested reconnaissance range and
to view the results when they arrive. The rationale behind this ‘inter-referential
input/output’ approach is described below, in section 9.3.2.

• Evaluate results

Once the results have been summarised, the user needs facilities for evaluating and
comparing them. For the IR example I would expect the results to be displayed in
an integrated form alongside the documents in the normal relevance-feedback display,
and compared by eye. InteracTjrjX’s summary display is based on parallel coordinates,
and incorporates complex facilities allowing the user to mark, filter and reorder the
display scales; the effects of these actions are also reflected in the various widgets of
the control panel.

8.2. D eveloping generic reconnaissance-support facilities 205

• Request detail view

The summary display allows the user to see which of the results are the most inter
esting with respect to the requested measurements. But those results will usually
need to be viewed in full to discover the attributes that were not (perhaps cannot
be) summarised. In InteracTgX the user requests detail views from a list of processed
trials in the control panel.

Reconnaissance engine

Driven by requests containing range and measurement specifications for a reconnaissance
foray, the reconnaissance engine is responsible for generating and measuring all the results
in the requested range. One way of breaking down this process—-but not the only one, as
pointed out in the section below on specialised implementations—is to perform it in the
two obvious steps:

• Obtain result range

This stage creates the results that arise within the specified range. In InteracTgX
the reconnaissance controller submits a single trial at a time, by explicitly generating
separate versions of the document to be formatted and invoking the DTfrjX engine
once for each version. For the IR example the naive approach suggested in figure 8.3,
of evaluating each potential retrieval as an entirely separate case, may in fact be
unrealistic and unnecessary.

• Obtain measurements

Once the results have been generated, the system must analyse them according to
the measurements that have been requested. For this purpose InteracTgX runs a
special ‘spot detector’ that analyses the formatted output file to discover the eventual
positions of points that were marked in the input file. Calculations are then performed
to derive the measurements that will be meaningful to the user.

Figure 8.3 suggests one plausible combination of operations for analysing the alterna
tive retrievals in the IR case: first isolate an interesting subset of the result ranking
(e.g., the top 20), figure out which of these documents axe not high in the combined-
feedback retrieval, and count them. Every retrieval must be compared with the com
bined case, so that should be evaluated first.

8.2. D eveloping generic reconnaissance-support facilities 206

Display generator

• Build summary display

Prom a batch of results expressed in terms of their measurements, this component
must construct the collated display that will allow the user to evaluate and compare
all the results. Although the work on parallel coordinates presentations shows that
a wide range of data types can be supported using such linear scales, there will be
some forms of data that require more specialised displays—for example, attributes for
which each result has not just a single value but a combination, such as the different
combinations of people who would be available at various proposed meeting times.
Similarly, our IR example might be best served by a display technique similar to
TileBars, as demonstrated by Hearst (1995).

• Obtain detail view

When the user requests a detail view, the display generator will typically need to call
on the underlying application to furnish it. To provide these views quickly, InteracTgK
includes the simple optimisation of retaining all the formatted results even after they
have been measured; clearly in some domains this approach might be prohibitively
expensive on resources.

Some suggestions for specialised implementations

• Based on the idea of selectors as described above, one approach to defining alternative
sets of attribute values would be to accept multiple sets of values from a multi-variate
dialog box. For example, the MCView decision-analysis tool prompts with a dialog box
when the user asks to examine or change the attribute weights; a reconnaissance-aware
dialog would have a special form of ‘Accept’ button that accepts the current settings
but remains available for further interaction, thus allowing several independent sets
of weightings to be specified. A benefit of integration at the dialog-box level is that
the underlying system is determining a useful level of parameter grouping—i.e., the
parameters that appear together within a single dialog. In a word processor, for
example, this form of interface would allow the user to define different combinations
of the parameter settings that together constitute a ‘style sheet’.

• One example of an integrated technique for defining reconnaissance range in a direct-
manipulation environment (such as a structured-drawing editor) could be derived
from the use of sem antic snapping (Hudson, 1990). An interface that supports se
mantic snapping aims to help a user specify valid targets during a direct-manipulation

8.2. D eveloping generic reconnaissance-support facilities 207

dragging operation: as some graphical object is manoeuvred into proximity with other
objects the potential for useful connections between them is indicated graphically. If,
at a given point in a manipulation, the system has detected several alternative valid
connections, the user may be interested in trying each of them in turn rather than
having to select just one. Providing some form of ‘hotkey’ to take a snapshot of the
currently identified connections would allow the definition of a range of alternatives
for exploration in a reconnaissance foray.

It may turn out that the only suitable form of summary display for such an interface
would also have to be closely integrated with the existing system—for example, there
might be a way of showing the results as alternative overlays on the working display.

• As was suggested above in the discussion of ACE, a promising approach for straight
forward specification of measurements would be a facility that lets the user register
interest simply by pointing to a displayed instance of the measure—for example, when
it is on view within a requested information display such as a dialog box.

Such connections could be implemented easily for values that are already held as
application variables, but an intriguing extension to this approach would be a ‘specifi
cation by demonstration’ facility, so the user can simply perform a sequence of actions
that culminates in copying and pasting some derived measurement into its place on
a summary display. A system incorporating the technology demonstrated in Eager
(Cypher, 1991) could keep a record of such an action sequence, and then execute
appropriately modified sequences to obtain other values—e.g., for all the remaining
values in some list. This in itself would constitute support for simple reconnaissance
based on a single-attribute range; more general reconnaissance ranges would require
facilities such as nested loops and non-contiguous iterations, that were not available in
the 1991 version of Eager. The reader is referred to (Cypher et a l , 1993) for guidance
on the facilities available in recent programming-by-demonstration systems.

• In some domains there will be great scope for optimisation of the result generation
and measurement phases. A simple example of optimisation was proposed in the note
in section 4.2.4, which suggests combining a large number of narrow-range database
requests into a single request that will cover the appropriate range of alternatives.
The enlarged query will probably provide a lot of additional results that the user does
not want, but the system can easily filter them out.

Another example of tight collaboration between result generation and measurement
would be a lazy-evaluation system that can generate measurements without having
to produce the entire results. One may find, for example, that a Computer-Aided

8.2. D evelop ing generic reconnaissance-support facilities 208

Design system can produce measurements relating to the physical properties of an
artifact without having to perform any of the computationally intensive rendering of
a graphical display.

Such optimisations clearly offer chances of radical improvement in reconnaissance
performance, but the opportunistic nature of reconnaissance makes it unrealistic for
a designer to hope to develop optimisations that will help on every occasion.

Challenges in reusing code

Within the InteracTgX support components there axe notionally two distinct portions of
code: 1) the code designed specifically to relate to the language and operations of the
DTgK processing engine, and 2) the code providing generic facilities that could be equally
applicable in domains other than DTf̂ X—such as the parallel-coordinates view. However,
although the InteracTgX code was designed to separate generic from clearly application-
specific code (using ‘abstract superclasses’ to define the structure), any first-generation
architecture such as this is likely to be insufficiently flexible for further implementations.
Bearing in mind the variety suggested by the above discussion, we can see that issues such
as the following are likely to arise:

• Facilities that were combined naturally within a single class in InteracTgX may need to
be split into a reconnaissance layer and an application-specific layer, with appropriate
communication between them. For example, in InteradTjrjX the code that parses the
input markup language is also responsible for creating the objects that represent the
sets of options available within the document.

• Some domains may require different divisions of responsibility, and hence different
kinds of communication, between the various reconnaissance components. For exam
ple, in InteracTgX there is a rigidly defined relationship between the parallel coor
dinates display and the reconnaissance control panel: when the user enables a pre
viously disabled input option this automatically causes the creation and display of
further pending trials, to include that option alongside all available combinations of
other options. In other domains the generation of alternative cases may be subject to
different rules.

• InteracTgX’s use of a monolithic command processor—that has supervisory control
over all trial generation, processing, result summary display, tradeoff analysis and
detail-view requests—will certainly be inappropriate for many domains.

8.3. Testing the im pact and value o f reconnaissance 209

8.3 Testing the impact and value of reconnaissance

In this section I describe various kinds of testing that are needed for evaluating the impact
of the reconnaissance technique.

Result-space reconnaissance is an abstract concept. As is the case for other concepts, such
as ‘direct manipulation’, it is not meaningful to attempt to evaluate the concept itself
but only its embodiments in various domains. Therefore any tests suggested here should be
considered as suggested directions of investigation for each domain for which reconnaissance
is developed.

The proposed testing is divided into the following areas:

1. factors that influence a computer user’s selection of reconnaissance as a progress strat
egy, alongside or instead of alternative available approaches;

2. the subjective and observed costs and benefits of pursuing reconnaissance in cases for
which we expect it to offer clear advantages;

3. issues arising in explorations that are too large for reconnaissance to be pursued
exhaustively, but in which well-informed use of reconnaissance may provide substantial
benefits.

8.3.1 Factors affecting selection and pu rsu it o f reconnaissance

Unless reconnaissance is the default (or only) exploration strategy available to a user em
barking on some exploration, the first requirement for obtaining benefits from reconnais
sance is that the user makes an appropriate decision to use it. Payne, Bettman and Johnson
(1993) suggest (as reviewed in section 2.3.3) that a user will only elect to change to a new
strategy under the following conditions:

• a belief that the present strategy gives less than the desired accuracy,

• being able to see that there is an alternative better strategy, and

• a belief that one is capable of executing the new strategy.

A set of experiments could be based around these conditions, using a task domain for
which reconnaissance is not the only available strategy—for example, retrieval from a flight
database. If the database used for the experiments is in fact a mock-up, the conditions

8.3. Testing th e im pact and value o f reconnaissance 210

could be controlled by having each subject follow a set of steps (as if responding to requests
of a travelling ‘customer’), but providing different instruction orders for different subjects in
order to influence the attractiveness of the results that are encountered near the start of the
search. Subjects who find themselves working through unrelentingly unsatisfactory results
may be more motivated to hand over control to a search engine that will not require them
to perform so much repetitive query submission and result evaluation. This effect should
be strengthened if the experiment is also adjusted to impose on some subjects a substantial
result-retrieval delay (e.g., fifteen seconds per query, rather than five seconds or less).

Changing the order in which the subject is informed about additional search criteria could
also be used to influence the subject’s realisation that reconnaissance might serve as a
‘better’ strategy: if the early queries bring to light a great mixture of criteria, the subject
might not readily come to the conclusion that evaluating a homogeneous region of the search
space could be worthwhile.

Along with these tests, but placed either before or after them to balance learning effects, one
could ask the user to complete tasks that are more free-style in nature and therefore allow
them the option of pursuing the exploration either by reconnaissance or a normal stepwise
approach. For example, they could be given one or more criteria and asked to find, as quickly
as they can, any result that satisfies those criteria. Alternatively they could be asked to
find the best result possible in (say) five minutes of searching. These experiments would
provide the opportunity to observe user behaviour under truly ‘opportunistic’ conditions,
rather than the contrived operating sequences proposed above.

8.3.2 O bservations and su b jective estim ates o f effort and accuracy

It is hoped that the testing of reconnaissance will lend support to the following claims:

• Relative to the time spent experimenting, reconnaissance will help subjects to find
better solutions to the tasks they are set. Where an optimal solution exists, use of
reconnaissance will therefore increase the likelihood that the subject will find that
result.

This can be tested simply by concealing an optimal result in the data set, and noting
whether subjects a) come across it, and b) correctly assess it (whether immediately
or later) as being the best result on offer.

• Relative to the time spent experimenting, subjects using reconnaissance will reach a
more realistic assessment of their likely ‘accuracy’—i.e., of the likelihood that their
eventual solution is one of the best available.

8.3. Testing the im pact and value o f reconnaissance 211

The subjects can be asked to give a subjective evaluation of their level of accuracy, and
their (presumably related) impression of the thoroughness of their exploration relative
to the overall size of the result space. These estimates can be compared against the
actual values available to the test organiser.

Subjects should be asked to express whether the use of reconnaissance has involved more
or less effort than would have been expended otherwise, and whether they feel the overall
effort in setting up and evaluating reconnaissance results has turned out to be worthwhile.
In addition, it may be informative to obtain the subjects’ opinions on the likelihood of
reaching a better result within a constrained further period of exploration. It may be felt,
for example, that there could well be better results available but that they represent ‘needles
in a haystack’ that one could not realistically hope to find.

8.3 .3 C oping w ith far-flung explorations

The use of reconnaissance becomes particularly challenging but potentially rewarding in
explorations for which the best results are spread widely over a large result space. I claim
that the availability of reconnaissance will be seen to encourage users to keep working on
a number of promising threads of the exploration, rather than shutting down to a single
direction on the basis of early feedback.

Chapter 9

Review of the thesis contributions

Chapter 8 proposes various research directions that continue from where the research in
this thesis leaves off. In this concluding chapter I recapitulate the contributions already
made by this research, and assess their significance.

The contributions can be grouped into the following levels, addressed in the next three
sections of the chapter:

1. identification of the widespread problem of under-informed outcome in computer-
based explorations, and analysis of how it arises;

2. the concept of reconnaissance as a way of delegating exploration activity to a com
puter;

3. novel ideas and experience arising from the practical realisation of reconnaissance
support for a particular domain.

Finally, section 9.4 lists the main points in a compact form.

9.1 Identification and analysis of under-informed outcom e

The factors contributing to the problem of under-informed outcome in computer-based
explorations were investigated. A wide range of systems was reviewed, and although they
support a great variety of exploration strategies it was illustrated, with the help of the
illum ination zone m odel, that all the strategies impose a substantial burden of effort on
any user hoping to pursue a thorough exploration. The burden can be characterised as
principally due to one of the two following problems:

212

9.1. Identification and analysis of under-inform ed outcom e 213

• Excessive formalisation

One kind of burden arises because the exploration is formalised in a way that forces
the user to make consolidation commitments before being ready to do so. The various
refinement-based strategies, for example, are geared towards exploration progress that
moves monotonically towards some ideal result by narrowing the range of results being
considered at each iterative step. Many strategies help the user to maximise the
discriminatory effectiveness of each step, which has the apparently desirable outcome
of minimising the number of steps needed to reach the supposed goal. But these highly
selective choices reject large areas of the result space that, although not appearing to
be useful -at the time, might turn out to contain some of the best results.

If a user is not satisfied with following an ever-narrowing search, but would rather
explore a range of alternative avenues, these systems are quite obstructive; the user
has to backtrack explicitly to an earlier point and then start out in another direc
tion. And although it is reasonably common for a system to incorporate a search
history sufficient to allow backtracking, few system designers tackle the efficiency and
interface-model issues involved in supporting multiple-branch undo/redo. This acts as
a further disincentive to users against embarking on exploration of alternative paths:
unless it turns out that the best result is found in the last direction to be examined,
the user will have to remember which path contained the preferred outcome and to
re-trace the steps that led to it.

• Insufficient formalisation

The opposite problem, of insufficiently expressive formalisation, also causes problems
because too much of the burden is left to the user. This is the case in domains for
which the designer is unable or unwilling to predict users’ goals, and in order to
avoid providing a system with an unhelpful, over-constrained set of facilities instead
leaves the user free to guide the whole exploration by hand. This thesis identifies two
sub-activities of exploration that are particularly laborious if the user is unable to
delegate them to the computer: the specification of a large range of alternative result-
space regions to illuminate, and the evaluation of trade-offs between large numbers of
results. So even when a system supports rapid production and display of results in
accordance with the user’s requests, the user still has to do all the work of deciding
what to ask for, evaluating what is produced, trying to figure out what change is
needed, and applying the appropriate reformulation command to see if it helps. In
short, a user’s difficulty in pursuing a well-informed exploration in these systems is
not due to lack of paths to pursue, but being spoilt for choice—and not being able
to tell in advance whether taking one of the many available directions will lead to a
more interesting result than the others.

9.2. Reconnaissance: a ‘m iddle ground’ in form alisation 214

One of the puzzling aspects of this work was the difficulty I had in finding any acknowledge
ment of the issue, other than in the general ‘decision making’ literature. But the studies of
BTgK usage suggested some factors that would help to explain the lack of concern:

• Users working with systems that engender under-informed explorations often pursue
their own tactics, that can be surprisingly effective.

• Users are sometimes guilty of overconfidence in the results they obtain, feeling that
there is nothing substantially better within worthwhile reach.

• Users are knowingly accepting results that could probably be improved upon—e.g.,
resigning themselves to satisficing because anything more would take too much effort.

In performing this analysis the illumination zone model has been most valuable, principally
in enabling the diverse systems reviewed in chapter 3 to be analysed under a single set of
terms and thus allowing a range of common problems and limitations to be described. Since
the model was designed in tandem with the surveys and the early design experiments, it is
itself a result of this thesis.

9.2 Reconnaissance: a ‘middle ground’ in formalisation

9.2.1 W h at has been shown

The main contribution of the thesis is the identification of reconnaissance as a useful
metaphor for approaching a wide range of computer-based exploration tasks.

G iven ...

any computer-based exploration for which the user can formally describe summaris-
able result illumination in terms of a range, content, and display format

. . . then you can obtain ...

collated summaries of results within requested illumination ranges

. . . g iv in g .. .

the opportunity for the user to evaluate and compare a large number of results, without
having to make a corresponding number of separate requests nor to view all the results
in detail.

9.2. R econnaissance: a ‘m iddle ground’ in form alisation 215

The key factors that boost the value of reconnaissance in relation to the effort required to
use it are as follows:

1. Only a low degree of formalisation is required.

Reconnaissance can be carried out even if the task as a whole is too opportunistic
for the user’s goals to be formalised in full. As long as the user can define formally
some feature of a result that would make it count as interesting, the computer can
be sent to illuminate the directions ahead. Where some direction appears to offer
a substantial advantage over what has been obtained so far, the user can pursue it;
when no such advantage seems to be available, and if the user cannot think of other
directions to check, the illumination provides reassurance that the current result is
the best available.

The ‘reconnaissance’ analogy fits this form of illumination because it is like deploying
scouts who are tireless and, although naive (i.e., can’t understand the overall goals of
the task), can be asked to report useful details of whichever regions they are sent to
explore.

2. Benefits are based on increased rather than exhaustive coverage.

Even if it is not practical for a user to request a fully exhaustive illumination, the
reconnaissance will produce more information than the equivalent effort expended on
obtaining individual results. For example, in a complex design task there can be
literally hundreds of options and value adjustments, resulting in millions of plausible
combinations. But even if a user requested permutations of the options on just four
parameters, each having a few alternative values, this might result in hundreds of
distinct trials—quick for the computer to evaluate, but far beyond what the user
would have time or patience to pursue by interactive selection and examination of the
results.

A reconnaissance framework thus allows the explorer to keep many diverse options
open, comparing a variety of outcomes to gain an understanding of available trade
offs. This engenders a feeling of being able to experiment, examining whichever parts
of the result space are felt to be potentially valuable.

Reconnaissance is not a ‘silver bullet’ that can ease all tasks even within a single given
domain; it just extends the scope for opportunistic delegation beyond the standard dele-
gatable services. Referring back to figure 2.1 on page 12, the addition of reconnaissance
may be represented as shown in figure 9.1. As in the original figure, the thickness of region
that an arrow has to pass through symbolises the extent of the task that is handled at

9.2 . R econnaissance: a ‘m idd le grou n d ’ in form alisa tion 216

unexplained

w goals
Reconnaissance

F igu re 9.1 An updated version of figure 2.1, showing the effect of reconnaissance.

that level. For some tasks, such as those represented by B and C, reconnaissance may be
unable to provide any more assistance than the black-box facilities; for task A, by contrast,
reconnaissance may allow full delegation of exploration activities that the user previously
had to carry out using unformalisable actions.

In general, the assistance offered by reconnaissance is that of helping a user understand
what results are on offer, rather than just being aware of the available processing options.
Wherever any computer system presents its user with a range of options, there may be a
chance to apply reconnaissance to illuminate the results that could be obtained by selecting
each available option.

A nalysis in te rm s of cognitive d im ensions

One way of explaining the benefits offered by reconnaissance is by reference to some of
the cognitive dimensions first proposed by Thomas Green for describing the properties of
artifacts as perceived by their users (e.g., see Green 1990 and 1991; Hendry & Green, 1994;
Modugno, Green & Myers, 1994). The ‘dimensions’ are still somewhat experimental in
nature; their names and definitions are being refined in an ongoing effort to pin down the
crucial properties that it would be useful for them to capture. Three of the dimensions
proposed so far that seem to be particularly relevant to the reconnaissance approach are
those called premature commitment, repetitious viscosity and side-by-side ability:

9.2. Reconnaissance: a ‘m iddle ground’ in form alisation 217

• P re m a tu re c o m m itm en t1 is a measure of the user having to commit to choices—to
the extent that it is laborious to change one’s mind later—before being ready to do so.
Premature commitment is undesirable. For example, an unusually constrained feature
of the otherwise highly flexible and incremental Smalltalk development environment
is that when creating a new class one must identify the superclass from which it
is to inherit (and the superclass must already have been defined); this constitutes
commitment to a class’s position in the hierarchy, at a time when one may wish to
leave this open to experimentation.

In explorations, premature commitment is most evident in the practice of having to
discard a large portion of the result space because only one direction of search focus
can be pursued at a time. It is therefore at the root of the effort-accuracy tradeoff;
a tool with high premature commitment makes it impossible to be accurate without
expending enormous effort. Correspondingly, reduction or abolition of premature
commitment is the main goal of reconnaissance support, and is tackled by allowing
users to keep options open and to experiment.

• R e p e titio u s v iscosity is one of two identified forms of viscosity (the other being
knock-on viscosity). Viscosity is a measure of the user effort required to impose
changes in the system—the more ‘viscous’, the more effort is involved. Repetitious
viscosity, in particular, refers to the effort in making what the user regards as a single
change, but for which the system requires tha t the user carry out a large number
of repetitive operations. In most cases, low viscosity is desirable. For example, if a
user wishes to increase the amount of white space appearing above every paragraph
in a document, a system that required each paragraph in turn to be adjusted would
be characterised as having high repetitious viscosity for this task, compared with a
system in which a single ‘paragraph style’ could be adjusted to affect all paragraphs
in one go.

In the case of reconnaissance, the task whose viscosity is under scrutiny is the illumi
nation of a region of the parameter space that is of interest to the user. Many existing
exploration systems exhibit high viscosity in tha t each point in the region must be
requested explicitly by the user. Reconnaissance support allows the user to define the
points implicitly by specifying the bounds of the region; as long as this specification
requires less effort than explicit visits to all the points, the reconnaissance approach
scores better on viscosity.

1In (Hendry & Green, 1994) an alternative but closely related dim ension is proposed, called imposed
guess-ahead.

9.2. Reconnaissance: a ‘m iddle ground’ in form alisation 218

(The reservation about low viscosity being desirable ‘in most cases’ deals with the
standard desire to let a user perform operations with the least effort possible. But in
special situations it is desirable for some operations to be hard to perform—for ex
ample, when they have dangerous or far-reaching consequences (such as firing nuclear
weapons). In such cases high viscosity is a good way to force the user to consider the
actions carefully.)

• S ide-by-side a b ility is a measure of the ease of obtaining side-by-side views of results
that a user wishes to compare. High side-by-side ability is therefore desirable. For
example, many word processors maintain a single view of the working state of the
current document; a user who wants to experiment with a change to the document
must observe and remember the features that are im portant in the current state,
then make the change and re-examine the document to see what effect the change
has had—comparing it with the remembered pre-change state. For anything other
than very simple or localised differences, such ‘low side-by-side ability’ imposes an
enormous burden on the cognitive capabilities of the user. This burden multiplies
dramatically when there are large numbers of results to be compared, and /or large
numbers of independent individual effects to be traded-off within each result.

The use of reconnaissance to bring together, onto a single display, a collection of the
result properties that the user wants to see, for a whole set of results tha t are of
interest, constitutes a major improvement in side-by-side ability.

9.2.2 P oten tia l scope o f app licab ility

As described in section 4.5, reconnaissance can be applied to any computer-based task for
which the user can be provided with facilities for opportunistically requesting and accumu
lating illumination of potentially interesting parts of the task’s result space. This requires a
means of defining a reconnaissance range, and specifying a form of reconnaissance content
that a) reveals information that will help the user judge the likely value of each result, and
b) can be represented in summary form so that many results can be compared in a single
illumination display.

This broad definition makes reconnaissance applicable under the following conditions that
raise problems for other approaches:

1. R esu lts n o t in s ta n tan eo u s ly availab le

Reconnaissance can be applied to explorations in which the results of interest are not
previously generated and available for retrieval, and cannot be generated instanta-

9.2. R econnaissance: a ‘m iddle ground’ in form alisation 219

neously. These explorations are therefore not suited to techniques such as the Dy
namic Query approach, in which the instantaneous feedback is crucial in letting the
user get a feel for the distribution of results, or for the various forms of Information
Visualizer tool that build a complete mapping of the result space for the user to browse
and/or filter at will.

2. Result space has no obviously useful inherent mapping

This is related to the previous point. Reconnaissance can assist in domains for which
it is not practical to generate a single synthetic mapping of the result space, which
could then be explored by the user.

Some tools function by building a mapping tha t is known in advance to be useful
for the given result domain—for example, the Information Visualizer tools. In other
cases a result-space mapping is derived on the fly, such as in Boz (Casner, 1991), but
these still rely on advance knowledge of how many results are to be presented, and
how they are related to each other. Boz in particular relies on a formalisation of the
user’s overall goals in the exploration—which may not be practicable, as discussed in
point 4 below.

Since value can be derived from reconnaissance even if the results are mapped onto
a generic, abstract presentation (such as a parallel-coordinates display), according
to opportunistically selected measurable properties, reconnaissance can assist in any
domain for which results can be summarised as a set of variables.

3. Interesting results might not be clustered in the input parameter space

Many exploration tools provide facilities for the user to narrow the search to a range
describable by a single abstraction (or single conjunction of abstractions) such as con
straints on individual parameter values—for example, a database query or a particular
location in a pre-mapped result space. Some include powerful facilities for a user to
browse and compare results—either within the narrowed range, such as the lists of
results provided in Helgon, or by steering the illumination range to cover alternative
regions, such as the Dynamic Query tools’ live variation of one range-defining param
eter at a time. But even these tools still impose a large burden of effort in obtaining
and comparing results that exist in disparate regions of the result space.

Reconnaissance is not subject to this limitation; it can be used to bring together
results with arbitrarily divergent descriptions. For example, whereas DQ tools enable
exploration along a single dimension of the parameter space, a reconnaissance tool
can support exploration of a region made up of multiple interacting dimensions.

9.3. O ption-space reconnaissance using parallel coordinates 220

The approach of M utator is also suited to simultaneous variation over multiple param
eters. Its randomised ‘mutation’-based input variation does not provide the opportu
nity to be as systematic as an explicit reconnaissance foray, but has the advantage of
being scalable to parameter spaces of arbitrarily large dimensionality—where explicit
reconnaissance would become unmanageable. Indeed, in some domains a mutation-
based definition of illumination range would be the only practical way to request
reconnaissance.

4. Exploration goals not known in advance, nor necessarily discovered until
the end of the exploration

Reconnaissance is specifically intended for explorations in which the user might be
unable to express, at any stage (let alone in advance), the goals of the exploration.
This affects the ability of the designer of the computer system to provide facilities for
assisting the exploration.

Some systems do not support explicit expression of goals, but provide a single form
of search support that is assumed to be suitable for all the kinds of exploration users
may wish to perform. Some support explicit goal formalisation—notably Boz, which
relies on the user being able to express the goals to a sufficient degree for the system
to build a tailored result view suited to the achievement of those goals. Although
users of Boz have some freedom to tailor the tool to the particular exploration in
progress, it is only within the range of goals foreseen by the designer of the system.
It is essentially a toolkit providing a high level of task abstraction, and therefore runs
the risk of failing to be sufficiently flexible for some users’ needs.

Reconnaissance support is at a relatively low level of task abstraction, and therefore
allows greater flexibility in the construction of a visualisation suited to some partic
ular exploration. Scouts who are sent on reconnaissance missions can provide useful
information whether or not the person who sends them knows in advance how their
information will be used.

9.3 Option-space reconnaissance using parallel coordinates

9.3.1 W hat has b een show n

The implementation reported in chapter 7 can be regarded as a ‘proof of concept’ for the
practical ability to present reconnaissance to a user, and in particular the suitability of the
parallel coordinates presentation technique as a basis for a powerful integration of control

9.3. O ption-space reconnaissance using parallel coordinates 221

and presentation components. Even though the implementation was only a prototype sup
porting a limited range of options and measurements, and requiring subjects to learn a
specialised form of additional markup language, the potential usefulness of the approach
was acknowledged by existing users of the underlying application.

G iven ...

a domain in which reconnaissance-based explorations are appropriate, and for which
the reconnaissance range can be specified as an option space, and reconnaissance
content as a measurement space

. . . then you can obtain ...

a dynamically built multivariate display, based on the parallel coordinates presentation
technique, that relates all the inputs and measurements of the reconnaissance results

. . . g iv in g ...

realisation of the benefits hypothesised for reconnaissance: increased willingness of
users to investigate alternative results, including performing trade-off analyses among
multiple results.

Bonus finding: a generalisation of reconnaissance

I had imagined that the implementation would show that in a rich exploratory environment
users will enthusiastically change their working practices, to perform more thorough explo
rations, if they are given facilities that make it cheap to try multiple options and to revert
to the original state if none of them seems to make an improvement.

It turned out not to be as straightforward as that: where existing systems offer particular
facilities and particular constraints, people develop their own strategies. In the case of the
existing tools this meant that although the users’ explorations were not thorough, they
could still be surprisingly effective. But in the case of the reconnaissance facilities, the
test subjects spontaneously saw them as providing opportunities tha t I had not foreseen: a
general ability to define a region of results that axe potentially interesting, and measurements
that summarise those results—not just for looking forward in an exploration, but also for
re-visiting and re-evaluating diverse regions that have not yet been ruled out of the search.

9.3. O ption-space reconnaissance using parallel coordinates 222

9.3.2 D em onstration o f enabling techniques

Implementing reconnaissance required various design decisions on an appropriate form of
interface. The following are felt to be im portant enabling features:

Opportunistic construction and extension of the interface

The interface is built up by the user as the exploration proceeds, using a ‘toolkit’ of compo
nents for expressing the options and the measurements to be used. Working with low-level
facilities brings flexibility and ease of understanding, but the vital ingredient to making the
toolkit approach workable is the ‘framework’ tha t supports it, allowing the user to assemble
higher-level abstractions from the components. It is these higher abstractions that enable
an escape from the repetitious viscosity involved in always working at a low abstraction
level.

In accordance with the illumination zone model, these facilities allow InteracTgX to incorpo
rate explicit support for opportunistic delegation of each of the three identified exploration
sub-tasks.

Equal Opportunity

Several researchers have identified the benefits in interfaces tha t suppress a needless dis
tinction between what is an ‘input’ to an activity and what is an ‘output’. Draper (1986)
discusses the issue of inter-referential input/output, while Runciman and Thimbleby (1986)
and Thimbleby (1990) refer to the goal of equal opportunity.

Opportunistic exploration can be regarded as a cooperative problem: some bits are to be
done by the user, other bits by the computer. Because neither the designer nor the user of a
system can know in advance which aspects of a given exploration are going to be formalised,
there is a benefit to avoiding premature division of the activity into some aspects that are
considered the domain of the computer and others that are considered the domain of the
user. Instead all aspects of the interface should work together to define the results of what
has been done so far, and what can be done next, such as by allowing constructive feedback.

Semiformal explorations often include situations in which information tha t first appears as a
result can later be useful as an input—this is a principal feature of retrieval by reformulation,
for example. Ahlberg and Shneiderman (1994) refer to this form of inter-referential I/O as
output-is-input: the elements of the display are sensitive to user input, allowing efficient use
of output as feedback into the process.

9.4. Conclusions 223

The limiting case of inter-referential I/O is equal opportunity, when all interaction is carried
out through interface objects that can be controlled and acted upon either by the user or by
the computer. In practice this involves ensuring tha t any input value the user may adjust
should also be adjustable under control of the computer, and any result value the user can
read off should also be usable by the computer in subsequent calculations.

The InteracTgX interface supports equal opportunity in the following ways:

• The user is able to filter the displayed results, and even to request further reconnais
sance, using the components of the result display itself.

This is one factor that contributes to the availability of opportunistic delegation: the
user is able to move at will between informal evaluation of displayed result properties,
and the use of the same display for formal actions such as filtering and highlighting
results or requesting illumination of additional regions of the result space.

• Scales of the same form are used for showing the input options and the measurements.

The ability to filter results on the basis of measurement features allows a form of
declarative interface, even though the underlying implementation for illuminating re
sults may be strongly procedural. Clearly it is declarative only in a limited sense,
since the results will only be found if the user has selected a sufficient range of input
options to explore, but designers of software with reconnaissance support can help
by structuring their code to perform the minimum processing needed to evaluate the
requested measures.

9.4 Conclusions

The main contributions of this thesis are summarised below.

9.4.1 P rob lem identification and analysis

1. The identification of the general problem of under-informed outcome in computer-
based explorations, and its characterisation in terms of subjectively rational human
decision-making behaviour.

2. A breakdown of explorations into the activities of illumination, evaluation, and con
solidation, allowing the construction of the illumination zone model of computer-
supported exploration to help identify causes of excessive effort in illumination and
evaluation, and the unhelpful limits of consolidation support.

9.4. Conclusions 224

3. A categorisation of a wide range of existing computer-supported exploration tasks,
showing the various ways in which each imposes an unacceptable burden on a user
wishing to engage in a thorough exploration.

9.4 .2 T he R econnaissance concept

1. A proposal for a high level of exploration support by a computer system which, by be
ing based on the reconnaissance analogy, makes effective use of the ability to delegate
only simple ‘scouting’ tasks.

2. The development of a check-list of features that render an exploration activity suitable
for reconnaissance support, and hence the identification of various kinds of task that
are not explicitly based on exploration but, because they may be regarded as leading
to choices from the domain of a notional result space, can be supported by use of
reconnaissance.

3. The identification of a broader issue, related to the facilities tha t are used to sup
port reconnaissance, involving the general instrumentation of output from a complex
processing task.

4. Various proposed directions for further research into the applicability of reconnais
sance, and into the design of mechanisms for making reconnaissance easier to imple
ment.

9.4.3 O ption-space reconnaissance using parallel coord inates

1. The identification of a sub-class of task whose result space can be explored to a useful
level of thoroughness by enumerating the points in an option space.

2. A proposal and implementation of an interactive computer-generated display, based on
the parallel coordinates multivariate presentation technique, to serve as an integrated
means for requesting and collating results in a reconnaissance-based exploration.

3. A demonstration of how reconnaissance can be applied productively within an existing
computer-based activity in which the user’s implicit search for a satisfactory outcome
is not usually supported as an exploration.

Appendix A

Usage of the term ‘form al’

There has been something of a divergence of interpretations of the term ‘formal’ in com
puting literature.

The relevant part of the definition in the Concise Oxford Dictionary (Eighth edition) is the
7th of the listed adjectival senses, namely:

formal

• in accordance with recognized forms or rules.

One may trace the divergence in usage by observing the implication of the kind of ‘rules’
that are to be followed:

• Potter, Sinclair and Till (1991), in their book ‘An Introduction to Formal Specification
and Z’, give the interpretation that is understood in the field of computing science
broadly referred to as ‘formal methods’. They state:

‘What is needed [as a program specification language] is a vehicle which of
fers the precision of a programming language, but without the prescriptive
aspect whereby every detail of data structure and algorithm must be pro
vided. We also want to be able to conduct rigorous arguments to establish
desirable properties of our specification. This combination of precision and
the ability to argue rigorously is what we mean by formality.’

(P-7)

225

U sage o f the term ‘form al’ 226

These practitioners wish to reason about program specifications, so they require that
the specifications be presented in a language with a well defined set of manipulation
rules. When the mathematical specification of a program can be proved, by these rules,
to conform to the mathematical specification of its purpose, a proper implementation
of that specification is guaranteed to be correct in a corresponding sense.

• In his paper ‘On Visual Formalisms’ Harel (1988) introduces the higraph, a graphical
specification notation derived from a marriage between connected graphs and Euler
circles, as a means of representing the topologies of systems such as computer programs
and data stores. In the conclusions to this paper he states that:

‘. .. the intricate nature of a variety of computer-related systems and situa
tions can, and in our opinion should, be represented by visual formalisms:
visual, because they are to be generated, comprehended, and communicated
by humans, and formal, because they are to be manipulated, maintained,
and analyzed by computers.’

(original emphasis)

Harel stresses the contrast between visual formalisms (such as the higraph) and other
diagrammatic methods that are ‘described in a manner tha t is devoid of semantics,
and can therefore be used at best as informal aids’. His view of formality can be
seen to admit a weaker interpretation than the previous one: he does not require
the notation to have the power to prove properties of the system, but merely tha t it
should only support manipulations that have a meaningful correspondence with the
modelled world. It is the correspondence, rather than the manipulation itself, that
needs to follow clearly defined rules.

• In the same year as Harel’s paper, Lai, Malone and Yu (1988) gave the following
definition of a sermformal system:

‘We define a semiformal system as a computer system tha t has the follow
ing three properties: (1) it represents and automatically processes certain
information in formally specified ways; (2) it represents and makes it easy
for humans to process the same or other information in ways tha t are not
formally specified; and (3) it allows the boundary between formal processing
by computers and informal processing by people to be easily changed.’

This level of usage (which has been taken up by many people in the field of hum an-
computer interaction) is superficially the same as Harel’s, but it admits an even less
constrained interpretation. When information is stored in a computer, any operation

U sage of the term ‘form al’ 227

on that information tha t can be carried out by the computer by following a set of rules
(for which one may read ‘instructions’) can be regarded as a ‘formalised’ operation.
It is just assumed tha t the rules, and hence the operations, have a valid impact on
the information as far as the user is concerned.

Thus one arrives at the definition of ‘formal’ that is intended to be understood in this thesis,
where it is applied to information or to tasks:

formal

• represented on a computer in a way that allows operations tha t are mean
ingful to the user to be performed computationally.

Appendix B

Questions for measuring lATJjjX
experience and approach

The following is a reproduction of the prompting sheet I used during ‘Phase 1’ testing of each
subject, to establish their level of use of and their approach to ensuring high-quality
outcomes.

[Phase 1A start time:]

A1 what kinds of document they produce, whether these involve LaTeX,
and what kind of size. Also: would they say this list is in
increasing order of their concern for how the document looks?
A. informal notes for own consumption
B. docs for discussion/reference within local peer group
C. frequently-updated or replaced docs for dissemination among

larger groups, e.g. newsletter, release notes, collaboration
discussion documents

D. long-lived official documentation, for wide distribution
E. thesis
F. conference papers
G. books
H. other (e.g. personal letters, shopping lists,...)

Ala whether they find themselves using LaTeX to handle documents from
elsewhere

228

Q uestions for m easuring experience and approach 229

A2 how much and why they use TeX/LaTeX
A. frequency: documents per week
B. is it used readily, or only if it is the only available option?

A3 what level of interaction they use. Would they be happy to:
A. run LaTeX on existing docs, with/without any changes
B. use basic set of LaTeX commands and styles - perhaps modifying

templates
B ’. pull in, and use on trust, interesting macros or styles
C. use a wide range of LaTeX commands. For a start:

"For each of the following commands, do you know what it does?
Would you be happy using it?"

\newpage \marginpar \sloppy \protect \nopagebreak [3]
D. sometimes create/redefine simple LaTeX commands
E. use pieces of pure TeX
F. regularly create/redefine complex LaTeX, or even TeX, commands

or macros
G. write or update entire LaTeX/TeX document styles
H . other

Phase IB - sample document formatting: [Start time:]

B1 Get a document that is already formatted. Something like 10 pages,
with some 'interesting’ things like lists, figures, examples. Get
the subjects to comment on:
A. how seriously they took the formatting
B. how well they think they have done
C. what they would prefer to be different
D. what’s stopping them from making the change

B2 Change its style, to throw the formatting. Print out the changed
version. Before taking it away, get the subjects to look at it -
ask and record:
A. how happy they would be to submit it as is
B. which things they now regard as unsatisfactory
C. what they would bother trying to change

B3 Get them to work on improving the doc, using their own normal
setup, until they feel it has reached a stage that they would be
happy to present as 'not official, but still worth caring about’.
A. How long did they feel was worthwhile working on it?
B. What kinds of change did they make?

Q uestions for m easuring ^TgjK experience and approach 230

B4 Print out the document. Before taking it away, ask:
A. how happy they are with the end result
B. what they would still like to change about it. Get some idea of

which are the most serious problems, and which they regard as
nice-to-haves.

B5 Suggest that they might be asked to come up with flawless
formatting, e.g. for a book. Ask:
A. How long they would expect to have to work on the doc to get it

looking just right.
B. What they feel they would have to fix
C . How they would go about it.

B6 in general, what kinds of action would they feel they had to be
prepared to take to fix up a document?
A. changing the text to fit a space
A ’, changing local formatting, e.g. adding specific page breaks
B. gross change to the formatting e.g. line separation, indention
C. pulling in additional macros, written by themselves or others
D. defining new macros
E. tweaking the penalties

B7 How much help do they find the diagnostic info printed out by
TeX/LaTeX?
A. (When) do they look at it?
B. which errors/warnings would they take seriously?

B8 (if needed) "To what extent do you agree or disagree that the following
statements apply to your use of LaTeX?"
A. TeX/LaTeX provides, at some level, everything necessary for

good typesetting of the documents I produce
B. I like to use TeX/LaTeX because of the feeling of flexibility

being available if needed
C. I don’t need to worry about typesetting, because some expert

will have produced a style file that takes care of it.
D. The style files I use seem to do a good job
E. I often make manual changes to improve the format of my

documents

[Phase IB end time:]

Q uestions for m easuring experience and approach 231

Points to note regarding subject’s normal processing setup:

1. what tools they use (how many edit windows, what kind(s) of
viewer)

2. whether they are happy to work with online viewers, or need to see
the document printed out

3. how the task is attacked:
- working through in page order, or trying whole thing at a time
- only processing part of the document
- rapid re-saving (small changes) and formatting, or fixing lots

of things and trying the whole thing again
- relying on diagnostics (or lack of them), or always looking at a

viewer?

4. what they find especially good/bad about the TeX/LaTeX setup they
have

Phase 1C: Demonstrate the same re-formatting task being carried out
with the help of reconnaissance, then request feedback as follows:

Cl. would reconnaissance facilities like these be useful, or
essentially a waste of time?

C2. would use of reconnaissance lead to better documents?

C3. would the subject explore a larger range of alternatives with the
reconnaissance facilities than without?

C4. (a hunch): were there any occasions where reconnaissance showed that
NONE of the alternatives being tried seemed to offer a better result,
thereby enabling the subject to cut his/her losses and try a different
approach?

Glossary

Terms that have specialised meanings within the thesis are gathered below. Because many
of the terms form related groups, it has been decided to show them in their groups to
assist the reader in combining and contrasting their individual contributions. The term
definitions also include illustrative examples. In line with the broad applicability of the
thesis the examples are drawn from rather different kinds of task: (1) a traveller’s queries
for an available seat on a long-haul flight, and (2) an architect’s exploration into the creative
possibilities for the layout of an apartment.

u n d er-in fo rm ed ou tcom e (p.3)

The end-state of an exploration that the explorer has term inated even though the
domain could contain results significantly preferable to what has been found, e.g.,
Accepting the compromises embodied in the first apparently reasonable flight, or floor
plan, without having investigated other queries based on less painful compromises.

o p p o rtu n is tic ex p lo ra tio n (p.3)

An exploration in which the explorer can predict neither the course nor the end goals,
because they are both contingent on what is found in the course of the activity, e.g.,
Looking for a ‘good’ available flight, or a ‘good’ floor plan for the apartment.

Opportunistic exploration is made up of the following principal activities:

illu m in a tio n

The explorer requesting and obtaining a view of some part of the exploration do
main. e.g., A query to a flight database, or a set of constraints on the apartment
such as rooms it must include.

I identify the following characteristics of an explorer’s request for illumination:

ran g e specifica tion
The portion of the domain to be illuminated, e.g., All flights on 3rd Novem
ber from Glasgow to Los Angeles; 50 possible floor plans with two bedrooms.

232

Glossary 233

co n ten t specification
The features that are to be reported, e.g., Airline, departure and arrival
times, lowest available fare on the flight; outline plans marked with proposed
room function.

d isp lay fo rm at
How illumination is to be presented, e.g., As a list of flights in reducing fare
order; a grid layout of the alternative floor plans.

evalua tion

The explorer extracting from the illu m in a tio n some information regarding the
current exploration, e.g., Examining the details of flights or apartment plans, to
see what is good or bad about the ones that have been presented.

conso lidation

Use of accumulated information by the explorer to decide whether the exploration
is finished and, if not, where to explore next, e.g., Deciding to look for a cheaper
or quicker flight by requesting a different departure date; deciding to try plans
with fewer but larger rooms.

re su lt space (p.3)

An exploration domain consisting of the (real or notional) enumeration of all the
possible results that can be generated by some computer-based system, e.g., The
notional collection of all possible result displays (typically ranked lists containing a
few flight details), corresponding to all permissible queries that could be submitted to
the flight retrieval system; the notional collection of all floor plans corresponding to
the given fixed constraints such as overall shape and minimum room size.

e ffo rt-accu racy trad e o ff

effort

A measure of the amount of work performed by the explorer over the course of
an entire exploration, e.g., The time and cognitive effort involved in extracting
details from the results, to allow comparison between all the examples that are
seen.

accuracy

A measure (often qualitative) of the closeness of a chosen outcome to the ‘ideal’
outcome for the given combination of domain and user goal, e.g., The explorer’s
satisfaction with the price and convenience of the selected flight, relative to the
flight that—had it been found—would have given the highest level of satisfaction.

G lossary 234

illumination zone model (p. 16)

A schematic representation of the processing components and information stores of a
system for exploring some result space. The model includes the following elements:

fixed base data
Data that do not change during the course of the exploration, and have a cru
cial role in defining the result space being explored, e.g., The flight-booking
database; a set of planning rules, such as some kinds of room requiring an out
side wall.

illumination specification
The user-chosen instructions tha t direct the part of the result space being
examined at the current stage of an exploration, e.g., The current query, or
a fixed feature in a floor plan around which other elements are to be arranged.
Depending on the domain, part of the illumination specification might constitute
the current viewpoint.

result-space illuminator
A processing device that generates illumination of the result space, by pro
cessing the fixed base data in accordance with the illumination specifica
tion. e.g., The database retrieval engine; the layout generator.

illumination zone
All illumination information currently viewable by the user, e.g., The currently
retrieved set of flights, or suggested set of designs.

display specification
The user-chosen instructions that direct the mapping of information currently
held in the illumination zone into a user-viewable form, e.g., Paging or
scrolling position for flight results; perhaps zooming and view-detail specification
for floor plans.

display generator
A processing device that generates viewable (and possibly interactive) output
from the illumination zone in accordance with the display specification.
e.g., The database front end’; a graphical floor-plan browser.

exploration context
The collective information that represents the state of an exploration currently
in progress. This information comprises the contents of the illum ination zone,
the two specifications that determine its content and display characteristics, and
any maintained search history information.

Glossary 235

com m and p rocesso r

A processing device that interprets commands from the user, to adjust the ex
p lo ra tio n co n tex t and hence to cause a change to the information presented
in the output.

(resu lt-space) reconna issance (p.76)

Reconnaissance in a result space is just a particularly useful form of illu m in a tio n ,
characterised by:

• flexible, opportunistic range specification

• flexible, opportunistic co n ten t specifica tion that produces summaries of results

• a d isp lay fo rm at in which all the summaries are collated into a single display.

o p tio n space (p. 124)

A particular kind of ran g e specification based on enumeration of combinations of
discrete values from a set of dimensions, e.g., A ll combinations of flight date and
destination, picked from four alternative dates and three alternative destinations.

References

Adams, J. L. (1987) Conceptual Blockbusting. Penguin Books.

Ahlberg, C. and Shneiderman, B. (1994) ‘Visual Information Seeking: Tight Coupling of
Dynamic Query Filters with Starfield Displays’. In Proceedings of ACM CHI ’94, 313-317.

Ahlberg, C. and Truve, S. (1994) ‘Designing, Implementing, and Evaluating a Tightly Cou
pled Dynamic Queries System’. SSKKII Technical Report SSKII94.08, SSKKII, University
of Goteborg, Sweden.

Ahlberg, C., Williamson, C. and Shneiderman, B. (1992) ‘Dynamic Queries for Information
Exploration: An Implementation and Evaluation’. In Proceedings of ACM CHI ’92, 619—
626.

Ahlberg, C. and Wistrand, E. (1995) ‘IVEE: An Environment for Automatic Creation of
Dynamic Queries Applications’. Submitted to ACM CHI ’95.

Berry, D. C., and Broadbent, D. E. (1986) ‘Expert systems and the man-machine inter
face: part 2: the user interface’. Expert Systems: The International Journal of Knowledge
Engineering 4.

Bertin, J. (1981) Graphics and Graphic Information Processing, de Gruyter, Berlin.

Buzan, Tony (1982) Use Your Head. BBC Books, London.

Card, S. K., Moran, T. P., and Newell, A. (1983) The Psychology of Human Computer
Interaction. Lawrence Erlbaum, Hillsdale.

Card, S. K., Robertson, G. G. and Mackinlay, J. D. (1991) ‘The Information Visualizer, An
Information Workspace’. In Proceedings of ACM CHI ’91, 181-188.

Casner, S. M. (1991) ‘A Task-Analytic Approach to the Automated Design of Graphic
Presentations’. ACM Transactions on Graphics 10(2), April 1991, 111-151.

236

R eferences 237

Chatterjee, A. (1995) Visualizing Multi-Dimensional Polytopes and Topologies for Toler
ances. Ph.D. Thesis, University of Southern California.

Chernoff, H. (1973) ‘Using Faces to Represent Points in k-Dimensional Space’. Journal of
the American Statistical Association 68, 361-368.

Chimera, R. (1992) ‘Value Bars: An Information Visualization and Navigation Tool for
M ulti-attribute Listings’. In Proceedings of ACM CHI ’92, 293-294.

Chomut T. (1987) Exploratory Data Analysis Using Parallel Coordinates. M.Sc. Thesis,
UCLA Computer Science Dept. Also IBM LA Scientific Center Report 1987-2811.

Cleveland, W. S. and McGill, M. E. (eds.) (1988) Dynamic Graphics for Statistics. Wads
worth and Brooks/Cole, Statistics/Probability Series.

Cleveland, W. S. and McGill, R. (1984) ‘The Many Faces of the Scatterplot’. Journal of
the American Statistical Association 79, 807-822.

Curtis, R. and Scarfone, S. (1992) ‘XFace, an X tool for presenting multivariate data, and
its use with software metrics’. In Proceedings of the Eleventh Annual International Phoenix
Conference on Computers and Communications, 525-530.

Cypher, A. (1991) ‘Eager: Programming Repetitive Tasks by Example’. In Proceedings of
ACM CHI ’91, 33-39.

Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B.A., and
Turransky, A. (1993) Watch What I Do: Programming by Demonstration. MIT Press,
Cambridge, MA.

Desai, A. and Walters, L. C. (1991), ‘Graphical Presentations of Data Envelopment Anal
yses: Management Implications from Parallel Axes Representations’. Decision Sciences
Journal 22(2), 335-353.

De Soete, G. (1986) ‘A Perceptual Study of the Flury-Riedwyl Faces for Graphically Dis
playing Multivariate Data’. International Journal of Man-Machine Studies 25(5), 549-555.

Draper, S. (1986) ‘Display Managers as the Basis for User-Machine Communication’. In
Norman, D.A. and Draper, S.W. (eds.), User Centered System Design. Lawrence Erlbaum
Associates, Hillsdale, NJ, 339-352.

du Boulay, B., O’Shea, T., and Monk, J. (1981) ‘The Black Box Inside the Glass Box:
Presenting Computing Concepts to Novices’. International Journal of Man-Machine Studies
14.

Eick, S. (1994) ‘Data Visualization Sliders’. In Proceedings of ACM UIST ’94, 119-120.

R eferences 238

Eisenberg, M. and Fischer, G. (1994) ‘Programmable Design Environments: Integrating
End-User Programming with Domain-Oriented Assistance’. In Proceedings of ACM CHI
’94, 431-437.

Fischer, G., Lemke, A. C., Mastaglio, T. and Morch, A. I. (1991) ‘The Role of Critiquing
in Cooperative Problem Solving’. ACM Transactions on Information Systems 9(3), April
1991, 123-151.

Fischer, G. and Nieper-Lemke, H. (1989) ‘HELGON: Extending the Retrieval by Reformu
lation Paradigm’. In Proceedings of ACM CHI ’89, 357-362.

Flemming, U. (1989) ‘More on the representation and generation of loosely packed arrange
ments of rectangles’. Planning and Design 16, 327-359.

Flemming, U., Coyne, R.F., Glavin, T., Hsi, H. and Rychener, M.D. (1989) ‘A generative
expert system for the design of building layouts.’ 1989 Report Series, Engineering Design
Research Center, Carnegie Mellon University.

Flury, B. and Riedwyl, H. (1981) ‘Graphical representation of multivariate data by means
of asymmetrical faces’. Journal of the American Statistical Association 76, 757-765.

Frawley, W. J., Piatetsky-Shapiro, G. and Matheus, C. J. (1992) ‘Knowledge Discovery in
Databases: An Overview’. AI Magazine 13(3), Fall 1992, 57-70. An overview of Piatetsky-
Shapiro, G. and Frawley, W.J. (eds.) Knowledge Discovery in Databases. AAAI Press,
Menlo Park, CA., 1991.

Godin, R., Gecsei, J. and Pichet, C. (1989) ‘Design of a Browsing Interface for Information
Retrieval’. In Proceedings of ACM SIGIR ’89, 32-39.

Godin, R., Missaoui, R. and April, A. (1993) ‘Experimental Comparison of Navigation in
a Galois Lattice with Conventional Information Retrieval Methods’. International Journal
of Man-Machine Studies 38, 747-767.

Green, T.R.G. (1990) ‘The Cognitive Dimension of Viscosity: a sticky problem for HCI’. In
Proceedings of HCI INTERACT ’90, 79-86.

Green, T.R.G. (1991) ‘Describing Information Artifacts with Cognitive Dimensions and
Structure Maps’. In Proceedings of the HCI’91 Conference on People and Computers VI,
297-315.

Grinstein, G., Pickett, R. and Williams, M.G. (1989) ‘Exvis: An exploratory visualization
environment’. In Proceedings of Graphics Interface ’89, London, Ontario, 254-261.

Harel, D. (1988) ‘On Visual Formalisms’. Communications of the ACM 31(5), May 1988,
514-530.

R eferences 239

Hearst, M. A. (1995) ‘TileBars: Visualization of Term Distribution Information in Full Text
Information Access’. In Proceedings of ACM CHI ’95, 59-66.

Hendry, D.G. and Green, T.R.G. (1994) ‘Creating, Comprehending and Explaining Spread
sheets—A Cognitive Interpretation of W hat Discretionary Users Think of the Spreadsheet
Model’. International Journal of Human-Computer Studies 40(6), 1033-1065.

Hudson, S.E. (1990) ‘Adaptive Semantic Snapping: A Technique for Semantic Feedback at
the Lexical Level’. In Proceedings of ACM CHI ’90, 65-70.

Hook, K., Karlgren, J., and Waern, A. (1995) ‘A Glass Box Intelligent Help Interface’. In
Pre-proceedings of IMMI-1: the First International Workshop on Intelligence and Multi
modality in Multimedia Interfaces: Research and Applications, Edinburgh, July.

Inselberg, A. (1981) ‘N-dimensional graphics part I: Lines and hyperplanes’ IBM LA Science
Center Report G320-2711.

Inselberg, A. (1985a) ‘The Plane with Parallel Coordinates’. The Visual Computer 1,
69-91.

Inselberg, A. (1985b) ‘Intelligent instrumentation and process control’ in Weisbin C.R.(ed.),
Artificial Intelligence Applications—The Engineering of Knowledge-Based Systems. Pro
ceedings of the 2nd conference on AI (CAIA-85). IEEE Computer Soc Press, 302-307.

Inselberg, A. and Dimsdale, B. (1991) ‘Parallel Coordinates: a Tool for Visualizing Mul
tivariate Relations’. In Klinger, A. (ed.), Human-Machine Interactive Systems, Plenum
Press, New York, 199-233.

Inselberg, A. and Dimsdale, B. (1994a) ‘Multidimensional Lines I: Representation’. SIAM
Journal on Applied Mathematics 54(2), 559-577.

Inselberg, A. and Dimsdale, B. (1994b) ‘Multidimensional Lines II: Proximity and Appli
cations’. SIAM Journal on Applied Mathematics 54(2), 578-596.

Inselberg, A., Dimsdale, B., Chatterjee, A., and Chao-Kuei Hung (1993) ‘Parallel coordi
nates: survey of recent results’. In Proceedings of Human Vision, Visual Processing, and
Digital Display IV, February 1993, San Jose, CA. SPIE Proceedings Series, Volume 1913,
582-599.

Inselberg, A., Reif, M. and Chomut, T. (1987) ‘Convexity algorithms in parallel coordi
nates’. Journal of the ACM 34, 765-801.

Johnson, J. (1992) ‘Going Beyond User-Interface Widgets’. In Proceedings of ACM CHI
’92, 273-279.

R eferences 240

Johnson, J.A., Nardi, B.A., Zarmer, C.L., and Miller, J.R. (1993) ‘ACE: Building Interactive
Graphical Applications’. Communications of the ACM 36(4), 41-55.

Kaplan, S.J., Kapor, M.D., Belove, E.J., Landsman, R.A. and Drake, T.R. (1990) ‘Agenda:
A Personal Information Manager.’ Communications of the ACM 33(7), July 1990, 105-116.

Karlgren, J., Hook, K., Lantz, A., Palme, J., and Pargman, D. (1994) ‘The Glass Box User
Model for Filtering’. In Proceedings of Ĵ th International Conference on User Modeling,
Hyannis, ACM Press.

Keen, P. G. W. and Scott-Morton, M. S. (1978) Decision Support Systems: An Organiza
tional Perspective. Addison-Wesley, Reading, MA.

Kleinmuntz, D.N. and Schkade, D.A. (1993) ‘Information Displays and Decision Processes’.
Psychological Science 4(4), 221-227.

Kochhar, S. (1994) ‘CCAD - A Paradigm for Human-Computer Cooperation in Design’.
IEEE Computer Graphics and Applications 14(3), 54-65.

Kochhar, S. and Friedell, M. (1990) ‘User Control in Cooperative Computer-Aided De
sign’. In Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and
Technology (UIST ’90), Snowbird, Utah, 143-151.

Kochhar, S., Marks, J. and Friedell, M. (1991) ‘Interaction Paradigms for Human-Computer
Cooperation in Graphical-Object Modeling’. In Proceedings of Graphics Interface ’91, ISO-
191.

Koestler, A. (1964) The act of creation. Macmillan, New York.

Lai, K. Y., Malone, T. W., and Yu, K. C. (1988) ‘Object Lens: A “Spreadsheet” for
Cooperative Work’. ACM Transactions on Office Information Systems 6(4), 332-353.

Lamport, L. (1985) DTpfX: A Document Preparation System. Addison-Wesley Publishing
Company.

Hing-Yan Lee, Hwee-Leng Ong and Karanbir Singh Sodhi (1995a) ‘Visual Data Explo
ration’. To appear in Proceedings of the 3rd Intl. Applied Statistics in Industry Conference,
Dallas, Texas, June 1995.

Hing-Yan Lee, Hwee-Leng Ong and Karanbir Singh Sodhi (1995b) ‘A KDD Experience
in Pedestrian Accident Analysis’. To appear in Proceedings of the MLnet Workshop on
Statistics, Machine Learning and Knowledge Discovery in Databases, Heraklion, Greece,
April 1995.

R eferences 241

Hing-Yan Lee, Hwee-Leng Ong, Eng-W hatt Toh and Sieu-Kong Chan (1995) ‘A Multi-
Dimensional Data Visualization Tool for Knowledge Discovery in Databases’. Submitted
for publication.

Lunzer, A. E. (1994) ‘Reconnaissance Support for Juggling Multiple Processing Options.’
Technique Note. In Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST ’94)- Marina del Rey, California, November 1994, 27-28.

Mackinlay, J.D., Robertson, G.G., and DeLine, R. (1994) ‘Developing Calendar Visualizers
for the Information Visualizer’. In Proceedings of ACM UIST ’94, 109-118.

Magleby, E.J., Burton, R.P. and Scott, D.T. (1991) ‘Parallel Axes Graphics Techniques for
the Analysis of Multivariate D ata’. Journal of Imaging Science 35(6), 394-397.

Mander, R., Salomon, G., and Wong, Y. Y. (1992) ‘A ‘Pile’ Metaphor for Supporting Casual
Organization of Information’. In Proceedings of ACM CHI ’92, 627-634.

Marsh, S. (1992) ‘The interactive matrix chart’. SIGCHI Bulletin (USA) 24(4), 32-38.

Maulsby, D.L. & Witten, I.H. (1989) ‘Teaching a Mouse How to Draw.’ In Proceedings of
Graphics Interface ’89, 130-137.

Meyer, B. (1994) ‘Adaptive Performance Support: User Acceptance of a Self-Adapting
System’. In Proceedings of 4th International Conference on User Modeling, Hyannis, ACM
Press.

Modugno, F., Green, T.R.G. and Myers, B.A. (1994) ‘Visual Programming in a Visual
Domain: A Case Study of Cognitive Dimensions’. In People and Computers IX, Proceedings
of BCS HCI ’94, Glasgow, August 1994, 91-108.

Myers, B. A., Smith, D. C. and Horn, B. (1992) ‘Report of the “End-User Programming”
Working Group’. In Brad A. Myers (ed.), Languages for Developing User Interfaces. Jones
and Bartlett Publishers, Boston, 343-366.

Nardi, B. (1993) A Small Matter of Programming. MIT Press, Cambridge, MA.

Nardi, B.A. and Johnson, J.A. (1994) ‘User Preferences for Task-specific vs. Generic Ap
plication Software’. In Proceedings of ACM CHI ’94, 392-398.

Nardi, B.A. and Zarmer, C.L. (1993) ‘Beyond Models and Metaphors: Visual Formalisms
in User Interface Design’. Journal of Visual Languages and Computing 4, 5-33.

Ng, W.Y. (1991) ‘An Interactive Descriptive Graphical Approach to D ata Analysis for
Trade-Off Decisions in Multiobjective Programming’. Information and Decision Technolo
gies 17(2), 133-149.

R eferences 242

Norman, D. A. (1986) ‘Cognitive engineering’. In Norman, D.A. and Draper, S.W. (eds.)
User Centered System Design, Lawrence Erlbaum Associates, Hillsdale, NJ, 31-61.

Norman, D. A. (1988) The Psychology of Everyday Things. Basic Books, New York.

Norman, D. A. (1991) ‘Cognitive artifacts.’ In Carroll, J. M. (ed.) Designing Interaction:
Psychology at the Human-Computer Interface. Cambridge University Press, 17-38.

Norman, D. A. (1993) Things that make us smart: defending human attributes in the age
of the machine. Addison-Wesley Publishing Company, Reading, MA.

Norman, D. A. and Bobrow, D. G. (1979), ‘Descriptions: an intermediate stage in memory
retrieval’. Cognitive Psychology 11, 107-123.

Paese, P. W. and Sniezek, J. A. (1991) ‘Influences on the appropriateness of confidence
in judgment: Practice, effort, information, and decision-making’. Organizational Behavior
and Human Performance 16, 366-387.

Pavlidis, T. and Van Wyck, C. (1985) ‘An automatic beautifier for drawings and illustra
tions’. In Proceedings of ACM SIGGRAPH ’85. Computer Graphics 19(3), 225-234.

Payne, J.W, Bettman, J.R., and Johnson, E.J. (1993) The adaptive decision maker. Cam
bridge University Press.

Pollitt, A.S. (1986) ‘Query-by-Menu: A novel DBMS query language, a description and
comparison with QBE’. In Proceedings of the 8th Research Colloquium of the BCS Infor
mation Retrieval Specialist Group, University of Strathclyde, 1986.

Pollitt, S.A., Ellis, G.P., Smith, M.P., and Li, C.S. (1994) ‘HIBROWSE: adding the power
of relational databases to the traditional IR architecture—the future for Graphic User In
terfaces’. In Proceedings of the 15th Research Colloquium of the BCS Information Retrieval
Specialist Group, Glasgow, 1993, 108-118.

Potter, B., Sinclair, J. and Till, D. (1991) An Introduction to Formal Specification and Z.
Prentice Hall International (UK) Ltd.

Potter, R. (1993b) ‘Guiding Automation with Pixels: a Technique for Programming in the
User Interface’. Summary of demonstration video. In Proceedings of ACM INTERCHI ’93,
530.

Potter, R. (1993b) ‘Triggers: Guiding Automation with Pixels to Achieve D ata Access.’ In
Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B.A. and
Turransky, A., Watch What I Do: Programming by Demonstration, MIT Press, Cambridge,
MA, chap. 17.

R eferences 243

Quinlan, R. J. (1993) C4-5: Programs for Machine Learning. Morgan Kaufmann Publishers.

Rao, R. and Card, S.K. (1994) ‘The Table Lens: Merging Graphical and Symbolic Rep
resentations in an Interactive Focus-|-Context Visualization for Tabular Information’. In
Proceedings of ACM CHI ’94, 318-322.

Rieman, J., Davies, S. and Roberts, J. (1992) ‘A visit to a very small database: Lessons
from managing the review of papers submitted for CHI ’91.’ In Proceedings of ACM CHI
’92, 471-478.

Robertson, G.G., Card, S.K., and Mackinlay, J.D. (1993) ‘Information Visualization Using
3D Interactive Animation’. Communications of the ACM 36(4), 57-71.

Runciman, C. and Thimbleby, H. (1986) ‘Equal Opportunity Interactive Systems’. Inter
national Journal of Man-Machine Studies 25(4), 439-451.

Russo, J. E. & Dosher, B. A. (1983) ‘Strategies for m ultiattribute binary choice’. Journal
of Experimental Psychology: Learning, Memory, and Cognition 9, 676-696.

Sanderson, M. and van Rijsbergen, C.J. (1991) ‘NRT: news retrieval tool’. Electronic Pub
lishing, EP-odd 4(4), 205-217.

Sarkar, M. and Brown, M. H. (1992) ‘Graphical Fisheye Views of Graphs.’ In Proceedings
of ACM CHI ’92, 83-91.

Shipman, F. and McCall, R. (1994) ‘Supporting Knowledge-Base Evolution with Incremen
tal Formalization’. In Proceedings of ACM CHI ’94, 285-291.

Shneiderman, B. (1993) ‘Dynamic Queries for Visual Information Seeking’ University of
Maryland technical report CS-TR-3022, Sept 1993 (revised Jan 1994).

Smith, D. C. and Susser, J. (1992) ‘A Component Architecture for Personal Computer
Software’. In Brad A. Myers (ed.), Languages for Developing User Interfaces. Jones and
Bartlett Publishers, Boston, 31-56.

Smith, R. B., Ungar, D. and Chang, B.-W. (1992) ‘The Use-Mention Perspective on Pro
gramming for the Interface’. In Brad A. Myers (ed.), Languages for Developing User Inter
faces. Jones and Bartlett Publishers, Boston, 79-89.

S0rgaard, P. (1988) A Discussion of Computer Supported Cooperative Work. Ph.D. thesis,
Aarhus University, Denmark.

Srinivas, M. and Patnaik, L.M. (1994) ‘Genetic Algorithms: A Survey’. IEEE Computer
27(6), 17-26.

R eferences 244

Suchman, L. A., (1987) Plans and situated actions: the problem of human-machine com
munication. Cambridge University Press, Cambridge.

Thimbleby, H. (1990) User Interface Design. ACM Press, New York, NY.

Todd, S. and Latham, W. (1992) Evolutionary A rt and Computers. Academic Press Ltd.

Tufte, E. R. (1990) Envisioning Information. Graphic Press, Cheshire, CT.

Tukey, J.W . (1977) Exploratory Data Analysis. Addison-Wesley, Reading, MA.

Tversky, A. and Kahneman, D. (1981) ‘The framing of decisions and the psychology of
choice’. Science 211 , 453-458.

Tversky, A. and Kahneman, D. (1990) ‘Cumulative prospect theory: An analysis of decision
under uncertainty’. Unpublished working paper, Stanford University.

Tweedie, L., Spence, R., Dawkes, H. and Su, H. (1995) ‘The Influence Explorer’. Short
paper. Presented at ACM CHI ’95, Denver, Colorado.

Tweedie, L., Spence, R., Williams, D. and Bhogal, R. (1994) ‘The A ttribute Explorer’. In
Video Proceedings of ACM CHI ’94. Also described in Conference Companion, 435-436.

Vetschera, R. (1994) ‘MCView: An Integrated Graphical System to Support M ultiattribute
Decisions.’ Decision Support Systems 11(4), 363-371.

Waite, K. W. (1991) ‘Iconographer: an Icon-based Visualisation Toolkit’. In Waite, K. W.
(ed.) Current Human-Computer Interaction Research: An Anthology of Recent Papers—
Volume II. Report GIST-91-1, Computing Science Department, University of Glasgow,
1-14.

Wegman, E .J. (1990) ‘Hyperdimensional Data Analysis Using Parallel Coordinates’. Jour
nal of the American Statistical Association 85(411), Sept 1990, 664-675.

Weiland, W .J. and Shneiderman, B. (1993) ‘A Graphical Query Interface Based on Aggre
gation Generalization Hierarchies’. Information Systems 18(4), 215-232.

Weisberg, R. W. (1986) Creativity: genius and other myths. W. H. Freeman and Company,
New York.

Weitzman, T. (1986) ‘Designer: A knowledge-based graphic design assistant’ ICS Report

8609, University of California, San Diego.

Williams, M. D. (1984) ‘W hat makes RABBIT run?’. International Journal of Man-

Machine Studies 21, 333-352.

R eferences 245

Williamson, C. and Shneiderman, B. (1992) ‘The Dynamic HomeFinder: Evaluating dy
namic queries in a real-estate information exploration system’. In Proceedings of ACM
SIGIR ’92, 338-346.

Winograd, T. and Flores, F. (1986) Understanding Computers and Cognition—A New Foun
dation for Design. Addison-Wesley.

Woodbury, R.F. (1991) ‘Searching for Designs: Paradigm and Practice’. Building and
Environment 26(1), 61-73.

Yen, J., Neches, R., Debellis, M., Szekely, P. and Aberg, P. (1991) ‘Backbord: An Imple
mentation of Specification by Reformulation’. In Sullivan, J.W. and Tyler, S.W. (eds.),
Intelligent User Interfaces. ACM Press, New York, NY, 421-444.

