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Abstract.

Microwave thermography, tomography and hyperthermia are potentially useful clinical
techniques that are currently at the development stage. They may ultimately assist in the
early detection and treatment of breast cancer and other conditions causing a local
temperature or tissue permittivity anomaly in the body. Accurate complex permittivity
values for human tissues are needed for computer modelling to fulfil the potential of
these techniques.

A novel open-ended co-axial probe measurement system operating at room temperature
was used to investigate the complex permittivity of many animal and human tissues at a
frequency of 3 GHz. The probe was calibrated using a bilinear transform method based
on an equivalent circuit model of the probe aperture. A quarter-wave choke at the probe
aperture provided an area of high impedance around the open-end. This minimised the
effects of surface currents, and thus greatly improved measurement repeatability and
general probe performance in comparison with ordinary co-axial probes.

Mixture equations were used to analyse the measured permittivity values in terms of the
permittivities of the other major component materials of biological tissue. By
considering all the sources contributing to the microwave permittivity, the amount of
bound water in tissues was estimated, and an approximate value for its average
relaxation frequency evaluated using an extrapolation technique. Further measurements
on partially dehydrated tissue samples extended the range of tissue water content
investigated, and permitted better extrapolation of the bound water relaxation frequency.
These values were in close agreement with the estimates of previous researchers.

To verify the validity of this method, aqueous gelatine solutions were used as simple
tissue phantoms. Since the solutions contained comparatively few distinct components,
it was possible to use mixture equations again to extrapolate the permittivity of water
bound to the gelatine polymer molecules. The method gave highly consistent estimates
for the bound water relaxation frequency using either or both of the real and imaginary

parts of the measured solution permittivity.



Summary.

The original work herein presented mainly concemns the measurement and interpretation
of the values of the dielectric complex permittivity of human and animal biological
tissues, at frequencies corresponding to part of the microwave band of the
electromagnetic spectrum. This research has been carried out as part of a project to
improve microwave radiometer measurement technique and interpretation for clinical
microwave thermography.

If such a technique is to be useful for detecting thermal anomalies in the human body at
depths of up to several centimetres below the skin, then it is essential that a general
model of the expected complex permittivity of the tissue in the region of the anomaly be
formed. It is also important to be aware of the values of the thermal conductivity of
these tissues, and how the thermal conductivity and dielectric permittivity are related
within biological tissues. Only through knowledge of these quantities can a microwave
thermographic scan be used to successfully reconstruct a subcutaneous temperature

profile.

A specially designed, and suitably calibrated, open-ended co-axial probe was used in this
study to measure the complex permittivity of small volumes of a wide variety of human
and animal tissues. The measurements were made in-vitro, at a frequency of 3 GHz,
which is the central operating frequency of the Glasgow thermography system. After
dielectric measurement, the water content of the tissue samples was measured by
dehydration. In collaboration with a colleague, the thermal conductivity of many of
these samples was also measured so that the relationship between the thermal and

dielectric properties of tissues may be investigated.

It is usually accepted that the complex permittivity of biological tissues is mainly
dependent on the water content of the tissue. Water composes ~60% of the mass of the
average human male and ~55% of the mass of the average human female. As water has
a considerably higher permittivity and thermal conductivity than other constituents of
human tissue, it may be expected to provide the dominant mechanism for both of these

parameters.



To fully investigate the role of water in determining the permittivity of tissues, tissue
specimens across the whole range of water content, from fats, often <10% water, to
intestinal tissue, >90% water, were examined. The tissue samples were dried in an oven
after dielectric measurement to find their water content.

Initial permittivity measurements were made on commercially obtained animal tissues.
The expected similarity in the properties of corresponding human and animal tissue
enabled selection for permittivity measurement of suitable samples of human tissue,
which were taken mainly from the subjects of post-mortem examinations. Animal and
human tissues were compared, and it was noted that both displayed a similar linear

relationship between the real and imaginary parts of their complex permittivity.

Water does not exist within tissue in a free pure liquid state. Rather, the molecules are
thought to be distributed between the free state, and many states of molecular binding,
through hydrogen bonding to large macromolecules such as proteins in the tissue. This
bonding can restrict the rotational mobility of water molecules, and thus alter their
dielectric behaviour. In addition, the tissue water also contains a variety of dissolved
ions, usually represented by 0.15M (physiological) saline. The level of binding and ionic
profile in a tissue type will contribute largely to the level of electromagnetic attenuation
in that tissue type.

Mixture equations describe the permittivity of materials composed of two evenly
distributed substances in terms of the volume fraction of each component. - Tissues can
be approximated as a mixture of water, with a high permittivity, and protein, which has a
low permittivity at 3 GHz. By considering the difference between the measured tissue
permittivity values and the values predicted by mixture equations, a first estimate as to
the amount of bound water in the tissues which does not contribute significantly to the

net dielectric constant was made.

There is a general gap in tissue water contents between ~30% and 70%. By subjecting
tissue samples to partial dehydration, artificial tissues with water contents in this range
were created. The partial dehydration method involved evaporating a proportion of the
tissue water from a sample by gentle heating in an oven at temperatures well below

100°C. This process alters the proportion of bound water in the dehydrated tissues, so
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permittivity measurements on these samples were used to support the values estimated

for the bound water content of undehydrated tissues.

To model the form of the behaviour of water in biological tissue, the permittivity of
semi-solid aqueous gelatine solutions was measured. These can be regardéd asa
simplified tissue phantom, as they contain only two substances, water and gelatine, an
animal protein. Some of the water in these solutions is hydrogen bonded to the protein
polymer molecules in a similar manner to the water binding in tissues.

Using mixture equations, a new technique for investigating the state of bound water in
protein solutions was employed. Taking the permittivity results of gelatine solutions of
many concentrations, the effective permittivity of the water fraction in the solutions was
calculated. The effective permittivity of the water fraction is dependent on gelatine
concentration, as a greater fraction of water may be bound when there is a greater
gelatine concentration. Extrapolating the behaviour of the effective water permittivity to
very high gelatine concentration therefore gave an estimate of the permittfvity of the
bound water in the gelatine solutions.

The same technique was then applied to the high water content biological tissue
permittivity measurements. However, as the range of water contents for biological
tissues was so limited, the extrapolation process was very prone to uncertainty, and gave
mutually inconsistent results for the dielectric constant and loss factor of the bound
water. By using the permittivity data from partial dehydration samples, the range of
water content was extended. The behaviour of the effective permittivity of the tissue
water was more reliably extrapolated, and led to conclusions about the dielectric
properties of bound water in tissues which were fairly consistent with the conclusions of

previous researchers in the field.

This thesis is divided into three distinct sections. The first section is introductory and
comprises chapters 1 to 3. In it, the need for accurate and comprehensive knowledge of
the complex permittivity of tissues for analysis of radiometric data is established, and
combined thermal and dielectric modelling is briefly discussed. Then the relaxation
equations which are used to parameterise the dielectric behaviour of pure substances are

presented, followed by a review of the mixture equations commonly used to predict the
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permittivity of two-phase materials. Finally, the dielectric behaviour of water, saline, and
tissue-simulating water / polymer solutions at microwave frequencies are discussed in
some detail.

Chapters 4 and 5 form the second section, in which the choice and design of the co-axial
permittivity measuring probe used in this study are explained, and the probe performance
is compared to that of earlier designs. Several methods for calibration of co-axial probes
are considered, their applicability to the current case is established, and the inherent
calibration and measurement errors are evaluated. ,

In the third section, the measured biological tissue permittivity data are presented and
compared with previously measured data where available. The major tissue types
investigated included fats from many regions of the body, skeletal, cardiac and smooth
muscle tissues, and liver and kidney tissues. Limited measurements were made on small
specimens of skin, blood and pancreatic, splenetic, uterine and brain tissues. Similarity
between animal and human tissues, and between human tissues of similar water content is
discussed. Analysis by mixture equations of permittivity measurements on tissues and
gelatine tissue phantom materials with many different water concentrations is used to
evaluate the applicability of mixture equations to biological tissue, and to estimate the

dielectric properties of bound water.

At this stage it is useful to define the dielectric terminology which is used extensively in
this study. There appears to be considerable inconsistency in the current usage of the
terms describing dielectric behaviour. Here, the definitions used are taken from Von
Hippel (1954), and concur with those used by the American Institute of Physics (Link
and Herrmann, 1972).
The intrinsic property of a material which describes its ability to store electrical energy is
its relative dielectric constant, £'. The term constant refers to the independence of &’
on field strength. Part of the electrical energy put into a dielectric is dissipated, and is
therefore not recoverable from storage. The intrinsic property which measures
dissipation is the relative loss factor, £". The relative permittivity ¢, of the material in
an alternating electric field is given by;

g, =¢&-j&'
where j=+/—1. Asthisis a complex quantity, g, is often referred to as the complex

relative permittivity.



All these parameters are relative values, as they are all measured relative to the
permittivity of free space, g, which is equal to 8.854 x 107 Fm™. The absolute
permittivity of a material is equal to &g, and so, by association, the absolute dielectric
constant and absolute loss factor of the material are equal to &’¢, and &£”¢, respectively.
However, in this study, all the measured values are quoted as relative permittivities,
relative dielectric constants and relative loss factors. Therefore, the word relative will be
usually dropped, except in cases where otherwise made clear, without risking confusion.
In conclusion then, the complex parameter &, will generally be referred to as the
permittivity, the real part of the permittivity will be referred to as the dielectric constant,
and the imaginary part will be referred to as the Joss factor.



Chapter 1. Microwave Radiometry of the Human Body.
1.1. Introduction.

In this chapter the fundamental aspects of microwave radiometry, and the need for
accurate tissue permittivity data are presented. Similar requirements are also established
for microwave hyperthermia and tomographic techniques. The relationship between the
temperature and permittivity of body tissue and the microwave radiometer signal is then
investigated.

By combining the spectral intensity of thermal radiation from a black-body material with
the equation of transfer, an expression for the intensity of microwave radiation inside
body tissues is found. The microwave signal detected by a radiometer antenna is
dependent on the intensity of microwave radiation in the medium under investigation and
the geometry dependent spatial response pattern of the antenna to incident radiation.
Microwave radiometry antenna response functions are then considered, and a simplified
model is used to show how approximate equations for antenna signals can be obtained.
A brief review of the common methods used to evaluate real antenna response patterns is
then presented, with emphasis on the problems encountered in near-field measureﬁnent.
Radiometer and antenna design are described, and recent modifications considered, with
respect to minimising unwanted signal from sources other than the tissue region of
interest, and improving spatial resolution.

As it is found that the radiation intensity profile is dependent on the local temperature
profile, the merits of using the popular bioheat equations to assist the prediction of local
microwave temperatures in the body are discussed. Finally, simplified thermal modelling
of the human body is used to find a suitable expression for the form of the major
temperature variations in simple tissue volumes, illustrative of the measurement

conditions of microwave thermography.
1.2. Practical Microwave Radiometry.

Microwave thermography is the name given to a method of estimating the effective
internal temperature of the human body, by measuring the intensity of thermal radiation,

naturally emitted from the body, at microwave frequencies. Microwave radiation will



penetrate to the order of several centimetres into body tissues, and so radiation emitted
from points at medically useful distances under the skin surface will reach the skin where
it may be detected.

As many medical conditions are characterised by an increase in body temperature around
the area affected, microwave thermography is a potentially useful clinical technique for
the detection of such conditions as cause a localised temperature increase situated inside
the body. Examples of such temperature changes are the inflamed tissue of joints
affected by arthritis, and the ‘hot-spots’ associated with many breast cancers.

A microwave scan may be taken passively, non-invasively, and in an environment
without strict temperature controls, as the features detected lie at sufficient depths within
the body not to be too seriously affected by moderate alterations in ambient or skin
temperatures.

Typical equipment used for basic body temperature measurements is shown in fig. 1.a.
Similar apparatus to this has been used in various clinical studies by the Glasgow and
other research groups (e.g. Kelso, 1995, Fraser et al 1987, Abdul-Razzak et al, 1987,
Barrett et al, 1980). To measure the microwave signal incident on the skin from tissue
within the body, the procedure is simply to place the end of the antenna in contact with
the skin. Radiation couples with the antenna, which is a dielectrically loaded waveguide
section, and a signal is transmitted to a radiometer receiver which measures the radiation
signal. The radiometer output is presented as a degrees Celsius equivalent temperature,
which is often recorded and displayed by computer és colour-coded temperature

patterns.
1.2.1. Fundamentals of Operation.

Any mass, with temperature above absolute zero, emits electromagnetic radiation as a
consequence of the thermal agitation of its constituent particles. At microwave
frequencies it is found that the spectral intensity of emissions is a linear function of
temperature in a given medium. |

The broad spectrum of microwave signals picked up by the antenna are processed by a
Dicke - type radiometer, which ignores radiation outside the bandwidth of interest, and
amplifies the desired frequency components. As the microwave signal from the antenna

is of very low intensity, being the result of thermal ‘noise’ in the human body, it is
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Figure 1.a. Clinical radiometer apparatus for body temperature measurement. The
equipment consists of a dielectrically loaded waveguide antenna connected
to the radiometer, which amplifies the thermal microwave signal, and
displays the effective microwave temperature on a digital display. A
personal computer displays and records the measured data.
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Figure 1.b. Schematic diagrams of common applicator types for microwave
hyperthermia treatment.



essential to ensure, by suitable radiometer design, that as little as possible excess noise is
added to the signal by the radiometer detection and amplification circuits. ‘The resulting
signal is interpreted in terms of an ‘effective microwave temperature,” which is a
weighted mean of the temperature distribution at all points in the volume viewed by the
antenna.

Thorough knowledge of the antenna response function is essential for evaluation of the
temperature of the tissue under investigation. This response function is also dependent
on the dielectric permittivity of the tissue, the value of which determines both the
radiation penetration depth into the tissue, and the spatial resolution of the radiometer.
It is to the measurement and values of the dielectric permittivity of body tissues that the

majority of work presented herein is dedicated.

1.3. Hyperthermia and Tomography.

Two areas of research closely associated with microwave thermography are microwave
hyperthermia and microwave tomography. Whereas thermography relies on the
detection of naturally emitted radiation from the body, both the hyperthermia and
tomography techniques ‘actively’ illuminate parts of the body with higher intensity
microwave radiation from a generator. The behaviour of body tissues to artificially
applied radiation is identical to the behaviour to natural thermal radiation, so the
principles involved in equipment design and tissue modelling in these techniques are the
same as those employed for microwave thermography.

Microwave hyperthermia is a method of preferentially destroying tumour cells by
concentrated microwave irradiation of the affected region. This heats the tumour to
temperatures between 42 to 45 °C, sufficient to destroy preferentially the malignant cells
whilst not damaging excessively the normal surrounding tissues.

Radiation is commonly delivered to the tumour using a contact ‘microstrip’ applicator,
dielectrically loaded waveguide, or invasive ‘interstitial’ antennae (fig. 1.b). It is
necessary to restrict the heated volume as closely as possible to that of the tumour itself,
or healthy surrounding tissue will be at risk of destruction. Therefore these antennae are
designed to have a response function with a heavily localised distribution which can be
centred on the tumour (e.g. Johnson et al, 1995).



Knowledge of the dielectric permittivity of tissue, as well as its thermal behaviour, is vital
to calculation of the microwave energy dose rate which must be supplied to the

applicator to maintain the correct temperature in the tumour.

Tomography is a technique already in clinical use at X-ray wavelengths as a medical
imaging method. Radiation of the chosen wavelength is applied to one side of the tissue
region under investigation. It propagates through the region, is attenuated and scattered
by the irregularities and absorption of the tissue, and the resulting radiation distribution is
detected at the other side of the region by an antenna array. The amplitude, and in
microwave tomography, also the phase, of the radiation reaching each point opposite the
emitter is used to reconstruct the three-dimensional density, or for microwaves, complex
permittivity distribution in the viewed volume, even for strongly inhomogeneous regions.
Microwave tomography systems are also still at an experimental stage of research, but
are a potentially useful medical tool. This technique may be utilised not only for locating
cancers, but also for tissue thermometry to monitor hyperthermia treatment, on account
of the variation in tissue permittivity with temperature (Broquetas et al, 1989).

To fulfil the potential of microwave hyperthermia and tomography;, it is essential to
establish the values and ranges of the permittivity of both healthy and tumour tissue.

1.4. Black-body Thermal Radiation.

An object which absorbs all the radiation incident upon it is known as a ‘black-body.” By
the Principle of Detailed Balance (Reif, 1965), the power radiated by a black-body in
thermal equilibrium in any frequency bandwidth must be equal to the power absorbed in
that bandwidth. This holds over any particular element of the black-body, and for any
direction of polarisation. Thus, the perfectly absorbing black-body is also a perfect

emitter of radiation.

The intensity of radiation emitted by a black-body in the frequency range v— v+dv is
given, as a function of absolute temperature, T, by the Planck function:

2hV

B(T)dv=—22—
) (e -1)

dv (14.1)



where B (T)dv is the power emitted per unit surface area, into unit solid angle in the
frequency range dv, h is Planck’s constant, cis the velocity of light, and & is
Boltzmann’s constant.

It is important to distinguish between fotal intensity and spectral intensity. The total
intensity of radiation refers to radiation emitted over all frequencies, and may be
evaluated for a black-body by integration of eqn. 1.4.1. Total intensity has dimensions
Js'm™. Spectral intensity refers to the radiation emitted in a small frequency band dv,
and so has dimensions Jm?. As microwave radiometers operate in a narrow frequency
band, it is the spectral intensity of the body that is of interest. Hereafter, the spectral

intensity is referred to as the infensity without risk of confusion.

The intensity distribution (1.4.1) is plotted as a function of v for T = 300K
(approximately that of the human body) in fig. 1.c. Peak intensity occurs at a frequency
of ~3.1x 10"® Hz, in the infra-red spectral region, and has a magnitude~10® times that of
the intensity at the frequencies used for microwave thermography. However, the fact
that the microwave intensity is so low is not of importance in thermography, as the
microwave thermal signal from the environment and measurement equipment is similarly

reduced.

At 3 GHz, and a temperature of 300K, the exponent h%T is very small: .

hy/-=48x10° = (¥ -nahyi (1.4.2)
Thus the Planck function (eqn. 1.4.1) may be approximated by the Rayleigh-Jeans
function for this situation, and the intensity expressed as:
2kTV

02

B(T)= (1.4.3)

showing the intensity to be a linear function of temperature.

Although no real material behaves as a perfect black-body at all temperatures and over
the entire frequency range, it is shown, in the following sections, that the Rayleigh-Jeans
law has an important place in evaluating the intensity of the microwave signal from the
human body.
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Figure 1.c. Black-body spectrum for material at a temperature of 300K, approximately
equal to that of the human body. Microwave radiation has intensity only
10* times the peak infra-red intensity.
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Figure 1.d. Small cylindrical volume element lying parallel to the s-axis in a radiation
field, with an element of solid angle dw subtended from its centre.



1.5. Equation of Radiative Transfer.

The following treatment uses the formalism of Chandrasekhar (1950) in his book
‘Radiative Transfer’ for radio astronomy. The problem of interpreting radio emissions
from the layered atmospheres of stars or planets is analogous to that encountered in

interpreting the microwave signal emanating from a human body.

In a radiation field, the radiative power dP, in a frequency banddv, transported across
area do, confined to an element of solid angle dw, is related to the intensity 7, by:

dP, =1 cosGdawdody (1.5.1)
where @ is the angle between the direction considered and the outward normal to the
surface do. The radiation intensity / , may be a function of position, and of direction at

the position.

Consider a small cylindrical element of cross-sectional area do and length ds aligned
parallel to the s -direction in a material supporting a radiation field (fig. 1.d). This
material is characterised by a mass absorption co-efficient x, a mass emission co-
efficient j , and density p. The s co-ordinate may be described in terms of the Cartesian
co-ordinates x, y, z and the direction cosines /, m and n by:

s=D+my+nz (1.5.2)
Radiation of intensity /, per unit bandwidth, per unit area incident normal to this element
will be transmitted normal to the element at an intensity /, +d/ , where the increment
dl , is found by combining the absorbed and emitted radiation across the eiement.
Absorption of the incident radiation over a distance ds will reduce the original intensity
by an amount d7,,,, given by:

d[v(a,,,) =—x ol ds (1.5.3)
Therefore the power absorbed by the cylindrical element in the frequency interval
v—> v+dyv confined to the element of solid angle dw is:

Kk pl dsdvdodw (1.5.4)



The emission co-efficient is defined such that an element of mass dm emits radiation in
the frequency interval v— v+dv, confined to the solid angle element dw, at a power
given by: Jjamdaodv = jdsdodwdy (1.5.5)
The difference in radiant power in the frequency interval v— v+dv crossing the two

faces of the cylinder normally, confined to the solid angle element dw, is:

dl, dsdvdodw (1.5.6)
ds .
Combining eqns. 1.5.4, 1.5.5 and 1.5.6, yields:
‘Z; dsdvdodw = j pdsdvdodw - x pl dsdvdodw (1.5.7)
= ‘Zg" =jp-xpl, (1.5.8)

This equation (1.5.8) is known as the ‘Equation of Transfer.’

The Source Function, 3, is defined as the ratio of the emission to absorption co-
efficients: g, =Jv (1.5.9)

and allows the equation of transfer to be written:
1 dl,

=1,-3 | 1.5.10
p ds (1.5.10)

v 14

1.5.2. Intensity Profile in Body Tissue Regions.

The equation of transfer is now applied to a model of the human body, and solutions
found to express the microwave radiation intensity as a function of position. For a more
rigorous discussion of the solutions to the equation of transfer, the reader is referred to
Chandrasekhar (1950, 1939).

The equation of transfer is generally an integro-differential equation, as the emission
co-efficient, and therefore the source function, is often functionally dependent on the
intensity at a point. In a medium, bounded on the s-axis at the point a, the formal

solution to eqn. 1.5.10 is:

I(s)=1(a)e™™" + J 3.(s)e ™k pds' (1.5.11)



where 7(s,s') = j'xvpds' is the optical thickness of the material between points s’ and s.

The optical thickness is equivalent to the power attenuation constant of electromagnetic
radiation: Kp=2a (1.5.12)
where « is the plane wave electric field attenuation constant, a parameter related to the

complex permittivity &, = (&' — j&") by:

a=®%/  where k=Imz, (1.5.13)

Thus the intensity in a particular direction at a point in a medium results from the sum of
the emissions, reduced by their corresponding absorption factors, from all anterior
points, and an expression representing the intensity incident upon the medium at its

anterior boundary.

Kirchoff’s radiation law (Chandrasekhar, 1939) states that “The ratio -’% of the

emission to the absorption co-efficients of any body in thermodynamic equilibrium is

equal to the specific intensity, B,, of the v-radiation emitted by a black-body of the

same temperature.” The human body is not in perfect thermodynamic equilibrium, but as
the temperature gradient within the body is small, and the absorption co-efficient
generally high, a temperature, T, may be ascribed to each point, P, inside the body, such
that the properties of the tissue around P are identical. In such circumstanpes the body is
said to be in local thermodynamic equilibrium. Thus Kirchoff’s law may be applied, and
the source function for microwave radiation in the human body may be given as the

_2kTV
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Rayleigh-Jeans function: 3 (1.5.14)

Thus, for a single semi-infinite medium bounded at s = 0, the intensity at the surface is:
1,(0) = 2 [2aT(s)e™ds (1.5.15)

Brown (1989) considered a simple, yet realistic, model of certain regions of the human
body, shown in fig. 1.e. Body tissue is stratified in parallel planes of different tissue
types. A cross-section through the abdomen or a large limb may have this form. In the x-
y plane the physical properties of the tissue are invariant for a given value of z co-

ordinate. Under such circumstances, the plane-wave approximation may be applied to
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Figure 1.e. Section of body tissue considered in eqn. 1.5.16, viewed perpendicular to
the supposed axis of plane-wave radiation propagation towards skin surface.
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Figure 1.f. Schematic diagram of a transition between two media, in which the
permittivity undergoes a gradual change, rather than an abrupt discontinuity.
This is likely to be a better approximation of the tissue boundaries in the
human body.



the radiation field in the tissue volume, as the radiation intensity at a given value of z is
independent of the x and y co-ordinates.

Using eqns. 1.5.12, 1.5.13 and 1.5.14 in eqn. 1.5.11, the intensity at the skin surface may
be given:

z—z(a,a+a_f (b-a))

om?

1,(0)= 2kv’[ji 2a,T(z)e™ dz + <5 j‘za, T(z)e” " "dz + j 2amT(z)e""""dz]
(1.5.16), where the subscripts s, f and m refer to skin, fat and muscle respectively.
This approximation ignores the reflection of radiation at tissue layer boundaries. Taking
typical permittivity values for the three tissue types from the data presented in chapter 6,
the power reflection co-efficients, R,_,, at each boundary may be evaluated, and
incorporated with eqn. 1.5.16 to give a better approximation of the signal intensity at the
skin surface.
Este = 50— j18, &4, =15~ j3, &£,,, =35 j11, gives:

R scte—u =0.08; R, 0, = 0.04 (1.5.17)
These reflection co-efficients are themselves slightly unrealistic as real dielectric
boundaries in the human body are unlikely to be sudden discontinuities, but spread over a
few millimetres. Wilheit (1978) considers the reflection at non-abrupt boundaries
between two media of permittivities &, and &, as shown in fig. 1.f If the transition
distance, J, is long, i.e. §>> A, then the reflection is zero, and if § << A, the reflection
is the same as that for an abrupt boundary. In the human body, 3 GHz radiation has a
wavelength of ~1.5cm to 4cm, and tissue boundaries are spread over only several
millimetres. Thus reflection co-efficients will be comparable to those obtained by

straightforward Fresnel equations.
1.6. Antennae for Microwave Thermography.

The thermal radiation power per unit bandwidth received by an antenna is given by:

W, =4[ L()P(r)de (16.1)
where / (r) is the intensity of radiation of frequency v emitted by the volume element dr
at position (r), the form of which has been discussed above, and P,(r) is the normalised

power response pattern of the antenna as a function of position (). The factor of }é



occurs because any antenna only responds to one radiation polarisation component. As
the incident radiation is incoherent and unpolarised, half the total incident power is lost.
It is therefore essential for radiometric temperature retrieval that the antenna spatial
response is known. The form of this function is dependent on many parameters; the
antenna geometry, the loading dielectric of the antenna, and the dielectric properties and
geometry of the investigated volume.

In this section, the observed behaviour of the antennae used in the Glasgow radiometer is
considered, with reference to finding an approximate response function, which can be
used in eqn. 1.6.1 in conjunction with the radiation intensity function (eqn. 1.5.15).
Sections 1.7 and 1.8 discuss the techniques employed for more rigorous evaluation of

antenna response functions.

The Glasgow antenna (fig. 1.g) is a cylindrical waveguide section of length 5.2cm and
diameter 2.5cm, loaded with a proprietary dielectric powder of relative permittivity
£=12-0.008i. This dielectric is approximately matched to the overall effective
permittivity of tissue near the skin surface. Although the permittivity of skin is
significantly higher than this value, the skin layer is sufficiently thin that the effect of
subcutaneous fat is more important. The dielectric also contributes very little noise to
the received signal because of its low absorption, and reduces the required antenna

diameter for detection of 3 GHz radiation from that of a hollow guide by a factor of

J12. This also improves the transverse spatial response by the same factor.

Only one mode of radiation transmission in the antenna is measured. Over the whole

* range of radiometer operating frequency (3 - 3.5 GHz), only the transverse electric TE ,

mode of radiation will propagate freely in the antenna. The transverse magnetic TM,,
mode may propagate at frequencies above ~3.2 GHz, but this contributes little to the
received signal, because the coupling between antenna and this mode is weak at the fin-
line transition to co-axial cable. A quarter-wave choke at the waveguide to co-axial
cable junction provides a high impedance area between the inner and outer conductors of
the cable across the end of one fin.

The power dissipation density in the field of an antenna radiating into a medium is

expressed: P(r)=1dE(r) (1.6.2)
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Figure 1.g. Cross-sectional views of the radiometer antenna used at Glasgow. The
metal fins make a quasi parallel-plate transmission line region and the
quarter-wave section gives a high impedance at the co-axial cable junction.
The antenna is loaded with a low-loss dielectric with &, = 12 to reduce the

required antenna size for wave propagation.
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Real Antenna Pattern
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Figure 1.h. Representation of wavefronts from a real antenna radiating into a body.
The factor d is a correction factor dependent on position, which allows for
the fact the centre of spherical wave expansion is actually inside the antenna,

not on the boundary at the aperture.



where o is the conductivity of the medium representing all loss mechanisms, and |E (£)|2
is the magnitude of the square of the electric field at position ». By the z;ntenna
reciprocity theorem (Slater, 1942), the receiving power pattern of an antenna is the same
as its power dissipation pattern when operating in active mode. Therefore, the receiving
power response function is proportional to eqn. 1.6.2.

B(r)= AE@) (163)
where A is a constant of proportionality.

The antenna response function is normalised such that: an(g)dr =1. (1.6.4)

An ideal antenna produces a pattern of plane wavefronts over the area of the aperture of

the antenna. In a lossy medium the plane wave electric field amplitude |E(z)| decays
oce”™. In this case the power response function is given by the axial resp(;nse, multiplied
by the normalised lowest order Bessel function P,)(x,y) describing the distribution of
field over the area of the aperture in the x-y plane:

P,(r)= Bi(x,y)20e™*" (16.5)

where a is the field attenuation constant of the viewed medium.

For an ideal antenna the viewed volume is a cylinder of the diameter of the antenna, so in
cylindrical polar co-ordinates, the power received per unit bandwidth is given by:

antenna
27 radius

W,=+[ [ [1()Pix.y)20e™"rdrdbiz . (166)
00 0

However, a real antenna produces a more complicated field distribution (fig. 1.h). At

large distances from the antenna (far-field region), the wavefronts are quasi-spherical,

giving a %2 dependence to the power response function. In the region near the

aperture (near-field region), higher order terms in % are dominant in the E and H

fields, due to fringing of the wavefronts around the conducting surface of the antenna.
In lossy media, these fields contribute to signal loss through the in-phase current term.
Signal loss in the near-field may account for 20% to 50% of the total signal in practical
thermography situations (Land, 1995)

Thus, the response function is a complex function of position and of the dielectric

constant of the viewed material, tending, when 7 is large, to be proportional to
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2a~0) where d(r,0,d) is a correction function allowing for the distance to the centre

Le
of expansion of the spherical waves. (see fig. 1.h)

The permittivity of the viewed medium affects the response function in several ways. It
not only defines the attenuation constant, &, but also affects the extent of the near-field
fringing, and the shape of the volume of viewed material, through the change of the
wavelength in the dielectric. A good match between the permittivity of the antenna
loading dielectric and the material of the viewed volume restricts wavefront fringing
around the aperture (Land, 1995), and as a consequence, changes the shape of the
volume of viewed material. The viewed volume takes the form of a cone, whose vertex
is the centre of spherical wave expansion, the position of which is determined by the
local permittivity of the material in the near-field region. Since the permittivity of tissue
varies with position, refraction effects, acting on the wavefronts at the periphery of the
viewed volume, will alter the direction of propagation of these wavefronts. Thus the
effective position of the vertex of wave expansion will also be dependent on position, 7 .
The near-field fringing effects of the antenna may be minimised by attaching a large,
conducting ground plane to the aperture (Decreton et al, 1974). But in practice this is
unwieldy, and gives variable electrical contact between the antenna aperture and the

body under investigation.

Evaluating the response function clearly requires tissue modelling and numerical
computation. There is one notable simplification which assists in evaluating the far-field

contribution to the overall signal (Brown, 1989). The real and ideal antenna axial

responses are shown in fig. 1.i; in the far-field, the %2 term may be incorporated into

the exponential decay term, giving an effective attenuation constant «,, such that
a, > «. Thus the real antenna response is approximated by an ideal antenna radiating
into a medium of slightly higher loss:

P(r)<c2ae™* (1.6.7)
Experiment has shown (Mimi, 1990) that for a TE,, mode cylindrical antenna, ¢, varies
from 1.05a to 1.4a depending on the permittivity of the medium under investigation.
However, despite the success of this method, it is usually necessary to measure or
compute numerically the real antenna response function, especially in the near-field

region.
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Figure 1.i. Schematic comparison between ideal and real antenna response functions,
showing that in the far-field region, the real response can be approximated
by an ideal exponential response with slightly larger attenuation constant.

Waveguide
Antenna

Reflectometer

Figure 1.j Schematic diagram of non-resonant perturbation method of measuring
antenna spatial response. Fields propagating into a lossy tissue phantom
from the test antenna are perturbed by small dielectric volumes of known
geometry, and the resulting change in reflection co-efficient from the antenna
measured. From this the antenna field can be calculated.



1.7. Real Antenna Spatial Response Functions.

For practical purposes, the antenna response function may be evaluated by direct
measurement, or by mathematical modelling techniques. Mathematical modelling has
recently become a more realistic method, as computing power becomes inexpensive and
accessible, but direct measurement in tissue simulating media is still popular for its
reliability, and to provide ‘real’ results with which to compare computed patterns.

The antenna response function is measured in active mode, radiating into a tissue
phantom, as the active fields will be identical in structure to the passive response fields,
by the reciprocity theorem (Slater, 1942).

The most satisfactory measurement method is the non-resonant perturbation technique
(Land, 1984, 1988, 1992) as shown in fig. 1.j. The test antenna is supplied, via a
waveguide coupled to the antenna port, with a microwave signal which radiates into a
liquid tissue phantom. A directional coupling element is used to view the signal reflected
from the test antenna. The amplitude and phase of this signal are measured. Field
perturbing objects of known dimensions and permittivity are introduced to the viewed
region of the phantom medium, and the change in field reflection co-efficient is
measured.

Applying the field form of the reciprocity relationship over the stationary boundaries of
the system yields exact expressions for the change in reflection co-efficient produced at
the antenna port by the presence of a perturber at a particular position (Land, 1984). For
a non-magnetic dielectric perturber, the change in reflection co-efficient, AI', is given by:

E] : EZ
4w

AT = [ jo(s, - ,) av (1.7.1)

where ¢, and ¢, are the complex permittivities of the perturber and phantom material
respectively, W, is the power incident from the test antenna upon the viewed volume, and
E, and E, are respectively the electric fields before and after the introduction of the
perturbing object.

Dielectric perturbers are generally used to interact only with the electric field, and
conducting perturbers can be used to investigate magnetic field distribution.
Non-resonant perturbation has several advantages over other field pattern measurement

methods. Firstly, if measurements are made using spherical dielectric perturbers, then
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they are field polarisation independent; secondly, the suspending structure of the
perturber (e.g. nylon thread) can have negligible interaction with the field, even at near-
field positions; and thirdly, an absolute, rather than just a relative, measurement of
antenna response is yielded.

Suitable choice of perturber shape allows specific characteristics of the field pattern to be
investigated; for example, thin perturbing rods are used to determine the directionality of
field components, and thin sheet perturbers can be used in near plane-wave regions
(Land, 1992)

This technique is particularly useful for establishing near-field effects. In realistic body
simulations it is found that layering of the dielectric structure immediately in front of the
antenna aperture has a significant effect. Figure 1.k shows an example of this, by
comparing the response at a fixed depth of simulated muscle tissue for different thickness
of simulated fat. The central response falls steadily for increasing low-permittivity layer,
and is far lower than the response for a single region of higher loss, higher permittivity
muscle. The width of the response also increases with increasing low-permittivity layer,
showing that a reduction in plane-wave attenuation constant in the near-field is more

than compensated for by the increased fringing effects caused.
1.8. Antenna Response Modelling.

Antenna modelling is of significant interest in this study, as the similar modelling of the
admittance of open-ended co-axial probes is essential to calibrate the probes used to
make the permittivity measurements which form the basis of this research.- The particular
case of modelling co-axial probes is discussed thoroughly in chapter 5. Here, discussion
is limited to a brief overview of the common techniques used to model the near-fields of

waveguide antennae as used in microwave radiometry studies.

The technique of modal-matching has been extensively used to find the near-field
distribution in lossy dielectric media. Cheever et al (1987) modelled and measured the

% penetration depth of 3 - 5 GHz radiation from a rectangular TE,, mode waveguide.

The aperture is modelled as a junction between the supply waveguide, corresponding to
the antenna, and a much larger waveguide containing the dielectric medium. At the open

end, the field in the dielectric is expressed as a superposition of normal modes in the
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Figure 1.k. Graph showing the variation with lateral position in the relative magnitude
and phase of a microwave signal at a depth of ~1cm into a sucrose solution
tissue phantom. The waveguide antenna aperture which irradiates the
volume is centred at a lateral position of 25mm. Fat simulating tufnol sheets
can be placed between the aperture and the sucrose, which reduces the
response magnitude, despite the tufnol being of lower permittivity than the
sucrose which it displaces. Reproduced from Land, 1995.
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Figure 1.1, Schematic diagram of Dicke-type radiometer. When switch is in position 1
the received signal is proportional to 7, +7,, and in position 2 the signal is
proportional to 7, +7,. At the switching frequency, the output varies
as the difference 7, — 7, , between the two signals.



larger waveguide. This model makes the assumption that the field at the aperture
corresponds only to the TE , mode of the smaller guide. In fact there exist at the
aperture incident and reflected TE,, modes, and also significant higher evanescent mode
fields.

At the University of Lille Hyperfrequency Group, Mamouni et al (1991) used a similar
modal technique which accounts for these fields. Radiometric tests based on predicting
the observed microwave temperature increase associated with ‘hot-spots’ in semi-infinite
lossy media (Bocquet et al, 1993) have shown sufficiently good agreement with

measured values for this model to be incorporated with medical radiometry applications.

Modal methods are limited to the study of plane stratified media boundaries, and cannot
be easily extended to allow for heterogeneous tissue structures. Purely computational
methods must be used to account for varying geometry of tissue and applicator, as it is
necessary to solve Maxwell’s equations with complex boundary conditions. Computer
models based on the Finite Difference Time Domain (FDTD) algorithm, introduced by
Yee (1966), are most commonly applied (Taylor et al 1995, Chive et al 1995).

To implement this algorithm, the volume under investigation, including the radiation
source, is divided into a square grid or lattice (3-D). Each lattice cell is specified by the
dielectric parameters of complex permittivity, and each lattice point has its own
associated set of E and H field components. An electromagnetic field source is excited
in the volume at the appropriate co-ordinates to start the simulation. Finite difference
approximations of Maxwell’s time dependent equations are then time-stepped over all
the lattice points to simulate the propagation of the field. The antenna pattern may be
evaluated when once steady state is attained. A comprehensive study on this method in a
radiological environment is presented by Lau et al (1986).

Increased computer power will allow a larger volume of tissue, divided into finer lattice

cells, to be modelled, thus reducing error.

Other numerical methods of waveguide antenna modelling include the Method of
Moments (Livesay & Chen, 1974) and Finite Element analysis (Lynch & Paulsen, 1985).
The Moment method is impractical as it involves the solution of integral equations at
each lattice point, via the inversion of large matrices, which consumes huge computer

resources. Finite Element analysis requires more computing power than the FDTD
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method, but has the advantages that heterogeneous tissue properties and irregular
boundary conditions are accounted for fundamentally within the formulation, and

elements of varying shapes and sizes may be chosen within a model.

It is intended that the complex permittivity data on biological tissue presented in chapter
6 of this study will provide raw data to be used in subsequent computer modelling of the
antenna response functions of thermography antennae. This will assist in determination
of the subcutaneous temperature distribution measured by microwave thermographic

scanning,
1.9. Radiometer Design.

One important requirement of microwave thermography research is to produce a
radiometry system which is useful in a clinical environment, for monitoring the
temperature of subcutaneous tissue. An ‘ideal’ clinical radiometer system would possess
the following qualities: (1) usefully small spatial resolution. (2) usefully large penetration
depth into tissue. (3) adequately sensitive temperature resolution. (4) fast response

time.

Spatial resolution and penetration depth are dependent on the frequency of radiation
considered, and on the design of the receiving antenna. Unfortunately, an improvement
in spatial resolution by increasing measurement frequency produces a corresponding
reduction in penetration depth. An optimum combination must be chosen, which may
vary for different applications. The necessity for a fast response time is a purely clinical
requirement - data collection ﬁbm a patient must be performed in a restricted time
period. However, it is a characteristic of radiometers that a fast response time conflicts
with good temperature resolution. It is found that clinical and physical considerations
lead to design compromises in practical radiometers.

In general, for useful clinical operation, a radiometer should have spatial resolution
~lcm, penetration depth ~several cm, temperature resolution ~0. 1K, and temperature
stability ~0.3K. As human body temperature is 310K, the temperature resolution must
be ~0.03%, and stability ~0.1% at worst. It is with these requirements in mind that the

operating frequency and electrical design of thermographic radiometers are chosen.
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1.9.1. Choice of Measurement Frequency.

For a real antenna, the maximum detectable noise power in the Rayleigh-Jeans limit at
temperature 7, is given by: W =kIB (1.9.1)
where B is the measurement bandwidth. The frequency independence of this quantity is
a result of cancellation of the frequency dependence of the black-body radiation intensity
(eqn. 1.4.3) with the effective antenna area (see Brown, 1989). A large bandwidth may
be desirable, as this gives a large signal, but in practice, problems such as antenna
impedance matching restrict the obtainable measurement bandwidth.

The central frequency of this bandwidth must be selected to give the best compromise
between spatial resolution and penetration depth. Simple geometrical optics gives the
lateral spatial resolution of a radiation detecting device as approximately half the
wavelength of the radiation in the medium in question. If the complex permittivity of a

medium, &,, is given by €, = &' — je”, then:

Spatial Resolution = 2y (1.9.2)

2¢

Decreasing wavelength improves the spatial resolution of the radiometer.

The amplitude attenuation constant, «, of radiation in tissue was given in section 1.5 as:

oo 2tme, (1.9.3)

The plane wave power penetration depth is the depth of tissue required to attenuate an
incident plane wave to % of its original intensity, and is given by the inverse of the
power attenuation constant 2. In practice, because antennae do not have plane-wave

response functions, the effective power penetration depth will always be less than % a

2

From eqn. 1.9.3: a=2E |EH (1+(f—)) -1 (1.9.4)
A,V 2 g

For biological tissues, the ratio 5%, is generally <0.3. When 3%, is <1, eqn. 1.9.4

o (f—) (1.9.5)
A \¢

may be approximated as:
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The quantity 3%, is called the ‘loss tangent,” tan &, of the material; if the permittivity is

given by |de™, the loss angle & is given by & = tan'l(‘g%,).

Hence, for optimised radiometer performance, a microwave frequency must be chosen
which minimises the quantities in eqns. 1.9.2 and 1.9.5. This is achieved by minimising
the product of these expressions, which is proportional to the loss tangent. Therefore,
the optimal frequency depends on the material under investigation. ‘

Flesh tissue of the human body is mainly composed of electrolytic water (~75% by
mass), with an ionic profile that may be accurately approximated by 0.15M saline
solution. The loss factor of saline is composed of two terms, one caused by ionic
conductivity of the dissolved ions, and one effective relaxation conductivity caused by
absorption by polar water molecules. At a frequency of ~3 GHz the ionic effect, which
decreases with frequency, and the molecular effect, which passes through a maximum
value at ~25 GHz, combine to give a local minimum value of the loss factor and
therefore the loss tangent. Thus 3 GHz is an optimal frequency in the microwave range.
The loss factor of saline is shown in fig. 3.c, and is discussed in more detail in subsequent
chapters. Although much of the saline in biological tissue exits in bound and semi-bound
states, it can be assumed that the minimum loss tangent of human tissue w1]l
approximately correspond to that of physiological saline.

At 3 GHz frequency, the permittivity of human tissue is such that the power penetration
depth is ~6mm (muscle) to ~Scm (fat), and the spatial resolution ranges from ~0.7cm

(muscle) to ~2cm (fat).
1.9.2. The Dicke Radiometer.

The radiometer used in clinical studies at Glasgow is a Dicke - type comparison
radiometer (Land 1987) shown schematically in fig. 1.1 All radiometers have a
temperature resolution given by the Gabor relationship: ‘

AT=% (1.9.6)

where Q is the radiometer constant for the receiver, T, is the source temperature, 7, is
the radiometer effective noise temperature, B is the radiometer bandwidth, and # is the
radiometer response time. For Dicke - type radiometers, Q is typically ~ 4.6 - 6.6 (Land,
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1983), T, is ~310K (human body), and B is determined by the amplifier bandwidth and
also by the antenna impedance matching range, which will only allow good power
transmission into the antenna over a narrow frequency range.
At 310K, thermal microwave radiation is of very low intensity, with randomly fluctuating
amplitude and phase. It is therefore necessary to amplify the microwave signal before
detection. A simple total power amplifier cannot be used, as its gain, G, is highly
dependent on amplifier temperature. The output signal, R, of a total power radiometer is
given by: R=G(T,+T) (1.9.7)
A small change, &G in the gain, causes a change in the output of magnitude
OR=8G(T,+T) (1.9.8)
Thus if 7, and 7, are both around 300K, a 1% change in G gives a change-in output
reading of 6K, which is far larger than any local temperature variation in the human
body. Additionally, the radiometer noise temperature is prone to variation which can not
be distinguished from source temperature variation.
These problems can be overcome by the Dicke radiometer, which switches its input
between the antenna source, and a matched resistance load at an accurately known
temperature, measured by a semiconducting temperature sensor. This system produces
an output, R, at the switching frequency that is proportional to the temperature
difference between the source and the reference load.
R=G(T,+T)-G(T,+T,)=G(T,-T,) (1.9.9)
The signal is now independent of the radiometer noise temperature, 7, and by setting the

reference temperature close to the source temperature, the difference (7, — 7,,) is small,

so the effect of receiver gain fluctuations is reduced.

A practical system constructed from FET microwave amplifiers and low-loss circuit
components may have an effective noise temperature of ~300K, and predetection
bandwidth of ~500MHz at 3GHz. Thus, from eqn. 1.9.6, a temperature resolution of
0.1K may be attained with a response time of ~2 seconds.

Commonly used radiometer input circuits also compensate for the partial reflection of the
‘true’ microwave signal at the antenna aperture, by directing the noise from the reference
source towards the antenna via a circulator when the Dicke switch is on the antenna. As
the reference source is at a similar temperature to the antenna, approximately the same

amount of reference noise signal is reflected back into the antenna as is lost from the true
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signal. Similar performance can be obtained with self-balancing radiometers, as
proposed by Ludecke (1978) and others, which adjust the reference temperature to be
exactly equal to the source temperature, eliminating the effect of antenna reflections.

However, this improvement is at the expense of increased response time.

1.10. Design Refinements for Microwave Thermography Radiometers.

A microwave radiometer may sense the ‘effective temperature’ of a body, that is, a
temperature representing a weighted sum of the temperature at each point anterior to the
antenna. If measurement is made at a single frequency, information about the internal
temperature distribution can be obtained only with the use of a thermal model of the

viewed tissue, and a-priori information about the viewed volume.

1.10.1. Multi-spectral Radiometers.

The need for a-priori information may be reduced by multi-spectral radiometers which
take effective temperature readings over several distinct frequency bands. As radiation
penetration depth is dependent on frequency, emissions at different frequencies relate to
the effective temperature over different depths of tissue. Radiometric data taken at
different frequencies can assist in the reconstruction of a subcutaneous temperature
profile, but it is still necessary to make certain assumptions concerning the tissue volume
under investigation.

Two approaches to these assumptions may be taken. The first is to assume the shape of
the temperature profile in the body is already known; this reduces the temperature
reconstruction to a process which estimates only the actual values of the parameters
which describe the shape.

This approach is utilised by the University of Lille Hyperfrequency group. Preliminary
experiments using a dual frequency (1.5 and 3 GHz) radiometer have deduced the
‘visibility threshold’ of thermal anomalies as a function of their depth (Bocquet et al,
1986). Figure 1.m shows a schematic representation of these experiments. The antenna
is placed in contact with a thermostated, thin-walled cylinder filled with water at a
known temperature T. A small cylinder of diameter D, filled with water at a temperature

T + AT, is introduced to the system, at an axial distance z from the antenna.
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Figure 1.m. Schematic diagram of dual frequency radiometer experiments conducted
by the University of Lille. An anomalous ‘hot-spot’ is introduced to a
temperature controlled water bath and the change in effective microwave
temperature measured at several frequencies. Lateral movement of the
antenna can be used to estimate the diameter of the anomaly.
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Figure 1.n. Sample calibration chart for estimation of the position of thermal anomalies
in a medium of otherwise uniform temperature. Measured values of
AT, somzy a0d AT, 5, , and an estimation of the anomaly diameter, D, by

lateral threshold visibility give an approximate value of the immersion
depth, z. Reproduced from Bocquet et al, 1986.



At each measurement frequency, the observed effective temperature increase A7,
created by the presence of the small hotter cylinder is measured. Threshold visibility is
attained when AT, is greater than the radiometer temperature resolution, in this case
0.1°C. The diameter of the anomaly can be estimated by scanning the probe in a direction
perpendicular to its axis to find the lateral threshold visibility points.

Plots of the ratio AT, s, / AT, ;) against immersion depth, z, measured for several

different anomaly diameter values, D, define a calibration chart from which the depth of
subsequent unknown thermal anomalies can be estimated from measured values of

AT, sauz) ! ATy @8 shown in fig, 1.n. Thus an overall estimate of the position of the

anomaly is obtained.

By this method, a temperature change can only be measured with reference to some
other known, or in a clinical case, ‘normal’, temperature. A thermal anomaly in the
human body can only be resolved if there is a surrounding unaffected area, over which
the same assumptions about the axial temperature profile may be made. As lateral
resolution is still of the order of 1cm, there is still some error involved in estimating the

size and position of the ‘hot-spot.’

In an alternative approach adopted by Bardati et al (1989) and Caorsi et al (1993), the
temperature retrieval from multi-spectral radiometer data is modelled as the solution of
an inverse problem based on a Fredholm Integral of the first kind. This method is
dependent on prior knowledge of the permittivity of the viewed volume at all
measurement frequencies. It is found that solutions to the integral are severely ill-
conditioned, so large variations may arise from only small departures between data sets.
Bardati et al (1993) investigated the capability of this method for imaging an
homogeneous cylindrical liquid phantom, of radius 60mm, with an off-centre ‘hot-spot’
of radius Smm. Measuring at 4 discrete frequencies, and at 17 equiangular positions, a
minimum temperature resolution of 1.5°C to 5°C (depending on noise propagation
estimates) was calculated for image formation of the hot-spot. It is unlikely that thermal
anomalies in the human body will be of sufficient magnitude to be detected by this
method at this stage. Tests on the human forearm using this technique (Bardati, 1989)
have as yet yielded unrealistic temperature distributions.
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1.10.2 Correlation Thermography.

In an effort to improve spatial resolution, multi-probe correlation radiometers have been
designed by Enel et al (1984), Mamouni (1983), and their performance modelled and
measured by Mamouni (1988 ,1991) and Newton (1986). Correlation radiometers
combine the signals from two or more receiving antennae in contact with the body by
means of an analogue microwave multiplier, connected via a delay line, and followed by
an integrator. The signal recombination process defines an artificial antenna with an
effective response function which is dependent on only the volume of material which is
shared by each antenna (see fig. 1.0). As the shared volume is small, correlation
radiometers are sensitive to the relative position of thermal structures, which may be
located by positioning of the antenna array, or by adjusting the delay time on one of the
antennae. Correlation radiometry is also sensitive to thermal gradients in the shared
volume, rather than to the absolute temperature. It can be shown (Mamouni, 1983) that
the correlated output is zero if the viewed medium is of uniform temperature. Since the
temperature gradients in the human body are small, the correlated output will be always
be small, so considerable problems are encountered with the consequent small signal /

noise ratio.
1.10.3. Deconvolution and Weiner Filtering.

To further improve resolution, the radiometric data can be processed by dgconvolution
and Weiner filtering. The 2-dimensional data, AT, result from the convolution of the 2-
dimensional temperature distribution, with the sum of the response functions
coxresponding to each point. Deconvolution of these data by Fourier Transform directly
yields the true temperature distribution. It has been shown (Bocquet, 1995) that this
method is not badly susceptible to errors in the response function caused by
misjudgement of the underlying tissue permittivity. However, as with Bardati’s integral
temperature retrieval method, blurring of A7, by radiometer noise produces great error
in the deconvolved AT. This problem is partially alleviated by Weiner Filtering of the
data, (minimisation of the quadratic error between the true temperature and its estimate),

which increases the signal to noise ratio (Bocquet et al 1993b).
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Output

Delay
Line

Antenna 1 Antenna 2

Figure 1.0. Schematic diagram of correlation radiometer. The output from one of the
antennae is pulsed so that the overall output signal from the correlator is
proportional only to the signal emanating from the subvolumes AV, which
are coupled to both antennae. Signals from subvolumes AV, and AV, which
couple only to one antenna do not contribute to the correlated output signal.

Tissue Type Thermal Conductivity Reference
( mK™)
Water 0.61 Touloukan et al, 1970
0.15M NaCl Solution (aq.) 0.60 Hamilton, 1996
Skeletal Muscle 0.44 Hatfield, 1953
0.50 Hamilton, 1996
Kidney 0.53 Hamilton, 1996
Liver 0.51 Valvano et al, 1985
0.49 Hamilton, 1996
Fat 0.22 Lipkin and Hardy, 1954
0.23 Hamilton, 1996
Bone 0.8 Kirkland, 1967

Table 1.a. List of measured average thermal conductivity values for some tissues and
tissue simulating materials.



lof features
These processes enable shape and temperature retn'evalffrom radiometric data neither
whose classical thermal image nor image threshold can resolve, although a great deal of
raw data must be discarded in the process. Resolution is such that two cylindrical
thermal objects of diameter 20mm located at Smm depth, and separated by Imm in a

tissue phantom have been resolved, albeit with 700 sets of probe position data.

The reliability of multi-spectral radiometry, and all the image recombination methods

described above, can be improved by accurate knowledge of tissue permittivity.

1.11. Tissue Thermal Modelling.

~ As microwave thermography measures the temperature of a body, it is temperature

which is the driving parameter determining the intensity of microwave signal that may be
detected. So far, the other physical properties of body tissue and the detection
system that affect the signal have been discussed.

Clinically, however, a certain amount of information, dependent on the sophistication of
the detection system, about the characteristic local temperatures expected of a healthy
individual must be known, before the presence of an ‘anomaly’ can be deduced.
Furthermore, the resolvability of an anomaly is affected by the extent of thermal
conduction of the observable phenomenon away from its source, by means of blood flow
and tissue thermal conductivity. Thermal modelling of the body is clearly of considerable
importance to the interpretation of radiometric data.

1.11.1. Bioheat Equations.

Pennes (1948) proposed the standard bioheat transfer equation, based on the Fourier
heat transfer equation. It was assumed that arterial blood enters the capillaries in an
element of tissue with temperature 7, undergoes instantaneous thermal equilibration,
and leaves the element into a vein at the local tissue temperature T. Thus the rate of

change of stored energy in the volume element is given by:

dar
p,c,—d—t—=k,V2T—wbcb(T—Tan)+Q (1.1L.1)
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‘where p,,c,, and %, are the tissue density, specific heat and thermal conductivity
respectively, w, and ¢, are the blood perfusion and specific heat, and Q is the heat
generated in the element by metabolic activity. The first term on the right-hand side of
eqn. 1.11.1 represents the energy transfer rate by conduction and the second term
represents the heat supplied by blood flow.

There are a number of simplifications inherent in this equation. Heat exchange between
blood and tissuelin all blood vessels except capillaries is neglected, as is heat exchange
between adjacent arteries and veins running counter-currently in opposite directions.
Thus the local arterial temperature is always taken to be equal to the body core
temperature. In addition, the directionality of blood flow is ignored, and the equation
implies that two different temperatures, 7, and 7, may exist simultaneously at the same

point in space.

By measuring blood velocity, arterial diameter, and the interaction factor between blood
and tissue, Green (1950) found that thermal equilibrium in blood occurs in the secondary
and tertiary branches, and not in the capillaries. Green was not however able to allow
for counter-current heat exchange between arteries and adjacent veins, which may
further lower the distance blood may travel before reaching thermal equilibrium.
Weinbaum and Jiji (1984a,b 1985) have proposed that the primary heat exchange
mechanism is counter-current exchange, and so introduced an effective tissue

conductivity tensor, &, , to represent convection by small to medium sized blood
a1
dt

Evaluation of k; is dependent on many other local vascular parameters and is therefore

vessels: P, —=kyV'T+Q (1.11.3)

prone to error. Wissler (1987) questioned the validity of eqn. 1.11.3, as the model
overlooks the need for a heat source / sink term, as is present in the original Pennes
equation. The Weinbaum and Jiji equation describes the effect of perfusion as an
increase in effective conductivity, and so this formulation cannot describe the observed
rewarming effect of increased blood flow in cold tissue. It is concluded that despite its
conceptual irregularities, the Pennes model is still sufficient for basic thermal modelling,
although a comprehensive bioheat equation would contain elements of both the Pennes

formulation, and that of Weinbaum and Jiji.
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1.11.2. Elementary Theoretical Temperature Profile in Body Tissues.

To estimate the variation of tissue temperature with distance into the body, the solution
to the steady-state Pennes bioheat equation in a semi-infinite, homogeneous layer of
tissue is presented. The solution can be used in radiometric modelling. If the layer is

bounded at z = 0, the bioheat equation becomes:

d’T
dz2

=,(3’(T—Ta,,)—kg (1.11.4)

t

where = ,/—”’;’i’ . With the restriction that 7 # oo as z —> oo, this has general solution:
T(z)=Ae™™ +T' (1.11.5)
where 4 is a constant, and 7 = T, +52-, i.e. the body core temperature. It is found

that the core temperature is usually reached at a maximum depth of ~Scm into the body,

so any region with a thickness of over 10cm may be regarded as being ‘semi-infinite.’

At the tissue boundary, z = 0, heat is usually lost to the environment, in a manner
approximately described by the Newtonian cooling equation:
dar
ktz =H(Tsurfacz—Twnbi¢nt) (1116)

1=0
The cooling co-efficient H is defined by a combination of cooling mechanisms; radiation,
convection and evaporation (H =h,,+h,, +h,,). For the average human body, H has
an estimated overall value of approximately 1Wm?K™ (Brown, 1989).

Applying the heat flux continuity eqn. 1.11.6 to the general solution eqn.|1.11.5. yields
an expression for the temperature profile: .

(zambient 1 ') ?—ﬂl : v
( ) (l } ﬂl;,) a ( )

For the more realistic case of a plane-stratified tissue structure, the bioheat equation may
be solved in a similar manner, using the heat flux boundary condition at the tissue-type

boundaries.
1.11.3. Computer Thermal Modelling.

Thermal computer models may be implemented in a similar fashion to electrical tissue

modelling discussed in section 1.8. Finite Difference or Finite Element techniques can be
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used, with each cell specified by a thermal conductivity and a perfusion rate. The Pennes
bioheat equation is stepped over all the lattice points, until a steady-state temperature
distribution is reached. Such an approach was used by Harness (1994), to provide
comparison data for the analysis of microwave thermographic images. Since the thermal
and electrical problems can be solved using the same mesh, a combined thermal and
microwave computer model is possible, which should completely define the antenna
microwave signal. ‘

The combined permittivity and thermal conductivity measurements made as part of this
study will be analysed in a subsequent publication (Hamilton, 1996), providing a more
quantitative estimate of the connection between these parameters and tissue water
content. This relation can then be incorporated into more accurate combined computer

simulations for analysis of radiometric data.
1.11.4 Combined Thermal and Microwave Modelling.

Brown (1989) has shown that combining temperature profiles, obtained from simple
thermal modelling, such as eqn. 1.11.7, with the equations previously derived for the
signal power input to a microwave antenna, allows the effective microwave temperature
to be expressed in terms of the ambient, surface and core temperatures, and the
microwave and thermal conductivities. For the case of a perfect antenna in contact with

a single semi-infinite tissue region, the effective microwave temperature is given by:

T = [2aT(2)e™"dz (1.11.8)
Incorporating 7(z) as given by eqn. 1.11.7 yields:
Toice— T
- J“ﬂ_“_)n;; (1.11.9)
a+£4

The surface temperature is found from the continuity of heat flux equation:

T ie —T: ’
wﬁace=%l+n (11110)
H

As T, T otsces Tompiens> @0d T, can all be measured, two expressions are generated,

dependent on three unknowns; w,, the blood perfusion, k,, the tissue thermal

conductivity, and «, the microwave penetration depth.
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It has already been suggested that o is dependent on the water content of the tissue, as
saline water composes ~75% of tissue mass, and has a high loss factor. Since water also
has a high thermal conductivity, it is reasonable to assume that £, is also strongly
dependent on tissue water content. Table 1.a lists typical values of thermal conductivity
and water contents for selected tissues, and shows that this assumption is bome out in
practise. Therefore there exists a general relation between the thermal and microwave
conductivities of soft body tissues. One of the three unknown variables in eqn. 1.11.10
may therefore be eliminated, making it possible to estimate the effective arterial blood
perfusion in the viewed tissue.

Kelso (1995) has used this concept to estimate the water content and perfusion of human
limbs and breast from thermometric measurements, and has found favourable comparison
with similar 2-dimensional finite difference computer modelling. Therefore the single
region model is still considered to be a useful technique, given the present knowledge of

tissue properties.
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Chapter 2. The Dielectric Behaviour of Pure and Heterogeneous Materials.

2.1. Introduction.

In this chapter, the polarisation response of homogeneous materials to an applied electric
field is considered, leading to the formulation of dispersion equations to describe the
dielectric behaviour of substances relaxing under an alternating applied field. Four of the
dispersion equations most commonly used to parameterise biological tissues, tissue-
simulating materials, and the equipment calibration liquids mentioned in chapter 4, are
presented, and their differences discussed.

As biological tissues are heterogeneous mixtures, mainly of water and protein, a selection
of equations which relate the dielectric permittivity of a mixture to that of its constituents
is introduced. A brief discussion of the theory behind each mixture equation is given,
and their ranges of validity when applied to simple liquid mixtures, and to tissue, are
considered both theoretically and experimentally.

2.2. Polarisation and the Complex Permittivity.

When a medium is subjected to a static electric field, the material may respond in two
fundamental ways. Firstly, charges of opposite sign on an atom or molecule may become
displaced with respect to each other by an amount proportional to the electric field
strength. This gives each atom or molecule in the medium a dipole moment, leading to a
dielectric polarisation P. Secondly, charges in the medium may move freely in the
medium under the influence of the field, leading to a static conductivity. Both types of
response are observed in biological materials.
The permittivity and conductivity of a material are respectively the charge density and
current density induced in the material by an applied electric field of unit amplitude. In a
linear, isotropic and homogeneous material, these parameters are defined using
Maxwell’s equations by;
D=gE+P = £¢&,myE (as P=£(&,gume—DE)

j=oE (2.2.1)

where &, is the permittivity of free space, E is the electric field, D is the electric

displacement and j is the current density in a medium with static permittivity ¢, and
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static conductivity o,. The modifying term ‘static’ denotes that these parameters refer
to the behaviour of the material under a static electric field. Comprehensive discussions
on the theory of the permittivity and conductivity of dielectrics can be found in Bleaney
and Bleaney, 1976, and Ramo, Whinnery and Van Duzer, 1994.

The macroscopic electric dipole moment of a material is the vector sum of the individual
dipole moments of the constituents of the material. It is possible to distinguish between
three mechanisms which can contribute to the dielectric polarisation in a material. Each
atom, ion or non-polar molecule in the material has zero dipole moment in zero field, but
acquires a dipole moment when a field is applied. Such moments are known as ‘induced
dipoles.’ In polar substances, such as water, the polar molecules have permanent dipole
moments, which are randomly orientated in the absence of an electric field. In the
presence of an electric field, molecular orientations for which the dipole moment is
parallel to the field have a lower energy, and so are statistically more favourable, giving a
resultant dipole moment in the direction of the field. These two former mechanisms are
collectively known as ‘dipolar polarisation’ mechanisms. Space-charge polarisation is a
third process, caused by free charges, usually at interfaces in the material. Biological
materials contain permanent dipoles, and so potentially possess all three types of
polarisability.

The dipolar polarisation of a material may itself be due to several mechanisms: electronic
polarisation, caused by the displacement of atomic electrons relative to their nucleus;
atomic polarisation, caused by relative displacements of atoms within the same molecule;
and orientational polarisation, caused by the tendency of polar molecules to align their
permanent dipole moment with the field, and which is opposed by thermal agitation,
intermolecular binding and collisions with neighbouring molecules.

As dielectric polarisation in a material is caused by the physical displacement of charge, it
therefore takes time to develop when once an electric field is applied. When the external
field is removed, the polarisation of the medium decays exponentially with time, at a rate

usually characterised by the relaxation time, 7, which is the time in which the polarisation
drops to % of its original value under the static field. If an alternating field is applied,

the response of the medium gives rise to a polarisation which lags behind the field, and
which develops and relaxes at about the same rate as the field alternates.
For altemating electric fields of microwave frequencies, electronic and atomic

polarisation effects are unimportant, as they occur only at much higher frequencies. The
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dominant dielectric relaxation process is that of orientational polarisation. An important
dielectric, water, has a permittivity of about 80 at radio to microwave frequencies, but an
optical refractive index of only 1.3, not /80. Hence it may be concluded that the
electronic contribution to the permittivity is only approximately 1.7, and the rest is due to
the orientational polarisability of the water molecule.

Polar molecules, or molecular groups, rotate under the influence of the alternating
microwave field. If the polar molecules are large, or if the frequency of the applied field
is great, then the molecules do not rotate sufficiently quickly to maintain equilibrium with
the field. The polarisation loses phase with the electric field, resulting in thermal
dissipation of the field energy.

A complex representation of the permittivity is needed to represent lossy material of this
type; g, =& - je" (2.2.2)
where &' is the dielectric constant and ¢” is the loss factor. The loss factor may be

composed of contributions to the conductivity arising from both dielectric relaxation and

— . (o O dispersi Oioni
ionic conductivity; g’ = = PNy omie (2.2.3)
e, WE, we,

The combined conductivity &= G 4psion + Tiom, 1S Often referred to as the effective

ionic
conductivity. When discussing the complex permittivity of tissue, it may often be more
instructive to refer to the conductivity rather than the loss factor, as the conductivity is a
more empirical parameter. For a simple material, with no ionic conductivity, the
polarisation of the material will relax towards the steady state as a first order process

characterised by the relaxation time 7.
2.3. Debye Dispersion Equation.

Debye (1929) derived the form of a generalised equation for the dielectric constant of a
material with orientational polarisability, in the region where the dielectric polarisation is
‘relaxing,’” shown graphically in fig. 2.a. When the frequency of the applied field is much
greater than the reciprocal of the alignment time, the permittivity tends to a frequency
independent value £_ representing the electronic and atomic polarisation. For much
lower frequencies it tends to a constant value ¢, the “static,” or low frequency,
permittivity. It is, strictly, misleading to regard &, and ¢, as the ‘static’ and ‘infinite’

frequency limits, as there may be other dispersion regions, at other frequencies,
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Figure 2.a. Behaviour of the components of the permittivity of a material subjected to
an electrical signal with period similar to the orientational relaxation time of
the constituent molecules.
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Figure 2.b(i). Increase in polarisation of a material subjected to a constant electric field
at time t = 0. Electronic polarisation effects occur almost immediately,
with orientational polarisation increasing with time following an
exponential law.
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Figure 2.b(ii). Decrease in polarisation of a material when a constant electric field is
removed at time t = 0.



associated with the other polarisation processes, which effect the ultimate limits of the
permittivity.

Counsider a field E applied to a dielectric material with both orientational and electronic
polarisability, given by P, and P, respectively. The electronic polarisation will be
established very quickly, instantaneously compared with the time intervals of interest
here, but the remaining dipolar polarisation, P,, takes time to reach its equilibrium value.

Ifit is assumed P, increases at a rate proportional to its departure from equilibrium

value, then ah = P-A-5 (2.3.1)
dt T

where P is the equilibrium value of the fofal polarisation, and 7 is the macroscopic

relaxation time. If the field is applied at time /=0, then the solution for P, is given by

P=(P- P,)}[l - exp(%t)i' 2.3.2)

so that P, approaches its equilibrium value according to an exponential law. Similarly, if
the polarisation P is already established in a steady field £, which is removed at time =0,
P, falls immediately to zero, and the rate of change of 2, is given by

ﬁ__P
T
yielding P=(P- P)exp( ) (2.3.3)
T.

This behaviour is shown graphically in fig. 2.b.

Now consider an applied field with alternating angular frequency @w. This can be
represented by E = E, exp(jwt) (2.3.9)
The polarisability P can be expressed in terms of the applied field £ and relative
permittivity &,: at low frequency, the relative permittivity is equal to the ‘static’

permittivity &, . P=¢[e, -1]E (2.3.5)
The high frequency permittivity limit &, is defined in terms of £, and E

B =¢)e,-1E (2.3.6)
As before, the rate of change of P, is proportional to its departure from equilibrium

dp, _P-PR-P,

dt T

dP,

:>——2=i(es -&,)E, exp(ja)t)—i (2.3.7)
dt 7 T

31



In steady state a solution is expected of the form
P, =Aexp(jwt) (2.3.8)
Substituting this expression back into the differential equation (2.3.7) gives

b _ Gale=2)E

2.3.9
? 1+ jor ( )
The total polarisability P is equal to the sum of F, and 7,
P+P=g(e.-DE+SETEIE 1o (0)-1]E (2.3.10)
1+ jor

and so the relative permittivity of the material is, as a function of frequency, equal to

g (w)= e’—j&"=€w+&_'—g"° (2.3.11)
1+ jor

This equation is commonly known as the Debye dispersion equation.

Separating eqn. 2.3.11 into real and imaginary parts gives

f=e,+— and g =(—‘9—’L)f” . (23.12)
1+ (w7) 1+(w7)

It is common to express these parameters in terms of a characteristic relaxation

. _ _A /
frequency, or wavelength, rather than a relaxation time, where 7= % o= 2w

2.4. Distribution of Relaxation Times.

In a real material, which may be a mixture of different substances, a solution, or just a
material with a non-linear relaxation process, a distribution of relaxation times is
expected. This is characterised by a broader dispersion curve and lower maximum loss
than is predicted by the Debye relationship (see fig. 2.c). The Cole-Cole equation is an
empirical equation which parameterises dispersion data whilst allowing for a symmetrical
distribution of relaxation times characterised by « ,about a central mean value 7.

g,=gw+ﬁ% 0<as<l (2.4.1)
The Cole-Davidson equation allows for an asymmetrical distribution of relaxation times.
It is mainly used for viscous fluids, such as glycerol, but rarely for biological substances,
or their components, which are composed mainly of water, a non-viscous liquid.

£,— &,

=, +———— 242
" (1+ jor)™ ( )
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Comparison Between Debye and Cole-Cole Dispersion Equations

— — — Cole-Cole Eqn. Dielectric Constant
— —--— Cole-Cole Eqn. Loss Factor
Debye Eqn. Dielectric Constant

— - — Debye Eqn. Loss Factor

Log Relative Frequency

Figure 2.c. Comparison between Debye dispersion equation representing a single
relaxation time in a material, and Cole-Cole dispersion equation representing
a distribution of relaxation times characterised by o, equal here to 0.1. Note
frequency spread of dispersion, and lower maximum loss for Cole-Cole eqn.

&

Figure 2.d. Shell covered sphere with overall permittivity &_,,,, given by eqn. 2.8.5.



Measurements have shown that the microwave dispersions of certain substances, such as
ethylene glycol, are characterised by two independent Debye processes. For such
substances, a multicomponent Debye equation is often the best way to parameterise the

%" %n | fn" % (2.4.3)
1+ jor, 1+ jor,

dielectric behaviour. E, =&+

where 7, and 7, are the relaxation times of the two processes, and ¢, is an intermediate
permittivity limit. Multicomponent Debye dispersions have been use by Stoy et al
(1982) to account for the behaviour of membrane - bound tissue structures at megahertz
frequencies. At these frequencies, however, the tissue permittivity is determined mainly
by cell membranes rather than water content within the tissue. In the microwave
frequency range, where the effect of water dominates the tissue permittivity, the simple
Debye and Cole-Cole dispersion equations are usually those used to model the dielectric

behaviour of the components of biological tissue.
2.5. Dielectric Mixtures.

In the study of biological materials, it is found that tissues are heterogeneous substances,
which cannot therefore be described dielectrically, in a particular frequency range, by one
single dispersion equation of the forms already described (eqns. 2.3.11 and 2.4.1-3).
Rather, they must be considered as a combination of two or more individual substances,
each with its own distinct dielectric behaviour. In the case of biological materials, the
two major constituent materials are water (containing dissolved ions) and proteins.

When estimating the permittivity of an heterogeneous mixture of two substances at
microwave frequencies, the permittivity of each constituent substance may first be found
by examination of its dipolar relaxation dispersion. Then, the overall permittivity of the
mixture may be estimated, using a suitable mixture equation to combine the individual
values.

There exist a large number of mixture equations relating the bulk propertiés of two phase
materials, consisting of one phase of particles distributed in various manners in the
second continuous phase, to the properties of the two constituenf phases themselves. In
general, each mixture equation was originally derived specifically to solve a problem of

particular interest to the proposer, and so each equation assumes a certain geometry of
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particle distribution, and may have been derived to model one of many bulk transport co-
efficients of the material.

Mixture equations have been derived individually for the electrical permittivity and
conductivity, the magnetic permeability, and the thermal conductivity and diffusivity.
Each mixture equation is, however, govemed by the principle of generalised
conductivity, and so each can be regarded as being equally applicable to all other
transport co-efficients, provided the mixture characteristics and geometry are suitable.
The principle of generalised conductivity is a thermodynamic argument which is justified
by the fact that the behaviour of the flux vectors and thermodynamical forces of all bulk
transport properties of materials are of the same form at boundaries between two media.
This is due to the formal coincidence of the differential equations of stationary heat flow,
electric current, electric and magnetic induction and diffusion streams. Lewin (1947)
showed that this principle is valid for mixture formulae representing either the static or
the complex permittivity of a disperse system, providing the wavelength of the applied
electric field is large in comparison to the dimensions of the disperse particles.

Thorough reviews of this principle, and of the history and theory behind many mixture
equations can be found in Dukhin (1971), Van Beek (1965) and Campbell (1990). Here,
only those simple mixture equations most commonly applied to biological systems are
introduced.

It is important to note that despite referring to mixture materials as being heterogeneous,
bulk transport mixture equations relate to macroscopic bulk properties, anfi so are valid
only when applied to a volume of mixture material which is sufficiently large that the
volume may be characterised by a single definite value of the transport co-efficient of
interest. A macroscopic E-field is the average field over a volume containing a large
number of dispersed particles, and so the disperse mixture system must be regarded as

isotropic, homogeneous, and represented by a single dielectric constant¢,,, , such that
D=¢,_¢E (2.5.1)

whereE and D are the average intensity and induction of the applied field.
2.6. Limits on Mixture Permittivity.

A first approximation to the maximum and minimum limits of the permittivity of a

mixture may be obtained by a method based on capacitance theory. Weiner (1912)
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considered a mixture to consist of a collection of fibres, lying either parallel or
perpendicular to the plates of a capacitor. When the fibres lie perpendicular to the
plates, the mixture permittivity is maximised as a straight line between the permittivity
values, ¢, and &, , of the two component materials.

& = V16 +(1-V))g, : (2.6.1)
where v, is the volume fraction of material 1 in the mixture. When the fibres lie parallel

to the plates, the mixture permittivity is minimised.

1 v (-v) (2.6.2)
£ & &

Hashin and Shtrikman (1961) derived more restrictive limits, originally for the magnetic
permeability of a mixture, by maximising and minimising the free energy of the mixture.

Ep—&  E—E
When ¢,>¢,, mx 2 -1 2.
& t26, € t+26&,
En—& _ &§—E
and mn %1 %270 (1_y) (2.6.3)

Emn T26 &, 128
The Hashin and Shtrikman bounds always lie within the Weiner bounds, a1.1d are the best
possible bounds for the dielectric constant of a two phase material if no structural
information apart from the volume fractions is available. These limiting values do not
require any assumptions about the geometry of the mixture system, only that sufficient
volume of the mixture is considered that the mixture may be regarded as isotropic and

quasi-homogeneous.
2.7. Maxwell’s Mixture Equation.

Maxwell (1881) proposed the first mixture equation, to calculate the conductivity of a
dilute suspension of spherical particles. When a small volume of spheres of medium 1
are suspended in medium 2, the permittivity of the mixture is given by;

g, —& £ -¢&
me 2 =12y (2.7.1)
Eny 26, & t2¢g,

In deriving this equation, Maxwell first solved Laplace’s equation to determine the
electric field around a single suspended particle, then calculated an equivalent
conductivity for a larger sphere that contained many such particles. Mutual polarisation

of the suspended particles is not taken into consideration in the derivation, and so this
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equation is only strictly valid when the concentration of the suspension is sufficiently
dilute that the suspended particles do not interact. The limiting volume fraction is usually
assumed to be v, # 0.2.

The similarity of form between Maxwell’s mixture equation and the bounding limits of
Hashin and Shtrikman (eqns. 2.6.3) is significant. The permittivity of a mixture, where
£,>¢,, is bounded above by the permittivity of a suspension of spherical particles of
medium 2 in a continuous medium 1, and is bounded below by the permittivity of a

suspension of particles of medium 1 in a continuous medium 2.
2.8. Extensions of Maxwell’s Mixture Equation.

Wagner (1914) took Maxwell’s original equation, which referred only to static
permittivity, and extended the analysis to show its validity for materials with complex
permittivities under altemating fields, which is the case in this research. Other
researchers have considered altemative suspended particle geometries in the Maxwell-
Wagner theory. Fricke (1924) allowed the suspended particles to be prolate or oblate
spheroids, by introducing a form factor, ¥, which is a function of the generalised

conductivity (in this case permittivity) of the two phases, and of the axial ratio % of the

suspended spheroids.
s "8 _ 876, (2.8.1)
Emn TVE, & TYE '

where the form factor is y= _&0=p-& (2.8.2)

g —¢,(1+p)’

p= [(a, r2z,)- (3?\4 12)e, - g,)}[az 3 gl] (283)

and, for oblate spheroids,

M(a<b)= °°s(¢)(:i’l;;/2¢s)i“(2¢)) cos(¢) =2 (2.8.4)

The value of the form factor ¥ is 1 for cylindrical particles oriented normal to the field,
and reduces to 2 for spheres. Velick and Gorin (1940) further extended the theory to

cover suspended ellipsoids, with three differing principal axes.
A final variation on the simple Maxwell-Wagner theory that may have a useful

application in the analysis of biological materials is the case of a shell covered sphere, as
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shown in fig. 2.d. This may be a more realistic simulation of the cellular structure found

in tissue. Maxwell showed that the equivalent permittivity, £,,,,., of a sphere of radius R,

consisting of an inner core sphere of radius 7 and permittivity &_,, surrounded by a shell
of thickness d and permittivity¢,,,, , may be given by
£, —¢& e -
phere — Ea _ (%J Eewe ~ Ea (2.8.5)
€ e T2 a g, t2e,,

The permittivity of a suspension of such spheres may be calculated using two successive
applications of the Maxwell-Wagner theory. First, by using eqn. 2.8.2 to evaluate the
effective permittivity of the composite spheres, then using eqn. 2.7.1 to evaluate the
overall permittivity of the suspension. Again, this only strictly applies to dilute
suspensions with non-interacting particles. A more complete analysis requires

consideration of the higher order field terms from nearby particles.

2.9. Mixture Equations for Concentrated Systems.

In concentrated disperse systems, mutual polarisation between suspended particles limits
the range of applicability of equations based on the Maxwell-Wagner theory. When the
space distribution of suspended particles is strictly ordered in the system, mutual
polarisation may quite easily be accounted for. However, in real disperse systems, the
particles are distributed randomly in space. One way of overcoming this problem is to
use the self-consistent theory (SCS), in which it is assumed that each particle is
surrounded by the composite material with permittivity &, , rather than by the
continuum medium of permittivity ¢,. This is also referred to as the effective medium
theory (EMT) (Bergman, 1978).

Bruggeman’s equation (1935) applies to spherical suspensions, and is obtained through
an integral method, increasing the volume fraction of the suspended medium from 0 to v,
by successive addition of infinitesimal quantities of the disperse phase.

Let, at a given concentration v, of the disperse phase 1, the mixture permittivity be equal
to ¢,, . Then let an increase in concentration év, cause a variationin ¢,, of ds,, .

Maxwell’s equation (2.7.1) can be used to relate the new mixture permittivity
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&, T O, , to the old mixture permittivity &, , the suspended phase permittivity &,, and

ix 3
'

the increased volume fraction (15‘)‘ % This gives

(2¢,, +¢ )¢, _ ov,
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