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SUMMARY

The a1m of this thesis is to review and augment the theory and
methods of optimal experimental design.

In Chapter I the scene is s~t by considering the possible aims
of an experimenter prior to an experiment, the statistical methods
one might use to achieve those alias and how experimental design
might aid this procedure. It is indicated that,given a criterion
for design, a priori optimal design will only be possible in certain
instances and, otherwise, some form of sequential procedure would seem
to be indicated.

In Chapter 2 an exact experimental design,problem is formulated
ma.thematically and is compared with its 'continuous analogue.
Motivation is provided for the solution of this continuous problem,
and the remainder of the chapter concerns this problem. A
necessary and sufficient condition for optimality of a design measure
1S gaven , Problems which might arise.,in..,testingthis condition are
discussed, in particular with respect to possible non-differentiability
of the criterion function at the design being test~d. Several
examples are given of optimal designs which may be found analytically
and which illustrate the points discussed earlier in the chapter.

In Chapter 3 numerical methods of solution of the continuous
optimal design problem are reviewed. A new algorithm is presented
with illustrations of how it should be used in practice. It is shown
that, for reasonably large 'sample size, continuouslY optimal designs
may be approxirnated to well by an exact design. In situations
where this is not satisfactory algorithms for improvement of this
design are reviewed.

,.Chapter 4 consists of a discussion of sequentially designed
experiments, with regard to both the philosophies underlying, and the
application of the methods of, statistical inference.
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In Chapter 5 we criticise constructively previous suggestions
for fully sequential design procedures. Alternative suggestions are
made along with conjectures as to how these might improve performance.

Chapter 6 presents a simulation study, the a~m of which is to
investigate the conjectures of Chapter 5. The results of this study
provide empirical support for these conjectures.

In Chapter 7 examples are analysed. These suggest aids to
sequential experimentation by means of reduction of the dimension of
the des ign space and the possibility of experimenting semi-sequentially.
Further examples are considered which stress the importance of the
use of prior information in situations of this type! Finally we
consider the design of experiments when semi-sequential experimentation
is'mandatory because of the necessity of taking batches of observations
at the same time.

In Chapter 8 we look at some of the assumptions which have been
made and indicate what may go wrong where these assumptions no longer
hold.
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CHAPTER 1

MOTIVATION

1.1 Consider the following experimental setting. We have
. t f . . ( )Tobtalned a se 0 N lndependent observatlons l = Yl' ••• 'YN

from a probability distribution identified by the density function
p(YI~.~) where x d{ is a variable subject to the experimenter's
control in the design space *, and ~ is a K-vector of unknown
paramet ers •

r
Let us assume that N =. E

i=lof observations which were taken ~i€
lS the proportion of observations taken at x.), and r is the number-1

We shall call the set of poin.ts

n., where n .
1 1

at the point
denotes the number

. ni* (that as Pi = N

of distinct x. 's which were chosen.-1
. { x . ; i=l, ••• ,r } the spectrum of the experime_ntal design and we shall

-1

call

~N =' { (~p~.J .,~ • i=l, •••• ,r } the design measure.

We shall now consider several forms of p(YI~,~) and how
we might analyse the data subsequent to an experiment of the above
design, with a view to estimating the unknown parameters ~ and making
inferences on them.

K

1.2.1 Firstly take p(YI~,~) to beN( igl fi(!)~i,(12). That is
we have a regression situation which is linear in the parameters but
not necessarily linear in !, with a normal distribution of error;
variance (12assumed known, and independent of x and e. •...

(d ) The maximum likelihood estimates of 6 are well known to be
given by ~ML = (XTX)-l XTl.' where
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x= X is (N xK).
,[

In the repeated sampling sense the above estimates are normally
distributed in the form

Therefore ')ifthe design of our experiment is to have any

effect on the distribution of aML then it must be through the matrix
XTX. In an analogy with the use of the term sufficient statistic
in the field of statistical inference we might refer to XTX as being
a sufficient design statistic. What function of the matrix XTX
will be a necessary design statistic will; of course, depend on the
reasons why the experiment is being carried out.

We note here an elementary matrix result which says that if
X is of the above form and we write f(~)= (fl(~)' •••• ' fk(~»T, then

Tp. f(x.) f(x.)~ - -~ --~

(ii) Suppose now that we wish to make inferences on the vector of
parameters ~ and that we take an approach to statistical inference
based solely on the likelihood function. We will be interested in the shape
of the likelihood function as a function of a.
this example may be written as

The likelihood L (a) in
. y --N

r
.El~=

Tp. {y. - f (x.) _a)2 }~ ~ - -~
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A little algebraic manipulation reveals that, as a function of ~,
L (e) may be written as proportional toy ......N

We observe that the shape of the likelihood function is under the
control of the matrix XTX and therefore this matrix will play a
dominant role in the making of inferences on the unknown vector 6.

is anWe note here that the log likelihood t( ...e) = log ,L (e)
IN -elliptical function,

centred on ~ML with length and orientation ,of its axes controlled
by XTX.

(iii) Let us assume that we are willi~g to adopt a Bayesian approach
to statistical inference. Adding the extra assumption of prior
information about ~ in the form of a multivariate normal prior distribution,
that is 1T(.§) tV N(.§o' n-l), and applying Bayes formula it is relatively
easy to obtain

(el ) tV N(e" (~2 XTX +("\)-1),1T ... IN ' ...B' v U

where ~B denotes the mean of the Bayesian posterior distribution.
Again we see that experimental design will affect this posterior
distribution via the 1Jlatrix XTX. Obviously the effect of our
design will depend on the matrix n. However, if we denote little or
vague prior knowledge by n +Q , where Q is the null matrix, and observe
that for large N, 12 X!X will dominat en, then it may be seen thata
in thes'e instances the matrix XTX will have a dominating role.
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To summarise (i), (ii) and (iii) above it may be said that
if we are interested in the repeated sampling distribution of maximum
likelihood estimates or in making inferences on the vector of parameters
e according to the approaches of (d i ):or (iii), then the' three
approaches would seem to be in agreement as far as a choice of direction
in which to look for selection of·a criterion for experimental design
is ,concerned. That is~we would seem to wish to optimise some function,
which we shall call ~,of

1.2.2 We now turn our attention to a more general situation than the
one considered in ~ above, namely that where the observations y come
from any distribution p(yj~,~) such that the asymptotic theory of
maximum likelihood estimation of ~ carries through. This may be
regarded as a theoretical restriction only.

For example we might have p(YI~ ..~) as:-

(i) N(n (~,~),a2)where n(~,~) may be a non-linear function
of x and e .

(ii) A binary response distribution of the form
p(ll~,Q)= n(Q,~) , p(ol~,Q) = 1 - n(Q,~)
where again- n(~,~)will be a non-linear function of the
parameters ~ and x •

(iii) The observations may come from a finite set of populations
having distributions with different means which are related
in a linear or non-linear fashion, for example we may have
three populations

(a) po(e), (b) Po (e + A), ( c ) Po (e / A).

With these more general examples we shall have to appeal to
large sample results to find directions for seeking criteria for
experimental design. We will echo the treatment of the normal-linear

"
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regression model and consider three different approaches.

(i) Consider firstly the use of maximum likelihood estimation and
the repeated sampling distribution of these estimates. It is well known
that for independent observations and subject to mild regularity
conditions the distribution of ~ML lS asymptotically normal of the 'form

1 -1N(~, N .M(~) ) where

N.M(~)= [{ - a2 R,(~) }
as. as.
l J

r a2= N ~ Pi[{ - log p(yl~i'~) }
i=l as. as.

l J

information matrix at

r
= N ~ Pi I(x.,~) '\i=l -l

a2 log p(yl ?S,~) }as. as.
l J

the point ?S.

lS the Fisherwhere I(~,~) = [{-

Again if we wish to see how experimental design will affect
the nature of this asymptotic distribution of ~MLwe need only consider
the matrix M(~). If we continue the analogy of 1.2.1 then M(~) might
be thought of as an asymptotically sufficient statistic.

(ii) As we are dealing with large sample situations here we shall
consider the Bayesian and pure likelihood approaches together.
Although the methods of making inferences may be 'uifferent in principle
in the two situations the function being used to make these inferences
will not, asymptotically. This is a result of the information in the
likelihood function swamping the effect of the prior distribution as
N -+- 00 ••

The asymptotic Bayes or pure likelihood approaches are based
on the normalisation of the posterior distribution or the likelihood
function. This is equivalent to saying that the iog likelihood function
can asymptotically be described by a second order Taylor expansion about
"~ML. For conditions where this theory is applicable see for example
Dawid (1970). The regularity conditions required are similar to those
necessary for the asymptotic normality of the repeated sampling distribution

I
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Expanding t(~)about ~ML we see that

= const - -2'(_e- ~ ")T8(.e - ~ )t(~) -ML --ML

where 8 = { - ae.ae.
~ J e= e- -ML

We shall refer to 8 as the sample information matrix. In tbe
situation of a designed experiment let us assume that n.~ ~ as N ~ ~~
in such a way that n.~ ~ p.

- .L
N

Therefore,by a law of large numbers
r

8 ~ IE (8) = N >:
i=l

A

p. I( x, ; _eML)~ -~ as

For large N we might presume ~ML to be close to ~ suggesting M(~)
as an asymptotic criterion for experi~ental design.

1.2.3 To summarise the above two sections it may be said that the
asymptotic repeated sampling theory and the theory of an approach to
statistical inference based on the likelihood principle produce general
criteria for design which are similar and which are related to the
criterion which was obtained by exact results in normal-linear model
theory. The criterio~ being to' optimise some function ~ of M(~), where
N.M(~) denotes the Fisher info~ation matrix of the experiment, M(~) being
a·positive definite symmetric matrix, and ~ denoting some property of
M(~) which will be related to inferences to be made on the parameters
subsequent to the experiment.

. At this point it is important to make the following observation,
. . l' () 1 Tnamely that although an the normal- anear example of 1.2.1 M ~ = N X X

is independent of ~ , this in general will not be the case and in the
more general examples of 1.2.2 M(~) will typically depend on !and ~ the .

/
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vector of unknown parameters. Therefore,although for the linear-model
the problem is effectively reduced to an a priori optimisation, in
general SOme form of sequential procedure will be necessary. However,
it will be seen later that solution of the a priori design proJulem for
given ~ will be of more than academic interest. As the sequential
type of design introduces complications which would only be of .a
confusing nature at this juncture we postpone discussion of these
factors until a later chapter, and, until otherwise mentioned, restrict
ourselves to the a priori design which we shall hereafter refer to as
a static design.

1.3 In previous sections we have formulated a very general
experimental design problem, namely to optimise some function ~ of
M(~), M(~) e'/nwhere m represents the set of all Fisher information
matrices that experimental conditions permit. We now consider possible
contenders for the function ~,these being functions which will fall
naturally from the uses to which the estimates of 6 are to be put
subsequent to experimentation. Of course,a major problem in practice
will be to get the experimenter to expres~ his wishes in a particular
mathematical form. In what follows we shall assume that he has done
so, and we shall reconsider this practical problem in the final chapter.
The set of criteria which is discussed is in no way intended to be all-
encompassing, but has been chosen to reflect the general properties of
possible criteria and to highlight particular examples where solution of
the 'optimal design problem might be complicated.

1.3.1 In this section we shall assume that the experimenter is
interested in all of the parameters jointly.
criteria.

We shall consider four

(i) ~l = log det(M(~))

From 1.2(ii) it may be seen that joint· confidence intervals
for the vector of unknown parameters may. be described by ellipsoids

A T A

of the form (~.- ~ML) M(~) (~ - ~ML)~q. The surface of these
ellipsoids will represent regions of equal 'confidence'. The volume

'I
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1

of the above ellipsoids J.S proportional to { det(M(_Q» }-2, so,max~misiilg
log det (M(8» would be equivalent to minimsing the volume of all
confidence ellipsoids for _Qof the above form. That is,we are making
our confidence regions, in some sense, as compact as is possible. We
take <PI as log det for mat.hematicad, ease later on. The criterion _
<PI has become known, in the literature, as the D-optimality-criterion,
and ha~ by far dominated the literature on optimal design. It should
be said however that it would appear that its pre-eminence as a criterion
owes as -much to the fact that its mathematical form has enabled more nice
analytic and geometric arguments to be put forward, as to the extent to
which it might actually reflect an experimenters design wishes.

Wynn (1969) notes that maximising det (M(_Q» J.S equivalent to
maximising the Gaussian curVature, at a , of the power of the F-test with-0
null hypothesis 8 = a. Lindley (1956) and Stone (1959), using an

- -0

information theory argument, show that maximising det (M(!) is
equivalent to maximising the expected gain in information about! assuming
little prior knowledge. Bernardo (1976) extends this approach and
shows that if one adopts Bayesian methods and if one is interested only
in making very pure inferences about the Unknown parameters, then one's
approach to design should be based on something closely related to the
Shannon information approach. However,there would appear to be a
weakness in his argument relating to his definition of a pure inference
problem and the consequences in defining a natural utility function to
be used to construct a criterion for experimental design.Draper and
Hunter (1967a) observe that maximising det(M(~) )maximises the posterior
density function at the point of maximum posterior density. This,
of course, might be deduced as a corollary to the above argument
concerning the confidence ellipsoids.

Properties of <PI

(a) <Pi is an increasing function of the positive definite symmetri.c
matrices. That is,for Ml positive definite s~etric and M2 positive
semi-definite symmetric matrices

/
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(b) ~l is a concave function of the positive definite symmetric
"

matrices. That is,for Ml' M2 positive definite symmetric matrices

(see Appendix 3).

(c) As a criterion for optimal design ~l is invariant under non-
singular transformations of S.
singular transformation

To see this consider the non-

Let J be the Jacobian of the transformation, then

aLI(~) aLK(.§ ) -1

aSI aSI

J = and M(!(~) ) = JM(~) JT.
..

,aLl(~) aLK(~)
aSK aSK

= 2 log det{ J} + log det' {M(~)}

Property (c) above has been cited by previous authors as being a reason
for selecting ~l as a criterion. in preference to others. Howev~r, as
there would seem to be many situations where one would not wish a criterion
to have the above property we merely note it as an interesting fact •

./
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(ii )

This criterion will
We note that if

typically be of interest where
Kz

i=l
f.(x) e. 'las in our example of 1.2.1,then
~ - ~

is the variance of the estimated expected response at ~~namely var
e thenSimilarly,if n(~,~)is a non-linear function ,of

ne(~,Q) may readily be seen to be a first order
"approximation to-var (n (~'~ML)). Therefore,a sensible design criterion

would be to minimise over the set of possible designs the maximum over
~ e::K of the variance of our expected response.
over the set of possible designs.

That is,maximise ~2' {M(~)}

Properties of ~2

(a) ~2 is an increasing function on the set of positive definite
symmetric matrices.

(b) ~2 is a concave function on the set of positive definite symmetric
matrices. (The proof is analogous to that in Appendix 2).

(c) ~2 is invariant under non-singular transformations of e.
again the non-singular transformation ~ -+ L(~).

, .

Oons i.dez-

= - max n/(~t~){M(~) }-l ne(~'~)
~e:* -

\
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(iii) ~3
--='---

= - r
J

Here again n~(~,~)M(~)-l n9(x,~) will represent typically
the variance or a first-order approximation to the variance of the

A

estimated expected response n(~, ~ML). However,here our criterion
is not based on the points with highest variance but on the expected
value of the variance over some region *', and with respect to some
measure p(~). p(~} might reflect the incidence with which the ~
values occur in nature and therefore the incidence with which the
estimated response might be being used in a prediction situation.
Alternatively p(~) might be constructed by the experimenter using
sUbjective weights to represent the relative importances of accuracy
at points ~€*'. p(~) will be such that f p(~) ~ = 1. Note

~t:*'
that we do not necessarily take *'= *.

Properties of ~3

(a) ~3 is an increasing function on the set of positive definite symmetric
matrices.

(b) ~3 is a concave function on the, set of positive definite symmetric
matrices (The proof is analogous to that in Appendix 2).

(c) ~3 is invariant under non-singular transformations of ~. The proof
of this is analogous to that for ~ •. 2

(iv) ~4= - max
c

Typically, 'w~th this criterion, one would be interested in
estima.ting any linear combination of the parameters !, and the criterion
is such that we would wish to best estimate the worst estimated linear .

~combination of the parameters, the linear combinations being normalised
for obvious reasons.

I
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A matrix result (see Graybill) tells us that if M-I is a
positive definite symmetric matrix with eigenvalues. Al ~ A2 ~ ••••. cT M-lc
then AK > 0 and max A. = Al = max - -.. . 1 . C

1 Tc c
Therefore, our

desire to minimise with respect to our design max
c

,£T M(~)-l£

cTc

maximise over design - max
c = ~4(M(~)) J is 'equivalent,

mathematically, to minimising the maximum e~genvalue of M(e)-l, for which
reason it has become known as the E-optimality criterion.

Properties of ~4

(a) ~4 is an increasing function over the positive definite symmetric
matrices

(b) ~4 is a concave function over the positive definite symmetric matrices.
(The proof is analogous to that of Appendix 2).

1.3.2 In this section we shall assume that the experimenter is
interested in only a subset of the parameters, but is interested in them
jointly. We shall consider one criterion.

(i) ~5 = log ~et {Ms (.@) i,

Let us assume, without loss of generality, that we are interested
only in the first .s .of our parame't er-s, s <K.
follows

Partition M (!) as

s

M(~) =

s (K-s)

The variance cov~riance matrix of the marginal distribution
T -1 l.:rof ~ = (el'····,e~) is given by Ms where Ms = ~l - ~2 M22 ~i2 and ~2

/
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denotes the Moore-P~nrose generalised inverse of
, )T.possibility of 8K = \8 1' •••• ' &- not be~ng- -s s+ -K

for the use of this'criterion comes from similar

M22, to allow for the
estimable. Motivation
reasons to those discussed

under <1>1'

Properties of <1>5

(a) <1>5is an increasing function over the positive definite symmetric
matrices.

(b) <1>5is a concave function over the positive definite sj~etric
matrices. (see Silvey(1974)).

Because the natural ~omain of definition of <1>5may include a subset of
the positive semi-definite symmetric matrices the above properties must
be extended to cover this more general case (Silvey (1974)).

1.3.3 In this section we shall assume that the experimenter is
interested in using his parameter estimates independently. Therefore,he
will be interest~d only in the marginal distributions of each 8· and not~
in the joint distribution of~. Our design criteria will therefore
be functions of the diagonal elements of M(~)-l onl~. We present two
possible criteria.

Maximising <1>6will be equivalent to minimising the sum of the
marginal variances of the 8. 'so This criterion was considered by~
Elving (1952) and Chernoff (1,953).

Properties of <1>6

(a) <1>6is an increasing function over the set of positive definite
symmetric matrices.

(b) <l>6,isa ,concave function over the set of positive definite
symmetric matrices. (The proof is analogous to that of Appendix 2).

"

I~
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(ii) ~ = - mde i M(e)-l}, (mdesmaximum diagonal ele~ent).
'7

This criterion seems to have been almost universally ignored in the
literature. Maximising ~'7 is seen to be equivalent to best estimating the
worst estimated parameter in the sense of minimising its marginal
variance. In the context where interest is in the parameters independently
this criterion would seem to be of a very suitable type. Criteria similar
to ~6 might allow some of the parameters to be fairly poorly estimated
although the average variance might be small.

Properties of ~7

(a) ~'7 is an increasing function over the positive. definite symmetric
matrices.

(b) ~7is a concave function over the·positive definite symmetric
matrices. (see Appendix 2).

1.3. 4

To summarise this section we note that all of the criteria which we
have considered have the following two properties.

(a) $ is an increasing function over the positive definite
symmetric matrices.

(b) $ is a concave function over 'j:;hepositive definite
symmetric matrices.

Property (a) is a property which we would expect, intuitively,
all criteria to have. It might be thought of as saying that an extra
observation or set of observations will always make an experiment more
informative, in ,any reasonable sense. As we shall see in the next
chapter (b) is avery useful property for all our criteria to have and
most of that chapter will depend on it.

We note here that although natural criteria for design will be of
the form ~{N.M(!)} we take our criteria as ~{M(!)}. This may readily
be seen to be an equivalent form for solution of the design problem and
will prove to be the most convenient form to use in what follows.
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1.4
We now present a result which will be a simplifying factor

in most of the examples considered in this thesis.
as a Theorem.

It is presented

1.4.1 Theorem

Let p(y I~,!) be of the form f(y ,x,nU~_,x)), that is, the, probability
density function of y depends on !only through the function n(!,x) which
is independent of y, then

=fEy a2{- _.:;....__

ae. ae.
~ J

log p(y I~,'!) }

= 1

That is, I (2£.,!) as of rank one.
If also n(~,!) = u= (ylx) and p(ylx,!) ~s such that the Cram~r-Rao lower
bound for unbiased estimators of n(~,!) ~s attained then

(ii) I(~,!) = 1

Proof

(i) I(!_,!) 1L [- a2
log ~l= rE [a log f a log ~l=

~ y ae.ae. y ae. ae.
~ J ~ J

alog f a log f an (!_,!)
=

ae. an ae. '.
~ ~ .

I(!_,!) = [{ (a log,~r T} .n! (!_,!).n! (!_,!)
y'( an

1 'T .
= ne{~h~),ne (!_,!)

a(!_,!)
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(ii) YI~ itself is an unbiased estimate of n(~,!). Therefore,

if the Cramer-Raolower bound is attained

var (YI~)
1 Silvey (1970)== ,

IE {( a log f)2}
any

a(~,!) == var (YI~)

I (~..,!) ==
1

~Twoexamples where the conditions of (ii) are satisfied are

(ii) If p(YI~,!) is a general binary response model, that is

p(ll~,!) == n(~, ~ , p(OI~,~ == 1- n(x e)-'.....

1 ne (~,
T

then I(x,e) ==
~) . ne(~'!)- ........ n(~,!) ti - n(x,!) }

An.obvious situation where the conditions of the theorem are not

satisfied is if

Here ==
1
(j2· , 0

obviously I(x,!) ..has rank 2. Note however that in this example

if we are actually interested in only the parameters ,1, even if a2 is

unknown, then, because .1 and a2are estimated independently, one+s design

interests would be. directed towards the leading (x-i) x (K-l~sub-matrix

/
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1.4.2
, ,

Suppose the conditions of Theorem 1.4.1 are upheld.
Let v = 1 , n6(?5._,.0 v = (v1" ••• ,vK)T ,

{a(x,.0} 2

then our design problem may be written equivalently as, maximise

~{ M(!)} , M(.§_)
r T= E Pi=l i Yi Yi ;

V represents the domain ofE p. = 1,
1

v e: V , where
definition of v: 'to distinguish it from the ~esign space * we
shall call it the induced design space. Note that the only difference,
in our static design problem,introduced by having different density
functions or different design spaces is thai the induced design space

, .
lS altered. Therefore,it may be seen that it will be the geometry of
V which will be the controlling factor in defining an optimal design for
a given static design problem.

It is worth noting, at this point, that the induced design space V
will, in our general model, typicallY be·a function of !, the vector
of unknown'parameters. Obviously it will be the manner in which the
geometry of V depends on! which will characterise the dependence of
the optimal design on !.

As an example consider the following binary response model.

exp (61 + 6 x), 2 *=[ - 1, + 1 ] •
It can easily be shown that

= expO {H 61 + 62 x)}

{l + exp(6l + 62 x)}

Fig. 1.4.2. shows the induced design space for several values of ! ,
illustrating the effect on the geometry of V. Points in the induced design
space cprrespondin~ to values of +1, 0 and -1 for x are highlighted.
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CHAPTER 2

THE OPTIMAL STATIC DESIGN PROBLEM

2.1 In Chapter l'we have provided motivation for the study of the
following mathematical programming problem.

'"
Take a function ~ on the positive definite symmetric matrices with

the following properties

P1: ~ is an increasing function on the positive definite
symmetric matrices.
P2: ~ is a concave function on the positive definite symmetric
matrices.

If a function, for example ~5J is defined and finite on a wider
class of matrices, then the above properties may be adjusted accordin~y.

Probleml: Given a set of points *, we require to select a number,
r say, of points from *, and a set of positive weights associated with
these points. We shall call our choice, namely

[

Pl'····~··' Pr j.
!.l , , !.r

a design measure and denote it by ~N.
on our choice of p. 's in that p. = n.

~ ~ ~
N

, .

There will be restrictions
r
t

i=l
n. = N, where all
~

the n.'sand N are positive integers.~
such that we maximise

Our choice of ~N should be

p. r(x.),
~ -~

where I(~) is a positive semi-definite symmetric matrix defined on
* and assumed 'to be continuous on *. *will be assumed to be a
compa~t set.

We compare the above practical exact problem with its continuous
analogue.

/ .
\
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Problem 2: Select a design measure , from the set ~ of measures
on the Borel sets of ~ to max~~se

M(,} = J I(~) '(d~),'f ;(dx) = 1.
x~* x€*

.Problem 2 will be the maa.n item of study.in this chapter.
Interest in this problem would seem to have its roots in a paper of

Smith (1918). The problem would then seem to have been largely ignored
until a revival of interest in the early 1950's, indicated by the papers
of Elving (1952) and Chernoff (1953). Not much progress was made
thereafter until the paper of Kiefer and Wolfowitz (1960), subsequent to
which a great deal of attention has been paid to the solution of Problem
2 both in particular and general situations.

For the remainder of this section w.e'consider justifications
for this study~ The following theorem has important repercussions
in this direction.

Theorem 2.1.1: (Caratheodory's ~eorem) ,

Each point s* in the convex hull S* of any subset S, of n-dimensional
space, can be represented in the form,

s* =
n+l
E,

i,=l
a. s.,~ ~ where a. ~O,~

n+l
E

i=l
a. =1,~ s.€ S.~

If s* is a boundary point of the set S* then a l'can be set equ~~n+ .
to zero.

To see the importance> of the above we note that any element of

m = { M(;) = f I (~) c (dx) , ; e E }
K€*

may be defined as a point in ~K(K+l) dimensional space, whose coordinates
are 'defined to be the upper triangular elements of M(~). It is also true
that these points form a convex subset of ~K(K+l) dimensional space which
is the convex hull of the set of points obtained from the set of matrices
{ I(~), x€ * } . .

/
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Note also that by Pl, for a> 1 , $' { aM }>~{M} '.,;
Therefore, if M is an interior point of ??1,then so is Ml = (1 + e)M,
for sufficiently small e > 0, and $' {Ml} > ~{M}. By hypothesising
that an M(~) which maximises $ is an interior point of ?7Z we see that
there must be a matrix of greater ~ value on the boundary, by increasing
e Therefore, we have that $ attains its maximum value on the
boundary ofm.

From this observation, and from Th.2.1.1, we have
(i) Any design matrix may be attained by a design measure which

attaches positive weight to at most ~K(K+l)+l points.

(ii) An optimal design measure can be found which attaches positive
weight to at most ~K(K+l) points.

NOTES: 1. Often the number of points required will be considerably
less than ~K(K+l)

2. Problem 1 will often be virtually impossible to find a
solution to, whilst, as we shall see, Problem 2 will typically be
solvable. The fact that Problem 2 has a solution which attaches
positive weight to at most ~K(K+l) points suggests that for large N
we may be able to approximate to our optimal design measure ~* by one
of the form ~N'

3. Much of our motivation for study of this form of design
problem came from large sample results, and, in such circumstances,
we might presume that good approximations, as' suggested in 2. above,
will be obtained.

4. Even if we do not consider our approximation to be
satisfactory, we might use the approximation as a starting point in an

I)iterative algorithm to search for possible improvements. We shall ~
consider this further in Chapter 3.

5. Even for small N, with our linear example of Chapter 1,'
solution of the continuous problem may be of interest, as some problems
will have continuous solutions ~*,of the form ~N'

/
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2.2: The most important result in this section is presented in
the form of an equivalence theorem. The initial breakthrough in this
area was made by Kiefer and Wolfowitz (1960), who prc/ved an equivalence
theorem with h as criterion. Later Karlin and Studden (1966)
generalised this to criterion $5. Further improvements in the direction
of more general concave criteria may be found in Fedorov (1972), Fedorovand
Malyutov (1972), Whittle (1973), Silvey and Titterington (1974) ahd
Kiefer (1974). In the statement of this theorem w~ will closely follow
Whittle (1973). An appreciation of the generality of Whittle's
theorem and the simplicity of its proof may be obtained from a comparison
with Karlin and Studden (1966) and Kiefer (1974).

As an introduction to this theorem we make some definitions.

Definition 2.2.1
Define the directional derivative

~. {M,N} = lim
e ~o+

as the derivative of $ at M in the direction of another matrix N. As
$ is concave, the quotient after the limit will be monotone increasing
and wi.ll always exist if we allow a value of + 00

Note that w' {M,M} = O.

Definition 2.2.2
We define the function $ to be differentiable at M. ~11tif

~{ M,E p. M.} = E p. w' { M,M ..}. ,E
J J . J J

p.
J

= 1 , M. e:mu ..J ,vJ
A theorem ensures that th~s is in keeping with the normal definition of
differentiability.

Definition 2.2.3
Define the maximal rate of ascent of $ from M cmby

~* {M} = sup ~'{ M,N } •
Ne:'m.

Note that if ~ is differentiable at M then

form N = E

{M} = sup ~'{ M,I(.!.)},as
'xe:=K

n. I(x.T~
rJ -J

N e:?1l,maybe written in the

I'
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Definition 2.2.4

A design ·matrix M* is said to be cp-optimal if

${M*} = sup ~{M}
Me1ll,

Note that if /;1
design measures

and /;2a~e design measures in the set of
then (l-a) /;1+a/;2 E " and

=

Therefore, in the following theorem we might take ;the design measure t
in place of the design matrix M, as in fact Whittle (1973) does.
However, it will suit our purposes to consider cp as a function of
symmetric matrices rather than as a function, of design' measures.

Theorem 2.2.1: (General Equivalence Theorem of Whittle (1973»

(a) If cpas concave then a cp-optimal design matrix M* can equivalently
be characterised by any of the three conditions:-

(i) M* maximises cp
(ii) M* minimises w* { M }

(iii) w* {M*} = 0 •

(b) If cpis differentiable at M then (ii) and (iii) may be revritten~-

(ii)' M* minimises sup ~{M,I(3£) } .-
~dt

(iii)' ~{M*,I(!) } = 0, for all x in the spect'Z'umof a design which
produc es M*.·

The importance of the· above theorem ~s that it provides us with
a tool to test for cp-optimality of a given M. Note that section (a)
of the above theorem provides us with a necessary and sufficient condition
for cp-optimality of a matrix M even in the absence of differentiability
at M. Note also that althGugh we have this tool it m~ be difficult to
use; as the test is equivalent to showing that w' {M,N}~ 0, V N Em',
which, in practice, may be extremely difficult to do. If we have
differentiabi~ity of cpat M. the~ our test i. much simpler. that ~.ina
to show that ~{M,I (!)} , 0, V lS e ~[. It may be seen that the

I
I
I
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directional derivatiyes of the various criteria which we have prop~sed
will play an important role in any problem we consider~, In Fig.2.2.1
we list the directional derivatives of the seven criteria mentioned in
Chapter 1.

Notes on Fig. 2.2.1.

1. For derivation of the directional derivative of $1 see for example
Fedorov (1972). The directional derivatives. of $2' $3' $4' $6
are produced in an analogous manner to that of $7' which is
derived in Appendix 4. The directional derivative of $5 is due
to Davies (1974).

2. The optimal design for criterion $5 may exist at matrices which
are singular. The directional derivative is given under this
assumption, the simplification, if we do not have singularity,
being Obvious. Note the following notation

M is partitioned as 1\1
s

(K-s)

s (K--s)

N is written' XXT, X=

[
, JS.

x2
] s

(K":'s)
,and again

,

M+ denotes the Moore-Penrose inverse of M.

3. Consider example (i) of 1.4.1, that is, non-linear regression
with normal error, assumed in~ependent of~. We note that an
optimal design for $1 will always exist at a non-singular M
and that $ will always be differentiable there. Note also

1 1
that I(~,e) =;r n! (~,~). n~(~,~) .

Part (b) of Theorem 2.2.1 •.will apply and may be written in the
following form, for criterion $1.

I
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An optimal design matrix M* can equivalently be characterised by

(i) M* maximises log det
(ii) M* minimises' { !2 max

.CI ~xe:;n.
K } •

This is in fact the equivalence theorem of Kiefer and Wolfowitz
(1960), and we note by comparing (i) and (ii) that finding a ~l-optimal

in this example, will be equivalen~ to finding a ~2 optimal
In other situations, where condition (ii) of Theorem 1.4.1

design,
design.
is satisfied, we may consider an alternative criterion to "'2'namely

=

.
-=

A

var{ n<'~,~))

var (y{~))

It may readily be seen th~t in this situation maXimising '1 will
be equivalent to maximising ~2'

4. It has been mentioned above that problems may arise when fUnctions
are not differentiable at points in ~ at which the function may
be maximised. By considering Fig.2.2.l we may see that non-
differentiability of ~2' ~4 and ~7 may occur, due to non-uniqueness
of the * values. This problem will be highlighted for '7 in
Appendix 2. Kiefer (1974) has considered the problem for '4'
For '2 the situation is potentially more difficult, but if there
is equivalence with the '1 design prob~em it may be unnecess~ry to
face the problem in practice. '5 will be seen, in the next
section, to be non-differentiable at singular M e:1n • In the
'following section we consider problems raised by non-differentiability,
with illustrations using '5 and '7'

.l
/
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As mentioned above, if ~ is differentiable at M, then all

that is required, to check optimality of M, is to show that

~{M,I(x)} ~ 0, V ~ e: :K

When we have non-differentialility of ~ at M the problem arises that

HM,I(x)} ~ 0, V ~ e: :K ,

does not necessarily imply that

~{M,N} , 0, V N e:m.

However,note that there is no problem if

for some x e::K as this is sufficient to show non-optimality of M.
The following examples will illus·trate the above.

Example 1 (Silvey (1974)) •.

Suppose that the condi~ions of Theorem.l.4.l. hold and we have
induced design space V = { (0,0), (1'.0),(4,1), (4,2) } •
Take ~5 as criterion where we are interested in the first parameter
only, that is, Dl optimality.

Consider the design measure nl = . [ 1 1
(1,0) .

M("1 ) s [~'- ~]. M+( "1) = [ ~ ~ ]

From lig.2.2.l we have

~{M(nl)' x v
T
} =

2
vl - 1 , .v = °2 -

/
/
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Consider now the design measure n2 =' [(4:1) : (4~2)1

then from Fig. 2.2.1 we have

1
5
,

illustrating the non-optimality of nl and the non differentiability
at M(nl).

Example 2:
Again assume conditions of Theorem 1.4.1 to hold. Let the

induced design space be
v =' { (1,0), (0,1), (2,0), (0,2) }'•

Take

note coincident
maximum diagonal
elements.

Consider the measure

From Fig.2.2.1. and Appendix 4.

We have .~{M(nl)' M(n2)V = 2, implying non optimality of nl and
non-differentiability of ~7at M(nl)·

We again note that the convex set of matriceslnmay be represented
by a convex sub-set of ~K(K+l) dimensional space, the coordinates of
the 'members of which are given by the elements of the upper triangular
parts of the matrices of which 111 is composed. Call this convex sUDset
m '.The following points are highlighted as Lemmas.

I .
/
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Lemma 2.3.1.

. \ ~ J I :

m' e:m" , a > 1.

This follows immediately from the fact that

HaM}> CP{M}, M e:m , a > 1 •

This tells us that if we think of the 'convex setOt' as being
surrounded by the minimal convex cone which will contain it, then the
only feasible points in m', corresponding to possible optimal M,

lie on the upper surface of~' not hidden by the cone. In a three
dimensional analogy with an ice-cream cone one might consider the
ice-cream as representing nt, and the surface of the ice-cream, which
is visible, as representing the feasible region.

Lemma 2.3.2.
,

~{A, AA +(l-A)B} = (l-A) ~{ A,B-} ,A e:[O,l],'
that is, ~{ A,B } ~O .... ~'{ A, A~ +(l-A)B} ~ 0.

This true whether ~ is differentiable at A or not.
Proof:

~{A,AA '+(l-A)B } = lim e:-l{~{(l-e:)A+e:AA+e:(l-A)B} -~{ A} }
€"+O+

=lim
€"+O+

-1 .e: {~{ (l-e:(l-A»A + e:(l-A)B} - ~{A} }

= (l-A) lim (l-A)-l e:-1{~{(1-e:(1-A»A +e:(l-A)B} -~{ A}}
~+

= (l-A) lim (l-A)-le:-lH{(l-e:(l-A) )A+e:(l-A)B}-~{ A}}
. e:(l-A)-+0+

= (l-A) ~{ A,B }

Consider the effect the above has on Example 1 above. ?It ' is
the convex hull of the set' {A,B,C,n}=' {(O,O,O), (1,O,O),(16,4,1),(16,8,4»"
see Fig. 2.3.1.

I
I
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D

._._---;---_.._-------.>
x

Fig. 2.3.1

By Lemma 2.3.1, the only.feasible opt~al points lie on triangle
BCD. If we are testing M(nl) for optimality then by Lemma 2.3.2~
we need only consider directional derivatives from point B to points
on the line CD.

Any matrix represented by a point on the line CD may be written
in the form

r 16
=, La-4a

a-4aT
4-3cJ

We note here that if M is non-singular then the direct.ional derivative
for '5' given in Fig.2.2.l, may be written as

-1 -1 .tr {M N - M22 N22} -s,

with the usual matrix partitioning notation~

If M is singular, but N is not, we might define the directional
derivative ~(M,N) alternatively as

lim ~{(l-e) M+ eN, N }
. e-o+

/ \
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In this example M(a) ~s nonsingular, ae (0,1).

+ e [
1 +15e

M(a) =' e(8-4a)
d8-4a) ] ,
e(4-3a)

-€ (8-4a) J '
(l+15e)

~{(l-e)M(nl)+ eM(a) ,M(a)}= !.(4-4&-3a-32a2e+35ae )
(4-4e-3a+19ae -16a2e)

1 (4-3a) _ 1
(4-3a)

-16a2 + l6a
:::> - 1

4 -"4e - 3a + 19ae - l6ci2€

.{ l6a (1 -a).'.t{M(n1),M(a)} = lim - - 1 }
&+0+ 4-4€ - 3a + 19ae - l6a2e

= l6a(1-a)
4-3a - 1 { > 0,

~ 0,

(le[.2735 ,_•9139 ]

otherwise

Therefore~in this simple example the problem has been reduced from
one of scanning a triangle to one of scanning a line.

Lemmas 1 and 2 wi~l of course apply to ~ as well. We now give
.two additional Lemmas which will be particular to ~7' Their proofs
are quite straightforward and maY be found in Appendix 4.

It has already been noted that non.-differentiability of '7 may
occur when M-l has coincident maximum diagE>nal elements. Let these be
(ss ,•••••,ss ) and define a matrix N to have the SSj property if ~{N,N}
_ {~-l NM-l _rM-l } . "ss.

J

Let Nl, N2 e/11,havethe SSj property.
SSj prc;>perty.

/
I
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Lemma 2.3.4.

Let N £'r,rv have the ss. property.
J

/,

a > O.
Then aN has the ss. property,

J

What Lemma 2.3.3. tells us is that the members of rf'b which have
the ss. property, for a given M, form a convex subset of/~. We shallJ . ~
denote this subset by 1ft. ss.. Similarly the elements of m, with the

J
ss. property form a convex subset of m', which we shall denote bym- ss .•

J . J

Lemma 2.3.4 tells us that these subsets are formed'by intersections
of convex cones with rn. ' .
Note that M itself has all the ss. properties, j=l,•.••,r.

J Therefore,
M will lie on the intersection

.. . . . . . . .. " mss. .. r

It will also be evident from Appendix 4 that

A £[0,1]

Therefore, although we do not have complete differentiability as in
Definition 2.2.2, we have a kind of partial differentiability and
hence testing optimality of a given matrix might not alw~s be quite
as difficult as Theorem 2.2.1 might indicate. This is because, to

~check optimality of a matrix M, where, is not differentiable at M~
we do not need to calculate HM,N} ,V N £?1L , but only for the
N which are the generators of the convex sets m ss. , j=l, •••• ,r, .

Jand which are feasible optimal solutions.

In the same sense Le~a 2.3.2. shows that we have a form of
partial differentiability in general, in that it shows that we need
only look ..at extreme feasible points of'ifllfrom M. Obviously the
above will only be of real help when the upper surface ofm is planar,
or has planar regions.

Consider again the trivial Example 2 above. rn' is the

/
\
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convex set obtained using the generators { A,B,C,D } = { (0,0,1),
(1,0,0), (4,0,0), (0,0,4)}. SeeF~g~2~3~2. below.

Fie; • 2. 3.2.

By symmetry. for matrix M("l) = [!
BEFC, m'sS2 • AEFD.

~erefore, we need only consider directional.derivatives to points
A,D,F,C,B. We have already seen that t' {M(nl). MF} > 0.
That is, M(nl) is non-optimal.

2.4: Non-uniqueness of M*
Consider the following example.

Example:
Let the induced design space be V =' {y = (1,a)T, a& [-2. +2J }.

/
\
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Take a deai.gnmeasure n(p) r

p, (1-2p)

= l(1;-2) , (1,0) ,
, pe: [o,U .

f:
O

l
,M(n(p» = ~ ° J -1 rl8p ,M(n(p» =LO !p]

M(n(o»+ =~ n
pe: [o,fl

In this exampl~ it may readily be shown that n(p) is 9Ptimal in the
4>4' 4>5 (for estimation of the first parameter) and '7' senses" for
p en, ~] . That'is, our optimal design matrix is not unique. Although
n(p) 'is optimal in the above senses, for p e:[L~ J, a better aesign

might be obtained by choosing a particular p value from 0 ,~] to
optimise some secondary criterion. For example taking p = ~ will
produce a design which is also '1 and '6 optimal.

This non-uniqueness arises because some of our functions are not
strictly concave.

Define strict concavity of , by

,{ AA +(l-A)B } ~ A~{ A}+ (I-A),'{B} ,
with equality if and only if A = B.

Functions '1' '3' 4>6 will always have unique maxima because they
are strictly concave functions (see Appendix 3). However '4' '5' '7
may not have unique maxima as illustrated above. '2' when taken in
the form ,~ of ~, will have a 'unique maximum because of its equivalence
with '1' However, this may not always be true for general ~2 (see
Appendix 3).

To summarise this, we might say that ,when using one of '4' '5 or
, as a primary criterion it would be prudent to be on the look out for7, ,
possible non-uniqueness of M*, and the possibility of choosing from the
set of optimal designs in order to optimi~esome secondary criterion.

I
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2·5: An alternative approach to the optimal design theorjl'"
i
I

Following remarks by Silvey (1972), in the di~cussion ~f papers
by Wynn and Laycock, that the optimal design problem might be linked
to a duality problem; the equivalence theorems were developed for D-
optimality (Sibson (1972», Ds - optimality (Silvey and Titterington
(1973» and for general concave ~-optimality (Silvey and Titterington
(1974» as corollaries of stronger duality theorems, using Strong
Lagrangian methods. Although the general theory was developed under
the assumption that I(~) was of rank one,'there are no complications
if I(~) is taken to have rank greater than one, as may be seen from
Silvey and Titterington (1974). However, in order to exploit the
above approach in practice by considering the design problem as a
geometric cover.ing problem, it is essential that I(~) has rank one.

In what follows we shall assume that' the assumptions'of Theorem
1.4.1 hold and we shall denote the induced design space by V.

The geometric interpretations produce duality theorems for
D- and D -optimality as stated below.s

D-optimality:
D~fine the minimal ellipsoid problem as that of finding the

. . T M-l K f "imal" t "" Velllpsold y y ~ 0 mln con ent contalnlng •

Theorem 2.5.1 (Sibson)
" t "K t" al des i 1If V as a compac set apanmng R, the D-op lID esa.gn prob em

for V is the dual of the minimal ellipsoid problem for V and the two'
problems share a common extreme value.

D -optimalitys
Define the thirinest central cylinder problem as;
Let A be a positive definite sxs matrix and B be a s x(K-s) mat~ix.

The thinnest central cylinder problem for V is that of' finding a
cylinder

,

/
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containing V and such that the determinant of A is maximised.

Theorem 2.5.2 (Silvey and Titterington)

Let V be any compact subset of RK which spans the leading s~dimensional
co-ordinate subspace. Then, for V, the D-optimal design problem is thes
dual of the thinnest central cylinder problem and the two problems share
a common extreme value.

The possibility of practical improvements, using the above geometric
interpretations, arises because in some simple situations the geometry of
V may enable one to spot optimal ellipsoids or cylinders and allow
calculation of optimal designs without recourse to iterative algorithms.

With respect to the afore-mentioned problem of ~eBting optimality
of a singular matrix for criterion ~5'it would appear that the above
approach will only be of help in the simplest of situations, due to the
difficulty 'in obtaining the optimal matrix B in the above (see Silvey
and Titterington (1973)).

2.6: Examples

~This section will be devoted to a set of examples of optimal
~

designs which can be calculated explicitly. This, of course, will not
always be possible in general. However, the examples given, although
simple in form, may have practical applications, and will serve to
illustrate sections of the theory described above.

2.6.1: D-optimal designs on K-~oints

One can imagine many practical situations where an experimenter
will be interested in carrying out a designable experiment at the min~um
number of design points in the design space, in order toe~onomise on
time, money and resources~ Therefore,it is of interest to investig~te
the best'lsuch design, and when it will be optimal. We restrict the
problem to D-opt,imal designs in situa.tions where I(x) is of rank one.
Again we represent the design space by V.

I
/
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Let our design measure ,be

K TM({;) = E
i=l p. v , v ,

~ -~-~
K

IM({;)I = lu21 11
i=l

= U A tl, U = (vl~ p •• ~), A = diag' {Pi} •
K
Ep.

~ i=l
p.~ = 1.

. 1IM({;)I is maximised with respect to the Pi's w~en Pi = K'~i'
That is, the best K-point design, in the D-optimum sense, puts weights
1 at each design point, independently of the points chosen.
K

Suppose now that we have selected a set of K-points .{yl' •••••• 'yK}
with optimal weights.

=

= .[~ , ••••••• ,

'Il ,.. ···.. ,

That is,our design measure is given by ~

M({;) 1 U UT •
K

By Theorem 2.2.1., a necessary and sufficient condition for
D-optimality of ~ is

That is, our K-point design is D-optimal
;ff .{l U UT T} 0 V V·... ~ K ,.!.! ~ , .!e
iff K vT(uuTfJ_y - K ~ O,,~ .!eV

iff vT UT-1U-l.Y.:i:1 ..,''\/.Y.e V

iff
, .

(U-lv) T (U-l_y) ~ 1

iff U-l transforms every point .Y.in V inside the unit hypersphere.

If the design space V is discrete, consisting of m points, then' one
could compute lua. r ' i=l,~~~~., mCK t. Ua. representing the matrix

~ . ~
obtained from the ai'th selection of K points from the m available.
Observing the maximum, the existence of a K-point D-optimal design might
be checked using the above necessary and sufficient condition. In
certain simple situations the best K-point design may. be calculated
analytically.

/
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Exampl e 1:

T 'Let V be { 1:.; 1:. A 1:. = 1 l, .A symmetric, positive definite.
That i&,V is the surface of an ellipsoid in K dimensions. As.we have
said the problem is reduced by knowing that the optimal weights are i.
We therefore wish to maximise

subject to the constraints
Tv , A v .

-:L -:L
= 1 ,V v.

-:L

TLet A = BB ,

The problem is equivalent to finding K vectors ~, •••• , ~to
maximise

or equivalently maximise = fj, , subject to = 1.

Introduce Lagrange multipliers Al'••••• 'AK~
We require to maximise the Lagrangian f'orm

K T
[r] i:l Ai(:li.l'i- 1)

- t A. (v.Tl. -1). l. aLl. l.yll······· YlK
..= ...
•

. .. ..

·yKl······· YKK

a
0 [Of J = 2A iZ:i where c ...denotes the co-factor-= ""9ay. l.J

-l. of'the (i,j)'th element of'y.
ciK Tll]A. fj,

,Vi yT ! . Am=- as 2 A.-=9 . l. 2 • -l. l.

ciK

/
/
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~Also T = 0 i +y.

["t]
, J_J

ciK
=t> T 0y. y. =J l.

That is,the problem is solved by taking any K orthogonal
unit sphere and transforming them back into V spaCe via

points on the
v = '(BT)-ll.

Example 2.
Consider the problem of allocating weights with which to take

observations from 3 populations in order to estimate two unknown
parameters best in the D-optimal sense.
Poisson distributions

Let the observations come from

The conditions of Theorem 1.4.1 hold, giving an induced design
space

V= , 1
1 1 ·

Intuition suggests that taking observations only from populations
(1) and (2) might.be D-optimal.

, 162 l~}
lel +. a2 lel+ e2

The three points in V' lie on the unit circle'for all (el' e2)
implying D-optimality of the design which allocates observations equal.ly
to populations (1) and (2).

U-1 - [ :1 - ;2 1

til transforms V to V' = «0,1),(1,0),[

/
I
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Example 3:

It is interesting to compare the above necessary and sufficient
condition for the existence ofa.K-point D-optimal design with the
sufficient condition of White (1975). A very simple example illustrates
the weakness of White's result.

Let V be the three points on the unit circle

{(O,l), (1,0), [~, ~ ) )

From Example 2 above the optimal two point design, namely

[ ~ ,~ 1 '
(0,1), (1,0)

is also D-optimal.

White's conditiorr for D-optimality of the K-point design is that
,

t
1::

i=l
ifR.

where again ai denotes the i'th selection of K from m points, at
being the selection under Bcrutiny~

. Number the three points (0,1), (1,0), (~, ~) as 1,2,3
respectively.

, .
~ = (1,2) a = (1,3)2 , a = (2,3).3

f U~12 =
1 0 ~

,',

0 1 = 1

I ~a212 = 1 0 2
~=

1 1- -
12 12

° 1 2
I Ua3!2 = 1 1 = ~-12, /2

I
I
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Observing that ! Ual!2. , = I Ua2 '12 = 1 we··note

that White's condition confi~D-optimality of al~ However,the weakness
of White's condition is at once evident. If V were to consist of four
or more points lying inside the unit circle, with points 1, 2 and 3
being included, then White's condition will cease to hold although
will still trivially be D-optimal by what has been given above.

a1·

2.6.2: Ps optimal design to estimate the difference between two
population means.

Suppose we have two populations A, B supplying observations with
means A, A + 1.I respectively. The parameter of interest is 1.I the
difference bet¥een the population means. Let the variances of the
observations be va and vb. In what follows we shall assume that
one of the two following conditions holds.

(i). A and 1.I are the only unknown parameters and the full conditions of
Theorem 1.4.1 hold.

Examples: The observations may come from the following distributions.
(a) normal, (b) exponential, (c) Poisson.

(ii ) va and vb may be unknown as well as A and 1.I but are estimated
independently of them. The full conditions of Theorem 1.4.1 will
be assumed to hold if va and Vb are known.

Example: The observations may come from normal distributions
with unknown variances.'
.Allocate observations according to the design (~ : 1-= 1
M(p) =

/
I



42

The criterion for best estimating ~ is IM(p)1 =
IMU(ll) I

The above can readily be shown to have its maximum when p = IVa----rva +~
That is, the optimal'allocation of observations is in the ratio ~ arv;.

2.6.3: Simple linear prediction.

Suppose that observations are distributed as N(a + ax,cr2), cr2
assumed known. Suppose that in the laboratory we c~ obtain observations
only at points x E [a,b], but that in the future ~redictions may be
required at points possibly outside this interval. Let us assume that
we know the distribution p(x) on x with which predictions will be
required in the future. The criterion for design will be the average
variance of the estimated expected response.

That is we will want to
m~n {(l x) M-l(~) (~) p(x) dx

~-

min tr {M-l(~) J (;
x) p(x) dx}= x2J~

t:l-{M-:-l(t) A}
~

.l.I
+ aJ= m~n , A = .l.I2~

denote the mean and variance of p(x) •

where l.I'and·cr2

It will be sufficient to consider the interval [-1, +lJ for x ,
as the criterion tr' { M-l(t) A } wi~l obvi~uS1Y be invariant under
linea.r transformations on x if the density p(x) is adjusted accordingly.
Considerm' =' {(1,x,x2) ; x E[-l, +lJ} , see shaded region in Fig.2.6.1.

/



x y

---.'----
-1 ·-----+-l~ m2

Fig. 2.6.1.

Because our criterion is an increasing function,the optimal
point in 1nl must lie on the line XY, that·is, the optimal design
measure must put positive weight only at points -1, +1.

Take as design measure

M(p) = [1 2P-1]
2p-1' 1

M(p)-l = 1
[

1 1-2p]

1-2p 14p(1-p)

, 1

4p(1-p)

This is maximised where
«l+u)2+a2) - «1+}J)2 +a2)~.((1-}J)2 +a2)~

p =

, lJ·= O.

/
\
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2.6.4: Linear Calibration Design

Suppose we have two factors u and. y.
may observe y subject to stimuli u e: [a,b] •

In the laboratory we
These responses are

known to be subject to an error which is known to be normally distributed,
the expected value of y given u being a linear function of u.

That is, p(ylu) '"N(a + SU,T2 ); a,S,T2 being unknown parameters.
The distribution of u values arising in nature is known to be of the
form p(u) '" N.P.,02), A ,02 known. \

A simple application of Bayes formula to the above density functions
.will reveal that p(uIY) is of the form

A as S0;[ - :;r :;z
1N + • Y

S2 1 S2 1 S2 1
~+crz ~+a-z :;z + a-z

The object of the experiment is to investigate,in some sense,the
distribution of u for given y, that is p(uly)" Therefore we have a
simple calibration type experiment. Let us suppose initially that we
are interested in best estimating the parameters a,S ,T2 in the
D-optimal sense.

I(u) = 1-;2 1 u 0

u u2 0

0 0 1
2T2

the D-optimal design for estimating a,S,T2

, -

Now suppose we are interested in p(uIY) and that parameter
estimation is our criterion for design. In this case the natural
parameters of interest will be, not (a,s,T2), but

/
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A. ::-.z
.cr

as-::z
.1'm=

+ 1az
, n =

~
.. ..:.1'_--
.S2 . 1 '
.'TT +.7

0= "S21. . +
.TZ .~

1

If D-optimality is our criterion, then, because (m,n,o) may be
obt.ained by a'non-singular transformation of (a,S,1'2), the D-optimal
design for estimating (m,n,o) will be the same as that for estimating
(a,S,1'2) namely

[ ~ , ~ 1 .
a , b

If however we are only interested in a subset of the new parameters,
(m,n) say, then the problem is not so simple.

Let the Jacobian of the transformation be J.
Letm = .1 (a,S,1'2) , n = .2 (~,B,1'2) , 0 = .3 (a,B,1'2) , then

aa 2L a1'2
a·l a·l a·l
aa 2L a1'2

J = a·2 a·2 a·2

The criterion for (a,B,1'2) was

For (m,n,o) it will be I J N(~} JT I
For (m,n) the Ds-optimal criterion will be

Maximising the above will be equivalent to maximising

I MU;) I

/
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By an argument analogous to that of2~6.3 the optimal design will

be concentrated at the end points of our interval [a,b1: The problem

is thus reduced to calculating the optimal weights • This problem.will

be unaltered by transformingt~=~is to z such th~t'the intervale a,b ]

is transformed to [-1, +1J.
b+a

A - 2
b-a
2

p(Ylz) '\IN(a* + 6*Z,T2), a* = a+ ~ .6 , 6* = k:.!.B
2 2

Let the design measure be
[

p ,l-p 1
(1,1) , (1,-1)

,
The design problem is equivalent to-solving the following problem.

max
pe:( 0,1)

I M(p) I

.,

That is,

max
pe:(O,l}

4p(1-p)

That is,

max
pe:(O,l}

4p(1-p)
r + 2(2p-l)s

I
/
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-(r-2s) + (r-2s)2(r+2s)2

2s

(a *]2 (ae*]2 1 (,a'[~)2 'aa* ~ 'ae*where; .r = a;3 +, a~3 + 2,[2, a'3,8 = ,a'3 . a'3

This is maximised when p =

2.6.5: ',LinearQuantal Response Model

Consider the following binary response model.

F(·) is a distribution function of a random variable whose density function
is symmetric about the origin. * isa continuous.subset of tbe real
line. This example is also considered by White (1975).

The conditions of Theorem 1.4.1 apPly,giving

I(x) = A(Z) [1 'xJ '
x x2

A(Z) = ,{ f(z)}2
F(z)(l-F(z) )

,

Note that the above comments imply that A(Z) is symmetric about
,the origin. Taking D-optimality as criterion, symmetry suggests
consideration of a two-point design oftbe form

a-9l ,. -a-~l
92 ' 92

For the linear lDgistic and probit models the function IM(a)1 bas
unique ma.x;imaat a = a*, a*being approximately L 54 and 1.14 respectively.
If ± a* - 9llie in * then this two point design can be shown to be

62
D-optimal. Also if * is symmetric about - 61 and ± a -61 do not

92 92

I
/
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lie in ~ then it can be shown that the D-optimal design puts weights
(~,~) at the end points of *.
a later chapter.

This example will be reconsidered in

2.6.6. It is of interest to consider some classical experimentai
designs and to utilise the equivalence theorem of 2.2. to investigate
optimality of these designs with respect to some criteria. Three
examples are investigated.

Example 1.

The first example is the Latin square. ' This type of design is
generally applied in an agricultural setting, p treatments being allocated
to a pxp matrix of plots in such a way that each treatment appears once
and only once in each row and column.

A possible model, for observations resulting from such an experiment,
is as follows.

, E. 'po'" N( 0,0'2), i,j ,K=l, •••• ,po
l.JI\.

In the above y ..~ denotes an observation in the (i,j)th positi~n of'. l.J~ _

the matrix to which a treatment K has been applied. ~he parameters
ai' Sj and YK denote underlying constants which reflect, respectively,
the effects due to position of the plot in the matrix and to the treatment
applied. The E i 'K's are error terms. distributed as above, which areJ ,
assumed independent of 'position i~ ,the plot and treatment. 'The model
has dimension 3p.Due to identifiability considerations the model is
usually reduced to the following form.

y.. = II+ a· + SJ' + YK + E' 'K'l.JK ' l. l.J o .

The 'dimension of the model'is now 3p-2.

The' parameters are well known to be estima.~ed Ol"thogonally between
effects as follows.

A G A Ri G A C. G
'1 - - a = -p - '1'\2 • Q - __J_ - -~ - p2 t i r ~j- P p2'

/



G denotes the grant total of the observations and Ri' Cj and ~ denote,
respectively, xhe row, column and treatment totals.

The variances of the parameter estimates are,

var var
,..
(a.) = var~

,.. ,.. fl l~(S.)= var (Y ) =02 ~ - -
J K ~ ~ ,V i,j ,K.

The design space in this example can be denoted by the set of
triplets (i,j,K); i,j,K = l, ••••,p.

Take D-optimality as criterion. The directional derivative from
a Latin square information matrix to any of the one point design information
matrices, that is ~{MLs'I{i,j,K)} ,can easily be shown, from
Fig.2.2.1, to be,

~{ Mls' I{i,j,K)} ~2 "'''' ,..= ~ var{~ + a. + S. + YK) - 3p + 2o~J

= 0 ," i,j,K.

Therefore,the Latin square is a D-optimal design. Now
consider Ds-optimality as criterion, where interest lies in the YK's.
Because the parameters are estimated orthogonally it may again be easily
shown from Fig.2.2.1 that,

~{~s' I{i,j,K)} =
2 ,..

~ var (YK) - p + I

~:. 0
2(~ - ~2] - P + 1=

= o.

Therefore,the Latin square is D -optimal for estimating thes ...
treatment 90ntrasts. Obviously the Latin square will also be D -optimal

sfor estimating the row and column contrasts.

/ \
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Example 2.

Consider now a class~cal block design. Suppose we have p treatments
to be allocated to q blocks. We shall define a balanced design as a
design in which every treatment appears once and only once in each block.

The model considered is as follows

y .. = a. + 8. + e; ••
~J ~ J ~J e; •• ",N(0,a2) , i=l, •••• ,p,

~J .
j=l, •••• ,q.

The notation is similar to that of Example 1. Again because of
identifiability considerations the above (p+q) d~mensional model is
reduced to 'the following.

y .. = II + a· + 8· + e.. , t a· = t8· = 0, i=l, •••• ,p,~J ~ J ~J ~ J
j=l, •••• ,q.

This model has dimension (p+q-l).
The parameters are estimated orthogonally between effects as

follows,

G T.
Q_ .~.~ G~ i 1, •••• ,p,1J = a. = 8· = =·W ~ q :pl J P pq

j = 1, •••• ,q.

In the above T. and B. denote the treatment and block totals respectively.~ J
The variances of the estimates are,

pq
A (1 1)var (a.)=a2 - - --~ q pq , var=-

The design space can be denoted by the set of ordered pairs (i,j),
i=l, •••• ,p; j=l, •••• ,q.

Take D-optimality as criterion. It can easilY'be shown that the
directional derivative from the information matrix of a balanced design
to any of ~he one point design information matrices is,_, A ... ...

~. {~, I(i,j) } = var(ll + a. + 8· ) (p+q-l)~ J, (a2 (1 1) )- (p+q-l)= pq + a2 q - pq

= 0, Y i,j.
I
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. Therefore, the balanced design is D-optimal.' Now consider D -
s

optimality as criterion, where interest is in the treatment contrasts.
Because the parameters are estimated orthogonally it is easy to show
that

t{ ~, I(i,j)}
"

,.
= var (a.) - (p-l)

l. '

=. ~ '02(1 _ 1] (p-l)o q pq

= 0, V i,j.

Therefore,the design is Ds-optimal for estimation of the ai's.
It may easily be seen that the design will also be D -optimal fors "
estimation of the block contrasts.

Example 3~

We now consider the optimality of balanced incomplete block
des igns (BIBD). The simplest of these can be thought of as
reduced designs of the type considered in EXample 2 above, where
each pair of treatments appears once and only once in any block.
To investigate the optimality of these designs we must first consider
the design space. The design space will in fact be exactly that of
Example 2, that is,the set of ordered pairs (i,j), i=l, •••• ,p;
j=l, •••• ,q. With this in mind it will be obvious that the BIBD's
will not be optimal in the design measUre sense.

However,the optimality of BIBD's in the design measure sense
is not really a relevant factor, as the need for these types of
designs arises when there are restrictions <?nthe number of treatments
which can be applie4 in each block ,and this type of restriction can
not be readily included in the optimal design measure theory ~onsidered
above. 'The problem is really one of proving optimality in the exact
design sense, and problems of this type have been considered in several
papers by Kiefer, the most comprehensive of which is Kiefer (1975).

/
\
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2.6.7. In the literature of design theory there are many other
examples of analytic calculation of optimal.designs. Most examples
are of D-optimal des i.gna, particularly in the area of polynomial
regression. These designs have been obtained by, for example, Smith
(1918), Guest (1958) and Hoel (1958). The interested party is referred
to Fedorov (1972) who devotes a chapter to polynomial regression design
with D-optimality as criterion. In other areas and for other criteri~
Fedorov (1972) and White (1975) give some interesting examples.
Titterington (1975) illustrates how geometric arguments allow analyt~c
solutions to some Ds-?ptimal design problems in simple situations.

Despite the above however it is necessary, in general, to resort
to numerical algorithma in order to obtain designs, and it is to this
topic that Chapter. 3 is devoted.

I· .

/
,I

\



53
CHAPTER 3'

ALGORITHMS

As we have seen, it may be possible to obtain, for some design
problems, optimal designs by analytic means. However, in gen~ral this
will not be possible and iterative numerical methods of solving design
problems are necessary. Several types of algorithm have been put
forward, all closely linked, yet each having its own distinctive features.
Of course, as previously mentioned, the solution of the continuous
design problem which we have been considering up to now may only be the
precursor to actual production of an exact design whi~h might be applied
in practice. Therefore, at the end of this chapter, we shall also
consider algorithms which have been put forward to produce exact designs
ab initio, or to improve upon designs which have been produced by
approximating to continuously optimal ones.

3.1. Wynn's Algorithm

We consider this algoritrum firstly, despite the fact that it would
appear likely that similar algorithms were developed by Fedorov and his
co-workers in Russia in advance of Wynn. As publications of the earlier
work of Fedorov appear only in Russian this is difficult to verify.
In any case, this is irrelevant to the development of the theory in this
thesis. Wynn's algorithm is considered first because it represents
the simplest to apply in practice.

As Wynn's algorithm was prodUced initially to solve the D-optimal
design problem in a case where I(~) is of rank 1, we will restrict
ourselves to this case, again with induced design space v; Extension
of the algorithm to other situations will be'obvious from the discussion
which follows.

The algorithm m~y be summarised in the ,following manner

(1) Let, be a non-singular K point design measure.
K KIT

M('K) = i~l K ~i~i' IM(~K)I > O. Set n=K.
That is
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(2) Find T;_l *T -1v* such that max v M(~} v = '!. ~(~) v*_ . _ n _ -n -
- :!_€V .

. . 1Add_v* to the:design spectrum and allocate we~ghts ---1 to the. n+
(n+l), not necessarily distinct, points in the spectrum •

(4) Set n = n+1.
.;.,

Go to (2) and repeat.

Wynn (1970) proves convergence of the 'above algorithm to an optimal
design measure. His proof is simplified by Pazman (1974).

We make the following observations on Wynn's algorithm.

(i) The computationally most exacting part of the algorithm is (2),
where an optimisation problem must be solved. This may often
be satisfactorily carried out'by approximating to V by a finite
grid of points and obtaining the maximum by direct search. Fedorov
(1969) gi~es very useful formulae for updating M(~ )-1 as the

nalgorithm progresses.

(ii) The algorithm is not necessarily monotonic, that is, IM(~n+l)1
is not necessarily greater than IM(~)I. This makes Wynn's

n
proof of convergence very difficult, and,·in application, may
affect convergence rates of the algorithm.

(iii) The number Of distinct points in the spectrum at stage n may
become very l~ge, the design becoming cluttered with points having
very small weight (possibly relics of poor initial choices), thus
slowing convergence to a design measure on a small number of points.

In order to compare Wynn's algorithm. with others it is useful to create
, ,

a 'picture' of what the algorithm is actually doing in a general setting.
Let us return ~o the convex set of matrices171~{ M(~),~€ E }, on whi~h is
defined a concave function ~ which we want to maximise. Corresponding

. .to step (1) in the .above proced~e we tak~ as starting point, a point
M( ~) inm at which ~ is differentiable~ The next step is to look
for the direction from M(~ ) in which there is maximal rate of increasen
in ~,that is,for the direction in which the directional derivative is
greatest. In the above this may be seen to be in the direction of the
matrix v* v*T, which corresponds to the design matrix of a design measure
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\.

which puts weight unity at the point v*e; V.-- -.
The next action is to move

a predetermined distance along the line of steepest ascent.
above a move is made to the point

In the

M( r ) = (1 - an) M( r ) + an Y* v*T, a.. -.l:...~~, ~ ~n~~

The.pro~ess is repeated until suitable convergence occurs.
notes that any sequence of a' 's satisfYing

J.

'Fedorov (1972)

()()

E
n=l

a = ()()n ' lim ~ > O,\}n,

will guarantee suitable convergence of the algorithm.

Viewed in this manner a~ a steepest ascent type algorithm there J.S

an obvious alteration to Wynn's algorithm which might improve convergence.

3.2. Fedorov's Algorithm.

The possible improvement in the above algorithm, which becomes evident,
a.sto drop the restriction that the a ,~ be predetermined, and to choosen .
them in order to attain the maximum increase of $ at each stage. This
leads to the algorithm of Fedorov(1972),which might be summarised as
follows.

Repeat Wynn "s algorithm with (3) changed to (3) I •

a =n

(i)
We make the following comments on this alteration.
Although, for the case of D-optimality, the a may be foundn .
analytically, as gaven above, this will not typicalXy be true for
~ther criteria and may lead to substantial extra numerical work.

(ii) The procedure is noW monotonic, simplifying convergence proofs, and
possibly, but not necessarily, accelerating rate of convergence.

/
\
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(iii) The problem still rema~ns of poor points remaining in the design
spectrum for long periods, with nontrivial weights. ,:011,

Atwood (1973) has suggested improvements to Fedorov's
They were presented as improvements to the algorithm for D
optimality, but the

algorithm.
andD s

generalisation of the application of the most
important of these, to more general criteria, is at once apparent.
Atwood's point in a more general situation is best appz-ec i.ated by
returning to the pictorial representation. Again imagine starting from
a point M( ~ ) £m. Fedorov' s algorithm takes us in the direction ofn
steepest ascent from this point. We note that there must be points
~ e 7( such that we are looking "downhill' from M(~n) to I(~), and
therefore 'uphill' if we about turn and face the opposite direction,
because of the differentiability of ~ at M(~). Atwood's improvementn
is a result of the fact that a greater increase in ~ may result from
moving away from one of these points rather than in the
direction of steepest ascent.
be negative in (3)' above.

This is equivalent to allowing a ton
Note that we need only consider points x

which are in the design spectrum at stage n for possible alternative
directions, as bringing in new points with negative weight would take
~ 1 outside the set of feasible design measures. The most naturaln+
point to use would seem to be that for which the directional derivative
is smallest, and, in 'fact, Atwood (1973) shows that for D and Ds
optimality this will give the maximal increase in ~.

The importance of this improvement is that it serves to 'weed out'
the bad design points discussed above, thereby aiding convergence.

For Atwood's other improvements, which are much more trivial, see
Atwood (1973).

We note that improved convergence has only been obtained at the
expense of increased computation and the need for a more ,complex computer
program.
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3.3: Algorithms of Silvey and Titterington (1913) 'and Atwood (1976)

We first summarise the details of the algorithm of Silvey and
Titterington, and then compare it with that of Fedorov.

. .

(1) Let M( ~K) be a differentiable K point design matrix inm ,.
K 1

M(~K) = i~l K I(xi), set n=K.

~{M(~ ), I(x)} is a maximum,n -.( 2) Find ~* such that

(3) Add the point ~* to the design spectrUm. Find the optimum design
measure on the finite set of men) distinct points in the design
spectrum. Let this be ~n+l

(4) Gato (2) and repeat.

The only difference between the above algorithm and that 'of
Fedoroy lies in section (3).

Consider the convex hull of the one point design matrices obtained
from the m(n) distinct design points at stage n,oneof whichwillbe I( ~*).

This convex hull will, of course, .contain M(~' ). Fedorov' s algorithmn
moves the procedure from M(~ ) to a ~int M(~ ) on ~he line betweenn n+l
M(~n) and I(~*), such that M(~n+l) is maximised. The algorithm described
above is free to move the procedure to any point in the convex hull in
order to maximise~. Obviously the algorithm of Silvey and Titterington
will give at least as great an increase in ~,at each stage, as that
of Fedorov! However, it does so at the expense of a great deal of.
added computation. Fedorov's ~gorithm requires an optimisation at
stage (3) with respect to one variable, while that of Silvey and
Titterington requires an optimisation with respect to m(n)-l variables.
However, if the.spectrum· of the.Q.ptimal·design is contained in the m(n)
distinct points at stage n the solution will be obtained in one more
step. This suggests the use of Fedorov's or wynn's algorithms initially
to produce a set of points which might contain the support.points of the
optimal design and then a switch to the &lgorithm of Silvey and Titterington

A • .

to complete the coup de grAce. However, although this plan seems worthy
of consideration, it would appear to be difficult to decide, in general,
when the change-over should best be made.
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The Silvey and Titterington algorithm throws up another mathematical

programming problem~ That being, given a finite number of design points,
how do we find the optimal weights which should be allocated to these
points. Silvey and Titterington (1973) suggest the use of the Newton-
Raphson technique for this problem. Sibson and Kenny (1975) suggest
the use of the dual-simplex methods of the Kelley cutting plane (Kelley
(1960), Wolfe (1961)). A problem which may arise in practice is that
these algorithms may lead to non-feasible solutions, that is" solutions
which attach negative weights to some points. The problem then becomes
a more difficult one of cons,trained optimisation. An alternative
algorithm suggested by Silvey, Titterington and Torsney (1976) would
seem to solve this problem, at least for D-optimality, and possibly in
other situations, although this remains to be proved.

Consider the situation at stage n in the algor~thms of Silvey and
Titterington. The procedure is aituated at a point M(tn). A ppint
x* is added to the design spectrum.

Part (3) of the algorithm of Silvey and Titterington might be
thought of as finding a measure nn over the set of m(n) distinct
points in the design spectrum in order to maximise

= ~' {M( t +n ) } ,
n n

with the constraints

(a) f nn (dx) = 0
xd{'

(b) tn+i gives negative weight to no point.

Atwood (1976) suggests an algorithm which instead of trying to find
an exact solution to the above problem, a procedure which may'involve
lengthy calculations, obtains an approximate solution to the above
problem and then continues directly to the next 'step. What Atwood does
is to find the maximising nn' n~ say, for a second order Taylor
expansion of ~{M(tn+l)} about M(tn)~ The next step is to move
in the direction of this solution to a point which maximises the original
function. That is, find an a to maximise +{M( tn + an~ )} , again
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with the obvious constraint that negative.weight should be attached to
no point. Atwood shows that with mild regularity conditions on ~,
the above se~uence.of design measures will converge to an optimal design,
convergence being monotonic. He' also shows that asymptotically his
~uadratic approximation design will perform at least as well as Fedorov's
at any given step. Although.Atwood's algorithm will involve less
computation than that of Silvey and Titterington at each stage, it will
involve considerably more than that of Fedorov, particularly for
criteria other than D-optimality~

3.4. Yet another algorithm.

We now present an algorithm which would seem not to have been
presented before.

Let us return aga.in to the convex hull of the men) distinct design
points at stage n.. We ha.ve noted that the algorithm of Fedorov moves

~ . .
the procedure from a point M(~ ) along the line of steepest ascent xowards

. n •
another point I(X~) say. The improvement ~f Atwood (1973) suggests
that a greater increase may sometimes be obtained by moving along t~.~
line of steepest descent, that is, away from I(X~) say. The essen~e
of the algorithm to be presented here is that we carry out both processes
at once by moving to a point in the plane containing the line's of steepest
ascent and descent, in order to maximise~. The algorithm is presented
for the situation where I(~) is of rank one and the criterion isD-optimality.
The optimisation problem may be solved explicitly in this case.

Note the following notation •.

I(~)

T -1= v, M(~) y"
-.I. n -.1.

The algorithm differs from that of Eedorov only in section (3).
In section (3) the procedure moves from·M(~ ) to M(r ) M(rn+l) =. n ""n+l' ""
(1 -ai - a~ )M(tn) + a! vi va~ + ai2 ~ L.2 'T, where a~ and a.~ are
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chosen to maximise

Typically it would be expected that ai > 0 and a2* < O.

We now obtain formulae fora! 'and a~.

Lemma 3~4.1.

=

Proof
T T

M~l ~1 + v2 ~2 =

}=

=

By Lemma 3.4.1 we have

* =

We r;quire to maximise * with respect to a1 and ~2'
Fix a1 + a2 = x, and introduce a Lagrange multiplier
We require to maximise the Lagrangian form

~2d2
-:::-- +{1 + ~ d1 +

1-x 1-x
a1<l-2 (~d _ 2 } ( )2 .d12) -,A a1 + Q2 - x(1-x)2

Equating the usual partial derivatives to zero we have
a*--i:t + _?_ (d_d ,- a, 2 = A

l-:x (1-x)2 l. 2 1.2,.

d2 a* .
+ _L (d d - a. 2) = A

1-x (1-x)21 2 1.2

a* +a* = x1 2
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Solving the above equations for a* and a* we have. ... . 1 .2

a* = H-
(d2 - dl) • (l-x*) +x* }1 dld2 - dl~

a* = ~{ +
d2 - dl • (l-x*) + x* }2 ~d2 - dl~

x* in the above is the maximising value of·x in the following

[
(d -d )2 d d -d2

(1-x)Kr1+ 1 (~+d2)x + 2 1 .(l-X).]+ 1 2 12.
2(1-x) ~d2-df2 4(1-x)2

[
i_(1-X)2. (d2-dl)2 1 }

• Cd d - d... 2)21 2 ~2

Equating the partial derivative of the above, with respect to x,
to zero, we have

K-3- (l-x) f(x) = 0, where f(x) • A x2 + Bx + C

A = a + b + c , B = - (2a·+ b) , C = a,

Ka=K+ "4.
(d -d )22 1

b = - (z-i).
2

c = (K-2) •

Solution of the above quadratic equation gives

x* = 2a +b±{bZ - 4ac
2a + 2b + 2c

,

whichever solution is suitable. A piece of tedious but straightforward
algebra .revealsthat real solutions to the quadratic will always exist
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asb2- 4ac = ~ (~ + d2 ~ ~ d2 +di2·)2 ,+K(K-2) .df2 > O.
The suitable solution may be found by substitution in the breakdown
of * above.

We note that the extra
a! and a~will be trivial~
leaving only computation of

computation involved in the calculation of
dl and d2 will already have been computed,

~2 and sUbstitution in the formulae above.
We now consider two examples, which will illustrate points which

may be aids in the use of this algorithm, and indicate its potential.

Example 1
We take as an example a problem used by Wynn (1969).
Take as induced design space V= {(l,l,-l) ,(1,-1,1) ,(1,-1,-1) ,(1,2,2)} •, aa a TLet ~o alloc,ate weights as (3'3'3,9) .

Therefore, we select ~ for introduction to the design spectrum.
That is, dl = 25.5.

There is a choice of points to select as a direction of steepest
descent. However, remembering that intuitively w~ would expect a! > 0
and a*< 0, it may be seen from the reduction of * that the best2
point to introduce is the one which maximises d12 in modulus.

Therefore"Jchoos e .!3' giving d12 = - 6, d2 = 3.

Substitution in the above formulae gives
/

3 (1 + (22.5)2 )- 14.25 = - 1.875a =
4 x 40.5

b = -2 x14.25 + ~ = - 8.252

c = ~ 4 = 10.125

2a + b -2..._ 32a+b+c=O c:::i> x* =

a*' = _ _.2._
2 32
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If we denotethe·design.measures which.put weight one at points
.!:3' ~ by ~v3 ,.:~~ , then we have

This is in fact the D-optimal design measure. That is, we have
convergence in one iteration. This is obviously due to the symmetric
nature of the design space and the starting design ~. However,

, 0
although the above example is a little flattering to the new algorithm,
it does illustrate very well the possibilities offered by an algorithm
which has a wider area of search. Wynn's algorithm converges to the
above optimal design in thirty-tW9 iterations.

Example 2
Take as induced design space V = {(l,O,O),(O~O),(O,O,l),(~,~,~)}
Let ~o allocate weights as (~,~,~,~,)T .

24
7

There is a choice of direction of steepest ascent here. Due to the
symmetry of the situation there would appear to be no reason for preferring
any particular point, the:q~fore, we take vI for the direction of
steenest ascent, giving d = 24

.t' 1 7
Take ~ for the direction of steepest descent, giving

, = g
7

Substitution in the formulae gives

3 f + 122 ]- 18 . = .9107a =
4(12 x2~-64) 7

b
2 x18 + 12 x24 - 64

- 2.8571= - 2 x49 =7

·'l'2·x 24 - 64 1.428c = 4 x49 =
~x* = - .6
-=;>a* = 0 a* = - .6.1 2
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With similar notation to Example 1 we have

. I

. \ ..

That is, the solution is no~ feasible.Because of concavity of the
criterion the obvious thing to do in this situation is to set the
negative weight to zero and normalise the remaining vector. In this
exampl e we have

~l =

This is the D-optimal design.
In general the best policy would seem to be to move from ~l

~o until the design just becomes feasible.back towards

Before moving on to discuss the relative merits of the algorithms
described above, a little should be said about the possibility of breakdown
of the algorithms.

It may be seen, from the outlines of the algorithms, that a.crucial
factor in their use is that ~ should be differentiable at M(~ ), for all

n
n. This is also a crucial factor in proofs of covergence of the
algori thms. To illustrate where problems may arise we consider again
the seven examples of criteria used in chapters one and two.

For functions ~l' ~2' ~3' " 416 and4l7 it will be immediately
apparent that the functions will not attaip their maxima at singular
matrices. The singular matrices may be thought of as forming the set
of extreme points of ?Tb. We denote the set of non-singular matrices
by m-+:' and define the above functions to take the value _01) at singular
points inm.

~, ~3 and $6
if we take as starting
M( ~}-E: ~~ 'Vn. Also,

are differentiable everywhere in ?n:.
iYYl'"point M( ~ ) € lI(.anduse a monotonic algorithm, theno

for algorithms of the Wynn type, it may be seen.

Therefore,

\



For criterion~5 it ,is possible that the optimal design matrix
may be ,singular. I~ is interesting to note here that again, with a Wynn
type algorithm, and non-singular starting point, M(~n)€7n+, Vn. That
is, the algorithm will converge towards a singular optimum design without
actually ever settling on a singul.az-matrix. For this criterion it
would seem to be di~ficult to set up a general rule for what to do, in
one of the monotonic algorithms, if the process were to lead to a
singular matrix. In simple cases it might be feasible to use some of
the ideas of Chapter 2 to test for optimality.

At this point we introduce two theorems (Silvey (1974)).

Theorem 3.5.1.

Ifcpis differentiable at M(~), s s o, and ~{M(~), I(,!_)}~IS, ',!_€2{
then cp{ M( ~)h cp{ M(~*) } - IS, where ~* is cp-optimal.

Theorem 3.5.2.

If 0 < an < 1, a + 0 and E a + ~ as n + ~ and 4> isn n
differentiable at M(~ ), then for a sequence M(~ ) produced by a Wynnn n
type algorithm inf max ~{M(~), I(x)} = o.

n -n !_€j{

Theorem 3.5.1. suggests a useful stopping rule in practice.
Although it is not a strong enough result to guarantee optimality of a
design at stage n, it 'may be sufficient to indicate that we are as near
to an optimal design as is important in practice. Theorem 3.5.2.
tells us that, with the given conditions on ,the design sequence, we can
get as near as we want to an optimal design matrix at some point in the
process. For criteria 4>2' 4>4 and 4>7' as we have noted, it may happen
that there, are non-differentiable points which are interior to 711+.
Now, even Wynn type procedures may break down. However, sensible ad hoc
procedures should prove effective in practice, though they must remain
difficult to justifY rigorously as far as guaranteed convergence is .

.concerned.
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For example, consider the following procedure. Suppose that
an algorithm leads to a point M(~ ) at which $ is not differentiable. . n ...
and ~{ M( ~ ), I(x)} ~ 0, \;/x e 1(. Move a. very small distance from-- n - -
M(~ ) back along the line of approach to it, to a point, M(~e:) say,n ... .. .. . n
at which et> is differentiable. If ~{M(~~), I(x)} ~o,V~e:1( , for
suitably small 0, then stop the algorithm with justification of
Theorem 3.5.1 that we are suitably close to an optimum design. If
H M( ~e:),. I(x)}c>!S'·for·some x e 1( , restart the algorithm with M( ~e:) .

n - -. n
as starting point. If the procedure continues to converge on M( ~~).
then restart the algorithm with a different starting point and compare
outcomes.

3.6.
Comparison of the algorithms described,as to how they perform

in practice must remain a virtually impossible task, the reasons for
this being that performance will depend very much on the problem at hand,
computing facilities and the prog~amming abilities of the problem solver,
not to"mention the time and money available to solve the problem. The
following, however, might indicate how the algorithms could be used in
practice -.

Consider "firstly properties of the algorithms which might affect
convergence rates.

Algorithms of the Wynn type, with pre-set CL'S, do not take inton
account local knowledge of the function at each stage, and by their
very nature may take very long routes up the 'hill'.

Steepest ascent algorithms of the Fedorov type, although they
take the direction in which the function is increasing most steeply
and go to the maximising poin~ in that direction, do not in general
guarantee maximal increase in Ij> at each step. The obvious next step

..
is to widen the area of search at each.stage. The improvement of
Atwood (1973) does this to a certain extent and the algorithm of 3.4.
will improve matte:rs even more. The algorithm of Silvey and
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Titterington (1973) searches over a wider area than any of the above.
These points are immediately obvious from the pictorial.representation.~ .. .. .
The amount of computation and the complexity of the computer program
necessary for the use of the above algorithms, at each stage, will
increase in the same order.

Where to place the algorithm of Atwood (1976) is a little more·
difficult. Atwood shows that asymptotically, his algorithm will
do at least as well as that of Fedorov at each stage, although what
will happen for small n will obviously depend on how good the
quadratic approximation is. The algorithm of Silvey and Titterington
will still give the maximal increase in ~ for a given stage and
computationwise will still use most resources with Atwood (1976)

~coming second last.

In a situation with modest computing facilities, it would seem
likely that an algorithm at the Wynn end of the scale would perform
satisfactorily in practice, leaving open the option of a switch to
a more complex algorithm,.if problems were to arise in relation
to convergence.

3.7. Exact Designs

.3.7.1. As was mentioned in Chapter 2 the motivation for studying the
continuous design problem comes from the fact that, for large samples,
we may be able to approximate closely to a continuous optimal design
measure with a design putti~g rational weights at the design points.
We now justifY this using an argUment of Fedorov (1972).

To add uniformity to this sect Ion we shall redefine 4>1as I MI
and ~5 as 1~1 .

Note the following definitions.

(i) Let ~* be the optimal continuous design measure.

(ii) Let ~N be the optimal exact design measure for,N observations.

(iii) Let tN be the exact design measure having the same spectrum
as ~* (containing n distinct points say).
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At each point x* in ~he spectrum take r;::; [(N.....n) p~ J +

observations, where [e] + denotes the least integer satiSf'ying
[e J + ~ C , the remaining N - L [(N .....n) 'p~] + observa~i~n~ are
arbitrarily distributed.

The following theorem may easily be proved.

Theorem 3.7.1

where

(N-n) -+ 1 as N-+oo.y N
For, ~l y (N-n) = (.!t:l!) K .N N .

~5 ' y
(N-n) = (.!t:l!)sN N

~2'~3'~4'~6'~7'Y (.!t:l! ) = LN N-n

The sandwiching inequality of Theorem 3.7.1 will ensure that'
tUfor large N a design of the form ~ will be almost. certainly

adequate in practice. However,if improvements are desired,or if,
in the case of the linear model, we require an exact design for small
N,then the following algorithms may be usef.ul.

Very little progress has be~n made in the area of finding analytic
solutions to exact optimal design problems. A brief review of some
problems which have been tackled will be given in 3.7.3. In the
present subsection we will assume that no such solution is available
and that some iterative numerical method ~s required.

The problem is restated~

Let j( be the design space and N the sample size. It is requfred to
select N points from j(

,
in order to maximise

1 N
= N L I(x.), x . €:K, Vi

·1 -J, -~_l.=
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Note that if ~ 1S discrete (of S1ze m say), then theoretically
all selections of N from m points could be co;np:utedwith corresponding
$ values, the maximising selection being obtained by observation.
Continuous ~ could also be approximated by a finite grid of points
and the above procedure carried out. However, for large m, the
above method of attack on the problem will be computationally infeasible,
and some other method of solution will be required. We consider two
algorithms, the first due to Fedorov (1972), the second to Wynn (1972)
with improvements by Mitchell (1974).

In the two algorithms to be considered an initial design is
required. An initial design of the form 'V described in 3.7.1~N
would seem to be sensible for relatively large N. However, for small
N, and where the geometry of the problem does not provide any inspired
initial guesses, an arbitrarily chos~n initial design will suffice.

The algorithm of Fedorov is an exchange algorithm, iteratively
exchanging design points, one at a time, in order to obtain the
maximum increase in $. It may be descri~ed as follows.

(1) Select an' initial design ~.
N N, 1 ! ' 1(2) Define A(x. ,x) =${ - L I(x.) T (r(x.) - r(~))} - ,{ N .L r(x.)}J N i=l -1 N -J 1=1 -l.

x •d x,:" •••• ,x..}=-J -..L -,N spectrum of ~ •

Select x and x. which'satisfy
J

Renlace x . by ~ in t.__.,
r '-J ~

(4) Go to (2) and repeat until no increase in , is being observed.
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The Wynn algorithm does not attempt.to obtain the maximal
increase at each step in the procedure,.but has a close link with
the continuous de~ign algorithm of Wynn. Although presented
originally for D-optimality, the extension to more general criteria~
is fairly obvious.

(1) Select an initial design tN'

(2)' Find an ~+1 such that

(3) Add ~+1 to the design spectrum and compute directly the
best N point design from the spectl;'um. Call it Iiw'

(4) Go to (2).and repeat.

Improvements to the above have been suggested by Mitchell (1974a).
If insufficient increase in ~ is being obtained Mitchell allows the
number of points in the design spectrum to either increase beyond
N+1 or decrease below N, always returning eventually to an N point
design.

The main drawback in the exact optimal design problem is that
there are no strong results, such as the equivalence' theorem of
Chapter 2, which enable one to test the optimality of a given design.
Also, although the above algorithms are monotonic and will converge,
since they are bounded above by the continuous optimal design, they
may converge to different designs, given different starting points.

3·7.3. Some exact N-point designs have been found, mainly with
D-optimality as criterion and I(~) of rank 1. M.J. Box (1968a)
points out that when N=K, there is a.geometrical interpretation of
the design problem. That is, to find the set of points

. tz1 '..'..!.!K } , ~ e: V, i=l,: ••• ,K,

such that the simplex, with the K-points and· the origin as vertices,
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-1has maximum volume. Note that the matrix V , V = (vl.~~.~!K)' will
transform the K points onto the K unit vectors, along the axes of
K dimensional space. Note also that if the set. V ,is not
transformed inside the hypercube of side 2, centred on the origin
and with faces which cut the axes at right angles,then a simple
exchange of design points will lead to an increase in the determinant
of interest. This geometrically inspired algorithm is, in,fact,
exactly the same as Fedorov's when N=K and D-optimality is the
criterion. B,y imagining the worst possible situation when the
above algorithm stops, the possible weakness of one point exchange
algorithms is at once obvious. Note that this algorithm only
guarantees to produce a y-l which will transform V inside the hypercube
described above, whilst if there is actually a K-point continuous
D-optimal design, then there is a V-I Whi~h will transform V inside
the unit hypersphere.

M.J. Box (1968a) also shows that, if the V-l for the best K-point
design actually transforms V inside the right (p+l) hedron contained
in the unit spheze ; then the D-optimal N point design is the design
which-gives near equal replications at the points of the best K-point
design.

For the normal-linear model ,with

.n(x,!) = So + Slx + S2x2 + •••• + SK-l x K-I,* =L -1, +1],

Wynn (1972) shows tha~ a near equal replication of the best K-point
design is in fact the best N point design for K=2 and K=3.

As mentioned previously, Kiefer (1975) has investigated the exact
optimality of generaJ-ised Youden square designs~

In general, however, it is necessary to resort to the numerical
algorithms described above.
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CHAPTER· 4.
.1.

SEQUENTIALLY DESIGNED EXPERIMENTS

The possible necessity for sequentially designed experiments

was indicated in Chapter 1. Also mentioned was the fact that the

inferences to be made after such an experiment would require special

consideration, possibly leading to differences in design procedures

suggested by different schools of inferential thought. In this

short chapter we consider these problems, .starting by describing a

general f'ormof' sequential experiment"

D

Fig. 4.1.1.

Consider the following sequentially·designed experiment. Let

the design space be * (for simplicity we shall regard x e * as being

scalar), at points in which an experiment E maybe performed and an

~bservation y Ix , in the observation space Y,. obtained. At stage -n

in the experiment a choice of' the (n+l)st design point x 1 is made. n+
according to a. design procedure D. 'D will iiypically makeuse of the

/
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vector of observations ~ and the vector of design points ~~ In
the context of this thesis it will suffice to consider only procedures
D which are deterministic in nature. It will also often be true
that the design space ~ will be rich in points relative to the
observation space Yt and that there will be a one to one relationship,
via the procedure D, between a design point xn+l and the observation
y , given the vectors x and Y l' The situation prior to, the(n+l)st
n --:n =n-

stage of the experiment will be that observations y will have been.:...n ~
obtained and a vector of design points x 1 will have been defined.-n+
If there exists a one to one relationship as described above then,
since D is deterministic, either y or x I wlll be a sufficient

""-n -il+
statistic of the observations obtained. We shall assume that
observations ylx arise according to a probability distribution
identified by the density function p(Ylx,~), which is known up to a
vector of unknown parameters ~.

Let the likelihood of a set of observations obtained according
to such a procedure, with a sample size of Nt be Ly (~,D) then,

Ii

=

=
N

= n p(Yi Ix. ,~,D)
,. i=l> l.

N

= l.·~lp(y ·Ix. ,e).- l. l.-

We write the likelihood as a function of D as D will typically. . .

form an integral part of the probability distribution of ~. Note. '. -. . N·
that the likelihood of a particular realisation of the experiment,
(l:N ,~) say, will be identical to ~hat of a set of independent

/
\
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observations.l.N obtained at a set of predetermined design points
~. In the above experiment, however, each.design point Wiiibe
a f'unction of'the·preceding observations··and therefore, in
repetitions of the experiment, different design sequences ~ will occur.
This will be a major factor in separating the schools of inference to
be considered.

4.2. In this section we will discuss maximum likelihood estimation
of the parameters and the repeated sampling distribution of such
estimates. Because the observations in the experiment are not
independent, there are now no well known asymptotic results to appeal
to, as there were in Chapter 1. The problem of proving consistency
and asymptotic normality of maximum likelihood estimates in non-.standard
cases has been considered by Silvey (1961;),Bar-Sha.l.om (1971) and Bhat
(1974). However, as pointed out by White (1975), the conditions
imposed by the above would seem to be impossible to verifY in practi~al
problems of the type considered here.

Fedorov and Malyutov (1972) using a result of Jennrich (1969)
observe that, in regression situations with normal error, if the
design measure i;N tends to a non-singular limit as N -+ co then the
least squares estimates of'the parameters and hence, in this case,
the maximum likelihood estimates of the parameters, will be consistent
and asymptotically normal. White (1975) shows that if the sequence
of estimates ~ is consistent then, using a design procedure for
D-optimality, the design sequence E:Nwill converge to a non-singular
limit, namely the D-optimal design measure for the true value of the
parameters~. These facts, although interesting within themselves,
do ~ot really further the solution of the asymptotic problem, because
the assumptions of the theorems are at least as strong as the results
proved.

No real progress
asymptotic problem.
statistician might do

has been made towards the solution of this
Instead we turn to the problem of what. a
in practice. In fact, the asymptotic problem

/
\
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mentioned above will be regarded as something of a red herring, the
more important problem being, how. well the' approximations we shall
make hold good for reasonably sized Nand how we.might design our
experiment to make them better.

Let us consider the approach of Silvey, Bar-Shalom and Bhat to the
proof of the asymptotic normality of maximum likelihood estimators.
The standard procedure is to expand the log-liklihood function using
Taylor's theorem, giving,

'"a log L (e) a log L (e) f210g L (!jy - q-
. ~ ('" )-N. = + . .e - e + e ..,

ae ae ae. ae. . ~ - ..:qq ,
l. J

'"a log L (e)x,., -
o , by definition of ~.=a!

The first assumption made l.5 that the elements of ~ are small
relative to the other terms given.

Therefore, an approximation'for (~ - QJ might be,

• (- a210g LvN(!)j-i a log Ll.N(~)
(eN - ~) =;. J/.-'

,ae· ae· ae
l. J < >:

and, ass~ing that J!N is approximately unbiased for J!, an approximation
for var (J!N)might be,

var

For suitably large N this approximat{on would be expected to hold
well if the estimator ~ had the nice properties of asy.mptotic normality

/
\
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hoped for. A major- problem lies in calculating it. The expectation
is over all sequences ,~ which migh~ bCCur~ This will depend in a
complex fashion ori'D and~. However, for given i, computer
simulations of a large number of similarly designed experiments of sue
N will enable one, at least theoretically, to obtain a reasonable
estimate of the above. Note that if such simulations were actually
carried out, then the actu~ values of ~ could be ~ompute~ and'the
samplin~ distribution of ~ estimated. Comparison of the estimates
of var(!N) obtained by these two methods suggests an empiriCal means
of testing the stability of the design procedure being used.

White (1975) sug~ests that ; M(~N)-l might be a suitable
approximation to va~(~), where M(~N) is the Fisher information matrix
of a design measure ~N actually attained in a given'sequential
experiment. White obtains motivation for this approximation from
the fact that if the same design measure

A 1 -1as m + 00 ~T '\IN(!, N M( ~N) ) •, Ll,m m
fact that,in replications of the actual

~ is replicated m times then
This, of course, ignores the

se~uentially designed
experiment, radically different ~N can be expected, even for relatively
large N, therefore causing great variation in M(~N)-l. However,
despite the fact that the degree of approximation may not be particularly
good, it would appear to be the only alternative to a large amoUnt of

;.

computing, if we desire to estimate ,var(~).

To summarise this section, it would seem that one does not have
definite backing from theory fOr t~e assUmption of normality of maximum
likelihood estimates with the type of design procedure described above.
Also, even if in practice approximate normality of the form~

A A

'\IN(~, var(~l\T» were to be assumed, var( e ) would appear to be very
:n, ~

difficult to calculate or even estimate.

4~3~Consider now an inferential approach based on the likelihood principle.
One of the essential differences between the approaches of followers of
the likelihood principle and the repeated sampling schools of thought
is that the former base their inferences only on the probability of the
events which actually take place in an experiment '0 as opposed to the

"
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'what might have happened' attitude of the repeated sampling school.
Therefore, in a sense, the inference problem for a believer in the
likelihood principle is simpler. .He need not concern himself with
the other possible sequences of design points which a complex design
procedure D might produce, as to him these are irrelevant.

Let us assume that
the likelihood ~ (!)

inf~rences are to be made on !directly from
= If p(y ·Ix. ,9). A Bayesian argument. 1 ~ ~-~=

will take the same course as what follows, as the posterior distribution
'IT(!ILn) will, as a function of !, differ from the likelihood only by
a multiplying factor 'IT(!), the prior distribution on i.

~ Note that , although we can write dovn explicitly a function which.
may be used to expr eae relative degrees. of belief in values of ~, ·we
may not be able to use it directly for making infe~ences on e, because
of its complex nature as a function of ~. What is usually done in
practice is to normalise the function. As noted in Chapter 1 this
is equivalent to assuming' that the log-likelihood function ~an

A

adequately be approximated in a neighbourhood of ~ by a second order
T~lor expansion.

log L~ (.!!) =

As in the previous section we are lacking in asymptotic theoretical
backing for this approximation.- The conditions for asymptotic
normality of posterior distributions are similar to those required for
asymptotic normality of maximum likelihood estimates, however, the
suitability of the above approximation would be relatively easy to check
in any particular case.

4.4. The following example is intended to highlight the possible
differences in the making of inferences based on repeated sampling
distributions of estimators and on likelihood principle methods.

I
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Example

A parameter 6 may ~ake only two values, 61or a2: An informative·
experiment is carried out according to the following design.

(1) Take 5 observations. If the observations satisfy a condition,
A sa:, let a be al' If they satisfy another condition, B s~,
leta be a2~ Otherwise continue.

(2) Take 5000 more Observations and estimate a.

Suppose that if 5005 observations are·taken then the true value
of the parameter is estimated with probability near 1. Suppose also
that for the first 5 observations p(Ale2) = p(Ble1>. = ·2 and
p(Alal) + p(Ela2)·

A '"That is, p( a = a21a2) = • 8, p( a = al 162) = ·2
,.,

pea = 62161)= ·2, p( 6 = 61 I all = ·8

Therefore, based on this repeated sampling distribution of 6 alone,
,.

if a = a2 one might be tempted to lay odds of 4:1 on this being the
true value of a •

The above ~proach would seem to ignore the fact that subsequent
to the experiment one would know the sample size and, if it were 5005.
one would intuitively be thinking of putting odds of higher than 4:~
on a = a2 being correct. The repeated sampling distribution of a
would seem not to be a suitable vehicle for making inferences on the
true value of a, a method of inference which allows for.conditioning
on the events which actually take plac~ being nece~sary. We note
that, in the above example, the sample size is not necessarily an

. .
ancillary sta~is~ic~ Despi~e this, if one were to condition on
the design pathw~ which the experiment actually took, namely 5 or... ,.
5005 observations, then the conditional distributions of a5 or .6;605
might give informa.tion which would lead t·o·more sensible odds.

I
/ ,
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.. However, in the more complex design situation. envisaged in 4.1.,
. .~.

if one were to condition on the design*:path followed there would be
no variability left in the experiment for repeated sampling methods .•
This is because the design path in the form of ~+l is a SUfficien~
statistic.

The lesson to be learned from the above would seem to be that the
d{stributions of estimators in sequential ex:per~ents will depend not
only on the natural variation in the populations being sampled from,.
but on the d~sign procedure D being used. If the sequential actions
embodied in a procedure D are independent of the data observed, then
it may· be possible to invoke the idea of ancillarity to justify the
use of conditional repeated sampling inferences. In some situations,
such as the example above, it might seem reasonable.to make repeated
sampling inferences after conditioning on a statistic which is not
ancillary. However, this idea would seem to be extremely artificial
and difficult to justify in general. As has been indicated above,
in the fully sequential experiment envisaged in 4.1, any form of. --
conditional repeated sampling method of inference would seem to be
unsuitable. If one accepts the need for conditioning, in this instance,
then essentially all one is left with is the likelihood function and
a likelihood principle approach to inference.

It would seem that motivation for experimental design comes
from two sources, which must lead to, at least in interpretation,
different design criteria. In the first instance consider an experiment
which is being carried out for the purpose of obtaining a point estimate.
In this situation the repeated sampling distribution of the estimator
being used, possibly in conjunction with a suitable loss function, w_ould
seem to be of prime importance for study with regards to experimental
design. Practical examples of this type of 'decision with utility'
problem are difficult to imagine, however, we do not exclude the possibility
of their existence. Secondly, suppose that subsequent to an experiment
we wish to make some kind of statement on the parameter space via an
interval or subjective probability statement. In this situation the
above example and ensuing discussion would appear to indicate the use
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of an inferential approach based on the likelihood principle and,
with regards to experimental design, an approach similarly based.
That is, at a given point in a sequential experiment, one will be
interested in conducting the remainder ,of the experiment on the
basis of what has already taken place as opposed to what might have
taken place.

The two approaches given above will not be independent~ A
design method of the second type, by which one attempts to make as
precise statements as possible about the 'true parameter values
in every realisation of the experiment will intuitively lead to

...
a design method D which, for a sensible estimator !,will be 'good'
in the repeated sampling sense. Where a priori design is possible
the two motivation~ for design will essentially lead to the same
type of criteria for design, as One has the opportunity to take'the
optimum design pathway in each realisation'of the experiment
(c.f; Chapter 1 ).

/
\
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CHAPTER5~

SOME SEqUENTIAL DESIGN PROCEDURES

As was seen ~n Chapter 1 the optimal static design will typically
be dependent on i. As the object of the e~periment is to estimate
the vector i, in some sense, it may be seen that a designed'experiment
must necessarily be carried out sequentially, gradually building up
knowledge about i. We shall define a fully sequential ~xperiment
to be an experiment in which each st'ageconsists of using only one
experimental unit. In Chapter 7 it will be suggested that, in
certain circumstances, a fully sequential experiment may be
unnecessary, or even impossible to achieve, due to practical
restrictions. However, in this instance, it will be assumed that
a fully sequential design is possible. In the present chapter we
shall consider contenders for a sequential procedure and motivation
for their use. In Chapter 6, via a simulation study, an attempt
will be made to compare the performance of'some of these procedures
in practice.

Note the following remarks on notation:
(i) Design points x€* will again be written as scalars for

simplicity.
(ii) We shall revert to earlier notation by writing the

Fisher information matrix I(x) as a function of i, that
is, as I(x,i).

(iii) The Fisher information matrix for a set of independent
observations taken at points in the vector

nas M(x ,!) = t I(x.,6).-n . L -

(iv) The sample inf5~rnation mat~ix at stage n
'experimen~ is wri~ten as S(~'ln ,,!) ~

x is written
-n

in a sequential

.2.!h Consider the situation at stage n <N. in an experiment where a
total of N observations ~e to be taken. and the criterion for design
is ,.

/
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Let us first consider an approach to experimental design based

on the repeated sampling distribution o~,maximum likelihood estimates.
At stage n observations have been taken at design points (xl,.~:,xn) =
T~ At the end of the experiment it m!ght be assumed that ~;ML is

is approximat,elydistributed as N(.!,var(~ ,ML». The design
problem is to decide at stage n how the remaining (N-n) observations

" Ashould be taken, in order to maximise ~{var(~,ML)}· v~r (~,ML)
will be a function of the unknown vector a and because of this the
best plan would seem to be to look, not (N-n) steps ahead, but only
one step ahead, and to select the (n+l) st point in some optimum

,fashion based on the knowledge of .!obtained up to stage n, That is,
to adopt a fully sequential experiment as defined above.

As noted in Chapter 4 Fedorov and White have used the following
A

approximation for var (a ),-n

,..
var(a )-n

.
i'

-1M(x ,a) •-n -

White (1975) considers the case where the criterion is D-optimality
and obtains motivation for a design procedure from W'ynn's iterative
algorithm as described in Chapter 3. That is,she selects as xn+l
the point which corresponds to the direction of maximal rate of
ascent of ~ at M(~n'!)' ~n being the design measure putting weights
1 A- at each of xl'.'. ,x. White substitutes 6 ML in M(~ ,a) atn n ~,n-
each stage. Fedorov and Malyutov (1972) put forward a generalisation
of this procedure whlch might be described as follows.

(1)
(2)

A

Take K initial observations. Estimate ! by ~~~.. Set n=K.
. A A

Find x 1 such that ~{M(t,a Mr.),I(x +1,6 ML)} is maximised,n+. n -n, n -n,
xn+l e j{ •

A

Take an observation at
Go to (2) if n ~ N.

x re-estimate ~ bye. n= n+l.n+1' "'"'11+l,Mr..

It should be noted tha.twith the above procedure the maximum,
increase in ~ will not necessarily be obtained •. That is,

/
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~{M(x +1' e MI.)} -(H M(x ~.e MI.)}
41 '"'"11, -n .'"'"11,

is not necessarily· maximised. However, with D-optimality as
criterion, it may.readily be shown that the above P!ocedure will giye
the maximal increase in ~.

At this juncture it would seem to be worthwhile to make a
comparison between the sequential experimentation being considered in
the present chapter and the iterative algorithms of Chapter 3. In
the general discussion of the iterative algorithms of Chapter 3 it
was observed tqat it might be sensible to use an algorithm which might
take a large number of steps to get close to an optimal design if the
computational work involved in each step was small. , In an actual
sequential experiment, however, the use of an experimental unit will
typically represent a far greater outlay of resources than the taking
of an extra step in a computer program. It would therefore seem
to be more economical to attempt to get th~ maximum increase in ~ at,
each stage in the design. In this sense, therefore, the iterative
algorithms of Chapter 3 are possibly the wrong places to look for
motivation for sequential design. The following is suggested as an
alternative to Fedorov's procedure descri~ed above •

.
(1) Take K initial observations and estimate e by ~K,ML' n = K.

A A

(2) Find xn+l such that ~{M(~'!n,MI.) + I(Xn+l'!n,ML)} is a
maximum, xn+l '€.:K •

Take an observation at x 1n+ and re-estimate e by
A

a • n= n+l.
-""1\+1,11 j..

Go to (2) if n ~ N.

5.2. A likelihood principle approach to experimental design will now
be considered. At the end of an experiment it might be assumed that
the likelihood function can be approximated to, in a,neighbourhood of
A

e , by a second order Taylor expsnsdon,'"'"11,MI.
would seem to be to attempt to maximise some
a matrix which will

A natural design criterion
function ~ of S(x ,v,e Mr.),-n Lil +n ,

describe the local shape of the likelihood function
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'"at e = e . Again a fully sequential experiment would seem to- ---n.,ML.

be appropr-Late, Given (~,Zn) at stage n ",onewould wish to
select xn+l ~ 3(~o maximise ~{ S(~+i 'In+1~~,ML)} Note that
Sex l'V+l' e ML) will typically be a function of y +1' the. ~+ ~ ~, .., n
observation to be obtained from xn+1• For this reason the most
suitable design criterion would seem to be to maximise

E' { " { S(~+l' In+1 ~ i,ML) } }.
Yn+1

Although this would seem to be the best design criterion in theory,
the practical optimisation problem might be fairly difficult. G.E.P.
Box and W.G. Hunter (1965a) have treated the case of non-linear
regression with normally distributed error using Bayesian methods.
They note that if the regression function n(x,!) can be approximated,,..
an a neighbourhood of e ML' by a first order Taylor expansion, that+n ,
is

,..
then S(~+l' Zn+1' ~,ML) may be written as

n+1
1:
i=l

,. T"n (x e ) n (x e ) which.is independenti i' -n,ML· i i' ~,ML '

of the vector.of observations ~+1. Therefore, in the non-linear
regression situation, this approximation reduces the criterion for
design to that of White and Fedorov described in 5.1. It should be
added however that this quasi-1inearisation of n(x,!) cannot be
extended to other models in general as may be seen by considering
the case of binary observations with p(l!x,!) = n(x,!).

Another approach is applicable to all models and also removes
the awkward expectation from

[ ,{~{S(!n+1'ln+1 ,~,ML)}} •
Yn+1

" is a concave function, therefore, making use of Jensen I s inequality,

/
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we have,

=[ '{+{ S(~'~'~tML) + S(Xn+ltYn+l,-in,ML)}'}

Yn+l

The design criterion suggested by the above is to try to

maximise the g~ven upper bound for

E '{H S(~+l 'In+l ,~,ML) } }
y.n+l

with respect to x l'n+

A sequential procedure may be obtained by substitution of

[ '{~{ S(~+l 'l:n+l t~ ML)} } , ., ,

Yn+l
or its upper bound, in the second procedure of 5.1. in place ot

H M(~+l ,~,ML) },'

5.3. The sequential procedures of 5.1 and 5.2 may be summarised
as follows.

(1) Take K observations to start the process. Estimate ~ by

~,ML • n = K.
(2) Choose xn+l £,..*- to maximise sc:nnefunction of x~+l and ~,ML'

say, f(Xn+l, ~,Mr) ~
(3) Take an observation at:le •n+l,

Go to (2) and repea~ .if n ~N~

,.
Re-estimate ~ by in+l,ML~n=n+l.

/
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The following comments and conjectures are made concerning this
form of procedure.

,..
(i) The parameter ~ is estimated bY'.e ML at each stage.-n,

,..
(ii) The sequence of estimates'{ e , i=K, ••• ,n } will be, --n ...

subject to a fair amount of fluctuation for n 'small
relative to K.

(iii) This excitability Of'~} in the early stages of the
experiment will manifest itself, in step (2), in an
erratic sequence of x , 's.n+..v

The erratic nature of the x l's may introduce a feedback ofn+
excitability into the' {~} sequence affecting the rate
at which the sequence is settling down to give a consistent

(iv)

estimate for Jl.

These comments are made, for the moment, with only intuition as
justification. AssUming the conjectures to be valid we shall
consider possible means of improving the situation. As analytic comparison
of design procedures of this type would seem to be impossible, it viII be
necessary to resort to a computer simulation study in Chapter 6. In
this study an attempt will be made to compare the above procedures with
alternatives which will be suggested and thereby justifY the assertions
made above, at least in the example to be considered.

,.. Comment (ii) above concerns the stability of the sequence of,..
estimates ~,ML' For relatively small n the nature of the likelihood
function may change greatly after only one additional observation. BY

,..
its very nature the point e ML giving the maximising value of the--u, ,
likelihood function, will be very sensitive .to such changes. As n
becomes large and as long as observations have been taken at reasonably
informative points in the design space then each observation will have
diminishing effect on the shape of the likelihood function, thereby

A

introducing a natural stability to 'e Mr.. The type of estimator for
"'Il ,

e which the above comments would seem to indicate would be one which....
was more stable than e UT for small n and for which any bias introduced

.-n,l'W

/
\
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by the stabilising process would be naturally overcome .by the weight of
information as n increased. 'The term'estimator for a' in the
above sentence} is used rather loosely, a more suitable expression
might be 'value to be substituted for ! in f(xn+l ,!) " there being
no compelling reason why the value used should be one which might
actually be used as a point estimate of a i~ the experiment were
to stop at stage n, for n small. A procedure which useS the set

',.
of rules given· above with a sequence of estimates given by {~,ML }
shall be referred to as a Type 1 process.

Because of the comments made above it seems reasonable to suppose,.
.that improvement in design might be achieved by using a sequence' {e. }. -'-fl

which is less erratic than that produced by the maximising value of
the likelihood function. Another contender which.comes to mind is
some form of weighted average of ! over the likelihood function.
For example one could take

=
r ~ Ig (~)d ~

f ~ (_~)d!
. ,

which is immediately recognisable, in Bayesian terminology, as the mean
of the posterior distribution on ~ with an improper uniform prior.
This suggests considering a prior distribution ~(!) on! and
using the posterior mean, that is

=
r ! ~(!)~ (!) d!

f m_q_) ~(!) d!

One of the main criticisms of Bayesian methods ~s that the prior
distribution ~(~) must be constructed by the experimenter, and
therefore might introduce bias into inferences being made subsequent
to an experiment, particularly for small samples. Let us suppose
that a sequence of the above type is used and that the prior distribution

...
does ~ave a biasing effect on ',~~ Even if this is true, it might be
suggested that a mor~ stable design procedure would result, not only
because an averaging process is being used instead of maximisation, but

/



88

because the prior distribution will have.the effect of an extra set
of observations in slowing the rate of change of e as the procedure-n
progresses. As n increases the effect of the prior distribution

. A

will, of cour'se, diminish, giving the sequence {§n} the type of
properties hoped for. As a bonus, if the prior distribution has 'the
the effect of concentrating the posterior distribution in a neighbourhood
of the true value of ! then the' stabilising effect and therefore the
'optimality' of the' design method would be expected to be improved even
more.

An alternative process would be to use the posterior mode, that.
is, the maximising value of 1T(~).Lz.n(~). This would also be
expected to be more satisfactory than the pure maximum likelihood
estimate. However, in the simulation study of Chapter 6 only a
method using the posterior mean will be considered 'and a process
which uses this form of estimator will be referred to as a Type 2
process.

By consideration of the general procedure described at the start
of this section it may be seen that the reason for estimating ~ is
to enable one to obtain an approximation of the value of x 1 whichn+
maximises f(xn+l ,! ) by maximising f(~n+l ,~). The value of. xn+l
maximising f(xn+l,!) will typically be a function of ~, g(1) say.

'.In practice we may not be able to write down this function explicitly,
but, given a! , g(~) could be computed. Therefore. the reason for
estimating! is to give a selection of the best next design point as

A

g(e). An alternative approach might be to consider
-n

function of 1, n~ely g(i), and to use as the (n+l)st
A

notg(S ), but the expectation of g(e) over the posterior distribution-n -
That is,

x 1 as an+
design point,

for ~.

x +1.n =
! g(~) 1T(~) ~ (i) d!

!1T(1).~ (1) d 1

For the reasons given above this procedure might also be exp'ected
A

to be more stable than the one usingxn+1 = g(!n,MI) as design point

I ,
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at each stage.
3 process.

This third proce~ure will be referred to as a Type

It should be noted that numerical calculations involved ~n Type
2 and Type 3 processes will typically be more demanding than those for
the Type 1 process.

We now move on to investigate how these three processes work in
practice using a simulation study on a simple example.

/
/



'CHAPTER 6 , 'I

A SIMULATION STUDY

The aim of this study will be to compare the effects of using
design methods of TYpes 1, 2 and 3 in practice. In order to make
this study feasible computationally the simplest form of example'has
been taken, that being a situation where there is o~y one unknown
parameter in the model.

6.1. The probability model made use of in this study is of the
following form.

p(11x ,a) = exp(-ax) , p(0 Ix ,a) = 1 ...exp(-ax). .x£3[::(a.bJ •e > O.

It may easily be shown that the following is true.

s(x,y,a) = ,
x2.exp(-a:ic)
(1-exp(-ex»2

, y-O •

o , y=l

rtx,e) =
exp(ax)-l

Because K=l the optimal static design will exist at one point,
the optimal point being the value of x , x* say, maximisiilg x2

exp(ax)-l
•

, c .'It can be shown that x*£ {i ,a.b}, c i 1.59. where x* takes the
.value iif ~ s[a,bJ and otherwise a or b according as which
maximises x2

exp(ax):-l

Therefore, the optimal static design is a dependent and a sequential
type procedure is indicated.

Because K=l all of the criteria considered in Chapter 1 will be
equivalent, reducing to 1 for a repeated sampling type

N
.III (x. ,8)
1.= 1.

,
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criterion or to
~i=lS{xi'Yi,e)

for a likelihood type approach.

Consider first a repeated sampling type procedure and how the
processes of Types 1, 2 and 3 will progress.

Cl) At stage n in a Type 1 process xn+l will be chosen to maximise
~

n AA

.tlI{x.,e) + I{x +l,e )a= l. n' n n

which is obviously maximised by x* l'e{~ , a,b}n+ . t1 ML. n,
as given above.

,with rules

(2) A TYpe 2 process will be similar to a Type 1 process, the difference
being that x +1 will be given by x* le'{~ ,a,b}, where
A n n+ e B
~,B.denotes a B~es type estimate. n,

(3) A TYpe 3 process will be relatively easy to apply in this example
as gee) can be·written explicitly as ~. and xn+l vill be giv~n
by,
,

=

c/ e . 'If ( e). LIn (e) de·

hr (e) L (e) de
Zn

If a full likelihood' principle-type design were to be ~ttempted
then the process w.uld be a little more complex, as gee) can not nov be
writt~n down explicitly and vill be dependent o~ s{~'In.e).

g{e) will be the value of xn+l maximising ,

E, l-{S-{-!n-'-ln-,-e-)-:....;~=-{-X-n+-1-'-yn-+-1-,-e-)-)-j
Yi:l.+l
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=
-p(llxn+l,e}

s(~ '.In ,e}

pC01xn+l ,e}

=
sex ,y ,e} + p(llx l,e}.s(x +l,o,e}-n -n n+. n

The Type 1,2 and 3 processes will proceed as described in
·Chapter 5, only with the function gee} as defined above. To minimise
computing only a procedure such as that arrived at via the repeated
sampling type method was used in the simulation. It should be noted,
however, that this procedure might have been arrived at using the
alternative likelihood principle process suggested in 5.2.
let g(e} be the value of x 1maximising• n+

That is,

1

This gives again gCe} = ~

6.2. The simulation study was carried out according to the rules given
in 6.1. Relevant details of the computer simulation study are
discussed in Appendix 5.

The de~ign space 3( was set to be the interval C·5,30] , and'the
simulation study was~epeated-with data being generated from distributions
having parameter values e =1.0 and e =~. 1.2639.

with processes Type 2 and Type 3 the prior distribution was taken
to be un~form over the positive half of the real line. It was hoped
that this would avoid biasing the study in favour of these processes.

All statistics generated in the study are based on 500 independent
sequentially generated experiments. Statistics generated in the stucq,
by which it was hoped to compare the processes, are listed below.
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(i) "For each process type the maximum likelihood estimates e 'MLn,
were obtained for n=lO, 15, 20, 25,'30, 35, 40, 45, in each
replication of the experiment. Relative frequency histograms
were drawn up to investigate the effect of increasing n on the

"repeated sampling distribution of e ' ML'. A'\ypical set of histo-, n,
grams, for e = 1.0 and a Type 1 process, is given in Fig.6.2.1 ••

"The sample means and variances of e ML were computed for eachn,
process and n = 10, 15, 20, 25, 30, 35, 40, 45.
These are listed in Fig.6.2.2.

(ii) In order to investigate any possible bias in taking w(e) to be
the ~proper uniform prior, the repeated sampling distributions'

"of e B were investigated in the same way as the maximum likelihoodn, , A

estimates were. Sample means and variances. of e B are givenn,in Fig.6.2.3 •.
(iii) In 4.2. it was 'suggested that a suitable method of investigating

• • .'1\, the stab111ty of a'process might be to compare estimates of
"var (e MI.,) obtained via the parameter estimates and via an estimaten,

of

The first are contained in Fig.6.2.2 and the second are tabulated
in Fig.6.2.4.

, '

(iv) In order'to compare the processes in a Bayesian sense it was
thOught that comparisons.of

E.
In

,

.between process types, might be informative. Estimates of
the above expectations are given in Fig.6.2.5.



94

(v) Anether Bayes type cempar~sen was ebtained by recerding, fer each
f..

simulated experiment, the number ef ebserva.tiensthat were required for
s(~'Zn,a) to.attain a fixed value. In this case the value used
was 35.0. A typical relative frequency histegram fer this type
ef data, fer a = 1.0 and a TYPe 1 precess, may be seen in,Fig.6.2.6.
The sample means and variances of the number or ebservatiens un~il
abserptien by this upper barrier are 'given in Fig.6.2.7, fer each
precess type.

Nete:In Fig.6.2.2. aMI. and sk denote the sample mean and variance
- 2ef the maximum likelihoed estimates. In Fig.6.2.3. aB and SB denote

the sample mean and variance of the Bayes type estimates. In Fig.
6.2.7. n and S2 denote the sample mean and variance of the numbern
of steps until absorption.
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a = 1.0 a = 1.2632

S2 - S2n 6MI. MI. aMI. MI.

Type r. .10 1.1901 .3229 1.3892 .3814
15 1.1429 .2377 1.3576 .2895
20 1.0906 .1402 1.3362 .2022
25 1.0739 .0970 1.3010 .1325.
30 1.0524 .0745 1.2972 .1177
35 1.0377 .0623 1.3026 .0917
40 1.0303 .0523 1.3032 .0763
45 1.0222 .0433 1.2964 .0661

Type 2. 10 1.1241 .2785 1.3704 .3379
15 1.1054 .1807 1.3445 .2347
20 1.0781 .1199 1.3239 .1679
25 1.0630 .0843 1.3073 .1189
30 1.0427 .0660 1.2915 .0980..
35 1.0276 .0549 1.2881 .0819
40 1.0230 .0508 1.2826 .0653
45 1.0146 .0423 1.2811 .0591

Type 3.· 10 1.1390 .2977 1.4007 . .3794
15 1.1074 .1781 1.3504 .2408
20 1.0719 .1216 1.3258 .1650
25 1.0627 .0945 1.3032 .1204...'
30 1.0469 .0753 1.2943 .•1028
35 1.0366 .0557 1.2900 .0859
40 1.0251 .0456 1.2851 .0693
45 1.020.7 .0407' 1.2789 .0613

"Estimated means and variances of en ML

Fig. 6.2.2.



a = 1.0

n aB 82B
Type 2 5 1.9010 .8107

10 1.4333 .4252
15 1.2940 .2537
20 1..2085 .1571
~5 1.1611 .1030
30 1.1275 .0773
35 1.095:3 .0634

'.40 1.0769 .0561
45 1.0606 .0472 .

a = 1.2639

n eB 82B

Type 2 5 2.0844 .8153
10 1.7241 .4763. 1.5583 .316215
20 1.4694 .2063
25 1.4292 .1494
30 1.3935 .1162
35.._ 1.3715 .0966
40 1.3518 .0732
45 1.3416 .0667

• A

Estimated means and variances of' en B
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e = 1.0 '

n Type1 Type 2 Type3
10 34.9297 .4981 .5714
15 .7473 .2330 .2980
20 .1856 •1348 .2282 .
25 .1069 .0974 .1281
·30 .0827 .0745 .0827
35 .0687 .0608 .0646
40 .0590 .0558' .0526
45 .0507 .0475 .0453

e = 1.2639

n Type1 Type2 Type3

10 1.9649 .7535 1.1719
15 .7781 .3210, .4669
20 .3424 .2296 .2409
25 .2018 .1719 .1780
30 .1371 .1334 .1418,-
35 .1047 .1022 .1159
40 .0850 .0797 .0930
45 .0747 .0691 .0777

Estimates of E [[3 L~(O)J~32L~~e)]jIn aa' aa, .

lis· 6.2.4.



100

e = 1.0

n Type1 Type2 Type 3
10 .3584 .2254 .2326
15 .1585 .1337 .1364
20 .1046 .0948 .0961
25 .0782 .0732 .0736
30 .0629 .0598 .0597
35 .0525 .0505 .0502
40 .0451 .0437 .0434
45 .0395 .0384 .0382

e = 1.2632

n Type 1 Type 2 Type3
10 .5287 .3456 .3453
15 .2537 .2086 .2109
20 .1685 , .1491 .1488
25 .1266 .1157 .1152
30 .1009 .0945 .0941
35 ,_.•0837 .0798- .0793
40 .0716 .0689 .0685
45 .0628 .0606 .0604

Estimates of [ lS(~. Zu~6»)z,

Fig. 6.2.5.



o
Lf\
M

E
,......
CD..
>f..
><r.......

"tr.l
~o
s::o
'M
+'eo
III

~.

r-I
'M
~
;::i

101

8....

•~•
N
•~

o



102 .

e = 1.0

Type1 Type2 Type3,- 82 - 82 - 82n n n ~n ~ n n

60.40 26.33 59.48 18.76 58.95 24.29

e = 1.5639

Type 1 Type2 Type3- 82 - 82 . - 82n 'n nn n n

92.95 38.57 91.76 27.02 91.39 35.98

.

Estimated means and variances of number of steps to
absorpt,~onof g(~, In' e)

Fig.6.2.7.
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6.3 Comments on the results of the simulation study are listed
below, followed by a general discussion of the results with regard
to comparison of performances of the different process types.

Fig. 6.2.1-
The histograms illustrate the rather erratic estimation for

small n, with gradual convergence towards a more normal-like distribution
of estima~es, centred on the true parameter value, as n becomes larger.

Fig. 6.2.2.
The Types 2 and 3 processes appear to be performing almost

uniformly better than the Type 1 process with regards to bias and
vaNance of the maximum likelihood· estimates. Types 2 and 3 would
seem to be a little more difficult to separate, for.example at n ~ 45.
Type 2 seems to be less biased but have larger variance for e = 1.0,
the roles being reversed for e = 1.2639.

Fig. 6.2.3.
The data inthi~ table woUld seem to indicate that there is. "su'bstantialbias of aB away from the trueparame,ter values, particularly

in the ~arly stages of the process.

Fig. 6.2.4•
.Comparison of the estunates of

~n this table, with the sk values in Fig.6.2.2. indicates fairly
wild differences, for smalln, with the Type 1 process. However,
even after 45 observations, the values. are not particularly cOD).parable,
for any process type,notably for a = 1.2639.

Fig. 6.2.5.
Again comparison of estimates of

E .( . 1 J
. lu lS(!n' Zn,e) )
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would seem to indicate that Types,2 and 3 are performing uniformly better
L. '.than. the Type I process, and again Types' ,2 and 3 would seem to be

difficult to separate.

Fig. 6.2.7.
Again Types 2 and 3 would seem to be dominant over the Type I

process. ,~

Comparing Types 2 and 3, 'theType .3 process would appear
to have the smaller average number of steps to absorption but the
larger variance.

Although the differences betveen the statistics generated by the
simulation stu~ for the three process types are not dramatic, there is
one fact which is evident, that being that the Type 2 and 3 processes
appear to dominate the Type I process almost uniformly over the different
comparison methods. This,';allied with the fact that Fig. 6.2.3.
would appear to indicate that the improper uniform prior assumed is
producing a bias awa:y from the true parameter value, would seem to
provide empirical backing for the conjectures made in Chapter 5, despite
the fact that evidence has been presented only for two parameter values
in one probability model. In conclusion, rather than claim that the
conjectures of Chapter 5 have been completely vindicated, it would seem
reasonable, from both the intuitive and empirical evidence above, to
advise strongly that alternative procedures ,to those of the Type I class
, ~"

should be investigated in any Practical situation, if possible. In
situations where this type of sequential experiment is applicable, that
is, where the probaQ~~ity modei is assumed to be known, it would seem
highly probable that some form of real prior knowledge about, Jt would
be present, and this being the case it would seem to be essential that
this knowledge should be utilised in any sequential experiment.

It should be noted that, although computing time was comparable for
the three process types in the above one parameter model, the amount of
computing necessary for the Type 2 and 3 processes will quickly become
restrictive as the dimension of the parameter vector increases. In
higher dimensions it may be possible to maintain some of the flavour of
the Type 2 and Type 3 processes, but at the same time' ease computing
difficulties, if a posterior mode type process is used as suggested in 5.2 ••
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CHAPTER·. 1

SEMI-SEQUENTIAL·EXPERIMENTATION

up to this point we have considered only fully sequential design
procedures. Often- experimental conditions and economic considerations
will enforce the need for a less time consuming process. For example,
a real problem was encountered in which observations were to be
allocated to two treatments. The optimal allocation rule was a
function of a set of unknown parameters. UnfortunatelY,early hopes
that it would be possible to apply some of the preceding ideas to a
real problem were dashed when it was revealed that each observation toak
three weeks to process, thus making a fully sequential design impractical.
In fact only a two stage experiment was possible. Half of the
observations were allocated evenly in stage one and. based on the results
obtained-,the rest were allocated in the second stage.

The a~m of this chapter will be to investigate circumstances in
which less than fully sequential designs will be expected to be quite
satisfactory in practice, and to consider how the fully sequential
processes of the preceding chapters might be adapted to allow for the
taking of batches of observations at each stage. Initially a melange
of problems will be considered with a view to possible deviation from
fully sequential procedures without definite restrictions on the nature
in which these must take place. In M. the more definite problem
of design with fixed batch size will be investigated.

7.1~ It will be useful, at this point, to consider-a partitioning
of the type of design problem which might be encountered. The
partitioning process will be carried out accord{ng to the nature ~n

. .

which the optimal static design measure, for a given problem, depends
on the vector of unknown parameters e. Only models where a sequential
design procedure would be expected to be.necessary will be considered
(that is where the Fisher information matrix is a function of - JL).

/



106

F~ur categ~ries of pr~blems (Pl,P2,P3,P4) ,will be used~, For each
category an example will.be given and.s~ggestions made as to how the
sequential de~ignprocedure may be curtailed due to the nature of the
problem.

Pl Both the spectrum of the optimal design and the
optimal design weights are independent of' 6

Example. In Example 2. of 2.6.1. a problem was analysed where
observational units had to be allocated to three populations which
would produce observations with probability distributions (1) pO('6l),
(2) po(e2), (3) Po (61 + 82). It was shown that t?e observational
units should be allocated equally to populations (1) and (2)
independently of (6l,6~), if D-optimality were the criterion. There-
fore, even though the Fisher information matrix for each population is
(81,62) dependent, the D-optimal design measure is not, thereby removing
the need for a seque~tial experiment. This situation would not be
expected to occur often in practice, but it is interesting to note that
it may occur.

P2 The optimal design spectrum is independent of 6
but the optimal weights are not.

Examples: Problems which fall into this category are the comparison
of means example of 2.6.2. and the D2 optimal design problem.in the
calibration example of 2.6.4.-

In the above examples the spectrum of the optimal design consists
of only two points, which are independent of~. This suggests
that in a sequential experiment the design space should be reduced to
these ~wo points. After stage n an observation should be taken to,. ..
make (Pl,n+l' P2,n+l) as close as possible ~~ (pi (~), P~ (_~)),
where (p* (e ), .P*2(i)) are the optimal' allocations given' 6 = 6l--n ..... --n

and (Pl,D,+l' P2,n+l) are the allocations which would'.actually be in

use at stage (n+l).

/
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It should be noted that, in the above type of process, the

instability of the ,sequential process for small n will largely be
removed. Because the set of design points which may be used has been
reduced to a small set of points which are'known to be informative

I ,

for all .!, the possibility of the.design procedure moving erratically
across the design space has been removed~ Also, the possibility
of achieving a design measure close to the optimum design measure,
for reasonable sized N, will be greatly increased because all of the
observations are being taken at points in the optimal design spectrum.
Because of this, inferences subsequent to such an experiment will be
made with more confidence that approximations being made are good,and
also possibly with less computation. One would expect the approximation
of ~edorov and White to var (~) to,be more satisfactory and that the
sample information matrix would be well_approximateq by a suitable-
Fisher information matrix as the number of Observations at each design
point will typically be large and a law of large numbers may be
invoked.

P3 The optimal design is dependent on a but its
dimension and the optimal design weights are not

Example: Examples which fall into this category are the quantal
responset~es of problem of 2~1.5.. It was shown that the optimal
design ~easure was of the form

~ ,

,a-a1-,
a2.

if these design points lie in *.
In many practical situations it would be expected that a design

procedure should,bynecessi~y, be simple~o carry ou~ with the minimum
of computation. This example suggests, a possibly useful method of

, , ,

carrying out some ,sequential procedures, particularly if a reasonable

/
f

I' ,
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n'UIllberof observations are to be taken at each stage of the procedure
and design is reallY' only feasible betw~en stages. The procedure
suggested is to take observations at s~age n according to the
design measure

"2
.a-6l,ne2,n

-a-6. l,n
62,n

.Again,the fact that a reasonable number of observations are being
taken at each design point might make approximations more satisfactory •

P4: Both the optimal design spectrum and the
optimal design weights are dependent on 6.

In situations such as this a fully sequential procedure would
seem to be indicated, if possible. However, it may be possible that
the position can be improved upon in situations wher.e'there exists
some form of prior knowledge about the possible values that the
unknown parameters might take. In Chapter 5 it was suggested how
this knowledge might be utilised in fully sequential procedures.
NoW we consider'how it might be used to suggest suitable semi-sequential
procedures. It will be useful, at this point, to consider an example.

7~2. Let us reconsider the quantal response example of 2.1.5. in the
particular case where the model is logistic. That is,

, p(olx,!) =. 1

1 + exp( e + 62 x)
1 .

I

"
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The design space * will be taken ~~,,'be[-1 ,+lJ '

As was noted in 2.1.5., the D-optimal design measure for estimating
T ,,'

~ = (el,e2) can be shown to be

1 1
12 , 12

a-a -a-a ,
1 , 1

a2 62
where a :i= 1·5434,if a-6 and -a-6 both lie in [-1,+11·1 1

62 6'2

~ It was thought to be of interest to investigate what the optimum. ~
design measure would be if the above optimum design points were not
contained in [-1, +lJ. To this end the optimal design was computed
for a large number of points in a scan of 6 space, using an iterative
algori thm. What was found was that, in each case, the D-optimal
design measure existed at'two points. It is therefore of .interest
to investigate the D-optimal two point design for this model as a
fuhction of !. That iij,to find (Xl' x2) to ~aximise

Let the optimum design for (61,62) be (x!,x~). Use of the
symmetry ofV(x,!) with respect to! (V(x,!) =V(x,-!» and the
symmetry of the design space about the origin reveals the following,
(x! ,x~) is the D-op~imal 2-poin~ design for (-81, -a2) , (-X! ,-x~)
is the D-optimal 2-point design for (61,-82)~

Therefore, essentially it is only necessary to consider the
problem for 81 ,82 ~O.

!
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By differentiation of IM(~)I above it can be ,shown that a global
maximum is at~ainedwhen, 261 + 62(xf + :x~) = O,the ,xf 's being .
given by the two,solutions of the equation

, 1 +(61+62x*)

1- (61+6'2x*)
, .

That is, where 61 + 62x*
giving a ~ 1.5434.

If xf, x~ e[-l. +lJ 'then t~s is the optimal two point.design.
Ifnot~ then the solution must occur on the boundary of the permissible

a+l,= ± a, a being the solution to exp(a) = a-I

'.reg1on. For 61, 62 ~ 0 ~t can be shown that one point must then be
-1 and the second is given by the solution to

2+(x+l)62
-2+(X+l)62

/

If the solution to the above'does not lie in [-1, +J] then the optimal ,
two point design is given by xf = -1, x~ =' +1.

These optimum 2-point designs are identical to the continuous D-
optimum designs evaluated using numerical methods. The above analysi~
of the problem suggests considering how th~ optimum static design
varies as a function Of~. Fig.7.2.1. shows how the parameter
space may be broken down into three regions according to whether the
optimum design falls into one of the three categories described above.
Again it is only necessari to consider6l, 62 ~ 0 as the other quadrants
may be obtained by the symmetries ,previously mentioned.

/'
\
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1
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, Region B: upper boundary, 62 -61 = 1.54
. 1+6. - 2.lower boundary,exp(Bl:'62)--

-1+62Fig. 7.2.1.

A, Band C correspond to the three regions described above. It
the true parameter value lies in A then the optimal static design is
given by

-a-61

,

It.the true parameter value lies in B then the optimal static design
is given by

f l , ~ ] ,
-1 , x

where x is the solution ot,

It the true parameter value lies in C then the optimal static design
is given by

I
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This example suggeetia possible alternati ves to :euily sequential
experimentation in situations where prior information about parameter
values is available and time spent on experimentation is an important
factor.

In Chapter 5 it was suggested that prior information might be
utilised by constructing a prior distribution on ~ space. Possibly an
easier thing for an experimenter to do would be to express his prior
information via a region in ~ space in which he was 'certain' that
the true parameter values lay. If the experimenter was certain that
the true parameter v8J.ue lay in C then a sequential exper-iment; would be
unnecessary, the optimal static design being independent of ~,given
Jl. in C. If he were certain that the true value lay' in C or B then a
semi-'sequential experiment is suggested, ta_king half of the available
observations at x = -1, and using the ,information obtained to design
sequentially with the other half of the observational units. If the
experimenter can not say, a priori, in which region the true parameter
values lie then a fully sequential procedure might be embarked upon,
with the possibility of changing over to a ,semi-sequential procedure
if the a posteriori probabilities of regions Band/or C became suitably
high.

7.3. Reconsider the example used in the simulation study of Chapter 6.

The design space was taken to be ~5,30] , and it was noted that
the optimal static design would take all the observations at one point,
that beipg x* = 1~~9 Let us assume that prior information can
be produced in the interval form discussed in 7~2:,and that, in this.
case, an interval in which the experimenter is certain that the true
parame~er value 'lies is [l~ 59 ,3~18J say~ This' is e~uiValent to
saying that he is confident that x* e [i, 1 ] • We shall call this
region the informative design space and denote it by *'. A sensible

/
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plan might be to use not :K as design space but (:Kn:K'), that is, an

this example [~5,1] • This action might prove useful in two ways.
Firstly it may avoid the possibly more awkward construction of a
prior distribution and yet might utilise the prior information in
increasing the stability of a sequential procedure by restricting
the design space to more informative points. It should be noted
that the improvement in design gained by tbis strategy will be analogous
to that gained in the examples of P2 in ~., alth~ugh in 7.1 no
prior knowledge of ~ was required. It should also be noted that
this process of reducing the dimension of :K may serve to make the
design more robust to outlying observations.

7.4. In this chapter we have considered, rather informally, possible
'situations where designs which are less than fully aequential may be
satisfactory. In considering a practical problem this informal
approach would seem to be essential as each particular problem is
likely to have its own peculiarities. However, the above sections~
'would seem to indicate a general structure for investigation of a new
design problem which might be built upon in tbe -particular situation
on hand. This might be summarised as follows.

(1) Investigate the optimal static design measure as a function of
!, if possible.

(2) Att empt, with the aid of the experimenter, to obtain some form
of prior assessment as to what the true parameter values might
be.

(3) Investigate the possibility of less than fully sequential
procedures suggested by (1). Is the prior information of
any help?

(4) If a fully sequential design seems to be necessary then prior -
information may be useful.' Regular re-assessment of the
possibility of semi-sequential procedures may also be useful.. . . .
It may be possible, with the'aid of prior knowledge, to red¥ce
the volume of the design space in which the experiment is
allowed to take place.

/
\
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7.5. In the .abovewe have considered, .generally ,methods of Icutting
corners' in sequenti~l procedures, ~norder to speed up the progress
of an experiment. Often it is to be expected that circumstances
will dictate the nature in which a.design procedure must be less then~
fully sequential. Particularly in in~ustrial settings it will be
necessary to experiment by taking large batches at each stage, and it is
to this problem which we turn our attention now.

Let us assume that we have a total of N = rn observational units
at our disposal,where r is the number of stages available and n ~s
the number of observational units in each batch. We take a likelihood
principl.e approach to design. Consider the situation after stage
i < r. We have e.

~
are to be selected,
Echoing the methods
seem to'be to select

as estimate of the parameters. n design points'
at which to take observations in the (i+l)st stage.
of Chapter5 the natural criterion for design would

Txi+l =. (xi+1•l'···' Xi+l,n) to maximise

IE A A

S(~, .lot'!i) + S(xi+l I Zi+l Iii)} } ,

with the obvious notation. As was mentioned in Chapter 5 this is
likely to be an awkward problem to solve exactly, even when ~+l is
scalar. However, for large n, the alternative procedure suggested
in Chapter 5 m8¥ be useful; the alternative procedure being to select
~+l to maximise an upper bound for the above criterion, that is

i, A n A

~{: s(~, .lot'~) + 1: I(xi+l,j'~) }
t-l... .j=l,

=
i

~{ S + n M(tn)}, S=.1: S(x=t;'Lt'!i)'.t=l. __

1 nM(t ):: -. 1: I(x. 'I .,].)
n n j=l ~+ IJ 1

j'



115

This suggests solving the followingcontinuousde~ign problem.

Find ~ to maximise cH s + n~M(~) }

This problem is analogous to the type of problem considered in
Chapter 2,as it may readily be seen that the positive definite matrix
S will have no complicating effect on the general structure of the
problem. If this continuous problem has a solution with a design
spectrum of dimension small relative to n then the optimal design
measure may be approximated to using the methods of 3.7.1. If a
reasonable number of observations is being taken at each design point
then a law of large numbers will ensure that we can get close to the
upper bound given above.

"

,

I
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CHAPTER 8

EPlLOGUE

In Chapters 1 to 3 we have presented the theory and assumptions
underlying the optimal experimentai design problem and have reviewed
methods of solution of this problem. In Chapters 4 to 7 we have
investigated possible sequential design procedures which might prove
useful when formulation of an a priori optimal design is impossible
because the optimal static design is a function of a vector of unknown
parameters.

All statistical methods are founded on certain assumptions. As
Statistics is essentially a practical subject the strength of any of
its methods, in appli~ation, must lie not only in their theoretical
background, but also in the practising statistician's appreciation
of their dependence on given assumptions ~d how they will perform~
when these assumptions no longer hold. - With this in mind we first
consider some of the assumptions of the preceding chapters and
briefly indicate some of the work which has been done on experimental
designs for situations when these assumptions no longer hold.

T~ round off this thesis suggestions for directions of further
redearch will be made.

8.1.
Undoubtedly the most crucial assumption which has been made, in

the the·ory and methods which have been discussed so far, is that
there is a known mOdel. Possible justifications for this are twofold.
Firstly, sometimes theoretical considerations in the situation on hand
will enable derivation of a mathematical model which is known up to a
vector of unknown fundamental constants. In this situation interest
will often lie in gaining knowledge about these constants. Alternatively,
past experience in similar situations may suggest that a particular
model will well describe the results of the experiment to be carried out.

/
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In this situation experimentation will typically be for the purpose
of prediction or some related reason.

If, as will often be the case, the exact form of'the model is
unknown, optimal experimentation of the nature considered in Chapters
1 to 3 will be, not only often impossible, but also extremely unw:i<Se.
The following example will illustrate this point.

Suppose the following assumptions hold.

p(ylx,a,s) IV N(a + Scj>(x),0'2),0'2assumed known, * e:[a,b] •

Also suppose that , is a function known only in the sense that
it has one of the two following properties.

,(x) = ,(a) , ,(x) = ,(b),.

(2) sup
xe:*

,(x) = ,(b) , ,(x) = ,(a) •

From the geometric approach of ~., it will be obvious that
the D-optimal design for estimating (a,S) will be to allocate
observations eyenly at a and b , for all , with one of the above
two properties.

If the above design were to be used,and if, independently of
the experiment being carried out, one were to discover the true
function, then one would have carried out a D-optimal experiment.
However" as must be the case in practice, the experiment itself must
attempt to discriminate between the models available, for which
purpose the above design will have zero power.

The above example illustrates a very important' point, that
being that optimal designs of the type investigated in Chapters 1 to 3

I
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mat often be useless for detecting departures from the assumed mo~el,
even within a set of models having individually the same optimal
designs with respect to a given criterion.

Ironically, it is in situations where one feels that the strongest
design is being applied (that is,where an a priori optimal static
desig~ can be found) that one is in the weakest possible position for.
detecting deviations from the assumed model. Ih this sense perhaps
the application of the tag 'optimal' to the designs of Chapters 1 to.~
is a little presumptuous. In the sequential designs suggested in

,Chapters 4 to 7 it would be possible to sequentially reassess model
assump~ions in the light of data obtained and adjust design accordingly.

With regards to the problem of discrimination between a finite
set of possible models notable work has been done by Hunter and Reiner
(1965), G.E.P. Box and Hill (1967), Atkinson and Cox (1974) and
Atkinson and Fedorov (1975a, 1975b).

In 8.1. we considered briefly possible problems which might arise
when the probability model underlying the observations is unknown.
Sometimes theoretical considerations m~ take us only part of the w~
to knowing this model fully. For example, in regression type
situations giving rise to observations with the following distribution
p(YI~,!) ~ N(n(e,x), v(ylx», ;itmay be that the form of n(!,~) is
,given by theory but ~~e nature of the error in the observations v(ylx),
asa function 'of ,3£,is unknown. Remembering that points in the

1induced design space V may be written in the form .ne(e,x) ,
{v(YI~) - --~£~, it may be appreciated that the shape of the ~

induced,design space could be moulded to almost any form by suitable
adjustment of v(yl,3£). It would appear that li~tle work has been
done on the design of experiments where the nature of v(yl~) is unknown
with the possible exception of Box, M.J. and Drap~r (i968). From the
above it would seem that the optimal design will be ver:f sensitive to
changes in v(YI~). In situations where bounds could be put on v(yl,3£)

I
/
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minimax type designs might be applicable, although these are likely
to be conservative in nature. Generally a sequentially designed
experiment would seem to be the only alternative •

. Of course, even the assumption of the normal distribution of error
in the above regression situation may be unjustified. For regression
situations other authors (for example Fedorov) have restricted themselves
to non-probabilistic methods of estimation, such as least-squares.
In the context of estimation it must be said that all that the
assumption of a probability model is doing is to define a loss function
which might not be suitable for the true model, and in this sense any

fixed non-probabilistic method such as least squares is doing no better.

8.3.
Given an experimental design criterion, it has been shown that there

exist, fairly powerful methods for computing optimal design measures
where this is possible prior to an experiment, and a number of sensible
sequential design procedures when this is not the case. In practice,
as was suggested in 1.3., decision on a suitable criterion for design
may be difficult. This problem will depend on the' experimenter's
ability to express his wishes clearly, and the statistician's dexterity
in translating these wishes into mathematical form.

In general there can be no solution to the above problem.
However, if the experimenter's wishes appear to be rather vague then a
sensible approach would be to select a set of criteria which seem
to be vaguely suitable. Having selected this set, the optimal design
could be computed for each criterion and performance of that optimal
design investigated with regard toth~ other criteria. In this w~ a
design might be obtained which is robust against the uncertain
experimenter.

With regards t~ the solution of a continuous optimal design
problem, with concave criterion, it would seem that the theory and

/
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methods are in a fairly healthy condition. There still remain many
problems of analytic derivation of optimal designs and possible
problems which might arise in pathological situations, for example where
the criterion may possibly be non differentiable. However, possib~
these are problems more for the purist than. for the prac.tising
statistician merely interested in producing a design and not in the
nicest way of achieving that ~nd. With reasonable sample size it
has been shown in Chapter 3 that it will be possible to approximate
well to a continuous optimal design using an exact design. The
optimal exact design problem per se will surely always remain a
difficult problem ~o solve, with 'explicit solutions only being
possible in simple or symmetric situations.

Where aD:a priori design is impossible to comput.e, we have take'n
the attitude that every design problem is likely to have its own
peculiarities and therefore its own peculiar method of solution. In
this thesis. we have considered a number of methods of experimentation
in a variety of situations,. and it would seem likely that, however
difficult a design problem might appear, ,there will always be something

,sensible which might be done as an aiternative to a purely random
design.

An area of possible application which has not been touched upon .
in this thesis is in the field of Control Theory. In this field all

of the problems which have be~n encountered in the above are present,
and in most situations seem to be magnified, even the derivation of
information matrices being a formidable task. This would seem to
be an area where further work might be done. With regards to the general
background to the Control type problem the review paper of Astrom and
Eykhof~ (1971) would appear to be useful, with fairly recent reviews
of work done on the Control design problem being contained in Mehra
(1974a, 1974b) and Keviczky (1975). There would appear to be a
certain degree of inconsistency in the above papers. However, a

.,
substantial amount of background work will be required by the writer
before any authoritative argument can be put forward on relevant points.

/ .
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APPENDIX 1.

The following lemma will.be useful in the appendices which
follow~ The proof is given for completeness.
Lemma A.le

Inverse is a convex operation on the positive definite symmetric
matrices. That is, given A,B positive definite symmetric .then,

. -1 -1 -1 Ii J{aA + (1 -a)B} ~ aA + (1 -a)B ,a €LO,l •
The inequality above indicates that the difference of the two sides
(RHS - LHS) is positive semi-definite. The inequality may be replaced
by an equality only if A = B.

Proof:
A and B are positive definite symmetric matrices and therefore

may be written in the following form (Graybill),

, P is of full rank.
, A is diagonal {~J

'. J.
, A. > 0,
. l.

-> A-l = RRT , B-1 = R A-l RT RT =p-l ,

{aA + (1 -a)B} = P (aI + (1 -a) A pT .

faA + (1 -a)B} -1
R(diag { a+(~-a)A' }) RT=

J...
aA-l + (l-a)B-l = R(diag { a+ (l-a)} ) RT

A.. J.

aA-l +(l-a)B-l ~{aA +(l-a)B }-l = R(diag{a I(l-a)
A.
J.

p.
J. =

(a + (l-a)Ai )(aAi +(l-a» - Ai
A. (a +(l-a)A.) .
l. . l.

A .(a + (l-a)A. )
. J. 1

This gives the required result as Pi will be non-negative for all i and

=

.
non-zero for some i unless A = B.
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APPENDIX· 2
-1Let '7 = - m.d.e(M ) t M a positive definite symmetric matrix.

(L) ':r (1\ + ~) ~ ~ (1\) , ~ a positive definite symmetric.matrix
and M2 a positive semi-definite symmetric
matrix.

(ii)'7 is a concave function on the positive defin~te symmetric
matrices. That is,

~ positive definite symmetric.

Proof.

(1) It is well known (see Graybill) that, ~or M and N positive
definite symmetric, if M ~ N then M-l ~ N-1•

Let N =~, M = ~ + ~

-> M:J.-1 ~ (M:J. + ~)-l

.t> xT ~-l ~ ~ xT (~ + ~)-lx .,V~ .
Take x = 1

o
o

, etc••, ,0
1
o

. .
o '0

, -> mde (~-l) ~ mde «~ + ~)-l)

(ii) By Lemma A.l.
I

a~ -1 + (l-a) ~-l ~'{a~ + (l-a) ~ }-l , t a &[0, 1J •

I
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T -1 T -1 T· -1 V
=e- a.!. ~ .!. + (l-a) ~.. ~ .x ~.!. {a~ +. (l-a) ~} ..!., .!..

Take x = 1
o
o

etc••,
o
1
o

o 0
Let -1 -1 { } ( aM:!.

-1
{ T •• }

a 1'1 + (l-a)~ = CJ •• + (l-a)~) = ,lJ l.J

-1 { } -1 =. { b.• }~ = a ..
~ •l.J ,

l.J

Then
;: ViCJ •• T ••l.l. l.l.

-> mA.X T .. = TsS ~ a a + (l-a) bi l.l. ss ss

~ a max'a .. + (1 ":a) max b ..• l.l. i l.l.l.

=-> mde is a convex function

"""> ~7'is a concave function.

/
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APPENDIX 3

(i) ~l (M) = log IMI is'strictly concave over the set of positive
definite symmetric matrices.

(ii) ~6 (M) = - trace (M-l) is strictly concave over the set of
positive definite symmetric matrices.

= - J n!(~,!)TM-l n!(~,!)p(~)dx is strictiy concave
x£~'

over the set

J n!(~&)
~£~'

of positive definite symmetric matrices if
r .• ne(~'!)p(~) dx is positive definite.

) T -1 .(iv '2 = - max n!(~,!) M ne(~'!)is not necessarily strictly
2f.£~

concave.

Proof.
(i) Because log is strictly increasing it will be sufficient to show

that

positive definite symmetric.
As ~, M2 are positive definite symmetric matrices they ~ be

written as follows

Now,

~ = ~ A RT, ~ = RRT '. A = diag' { Ai } .•

I ·a1\ + (l-a)~I> 1M:tlaI~ Il-a

IRI21aA +(l-a)rl > IRFIAlalr Il-a

IT (aA. + (l-a)) > IT i.a IT'll:-~
. 1 . 1

, Vi, A. + 1, by the Arithmetic,
1

Geometric mean inequality.
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strict concavity of ~l'

(ii) BY'LemmaA.l., for ~ t ~ positiv.e definite symmetric matrices,
we have,

a~-l +(l-a) ~-l~ (a~ + (l-a)~)-l , with equality only

if ~ = ~.
The eigenvalues of (LHS RHS)must be. non-negatdve with at

least one non zero unless l\ = ~, the .stric"" concavity of ~6 follows
from the fact· that the trace of a matrix is equal to the sumof its'

eigenvalues.

p(~) ~ ~an be written in the torm

If A is positive definite the result follows by an argument similar

to (ii) above using the fact that we maywrite A as BBT,where' B

is of full rank, and tr (M-lA) = tr(BT M-~).

(i v) Wemerely note here that if the set of vectors ne (,!,&), ,!_£*

coincides with the set o~ vectors on the. unit sphere then ~2will

coincide with ~4 which has already been shownto be not strictly

concave in 2.4.,

/'
I
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APPENDIX 4.
-1Let ~(M) = - mde(M ). The directional derivative at M in the

direction of N is given by,

w{M,N}= is tpe

bigges~ diagonal element of M-l•,

If there are r coincident biggest diagonal elements ssl'••••ssr
say, then we choose s such that

. -1 -1= min .{M N M } ss.ss. l.
l.

Proof.

t{M,N} is defined as lim £-1{1fI(1-e:) M + €H) - +(N)}
~t

Define the Gateaux derivative w* {M,N} by
•

.
For simplicity we derive the Gateaux derivative first and then the
directional derivative by noting that,

t{M,N} = ~* { M,N-M } •

.I .....

= + o(.d ,

for small enough £, where the ss th element of M-l is its biggest
diagonal element, or in the case of r coincident maximum diagonal
elements ssl'••••'ssr say, the ss th element is the one such that

.{M-:_lN M-l} = min .{M-l N M-l }
. ss ss. sSi

l.

/
!
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-.:> ~*;{M~N } = {M-l N M-l}
ss

"""> ~ {M,N } = {M-l N M-l _ M-l }ss

Notes (1) If there are coincident ~aXimum diagonal elements of
M-l, then to have differentiability of 4>7at M it would be necessary
to have (by Defn. 2.2.2)

From the &bove it may be seen that this is equivalent to having,

. -1min {M <. ANl
ss.
l.

This will not typically be true.

(2) If ss. is the minimum diagonal element of {M-l N M-l}
Jover' {SB., j ~ l,•••,r} then it will also be the minimum of

{ a M-l NJM-l } ,a > O.ss ..
J

If min { -1 -1 .' -1 -1M Nl'M } and man {M N2 M }~s.,are
~S~ . ss.

,1

ss.th element will be the minimum
J
, A£[0,1] •.

both the
of { M-l

ss.
l.

SSjth elements then the
(ANl + (1-A)N2) M-l}ss.

1.

=e- tiM, ANl +(1-A)N2} = A.~{M,Nl} + (l-A)~{ M,N2} ,for suc~
matrices.
Notes (2) and (3) prove Lemmas 3 and 4 of 2.3.

I
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, APPENDIX 5
COMPUTING METHODS

A.5·1. Simulation study
The important details of the computer programs which were used

in the simulation study of Chapter 6 are g~ven below.
A different program was used for each process type. However,

the structure of the three programs was essentially'the same. Each
program consisted of a MAIN program which interacted with a set of
subroutines as illustrated in Fig. A.5.1 •

.The subroutines used in the programs are listed below, with
brief details of their function and any numerical techniques used i~
'them.

This part of the program acts as a controller, calling up
subroutines to perform the simulations of the sequential experiment,
and accumulating, at each stage, relevant infqrmation which it
eventually outputs in the form of the statistics listed in Chapter 6.

As illustrated in Fig. A.5.1. MAIN interacts directly with
RANDU, EXPT and DESIGN for a Type 1 process, and directly with RANDU.
EXPT, DESIGN and F.MAX for Type 2 and TYPe 3 processes.

RANDU
This is the standard I.B.M. pseudo-random number generator

, -
which generates random variates from a U[O,lJ distribution.

Given a U[O ,1] random variate u and an x and a e from MAIN
this subroutine generates binari variables according to the distribution
on hand. The rule for generation of the binary variable y is,

. [1
y=. 0

u ~ exp(-xe)
otherwise.

I
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Interaction between MAIN program and subroutines

.... -.-- -----

MAIN

T,ype 2 and TYpe 3 processes
t- - - - -... T,ype.1 process •..'

Fig. A.5.1.

/ .
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DESIGN
Given the vectors of past design points and observations this

subroutine computes the next design point according to the rules of
Chapter 6.

For a Type 1 process DESIGN interacts with a maximisation
subroutine F.MAX.

For TYpe 2 and Type 3 processes DESIGN interacts with a numerical
integration subroutine F.INT.

F.MAX
Given the vectors of design poin~s and observations this

subroutine maximises the corresponding likelihood function. The
Newton-Raphson method of function maximisation was found to be
perfectly adequate in this situation, particul~ly.as during a

- ...
sequential experiment good initial estimates of en+l .are available
in the form of en

F.INT.
This subroutine was used to numerically integrate the fUnctions

required for the Type 2 and Type 3 processes, these being of the
following form.

r
fee) = g(e).exp(- e E

i=l
x.
1.

n

1TJ=r+l
(1 - exp(- ay.» •

J

xl' •••• ,x denote the design points at which lIs were observed, and
r .'

y + , •••• ,y denote the design points at which zeros were observed.r ., n

. 1gee) E {e, e ' l}

The range of integra,tion is 6 Er0, 00).

A substantial simplification of the problem is obtained by the
following transformation.

= 1

1+ e
, giving

\
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* * r 1 nn 1f (41)= g (41)exp] - E x. (A:" - 1» (l-exp(-y
J
.(-:;_-- 1)))i=l l. 'f' 'I'j=r+1

1

4>(1-41)

The range of integration is now et> e[O ,1J
It was found that Simpson's Rule was a suitable metnod of numerical
integration, the ·interval [O,lJ being divided into 50 segments.

Graph:plCltting'

Diagrams. and histograms in this thesis were drawn on a Hewlett-
Packard graphplotter linked to a Hewlett-Packard 98l0A desk-top
computer.

I
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