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SUMMARY =

The aim of this thesis is to review and augment the theory and

methods of optimal experimental design.

In Chapter 1 the scene is set by considering the possible aims
of an experimenter prior to an experiment, the statistical methoas
one might use to achieve those aims and how experimental design ‘
might aid this procedure. It is indicated that, given a criterion
for design, a priori optimal design will only be possible in certain
instances and, otherwise, some form of sequential procedure would seem
to be indicated.

In Chapter 2 an exact experimental design problem is formulated
mathematically and is compared with its continuous analogue.
Motivation is prévided for the solution of this continuous problem,
and the remainder of the chapter concerns this problem. A
necessary and sufficient condition for optimality of a design measure
is given. Problems which might arise.in.testing this condition are
discussed, in particular with respect to possible non-differentiability
of the criterion function at the design being tested. Several
examples are given of optimal designs which may be found analytically

and which illustrate the points discussed earlier in the chapter.

In Chapter 3 numerical methods of solution of the continuous
optimal design problem are reviewed. A new algorithm is presented
with 1llustrations of how it should be uséd in'practice; It is shown
that, for reasonably largetsample size, continuously optimal designs
may be approximated to well by an exact design. In situations
where this is not satisfactory algorithms for improvement of this

design are reviewed.

“Chapter 4 consists of a discussion of sequentially designed
experiments, with regard to both the philosophies underlying, and the

application of the methods of, statistical inference.



In Chapter 5 we criticise constructively previous suggestions
for fully sequential design procedures. Alternative sﬁggestions are

made along with conjectures as to how these might improve performance.

Chapter 6 presents a simulation study, the aim of which is to -
. investigate the conjectures of Chapter 5. The results of this study

‘provide empirical support for these conjectures.

In Chapter T examples are analysed. These suggest . aids to
sequential experimgntation by means of reduction of the dimension of
the design space and the possibility of experimenting semi-sequentially.
Further examples are considered which stress the importance of the
use of prior information in situations of this type. Finally we
consider the design of experiments when semi-sequential experimentation

is' mandatory because of the necessity of taking batches of observations

at the same time.

In Chapter 8 we look at some of the assumptions which have been
made and indicate what may go wrong where these assumptions no longer

hold.
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CHAPTER 1

MOTIVATION

1.1 Consider the following experimental setting. We have
obtained a set of N independent observations Yy = (yl,...,yN)T
from a probability distribution identified by the density function
p(y|x,8) where xeX is a variable subject to the experimenter's

control in the design space X, and § is a K-vector of unknown

parameters.
T
Let us assume that N = I n., where n. denotes the number
1= J . ns
of observations which were taken =1 at the point X;€ X (that is pi = ﬁi

is the proportion of observations taken at §i)’ and r 1is the number
of distinct x.'s which were chosen. We shall call the set of points
{ X 3 i=l,...,r } the spectrum of the experimgntal design and we shall
call

\

. (P4
= { [ 1] ; i=l,....,r } the design measure.

=1

We shall now consider several forms of p(y|x,8) and how
- we might analyse the data subsequent to an experiment of the above
. design, with a view to estimating the unknown parameters § and making

_inferences on then.

K .
1.2.1 Firstly take p(y|x,8) to be N( ;L £1(x)8,, 62). That is

we have a regression situation which is llnear in the parameters but
not necessarily linear in x, with a normal distribution of error;

variance o2 assumed known, and independent of x and 8 .

(1) The maxlmum llkellhood estlmates of 9 are well known to be
given by @ ( ) "L 4T ¥, vhere



:E'l(?_Cl) e e e fK(ﬁ)

< < . )

X = ¢ v s X is (N xK).

£ (x) - .o fK(EJ

In the repeated sampling sense the above estimates are normally

distributed in the form

~

8, v N, (%)L o2 ).
Therefore ,if the des1gn of our experiment is to have any

effect on the distribution of eML then it must be through the matrix

XTX. In an analogy with the use of the term sufficient statistic

in the field of statistical inference we might refer to X?X as being

a sufficient design statistic. What function of the matrix X?X

will be a necessary design statistic will, of course, depend on the

reasons why the experiment is being carried out.

We note here an elementary matrix result which says that if

X 1is of the above form and we write £(x) = (fl(g),...., fk(g)) , then

Fx =n g T
X =N igl Pi I“(El) i’(g_cl) .
(ii) Suppose now that we wish to make inferences on the vector of

parameters § and that we take an approach to statistical inference
based solely on the likelihood function. We will be interested in the shape
of the iikelihood function as a function of . The likelihood L, (8) in

this example may be written as =N

N r ' o
( Yoexp {- = B op (3 - 2(x;) 92 )
(2woz)§ P 0g2 1%L 3 Wy - £7(x;) 8)2)



A little algebraic manipulation reveals that, as a function of 8,

(8) may be written as proportional to
-N

exp {- - (8- 6 )T XTx (6- éML) S

202 ~ML

We observe that the shape of the likelihood function is under the

control of the matrix X?X and therefore this matrix will play a

dominant role in the making of inferences on the unknown vector 9.
We note here that the log likelihood 2(6) = log L (8) 1is an

| elliptical function, Iy

)T

XX (6 - 6

constant - K(6- QML -ML) s

centred on 0 with length and orientation -of its axes controlled

-ML
by X'X.
(iii) ‘ Let us assume that we are willipg‘to adopt a Bayesian approach
to statistical inference. Adding the extra assumption of prior

information about 6 in the form of a multivariate normal prior distribution,
that is w(8) ~ N(go, Q—l), and applying Bayes formula it is relatively

easy to obtain

a i [T -1
m(8lyy) v (e, (52 XX +0)7T),

~

where 8. denotes the mean of the Bayesian posterior distribution.
Again we see that experimental design will affect this posterior
distribution via the patrix X?X . Obviously the effect of our

design will depend on the matrix Q . However,if we denote little or
vague prior knowledge by -+0 , where 0 is the null matrix, and observe
that for large N, X?X will domlnate 2, then it may be seen that

in these instances the matrix X X will have a dominating role.



N
To summarise (i), (ii) and (i%i) above it may be said that
if we are interested in the repeated sampling distribution of maximum
likelihood estimates or in making inferences on the vector of parameters
8§ according to the approaches of (ii) or (iii), then the three
approaches would seem to be in agreement as far as a choice of direction
in which to look for selection of -a criterion for experimental design
is ,concerned. Thet is,we would seem to wish to optimise some function,
which we shall call ¢, of . ‘

T, T
XX = N2 P; g(xi) g(xi) .

l1.2.2 We now turn our attention to a more general situation than the

one considered in 1.2.1 above, namely. that where the observations y come
from any distribution p(y'g,g) such that the asymptotic theory of
maximum likelihood estimation of § carries through. This may be

regarded as a theoretical restriction ohly.

For example we might have p(y|x.8) as:-

(i) N(n (8,x),02) where n(6,x) may be a non-linear function

of and 6 .

[

(ii) A binary response distribution of the form
p(1]x,8) = n(8,x) ,» p(0]x,8) =1 - n(g,x)
where again - n(8,x) will be a non-linear function of the
paraﬁeters 8 eand x .

(iii) The observations may come from & finite set of populations
having distributions with different means which are relateé

in a linear or non-linear fashion, for example we may have

three populations
(a) Po(8), (b) Po (6 +1), (c) Po (8 /21).

With these more general examples we shall have to appeal to
large sample results to find directions for seeking criteria for

experimental design. We will echo the treatment of the normal-linear

;
/



regression model and consider three different approaches.

(1) Consider firstly the use of maximum likelihood estimation and
the repeated sampling distribution of these estimates. It is well known
that for independent observations and subject to mild regularity

condltlons the distribution of 6 is asymptotically_normal of the form

=ML
N(e, .M(e) ) where
‘ 2
NM(8) = { - —2— 4(e) }
26; 20
r 52 . :
=¥ & pff{-—"—1cg p(v|x;,0) }
i= 96.96. -
175
r
=N I p. I(x., 8),
. 1 - -
1=l

i 9 . ' .
where I(x,8) = | {- 35;'355 log p(y| x,8) } is the Fisher

information matrix at the point x.
Again if we wish to see how experimental design will &ffect

. the nature of this asymptotic distribution of §, we need only consider

ML
the matrix M(8). If we continue the analogy of 1.2.1 then M(8) might

be thought of as an asymptotically sufficient statistic.

(1) As we are dealing with large samﬁle situations here we shall
consider the Bayesian and pure likelihood approaches together. -
Although the methods of making inferences may be different in principle
in the two situations the function being used to make these inferences
will not, asymptotically. This is a result of the information in the '
likelihood function swamping the effect of the prior distribution as

N > o,

The asymptotic Bayes or pure likelihood approaches are based
on the normalisation of the posterior distribution or the likelihood
function. This is equivalent to saying that the log likelihood function
can asymptotically be descfibed by a second order Taylor expansion about
éML' For conditions where this theory is applicable see for example
Dawid (1970). The regularity conditions required are similar to those

necessary for the asymptotic normality of the repeated sampling distribution

/
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of 6, . Expanding 2(§) about 8 . we see that

where S8 = { -

We shall refer to S as the sample information matrix. In the
situation of a designed experiment let us assume that n,>® as N+ «
in such a way that n.
- 1> p.
T i

Therefore,by a law of large numbers

r ~ -
s+E(s)=N £ p.I(x.,86, ) as N+
=1 1 1’ =ML
=N.M(_Qm).

Y

For large N we might presume QML to be close to'Q suggesting M(8)

as an asymptotic criterion for experimental design.

1l.2.3 To summarise the above two sections it may be said that the
asymptotic repeated sampling theory and the theory of an approach to
statistical inference based on the likelihood principle produce general
criteria for deésign which are similar and which are related to the
criterion which was obtained by exact results in normal-linear model
theory. The criterion being to optimise some function ¢ of M(g), where
N.M(8) denotes the Fisher information matrix of the experiment, M(9) being
a positive definite symmetric matrix, and ¢ denoting some property of

M(8) which will be related to inferences to be made on the parameters

subsequent to the experiment.

At this point it is important to make the followingvobservation,
namely that although in the normal-linear example of 1.2.1 M(8) = %— XX
is independent of 6 , this in general will not be the case and in the

more general examples of 1.2.2 M(8) will typically depend on x and § the
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vector of unknown parameters. Therefore,although for the linear-model
the problem is effectively reduced to an a priori optimisation, in
general some form of sequential procedure will be necessary. However,
it will be seen later that solution of the a priori design problem for
given 8 will be of more than academic interest. As the sequential
type of design introduces complications which would only be of a
confusing nature at this juncture we postpone discussion of these
factors until a later chapter, and, until otherwise mentionea? restrict
ourselves to the a priori design which ﬁe shall hereafter refer to as

a static design.

1.3 In previous sections we have formulated a very general
experimental design problem, namely to optimise some function ¢ of
M(8), M(8) el where 7V represents the set of all Fisher information
matrices that experimental conditions permit. We now consider possible
contenders for the function ¢, these being functions which will fall
naturally from the uses to which the estimates of § are to be put
subsequent to experimentation. O0f course,a major problem in practice
will be to get the experimenter to express his wishes in a particular
mathematical form. In what follows we shall assume that he has done .
s0, and we shall reconsider this practical problem in the final chapter.
The set of criteria which is discussed is in no way intended to be all-
encompassing, but has been chosen to reflect the general properties of
possible criteria and to highlight particular examples where solution of

the optimal design problem might be complicated.

1.3.1 In this section we shall assume that the experimenter is
interested in all of the parameters Jjointly. We shall consider four
criteria.

(1) 9, = log det(M(g))

.

From 1.2(ii) it may be seen that joint confidence intervals
for the vector of unknown parameters may. be described by ellipsoids
of the form (¢ - SML) M(e) (8 - 6 )<q. The surface of these

elllps01ds will represent regions of equal ‘confidence’. The volume

]



8
of the above ellipsoids is proportional to { det(M(8)) }—%, so,maximising
log det (M(6)) would be equivalent to minimsing the volume of all ‘
confidence ellipsoids for § of the above form. That is,we are making
our confidence regions, in some sense, as compact as is possible. We
take ¢l as log det for mathemstical ease later on. The criterion .
¢, has become known, in the literature, as the D-optimality-criterion,
and has by far dominated the literature on optimal design. It should
be'said however that 1t would appear that its pre—eminence aé a criterion
owes as much to the fact that its mathematical form has enabled more.nice
analytic and geometric arguments to be put forward, as to the extent to

‘which it might actually reflect an experimenters design wishes.

Wynn (1969) notes that maximising det (M(g)) is equivalent to
maximising the Gaussian curvature, at go, of the power of the F-test with
null hypothesis 6 = 8- Lindley (1956) and Stone (1959), using an
information theory argument, show that maximising det (M(§)) is
equivalent to maximising the‘expected gain in information about 8 assuming
little prior knowledge. Bernardo (1976) extends this approach and ‘
shows that if one adopts Bayesian methods and if one is interested oni&
in meking very pure inferences about the ﬁﬁknown parameters, then one's
approach to design should be based on something closely related to the
Shannon information approach. However, there would appear to be a
weakness ig his argument relating to his definition of & pure inference
problem and the consequences in defining a natural utility function to
be used to construct a criterion for experimental design.Draper and
- Hunter (196Ta) observe that maximising det(M(8))maximises the posterior
density function at the point of maximum posterior density. This,
of course, might be deduced aé a corollary to the above argument

concerning the confidence ellipsoids. )

Properties of ¢l

(a) ¢ is an increasing function of the positive definite symmetric
matrices. That is for ¥ positive definite symmetric and M, positive

semi-definite symmetric matrices

o g v b0l 3



(v) 91 is a concave function of the positive definite symmetric

matrices. That is,for Ml’ Mé positife definite symmetric matrices
¢; {adg + (1-a) M, } 3o, { M1} + (l-q) oI M},
0 ¢ 0agl, (see Appendix 3).

(¢)  As a criterion for optimal design ¢, 1is invariant under non-
singular transformations of §. To see this consider the non-
singular transformation

T

)

6 = (6.,...,0

8= (0,087 > (1(8),ennnum(@)T = x(0)

Let J Dbe the Jacobian of the transformation, then

- . —l
37, (8) o arK(g)
36, 36,
‘ T
J = . .| and M(z(8)) = JM(8) J°.
/arl(g) o BTK(Q)A
] 36, 36, .

Therefore, ¢i{ M(z(8))} log det {M(z(g)) }

2 log det{ J} + log det {M(g)}

const + ¢l'{M(§) }

Property (c) above has been cited by previous authors as being a reason
for selecting ¢l as a criterion . in preference to others. However, as
there would seem to be many situations where one would not wish a criterion

to have the above property we merely note it as an ihteresting fact.
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T
(11) ¢2 - max ne (_}__(a_e_) M(e) ne(}_(:_e_)
X (X, “on(x,8) \T
ne(lcag) - - = 9 oot eeny
- ael aeK

ThlS criterion Wlll typically be of interest where n(x e) -E: (y]x)

Ve note that if n(x 8) = % fi(g) ; 288 in our example of 1.2.1,then
i=1
T -1 T -1
ng(x,8) M(8) ~ ny(x,8) = £ (x) M(g) ~ £(x)

is the variance of the estimated expected response at x.,namely var

(n (x, éML)). Similarly,if n(x,0) is a non-linear function of § then
g(x e) M(8 )_l (x 8) may readlly be seen to be a first order

approximation to var (n (x, e )). Therefore,a sensible design ecriterion
would be to minimise over the set of possible designs the maximum over

xe¥ of the variance of our expected response. That is,maximise ¢2'{M(§)}

over the set of possible designs.

Properties of ¢2

(a) ¢2 is an increasing function on the set.of positive definite
symmetric matrices.

(v) ¢2 is a concave function on the set of positive definite symmetric
matrices. (The proof is analogous to that in Appendix 2).

(c) ¢ is invariant under non-singular transformations of 8. Consider

again the non-singular transformation 8 + 7(8).

—maxn(x e)J {JM(e)J Y Jn (x,8)

¢, M(x(8))}

xeX’
s = - max n, (g_c,-g){M(Q) 7t ng(x,8)
xeX - - -

¢, {M(8)}
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Here again ng(g,g)m(g)_l n,(x,8) will represent typically

: 6
the variance or a first order approximation to the variance of the

estimated expected response n(g, [} However,here our criterion

is not based on the points with highest variance but on the expected
value of the variance over some region X', and with respect to some
measure p(x). p(x) might reflect the incidence with which the x
values occur in nature and therefore the incidence with which the
estimated response might be being used in a prediction situation. .
Alternatively p(x) might be constructed by the experimenter using
subjective weights to represent the relative importances of accuracy

at points xeX'. p(x) will be such that [ p(x) dx = 1. Note
xex!
that we do not necessarily take X'= X.

Properties of ¢3

(a) ¢3 is an increasing function on the set of positive definite symmetric
matrices. o

(v) ¢3 is a concave function on the set of positive definite symmetric
matrices (The proof is analogous to that in Appendix 2).

(c).¢3 is invariant under non-singular transformations of 8. The proof

of this is analogous to that for ¢2.

(iv) ¢), = - max g? M(g)_l'é
e
- ce

Typically, with this criterion, one would be interested in
estimating any linear combination of the parameters 8, and the criterion
is stich that we would wish to best estimate the worst estimated linear
combination of the parameters, the linear combinétions being normalised

for obvious reasons.
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A matrix result (see Graybill) tells us that if M--l is a

positive definite symmetric matrix with eigenvalues Al z_kzia.... Z»XK’
th A,>0 and max A. = A. = max ST M £
cc

. Therefore, our

e . o7 Me) e
desire to minimise with respect to our design max _= = =

< e’e
T -1
_ .. N ¢ M(8) e
= maximise over design mix . = ¢h(M(9)) } is equivalent,
= c e

- mathematically, to minimising the maximum eigenvalue of M(g)—l, for which

reason it has become known as the E-optimality criterion.

Properties of ¢h

(a) 9, is an increasing function over the positive definite symmetric
matrices
(v) ¢h is a concave function over the positive definite symmetric matrices.

(The proof is analogous to that of Appendix 2).

1.3.2 In this section we shall assume that the experimenter is

interested in only a subset of the parameters, but is interested in them

jointly. We shall consider one criterion.

(i) ¢ = log d'eﬁ {M (8)} .

Let us assume, without loss of generality, that we are interested
only in the first s 'of our parameters, s <K. Partition M (8) as

follows

5 N&l Mi2

M(8) =
(k-s) M?z Moo
s (K-s)

The variance covariance matrix of the marginal distribution

~ T . -1 _ _
of 25 = (el,....,es) is given by Mg where Ms = Mll M12 Mzz M§2 apd M;a
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denotes the Moore—Pegnrose generallsed 1nverse of M o to allow for the

e e _ T . .
possibility of QK—s = \es+l,...., eK) not being estimable. Motivation

for the use of this criterion comes from similar reasons to those discussed

under’ ¢l'

Properties of ¢5

(a) ¢5 is an increasing function over the positive definite symmetric

matrices.

(v) ¢5 is a concave function over the pos1t1ve definite symmetric

‘matrices. (see Silvey(197h)).

Because the natural qomain of definition of ¢5 may include a subset of
the positive semi-definite symmetric matrices the above properties must

be extended to cover this more general case (Silvey (19Th)).

1.3.3 In this section we shall assume that the experimenter is

interested in using his parameter estimates independently. Therefore,he
will be interested only in the marginal distributions of each 8; and not
in the joint distribution of §. Our design criteria will therefore
be functions of the diagonal elements of M(g)_l only. We present two

possible criteria.

(1) bg = - trace {M(® )—l}

Maximising ¢6 will be equivalent to mlnlmlslng the sum of the
marginal veriances of the el's. This crlterlon was con31dered by

Elving (1952) and Chermoff (1953).

Properties of ¢6

(a) ¢6 is an increasing function over the set of positive definite

symmetric matrices.

(b) ¢6 is & concave function over the set of positive definite

symmetric matrices. (The proof is analogous to that of Appendix 2)



1k

(i1) ¢ = - ndel M(8)™}

(mde = maximum diagonal element).

This criterion seems to have been almost universally ignored in the
literature. Maximising ¢7 is seen to be equivalent to best estimating the
worst estimated parameter in the sense of minimising its marginal
variance. In the context where interest is in the parameters independently
thls ecriterion would seem to be of a very suitable type. Criteria similar
to ¢¢ might allow some of the parameters to be fairly poorlf estimated

”

although the average variance might be small.

Properties of ¢7

a) is an increasing function over the positive.definite symmetric
b

matrices.
(b) ¢7 is a concave function over the positive deflnlte symmetric

matrices. (see Appendix 2).

1.3.h

To summerise this section we note that all of the criteria which we
have considered have the following two properties.
(a) ¢ is an increasing function over the positive definite
symmetric matrlces. ’
(b) ¢ is a concave function over the positive definite

symmetric matrices.

Property (a) is a property which we would expect, intuitively,
all criteria to have. - It might be thought of as saying that an extra
observation or set of observations will always ﬁake an experiment more
informative, in any reasonsble sense. As we shall see in the next
chapter (b) is a very useful property for all our criteria to have and

most of that chapter will depend on it.

We note here that although natural criteria for design will be of .
the form ¢{N.M(8)} we take our criteria as ¢{M(8)} . This mey readily
“be seen to be an equivalent form for solution of the design problem and

~will prove to be the most convenient form to use in what follows.
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|._J
=

We now present a result which will be a simplifying factor

in most of the examples considered in this thesis. It is presented

as a Theorem.

1.h.1 Theorem

Let p(y|x,8) be of the form £(y,x,n(6,x)), that is, the. probability
density function of y depends on § only through the function n(8,x) which

is independent of y, then

, 2
(1) I(x,8) = - —*— 1og ply|x,0) }
Y 36.36. i .
1 J
_ 1
T e EMen®)”

That is, I(x,6) is of rank one.
If also n(x,8) =[[ (y|x) and p(y|x,8) is such that the Cramér-Rao lower

vound for unbiased estimators of n(ggg) is attained then

.. 1 ’
(ii1) 1(x,8) = ne(i,g_)_ne(gc_,_e_)T
var(y|x) - =
" Proof ,
. — [ 22
(3) T(x8) = [_ 2 10 f} - [rlesf . pleef
an (X,e)
alog £ _ 3 log £ . X2/
aei on . aei
. log £ )2
S I(x,8) =ﬂ':{ (—a‘—%—- } ne(x,e),ne(x,e)T
y ( an — —-—
' 1 ‘ .
= nelz,p_).ne(z_,ﬁ_)T
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(ii) ylx itself is an unbiased estimate of n(x,8). Therefore,

if the Cramér-Rao lower bound is attained

1
,[g (et £)2y

var (y|x) . Silvey (1970)

oalx,8) = ver (v]x)
L I(x0) = L ng (x58) . ng (x,8)"
var (y|x) - -

* Two examples where the conditions of (ii) are satisfied are

(1) 1f plylz.8) ~ N(n (x,8),0% ), 02 assumed known,then,

H
"
w
@
il
3JH
=3
j@
1
e
=
o
I
A
D
g

(ii) If p(y[;_{_,_@_) is a general binary response model, that is

’ ' P(li?ﬁ.s.g) n(x, _6_) > P(Olz(_,_e_) =1 - n(z,&)

: : T
‘then 1’(5,51) = »l . Ng (x, 8). ﬂ@_(_ii,_e_.)

An:obvious situation where the conditions of the theorem are not
satisfied is if

p(yle,®) ~ 5(zTs ,02) ena 8 = (87,02 )7 .

1 ra, . -

Here I(x,8) = Z2° ‘o ]
. 1

££7 :
!
: 0
- - - e e, b =
0 0, 302

Obviously I(x,8).has rank 2. Note however that in this example
if we are actually interested in only the parameters ¢, even if c%is
unknown, then, because ¢ and o2are estimated independently, one's design

interests would be directed towards the leading (K-1) x (K-1) sub-matrix

/
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of I(x,6), namely I{(x,p) = _i_‘__f_T which has rank 1.

1.h.2
Suppose the conditions of Theorem 1.L.1l are upheld.
1 T
Let v = ©ong(x8) 5 ¥ = (Vv

then our design problem may be written equivalently as, maximise

r

o{ M(8)} , M(e) = I i’i,‘-’i v,

Lp;=1, XYE V , where V represents the domain of

T

> .

definition of v: to distinguish it from the @eéign space X we

shall call it the induced design- space. Note that the only difference,
in our static design problem,introduced By having diffefeht density
functions or different design spaces is that the induced desigﬁ space

is altered. Therefore,it may be séen that it will ﬁe the geometry of

V which will be the controlling factor in defining an optimal design for

a given static design problem.

Tt is worth noting, at this point, that the induced design space V
will, in our general model, typically be.-a function of §, the vector
of unknown parameters. Obviously it will be the manner in which the

geometry of V depends on 8 which will characterise the dependence of

the optimal design on 6.

As an example consider the following binary response model.

°

= 8 6 -
p(llgc_,ﬁ) exp ( 1 + 2 x) . 3{5[— 1, +1 ] .

{1+ exp(+ 6,0))

It can easily be shown that

v(8) = exp {3(8] + 9, O . L

{1+ exp(8, + 0, X))

Fig. 1.k.2. shows the induced design space for several values of Q_,.
illustrating the effect on the geometry of V. Points in the induced design

space corresponding to values of +1, O and -1 for x are highlighted.

/
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.61 a)_e_=(1,1)'r
§ x=+1 \\/x=0
L v
M ; l
0 .8
x=-1
—
-,6 4
\'4
o1 2 b)g=(o,1)T
x-+l/ \ /
v
| / 8t
x-_l\ |
...6
v, | | ¢)9=(0,10)T

=1
8
‘008 . . . . . ]
v . . . . . T
S . . d)8=(10,10)
>
v,
C ‘8
/Xhl

-.6 *

FIG, l.h,2
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CHAPTER _2

THE OPTIMAL STATIC DESIGN PROBLEM

2.1 In Chapter 1'we have provided motivation for the study of the

follgwing mathematical programming problem.

Take a function ¢ on the positive definite symmetric matrices with

the following properties

Pl: ¢ is an increasing function on the positive definite
symmetric matrices. '
P2: ¢ is a concave function on the positive definite symmetric

matrices.

If a function, for example ¢5 is defined and finite on a wider.

class of matrices, then the above properties may be adjusted accordingly.

Problem 1: Given a set of points ¥, we require to select a number,
r say, of points from X, and a set of positive weights associated with

these points. We shall call our choice, namely

pl,.oo-o.o, Pr

ysovonooes X

a design measure and denote it by EN" There will be restrictions

r
» - £ n. =N, where all
1 .

on our choice of pi's in that P, = n,
i=1

1

=

the ni's and N are positive integers. Our choice of gN should be

such that we maximise

1
™

i=1
‘where I(z) is a positive semi-definite symmetric matrix defined on
X and assumed to be continuous on ¥. - ¥ will be assumed to be a

compact set.

’,

We compare the above practical exact problem with its continuous

' analogue.
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Problem 2: Select a design measure & from the set E of measures

" ‘on the Borel sets of X to maximise

M) ), e = [ 100 ean), | Haw) = 1,
: xeX xeX .
R Problem 2 will be the main item of study in this chapter.

Interest-in this problem would seem to have its roots in a paper of
Smith (1918). The problem would then seem to have béen largely ignored
untii a revival of interest in the early 1950's, indicated by the papers
of Elving (1952) and Chernoff (1953). Not much progress was made
thereafter until the paper of Kiefer and Wolfowitz (1960), subsequent to
which a great deal of attention has been paid to the solution of Problem

2 both in particular and general situations.

For the remainder of this section we consider justifications
for this study.  The following theorem has important repercussions

in this direction.

Theorem 2.1.1: (Caratheodory's Theorem)

Each point s* in the convex hull S* of any subset S, of n—-dimensional
space, can be represented in the form,
n+l a+l

g¥* = .Zi a; 8;, where a.30, I a; =1, s;¢ S.
1= 1=l

If s* is a boundary point of the set S* then «a can be set equal

n+l
to zero.

To see the importance of the above we note that any element of

m = { m(g) = f I(x) g(ax) , £ e €}
‘ xeX
may be defined as & point in 3K(K+1l) dimensional space, whose coordinates
are -defined to be the upper triangular elements of M(g). It is also true
that these points form a convex subset of 3K(K+l) dimensional space which

- is the convex hull of the set of points obtained from the set of matriceé

{I(x), xeX1}.
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Note also that by P1, for a>1 , ¢ { aM }>¢{M}'.WH
Therefore, if M is an interior point of»77L,theh SO.ié M= (1 + €)M,
for sufficiently small € > O, and ¢ {M'} > ¢ {M} . By hypothesising
that an M(£) which maximises ¢ is an interior point of 77Z we see that
there must be a matrjx of greater ¢ value on the boundary, by increasing

E . Therefore, we have that ¢ attains its maximum value on.the

boundary of77z.

From this observation, and from Th.2.1.1l, we have
(i) Any design matrix may be attained by a design measure which

attaches positive weight to at most 3K(K+1)+l points.

(ii) An optimal design measure can be found which attaches positive

weight to at most 3K(K+l) points.

NOTES: 1. 'Often the number of points required will be considerably
less than 3K(K+1)

2. Problem 1 will often be virtually impossible to find a
solution to, whilst, as we shall see, Problem 2 will typically be
solvable. The fact that Problem 2 has a solution which attaches
positive weight to at most 2K(K+1) poiﬁts suggests that for large N
we may be able to approximate to our optimal design measure E¥ by one
of the form EN.

3. Much of our motivation for study of this form of design
problem came from large sample results, and, in such circumstances,
we might presume that good: approximations, as suggested in 2. above,
will be obtained. . ’

k. Even if we do not consider our approximation to be

satisfactory, we might use the approximation as a starting point in an

iterative algorithm to search for possible improvements. We shall .

consider this further in Chapter 3.

5. Even for small N, with our linear example of Chapter 1,
solution of the continuous problem may be of interest, as some problems

will have continuous solutions &¥, of the form EN'
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2.2: The most ;mportant result in this section is presented in

the form of an equivalencetheorem. The initial breakthrough in this

ares was made by Kiefer and Wolfowitz (1960), who proved an eéuivalence
theorem with ¢; as criterion. Later Karlin and Studden (1966)
generalised this to criterion ¢5. Furthef improvemenps in the direction
of more general concave criteria may be found in Fedorov (1972), Fedorov and
Malyutov (1972), Whittle (1973), Silvey and Titteringﬁon (i97h) and

Kiefer (197h4). In the statement of this theorem we will ciosely follow
whittle (1973). An appreciation of the generality of Whittle's

theorem and the simplicity of its proof may be obtained from a comparison

with Karlin and Studden (1966) and Kiefer (197Th).

As an introduction to this theorem we make some definitions.

Definition 2.2.1

Define the directional derivative
. — . -1.. .
¢ {M,N} = 1lim e {¢{ (1-e)M+ eN} = ¢ {M} }
e >0t

as the derivative of ¢ at M in the direction of another matrix N. As
¢ 1is concave, the quotient after the limit will be monotone increasing
and will always exist if we allow a value of + o . l

Note that ¢ {M,M} = O.

Definition 2.2.2

We define the function ¢ to be differentisble at M e/ if

=1, M .
j > 53 Gm,VJ-

o M,Z pj MJ} = E,Pj‘p{Man}-,z P
A theorem ensures that this is in keeping with the normal definition of

differentiability.

Definition 2.2.3
Define the maximal rate of ascent of ¢ from M e Moy

¥ (M} =sup & { M,N1}.

Nem
Note that if ¢ is differentiable at M then
o% (M} =sup ¢ { M,I(x)}, as N ¢M may be written in the
xeX
form N=1I Pp; 1(5571

/5
. \ . ’
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Definition 2.2.4 ‘ Rt

A design-matrix M* is said to be ¢-optimal if"

of M¥} = sup ¢{ M} .
Me '

- Note that if £ and £, are design measures in the set of
design measures % then (l-a) £g* 0, € E  and

M {(1-a) & *+ag} = (1-a) M {5} + o M {5} -

Therefore, in the following theorem we might take the design measure g
in place of the design matrix M, as in fact Whittle (1973) does.
However, it will suit our purposes to consider ¢ as a function of

symmetric matrices rather than as a function of design measures.

Theorem 2.2.1: (General Equivalence Theorem of Whittle (1973))

(a) If ¢ is concave then a ¢-optimal design matrix M¥* can equivalently
be characterised by any of the three conditions:- '
(i) M* maximises ‘¢
(ii) M* minimises ¢* { M }
(iii) o¢* {M*} =0 .
(b) If ¢ is differentiable at M then (ii) and (iii) may be rewritten:-
(ii)' M* minimises sup ®{M,I(x) } .
' xeX .
(1ii)' o{M*,I(x) } = 0, for all x in the spectrum of a design which

produces M¥..

The importance of the above theorem is that it provides us with

a tool to test for ¢—optimality of a given M. Note that section (a)

of the above theorem provides us with a necessary and sufficient condition
for ¢-optimality of & matrix M even in the absence of differentiability
at M. Note also that although we have this fool it may be difficult to
use; as the test is equivalent to showing that ¢ {M,N}g 0, V N ¢ ™
which, in practice, may be extremely difficult to do. If we have ’
differentiability of ¢ at M, then our test is much simplcr, that boiﬁ;

to show that of{ M,I(x)} & O, V xe ¥. It may be seen that the
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tional derivatiyes of the various criteria which we have proposed
play an important role in any problem we consider. In Fig.2.2.1
st the directional derivatives of the seven criteria mentioned in

er l.

on Fig. 2.2.1f

1.

2.

For derivation of the directional derivative of ¢l see for example
Fedorov (1972). The directional derivatives.of ¢2, ¢3, ¢h’ ¢6
are produced in an analogous manner to that of ¢7, vwhich is
derived in Appendix L. The directional derlvatlve of ¢5 is due

to Davies (197h4).

The optimal design for criterion ¢5 may exist at matrices which
are singular. The directional derivative is given under this
assumption, the simplification, if we do not have singularity,
being obvious. Note the following notation

My Mo

M is partitioned as s

(K~s) T

Mo Yoo
.8 (K-s)
- hd ‘ ' T
N is written = XX, X= X ,and again
1 X, (K—s) ' ' -

M+ denotes the Moore-Penrose inverse of M.

Consider example (i) of 1.4.1, +that is, non-linear regression
with normal error, assumed independent of x. We note that an

optimal design for ¢, will always exist at a non-singular M

" and that ¢ w1ll always be differentiable there. Note also

that I(x,8) = —7— Ny (x, e),ne(x,e)

Part (b) of Theorem 2.2.1. will apply and may be written in the

following form, for criterion ¢l.

/
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An optimal design matrix M* can equivalently be characterised by

(i) M* maximises log det {M}

.. . . . e 1 - . '
(ii) M* minimises {';2 max neT(Etg) M 1 né(glg) -K1}.
T xeX - -
T -1
(iii) %2 max g (x,8) M ne(l_t_,__) =K .

xeX

This is in fact the equivalence theorem of Kiefer and Wolfowitz
(1960), and we note by comparing (i) and (ii) that finding a ¢,-optimal
design, in this example, will be equivalent to finding & ¢2 optimal

design. In other situations, where condition (ii) of Theorem 1.U4.l

is satisfied, we may consider an alternative criterion to ¢2, namely

~¢; = 3 N (_:g,_e_)T M1n (x,6))

var(y(x)) .2 (]

vgr(n(z,_é))

var (y(x))

It may readily be seen th?t in this situation maximising ¢l will

be equivalent to maximising ¢2.

L, It has been mentioned above that problems may arise when functions
are not differentiable at points in #1 at which the function may
be maximised. By considering Fig.2.2.1 we may see that non-
differentiabilitxtof ¢2, ¢h and ¢7 may occur, due to non-uniqueness
of the * values. This problem will be highlighted for ¢T in
Appendix 2. - Kiefer (197k) has considered the problem for ¢
For ¢, the situation is potentially more difficult, but if there
is equivalence with the ¢l design problem it may be unnecessary to
face the problem in practice. ¢5 will be seen, in the next
section, to be non-differentiable at singular M e7)) . In the

‘following section we consider problems raised by non-differentiability,

with illustrations using ¢5 and ¢7. _ .
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i ¢o; (M} ¢ IM,N}
1 log det {M} tr {M N} - K
T -1 . ~1 —~1: . . e e .
2 —max ng AN oM :mﬁx 8) Mg Awn.*.lm..v_”z NM © - “_soawm*.:m.v. x* is the maximising value in col.2.
xeX B e - . .
. T -1 -1
3 |- [T e oeta [ e Dd it - alxs) alxax -
xeX = - xeX £
T .1 o7 Tl l -1
L ~ max e M e < i e » ¢¥* is the maximising value in col.2
< e e’ ¢ -
5 | log det {M} : _ + 3 Ty + 14
s Sr{() =My M, X)) (I8, LT-My M ) KK (T = Moo ) 14X, )
+ T +
(X)) gMp%p) " (M My MM )18
6 - tr' {M '} tr (M T Mt - M)
= -1 -1 1, e . P
T - m.d.e {M 7} (M NM~ -M"} ywhere {M "}__, is m.d.e { M7}
S8 S8

m.wrm., 2.2.1.
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2.3: As mentloned above, if ¢ is dlfferentlable at M, then all

tha.t is required, to check optimality of M, is to ‘show that
o{M,I(x)} s0,VxeX .

When we have non-differentiability of ¢ at M the problem arises that

o{M,I(x)} s0, ¥ x ¢ ¥ s
does not necessarily imply that

(I){M,N} € 03 V N €m0

However,note that there is no problem if
é{M’I(i)} = 0

for some x ¢X as this is sufficient to show non-optimality of M.

The following examples will illustrate the. above.

Example 1 (Silvey (197L)).

Suppose that the conditions of Theorem.l.4.l. hold and we have

~ induced design space V = { (0,0), (1,0),(4,1), (4,2) } . |
Take ¢'5 as criterion where we are interested in the first parameter
only, that is, Dl optimality.
Consider the design measure n o= 1
| [(1,0)]‘

1+ 0 . " T1 o1

From Fig.2.2.1 we have 2
. T ‘
o{M{n;), Y X'} =

co b)Y X 160, W ye V.
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. : N T
an51der now the design measure 1, = ((h,l) X (h,z)] R
. then from Fig. 2.2.1 we have

(V1)

of M(n)), Mny) 3 =

A

illustrating the non-optimality of ny and the non differentiability
at M(nl).

Example 2:
Again assume conditions of Theorem 1.4.1 to hold. Let the

induced design space be

v={ (1,00, (0,1), (2,0), (0,2) ¥ .

Take ¢7 -as criterion.

. . 3 3
Consider the measure nq = (( 2 ) .( 2 .
’ ' 0,1), (1,0)

] 3 0 -1 2 0
) M(nl).= 0 1 ’ M(nl) 0 2 ; note coincident

maximum diagonal

elements.

From Fig.2.2.1. and Appendix k.

: T -1 T .~1 -1

h'd = M -
e{M(n)), y ¥ } = { YY MT-M7 )
=-29.V _Y!-:V.

{3 , 2 1 o7 .
Take My ={(0,2) , (2,0)) ° Mng) = 1o 1] -
We have -o{M(n;), M(n2)}/ = 2, implying non optimality of n, and

non-differentiability of ¢7 at M(nl).

We again note that the convex set of matrices Tl may be represented
by & convex suﬁ—set of 3K(K+l) dimensional space, the coordinates of
the ‘members of which are given by the elements of the upper triangular
parts of the matrices of which 71l is composed. Call this convex subset

M'. The following points are highlighted as Lemmas.
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Lemma 2.3.1. : i R

T S VUV U

¢{ &E'} > ¢{E'} s ﬂ'em-', a> l'

This follows immediately from the fact that

¢{ aM }> o{M} , MeM, a>1.

This tells us that if we think of the convex setMl' as being
surrounded by the minimal convex cone which will contain it, then the
only feasible points in ', corresponding to possible optimal M,
lie on the upper surface of Ni' not hidden by the cone. In a three
dimensional analogy with an ice-cream cone one might consider the
ice-cream as representing 7/)' and the surface of the ice-cream, which

is visible, as representing the feasible region.

Lemma 2.3.2.

. A
o{A, A +(1-A)B} = (1-1) o{ A,B-},x €[0,1];
that is, ¢{ A,B } 50 = o { A, \A +(1-A)B} ¢ O.
This true whether ¢ is differentiable at A or not.

Proof: ‘
#{A,2A +(1-1)B } = lim e {4{(1-€)A +erd +e(1-2)B} —¢{ A} }

1im e-l{ip{ (1-e(1-1))A + e(1-A)B} - ¢{A} }
3‘*0"' . . .

(1-2) Lim (=070 e d{p{(2-e(2-1))A +e(1-2)B} -{ A}}
et : .

(1-2) 1im  (1-2)" e R{p{ (1-e(1-1))A+e(1-1)B}-4{ A}}
e(1-2)»0* h

| Consider the effect the above has on Example 1 above. T/l ' is
the convex hull of the set { A,B,C,D}= {(0,0,0), (1,0,0),(16,4,1),(16,8,4)},

see Fig. 2.3.1.
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) Fig. 2.3.1

By Lemma 2.3.1, the only feasible optimal points lie on triangle
BCD. If we are testing M(nl) for optimality then by Lemma 2.3.2.
we need only con31der directional derivatives from point B to points
on the line CD.’

Any matrix represented by a point on the line CD may be written
in the form

16k 16 8 16 8-ha]
Mad=aly g Y05 g ) = g besg

We note here that if M is non-singular then the dlrectlonal derivative

for ¢5, given in Fig.2.2.1, may be wrltten as

-1 -1 ;
tr { M N Mé2 N22 }

- 8,
with the usual matrix partitioning notation:

If M is singular, but N is not, we might define the directional
derivative ¢(M,N) alternatively as e o

lim ¢{(1-¢) M+ eN, N } .
, e_)o'l-



~ In this example M(®) is nonsingular, ‘GE'(O,l).

1 +15¢ e(8-haj ]’
(1-e)Mln;) + & Ma) =/ g 109 &(4-3a)

-1 | e(b=3a) - -¢(8-ka)

{(1-e)M(n;) + € M(a)} = 1

e{(1 + 15¢) (4=30)-e(8-baP} |-e(8-ka)  (1+15¢)

1. (4-le-3a-32a2c+35ac )
€

¢{(1-¢)M(n, )+ eM(a) ,M(a)}= _
' (b-he~3a+l90e -16a2e)

g
€

- ~16a2 + 16a .
b --he - 30 + 19ae ~ 1602¢

-1

-1}

*.o{M(ny) ,M(a)} = 1in {262 (L o)
et h-he - 30 + 19ae - »l6a2e

16a(1-a) _, [ >0, ae[-2735, -9139 ] |
L-3a
£0, otherwise

Therefore,in this simple example the problem has been reduced from

one of scanning a triangle to one of scanning a line.

Lemmas 1 and 2 will of course apply to ¢7 as well. We now give
.two additional Lemmas ‘which will be particular to ¢7 Their proofs

are quite straightforward and may be found in Appendix k.

It has already been noted that non-differentiability of ¢7 may
occur when M L has c01nc1dent maximum dlagonal elements. Let these be
(ss5,4vee0.,88_) and define a matrix N to have the ss; property if o{M,N}

=t NM'l ML g

Lemma 2.3.3. . N .

Let N, N, elllhave the 8s; property. Then AN, + (1-A)N, has the
Bs property. C ;
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Lemma 2.3. 'R
Let N em, have the ss property. Then OJN has the ss.j property,

g > 0.

What Lemma 2.3.3. tells us is that the members of 7/} which have
the ssj property, forrg given M, form a éonvex subset of?TL. We shall
denote this subset by /}2 ssj. Similarly the elements of m' with the
Ssj property form a convex subset of 77{' » Which we shall denote by772'ssj.

Lemma 2.3.4 tells us that these subsets are formed ‘by 1ntersect10ns

of convex cones with /1l'. i
Note that M itself has all the ss properties, j=l,.ee.,r. Therefore,

M will lie on the intersection
msslnm Sszn .........., ﬂmssi‘.

It will also be evident from Appendix U that
ds{M,AMl +(1-A)M,} = Ae{MM } + (1-1) %b{M,Mz}
p
A €[°’1.] poM, My mssj’ Vi .

Therefore, although we do not have complete differentiability as in

Definition 2.2.2, we have a kind of partial differentiability and

hence testing optimaiity of a given matrix might not always be quite

as difficult as Theorem 2.2.1 might indicate. This is because, to

check optimality of a matrix M, where ¢ is not differentiable at M,
we do not need to calculate o{M,N} , V Ne M » but only for the
N which are the generators of the convex sets 7], ssj, J=lyeees, T,

and which are feasible optimal solutions.

In the same sensé Lemma 2.3.2. shows that we have a form of
partial differentiability in general, in that it shows that we need
only lodk .at extreme feasible points of Mifrom M.  Obviously the
sbove will only be of real help when the upper surface of Ml is planar,

or has planar reglons.

Cons:Lder again the tr1v1al Example 2 above. WL' is the
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convex set obtained using the generators { A;B,C,f) } = { (0,0,1),
(1,0,0), (l“ioso), (0,0,h)} . ‘See‘Fig.2.3.2. below.

Z/\

- Fig. 2.3.2.

3 0
By symmetry, for matrix M(nl) = [ o’ 10 we have

mi
mss = BEFC, mlss'

1

> ® AEFD.

Therefore, we need only consider directional .derivatives to points
A,D,F,C,B.  We have already seen that @ {M(n;), Mg} > O.

That is, M(nl) is non-optimal.

2.4: Non-uniqueness of M¥

Consider the following example.

Example: .
Let the induced design space be V = {v = (1,a)T' ae[—-a. .,.2]

}.
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. B » (1-2p) , »p »
Take & design measure n(p) = 'y PE [O,%J .

(172) 5 (1,00, (1,2)]

1 0 4 [ o]
Mn(p)) = |5 gyl » M(N(p)) o 1| » 0.4
L 2
Mn(o))* =[* O]
—O -

In this example it may readily be shown that n(p) is optimal in the
9),5 ¢5 (for estimation of the first parameter) and ¢7'senses, for
pe [%, 3 J. That' is, our optimal design matrix is not unique. Although
n(p) is optimal in the above senses, for p e[},%_], a better design
might be obtained by choosing a particular p value from [%,%] to
optimise some secondary criterion. For example taking p = 3 will

produce a design which is also ¢l and ¢6 optimal.

This non-uniqueness arises because some of our functions are not

strictly concave.
Define strict concavity of ¢ by

¢{ AA +(1-2)B } > a¢{ A}+ (1-2)¢ {B} ,

with equality if and only if A = B.

Functions ¢., ¢3, ¢6 will always have unique maxima because they
are strictly copcave functions (see Appendix 3). However ¢h-’ ¢5, ¢7
may not have unique maxima as illustrated above. ¢2, vhen taken in
the form ¢é of 2.2, will have a unique maximum because of its equivalence
with ¢l.' However, this may not a.lwayg be true for general ?2 (see
Appendix 3). '

To summarise this, we might say that when using one of ¢h’ &5 or
¢7 as & p?imary criterion it wou{Ld be prudent to be on the look out for
possible non-uniqueness of M*, and the possibility of choosing from the

set of optimal designs in order to optimise some secondary criterion.

. i
+ ‘
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2.5: An alternative approach to the optimal desigpAtheo;l
S |
Following remarks by Silvey (1972), in the diécussioh of papers
by Wynn and Laycock, that the optimal design problem might be linked
to a duality problem, the equivalence theorems were developed for D-
optimality (Sibson (1972)), Dg ~ optimality (Silvey and Titterington
(1973)) and for general concave ¢-optimality (Silvey and Titterington
(1974)) as corollaries of stronger duality theorems, using Strong
Lagrangian methods. Although the general theory was developed under
the assumption that I(x) was of rank one, there are no complications
if I(x) is taken to have rank greater than one, as may be seen from
Silvey and Titterington (1974). However, in order to exﬁloit the
above approach in practice by considering the design problem as a

geometric covering problem, it is essential that I(x) has rank one.

In what follows we shall assume that the assumptions of Theorem

1.4.1 hold and we shall denote the induced design space by V.

The geometric interpretations produce duallty theorems for

D- and D —optlmallty as stated below.

D-optimality

Define the minimal ellipsoid problem as that of finding the

ellipsoid 1? Mt ¥ £ K of minimal content containing V.

Theorem 2.5.1 (Sibson)
If V is a compact set spanning RK, the D-optimal design problem

for V is the dual of the minimal ellipsoid problem for V and the two*

" problems share a common extreme value.

Ds—optimality

Define the thinnest central cylindet problem as;

Let A be a positive definite sxs matrix and B be a s x(K-s) matrix.
The thinnést central cylinder problem for V is that of finding a
cylinder

- | ey
(v(l) + B v( ))T A(I(l) +3B 1(2)) <8, vs=|—
: ' - 1(2) (K—s).
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containing V and such that the determinant of A is maximised.

Theorem 2.5.2 (Silvey and Titterington)

Let V be any compact subset of RK vhich spans the leading s-dimensional
co~ordinate subspace. Then, for V, the Dé—optimal design problem is the
dual of the thinnest central cylinder problem and the two problems share

a common extreme value.

The possibility of practical improvements, using the above geometric
interpretations, arises because in some simple situations the geometry of
V may enable one to spot optimal ellipsoids or cylinders and allow

calculation of optimal designs without recourse to iterative algorithms.

With respect to the afore-mentioned problem of testing optimality
of a singular matrix for criterion ¢5, it would appear that the above
approach will only be of help in the simplest of situations, due to the
difficulty in obt&ining the optimal matrix B in the above (see Silvey
and Titterington (1973)). '

2.6: Examples

.This section will be devoted to a set of examples of optimal
designs which can be calculated explicitly. This, of course, will not
always be possible in general. However, the examples given, although
simple in form, may have practical applications, and will serve to

illustrate sections of the theory described above.

2.6.1: D-optimal designs on K-points

" One can imegine many practical situations where an experimenter
will be interested in carrying out a designable experiment at the minimum
number of design points in the design space, in order to economise on
time, money and resources. Therefore,it is of interest to investigate
the best guch design, and when it will be optimal. We restrict the
problem fo D-optimal designs in situations where'I(z) is of rank one.

Again we represent the design space by V.
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Let our design measure be & = | P1sretices
Ypoeeereeray

K .
M(E) = iﬁl p. V. V. = UAU’T, U= (-Y-lf’ff°y-K)’« A = diag {pi} .

K
[Me)| = |v3l ©  p., , I p. = 1.
. i
1=l
: e . : !

IM(£)| is meximised with respect to the p.'s when p; = E’Vi’
That is, the best K-point design, in the D-optimum sénse, puts weights
1 at each design point, independently of the points chosen.
X : .

Suppose now that we have selected a set of K-points {w_rl,......,IK}
with optimal weights.

1 1
" That is,our design measure is given by £ = | K °*°°**°***°* ¥
. !l’......., !K'
M(E) =UAUT=%{-'UUT. |

By Theorem 2.2.1., & necessary and sufficient condition for
D—opti_mality of £ is

o{M(E), N} 0, VN eT) .
'That is, our K-point design is D-optimal

Ly, v viig 0,V veV ..

ife | of %

irf Ky (WTh-Kgo W/ vev .

. T-1 - '

iff XT UlUlzgl S vev .

X - -1\ s

iff (u J‘y_)T(U ¥) g1 L,Y VeV .

iff U-'-L transforms ewfery roint v in V inside the unit hypersphere. .
If the design space V is discrete, consisting of m points, then one

could compute an- l s i=l,ff?7f,mCK . Ua representing the matrix

i ) i

obtained from the &i'th selection of K points from the m available.
Observing the maximum, the existence of a K-point D-optimal design might
be checked using the above necessary and sufficient condition. In
certain simplé situations the best K-point des:'fgn mé.y be calculated
ana.lyticaliy. ’ . ’



Example 1:
Let Vbe { v; v' Av=1}, A symmetric, positive definite.

That is,V is the surface of an ellipsoid in K dimensions. As .we have

said the problem is reduced by knowing that the optimal weights are %-.
We therefore wish to maximise
K 2
Lount |-l
i=1
subject to the constraints

T
Uy =1,V

Let A = BB', and y = B v.

The problem is equivalent to finding K vectors Yoeores xK»to

maximise

-~

[ >

Y: ¥s
j=1 71 71

or equivalently maximise |Y] = A , subject to xiT r; =1,

‘Introduce Lagrange multipliers AseeenAld
We require to maximise the Lagrangian form
X .
- I T, _
IYJ i=1 - Ai(xixi 1)

: T
EEEEEE) le | - zki(yiyi -l)

o-.o.o}:ﬁ
|

Secse o

‘ymoooooo- yKK . . .

~jL-= 0 = ?l = 2\ ixi » Where cij‘denotes the co-factor
% : of the (i,j)'th element of Y.
Cix - e
A, =2 NN e
- }=3 2V .oy DoRA= 2y
¢ik
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T fe .
.vAlsQ Zj e = Q s 1 + | .
iK
T
= ¥y =0

That 1s the problem is solved by taklng any K orthogonal p01nts on the
unit sphere and trensforming them back into V space via v = (B‘I')ml

Example 2.
' Consider the problem of allocating weights with which to take

observations from 3 populations in order to estimate two unknown
parameters best in the D-optimal sense. Let the observations come from

Poisson distributions
(1) Po (6) , (2) Po (8;) » (3) Po (8, + 6,) .

The conditions of Theorem 1.k4.l hold, giving an induced design

space
T [ ; ’ O} ’ [O’ ; ] ’ [ - ’ l |
. Vel _ Jez | /bl +.92 /el + b,

Intuition suggests that taking observations only from populations
(1) and (2) might be D-optimal. '

/6’1‘ O
il = .
0 /6'2
A R, )
..l s
U — transforms V to V' = {(0,1),(1,0), '
o v8, Bte,

The three points in V' lie on the unit circle for all (el, 92)
implying D-optlmallty of the design which allocates observatlons equally

to populations (1) and (2).
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Example 3:

It is interesting to compare the above necessary and sufficient
condition for the existence of a K-point D-optimal design with the
sufficient condition of White (1975). " A vefy simple éxample illustrates
the weakness of White's resﬁlt.

Let V be the three points on the unit circle

, . 1 1 |
{(0,1), (1,0), | —— s —— } .
2 2z
From Example 2 above the optimal two point design, namely
3,3
(0,1), (1,0)
is also D-optimal.

White's condition for D-optimality of the K-point design is that

where again o, denotes the i'th selection of K from m points, oy

being the selection under scrutiny.

, Number the three points (0,1), (1,0), [L— R —i—] as 1,2,3
| | £ !
respectiyely.
(ll.= (1’2)' s 02 = :(133) ’ ‘ 03 = (2’3)'
' “1! =lo 1| =%
U |2=|1 0|2 =3}
2 PR §
Z /2
0 1|2
2 F— =
U&3 L L :
2z 2
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2 12 0+ Ju |2 =1

U U

(ll (12 G3

that White's condition confirmsD-optimality of @, . However ,the weakness

s we.note

Observing that

of White's condition is at once evident. If V were to consist of four
or more points lying inside the unit cifcle, with points 1, 2 and 3
being included, then White's.conditiqn will cease to hold although 'dl-
will still trivially be D-optimal by what has been given above.

2.6.2: D, optimal design to estimate the difference between two

population means.

Suppose we have two populations A, B supplying observations with
means A,A + u respectively. The parameter of interest is u the
.difference between the population means. Let the variances of the
observations be v  and v, . In what follows we shall assume that
- one of the two following conditions holds. '
(i) A and p are the only unknown parameters and the full conditions of

Theorem l.4.1 hold.

Examples: The observations may come from the following distributionms.

(a) normal, (b) exponential, (c) Poisson.

(ii) v, and v, may be unknown as well as A and u but are estimated
independently of them. The full conditions of Theorem 1l.4.1 will

be assumed to hold if v and v, are known.

Example: The observations may come from normal distributions .

with unknown variances.

Allocate observations according to the design | P ° 1-p
D TN 1-p . 1-p
M(P) = va vb ’ vb .
ip i=p
L "o oo
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The criterion for best estimating M is
LA

The above can readily be shown to have 1ts maximum when p = {;; '
/V; +/;L
That is, the optimal’'allocation of observations is in the ratio /V;
™

2.6.3: Simple linear prediction.

Suppose that observations are distributed as N(a + Bx,02 ), o
assumed known. Suppose that in the laboratory we can obtain observations
only at points x € ﬁaJﬂ s but that in the future predictions may be
required at points possibly outside this:interval. Let us assume that
we know the distribution p(x) on x with which predictions will be
required in the future. The criterion for design will be the average

variance of the estimated expected response.

That is we will want to

mén. f(l x) M 1(g) [ ]p(x) dx

= min tr (M 3(E) “1 x] p(x) dx}
3 x* |
. -1 1 - U ) .
= min tr{ M.7(g) A} , A= SN S| where u and g2
£ | : :

denote the mean and variance of p(x).

It will be suff1c1ent to consider the interval E-ﬂ. 4JJ for x

as the criterion tr { M (E) A} will obv1ously be invariant under

linear transformations on x if the density p(x) is adjusted accordingly.
Consider M' = {(1,x,x2) ; x e[‘l. +1]} » 8ee shaded region in Fig.2.6. 1.
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Fig, 2.6.17

Because our criterion is an increasing function,the optimal
point in M must lie on the line XY, that is, the opfimal design “

measure must put positive weight only at points -1, +l.

Take as design measure ( 1-p , P } .

-1, 4
1 2p-1 1 1-
M(p) =[ A,], Mp) t = —E— 2.
op-1" 1 bp(1-p) | 1~2p 1
. tr{ M(p)™t A} = L ((l-f‘ B 2+g2 - hpu] .
4p(1-p) - : .

This is maximised where

(1+)240%) = ((141)2 402)? ((-w)? + 62)} 4 40
Ly
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2.6.4: Linear Calibration Design

Suppose we have two factors u and y. In the laboratory we
may observe y subject to stimuli 11e[a,b] . These responses are
known to be subject to an error which is known to be normally distributed,

the expected value of y given u being a linear function of u.

That is, p(y|u) ~ N(a + Bu,72 ); «,8,72 being unknown parameters.
The dlstrlbutlon of u values arising in nature is knOWn to be of the

form p(u) ~ N(A,02), A,02 known.

A simple application of Bayes formula to the above density functiqns
- will reveal that p(uly) is of the form

A _aB B
o2 = 72 Py
N - + Y _.._J.'__.._.
g2 1 g2 1 g2 1
+
<2 7 52 T2 ¥ 52 72 * 57

The object of the experiment is to investigate,in some sense,the
distribution of u for given y, that is p(uly)- Therefore we have a
simple calibration type experiment. Let us suppose initially that we
are interested in best estimating the parameters a,8 ,t2 in the

D-optimal sense.

1 u 0] .

I(U) = 3.'2
T u u?2 o
o o 1
. 21_2

It is well known that the D—optlmal design for estlmatlng asBsT?

. 1
18 2 ?

\
§ .
a 4 b
Now suppose we are interested in p(u]y) and that parameter
estimation is our criterion for design. 1In this case the natural

parameters of interest will be, not (a,8,72), but
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A aB B8

A _ 2z o
BT, I T eI CTETI

2 t52 Z 57 21T

_ If D-optimality is our criterion, then, because (m,n,©) may be
obtained by & -non-singular transformation of (u,8,72), the D-optimal
design for estimating (m,n,o0) will be'the same as that for estimating
(a,8,72) , namely [% ’ %] . , | )

a b

2

If however we are only interested in a subset of the new parameters,

(m,n) say, then the problem is not so simple.

Let the Jacobian of the transformation be J.
Let m = ¢; (0,8,72) , n = ¢, (o,8,72) , o= ¢ (a,8,72) , then

Faa 98 312 7]
3; 93¢, 29

0 98 ot2
J = | 8¢2 8¢2 3¢2

da 88 312
_a¢3 3¢3 a¢3._J

The criterion for (a,8,t2) was | N(g)| , N(g) =| M(&) g
1

0 O é?1z

A

For (m,n,0) it will be | J ﬁ(g) gt |

For (m,n) the D -optimal criterion will be

T (20 38 ar2) .
| T n(&) JTJ » Vhere J, [3¢3 23 3“’3] ,
|7, N(E) Jél

Maximising the above will be equivalent to maximising .

| M(&) I -,
20 98¢ 1 a1 St
[a¢3 a¢3l M(E) 3 a¢3 * o2 [ %5 }
| % |

/o oY)
/. o 3
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By an argument analogous to that of 2.6.3 the 6ptimal design will
be concentrated at.the eﬁd points”of our intérval [:3;51 N The problem
is thus reduced to calculating the optimal welghts. This.problem will
be unaltered by transforming 11"1-¢a.x.m to z such that the 1nterval['_' a,b]
is transformed to [-—1, +1l ]

b+a )
A -2 | o
P(z) v NO®,G*2), A% = 2=, o*2 = iy
2 L
p(y|2) vN(a* + B¥z,12), a* =a+Db+a .8 , p¥ = Db-a B
2 2
‘Let the design measure be P , 1-p

(1 911) 3 (1 »-1)

1 . 2p1
M(p) = .
2

p-1 1

A

' The design problem is equivalent to “solving the following problem.

ma:(c ) o [_M(p) | .
pelO,1) da* p¥ M( da¥ 1 r3t% 42
. p) + 5=
| (a¢3 a¢3] 905 2t [a¢3}
. ‘ ag* e
That is,
| bp(1-p) .
mex da*yo %2 1 coT2 Ba*  3p*
},1 — , , + 2(2p-1
- pel@ .) - “3¢3] + [%3].-:1- > [“3];2'} - 2(2p-1) TR
That is,
max 4p(1-p)
Pe(Qsl) r + 2(2:9'..1_)3
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~(r-2s) + (r-2$l%(r+23)% >

This is maximised when p =

_ 2s
‘ [2a%)2 - [op%)2 1 - 312)2 o 3aw < 9B%*
where; 'r =,E——J ‘+_L——J + - [.__.’: §==. 2.
R IR N A T DU

2.6.5: Linear Quantal Response Model

Consider the following binary response model.
p(1]x,8;, 8,) = F(o) + 6, x), p (0] x, 0,,0,) =1 - Flg, + 6, x).
F(+) is a distribution function of a random variable whose density function

is ‘symmetric about the origin. X is a continuous .subset of the real

line. This example is also considered by White (1975).

The conditions of Theorem 1.k.1 apply,giving

I(x) = a(z) | 1 vx | s AMz) = { £f(z))2

x x2 F(z)(1-F(z)) ’ *

z=0, +6,
Note that the above comments imply that A(z) is symmetric about
- the origin. Taking D~optimality as criterion, symmetry suggests

consideration Of & two-point design of the form

i o0 3
a—ei —a-el ) ’
b, 6,
|M(a)| = { & A(a)}2 /o, .

For the linear logistic and probit models the function |M(a)| has
unique maxima at a = a¥, a*’being approximately lfsh and 1.1k respectively.
If + a* - 9,  lie in X then this two point design can be shown to be

02 . L
D-~optimal. Also if X is symmetric about -~ 6, and t a -6, do not

0, 6,
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lie in ¥ then 1t can be shown that the D—optlmal design puts welghts
(5,5) at the end p01nts of X. This example will be reconsidered in

a later chapter.

2.6.6. It is of interest to consider some classical experimental
~ designs and to utilise the equivalence theorem of 2.2. to investigate
optimality of these designs with respect to some criteria. Three

)

examples are investigated.

Example 1.

The first example is the Latin square. This type of design is
~ generally applied in an agricultural setting, p treatments being allocated
to a pxp matrix of plots in such a way that each treatment appears once

and only once in each row and column.

A possible model, for observations resulting from such an experiment,

is as follows.
Vise = % * Bty + Cijk iR N( 0,09, i,5,K=1,e0.. Do’

In the above Y K denotes an observatlon in the (i,j)th pos1t10n of ’

the matrlx to which a treatment X has been applied. The parameters
a; s Bj and Yk denote underlying constants which reflect, respectively,

the effects due to position of the plot in the matrix and to the treatment
applied. The e<in's arg error terms . distributed as above, which are
assuned independent of position in the plot and treatment. -The model
_ has dimension 3p. Due to identifiabilitj considerations the model is
, usu;ily reduced to the following form. '
Yin =utoa; * By + YK + €13K° E-ai =12 Bj =1z YK = 0.
The ‘dimension of the model-is now 3p-2.

The parameters are well known to be estlmated orthogonally between

effects as follows.

HTop2r 4T

R. - C.
S S RO S S

Qo
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. G denotes the grant total of the observatlons and R s C'J and AK denote,

respectively, the row, column and treatment totals.

The variances of the parameter estimates are,

a2

o ° VT (‘;i) = var (éj) = var (;K) 02[—- -% V i,J.K.

var (u) =
: P

The design space in thls example can be denoted by the set of
trlplets (1sJ: )' i,J K=1,....,p.

Take D-optimality as criterion. The directional derivative from
a Latin square information matrix to any of the one point design 1nformatlon

matrlces, that is &{ MLS’ I(i,j,K)} , can easily bve shown, from

Fig.2.2.1, to be,

. . . 2 " A._" A a
of Mg, I(l.a,x)} L7 var(u +a; '+ By + 7) - 3p + 2

L}
Q
S
———
+
w
’ Q
N
CIT™
I
el
L
s
!
[TV
=]
+
N

"

o

<€ wja
N

He

-

(]

L

~

Therefore,the Latin square is a D-optimal design. Now
consider D -optimality as criterion, where .interest lies in the YK'
Because the parameters are estimated orthogonally it may again be easily

shown from Flg.2 2.1 that,

Q{ MLS’ I(l:J’II{_)} =

"
o

Therefore,the Latin square is D_-optimal for estimating‘the
treatment contrasts. Obviously the Latin sguare will also be D_-optimal

for estimating the row and column contrasts.
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Example 2.

Consider now & classical block design. " Suppose we have p treatments
to be allocated to q blocks. We shall define a balanced design as a
design in which every treatment appears once and only once in each block.

The model considered is as follows

Yij = ai + BJ- + Eij H EiJNN(O,,O?) ’ i=l’f"f9p’

j=l,ooco,q.

-

The notation is similar to that of Example 1. Again because of
identifiability considerations the above (p+q) dimensional model is
reduced to "the following.

yij= u+ai+6j +Eij ] Eai=28j=0, i=l"'?"P’

j=1,0.un ’qo

This model has dimension (p+q-1).

The parameters are estimated orthogonally between effects as

follows,
"~ T‘ <B:
A- _._q 3 ——}._ .9_ " - .__l__G__ 3 e
u= m ’ ai q m B = P pq:l‘ls"°':P:

J. = l’ootc,q.

In the above Ti and Bj denote the treatment and block totals respectively.

The variances of the estimates are,

o2 ,
1) o= — 0 )=g2lt - L 2.) = g2 |21
var (u) ~ f_ var (ui) o {q Pq] , var (Bj) g [p =

The design space can be denoted by the set of ordered pairs (1,3),

_1’....,P, —l,oooo,q.

Take D-optimality as criterion. It can easily -be shown that the
directional derivative from the information matrix of a balanced design

to any of the one point design information matrices is,

® M, I(i,.j)' } —-E% var(y + ‘;i + gj) - (p+q-1)'
2 ' |
B (2o 2-1)] - re)

Pq
0, Y i.;.
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. Therefore,the balanced design is D-optimal. ~ Now consider Ds-
optimality as criterion, where interest is in the treatment contrasts.
Because the parameters are estimated orthogonally it is easy to show

that_

o My, T3 = B var (o) - (p1)

= _-g% . .02(-1-'- - -l-] - (p-1)

L}
o
<
H

<

i
It may easily be seen that the design will also be Ds—optimal for

Therefore,the design is D_-optimal for estimation of the a;'s .

estimaetion of the block contrasts.

Example 3.

We now conéider the optimality of balanced incomplete block
designs (BIBD). The simplest of these can be thought of as
reduced designs of the type considered in Example 2 above, where
. each pair of treatments appears once and only once in any block.
To investigate the optimality of these designs we must first consider
the design spaée. The design space will in fact be exactly that of
Example 2, that is,the set of ordered pairs (i,j), i=l,....,D;
J=l,e0e.,q. With this in mind it will be obvious that the BIBD's

will not be optimal in the design measure sense.

‘ However, the optimality of BIBD's in the design measure sense

is not really a relevent factor, as the need for these types of

designs arises when there are restrictions on the number of treatments
vhich can be applied in each block,and this type of restriction can
‘not be readily included in the optimal design measure theory considered
abdve. “The problem is really one of proving optimality in the exact
desigﬁ sense, and problems of this type have been considered in several

papers by Kiefer, the most comprehensive of which is Kiefer (1975).
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2.6.1. In the llterature of design theory there are many other
examples of analytlc calculatlon of optlmal des1gns. Most examples

are of D-optlmal.deslgns,partlcularly in the area of polyﬁomial ‘

. regression. These designs have been obtained by, for example, Smith
(1918), Guest (1958) and Hoel (1958). The interested party is referred
to Fedorov (1972) who devotes a chapter to polynomial regression design
with D-optimality as criterion. In other areas and for other criteria
Fedorov (1972) and White (1975) give some interesting examples.
Titterington (1975) illustrates how geometric arguments allow analytic
.solutions to some D -optimal design problems in simple situations.

Despite the above however it is necessary, in general, to resort

t0 numerical algorithms in order to obtain designs, and it is to this

topic that Chapter. 3 is devoted. -
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CHAPTER 3

ALGORITHMS
As we have seen, it may be possible to obtain, for some design .
problems, optimal designs by analyﬁic meens. However, in general this
will not be possible and iterative numerical methods of solving design
probleﬁs are necessary. Several types of algorithm have been put
forward, all closely linked, yet each having its own distinctive features.
Of course, as previously mentioned the solution of the continuous |
design problem which we have been cons1der1ng up to now may only be the
precursor to actual production of an exact design which mlght be applied
in practice. Therefore, at the end of this chapter, we shall also
consider algorithms which have been put forward to produce exact designs
ab initio, or to improve upon designs which have been produced by
approximating to continuously optimal ones.

3.1. Wynn's Algorithm

We consider this algorithm firstly, despite the fact that it would
appear likely that similar algorithms were developed by Fedorov and his
co-workers in Russia in advance of Wynn. As publications of the earlier
work of Fedorov appear only in Russian this is difficult to verify.

In any case, this is irrelevant to the development of the theory in this
thesis. Wynn's algorithm is considered first because it'represents
the simplest to apply in practice. ' ’

As Wynn's algorlthm was produced initially to solve the D-optlmal
design problem in & case where I(x) is of rank 1, we will restrict

ourselves to this case, again with induced design space V. Extension

of the algorithm to other situations will be obvious from the discussion

which follows.
The algorithm may be summarised in the following manner

(1) Let § be s non—81ngular K point design measure. That is
T _ .
M(E ) El K Yi Yi ] IM(EK)! > 0. Set n=K.

=

s



N

* -
(2) Find v* such that max v M(£ ) ‘X_T M(En) 1 v*
- veV

(3) Add v* to. the design spectrum and allocate welghts —%i to the

(n+1), not necessarily distinet, points in the spectrum.

(4) Set n = n+l. Go to (2) and repeat.

Wynn (1970) proves convergence of the above algorithm to an optimal

design measure. His proof is simplified by Pazman (19Th).
We make the following observations on Wynn's algorithm.

(i) The computationally most exacting paft of the algorithm is (2),
vhere an optimisation problem must be solved. This may often
be satisfactorily carried out:by approximating to V by a finite
grid of p01nts and obtaining the maximum by direct search. Fedorov
(1969) gives very useful formulae for updatlng M(g ) as the
algorithm progresses.

(i) The algorithm is not necessarily monotonic, that is, IM(£n+l)|
- is not necessarily greater than lM(gn)I . This makes Wynn's
proof of convergence very difficult, and,'in application, may

affect convergence rates of the algorithm.

(iii) The number of distinct p01nts in the spectrum at stage n may
become very large the design becoming cluttered with points hav1ng
very small weight (poss1bly relics of poor initial choices), thus:

slowing convergence to a design measure on a small number of points.,

In order to compare Wynn's algorlthm wlth others it is useful to create
a 'picture' of what the algorlthm is actually doing in a general setting.
Let us return to the convex set of matricesTM={ M{(£),Ec & }, on which is
defined a concave function ¢ which we vant to maximise. Corresponding
to step (1) in the above procedure we take as startlng p01nt a point
M(g ) inM at which ¢ is differentiable. The next step is to look
for the dlrectlon from M(gn) in which there is maximal rate of increase
in ¢, that is,for the direction in which the directional derivative is
greatest. In the above this may be seen to be 1n the direction of the

matrix v* v*T, which corresponds to the design matrix of a design measure
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Whlch puts weight unlty at the p01nt v¥e V. The next actlon is tb move
a predetermined distance along the line of steepest ascent. In the
above & move is made to the point

M) = (- o) Me) + o ¥ 2 @

The, process is repeated until suitable convergence occurs. Fedorov (1972)'
notes that any sequence of ai's satisfying
I o =, lim a =0, dn > O,\/n,
n
n=1 n >«
will guarantee suitable convergence of the algorithm.

Viewed in this manner as a steepest ascent type algorithm there is

an obvious alteration to Wynn's algorithm which might improve convergence.

3.2. Fedorov's Algorithm.

The possible improvement in the gbove aigorithm, which becomes evident,
is to drop the restriction that the an'é be predetermined, and to choose
them in order to attain the maximum increase of ¢ at each stage. This
leads to the algorithm of Fedorov-(1972), which might be summarised as

follows.

Repeat Wynn's elgorithm with (3) changed to (3)°

(3)' Det M(g ) = (Amoy) M(g) +a W Wl

%l

M e:n)-:L

¥* - K

k(" Mg )7h v* - 1)

" We make the following comments on this alteration.
(i) Although, for the case of D-optimality, the a, may be found
anélytically, as given abqve, this will not typically be true for

other criteria and may lead to substantial extra numerical work.

(ii) The procedure is now monotonic, simplifying convergence proofs, and

possibly, but not necessarily, accelerating rate of convergence.
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(iii) The problem still remains of poor points remaining in the design

spectrum for long periods, with non trivial weights. : coni

Atwood (1973) has suggested impro§ements to Fedorov's algorithm.
They were presented as imprqvements t§ ﬁhe’algéiithmlfor D and Ds -
optimality, but the generalisation of the application of the most
important of these, to more general.criteria,'is at once apparent.
Atwood's point in a more.general situation is bést appreciated by
returning to the pictorial representation. Again imagine starting from
a point M(gn)e7n,. Fedorov's algorithm takes us in the direction of
steepest ascent from this point. We note that there must be points
x ¢ ¥ such that we are looking 'downhill' from M(gn) to I(x), and
therefore 'uphill' if we about turn and face the opposite direction,
‘.because of the @ifferentiability of ¢ at M(En). Atwood's improvement
'is a result of the fact that a greater increase in ¢ may result from
moving away from one of these points rather than in the
direction of steepest ascent. This is equivalent to allowing @ to
be negative in (3)' above. Note that we need only consider points x
which are in the design spectrum at stage'ﬂ for possible alternative
directions, as bringing in new points with negative weight would take
11 outside the set of feasible design measures. The most natural

n+l
point to use would seem to be that for which the directional derivative

»

is smallest, and, in ‘fact, Atwood (1973) shows that for D and Ds
optimality this will give the maximal increase in ¢.
The importance of this improvement is that it serves to 'weed out'

the bad design points discussed above, thereby aiding convergence.

For Atwood's other improvements, which are much more trivial, see

Atwood (1973).

We note that improved convergence has only been obtained at the

expense of increased computation and the need for a more complex computer

program.
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3.3: Algorithms of Silvey and Titterington (1973) ‘and Atwood (1976)

We first summarise the details of the algorithm of Silvey and

Titterington, and then compare it with that of Fedorov.

(1) Let M(& )Kbe a differentiable K point design matrix 1&ﬂb
ME)"rl‘—I&),sd;mK.

(2) Find x* such that ¢{M(gn), 1(5)}. is a maximum.

(3) Add the point x* to the design spectrum. Find the optimum design
measure on the finite set of m(n) distinet points in the design

spectrum. Let this be £l

(4) Goto (2) and repeat.

The only dlfference between the above algorlthm and that of

Fedorov lies in sectlon (3).

Consider the convex hull of the one point design matrices obtained
from the m(n) distinct design points at stage n,oneof whichwillbe I( x¥*).
This convex hull will, of course, contain M(EQ). Fedorov's algorithm
moves the procedure from M(gn) to a point M(£n+l) on the line between
M(gn) and I(x*), such that M(€n+l) is maximised. The algorithm described
above is free to move the procedure to any point in the convex hull in
order to maximise ¢. Obviously the aigorithm of Silvey and Titterington
will give at least as great an increase in ¢, at each stage, as that
of Fedorov. However, it does so at the expense of a great deal of
added computation. .Fedorov's algorithm requires an optimisation at
stage (3) with respect to one yariable, while that of Silvey and
Titterington requires an optimisation with respect to m(n)-1 variables.
However, if the .spectrum of the .qptimel design is contained in the m(n)
distinct poihts st stage n the sélution will be obtained in one more
step. | This suggests the use of Fedorév's or Wynn's algorithms initially
to produce a set of points which might contain the support points of the
optimal design and then a sw1tch to the algorlthm of Silvey and Tltterlngton
to complete the coup de grace. However, although this plan seems worthy
of consideration, it would appear to be difficult to decide, in general,

when the'change-over should best be made.



58

The Silvey and Titterington algorithm throws up another mathematical
programming problem. That beihg, given.a finite number of design points,
how do we find the optimai.weights which should be allocated to these
points. Silvey and Titterington (1973) suggest the use 6f the Newton-
Raphson technique for this proﬁlem. Sibson and Kenny (1975) suggest
the use of the dual-simplex methodé of the‘Kelley cutting plane (Kelley
(1960), Wolfe (1961)). A problem which may arise in practice is that
‘these algorithms may lead to non-feasible soiutions, that is, solﬁtioné
which attach negative weights to some points. The problem then becomes
a more difficult one of constrained 0ptimisaﬁion. An alternative
algorithm suggested by Silvey, Titterington and Torsney (1976) would
seem to solve this problem, at least for D~optimality, and possibly in

other situations, although this remains to be proved.

Consider the situation at stage n in the algorithms of Silvey and
Titterington. The procedure is situated st a point M(En). A point

x* is added to the deéign spectrun.

Part (3) of the algorithm of Silvey and Titterington might be
thought of as finding a measure n, over the set of m(n) distinect

points in the design spectrum in order to maximise

o{M €E 1)} = 0 M(g +n )},

. n+l

with the constraints

@) | ntw =0
xeX

(v) En+i gives negative weight to no point.

Atwood (1976) suggests an algorithm which instead of trying to find
an exact solution to the above problem, a prdcedure which may involve
lengthy calculatipns, obtains an approximate solutién to the above
problem and then continues directly to thé‘next\step. What Atwood does
is to find the maximising n,s n¥ say, for a.secqnd qrder“Taylor
expansion of ¢{M(En+l)} about M(gn)f' The next step is to move
in the direction of this solution to a point whigh maximises the original

function. That is, find an o to haximise-_¢{M(gn + an;')} , egain
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with the obvious constraint that negative weight should be attached to
noApointfl Atwood shows ﬁhat with mild:regula?ity.conditions oﬁ b

the above sequence of design ﬁeasurés will converge to an‘optimal design,
convergence being monotonic. He also shows that asyﬁptotically his
quadratic approximation design will perfbrm.ét least as-well as Fedorov's
at any given step. Although Atwood's algorithm will involve less
computation than that of Silvey and TitterihgtOn at each stage, it will
involve considerably more than that of Fedorov, particularly'for

eriteria other than D-optimality.

3.4, Yet another algorithm.

We now present an algorithm which would seem not to have been

presented before.

Let us return aéain to the convex hull of the m(n) distinet design
p01nts at stage n. We have noted that the algorithm of Fedorov moves
the procedure from a point M(& ) along the line of steepest ascent tOVards
another point I(—l) say. The 1mprovement of Atwood (1973) suggests
that a greater increase may sometimes be obtained by moving along the
line of steepest descent, that is, away from 1(52) say. The essen&e
of the algorithm to be presented here is that we carry out both processes
at once by moving to a poiht in the plane containing the lines of steepest
ascent and descent, in order to maximise ¢. The algorithm is presented
for the situation where I(x) is of rank one and the criterion is ‘D-optimality.
The optimisation problem may be solved explicitly in this case.

Note the follow1ng notation.:

®y _ T TroEy .
I(_ng) = .Y_l Xl ’ 1(5_2) = Xa 22 )

=T -1 = T -1
a, =y Mg) "y, 4=y, Mg)
— T -1
&G, =Y M(En) v

-2 °

The algorithm differs from that of Fedorov only in section (3).
i dure moves £ ' =
In sectlon*(3) the procedure mT es from M(gn) to M(En*li’ M(§n+%)
—g¥ - T v
(1 -af = o, )M(gn) +toaf vy vt o+ % ¥, ¥, T, where a; and o, are

-
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chosen to maximise

- - P T ’ . . T "
(L -y —a) M, ) +a vowy +a,v, v |

Typically it would be expected that a; > Oend az* < 0,

We now obtain formulae for a} -and “EA-

"Lemma'3.‘1+.lf

7 T

= el - a2
| wivy vy + v, v, M {1+ +a, +ajq, - af)
Proof
— oy T Ty P T\ -1
l M"'XJ_XJ_"'XQ V2 l = ]M""Xllll {1+_V_2 (M +y_lzl ) _!2}

T~1_ 12
| - | (M )
| M| {l+xTMly_l}.{l+lTMlv e A

1 2 - 1+X$M-¥!1 :
. ) lMl'{lfd-l“dz*,dlda'd'fa}
By Lemma 3.4.1 we h;ve -
* ‘= M (1-a - QQ)K- 1+ jial . %% . 2% 48y %9 i, }
l—al—a2 l~al—a2 (l-al-aa)2 (l--al-az)2

Gl +02

Fix a +a, = X, and introduce a Lagrange multiplier A .

We require to maximise the Lagrangian form
| a a,d a. o
~{l+all+ 22, A%
1-x 1-x (1-x)2

We require to maximise #* with respect to o, and ®ss

< 1.

(a8, =-a2, ) =2 (o +a, = x)

Equating the usual partial derivatives to zero we have

a¥ ) .

4 s 2 (qa-a2 ) =2
1-x (1-x)2 e

4 o¥ :

2 1
—£ 4+ = (d.d,-4d2) =2

192 2

1-x (1-x)2 E!
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Solving the above equations for a* and o¥. we have

1 %
(4, -.a,) _
of = 3 - 21 S (1-x%*) + x* }
| 4,4, - 4,3
a -d. .
af = 3+ Et . (1xx) 4% )

d,d, - d 2

x* in the above is the maximising value of 'x in the follow1ng
' (d,-d,)2 d,d, -a2

(1~x)%p1 + —2 (a1+d2)x —2 17 '(1¥x) 172 12,
) 2(l-x) dld2~d122 . h(l—x)z
2-(1~x)2, (dz"dl)z

ok

Equating the partial derivative of the above, with respect to x,

to zero, we have

- (l'X)K_3 f(x) = 0, where £f(x)=® A x2 + Bx + C

A=a+b+c, B=-(2a+b), C=a,

a=K+ ~% . (a —dl) - _Ei_:;g? R
4,4, 2
- a2
b= - (K-1) dl * d2 + d1d2 d12 .
2 2
' d
¢ = (K-2) . "1& 612-

Solution of the above quadratic equation gives

x* = 2a +b i;/sz - ):ac

28 + 2b + 2¢

whichever solution is suitable. A piece of tedious but straightforward

algebra reveals that real solutions to the quadrétic will always exist
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2_ = 1 _ 2 — 2
as b“- hac d1+d -4 d, +. 2 + K(k-2) 47, > 0.
The sultable solutlon may be found by substltutlon in the breakdown

of ¥ above.

We note that the extra computatlon 1nvolved in the calculation of
af and a; will be tr1v1al. dl and d2 will already have been computed,
leaving only computation of d12 and substitution in the formulae above.

We now consider two examples, which will illustrate points which

may be aids in the use of this algorithm, and indicate its potential.

- Example 1 )
: We take as an example a problem used by Wynn (1969).

Take as induced design space V = {(1,1,-1),(1,-1,1),(1,-1,-1),(1,2 2)}
A} .
Let Eo allocate weights as (—-'---3,0)T -

d1(11)= dl(xe) = dl(xs) =3, dl(xh) = 25.5.

Therefore, we select Y, for introduction to the design spectrum.
That is, = 25.5. .

There is a choice of points to select as a direction of steepest
descent. However, remembering that intuitively we would expect a{ >0
and a; <0, it may be seen from the reduction of # +that the best

point to 1ntro§uce is the one which maximises d, . in modulus.

12
holny) = dply) = b5, 4, (r) = -6
Therefore,choose Y3 giving dlz = -6, d2 = 3,
Substitution in the above formulae gives
2
a=3(1+423F y_ 55 o _ g
L x40.5

b = -2 x14.25 + )—*95-2 = -8.25

40.
c = '—7;2= 10.125
- * = 8 2
a+b+ec 0 = %8 + b 3%
= 0¥ = -1.'.9. a* =——5—..
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If we denote.the-design measures which put weight one at poiﬁts

‘ 33’ vy, by QXB ,. Ev E then ve have:

(o
-
i

{1 - a{ - “; ) go +,a{i5_h + a* Ev .

(29 10)"1'.
32 * 32 ° 32 * 32 -

This is in fact the D-optimal design measure. That is, we have
éonvergence in one iteration. This is obviously due to the symmetric
nature of the de51gn space and the starting design & However,
although the above example is a little flattering to the new algorithm,
it does illustrate very well the possibilities offered by an algorithm
which has a wider area of search. Wynn's algorithm converges to the

above optimal design in thirty-two iterations.

Example 2
Take as induced design space V = {(1, 0 ,0), (O;LO) (0,0,1),(2,3,3)} .

Let E allocate welghts as (Lyks2,8. )

() = 4 (v, = a(x,) = %‘- a(n,) =12 .

£

There is & choice of direction of steepest ascent here. Due to the
symmetry of the situation there would appear to be no reason for preferring
any particular point, therefore, we take v, for the direction of

4 o 2B -1
steepest ascent, giving dl = 7 .

Take v) for the direction of steepest descent, giving

= .8 _ 12
dlz- 7 » d - —— .

2 T

Substitution in the formulae gives

: 2 L
a=3 +—3=2 --1-,? = .9107
L(12 xah-6h) B
- -.2x18 _l2x2h -6k
“lox2h - 64
c = Txho = 1.428
b_;x* = - .6
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With similar notation to Example 1 we have

g = (1= o] = af) g, +of £yy + o} ey,

(.h9 .ha .hs -'Q)To

That is, the solution is not feasible.Because of concavity of the
criterion the obvious thing to do in this situation is to set the
negative weight to zero and normalise the remaining vector. In this

example we have

» 0) .

(a1
'_J
]
-
wl+
wli—'
uﬂH

This is the D-optimal design.
In general the best policy would seem to be to move from 51

back towards Eo until the design just becomes feasible.

3.5.

Before moving on to discuss the relative merits of the algorithms
described above, a little should be said about the p0531b111ty of breakdown
of the algorithms.

It may be seen, from the outlines of the algorithms, that a .crucial
factor in their use is that ¢ should be differentiable at M( £), for all
n. This is also a crucial factor in proofs of covergence of the
algorithms. To illustrate where problems may arise we consider again

the seven examples of criteria used in chapters one and two.

For functions ¢l, ¢2, ¢3, ﬁh, ¢6 a.nd'db7 it will be immediately
apparent that the functions will not attain their maxima at singular
matrices. The singular matrices ‘may be thought of as formlng the set
of extreme p01nts of 77L We denote the set of non-singular matrices

by 7nf and define the above functlons to take the value - at singular
points 1n77L

%_ ¢3 and ¢6 are differentiable everywhere in hl Therefore,
if we take as starting point M(E e 77land use a monotonic algorithm, then
- M( E;l m+ VYn. Also for a.lgorltth of the Wynn type, 11; may be seen.
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For criterion:qS5 it is possible that the optimal design matrix
may be,singularr It is interesting to note here that again, with a Wynn
type algorithm, and non-singular starting point, 'M(En)e7hf,V1L That
is, the algorithm will converge towards a singular optimum design without
actually ever settling oﬁ a singular matrix. For this ecriterion it |
would seem to be difficult to set up a general rule for what to do, in
one of the monotonic algorithms, if the process were to lead to a
singular matrix. In simple cases it might be feasible to use some of

the ideas of Chapter 2 to test for optimality.

At this point we introduce two theorems (Silvey (197L)).

Theorem 3.5.1.

If ¢is differentisble at M(g), 8§30, and o{ M(g), i(gg)}s 6§, xeX
then ¢{ M(&)}> ¢{ M(E¥*) } - §,vhere &* is ¢-optimal.

Theorem 3.5.2.

If0 <oy <ly,a +0 and & @ >« as n->« and ¢ is
differentiable at M(£ ), then for a sequence M(gn) produced by a Wynn
type algorithm inf max &{ M(¢ ), I(x)} = O.

n —
n  xe¥X

Theorem 3.5.1. suggests a useful stopping rule in practice.
Although it is not a strong enough result to guarantee optimality of a

design at stage n, it may be sufficient to indicate that we are as near

to an optimal design as is important in practice. Theorem 3.5.2.

tells us that, with the given conditions on the design sequence, we can
' get as near as we want to an optimal design matrix at some point in the
process. For criteria ¢2, ¢), and ¢7, as we have noted, it may happen
that there.are non—differentiable points which are interior to m+.

Now, even Wynn tjpe procedures may break downt However,isensiblé ad hoc
procedures should prove effective in practice, though they must remain A

difficult to justify rigorously as far as guaranteed convergence is

‘concerned.
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For example, con31der the follow1ng procedure. Suppose that
an algorlthm leads . to a p01nt M(E ) at whlch ¢ is not dlfferentlable
and o{ M(E ), I(x)}. £0 ¥V x eX. Move & very small distance from
M(E ) back along the iine of approach to 1t to a p01nt M(E ) say,
at which ¢ is dlfferentlable. If <I>{M(£ ), I(x)} $6,Vxe%x , for
suitably small &, then sﬁop.the algorlthm with Justlflcatlon of ‘
Theorem 3.5.1 that we are suitably ciosé to an optimum design. If
o{ M(Ez),‘I(E)}n>§’for'SOme X e¥X , restart the algorithm with M(E;)'
as starting point. If the procedure continues to converge on M(Eg)
then restart the algorithm with a different starting point and compare

outcomes.

3-6.
Comparison of the algorithms described,as to how they perform

in practice must remain a virtually impossible task, the reasons for
this being that performance will depend very much on the problem at hand,
computing facilities and the programming abilities of the problem solver,
not to.mention the time and money available‘fo solve the problem. The
foilowing, however, might indicate how the'algorithms could be used in
practicé.

Consider'firstly properties of the algorithms which might affect

convergence rates.

Algorithms of the Wynn type, with pre-set a 's, do not take into
account local knowledge of the function at each stage, and by their
very nature may take very long routes up the 'hill'.

Steepest ascent algorithms of the Fedorov type, although they
take the direction in which the funétiOn is increasing most steeply
and go to the maximising point in that direction, do not in general
- guarantee maximal increase in ¢ at each step. The obvious next step
is to ﬁidén the area Qf search ay each.stégef The improvement of
Atwdéd (1973) does ﬁhis to a certain extent and the aigofithm of_;ﬁg

will improve matters even more. The‘algorithm of Silvey and
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Titterington (1973) searches over a wider area than any of the above.
These p01nts are 1mmed1ately obv1ous from the plctorlal representatlon.
The amount of computatlon and the complex1ty of the computer program
necessary for the use of the above algorlthms, at each stage, will

increase in the same order.

. Where to place the algorithm of Atwood (1976) is a little more:
difficult. Atwood shows that asymptotically, his algorithm will
do at least as well as that of‘Fédorov at each stage, although what
will happen for small n will obviously depend on how good the )
quadratic approximation is. The algorithm of Silvey and Titterington
will still give the‘maximal increase in ¢ for a given stage and
computat10nw1se will still use most resources with Atwood (1976)

c0m1ng second last. )

In a situation with modest computing facilities, it would seem
likely that an algorifhm at the Wynn end of the scale would perform'
satisfactorily in practice, leaving open the option of a switch to
a more complex algorithm,.if problems were to arise in relation

to convergence.

3.7. Exact Designs

'3.7.1. As was mentioned in Chapter 2 the motivation for studying the
continuous design problem comes from the fact that, for large samples,
we may.be able to approximate closely to a continuous optimal design
measure with a design_putting rational weights at the design points.
We now justify this using an argiument of Fedorov (1972).

To add uniformity to this sectlon we shall redefine ¢, s |M]
and ¢5 as ]Mél

Note the following definitions.
(i) Let E* be the optimal continuous design measure.
(ii) Let EX be the optimal exact design measure for N observations.

(iii) Let Eﬁ ‘be the exact design measure having the same spectrum

as £* (containing n distinct points say).
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At each p01nt x* in the spectrum take r = [kN~n) ps J
observatlons, where [(3] denotes the least 1nteger satlsfylng
[CJ , the remaining ¥ - % [(N-n) b ] observations are

arbitrarily dlstrlbuted.

The following theorem may easily be proved.

Theorem 3.7fl

Y ( ) o(e%)g ¢(£ ) § ¢(E ) < ¢(&*) ,  where

y (yég) + 1 as N+ o,
For, ¢ v (0G0 = (ERXT
bs s Y <l%‘l) = E&ms
¢’2’¢3’¢h’¢6’¢7’ v (£8) = ﬁ% :

The sandwiching inequality of Theorem 3.7.1 will ensure that’

. v .
for large N a design of the form EN will be almost certainly
adequate in practice. However,if improvements are desired, or if,
in the case of the linear model, we require an exact design for small

N,then the following algorithms may be useful.

3.7.2.

Very little progress has been made ih the area of finding analytic
solutions to exact optimal design problems. A brief review of some
problems which have been tackled will be given in 3.7.3. In the
present subsection we will assume that no such solution is available

and that some iterative mumerical method is required.

The problem is restated.

Let X Dbe the design space and N the sample size. It ig required to
select N points from X in order to maximise
1

N . .
of M)} , Mg) = % '21 Hx)s x, eX, Vi
A=,
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Note that if X is dlscrete (of size m say), then theoretlcally

all selectlons of N from m p01nts could be computed with corresponding |
¢ values, the maximising. selectlon being obtalned by . observatlon.
Continuous X could also be approxlmated by a f1n1te grid of points

and the above procedure carried out. However, for large m, the }
above method of attack on the problem wiil be computationally infeasible,
and some other method of solution wili'be required. We consider two
algorithms, the first due to Fedorov (1972), the second to Wynn (1972)
with improvements by Mitchell (197k). '

In the two algorithms to be considered an initial design is
required. An initial design of the form %N described in 3.7.1
would seem to be sensible for relatively large N.  However, for small
N, and where the geometry of the problem does not provide any inspired

initial guesses, an arbitrarily chosen initial design will suffice.

The algorithm of Fedorov is an exchange algorithm, iteratively
exchanging design points, one at a time, in order to obtain the

maximum increase in ¢ . It may be described as follows.

(1) Select an initial design Exe
N

X .
(2) Define Alx;,x) =¢{% i:l I(x;) = % (I(x;) - T(x))} - '45{%- iil I(x;)}

Eja{ 5&"""§N}E spectrum of EN .

Select x and xj vhich -satisfy

max max Ax. ,x).
X- xeX J

—

(3) Replace LI xdn g

() Go to (2) and repeat until no increase in ¢ is being observed.
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The Wynn angrithm does not attempt to obtain the maximal
increase at each step in ﬁhe pfécedﬁre,:bﬁf haé a ciose link with
- the continuous,design algérithm.of Wynn. NAlthough presented
originally for D—optimality,‘phe extension tqlmére general criteria

is fairly obvious.
(1) Select an initial design EN.

(2)° Find an Xy such that

SME), Tayy) ) = mex 0i(g,), I6x)) -

(3) Add Xy ‘PO the design spectrum and compute directly the
best N point design from the spectrum. Call it %N'

(4) Go to (2) and repeat.

Improvements to the above have been suggested by Mitchell (19Tka).
If insufficient increase in ¢ is being obtained Mitchell allows the
number of points in the design spectrum to either increase beyond

N+l or decrease below N, always returning eventually to an N point

design.

The main drawback in the exact optimal désign‘problem is that
there are no strong results, such as the equivaience‘theorem~of
Chapter 2, which enable one to test the optimality of a given design.
Also, although the abq#e algorithms are monotonic and will converge,
since they are bounded above by the continuous.optimal design, they

may converge to different designs, given different starting points.

© 3.7.3. Some exact N—innt designs have been found, mainly with
D-optimality as criterion and I(x) of rank 1. M.J. Box (1968a)
points out that when N=K, there is a geometrical interpretation of
the design problem. That is, to find the set of points

' {’Y'l’...‘,.?'YK } ? Xi € v’ i=l’f.oﬁo,K,

such that the simplex, with the K-points and the origin as vertices,
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has maximum volume. Note that the ma#rix Vrl, v =‘(X1.ff..zk), will
transform the K points onto the K unip.vectqrsxalqng the axes of '

K dimeﬁsional space. Note also that if the set. V -is not
transformed inside the hypercubé of side é,.centred on the origin

and with faces which cut the axes at right angles, then a simple
exchange of design points will lead.to an‘increase in the determinant
of interest. This geometrically inépired algorithm is, in fact, |
exactly the same as Fedorov's when N=K and D-optimality is the
criterion. By imagining the worst possible situation when the

above algorithm stops, the possible weakness of one point exchange
algorithms is at once obvious. Note that this algorithm only
guarantees to produce a vt which will transform V inside the hypercube
described above, whilst if there is acﬁua;ly a K-point continuous

' D-optimal design, then there is a VL which will transform V inside

the unit hypersphere.

M.J. Box (1968a) also shows that, if the Vv for the best K~point
design actually transforms V inside the right (p+l) hedron contained

-

in the unit sphexre, then the D-optimal N point design is the design
which-gives near equal replications at the points of the best K-point
design.
For the normal-linear model with :
= 2 K-1 o _
n(x,g_) - eo + elx + eex + ceeot eK_l X ,3 —E"l, +l], v

Wynn (1972) shows that a near equal replication of the best K-point
design is in fact the best N point design for K=2 and K=3.

" As mentioned previously, Kiefer (1975) has investigated the exact
optimality of generalised Youden square designsf

In general, however, it is necessary to resort to the numerical

algorithms described above.
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CHAPTER - L.

SEQUENTTALLY DESIGNED EXPERIMENTS

The possible.necessity for sequentially designed experiments
was indicated in Chaptér i; | Also mentioned was the fact that the
inferences to be made aftef.such an experiment would require special
 consideration, possibly leading to differences in design procedures
suggested by different schools of infefential thought. In this .
short chapter we consider these probléms,lstarting by.describing a

general form of sequential experiment.

Fig. h‘.lfl.

Consider the following sequentially designed experiment. Let
the design space be X (fqr simplicity we shall regard x e X As beiﬁg
scalar), at points in which an experimént E may be performed and an
observatioﬁ ylx, in the observation space Y,_obtainedf | At stage n

in the experiment a choice of the (n+l)st design point X ,q is made

. +1
according to a design procedure D. D will }ypically make use of the
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vector of pbservatiqns ¥ and the vector of design points X . In
the context of this thesis it will suffice to consider only procedures
D whiéh‘are deﬁerministic inbnature. It wiil also often be tiue

that the design space X will be rich in points.relatiVé to the
observation space Y, and that there will be é one td one relationship,

via the procedure D, between a design point X and the observation

+1
y,» iven the vectors X, and Y3 The situation prior to, the(n+l)st
stage of the experiment will be that observations ¥, will have been
obtained and a vector of design points X+l will have been defined.
If there exists a one to one relationship as described above then,
since D is deterministic, either ln or 5n+1 will be a sufficient
statistic of the observations obtained. We shall assume that
observations y]x arise according to a probability distribution
identified by the density function p(y|x,9), which is known up to a

vector of unknown parameters g.

‘Let the likelihood of a set of observations obtained according

to such a procedure, with a sample size of N, be Ly (9,D) then,
' N

L (8,D) = p(yl,...,y‘Nl_e_,D)

Iy

= ¥y ;18:D)en(yy |y ;285D).

= Iy, |8:D)p(yy|x;,0,D), a8 D is deterministic.

N
. ]l[l P(y:i le a_e_aD)
N

We write the likelihood as a function of D as D will typically
form an intégral part of the prqbabili£y.di$§ribuxign of y . Tote
that the likelihood of & particular realisation of the experiment,
‘ ‘(xN;gN) 88Y, wili.be identical to Fhaﬁ of a.set 6f_independent .
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observations Yy -obtained at a set of predeﬁermined design points
Xy In the above experiment, however, each.design point will be
a function of the“preceding observations:and therefqre, in
repé?itions Qf ﬁhe'experimén#, différént.design sequences X will occur.
This will be a major factor in.separating the schools of inference to

be considered.

L.2. In this section we will discuss maximum likelihood estimation

of the parameters aﬁd the repeated sampling distribution of such
estimates. Because the observations in the exﬁeriment are not
independent, there are now no well known asymptotic results to appeal
to, as there were in Chapter 1. The problem of proving.consistency

and asymptotic normality of maximum likelihood estimates in non-standard
cases has been considered by Silvey (1964), Bar-Shalom (1971) and Bhat
(1974). However, as pointed out by White (1975), the conditions
imposed by the above would seem to be impossible to verify in practical

problems of the type considered here.

Fedorov and Malyutov (1972) using a reéultvof Jennrich (1969)
observe that, in regression situations with normal error, if the
design measure &N tends to a non-singular limit as N + = then the
least squares estimates of the parameters and hence, in this case,
the maximum likelihood estimates of the parameters, will be consistent
and asymptotically normal. White (1975) shows that if the sequence °
of estimates éN is consistent then, using & design procedure for
. D-optimality, the design sequence Ey will converge to a non-singulat
limit, namely the D-optimal design measure for the true value of the
parameters 8. These facts, although interesting within themselves,
do mot really further the solution of the‘asym@totic problem, because
the aésumptiqns of #he.pheqfemé éfevat'least,asiétrqng as thé resui?s

proved. .

No real progress has been made towards the solution of this
asymptotic problem. Instead we turn to the problem of what a

statistician might do in practice. In fact, the asymptotic problem
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mentioned above will be regarded as something of a.red herring, the ”) |
more important problem being, how.well the approximations we shall _

make hold good for reasonably sized N and how we might design our .

experiment to make them better.

Let us consider the approach of Silvey, Bar-Shalom and Bhat to the
proof of the asymptotic normality of maximum likelihood estimators.
The standard procedure is to expand the log=-liklihood function using

Taylor's theorem, giving,

3 log I (8) 31log plu(_é_) N ‘.82103 LZN(_Q_))

N - ~
* )[ﬂu i} T e

a0 a6 39i 395

0 , by definition of [

The first assumption made is that the elements of &y 8ve small

relative to the other terms given.
Therefore, an approximation'for (§N ~ 8) might be,

=1
-3210g L_ (8) 3 log L (8)
Iy IN

(oy - &)

205 90, .08

and, assuming that 9. is approximately unbiased for g, an approximation
for var (@) might be,

1o 5 T
g8 [<3N--g><zN-z>
Lo (%

. - | -1
ﬂ:___ .6219g LXN(Q) 13 log LIN@ dlog L, (9.? 3%10g I.‘Y G

var (ﬁN) ,

N =

- - .
4 . «

Iy 06, 930, : EL:] : 98 96, 99,
i - = i J

For suitably large N this approximstion would be expected to hold

well if the estimator QN had the nice properties of asymptotic normality
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hoped for. A maior problem lies in calculating it. The expectation
is over all sequences ¥y which might.0ccur. “ This ﬁill depend in.a |
complex fashion on'D and &+  However, for given 6, computer
simulations of a large number of 51m11ar1y designed experiments of size
N will enable One, at least theoretlcally, to obtaln a reasonable
estimate of the above. Note that if such s1mulat10ns were actually
carried out, then the actual values of 6 could be computed and the
sampllng dlstrlbutlon of 6 estlmated. Comparison of the estimates
of var(e ) obtained by these two methods suggests an empirical means

of testing the stability of the design procedure being used.

White (1975) suggests that —-M(E ) might be a suitable
approximation to var(e ), where M(g ) is the Fisher information matrix
of a de51gn measure £ actually attalned in a given' sequential
experlment. Whlte obtains motivation for this approximation from
the fact that 1f the same de51gn measure EN is replicatdd m tlmes then
asm -+ oo §N5 “N(6, M(E ) ) This, of course, ignores the
fact that,in repllcatlons of the actual sequentially designed
experiment, radically different EN can be expected, even for relatively
large N, therefore causing great veriation in M(gN)_l. However,
despite the fact that the degree of approximation may not be particularly
good, it would appear to be the only alternatlve to a large amount of

computing, if we desire to estimate var( ).

To summarise this section, it would seem that one does not have
definite backing from theory for the assumption of normality of maximum
likelihood estimates with the type of design procedure described above.
Also, even if in practice approxlmate normallty of the form e
“N(6, var(e )) were to be assumed, var( ) would appear to be very

difficult to calculate or even estlmate.

h 3 Consider now an 1nferent1al approach based on the likelihood prlnclple.
One of the essentlal differences between the approaches of followers of -
the likelihood principle and the repeated sampling schools of thougbt

is that the former base their inferences only on the probability of the
events which actualiy take place in an experiment, as opposed to the

/o
T ' . .
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'what might have happened' attitude of the .repeated sampling school.
Therefore,'in a .sense, the iﬁference‘préblgm for.a.béliever in the '
likelihood principle is simpler. _He need not concern himself with
the other possible:séquences Qf'design points.whiéh a complex desién

procedure D might produce, as to him these are irrelevant.

Let us assume that infﬁrences are to be made on § directly from

the llkel?hood Lyx (8) = ;E; p(yi]xi,g). A Bayesian argument
will take the same course as what follows, as the posterior distribution
w(gjxn) will, as a function of 6, differ from the likelihood only by

a multiplying factor w(§), the prior distribution on 8.

. Note that, although we can write down explicitly a function which .
may be used to express relative degrees-of belief in values of g, Ve
may not be able to use it directly for making inferences on §, because
of its complex nature as a function of §. What is usually done in
practice is to normalise the function. As noted in Chapter 1 this
is equivalent to assuming that the log-likelihood function can

adequately be approximated in a néighbourhéod of 9, by & second order

: N
Taylor expansion.
: 328 (8)
. . l AL T — !
L, (8) = -3 - - 0
log Xﬁ(") th(gj # const - 5 (g, ~ 8) UL S (o - &) -
aeiaej

Aé in the previous section we are lacking in asymptotic theoretical
backing for this approximation.. The conditions for asymptotic
normality of posterior distributiohs are similar to those required for
asymptotic normality of maximum likelihood estimates, however, the
suitability of the above approximation would be rélatively easy to check

in any particular case.

4.4, The following example is intended to highlight the possible
differences in the making of inferences based on repeated sampling

distributions of estimators and on likelihood principle methods.
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. Example

A parameter 0 may take only two values, 61 or 62. An»informative'

experiment is carried out according to the following design.

(1) . Take 5 observations. If the observations satisfy a condition,

A say, let 6 be 0 If they satisff another condition, B say,

1e
let 6 be 65 Otherwise continue.

(2) Take 5000 more observations and estimate 6.

Suppose that if 5005 observations are tsken then the true value
of the parameter is estimated with probability near 1. Suppose also

that for the first 5 observations p(Alez) = p(Blel) = *2 and
p(ale;) + p(B]8,). |

That is, p(®

92192) + 8, ple =0 |92) = 2

o, 198)) = 8.

p(6 = 8,]0,) = 2, (s
Therefore, based on this repeated sampling distribution of 5 alone,
if 5 = 92 one might be tempted to lay odds of k:1 on this being the
true value of 6 . |
The above approach would seem to ignore the fact that subsequent
to the experiment one would know the sample size and, if it were SOOS,
one would intuitively be thinking of putting odds of higher than L:l
on 6 = 6, being correct. The repeated sampling distribution of 3
would seem not to be a suitable vehicle for meking inferences on the
' true value of 6, a method of inference which allows for. condltlonlng
on the events which actually take place belng necessary. We note
that, in the above example, the sample 51ze is not necessarily an
anc1llgry stapls§1c: Desplte this, if one were to condltlon on
the design pathway which the experlment actually took namely 5 or
: 5005 observatlons, then the condltlonal dlstrlbutlons of e5 or 95005

mlght give 1nformat10n which would lead to more sensible odds.
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s However, in the more complex design situation envisaged in 4.l., -
if one were to condition on the design -path followed there would be
no variabili#y.left in the experiment for repeated sampling methods.

This is because the design path in the form of x

is a sufficient
Sn+l -

statistic.

The lessqn to .be learned frdm the above would seem to be that the
distributions of estimators in sequentisl experiments will depend not
only on the natural variation in the populations being sampled from,
but on the design procedure D being used. If the sequential actions
- embodied in a procedure D are independent of the data observed, then
it may be possible to invoke the idea of ancillarity to justify the
use vaconditional repeated sampling‘inferénces. ' In some situationms,
such as the example above, it might seem reasonable.to make repeated
sampling inferences after conditioning on a statistic which is not
ancillary. However, this idea would seem to be extremely artificial
and difficult to justify in general. As has been iAdicated above,
in the fully sequential experiment envisaged in 4.1, any form of
conditional repeated sampling method of inference would seem to be
unsuitable. If one accepts the need for éonditioning, in this instance,
then essentially all one is left with is the 1ikeliho§d function and

a likelihood principle approach to inference.

It would seem that motivation for experimental design comes
from two sources, which must lead to, at least in interpretation,
different design criteria. In the first instance consider an expefiment
which is being carried out for the purpose of obtaining a point estimate.
In this situation the repeated sampling distribution of the estimator
being used, possibly in conjunction with a suitable loss function, would
seem to be of prime imporpance for study with regards to expefimental
design. Practical examples of fhis"type of'decision ﬁith utility
proble@ are difficult to imagine, hqwéver,.we Ho‘nqt exclude the possibility
of.their existence: Secondly, suppose that subsgqﬁent to an experimen@ .
ﬁe ﬁish to make some kind §f statemeht on the paramete; séace via an
intervallor subjective probability statemeﬁt. In this situation the

above example and ensuing discussion would appear to indicate the use -

o~
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of an inferential approach based on the likelihood principle and,
ﬁith regards ﬁq experimental design,nan approach.éimilarly based.
That is, at a given‘pqin?Ain a sequential experiment, one will bé
interested in cqnducying the remaindef_of the experiment on the

basis of what has already tasken place as opposed to what might have
taken place.

The two approaches given above will not be independent. A
design method of the second type, by which one attempts to make as
precise statements as possible about the 'true parameter values
in every realisation of the experiment will_intuitively lead to

na design method D which, for a sensible estimator é,;will be ‘good’
in the repeated sampling sense. Where a priori design is possible
the two motivations for design will essentially lead to the same
type of criteria for design, as one has the opportuhity to take the
optimum design pathway in each realisation of the experiment

(c.f; Chapter 1 ).
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CHAPTER ' 5.

" SOME SEQUENTIAL DESIGN PROCEDURES
As was seen in Chapter 1 the optimal static design will typically
be dependent on 8. Aé the objeét of the-eﬁperiment is to estimate
the vector e;lin some sensé, iﬁ may-bé seen that a designed experiment
must necessarily be carried out sequentlally, gradually building up
knowledge about 6. _ We shall define a fully seqpentlal experlment

to be an experiment in which each stage consists of using only one
experimental unit. In Chapter 7 it will be suggested that, in
certain circumstances, a fully sequential experiment may be
unnecessary, Oor even impossible to achieve, due to practical
restrictions. However, in this instanée, it will be assumed that
a fully sequential design is possible. " In the present chapter wé
shall consider contenders for a sequential’procedure and motivation
for their use. In Chapter 6, via a simulation study, an attempt
will be made to compare the performance of some of these procedures

in practice.

Note the following remarks on notation:

(i) Design points xeX will again be written aé scalars for
simplicity. o )

(ii) We shall revert to earlier notation by writing the
Fisher info;mation matrix I(x) as a function of 9, that
is, as I(x,8). | ‘

(iii) The Fisher information matrix for a set of independent
observations taken at points in the veétor x is written
as M(x 0) = z I(x 9 ).

(iv) The sample 1nfor%atlon matrlx at stage n in a sequentlal

experlmen? is written as S(En,zn,g).

5.1. Consider the situatiqn at stage n <N in an experiment where a
total of N observations are to be taken;'and the criterion for design

-is  ¢.
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Let us first consider an approach to experiméntal design based
on the repeated sampling distribution of max1mum llkellhood estlmates.
At stage n observatlons have been taken at design p01nts (xl,...,x ) =
5: . At the end of the experlment it mlght be assumed that QN,ML is
is approx1mately dlstrlbuted as N(8, var(e ML)) The design
problem is to decide at stage n how the remalnlng (N~n) observations
should be taken, in order to maximise ¢{var( )} var (6 ML)
will be a function of the uiknown vector § and because of this the
best plan would seem to be to look, not (N-n) steps ahead, but only
one step ahead, and to select the (n+l) st point in some optimum
. fashion based on the knowledge of 6 obtained up‘to stage n. That is,

to adopt a fully sequential experiment as defined above.

As noted in Chapter L Fedorov and White have used the followlng

approximation for var (e )
var(e, ) * M(x .8

White (1975) considers the case where the criterion is D-optimality
and obtains motivation for a design procedure from Wynn's iterative
algorithm as described in Chapter 3. That is,she selects as X
the point which corresponds to the direction of maximal rate of

ascent of ¢ at M(gn*g)’ En being the‘design measure putting weights
-:IL; at each Of Xj,...,x . White substitutes _gn,ML in M(gn,g) at
each stage. Fedorov and Malyutov (1972) put forward a generalisation

of this procedure which might be described as follows.

(1) Take K initial observations. Estimate § by -+ Set n=K.

LR
(2) Find x4 sugh that @{M(En,gn’ML), I(x )} is maximised,

Xpe1 € X

(3) Teke an observation at X 410 re-estimate § DYy

Go to (2) if n s N.

n+l> ~n ML

1@ >

Spa Mg °F DL

It should be noted that with the above procedure the maximum

increase in ¢ will not necessarily be obtained. . That is,
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¥

¢{M(§h+l; 8 )} -¢{ M(x ;. (™

is not necessarily maximised. However, with D-optimality as
criterion, it may readily be shown that the above procedure will give

the maximal increase in 9.

At this juncture it would seem to be worthwhile to make &
comparison between the sequential expérimentation being considered in
the present chapter and the iterative algorithms of Chapter 3. 1In
the general discussion of the iterative algoriihms of Chapter 3 it
was observed that it might be sensible to use an algérithm which might
take a large number of steps to get close to an optimal design if the
computational work involved in each step was small. . In an actual
sequential experiment, however, the use of an experimental unit will
typically represent a far greater outlay of resources than the taking
of an extra step in a computer program. It would therefore seem-
to be more economical to attempt to get the meximum increase in ¢ at
each stage in the design. In this sense, therefore, the iterative
algorithms of Chapter 3 are possibly the wrong places to look for
motivation for sequential design. The following is éuggested as an
: alternative to Fedorov's procedure describved above.

~

(1) Take K initial observations and estimate 6 by QK M B = K.
L]

(2) Find x_,, such that ¢{M(5n’§n,ML) + I(xn+l ) } is & ,
maximum, xn+l'e-x . |

t i - . = .

(3) Take an observation at X, end re-estlmate 8 by Qm&,ﬂi n= n+l

Goto(2) if n g N.

5.2. A likelihood principle approach to experimental design will now
be considered7 At the end of an experiment it might be assumed that

the likelihood func?ion can be approximated to, in a neighbourhood of

0
m"
would seem to be to attempt to maximise some function ¢ of S(x ’Xn’ ML)’

a matrix which will describe the local shape of the likelihood function

by a second order Taylor expansion. A natural design criterion
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at g = Qn ML Again a fully sequential experiment would seem to
be approprlate. - Given (x ’lh) at stage n _one would wish to.

select x . 3 ¥ to maximise ¢{ S(x +1’Xﬂ+1’ 8 ML)} + Note that
S(x X 41oLn41e 2 L, ML) will typically be a functlon of Yp41» the

observation to be obtained from x For thls reason the most ~

n+l’
suitable design criterion would seem to be to maximise

A

E{ ¢ 080, Yogs 8y ) T 1
Yn41
Although this would seem to be the best design criterion in theory,

the practical optimisation problem might be fairly difficult. G.E.P.
Box and W.G. Hunter (1965a) have treated the case of non-linear
regression with normally distributed error using Bayesian methods.

They note that if the regre331on functlon n(x, e) can be approximated,
in a neighbourhood of e ML? by a first order Taylor expansion, that
is

-~

- A T ) .
N8 =l &y ag ) * (878, ) eng (18, )
thgn s(£n+l’ N Qn,ML) may be written as

n+l R

T e e
.i ng.(xl, ﬁn ML) ngfxi, Qn,ML)’ which. is independent
of the vector .of observations Yo Therefore, in the non-linear

regression situation, this approximation reduces the criterion for
design to that of White and Fedorov described in 5.1. It should be
added however that this quasi-linearisation of n(x,6) cannot be
extended to other models in general as may be seen by considering

the case of binary observations with p(1]x,8) = n(x 8).

Another approach is applicable to all models and also removes
the awkward expectaylon from »
E {¢{S(x Y4108, )it e

Yn#1

i is a concave function, therefore, making use of Jensen's inequality,



E 8 Koy By T )

- hE L0 S8y g) + 8(x 08 40)Y ) )

n+l
¢ oU8lxy,8, )+1(xn+l,§_n’m)} .o

The de31gn crlterlon suggested by the above is to try to

maximise the glven upper bound for

E RUECT AR o) 1
y'n+l

with respect to xn nE

A sequential procedure may be obtained by substitution of

IE: {¢{ 5(x +1’—n+1’ )} } '

or 1ts upper bound in the second procedure of 5.1. in plece of

¢{ M(x—n*'l"-e'n,l\ﬂ.) } .

5.3. - The sequential procedures of 5.1 and 5.2 may be summarised -

as follows.

(1) Take K observations to start the process. Estimate o by

—e—K,ML . n=K,
(2) Choose X4 € ¥ to maximise some functlon of x ., and S

sy £(x,,15 8y 1) -

(3) Take an observation at X o

" Go to (2) and repeat if n ¢N.

Re-estimate 8 by -én + m‘.n=n+l.
SML!
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The following comments and conjectures are made concerning this

form of procedure.

(i) The parameter § is estimated by 8 at each stage.

’MJ
(ii) The sequence of estimates’{én, i=K,...,n } will be .
subject to'a fair amount of fluctuation for n small

relative to K.

(iii) This excitability of'téﬁ} in the early stages of the
experiment will manifest itself, in step (2), in an

erratic sequence of x 's,
: _ ! n+l

(iv) The erratic nature of the x 's may introduce a feedback of

.Y +l N
excitability into the'{_ﬂh} sequence affecting the rate
at which the sequence is settling down to give a consistent

estimate for g.

These comments are made, for the moment, with only intuition as
justification. Assuming the conjectures to be valid we shall
consider possible means of improving the situation.  As analytic comparison
of design procedures of this type would seem to be impossible, it will be
necessary to resort to a computer simulation study in Chapter 6. In
this study en attempt will be made to compare the above procedures with
alternatives which will be suggested and thereby Jjustify the assertions

made above, at least in the example to be considered.

Comment (ii) above concerns the stability of the sequence of

estimates 6 ML " For relatively small n the nature of the likelihood
H
function may change greatly after only one additional observation. By
its very nature the point jg ML‘giving the maximising value of the
A : ,

likelihood function, will be very semsitive to such changes. As n
becomes large and as lqng as observations hg#e been taken at reasonsably
informative points in the design spaée then each observatioﬁ will have
diminishing effecﬁ on the shape of the 1ikelihood function, thereby
introducing a natural stability to 'én,MLf » » '
8 which the above comments would seem to indicate would be one which

The type of estimator for

was more stable than Qn ML for small n and for which any bias introduced
. H
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by the stabilising process would be naturally overcome by the weight of
information as n' increased. - The tern' estimator for 6 ' in the
above senﬁencesis used rather looselj, a more suiteble expression

might be 'value tonbe substituted for' Q_ in f(xn;l,g) ' Phere being -
no compelling reason why the value used should be one which might
actually be used as a point estimate of 0 if the experiment were

to stop at stage n, for n small. A procedure which uses the set
of rules given- above w1th a sequence of estimates given by { e LI }

shall be referred to as a Type 1 process.

Because of the comments made sbove it seems reasonable to suppose
"that improvement in design might be achieved by using a sequence { én }
which is less erratic than that produced by the maximising value of
the iikelihood function. Another contender which.comes to mind is
some form of weighted average of § over the likelihood function.

For example one could take

fngnLe_)a'_e_
[y (@) as

which is immediately recognisable, in Bayesian terminology, as the mean

é(b)

of the posterior distribution on 8 with an improper uniform prior.
This suggests considering a prior distribution m(6) on & and

using the posterior mean, that is

o Ly, 9 a8
Ty '8

5 =
- w8) Ly (6)

Icn

One of the main criticisms of Bayesian methods is that the prior
distribution w(@) must be constructed‘by the'experimenter, and

therefore might introduce bias into inferences being made subsequent

to an experiment, particuiarly for.small‘samples._ Let us suppose

that a sequence of the above type is used and thex the prior distribution
does have & biasing effect on 3§n7 Even if this_is rrue; it might be
suggested that a more stable design procedure would result, not only

because an averaging process is being used instead of maximisation, but
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because the prlor dlstrlbutlon will have the effect of an extra set
of observatlons in. slow1ng the rate of change of en,_as the procedure
progresses. As n increases the effect of th? priqr distribu?iqn .
wiil, of course, diminish, giving the sequence'{ﬁn} the type of
properties hoped for. As a bonus, if the prior distribution has ‘the
the effect of concentratlng the posterlor dlstrlbutlon in a neighbourhood
of the true value of 8 then +the stabilising effect and therefore the
'optimality' of the'de31gn method would be expected to be improved even
more. '

An alternative process would be to use the posterior mode, that
is, the maximising value of n(Q).LG (6). This would also be
expected to be more satisfactory than the pure maximum likelihood
estimate. However, in the simulation study of Chapter 6 only a
method using the posterior mean will be considered ‘and a process
which uses this form of estimator will be referred to as a Type 2

process.

By consideration of the general procedure described at the start
of this section it may be seen that the reason for estimating g 1is
to enable one to obtain an approximation of the value of X a which
maximises f(xn*lag ) by maximising f£(x 4l gn) The value of. x_ ..
maximising f(xn+l,g) will typically be a function of §, g(8) say.

' In practice we may not be able to write down this function explicitly,
but, given a 8 , g(g) could be computed. Therefore,the reason for
estimating 6 is to give a selection of the best next design point as

v

g(e ).  An alternative approéch might be to consider X 4 858
functlon of @, namely g(8), and to use as the (n+l)st design point,
not g(e ), but the expectation of g(g) over the posterlor distribution

for 9. That is,

; g(8) (o) Ly, (g) a 8

.xn+1 -

Ine) Iy, (8) ap

Fbr the reasons glven above thls procedure mlght also be expected

to be more stable than the one using x_

Xn41 = g(e ) as design point
“<n,ML :
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at each stage. ‘This third procedure wiilzbe.referred to as a Type

3 process.

It should be noted that numerical calculations involved in Type
2 and Type 3 processes will typically be more demanding than those for

the Type 1 process.

We now move on to investigate how these three processes work in

practice using a simulation study on a simple example.



CHAPTER 6 _ ST .

A SIMULATION STUDY

The aim of this study will be to compare the effects of using
design methods of Typesvl, 2 and 3 in practice. In order to make
this study feasible computationally the simplest form of example has
been taken, that being a situation where there is only one ﬁnknown

parameter in the model.

6.1. The probability model made use of in this study is of the
following form.

p(1]x,0) = exp(;ex), p(0|x,60) = 1 - exp(~6x), .xeX s[a,b] 0 > 0.

It may easily be shown that the following is true.

0 s y=1
S(xsyge) = .
x2. exp(-6x) .
(1-exp(-ox))2
I(x,0) = x2
exp(6x)-1

Because K=1 the optimal static design will exist at one point,

the optimal point being the value of x, x* say, maximising x2 .
.- o exp(ex)-1
It can be shown that x*e'f% , a,b}; ¢ # 1.59, where x* takes the
~value %‘if %—e[@,yﬂ and otherwise a or b .according as which
maximises x2 . '
exp(6x)-1
Therefore, the optimal static design is ¢ dependent and a sequential

type procedure is indicated.

Because K=1 all of the criteria considered in Chapter 1 will be

equivalent, reducing to . 1 : fbr‘a repeated sampling type
: N
i 10x,0) '

i
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criterion or to -1 for a likelihood type approach.

)

1=18(%;57;50)

Consider first a repeated sampling type procedure and how the

processes of Types 1, 2 and 3 will progress.

(1)

(2)

(3)

At stage n in a Type 1 process x

will be chosen to maximise
n+l .

£

-1

n

iglI(xi’en)'+ I(xn+l.’en)

which is obviously maximised by x;+i¢{% s 8,0} ,with rules
. ' n ’
as .given above.

A Type 2 process will be similar to a Type 1 process, the difference

e (& »8,b} , where

. . . *
Eelng that X 41 will be given by x 5. 5
]

n+l
0, . denotes a Bayes type estimate.
—ﬂ,B

A Type 3 process will be relatively easy to apply in this example
as g(0) can be written explicitly as < , and 'xn+1 will be given

e 9
by,

se - ule). LG(e) dg-

n+l
Su(e) L_ (o) de
n y O

If a full likelihood principle-type design were to be attempted

then the process'would be a little more complex, as g(6) can not now be

written down explicitly and will be dependent on S(x_ sy, ,0).

g(®) will be the value of X4 meximising ,

- ( o |
E'\ ( (S(J_Cn’xnge) + S('xn+l- 3 yn+l’- e))
Yan o - o
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-p(1]x . ,6) p(0]x_,,,6)

8(x.¥,.0) 8(x, .y, ,8) + 8(%;47:050)

n+l

8(x ., -0) +p(1|x ., ,0).8(x . ,0,0)

n+l’

8(x,51;,0){ 8(x,.x ,0) + S(x_,;,0,6)}

The Type 1,2 and 3 processes will proceed as described in
- Chapter 5, only with the function g(6) as defined above. To minimiée
computing only a procedure such as that arrived at via the repeated
sampling type method was used in the simulation. It should be noted,
however, that this procedure might have been arrived at using the .
alternative likelihood principle process suggested ?n 5.2. That is,

let g(0) be the value of x

maximisi
n+l ng

1 .
A8(x Ly, ,0)4(x, , ,0))

This gives again g(@) = %

6.2. The simulation study was carried out according to the rules given
in 6.1. Relevant details of the computer simulation study are

discussed in Appendix 5.

The design space X was set to be the interval [‘5,30] . and'the
simulation study was repeated with data being generated from distributions
having parameter values 6 = 1.0 and 0 =/1.50 # 1.2639.

With processes Type 2 and Type 3 the prior distribution was taken
to be uniform over the positive half of the real line. It was hoped

that this would avoid biasing the study in favour of these processes.

A1l statistics generated in the study are based on 500 independent _
sequentially generated experiments. . Statistics generated in the study,
by which it was hoped to compare the processes, are listed below.
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[

(i) For each process type the maximum likelihood estimates e

n,ML
’
were obtained for n=10, 15, 20, 25, 30, 35, 40, 45, in each
replication of the experiment. Relative frequency histograms

were drawn up to investigate the effect of increasing n on the

repeated sampling distribution of‘e ML A Aypical set of histo-
’

grams, for ¢ = 1.0 and a Type 1 process, is given in Fig.6.2.1..

The sample means and variances of @ were computed for each

n,ML
process and n = 10, 15, 20, 25, 30, 35, 4O, u45.

These are listed in Fig.6.2.2.

(ii) In order to investigate any possible bias in taking w(8) to be |
the improper uniform prior, the repeated sampling distributionms -
of e n,B were investigated in the same way as the maxlmum likelihood
estimates weref Sample means and variances. of e n,B are given
in Fig.6.2.3.
(iii) In k.2. it was'suggested that a suitable method of investigating
+ the stablllty of a' process mlght be to compare estimates of
var (e ,ML) obtained via the parameter estimates and via an estimate

of
3 % (9) )2 2 8) 12
- -lh( ) //// ) gxn( ) ] .
¥, 30 082 J

' The first are contained in Fig.6.2. 2 and the second are tabulated
Fls-6 2. h

’

(iv) In order to compare the processes in a Bayesian sense it was

thought that comparisons .of

T, S(x sy, 6)
- between process types, might be informative. Estimates of

the above expectations are given in Fig.6.2.5.
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(v) Another Bayes type comparison ﬁés obtained;by recording, for each
simulated experiment, the number of observations that were required for
S(zh,xn,e) to attain a fixed value. 1In this case the value used
was 35.0. A typical relative frequency histogram for this type
of data, for 6 = 1.0 and a Type 1 process, may be seen in Fig.6.2.6.
The sample means and variances of the number of observations until
absorption by this upper barrier‘are‘given in Fig.6.2.7, for each

process type.

Note:In Fig.6.2.2. EML and SﬁL denote the sample mean and variance.

- . - - - - 2
of the maximum likelihood estlmates. In Fig.6.2.3. 6 and Sg denote
the sample mean and variance of the Bayes type estimates. In Fig.
6.2.7. n and Sg denote the sample mean and variance of the number

of steps until absorption.
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Dist-;ribu‘_c..ion of an,MD for a Type 1 process, 6= 1.0

3 _ n =10
) L e PN . —y 6n
O.l loo ’ 4.0

-3 . "A=13
o 7 I I | — = : 8
0.1 1.0 ' , : 4.0 "

.3 ‘ .n = 20
o | -n-n"nn.e— , B
0.1 l'o ) 4’0 n

.3] -n = 25

=

o — : r n
0.1 1.0 . ‘ 4.0

Fig.. 6.2.1.3.
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Distribution of Gn ML for a Type 1 process, § = 1.0
)]

-3 [ - n =30
r
8
T n
Ool 1.0 4.0 ‘
3 "nh= 35
ﬂ'h— ’ 6
0.1 1.0 4.0 "
3 ‘n= 40
y 6
0.1. l'o 4.0 n
-3 - R =45
1 8
’ 1 n
o.l 1.0 4.0

Fig. 692.lobo




Type 1.

Type 2.

Type 3.

o = 1.2639

Estimated means and variances of §

p = 1.0
n EML SI%JL BML SI%IL
.10 1.1901 .3229 1.3892 .381k
15 1.1429 <2377 1.3576 .2895
20. 1.0906 +1402 1.3362 .2022
25 1.0739 .0970 1.3010 .1325.
30 1.052k .07h5 1.2972 CLLTT
35 1.0377 .0623 1.3026 L0917
Lo 1.0303 .0523 1.3032 .0763
45 1.0222 .0L433 1.2964 .0661
10 1.1241 .2785 1.370h +3379
15 1.105k .1807 1.34k5 +2347
20 1.0761 .1199 1.3239 .1679
25 1.0630 .0843 1.3073 .1189
30 1.04k27 .0660 1.2915 .0980
35 1.0276 L0549 1.2881 .0819
40 1.0230 .0508 " 1.2826 .0653
b5 1.01L6 .0423 1.2811 .0591
10 1.1390 2977 1.4oo7" .379%
15 1.107k .1781 1.3504 .2408
20 1.0719 .1216 1.3258 .1650
25 1.0627 . +09Ls5 - 1.3032 120k
30 1.0469 .0753 1.2043 ©.1028
35 1.0366 .055T 1.2900 .0859
40 1.0251 .0b56 1.2851 .0693
45 1.0207 No) Tox 8 1.2789 .0613

-~

n,ML

Fig. 6‘ 20 20
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6=1.0

n EB S%
Type 2 5 1.9010 .8107
| 10 1.4333 . L4252
15 1.2940 +2537
20 1.2085 1571
25 1.1611 .1030
30 1.1215 L0773
35 1.0953 .063k
40 1.0769 .0561
hs - 1.0606 L0472 |
6 = 1.2639
n §B Sﬁ '
 Type 2 5 2.08Lk4 .8153
10 1.7241 L4763
15  1.5583 .3162
20 1.L69k4 .2063
25 1.k292° 149k
30 1.3935 1162
35 1.3715 .0966
Lo 1.3518 0732
4s 0667

1.3416

Estimated means and vafiances of @

Fig. 6.2.3.

n,B
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45 . -OTHT

‘ . (o
Estimates of “Z: [3 %xn( )

.0691

1

322 (o)
In

I,

99

Fig. 6.2.h.

J

/

302 .

9 =1.0

n Type 1 Type 2 Type 3
10 . 3k.9297 .4981 +5T1h
15 - ThT3 .2330 +2980

20 .1856 .1348 .2282
25 .1069 09Tk .1281
-30 . 0827 0745 0827
35 © .0687 .0608 .06L46
Lo - " .0590 .0558' .0526
45 .0507 +OLTS 0453

8 =1.2639

n Type 1 Type 2 Type 3
10 \ 7T.9649 .7535 1.1719
15 .TT781 +3210. L4669
20 .3424 . 2296 .2409
25 , .2018 1719 .1780
30 . . 21371 1334 1118
35 +10hL7 1022 .1159
ko .0850 0797 .0930
OTTT

:
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“n

s(x_, L 0)

Fig, 6.2.5.

0 =1.0

n Type 1 Type 2 Type 3
. 10 .358) .2254 .2326
15 .1585 .1337 .136k
20 .1046 .0948 " .0961
25 .0782 .0732 .0736
30 .0629 .0598 0597
35 .0525 .0505 .0502
Lo .0ks51 .0L37 .0k3k
ks ' .0395 .0384 0382

_6=1.2639

n Type 1 Type 2 Type 3
10 5287 | .3&56. ~ «3453
15 <2537 .2086 .2109
20 .1685 _.1ko1 .1488

25 1266 J1157 1152
30 .1009 L0945 L0941
- 35 ,+0837 .0798 .0793
40 0716 " .0689 - .0685
45 .0628 .0606 0604

Estimates of 1



101

*9°Zz°9 °*bra

oy

I

-

0°6E 4Aq Am,nw.a

X)S Jo uotadiosqs

TTqaun sdsqs Jo xsqumy

r A



102

9 =1.0
Type 1 Type 2 Type 3
‘1 s2 n s2 n s2 .
. n
60.40 26.33 59.48 18.76 58.95 24,29
6 = 1.,2639
Type 1 Type 2 | Type 3
n s2 n ‘ g2 . n g2
n
92.95 38.57 91.76 27.02 91.39 35.98

Estimated means and variances of number of stepé to

sbsorption of S(x , y . 8)

Fis. -6.2. i L]
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6.3 Comments on the results of the simulation study are listed
below, followed by a general discussion of the results with regard

to comparison of performances of the different process types.

Fi - 6'2.1.
The histograms illustrate the rather erratic estimation for

small n, with gradual convergence towards a more normal-like distribution

of estimates, centred on the true parameter value, as n becomes larger.

Fig. 6.2.2.

The Types 2 and 3 processes appear to be performing almost
uniformly better than the Type 1 process with regards to bias and
variance of the maximum likelihood estimates. Types 2 and 3 would
seem to be a little more difficult to separate, for. example at n = 45,
Type 2 seems to be less biased but have larger variance for 6 = 1.0,

the roles being reversed for 6 = 1.2639.

Fig., 6.2.3. ‘
The data in thif table would seem to indicate that there is

substantial bias of 6, away from the true parameter values, particularly

in the early stages of the process.

- Fig. 6.2.h.

. Comparison of the estimates of

_ (azxn(e/) 2 azzln(e);z

in this table, with the sﬁL

wild differences, for small n, with the Type 1 process. However,
even after U5 observations, the values are not particularly comparable,

values in Fig.6.2.2. indicates fairly

for any process type notably for 6 = 1.2639.

Again comparison of estimates of

E:: A' 1

L, 8z, 2,0
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would seem to indicate that Types 2 and 3 are performing unlformly better

than the Type 1 process, and agaln Types 2 and 3 would seem to be
difficult to separate. ‘ '

Fig. 6.2.7. . )
Again Types 2 and 3 would seem to be dominant over the Type 1

process. . Comparing Types 2 and 3,‘the:Type 3 process would appear
to have the smaller average number of steps to absorption but the

larger variance.

Although the differences between the stafistice generated by the
simulation study for the three process types are not dramatie, there is
one fact which is evident, that being that the Type 2 and 3 processes
appear to dominate the Type 1 process almost uniformly over the different
comparison methods. This, 'allied with the fact that Fig. 6.2.3.
would appear to indicate that the improper uniform prior assumed is
producing a bias away from the true parameter value, would seem to
provide empirical backing for the conjectures made in Chapter 5, despite
the fact that evidence has been presented only for two parameter values
in one probability model. In conclusion, rather than claim that the
conjectures of Chapter 5 have been completely vindicated, it would seem
~reasonable, from both the intuitive and eﬁpirical evidence above, to
adv1se strongly that alternatlve procedures to those of the Type 1 class
shOuld be investigated in any practlcal situation, if possible. In
situations where this type of sequential experiment is appllcable that
is, where the probablllty model is assumed to be known, it would seem
highly probable that some form of real prior knowledge about - § would
be present, and this being the case it would seem to be essential that

this knowledge should be utilised in any sequential experiment.

It should be‘noted that, although computing time was comparable for
the three process types in the above one parameter model, the amount of
computing necessary for the Type 2 and 3 processes will quickly become
restrictive as the dimension of the parameter vector\increases. In
higher dimensions it may be possible to maintain some of the flavour of
the Type 2 and Type 3 processes, but ai'the same time ease computing
difficulties, if a posterior mode type process is used as suggested in S5.2.,
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CHAPTER . 7

SEMI-SEQUENTIAL 'EXPERIMENTATION

Up to this point we have considered only fully sequential desigh

~ procedures. Often'experimentel conditions and economic considerations
will enforce the need for a less time consuming process. For example,

a real problem was encountered in which observations were to be
allocated to two treatments. The optimal allocation rule was a
function of a set of unknown parameters. Unfortunately,early hopes -
that it would be possible to apply some of the preceding ideas to a

real problem were dashed when it was revealed that each observation toaok
three weeks to process, thus maklng a fully sequentlal design impractical.
In fact only a two stage experiment was p0551ble. Half of the
observatlons were allocated evenly in stage one and,based on the results

obtalned the rest were allocated in the second stage.

The aim of this chapter will be to investigate circumstances in
which less than fully sequential designs Vlll be expected to be quite
satlsfactory in Practice, and to consider how the fully sequential
processes of the preceding chapters might be adapted to allow for the
taking of batches of observations at each stage. Initially a mélange
of problems will be considered with & view to possible deviation from
fully sequential procedures w1thout definite restrictions on the nature
in which these must take place. In 7.5. the more definite problem

of design with fixed batch size will belinvestigated.

7,1; It will be useful, at this p01nt to con51der a partltlonlng

of the type of design problem which mlght ‘be encountered. The
partltlonlng process will be carried out accordlng to the nature in
which the optimal static design measure, for a given problem, depends

on thetvecfof of unknewn parametersi 9: ‘Only‘medels ﬁhere a .sequential
&esign proeedufe would be expected to be necessary will be considered

(that is where the Fisher information matrix is a function of" 8).



' 106

Four ca;egories of problems (Pl,Pz,P3,Ph).will:be used.  For each
' category an example will be given and.suggestions made as to how the
‘sequential design procedure may be curtailed due to the nature of the -

problem.

Pl : Both the spectrum of the optimal design and the

optimal design weights are independent of ' g

Example. In Example 2. of 2.6.1. a problem was analysed where
observational units had to be aildcated.to three populations which
would produce observations with ﬁrobébility distributions (1) Po(el),
(2) Po(8,), (3) Po (6,
units should be allocated equally to populations (1) and (2)
independently of (91,95),~if D-optimality were the criterion.  There-

+ 92). It was shown that the observational

fore, even though the Fisher information matrix for each population is
(61;92) dependent, the D~optimal design measure is not, thereby removing
the need for a sequeptial experiment. This situation would not be
expected to occur often in practice, but it is interesting to note that

it may occur.

P, : The optimal design spectrum is independent of §

but the optimal weights are not.

Examples: Problems which fall into this category are the comparison

of meaens example of 2.6.2. and the D optlmal design problem 1n the

2
callbratlon example of 2.6.h.-

In the above examples the spectrum of the 6ptimal design consists
of only two points, which are independent of 6. This suggests
that in a sequential experiment the design space should be reduced to
ﬁheée two pointsT After stage n an observatlon should .be taken to

make (Pl,n+l s P2,n+l) as close as p0531ble to (pl (6 )s P} (9 1),

‘where (pi (én), .p* (6 )) are the optimal'allocations given 8 = 6

and (Pl L p2 n+l) are the allocatlons which would actually be in

use at stage (n+l).
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It should be noted that, in the above‘typelof'rroeees, the
instabilitj of the.sequeﬁtiel process fer sﬁall‘.n will‘largely be
removed. | Becaﬁse.the,sef of deeign pointe which may be used has been
redﬁced to a smallise? of qunts which.are'knqwn te be informative
for all - 8, the possibility of the.design procedure moving erratically
across - the design space has’been removed; | Also the possibility
of achieving a design measure close to the optimum design measure,
for reasonable sized N, will be greatly increased because all of the -
observations are being taken at points in the optimal design spectrum.
Because of this, inferences subsequeﬁt to such AA experiment will be
made with more confidence that approximations being made are good,and
also possibly with less computation. One would expect the approximation
of Fedorov and White to var (§N) to be more satisfactory and that the
sample information matrix would be well .approximated by a suitable’
Fisher information metrix as the number of observations at each de81gn
point will typically be large and a law of large numbers may be

invoked.

P; ¢ The optimal design is dependent on 6 but its

dimension and the optimal design weights are not

)

Example: Examples which fall into this category are the quantal
response types of problem of 2,1.5.. It was shown that the optimal

design measure was of the form

if these design points lie in X .

In many practical situations it would be ekpected that a design
procedure should, by. nece851ty, be 51mple to carry out with the minimum
of computatlon. This example suggests a possibly useful method of

carrying out some.sequential procedures, particularly if a reasonable
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number of observations are to be taken at each stage of the procedure
and design is really only feasible between stages. The procedure
suggested is to take observations at stage n .according to the

design measure

1
2

NI
w

-~

ea—el

2,n e2,n

.a=

l,n o0

DY D>

. Again,the fact that a reasonable number of observations are being

taken at each design point might make approximations more satisfactory .

Ph: Both the optimal desigr spectrum and the

optimal design weights are dependent on 8 .

In situations such as this a fully sequential procedure would
seem to be indicated, if possible. However, it may be possible that
the position can be impro#ed upon in situations where there exists
some form of prior knowledge about the possible values that the
unknown parameters might take. In Chapﬁer 5 it was suggested how
this knowledge might be utilised in fully sequential procedures.
Now we consider how it might be used to suggest suitable semi-sequential

procedures. It will be useful, at this point, to consider an example.

T7.2. Let us reconsider the quantal résponse exemple of 2.1.5. in the

’

particular case where the model is 1ogiétic. That is,

exp(6. + 6_ x
P_ ~g'f 2 ) s P(le,f_) = - 1

1 + exp(ey + 0, x) . 1 * exp( §l+_92 x)

p(1]x,0) =
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The design space X will be taken to.be ]'_'—1,"4-1]‘

( ) 1 x 1 x
. exp( e, +o | -
I(x,p) = —t 2 = Vix,g),

{L-+exp( el+62x)} x  x2| x x2

As was noted in 2.1.5., the D-optimal design measure for estimating

T
8= (8;,0,) can be shown to be

2 s 2
a- el -a- el !
]
85 )

vhere a ¥ l‘5h3h;if 8761  anda %% potn 1ie in [—l,+1:[ .
- 62 62 ‘.

v It was thought to be of interest to investigate what the optimum
design measure would be if the above optix.num design points were not
contained in [—1, +1J . To this end the optimal design was computed
for & large number of points in a scan of 6 space, using an iterative
algorithm. What was found was that, in each case, the D-optimal
design measure existed at two points. It is therefore of interest
to investigate the D-optimal two point design for this model as a

fuhction of 6. That ig, to find (xl, x’2) to maximise
0 =& ' ‘ — )2 -
IM(E) | =y v(x,, _Q).V(xz,g).(xl x2) s Xp X, e[,.l, +1J .

Let the optimm design for (,,6,) be (x¥,x%).  Use of the
symnetry of V(x,8) with respect to 8 (V(x,8) = V(x,-8)) and the
symmetry of the design space about the origin reveals the following,

% ¥ 1 1 — : . - - ¥
(xl,x2) is the D-optimal 2-point design for ( 6, » 62), ( x¥, x2)
is the D-optimal 2-point design for (191"92)'

Therefore, essen@ia.lly it is only necessary to consider the

problem for © ,62 20.
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By differentiation of lM(E)I,abpve it can be .shown that a global
3 - 4 ) * * - , * . R -
maximum is attained when 261 + 62(xl +:x2) . Q,.?he“ x¥ 's being

 given by the two.solutions of the equation

(61+62x*)
Y exp(el+02 x*)=- . ‘ =
: ' 1~ (e, +0,x*) -
1
. : . Co. ‘ a+l.
That is, where 8, + 6,x* = + a, a being the solution to exp(a) = =7

giving a ¥ 1.543k.

If x{, x* e[ 1, +1] ‘then thls is the optimal two point. design.
If not, then the solution must occur on the boundary of the permissible
reéion._ For 91, 6, 2 0 it can be shown that one point must then be

-1 and the second is given by the solution to

2+(x+l)e2 .

exp (e1 + ezx) =
' -2+(x+1)e2

If the solution to the above does not lie in E—l, +J;l then the optimal .

two point design is given by xi = -l,'xg = +1.

These optimum 2-point designs are identical to the continuous D-
optimum designs evaluated using numerical methods. The above analysis
of the problem suggests considering how the optimum static design
varies as a function of @. Fig.T.2.1. shows how the parameter
épace may be broken down into three regions according to whether the
optimum design falls into one of the three categories described above.
Again it is only necessary to consider 9 » 0, 2 0 as the other quadrants

2°
may be obtalned by the symmetrles prev1ously mentloned.
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Region A: 0, ~ 6; 3 lfsh » Region B: upper boundary, 6, =6 = l,5h
' 5 = 1¥0,
. lower boundary,exp(eif'ea)
. : : -1+0,,
Fis. i .2.1. .
A, B and C correspond to the three regionsdescribed above. If

the true parameter value lies in A then the optimal static design is

given by

If the true parsmeter value lies in B then the optimal statiec design

is given by
T
-1 s b'e
where x is the sqlu?ién of,
2+(x+l)62

exp(e + 6. x)= ————=
AN 2 -2 + (x+l)62

If the true parameter value lies in C then the optimal static design

is given by
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;. 3
-1 , +1 '

This example . suggests possible alternatives to fully sequential
experimentation in situations where prior information about paremeter
values is available and time spent on experimentation is an important

factor.

o In Chapter 5 it was suggested that prior information might be
utilised by comstructing a prior distribution on g space. Possibly an
easier thing for an experimenter to do would be to express his prior
information via a region in g space in which he was 'certain' that
the true parameter values lay. If the experimenter was certain that

© the true parameter value lay in C then a sequential experiment would be
unnecessary, the optimal static design being iﬂdeﬁendent of g, given

9 in C. If he were certain that the true value lay in C or B then a
semi-sequential experiment is suggested, taking half of the available
observations at x = -1, and using the .information obtained to design
sequentially with the other half of the observational units. If the
experimenter can not say, a priori, in which region the true parametér
values lie then a fully sequential procedure might be embarked upon,

with the possibility of changing over to a semi-sequential procedure

if the a posteriori probabilities of regions B and/or C became suitably

high.
7T.3. Reconsider the example used in the simulation study of Chapter 6.

The design space was taken to be [f5,3q1 , and it was noted that
the optimal static design would take all the observations at one point,
that béing x* = l;%g . Let us assume that prlor 1nformat10n can
be produced in the 1nterval form discussed 1n‘1_g,, ‘and that, in this.
case, an interval in which the experlmenter is certaln that the true
parameter value lies is [l 59,3. 18] say. This is equivalent to
saying tha? he is confldent that x¥ ¢ [}, 1 ]._ Wé shall call this

region the informative design space and denote it by X'. A sensible
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plan might be to use not X as design space but (an') that is, in

thls example [ 5 lJ Thls action might prove useful in two ways.
Firstly 1t may avqld ?he p@ssiblyim&re:awk%ard.construction éf a -
prio; dis?ribuﬁiqn and yet might utilise the priér informétion in
increasing the stability of a séquéntial #rocedufe by restricting

the design space to more informative pdints; Tt should be noted

that the improvement in design gained by fhis strategj will be analogous
to that gained in the examples of P, in T.1., although in'l#;_no

prior knowledge of 6 was required. It should also be noted that

this process of reducing‘the dimension of X may serve to make the

design more robust to outlying observations.

T.4. In this chapter we have considered, rather informally, possible
‘situations vhere designs which are less than fully sequential may be
safisfactory. In considering a practical problem this informal
approach would seem to be essential as each particular problem is
likely to have its own peculiarities. However, the above sections-
'would seem to indicate a general structure for investigation of a new
design problem which might be built upon in the -particular situation

on hand. This might be summarised as follows.

(1) Investigate the optimal static design measure as a function of
6, if possible. '
(2) Attempt, with the aid of tﬁe experimenter, to obtain some form
.of prior assessment as to what the true parameter values might
| be. . .
(3) Investigate the possibility of less‘than fully sequential
procedures suggested by (1). Is fhe pfior information of
any helpf |
(4) If a fully sequential design seems to be necessary then prior -
' information may be usefult' Regular re-assessment of the
| poésibiliﬁy of semi-sequential ﬁrocedures may alsb ﬁe ﬁseful.
It may be possible, with tﬁe'aid 6f prior knowledge, to red@ée
rthe volume of the design space in whlch the experiment is

allowed to take place.
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7.5. In the.above we have considered, .generally, methods of 'cutting
cérners' ih sequen?ial prqcedﬁres, in order to speed ﬁpithe.progreés

of an experimentf . Often it is to be éxpectéd that circumstances :
wil% dictate the nature in which a design procédure must be less then
fully sequential. _ Particularly in industrial settings”it will be
necessary to experlment by taklng large batches at each stage, and it is

to this problem which we turn our attentlon now.

Let us assume that we have a total of N = rn observational units
at our disposal, where r is the number of‘stages available aﬁd n 1is
the number of observational units in each batch. We take a likelihood
principlg approach to design. Consider the siﬂﬁation after stége
i < r. We have éi- as estimate of the parameters. n de31gn points’
are to be selected, at which to take observations in the (i+l)st stage.
Ech01ng the methods of Chapter 5 the natural criterion for design would

T
seem to be to select Xin '_(xi+l,1?"" xi+l,n)‘ to maximise

i .
]E 00E (s 2,00 + 8y 20803 ) s
1+l |

with the obvious notation. As was mentioned in Chapter 5 this is
likely to be an awkward problem to solve exactly, even when X is
scalar. However, for large -n, the alternative procedure suggested
in Chapter 5 may be useful; the alternative procedure being to select

X to maximise an upper bound for the above criterion, that is

¢{t§i S(g?, z#*éi) + | El_I(xl+l J,e )}
_ o i R
= ¢{ 5 +nME)}, 5= '_12,‘:1.8(-’51_-.%'9-1)
ME) = .5 1(x ,5).
*n Dy 1+l,J
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This suggests solving the following.continuous.design problem.
Find & to maximise ¢{ S + n.M(E) } .

This problem is analogous to the type of problem considered in
Chapter 2,as it may readily be seeﬁ that the positive definite matrix
S will have no complicating effect on the general structure of the
problem. If this continuous problem has a solution with & design
spectrum of dimension small relative to n then the optimal design
measure may be approximated to using the methods of 3.7.1. 1If a
reasonable number of observations is being taken at each design point
then a law of large numbers will ensure that we can get close to the

upper bound given above.
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CHAPTER 8
EPTLOGUE

In Chapters 1 to 3 we have presented the theory and assumptions
underlying the optimal experimental design problem and have reviewed
methods of solution of this problen. In Chapters 4 to T we have
investigated possible sequential design précedures which might prove
useful when formulation of an a priori optimal design is impossible
because the optimal static design is a function of a vector of unknown

parameters.

All statistical methods are founded on certain assumptions. As
Statistics is essentially a practical subject the strength of any of
its methods, in application, must lie not only in their theoretical
background, but also in the practising statistician's appreciation
of their dependence on given assumptions'and how they will perform
when these assumptions no longer hold. ~ With this in mind we first
consider some of the assumptions of the preceding chapters and
briefly indicate some of the work which has been done on experimental

designs for situations when these assumptions no longer hold.

To round off this thesis suggestions for directions of further
reéeargh will be made. | '

[}

8.1.

Undoubtedly the most crucial assumption which has been made, in
the theory and methods which have been discussed so far, is that
there ié a known model. Possible justificaﬁions for this are twofold.
Firstly, sometimes theoretical considerations in the situation on hand
will enable derivation of a m8thematical model which is known up to a
vector of unknown fundamental constents.  In this situation interest
will often lie in gaining knowledge about these constants. Alterhatively;
past experience in similar situations may suggest that a particular

model will well describe the results of the experiment to be carried out.
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In this situation experimentation will typically be for the purpose

of prediction or some related reason.

If, as will often be the case, the exact form Qfﬂthe-model is
unknown, optimal experimentation of the nature considered in Chapters
1 to 3 will be, not only often impossible, but also extremely unwiege.
The following example will illustrate this point.

Suppose the following assumptions hold.
P(le,a,B) A N(a +B¢(x),o_2), 02 assumed known, X¢ [a,b]

Also suppose that ¢ is a function known only in the sense that

it has one of the two following properties.

(1) swp  o(x) = ¢(a) , dnf é(x) = e(b) .
xeX xeX ’

(2) sup o(x) = ¢(d) , dinf o(x) = ¢(a) .

xeX xeX

From the geometric approach of 2.5.. it will be obvious that
the D-optimal design for estimating (a,B8) will be to allocate
observations evenly at a and ‘b, for all ¢ with one of the above

two properties.

If the above design were te be used,and if, independently of
the experiment being carried out, one were to discover the true
function ¢ then one would have carried out a D-optimal experiment.
However, as must be the case in practice, the experiment itself must
attempt to discriminate between the models avallable, for which

purpose the above de31gn will have zero power.

The above example illustrates a very important point, that
being that optimal designs of the type investigated in Chapters 1 to 3
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may' often be useless for detecting:departures from the assumed model,
even within a set of models having individually the same optimal

designs with respect to a given criterion.

Ironically, it is in situations where one feels that the strongest
design is being applied (that is swhere an a priori optimal static
des1gn can be found) that one is in the weakest possible p051t10n for
detectlng deviations from the assumed model. In this sense perhaps
the application of the tag 'optimal' to the designs of Chapters 1 t0 3
is a little presumptuous. In the sequential designs suggested in

' Chapters 4 to 7 it would be possible to sequentially reassess model
assumptions in the light of data obtained and adjust design accordingly.

With regards to the problem of discrimination between a finite
set of possible models notable work has been done by Hunter and Reiner
(1965), G.E.P. Box and Hill (1967), Atkinson and Cox (197L4) and
Atkinson and Fedorov (1975&,11975b).

8.2.

In 8.1. we considered briefly possiblé problems which might arise
when the probability model underlying the observations is unknown.
Sometimes theoretical considerations may take us only part of the way
to knowing this model fully. For example, in regression type
situations giving rise to observations with the following distribution
p(y]x,8) ~ N(n(8,x), v(y]x)), it may be that the form of n(8,x) is _

given by theory but the nature of the error in the observations v(y|x),

as ‘a function'of x, is unknown. Remembering that points in the
induced design space V may be written in the form - 'ne(ﬁti)
xeX , it may be appreciated that the shape of the viyix) *© .

induced design space could be moulded to almost any form by suitable
adjustment of v(y|x). It would appear that little work has been

done on the design of experiments where the nakure of v(ylx) is unknown
with the possible exception of Box, M.J. and Draper (1968). From the
above it would seem that the optimal design will be very sensitive to

changes in v(y|x). In situations where bounds could be put on v(y|x)
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minimax type designs might be applicable, although these are likely

to be conservative in nature. Generally a sequentially designed

experiment would seem to be the only alternative.

' Of course, even the assumption of the normal distribution of erfor
in the above regression situation may be unjustified. For regression
situations other authors (for example Fedorov) have restricted themselves
to non-probabilistic methods of estimation, such as least-sduares.

In the context of estimation it must be said that all that the
assumption of a probability model is doing is to define a loss function
vhich might not be suitable for the true ﬁodél, and in this sense any

fixed non-probabilistic method such as least squares is doing no better.

8.3.

Given an experimental design criterion, it has been shown that there
exist® fairly powerful methods for computing optimal design measures
where this is possible prior to an experiment, and a number of sensible
sequential design procedures when this is not.the‘case. In practice,
as was suggested in 1.3., decision on a suitable criterion for design
may be difficult. This problém will depend on the'experimenter's
ability to express his wiéhes clearly, and the statistician's dexterity

in translating these wishes into mathematical form;

In'general there can be no solution to the above problem.
However, if the experimenter's wishes appear to be rather vague then a
sensible approach would be to select a set of criteria which seem
to be vaguely suitable. Having selected this set, the optimal design
could be computed for each criterion and performance of that optimal
design investigated with regard to the other criteria. 1In this way a
~ design might be obtained which is robust against the uncertain

experimenter.

8.k,

With regards to the solution of & continuous optimal design .

problem, with concave criterion, it would seem that the theory and
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methods are in a fairly healthy condition. There sti;l remain many
problems of analytic derivation of 6ptimal designs and possible
problems which might arise in pathological situations, for example whereb
the criterion may poésibly be non differentiable. However, possibly
these are problems more for the purist than for the practising
statistician merely interested in producing & design and not in the
nicest way of achieving that end. With reasonable sample size it
has been shown in Chapter 3 that it will be possible to appfoximate.
well to a continuous optimal design using an exact design. The
optimal exact design problem per se will_surely always remain a
diffiqult problem to solve, with explicit solutions only being

possible in simple or symmetric situations.

Where an a priori désign is impossible to compute, we have taken

- the attitude that every design problem is likely to have its own
peculiarities and therefore its own peculiar method of solution. In
this thesis. we have considered a number of methods of experimentation
in a‘variety of situations, and it would éeem likely that, however
difficult & design problem might appear, there will always be something
.sensible which might be done as an alternative to a purely random

design.

An area of possible application which has not been touched upon °
in this thesis is in the field of Control Theory. In this field all
of the problems which have been encountered in the above are present,
and in most situatioqs seem to be magnified, even the derivation of
information matrices‘being & formidable task. This would seem to
be an area where further work might be done. With regards to the general
background to the Control type problem the review paper of Astrom and
.Eykhoff (1971) would appear to be useful, with fairly recent reviews
of work done on the Control design prleem being contained in Mehra
(19Tha, 19Tkb) and Keviczky (1975). ' There would appear to be a
certain degree of inconsistency in the above papers. However, a
substantial amount of background work will be required by the writer

before any authoritative argument can be put forward on relevant points.

.
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APPENDIX 1.

The following lemma will be useful in the appendices which

follow., The proof is given for completeness.

Lemma A.1.
Inverse is & convex operation on the positive definite symmetric

matrices. That is, given A,B positive definite symmetric then,

{oA + (1 -a)B }‘l S a.A-l + (1 -a)B—l,a e[O,l] .

The inequality above indicates that the difference of the two sides
(RHS - LHS) is positive semi-definite. The inequality may be replaced
by an equality only if A = B.

Proof:
A and B are positive definite symmetrlc matrices and therefore

may be written in the following form (Grayblll),

T

A =PP » P is of full rank.
B = P.APT s Ais diagonal'fxi} s A; > 0, \/i..
S T T . ’ .

‘{aA+(1—a)B} = P (al +(1 -a)ln)P,T. ,

-1

) .y .- 1 T
{ad + (1 -a)B} R(diag { ;:Ii:;jx; R R
R(diag { o+ (1-a)} ) RE R
A. )
1l .
- aA-l +(l-a)B_l -{aA +(1-a)B }-l = R(diag{a *(l

_ ah T+ (1~a)B™L

~a) _ 1 T
A; @ +(l~ou)xi HR

= R(diag { u; }) R' ,

(a + (:L-.:;)J\i)(qkj.L +(1-a)) - As

* Ay (o +1=a)a; ).

- a(l-a)(l--li)z
' Ai(a + (l-a)li )

This gives the required result as My will be non-negatlve for all i and

non—zero for some i unless A = B.
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APPENDIX 2
1y,

Let ¢7 = - m.dee(M M a positive definite symmetric matrix.

(i) ¢7 (Ml + M2) Y ¢7 (N&) s M oa positive definite symmetric matrix

and M, a positive semi-definite symmetric
matrix. o ‘

(ii)¢, is a concave function on the positive definite symmetric
T
matrices. That is,

by (oty + (=a)M3)3 o ¢, (M) +(1-a)g, (M) ,a e[ 0,1]
Mé positive definite symmetric.

Proof.

(i) It is well known (see Graybill) that, for M and N positive ’
. definite symmetric, if M 3 N then M-l < N_l

LétN=Ml, M= o+,

> g ey
: ‘

N ete..

= mae (07 5 mie ((u +n)7)

- ¢, (Ml)s¢f(rﬂl+M2).'

al, "l 4 (1-0) M0 3 {ak + (1-a) M, Yt _» aef0,1] .



- 1y 0
Téke x = 0 ., 1 , e#c..
’ 0 0
0 0
1

+ (1-a) -l {o..} s ( aM + (1-(1)M3)-.:L ={7..} .
M3 14 Ml ;J
Then 0.r 3 T.. Vi

£ o max-a,. + (1 —a) max bi'

=> mde 1is a convex function

= ¢T'is a concave function.



12k
APPENDIX 3
(i) ¢, (M) = log |M| is strictly concave over the set of positive

definite symmetric matrices.

(ii) bg (M) = - trace (M-l) is strictly concave over the set of

~positive definite symmetric matrices.

(iii) ¢3(M) = - ne(gtg)T Mt ne(éiﬂ) p(x)dx is strictly concave

xeX!

. over the set of positive definite symmetric matrices if

T . .
ne(ﬁ,_g) . ne(gc_,_g_) p(x) dx is positive definite.

xeX'
(iv) ¢ = - max 1 (l:_;_e__)T Mt ne(_g_,_e_) is not necessarily strictly
xeX - '

" concave.

Proof.
(i) Because log is strictly increasing it will be sufficient to show
that

o, + (1-a) o, | > [ ]® Ju, |2, aefo,1] M, M,
positive definite symmetric.

As Ml’ M2 are positive definite symmetric matrices they may be

written as follows
- m T . . ’ .
Ml-gAR,M2=RR ,.A=d1ag{.li} .

Now, I o Ml + (l—u)M2l> IMlla IMZ ll-a
o> IRI?IQ;A +(1‘G)I| > lRl2 AIAIGII Il-a
= " (.“)‘i + (1-a)) > n_ii“ I]'"llj-q .

But, ad; + (1-a) >2* Vi, A; # 1, by the Arithmetic,

Geometric mean inequality.
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;9 | Mo+ (l—u)M2| >‘| M1|“'|M2 |l"°.

= strict éoncavity of ¢1 .

\)

(ii) By Lemma A.l., for Mi, Mé pbsitive definite symmetric matrices,

we have,

aMi_l +(1~a) Mé—la (aM +'(1-oz)M2)-l , with equality only
if M =M,
*  The eigenvalues of (LHS

least one non zero unless Ml = M2, the strict concavity of ¢6 follows
from the‘facy that the trace of a matrix is equal to the sum of its '

RHS) must be non-negative with at

- eigenvalues.
(iii) - [ nQ(E&)T ML 0 (x,8) plx) dx can be written in the form
xeX

p(x) dx.

tr (M1A), A = I n x
If A is positive definite the result follows by an argument similar
to (ii) above using the fact that we mdy write A as BB', where B .
is of full rank, and tr (MTA) = tr(8" M 'B).

(iv) We merely note here that if the set of vectors ne(EAg),'ggx
coincides with the set of vectors on the unit sphere then ¢2.will
coincidq with 9, vhich has already been éhqwn to be not strictly

concave in 2.k,
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APPENDIX L.

Let ¢(M) = - mde(Nfl). The directional derivative at M in the

direction of N is given by,

1

o{M,N} = {(MEyMt-N o

R where'{M-l}Ss is the

biggest diagonal element of ML,

If‘there are r coincident biggest diagonai elements ssl,{..,ssr

say, then we choose s such that

M N MY} = omin {MExMH -
. 88 8S.

Proof.

{M,N} is defined as lim_ e 1 {o(1-¢) M + eN) - ¢(M)} .
» g0+ .
Define the Gateaux derivative Q*'{M,N} by

+

lim a-l{ ¢ (M +eN) - ¢-‘(M) 1.
e+0 : :

For simplicity we derive the Gateaux derivative first and then the

directional derivative by noting that,

e{M,N} = P, { MN-M}.
M+em)™d = ML (T+e T M
=ML -eM At o+ oole)
ot ¢7(M +eN) - ¢7(M) = - mde {(M+eN)1} + mde {M 1} .
= eIMTN MY} +ole) »
ss .
1

for small enough e, where the ss th element of M~ is its biggest

diagonal element, or in the case of r coincident maximum diagonal

elements BB, 500388, say, the ss th element is the one such that

1} = min '{Mfl NMY) .
- “88

88 S8, : 1
i

MM
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- o, {MN } = {1 N M’l}ss
= o N} ={tyut -yt Yoo
Notes (1) If there are coincident méiimnm diagonal elements of

M_l, then to have differentiability of ¢7‘at M it would be necessary .

to have (by Defn. 2.2.2)
oM, AN, +(1-A)N,} =X o{M,N} + (1-2) of M,N,} .

From the above it may be seen that this is equivalent to having,

min (M1 (AN, 4 (10NN} = Amin (6T B M)
-l : 2 88, ) 1 SS,
8S. 1 88. - L
1 1
- . - _1 ....l
+(1-1) ﬁzn {M N, M ‘}ssi 3 N, N, e)ﬂ,.
1

This will not typically be true.
(2) 1f 88 is the minimum diagonal element of'{M-l N Mfl} |
- over {88,, j = 1,...,r} , then it will also be the minimum of

A a Nfl N er }ss ,0 > 0.
J

(3) Ifmin{ M7 Nl’er} and min { M+ N, M) are
5, s8;
sS. 88,
1 ] 3
-both the ssjth elements then the ss.th element will be the minimum

of { M1 (AN + (1-0E) MY L aef0,1].
. 1

= o{M, AN, +(1-2)N,} = Ae{M,N.} + (1-2)e{ M,N,} , for such

matrices.

Notes (2) and (3) prove Lemmas 3 and 4 of 2,3.

/
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COMPUTING METHODS

A.5.1. Simulation study

The important details of the computer programs vhich were used
in the simulation study of Chapter 6 are given below.

A different program was used for each process type. 'However,
the structure of the three programs was essentially the same. Each
program consisted of a MAIN program which interacted with a set of
subroutines as illustrated in Fig. A.5.1.

The subrou;ines used in the programs are listed below, with
brief details of their function and any numerical techniques used in

‘them.

MAIN

This part of the program acts as a controller, cailing up .
subroutines to perform the simulations of the sequential experiment,
and accumulating, at each stage, relevant information which it
eventually outputs in the form of the statistics listgd in Chapter 6.

_As illustrsted in Fig. A.5.1. MAIN interacts directly with

RANDU, EXPT and DESIGN for a Type 1 process, and directly with RANDU,
EXPT, DESIGN and F.MAX for Type 2 and Type 3 processes.
RANDU

This is the standard I.B.M. pseudo-random nﬁmber generator

which generates random variates from a Ufo,i] distribution.

EXPT.
| Given a U[O,l] random variate u and an x and a ¢ from MAIN
this subroutine generates binary variables according to the distribution
on hand. The rule for generation of the binary variable y is,

1 , u « exp(-x8)

y'=
{0 , otherwise.
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Interaction between MAIN progrém and subroutines

\

B Type 2 and Type 3 processes

¢ ===~ Typel process. "

Fig. A' zll.
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DESIGN
Given the vectors of past design points and observations this

subroutine computes the next design point according to the rules of
Chapter 6.

For a Type 1 process DESIGN interacts with a maximisation
subroutine F.MAX. k L

For Type 2 and Type 3 processes DESIGN interacts with a'numerical

integration subroutine F.INT.

F.MAX
Given the vectors of design points and observations this
subroutine maximises the corresponding likelihood function. The
Newton~Raphson method of function maximisation was found to be
perfectly adequate in this situation, particularly as during a
sequential experiment good initial estimates of.8n+l_are available

in the form of 8n .

F.INT.
This subroutine was used to numerically integrate the functions

required for the Type 2 and Type 3 processes, these being of the
. following form.

r
£(e) = g(o).exp(- eiil x; ) ;ELI (1 - exp(- eyj)) .

X)seeeesX, denote the de51gn points at whlch 1's were observed, and

‘yr+4,....,yn denote the design points at which zeros were observed.
: 1
g(e) € {9, 'e" . l} .

The rangé of integration is @ e[o, o),

A substantlal simplification of the problem is obtained by the

_ followlng transformation.

1 » giving
"1 +9 )
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. : n
(0 =g el - [ ox G-I T] Gremly G- 1))

1=;. j=r+l
* B e 1 1
¢ R s ———— } e
EW@ LT T Gy T e

The range of integration is now ¢ é[b,;] e _
It was found that Simpson's Rule was & suitable method of numerical

integration, the -interval [p,lj being divided into 50 segments.

A.5.2. Graphplotting

- Diagrams. and histograms in this thesis were drdwn on a Hewlett-
Packard graphplotter linked to a Hewlett-Packard 9810A desk-top

computer.
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