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Summary.

This work is concerned with the role of symmetries in cosmological models in the 

context of the general theory of relativity.

We review the observational evidence for the homogeneity and isotropy of our 

universe and discuss briefly the Friedmann-Robertson-Walker (FRW) models which 

describe homogeneous and isotropic cosmological models.

The rest of the thesis provides an overview of those concepts of group theory and 

differential geometry relevant to the study of symmetry properties of homogeneous 

spacetimes. The techniques of differential geometry provide a method for describing 

the structures which can exist on a manifold. Once the manifold structure has been 

established it is possible to explore the symmetry properties of this manifold. The 

aspects of group theory relevant to the symmetry properties of a spacetime are then 

expounded. In particular we study connected Lie groups and their corresponding 

Lie algebras.

The symmetry transformations that leave the metric invariant are called isomet- 

ries and the set of isometries form a group which can be split into a continuous com

ponent and a discrete component. The continuous isometries have associated with 

them infinitesimal isometries and these can be described by Killing vectors. These 

Killing vectors form the Lie algebra of the underlying symmetry group. The Killing 

vector fields therefore characterise the symmetry properties of the spacetime. The 

properties of isometries are discussed and some examples are given. In particular, to 

each Killing vector there corresponds a conserved quantity. The consequences of Lie 

group structure and the classification scheme for spatially homogeneous cosmologies 

(Bianchi classification) are outlined.

We compute the Killing vector fields for the FRW models, discuss their algebraic 

properties and the conservation laws derivable from them. These can be used to 

derive simply and directly some of the familiar results of the Friedmann cosmologies.
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Chapter 1 

Homogeneous and Isotropic 
Cosmology.

1.1 Introduction.

This work is concerned with the role of symmetries in cosmological models. Our 

approach to cosmology is based on the general theory of relativity since it is so far 

the most successful theory of gravitation to have emerged.

A cosmological model is a spacetime with a specific matter/energy content. The 

spacetime is a 4-dimensional manifold M endowed with a metric tensor g. Once M 

is chosen then the global topology has been specified. The line element

ds2 =  g ^d x ^d x ” (1 -1 )

describes the local geometry of the spacetime manifold.

The energy-momentum tensor T  describes the energy content (ie m atter, ra

diation, fields) of the model. The metric components and energy-momentum

tensor components T^u can be regarded as satisfying Einstein’s field equations

Rpu, ~  +  A9pV -  8ti-Tpy (1 .2 )

where we have put the gravitational constant G and the speed of light c both equal 

to 1. Of course, the energy-momentum tensor associated with a cosmological model 

must have reasonable physical properties.

Why consider symmetries in cosmological models? Because of the complexity of 

the field equations (a set of coupled, non-linear, partial differential equations), one 

cannot find exact solutions except for cases of rather high symmetry. Exact solutions
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give an idea of the qualitative features that can arise in general relativity, and so 

of possible properties of realistic solutions of the field equations. In cosmology we 

simplify the Einstein field equations by imposing symmetries on the solutions i.e. 

on the metric tensor. The solutions which possess symmetries are the most useful 

and best known.

As in classical mechanics there is often associated with a symmetry a conserved 

quantity (conserved quantities arise in general relativity when we begin to describe 

the symmetries associated with our solutions). The conservation of angular mo

mentum for the central force problem arises from the fact that the Hamiltonian is 

independent of 9. This is an expression of the rotational symmetry of the system 

ie there is no preferred orientation in the plane. ^  =  0  means that the energy of 

the system is unchanged if we rotate it through 69 without changing r ,p r ,p 0 . So 

there is a transformation which leaves H invariant and a corresponding conserved 

quantity. In an analagous manner certain symmetry transformations on a manifold 

can have associated conserved quantities. A symmetry transformation on a manifold 

manifests itself in the invariance of the metric under this particular transformation 

and these motions are described by Killing vectors.

The symmetry transformations that leave the metric invariant are called iso

metries. The set of isometries form a group which can be split into a continuous 

component and a discrete component. The continuous isometries can be described 

by Killing vectors.

The Killing vector fields therefore characterise the symmetry properties of the 

spacetime. For example, if a spacetime is stationary i.e invariant under time trans

lations, there exists a timelike Killing vector field. Similarly, spherical symmetry 

implies the existence of Killing vector fields which correspond to rotations.

The Friedmann-Robertson-Walker cosmological models are homogeneous and 

isotropic or more accurately have spatial sections which are homogeneous and iso

tropic.

Isotropy at all points in space demands spatial homogeneity but not vice versa. 

Homogeneity and isotropy are best described in terms of the isometries of the man

ifold. A spacetime doesn’t necessarily have to be invariant under translations in 

order for it to be spatially homogeneous. A space is homogeneous if there exists a 

group of isometries that takes every point into any other point on the manifold, thus
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leaving no point fixed. Isotropy at a point in the space requires the 3-dimensional 

spatial sections to be invariant under rotations at that point.

1.1.1 Outline of Thesis.

The purpose of this thesis is to deal with the matters mentioned above in a pre

cise mathematical form and discuss briefly the Friedmann-Robertson-Walker (FRW) 

model.

In chapter 1 we review the observational evidence for the homogeneity and iso

tropy of our universe.

Chapter 2 deals with differential geometry, which we rely upon for a concise 

description of the structure on a manifold.

Chapter 3 explores those aspects of group theory relevant to the symmetry prop

erties of a spacetime. In particular we study connected Lie groups: these are con

tinuous groups which can be described completely by their local subgroup which is 

in one to one correspondence with the Lie algebra of the Lie group.

In chapter 4 the properties of isometries are discussed and some examples are 

given. The consequences of Lie group structure and the classification scheme for 

spatially homogeneous cosmologies (Bianchi classification) are outlined.

In chapter 5 we compute the Killing vector fields for the FRW models and discuss 

their algebraic properties. These are used to derive an expression for the redshift 

using conserved quantities. As far as we are aware, the work in this chapter has not 

been presented in any of the literature to date.

1.2 The Friedmann M odels.

The universe appears to be spatially homogeneous and isotropic on the largest scales. 

The standard big bang model, based on the homogeneous and isotropic Friedmann- 

Robertson-Walker (FRW) spacetimes is a remarkably successful operating hypothes

is describing the structure and evolution of the universe. The FRW model describes 

an expanding universe - the volume of the spatial sections change with time. The 

expansion leads to a singularity at a finite time in the past when the volume of 

the spatial section becomes zero and m atter becomes infinitely dense and infinitely 

hot. The FRW model provides a theoretical framework for such observations as
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(1) the Hubble law of recession of galaxies ie the expansion of the universe, (2) the 

abundances of the light elements, in accordance with predictions from primordi

al nucleosynthesis and (3) the Cosmic Microwave Background Radiation (CMBR) 

which is believed to result from the initial hot dense phase of the universe.

The assumptions of homogeneity and isotropy on large scales have strong ob

servational support. The evidence for angular isotropy on large scales comes from

(1) the smallness of the CMBR large-angle anisotropy detected by COBE, (2) from 

the isotropy of radiation backgrounds at other wavelengths (3) the isotropy of deep 

galaxy and radio source counts. The galaxy surveys give 2-dimensional information 

about the distribution of luminous m atter in the universe. On the other hand, the 

large-angle CMBR measurements directly probe the gravitational potential and are 

thus sensitive to the mass distribution itself ie both luminous and dark matter. We 

should be wary of associating the distribution of light with that of mass. Dark m at

ter is certain to exist since luminous m atter alone cannot account for the structure 

which is observed in the universe today.

Evidence for large-scale homogeneity comes in part from galaxy redshift surveys 

which give 3-dimensional information about the galaxy distribution. As mentioned 

before, large structures do exist e.g. superclusters, voids etc. but the net fluctuations 

in galaxy density become small on the largest scales.

When considering the large scale structure of the universe, the basic constitu

ents can be taken to be the galaxies. Galaxies tend to occur in groups or clusters, 

each containing a few to a few thousand galaxies, which can aslo cluster to form 

superclusters. There is no evidence for clustering on large scales. Large-scale means 

on scales which are large compared to the distance between typical nearest galaxies 

(of the order of a million light years). From the CMBR results and galaxy ditri- 

bution surveys the universe appears to be homogeneous and isotropic around us. 

It is important to note that in order to step from this to a cosmological model we 

must add a further assumption (since we observe the universe from a single vantage 

point). This assumption is called the Copernican Principle and says that we do not 

occupy a special position in the universe. By itself the Copernican principle would 

simply imply homogeneity but when combined with observations of isotropy it im

plies that the universe should appear isotropic around every point. This is called 

the Cosmological principle.
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The Einstein equations applied to a homogeneous and isptropic universe yield 

the Friedmann equations (the energy momentum tensor is assumed to be that of a 

perfect fluid). The metric incorporates the geometrical properties (e.g. symmetries) 

of the spacetime. The Einstein equations describe the dynamics of the model i.e. 

the manner in which the m atter behaves and the system evolves. It should be noted 

that the model says nothing about why the universe should be homogeneous and 

isotropic.

1.2.1 The Metric.

The assumptions of spatial homogeneity and isotropy severely restrict the form of 

the spacetime geometry.

Each FRW spacetime consists of a 3-dimensional spatial section parameterised 

by the time t. These spatial sections have the global topology of either flat Euclidean 

space, the 3-sphere or the 3-hyperboloid.

The constant-time 3-surfaces have uniform spatial curvature and the metric on 

these surfaces can be described in polar coordinates by

dr2
ds2 = S 2(t) -f r (d9 +  sin 6d(f) )

.(1 — kr2)

where S(t) is the scale factor which describes the overall expansion or contraction, 

r, 9, <j) are comoving coordinates and k is the sign of the spatial curvature. The case 

k=0 corresponds to flat Euclidean space (E 3), k = l correponds to the geometry of 

the 3-sphere (S 3) and k= -l the 3-hyperboloid ( # 3), the three dimensional analogue 

of a hyperbolic saddle. Thus models with k < 0 are spatially infinite (open), while 

those with k=-f 1 are spatially finite (closed). The full FRW spacetime metric can 

then be written in the form:

dr2
ds2 = dt2 -  S 2{t)

.(1 — kr2)
+  r (dO +  sin $d(j) ) (1.3)
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1.2.2 The Friedmann Equations and Dynam ics.

It is possible to make predictions from our model about the evolution of the universe: 

we are particularly interested in the early universe and in the ultimate fate of the 

universe. It would be a difficult task to formulate the dynamics of the FRW model 

in terms of a general solution valid for all time because of the complexity of the res

ulting field equations. Instead we consider the early universe as being dominated by 

radiation and relativistic m atter and later as being m atter dominated. The Fried

mann models take the cosmological constant A to be zero. The energy-momentum 

tensor is assumed be that of a perfect fluid, viz.

=  (e +  p)u*uv -  p g ^  (1.4)

where p is the pressure and e is the energy density measured in the rest frame of

the fluid element and is the four-velocity of the fluid.

Einstein’s equations for the FRW model are

3(S2 +  k) =  SttGcS 2 (1.5)

2 S S  + S 2 + k = - 8 trGpS2 (1.6)

The first corresponds to the 00-component of Einstein’s field equations and the 

second is the 11-component (the 11, 22 and 33-components are identical). The 

Freidmann equations are obtained from (1.5) and (1.6):

3(52 + k) =  8tt GeS2 (1.7)

5  =  - ^ p ( e  +  3P)S' (1.8)

It follows from (1.7) and (1.8) that

e +  3(p +  e)— =  0 (1.9)

which states conservation of energy (of course, equation(1.9) is a direct consequence

of T$r = o).
Now, we have two equations i.e. (1.7) and (1.8), for three unknown functions

5(f), e and p. In order to solve this system of differential equations we need a third

equation. The third equation is provided by an equation of state p =  p(e). Some



t = 0 t

Figure 1.1: The variation (qualitative) of the scale factor

information can be obtained, however, without solving the Friedmann equations 

explicitly if we make a few reasonable assumptions about pressure and density.

On physical grounds, it seems reasonable to assume that (e +  3p) will always 

be positive. It follows from (1.8) that S  will always be negative. S is positive by 

definition and So is positive since we see redshifted photons - not blue shifted (we 

shall denote values evaluated for the present epoch by a subscript 0 e.g. So = S(to)). 

This tells us that the function S(t) should be concave downwards and will go to zero 

at, say, t=0. The form of the function S(t) can be seen in figure 2.

From (1.9) we find that

—  =  - 3 ps 2 (1 .1 0 )

For p=0, e decreases as S~3 and for p > 0, e decreases faster than S~3. Therefore, 

eS2 decreases faster than S -1. Equation (1.5) can be written

£2 _  87r GeS2 7
jj — K •

3

We recall that So is positive. For the case k= -l, S 2 decreases but never goes to 

zero, in fact, S tends to t as t i—► oo. k=0, S 2 decreases and goes to zero as 1 1—► oo. 

However, for the case k = + l, S 2 will go to zero but since S  is always negative, S 2 will
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k=-l
S(t)

k=0

k =+1

t = 0 t t

Figure 1.2: The scale factor.

become negative and S will decrease to zero. This sets out three distinct scenarios 

for the evolution of the universe. We are confronted here with the possibility of 

the universe’s expansion halting and giving way to contraction ie a universe with a 

finite lifetime. The actual solution will dictate the present state of the universe eg 

its density and we shall consider this next.

The first of the Freidmann equations (1.5) can be written

S 2 8 k Gc k
S 2 = ~ 3  S 2

The definition of the Hubble parameter H(t) is H(t)  =  so it follows that

3 H 2 3 k
=  e —

SirG 8ttG S 2

and evaluating this for the present epoch

3H02 U
SitG e° SvGSo2

OT = £° “ 8 ^  

where ec — is the critical density. It is then obvious that when k = + l ec < e0, 

k=0 has ec =  eo and k= -l has ec > e0- The deceleration parameter is defined as

v y s{ty 
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and (1.8) gives for the present epoch

(e0 +  3p0) =  ( j - ^ jq o H o 2.

If we now assume that p0 can be considered negligible in comparison to eo then this 

equation can be expressed as

~  =  (2?0 -  l)H 02

There is a simple relationship between the ratio of the present day energy density 

and the critical density and the deceleration parameter q0 ie

— =  2qo =  Ho.
ec

The universe is open if qo < |(^ o  < 1) and closed if qo > |( ^ °  ^  !)• ^he value °f 
qo is not known exactly but we do have some idea of its possible values.

We can find exact solutions for the case of zero pressure but they will not, of 

course, give an accurate description of the early universe. The energy density varies 

in the following manner
€_   . Sp ' 3

e0 “  1 5  } 
k=0. The Einstein-deSitter model.

S(t) f  t \ 3

k = + l.

So \ t 0

1 2q 1 q
S{t) =  -o;(l — cos$) where a  =  ^ and cos 9 = ------- .

2  Ho{2qo — 1 ) 2 q

k=-l.
 ̂ J   Q

S(t)  =  -/3(coship — 1) where ft = ------------   ^ and cosh^ = ------- ,
2  Ho(l — 2 ^0 ) 2  q

For a radiation dominated era p = and an exact solution can be obtained 

as before. However, we might use a different energy-momentum tensor when con

sidering this early stage in the evolution of the universe. An exact solution does 

exist which applies to both radiation and m atter dominated eras (i.e. when T MI/ has 

contributions from both matter and radiation) - see Islam (1991) [11] for details.
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The general acceptance of the FRW model has obscured some of its difficulties 

however the main problems do not directly contradict the observational data. We 

shall consider these briefly.

There is an initial singularity at t=0: a finite energy is concentrated within 

zero volume and hence the energy density e becomes infinite. Such an occurrence 

contradicts common sense and voilates accepted physical laws. An initial singularity 

might be removed by adding a cosmological constant A to the field equations (eg the 

deSitter model has a non zero A and the scale factor is never zero valued - hence there 

is no singularity) but it is not certain whether the actual A has a non zero value. 

Even the assumption of isotropy was loosened in an attem pt to restore a physically 

acceptable solution near t=0 but still the singularity persists. The singularity seems 

inherent in the FRW model.

Let t be the age of the universe. Two arbitrary regions can be causally related 

only if they are within ct of each other and this distance ct is called the horizon. 

The horizon of events is currently about 1023km which coincides with the size of 

the universe but the size of the universe changes more slowly than the size of the 

horizon and so the horizon was once smaller. How is it possible that when one part 

of the universe is not causally related to another, they can have the same density 

etc and the universe can appear isotropic? This is the horizon problem.

Given the large scale homogeneity, the distribution of m atter at around 10-45 

seconds must have been very smooth (but not absolutely smooth) - otherwise we 

would observe very large inhomogeneities. This is the smoothness problem. Cur

rently lies between 0.1 and 2. must have been equal to 1 within 1 in 1015 at 

the beginning of the universe which seems unlikely and this is called the flatness 

problem. These are problems of initial conditions and attempts have been made to 

solve the latter three using the inflationary scenario - see the paper by J.A.Frieman 

(1994) [7],

What are the values of the cosmological parameters Ho and qo! The redshift z 

can be expressed in terms of the distance 1 from us

z  = H0l + h i  +  qo)Ho2l2 +  O(H03!3)

Thus from the observed redshifts it is possible to determine the parameters Ho and 

if an independent estimate can be obtained for the distance. Cepheid variables
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provide the answer: they possess a period-luminosity relationship and so can be 

used as ”standard candles” . Supernovae can also be used.

W hether a cosmological constant is necessary or not, is unknown and in order 

that cosmological models can be considered in all generality it is reasonable to 

consider Hq, qo and A as the three unknown parameters.
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Chapter 2 

Differential Geometry.

In this chapter we set out the preliminary mathematical and geometric concepts 

relevant to our study of general relativity. This is essentially the mathematics of 

curved spaces - or differential geometry. The description of the symmetriesof such 

spaces is provided by the theory of Lie groups and Lie algebras which we shall discuss 

in chapter 3.

2.1 Manifolds.

Our mathematical treatment of curved spaces begins with the idea of a topological 

space and manifold.

Let S and T be sets. In order to define a continuous function /  : S ^ T  we 

need to give the sets S and T a topological structure. A topological structure (or 

a topology) on a set S is a collection of subsets of S called open sets, satisfying the 

axioms:

(1) The union of any number of open sets is open.

(2) The intersection of any finite number of open sets is open.

(3) Both S itself and the empty set 4> are open.

When such a structure is given on a set S we call it a topological space and 

we refer to its elements as points. For a detailed discussion see Wald (1984) [23]. 

R n is a topological space: we denote by Rn the set of all n-tuples of real numbers

(a:1, a;2,  xn), that is, every point of R n can be labelled by a set of these numbers.

A topological space is said to be Hausdorff if for every pair of distinct points p, q 

in the space one can find open sets 0 P, 0 q such that p G Op, q € Oq and 0 P fl 0 q = 0 

ie that the open sets containing the distinct points do not intersect. Therefore, in a

14



g(V)

f(U)

Figure 2.1: Mapping from M to R n.

Hausdorff space, any line joining two distinct points can be infinitely subdivided. 

We are now in a position to define a manifold.

D efin ition , (manifold) An n-dimensional manifold M  is a set of points which con

stitute a topological space, together with an open covering Ui of M  and mappings 

fi : U i ^ R n where fi is a continuous one to one mapping of Ui onto the open sub

set fi(U{) of R n. The pair (£/;,/*) is called a coordinate patch and i f  p € Ui then 

x l =  fi(p) are called the coordinates of p in the coordinate system (U i,fi).

We will only be considering manifolds which are Hausdorff spaces.

Each point of the manifold M lies in an open set (also called an open neighbour

hood) with a continuous one to one map onto an open set of RJ1. This means that M 

is locally like R n which is an important property as it effectively insures that every 

region of M can be assigned at least one set of coordinates, that is every point in

that neighbourhood can be uniquely identified by a set of numbers (a:1, a:2,  xn).

The diagram shows two of the open neighbourhoods, U and V, of M but there 

may be others. A particular manifold may have a neighbourhood which includes all
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of M, but we shall consider the general case where there are many coordinate patches 

needed to cover M. All the Ui constitute the open covering of M. The neighbourhood 

U has its own map onto the region f(U) of Rn and similarly for V.

The neighbourhood Ui together with its map fi is called a chart or coordinate 

patch and is denoted (Ui,fi).Put another way, a coordinate patch is an open set in 

which coordinates x l uniquely describe points. These patches cover the whole of the 

manifold M and the complete system of coordinate patches is known as an atlas.

We now consider the further characterisation of a manifold: the Ck manifold. 

Consider a point p lying in both open sets U and V, with their corresponding charts 

f and g. The map (g o f -1) from R n to R n expresses the coordinates of any point p 

GVC\U in the (V,g) coordinate system in terms of the (U,f) system. Using somewhat 

abbreviated notation, if p has coordinates x%(p) in (U,f) then it has coordinates 

yl(p) = y l{xl(jp)) in (V,g). This is simply a coordinate transformation and can be 

carried out for any overlapping coordinate patches on M. If the map is C k i.e. k 

times continuously differentiable, for all such overlapping coordinate patches Ui and 

Uj in M, then M is said to be a C k manifold or a Ck differentiable manifold.

It should be noted that we have not introduced the concept of distance in defining 

the manifold. The concept of a manifold has numerous uses many of which do not 

require any distance function to be defined between points but we have ensured the 

local topology is that of R n. The differentiability property of a C k manifold allows 

us to define, for example, tensors, differential forms and Lie derivatives without the 

need for any distance function.

The surface of a sphere S 2 is an example of a manifold for which one needs more 

than one coordinate patch to completely cover it. Consider polar coordinates 6, <j> 

on S 2. In order for this system to completely cover all of S 2 there would have to 

exist a corresponding mapping $  : M  t—> R 2 but this is not the case since at the 

poles $  is not even a map. At the poles on S'2, ^ can have any value and so the 

north pole corresponds to the whole line (0, f )  in R 2 and the south pole to the whole 

line (7r,(f>). Similarly the line (j> = 0 corresponds to the line f  = 2tt and each point 

on this line corresponds to two separate points on R 2.

At least two coordinate patches are needed to completely cover the sphere: one 

could be the coordinate patch above but with the poles and the line <f> = 2tt removed 

and the other an identical system but with its line along the equator of the first and
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0=0

<J)=0

0=71

Figure 2 .2 : The mapping of S 2 onto R 2. 

the poles at <j) =  | 7r and 0  =  | 7r.

2.2 Geometrical Objects.

We are now in a position to place ’’geometrical objects” on the manifold, such as 

functions and vector fields.

Let us begin by considering a curve on M. A curve is not just a continuous set 

of points on M. It is defined as a mapping from the set of real numbers R 1 into M. 

Thus a curve is a parameterised path.

Two curves which pass through the same points but with different paramet- 

erisation are different curves. A congruence of curves is a set of curves filling the 

manifold, so that there is a unique curve passing through each point in M. Hence, 

the paths of different curves in the congruence will never cross.

A function is a scalar field: a rule which assigns a real number to every point in 

M. This is shown in the diagram below

The function f is a map from M to R 1 and there is the usual map of the region 

U of M onto R n given by g. The function then becomes a function on R n since

f(p )= f(x '(p )) .

If the function is differentiable on R n then it is said also to be differentiable on M.
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R'

Figure 2.3: Curve parameterised by A.

2.2.1 The Tangent Space and Vector Fields.

A linear vector space V of dimension n over a field f is a set of n elements Vi together 

with a binary operation +  called addition and scalar multiplication • such that for 

all u, v € V  and a, b E /  

a • u £ V

a • (u +  v) = a • u +  6  • v.

(a -f- b) • u =  a • u +  b • u.

(ab) • u =  a • ( 6  • u).

1 - u = u.

We are free to choose any n linearly independent vectors to form a basis for the 

vector space.

Let us now define tangent vectors and show how they from a vector space. Con

sider an arbitrary function defined on the manifold and a curve x M =  ^ (A ). The 

derivative of f along the curve may be written

df " dxx d f
dX d \  dx%1=1

We thus define the tangent vector as a mapping of functions into R.

d dxl d
dX = 1=1 dX dx l

(2 .1)

(2.2)
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Figure 2.4: function.

We can consider the set {^-} to be the components of a tangent vector with respect 

to the basis {^|r} in the tangent space at the point p of M. We can show that the 

tangent vectors form a vector space and the are the basis for this vector space. 

At every point of M a vector is defined and this constitutes a vector field. It is 

obvious from the above that to each congruence defined on the manifold there will 

be a corresponding (unique) vector field.

Thus, at any point p, the tangent space Tp is a vector space with the same 

dimension n as the manifold M. By choosing a basis in each Tp we arrive at a basis 

for vector fields.

2.2.2 Coordinated and Non-coordinated Bases.

The n operators { ^ 7 } are basis vector fields. We call a set of basis vectors derived 

from a set of coordinates a coordinated basis. Not every basis is a coordinated basis 

- any n vector fields linearly independent in an open set (neighbourhood) of M may 

be used as a basis in that open set. n vector fields are linearly independent on M if at 

every point p of M the corresponding n vectors are linearly independent. To arrive 

at an example of a non-coordinated basis consider ordinary spherical coordinates.
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In the coordinated basis { the velocity of a particle is

dr d d0 d d<f) d
dt dr ^  dt d6 dt d<j>

This can be rewritten in terms of the non-coordinated basis X r = X& =  \ § q-, X<f, =  
i d asrsind d(f>

dr dO dd>
V  =  — Xr +  r — X* +  rsinO-j-X^ 

dt dt dt

The {XM} form a non-coordinated basis. For any basis {X^} we can write the 

commutator

[ X „ X J  = D ^ X x .  (2.3)

The functions D*v are the structure coefficients corresponding to the basis {X^}. 

In a general basis the D*v do not vanish. In fact it can be shown that if and only if 

D*v =  0 is the basis a coordinated basis. If the manifold admits a group of isometries 

(see chapter 3) then the most convenient basis is one with the D*u determined by the 

group structure. We shall have more to say on this when we consider the invariant 

basis.

2.2.3 Tensor Fields.

The coordinate independent concept of a vector field is that of a differential oper

ator V on M, which carries differentiable functions on M into other differentiable 

functions. The concept of a vector field can be generalised to that of a tensor field.

We begin by defining a one-form field as a real-valued linear mapping of vector 

fields.

Consider the set V* of linear maps u  from the tangent vector space V into the 

set of real numbers

lo : V\—*R.

We can define addition and scalar multiplication of such linear maps in such a way 

that we get a natural vector space structure on V*. We call V* the dual vector 

space to V and the elements of V* are called dual vectors or one-forms. It should be 

noted that taking the double dual V** gives nothing new: we can naturally identify
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V** with V. A rule which gives a one-form at every point of the manifold (ie a rule 

which defines a one-form in every dual tangent space) is called a one-form field.

If is a general basis we define a corresponding dual set of one-forms

by

^ ( X v) = 6$ (2.4)

The most general one-form field can be written u  = aauja . If V  = fr7 A 7  then

uj(V) = aab°

We have now made sufficient progress to define a tensor. As before, let V be a 

finite dimensional vector space and let V* be its dual vector space. Then a tensor 

field T of type Q  is a multilinear map (ie linear on every arguement)

T  : V *xV*x x r x V x F x  xVWi?
k I

that is, when the tensor T operates on k one-forms and 1 vectors it produces a 

real number. The tensor field T is an operator on k one-form fields and 1 vector 

fields which produces a function.

The tensor product (cartesian product) uXgxr of two one-forms is a bilinear op

erator acting on pairs of vector fields, U and V say

u®<j(U, V) =  uj(U)a(V). (2.5)

The tensor product on forms and vectors is used to build up tensors of arbitrary

rank. The product of k one-forms and 1 vectors is a tensor of covariant rank k and

contravariant rank 1. The typical tensor can be written as

T =  (2.6)

The functions are said to be the components of the tensor with respect to the

basis AQ,(8 )....(8 )A/3(8 )a;Ai(8 )....®a;I/.
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Traditionally we look upon the metric as being a structure which determines 

the distance between two nearby points on a manifold. The square of the distance 

between two such points in the same coordinate patch is then given by the line 

element

ds2 =  gIMVdx,idxv.

the dx** being infinitesimal displacements.

From the modern viewpoint of differential geometry, the metric is a tensor that 

operates on any two tangent vectors A and B to give a real number, denoted by

g(A ,B ) = A-B  (2.7)

In an arbitrary basis we can write

9 =

So far, we have considered the manifold and the various geometrical objects 

defined upon it. As soon as we define a metric on our manifold then we introduce 

the notion of distance and curvature on M (although a metric tensor need not be 

defined in order to define curvature - but we shall discuss this later). We may decide 

not to introduce a metric and it is still possible to describe some of a manifold’s 

properties and the geometrical objects which exist upon it without reference to a 

metric (for example differential forms and the Lie derivative).

Next we consider the importance of an affine connection and begin to describe 

curvature in tensorial terms. These arise in Cartan’s equations: in fact, both the 

connection coefficients and the curvature components corresponding to a particular 

metric can be ’’read off” from Cartan’s first and second equations respectively.

2.3 Differentiation on Manifolds.

We now consider the subject of differentiation on a manifold. The concept of the 

derivative of a function on a manifold is familiar and straightforward: The derivative 

of the function f along a curve parameterised by A is ^  and we can choose any curve 

on the manifold with which to form such a derivative. However, it will be useful to 

have some way of describing the variation of a vector field (or indeed, any tensor 

field) on the manifold.
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All the structures we wish to place on the manifold M can be defined in terms 

of differential operators, as we have seen for the tensors above. In order to accom

modate the notion of the variation of a tensor field we introduce three derivative 

operators with distinct properties: they are the covariant derivative, the Lie deriv

ative and the exterior derivative. The latter two are defined purely by the manifold 

structure whereas the covariant derivative is defined by placing extra structure on 

the manifold and we refer to this as adding a connection. We need not define a 

metric tensor on the manifold in order to define a connection. Let us first consider 

the problems which arise when we try to compare vectors defined at different points 

on a curved manifold.

Consider, to begin with, a manifold with no curvature. We can define a basis 

vector field on this manifold. For example, in E 3 we could use the orthogonal basis 

i,j,k. In such a flat space, parallel lines remain parallel and so we can use the notion 

of parallel when talking about vectors at different points. Therefore, if we have a 

vector field V defined on this manifold we can describe its variation with respect 

to this basis vector field. However, in general our manifold will have curvature and 

we loose the notion of parallel vectors at different points. That is, the question 

now arises: how do we ’’translate” our vector to compare it with a vector at another 

point in order to determine the ’’variation” of a vector field? It turns out we can still 

determine the variation of a vector field along a curve by considering the notion of 

parallel transport. Locally the manifold can be considered flat (which allows us to use 

the notion of parallel) and so we can compare two vectors which are infinitesimally 

close to each other.

If the tangent vectors corresponding to a curve prameterised by A at infinites

imally close points are parallel and of equal length then the tangent vector is said 

to be parallel transported along the curve. This idea can be extended to the whole 

congruence parameterised by A so that we then have the notion of a vector field 

whose tangent vectors are parallel transported along a certain congruence.

Any deviation from this manifests itself in the covariant derivative of the vector 

field V along the curve. If the vector field V has tangent vectors which are parallel 

transported along the curves parameterised by A then
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The covariant derivative operator V[/ is defined formally as one which acts on a 

vector field V to give a vector field Vcr(V’) such that

(1) for any C 1 functions f and g and C 1 vector fields V,W,

V fU+aVW  = fW u W  +  g V v W.

(2) V[/V is linear in V, i.e. for C1 vector fields V,W and a,-/? £ jR1,

Vu{aV  + PW) = aV u V  + P V uW.

(3) for any C 1 function f and C1 vector field V,

V u ( fV )  = (U f)V  + f V v V.

The connection coefficients T^a are defined in any basis by

V x * X fi =  (2.8)

It follows from the properties of V[/ that the covariant derivative of the vector 

field V with respect to the vector field U can then be written

=  K  +  (2.9)

or equivalently

V v V = v^u°X„  (2.10)

where is defined to be uJJ. +  Y^avT. The covariant derivative of V along a curve

takes account of both the change in the components and the variation of the basis 

vector fields. On a flat manifold the components of the covariant derivative reduce 

to the partial derivatives of the components of the vector field V.

In the above analysis we have added more structure to the manifold: an affine 

connection. That is, a connection has been added in order to define an absolute 

parallelism. Primarily, equation (2.8) enables us to compute the change in the basis 

vector fields.

Consider a manifold that has defined upon it a congruence of curves paramet

erised by A. Consider a mapping of each point on each curve to another point on 

the same curve a distance AA along, as shown

The congruence provides a natural mapping of M onto itself. See fig 2.5

24



AX

Figure 2.5: Mapping of a congruence onto itself.

2,3.1 Lie Dragging a Function and the Lie Derivative o f a 
Function.

Now consider a function f defined on the manifold. The mapping or Lie dragging 

defines a new function / '  by demanding that it has the value at q that f has at p. 

ie f '(q)  =  f(p)  for all p and q on the same curve separated by AA. The function f 

is said to be Lie dragged if f ( q )  =  f(q)  for all AA. A function that is Lie dragged 

must be constant along any curve of the congruence ie

df  n 
d \  ~  ■

This is the first step towards describing a derivative using Lie dragging. It is now 

obvious that we can do this by comparing the function to the Lie dragged one. 

Taking the derivative of f involves defining the new function f  at all points on the 

manifold by /'(A  -f- AA) =  /(A) for one particular AA and forming the difference 

between this and the original function f at p ie f ( p )  — /(p ). We then divide by A A 

and take the limit as AAi—>0 ie

lim
AA->0

f { p )  ~  f ( p )
AA
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This is the Lie derivative of the function f. If the function f is Lie dragged then 

f f(p) = f(p)  and the Lie derivative of f along the congruence is zero.

If V is the vector field defined by the A congruence then the Lie derivative of f 

with respect to V is denoted

£ v f = ^  = n f ). (2.H)

2.3.2 Lie Dragging a Vector Field and the Lie Derivative of 
a Vector Field.

We have the A congruence corresponding to the vector field V  = ^  and the p 

congruence corresponding to U = A defines a map of the manifold as before, 

and the p congruence is acted on by this map. The new congruence is given by 

parameter p* and the corresponding vector field is If the p* congruence equals 

the p congruence ie ^  ^  for all AA then the vector field is said to be Lie

dragged. We define the Lie derivative of U with respect to V as the vector field 

which operates on an arbitrary function f to give

[£v U](f) = lim \ U'(P) ~ U{p)] ( f )
AA—*0

It turns out that

AA

£ v U =[V,U ]  (2.12)

2.3.3 The Lie Derivative o f a Tensor Field.

The Lie derivatives of one-forms and tensors of higher rank are defined in terms of 

the Lie derivatives of vector fields and functions. For example, consider the one-form 

to: we define £ya; by the required property of Lie derivatives,

W)) = (£ v u )(W )  +  u>(£y(W))

lo(W)  is just a function, (£y(W )) is a vector and so u>(£y(IF)) is a function. Hence 

we can deduce the Lie derivative of the one-form (£yu;). We define the Lie derivative 

of a tensor field T through

£ v (T(uj,  -,U,...... )) =  (£ VT)(« ,  ; U,......)

26



+  T(£yt*>, ;£ /,..... )

+  T(u>,..... ]£ vU , ......) (2.13)

One of the principal uses of Lie derivatives in physics is to express the notion that 

a tensor field is invariant under some transformation.

£ VT  = 0

2.4 Curvature in the Language 
of Differential Forms.

A p-form is defined to be a completely antisymmetric ^  tensor. As before a one- 

form is a tensor and a scalar is a zero-form. Just as Q  tensors could be made 

from Q  tensors using the tensor product, we define an operation A called the wedge 

product for constructing two-forms from one-forms. If p and q are two one-forms 

then

pAq =  p®q — q®p (2-14)

This can be extended to

p A (q A r)  = (p A q) A r  =  p Aq A r

= p ® q ® r +  q <g> r <g> p + .......

— q ® p ® r —p ® r ® q — .......

In this way we can construct a general p-form from one-forms. We can also construct 

new p-forms using the exterior derivative which operates on p-forms to produce 

(p+l)-forms. The definition of the operator d is that d is a linear operator carrying 

a function f into the unique one-form df defined by df(U)=U(f) where U is any vector 

field, d is extended to forms of higher rank by requiring that

(1). d converts a p-form into a (p+l)-form. (2). d(dw) =  0 for any p-form w. (3). 

d(to A a) = dujAa +  (—\ )vujAdo- if u  is a p-form.
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2.4.1 Cartan’s Equations and Curvature.

Let {cu^} be a basis for one-forms dual to a basis {X The exterior derivative 

of any one-form is a two-form and hence a linear combination of the basis 

two-forms {u)fJ'Au)l/}. It can be shown that

do/* =  - \ d ^0 (2.15)
Li

where the D^p are the structure coefficients of the basis X^.  In the basis the 

corresponding structure coefficients are given by

^a/3 ~  1 pa ~  1 a(3

which implies

The connection forms can be replaced in the last equation. Then

duj^ = (2.16)

This is Cartan’s first equation.

In general, for a Riemannian space we have that

^a/3 =  2^  ̂ (daoiiP “f 9<r(3->ot ~  Qapio) T "b 9ot<T9firDTp +  gapgtlTDTa).

When D^p = 0 (a coordinated basis) the connection coefficients T^p become the 

familiar Christoffel symbols and are symmetric ie T^p = Tpa.

The curvature of a manifold is described in terms of a curvature tensor. The

Riemann curvature tensor R  is a Q) tensor field. Covariant derivatives do not gener

ally commute and this failure of successive operations of differentiation to commute 

when applied to a vector field manifests itself in the Riemann curvature tensor which 

is defined by

R ( X , Y ) Z  = V x(V yZ) -  V Y( y x Z) -  V [X,Y]Z

The tensor R  also expresses the failure of a vector to return to its original value 

when parallel transported around a loop. In terms of a basis, the components R aailu 

of the Riemann curvature tensor are given by

R ( X „ X v)X a = R â vX a
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The curvature forms

0? =  < K  +  u £ A <  (2.17)

and

K  = (2 .1 8 )

This is Cartan’s second equation. In a general basis {X^}

Dff pa____ pa I pr per   pr pa   rp  pa fey -i q\
ct\iv avm  a/xJi' ' av*- r/z a/z tv -^fiv ar yL.i-a)

Once again, if {A^} is a coordinated basis we obtain the familiar expression for the 

components of the curvature tensor

Cartan’s first and second equations are all we need to compute the connection

coefficients and the components of the Riemann curvature tensor R  for a metric

in a particular basis. We solve for and then use these to compute 6% and we 

can then ’’read off’ the components of R  directly. We can choose the basis which 

makes the metric components constant or one which is adapted to the symmetries 

of the spacetime ie an invariant basis (see chapter 4): this may reduce the number 

of non-zero components in the curvature tensor R  and will certainly be less tedious 

than working out the components in a coordinated basis.

2.5 Maps of Manifolds.

We have discussed the notion of a manifold and some of the structures which can 

be placed upon it. There is also the possibility of defining various maps between 

manifolds and mappings of a manifold onto itself, to each mapping there may be a 

corresponding map induced on some tensor field. This is our next consideration.

If we have a map (j) between the manifolds M and N (not necessarily being of the 

same dimension) (f> : M \-^N  then (j) can map upper index Q  tensor fields from M 

onto N and ^ te n so rs  fields from N onto M.

More precisely, when (j) maps points from M to N and f is a function on N, <̂>* 

defines the function <f>*f on M by
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Similarly, if X(t) is a curve through p in M, then the image curve <j) ( \ (£)) in N 

passes through the point <j>(p). The correponding tangent vector at p in M can be 

mapped into that at (f>(p) and so we can define the map </>* as: for each C 1 function 

f at (f>(p) and vector X at p

x ( F f ) \ p = ci>*x(f)\m .

These can be extended to tensor fields (See Hawking and Ellis (1973) [10]) so 

that (/)* is a map which takes all upper index tensor fields from M to N and the map 

(j>* takes all lower index tensor fields from N to M.

The <j>* and </>* cannot be extended to mixed tensors. A C°° map <f> : M  i—► TV is 
said to be a diffeomorphism if it is one to one, onto, and has a C°° inverse. A map 

is said to be from M into N if the map is defined for all points in M - if in addition 

every point of N has an inverse image (not necessarily a unique one) then we say 

it is a mapping from M onto N. If (j) is a diffeomorphism then we can use (j)-1 to 

extend the definition of <f>* to tensors of all types since (<̂ -1)* goes from V<j>{p) to Vp 

(with similar reasoning for (j>*) and it can be shown that </>* =  (<̂ -1)* so we need 

only consider <f>* and (0-1)*.

If (f) : M  i—► N  is a diffeomorphism then M and N are necessarily of the same 

dimension and have identical manifold structure.

Let us now consider a special case where (j) : M  i—> M  is a diffeomorphism. 

There exists a tensor field T  on M. <j> induces a map </>* of T  and we can compare T  

and <f)*T. If </)*T = T  then 0 is a symmetry transformation for the tensor field T. 

Associated with a one-parameter family of diffeomorphisms </>f is a vector field v : v 

is said to generate </>t . If (j)* T  =  T  then the Lie derivative of T  with respect to v is 

zero

£ VT  = 0

The set of all vector fields V under which the tensor field T  is invariant forms 

a Lie algebra (see chapter 3). In order for a set to form an algebra the elements 

must form a vector space over the real numbers R and the commutator of any two 

elements must also be an element in the set. The first is satisfied since the set of 

fields is a vector space over R.

Now, we know £„T =  0 and £ WT  =  0 for v, w £ V. This means that [£w, £  J T  =  

0 and for the second condition to hold we have to prove that this implies £[W)ti;]T =  0.
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It is straightforward to prove [£„, JEJT =  £[U)U;]T for any arbitrary tensor field T. 

This can be seen by first considering a function: [£„, £ J /  =  £ [ v ,w] f  for an arbitrary 

function f since

[ £ v , £ w ] f  =  £ y £ w { f )  -  £ w £ v { f )

= [v,w\f

£ [ v , w ] f

and for vector fields

[£^, £iy]u — £ v£ l(;('it)

=  u[u;(u)] — u;[u(u)]

=  [[u, w], u] by the Jacobi identity for vector fields

— £[u>tu]̂

This does in fact apply to all tensor fields T  by (2.13) stated earlier.

Thus the vector fields that Lie drag any fixed tensor must form a Lie algebra 

(see chapter 3).

A diffeomorphism (j> : M  M  for which </)*g =  g is called an isometry of g on 

M. There will in this case be a set of vector fields f  for which

£«g = o
and the f  are referred to as Killing vector fields on M. The Killing vector fields for 

a particular manifold will, therefore, form the Lie algebra of a Lie group and we 

refer to this group as a group of isometries. This equation can also be expressed in 

component form:

/;// =  0- (2.20)

We shall investigate the properties of Killing vectors in chapter 4.

The theory of groups is a self contained abstract theory which has been widely 

studied and has produced many far reaching results applicable to many physical 

problems. So any set endowed with a group structure has in addition, many prop

erties which can be studied and interpreted solely in terms of its group structure. 

We devote the next chapter to those parts of group theory relevant to our study of 

symmetries of the metric tensor.
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Chapter 3 

The Theory of Groups and Lie 
Groups.

We shall consider the theory of groups in detail now, in particular that of Lie groups, 

in order that we can justify our previous conclusions on the properties of isometry 

groups. A Lie group need not be associated with the invariance of a tensor field T. 

That is, some Lie groups describe the symmetries of systems and some Lie groups 

describe non-symmetries of other systems. However, we are interested primarily in 

isometry groups. It is obvious that we can talk of both discrete isometries (eg reflec

tions) and continuous isometries (eg translations, rotations). In fact, all continuous 

groups can be considered as having a discrete component (the discrete groups cannot 

be described by an infinitesimal generator) and a continuous connected component. 

When we say isometry group we shall be referring only to the latter and we will 

look, in particular, at continuous groups. The Lie groups have additional proper

ties (they can be considered as having the structure of a manifold as well as group 

properties) and so are even more specific than this but we shall progress to these 

in due course. Associated with every Lie group is a Lie algebra which indicates the 

local properties of the Lie group. We consider their relationship and the classifica

tion of Lie groups. This has relevance to the classification of cosmologies according 

to their isometry groups. This is important since we would like to determine the 

properties of the symmetry group of a spacetime from its infinitesimal generators ie 

isometries (Killing vector fields) or conformal Killing vector fields and, of course, it 

is the infinitesimal generators which form the Lie algebra.

32



3.1 Group Axioms.

A group G is a set of elements #i,<725 G together with an operation o called 

group multiplication (or composition), such that 

1. gi€ G ,gje  G 9i°gj^ G : closure 

2- gi°{gj°gk) = {gi°gj)°9k : associativity

3. 9i°9i = 9i =  9i°9i f°r all 9i ' existence of identity

4. <7to0*-1 =  gi =  9i~lo9i '■ unique inverse.
Groups can be discrete or continuous. The order of a discrete group is the number 

of discrete elements which constitute the group. This may be finite or infinite. We 

say that a continuous group has a dimension equal to the number of parameters 

required to specify a particular element of the group. It may be finite or infinite 

dimensional.

The following are examples of groups:

(1).The set of all positive rational numbers form a group with respect to multiplic

ation. The product of two positive rational numbers is another positive rational 

number, as is the inverse of a positive rational number and the unit element is the 

number 1. Associativity is assured by the laws of arithmetic. This is an infinite 

Abelian group.

(2).The set of integers Z forms an Abelian group with respect to addition.

(3).The set of nonsingular matrices over a field F form a group under matrix multi

plication.

The set of negative rational numbers do not form a group (under multiplication) 

and neither does the set of positive integers (under multiplication) since each element 

lacks an inverse.

Since a group G is a collection of elements, the usual definitions and notations 

of set theory can be applied to G. A subgroup is a subset of a group G which obeys 

the group postulates.

33



3.2 Cosets, Invariant Subgroups 
and Factor Groups.

Cosets: A group G can be partitioned into disjoint classes of mutually equivalent 

elements-called right cosets. We choose a subgroup H of G and define the equivalence 

of a and b. All elements of G which satisfy

ab~l ^ H  for a,bEG.

are said to be equivalent and constitute a right coset of the subgroup H (similarly, 

elements wich satisfy a -1&E# constitute a left coset of H). Hence every subset of 

the form Ha is a right coset of H, for a E G.

Generally, when an equivalence relation has been defined on a set, this set can 

be expressed as the union of all the distinct equivalent classes. In the present case, 

the equivalence classes are the right cosets so that G is the union of all the distinct 

cosets. In order to express this result more formally, we select one representative 

from each coset. If a; is one of the representatives, the corresponding coset may be 

denoted by Hai and G may be expressed as

G =  f > a , -
i

where n is the number of distinct right cosets.

If A is simultaneously a right and left coset of the subgroup H then A=Ha=aH 

where a is any element of A. If every right coset is simultaneously a left coset then 

we must have Ha=aH ie a_1Ha = H  for all a£G.

D efin ition . An invariant subgroup (or normal subgroup) N  satisfies for all n £ N  

and a tG

a - 'N a  = N.

In order that the partition of the group G into the left end right cosets of the 

subgroup N  should coincide, it is necessary and sufficient that N  should be an 

invariant subgroup.

D efin ition . Let N  be an invariant subgroup of the group G and let A  and B be 

cosets of N  ie A=Na, B=Nb. For the product A B  we have AB=NaNb=NNab=Nab 

so that A B  is again a coset of N. This multiplication operation satisfies the group
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axioms. The group of cosets thus obtained is called the factor group of the group G 

by the normal subgroup N  and is denoted G/N.

3.3 The Classical Groups.

Groups can be continuous or discrete and can be infinite or finite (in dimension). Our 

starting point for the study of continuous groups is the enumeration of all classical 

matrix groups. We introduce the concept of change of basis in a vector space Vjv and 

associate with each change of basis an N  x N  nonsingular matrix. Such matrices 

belong to the General Linear Groups G1(N,-), which we look at first. Secondly, 

the subgroups of the general linear groups which are volume preserving are defined: 

the Special Linear Groups S1(N,-). The concept of the metric is then presented 

and the corresponding metric preserving groups are defined. The classical groups 

are then defined as having these or having combinations of the above properties. 

It can be misleading to think of the classical groups just in terms of their matrix 

representations - it is worthwhile remembering they do actually have important 

physical relevance, relating to symmetry. Therefore the exact definitions of the above 

classical groups are set out and not just the resulting conditions on the matrices 

constituting the group representation.

Every set of basis vectors in Vn  can be related to every other by an N  x N  

nonsingular matrix (the matrix must be nonsingular to possess an inverse). The 

N  x N  matrix groups involved in changing bases in vector spaces over the fields R 

and C are Gl(N,r) and Gl(N,c) respectively.

Volume preserving groups:

The completely antisymmetric subspace of (V/v)r is spanned by basis vectors 

(see chapter 2). In particular, for r=N  there is only one basis vector

eiAe2Ae3 ejy-

This basis is called the volume element associated with the basis {ei,e2, ..... e^/}.

Under a change of basis e f  = Ajej, the new basis ei/Ae2/Ae3/ en  is a multiple

of the basis eiAe2Ae3 e^.

ei'Ae2/Ae3/...... en  = (detA)e iAe2Ae3 ê v
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The subset of G1(N,-) which preserves volume forms a group defined by d e tA = + l. 

These volume preserving groups of transformations in Vn  over R,C are called special 

linear groups Sl(N,r) and Sl(N,c) respectively.

Metric preserving groups:

A metric function on a vector space Vn  is a mapping of a pair of vectors into a 

number in the field F associated with the vector space Vn -

g(v1,v 2) = f  vu v2eV, f  £ F.

This mapping obeys

g(vu a v2 + fiv3) = ag(v i,u 2) + /ty(i>i,u3) (3.1)

and g(avx + 0 v 2,v3) = g(vu  v3)a  +  g(v2, v3)(3 (3.2)

or g (a v i+ /3 v 2,v3) = g(vu  v3)a  + g(v2, v3)j3 (3.3)

Metrics obeying (3.1) and (3.2) are called bilinear metrics and those obeying (3.1) 

and (3.3) are sesqulinear metrics. Further possibilities are that the metric may be 

symmetric and/or positive-definite but the latter is not considered when defining 

the classical groups since it is too restrictive. Writing the metric in terms of the 

basis vectors gives

9ij =  d ( ei, ej).

The transformation properties of the metric function gij under the change of basis 

ei' =  %  ej are given by

gij = A kjglkA\.

Groups preserving bilinear symmetric metrics are called Orthogonal. The Ortho

gonal groups preserving metrics with signature (iV+, 7V_) in vector spaces over 

R n ,Cn ,Qn  where N  = (N+ +  AL), are 0{N+, Ah.; r), 0(A^+,iV_;c), 0(7V+,AL;?) 

respectively.

Groups preserving bilinear antisymmetric metrics are called Symplectic. Simil

arly, the Symplectic groups preserving metrics with signature (N+,N _)  in vector 

spaces over R N,CN,QN are Sp(N+, iV_; r), Sp(N+, AL; c), Sp(N+, AL; q).

Groups preserving sesquilinear symmetric metrics are called Unitary. The Unit

ary groups preserving metrics with signature (N+, N -)  in vector spaces over R N,CN,QN 

are U(N+, AL; r), U(N+, AL; c), U(N+, iV_; q).

36



The classical groups can have combinations of the above properties, see Gilmore 

(1974) [8]. We denote the intersection of two groups in the following manner eg. the 

intersection of U (N,c) and Sp(2N,c) is USp(2N,c). The metric-preserving groups 

which are also volume-preserving are called the special metric-preserving groups and 

denoted by an additional S, eg.

Sl{N, c) fl U{N, c) =  SU{N, c)

Not all of the classical groups are distinct - there exist isomorphisms and homo- 

morphisms between some groups of the same dimension. The matrix representation 

of a classical group does, of course, form a group itself. The dimension of a partic

ular group can be determined by considering the conditions on the corresponding 

matrices.

3.4 Continuous Groups.

A continuous or topological group has two distinct kinds of structures on it. It has 

an algebraic structure and it also has a topological structure. Algebraically it is a 

group and it therefore obeys the group axioms. Topologically, it is a manifold. In 

order that a group be a continuous group it has to obey the two additional axioms:

The mapping a x f i ^ a /3  is continuous.

The mapping a\-^oTl is continuous. (3-4)

This ensures that the product of any group element near a  with a group element 

near /3 is a group element near a(3 and that if a  is a group element near (3 then 

a -1 is a group element near /?-1. These are the only axioms required to connect the 

algebraic with the topological properties of continuous groups. The theory of Lie 

groups is the result of imposing these axioms and extra conditions of differentiability 

on the group manifold.

Our concern now is with the global properties of continuous groups. In light of 

the above, it is possible to define both the continuous group and the continuous 

group of transformations. We are already familiar with the continuous function and 

the differentiable manifold.

37



Figure 3.1: The group manifold.

Definition. A continuous (or topological) group consists of

1. An underlying n-dimensional manifold M.

2 . An operation with corresponding group composition functions (p = 1 , ...n) 

which map a pair of elements in the group into another element of the group ie

$  : M x M ^ M  

that is $  (a, ^)h -> 7  a, /3 , 7 (EM.

The corresponding map which relates the parameters of the group elements is

fa : R n x R n ^ R n  

equivalently (a^,/?M) =  7  ̂ a,(3,'y£M.

Each coordinate patch on M has the corresponding chart (U{,fa). each chart 

there will be a corresponding map fa. Therefore there may be a number of different 

fa corresponding to a particular continuous group. Each arises from a different 

choice of fa on M. By a  we mean the group element (a 1, a 2,

3. The mappings

$  : aof3\-^a(3
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and x : 1 are continuous.

The group multiplication properties may be translated into conditions on the 

functions ^*, since the group axioms must be obeyed. There can be an arbitrary 

number of different <f) corresponding to the particular group, but they will all fulfil 

these conditions.

D efin ition . A continuous group of transformations consists of 

A:

1 . An underlying topological space r , which is an n-dimensional manifold.

2. An operation $ , the group composition functions which map a pair of elements 

in the group into another element of the group.

$ (« , /? ) •—> 7  a,/?, 7  EM.

3. The mappings

$  : cxo(3y->a(3 

and x : ya_1 are continuous.

and B:

1. A geometrical space H, which is an N-dimensional manifold.

2 . A mapping f which maps an element in the product space t x H  into H.

z) where x= l,...N  and of course by a  we mean the group element 

(a 1, a 2, ....an) and by x we mean the point in the geometrical manifold (a:1, £2, ...xN).

3. This mapping is continuous.

Similarly, there will be conditions set on <f> and f by the group multiplication 

properties.

It is important to make a clear distinction between the underlying topological 

space of the group and the geometrical space on which the group acts. Every 

continuous group may be considered as a continuous group of transformations if we 

allow it to act on itself ie

G = r, f  = (/)
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det=+l

Figure 3.2: The continuous group 0(3) is composed of two disconnected parts, each 
having its own determinant, e is the identity element.

We consider a few ideas relevant to our discussion of continuous groups

A space is said to be connected if any two points in the space can be joined by 

a path which lies entirely within that space. A continuous group is connected if 

its underlying manifold is connected. For example, the group 0(3) is disconnected. 

The group 0(3) consists of all transformations which leave the quantity x 2 +  y2 +  z2 

invariant and has a representation in terms of orthogonal matrices: the determinant 

of every orthogonal matrix is either +1 (corresponding to pure rotations and denoted 

S0(3)) or -1 (rotation-reflection).

A connected space is simply connected if a curve connecting any two points in 

the space can be continuously deformed into every other curve connecting the same 

two points.

A Lie group is a continuous group with specific properties:

D efin ition . A Lie group is a C°° manifold endowed with a group structure in which 

multiplication and taking of inverses are C°° operations.

This is the definition given by Hausner and Schwartz (1968) [9] but there are 

others which define a Lie group as being the connected component of a continu

ous group. We have chosen to use the above definition so we can emphasise any 

properties which depend upon the connectedness of a group.
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Figure 3.3: This manifold M is not simply connected.

3.5 Local Concepts

It is true that we will shortly be able to describe the (global) properties of a connec

ted Lie group by knowing its properties only in the vicinity of the origin. To make 

this possible, we define an object that behaves essentially like the neighbourhood of 

the identity element in a Lie group. We find that it is simpler to deal with such a 

local Lie group.

In the connected component of a Lie group it is always possible to choose a finite 

number of points on the path joining the identity e to /? ie

a 0 = e, ai,  a 2, a3, .... , a n = ft

with the properties:

1. ai and a t-+i lie within a common neighbourhood.

2. aj+ioa,-”1 lie inside some neighbourhood of the identity e, for all i.

The group operation f3 can then be written as:

/? =  (anoa;n_ i-1)....(a3oa2-1)o(a2oai"1)o(a1o a ( r :L)o /

that is, jd is the product of group operations that all lie close to the identity. This 

is the basis of the exponential mapping procedure which allows us to obtain Lie 

group elements from the local properties of a connected Lie group, which amounts
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to repeated application of the infinitesimal operators. We shall discuss this in more 

detail shortly.

D efin ition . A local Lie group is that subgroup of a Lie group which consists of 

elements corresponding to infinitesimal group elements.

3.6 Lie Groups and Lie Algebras.

As stated earlier, finite elements of a connected Lie group can be obtained by re

peated application of the infinitesimal elements. This means the properties of the 

connected Lie group can be completely determined by its local properties (that is, 

the properties of the group near the identity element). The infinitesimal generators 

(from which the infinitesimal elements are formed) describe these local properties 

and form what we call a Lie algebra: the Lie algebra characterises the Lie group. 

It was shown in chapter 2 that the infinitesimal generators of an isometry group 

formed an algebra. Now we are considering Lie groups in general and show that 

a corresponding Lie algebra exists. Lie’s three theorems provide a mechanism for 

constructing the Lie algebra for any Lie group (see later).

3.6.1 Infinitesimal Generators o f a Lie Group. The Lie A l
gebra and Structure Constants.

The infinitesimal generators of a Lie group of transformations:

We consider the effect an infinitesimal transformation has on the structure of 

a function F(p) defined on the geometrical space H. It will be useful to have an 

expression for the change induced by an infinitesimal element of a Lie group.

First of all, consider a Lie group with composition function (j) which induces the 

transformation / ( a ,  x) on the coordinates of the geometrical space H (a  denotes a 

group element). We define a coordinate sytem S on H and label these coordinates 

x'(p). The function F(p) is defined for all points p tH .  Then

F(p) =  F s[x1(p),x2(p),....xN(p)].

Under the coordinate transformation / ( a ,  z), the coordinates x are transformed into 

coordinates x' and we shall refer to this coordinate system as S'. We can write

F s'[x,1(p),x,2(p),....xfN(p)] = F s'[xf(p)].

42



The existence of the field F(p) is independent of any coordinate system and so

F (P) =  *-[*G>)] =  f y & o ] .

which defines our new function F s' of coordinates x ' . Our aim is to express F s' in 

terms of F s.

The coordinates x' are related to the coordinates x by the transformation / ( a ,  x)

ie

x' =  / ( a ,  x) 

therefore x =  /(a :-1 , a/)

but since we are dealing with infinitesimal transformations only then

x' — f ( 8 a , x) 

and x =  f ( —8a,x')

A Taylor expansion around 8a =  0 allows us to write our new coordinates (to 

first order) as

d f 3[(3,x'(p)\
13=0

x3{p) = x f (.p ) - 6 a  

We recall

F s'[x'(p)] = E s[:r(p)].

Expanding the function about the identity element

F * y (p )]  =  f V ( p ) ]  -  6a»d P W ’X? p)] a d F ‘W(p)}-dp* P=° dx'3

The change in the structural form induced in F(p) is then given by

f* V (p )]  -  F ’I A p )} =  - fo *a / y p)1 10=o’̂ ~ tjF s[x'(p)],

which can be written

F s'[x'] -  F s[x'] = - S a ^ X ^ F ^ x ' ]

where
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Y _  dp[/3,x-\ _ d _
^  ; d/3" 0=adx’r

The are called the infinitesimal generators of the Lie group and they can be

considered as being tangent vectors in the tangent space to the group manifold at

the identity e. These infinitesimal generators form a vector space or more precisely

they from an algebra, as we shall see shortly. If the elements of an algebra are the

infinitesimal generators of a Lie group then the algebra is called a Lie algebra.

The operator that effects the infinitesimal transformation is (to first order)

1 +  ScfXp  (3.5)

The properties of the infinitesimal generators characterise the Lie group and the 

Lie algebra corresponding to the Lie group. We can see this via Lie’s theorems. 

From (3.5) we can see that the elements of the Lie algebra exist in one to one 

correspondence with the elements of a local Lie group ie X M is an element of the Lie 

algebra and 1 +  Sa^X^  is an element of the Local Lie group.

In chapter 2 we saw that the set of Killing vector fields corresponding to a group 

of isometries form an algebra (the multiplication operator being the commutator), 

that is, the commutator of any two Killing vector fields u and v, denoted [tt, u], is also 

a Killing vector field. In fact, the infinitesimal generators of every Lie group form a 

Lie algebra. We shall show this by considering the commutator of infinitesimal Lie 

group elements.

If a  and ft are elements in an abelian Lie group then a f te r 1 =  ft but for a 

non-abelian group, 7  is a measure of the non commutivity of a  and ft:

afta  1 =  7 /? 

afta~x ft-1 =  7  

(a ftf i f ta )-1 = 7

Therefore 7  must be an element of the group. (aft)(fta)~1 is called the commut

ator of the elements a  and ft.

If two elements are close to the identity of the group then we can write them as 

(to second order) as
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a = I  +  8ot^X^8avX v 

P = I  + 8p'lX il8pvX v

The X^  form a basis for the vector space of infinitesimal generators. Evaluating the 

commutator (o;/?)(/?a) - 1  we find that (to second order)

=  I  + 6o?Xll{6pvX v) - 6 P ' tX lt(6crXv)

= I  + 6c f6pv[XltX u - X vX li]

= I  + 8c?8pv[ X „ X v\

Since (a/?)(/?a) - 1  is a group element then so is I  8a.^8pv[ X ^ X v] and [ X ^ X V] 

must exist within the vector space of the infinitesimal group generators Xp. Hence 

[XpiXv] can be expanded in terms of the basis i.e.

[X „X ,] =  C ^ X x

The C l  are called the structure constants of the Lie group and transform by a 

change of basis of the Lie algebra as the components of a third rank tensor. The 

structure constants are characteristic of the Lie group and are very important since 

Lie algebras with the same structure constants are isomorphic. That is, Lie algebras 

(of the same dimension) with different elements but the same structure constants 

are isomorphic. Conversely, given a set of structure constants CpV there is a Lie 

group G (not unique) which has a Lie algebra with those CpV.

Lie’s 3rd theorem states that the structure constants obey:

 _/^i\^  pv ^  vp

and the Jacobi identity,

c l c i  +  C i„ C l + C ^ C l  = 0.

The converse to Lie’s 3rd theorem shall be considered shortly.

We have just seen how the infinitesimal generators of a Lie group arise and how

they form a Lie algebra. The Lie algebra can also be specified solely in terms of
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the group manifold structure. Let us consider the following transformations of a Lie 

group onto itself. Consider the group element g. Let G be the group manifold. The 

mapping

Lg : G ^ G  defined by Lgh = gbNh^G  is called left translation by g

Rg : G*-*G defined by Rgh = hg^h^G  is called right translation by g

That is, left (right) translation maps all elements h of G into the elements gh 

(hg) of G. There are two groups of transformations of G into G, one defined by left 

translations and the other by right translations.

We assume that we can define vector fields on the group manifold G. Then L'g 

maps v(h) into L'gv(h) for all h G G. The set of vector fields invariant under the left 

(right) translations are called left (right) invariant vector fields on G. A vector field 

v on G is left invariant if

L'gv(h) = v(Lgh) V#, h€G

i.e. the newly generated vector field Lgv(h) is identical to v(gh) for all g G G. 

It follows that for a left invariant vector field v

L'gV(e) = v(g) V#gG.

We conclude that there is a one to one correspondence between the set of left invari

ant vector fields on G and the set of tangent vectors to G at the identity element e. 

Further, it can be shown that the set of left invariant vector fields is closed under 

the Lie bracket operation. So the set of left invariant vector fields on G form an 

algebra and are in one to one correspondence with the tangent vectors in the tan

gent space of G at e. Earlier, we saw how the infinitesimal generators spanned the 

tangent space at the identity and formed a Lie algebra: we must conclude that the 

left invariant vector fields on the group manifold similarly specify the Lie algebra of 

the Lie group.

From the definition of a Lie group (or a Lie group of transformations) we can 

see that it can have a number of different functions 0 , each corresponding to a
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different parameterisation (different realization) of the Lie group. (f> is the group 

multiplication/composition law since it relates any two points a , (3 to another 7

<j>(oL,P) i->7 a,(3,~feM.

However, all the different 0 ’s will have the same local properties. This suggests 

that a canonical mapping <j> can be constructed using exponential mapping and it 

turns out this is the case. Also, there are many different Lie groups which have the 

same Lie algebra, that is, the elements of each of the Lie algebras have the same 

commutation relations (or structure constants). Lie groups which have isomorphic 

Lie algebras are said to be locally isomorphic.

Taylors T h eo rem  for connected  Lie groups. The Lie group operation corres

ponding to the Lie algebra element ot^X^ is exp{a,J'X ^) . This is a faithfull repres

entation of the group and 4> can be determined.

From the Lie algebra, we take the and exponentiate to get a </>. It is possible 

to determine the global properties of a connected Lie group from exponentiation of 

the elements of the Lie algebra. This is the same as saying that if G is a connected 

Lie group and U is a neighbourhood of the identity e (ie the local subgroup of G)

then G is generated by U ie any g € G is a finite product g — giog2 gn with gi £ U

and n depending on U and g. This is what we set out to achieve and should become 

clearer with an example, given later.

When we solve Killing’s equation for the infinitesimal isometries on a manifold 

we then have knowledge of the Lie algebra. We can exponentiate to get all the group 

elements and the actual isometry group.

If two Lie algebras have the same structure constants ie are isomorphic, then 

the corresponding groups are said to have the same Lie algebra and are locally iso

morphic. If, in addition to to the structure constants, we also know the infinitesimal 

generators corresponding to a particular Lie algebra then it is straightforward to 

exponentiate and find the corresponding (unique) Lie group. The following allows 

us to find all the (global) Lie groups corresponding to a particular Lie algebra.
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3.6.2 The Exact Relationship between Lie Groups and Lie 
Algebras.

As we have mentioned before, many Lie groups may have the same Lie algebra and 

so there is obviously not a one-to-one relationship between the two, ie there is not 

in general a unique Lie group corresponding to a particular Lie algebra. How much 

can we say, though, about the lie groups corresponding to a particular Lie algebra?

It is the converse to Lie’s third theorem which leads us to the answer, for a Lie 

algebra over the field of real numbers.

Converse to  L ie’s th ird  th eo rem . Let A  be an n-dimensional Lie algebra over 

R. Then there is a unique simply connected n-dimensional Lie group SG whose Lie 

algebra is isomorphic with A.

Many Lie groups may have the same Lie algebra, but amongst these only one of 

them is simply connected. This simply connected Lie group is called the Universal 

covering group SG. Further, all locally isomorphic (ie having the same Lie algebra) 

Lie groups can be obtained from the universal covering group in a straightforward 

manner: if SG is the simply connected Lie group and D{ is one of i t ’s invariant 

subgroups then the factor group

‘ Di
is a Lie group whose Lie algebra is isomorphic with the Lie algebra of SG.

This means that the problem of determining all Lie groups with the same Lie 

algebra reduces to computing all possible invariant subgroups of a given simply 

connected Lie group.

Summarising the above we can state the following theorem:

T heorem . Two Lie groups with isomorphic Lie algebras are locally isomorphic and 

either:

1 . Globally isomorphic, or

2. Homomorphic images of the universal covering group.

So we see that knowledge of the structure constants alone is not enough to 

specify a unique Lie group. If we have in addition the elements of the Lie algebra 

of a connected Lie group then we can determine this group completely ie we are in
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simply connected 
Lie group 

SG

SG/D2SG/D,

Lie algebra

Figure 3.4: The SG / D i  form the complete set of Lie groups with Lie algebra A.

a position to determine its global properties. Otherwise, we can only narrow down 

the possibilities to a set of locally isomorphic connected Lie groups.

3.7 The Classification of Lie Groups.

The above theorems reduce the problem of classifying all Lie groups to those of

(1 ) Classifying all possible Lie algebras.

(2) Constructing all possible invariant subgroups associated with a given simply 

connected Lie group.

We shall assume that the latter presents no problem and consider the first. 

Classifying Lie algebras amounts to being able to find some kind of canonical com

mutation relations for an arbitry Lie algebra. However, it turns out that this is, as 

yet, not possible - we cannot do this for an arbitrary Lie algebra.

There are a few ’’tools” which allow us in some cases, to determine a canonical 

form for a particular type of Lie algebra. These are discussed below.

(a) The study of the regular representation of a Lie algebra leads to a semi-canonical 

form for an arbitrary Lie algebra. This is the analysis of the transformation prop

erties of the structure constants (which transform as a tensor). The regular rep

resentation is not faithful in general - it may not distinguish between two distinct
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elements of one Lie algebra but it does distinguish between different Lie algebras.

(b) To every Lie algebra there is a corresponding secular equation and we can find 

its roots and from it determine the rank of the Lie algebra. The analysis is valid 

in all representations. We can classify all root spaces for semisimple Lie algebras - 

root diagrams give a straightforward portrayal of the root vectors. An even simpler 

diagramatic technique for the description of a semisimple Lie algebra is the Dynkin 

diagram. Hence it is possible to classify all semisimple Lie algebras. There is not yet 

a canonical form for the commutation relations of solvable and nonsemisimple Lie 

algebras, nor is there a complete classification scheme for these Lie algebras. Such 

a canonical form does exist for the semisimple Lie algebras.

The analysis gives us the first criterion of solvability.

(c) The Cart an-Killing metric for an arbitrary Lie algebra is introduced and the 

information gained is utilised in the second criterion of solvability.

The two criteria mentioned above can be recast into Cartan’s Criterion which 

then provides us with a procedure for decomposing an arbitrary Lie algebra into a 

semisimple part and a solvable part.

3.8 Some Examples.

3.8.1 The group SO(2).

Consider a system symmetric under rotations in a plane about a fixed point 0 . We 

adopt a cartesian coordinate frame on the plane with e\ and e2 as the orthonormal 

basis vectors. R(0) denotes a rotation through an angle 9.

R(0)e i =  ei cos 9 +  e2 sin 0 

R(0)e2 = — e\ sin# +  e2 cos 0

Which can be written

R{e)ei = ejR($)i 

The corresponding coordinate transformation is
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R(0)e:

R(0) e
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Figure 3.5: Rotation through 6 and the manifold of S0(2).

where

R (e)-1 =  ( cosf  ~ sin, My sm v  cos 0 J 

It is obvious that the composition law can be expressed as

R(0i )R(82) = R(01 '+ e2) = R(92)R(61) (3.6)

The law of multiplication (composition), the existence of an identity given by 

R,(0 =O) and the existence of a unique inverse ie R(6)~1 =  R (—0) means that the 

rotations in 2 dimensions form a one-parameter group, which we call S0(2). The 

composition law tells us that this is an abelian group. The group consists of group 

elements which are labelled by one continuous variable and therefore is a continuous 

group of transformations. It is also connected and is therefore a Lie group.

For rotations through a small angle dO the corresponding R(dO) is

-  ( s i M - i ? )  

■ ( i ! ) +U i ) '
=  I  + JdQ

The J is the infinitesimal (matrix) generator of the Lie group and the R(d6) 

corresponds to a group operation near the identity. Repeated application of the 

infinitesimal operation should give us a finite element. Consider

6 ' N
I f  +

N —*oo i 1 + J i j )  = exP(9 J) =  R W -
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We can see that the local behaviour of the group determines the important properties 

of a connected Lie group ie the global properties.

3.8.2 The groups SU(2) and SO (3).

A commonly quoted example of two locally isomorphic Lie groups is that of SO(3) 

and SU(2). We shall show here how they are homomorphic and locally isomorphic 

and that the group SU(2) is simply connected.

A linear transformation R of the variables x 1, x 2, x3 which leaves the form 

(.x 1 ) 2 -f (x2)2 +  (z3)2 invariant, is called a three-dimensional rotation. The set of 

all such transformations forms a continuous group called the 3-dimensional rotation 

group. These transformations can be represented by the set of all real orthogonal

3-dimensional matrices. As mentioned before the determinant of every orthogon

al matrix is either -f 1 corresponding to a pure rotation or -1 corresponding to a 

rotation-reflection: the set of all pure rotations forms a continuous group called 

S0(3). Rotations can also be specified by 2-dimensional unitary matrices with de

terminant +1 and this group is denoted SU(2). The Lie groups S0(3) and SU(2) 

are distinct groups.

Let us consider the Lie group SO(3). A rotation R is a transformation x = R x .

A general rotation jR(0i , 02 ,03) is given by the product of the 3 matrices r i(0 i) ,

^2 ( ^ 2 ) and r3(03 ) corresponding to rotations around the O x1, Ox2 and Ox3 axes 

respectively. These matrices are

\  /  cos 0  2 0 sin 0 ;
0  1 0

sin 0 2  0 cos 0
( cos 0 3  — sin 0 3  0  \

r3(0 3 ) =  sin 0 3  cos 0 3  0 (3.7)
v 0  0 1 /

Any rotation can be completely specified by the above matrices. The infinitesimal 

matrices gi corresponding to these rotations about the axes Ox% are given by

(  1 0 °  ^ /
7*1 (0 1 ) = 0 COS 01 — sin 0 i , r 2 (0 2) =

 ̂ 0  sin 0 i COS 0 i J V

91 =
0 0 0 \ (  ° 0 1 \ ( ° - 1 0 \
0 0 - 1 ,92  = °

0 0 ,93  = 1 0 0
0 1 0 1 - 1 0 0 I \ o 0 0 /

(3.8)
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Their Lie algabra is given by

\9ii9j\ = eij9k (3.9)

It is straightforward to exponentiate back to regain the group elements.

Let us now consider the group SU(2). Associated with the coordinate system x % 

there is a hermitian matrix P — xxO{ where are the Pauli spin matrices. If this 

frame is rotated into another x k with corresponding P' then the two matrices are 

related by P' = U P W  where U is a member of the group SU(2).

The matrices that represent SU(2) are of the form

U = ^ ^  ^ where a a  +  /?/? =  1 . (3.10)

The complex numbers can be written a = a +  ib and — c-\-id with a, b, c, d real.

The matrices of SU(2) corresponding to the matrices r \ ( ^ )  are given below

/ / \ , tt ( i  \ . (  cos 2 ^ 1
n ( * )  -  ± ^ ( ^  =  ± 1 ^ 8 ^  c o s iV  j ’

^2 (^ 2 ) ± ^ 2 (^ 2 ) =  ±
cos \xj>2 — sin \xj)2 
sin cos | ^ 2

( pM3 o \
0  e -^ 3  j  (3<11)

There is obviously a 2 1—► 1 correspondence between the group elements of SU(2) 

and SO(3 ) and we say there is a 2  i-> 1 homomorphism between them.

The infinitesimal matrices corresponding to SU(2) are

± « i =  (3.12)

where again, the <7 ; are the Pauli spin matrices. The U{ have the Lie algebra

[ui,Uj] = CijUk (3.13)

We have established that SO(3) and SU(2) have the same Lie algebra.

Let us now consider the group manifold of SU(2). We do this by considering the 

parameter space of the group. If A is any matrix in SU(2) then we can express it in

terms of the identity e and the Pauli spin matrices i.e.

A = ae +  ba\ +  ca 2 +  da3 where a2 +  b2 +  c2 +  d2 = 1 (3-14)
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-e

Figure 3.6: The manifold of SU(2).

This is the equation for the 3-sphere i.e. the region S 3 of E 4 and there is a one to 

one correspondence between the point (a, b, c, d) on S 3 and the matrix A. Hence 

the group manifold of SU(2 ) is S 3.

We have just shown that there is a 2 1 homomorphism between SU(2) and

SO(3) and that they have the same Lie algebras. This enables us to specify the 

group manifold of SO(3). The group manifold of SU(2) is a double covering of that 

of S0(3): see figure.

One can demonstrate this homomorphism more clearly by considering the one- 

parameter subgroups of S0(3) and of SU(2 ):

/  1 0  0  \
ri(Vh) = 0  cos ipi — sin tpi 

\  0  s in^ i cos?/>i )
f / i « - i ) = (  c o s ^ , 1y ism  ±y>i cos i

Ui(ipi) begins at =  0 and ends at =  4 7r as shown in the figure. It is also 

clear that the points ipi and tpi +  27T are diametrically opposite on S 3. On the same 

manifold, ri(ipi) begins at tpi = 0  and ends at ipi = r i.e. at diametrically opposite 

points on S 3. Every point on S 3 corresponds to a distinct element of the group 

SU(2) but every two diametrically opposite points correspond to just one element of 

S0(3). So we associate the group SO(3) with the top half of S 3 which is equivalent 

to identifying diametrically opposite points on S 3.
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Since the manifold S 3 is simply connected then so too is the Lie group SU(2 ). 

However SO(3) is not simply connected. For a manifold to be simply connected we 

must be able to shrink any closed curve to a point. A closed curve which passes 

through diametrically opposite points on the equator cannot be brought to a point 

since they must always remain diametrically opposite.

There is a one to one correspondence between the tangent space at the identity 

e of SO(3) and that of SU(2 ) and this is why they have the same Lie algebra. Since 

SU(2 ) and S0(3) have the same Lie algebra and SU(2 ) is simply connected then it 

follows that SU(2 ) is the universal covering group of S0(3).
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Chapter 4 

Isom etries of Space and 
Spacetim e.

A spacetime consists of a 4-dimensional manifold M and a metric tensor g, denoted 

(M,g). The metric tensor g describes only the local geometry of a spacetime (M,g). 

We cannot infer the global properties of a manifold from g alone, however we can say 

that only certain global topologies are compatible with a particular g. In this work 

we only consider the transformations (isometries) of points on a manifold separated 

by small distances ie locally seperated: no mention is made of any transformations 

preserving distances on a large scale. These isometries describe exactly the local 

geometry ie the symmetry of the metric g. Infinitesimal isometries are described 

by Killing vector fields and correspondimg to every infinitesimal isometry is a finite 

isometry obtained by exponentiation which again preserves the distance between 

locally separated points. There may exist discrete isometries which include such 

things as reflections. The complete symmetry group of the manifold includes its 

isometries and any global symmetries ie those arising from transforming points with 

a non local separation.

We discuss the possible symmetry properties of a general manifold (general in 

the sense that it is of dimension n and has no particular signature) and will later 

apply this to the usual 4-dimensional spacetimes encountered in General Relativity.

4.1 Isometries of space and spacetime

Any transformation which leaves the distance between any two (locally seperated) 

points of the manifold invariant is called an isometry of that metric. This is the case
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if gap(xIJ')dxadxt3 is invariant under a transformation x M to x ie

ga/3 {x^)dxadx(i =  goep(x'tl)dx,a dx/(3 (4.1)

Thus, these transformations are length preserving transformations on the manifold.

As an example we examine flat Euclidean space E 2 and its isometries. E 2 has 

the line element:

ds2 = dx2 +  dy2. (4.2)

Under the following transformation

x = x +  a; y' = y +  b for a , 6  constant (4.3)

then dx' = dx and dy' =  dy and so the new line element is

dx'2 +  dy'2 = dx2 +  dy2. (4-4)

The new line element is identical to the original (4.2), and so the metric of E 2 is 

invariant under translations. Secondly, consider the transformation from coordinates 

x, y to:

x' = cos Ox — sin 0y\ y' = cos Ox +  sin Oy (4.5)

then dx' = cos Odx — sin Ody and dy' =  sin Odx +  cos Ody and so, in this case, the 

metric (4.2) is transformed to

dx'2 +  dy'2 = (dx2 +  dy2). (4.6)

This line element has the same functional form as (4.2) and so the transformation 

(4.5) is an isometry of the space E 2. The transformation (4.5) corresponds to a 

rotation around the origin of the coordinate system.

Reflections are also isometries ie x  i—► —x and y i-» —y. It is obvious that the 

metric is unchanged under reflections.

Hence the metric of the space E 2 is invariant under translations, rotations and 

reflections: every point of E 2 is equivalent to every other point.

4.2 Killing Vector Fields

We will now give these isometries a more precise mathematical description in terms 

of transformation properties of the metric tensor.
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X

Figure 4.1: An infinitesimal transformation on the manifold.

An infinitesimal isometry is described by a vector field, a Killing vector field (  in 

the following manner: An infinitesimal isometry from x M to x ,fX is described by the 

transformation

x'» = x» +  c£M (4.7)

with e constant and |e| < <  1 . The Killing vector £ is the infinitesimal generator of 

the infinitesimal isometry. The requirement that gap(xtl)dxadx(3 = gap(x,fi)dx,adx,f3 

demands that the vector field £’s covariant components £a satisfy

+  f  (3;a = 0 (4.8)

Such a vector field is called a Killing vector field of the metric. Equations (5.8) are 

called Killing’s equations. If there exists a solution of Killing’s equations for a given 

gap, then the corresponding represents an infinitesimal isometry of the metric 

gap and implies that the metric has a certain symmetry. Since equation (5.8) is 

covariantly expressed, that is, it is a tensor equation, if the metric has an isometry 

in one coordinate system the transformed metric will also have a corresponding 

isometry (but this is obvious from the fact that the line element is invariant).

Killing’s equations can be derived by considering length preserving transform

ations. Consider two neighbouring points on a curve z M(A) transformed to a new

curve a:/i(A)-)-e^M by an infinitesimal isometry, the being of course the components

of the infinitesimal generator or Killing Vector field £.

In order that the transformation be length preserving it is necessary that the
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infinitesimal distance between any two arbitrary points remains invariant ie

gap{^tl)dxadx^ =  gap(x,tl)dx,a dx,f3 

Writing this out explicitly gives

gap{xfl)dxadx(3 = gaP{x» +  e^ )d {x a +  eC)d{x0 +  e£*)

= (fltyjfa*1) +  e£,Kgap K(x*)){dxa +  cdxa( a,a)(dxp +  edxr£p,T)

Where we have expanded g a p i^  +  e£M) to first order in e using a Taylor series 

for brevity now put gap { ^ ) = gap and retaining only terms of first order in e we get

gapdxadx(3 = gapdxadxl3 +  gapdxa ,r dxT +  gapdxae£a ,a dx& +  c£Kgap,Kdxadx(3

That is

gapdxa£p,T dxT +  gapdxa ( a dxp +  £Kga(3,Kdxadxp = 0 .

Now, factorising out the dxadx(3 since the dxa are arbitrary gives

gar£ j/3 4" g<rp£> 5a 4~ £ gapm = 0*

In geodesic coordinates this becomes

garC;0 4" g<rpC,a 4" £ =  0

Since Tj^ =  0 for all a, ^ , 7 . Because of the covariant nature of this equation, it 

holds generally. Also since gap-,K =  0 always then

4" £p;a — 0

which is the required result.

It is important to notice that if £1 and £ 2 are two Killing vector fields, then the 

linear combination ai£i 4- CL2C2 is also a Killing vector if ai and a 2 are constants. 

This is obvious from the form of the Killing equations (5.8). However, if and 

a2 are functions of the coordinates on M then Ui£i +  u2 £ 2 is a vector field but not 

necessarily a Killing vector field. This suggests that the set of Killing vector fields 

form an algebra. This is indeed the case: the commutator [ £ i ,£ j ]  is also a Killing 

vector field. This is obvious from the properties of the Lie derivative which we 

discussed at the end of chapter 2. In fact the set of isometies of a manifold form 

a Lie group and the Killing vectors form the corresponding Lie algebra. To which 

element of the Lie algebra does this commutator correspond? From section (3.6.1) 

we see that the commutator is equivalent to the element
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4.3 Isometry Groups.

The set of isometries on a manifold M form a group: An associative product is 

defined, an inverse exists for each element, and an identity exists.

The group of isometries (sometimes called a group of motions) is the symmetry 

group of the manifold M and will be denoted G or Gr where r is the dimension 

of the group. The dimension of the group Gr is not necessarily equal to, and can 

be greater or less than, the dimension n of the manifold M. More precisely, the 

isometries form a Lie group, a Lie group of transformations. The infinitesimal 

isometries or Killing vectors considered above form the Lie algebra of the Lie group 

of transformations. The isometries of M can be obtained from the infinitesimal 

isometries by exponentiation in the same way that Lie group elements are obtained 

from the infinitesimal generators which form the Lie algebra.

In order to determine the infinitesimal isometries on a manifold M we have to 

solve the Killing equations for the particular metric. We have to find all linearly 

independent solutions of these equations and the number of such solutions is the 

dimension r of the group Gr. It will be useful to know the order r of the group of 

motions beforehand. It is not a trivial procedure to find r in general - but we can 

do so, and it turns out that spaces with constant curvature admit the maximum 

number possible for a manifold Mn and this number is n (n + l)/2 . We will shortly 

consider (and prove) a theorem which allow us to determine the order r of a group 

of motions Gr. Firstly, we shall state a theorem which gives us a feeling for the 

notion of an isometry and the associated Killing field.

T h eo rem . A necessary and sufficient condition that a manifold M  admits a one

dimensional group G\ of motions is that there exists a coordinate system for which 

all of the metric components do not involve one coordinate, say x 1; then the curves 

of parameter x 1 are the trajectories of the motion.

Consider, for example, a manifold M whose metric components gap relative to 

some coordinated basis dxa are independent of one coordinate x k. Then:

^  = ° (4-9)
Any curve x a = ^"(A) in the space (M,g) can be translated in the x k direction 

by the infinitesimal coordinate shift A x k = c (ie x a is transformed to x a +  e£a )
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Figure 4.2: ^  is a Killing vector field on S 2.

to form a congruent curve with identical length to the original curve - because 

the line element is invariant under this transformation. The vector (  =  jjg; is the 

infinitesimal generator of these length preserving translations. £ is a Killing vector, 

or more precisely a Killing vector field on the manifold M.

The isometries of the two-sphere S 2 demonstrate this idea clearly. We consider 

S 2 embedded in flat Euclidean space E 3. E 3 has the metric ds2 = dr2 +  r2d02 -f 

r2sin29d(l)2. S 2 is the region r=constant and so we can choose r= l  and the metric 

of S 2 is ds2 = dO2 +  sin29d(j)2. We have coordinates 9,<§> on the sphere and in 

the coordinated basis ^  the metric components are gu  =  1 , g22 = s in29 and 

92 1  = 912 = 0. It is obvious that the metric is independent of (j) and so ^  is a Killing 

vector field. However, the metric depends upon 9 and so is not a Killing vector 

field. These fields are illustrated in figure 4.2.

The field ^  transports the curve pq into the curve rs and it can be seen that the 

infinitesimal transformation generated by ^  is length preserving and so this is indeed 

an isometry. The field ^  transports the curve pr into qs and this transformation is 

obviously not length preserving.
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4.4 Minkowski Spacetime.

Let us consider the isometries of Minkowski spacetime. The line element is given by

ds2 =  dt2 — (dx2 4 - dy2 +  dz2)

The Minkowski spacetime manifold is maximally symmetric i.e. admits the max

imum possible number of independent Killing vectors allowed on a 4-dimensional 

manifold (see section 4.6), which is 10.

The 10 Killing vectors are

. d  d  d  d
6  =  <̂  +  x a ?  yi = x d y ~ y Yx  

. d  d  d  d
b  = %  + y m ’ ^  = y ¥ z ~ z ¥ y
. d  d  d  d

i3 = t Wz + z Wt' r,3 = z T x ~ x Tz

c  = —  c  = —  c  = —  c  =  —
^  d x ’ ^  d y ’ d z '  d t

(4.10)

The Killing vectors reflect the symmetry properties of the manifold. The fj corres

pond to translations which are obviously isometries because the spacetime is flat. 

The rji have the commutation relations [?/,-, tyj] =  which suggests that the cor

responding subgroup is locally isomorphic to SO(3). However, it is obvious from the 

form of the metric that it is invariant under rotations. The & correspond to boosts of 

spacetime. In fact, the isometry group of this manifold is the 10-parameter Poincare 

group. This group consists of all transformations of the form

xm =  A*xv +  which satisfy g^A ^A p = r)ap

where of course, are the components of the Minkowski metric.

4.5 Constants of M otion

In any geometry endowed with a symmetry described by a Killing vector field £, 

motion along any geodesic leaves constant the scalar product of the tangent vector 

with the Killing vector ie

p.£ =  constant (4-11)
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It is straight forward to verify this result. We take the derivative of pa£a along the 

curve and show this to be zero. For a geodesic with parameter A, the derivative is 

given by

We evaluate this as
T x ^

d \ ( p ^  dX^a + P  d \
But from the geodesic equation we have

dPa ™ | ? 7

l x  =  ~ v ^ p
Hence

j j l r t . ) - - ! ?

and

djc, _  dx^_div_ _
dX ~  dX d x” ~  P U“,tr)

The covariant derivative of is given by

£a;<7 =  £a,a ~  Ta<7£T

Therefore

=  pV (& ?r)

=  |p V « f t r  +  & *)

=  0

The last step coming from Killing’s equation. Hence the result

p.£ =  constant

4.6 The Dim ension of a Group of M otions

A main property of a manifold M with a metric g is the number of isometries it 

admits. We now consider the conditions under which the Killing equations admit
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solutions. The first step is to show that if a solution exists and we are given both 

the values of £a and its first derivative at a point P on M, then the Killing 

vector field is uniquely determined at every point on the manifold M. We derive an

equation which relates the second derivative of a Killing field to the Riemann tensor.

Now by the definition of the Riemann tensor, for an arbitrary vector field V a

RotpJVr =  Vrfiot ~  Vy-ap. (4-12)

Taking the first covariant derivative of. Killing’s equations gives

£-y;Pa =  ~£p;'ya- (4 * 13)

Hence, for a Killing vector field

RaP'i — P̂'Hot 7̂;a/3-

Taking this equation and the equations obtained by permuting the indices a, (3, 7  

gives

RaP'y £t — £7;of/3• (4.14)

R j«0 — £a;p-y £,Pyyot' ( ’̂1 )̂

Rp7 a =  £7 ;ap â;/?7 * (4*16)

Adding equations (4.14) and (4.16) and subtracting (4.15) gives

(RapS  +  Rp^o? ~  RyapT)^r =  ~2£7 ;a/3- (4-17)

The identity

R[ap^\ H

can be written

R a p i  +  Rp-ya — R^yaP

Accordingly

—2RyapT — — 2  £TiCtp

thus £y;otP — Ra-yP (4*18)
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From this final equation it is clear that a Killing field f  “ is completely determined 

on the manifold M by the values of £“ and L ap = £a;p at any point p in the manifold 

M; namely, if we are given as our initial set of data (£a,L ap) at a point p, then 

({“ , jl ap) at any other point q is determined by integration of the system of partial 

differential equations

Lap — £ot;@ ?

£-7;o;/3 — Lta-yP £r ? (T19)

along any curve connecting p and q. It is obvious that : (1) If a Killing vector 

field and its derivative vanish at a point, then the Killing vector field vanishes 

everywhere. (2) Consider the ’’initial data space” {(a,L ap)- The manifold M has 

dimension n. In order to specify a Killing field completely at every point on M, 

we require (£a , L ap) at a point p. There are n of £a and n 2 of Lap but from the 

definition of the latter the L ap cannot be completely independently specifiable, that 

is, because of the antisymmetry of L ap ie Lap=-Lpa, there are intrinsically only 

= (n — 1 ) possible independent Lap- There are no such restrictions on the f a . As 

stated before, the data {^a^Lap) specifies one Killing field. There may be further 

restrictions on the data space (£a, L ap) imposed by the integrability conditions of 

the set of equations (4.19) but we can consider the case where the n £a and |(rz — 1) 

Lap can be prescribed independently of each other.

The Killing vector fields corresponding to the data sets

( e , 0 , 0 ...0 ; 0 , 0 , ...0 ), (0 , £2, 0 , ...0 ; 0 , 0 , ...0 ) etc

(0,0, ...0; L 12, 0,0, ...0), (0,0, ...0; 0, L 13, 0, ...0 ), etc

of which there are n +  n — 1 ), are all linearly independent and since the and Lap 

are all independently specifiable then the above represents the maximum freedom in 

choice of data. This must, therefore, correspond to the maximum possible number 

of linearly independent Killing vector fields allowed on a manifold of dimension 

n. The maximum number of independent Killing fields is the dimension of the 

initial data space which i s n  +  | ( n  — l) =  |( n  +  l). A manifold M which admits 

the maximum possible number of Killing vector fields ie ^(n  +  1) is refered to as 

maximally symmetric which we shall discuss shortly.
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However, in general a manifold does not admit the maximum number of Killing 

fields, that is, £a and Lap cannot be prescribed independently and are connected by 

the integrability conditions of the set of differential equations (4.19). The number 

of Killing fields admitted by a particular manifold (M,g) can be determined by 

considering the integrability conditions of (4.19). We aim to establish a theorem 

concerning certain systems of partial differential equations.

Consider a system of partial differential equations:

f)f)a
a,1, ...*»)

=  ]x) where a  =  1,..., m z =  l , . . . ,n  (4.20)

These are equivalent to the system of ordinary differential equations

d0a =  rpf dx1 where a  =  l , . . . ,m  * =  l,...,ra (4-21)

The conditions of integrability of (4.20) are

M  + +  (422)
d x >  +  d B * d x ‘ d f r ’

If these equations are satisfied identically, the system (4.20) is said to be completely 

integrable. In this case there are m independent solutions expressible in the form

Q - ) y  -  4 )  +  2  ~  “ x i ) + - •  (4-23)

If equations (4.22) are not satisfied identically, we have a set F\ of algebraic 

equations which establish conditions upon the O'*s as functions of the x’s. If we 

differentiate each of these equations with respect to the x’s and substitute for 

from (4.20), we get a further set of algebraic equations and these resulting algebraic 

equations are either a consequence of F\ or we get a new set F2 . Proceeding in 

this way we get a sequence of sets T\, T2 ,.... of algebraic equations, which must be 

compatible if (4.20) are to have a solution. If one of these sets is not a consequence 

of the preceeding sets, it introduces at least one additional condition. As a result, 

if equations (4.20) are to admit a solution, there must be a positive integer N such 

that the equations of the (N + l)th  set are satisfied because of the equations of the 

preceeding N sets; otherwise we should obtain more than m independent equations 

which would imply a relation between the x ’s. It follows that N  < m.
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Now suppose that there is a number N such that the equations of the sets

* 1 , (4.24)

are compatible and each set introduces one or more conditions independent of the 

conditions imposed by the equations of the other sets, and that all the equations of 

the set

Fn +i (4.25)

are satisfied identically because of the equations of the sets (4.24). Assume there 

are p(<m ) independent conditions imposed by (4.24), say G^O^x)  = 0. Since the 

jacobian matrix is of rank p, these equations may be solved for p of the 0 ’s in terms 

of the remaining (m-p) 0’s and the x’s. The equations of the set (4.24) are then of 

the form (by suitable numbering)

9a =  <f)a(0p+1, where <r =  1 ,...,p  (4.26)

We can now reconsider the original set of equations (4.20). Since equations (4.26)

were derived from the p independent conditions then replacing them back into (4.20)

will render the corresponding integrability conditions (4.22) - now in terms of the 

0p+1 ,....,0 m and the x’s - completely integrable. This is equivalent to saying the 

equations

c)Bv
— t =  ij>i(0p+11...$m]x1,...x n) where */= p +  1 ,..., m (4.27)

are completely integrable, the being obtained from the ^  by replacing $a by 

their expressions (4.26). Hence we have a solution involving (m-p) constants, ie we 

have (m-p) independent solutions.

When p=m , we have in place of (4.26), 0“ =  In this case there are no

constants of integration.

T h eo rem . In order that a system of equations 

d6a
~q t  =  V,f ( 0 1, ” -0 m; a:1, ...zn) where a  = l  ,...,m  z =  l , . . . ,n

admit a solution, it is necessary and sufficient that there exists a positive integer 

N  < m such that the equations of the sets Fi ,...,Fn  are compatible for all values of
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the x ’s in a domain, and that the equations of the set Fn +i are satisfied because 

of the former sets; i f  p is the number of independent equations in the first N  sets, 

there are m-p independent solutions.

The above theorem also applies to the case where there are a certain number of 

functional relations Fo between the 0 ’s and the x’s which must be satisfied in addition 

to the differential equations (4.20). We include in the set F\ also the conditions that 

arise from Fo by differentiation and substitution from (4.20).

We now return to the number of Killing fields admitted by a manifold with 

metric, (M,g), and consider the integrability conditions of the equations (4.19).

The integrability conditions of the equations

£y;o:/3 — Fot'yfi £ r

are (see Eisenhart (1933) [5])

i<7 ~  otpri) "h £r;<r-& ya /3 ~  +  £ t ; / +  ia y rR p lcr =  0 (4.28)

Equations (4.28) constitute the set F\ and the Killing equations

fa ;0  +  f/?;a =  0 (4.29)

are the set Fo using the above notation.

If (4.28) are a consequence of (4.29) then there are no conditions p in Fi and 

the number of independent solutions is m-p =  m, and is equal to the number of 

equations in (4.29) which is | ( n  +  1). This corresponds to the case of a manifold 

with maximal symmetry. It is obviuos that m = f  (n +  1)-

If (4.28) are not a consequence of (4.29) and there are p conditions in F\ then 

the number of independent solutions is r = ^(n +  1 ) — p. This, of course, only 

holds if all the equations are consistent with each other. This gives us a criterion 

for determining the order (dimension) r of an isometry group Gr.

Let us consider the simple example of flat Euclidean space E 2. The line element 

can be written ds2 =  dx2 +  dy2 and we already know that the manifold admits three 

independent Killing vectors:



We will investigate the integrability conditions of the corresponding Killing equa

tions to illustrate the theory. The Killing equations are

£x , x  = 0 , £x , y  T Cy,x  =  0 , £y,y == 0 .

We adopt the following notation:

7?1 =  — £y ,y

T)2 — £y Vs ~  £x,y

7/3 =  £ x ,x  V 6  =

With these definitions we have

7/1,1 =  7/3, 772,2 =  7/4, 771,2 =  775, 772,1 =  776 (4 .30)

and the Killing equations become

7/3 =  0 , 775 +  776 =  0 , 774 =  0 (4 .31)

The set To are the Killing equations which are

771,1 =  0 , 771,2 =  776, 772,2 =  0 (4 .32)

Taking the partial derivatives of the Killing equations gives

W II CD 7/4,2 =  0,

7/ 3 ,2  —  0 ,

OIICr-

7/4,1 =  0, >?5,2 =  0

cTIIrH<xT
s=- r>6 ,2 = 0 (4.33)

The integrability conditions of the Killing equation can be written

77 i , j l  =  V i , l j

And these are the set F\ . These are automatically satisfied because of the equations 

(4.33) and we now only have to consider the case

771,21 =  7711,2-
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Since 7711,2 =  0 then we have

*76,1 =  0 ,

which is already in the set Fi. Hence, this sets no new conditions on the 77; and 

p=0. The manifold thus has the maximum possible number of Killing vector fields 

which is 3: it has maximal symmetry.

We consider further the case of maximal symmetry. In this case the quantities 

£0, and are independently specifiable ie both parts of equation (4.28) equal zero 

seperately

^r{R-yaf3-,a ~  ^aapry) =   ̂

and ^T-aR^ap trYyF(jap 4- £r;/3-Rcry<j +  = 0

This sets the condition on the Riemann curvature tensor that

R
R\iwa — 7 7~\(9^v9fj.iTn[n — IJ

where, of course, n is the dimension of the manifold M (see De felice and Clarke 

(1992) for details).

The equation characterising a space of constant curvature is

R\nua = K 9 \ u9h<t -  9\<t9hv) where k=constant

which is exactly equivalent to saying the Ricci scalar is constant ie R tfl =  0. Hence 

M is a space of constant curvature. The next theorem follows from this.

T h eo rem . When and only when M  is a space of constant curvature, the Killing 

equations admit ^(n  +  1 ) independent solutions; in all other cases there are fewer 

solutions.

A maximally symmetric manifold is of constant curvature and so it is possible 

to state immediately that the dimension of the corresponding isometry group is 

?(n +  l).

4.7 4-dimensional Spacetimes and Groups of M o
tions.

The manifold (space or spacetime) admits a number r of independent Killing fields. 

The manifold is said to be invariant under an isometry group Gr of dimension r.

70



So far we have talked only about the number of independent Killing fields admitted 

by a manifold and have briefly considered some examples and their derivation. We 

have not discussed their role, in detail, with regards the symmetry properties of the 

manifold.

It is important to realise that there are diiferent types of isometry group. Even in 

the case where there are two manifolds with the same number of independent Killing 

fields r, the two Gr can have entirely different properties with regards symmetry of 

the manifold. The precise properties of the Gr (or equivalently the Killing vector 

fields) reflect the symmetry properties of the manifold. We are already familiar with 

the terms homogeneuos, isotropic, spherically symmetric and static etc. as applied 

to a space or spacetime but we can now define these concepts in terms of isometries. 

We say that a manifold must admit a certain isometry in order to have a particular 

symmmetry eg homogeneity, isotropy,...etc.

An isometry group may have subgroups, each of which may reflect a different 

symmetry property of the manifold, or the whole isometry group itself may corres

pond to a particular symmetry.

First, we define the transitive group (or subgroup) and the isotropy group (or 

subgroup).

An isometry group Gr is said to be transitive on a manifold M n if for any two 

distinct points p,q £ M  there exists an isometry g € G such that g(p)=q.

It is possible that only part of a transitive isometry group is responsible for its 

transitivity and this component of G we call the transitive subgroup of G. One 

must note that the identity must be included in order for the component to form a 

subgroup, although, strictly speaking the identity has no transitive action. As an 

example the closed FRW model has an isometry group isomorphic to S0(4) with a 

transitive subgroup locally isomorphic to SO(3).

Consider a transitive isometry group (or subgroup). Its transitivity is reflected 

in the nature of the corresponding Killing vector fields: It is always possible to 

construct a Killing vector al£i (i.e. by linear combination of the basis Killing vector 

fields) which has components in all n coordinate directions. This ensures that the 

corresponding group element I  +  al& takes every point into any other point on the 

manifold (see discussion of the isometries of the manifold S 2 in section 4.7.4 and 

chapter 5 for the Killing vectors of the FRW models).
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A simply transitive group (or subgroup) is a transitive group which has the same 

dimension as the manifold Mn on which it acts ie n=r. In this case one can use the 

r linearly independent Killing vector fields as a basis for vector fields. A multiply 

transitive group (or subgroup) is a transitive group which has greater dimension 

than the manifold M n on which it acts ie n > r.

Isotropic means ’’the same in all directions” . We note that if a space or spacetime 

is isotropic about one point only then we normally refer to this as a spherically 

symmetric space or spacetime. When we mean isotropy at every point we shall say 

so explicitly. The isotropy group Ip of a point p is the set of all isometries which 

leave p fixed. It is a subgroup of the complete isometry group Gr. If Gr is simply 

or multiply transitive ie n > r  then all Ip are isomorphic.

4.7.1 Homogeneity.

Loosely speaking, a manifold is homogeneous if it is the same at all points. More 

precisely, a manifold is homogeneous if there exists a transitive group of isometries 

on the manifold. This is, of course, equivalent to saying there exists an isometry 

which maps every point on the manifold into any other point on the manifold.

The description of a spatially homogeneous 4-dimensional spacetime is as follows: 

we imagine our 4-dimensional spacetime as being foliated by 3-dimensional spacelike 

hypersurfaces E* (parameterised by the time coordinate t) which fulfill the above 

criterion for homogeneity eg the FRW models.

This provides us with the definition:

D efin ition . A spacetime is said to be spatially homogeneous if  there exists a one- 

parameter family of spacelike hypersurfaces E* foliating the spacetime such that the 

metric g has a group of isometries transitive on the E*.

There are two types: we can obviously identify two distinct classes of spatially 

homogeneous spacetimes, those with simply transitive isometry groups and those 

with multiply transitive isometry groups.

(1 ). The former are further classified according to the Lie algebra of the correspond

ing simply transitive component of the isometry group. This classification is due to 

Bianchi and there are nine distinct types of Lie algebra.
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(2). The second type are called Kantowski-Sachs models. There are only two pos

sible distinct cases. We shall mention these later.

Cosmological models in which the metric is the same at all points of space and 

time, homogeneous in space and time or ST homogeneous. Such a model is a 

4-dimensional manifold. M4 on which a transitive (simply or multiply) group of 

isometries Gr acts, ie with r > 4. This means that it is possible to define on the

4-dimensional manifold an isometry which will map every point into any other point 

on the manifold.

4.7.2 Other Spacetime Sym m etries.

How can one describe other symmetries such as stationary, static, and spherically 

symmetry in terms of Killing vector fields?

A spacetime is said to be stationary if it admits a timelike Killing vector field. 

The metric components would then be independent of the time coordinate t and the 

spacetime has ’’time translational symmmetry” . A spacetime is said to be static if 

it is stationary and the metric is invariant under the transformation t i—► —t. Such 

a metric has no dtdx1 terms, ie all the components goi are zero. The static nature of 

such a spacetime requires the existence of a spacelike hypersurface orthogonal to the 

orbits of the ’’time translational” isometry. Time reflection isometries do not form a 

continuous group but from a discrete group and there are of course no corresponding 

infinitesimal isometries.

Spherical symmetry (isotropy) of a spacetime is granted through the existence 

of an isotropy group isomorphic to S0(3), the group of rotations in 3-dimensions. If 

a spacetime admits such an isotropy group at every point then we say it is isotropic 

at all points and this demands that the spacetime be spatially homogeneous. Also, 

if we have a spacetime which is spatially homogeneous and there exists an isotropy 

group at one point then it follows that the spacetime is isotropic about every point 

- we make use of this in chapter 5 when we consider the Killing vectors of the FRW 

models.
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4.7.3 Classification and Generation o f Solutions.

Assuming knowledge of the metric tensor we can determine all the independent 

Killing vector fields on a manifold. The commutators of these infinitesimal group 

elements define the structure constants of the isometry group. Thus the f  are the 

basis elements of the Lie algebra (we can of course choose a different basis). Any 

set of Cfj which satisfy the equations

/~ik _
i j  ^  j i

and the Jacobi identity

a l i /~im I nm   pi
i j ^ l k  "r ^ j k ^ l i  ~T ~  u-

are the structure constants for some Lie algebra. In order to find all Lie algebras of 

dimension n it is necessary to find all possible independent solutions of the above 

two equations. Each of the independent solutions can be expressed in a canonical 

form and we can always change the C£ to a new set Cf- which matches one of the 

canonical forms.

It seems obvious to classify our solutions (metric tensors) according to their 

isometry groups. This does indeed make sense since it turns out that it is possible 

in some cases to generate solutions by assuming that they have a particular isometry 

group.

Solutions of Killings equations for a particular metric gives us the infinitesimal 

isometries, Lie algebra and Lie group corresponding to that metric. Conversely, it 

should be possible to take a set of Killing vectors and generate a metric - the reverse 

process of solving for the Killing vectors. We shall only consider the case of spatially 

homogeneous and ST homogeneous spacetimes in this work. We shall deal with clas

sification and generation of spatially homogeneous and ST homogeneous solutions 

together. We have already established that every Lie group has an associated Lie 

algebra and we are interested in three cases:

(1). ST homogeneous models. There are eight 4-dimensional Lie algebras which are 

tabulated in Petrov (1969) [16]. An example of such a model is the Einstein static 

universe.

(2). Spatially homogeneous models. There are nine 3-dimensional Lie algebras. A 

list is given in Taub (1951) (and is included here as an appendix) and includes, for
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each type, an invariant basis (see later). The numbering system is due to Bianchi: 

if a space is spatially homogeneous and the Lie algebra of the simply transitive 

isometry subgroup is Bianchi type N (N=I, II,....,IX) then the model is said to be 

of Bianchi type N. The association of a spacetime with a Bianchi type is, therefore, 

with reference to the transitive subgroup only. It does not give any information 

about any other symmetry properties eg isotropy.

The FRW models are spatially homogeneous and isotropic:

For the closed (k = + l)  case the complete Lie algebra is isomorphic to that of SO(4). 

The isometry group is SO(4) which is transitive on the 3-dimensional hypersurfaces 

(the transitive subgroup is SO(3) - corresponding to Bianchi type IX) and this 

isometry group has an isotropy subgroup SO(3).

The isometry group for the flat (k=0) model is the product of translations in 3 

dimensions (the transitive subgroup corresponding to Bianchi type I) and rotations 

in 3 dimensions (the isotropy group SO(3)).

For the open case (k=-l) the isometry group is that of the Lorentz group S0(3,l). 

The transitive subgroup corresponds to Bianchi type V. Again, the isotropy sub

group is SO(3).

The Kasner solution is another spatially homogeneous cosmological model which is 

Bianchi type I. It is anisotropic since the spatial sections have different expansion 

rates in different directions. For this model

ds2 = - dt2 +  ^ { d x 1)2 +  t2p2(dx2)2 +  t2ps(dx3)2

where pi +  p2 +  pz =  p i2 +  P2 2 +  Pz2 = 1. The conditions on the pi make the 

model necessarily anisotropic, however axial symmetry is possible with p\ = — |  

and p2 = p 3 = §.

(3). There are only two possible distinct Kantowski-Sachs models. One possible 

manifold structure is S 2 x R  and the corresponding isometry group is 50 (3 ) x R  

which is 4-dimensional and so has a 4-dimensional Lie algebra: the isometry group is 

thus multiply transitive. See Kantowski and Sachs (1966) [12] for the Lie algebras.

Our aim now, is to construct homogeneous (ST and spatially homogeneous) 

cosmological models ie generate their solutions. We can do this for the cases (1) 

and (2) outlined above (for case (3) we require spatial techniques which we will not 

discuss). We can treat these two cases in a straightforward manner by constructing
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homogeneous spaces from knowledge of a Lie algebra: it relies on the fact that the 

Killing vectors are transitive on the spaces.

Consider a manifold of dimension n with a transitive isometry group G (of di

mension n). Let us begin by introducing the invariant basis. An invariant basis 

{X^}  is one for which

=  0. (4.34)

for fi =  1, . . 77. and i = 1, ..n. £; are of course the basis Killing vector fields on M.

An invariant basis is useful because the metric components are constant when it 

is written in terms of this basis. The metric components can be written as g(A"M, X„). 

Consider the Killing vector £, then

£*(g(XM,X„)) =  (£ 4 g)(A-„, +  g( (£(X , ) , X u) + g ( X „  (£<*„)).

All the terms on the right-hand side vanish. Hence, the gpV are constant. Also, 

the structure coefficients D defined by \X ^ X J \  =  D*UX \  are constant on the 

homogeneous manifold. An invariant basis can always be found for a manifold M 

when we have a set of £; simply transitive on M. Each is a Lie dragged vector 

field and if we have & then we can solve equation (4.34) for the basis {X Once 

we have this basis it is straightforward to write down the metric.

It is worthwhile noting that D*v =  —C*v on M and that =  0 implies

=  0. Cartan’s first equation then becomes

du* =  \ c ^ a Au/ 3 (4.35)

It is equally valid to solve this equation for an invariant dual basis and construct

the corresonding metric.

Case (1 ). For ST homogeneous models the metric takes the form

g =  a llvLj,i®u)v

where is any symmetric matrix of constants and {wM} is the invariant dual basis.

Case (2). For spatially homogeneous models the spatial part of the metric takes the

form

g (s) =  aijuv1® ^ 3
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where is any symmetric matrix of constants and {a/} is the invariant dual basis. 

Then the complete spacetime metric is

g =  —dt2 +

For the ST homogeneous models we could choose the C^u from a list of canonical 

structure constants as listed in Petrov (1969) [16]. Similarly for spatially homo

geneous models the Cfj can be chosen from a list ie one of the Bianchi types. It is 

possible to add further constraints on the metric eg that of isotropy.

Note that the Lie derivative of the metric with respect to the corresonding Killing 

vectors will indeed be zero since the metric components are constant with respect 

to an invariant basis.

4.7.4 The 2-Sphere: Hom ogeneous and Isotropic.

Let us now consider the two-sphere S 2 and its isometries. We shall demonstrate 

how these isometries make the sphere homogeneous and isotropic. Now, the two- 

sphere S 2 can be embedded in R3, S 2 being the region x 2 +  y2 +  z 2 = r2 where r 

is a constant. The rotations in 3-dimensions generate the 2-dimensional surface of 

S 2. Since the two-sphere S 2 is of maximal symmetry and of dimension 2  then the 

number of independent Killing fields on S 2 is 2(2 -f l) /2  =  3. These Killing fields 

are

d d
=  X d-y ~ y Y x  

d d
V2 = y Y z - %  

d d
m = Zd i ~ Xd-z

The homogeneity of this manifold is granted through its invariance under S0(3), 

which acts transitively on S 2: At every point on S 2 it is possible to construct a 

Killing vector which takes that point into any other point. Each single element rji 

cannot be termed transitive on its own, but the existence of the others ensures that 

together there is no point which doesn’t have an isometry defined which can take 

one point into any other.

The isotropy subgroup of a point p on M consists of all elements of the isometry

group which leave the point p invariant. The isotropy is granted through invariance
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under the one-parameter subgroup of S0(3), S0(2). That is, at any point we can 

rotate the sphere about its axis, and this obviously corresponds to an isometry. 

Consider the points in R 3 on the z-axis (0,0, ± r)  . Isotropy about these points is 

granted by the Killing field

d d 
m = x a j  “  y Yx

This field has value zero at the point (0,0, ± r)  and rotates the rest of the manifold 

into itself. Similarly for (± r, 0,0): 772 and (0 ,± r, 0): 773. In fact it is obvious that 

we can do this for any point on S 2 simply by defining an appropriate coordinate 

system. The isotropy subgroups so obtained will of course just be isomorphic to 

SO(2 ).

4.8 Conformal Killing Vectors 
and Killing Tensors.

An isometry <p is a mapping (diffeomorphism) <j> : M  M  and <p*g 1—► g and is 

described by a Killing vector f  (the infinitesimal generators) such that

£ {g =  0.

The motion preserves lengths and hence angles between vectors defined on M.

The above can be considered as a special case when considering conformal i- 

sometries. A conformal isometry <f> is a mapping (diffeomorphism) (p : M  1—► M  

and

<p*g  i-> f t2g

The infinitesimal generators of the corresponding transformations are conformal 

Killing vectors (CKV) 0  such that

£ 0 g  =  i p { x k ) g .

i p ( x k )  is called the conformal factor. The conformal motion preserves angles between 

vectors defined on M. There are in fact three special cases:

(1). Killing vector, ip = 0.

(2). homothetic Killing vector, 0, 'ip^ = 0.

(3). special conformal Killing vector. t p ’, a / 3 =  0.
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The set of all conformal isometries on M have the structure of a Lie group, 

in precisely the same manner as for isometries. Hence, the set of all CKV for a 

particular manifold forms a Lie algebra (It should be noted that the more general 

conformal transformation is not necessarily associated with a diffeomorphism of M). 

The conformal Killing equation can be written in component form as

9<*P (4.36)

where n is the dimension of the manifold M. The scalar product of the conformal 

Killing vector 0  and the tangent vector field p can be written in component form 

as

A * * ? ) #  =  l ( Q 0;p)paPa (4.37)

Conformal Killing vectors give rise to constants of motion for null geodesics (for 

which papa =  0).

A Killing Tensor is a totally symmetric tensor K which satifi.es

-̂ (<*1 am\am+1) =  0 (4.38)

where parentheses indicate total symmetrization. Killing tensor fields do not arise 

in any natural way from groups of diffeomorphisms on M. The generators are not 

spacetime vector fields but rather depend on the geodesic tangent vector and lie in 

the ”jet space” of geodesic equations. It is found that the metric is not invariant 

under Killing tensor symmetries.

However, like Killing vectors, Killing tensors give rise to constants of motion:

K ai amPai Pam = constant. (4.39)

These Killing tensor constants of motion correspond to symmetries of the geodesic 

equations.

The conserved quantities associated with geodesics and each of the Killing vector- 

s, Killing tensors and Conformal Killing vectors do in some cases allow expressions 

to be obtained for the geodesics, somewhat reducing for example,the problem of 

solving the geodesic equation. With all but the simplest metrics it would involve a 

fair amount of labour to directly solve the geodesic equation. As an example, with
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the Schwarzchild solution the constants of motion associated with the Killing vec

tors reduce the problem of finding the geodesics to the problem of one-dimensional 

motion of a particle in a potential. The gravitational redshift can also be obtained 

by comparing the frequency of emitted and observed photons using conserved quant

ities.

The Kerr metric admits a 2nd rank Killing tensor K ap and the associated con

stants of motion allows us to obtain all the geodesics explicitly.

In the next chapter an expression for the redshift in a FRW model is obtained 

using Killing vectors explicitly.
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Chapter 5 

Killing vectors for the FRW  
models.

In this chapter we find the Killing vectors for each type of FRW geometry and show 

that there are 3 distinct Lie algebras (each corresponding to k = + l,  0 or -1 ). The 

closed model is Bianchi type IX and the complete isometry group is locally isomorph

ic to SO(4), the flat model is Bianchi type I and has a complete isometry group given 

by the product of translations T3 and rotations S0(3) and the open model is Bianchi 

type V with isometry group locally isomorphic to the (proper,orthochronus) Lorentz 

group S0(3,l). We then show how each corresponding distinct isometry group is 

transitive and has an isotropy subgroup. Finally, a redshift calculation is carried 

out using the conserved quantities arising from Killing vectors.

The assumed geometries of the FRW models allow us to assign a metric to each 

type. The FRW metric can be written in the form:

r dr2 1
ds2 =  dt2 — S 2(t) —---- —— +  r2(dd2 +  sin20d(f>2) . (5.1)

L(1 — krz) J

We shall refer to this as being the coordinate system (t,r , 0, <f>). It is worthwhile 

noting that since the FRW models have expanding spatial sections, the vector field 

is not a Killing vector field. This is obvious from the metric and the presence of 

the scale factor S(t).

Through a transformation to pseudo-cartesian coordinates we have the isotropic 

form of the metric

ds2 = dt2 -------~ l ^ 2— 2 ^  dy2 +  dz2) (5-2)
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The transformation is

x =  r sin 6 cos (j> 

y = r  sin# sin 0 

z = f  cos 9
2 r

f  = --------- -------r  (5.3)
1 + (1 — kr2) 2

and we shall refer to this coordinate system as ( t ,x ,y ,z ) .

Before proceeding with our analysis we note that in this form it is obvious that 

the spatial part of the metric is invariant under rotations i.e. interchanging x , y, and 

z leaves the metric invariant. It follows that the following vector fields are Killing 

vector fields for all three values of k.

- d ~ d
XT y - y t e  (5 '4)

-  9  -  d  a  ^

v a i ~ z d9  (5 '5)
- d  _ d  .
z d s ~ x m  (5 -6)

As we already know, these are the infinitesimal generators of SO(3), the group of 

rotations in 3 dimensions. These Killing vector fields reflect the isotropy of the 

3-dimensional spatial sections and will form the isotropy subgroup of the whole 

isometry group for each of the three FRW models. In fact these Killing fields are the 

generators of the isotropy group of the point x = y = z = 0 o n  the 3-dimensional 

spatial sections. Since the FRW models are also homogeneous there is a similar 

group at every point of the spatial sections which is isomorphic to SO(3). Hence it 

is possible to say that the isotropy subgroup of the isometry group for each FRW 

model is isomorphic to SO(3).

Also, except in the case of the flat model, the Killing vector fields corresponding 

to translations

A A A  (5 7 1

d x ’ d y ’ dz  ( ' ’

are not admitted. As we will discover, the open and closed models have transitive 

Killing fields acting on the spatial sections which are not just simple translations. 

We shall make further use of the isotropic nature of this coordinate system later.
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This is all we can say about the Killing fields of the FRW models without actually 

solving the Killing equations explicitly. Our objective now is to find all independent 

solutions to Killing’s equation.

5.1 Solving Killing’s Equation.

In order to determine the Killing vectors of a particular metric for a spacetime (M,g), 

it is necessary to find all linearly independent solutions of the Killing equations:

for;/? +  t p \ a  =  0 -  ( 5 . 8 )

We can state beforehand the number of isometries the metric g will admit by 

considering the integrability conditions of (5.8), as discussed earlier. Equation (5.8) 

can be written as:

taj> + tf>,a-2TZ0& = O. (5.9)

Obviously we choose the coordinate system most sympathetic to the symmetries of 

the space, which will still allow us to solve for all the Killing vectors.

For the moment we choose the form (5.1) because of its polar form and its 

generality in curvature (k= +1,0,-1). Consider a general vector field on the manifold 

with contravariant components (A,B,C,D) with respect to the coordinated basis 

at ’ J r» a?’ 90’ Ŵ ere A,B,C and D are functions of t ,r ,0, </>. It is our objective to find 
the conditions on these components of this vector for it to be a Killing vector. The 

components of the metric are:

9oo = 1; 9n  =  .5 ^ .2y  9 2 2  = ~ S 2r2; g33 = - S 2r2sin20 (5.10)

The covariant components of the vector field are thus given by 

to =  A; ^  =  ~ B n f l r 2 y  6  = - C S V ;  tz  = - D S 2r2 sin28 (5.11)

The Christoffel symbols are computed from the metric components (5.10). We recall 

that

^a/3 ~  7̂ 9* (9crot;(3 T Qcr(3\a ~  9ap-,a)
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The ten partial differential equations are as follows:

d A  n

d t
_ d A  S 2 d B

d r  (1 — k r 2 )  d t
d A  d C  2  ,  „
-de + m S r =  °

- ^  +  ^ - S 2 r 2 s m 2 6  =  0  
d < p  d t

B k r  d B  A S  n
(1 -  k r 2 )  +  d r  +  S   ̂ ^

g ^  +  g *  1 = 0
d r  8 9  (1 — k r 2 )

8 D  2 . d B  1
sin 9 + W ( T ^ )  = 0

9C1 AS1 B
~d¥ + - ^  + 7 - 0
d C  d D  . 2 „_  +  _ s ln 0 =  O

(9.D . 2 A # . 2  B  . 2/ ,  ^  • n f\ r,— sin 0 H— —sin 0 H sin 0 +  C  sin 0 cos 0 =  0
d < p  b  r

where S  denotes differentiation with respect to t, ie It would be impossible 

to find a completely general solution for these partial differential equations, however 

it was possible to find some particular solutions by initially assuming a particular 

form for the solution. Solutions of the form (A,B,0,0) could not be found. There 

were solutions of the form (0,0,C,D), which were the following:

(0,0, — sin (j), — cot 0cos (f>) (5.13)

(0,0, cos <f>, — cot 0sin <j>) (5*14)

(0,0,0,1) (5.15)

Note that these are all independent of k, and so are common to all the spaces, 

whether k equals +1, 0 or -1 . Also, we found a solution of the form (0,A,B,0) 

whose particular form is dependent on k, ie

(0 ,c o sg ( l- fc r2) ^ , - Sillg(1- fcr^ ,0) (5.16)
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The Killing vector (5.15) is the vector field and corresponds to a rotation around 

the z-axis on the manifold, by definition of the coordinate system. The metric (5.1) 

is independent of </> and so this particular solution was obvious from the beginning 

anyway. We also note that if we consider the flat case, k=0, then f  = r and (5.16) 

becomes
„ — sin 0 _

(0, cos 0 ,  , 0)
r

which when transformed into cartesians is equivalent to Jk  This suggests that (5.16) 

might be a generalisation of translations in the flat case, ie that it may form part of 

the transitive subgroup of the isometry group for each FRW model.

At this stage we are unable to say much more about the other solutions (5.13), 

(5.14) and (5.16) given above. However we can analyse these Killing vectors in the 

pseudo-cartesian coordinate system (t , x , ?/, z). T We racall that the new coordinates 

are related to the old by:

x =  r sin 0 cos <j> 

y = r sin 0 sin

z =  f  cos0 (5.17)

where r =   r
1 +  (1 — kr2) 2

First, make the transformation from (t , r, 0, <j)) to (t, r, 0, </>) and then from (t , r, 0, <f)

to ( t ,x ,y ,z ) .  The components of the vectors are transformed in the usual way

7a OX p(3
Q dxf*q ‘

The three Killing vectors (5.13),(5.14) and (5.15) become, with respect to the co

ordinated basis ■§=, ■§=, respectively:

(0,0,  — y)

(0,^,0, - x )  (5.18)

(0 ,-y ,z ,0 )

Writing this explicitly in terms of the basis vectors as

. , 9  9  _  _ 9  _ 9
^  =  Vg= ~  *g=
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i d , d _ d _ d , .
c o s ^ - - c o t 0 S1n ^ -  =  2~ 3 i “ * 3 l  (5' 19)

d_ = - A _ - A
d(j) dy ^ dx

we see that these are simply the rotations around the x,y and z axes respectively, 

which we encountered earlier. These are common to the open, closed and flat FRW 

models. As we already know, they will form the isotropy subgroup of the whole 

isometry group for each of the three FRW models. We label these three Killing 

vectors as

a a
(5.20)

(5.21)

(5.22)

Next we come to the Killing vector (5.16)

2 n  d f s m 6 ( l  — kr2 ) 2  ^ d

d _ d
7/1 = Zdy

d _ d
772 = x dz

d d
773 =  *dg

cos 0 (i _  kr ) *J _  _  { ---------_---------J _  (5 .2 3 )

which we already suspect to be one of the transitive Killing fields. Again make the 

transformation from (t, r, 0, <p) to (t, f , 0, (p) and then from (t , r, 0, <̂ ) to (£, al, y, z), all 

the time using a coordinated basis. We find that in the pseudo-cartesian coordinate 

system (5.23) becomes:

f  k x z \  d  ( k y z \  d  f k z 2 k r 2 \  d  ,  .

Because of the isotropic nature of this coordinate system we can simply permute x , 

y ,  and z  to get another two Killing vectors. They are

( k x 2 k r 2 \  d  ( k y x \  d  f k z x \  d  /K
( t -  x + b  + ( ^ - )  ^ + ( — )  a i '  (5-25)

and
f k x y \  d  ( k y 2 k r 2 \  d  f k z y \  d  /K
(-/ ) 5 i + ( T - X  + 1) i5 + ( V ) s -

It would be invalid to ask at this point if these three Killing vector fields are the 

infinitesimal generators of the transitive subgroup of the isometry group since we 

do not know whether they form a subalgebra at all.
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We have already derived the infinitesimal generators of the isotropy subgroup 

for each of the FRW models. It was sufficient to find the commutation relations 

between these Killing vectors (and determine the structure constants for this sub

group) to decide that it was locally isomorphic to SO(3) (it was only the fact that 

the generators are exactly equal to those of SO(3) that meant the actual corres

ponding subgroup was S0(3)). We similarly determine the commutation relations 

(lie algebra) of the set of Killing vectors (5.24), (5.25) and (5.26). We label them as 

follows

. / kx2 kr2 \  d  ( k y x \  d  ( k z x \  d  ,  .
-  t + ■ )» + ( i r ) « s + (— )«■

f  k x y \  d  f k y 2 kr2 \  d  ( k z y \  d  , .
- T +1) 5 + h r ) » '  <“ *>

. / k x z \  d  ( k y z \  d  f k z 2 kr2 \  d  , .
) s ; + (1 - ) 5 i+ ( - r - T +1) ^  <529>

We recall that the Lie derivative of a vector field B with respect to the vector field 

A, L aB  is equal to their commutator [A, B). In component form then

f) f) A*
[A,BY  = (LAB y  = A ^ - B ^ .

This enables us to calculate the commutation relations between all our derived 

Killing vectors:

lm,m] = (5.30)

Kiifj] =  -ke^Vk  (5.31)

Ki,%] =  - 4 a  (5 -32)

where e i s  the alternating symbol in 3 dimensions. It is now obvious that our

three ’’suspected” transitive Killing vectors do not even form a subalgebra of the 

Lie algebra of the isometry group. In order for them to do so their commutation 

relations would have to have the form [{*,£,■] =  Cf-^k for some constants C -. The 

rji do, as noted before, form a subalgebra of the complete algebra and hence are the 

infinitesimal generators of a subgroup of the complete isometry group. It is possible 

to manipulate the Lie algebra obtained above to put it in a form where we do have
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a transitive subalgebra (and still retain the isotropy subgroup). We would like to 

find linear combinations of the £* and rji so that these do form a subalgebra of the 

complete algebra. It is important to note that the Lie algebra obtained in this way 

will still have the same canonical form as the original ie they are isomorphic to each 

other. We will have simply changed the basis to another equally admissible basis. 

The desired form of the Lie algebra is obtained as follows. The linear combination

{'< =  6  +  *?rim (5.33)

is required to satisfy the subalgebra commutation relations

=  (5-34)

Now we have

[(& +  < V ) >  (fi +  a j V n ) \  =  Cij(£k +  alrjq). (5.35)

It is now clear that we can solve for the matrices a™ using the established relations 

(5.30), (5.31) and (5.32), which will give us the desired Lie subalgebra for each value 

of k, whilst still retaining the subalgebra corresponding to the isotropy subgroup. 

Expanding the left-hand side gives

[(& + a ? V m )  , (& +  a ]Vn)]

=  [& ,& ] +  «"[&>'/»] +  aT h r a ,tA  +  a?a"[r)m,rln\

= - k e T j V m  +  < (-C £ m ) + « r (-4 ;£ r )  +  a ? a ] ( - e ^ n r)<r )

= -ke*rim -  a"e£(£'m -  a°mr)„) -  a?ermj(t'T -  -  a?anj d’mnr)l,

= ( - * 4  + aJaJeS, +  « f«& , -  < a # „ ) % -  (ajej. +  a[e^.)f *

This must equal We require therefore

( - * 4  +  +  a°a\eoi -  a f a j e j j  =  0

Mid C% =  +  < 4 )  (5.36)

The set of equations (5.36) must be examined separately according to each value of 

k. For each k, we have found suitable matrices a*- and the corresponding structure 

constants C -.
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k — H- !  •

For the case k =+1, we find that a) = —8} and =  2e -̂. The structure constants

can be reduced further by taking f 77t- =  so that

The newly computed elements of the desired Lie algebra are thus given by

&  = 6 - ^ i  

=  & -  Vi 

Therefore f 77,- =  i(&  -  77*)

We can write these out explicitly as

(5.37)

f"  -  t  
* 1 "  2

-  ±  
s  2 —

£" -  t  
*  3 ~  2

_\ # , (y2 r2 \ d
T ~ z)dE \ T ~ T  )djj

zy \ d
Y  +  V t e

xz J\ d f y z  _\ d ( z 2 r2 \  d
Y  + y) d i  + ( y  “ x)dg + ( t  “ T  + bai'J

(5.38)

(5.39)

(5.40)

We can simply commute these to check the commutation relations (5.37). Are these 

transitive on the 3 dimensional spacelike hypersurfaces?

For a group of isometries to be transitive on a manifold Mn there must exist an 

isometry which will transform any point on the manifold into any other point on 

the manifold. In other words, there must be no point at which it is impossible to 

construct an infinitesimal generator (through linear combination) which has com

ponents along all n coordinate directions.

In the case of our four dimensional spacetime (M,g) we are considering 3 dimen

sional hypersurfaces parameterised by the ’’time” coordinate t. We usually refer to 

these as H(t) and they foliate our spacetime.

It can be seen clearly that at every point on H(t) for the case k = + l we can 

construct a Killing vector which has components in all three coordinate directions. 

Even when x = y = z = 0 we can still construct the linear combination

A ±  + B ±  +  C ±ox oy oz
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where, of course, A,B and C are constants. Therefore, the Killing vectors and

£ " 3 above are the infinitesimal generators of the transitive subgroup of the isometry 

group for the k = + l FRW model.

We can now write the new Lie algebra for the case k = + l explicitly in terms of 

the and 77;. The complete Lie algebra for this model is now given by

(5 -4 1 )

fa.Vj] =  (5.42)

(5.43)

Where the last relation comes from replacing the expression f'L =  — 77;) in

equation (5.32).

Now make the replacement 77'j =  —77*- to get

K"i >£",•] =  (5-44)

Wi, n'j] = (5-45)

W'un'jl =  zW 'k  (5.46)

It is now obvious that the complete Lie algebra above is isomorphic to that of SO(4). 

See Wybourne (1974) [24] for a list of the generators and Lie algebra of SO(4). The 

subalgebra given by (5.44) is isomorphic to the Lie algebra of S0(3).This subalgebra 

is the Lie algebra of the transitive subgroup and corresponds to Bianchi type IX. 

The subalgebra given by (5.45) is also isomorphic to the Lie algebra of S0(3) and 

the associated Killing vectors 77^ are the generators of the isotropy subgroup - this 

was discussed at the beginning of the chapter.

Since the spacetime is spatially homogeneous and there is an isotropy subgroup

at at least one point then the spatial sections are isotropic at all points.

k = - l .

For the case k= -l we have that a\=-1 , a\= l  and the rest of uj=0. The structure 

constants are

Cj3 =  —C\x = 1 (^-47)

Cl3 =  ~ C l2 =  1 (5.48)

and the rest of Ct* =  0 (5.49)
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The newly computed elements of the new Lie algebra are now given by

£'i =  fi -  *72 

£ ' 2  = ( 2  +  vi 

£ 3  =  &

These can be written explicitly as

x 2 r _\ d (  y x \  d (  zx \  d
“ T  +  T  +  1 "  z )~Fx + ( ~ T J d § + ( ~ T  +  X) W

(5.50)

r 2 =
+  f_ y^_

2 J d x
r2

2 +  4 + V d y  +
zy , 9
T  S) W

(5.51)

£'3 =
_££'\ J L  4. ( _ y £ \ —

2 J d y2 J  d x ~ ^ ~ +
z2 r 2 A d  ‘

“7  + 7  + 1)aI\ (5.52)

Once again, there is no point on the hypersurface H(t) where it is impossible 

to construct a Killing vector with components in all three coordinate directions, ie 

even when x — y = z = Owe can still construct the linear combination

A 9 + B d + C 9 
ox oy oz

where A,B and C are constants. Hence the are the infinitesimal generators of the 

transitive subgroup of the isometry group of the open FRW model. The complete 

Lie algebra for this model is now given by

[y„y,] VL)1II (5.53)

=  £ \ (5.54)

[£'2 , £'3 ] =  £ '2 (5.55)

and [ f ' i , 7? i ]  =  ~ y  3  [£'25*7i] =  f ' 3

[ f ; i 5 ^ 2 ]  =  —£ 3  [^25 ^ 2 ]  =  £ 3

[ f  15 ^ 3 ] =  £ 2 [ f  25 ^ 3 ] =  —£ 1
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The subalgebra (5.53) is isomorphic to SO(3) and corresponds to the Lie algebra 

of the isotropy subgroup of the isometry group.

The subalgebra given by (5.54) and (5.55) is the Lie algebra of the transitive 

subgroup and is isomorphic to Bianchi type V as can be seen from the structure 

constants given above.

We turn now to the original form of the Lie algebra given by (5.30), (5.31) and 

(5.32). The value of k is inserted and the substitution rf { =  —rji is made to give

Wi,n'j] = t i t f k

[6,6-] =  - 4 V *

This is the Lie algebra of the (proper,orthochronus)Lorentz group SO(3,l) - See 

Carmeli (1977) [1] for details of the Lorentz group. Therefore, the complete isometry 

group for the open FRW model is SO(3,l) and the model is Bianchi type V. Again 

this spacetime is isotropic at all points on the spatial sections.

k = 0 .

For the case k=0 we have that all a* =  0. The structure constants are all zero also 

Cf- =0. The elements of the new Lie algebra are now simply

t 'i = ii (5.56)

Replacing k=0 in the expressions for ie (5.27), (5.28) and (5.29), produces

e  = —* 1 dx

e  = -9 y

It is obvious that the above are the infinitesimal generators of the transitive 

subgroup of the isometry group of the flat FRW model. Again we put = —rfi and 

the complete Lie algebra for the flat model is given by
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£'j] =  0 (5.58)

W , v ' l  = 4jV'k (5.59)

K'i-V'i] =  $ji'k  (5-60)

For the flat model the isometry group is the product of translations in 3 dimensions 

T3 and rotations SO(3).

5.2 The Redshift for the FRW Models.

In the FRW model it is straight forward to derive the redshift, owing to the form of 

the metric:
dr2

ds2 = dt1 -  SUt) -------—-  +  r2U r  +  sinA0 d p )
L(1 — kr1)

Radial null geodesics are defined so d& = d<j) = 0 for an observer at the origin of 

the coordinate system and hence we can derive the redshift from the remaining 

expression:
Sdr

dt =  ±-
(1 — kr2)2

We choose the minus sign since the radial coordinate r decreases as time increases. 

Integrating this expression gives

r - *  (5.6i)
Jto S(t) Jto ( 1  _  kr2)2

Suppose wave crests are emitted at te and te +  A t e and observed at t e and tQ +  A t0

respectively, then in a similar manner to (5.61) we have

yfe+A<e dt f r° dr .
/  7T7T =  / ------------ r  (5.62)

«/to+Ai0 *̂ (̂ ) dre (]_ — kr2)2

S(t) is slowly varying with time and so remains unchanged over small time intervals 

6t and so by subtracting (5.61) from (5.62)

A<e A t° = 0  that is, ^  =  | r 4  (5.63)
S( tc) S ( t0) ’ A  t0 S ( tQ)
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The redshift z of a photon emitted at t e and reaching the observer at t0 is defined 

in terms of the respective wavelengths as

x ,  _Z  T 1 —  T-

The time interval between successive wave crests is proportional to their wavelength 

A. This gives the standard result that the redshift z is given by

1 + z = S ( t0) /S ( te) (5.64)

where t e and t0 refer to time of emission and observation respectively. However, with 

any other metric the neat result might not be as easily obtained. It is, therefore, 

desirable to find another, more general procedure for determining the redshift. It 

turns out that we can make use of some of the conserved quantities associated with 

the FRW Killing vector fields and derive an equivalent expression for the redshift.

We recall that: In any geometry endowed with a symmetry described by a Killing 

vector field £, motion along any geodesic leaves constant the scalar product of the 

tangent vector p with the Killing vector ie

=  constant (5.65)

The FRW Killing vector field (5.16) corresponds to a transitive element of the iso

metry group and so the conservation law () will relate one point on the manifold to 

another. The Killing vector fields corresponding to the isotropy subgroup only dec- 

scribe the symmetry about a point and so, do not contribute any useful information 

regarding the redshift.

We now procede to evaluate this expression for the Killing vector (5.16) which 

in the coordinated basis J^, was

( 0 , c o s 0 ( l - ^ ) l , - s in e (1 - fcr2)" ,0) (5.66)
r

We denote the tangent vector to the geodesic by px ie

px= ( E , p r , p \ p 4>)

Take the observer as being at the origin and consider the path of a radial photon

(which is a geodesic), then pe=p<t> = 0 and we are free to choose 6 = 0. Therefore,
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the sum px£\ = pr £r since all other terms are zero.

6  =  f f r r f  =  ~ ( ( 1  _ f f e r 2 x )  C 0 S e ( l  ~  k r 2 ) *

Then

Hence

For a photon 

This implies that

A, P ^ 2p E\ = ---------------r  =  constant = A.
(1 -  kr2)2

A { l - k r 2 ) 2
p = -

S'2

PXP \  = o

( 0)2 _  CPr)2S 2 = Q
{P } (1 -  kr2)

replacing in the value of pr we get the result that

A

We recall that S=S(t). Then

(P°)2 =} S 2

(p°)o S(u)
(p°)e S ( t0)

but p° =  E , the energy of the photon and is inversely proportional to its wavelength. 

From (5.64), therefore

i i _  (p0)e _
(P°)o . S(t.)

which is the result we would expect.

Conformal Killing vectors for the FRW models.

The FRW models admit in general 15 independent conformal Killing vectors (CKV), 

6 of which are the ordinary Killing vectors. A list of the CKV for each value of k 

is given in a paper by Maartens and Maharaj (1985). They all have in common 

the CKV S ( t ) j The FRW model with k=0 has the same CKV as minkowski 

spacetime and hence the same Lie algebra. In order to find the CKV of the k = ±1 

cases Maartens and Maharaj generalise a k=0 CKV and then commute this with 

the CKV S(t)j^ and the 6 Killing vectors to generate the complete Lie agebra.
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The Killing vectors for k = 0 ,+ l,-l are independent of the scale factor S(t) but 

the CKV do involve S(t). Certain choices of S(t) will make certain CKV become 

Killing vectors. A complete list is given in Maartens and Maharaj (1985). That is, 

Minkowski, de Sitter, Anti-de Sitter and Einstein static spaces can all be considered 

as special cases of the general FRW spacetime.

Consider the conformal Killing vector S ( t ) j We recall that conformal Killing 

vectors give rise to constants of motion for null geodesics, for which papa = 0, i.e.

/ ( 0 a P “);/3 = ^ (Q P-,(3)pap* =  0 (5.67)

where p is the tangent vector to the null geodesic. Therefore,

p -0  =  constant. .

We can carry out a similar calculation of the redshift in the FRW models using 

the above and the CKV 0  =  5'(^)^. The CKV can be written in (contravariant) 

component form as (S(t), 0,0,0) and the above scalar product can then be written

paQa =  p°0o =  p°S(t) — A  = constant.

Hence,
o

P

and we immediately get the result that

(P°)e S(t„)
( P ° ) o  S ( t . )

5.3 Conclusion.

We have illustrated the relevance of our work on group theory and differential geo

metry by considering the symmetry properties of the FRW models. The highly 

symmetric and idealised form of each model allows a clear demonstration of the role 

of each type of isometry (transitive or isotropic) within the complete isometry group. 

The neat results obtained for the redshift calculation illustrates the usefulness of the 

local isometry group.
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The Bianchi Types

This is a list of all possible 3-dimensional Lie algebras, as first given by Bianchi. 

The Lie algebras are characterised by their structure constants Cjk.

Also given is a set of Killing vectors & which exhibit the commutation relations 

given by the structure constants. The are a corresponding invariant basis i.e. 

£ ^ X i  =  0 for all i,j=l,2,3. The iox are the duals to the X{. This information allows 

us to construct a metric for a 3-dimensional space

g =  gijujl®u3

(the gij are constants) such that £^.g =  0 i.e. the are Killing vectors corresponding 

to the isometries of the metric g. See section 4.7.3 for details.

Type I

C3*=°- X i = £ i  u l = d x l  d w l= o

X 2 = h  u ' =dx2 dw2= °
d d o o o

f3 =  —  x 3 =  -5-r u>3 = dx3 d J 3 = 0
dx3 dx3

Type II

^23 — ^32 — 1- 6  — * 2 X l —dx2 d x 2

rest of C)k = 0. f2 =  =  I  W  +  W

9  I r 3 9 Y  -  9s3 — ITT d" x -^3 —dx1 d x2 d x 1

oj1 = dx2 — x1dx3 duj1 =  w2 A w3

co2 =  dx3 duo2 =  0

co1 = dx1 dto3 =  0
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Type III

c\3 = -c\, = i. 6 = ^  Xl = eXlJ7‘
d

'jk — ^ 2  — ^ ^ 3  X 2 ~
_d_ 
dx1

1. 6  = d x 2
X x =

d
0. 6  = d x3

X 2 =

d 9  $& = d x 1
-I- TJ ----

d x 2
X 3 —

LO1 =  e~x*dx2 t- II E A cj2

UJ2 = dx3

oII<M•1

UJ3 = dx1 t" CO II O

Type IV

C& = -C 31 = 1 (1 =  £  Xi  =  9d x 2 d:r2

C213 =  - C '  = 1  6  =  A  I ! =  i 1e*, A  +  ' , ‘ 9dz3 d x2 dx3

eh  = -C32 = 1 6  = ^  + (x2 + x3) -^  + x3- ^  X3 = —

rest of Cjk = 0.

a; 1 — e xldx2 — x 1e xl dx3  cL/ = uj1 f\ uj3 uj2 f\ lo3

a; 2 =  e~xl dx3 duj2 =  w2 A w3

a;3 =  dx1 div3 =  0

Type V

CL = -CL = 1 6  = £  X, = e*1 5dx2 d x2

a , . - a , ,  1 * ■ = « ■ ■ * ?

rest of C’, =  0. f3 =  A  +  ^  A  *3 =  9"■ a®1 ax 2 dx3 3 ax 1

u;1 = e xl dx2 II1—1•3

cc2

na’X31<UII duj2 —

u>3 = dx1 IICO•3
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Type VI

CS.--CJ . - 1  6 - ^ 3

( M o . i )  &  =  +  * V  + ‘ * * ^ 5  * ,  =  & 1

rest of Cjfc =  0.

ec1 =  e 271 da:2 du1 = ec1 A ec3

u,2

n-c1II dec2 =  hu2 A ec3

ec3

iHH~<3II I4 CO II 0

Type VII

C l ,  =  - C l ,  =  1 6  =  A  * .  =  (A +  - B  9d x 2 da:2 da:3

C i  =  - C i  =  - 1  & =  A  x 2 =  b A  +  ( a _ * b ) _ |_

C%3 = ~C%2 = h £.3= q - t  — s ^ a j  +  (x2 +  hx3)~aZ3 ^ 3 =da:1 dx2 da;3 da:1
(A2 < 4)

rest of Cjk = 0.

a;1 =  (C -  kD)dx2 -  Ddx: 

lj2 =  Ddx2 +  (C +  kD)dxc

ec3 =  da;1

du)1 = —ec2 A ec3

dec2 =  ec1 A ec3 +  hu2 A ec3

dec3 =  0

where A = ekxl cosax1, 

C =  e_fca;1cosaa:1, 

and fc

B  =

D

h
2 ’

• "1— e sinax  , 
a
I  juo-i * i e sinax
a

a = ( l - k 2) 2 .
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Type VIII

c k  =  - C k  =  -1  Ci =  ^  -  (*2)2e-*3] ^  -  *2̂  9

rest of Cjk = 0 .

C l  =  - C l .  = 1  6  =

2  5xx 2  5a; 2 d x 3

_5_
dx3

d 2 =  -C 3, =  1 & =  i e - 3 A  -  V  +  (x2)2e - 3] A  _  *V *3 5
2  5a; 1 2  5a; 2 5a; 3

^ 1  =  i k i + ( ^ ) 2] ^ r + ^ [ i  -  2x 1a - ! t3  -  x 1 9
2  dx1 2  5a; 2 5a; 3

, 5 2 5 5
2 _ “ x ^ r  +  2 :a ^  +  a ?

^ 3  =  j l 1 -  (x l)2l ^ r  +  2 —̂1 +  +  x l j i®

cj1 =  c/a; 1 +  [1 +  (x1 ) 2 ] ^ 2 +  [x1 — x2 — (x1 )2x2]c/x3 c/aa1 =  — uj2 A cj3 

a; 2 =  2x1c/x2 +  (1 — 2x1x2 )c/x3 du2 = w 3 Aw1

a; 3 =  c/x1 +  [—1 + (x1 ) 2] ^ 2 +  [x1 +  x2 — (x1 )2 x2 ]c?x3 duo2, = w 1 Aw2

Type IX

CL = - C '  = 1  6  =

r 2 — —C2 — iU 31 ~  L'1 3  —  1

c 3 — —C3 — 1 U 12  —  U 21 —  1

rest of C)k = 0 .

5
dx2

d
f 2 =  cos x ~—~ — cot x sin x"

d sin x2 5

£ 3 =  — sin x'

5X1 
5

5x 2
+

d x 1
cot x1 cos x2

sin x1 5x3

5 cos x2 5 +5x 2 sinx 1 dx3

o 5 cosx3 5 1 3 ^
V i  =  -  Sin x°— - +    r  -  cot X COS X r

dx1 s inx1 o x1 ax'3
o 5 sinx3 5 1 . 3 5

X 2 =  cos x ° t—r +   ---- 7 - ^  ~  cot x sinx5xx sinx1 ax^ ax'3

x  = A
3 dx3
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lo1 = — sin x3( 

lJ2 = cos x3dx 

uj3 = cos x xdx

ix1 +  sin a:1 cos x3dx2 dco1 =  w2 A w3

1 +  sin x 1 sin x3dx2 dw2 = u:3 A a;1

2 +  dx3 du3 =  u j 1 A u j 2
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