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ABSTRACT 

The under-reporting of cases of infectious diseases is a substantial impediment 

to the control and management of infectious diseases in both epidemic and endemic 

contexts. Information about infectious disease dynamics can be recovered from 

sequence data using time-varying coalescent approaches, and phylodynamic models 

have been developed in order to reconstruct demographic changes of the numbers of 

infected hosts through time. In this study I have demonstrated the general concordance 

between empirically observed epidemiological incidence data and viral demography 

inferred through analysis of foot-and-mouth disease virus VP1 coding sequences 

belonging to the CATHAY topotype over large temporal and spatial scales. However a 

more precise and robust relationship between the effective population size (𝑁𝑒) of a 

virus population and the number of infected hosts (or ‘host units’) (𝑁) has proven 

elusive. The detailed epidemiological data from the exhaustively-sampled UK 2001 

foot-and-mouth (FMD) epidemic combined with extensive amounts of whole genome 

sequence data from viral isolates from infected premises presents an excellent 

opportunity to study this relationship in more detail.  Using a combination of real and 

simulated data from the outbreak I explored the relationship between 𝑁𝑒 , as estimated 

through a Bayesian skyline analysis, and the empirical number of infected cases. I 

investigated the nature of this scaling defining prevalence according to different 

possible timings of FMD disease progression, and attempting to account for complex 

variability in the population structure. I demonstrated that the variability in the 

number of secondary cases per primary infection 𝑅𝑡 and the population structure 

greatly impact on effective scaling of 𝑁𝑒 . I further explored how the demographic signal 

carried by sequence data becomes imprecise and weaker when reducing the number 

of samples are described, including how the extent of the size and structure of the 

sampled dataset impact on the accuracy of a reconstructed viral demography at any 

level of the transmission process. Methods drawn from phylodynamic inference 

combine powerful epidemiological and population genetic tools which can provide 

valuable insights into the dynamics of viral disease. However, the strict and sensitive 

dependency of the majority of these models on their assumptions makes estimates 

very fragile when these assumptions are violated. It is therefore essential that for these 
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methods to be applied as reliable tools supporting control programs, more focused 

theoretical research is undertaken to model the epidemiological dynamics of infected 

populations using sequence data. 
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CHAPTER 1 

Foot-and-mouth disease and phylodynamics of 

infectious diseases 

1.1 Foot-and-mouth disease 

Foot-and-mouth disease (FMD) is an economically devastating viral disease of 

cloven-hoofed domestic and wild artiodactyls, causing an acute and highly contagious 

vesicular disease, which can progress into a persistent infection (Alexandersen et al., 

2003). Vesicular lesions are mainly found in the epithelia of tongue, lips and feet but in 

some cases lesions also occur in snout, muzzle, teats, skin and rumen. The disease is 

characterised by a very short incubation period and high level of virus excretion, 

particularly in pigs. Animals exposed to the FMD virus (FMDV) usually develop a 

viraemia within 3 to 5 days of exposure, with clinical signs and lesions that usually last 

for 1 to 2 weeks post-infection (Kitching, 2002, Kitching and Alexandersen, 2002, 

Kitching and Hughes, 2002). However, hosts differ in susceptibility to infection and 

disease according to animal breed and productivity, farming system and environment, 

and the infecting virus strain (Rweyemamu et al., 2008). Although FMD does not 

usually cause high mortality in susceptible animals (high mortality may be seen in 

young animal due to acute fatal myocarditis) it decreases productivity, which in turn 

impacts on farmers’ livelihoods. Since livestock constitute an important source of 

livelihood and tradable commodity in the agricultural based economies and social 

structure of many countries, FMD has a serious impact on food security, rural income 

generation, and the national economy by impairing livestock trade (Forman et al., 

2009). The livestock sector has increased rapidly over the past decades, particularly in 

developing countries, where the growing demand has been driven by economic and 

population growth, rising per capita incomes and urbanisation (FAO, 2011). In 

addition, a wide range of traditional livestock management systems have evolved to 

optimise the use of resources, transformed by the implementation of more intensive 

farming units overlaid on the top of the traditional small-scale systems (i.e. pastoralist 

and/or smallholder production systems) (Di Nardo et al., 2011). However, the 
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increasing demand for livestock products and modernisation of management systems 

implies challenges in terms of efficient management of animal-health risks that have 

not always been considered as a priority in most developing countries. Therefore, in 

FMD endemic countries the lack of resources for an effective strategy to control disease 

through the restriction of animal movements makes FMD a continuous threat for its 

potential risk to spread at both the regional and global level. Nevertheless, the lack of 

baseline FMD information from several endemic countries with limited reporting of 

disease outbreaks provides less opportunity for the development of targeted policies 

and programs aimed at improving animal health and prevention of the disease. In 

recognising these constraints in endemic settings, in 2008 the Food and Agriculture 

Organization of the United Nations (FAO) launched a pathway for the progressive 

control of FMD which has been subsequently endorsed by the World Organisation for 

Animal Health (OIE) and it is nowadays one of the tools for the implementation of an 

integrated strategy for the global FMD control coordinated by the two Organisations 

(Sumption et al., 2012). Therefore, in specific regions of the world the implementation 

of regional roadmaps based on the circulating FMDV pools has greatly assisted in 

identifying hotspots which may be considered potential sources of lineages that pose a 

threat to neighbouring countries. Nevertheless, in the challenge of controlling FMD 

which, eventually, would work towards its eradication, new tools are warranted to 

enable a better characterisation on both molecular and epidemiological scales of the 

signal that drives the evolutionary history of FMDV and which underpin its 

transmission dynamics. Ultimately, a better understanding of the evolutionary 

dynamics of FMDV has the potential to inform intervention strategies and control 

policies to be risk-targeted. 

1.1.1 Foot-and-mouth disease virus 

FMDV is the prototypical member of the Aphthovirus genus, family 

Picornaviridae, which also comprises three other species Bovine rhinitis A virus, Bovine 

rhinitis B virus, and Equine rhinitis A virus (Knowles et al., 2011). The non-enveloped 

virion is characterised by a single-stranded positive-sense ribonucleic acid (RNA) 

(~8.4 kb in size), which is organised in: a 5' untranslated region (UTR) of ~1300 nt 

[which contains a number of structures, such as the S-fragment, a poly(C) tract, a series 
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of pseudoknots, a cre element and the internal ribosome entry site (IRES)]; the single 

open-reading frame (ORF) of ~7000 nt; a 3' UTR of ~90 nt [which contains the poly(A) 

tract] (Figure 1-1) (Mason et al., 2003). In an intact virion, the FMDV genome is 

surrounded by an icosahedral capsid of ~30nm in diameter composed of 60 copies of 

each of the four structural proteins (1A or VP4, 1B or VP2, 1C or VP2, and 1D or VP1), 

which possess determinants for infection and immunity (Jackson et al., 2003). Only 

VP1-3 proteins are exposed on the capsid surface, taking the form of similarly 

structured anti-parallel β-barrels. VPs are encoded by the P1 region, whereas the P2 

and P3 regions encode nine non-structural proteins (NSPs) [2A, 2B and 2C from the P2 

region; 3A, 3BVPg (three copies, in tandem), 3Cpro and 3Dpol from the P3 region] 

responsible for genome processing (i.e. structural protein folding and assembly) and 

replication (Mason et al., 2003). Structural proteins accounts for approximately one-

third of the polyprotein and are encoded towards the 5’ end of the ORF, whereas the 

region encoding the NSPs comprises about two-thirds of the ORF. The P1 capsid is 

preceded by a Leader (Lpro) polypeptide which cleaves itself from the polyprotein. 

FMDV replicates via a negative sense RNA intermediate (Grubman and Baxt, 2004). 

 

Figure 1-1. Schematic representation of the FMDV genome structure organisation showing the individual 
genomic regions described in text. 

The high genetic variability of FMDV is reflected by the existence of seven 

immunologically distinct serotypes named O, A, C, Southern African Territories (SAT) 

1, SAT 2, SAT 3, and Asia 1, which are further subdivided into topotypes based on the 

criterion of ~15-20% nt sequence difference in the VP1 coding region (Knowles and 

Samuel, 2003). Serotype C was last detected in Kenya and in Brazil during 2004; since 

then it appears to have become extinct (Roeder and Knowles, 2008). Within topotypes, 

lineages and even sub-lineages are defined (Knowles et al., 2010a). As a consequence 

of the high mutation and substitution rates of FMDV genomes, lineages quickly diverge 

as they replicate and spread into new areas. Therefore at a geographic level, FMDV is 

characterised by three continental epidemiological clusters in Africa, Asia and South 

America, which are further subdivided into seven distinct virus pools (Paton et al., 
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2009) (Figure 1-2). Within each pool, multiple serotypes circulate and distinct patterns 

of viral evolution occur, with some countries sharing lineages belonging to different 

pools. To date, six out of the seven serotypes have been recorded in Africa (O, A, C, SAT 

1, SAT 2, and SAT 3), while in the Middle East and Asia only four (O, A, C, and Asia 1) 

are normally present, although there have been sporadic incursions of exotic FMDV 

lineages from Africa into the Middle East, such as the reported SAT 1 outbreaks during 

1962-65 and 1969-70, and the more recent introductions of SAT 2 in 2000, 2012 and 

2015 (Bastos et al., 2003, Valdazo-González et al., 2012a, Knowles and Samuel, 2003, 

Knowles et al., 2015). Type Asia 1 lineages are generally confined to the Middle East 

and Asia, although historical outbreaks have been reported in Greece during 1984 and 

2000. In the global picture of FMD distribution, FMDV populations might further 

acquire and mix genetic information by movements and/or immigrations of lineages 

from surrounding regions and, therefore, genetic variants accumulate rapidly in the 

field and co-circulate (Martinez et al., 1992, Pattnaik et al., 1998, Samuel et al., 1997). 

 

Figure 1-2. Conjectured FMD status in 2016 with seven regional FMDV pools and predominant serotype 
distribution at the global level. 

Despite their worldwide distribution, FMDV serotypes show different 

properties, which contribute to their transmission competence. For example, some 

lineages belonging to serotype O, such as those of the CATHAY topotype, are restricted 

to specific hosts (Cheng et al., 2006, Knowles et al., 2001a), while others appear to lack 

species adaptation (i.e. the PanAsia lineage) (Knowles et al., 2005). Serotype A is the 

most antigenically variable serotype with differences in the VP1 coding region between 

continental topotypes reported to be of up to ~24% (Mohapatra et al., 2011), a 

characteristic that underpins the absence of cross-protection between some lineages 
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(Klein et al., 2006, Knowles et al., 2009, Jamal et al., 2011c). In addition, the SAT 

serotypes have been reported to have higher intraserotype nucleotide variation in 

comparison to serotype O (Bastos et al., 2001, Bastos et al., 2003). Differently, the type 

Asia 1 is considered to be the least diverse serotype both genetically and antigenically 

when compared to the other FMDV serotypes (Ansell et al., 1994), although reports 

highlight that field isolates belonging to the recently evolved Sindh-08 lineage causing 

outbreaks in livestock vaccinated with the established Asia-1/Shamir and Asia-

1/Ind/8/79 vaccine strains (Jamal et al., 2011b). Therefore, FMDV populations can be 

seen as showing extensive genetic and antigenic heterogeneity at both molecular and 

geographic levels, driven by co-circulation of multiple lineages, heterogenic mixed host 

populations, extensive animal movements and trade patterns (Di Nardo et al., 2011). 

1.1.1.1 FMDV evolutionary patterns 

Similarly to other single-stranded RNA viruses, the genetic evolution of FMDV 

is mainly driven by the interplay of two mechanisms: 1) spontaneous mutation; 2) 

recombination. Due to the error-prone RNA-dependent RNA polymerase (3D in Figure 

1-1), ssRNA viruses are characterised by high mutation rates (in a range of 10-5 to 10-3 

nt misincorporations/site/replication cycle) (Drake, 1993, Duffy et al., 2008), which 

leads to evolution mainly through genetic drift (Domingo et al., 2005). At these rates of 

mutation, replicated FMDV genomes would differ on average from their parent genome 

by 0.1 to 10 base positions. A recent study reported that ssRNA are among those 

viruses showing the highest average genome mutation rates of the order of 0.66±0.42 

substitutions/nt site/cell infection (Sanjuan, 2012). In a study of viruses belonging to 

the Picornaviridae family based on partial 3Dpol gene sequences, type A, O and C FMDV 

lineages were reported as evolving significantly more slowly than enteroviruses, with 

mean rate in the order of 1.45×10-3 nt substitutions/site/year estimated for type A and 

O lineages (Hicks and Duffy, 2011). Although constrained by the sequences available in 

Genbank, a review of evolutionary history based on VP1 coding sequences collected 

between 1932 and 2001 identified similar rates of nt substitution for all of the seven 

FMDV serotypes, with an average estimate of 2.48×10-3 nt substitutions/site/year 

(which resulted in a range of 1.07×10-3 nt substitutions/site/year for SAT 2 to 6.50×103 

nt substitutions/site/year for SAT 1) (Tully and Fares, 2008). However, the mutation 
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rate of FMDV is seen to vary according to the genome resolution and the transmission 

level at which it is expressed. An experimental study conducted both in vivo and in vitro 

and examining the whole-genome sequence (WGS) has shown that nt substitutions 

occur randomly across the FMDV genome, as might be expected at the finest scale in 

the absence of selection: within 20 serial passages only 2 nt substitutions out of 48 

were recorded in the VP1 coding region recovered from infected pigs, and 4 out of 22 

from cell cultures (Carrillo et al., 2007). Genome-wide mutation rate estimated from a 

within-host study system and employing next-generation sequencing (NGS) fixed the 

upper bound limit to 7.8×10-4 nt change/transcription event (Wright et al., 2011). In 

an endemic system, FMDV reveals a rate of nt change per year in a range of 4.5×10-4 to 

4×10-2 based on VP1 coding sequences (Haydon et al., 2001, Bastos et al., 2003). In 

addition, estimates derived from a SAT 2 phylogenetic study of VP1 coding sequences, 

historically circulating in Africa and, more recently, in the Middle East reported an 

average molecular clock of 2.45×10-3 substitution/site/year (Hall et al., 2013). 

Enhancing the resolution of these analyses, WGSs of field samples collected during the 

2001 United Kingdom (UK) epidemic estimated an average of nt changes per farm 

transfer at 4.3±2.1, with the substitution rate set at 2.37×10-5 nt/site/day [re-

estimated from (Cottam et al., 2008a)], whilst the fully-resolved 2007 UK epidemic 

reported estimates ranging between 2.51×10-5 and 3.09×10-5 nt/site/day (Orton et al., 

2013), with an average distance of 4.6 nt at source-to-recipient link levels (Valdazo-

González et al., 2015). In addition, WGSs extracted from clinical samples collected 

during the 2011 Bulgaria epidemic revealed an evolutionary clock of 2.48×10-5 

nt/site/day (Valdazo-González et al., 2012b). Table 1-1 presents a summary of the 

most recent publications reporting estimates of the FMDV molecular clock from 

sequence data based on either the WGS of the VP1 coding region and extracted from 

either an epidemic or endemic setting. Remarkably, very similar estimates of the FMDV 

evolutionary clock determined using WGS are reported, whilst a wider variability 

(although with the largest difference in the order of 4×10-3 nt/site/year) is found 

between estimates using VP1 data, with some results actually matching those of the 

WGS. This finding would thus contribute to the hypothesis that FMDV evolutionary 

dynamics are driven by a strict, stable and constant molecular clock. 

Recombination is an important mechanism that contributes to the evolutionary 

patterns of RNA viruses. Although the extent to which recombination might play a role 

in the evolutionary dynamics of FMDV is not entirely understood, analysis of sequence 
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data indicates that these events do indeed occur (Heath et al., 2006, Jackson et al., 

2007). Although rarely observed in the capsid proteins and more frequently in NSP 

coding regions, intertypic recombination has been reported in sites belonging to either 

the coding regions for NSPs (Domingo et al., 2003, Carrillo et al., 2005, Klein et al., 

2007) or structural proteins (Tosh et al., 2002, Haydon et al., 2004), where NSP 

changes might lead to modification of the virulence (Klein et al., 2007). It is important 

to note that recombination events occur more frequently between FMDV lineages in 

regions where co-circulation of multiple serotypes and/or topotypes is present, 

therefore suggesting that co-infection drives the exchange of genetic material (Li et al., 

2007, Lee et al., 2009, Wu et al., 2009, Balinda et al., 2010b, Jamal et al., 2011b, Chitray 

et al., 2014, Klein et al., 2007). 

Table 1-1. Comparison of substitution rates between transmission chains estimated from FMDV sequence 
using a strict molecular evolutionary clock model. Genetic data were retrieved from either experimental, 
endemic or epidemic scenarios. †Values have been re-estimated from the original data. 

Dataset Scenario Sequence Type Substitution Rate Reference 
   (nt/site/day) (nt/site/year)  

Cow-to-cow (chain A) Experimental WGS 2.27×10-5 8.29×10-3 (Juleff et al., 2013) 
Cow-to-cow (chain B) Experimental WGS 2.86×10-5 1.04×10-2 (Juleff et al., 2013) 
Herd-to-herd (1967) Epidemic WGS 2.39×10-5 8.74×10−3 (Wright et al., 2013) 
Herd-to-herd (2001) Epidemic WGS 2.37×10-5† 8.66×10-3† (Cottam et al., 2008a) 
Herd-to-herd (2007) Epidemic WGS 2.51×10-5 9.17×10-3 (Cottam et al., 2008b) 
Herd-to-herd Epidemic WGS 2.48×10-5 9.05×10−3 (Valdazo-González et al., 2012b) 
Mixed (2007) Epidemic WGS 2.80×10-5† 1.02×10-2† (Valdazo-González et al., 2015) 
Isolate-to-isolate Endemic WGS 1.35×10-5 4.94×10−3 (Valdazo-González et al., 2013) 
Isolate-to-isolate Endemic VP1 1.57×10-5 5.74×10−3 (Zhang et al., 2015) 
Isolate-to-isolate Endemic VP1 7.56×10-5 2.76×10−3 (Balinda et al., 2010a) 
Isolate-to-isolate Endemic VP1 6.79×10-6 2.48×10-3 (Tully and Fares, 2008) 
Isolate-to-isolate Endemic VP1 6.71×10-6 2.45×10-3 (Hall et al., 2013) 
Isolate-to-isolate Endemic VP1 4.87×10-6 1.78×10-3 (Mahapatra et al., 2015) 
Isolate-to-isolate Endemic VP1 3.99×10-6 1.46×10-3 (Yoon et al., 2011b) 
Isolate-to-isolate Endemic VP1 3.56×10-6 1.30×10-3 (Sangula et al., 2010) 
Isolate-to-isolate Endemic VP1 3.01×10-5 1.10×10-2 (de Carvalho et al., 2013) 
Isolate-to-isolate Endemic VP1 2.90×10-5 1.06×10-2 (Upadhyaya et al., 2014) 
Isolate-to-isolate Endemic VP1 2.90×10-5 1.06×10-2 (Di Nardo et al., 2014) 

1.1.2 FMDV genetic tracing 

The increase in both VP1 and WGS data in the public domain reflects the 

increased application of genetic sequence data in FMDV research for molecular 

epidemiology and transmission tracing (Figure 1-3). Genome sequences of the VP1 

coding region (approximately 639 nt in length) have been systematically and 

extensively used for reconstructing past FMD transmission events at both endemic and 

epidemic levels (Knowles and Samuel, 2003, Rweyemamu et al., 2008, Di Nardo et al., 

2011, Valdazo-González et al., 2011, Cottam et al., 2006, Cottam et al., 2008b, Wright et 

al., 2013). Therefore, phylogenetic reconstruction of VP1 coding sequences generated 
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from FMDV isolates is a methodology routinely employed by the World Reference 

Laboratory for FMD (WRLFMD) to trace movements of FMDV lineages and identify the 

emergence of new lineages worldwide (Knowles et al., 2005, Knowles et al., 2009, 

Valarcher et al., 2009). Therefore, the use of VP1 coding sequences has been 

instrumental in the definition of transboundary movements of the different FMDV 

lineages and, thus, to greatly support FMD control policies at either country, regional 

or global level (Konig et al., 2007, Abdul-Hamid et al., 2011, Loth et al., 2011, Knowles 

et al., 2012, El-Shehawy et al., 2014). In addition, more complex studies involving a 

larger database of VP1 coding sequences have been able to reconstruct historical 

changes in FMDV population dynamics and retrospectively trace geographic 

movements of FMDV lineages across countries and regions (Yoon et al., 2011a, Di 

Nardo et al., 2014, Hall et al., 2013). Although containing important antigenic 

determinants and exhibiting frequent mutations, the VP1 coding sequence represents 

only ~8% of the FMDV genome and, therefore, the resolution provided is sometimes 

not adequate to fully capture the evolutionary dynamics of FMDV and/or to resolve 

transmission pathways of disease incursions. For example, the analysis of the 1982-83 

FMD epidemic in Denmark using VP1 coding sequences alone did not provide enough 

variation to infer transmission between farms (Christensen et al., 2005). This 

observation was also true for the initial attempts to study the UK 2001 FMD outbreak 

and the FMDV type SAT 2 emergence in North African countries and the Middle East 

during 2012, which made only use of VP1 coding sequences (Knowles et al., 2001b, 

Ahmed et al., 2012). 



Chapter 1 – FMD and Phylodynamics of Infectious Diseases 

37 

 

 

Figure 1-3. Number of FMDV sequences submitted to GenBank at NCBI since prior 1994. VP1 sequences 
includes all the sequences <700 nt belonging to the VP1 coding region; WGS includes all the sequences >7000 nt; 
ALL includes VP1, WGS and partial cds sequences.   

More recently, efforts have been focussed on the use of FMDV WGS for 

undertaking forensic genetic tracing at the epidemic level, thus providing a far better 

resolution of the virus transmission chain (i.e. the reconstruction of ‘who-infected-who’ 

transmission tree) (Cottam et al., 2006, Konig et al., 2009, Valdazo-González et al., 

2012a, Wright et al., 2013, Cottam et al., 2008a). The use of WGS to fully-resolve the UK 

2007 FMD epidemic has pioneered the application of forensic epidemiology and has 

provided a resource for the development of new molecular epidemiological methods 

based on model inferences {Morelli, 2012 #855;Ypma, 2013 #939}. In fact, real-time 

analyses of the samples collected during this series of outbreaks enabled the 

identification of undisclosed IPs prior to their detection by serosurveillance (Cottam et 

al., 2008b). The same approach was applied during the Bulgaria 2011 FMD outbreak, 

when 8 FMDV WGS were used to recognise undetected FMDV infection and, associated 

with other contemporary circulating viruses isolated from neighbouring countries, to 

understand the potential way that FMDV was introduced into Bulgaria (Valdazo-

González et al., 2012b). These studies have highlighted the impact and feasibility of 

using WGS in real-time field outbreak investigation which, coupled with fully-resolved 

epidemiological information, provides an important tool for FMD control. Thus, early 

characterisation of the epidemiology and evolution of epidemics is essential for 

accurately reconstructing the transmission tree of viral dispersal and determining the 

most appropriate intervention strategies to be applied. 



Chapter 1 – FMD and Phylodynamics of Infectious Diseases 

38 

 

1.2 Phylodynamics of viral infectious diseases 

Since the evolutionary rate of RNA viruses at nt level and their generation times 

are fast enough to be measured in a short timescale, they offer an excellent system for 

studying evolutionary processes that occur during transmission events (Drummond et 

al., 2003, Duffy et al., 2008). Accordingly, genetic mutations carried by RNA viral 

sequences enable the characterisation and reconstruction of on-going evolution 

(Felsenstein, 2004). Therefore, molecular epidemiology and phylogenetics provide the 

tools to understand the origin, evolutionary history, and transmission routes within 

epidemics. Genealogies, moreover, contain information about historical demography 

and processes that have acted to shape the diversity of populations. Given the same 

time-frame, ecological dynamics can be integrated within the phylogenetic inference 

to capture selective, ecological and demographic forces driving the evolution of 

pathogens (Grenfell et al., 2004). This analytical framework, described as 

phylodynamics, has the potential to bring together an estimation of genealogical 

relationships and inferences on population sizes, structures and migration patterns, 

thus enabling the reconstruction of detailed epidemiological dynamics and 

transmission routes of viral system. 

1.2.1 Reconstructing the dynamics of viral epidemics 

1.2.1.1 Coalescent theory 

Statistical methods in molecular epidemiology have significantly contributed to 

the understanding of viral dynamics given the problem of data availability. One of the 

most important advances in population genetics which provides the foundation of 

phylodynamic inference is the formulation of the coalescent process first described by 

Kingman (Kingman, 1982b, Kingman, 1982a). The coalescent model is, essentially, a 

diffusion model of lines of descent which assumes a panmictic population governed by 

the Wright-Fisher neutral model of genetic variation (Fisher, 1930, Wright, 1931). 

Briefly, the Wright-Fisher model governs the evolution, at discrete time steps, of 

population (here assumed to be haploid, as is the case for many pathogens) with 

constant finite size, allowing each individual to randomly choose one parent from a 
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previous generation and, thus, to adopt its type. Given this specification, the 

assumptions constrained by the Wright-Fisher model are that the population is finite 

and constant, the generations are not overlapping, the reproduction is a random 

process, and no selection or recombination processes are allowed. With the coalescent 

model, the ancestral lineages are traced back in time to the most recent common 

ancestor (MRCA). The history of a sample of size 𝑛 comprises 𝑛 − 1 coalescent events, 

with each of those decreasing the number of ancestral lineages by one. At each 

coalescent event two of the lineages fuse into one common-ancestral lineage, with the 

lineage remaining at the final coalescent event being the MRCA of the entire sample. 

The topology resulted from the coalescent process is a bifurcating tree (Figure 1-4). 

 

Figure 1-4. Schematic representation of the coalescent process. The genealogical relationships in an 
8-generation realization of the Wright-Fisher model with population size 𝑁 are shown on the left. The genealogy of 
a sample 𝑛 is described in terms of its topology and branch lengths, which provide the waiting times between 
coalescence events (right). 

The Kingman coalescent assumes that the population size 𝑁 is large enough and 

the sample size 𝑛 is much smaller, with a variance in the number of offspring not too 

large (Sjodin et al., 2005). To date, the most commonly used coalescent model is the 

Kingman derived variable population size model (Griffiths and Tavare, 1994a), which 

describes deterministic changes in the genealogical process according to relative size 

functions (such as exponential or logistic growth). This method has been further 
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extended to incorporate heterochronous sequences (Rodrigo and Felsenstein, 1999), 

to deal with stochastically fluctuating population size (Kaj and Krone, 2003) and even 

to apply the coalescent to spatially extended populations (Barton et al., 2002). In 

addition, a more exact coalescent framework than the Kingman approximation of the 

Wright-Fisher model has been recently developed, which enables the characterisation 

of exhaustive sampling (i.e. of matching the size of the Wright-Fisher population) and 

thus dealing with multiple coalescences at the same time (Fu, 2006).     

1.2.1.2 Effective population size 

Coalescence allows sampled sequences to be traced back in time within defined 

ancestral lineages that eventually converge on a single MRCA. Under the coalescent 

process, the shape and distribution of the phylogeny is reconstructed in terms of a 

demographic parameter called the effective population size 𝑁𝑒 which corresponds to 

the ideal Wright-Fisher population size 𝑁 (Charlesworth, 2009). The coalescent rate is, 

nevertheless, affected by several demographic parameters, such as the population 

structure and size, as well as genetic factors (i.e. reproductive forces) (Rosenberg and 

Nordborg, 2002). For example, the larger the number of lineages the faster is the rate; 

the larger the number of ancestors the slower is the rate. Moreover, the larger the 

population size, the more genetic variability can be seen in the population and, thus, 

the longer it takes for two lineages to coalesce. Therefore in its population genetic 

formulation, 𝑁𝑒 provides an understanding of the observed extent and pattern of 

retrospective genetic variability of a population, and is a key parameter to explain the 

evolutionary mechanisms that drive the shape of variation in populations (Wang, 

2005). From the initial theory of Wright (1931), the principle of 𝑁𝑒 has been extended 

and applied to almost any evolutionary scenario, with several attempts to investigate 

the nature of 𝑁𝑒 as an epidemiological measure in the field (Frost and Volz, 2010, 

Magiorkinis et al., 2013, Volz et al., 2009, Drummond et al., 2005, Volz, 2012). To date, 

studies have considered 𝑁𝑒 as equivalent to the number of infected individuals (Kouyos 

et al., 2006). However, the direct relationship that exists between 𝑁𝑒 and the actual 

number of infected individuals is not entirely clear, although this value is assumed to 

be invariably less than the true number of infected individuals and often this is 

attributed to heterogeneity in population structure (Luikart et al., 2010). In a recent 
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study, Volz et al. (2009) demonstrated the direct relationship of the coalescent rate 

with the transmission rate (i.e. incidence) but not with the measure of the number of 

infected individuals (i.e. prevalence), and showed how the prevalence might influence 

the shape of the phylogeny only through sampling effects. The authors reported the 

coalescent rate to be proportional to the epidemic incidence and inversely 

proportional to the square of the prevalence and, therefore, assuming that the rate is 

high when the prevalence is low and the incidence is relatively high (i.e. during the 

expansion phase of an epidemic). Frost and Volz (2010) further demonstrated that the 

pattern of coalescence for an infectious disease is dominated by the transmission rate, 

while the number of infected individuals is of secondary importance. Therefore, 

defining the coalescent rate as a measure of incidence, incidence and prevalence are 

expected to be out of phase, where peaks of incidence precede those of prevalence 

(Frost and Volz, 2010). This evolutionary feature has been observed in studying the 

phylodynamics of dengue virus serotype 4 in Puerto Rico, where fluctuating values of 

both 𝑁𝑒 and case count over time were seen, although changes in 𝑁𝑒 preceded changes 

in case count by months (Bennett et al., 2010). Since the timescale of the coalescent is 

defined as a function of both 𝑁𝑒 and the generation time 𝜏 [here expressed with the 

definition of serial case interval 𝜏𝑐 (Frost and Volz, 2010)], correlations between 

increases in prevalence and corresponding increases in 𝑁𝑒𝜏𝑐 might be seen in a neutral 

population showing absence of selection (Bedford et al., 2011). This has also been 

shown in a study of hepatitis C virus, where a clear correlation in relative size of 𝑁𝑒 

with the estimated number of infected individuals was reported (Magiorkinis et al., 

2013). It should be noted that although the Wright-Fisher model assumes that every 

progeny is chosen at random from the parents according to a Poisson distribution, in 

nature and often in viral dynamics few cases produce the majority of infections. This 

variance in the number of progeny per parent can therefore increase the stochastic 

effect and thus affects the 𝑁𝑒 estimate (Kouyos et al., 2006). The correlation between 

𝑁𝑒 and the variance in the number of progeny per parent (𝑉𝑘) has been investigated for 

several formulations of the coalescent process, thus defining different 𝑁𝑒 quantities 

such as the inbreeding effective number (𝑁𝑒𝑖
) and the variance effective number (𝑁𝑒𝑣

), 

which account for uneven progeny structures (Kimura and Crow, 1963). This leads to 

the assumption that 𝑁𝑒 is connected with the census population size 𝑁 and the variance 

(𝜎2) in the reproductive success (Kingman, 1982b, Tavare et al., 1997) or, in a more 

epidemiological definition, the variance in the number of secondary infections per 
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primary infection [𝑣𝑎𝑟(𝑅𝑡)] (Koelle and Rasmussen, 2012). In addition, the ratio 

between the number of infected individuals, 𝑁, and the effective population size, 𝑁𝑒 , 

(𝑁/𝑁𝑒) is formally described as being equal to the 𝑣𝑎𝑟(𝑅𝑡) when the genetic variability 

within virus strains has no effect on their infectious potential (Kingman, 1982b, 

Magiorkinis et al., 2013, Tavare et al., 1997). 

Although the coalescent model is appropriate for making inferences about 

population dynamics, in the context of viral transmission it is mainly used for its simple 

mathematical formulation rather than its accuracy in defining the transmission 

process. For example, the coalescent model can provide estimations of change in 

population size but shows limitations as an estimator of epidemiological parameters. 

Furthermore, it does not make use of information on sampling time. Stadler et al. 

(2012) introduced the birth-death model (BDM) as an alternative to the coalescence 

for the tree-generating process. The birth-death process generates, forward in time 

and according to stochastic rates of birth and death, a tree with extinct and extant 

lineages (i.e. the ‘complete tree’). The extinct and the not-sampled lineages are then 

deleted producing the reconstructed tree of only sampled extant lineages. As 

demonstrated, the BDM has the advantage of reflecting more accurately the process 

underlying the transmission dynamic and, moreover, to estimate the total number of 

infections caused by an individual over the course of the individuals infectious time (i.e. 

the basic reproductive number 𝑅0). From their initial formulation, both the coalescent 

and BDMs have been extended to account for heterogeneous structured populations 

(Stadler and Bonhoeffer, 2013, Volz, 2012). In addition, several attempts have been 

recently made towards the implementation of stochastic demographic processes into 

a coalescent framework (Rasmussen et al., 2011, Rasmussen et al., 2014b) 

1.2.1.3 Modelling the demography of viral populations 

As presented in the previous section, the coalescent model defined by Kingman 

describes the relationship between coalescent times and the population size under the 

Wright-Fisher population model given a sampled genealogy. Given that 1/𝑁𝑒 is the 

probability, under the coalescent assumptions, that two lineages descend from a 

common ancestor at each generation and applying the derived probability distribution 

to a phylogenetic tree, it is possible to estimate the change in Ne throughout the history 
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of the population up to the MRCA. This feature of the coalescent enables quantification 

of the rate at which the population loses or enhances its genetic diversity and, 

therefore, the computation of historical patterns of viral population size provided by 

genomic data (de Silva et al., 2012). In the last decade, several methods have been 

developed for estimating the demography of populations from sequence data or an 

estimated genealogy. However, most of these approaches constrain the population 

history into continuous or piecewise parametric models, such as constant size, 

exponential growth, logistic growth, and expansion growth, and therefore do not fully 

capture the complex patterns of demographic changes (Kingman, 1982b, Slatkin and 

Hudson, 1991, Tavare et al., 1997, Wilson and Balding, 1998, Griffiths and Tavare, 

1994a). In addition, an a priori assumption of a population size history is usually not 

possible and, therefore, simple population growth functions might not best describe 

the population history of interest. 

Building up from this problem, Nee et al. (1995) introduced the lineage-

through-time (LTT) plot that provides a graphical depiction of the accumulation of 

lineages in a time scale derived from a time-stamped phylogeny. However, the initial 

theoretical input of Pybus et al. (2000) with the introduction of the classic skyline plot 

provided the basis to derive more precise computation of demographic history 

reconstruction, thus giving rise to a family of so-called skyline plot methods (Table 1-

2). Skyline reconstruction assumes that under the coalescent the mean population size 

for each coalescent interval can be estimated by the product of the interval size (𝛾𝑖) 

and 𝑖(𝑖 − 2)/2, where 𝑖 is the number of lineages in the interval (Figure 1-5) and, 

therefore, gives a non-parametric estimate of 𝑁𝑒 based on a piecewise method. The 

limitation of the classical skyline plot is that it produces a noisy and stochastic 

reconstruction resulting from the lack of coalescent error assessment provided by the 

method, which is particularly evident when the genealogy contains a large number of 

short internal branches and, therefore, the phylogenetic error is substantial. To 

overcome this problem, the generalised skyline plot was developed (Strimmer and 

Pybus, 2001). The main difference between the classical and generalised skyline plots 

is that the latter overcomes the problem of the noisy estimates by grouping correlated 

coalescent events and, thus, sampling events into time intervals of a certain length 𝜀. 

However, the genealogy is still assumed to be estimated without error and does not 

account for stochasticity in the coalescent process. Major improvements were 

implemented estimating 𝑁𝑒 within a Bayesian Markov chain Monte Carlo (MCMC) 
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computation. Drummond et al. (2005) introduced the Bayesian skyline plot (BSP) that 

was implemented in a more comprehensive Bayesian framework, where genealogy, 

demography and substitution parameters are co-estimated within a single analysis 

(Drummond et al., 2002).  

 

Figure 1-5. Inferring demographic history of virus population from a reconstructed phylogeny. Schematic 
representation of the skyline plot approach [sourced and adapted from (Ho and Shapiro, 2011)]. 

The BSP method employs a piecewise-constant model, grouping multiple correlated 

coalescent events into time steps. However, the BSP needs an a priori definition of the 

number of groups, which can lead to an increase in the estimation error when less 

informative data are analysed. Solutions are provided by averaging the demographic 

model using a reversible jump MCMC and assuming autocorrelation of population sizes 

over time – employed by the Bayesian Multiple Change Point (MCP) (Opgen-Rhein et 

al., 2005) – or deriving the demographic function directly from the data through a 

Bayesian stochastic search variable selection (BSSVS) method (Heled and Drummond, 

2008). The latter model – the Extended Bayesian Skyline – further implements the 

analysis of multiple loci to increase the accuracy and resolution of the demographic 

reconstruction. Another alternative to the BSP is offered by the Bayesian Skyride 

(Minin et al., 2008). This method avoids the identification of an a priori number of 

coalescent groups using a prior based on a Gaussian Markov random field (GMRF) 

smoothing parameter that is directly informed by the data. Therefore, the difference in 

𝑁𝑒 between autocorrelated coalescent intervals is time-aware, penalised according to 

the lengths of the intervals and, therefore, assumes that the 𝑁𝑒 changes gradually over 

time. A further development on the basis of the Skyride model but allowing the use of 
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multiple unlinked genetic loci, as featured in the Extended Bayesian Skyline, is the 

Bayesian Skygrid, which parameterises 𝑁𝑒 as a piecewise constant function smoothing 

the trajectory by GMRF and allowing changes to the estimated trajectory at pre-

specified fixed points in real time (i.e. grid points) (Gill et al., 2013). A method for 

calculating the 𝑁𝑒 based on an approximate Bayesian computation (ABC) algorithm has 

also been proposed (Palacios and Minin, 2012). This method integrates Gaussian 

process-based Bayesian nonparametric approaches into integrated nested Laplace 

approximation (INLA) (Rue et al., 2009) without the need for complex MCMC 

computation and, therefore, speeding up the calculation and improving the efficiency. 

Table 1-2. Model-based tools for reconstructing demographic history from both DNA and RNA virus 
sequence data (listed in chronological order of development). 

Method Estimate Model Type Reference 

LTT    (Nee et al., 1995) 
Classic Skyline Nonparametric Piecewise-constant  (Pybus et al., 2000) 
Generalized Skyline Nonparametric Piecewise-constant  (Strimmer and Pybus, 2001) 
Bayesian MCP Nonparametric First-order spline rjMCMC (Opgen-Rhein et al., 2005) 
Bayesian Skyline  Piecewise-constant  (Drummond et al., 2005) 
Bayesian Skyride   GMRF (Minin et al., 2008) 
Extended Bayesian Skyline Nonparametric Piecewise-linear BSSVS (Heled and Drummond, 2008) 
Nested Laplace Approx. Nonparametric  ABC (Palacios and Minin, 2012) 
Bayesian Skygrid Nonparametric Piecewise-constant GMRF (Gill et al., 2013) 

The emergence of demographic and skyline genealogy-based methods and their 

implementation into user-friendly software [i.e. the Bayesian Evolutionary Analysis 

Sampling Trees (BEAST)] has fostered the increase of phylodynamic studies in 

molecular ecology, biology and epidemiology, and the assessment of their validity and 

resolution power. Based on mitochondrial genome data, several studies have 

attempted to infer patterns of demographic variation in humans (Gignoux et al., 2011, 

O'Fallon and Fehren-Schmitz, 2011, Atkinson et al., 2009) and animal populations 

(Lippold et al., 2011, Finlay et al., 2007, Qu et al., 2011). Additionally, skyline 

reconstructions were employed to understand ecological and climatic factors affecting 

historical demographic dynamics of animal species (Koblmuller et al., 2012, de Bruyn 

et al., 2009, Hollatz et al., 2011, Amaral et al., 2012, Lorenzen et al., 2011) and the 

human population (Guillot et al., 2013). In the context of infectious disease, skyline 

analyses have been applied in both epidemic and endemic systems to understand the 

origin, expansion and/or decline of viral dynamics (Zehender et al., 2009, Pomeroy et 

al., 2008, Vijaykrishna et al., 2008, Carrington et al., 2005, Comas et al., 2013). In a 

recent study of human influenza A virus, BSP analysis revealed characteristic disease 

seasonality linked with temperate populations (Rambaut et al., 2008). In addition, a 
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three-stage process of host shift for rabies virus in bats was described for all different 

virus lineages (Streicker et al., 2012). The use of BSP to assess impact of control policies 

on viral diversity has been also applied in the context of hepatitis A virus with the 

introduction of vaccination in France related to the time of decline observed in the 

reconstructed skyline plot (Moratorio et al., 2007), whereas an exponential growth in 

the 𝑁𝑒 of hepatitis C virus in Egypt was attributed to the introduction of parental 

antischistosomal treatments (Pybus et al., 2003). In a review of skyline plot methods, 

Ho and Shapiro (2011) tested five skyline models against two datasets generated via 

simulation. Beside the classic and generalised skyline, the BSP largely matched the 

trajectories of the simulated data although not full recovering the demography. 

Simulating epidemic and evolutionary dynamics of biannual measles outbreaks by a 

Time-Series SIR model, Stack et al. (2010) reported the failure of the BSP to reconstruct 

the full biennial dynamics of measles epidemics over different long-term sampling sets. 

This is relevant when populations undergo bottlenecks and the number of lineages is 

substantially reduced from one epidemic season to the next. In another study carried 

out with the aim of testing the BSP for reconstructing epidemic dynamics, data related 

to the early exponential phase of an influenza A virus H1N1 epidemic were simulated 

using a branching process model (de Silva et al., 2012). Results revealed biases in the 

skyline estimates, incorrectly inferring a decrease in the 𝑁𝑒 in the last part of the 

epidemic phase when the population was still growing. This problem was related to 

the lack of genealogical information at later times, corresponding to the last coalescent 

event and the flattening of the LTT plot; therefore, the authors suggested truncating 

the BSP reconstruction behind the last coalescent event. In addition, some studies 

highlighted the limitations of the BSP for reconstructing viral demography due to its 

formulation being based on the coalescent, which approximates the population 

dynamics assuming a small sample of the entire population (Stadler et al., 2013). 

1.2.1.4 Sampling genetic data 

Making an inference on evolution and population structures for a given 

pathogen relies on adequate sampling which ideally should be based on knowledge of 

pattern and extent of genetic diversity at a given spatio-temporal scale. Therefore, two 

important questions might be raised in the context of sampling genetic data: 1) how 



Chapter 1 – FMD and Phylodynamics of Infectious Diseases 

47 

 

does the temporal distribution of the samples affect the estimation of the population 

size? and 2) can a sampling strategy be designed to optimise the reconstruction of 

population histories? For coalescent-based methods to work optimally, samples should 

be drawn from a well-defined scheme (Rosenberg and Nordborg, 2002) with 

individuals randomly sampled from a panmictic population. When heterochronous 

data are used, the random sampling is extended across geographical and temporal 

ranges; sampled sequences are assumed to be orthologous, non-recombining and 

neutrally evolving. It should be noted that, under the coalescent model, increasing the 

sample size does not extend the accuracy of the estimates, because of the existence of 

a single underlying genealogy (Rosenberg and Nordborg, 2002). However, sampling 

biases at the genetic level could result in strongly unbalanced trees, even in the case of 

a panmictic population (Mooers and Heard, 1997). Different opinions are expressed as 

to whether demographic history is best reconstructed from a local or a pooled 

sampling scheme when populations are geographically and genetically structured (St 

Onge et al., 2012). The effect of population subdivision and structure has been reported 

to impact on the reconstruction of population size changes (Peter et al., 2010, Chikhi et 

al., 2010). Stadler et al. (2009) suggested that a scattered sampling might result in a 

frequency polymorphism spectrum more similar to that expected in a neutral evolving 

population. However, St Onge et al. (2012) concluded that the effect of sampling on the 

site frequency spectrum is limited in many cases, such as populations that experience 

large demographic changes or when migration is unlimited. In the context of 

epidemics, using discrete-time simulations Stack et al. (2010) found that the bias in 

prevalence reconstruction using BSP depended largely on how samples were 

distributed over the course of the epidemic: the most reliable estimates could be 

obtained by sampling sequences towards the end of an epidemic. Therefore, a 

systematic approach based on serial sampling schemes should provide a broad view of 

the epidemic dynamic (Stack et al., 2010). For example, sampling a higher fraction of 

the infected population in a given time might result in trees with shorter terminal 

branches (Volz et al., 2009). In a phylodynamics study of norovirus GII.4, although the 

disease seasonality derived from the surveillance system was reconstructed using the 

BSP, re-performing the analysis using a subset of the polymerase dataset drastically 

reduced the resolution provided by the BSP, demonstrating that a high sampling 

density is required to analyse population dynamics of viruses characterised by 

seasonal variation interleaved by population bottlenecks (Siebenga et al., 2010). From 
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a different prospective, an extension of the BDM has been developed to account for 

incomplete sampling of the population (Stadler, 2010). The use of BDM has the 

advantage that it can be applied to different sampling scenarios (i.e. sparse or dense 

sampling schemes), since the sampling process is specified within the model (Stadler 

et al., 2012). In addition within this process, the sampling rates can be relaxed to vary 

through time by means of a step function (Stadler et al., 2013). However, one problem 

of the BDM is that it requires a specification of the sampling process and, therefore, if 

the testing system deviates from the theoretical formulation of the BDM the results 

obtained might be highly biased (Volz and Frost, 2014). This has been seen with the 

study of the recent Ebola virus epidemic in Sierra Leone (Stadler et al., 2014), where 

the assumption of a constant sampling rate of the BD exposed-infected model used for 

the analysis is violated by the sampling variability reported between collection periods 

(Volz and Pond, 2014). 

1.2.2 Integrating epidemiology with phylogenetics 

One of the most challenging tasks to fully understand the dynamics of pathogen 

dispersal is the integration of data based on epidemiological observations with 

phylogenetic inferences. In fact, although the transmission pathways can be 

reconstructed using either epidemiological (i.e. by the means of time, space or space-

time data) or genetic data alone, inferences based on these approaches are generally 

biased and unreliable. Great robustness can be achieved by integrating these data types 

together. With the increasing affordability and speed with which genomic data can be 

generated, research on this topic has expanded in the last 5 years leading to a range of 

different methodological approaches to try to resolve the complex structure defined by 

the phylodynamic process (Grenfell et al., 2004). However, despite the increase in the 

application of coalescent-based methods in molecular epidemiology, difficulties arise 

when validating the obtained results through independent data. Biek et al. (2007) 

demonstrated the detailed information which can be extracted when integrating 

different types of data sources into the phylogenetic inference. In the context of viral 

dynamics, phylogenetic reconstruction has been used to understand the complex virus 

diversity within the inter-farm transmission dynamics of the H7N7 highly pathogenic 

avian influenza virus outbreak recorded in The Netherlands in 2003 (Bataille et al., 
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2011). In addition, attempts to reconstruct the underlying transmission pathways of 

viral dynamics include the integration of spatial and temporal data within the 

phylogenetic reconstruction. Lemey et al. (2009a) provided the basis for an integrated 

Bayesian phylogeography framework built on a BSSVS model using discrete location 

states which helped in reconstructing the patterns of global spread of the H5N1 

influenza A virus. This methodology was further tested analysing the process 

underlying the geographical migration of the initial spread of the H1N1 human 

influenza A virus pandemic (Lemey et al., 2009b). Further extensions enabled the use 

of continuous data, such as geographical coordinates, through the implementation of 

random walk diffusion models based on branch-specific variation in the dispersal rates 

(Lemey et al., 2010). In the FMD context, phylogeography has been used for 

characterising movement of lineages within a country (de Carvalho et al., 2013), within 

a continent and across different species (Hall et al., 2013), and from a whole topotype 

perspective (Di Nardo et al., 2014). 

Differently, a set of studies were based on a previously developed parameter-

free method for estimating the history of transmission events in the course of an 

epidemic, which reconstructs the temporal chain of transmission events (Haydon et al., 

2003). However, accurate and unbiased reconstruction of the so-called transmission 

trees is likely to require a very good sampling of cases during an epidemic. Therefore, 

studies have been focused on the potential integration of genetic information with 

epidemiological data to enhance the resolution, which could be categorised into two 

distinct computational approaches: the ‘transmission tree first’ when the transmission 

tree is firstly reconstructed and then an evolutionary model is attached to the 

transmission model; and the ‘phylogenetic first’ where the genetic data are used to 

directly infer the transmission tree by augmenting some evolutionary model with 

epidemiological information. Cottam et al. (2008a) studied a cluster from the UK 2001 

FMD epidemic and developed a transmission tree analysis based on estimating likely 

periods of infectiousness, constructing all plausible trees, and using genetic data to 

identify and exclude unlikely transmission trees. Following this approach, in a study of 

the H7N7 avian influenza A epidemic in The Netherlands in 2003 (Ypma et al., 2012), 

genetic, geographical and temporal data were integrated in one single likelihood 

function for estimating the infection events and the infectiousness of farms according 

to their size and type. Furthermore, this methodology appropriately handled missing 

data (i.e. cases for which no genetic data were available). A comprehensive analytical 
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framework is also proposed by Rasmussen et al. (2011), who integrated genealogies 

and time series data in a State-Space Model (SSM) parameter and population dynamics 

using a particle filtering MCMC method. A detailed spatial epidemiological model of 

transmission coupled with a simple evolutionary model has been proposed by Morelli 

et al. (2012), an approach that attempts simultaneous inferences to be made on 

epidemiological processes, the transmission chain and the mechanisms that shape the 

evolutionary process. The Bayesian framework proposed pioneered the further 

development of likelihood functions that integrated genetic distance and 

epidemiological models for analysing disease outbreaks and thus estimating 

transmission trees. 

Moving from more classical phylogenetic approaches, Jombart et al. (2011) 

developed a method based on graph theory (Lieberman et al., 2005) that derives 

ancestries directly from the sampled isolates. This approach becomes relevant when 

the phylogeny includes both the ancestor and descendants, as in the case of an 

outbreak. Clearly, the structure of the contact network underlying epidemics impacts 

on the spread of a pathogen (Keeling, 2005), leaving detectable genetic signatures and 

providing evident correlations between genetic and epidemiological data (Welch et al., 

2011). In a study of a nosocomial outbreak of hepatitis C (Spada et al., 2004), a 

Minimum Spanning Tree approach was used to reconstruct the transmission tree of 

the epidemic combined with information on the contact patterns of the hosts. Gordo 

and Campos (2007) studied the level and pattern of genetic diversity in viral 

populations developing a population genetic model incorporating epidemiological 

parameters based on SIS simulations on two different structures of the host contact 

network. The utility of integrating genetic data with epidemiology has been 

demonstrated by Lewis et al. (2008) who developed a Bayesian approach for 

reconstructing transmission network of HIV patients. The effect of contact network on 

phylogeny has been quantified in a recent study (Leventhal et al., 2012), where the 

authors reported significant variation of the Sackin index (i.e. a measure of the tree 

shape) according to different classes of contact structures tested. 

A common assumption on which the relationship between transmission tree 

and phylogeny is founded is that transmission events and time of ancestry are 

equivalent and, therefore, transmission and phylogenetic trees are topologically 

equivalent (Pybus and Rambaut, 2009). However, this might not be correct when a 

substantial within-host (or even within-farm) evolutionary process potentially allows 
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several individual lineages to be transmitted from the same source (Kao et al., 2014). 

An initial attempt to include within-host genetic diversity linked a structured 

transmission tree with a within-host evolutionary process to resolve the full 

transmission history of epidemics (Ypma et al., 2013). However, problems arise since 

estimates based on either fixed phylogenetic or transmission tree topology are not able 

to fully capture the extent of the variability in the tree space (Vrancken et al., 2014). 

Didelot et al. (2014) explored this issue introducing a model based on a coalescent 

within-host evolutionary process, which accounted for uncertainty in the inferred 

phylogeny, in order to reconstruct disease transmission history in a densely sampled 

scenario and when multiple lineages might be passed to subsequent generations. 

Further developments on this approach have been recently put into a more theoretical 

framework (Hall and Rambaut, 2014).  However, one limitation of all the above 

methods is that they require that all infected cases have been observed and, therefore, 

the trees should contain a tip from every case involved in the transmission chain. 

Although epidemiological data extracted from fully-resolved epidemics can be 

informative about unsampled genetic data, this would not always be the case in 

endemic settings where surveillance is unlikely to be exhaustive or when infections are 

characterised by a subclinical form. Studies have started to investigate space-time-

genetic SEIR approaches (Mollentze et al., 2014, Soubeyrand, 2014) or a simpler 

discrete-time stochastic model (Jombart et al., 2014) that would enable the 

characterisation of missed or unsampled cases and the existence of polyphyletic 

systems. On a multi-scale perspective whether investigating small scale epidemics, 

disease spread at continental level or viral population structure (Figure 1-6), this 

highlights the important source of information that epidemiological data provides to 

the reliable reconstruction of transmission chains based on phylogenetic methods. 
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Figure 1-6. Schematic representation of multiple scale of virus evolution aimed at reconstructing pathways 
of pathogens transmission and their population dynamics. 

1.3 Project rationale and scientific objectives 

As previously described in §1.2.1, sequence data are commonly employed 

within well-established phylodynamic models for reconstructing demographic 

changes of infected populations through time (Drummond et al., 2005, Frost and Volz, 

2010). However, some degrees of uncertainty still exist on how these methods perform 

for reproducing the real scale and size of disease outbreak trends as estimated through 

empirical epidemiological data. During the course of the UK 2001 FMD epidemic, 

epidemiological information on every conceivable element of the epidemic were 

collected through field investigations, thus enabling retrospective capture of the 

dynamics in space and time of the entire disease event (DEFRA, 2002). In addition, 

nearly one clinical sample from every reported infected premises (IPs) has been 

collected, from which FMDV isolates have been started to be sequenced (Cottam et al., 

2006, Cottam et al., 2008a, Konig et al., 2009), and thus accurately documenting the 

extent of genetic variability within the whole epidemic. In this respect, the UK 2001 

FMD epidemic, where prevalence, incidence and WGS data are fully known, provides 

an exceptionally suitable testing system for investigating the relationship between 

viral population dynamics reconstructed using both genetic and epidemiological data. 

The PhD project here presented made use of the epidemiological data collected during 

the UK 2001 FMD epidemic in order to investigate the correlation between the real 
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count of infected cases (derived from either prevalence or incidence data) and the viral 

demographic history inferred by sequence variability that is recorded from time-

stamped WGSs extracted from the field isolates. At the time of starting this PhD 

research, the Epi-SEQ EMIDA-ERA NET funded project 

(www.episeq.eu/index_files/Page1077.htm) was focused on the genetic 

characterisation of the entire UK 2001 FMD collection of clinical samples stored at the 

WRLFMD, The Pirbright Institute - UK, which theoretically would have been sequenced 

within the timeframe of this PhD project. Unfortunately, delays have meant that some 

of the results obtained from this PhD project can only be validated sometime after its 

completion, when the full dataset of UK 2001 FMDV WGSs will be available. Therefore, 

the observations and research findings grounded on the results here presented were 

generated through an evolutionary simulation framework of the whole UK 2001 FMD 

epidemic, which has been informed by the space-time dynamics of the transmission 

events as reconstructed using the fully resolved epidemiological data. Hence, the 

overall aim of this PhD project was to test the hypothesis that inferences on the true 

number of infected cases can be drawn from patterns of mutation accumulating in 

sequence data recovered from observed cases, as estimated by transformations of the 

effective population size 𝑁𝑒 . Accordingly, the work here presented attempts to 

disentangle some key questions in the field of phylodynamics of viral infectious 

disease, namely: 

 Can the effective population size 𝑁𝑒 derived from the BSP be scaled to 

some epidemiological relevant measure of prevalence? 

 How does the sampling design affect the estimation of virus evolution and 

population demography? 

 Can sequence data be used to infer unobserved disease events?  

Results from this project may have particular relevance in FMD endemic settings 

where comprehensive sampling is not usually possible and official reporting of 

outbreaks limited. In this context, a clear understanding of the disease burden is 

therefore needed, which might be derived from the estimation of the viral population 

size as a proxy of disease prevalence. In addition, inferences about evolutionary 

changes on timescales enable the dating of epidemiologically important events and, 

therefore, independently validating against surveillance data to understand the impact 

of control measures imposed. Thus, reconstructing and predicting epidemiological 

dynamics and transmission routes during epidemic events or in an endemic setting 

http://www.episeq.eu/index_files/Page1077.htm
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have the potential to inform intervention strategies and control policies In addition, 

the outcomes derived from this project have many potential and valuable applications 

not only for FMD but may also be generalised to other RNA viral diseases. 

1.3.1 Thesis outline 

The work produced in this thesis is structured into seven chapters, which are 

sequentially presented in a logical consecutio. Following this introductory chapter 

which reviews the studies published in the literature on the topics of FMD and 

phylodynamics of infectious diseases, Chapter 2 describes a practical example of the 

use of phylogenetic methods currently employed for reconstructing evolutionary 

history, demographic signal and the dispersal process of viruses. This study, based on 

the generation of new sequence data and analyses of 322 VP1 coding sequences, 

produced a comprehensive phylodynamics picture of the serotype O CATHAY FMDV 

topotype and its evolutionary adaptation into the Southeast Asia ecosystem. In 

addition, a detailed historical reconstruction of the FMDV epidemic events reported in 

the Philippines during 1994 and 2005 has been performed analysing the genetic signal 

carried by 112 VP1 coding sequences. Results generated from Chapter 2 have been 

already published in the peer-reviewed journal Veterinary Research (Di Nardo et al., 

2014). 

Chapter 3 presents the model framework that has been developed with the aim 

of reconstructing the transmission tree of the UK 2001 FMD epidemic and simulating 

the entire FMDV alignment of the epidemic, thus generating one WGS for each of the 

IPs reported to be infected during the outbreak. The metrics of the reconstructed 

epidemic are presented along with the estimation of its demographic size, as either 

prevalence or incidence estimation. In addition and as a preliminary attempt to 

validate the WGS simulation, the metrics of the simulated genetic data with the 39 

already characterised WGS isolates (Cottam et al., 2006, Cottam et al., 2008a, Konig et 

al., 2009) have been compared. 

Chapter 4 has been fully devoted to the relationship between the real number 

of infected cases (as estimated by prevalence or incidence data) and 𝑁𝑒 . Using the WGS 

data derived from the simulation model presented in the previous chapter, the concept 

of the infection prevalence 𝑁∗ has been explored to investigate a likely scaling 



Chapter 1 – FMD and Phylodynamics of Infectious Diseases 

55 

 

approach which could potentially link 𝑁𝑒 with the real infected population size and, 

therefore, empowering the conceptualization of genetic data as a proxy for a 

prevalence measure. For this purpose, empirical prevalence and incidence data 

extracted from the UK 2001 FMD epidemic have been correlated with the demographic 

signal carried by the 𝑁𝑒 and extracted from the BSP analysis of the WGS simulated data. 

In addition, further FMDV stationary demographic scenarios, simulated at different 

degree of population structure, have been tested in order to assess the impact of the 

variance in the population structure [i.e. 𝑣𝑎𝑟(𝑅𝑡)] on the accuracy of the BSP-derived 

𝑁𝑒 estimates. 

Chapter 5 examines the effect of sampling size on the reconstruction of viral 

demography further using the UK 2001 FMDV WGS simulated data and the 𝑁𝑒 scaling 

formulations derived from Chapter 4. For this purpose, different sampling schemes 

have been tested from the simple realisation of a random process to more 

epidemiologically structured schemes, based on the probability proportional to size 

sampling theory. In addition, estimates extracted from the incomplete sampling BDM 

have been compared with their coalescent derivation. 

Chapter 6 presents a preliminary characterisation of the whole UK 2001 FMD 

epidemic using an initial set of the WGS (n=154) that have been generated from the 

archive of clinical samples collected at the time of the outbreak (n=1404). These real 

data allow us to test the hypotheses derived from the results obtained from the 

analyses of the simulated data presented in Chapters 3 to 5 and, therefore, to initially 

validate their assumptions with a relatively small subset of the real WGS data (~11%). 

In addition, the results here presented attempt to draw the first sensu scricto 

phylodynamic inference from the fully-resolved epidemiological and genetic data of 

the UK 2001 FMD epidemic. 

The final discussion and concluding remarks are then presented in Chapter 7. 
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CHAPTER 2 

 

2.1 Abstract 

Reconstructing the evolutionary history, demographic signal and dispersal 

processes from viral genome sequences contributes to our understanding of the 

epidemiological dynamics underlying epizootic events. In this study, a Bayesian 

phylogenetic framework was used to explore the phylodynamics and spatio-temporal 

dispersion of the O CATHAY topotype of foot-and-mouth disease virus (FMDV) that 

caused epidemics in the Philippines between 1994 and 2005. Sequences of the FMDV 

genome encoding the VP1 showed that the O CATHAY FMD epizootic in the Philippines 

resulted from a single introduction and was characterised by three main transmission 

hubs in Rizal, Bulacan and Manila Provinces. From a wider regional perspective, 

phylogenetic reconstruction of all available O CATHAY VP1 nucleotide sequences 

identified three distinct sub-lineages associated with country-based clusters 

originating in Hong Kong Special Administrative Region (SAR), the Philippines and 

Taiwan. The root of this phylogenetic tree was located in Hong Kong SAR, representing 

the most likely source for the introduction of this lineage into the Philippines and 

Taiwan. The reconstructed O CATHAY phylodynamics revealed three chronologically 

distinct evolutionary phases, culminating in a reduction in viral diversity over the final 

10 years. The analysis suggests that viruses from the O CATHAY topotype have been 

continually maintained within swine industries close to Hong Kong SAR, following the 

extinction of virus lineages from the Philippines and the reduced number of FMD cases 

in Taiwan. 
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2.2 Introduction 

Foot-and-mouth disease is an economically devastating transboundary disease 

of cloven-hoofed domestic and wild ruminants, causing an acute and highly contagious 

vesicular disease which can develop into a persistent infection. The aetiological agent 

is FMDV, a single-stranded RNA virus belonging to the Aphthovirus genus, family 

Picornaviridae. FMDV is characterised by high genetic variability and exists as seven 

different serotypes named as O, A, C, Asia 1, SAT 1, SAT 2, and SAT 3 (Knowles and 

Samuel, 2003). As a consequence of their high mutation rate, FMDV lineages quickly 

diverge as they replicate and spread into new areas. Therefore, transmission of the 

virus through space and time directly defines the evolutionary patterns observed 

between related FMDV strains (Knowles et al., 2010b). In addition to the accumulation 

of nucleotide substitutions through errors, large block of sequence changes can be 

mediated via recombination between different FMDV genomes, further expanding its 

evolutionary repertoire. In this context, FMDV populations often exhibit extensive 

genetic and antigenic heterogeneity at both the molecular and geographical level, 

driven by co-circulation of multiple lineages, heterogenic mixed host populations, 

extensive animal movements and trade patterns (Di Nardo et al., 2011). FMDV 

serotypes have evolved independently in different geographical regions to give rise to 

distinct genetic lineages, designated topotypes. Eleven topotypes have been defined for 

serotype O, based on phylogenetic relationships between available sequence data and 

a value of ~15% of nt sequence difference in the VP1 coding region (Knowles et al., 

2010a, Samuel and Knowles, 2001). 

2.2.1 The O CATHAY FMDV topotype 

The first FMDV strain belonging to the O CATHAY topotype was isolated from 

Hong Kong SAR from pig samples collected during 1970 (HKN/21/70, GenBank 

accession no. AJ294911) and was characterised by a 93-102 nt deletion within the 3A 

coding region that is associated with the atypical porcinophilic phenotype of this FMDV 

lineage (Knowles et al., 2001a). Subsequently, O CATHAY isolates have been confirmed 

in several Southeast and East Asian countries (including Malaysia, the Philippines, 

Taiwan, Thailand and Vietnam), although since 1970, the majority of field cases due to 
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this topotype have been reported in Hong Kong SAR and China (Gleeson, 2002, 

Knowles et al., 2005, Cao et al., 2014). The O CATHAY FMD outbreak in Taiwan which 

began during 1997 resulted in the stamping-out of more than 4 million pigs and 

generated economic losses of over 6 billion US dollars (Yang et al., 1999). Outside of 

Asia, viruses belonging to the O CATHAY topotype have been responsible for isolated 

FMD outbreaks that occurred in Europe in 1981 (Thalheim, Austria), 1982 (Wuppertal, 

Germany) and 1995 (Moscow, Russia). In the last ten years, O CATHAY FMDV strains 

causing epizootics have been collected in Hong Kong SAR on a yearly basis, where the 

last reported outbreak occurred during March 2014. However, FMD viruses belonging 

to the type O CATHAY topotype are sampled on a more sporadic basis from countries 

in Southeast Asia, and it is currently unclear where this topotype is maintained and/or 

how it is dispersed. 

2.2.2 FMDV in the Philippines 

The introduction of FMD into the Philippines can be dated back to 1902 as a 

result of the importation of infected cattle from Hong Kong SAR to Manila. Following 

large epidemics reported in Sorsogon and Bukidnon Provinces in 1920, FMD became 

widespread in the entire Philippines. FMDV lineages belonging to serotypes A, O and C 

were identified in samples collected from outbreaks occurring in the Philippines 

during the period between 1954 and 2005. Major epidemics were caused by type O 

(from 1972 to 1991), type A (from 1975 to 1983) and type C (from 1976 to 1995) 

strains (Randolph et al., 2002). The O CATHAY topotype was first detected in August 

1994 in a backyard piggery located in Rizal Province. More recently, this FMDV 

topotype has been the sole lineage responsible for epidemics in the Philippines until 

December 2005, when the last detected case was confirmed in Quezon Province. The 

majority of the cases due to O CATHAY were located on Luzon Island, from where FMD 

spread to 27 provinces. It has been estimated that wholesale market prices of both pork 

and even chicken in Central Luzon dropped significantly following the start of the 

epidemic in 1995, highlighting the economic impact of FMD across the entire supply 

chain (Abao et al., 2014). Since June 2011, the Philippines have been officially declared 

as FMD-free (without vaccination). 
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This study explored the phylodynamics of these O CATHAY outbreaks 

reconstructed through molecular epidemiological analyses of VP1 coding sequences 

(𝑛 = 112) collected between 1994 and 2005. In addition, a wider picture of the O 

CATHAY topotype phylogenetics was determined from a larger database of currently 

available VP1 coding sequences (𝑛 = 322) to enable the characterisation of 

geographical movements of this FMDV lineage across historically affected countries of 

Southeast and East Asia. 

2.3 Materials and methods 

2.3.1 Sample database 

This study accessed archived vesicular fluid and/or epithelium samples 

(n = 112) from the FAO WRLFMD at The Pirbright Institute, UK, which had been stored 

at −20 °C in 0.04 M phosphate buffer (M25; disodium hydrogen phosphate, potassium 

dihydrogen phosphate, pH 7.5) and 50% (vol/vol) glycerol. This dataset represented 

clinical samples collected in the Philippines from 22 provinces in the period between 

1994 and 2005 (Appendix 1). In addition, a further 210 VP1 coding region sequences 

and representing isolates collected from Austria, China, Germany, Hong Kong SAR, 

Malaysia, Russia, Taiwan, Thailand and Vietnam (Abdul-Hamid et al., 2011, Beard and 

Mason, 2000, Carrillo et al., 2005, Hui and Leung, 2012, Knowles et al., 2001b, Knowles 

et al., 2005, Tsai et al., 2000) were retrieved from both GenBank at NCBI (Benson et al., 

2013) and the WRLFMD sequence archive and, then, integrated with the Philippines 

collection to comprise a total dataset of 322 VP1 coding sequences (Appendix 2) These 

VP1 coding region sequences have been submitted to GenBank and have been assigned 

the following accession numbers: KM243030-KM243172. 

2.3.2 Viral RNA detection and sequencing 

Clinical samples were processed in order to obtain the FMDV VP1 coding 

sequences (639 nt length, ~8% of the full genome length). Viral RNA for each sample 

was extracted from virus suspensions using the RNeasy® Mini Kit (QIAGEN® Ltd., UK), 
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according to the manufacturer’s protocol. One-step Reverse Transcription Polymerase 

Chain Reaction (RT-PCR) to amplify the VP1 region of FMDV was carried out as 

previously described (Knowles et al., 2009). Primers used for the RT-PCR step were O-

1C244F and O-1C272F for the forward, and EUR-2B52R for the reverse orientations 

(Table 2-1). PCR products were cleaned up using the Illustra GFX™ PCR DNA and Gel 

Band Purification Kit (GE Healthcare Ltd., UK), and were then cycle-sequenced using 

the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, UK). A set of 

forward and reverse primers was employed to ensure the complete coverage of the 

VP1 coding region (Table 2-1). Sequencing reactions were analysed using the ABI 3730 

DNA Analyzer (Applied Biosystems, USA). Raw data files were assembled into a contig 

and edited using SeqMan Pro™ 12 (DNASTAR, Inc.), then aligned using Clustal Omega 

1.2.0 (Sievers et al., 2011). 

Table 2-1. Oligonucleotide primers used for either RT-PCR or cycle sequencing of the VP1 coding region 
from the FMDV isolates. Start and end locations have been mapped against the Kaufbeuren/FRG/66 type O FMDV 
isolate (GenBank accession no. X00871) (Forss et al., 1984). 

Primer Designation Primer Sequence (5΄ to 3΄) Start - End 

Reverse Primers   
NK72 GAAGGGCCCAGGGTTGGACTC 3558 – 3578 

EUR-2B52R GACATGTCCTCCTGCATCTGGTTGAT 3624 – 3649 
O-1D487gR TAATGGCACCRAAGTTGAA 3372 – 3390 

O-1D628R GTTGGGTTGGTGGTGTTGT 3181 – 3199 
   

Forward Primers   
O-1C244F GCAGCAAAACACATGTCAAACACCTT 2469 – 2494 
O-1C272F TBGCRGGNCTYGCCCAGTACTAC 2497 – 2519 
O-1C283F GCCCAGTACTACACACAGTACAG 2508 – 2530 
O-1D296F ACAACACCACCAACCCAAC 3181 – 3199 
O-1C499F TACGCGTACACCGCGTC 2724 – 2740 

O-1C605hF TGGCCAGTGCCGGTAAGGACTTTGAC 2830 – 2855 
O-1C605nF TGGCTAGTGCTGGCAAAGACTTTGAC 2830 – 2855 

2.3.3 Phylogenetic analysis 

Before performing the phylogenetic reconstruction, jModelTest 2.1.6 analysis 

(Darriba et al., 2012, Guindon and Gascuel, 2003) was undertaken to determine the 

best fitting nucleotide substitution model using the Bayesian Information Criterion 

(BIC) (Posada and Buckley, 2004). Statistical parsimony (Templeton et al., 1992) was 

used for reconstructing the genealogical networks as implemented in the TCS 1.21 

program (Clement et al., 2000). The network generated was then edited and plotted in 

yEd Graph Editor 3.13. 
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A Bayesian analysis framework was employed for phylogenetic and demographic 

inferences using a MCMC method implemented in the BEAST 1.8.0 package 

(Drummond et al., 2012). The analysis was performed using the Hasegawa-Kishino-

Yano substitution model plus gamma-distributed rates (HKY85+Γ4), and the relaxed 

uncorrelated lognormal molecular clock model (Drummond et al., 2006, Hasegawa et 

al., 1985). Demographic reconstruction was employed using the BSP (Drummond et al., 

2005). Spatial patterns of FMDV dispersal were estimated through a probabilistic 

discrete asymmetric diffusion model using a continuous-time Markov chain process, 

adopting a BSSVS procedure to select among all possible migration pathways (Lemey 

et al., 2009a). Nonzero rates of virus movement between countries were judged to be 

supported when the associated Bayes Factor (BF) exceeded 3. The MCMCs were run 

for 150 million iterations, sub-sampling every 15 000 states. Convergence of the chain 

was assessed using Tracer 1.5 removing the initial 10% of the chain as burn-in. The 

Maximum Clade Credibility (MCC) tree was summarised using TreeAnnotator 1.8.0 and 

constructed using FigTree 1.4.1. Phylogeographic maps were constructed using ArcGIS 

10.2.2 (Environmental Systems Research Institute, Inc.). 

2.3.4 Statistical analysis 

The epidemic curve was constructed using the Handistatus II data for the 

Philippines retrieved from the OIE website (OIE, 2014). Statistical computations were 

performed in R 3.1.1 (R Core Team, 2015) and graphs were plotted using the ggplot2 

package for R (Wickham, 2009), whereas complex vector images were rendered using 

Inkscape 0.48.5. To determine the potential extent of recombination in the genetic 

structuring of the virus population, ratios of per-site recombination rate to the per-site 

mutation rate (r) were estimated using LAMARC 2.1.9 (Kuhner, 2006). 
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2.4 Results 

2.4.1 O CATHAY FMDV country based phylodynamics: the 

Philippines 

A FASTA search (McWilliam et al., 2013) of all publically available VP1 coding 

sequences was completed to identify a candidate for the most likely common ancestor 

for the Philippines lineage: the closest match was identified as a sequence from Hong 

Kong SAR with 99.2% nt identity (HKN/12/91, GenBank accession no. AJ294921). The 

observed evolutionary distances and total nt changes calculated from the root 

(HKN/12/91) increased linearly with time (𝑅2= 0.932; 𝐹1,111 = 1528, 𝑝 < 0.001) (Figure 

2-1). 

 

Figure 2-1  Accumulation of nucleotide differences calculated from the putative root (HKN/12/91 isolate) 
for the Philippines database with time expressed in years. Size of the points increases with increased number 
of nt substitutions. Shaded area represents 95% confidence intervals for the fitted line. 

The number of nt substitutions in the VP1 coding sequences between the first O 

CATHAY isolate collected in the Philippines in 1994 and the last reported outbreak in 

2005 was estimated to be 58, although the maximum number of nt substitutions was 

reported for the PHI/17/2003 isolate as 69 (maximum genetic distance 0.12 base 

substitution per site). No indels were found within the entire alignment. In addition, 

variability in the number of nt changes in samples collected within the same time 
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window (year) was observed. Average genetic divergences among year groups were 

estimated to be higher for 2000, 2001 and 2003, which deviate from the average value 

of 0.023±0.008 base substitutions per site per year (Table 2-2). Geographic distance 

was found to be significantly correlated with genetic distance (𝐹1,84 = 15.92, 𝑝 < 0.001). 

A recombination rate (𝑟) of 8.76×10-8 per site per generation (site/generation) was 

estimated for the Philippines indicative of an exceedingly low rate of recombination 

relative to mutation. 

Table 2-2. Genetic, time and geographical pairwise distances (with corresponding standard deviation 
values) calculated for the within-year Philippines O CATHAY FMDV isolates groups and for each of the 
country based data from the earliest samples collected within the specific group. Genetic distances were 
estimated by the Hasegawa-Kishino-Yano substitution model plus gamma-distributed rates (HKY85+Γ4), whereas 
geographic distance were calculated using the Haversine formula (Sinnott, 1984). Genetic distance is expressed in 
base substitution per site, time distance is defined in years, whilst geographical distance is measured in kilometres. 

Data No of Samples Genetic Distance Time Distance Geo Distance 

Philippines     
1994 7 0.010±0.002 0.23±0.05 - 
1995 8 0.013±0.006 0.63±0.77 124.72±95.81 
1996 9 0.020±0.004 0.10±0.03 235.66±252.21 
1997 14 0.016±0.013 0.38±0.38 119.65±117.12 
1998 23 0.011±0.009 - 51.62±42.08 
1999 5 0.011±0.002 - 146.83±222.79 
2000 16 0.054±0.021 0.16±0.13 296.55±130.74 
2001 7 0.057±0.008 - 14.22±4.28 
2003 8 0.051±0.013 0.19±0.08 344.45±26.98 
2004 12 0.010±0.004 0.41±0.23 322.32±38.83 
2005 3 0.005±0.005 0.03±0.01 12.48±17.65 

     
Global     

China 6 0.148±0.081 31.93±19.15 - 
Hong Kong 138 0.157±0.022 32.95±7.24 - 
Philippines 112 0.047±0.022 4.59±3.50 - 

Taiwan 46 0.015±0.025 1.38±3.01 - 
Vietnam 13 0.104±0.016 7.84±1.65 - 

As estimated by the statistical parsimony network analysis, the MRCA of the 

Philippines O CATHAY taxon was identified as an unsampled virus 3 nt different from 

HKN/12/91 and 1-3 nt different from the earliest Philippines isolates collected 

between late 1994 and the start of 1995 (Figure 2-2). The diameter of the parsimony 

network between the MRCA and the most divergent FMDV isolate collected in 2004 

(PHI/5/2004) was estimated to be 86 nt substitutions, of which 83 (96.51%) were 

synonymous and 3 (3.49%) non-synonymous. The average of number of nt 

substitutions incurred per year (nt/yr) of any isolate from its closest sampled ancestor 

was estimated to be 9.9±4.8, comprising an average of 8.8±4.2 synonymous and 

1.0±0.9 non-synonymous changes, indicative of an average rate of change for VP1 

sequences in the Philippines of approximately 1.5% per year. The average number of 
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changes for each isolate was 4.0±2.3 nt/yr, of which 3.4±2.1 and 0.6±0.5 were 

synonymous and non-synonymous substitutions, respectively. 

 

Figure 2-2  Network extracted from the statistical parsimony analysis performed in TCS for the Philippines 
isolates (𝒏 = 112). VP1 sequences are designated with their WRLFMD number and coloured by year of collection, 
where the outlier (HKN/12/91) is defined with a red box. The MRCA for the Philippines O CATHAY FMDV taxon is 
highlighted in a red ellipse. Black dots specify non-synonymous substitutions, whereas white dots represent 
synonymous substitutions. The year codes in the virus isolate labels have been abbreviated to the last two digits. 

Most sequences clustered according to time across the network, although FMDV 

isolates collected in 2000 were assigned within three separate genetic lineages, 

resulting in three evolutionary pathways one of which was a dead-end. In addition, for 

some links more recently collected viruses were assigned earlier in time on the 

network. The case of PHI/12/94 which was found to be a descendant of PHI/1/95 can 

in part be explained by the short time distance which separates these two isolates (32 

days) and it might be that both strains (or their ancestors) were co-circulating at time 

of sampling. The reconstructed phylogeny further defined these two viruses as being 

closely related (genetic distance of 0.002 base substitutions per site). Conversely, 

samples collected in March (PHI/9/2000) and June 2000 (PHI/26/2000) were 

determined to be the source of a virus collected in 1999 (PHI/10/99), although the 

2000 isolates were direct descendants of a virus detected in January 1999 (PHI/1/99). 
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Looking in detail at this case, the phylogeny found descent of PHI/10/99, PHI/9/2000 

and PHI/26/2000 from the same common ancestor. These samples were collected 

from the same region (Central Luzon) within an area of ~40 km of radius, potentially 

explaining the inconsistent result provided by the TCS analysis to have arisen from 

sampling bias. The discrete states analysis resolved the relationship of the PHI/10/99, 

PHI/9/2000 and PHI/26/2000 isolates rooting those from a common ancestor that 

descends in turn from an unsampled virus source both seeded from Bulacan Province, 

which includes the PHI/1/99 sample (Figure 2-3). 

 

Figure 2-3  Phylodynamic reconstruction of the O CATHAY FMDV epidemics in the Philippines. Maximum 
clade credibility tree branches are coloured according to the most likely transmission source as reconstructed from 
the discrete states model. Nodes with a posterior probability value ≥0.7 are shown. FMDV demography is expressed 
by log Effective Population Size (𝑁𝑒𝜏) as estimated from the BSP along with the monthly epidemic curve 
reconstructed from the data retrieved from the OIE Handistatus II database (OIE, 2014). 

The molecular clock for the O CATHAY Philippines lineage was estimated to be 

1.25×10-2 nt/site/yr (95%HPD 9.47×10-3 to 1.57×10-2) with a standard deviation of 

0.70 (95%HPD 0.49 to 0.91). No evidence of autocorrelation of rates in the 

reconstructed phylogeny was provided by the covariance value of 2.65×10-3. The 

introduction date, the TMRCA, of the type O CATHAY topotype FMDV lineage into the 

Philippines was calculated to be the 30th of March 1994 (95%HPD 07/08/1993 to 

08/08/1994, a time interval which included the date of the first officially reported 

case).  
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The reconstructed FMDV population dynamics from the skyline plot (Figure 2-

3) describes a demographic history characterised by three phases. In the first phase, 

after an initial exponential increase from mid-1994 until late 1997 at a rate that 

decreased from late 1996, a sudden and short period of decline was observed, resulting 

in a population bottleneck. Since genetic bottlenecks correspond to significant 

reductions in population size, these changes in the O CATHAY population dynamics in 

the Philippines probably link to the launch of an extensive control plan in 1996 that 

was successful in limiting the further spread of FMD and thereby reducing the number 

of outbreaks (Randolph et al., 2002). However, during 1999 a new FMD outbreak 

occurred within an already declared FMD-free zone, the Panay region. Therefore in the 

second phase, the skyline trajectory recorded a second rapidly increasing viral 

population size starting in mid-1998 and lasting up to the first months of 1999, which 

resulted in a diversification of viral lineages. In the third phase, the viral population 

size reached a plateau until late 2002, when further control policies resulted in a steady 

decline in FMD prevalence until eradication. 

The epidemic curve drawn from the field epidemiological data from the OIE for 

the period 1995-2005 (OIE, 2014) described an oscillatory trend in the number of FMD 

outbreaks reported in the Philippines, with times of high epidemic peaks interleaved 

by low-level FMD circulation. The frequency of these oscillations was higher between 

1997 and the beginning of 2000 (a monthly average of 37.9 FMD outbreaks), after 

which the number of FMD outbreaks started to decline following periods of low 

reporting (with a monthly average of 19.8 FMD outbreaks). However, the reported 

epidemic trend did not overlap with the skyline plot trajectory, although the epidemic 

window from mid-2000 to 2005 characterised by a reduced number of outbreaks could 

be evinced by the plateauing and subsequent decrease in the genetic diversity of the 

skyline plot. It should be noted that although more than 300 outbreaks were officially 

reported through OIE during 2002, no clinical samples (and thus genetic information) 

were collected within that time window. 

According to the results obtained by the discrete states phylogeography 

analysis, the root of the Philippines taxon was found to be from Rizal Province, 

consistent with the location of the first officially reported cases of O CATHAY topotype 

in the Philippines during August 1994 (Figure 2-3). Three main epidemic hubs could 

be identified from the analysis: the first from the beginning of the epizootic up to mid-

1996, where outbreaks were found to be seeded from Rizal Province; the second 
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lasting until 2001, where Bulacan Province was estimated to be the main source of FMD 

spread; and lastly, Manila Province as the last epidemic hub. The movement transitions 

between the three main epidemic hubs were supported by Bayes factor values of >24 

[𝑝𝑘 = 1.0] for movements from Rizal to Bulacan and from Bulacan to Manila, 

respectively. 

2.4.2 Global and regional phylodynamics of O CATHAY 

topotype FMDV 

The molecular clock rate for all the O CATHAY topotype VP1 data was estimated 

to be 1.06×10-2 nt/site/yr (95%HPD 8.99×10-3 to 1.23×10-2), with a standard deviation 

of 0.81 (95%HPD 0.67 to 0.94). This value was comparable with the molecular clock 

rate reported for the Philippine isolates only. The MRCA for the O CATHAY topotype 

was estimated to have been present between 1955 and 1960. The 𝑟 recombination 

parameter returned a value of 8.3×10-9 site/generation indicating a very low influence 

of recombination relative to mutation. 

Three distinct sub-lineages were identified by the wider phylogenetic 

reconstruction that included the full database of O CATHAY VP1 coding sequences, 

which were clustered on a country level basis (Figure 2-4). 
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Figure 2-4  Maximum clade credibility tree for all the O CATHAY FMDV isolates sequenced (𝒏 = 322). Nodes 
with a posterior probability value ≥0.7 are shown. Branches are coloured according to the most probable country 
of the node from which they descended as estimated from the discrete state phylogeographic Bayesian model. 
Geographical links between countries identified by the BSSVS analysis are coloured by the corresponding BF value. 
The year codes in virus isolate labels have been abbreviated to the last two digits. The geographical locations are 
defined with the country centroid. 
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The FMDV strains circulating in the Philippines were found to have descended 

from a common ancestor that was shared with the Taiwanese isolates, in line with what 

was proposed to be the source of introduction of the O CATHAY virus into the 

Philippines in 1994 (Knowles et al., 2005). In turn, the Taiwanese cluster descended 

from an unsampled virus closely related to a FMDV isolate collected from China in 

2000. The Hong Kong SAR isolates were defined in a separate phylogenetic cluster 

along with FMDV samples collected from countries in mainland Southeast Asia 

(Malaysia, Thailand and Vietnam). This finding is in contrast to that previously 

reported (Hui and Leung, 2012), which designated the Taiwanese lineages descending 

from a common ancestor with the Hong Kong SAR isolates, and identified the 

Philippines lineages as a distinct phylogenetic cluster. Hui and Leung (2012) inferred 

the phylogenetic relationship employing a Neighbor-joining method; nevertheless, 

estimating the phylogeny using a maximum-likelihood method (Guindon et al., 2010) 

did not alter the shape of the reconstructed phylogeny [data not shown]. The three 

phylogenetic clusters shared a common ancestor related to a FMDV strain collected in 

Hong Kong SAR in 1991 (HKN/12/91), which was in turn a descendent from other 

Hong Kong SAR isolates related to more recent samples obtained from Russia (1995), 

Hong Kong SAR (1996) and China (2003). FMDV isolates collected from countries of 

mainland Southeast Asia were phylogenetically grouped into two distinct clusters: the 

first (MRCA dated 1997) including the first O CATHAY virus isolate from Vietnam in 

1997 from which viruses were collected in 2005-06 and 2008, and the only isolate from 

Malaysia (2005) was sourced; the second (MRCA dated 1998) associated with a later 

introduction of an O CATHAY strain in Vietnam in 2002, from which viruses isolated in 

2004-05, and FMDV sequences from Thailand (2005) were related. The FMDV ancestor 

of the first mainland Southeast Asia sublineage was dated circa mid-1993, directly 

descending from the oldest MRCA of the Hong Kong SAR cluster, whereas the second 

sublineage was circulating in late 1998 and closely related to a virus collected in Hong 

Kong SAR in 2002. This phylogenetic picture supports two potential introductions of 

the O CATHAY FMDV lineage into Vietnam from Hong Kong SAR. 

The MRCA shared between the Philippines and Taiwanese phylogenetic clusters 

was estimated to have been circulating in 1993 (95%HPD 1992 to 1994), whereas the 

origin of the MRCA for the more recent O CATHAY FMD epidemics in the Southeast and 

East Asia regions was dated 1991 (95%HPD 1990 to 1992). No other virus introduction 

or escape was ascribed to the Philippines O CATHAY FMD epidemic history, suggesting 
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the Philippines sub-lineage to be monophyletic. In contrast, Hui and Leung (2012) 

described two different FMDV introductions into the Philippines, assigning the 

PHI/5/95 isolates within the phylogenetic cluster which includes the Taiwanese 

isolates. However, the tree node that governed this inclusion had a bootstrap value of 

<70, suggesting uncertainty in the assignment of these descendants. 

As estimated by the discrete phylogeography model, the root of the entire 

phylogenetic tree was reported to be in Hong Kong SAR and, therefore, representing a 

likely source for the introduction of the O CATHAY lineage into the Philippines and 

Taiwan. This is confirmed by the estimated BSSVS parameters, for which China and 

Hong Kong SAR were assessed as the main hubs of FMDV spread between countries 

(Figure 2-4): China was found to be the source for Hong Kong SAR (BF = 5.6, 𝑝𝑘 = 0.60), 

Taiwan (BF = 5.07, 𝑝𝑘 = 0.58) and Russia (BF = 4.33, 𝑝𝑘 = 0.54), whilst Hong Kong SAR 

was identified as the source of FMD transmission to Vietnam (BF = 6.75, 𝑝𝑘 = 0.65) and 

the Philippines (BF = 3.16, 𝑝𝑘 = 0.46). The link found between China and Russia 

reinforces the hypothesis that Chinese pork shipments were responsible for the 

introduction of the O CATHAY lineage into Moscow, Russia during 1995 [6]. Vietnam 

was estimated as a recipient of viruses moving from Malaysia (BF = 23.25, 𝑝𝑘 = 0.86), 

Thailand (BF = 12.55, 𝑝𝑘 = 0.77) and Hong Kong SAR (BF = 6.75, 𝑝𝑘 = 0.65). The most 

likely routes of chronological introduction of the FMDV O CATHAY lineage into Europe 

were identified to be from Hong Kong SAR to Austria (BF = 3.14, 𝑝𝑘 = 0.27). The virus 

movement within Europe has been identified from Austria to Germany (BF = 5.15, 𝑝𝑘 

= 0.58). Thus supported by the Bayesian phylogenetic and BSSVS analyses, the 

historical movement of the FMDV type O CATHAY lineage across Asia might be 

temporally and spatially reconstructed as represented in Figure 2-6. 

The historical phylodynamics of the FMDV O CATHAY lineage, as reconstructed 

by the skyline model using the full currently available VP1 coding sequences database 

(Figure 2-5), underwent three distinct and chronologically consequent evolutionary 

stages. 
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Figure 2-5  BSP of log effective population size (𝑵𝒆𝝉) against time in years estimated from the full O CATHAY 
FMDV database. Light red ribbon defines the 95% HPD interval area. 

In the initial stage, the genetic diversity was roughly constant until 1997, after 

which there were two increasing phases within a period of 3 years from 1997 to 2000, 

with the highest peak in 1999. The last stage is characterised by four sequential 

declining phases, with a rapid sharp drop between 2004 and 2006. This triphasic 

phylodynamic feature might be associated with an oscillatory tendency of FMDV 

genetic diversity driven by a first expansion phase due to the introduction of the virus 

into Taiwan and Vietnam and the trigger of the Philippines epidemic, and a later 

contraction phase following steps taken to eradicate the disease from the Philippines 

and the decrease in the number of outbreaks reported from Taiwan, characterised by 

the period between 2001 and 2009 when few cases were reported. This assumes that 

the FMDV type O CATHAY topotype has been maintained constantly within the Hong 

Kong SAR livestock system. 
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Figure 2-6  Chronological evolutionary trend and transmission ancestry of the O CATHAY FMDV topotype in 
Southeast Asia. 

2.5 Discussion 

The evolutionary dynamics of the O CATHAY topotype of FMDV have been 

analysed allowing the transmission dynamics to be reconstructed across countries in 

Southeast Asia that have been impacted by this lineage. The O CATHAY FMDV strains 

isolated from outbreaks reported in Hong Kong, Taiwan and Philippines were defined 

as belonging to three different sublineages, which were related by a shared common 

ancestry to an unsampled FMDV strain sourced from Hong Kong SAR. The O CATHAY 

FMD epizootic in the Philippines resulted from a single introduction and was 

characterised by three main transmission hubs in Rizal, Bulacan and Manila. Although 

the evolutionary dynamics of the O CATHAY FMDV lineage were described by three 

phases from the skyline reconstruction, this was not entirely consistent with the 

monthly epidemic curve (Figure 2-3). This could be either due to a spatio-temporal bias 

in the genetic information analysed or in the incompleteness of the outbreak reporting 

database used, or both.  

The phylodynamics of FMDV reconstructed from the FMDV type O CATHAY VP1 

coding sequences indicates a marked reduction in viral diversity in the last 10 years, 

corresponding to the eradication of FMD in the Philippines and the more limited 

disease events experienced in Taiwan. Furthermore, the introduction of the FMDV type 

O SEA topotype Mya-98 lineage into Hong Kong SAR during 2010 could have reduced 

the genetic diversity within O CATHAY lineages through direct competition with 
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available hosts, as well as the presence of cross-protective antibodies in convalescent 

animals. These findings indicate that the O CATHAY topotype is maintained in the Hong 

Kong SAR ecosystem and sporadically spread from there to other Southeast Asian 

countries, as would be the case for the Philippines in 1994 and Vietnam in 1997. 

However, few O CATHAY FMDV strains have been reported from mainland China, 

which has the largest swine production industry in the world (representing over 51% 

of the world’s pig population). These few isolates were collected in 1986, 2000, 2001 

and 2003, therefore sampling bias or underreporting of epidemic events occurring in 

China would likely have an impact on assessing the geographical movements of the 

FMDV type O CATHAY topotype. It is, nevertheless, clear from the analysis that a 

transmission link exists between China and Hong Kong SAR, thus indicating a 

historically southward movement of the O CATHAY FMDV lineage. 

The molecular clock estimated here for the O CATHAY topotype is at the high 

end of evolutionary rate estimates for FMDV. Previously estimates reported an average 

evolutionary rate across all FMDV serotype of 2.48×10-3 nt/site/yr (Tully and Fares, 

2008), while rates of 3.14×10-3, 1.3×10-3 and 4.8×10-3 nt/site/yr were reported for 

serotype O (Tully and Fares, 2008, Yoon et al., 2011a, Jenkins et al., 2002). In addition, 

lineage-based FMDV molecular clock rates of 2.8×10-3, 6.65×10-3, 7.81×10-3 and 

2.7×10-3 nt/site/yr were previously estimated for the O-PanAsia lineage in India, O-

PanAsia-2 sublineage in Pakistan and Afghanistan, and type O in East Africa, 

respectively (Balinda et al., 2010a, Hemadri et al., 2002, Jamal et al., 2011a). The higher 

rate of FMDV evolution reported for the A Iran-05 FMDV lineage in Afghanistan and 

Pakistan (1.2×10-2 nt/site/yr) (Jamal et al., 2011c) was similar to the molecular clock 

for the O CATHAY topotype estimated by this study. Therefore, genotypically and 

regionally variable evolutionary rates may in fact reflect real differences in the 

epidemiological dynamics and host-interaction of FMDV. 

Although using a large database of FMDV isolates and generating a 

comprehensive picture of the O CATHAY topotype evolutionary history, this study has 

some limitations largely derived from the nature of the genetic data used for the 

analysis. The VP1 coding region, although defining only ~8% (639 nt of length) of the 

complete FMDV genome, is the most variable section of the FMDV genome and is 

historically used for tracing the movement and spread of FMD globally (Knowles and 

Samuel, 2003, Samuel and Knowles, 2001) and, furthermore, provides the basis for 

FMDV genotype definition (Knowles et al., 2010a). Analysing a larger part of the FMDV 
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genome, such as the whole capsid region or the full-length genome, would produce 

results with a higher resolution (Cottam et al., 2006, Cottam et al., 2008b). However, it 

should be noted that recombination events seem to be more widespread in other part 

of the genome (Carrillo et al., 2005, Jackson et al., 2007, Wright et al., 2013), thus 

representing a limitation in interpreting results based on full-length genome analysis 

of large scale FMDV evolutionary studies. The ratio of per-site recombination to 

mutation rate here estimated from the full currently available FMDV type O CATHAY 

topotype VP1 coding sequences database is very low indicating that these results are 

not influenced by the process of recombination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

77 
 

CHAPTER 3 

A model framework for simulating space-time 

epidemiological and genetic data 

3.1 Rationale 

As reviewed in Chapter 1, an extensive literature has been devoted to the topic 

of phylodynamics for linking the population genetic concept of effective population size 

𝑁𝑒 with the evolutionary dynamics of virus transmission in space and time. However, 

studies published on this topic had rather limited focus on trying to disentangle the 

relationship of 𝑁𝑒 with the actual number of infected cases. In addition, no studies have 

endeavoured to compare viral population dynamics derived from genetic sequences 

with empirical data observed from a completely sampled large epidemic where either 

prevalence or incidence are accurately observed through time. One exceptional 

example of a fully-resolved real disease epidemic is the UK 2001 FMD event, which is 

currently the largest and most completely sampled virus disease epidemic. To study 

the relationship between the dynamics as reconstructed from viral sequences and the 

actual count of infected cases over time, a thorough investigation of the fully-resolved 

UK 2001 FMD epidemic making use of the epidemiological data extracted at the time 

from the field outbreak investigation was undertaken. As discussed in §1.3, the genetic 

component of the epidemic was fully simulated for the entire epidemic using an 

evolutionary model parameterised from the 39 already characterised sequence data 

(Cottam et al., 2006, Cottam et al., 2008a, Konig et al., 2009). In order to generate a 

complete epidemiological and genetic dataset in which prevalence, incidence and WGS 

are linked to the fully-resolved transmission tree, a model framework has been built 

for: 

 Reconstructing the transmission tree underlying the UK 2001 FMD epidemic 

using the epidemiological data and, therefore, providing a who-infected-who 

transmission network; 
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 Using the transmission tree as a backbone for simulating an FMDV WGS for 

each IP generated from a Markovian evolutionary model informed with data 

extracted from prior FMDV genetic analyses; 

 Estimating the virus demographic history from the simulated WGS using the 

BSP and comparing this with the empirical prevalence and incidence data 

extracted from the UK 2001 FMD epidemiological data. 

The model framework here described constitutes the mainstay algorithm for 

generating the WGS data that will be used in subsequent chapters for investigating in 

detail the influence of sampling and population structure in the relationship between 

reconstructed demographic history from sequence data and the actual count of 

infected cases, and its scaling formulations.   

3.2 Model Framework 

3.2.1 Data 

The FMD epidemic affecting the UK in 2001, was caused by a virus belonging to 

the FMDV type O PanAsia lineage (Knowles et al., 2001b), and 2026 farms were 

confirmed at the time of the epidemic event as IPs. The introduction of FMDV into UK 

has been attributed to the illegal importation of infected or contaminated meat or meat 

products which were consumed as swill feed to pigs reared at Burnside Farm, Heddon-

on-the-Wall (IP04) (DEFRA, 2002). The movement of the pigs from IP04 to the Essex 

abattoir (IP01) was the trigger and spread of the first phase of the epidemic in Essex 

and Kent, which started on the 19th of February (Gibbens et al., 2001). A second phase 

of the epidemic that was country wide was attributed to the airborne spread of FMDV 

from IP04 to sheep at Prestwick Hall Farm, Callerton (IP06), from where infected sheep 

were moved and sold in markets located in Hexham (Northumberland) and Longtown 

(Cumbria) thus resulting in the dissemination of the disease in multiple clusters 

throughout England and Wales (Gloster et al., 2005, Konig et al., 2009). In order to 

control the outbreak, a national ban on animal movements along with the culling of all 

susceptible animals on confirmed IPs and Direct Contacts (DCs) was introduced on the 

23rd of February; thereafter, the control (‘stamping out’) measures were intensified 
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from the 31st of March and the so called 24/48 hour IP/CP culling policy (i.e. the culling 

of animals present in any contiguous premises to an infected IP within 48 hours) was 

adopted (Kao, 2002). The last case was reported the 30th of September in Cumbria. 

3.2.1.1 Epidemiological data 

Epidemiological data were retrieved from the original DEFRA database (Table 

3-1), which consisted of information collected from each IP through paper forms 

during the veterinary field inspections (Taylor, 2012). The database was inspected for 

missing and/or illogical values and completed and/or corrected whenever possible. 

Table 3-1. Description of observed epidemiological variables with associated symbols entered in the model. 

Symbol Details 
𝐼𝐷 Index number of IP 
𝐾  Set of IPs 
𝑌𝑙𝑜𝑛 Longitude Y – decimal degree (𝑌𝑙𝑜𝑛 = {𝑌𝑘

𝑙𝑜𝑛: 𝑘 = 1, … , 𝐾}) 
𝑋𝑙𝑎𝑡 Latitude X – decimal degree (𝑋𝑙𝑎𝑡 = {𝑋𝑘

𝑙𝑎𝑡: 𝑘 = 1, … , 𝐾}) 
𝑇𝑙𝑒𝑠  Time of oldest lesion (first observation of FMD) in IP (𝑻𝒍𝒆𝒔 = {𝑇𝑘

𝑙𝑒𝑠: 𝑘 = 1, … , 𝐾}) 
𝑇𝑟𝑒𝑝 Time of report of IP (𝑇𝑟𝑒𝑝 = {𝑇𝑘

𝑟𝑒𝑝
: 𝑘 = 1, … , 𝐾}) 

𝑇𝑠𝑎𝑚  Time of sample collection from IP (𝑇𝑠𝑎𝑚 = {𝑇𝑘
𝑠𝑎𝑚: 𝑘 = 1, … , 𝐾}) 

𝑇𝑟𝑒𝑚  Time of removal of IP (𝑇𝑟𝑒𝑚 = {𝑇𝑘
𝑟𝑒𝑚: 𝑘 = 1, … , 𝐾}) 

𝐿𝑎𝑔𝑒  Age of oldest lesion – time from infectiousness to report – in IP (𝑳𝒂𝒈𝒆 = {𝐿𝑘
𝑎𝑔𝑒

: 𝑘 = 1, … , 𝐾}) 

𝑁𝑡𝑜𝑡 Total population of animals in IP (𝑁𝑡𝑜𝑡 = {𝑁𝑘
𝑡𝑜𝑡: 𝑘 = 1, … , 𝐾}) 

𝑆𝑟𝑒𝑝 Viral sequence sampled in IP at time 𝑇𝑠𝑎𝑚  (𝑆𝑟𝑒𝑝 = {𝑆𝑘
𝑟𝑒𝑝

: 𝑘 = 1, … , 𝐾}) 

3.2.1.2 Genetic data 

Genetic data were retrieved from the database of FMDV isolates collected 

during the UK 2001 FMD epidemic and previously sequenced by the WRLFMD, The 

Pirbright Institute - UK (Cottam et al., 2006, Cottam et al., 2008a, Konig et al., 2009), 

which consists of 39 FMDV WGSs (Appendix 3). 

3.2.2 Transmission tree reconstruction 

A transmission tree is a directed acyclic graph which describes the ‘who-

infected-who’ network topology (Figure 3-1). The model here developed for 

reconstructing the transmission tree between-premises was an individual-based 
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model of disease transmission, which provided a representation of the FMD infection 

dynamics that takes into account the timing and location of cases (Figure 3-1), and was 

constructed on a farm level (i.e. farms are considered as single epidemiological units), 

therefore omitting the potential impact of within-farm epidemic dynamics. Hence, for 

the purposes of these models it was assumed that FMD spread within a farm is 

instantaneous with all the animals that contribute to the transmission network 

becoming infected and subsequently infectious together. In addition, this model 

considered a single homogeneous virus population that was introduced on to each new 

farm and, following possible mutation, a single homogenous virus population 

transmitted onward. All but one premises started as susceptible, where the first 

infected premises is assumed to have been infected from an external source. FMD has 

a staged progression in time and, therefore, can be represented in a series of successive 

disease stages. These stages can be described as infected, infectious, reported and 

removed. Consider a set of 𝐾 infected premises and let 𝐽 be a function defining the 

transmission tree, a premise 𝑘 at location (𝑋𝑘
𝑙𝑎𝑡, 𝑌𝑘

𝑙𝑜𝑛) is infected at time 𝑇𝑘
𝑒𝑥𝑝 by a 

source 𝑖. Following a latency period 𝑇𝑘
𝑙𝑎𝑡, 𝑘 becomes infectious at time 𝑇𝑘

𝑙𝑒𝑠 (the time at 

which the oldest lesion would have first become apparent), is reported at time 𝑇𝑘
𝑟𝑒𝑝, 

and is removed from the susceptible population at time 𝑇𝑘
𝑟𝑒𝑚. During the reporting of 

IP 𝑘, the interval between becoming infectious and reporting is assessed in the field by 

experts based on the ageing of the oldest clinical lesion 𝐿𝑘
𝑎𝑔𝑒

 observed on the premise. 

The clinical sample is collected at time 𝑇𝑘
𝑠𝑎𝑚, thus, also defining the time a viral 

sequence 𝑆𝑘
𝑟𝑒𝑝 is obtained. 
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Figure 3-1. FMDV transmission between a parent IP 𝒊 and a daughter IP 𝒌. Grey rectangles indicate observed 
variables. 

The transmission tree 𝐽 was estimated using the observed data recorded during 

the UK 2001 FMD epidemic (Table 3-1). The unobserved latency period 𝑇𝑙𝑎𝑡 for each 

IP was randomly sampled from a gamma distribution 𝛤(𝜅, 𝜃) with shape and scale 

parameters set to be 𝜅=22.12 and 𝜃=0.22, respectively, which defines an interval with 

a mean of 4.87 and variance 1.07 (Figure 3-2) (Charleston et al., 2011, Mardones et al., 

2010). The time to infection, 𝑇𝑒𝑥𝑝, was assumed to be 𝑇𝑒𝑥𝑝 = 𝑇𝑙𝑒𝑠 − 𝑇𝑙𝑎𝑡. Time zero 

was assumed to be 𝑇𝐼𝑃4
𝑒𝑥𝑝 and IP4 to have been infected by an external source. 

 

Figure 3-2. Gamma probability density function 𝜞(𝜿, 𝜽) for the latency time variable. Solid line: median; dash-
dotted lines: 0.025 and 0.975 quantiles.  
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3.2.2.1 Spatial transmission 

FMD transmission between IPs was modelled using a kernel-based approach, 

similar to that used previously for avian influenza (Truscott et al., 2007), FMD (Chis 

Ster and Ferguson, 2007, Chis Ster et al., 2009) and bluetongue (de Koeijer et al., 2011). 

Accordingly, the force of infection 𝜆 experienced by a susceptible IP 𝑘 from an infected 

IP 𝑖 at time 𝑡 was assumed to be: 

𝜆𝑖𝑘 = 𝛽𝑆𝑘𝐾(𝑑𝑖𝑘)𝐼𝑖(𝑡) 

where 𝛽 was the transmission rate parameter (set as 5.8×10-5) (Haydon et al., 1997); 

𝑆𝑘 = 𝑠𝑁𝑘
𝑡𝑜𝑡  (𝑠=15.2) and 𝑇𝑖 = 𝑡𝑁𝑖

𝑡𝑜𝑡  (𝑡=4.3×10-7) identify, respectively, the per-capita 

susceptibility and the per-capita transmissibility parameters for the total animal 

population 𝑁𝑡𝑜𝑡  on any given IP (Keeling et al., 2003). The distance kernel 𝑍(𝑑𝑖𝑘) was 

implemented as a density-independent formulation and was given by: 

𝑍(𝑑𝑖𝑘) =
𝑧(𝑑𝑖𝑘)

∑ 𝑧(𝑑𝑖𝑘)𝑘≠𝑖
 

where the geographical distance 𝑑 between the IP locations was calculated using the 

Haversine formula (Sinnott, 1984). The spatial dispersion kernel 𝑧(𝑑𝑖𝑘) was 

implemented as a power-law function (Chis Ster and Ferguson, 2007) given by: 

𝑧(𝑑𝑖𝑘) = (1 +
𝑑𝑖𝑘

𝛼
)

−𝛾

 

The kernel offset (𝛼) and power (𝛾) parameters were retrieved from the 

literature (Chis Ster and Ferguson, 2007, Chis Ster et al., 2009). The transmission 

probability from an infected IP 𝑖 to a susceptible IP 𝑘 at time 𝑡 is then given by: 

𝑝𝑖𝑘 = 1 − 𝑒−𝜆𝑖𝑘(𝑡) 

The algorithm used to infer the most likely transmission tree (Figure 3-3) 

implemented a maximum-likelihood approach with a discrete time step (i.e. one day) 

for evaluating time dependencies between any source and recipient IP pairs given the 

transmission probability of link. The parent-daughter links were stochastically 

assigned using a multivariate trial based on their estimated likelihoods. 

3.2.2.2 Prevalence and incidence estimation 

Prevalence and incidence curves were based on three estimates, which 

corresponded to the time of three disease stages set for each IP and as described in 
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§3.2.2. The 𝑃𝑒𝑥𝑝 prevalence assumes infection to be defined over the interval from 

exposed to culled. The 𝑃𝑙𝑒𝑠 assumes infection to be defined over the interval from the 

appearance of lesions to culled. The 𝑃𝑟𝑒𝑝 assumes infection is defined over the interval 

from reporting to culled, and in each case prevalence at any point is the number of 

farms infected when infection is defined by these different ways. The 𝐼𝑒𝑥𝑝 incidence 

estimates the number of new exposed IPs at each time (expressed in days) over the 

entire duration of the epidemic; the 𝐼𝑙𝑒𝑠 incidence estimates the number of new IPs 

showing lesions at each day; 𝐼𝑟𝑒𝑝 incidence estimates the number of new IPs being 

reported each day over the entire course of the epidemic. These measures could be 

arbitrarily classified as exposure prevalence/incidence (e.g. 𝑃𝑒𝑥𝑝 prevalence), 

infectious prevalence/incidence (e.g. 𝑃𝑙𝑒𝑠 prevalence) and reporting 

prevalence/incidence (e.g. 𝑃𝑟𝑒𝑝 prevalence). 

3.2.2.3 Computing the generation time 

Several definitions of generation time are present in the literature. The 

epidemiological generation time is the time interval between sequential cases, which 

is assumed to be equal to the duration of infectiousness (Fine, 2003, Svensson, 2007, 

Pomeroy et al., 2008, van Ballegooijen et al., 2009). However, Kenah et al. (2008) refer 

to the above epidemiological quantity as the generation interval, where the generation 

time is recognised to be the average duration of infection, which is longer than the 

generation interval during the exponential phase of an epidemic and shorter in the 

decline phase (Koelle and Rasmussen, 2012). Others studies describe the generation 

time as the prevalence-to-incidence ratio (Frost and Volz, 2013, White et al., 2006) or 

the expected time before an infected individual transmits the infection (Frost and Volz, 

2010). Although in population biology a plethora of generation time definitions exist 

(Steiner et al., 2014), the common definition of intergeneration interval or time 

between two consecutive generations within a population (i.e. the parent-daughter 

interval) (Bienvenu and Legendre, 2015) would essentially overlap with the first 

epidemiological definition of generation time given above. In coalescent-based 

approaches, however, the generation time might be also described as the time between 

transmission events (Kuhnert et al., 2011). For the purpose of this study, three 

formulations of the generation time have been investigated. 



Chapter 3 – A Model Framework for Simulating Space-Time Epidemiological and Genetic Data 

84 

 

Generation time 𝜏 

The first formulation defines the generation time with its common 

epidemiological definition of time interval between sequential cases (Fine, 2003, 

Svensson, 2007, Pomeroy et al., 2008, van Ballegooijen et al., 2009), which has been 

computed from the reconstructed UK 2001 transmission tree as 𝜏 = 𝑇𝑘
𝑒𝑥𝑝 − 𝑇𝑖

𝑒𝑥𝑝, 

where 𝑖 is the parent IP and 𝑘 is the daughter. This formulation will be referred in this 

text as the epidemiological generation time 𝜏. 

Generation time 𝜏𝑐 

The second formulation defines the generation time as the time interval 

between epidemiologically unrelated cases, or the serial cases interval (Frost and Volz, 

2010). This parameterisation has been computed from the UK 2001 epidemiological 

data as 𝜏𝑐 = ∑
𝐶𝑡

𝑇
𝑇
𝑡=0 , where 𝐶𝑡 is the actual count of infected cases at time 𝑡. This 

definition of generation time will be referred in text as the serial case interval 𝜏𝑐. 

Generation time 𝜏𝑝 

The last formulation of the generation time is defined as the average time 

between infections at a given time at the population level. This has been computed 

using the inverse of the incidence-to-prevalence ratio (White et al., 2006, Frost and 

Volz, 2013). Thus it can be derived from the empirical epidemiological data at each 

time 𝑡 of the UK 2001 FMD epidemic as 
𝑃𝑡

𝑒𝑥𝑝

𝐼𝑡
𝑒𝑥𝑝 . This definition will be referred to in the 

text as the prevalence-to-incidence ratio 𝜏𝑝. 
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Figure 3-3. Transmission tree model scheme and algorithm. Direct acyclic graph illustrating dependencies in 
the model [bold symbols represent set of variables (i.e. 𝑇𝑒𝑥𝑝 = {𝑇1

𝑒𝑥𝑝
, … , 𝑇𝐾

𝑒𝑥𝑝
})]. 

3.2.3 Genetic simulation 

FMDV genetic sequences were simulated implementing the Tamura and Nei 

(1993) model of DNA sequence evolution, which defines the following nucleotide 

substitution rate matrix: 

𝑄 = {𝑞𝑖𝑘} = [

−(𝛼1𝜋𝐶 + 𝛽𝜋𝑅)
𝛼1𝜋𝑇

𝛽𝜋𝑇

𝛽𝜋𝑇

𝛼1𝜋𝐶

−(𝛼1𝜋𝑇 + 𝛽𝜋𝑅)
𝛽𝜋𝐶

𝛽𝜋𝐶

𝛽𝜋𝐴

𝛽𝜋𝐴

−(𝛼2𝜋𝐺 + 𝛽𝜋𝑌)
𝛼2𝜋𝐴

𝛽𝜋𝐺

𝛽𝜋𝐺
𝛼2𝜋𝐺

−(𝛼2𝜋𝐴 + 𝛽𝜋𝑌)

] 

where nucleotides are ordered T, C, A and G. The parameters used for the TN93 model 

are specified in Table 3-2. The TN93 model was selected for genetic simulations after 

performing jModelTest 2.1.7 analysis (Guindon and Gascuel, 2003, Darriba et al., 2012) 

using the 39 full-genome UK 2001 FMDV field isolates, which reported the TN93 as the 

best-fit model of nucleotide substitution. 

Table 3-2. Description of parameters defined for the Tamura and Nei model of nucleotide substitution 
(Tamura and Nei, 1993). 

Symbol Details 
𝜋𝑇 , 𝜋𝐶 , 𝜋𝐴, 𝜋𝐺  Frequencies of nucleotide T, C, A, and G 
𝜋𝑌 , 𝜋𝑅  Frequencies of pyrimidines and purines 
𝛼1, 𝛼2 Rates of transitional changes between purines and between pirimidines 
𝛽 Rate of transversional changes 



Chapter 3 – A Model Framework for Simulating Space-Time Epidemiological and Genetic Data 

86 

 

A previously sequenced FMDV isolate collected from the outbreak source IP 

(IP4) during the UK 2001 FMD epidemic (Appendix 3) was used for setting the initial 

virus genome from which the sequences of IPs were generated according to the 

previously reconstructed transmission tree network. FMDV was defined to evolve at a 

molecular clock rate 𝜇 equal to 2.37×10-5 nt/site/day (Orton et al., 2013), as 

parameterised using BEAST 1.8.0 (Drummond and Rambaut, 2007, Drummond et al., 

2012). For each transmission link, the number of nucleotides by which a virus genome 

sampled on farm 𝑘 differed from that on the farm from which it was infected (farm 𝑖) 

was randomly sampled from a Poisson distribution 𝑃𝑜𝑖𝑠(𝜆) setting the mean to be 𝜆 =

𝜇𝑀∆𝑡, where 𝑀 was the length of the FMDV complete genome [for the UK 2001 FMD 

epidemic 𝑀 is equal to 8196 nucleotides, as estimated from the field isolates (Cottam 

et al., 2006)] and ∆𝑡 is the evolutionary duration (the sum of the time intervals 

computed along the transmission tree – refer to 3.2.3.1). The algorithm used to 

simulate FMDV sequences implemented a discrete-time Markov chain model of first 

order (Rios Insua et al., 2012) to derive nucleotide changes in the recipient genome 

which depended on the nucleotide state of the source genome (Figure 3-5). In this 

inference scheme, the Markov transition probability matrix 𝑃(𝑡) = {𝑝𝑖𝑘} = 𝑒𝑄(𝑡) over 

time 𝑡 estimated from the source genome using the TN93 model provided the 

probability of selecting any of the four nucleotides to be changed at the randomly 

selected site in the recipient genome determined chosen from a discrete uniform 

distribution 𝑈(1, 𝑀). The 𝛼1, 𝛼2, 𝛽 parameters used to derive 𝑃(𝑡) were estimated from 

the available UK 2001 FMDV full-genome sequences (Appendix 3), resulting in values 

of 11.325, 23.281 and 3.7, respectively. 

 

Figure 3-4. Genetic simulation model scheme and algorithm. Nucleotide substitution probabilities set under the 
discrete-time Markov chain model of first order. 
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3.2.3.1 Simulation of genetic mutations along the transmission tree 

The evolutionary duration ∆𝑡 has been derived from the reconstructed 

transmission tree taking into account the dependency structure of sampled isolates. 

Briefly, a virus is introduced in an epidemiological system at coalescent time 𝐶0 and 

evolves along a transmission tree structured as in Figure 3-5. Thus, the time length of 

the evolutionary duration of a sampled isolate 𝑆 which evolved from a coalescent 

ancestor 𝐶 is equal to: 

∆𝑡 = (𝑇𝐶−1 − 𝑇𝐶) + (𝑇𝑆 − 𝑇𝐶) 

As a result of the underlying tree structure, how time fixed mutations are passed 

to subsequent generations varies according to the numbers of lines of descent derived 

from a single coalescent ancestor. Virus lineages can evolve directly from a single 

coalescent ancestor and, therefore, they inherit the mutations of the genome sequences 

at the ancestor point (as being the case for 𝑆1 and 𝑆8 which are directly descending 

from 𝐶0 and 𝐶7). For example, the sampled virus isolate 𝑆1, directly descended from the 

index virus 𝐶0, shares common mutations with the intermediate lineage recovered at 

the coalescent time 𝐶1 which are accumulated within the 𝑇𝐶1
− 𝑇𝐶0

 time interval, and 

has unique mutations accumulated during the 𝑇𝑆1
− 𝑇𝐶1

 time. Alternatively, multiple 

coalescent events are branched from the evolving virus lineage of a single coalescent 

ancestor: this lineage acquires genetic mutations forward in time which are then 

inherited and recovered at each subsequent coalescent point and, therefore, passed to 

descent sampled isolates. As an example of the latter case, the sampled virus isolate 𝑆3 

is descended from the evolving lineage derived from the coalescent ancestor 𝐶1 but is 

directly originated from an intermediate lineage recovered at coalescent time 𝐶4. 

Therefore, 𝑆3 shares mutations which are chronologically accumulated by 

intermediate lineages recovered at coalescent times 𝐶2 (within the 𝑇𝐶2
− 𝑇𝐶1

 time 

interval), 𝐶3 (within the 𝑇𝐶3
− 𝑇𝐶2

 time interval) and 𝐶4 (within the 𝑇𝐶4
− 𝑇𝐶3

 time 

interval), and is characterised by unique mutations accumulated during the 𝑇𝑆3
− 𝑇𝐶4

 

time. 

The above evolutionary structure defined for inheriting mutations between 

infector and infected farms enables the preservation of the dependencies of sampled 

lineages along the transmission tree which are recovered from the simulated 

sequences. In addition, in order to account for high within-farm genetic diversity in 
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systems where multiple animals are infected within a farm (as being the case for the 

UK 2001 FMD outbreak), the coalescent event for multiple evolving lineages was let to 

be early in infection, backward in time of the first related coalescent ancestor (i.e. the 

infection time of the infector farm rather than the infection time of the infected farm). 

 

Figure 3-5. Evolutionary structure of the dependency between sampled lineages along a reconstructed 
transmission tree. Red nodes represent coalescent ancestors; orange nodes represent coalescent events of single 
lineages, whilst green tips represent sampled virus isolates. 

3.2.3.2 Evolutionary analysis of the UK 2001 FMDV WGS simulated 

alignment 

Evolutionary analyses were performed using BEAST 1.8.0 package (Drummond 

et al., 2012, Drummond and Rambaut, 2007). The analysis was executed with the TN93 

substitution model and the strict clock evolutionary model, setting the molecular clock 

used for the simulation (2.30×10-5) as the substitution rate defined by a gamma 

distribution 𝛤(𝜅, 𝜃) prior of 𝜅=0.0084 and 𝜃=1000.0. A piecewise constant Bayesian 

skyline model with 10 groups was used as tree prior (Drummond et al., 2005). Other 

priors were set with the defaults parameters. Additional comparisons using only VP1 

coding sequences were also undertaken. 
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3.2.4 Model implementation 

The model was coded in the R programming language (R Core Team, 2015). 

Running the transmission tree reconstruction for the full UK 2001 FMD outbreak (2026 

IPs) and simulating the corresponding genetic component took about 15 minutes using 

R 3.2.1 on an Intel i7 Quad Core processor with clock speed 3.40 GHz and 16 Gb of RAM 

memory. 

3.3 Results 

Three different epidemic datasets were constructed from the overall UK 2001 

FMD database: the first, used the entire set of IPs described by DEFRA at the time of 

the epidemic (𝑛=2026); the second excluded IPs that were at a later stage re-assessed 

as negative premises based on the laboratory analysis of collected samples, and those 

with missing results (𝑛=1428); the third included only the confirmed IPs and those 

with missing results (𝑛=1616) (Ferris et al., 2006, Taylor, 2012). For each of these 

datasets a transmission tree was estimated and corresponding WGSs simulated. All 

parameters are reported together with their standard deviations. 

3.3.1 UK 2001 FMD transmission tree reconstruction 

From the reconstructed transmission tree, epidemiological parameters were 

estimated according to two points in time of the UK 2001 FMD epidemic. These 

corresponded to the introduction of the national movement ban (NMB) (5th day from 

the start of the epidemic) and the subsequent 24/48 hour IP/CP culling policy (41st day 

from the start of the epidemic). The average number of secondary cases (𝑅𝑡) generated 

from a single IP across the entire outbreak is constrained to be equal to 
𝑁−1

𝑁
 (Figure 3-

5). The 𝑅𝑡 mean estimates were shown to increase for the period before the 

introduction of the NMB (5.5) and to decrease following the implementation of the 

24/48 hour IP/CP culling policy (0.8). 
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The average value of the epidemiological generation time 𝜏 was estimated to be 

7.2±2.7 days for the entire outbreak (Figure 3-6, Table 3-3). 𝜏 was found to be shorter 

for the period preceding the NMB (2.2±2.3), conversely estimates for the periods after 

the implementation of the two different control policies (NMB and the 24/48 hour 

IP/CP culling policy) were not significantly different from the average value obtained 

for the entire epidemic. The average serial case interval 𝜏𝑐 was estimated to be 8.7 days, 

and was 2.5±0.9 days before the NMB was implemented. The introduction of the NMB 

and the 24/48 hour IP/CP culling policies impacted on 𝜏𝑐 which lengthened to 13.7±5.9 

and 14.3±4.4, respectively. The prevalence-to-incidence ratio 𝜏𝑝 was found to be on 

average 12.2±8.4, and lower for the period before the NMB was imposed (average 

value of 4.1±2.2), indicating an increasing generation time for new IPs following NMB. 

With the implementation of the NMB and the further 24/48 hour IP/CP culling policy 

𝜏𝑝 increased to 9.2±3.2 and 13.5±8.9, respectively. 

The culling time, defined by the time interval between exposure 𝑇𝑒𝑥𝑝 and the 

stamping-out of the animals present in the IP (𝑇𝑟𝑒𝑚), was estimated on average as 

9.1±2.8 days. This interval was not found to be statistically different for the epidemic 

period preceding the NMB, proceeding the NMB and following the implementation of 

the 24/48 hour IP/CP culling policy (Appendix 4) (𝑝>0.05). 

The average geographical distance of parent-daughter transmission links was 

estimated to be 27.6±60.2 km. Before the implementation of the NMB control policy 

longer transmission links were reported (average value of 273.7±245.9 km), whilst 

more locally defined infection routes were estimated after the introduction of both the 

NMB and the 24/48 hour IP/CP culling policies (average value of 22.3±44.7 km and 

30.5±62.5 km, respectively). 

Similar results were obtained assessing the other UK 2001 FMD epidemic 

datasets (Appendix 4), with no statistical significant difference to report (𝑝>0.05). 



Chapter 3 – A Model Framework for Simulating Space-Time Epidemiological and Genetic Data 

91 

 

 

Figure 3-6. Number of secondary cases per primary infection (𝑹𝒕, A) and epidemiological generation time 
(𝝉, B), serial case interval (𝝉𝒄, C) and prevalence-to-incidence ratio (𝝉𝒑, D) estimated for the UK 2001 FMD 

epidemic using the full IPs dataset (𝒏=2026). Blue lines: kernel density estimates; solid lines: mean; dotted lines: 
0.025 and 0.975 quantiles. 

The reconstructed epidemic tree for the UK 2001 FMD epidemic is shown in 

Figure 3-7, along with the probabilities of transmission estimated for the established 

parent-daughter links. Visually inspecting the tree, the epidemic could be regarded as 

subdivided in 3 phases: a first exponentially growing phase lasting until ~50th day from 

the start of the epidemic, the initial decline phase lasting up to the ~80th day of the 

epidemic, and a prolonged ‘tail-phase’ until the end of the epidemic. These phases were 

found to overlap with the shape of the epidemic curve drawn from the incidence cases 

over time data, defining an upward slope with a peak at the 45th day (time frame 1st to 

45th day), a downward slope until the 80th day (time frame 46th to 80th day) and the 

final tail-phase (time frame 81st to 232nd day). No substantial variations were observed 

in the tree topologies running the model using the three different epidemic datasets. 

The epidemic size (i.e. incidence cases over time) estimated from the reconstructed 

epidemic curve resulted in an average value of 8.9±11.5 IPs/day with a total number 

of 52 new IPs (𝐼𝑒𝑥𝑝) reported at the epidemic peak (Table 3-3). The data preceding, 

proceeding the NMB and following the 24/48 hour IP/CP culling policy were estimated 

as 4.1±2.8, 29.8±12.2 and 5.1±5.8 IPs/day, respectively (Appendix 5). At the time when 

the 24/48 hour IP/CP culling policy came into force, 57% (1149/2026) of IPs was 

reported to be already infected. No statistical differences (𝑝>0.05) were reported 

between the incidences estimated using the different formulations defined in §3.2.2.2. 

Average disease prevalence for the entire epidemic was estimated as 88.3±113.88 IPs 
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using the 𝑃𝑒𝑥𝑝 formulation, with the prevalence size at epidemic peak of 442 IPs (Table 

3-3). Average values of 18.3±15.4, 272.7±129.7 and 56.9±71.9 IPs were estimated from 

the data preceding, proceeding the NMB and following the 24/48 hour IP/CP culling 

policy (Appendix 5). Statistical differences were described between the three 

formulations of prevalence (𝑃𝑒𝑥𝑝, 𝑃𝑙𝑒𝑠 and 𝑃𝑟𝑒𝑝, defined in §3.2.2.2) (𝑝<0.001), with an 

average multiplicative factor of ~2 between prevalences estimated at sequential 

disease stages. 

The probability of transmission for the parent-daughter links (as estimated 

through the 𝑝𝑖𝑘 equation in §3.2.2.1) were generally indicative of one most likely link 

for both the initial and the ending phases of the outbreak (prob≥0.7), whereas some 

uncertainty was observed for evaluating the middle phase (time window between ~35 

and ~50 days from the beginning of the epidemic). No significant differences were 

reported between the three different epidemic datasets (𝑝>0.05). 

Table 3-3. Empirical prevalence 𝑷, incidence 𝑰, epidemiological generation time 𝝉, serial case interval 𝝉𝒄, 
prevalence-to-incidence ratio 𝝉𝒑 and number of secondary cases per primary infection 𝑹𝒕 with its variance 

𝒗𝒂𝒓(𝑹𝒕) estimated from the reconstructed transmission tree according to each phase of the UK 2001 FMD 
epidemic.   

  Epidemic Phase 
  Overall Exponential Peak Decline Tail End 

Epidemiological 𝝉  7.18±2.70 7.42±2.87 - 6.56±2.21 7.42±2.60 
Serial case interval 𝝉𝒄  8.73 9.33±6.06 21.30 22.06±1.15 12.67±2.90 
Prevalence-to-incidence ratio 𝝉𝒑  12.25±8.40 7.57±3.19 12.82 15.37±5.84 12.99±9.52 

Number of secondary cases 𝑹𝒕  0.99±1.99 1.33±2.52 0.58±0.89 0.74±1.39 0.93±1.87 
𝒗𝒂𝒓(𝑹𝒕)   3.95 6.37 0.79 1.94 3.51 

Prevalence 
𝑃𝑒𝑥𝑝  88.29±113.88 195.42±153.66 442.00 202.88±115.54 30.57±14.13 
𝑃𝑙𝑒𝑠  46.18±60.81 96.40±81.70 230.00 144.00±64.42 15.89±7.45 
𝑃𝑟𝑒𝑝  20.36±30.71 48.38±44.15 127.00 50.06±20.90 5.33±3.47 

Incidence 
𝐼𝑒𝑥𝑝  8.88±11.50 22.33±15.44 52.00 15.43±10.72 3.12±2.22 
𝐼𝑙𝑒𝑠  8.73±11.42 18.11±15.36 47.00 20.48±12.32 3.15±2.23 
𝐼𝑟𝑒𝑝  9.04±11.50 19.27±13.99 46.00 23.31±12.79 3.27±2.34 
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Figure 3-7. Transmission tree (top graph) and probability of parent-daughter established links (bottom 
graph) reconstructed using the full IPs dataset (𝒏=2026). Colours for the transmission tree define the 𝑇𝑒𝑥𝑝 
(black), 𝑇𝑙𝑒𝑠 (red) and 𝑇𝑟𝑒𝑝 (blue) disease stages durations, respectively. Epidemic curves were estimated from the 
𝑃𝑒𝑥𝑝 (orange), 𝑃𝑙𝑒𝑠 (green) and 𝑃𝑟𝑒𝑝 (blue) prevalence data. Values of the estimated probability 𝑝𝑖𝑘 of the 
established transmission links are defined in the legend 

3.3.2 UK 2001 FMDV genetic simulation 

The nucleotide composition for the simulated FMDV genome sequences was 

represented by an average proportion of 0.215 (95PI 0.214 to 0.216), 0.279 (95PI 

0.278 to 0.280), 0.247 (95PI 0.246 to 0.248) and 0.258 (95PI 0.256 to 0.259) T, C, A and 

G nucleotides, respectively. No differences were found (𝑝>0.05) comparing the 

nucleotide composition of the simulated data with the WGS generated from the UK 

2001 FMDV field isolates (𝑛=39), the latter returning an average proportion of 0.215, 
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0.279, 0.248 and 0.258 for T, C, A and G nucleotides, respectively. The average number 

of nt substitutions per transmission link (Appendix 5) estimated from the full 

simulated data was 4.5±6.3. An average of 6.2±4.4, 6.1±8.3 and 3.3±4.26 nt 

substitutions/transmission link were estimated for the period preceding, proceeding 

the NMB and following the 24/48 hour IP/CP culling policy, respectively. No significant 

differences (𝑝>0.05) in the estimated nt substitution/transmission link were reported 

for the 1616IPs and 1428 IPs datasets (Appendix 5). The observed evolutionary 

distance and total nt changes calculated from the index IP (IP4) were found to increase 

linearly with time (𝑅2=0.93; 𝐹1,2025=27291) (Figure 3-8). The linearity in the nt change 

over time was also recovered from the 1616IPs and 1428 IPs. 

 
Figure 3-8. Accumulation of nucleotide differences estimated from the index IP (IP4) for the full IPs UK 2001 
FMDV WGS simulated alignment (n=2026) with time expressed in days. Size of the points increases with 
increased number of nt substitutions. Shaded area represents 95% confidence intervals for the fitted line. 

The phylogenetic trees reconstructed from the simulated data are shown in 

Figure 3-9. Although characterised by a high complexity due to the number of 

sequences, the phylogeny drawn from the simulated data defined five phylogenetic 

clusters, which were recognised in both the neighbor-joining tree and the time-

stamped one generated from the BEAST analyses. No substantial variations were 

apparent from the topology of the phylogenetic trees reconstructed from the three 

different epidemic scenarios investigated. This ‘ladder-like’ topology of the trees might 

be due to strong continual selective pressure with a rapid turnover of lineages over 

time and strong temporal clustering (Gray et al., 2011, Grenfell et al., 2004).  
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Figure 3-9. Tree phylogenies reconstructed using the FMDV WGS simulated from the full IPs dataset 
(𝒏=2026). The phylogenetic trees were computed using the neighbor-joining method in MEGA 6.06 (A), and time-
stamped from the BEAST analyses (B). All the trees were rooted from the outbreak source (IP4). 

3.3.2.1 UK 2001 FMDV evolutionary analysis using WGS data 

The average evolutionary duration (∆𝑡) was estimated as 14.8±3.7 days for the 

full outbreak time window, with the periods preceding, proceeding the NMB and the 

24/48 hour IP/CP culling policy were comparable with the average value estimated for 

the entire epidemic. No significant variation (𝑝>0.5) in the ∆𝑡 estimates were obtained 

running the simulation model for the three different epidemic datasets and for each of 

the time-period assessed (Appendix 5). 

The molecular clock reconstructed from BEAST resulted in a value of 2.05×10-5 

nt/site/day (95%HPD 1.97×10-5 to 2.14×10-5), with no statistical difference observed 

for the other epidemic datasets (𝑝>0.05). These results were comparable with those 

estimated from the 39 previously sequenced UK 2001 FMDV field isolates [2.26×10-5 

nt/site/day, using a relaxed-exponential clock model (Cottam et al., 2006); 2.08×10-5 

nt/site/day, using a relaxed-constant clock model (Cottam et al., 2008a); 2.33×10-5 

nt/site/day here re-estimated using the same strict clock model assumed for 

simulating the WGSs].  

3.3.2.2 UK 2001 FMDV evolutionary analysis using VP1 coding sequences 

A molecular clock reconstructed from BEAST using the VP1 coding sequences 

extracted from the simulated data for the full epidemic dataset (𝑛=2026) resulted in a 

value of 2.36×10-5 (95%HPD 1.94×10-5 to 2.54×10-5), which was comparable with 
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those obtained from the WGS simulation and previously published data [see 3.3.2.1]. 

The average number of nt substitutions per transmission link estimated from the full 

simulated data of VP1 coding sequences was 0.44±1.13. An average of 0.80±0.84, 

0.60±1.59 and 0.31±0.63 nt substitutions/transmission link were estimated for the 

period preceding, proceeding the NMB and following the 24/48 hour IP/CP culling 

policy, respectively. No significant differences (𝑝>0.05) were reported when analysing 

the nt substitutions per transmission link using the 1616 IPs and 1428 IPs datasets. 

3.3.3 Validating simulation with field isolates 

To assess the validity of the simulation process, a subset of the fully simulated 

WGS database was extracted, which corresponded to the 𝑛=39 UK 2001 FMDV field 

isolates previously sequenced (Appendix 3). Phylogenetic reconstruction was 

conducted in both MEGA 6.06 (Tamura et al., 2013) using the neighbor-joining method 

and in BEAST using the same parameters as used for the full analysis (TN93, strict clock 

and BSP models). The average pairwise number of nt substitution was estimated to be 

26.2±17.2 (95%PI 5 to 63, max=91) for the real data, and 44.8±27.4 (95%PI 6.5 to 96, 

min=0, max=109) for the simulated data, with an absolute difference between the real 

and simulated data of 18.6 nt. In addition, the total number of nt substitutions 

estimated between the source (IP4) and the latest reported IP with sequence (IP2027) 

(i.e. root-to-tip distance) was 50 and 85.5±7.0 for the field isolates and the simulated 

data, respectively (absolute difference of 24.5 nt). The molecular clock estimated from 

the UK 2001 FMDV field isolates returned a value of 2.33×10-5 (95%HPD 1.94×10-5 to 

2.71×10-5) nt/site/day, whereas a value of 3.47×10-5 (95%HPD 2.94×10-5 to 4.00×10-

5) nt/site/day was obtained from the simulated data. Again, these values were in line 

with those estimated from the full-simulated epidemic, the VP1 only analysis and with 

those retrieved from previously published studies [see 3.2.2.1]. 
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Figure 3-10. Phylogenetic reconstruction of the 𝒏=39 UK 2001 FMDV WGS generated from the field isolates 
(lower row) and simulated by the model (upper row). The left hand side trees were computed using the 
neighbor-joining method in MEGA 6.06, whilst the right hand side trees were reconstructed using BEAST. All the 
trees were rooted from the outbreak source (IP4). 

The phylogenies obtained from both the UK 2001 FMDV isolates and the 

simulated data are shown in Figure 3-10. According to the structure of the tree, isolates 

were branching subsequently along the tree. In addition, phylogenetic links were in 

some cases established between different lineages, as observed for the field and 

simulated data.  

3.4 Discussion 

This chapter has been devoted to presenting the computational algorithm and 

methodological assumptions underlying the development of the transmission tree 

reconstruction and genetic simulation models applied to the UK 2001 FMD epidemic, 

in order to produce the first dataset of WGS data from a fully resolved transmission 

tree obtained from a real epidemic, from where the demography of the infected 

population (either expressed as prevalence or incidence) is fully known. This model 

framework is a key tool for testing the core hypothesis of this PhD project, that genetic 

sequences carry a demographic signal that can be eventually related in an 

epidemiological context with the prevalence of infected case. This will be the leading 

challenge addressed in Chapter 4, where the relationship between the effective 
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population size 𝑁𝑒 derived from the BSP analysis and the actual number of infected 

cases estimated from either the empirical prevalence or incidence data will be 

investigated. 

Although the transmission tree model here presented was a simplistic 

representation of the process underlying the transmission dynamics of FMD, it was not 

intended to be informative of the precise mechanisms of transmission but to capture 

the main features of transmission in time and space. Therefore, the objective of the 

algorithm developed for reconstructing the transmission tree was to provide a 

plausible transmission tree that captures the majority of the epidemic, defines the 

mainstay for the simulation process and provides a realistic framework for the 

simulation. Additionally, the model assumes that individual premises are not subject 

to multiple infections and, hence, the algorithm generates a single source-recipient link 

for each IP. However, given the relative rapidity with which culling policies were 

applied during the UK 2001 FMD epidemic, it could be assumed that multiple infections 

were unlikely to have played a major role in the epidemic. 

The results generated from the reconstruction of the UK 2001 FMD 

transmission tree have characterised many of the primary features of the epidemic, 

and generated largely comparable data with those previously published (Chis Ster and 

Ferguson, 2007, Haydon et al., 2003, Gibbens et al., 2001, Cottam et al., 2008a). 

Examining the results generated using the parent-daughter transmission links 

established by the reconstructed transmission tree, the full epidemic curve of the 

entire UK 2001 FMD epidemic was characterised by phases of exponential growth, 

decline and tail end. These epidemic phases corresponded to different epidemiological 

features of the epidemic process with shorter serial case intervals, longer distance 

transmission links and large variance in the number of secondary cases per primary 

infection observed during the exponential phase, contrary to those for the decline and 

tail end phases. These findings match with the control policies imposed at the time of 

the outbreak, with no significant differences reported between the start of the NMB 

and the time when the 24/48 hour IP/CP culling policy came into force. This might lead 

to the suggestion of a relatively low impact of the 24/48 hour IP/CP culling policy on 

the further reduction of the transmission process subsequent to the implementation of 

the NMB and, moreover, when the epidemic was already starting to decline. In fact, the 

estimated prevalence-to-incidence ratio returned very similar values for the decline 

and tail end phases, suggesting that after the epidemic peak (which was earlier than 
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the beginning of the 24/48 hour IP/CP culling policy) new IPs are generated in direct 

proportion to the existing prevalence (i.e. 𝑅𝑡 is constant and slightly less than 1).  

The molecular clock recovered from the fully-simulated FMDV WGS data was 

found to be similar to the one estimated from the 39 WGS generated from the field 

isolates, which provides confidence around the robustness and validity of the 

simulation process. The differences observed in comparing the UK 2001 FMDV field 

isolates and the corresponding simulated lineages are likely to be mostly explained by 

the space-time process for generating the transmission tree which, as already 

discussed, might not be entirely accurate in establishing the actual transmission links 

observed during the UK 2001 FMD epidemic. However, this would likely have a limited 

influence on the simulation of the evolutionary process, and the reconstruction of the 

underlying phylogenetic trees. Similar results were obtained performing the analyses 

with only the VP1 coding region sequences, although with an expected greater degree 

of uncertainty given by the wider confidence intervals of the estimated parameters 

relative to those obtained using the WGS. This can be easily linked to the lower 

resolution provided by the VP1 coding region sequences, which represents only 8% of 

the complete FMDV genome. 

The average number of nt substitutions per transmission links estimated from 

the WGS simulated alignment was very similar in comparison to that previously 

reported (Cottam et al., 2008a), even matching the difference reported between the 

mean number of substitutions per transmission link when partitioned into 

transmission events preceding and proceeding the NMB. However, comparing the 

extracted 39 simulated sequences with the corresponding field isolates, a relative 

difference was apparent between observed and simulated sequences for the average 

nt substitutions recovered over the root-to-tip distances, which were higher for the 

simulated WGS. It should be noted that the former estimate was established using only 

20 WGSs generated from the Darlington cluster, which potentially might not be 

generalised to the evolutionary process underlying the full epidemic event. In a real 

epidemic, genetic change might acquire from within-farm evolutionary processes, for 

which multiple cycles of infection might be present on each IP. The process here 

developed for simulating the virus evolution does consider, although in a very crude 

form, the within-farm process, which contribute to the genetic diversity observed 

between the sequences recovered from each IP. For example, coalescent models 

assume that the transmission event is coincident with the coalescent event, which 
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might be not the case when significant variation is seen at the within-farm evolutionary 

scale. However, the impact of the within-farm evolutionary dynamics on the short 

timescale considered for an epidemic event could be regarded as limited and unlikely 

to add significant variation over and above that observed at consensus level (King et 

al., unpublished data). 
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CHAPTER 4 

Reconstructing virus populations dynamics 

over time 

4.1 Rationale 

In population genetics, factors that cause differences between 𝑁𝑒 and the census 

population size 𝑁 have been well studied. As already reviewed in Chapter 1, 𝑁𝑒 is 

defined as ‘the size of an idealised population experiencing the same rate of random 

genetic change over time as the real population under consideration’ (Wright, 1931, 

Wright, 1938), assuming that these two populations have the same properties under 

neutral selection (i.e. for the Wright-Fisher model 𝑁𝑒 ≅ 𝑁). However, violations of the 

assumptions underlying the Wright-Fisher model leads to a reduction in 𝑁𝑒 relative to 

𝑁, and the ratio 
𝑁𝑒

𝑁
 assesses the departure from the assumption of the idealised model 

(Felsenstein, 1971, Kimura and Crow, 1963). 𝑁𝑒 can be assumed to scale to the genetic 

diversity of the population as measured by the population genetic parameter 𝜃, and by 

making various assumptions it is possible to identify additional scaling factors that 

relate 𝑁𝑒 to the census population size 𝑁 (Magiorkinis et al., 2013). The challenge in 

this chapter is to identify and empirically test the performance of different scaling 

factors that can be used to relate 𝑁𝑒 to the census population size in an epidemiological 

context. 

In epidemiology, the census population size relates to the actual numbers of 

infected cases measured as an estimate of prevalence, or possibly incidence. The 

correlation between 𝑁𝑒 and the actual numbers of infected cases has been studied 

under the assumption of a time-varying coalescent model (Griffiths and Tavare, 

1994a), and suggests that no simple relationship or clear transformation exists 

between these two quantities (Frost and Volz, 2010, Volz et al., 2009). The lack of a 

clear relationship between the effective and actual population size has been attributed 

to the variable nature of the serial case interval 𝜏𝑐. The serial case interval will vary 

over the course of an epidemic (e.g. shortening during the exponential phase when the 

full population is susceptible and expanding when the susceptible population becomes 
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depleted – i.e. during the decline and/or tail end phases), causing variation in the 

relationship between transmission rate and the number of infected individuals. 

Bedford et al. (2011) found 𝜏𝑐 to be inversely proportional to the contact rate during 

the expansion phase of an epidemic, whilst 𝜏𝑐 was estimated to be inversely 

proportional to the rate of recovery when at equilibrium. However, during the 

exponential phase of an epidemic or within a steady endemic state where 𝜏𝑐 is roughly 

constant, a direct transformation might be found (Koelle and Rasmussen, 2012), hence 

𝑁𝑒 estimates would be proportional to the prevalence of infection (Frost and Volz, 

2010). It should be noted that at steady state, prevalence is also proportional to 

incidence. The fact that the 𝜏𝑐 varies over the course of an epidemic implies that it 

might not be straightforward to estimate 𝑁𝑒 at a given time (de Silva et al., 2012). 

4.2 Methodological process for scaling 𝑵𝒆 to the actual 

infected population size 

This chapter reports studies of the viral population demography estimated from 

the genetic data simulated using the model described in Chapter 3. The aim is to 

investigate the relationship between 𝑁𝑒 and the actual numbers of infected cases (cases 

here are defined as numbers of IPs) derived from the 𝑃𝑒𝑥𝑝 prevalence data, and 

estimated from a fully-resolved epidemic, the UK 2001 FMD epidemic. In order to 

investigate the correlation between estimates of 𝑁𝑒 derived from the BSP and the real 

numbers of infected cases, three scaling formulations were examined, which also 

accounted for the variability in the generation time within the time frame of an 

epidemic. Account has also been taken of the definition of generation time provided in 

§3.2.2.3. The resulting prediction estimate from the 𝑁𝑒scaling should be considered as 

a proxy of prevalence measure, therefore it has been termed as the ‘infection 

prevalence’ 𝑁∗. The final derivation of the different scaling equations for estimating 𝑁∗ 

is summarised in Table 4-1. 
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4.2.1 Reconstructing 𝑵𝒆 changes through time from a 

Bayesian Skyline analysis 

As detailed in §1.2.1 and §4.1, the parameter 𝜃 can be equated to the product 

𝑁𝑒𝜏 (Drummond et al., 2002). Rearranging for 𝑁𝑒 , the latter equation results in 𝑁𝑒 =
𝜃

𝜏
, 

that is the skyline-derived effective population size 𝑁𝑒 . This value is easily computed 

using the BSP-derived 𝜃 and the generation time estimated from the UK 2001 FMD 

data, for which both the 𝜏 and 𝜏𝑐 definitions have been used (see §3.2.2.3). The above 

formulation has been referred to in the text as the ‘scaled 𝑁𝑒 formulation’ and has been 

used for assessing the potential of using 𝑁𝑒 estimates for predicting the actual 

demography of an infected population. 

4.2.2 Deriving infection prevalence 𝑵∗ 

4.2.2.1 Reconstructing 𝑁∗ assuming variance in the number of secondary 

cases per primary infection 𝑅𝑡 

The ratio between the effective and actual population size 
𝑁𝑒

𝑁
 has been related 

to the variance in the reproduction success 𝜎2 (Kingman, 1982b, Tavare et al., 1997) in 

the following way: 𝑁𝑒 =
𝑁

𝜎2
.  The variance in the reproduction success 𝜎2 in an 

epidemiological context is the variance in the number of secondary infections per 

primary infections [i.e. 𝑣𝑎𝑟(𝑅𝑡)] or by the alternative form 
𝑣𝑎𝑟(𝑅𝑡)

𝐸(𝑅𝑡)2 + 1, which accounts 

for the fraction of the host population that is susceptible to infection (Koelle and 

Rasmussen, 2012)]. These two formulations lead to the following expressions for the 

derived infection prevalence: 𝑁∗ =
𝜃𝑣𝑎𝑟(𝑅𝑡)

𝜏
 and 𝑁∗ =

𝜃(𝑣𝑎𝑟(𝑅𝑡)+𝐸(𝑅𝑡)2)

𝜏𝐸(𝑅𝑡)2 . This scaling 

formulation has been termed the ‘𝑣𝑎𝑟(𝑅𝑡) scaling formulation’, referring to Tavare et 

al. (1997) or Koelle and Rasmussen (2012) for differentiating between the two 𝑣𝑎𝑟(𝑅𝑡) 

derivation forms. Both 𝜏 and 𝜏𝑐 definitions of generation time have been used within 

the context of the above scaling formulations (see §3.2.2.3). 
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4.2.2.2 Reconstructing 𝑁∗ assuming the number of lineages as a function of 

time 

A third formulation for deriving the infection prevalence 𝑁∗ from 𝑁𝑒 estimates 

has been investigated assuming that the population from which the observed data have 

been extracted is homogeneously mixing (Keeling and Rohani, 2008, Law et al., 2008). 

Assuming that the coalescent rate is equal to that of a haploid Wright-Fisher model and 

expressing the phylogenetic structure by the number of lineages as a function of time 

(NLFT), Frost and Volz (2013) derived a direct scaling formulation for the 𝑁𝑒 estimate 

from the BSP analysis (considering for this case 𝑁𝑒 = 𝜃) as 𝜃 =
𝐼𝜏𝑝

2
, where 𝐼 here 

denotes the number of infected individuals (originally termed in the study as the 

‘effective number of infections’). In this 𝑁𝑒 scaling formulation the generation time has 

been strictly defined with the prevalence-to-incidence ratio 𝜏𝑝 definition (see §3.2.2.3). 

Thus rearranging for 𝐼 and assuming 𝑁∗ ≈ 𝐼, the final scaling equation results in 𝑁∗ =

2𝜃

𝜏𝑝
. This scaling formulation has been termed the ‘NFLT scaling formulation’. 

Table 4-1. Comparison of scaling equations of the effective population size 𝑵𝒆 derived from time-varying 
coalescent based models for recovering the infection prevalence 𝑵∗. Parameters are defined as follow: 𝜏 = 
epidemiological generation time, 𝜏𝑐= serial case interval,  𝜏𝑝 = prevalence-to-incidence ratio, 𝜎2 = variance in the 

reproductive success, 𝑣𝑎𝑟(𝑅𝑡) = variance in the number of secondary infections per primary infections, 𝐸(𝑅𝑡) = 
mean of the number of secondary infections per primary infections, 𝜃 = genetic diversity. 

Generation Time 
𝑵𝒆/𝑵 

Scaling Factor Relating 𝜽 
(BSP) and 𝑵𝒆 

Final Derivation Reference 

𝜏 𝑁𝑒 =
𝑁

𝜎2
 𝑁𝑒 =

𝜃

𝜏
; 𝜎2 = 𝑣𝑎𝑟(𝑅𝑡) 𝑁∗ =

𝜃𝑣𝑎𝑟(𝑅𝑡)

𝜏
 

(Kingman, 1982b) 
(Tavare et al., 1997) 
(Drummond et al., 2002) 
(Fine, 2003) 
(Svensson, 2007) 

𝜏𝑐 𝑁𝑒 =
𝑁

𝜎2
 𝑁𝑒 =

𝜃

𝜏𝑐

;  𝜎2 = 𝑣𝑎𝑟(𝑅𝑡) 𝑁∗ =
𝜃𝑣𝑎𝑟(𝑅𝑡)

𝜏𝑐

 

(Kingman, 1982b) 
(Tavare et al., 1997) 
(Drummond et al., 2002) 
(Frost and Volz, 2010) 

𝜏 𝑁𝑒 =
𝑁

𝜎2
 𝑁𝑒 =

𝜃

𝜏
; 𝜎2 =

𝑣𝑎𝑟(𝑅𝑡)

𝐸(𝑅𝑡)2
+ 1 𝑁∗ =

𝜃(𝑣𝑎𝑟(𝑅𝑡) + 𝐸(𝑅𝑡)2)

𝜏𝐸(𝑅𝑡)2
 

(Kingman, 1982b) 
(Tavare et al., 1997) 
(Drummond et al., 2002) 
(Fine, 2003) 
(Svensson, 2007) 
(Koelle and Rasmussen, 2012) 

𝜏𝑐 𝑁𝑒 =
𝑁

𝜎2
 𝑁𝑒 =

𝜃

𝜏𝑐

;  𝜎2 =
𝑣𝑎𝑟(𝑅𝑡)

𝐸(𝑅𝑡)2
+ 1 𝑁∗ =

𝜃(𝑣𝑎𝑟(𝑅𝑡) + 𝐸(𝑅𝑡)2)

𝜏𝑐𝐸(𝑅𝑡)2
 

(Kingman, 1982b) 
(Tavare et al., 1997) 
(Drummond et al., 2002) 
(Fine, 2003) 
(Svensson, 2007) 
(Koelle and Rasmussen, 2012) 

𝜏𝑝 𝑁𝑒 =
𝐼𝜏𝑝

2
 𝑁𝑒 = 𝜃 𝑁∗ =

2𝜃

𝜏𝑝

 
(Drummond et al., 2002) 
(White et al., 2006) 
(Frost and Volz, 2013) 
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4.2.2.3 Computation of infection prevalence 𝑁∗ using the UK 2001 FMD 

simulated WGS 

Twelve realisations of the UK 2001 FMD transmission tree reconstruction and 

genetic simulation generated full WGS datasets (𝑛=2026 IPs) as detailed in §3.3. For 

each simulated alignment, BEAST 1.8.0 package (Drummond et al., 2012, Drummond 

and Rambaut, 2007) was employed to reconstruct the demography of the FMDV 

population from the simulated data using the BSP model (Drummond et al., 2005). The 

analysis was undertaken with the TN93 substitution model and the strict clock 

evolutionary model, the average rate of the fixed clock model as the one used for the 

simulation (2.33×10-5 nt/site/day) and defining a gamma distribution 𝛤(𝜅, 𝜃) of 

𝜅=0.0084 and 𝜃=1000.0 for the substitution rate prior. Other priors were set with the 

default values. Furthermore, epidemiological parameters used for formulating the 

scaling equations presented in Table 4-1 (i.e. 𝜏, 𝜏𝑐, 𝜏𝑝, 𝑣𝑎𝑟(𝑅𝑡), 𝐸(𝑅𝑡)) have been either 

estimated by averaging over the time course of the epidemic or estimated as changing 

through time, leading to two different scaling approaches, namely average and time-

varying. Thus, the time-varying scaling approach takes into account the variability in 

time of the UK 2001 FMD epidemic and, therefore, of each epidemiological parameter 

used to derive the infection prevalence 𝑁∗. Natural splines (Harrell, 2001) were fitted 

to time-varying data and used to smooth and interpolate the required data for each 

time point. Fitting procedures have been performed in R 3.2.1 using the splines 

package (R Core Team, 2015). The 𝜏𝑡 generation time has not been smoothed since it 

can be easily estimated in continuous time from the UK 2001 FMD empirical data. 

The root-mean-squared deviation (RMSD) was used for estimating the 

numerical departure of the recovered 𝑁∗ from the empirical count of infected cases, 

expressed as prevalence. This statistical parameter is a scale-dependent accuracy 

measure based on the absolute squared error, which provides an indication of the 

difference between values predicted by a given model and the actual data (Hyndman 

and Koehler, 2006). For the scaling study, this can be estimated as 𝑅𝑀𝑆𝐷(𝑁∗) =

√𝐸((𝑁𝑡
∗ − 𝑁𝑡)2), where 𝑁 can denote prevalence or incidence estimated at time 𝑡. The 

RMSD returns a value of zero if the correlated time-series are perfectly matching 𝑁∗ ≅

𝑁 = 0. 
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4.2.3 Investigating the impact of changing 𝒗𝒂𝒓(𝑹𝒕) on the 

recovery of the infection prevalence 𝑵∗  

To investigate the effect of 𝑣𝑎𝑟(𝑅𝑡) in estimating the infection prevalence 𝑁∗ 

from a BSP-scaled 𝑁𝑒 , a full simulation of a FMD stationary system was undertaken. 

The model structure was based on the scheme presented in Chapter 3, from which a 

monophyletic FMDV transmission scenario was generated using an individual-based 

non-spatial simulation of the transmission tree. This full simulation has been 

introduced to avoid potential secondary effects which might results by forcing high 

𝑣𝑎𝑟(𝑅𝑡) at the transmission level structure of the UK 2001 FMD outbreak data. For the 

stationary system, the stages and, therefore, the timing of the FMD progression for an 

IP 𝑖 were defined beginning with the infection time 𝑇𝑖
𝑒𝑥𝑝, at which a latency period 𝐷𝑖

𝑙𝑎𝑡  

commences. Following the incubation period, the IP becomes infectious at time 𝑇𝑖
𝑖𝑛𝑓

, 

maintaining its infectivity for a period 𝐷𝑖
𝑖𝑛𝑓

 until the IP is removed from the system at 

time 𝑇𝑖
𝑟𝑒𝑚. The clinical sample is collected at time 𝑇𝑖

𝑠𝑎𝑚, which also defines the time a 

viral sequence 𝑆𝑖
𝑟𝑒𝑝 is obtained (Figure 4-1). The duration of the latency period 𝐷𝑙𝑎𝑡  

was randomly drawn from a gamma distribution 𝛤(𝜅, 𝜃), which was defined by a shape 

and scale parameters of 𝜅=22.12 and 𝜃=0.22, respectively (�̅�=4.87 and 𝜎2=1.07) 

(Charleston et al., 2011, Mardones et al., 2010). The duration of infectious period 𝐷𝑖𝑛𝑓 

was randomly sampled from a log-normal distribution 𝑁(ln𝑥; 𝜇, 𝜎) defined on a log-

scale by a mean and standard deviation parameters of 𝜇=1.15 and 𝜎=0.38, respectively 

[modified from Charleston et al. (2011)]. 

 
Figure 4-1. Dynamical model of FMDV transmission for a FMD stationary system between a parent IP 𝒊 and 
a daughter IP 𝒌. 
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The negative binomial distribution has been previously used to model the 

variation in the number of progenies per individual parent. Low values of the 

dispersion parameter 𝑘 describes the situation when only a small proportion of IPs go 

on to transmit the infection, whilst large values of the dispersion parameter indicates 

that the infected population contributes more uniformly to the future transmission 

(Lloyd-Smith, 2007, Lloyd-Smith et al., 2005, Garske and Rhodes, 2008). Following the 

methods provided by the above studies, the number of daughter IPs to be infected by 

each parent IP were randomly generated through a negative binomial distribution 

𝑁𝐵(𝑘, 𝜇) defined by a mean 𝜇 which was made dependent on the ratio of the required 

‘target’ prevalence 𝑃 at endemic equilibrium and the current simulated prevalence 

𝑃𝑡
𝑒𝑥𝑝 (𝜇=𝑃/𝑃𝑡

𝑒𝑥𝑝). The dispersion parameter 𝑘 was set at different values (i.e. 0.01, 0.1, 

0.5, 1, 10, 50, and 100) thus investigating the influence of varying 𝑣𝑎𝑟(𝑅𝑡) on 𝑁∗. The 

computational approach implemented allowed maintaining the 𝑅𝑡 parameter constant 

throughout the simulation at an average value ~1 while varying its variance. The 

simulation of the genetic sequences sampled at time 𝑇𝑠𝑎𝑚 was processed under the 

Markovian evolutionary model presented in Chapter 3, where the ∆𝑡 evolutionary 

duration was estimated along the simulated transmission tree according to the 

methodology described in §3.2.3.1. 

The molecular clock for simulating FMDV WGS data was set at 2.33×10-5 

nt/site/day, matching the one used for the UK 2001 FMD simulation. The simulation 

was run until 10000 IPs had been generated, but only a random sample of 1000 IPs and 

corresponding FMDV WGSs were extracted from the full dataset. This random sample 

was obtained only when the simulation reached its stationary prevalence equilibrium 

(i.e. at the predefined 𝑃 value). 

4.2.3.1 Computation of infection prevalence 𝑁∗ from the simulated FMD 

stationary system 

BEAST 1.8.0 analysis were performed for reconstructing the BSP plot 

(Drummond et al., 2005, Drummond et al., 2012) using the same settings previously 

described for the UK 2001 FMD epidemic: TN93 substitution model, strict clock 

evolutionary model and using the molecular clock inputted for the simulation as the 

substitution rate prior. Infected population size curves extracted from the prevalence 
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data of the entire simulated database (𝑛=10000) (for the prevalence computation refer 

to §3.2.2.2) were compared with both the effective population size 𝑁𝑒 and the 

recovered infection prevalence 𝑁∗ derived from the BSP estimates using the average 

scaling approach as previously described in §4.2.2.3. The results obtained with this 

approach were analysed with the same methodology described above for the UK 2001 

FMD epidemic reconstruction and using the scaling equations presented in Table 4-1 

4.3 Results 

4.3.1 Average scaling approach 

From the infection prevalence 𝑁∗ estimates derived from each of the scaling 

equations provided in Table 4-1, seven pairwise correlation analyses were undertaken 

for assessing the similarity between the 𝑁∗ curves with the real epidemic curves 

obtained from the 𝑃𝑒𝑥𝑝 prevalence measure (as detailed in §3.2.2.2). The results 

produced for the 7 comparisons are presented in Table 4-2 and ranked in descending 

order from the best fit to the poorest one according to the RMSD parameters estimated. 

All parameters are reported together with their standard deviations. 



 

109 

 

Table 4-2. Statistical parameters estimated from the pairwise correlation between infection prevalence 𝑵∗ and the empirical prevalence data extracted from the UK 2001 FMD 
epidemic using each of the three scaling equations. Data were ranked in descending order from the best fit. Prevalence data were estimated using the formulation defined in §3.2.2.2. Average 
scaling approach. 

Rank Scaling Equation Generation Time Prevalence Empirical Peak 𝑵∗ Peak RMSD  𝜷  𝑹𝟐 

1  𝑁𝑒 =
𝜃

𝜏
 Epidemiological 𝜏 𝑃𝑒𝑥𝑝  439.8±3.2 351.0±37.4 30.4±5.0 1.06±0.05 0.93±0.02 

2  𝑁∗ =
2𝜃

𝜏𝑝
 Prevalence-to-incidence ratio 𝜏𝑝 𝑃𝑒𝑥𝑝  439.8±3.2 419.6±47.6 35.3±7.1 0.88±0.05 0.93±0.02 

3  𝑁𝑒 =
𝜃

𝜏
 Serial case interval 𝜏𝑐 𝑃𝑒𝑥𝑝  439.8±3.2 291.2±28.7 41.9±4.4 1.27±0.05 0.93±0.02 

4  𝑁∗ =
𝜃(𝑣𝑎𝑟(𝑅𝑡)+𝐸(𝑅𝑡)2)

𝜏𝐸(𝑅𝑡)2
 Serial case interval 𝜏𝑐 𝑃𝑒𝑥𝑝  439.8±3.2 1132.9±120.8 291.1±20.5 0.33±0.01 0.93±0.02 

5  𝑁∗ =
𝜃𝑣𝑎𝑟(𝑅𝑡)

𝜏
 Serial case interval 𝜏𝑐 𝑃𝑒𝑥𝑝  439.8±3.2 1135.1±121.0 292.0±20.5 0.33±0.01 0.93±0.02 

6  𝑁∗ =
𝜃(𝑣𝑎𝑟(𝑅𝑡)+𝐸(𝑅𝑡)2)

𝜏𝐸(𝑅𝑡)2
 Epidemiological 𝜏 𝑃𝑒𝑥𝑝  439.8±3.2 1365.7±157.1 379.1±31.2 0.27±0.02 0.93±0.02 

7  𝑁∗ =
𝜃𝑣𝑎𝑟(𝑅𝑡)

𝜏
 Epidemiological 𝜏 𝑃𝑒𝑥𝑝  439.8±3.2 1368.8±157.5 380.3±31.2 0.27±0.02 0.93±0.02 

Table 4-3. Statistical parameters estimated from the correlation between infection prevalence 𝑵∗ and the empirical prevalence data extracted from the UK 2001 FMD epidemic using 
each of the three scaling equations. Data were ranked in descending order from the best fit. Prevalence data were estimated using the formulation defined in §3.2.2.2. Time-varying scaling 
approach. 

Rank Scaling Equation Generation Time Prevalence Empirical Peak 𝑵∗ Peak RMSD  𝜷  𝑹𝟐 

1  𝑁𝑒 =
𝜃

𝜏
 Epidemiological 𝜏 𝑃𝑒𝑥𝑝  439.8±3.2 310.0±29.8 37.9±4.3 1.20±0.05 0.93±0.01 

2  𝑁∗ =
2𝜃

𝜏𝑝
 Prevalence-to-incidence ratio 𝜏𝑝 𝑃𝑒𝑥𝑝  439.8±3.2 543.4±44.0 86.7±10.8 0.66±0.04 0.83±0.05 

3  𝑁𝑒 =
𝜃

𝜏
 Serial case interval 𝜏𝑐 𝑃𝑒𝑥𝑝  439.8±3.2 377.7±56.5 108.0±4.3 1.07±0.13 0.24±0.05 

4  𝑁∗ =
𝜃(𝑣𝑎𝑟(𝑅𝑡)+𝐸(𝑅𝑡)2)

𝜏𝐸(𝑅𝑡)2
 Epidemiological 𝜏 𝑃𝑒𝑥𝑝  439.8±3.2 2502.5±427.9 746.8±134.1 0.14±0.03 0.59±0.08 

5  𝑁∗ =
𝜃𝑣𝑎𝑟(𝑅𝑡)

𝜏
 Epidemiological 𝜏 𝑃𝑒𝑥𝑝  439.8±3.2 2596.8±489.8 777.8±151.2 0.14±0.03 0.58±0.08 

6  𝑁∗ =
𝜃(𝑣𝑎𝑟(𝑅𝑡)+𝐸(𝑅𝑡)2)

𝜏𝐸(𝑅𝑡)2
 Serial case interval 𝜏𝑐 𝑃𝑒𝑥𝑝  439.8±3.2 7399.5±1999.1 1250.4±270.7 0.04±0.01 0.03±0.01 

7  𝑁∗ =
𝜃𝑣𝑎𝑟(𝑅𝑡)

𝜏
 Serial case interval 𝜏𝑐 𝑃𝑒𝑥𝑝  439.8±3.2 7709.0±2269.6 1299.8±310.7 0.04±0.01 0.03±0.01 
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The best fit was obtained by the simple derivation of 𝑁𝑒 from the BSP scaled 

using the epidemiological generation time 𝜏 (RMSD=30.4±5.0). The scaling formulation 

ranked second was the ‘NLFT scaling formulation’ (RMSD=35.3±7.1), which also 

produced the closest match with the empirical epidemic peak (average difference of 

20.2 IPs). The third ranked 𝑁∗ was obtained scaling the BSP using the serial case 

interval 𝜏𝑐 (RMSD=41.9±4.4). The results produced using the first two ranked scaling 

formulations and the one derived from the ‘𝑣𝑎𝑟(𝑅𝑡) scaling formulation’ [assuming the 

Koelle and Rasmussen (2012) derivation of 𝑣𝑎𝑟(𝑅𝑡) and the serial case interval 𝜏𝑐] 

have been further analysed within this chapter, whilst 𝑁∗ curves and analyses gathered 

from the remaining 4 pairwise comparisons are presented in Appendix 6. Incidence 

was found to be invariably lower than the infection prevalence 𝑁∗ recovered from each 

of the 7 scaling correlation matrices, showing high deviance values and low similarity 

(RMSD>150). Therefore, this relationship has not been investigated further in the 

study. 

4.3.1.1 Skyline scaled effective population size 𝑁𝑒 

Assuming the generation time with its epidemiological definition (§3.2.2.3), the 

𝑁𝑒 curves derived using the skyline scaling formulation are shown in Figure 4-2. A high 

level of consistency was produced across the 12 realisations of the UK 2001 FMDV 

simulated WGS, with the shape and the structure of the 𝑁𝑒 trajectory largely preserved. 

Visually inspecting the 𝑁𝑒 curve generated from the 𝑛=2026 IPs dataset, the epidemic 

phases characterising the shape of the epidemic curve could be identified from the 

skyline trajectories, albeit some variabilities observed between runs. Dissecting the 

epidemic curve into the three subsequent phases (as define in §3.3.1) the correlation 

of the actual number of infected cases from 𝑃𝑒𝑥𝑝 and scaled 𝑁𝑒 values are presented in 

Table 4-4. The correlation between 𝑁𝑒 and 𝑃𝑒𝑥𝑝 was described to be highly linearly 

correlated (average 𝑅2 value of 0.93±0.02), thus resulting in very low deviance 

(RMSD=30.4±5.0) estimate (Table 4-4). The average 𝑁𝑒  estimated for the full epidemic 

dataset (𝑛=2026) was found to be 77.7±3.5 cases/day, whilst the average data 

estimated for the exponential, peak, decline and tail end phases were 155.9±10.4, 

351.0±37.4, 149.6±6.0 and 24.2±1.3 cases/day. To define the numerical size gap 

between 𝑁𝑒 and prevalence, the count lag of the two quantities has been assessed 
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through a regression through the origin (RTO), reasonably assuming a priori that at 

time t=0 of the epidemic when no infection is generated both 𝑁𝑒 and prevalence values 

are equal to 0 and, thus, no constant term would be defined for a linear model (in 

addition, the coalescent theory proposes that 𝑁 is directly proportional to 𝑁𝑒). Lag 

estimates based on the slope of the regressor returned from the RTO (i.e. 𝑁 = 𝛽𝑁𝑒) 

found 𝑁𝑒 values to be on average 1.06±0.05 times lower than the 𝑃𝑒𝑥𝑝 (𝑝<0.001). The 

actual difference in the peak size between the empirical 𝑃𝑒𝑥𝑝 prevalence and the scaled 

𝑁𝑒 was estimated to be on average of 88.8±37.4 cases, whilst the absolute difference of 

cases across the entire UK 2001 FMD epidemic returned an average value of 10.7±3.5 

IPs.  

 
Figure 4-2. Scaled 𝑵𝒆 estimated from 12 realisations of the UK 2001 FMDV simulated WGS data and 
reconstructed using the full IPs (𝒏=2026) epidemic dataset. Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) 
prevalence data as defined in §3.2.2.2. Generation time is defined with the epidemiological 𝜏 formulation (§3.2.2.3). 

Table 4-4. Overall and time specific number of infected cases estimated under 12 realisations of the UK 2001 
FMD full IPs (𝒏=2026) epidemic dataset from the empirical epidemiological data and the scaled 𝑵𝒆 
recovered from the BSP analysis. Generation time is defined with the epidemiological 𝜏 formulation. 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Generation Time 𝜏 7.16±0.07 7.59±0.12 - 6.48±0.09 7.18±0.09 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Effective Population Size 𝑁𝑒  77.69±3.50 145.17±9.34 351.03±37.41 182.77±9.40 24.75±1.34 
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4.3.1.2 Infection prevalence 𝑁∗estimated using the 𝑣𝑎𝑟(𝑅𝑡) scaling 

formulation 

Computing the serial case interval 𝜏𝑐 and scaling the 𝑁𝑒 estimates using the 

formulation of Koelle and Rasmussen (2012) which account for 𝑣𝑎𝑟(𝑅𝑡) in the infected 

population structure (§4.1.2.2), the recovered infection prevalence 𝑁∗ curve is 

presented in Figure 4-3. Although the correlation between empirical and predicted 

prevalence was described as being highly linear (average 𝑅2 value of 0.93±0.02), 𝑁∗ 

estimates were reported to be higher than those extracted from the actual number of 

IPs recovered from the 𝑃𝑒𝑥𝑝, on average of the order of 3.1±0.01 (𝑝<0.001) (Table 4-

2). In fact, the absolute difference in term of the size of the epidemic peak was 

estimated to be on average 693.0±120.8 IPs (Table 4-4), whilst across the entire UK 

2001 FMD epidemic the average absolute difference was estimated to be 162.2±9.4 IPs. 

Deviance reported between the 𝑇𝑒𝑥𝑝 and the reconstructed infection prevalence 𝑁∗ 

was, on average, 291.1±20.5 (Table 4-5).  

 
Figure 4-3. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. The variance in the secondary cases per 
primary infection 𝑅𝑡 was assumed the Koelle and Rasmussen (2012) formulation (§4.2.2.1). Generation time is 
defined with the serial case interval 𝜏𝑐  formulation (§3.2.2.3). Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) 
prevalence data as defined in §3.2.2.2. 
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Table 4-5. Overall and time specific number of infected cases estimated under 12 realisations for the UK 
2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical epidemiological data and the scaled 
infection prevalence 𝑵∗ estimated under the assumption of variance in 𝑹𝒕 [Koelle and Rasmussen (2012) 
parameterisation (§4.2.2.1)]. Generation time is defined with the serial case interval 𝜏𝑐  formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Serial Case Interval 𝜏𝑐  8.69±0.01 9.95±0.29 22.16±0.46 22.09±0.01 12.68±0.01 

Prevalence 𝑃𝑒𝑥𝑝  88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗  251.18±9.44 469.08±22.00 1135.15±121.01 590.85±24.23 80.04±4.50 

4.3.1.3 Infection prevalence 𝑁∗estimated using the NLFT scaling formulation  

Expressing the phylogenetic structure by NLFT, the generation time used for 

estimating the infection prevalence 𝑁∗ has been defined as the prevalence-to-incidence 

ratio 𝜏𝑝 (Frost and Volz, 2013). Visually evaluating the 𝑁∗ trajectories resulting from 

the 12 realisations of the UK 2001 FMD simulation model (Figure 4-4), a substantial 

overlap with the epidemic curve estimated from the 𝑃𝑒𝑥𝑝 prevalence was observed, 

with the prevalence found to be 1.1±0.05 times lower than the predicted infection 

prevalence 𝑁∗ values. The average absolute difference over the entire epidemic was 

found to be of only 4.4±5.1 IPs, with the difference at the epidemic peak of 20.2±47.6 

IPs (Table 4-5). The close fit between actual and predicted data was further described 

by the lowest deviation (RMSD=35.3±7.1). In addition, the infection prevalence 𝑁∗ and 

the actual number of infected showed a strong linear correlation (𝑅2=0.93±0.02). 

 
Figure 4-4. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. Generation time is parameterised as the 
prevalence-to-incidence ratio 𝜏𝑝 (Frost and Volz, 2013) (§3.2.2.3, §4.2.2.2). Epidemic curve was estimated from the 

𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 
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Table 4-6. Overall and time specific number of infected cases estimated under 12 realisations for the UK 
2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical epidemiological data and the scaled 
infection prevalence 𝑵∗ estimated by expressing the phylogenetic structure by NLFT. Generation time is 
defined with the prevalence-to-incidence ratio 𝜏𝑝 formulation (§3.2.2.3, §4.2.2.2). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Prevalence-to-Incidence Ratio 𝜏𝑝  12.15±0.40 7.81±1.15 11.85±2.71 15.33±0.97 12.82±0.52 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗  92.87±5.14 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

4.3.2 Time-varying scaling approach 

As detailed in the material and methods section (§4.2.2.3), with the time-

varying approach the parameters used within each of the scaling formulation were 

estimated as discrete-time values using interpolated spline curves on the empirical UK 

2001 FMD epidemiological data. Figure 4-6 shows the splines fit for each of the 

epidemiological generation time 𝜏, the prevalence-to-incidence ratio 𝜏𝑝, the 𝑅𝑡 average 

value and the variance in 𝑅𝑡, whilst in Table 4-7 the estimates generated for each of the 

above parameters, and the serial case interval 𝜏𝑐, are reported. Differently from the 

decline and plateau phases, a substantial departure from the overall average estimates 

were reported for the exponential phase of the UK 2001 FMD epidemic, where a large 

𝑣𝑎𝑟(𝑅𝑡) and a low 𝜏𝑝 were recorded (Table 4-7), with 𝑣𝑎𝑟(𝑅𝑡) producing very high 

values within the first 10 days from the beginning of the epidemic. As per the serial 

case interval 𝜏𝑐, estimates were found to increase with time, where lower values were 

reported for the exponential phase as opposed to the later epidemic phases.  
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Figure 4-5. Natural splines interpolation for time-varying epidemiological parameters estimated from the 
empirical UK 2001 FMD epidemic data. Generation time 𝜏 (A), prevalence-to-incidence ratio 𝜏𝑝 (B), average 

number of secondary cases per primary infection 𝑅𝑡 (C), variance in the number of secondary cases per primary 
infection 𝑣𝑎𝑟(𝑅𝑡). 

Table 4-7. Epidemiological parameters estimated following natural spline interpolations of the 12 
realisations of the reconstructed UK 2001 FMD transmission tree. 

 Epidemic Phase 
 Overall Exponential Peak Decline Plateau 

Epidemiological Generation Time (𝝉) 5.91±0.10 7.57±0.11 5.91±0.10 6.93±0.07 5.35±0.67 
Serial Case Interval (𝝉𝒄) 8.73 9.42±0.38 21.40±0.68 22.06±0.05 12.68±0.01 
Prevalence-to-Incidence Ratio (𝝉𝒑) 11.63±0.21 8.07±0.21 11.64±0.21 11.71±0.4 12.70±0.26 
𝑹𝒕 Variance 4.28±0.45 12.18±2.25 4.28±0.45 2.75±0.52 2.23±0.19 
𝑹𝒕 Mean 0.99±0.04 2.04±0.26 1.16±0.07 1.09±0.05 0.98±0.04 

Similarly to that reported for the average scaling approach, spline fitted values 

were then used to investigate the effect of the time-varying scaling approach for 

deriving the 𝑁𝑒 estimates and, thus, the infection prevalence 𝑁∗ curve. Therefore, 

twenty one pairwise correlation analyses were also undertaken between the 𝑁∗ 

estimates derived by using the time-varying parameter estimates for each of the 

scaling equations provided in Table 4-1 and the 𝑃𝑒𝑥𝑝 prevalence estimate (as detailed 

in §3.2.2.2). The results produced are presented in Table 4-3 and ranked in descending 

order from the best fit to the poorest according to the RMSD estimates. The full details 

of the results generated from each of the scaling formulation are presented in Appendix 

7. 

As observed with the average scaling approach, the best fit was still obtained 

with the scaling formulation consisting of the simple derivation of 𝑁𝑒 from the BSP 

scaled using the serial case interval 𝜏, although returning relatively higher deviance 

estimates (RMSD=37.9±4.3) (Table 4-3). With the time-varying scaling approach, the 

absolute difference in size of the entire epidemic between predicted and actual data 
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was estimated as 9.5±2.7 IPs, although with a larger distance between epidemic peaks 

(129.8±29.8 IPs) from what estimated using the average scaling approach (Figure 4-

6). Overall, the scaled 𝑁𝑒 was found to be 1.2±0.05 times lower than the actual number 

of infected IPs derived from the 𝑃𝑒𝑥𝑝 prevalence. Predicted and empirical data were 

described as highly linear correlated (𝑅2=0.93±0.01) (Table 4-3). 

The infection prevalence 𝑁∗ derived using the ‘NLFT scaling formulation’ was 

ranked second similar to the average scaling approach, but here reporting lower 

similarity with the shape and trajectory of the empirical data (RMSD=86.7±10.8) 

(Table 4-3). On visual inspection, the 𝑁∗ curve was found to reach the peak of the 

epidemic earlier in time than the one obtained from the average scaling approach 

(~34th day), thus shifting the 𝑁∗ curve to the left. The distance estimated between the 

epidemic peaks recovered from predicted and actual data was higher (103.6±44.0 IPs) 

(Figure 4-6). In addition, the difference between 𝑃𝑒𝑥𝑝 and 𝑁∗ at the exponential phase 

was very large, with an average of 199.5±24.1 more predicted cases. The ratio between 

empirical and predicted data was estimated as 0.66±0.04. The linear correlation was 

found to be lower than that obtained using the average scaling approach 

(𝑅2=0.83±0.05) (Table 4-3). 

The correlation between 𝑁∗ derived from the ‘𝑣𝑎𝑟(𝑅𝑡) scaling formulation’ 

[assuming the Koelle and Rasmussen (2012) derivation of 𝑣𝑎𝑟(𝑅𝑡) and the serial case 

interval 𝜏𝑐] and 𝑃𝑒𝑥𝑝, produced incorrect results by implementing the time-varying 

scaling approach, with very low similarity observed between the empirical and 

predicted prevalence curves (RMSD=1250.4±270.7) (Table 4-3). Visually the infection 

prevalence 𝑁∗ curves were conspicuously noisy with the epidemic peak shifted earlier 

in time (~10th day) (Figure 4-6). The difference in size between predicted and 

empirical data was reported to be on average 418.4±90.3 IPs, with a peak difference of 

6959.7±1999.1 cases. Overall, the infection prevalence 𝑁∗ was found to be 25 times 

higher than the empirical 𝑃𝑒𝑥𝑝 prevalence, returning a very low linear correlation 

(𝑅2=0.03±0.01) (Table 4-3). 
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Figure 4-6. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset using the time-varying scaling 
approach. 𝑁∗ derived with the: NLFT formulation (A), 𝑁𝑒 formulation (B) and 𝑣𝑎𝑟(𝑅𝑡) formulation assumed as the 
Koelle and Rasmussen (2012) form (C) (§4.2.1 and §4.2.2). Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) 
prevalence data as defined in §3.2.2.2.
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4.3.3 Viral demography reconstruction through simulations 

of a FMD stationary system 

A full simulation of an FMD stationary system was undertaken to investigate the 

effect of varying 𝑣𝑎𝑟(𝑅𝑡) on the prediction of the actual number of infected case from 

an infection prevalence 𝑁∗ estimate. For this purpose, different infected population 

structures using different values of 𝑣𝑎𝑟(𝑅𝑡) (generated through changing the 

dispersion parameter 𝑘) were tested using the three highest ranked scaling 

formulation resulting from §4.3.1 and using the average scaling approach. Table 4-8 

reports the epidemiological parameters estimated from each of the simulations using 

a range of dispersion parameters for generating the number of IP daughters for each 

parent IP. The epidemiological generation time 𝜏 was maintained constant across each 

of the simulations while varying 𝑘, with values corresponding to that estimated from 

the UK 2001 FMD epidemic. It was interesting to find that the serial case interval 𝜏𝑐 

was not substantially affected by varying 𝑣𝑎𝑟(𝑅𝑡), returning a very similar value 

(average value of 39.12±5.3) for all the 8 different 𝑘 parameterisations (although with 

relatively higher standard deviation estimated for 𝑘≤0.1). The number of secondary 

case per primary infection 𝑅𝑡 was also very similar while varying 𝑣𝑎𝑟(𝑅𝑡), but 

reporting higher standard deviation estimates when small dispersion parameter 𝑘 was 

inputted in the simulation (i.e. mainly at 0.01 and 0.1 values), which thus resulted in a 

high 𝑣𝑎𝑟(𝑅𝑡) as expected. As shown in Figure 4-7 to 4-9, the prevalence curves 

estimated from the simulated FMD stationary systems clearly fluctuated less through 

time when 𝑘 was large, thus generating a more stable system and resulting in low 

𝑣𝑎𝑟(𝑅𝑡) estimates. The epidemiological parameters derived with 1<𝑘<0.5 were those 

that corresponded to those estimated from the UK 2001 FMD epidemic, although the 

serial case interval was much higher. Clock rates estimated from BEAST were closely 

matched with the one used for simulating the FMDV WGS, although higher rates were 

obtained with dispersion parameters set at 0.01<𝑘<0.1. The 95%HPD intervals were 

found to be wider for the scenarios characterised by high 𝑣𝑎𝑟(𝑅𝑡) [data not shown]. 
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Table 4-8. Epidemiological parameters estimated from the stationary FMD simulation and using different 
dispersion parameters for generating the number of IP daughters for each parent IP. 

  𝑵𝑩(𝒌, 𝒑) Dispersion Parameter 
 0.01 0.1 0.5 1 10 50 100 1000 

Generation Time (𝝉) 7.21±1.52 7.09±1.74 7.13±1.66 7.03±1.63 7.07±1.65 7.09±1.66 7.08±1.64 7.07±1.62 
Serial Case Interval (𝝉𝒄) 46.15±9.50 39.15±19.46 37.45±26.87 42.14±23.18 27.70±21.04 41.09±22.73 40.40±22.69 38.85±20.88 
𝑹𝒕 Variance 109.93 11.55 3.91 2.59 1.26 1.21 1.18 1.13 
𝑹𝒕 Mean 1.00±10.48 1.04±3.40 1.07±1.99 1.06±1.61 1.06±1.12 1.06±1.10 1.07±1.09 1.06±1.11 
Prev-to-Inc Ratio (𝝉𝒑) 23.79±44.38 11.61±13.40 10.73±9.15 10.33±6.56 10.41±7.07 10.33±6.42 10.14±5.58 10.51±8.08 
Clock Rate (nt/site/day) 5.24×10-5 2.96×10-5 2.17×10-5 2.07×10-5 1.91×10-5 1.95×10-5 1.94×10-5 1.94×10-5 

4.3.3.1 Skyline scaled effective population size 𝑁𝑒 

The effective population size 𝑁𝑒 scaled from the BSP estimates of the FMDV WGS 

simulated under the stationary system, and derived using the epidemiological 

formulation of the generation time 𝜏, are plotted in Figure 4-7 along with the 

reconstructed epidemic curve drawn from the 𝑃𝑒𝑥𝑝 prevalence data. It is clear from a 

visual inspection that the decrease in the 𝑘 dispersion parameter used for simulating 

the population dynamics [thus increasing the 𝑣𝑎𝑟(𝑅𝑡)], was correlated with the 

increase in the 𝑁𝑒 predicted infected population size. Starting from a value of 10 used 

for the dispersion parameter 𝑘, 𝑁𝑒 was found to be reaching the size of the empirical 

prevalence estimated from the 𝑃𝑒𝑥𝑝 data. The difference in size was described with the 

prevalence data being 1.2 times higher than the 𝑁𝑒 values (RMSD=228.5) (Table 4-9). 

No significant variation between simulations ran using 𝑘 values in the 50 to 1000 range 

were observed (𝑝>0.05). At values of the dispersion parameter 10<𝑘<1 (a scenario that 

is close to the UK 2001 FMD epidemic), the 𝑁∗ curve was found to be lower than the 

actual 𝑃𝑒𝑥𝑝 prevalence, although closely reconstructing the empirical prevalence 

trajectory. For this case, the 𝑃𝑒𝑥𝑝 estimates were 1.8 and 1.2 times higher than the 

predicted infection prevalence 𝑁∗ for 𝑘=1 and 𝑘=10, respectively.  
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Figure 4-7. Scaled 𝑵𝒆 estimated using the BSP from the WGS generated by the stationary FMD simulation. 
𝑁𝐵(𝑘, 𝑝) dispersion parameter set as 0.01 (A), 0.1 (B), 0.5 (C), 1 (D), 10 (E), 50 (F) 100 (G), and 1000 (H). Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data. Generation time is defined with the epidemiological 𝜏 
formulation. Average scaling implementation.  

Table 4-9. Statistical parameters estimated from the correlation between scaled 𝑵𝒆 values based on the BSP 
and the empirical prevalence data extracted from the simulated FMD stationary system under different 
parameterisations of the dispersion parameter 𝒌. Generation time is defined with epidemiological 𝜏 
formulation. Average scaling implementation. 

  𝑵𝑩(𝒌, 𝒑) Dispersion Parameter 
 0.01 0.1 0.5 1 10 50 100 1000 

RMSD 471.7 492.0 475.5 345.5 228.5 247.9 248.7 255.1 
𝜷  28.19 7.01 2.77 1.85 1.23 1.22 1.27 1.14 
𝑹𝟐  0.85 0.92 0.91 0.87 0.88 0.87 0.88 0.82 
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4.3.3.2 Infection prevalence 𝑁∗estimated using the 𝑣𝑎𝑟(𝑅𝑡) scaling 

formulation 

Including the 𝑣𝑎𝑟(𝑅𝑡) of the Koelle and Rasmussen (2012) form and the serial 

case interval 𝜏𝑐 as scaling parameters for recovering the infection prevalence 𝑁∗ using 

the estimates obtained from the BSP analysis, the 𝑁∗ curves reconstructed for each of 

the simulation scenarios of the FMD stationary system are presented in Figure 4-8. The 

recovered 𝑁∗ estimates were found to be directly proportional with the decrease in the 

𝑣𝑎𝑟(𝑅𝑡) produced by larger dispersion parameter 𝑘 used for sampling from the 

negative binomial distribution. At 𝑘=0.01 [𝑣𝑎𝑟(𝑅𝑡)=109.9], the 𝑃𝑒𝑥𝑝 prevalence was 

estimated on average 1.6 times higher than 𝑁∗, with a relatively higher deviance 

(RMSD=254.8) (Tables 4-10). In addition, the oscillatory structure of the empirical 

prevalence was not fully reproduced by the predicted 𝑁∗ trajectory. With a decrease 

step in 𝑘 [value of 0.1, 𝑣𝑎𝑟(𝑅𝑡)=13.9], the infection prevalence 𝑁∗ was found to be 

further decreasing its correlation with the 𝑃𝑒𝑥𝑝 prevalence (RMSD=402.4), thus 

indicating a drop in the number of infected cases recovered by 𝑁∗ with the decrease in 

the 𝑣𝑎𝑟(𝑅𝑡) of the system. A further increase of the dispersion parameter 𝑘 for 

simulating a decrease in the 𝑣𝑎𝑟(𝑅𝑡) of the system produced a further drop in the 𝑁∗ 

estimates. On average with 𝑘≥10, the 𝑃𝑟𝑒𝑚 prevalence was found to be 4.6±0.90 times 

higher than 𝑁∗ , with predicted and empirical data being reported as highly linearly 

related (average 𝑅2 value of 0.86±0.03) (Table 4-10). For the scenario corresponding 

to the UK 2001 FMD (10<𝑘<1), 𝑁∗ was found largely lower than the 𝑃𝑒𝑥𝑝 prevalence, 

with the latter being 3.5±0.4 times higher than the 𝑁∗ estimates.      
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Figure 4-8. Infection prevalence 𝑵∗ estimated from the WGS generated by the stationary FMD simulation. 
The variance in the secondary cases per primary infection 𝑅𝑡 for the scaling equation has been assumed as the Koelle 
and Rasmussen (2012) formulation. Generation time is defined with the serial case interval 𝜏𝑐  formulation. 𝑁𝐵(𝑘, 𝑝) 
dispersion parameter set as 0.01 (A), 0.1 (B), 0.5 (C), 1 (D), 10 (E), 50 (F) 100 (G), and 1000 (H). Epidemic curve 
was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data.  

Table 4-10. Statistical parameters estimated for the relationship between infection prevalence 𝑵∗ 
estimated under the assumption of variance in 𝑹𝒕 [Koelle and Rasmussen (2012) parameterisation] and the 
empirical prevalence data extracted from the simulated stationary system under different 
parameterisations of the dispersion parameter 𝒌. Generation time is defined with the serial case interval 𝜏𝑐  
formulation. Average scaling implementation. 

  𝑵𝑩(𝒌, 𝒑) Dispersion Parameter 
 0.01 0.1 0.5 1 10 50 100 1000 

RMSD 254.8 402.4 506.9 479.7 435.1 521.2 524.4 479.5 
𝜷  1.62 3.12 3.23 3.84 3.39 5.18 5.38 4.53 
𝑹𝟐  0.85 0.92 0.91 0.87 0.88 0.87 0.88 0.82 
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4.3.3.3 Infection prevalence 𝑁∗estimated using the NLFT scaling formulation 

Expressing the phylogenetic structure by NLFT and using the prevalence-to-

incidence ratio 𝜏𝑝 for recovering the infection prevalence 𝑁∗, the effect of the different 

values of the dispersion parameter 𝑘 [and thus the 𝑣𝑎𝑟(𝑅𝑡)] used for simulating the 

FMD stationary system is presented in Figure 4-9. As observed from the reconstructed 

𝑁∗ curves, the decrease in the dispersion parameter 𝑘 used for the negative binomial 

distribution and, therefore, the increase of in the 𝑣𝑎𝑟(𝑅𝑡) value was correlated with a 

decrease in 𝑁∗, although constantly providing a fair degree of precision in 

reconstructing the shape and trajectory of the prevalence curve. At higher 𝑣𝑎𝑟(𝑅𝑡) 

(109.9 and 11.5, derived using 𝑘=0.01 and 0.1, respectively), no clear correlation 

between the recovered 𝑁∗ and prevalence was reported, with very low deviances from 

𝑃𝑟𝑒𝑚 estimated (RMSD=477.4 for k=0.01, and RMSD=475.8 for k=0.1) (Table 4-11). 

Increasing the dispersion parameter 𝑘 at values of 0.5 and 1 [𝑣𝑎𝑟(𝑅𝑡) equal to 3.9 and 

2.6, respectively], 𝑁∗ predicted estimates started to increase, although producing high 

deviances from the prevalence data extracted from the 𝑃𝑒𝑥𝑝 time (RMSD=405.7 for 

𝑘=0.5, and RMSD=269.4 for 𝑘=1) (Table 4-11). Empirical 𝑃𝑒𝑥𝑝 prevalence was found to 

be of the order of 2.1 (𝑘=0.5) and 1.4 (𝑘=1) times higher than the infection prevalence 

𝑁∗, respectively . With a further increase in the dispersion parameter 𝑘 (between 10 

and 100) and thus a decrease in the 𝑣𝑎𝑟(𝑅𝑡) (estimated on average as 1.2±0.04), a more 

evident correlation between the recovered 𝑁∗ and the 𝑃𝑒𝑥𝑝 prevalence was observed. 

On average, RMSD deviance estimates was reported to be 222.9±12.7 (Table 4-11), 

with 𝑁∗ values to be 1.09±0.01 times lower than the 𝑃𝑒𝑥𝑝. This difference was not found 

to be statistically significant (𝑝>0.05). For values of 𝑘 corresponding to the UK 2001 

FMD epidemic (10<𝑘<1), 𝑁∗ was again observed to be highly correlated with the 𝑃𝑒𝑥𝑝 

prevalence, although being on average 1.1±0.3 higher than the empirical data, with the 

shape of the 𝑁∗ trajectory closely matching the empirical 𝑃𝑒𝑥𝑝 curve.  
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Figure 4-9. Infection prevalence 𝑵∗ estimated from the WGS generated by the stationary FMD simulation. 
Generation time is parameterised as the prevalence-to-incidence ratio 𝜏𝑝 (Frost and Volz, 2013) (§3.2.2.3, §4.2.2.2). 

𝑁𝐵(𝑘, 𝑝) dispersion parameter set as 0.01 (A), 0.1 (B), 0.5 (C), 1 (D), 10 (E), 50 (F) 100 (G), and 1000 (H). Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data.  

Table 4-11. Statistical parameters estimated for the relationship between infection prevalence 𝑵∗ 
estimated by expressing the phylogenetic structure by NLFT and the empirical prevalence data extracted 
from the simulated stationary system under different parameterisations of the dispersion parameter 𝒌. 
Generation time is defined with the prevalence-to-incidence ratio 𝜏𝑝 formulation (§3.2.2.3, §4.2.2.2). Average scaling 

implementation. 

  𝑵𝑩(𝒌, 𝒑) Dispersion Parameter 
 0.01 0.1 0.5 1 10 50 100 1000 

RMSD 477.4 475.8 405.7 269.4 210.3 235.8 222.8 264.0 
𝜷  46.02 5.73 2.08 1.36 0.91 0.89 0.91 0.85 
𝑹𝟐  0.85 0.92 0.91 0.87 0.88 0.87 0.88 0.82 
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4.4 Discussion 

In this chapter, a thorough investigation of the relationship that exists between 

the effective population size 𝑁𝑒  extracted from the BSP and the actual number of 

infected cases has been presented. The aim was to attempt to identify a valid 

formulation which can be used to scale 𝑁𝑒 to a proxy measure of empirical prevalence 

data, here termed the infection prevalence 𝑁∗. Three formulations derived from 
𝑁𝑒

𝑁
 

equations (as in Table 4-1) were tested with two different scaling approaches, namely 

average and time-varying, describing the potential epidemiological and/or 

evolutionary factors associated with the relationship of these two quantities, from a 

simple linear scaling of generation time to the account of complex variabilities in the 

population structure under study. The uniqueness of this study relies in the data which, 

albeit simulated for its genetic component, have been obtained from a single 

exhaustive and fully-resolved epidemic (i.e. the UK 2001 FMD epidemic) where the 

demography of the infected population is fully known, thus enabling measurement of 

a direct correlation in time between the real epidemic size and the recovered infection 

prevalence 𝑁∗. 

Although the shape and trajectory of the scaled 𝑁∗ curve followed with 

precision the epidemic curve generated from the prevalence data and a strong linear 

relationship has been established (𝑅2 value of up to 0.93), the exact match varied 

considerably according to the scaling formulation used. Thus, defining prevalence data 

according to the timing of the FMD disease progression (as previously described in 

§3.2.2.2), different correlations exist between the infection prevalence 𝑁∗ and the 

prevalence data extracted from each of the time-related FMD stages. It is evident that, 

using 𝑁𝑒 estimated directly from the BSP and scaling this quantity using the 

epidemiological definition of generation time 𝜏, a clear correlation with the prevalence 

extracted from the 𝑃𝑒𝑥𝑝 is observed. Expressing the phylogenetic structure by NLFT 

and using the prevalence-to-incidence ratio 𝜏𝑝 for deriving the infection prevalence 𝑁∗, 

this quantity effectively resolves the shape and trajectory of the prevalence computed 

from the 𝑃𝑒𝑥𝑝 data. On the other hand, accounting for the variability in the number of 

progeny per single IP generated across the different phases of the epidemic and using 

the Koelle and Rasmussen (2012) form of 𝑣𝑎𝑟(𝑅𝑡) along with the serial case interval 𝜏𝑐 

for recovering 𝑁∗, estimates were observed to not correlate with the infected 
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population size derived from the 𝑃𝑒𝑥𝑝 prevalence data, where the predicted 𝑁∗ was 

found to be considerably higher than the empirical prevalence. This finding indicates 

that, for correctly scaling an estimate of 𝑁𝑒 to the actual number of infected cases 

(expressed as prevalence), the generation time should be measured by as the 

prevalence to incidence ratio 𝜏𝑝, and scaling should express the phylogenetic structure 

by the number of lineages as a function of time.   

Investigating the effect of the 𝑣𝑎𝑟(𝑅𝑡) on the estimation of the infected 

population demography and examining the results obtained from the analysis of the 

stationary FMD simulation, it is evident that the variability in the number of secondary 

cases per primary infection 𝑅𝑡 greatly impacts on the BSP reconstruction of the actual 

number of infected cases and, although accurately describing the shape of the 

demographic curve and its trajectory, the increase in the stochastic reproduction of the 

infected population [i.e. 𝑣𝑎𝑟(𝑅𝑡)] significantly reduces the BSP accuracy. This outcome 

has been consistently observed for every formulation used to scale the BSP estimates 

to either the effective population size 𝑁𝑒 or the infection prevalence 𝑁∗, even those that 

include the variance in the number of secondary cases per primary infection explicitly 

in the formulation of the scaling equation. On the other hand when 𝑣𝑎𝑟(𝑅𝑡) is reduced 

by increasing the dispersion parameter 𝑘, the infection prevalence 𝑁∗ matches the 𝑃𝑒𝑥𝑝 

prevalence, although the precise relationship varies according to the formulation used 

for scaling the BSP data and, therefore, the model assumptions. For example, the fit 

from the scaling equation that considers the phylogenetic structure by NLFT suggests 

that in a more homogeneous FMD system [i.e. with 𝑘≥10 and 𝑣𝑎𝑟(𝑅𝑡)≈1] the predicted 

infection prevalence 𝑁∗ is a good approximation to the empirical IP count (𝑃𝑒𝑥𝑝 

derived). This means that every IP in the system has the same chance of transmitting 

infection to subsequent generations and, therefore, the average time between 

infections is the only possible scaling factor and is constant. 

Assuming a more stochastic disease system in which the presence of 

‘superspreaders’ is not solely driving the transmission process [i.e. 0.5<𝑘<10 and 

2≲𝑣𝑎𝑟(𝑅𝑡)≲3], estimates of infection prevalence 𝑁∗ provided by the scaling 

transformation of 𝑁𝑒 which account for 𝑣𝑎𝑟(𝑅𝑡), closely match with the empirical 

infected population size (𝑃𝑟𝑒𝑝 derived), maintaining or even increasing its accuracy 

when the system is structured as being more homogeneous [i.e. with 𝑘≥10 and 

𝑣𝑎𝑟(𝑅𝑡)≈1]. When 10<𝑘<1, the FMD stationary system returns very similar estimates 

of epidemiological parameters (i.e. 𝜏𝑒 , 𝑣𝑎𝑟(𝑅𝑡), 𝐸(𝑅𝑡), 𝜏𝑝) to those obtained from the 
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UK 2001 FMD empirical data, with a further similarity on the correlation between the 

infection prevalence 𝑁∗ recovered using the NLFT scaling formulation and the 𝑃𝑒𝑥𝑝 

prevalence data. The 𝛽 parameters extracted from the two analyses were also very 

close (0.88 and 0.91 for the UK 2001 FMD epidemic and the FMD stationary system, 

respectively). However, the effect of the serial case interval 𝜏𝑐 within the FMD 

stationary system on recovering the empirical prevalence using the 𝑁∗ estimator needs 

to be further clarified. 

Magiorkinis et al. (2013) describe how the 𝑁/𝑁𝑒 ratio (i.e. the prevalence to the 

effective number of infections ratio) is equal to 𝑣𝑎𝑟(𝑅𝑡) when the genetic variability 

between strains has a negligible effect on their infection potential, with the 𝑣𝑎𝑟(𝑅𝑡)/𝜏  

being termed the phylodynamic transmission parameter (PTP). Theoretically, the PTP 

is assessed through linearly correlating 𝑁 with 𝑁𝑒 and obtaining the estimates from the 

slope 𝛽 of the regressor (i.e. 𝑁 = 𝛽𝑁𝑒). The results provided by the UK 2001 FMD 

epidemic (using the epidemiological generation time 𝜏 corresponding to the definition 

the authors described in their study) do not support this hypothesis, since the 𝛽 is 

calculated to be 1.1±0.05 whilst the 𝑣𝑎𝑟(𝑅𝑡) extracted from the epidemiological data is 

estimated to be 3.9±0.1. This relationship does not converge even when recovering the 

𝑁𝑒 using the serial case interval 𝜏𝑐 (𝛽=1.3±0.05). Looking at the results generated from 

the FMD stationary system, the recovery of the 𝑣𝑎𝑟(𝑅𝑡) from 𝛽 estimates seems to be 

possible with large values used for the dispersion parameter of the negative binomial 

distribution (for 𝑘≥10), which thus defines systems with lower variability in the 

population structure (i.e. where all the IPs are contributing on average equally to the 

transmission process and no ‘superspreaders’ would be defined). This finding would 

indicate that the recovery of the infection prevalence 𝑁∗ from a simple linear 

relationship between the real infected population size 𝑁 and the effective population 

size 𝑁𝑒 in a really complex system would be in some way difficult. Nevertheless, it has 

been demonstrated here that in a more homogeneous epidemiological system, such as 

the UK 2001 FMD epidemic, the empirical prevalence 𝑃𝑒𝑥𝑝 and the infection prevalence 

𝑁∗ are very closely related in relative size. 

It is interesting to note that although the number of infected cases estimated by 

the UK 2001 FMD epidemic or the simulated FMD stationary systems are dying out in 

the tail end phase, and thus leading to the end of the infection, the BSP still continue to 

record infections. For example, at day 232 from the start of the UK 2001 FMD epidemic 

(i.e. the last day of the epidemic) the 𝑁𝑒 estimated by the BSP still recorded an average 
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of 17 active cases, whilst the prevalence is equal to 1 and the incidence is zero. The BSP 

issue in the estimation of the last phase of a datum system has been already reported 

as due to a lack of genealogical information at later times (de Silva et al., 2012). 

Although this would not be an issue while retrospectively analysing viral disease 

demography though generally biasing the results, it might lead to incorrect forecasts if 

using the BSP to monitor the infection trend in real time during an epidemic. 
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CHAPTER 5 

Optimal structure of incompletely sampled 

datasets 

5.1 Rationale 

In Chapter 4, it was demonstrated that the infection prevalence 𝑁∗ scaled from 

𝑁𝑒 estimated from genetic data collected from a fully resolved epidemic system might 

be equated to the actual number of infected cases, although there was inherited 

complexity and variability in matching a single prevalence estimate. It was also 

observed that when expressing the phylogenetic structure by NLFT and scaling 𝑁𝑒 

using the prevalence-to-incidence ratio 𝜏𝑝, the correlation between the predicted 𝑁∗ 

and the empirical infected population size is close to 𝑃𝑒𝑥𝑝. This finding was been also 

reproduced at a simulated steady state, when the variance in the reproductive number 

of the IPs is set equal to that of the UK 2001 FMD epidemic. It should be noted that the 

𝑁∗ demographic signal recovered from the UK 2001 FMD epidemic resulted from a 

large and fully observed and sequenced outbreak (albeit simulated), whilst the 

simulated steady state was derived from a more poorly sampled but relatively large 

population. However, in more common epidemic or endemic scenarios, it would often 

be the case that representative field samples would not be collected from all of the 

reported IPs. Therefore, the actual sampling rate would vary and this could directly 

impact on the accuracy of reconstructed population dynamics. 

The coalescent model, from which the BSP is derived, assumes that the samples 

are randomly collected from a homogeneous population (Griffiths and Tavare, 1994b), 

a criterion which in a real scenario would not be always satisfied. Most importantly, 

increasing the sample size 𝑠 does not improve the accuracy of estimates in a manner 

that is typically observed in conventional statistical analysis. For example, in the 

standard coalescent model the variance of estimators of the scaled mutation rate 𝜃 =

4𝑁𝑢 decreases at a rate 1/ log 𝑠, rather than 1/𝑠 (Rosenberg and Nordborg, 2002). 

Sampling bias represents an important issue for coalescent-based demographic 

reconstruction methods. In recent years, there has been a substantial expansion in the 
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volume of genetic data within surveillance programs and larger multi-gene and WGSs 

are now becoming routine for disease monitoring. Despite this, very few studies have 

attempted to understand the effect of reduced sampling rates, bias or structure of the 

sampling protocol on the reconstructed population dynamics given by analysis of the 

BSP. Although focussing on investigating the accuracy of BSP estimates on complex 

acute RNA virus dynamics, Stack et al. (2010) provided an indication of how bias in the 

structure of sequenced samples renders BSP estimates less reliable. In addition, it has 

been considered that samples taken at a single time point would not provide enough 

resolution for reconstructing past population dynamics (Rambaut et al., 2008, Stack et 

al., 2010). However, no studies have made use of fully-resolved epidemic data to 

capture the impact of sampling bias in the estimation of viral population history. 

In this chapter by sub-sampling from a full (simulated) UK 2001 FMDV WGS 

dataset, the effect of the sampling rate on the efficiency of the BSP-derived 𝑁𝑒 to 

reconstruct the epidemic demography has been explored. Different sampling protocols 

have been employed, from a simple random assumption of sampling sequence data to 

a more structured and stratified protocols. As already reported, the scaling formulation 

which expressed the phylogenetic structure by NLFT, making use of the prevalence-to-

incidence ratio for scaling the effective population size 𝑁𝑒 , provided the best fit for 

recovering empirical prevalence from the predicted infection prevalence 𝑁∗. 

Therefore, this scaling formulation has been further used for performing the analyses 

of this chapter. The methodology used for estimating the effective population size 𝑁𝑒 

from a BSP analysis was that used in chapter 4 (§4.2.2.3). 

5.2 Simple random sampling of genetic data  

 Twelve simulation runs of the UK 2001 FMD epidemic were used to assess the 

variability of the reconstructed FMDV population dynamics from data drawn using a 

simple random sampling (SRS) protocol. FMDV WGS were sampled at a decreasing 

sampling proportion 𝑠 at 0.25 intervals from the database of the full epidemic dataset 

(𝑛=2026 IPs) using the common definition of SRS without replacement and 

disregarding the order of the sample (Lohr, 2010, Tille, 2006). The molecular clock rate 

(estimated from BEAST) recovered from these sampled datasets are shown in Figure 

5-1. When sampling represented 50% or more of the total WGS, the molecular clock 
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rate was more accurately estimated (average value of 2.17×10-5 nt/site/day) with 

narrow 95%CIs and low deviance between model runs (CV=0.08), whilst when using 

less than 50% of the full WGS dataset higher clock values (average value of and 

3.28×10-5 nt/site/day ) and wider 95%CIs were reported. 

 
Figure 5-1. Molecular clock rate (nt/site/day) estimated using BEAST 1.8.0 under the assumption of a strict 
clock evolutionary model from 12 realisations of the full UK 2001 FMDV WGS simulated database (𝒏=2026) 
and from each of the resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. The red line 
defines the molecular clock rate estimated from empirical sequence data (𝑛=39 WGS) collected from the UK 2001 
field samples (with estimated clock of 2.33×10-5), whilst the red dashed lines define its 95%CI region (1.95×10-5 to 
2.4×10-5). Sampled datasets drawn under the SRS scheme. 

Relating the effective population size 𝑁𝑒 to the infection prevalence 𝑁∗ using the 

NLFT scaling formulation, a direct correlation was observed between a decreased 

sampling rate and an increase in the noise derived from the reduced genetic signal, 

although this was observed most strongly for sampled datasets comprising less than 

50% of the total samples (Figure 5-2). On visual inspection, the epidemic curves 

recovered from the infection prevalence 𝑁∗ were largely matching the prevalence 

recovered from the 𝑃𝑒𝑥𝑝 data when 𝑠>50%. For example at 𝑠=0.75, the absolute 

difference between sampled and full WGS data was on average 36.4±14.9 IPs. On the 

other hand, the accuracy in matching the 𝑃𝑒𝑥𝑝 prevalence was reduced when sampling 

at lower rate, recording an average absolute difference of 132.9±15.0 IPs from the full 

WGS data at 𝑠=0.25. The same regression through the origin (RTO) procedure used in 

Chapter 4 has been performed here in order to correlate the infection prevalence 𝑁∗ 

estimated from sampled data and that recovered from the full WGS dataset. As shown 
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in Table 5-1, the 𝛽 parameter was found to be close to 1 with very low variability 

between model runs when sampling 75% of the total number of WGS data (CV=0. 07), 

whilst sampling less than 25% of the data produced less accurate and noisier results 

(average 𝛽 value of 2.38±0.57; CV=0.15±0.03). At 𝑠=0.25 the predicted 𝑁∗ was 

reported to be close to the half of the empirical prevalence 𝑃𝑒𝑥𝑝 (𝛽=1.98±0.26). The 

accuracy was found to reduce linearly with decreasing sampling rate (𝑅2=0.89). The 

observed decay in the accuracy derived from reducing the sampling rate was reflected 

in the difference in the infection prevalence 𝑁∗ between the sampled and the full data.  

Considering the 𝑁∗ estimates extracted from each of the epidemic phases, an 

absolute difference of 277.6 IPs (CV=0.09) between the sampling database comprising 

5% of the total data and the full WGS dataset was reported for the epidemic peak, whilst 

a difference of 142.1 IPs (CV=0.12) was estimated for the decline phase. Conversely, a 

lower size difference was observed for the exponential and plateau phases, although 

decreasing the amount of data used for generating the 𝑁∗ curve increased the extent of 

the variability between estimates produced using different model runs (average CV 

value for 𝑠≤0.25 of 0.30±0.19). 
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Figure 5-2. Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS simulated 
database (𝒏=2026) and resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled under the 
SRS scheme. 

Table 5-1. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the SRS scheme. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.16±0.08 162.19±19.28 364.81±43.26 156.70±13.82 26.94±3.54 
0.5 (𝑛=1013) 1.42±0.09 137.06±16.12 281.72±33.55 134.48±14.53 26.42±4.39 
0.25  (𝑛=506) 1.98±0.26 98.05±14.02 207.80±40.21 109.09±19.55 19.51±4.00 
0.05 (𝑛=101) 2.78±0.48 71.86±10.52 141.95±26.60 76.34±17.64 19.61±5.36 

5.3 ‘Probability proportional to size’ sampling of 

genetic data 

To account for the structure of the genetic signal carried by WGS data within a 

partially sampled scenario, a ‘probability proportional to size’ (PPS) sampling scheme 

(Lohr, 2010) was applied to sample from the simulated UK 2001 FMDV WGS full 
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dataset (𝑛=2026 IPs). First, it is necessary to establish strata of the data – here termed 

elements, 𝑀𝑖 . The probability of sampling from the 𝑖th element, 𝑝𝑖, is proportional to 

the relative size of the 𝑀𝑖 , thus 𝑝𝑖 =
|𝑀𝑖|

∑ |𝑀𝑖|𝑖∈𝑈
 (where 𝑈 is the union of all indices). For 

continuous variables (such as genetic distance, evolutionary duration, epidemiological 

generation time 𝜏 , and spatial transmission distance), the empirical probability 

density function for the variable was estimated from the reconstructed UK 2001 

transmission tree using a kernel density approach and partitioned in to 3 elements: the 

lower 2.5th percentile, the �̅�±SD and the upper 97.5th percentile regions (Figure 5-3). 

For discrete variables (such as spatial region, month and week of reporting), each 𝑖th 

element denoted each of the discrete values. The general PPS algorithm for sampling 

within each of the above defined 𝑀𝑖  elements was then used (Cochran, 1977). For the 

PPS trial, datasets that were sampled at a decreasing rate 𝑠 of 0.25 from the full WGS 

database were constructed for each of the epidemiological and genetic variables 

assessed, where the genetic sequence from the index IP (IP4) was always included. 

 
Figure 5-3. Empirical probability density functions of epidemiological and genetic parameters estimated 
from the UK 2001 FMD epidemic using a kernel density approach for sampling WGS data by a PPS scheme. 
(A) genetic distance estimated using the TN93 substitution model (Tamura and Nei, 1993), (B) evolutionary 
duration ∆𝑡, (C) generation time with the epidemiological definition of 𝜏, (D) spatial transmission distance estimated 
between parent-daughter transmission link. Blue areas define the lower 2.5th percentile and 97.5th percentile 
regions, whilst the red area denotes the �̅�±SD region.   
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5.3.1 Sampling within genetic strata 

5.3.1.1 Evolutionary duration ∆𝑡 

The 𝑀𝑖  elements of the probability density function estimated from the 

evolutionary duration ∆𝑡 data extracted from the reconstructed UK 2001 transmission 

tree returned were defined as follows: <2.5th percentile, 4 to 5 days; �̅�±SD, 10.1±3.5 

days; >97.5th percentile, 19 to 29 days (Figure 5-3). As shown in Figure 5-4, the 

reconstructed 𝑁∗ curve tended to largely deviate from the estimates derived from the 

full WGS data at a sampling rate 𝑠<0.5 (epidemic peak difference of 153.7 IPs), although 

at 𝑠=0.75 the absolute difference was found to be 50.3±14.8 IPs. Using only 5% of the 

full WGS data, the epidemic peak was estimated at only less than half of the empirical 

size (absolute difference of 288.0±24.3 IPs). In addition, large deviance values were 

estimated from different sampled datasets (average CV value of 0.27±0.22), even with 

sampling rates of more than 50% of the total WGS data (CV=0.38±0.25), indicating 

lower precision in the estimate of the infection prevalence 𝑁∗ by the PPS scheme than 

using a simple SRS (Table 5-2). In addition, the 𝛽 parameter increased linearly with the 

reduction in the sampling rate (𝑅2=0.90), with 𝛽 values estimated at 𝑠≤0.5 higher than 

that obtained using the SRS scheme (2.14±0.71 vs 2.06±0.69).  
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Figure 5-4. Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS simulated 
database (𝒏=2026) and resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled under the 
PPS scheme using the evolutionary duration ∆𝑡 genetic variable. 

Table 5-2. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the PPS scheme using the evolutionary duration ∆𝑡 genetic variable. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.25±0.05 151.62±18.20 314.10±33.73 150.03±10.28 28.95±2.88 
0.5 (𝑛=1013) 1.51±0.10 124.03±15.68 265.93±27.50 128.97±12.26 23.96±2.81 
0.25  (𝑛=506) 2.03±0.27 96.30±12.28 202.11±34.51 98.59±8.87 19.15±3.62 
0.05 (𝑛=101) 2.91±0.47 66.83±12.50 131.60±24.32 74.15±9.33 20.41±5.27 

5.3.1.2 Epidemiological generation time 𝜏 

The 𝑀𝑖  elements of the probability density function estimated from the 

epidemiological generation time 𝜏, were demarcated as follows: <2.5th percentile, 0 to 

3 days; �̅�±SD, 7.2±2.7 days; >97.5th percentile, 14 to 20 days (Figure 5-3). As shown in 

Figure 5-5, as the sampling rate decreases, a corresponding decrease in the accuracy of 

reproducing the infection prevalence 𝑁∗ curve derived from the full WGS dataset 
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(𝑅2=0.88) is observed At 𝑠≥0.5 the size and shape of the empirical epidemic curve was 

largely recovered, estimating an average absolute difference of 53.1±16.7 IPs, with a 

difference in the epidemic peak size of 81.2±30.0 IPs at 𝑠=0.75. In addition, the 

precision between different sampled datasets was found to be similar to that of a 

simple SRS scheme, estimating an average CV value of 0.43±0.10 for the PPS in 

comparison with the 0.45±0.06 returned for the SRS. The absolute difference between 

the 25% sample and the full WGS data was estimated as 103.7±16.6 IPs, whilst using 

less data (5% of the total WGS) did not significantly reduce the infection prevalence 𝑁∗ 

estimates (absolute difference of 134.1±18.8 IPs) (Table 5-3). However, at 𝑠=0.05 

estimates were less precise that that obtained using a simple SRS (CV of 0.27 vs 0.17). 

 
Figure 5-5. Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS simulated 
database (𝒏=2026) and resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled under the 
PPS scheme using the epidemiological generation time 𝜏 variable. 
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Table 5-3. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the PPS scheme using the epidemiological generation time 𝝉 variable. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.17±0.05 159.29±18.92 342.58±37.30 157.28±14.78 32.20±2.99 
0.5 (𝑛=1013) 1.40±0.12 138.66±16.24 283.02±32.45 134.10±10.76 27.01±3.54 
0.25  (𝑛=506) 1.96±0.18 101.41±14.02 201.17±37.33 102.63±12.19 21.17±2.95 
0.05 (𝑛=101) 2.81±0.75 71.98±19.89 134.90±33.95 75.17±17.67 23.05±4.71 

5.3.1.3 TN93 genetic distance 

The 𝑀𝑖  elements of the probability density function estimated from the TN93 

genetic distance data extracted from the UK 2001 FMDV WGS simulated under the full 

epidemic scenario were defined as follows: <2.5th percentile, 0 to 0.0008 base 

substitutions/site; �̅�±SD, 0.003±0.001 base substitutions/site; >97.5th percentile, 

0.007 to 0.01 base substitutions/site (Figure 5-3). Although the decrease in the 

accuracy produced by reducing the sampling rate according to the PPS scheme defined 

using the TN93 genetic distance values was found to be highly linearly related 

(𝑅2=0.95), the absolute difference in terms of infection prevalence 𝑁∗ between the full 

WGSs data and each of the sampled datasets was not substantial (average value of 

54.6±19.9 IPs for 0.5≤𝑠≤0.75) (Table 5-4). This was reflected in the shape of the 

reconstructed 𝑁∗ curves, which were reduced in size according to the reduced number 

of samples present in the dataset, with the structure of each epidemic phase largely 

preserved (Figure 5-6). Absolute differences for the exponential, peak, decline and 

plateau phases were 27.1±14.9, 106.9±49.3, 76.5±13.0 and 7.8±2.8 IPs, respectively. In 

addition, the relative variability between sampled datasets was found to be equal when 

sampling at different rates 𝑠 (average CV value of 0.13±0.17 and 0.14±0.17 for 

0.5≤𝑠≤0.75 and 𝑠=0.25, respectively). The 𝛽 parameters estimated at lower sampling 

rate (𝑠≤0.25) were lower than the corresponding values obtained from the simple SRS 

scheme (2.16±0.36 vs 2.38±0.57). However, the epidemic peak size predicted with a 

sampling rate of 𝑠=0.05 was largely biased and poorly matching the empirical size, with 

an absolute difference of 255.7±45.4 IPs and a relatively low accuracy between 

datasets (CV=0.46). 
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Figure 5-6. Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS simulated 
database (𝒏=2026) and from each of the resampled datasets at a decreasing sampling proportion rate 𝒔 of 
0.25. Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were 
sampled under the PPS scheme using the TN93 genetic distance variable. 

Table 5-4. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the PPS scheme using the TN93 genetic distance variable. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.21±0.07 158.91±12.70 348.12±38.22 151.18±9.00 23.79±2.87 
0.5 (𝑛=1013) 1.47±0.08 135.88±12.85 277.78±25.95 132.82±7.59 19.83±2.18 
0.25  (𝑛=506) 1.91±0. 21 104.37±12.43 212.28±30.34 106.66±12.15 19.61±2.66 
0.05 (𝑛=101) 2.42±0.60 74.34±16.45 163.87±45.43 86.48±24.12 28.76±16.88 

5.3.2 Sampling within spatial strata 

5.3.2.1 Regional division 

A regional stratum was defined as a single UK County which reported FMD cases 

during the 2001 FMD epidemic and, from which, an FMDV isolate was collected. Thus, 

the full WGS data (𝑛=2026) was subdivided into 𝑀𝑖  elements to which the PPS 
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sampling scheme has been applied. This spatial allocation was based on the spatial 

connections between the geographical coordinates of each reported IPs and the spatial 

UK county layer, which defines the county borders (according to 2009 boundaries) 

(Figure 5-7). 

 
Figure 5-7. Spatial proportion of IPs according to the affected UK counties as reported during the UK 2001 
FMD epidemic. The spatial layer defines the UK counties based on the 2009 boundaries.  

Results for the estimated infection prevalence 𝑁∗ curves are shown in Figure 5-

8. Although the relative variability between sampled datasets was reported to produce 

no substantial difference at higher and lower rates of 𝑠 (average CV value of 0.11±0.01 

and 0.18±0.06 for 0.5≤𝑠≤0.75 and 0.05≤𝑠≤0.25, respectively), reducing the sample size 

greatly impacted on the accuracy of matching the estimates obtained with the full WGS 

data. Using only 5% of the total data, an absolute difference of 102.6±18.6, 272.1±42.4 

and 139.0±14.3 IPs was estimated for the exponential, peak and decline phases, 

respectively, whilst averages of 24.8±12.2, 95.8±34.0 and 74.6±16.7 IPs were 

calculated with datasets sampled at a rate of 0.5≤𝑠≤0.75 (Table 5-5). However, the 

reduced accuracy of the PPS at a sampling rate 𝑠=0.05 was similar to the estimates 

obtained using a simple SRS scheme (absolute difference values of 0.9, 5.6 and 3.1 IPs 

for the exponential, peak and decline phases, respectively). The 𝛽 parameter estimated 
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for the spatial region PPS was found to linearly decrease with the reduced sampling 

rate 𝑠 (𝑅2=0.89), with no statistical difference with the SRS scheme (𝑝>0.05). 

 
Figure 5-8 Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS simulated 
database (𝒏=2026) and resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled under the 
PPS scheme using the spatial region discrete variable. 

Table 5-5. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the PPS scheme using the spatial region discrete variable. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.17±0.07 165.31±16.85 355.17±48.65 155.72±10.06 27.41±6.07 
0.5 (𝑛=1013) 1.41±0.13 140.10±12.98 299.72±43.30 132.04±12.94 25.58±4.05 
0.25  (𝑛=506) 1.90±0.22 104.56±16.69 215.37±41.75 109.81±11.23 18.96±3.01 
0.05 (𝑛=101) 2.64±0.51 70.90±18.57 147.54±42.46 79.45±14.29 23.82±7.88 

5.3.2.2 Spatial transmission distance 

The 𝑀𝑖  areas of the probability density function estimated from the spatial 

distance of parent-daughter transmission links that were extracted from the 
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reconstructed UK 2001 FMD transmission tree were defined as follows: <2.5th 

percentile, 0 to 0.6 km; �̅�±SD, 27.6±6.2 km; >97.5th percentile, 218.3 to 543.2 km 

(Figure 5-3). Looking at the results provided by the infection prevalence 𝑁∗ (Figure 5-

9), the decrease in accuracy driven by the reduced sampling rate 𝑠 was again found to 

be linearly described (𝑅2=0.89), returning an average 𝛽 parameter of 1.31±0.20 for 

sampled datasets drawn with 0.5≤𝑠≤0.75. Accordingly, the absolute difference 

between the size of the infected population derived from the full WGS data and the 

sampled datasets was small at 𝑠=0.75 and 𝑠=0.5, with average estimates of 30.9±15.6 

66.9±16.5 IPs, respectively (Table 5-6). Estimates of the 𝛽 parameter at 𝑠=0.75 was 

found to be lower than the one obtained using a simple SRS scheme (1.13±0.09 vs 

1.16±0.08). However, when only 25% of the total WGS data was sampled, the accuracy 

in the estimate of the epidemic peak was reduced (absolute difference of 198.8±33.5 

IPs) and was characterised by a substantial relative variability between different 

sampled datasets (CV=0.17). At 𝑠=0.05, the predicted size at epidemic peak was further 

reduced, with an absolute difference value of 279.9±31.7. The overall relative 

variability between datasets determined by the PPS sampling approach was found to 

be similar to that of a simple SRS scheme (average CV of 0.10±0.07 and 0.11±0.05 for 

PPS and SRS, respectively). 
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Figure 5-9. Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS simulated 
database (𝒏=2026) and resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled under the 
PPS scheme using the spatial transmission distance epidemiological variable. 

Table 5-6. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the PPS scheme using the spatial transmission distance epidemiological variable. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.13±0.06 161.66±14.02 370.81±39.62 163.75±15.18 30.37±2.62 
0.5 (𝑛=1013) 1.45±0.08 134.21±12.48 280.22±39.54 135.295±12.32 23.90±1.74 
0.25  (𝑛=506) 1.93±0.17 98.57±13.97 220.77±33.50 107.07±12.60 20.22±2.99 
0.05 (𝑛=101) 2.77±0.60 71.92±12.66 139.69±31.67 81.75±26.69 22.31±8.32 

5.3.3 Sampling within temporal strata 

5.3.3.1 Month timing 

The strata for the PPS sampling scheme using the month of IP reporting were 

estimated from the UK 2001 FMD epidemic records, which returned a total of 8 𝑀 
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elements equivalent to the timing in month of the epidemic described from February 

to September 2001 (Figure 5-10).  

 
Figure 5-10. Total number of IP reported to be infected by FMDV during the UK 2001 FMD epidemic by 
month of reporting. 

On a visual inspection, the 𝑁∗ curves derived from the PPS datasets sampled at 

a rate of 𝑠≤0.25 were found to be slightly inhomogeneous in terms of shape and 

trajectory, whilst these were relatively similar between sampled datasets at sampling 

rates of 0.5 and 0.75 (Figure 5-11). The decrease in the accuracy of the reconstructed 

𝑁∗ curves derived from sampling WGS at a decreasing rate 𝑠 was linearly described 

(𝑅2=0.93), although the absolute difference estimated between the full WGS data and 

the sampled datasets both drawn using 𝑠=0.25 and 𝑠=0.05 were roughly equal (average 

values of 100.4±16.6 and 128.1±17.1 IPs, respectively) (Table 5-7). Similar to the 

simple SRS scheme, the estimated size of the epidemic peak obtained using the 𝑠=0.25 

sampled datasets was almost half of that obtained using the full WGS data (absolute 

differences of 207.5±35.3 IPs), which is defined by a 𝛽 value of 1.93±0.24.At 𝑠=0.05, 

the epidemic peak size was further reduced by ~30% (absolute difference of 

264.4±35.1). 
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Figure 5-11. Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS 
simulated database (𝒏=2026) and resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. 
Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled 
under the PPS scheme using the month of reporting time discrete variable. 

Table 5-7. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the PPS scheme using the month of reporting time discrete variable. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.17±0.09 161.79±13.93 353.65±31.26 157.38±10.75 27.96±4.82 
0.5 (𝑛=1013) 1.45±0.11 132.56±15.54 280.16±31.49 134.79±9.73 24.01±4.85 
0.25  (𝑛=506) 1.93±0.24 101.37±14.23 212.09±35.32 105.45±13.54 20.66±3.23 
0.05 (𝑛=101) 2.52±0.38 69.32±14.78 155.22±35.07 83.33±14.66 22.23±6.38 

5.3.3.2 Week timing 

Similarly to the PPS month sampling approach, the strata for the PPS sampling 

scheme using the week of FMD case reporting were estimated from the UK 2001 FMD 

epidemic records, which returned a total of 32 𝑀 elements corresponding to the timing 

of the epidemic in week, starting from the 3rd week of February (8th week of the year) 

to the 4th of September 2001 (41st week of the year) (Figure 5-12). 
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Figure 5-12. Total number of IP reported to be infected by FMDV during the UK 2001 FMD epidemic by week 
of reporting. 

Decreasing the rate 𝑠 at which samples were drawn from the full WGS data was 

linearly correlated with a decrease in the accuracy of reconstructing the size of the 

infected population through time as derived by the infection prevalence 𝑁∗ estimates 

(𝑅2=0.85). This was supported, on a visual inspection (Figure 5-13), by the flattening 

of the epidemic peak size with the decrease in the amount of WGS present in the 

sampled dataset (absolute difference of 213.7±27.9 and 281.3±29.6 IPs for 𝑠=0.25 and 

𝑠=0.05, respectively) (Table 5-8). Despite the reduced accuracy provided by the 

reduced genetic data, the relative variability between sampled datasets was relatively 

low at 0.25≤s≤0.05 (average CV of 0.14±0.07). This finding was observed to be even 

lower at 0.75≤𝑠≤0.5 (average CV values of 0.07±0.01), with higher precision than what 

obtained using a simple SRS scheme (average CV value of 0.11±0.01). At 𝑠=0.75 the 

predicted epidemic peak was very close to the one derived from WGS data, and 

estimated to be of 62.9±38.5 IPs (𝛽=1.15). 
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Figure 5-13. Infection prevalence 𝑵∗ estimated from 12 realisations of the full UK 2001 FMDV WGS 
simulated database (𝒏=2026) and resampled datasets at a decreasing sampling proportion rate 𝒔 of 0.25. 
Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled 
under the PPS scheme using the week of reporting time discrete variable. 

Table 5-8. Time specific number of infected cases recovered from the infection prevalence 𝑵∗ estimated 
from 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic scenario and resampled datasets at a 
decreasing sampling proportion 𝒔 of 0.25. 𝛽 parameter designates the slope of the regressor of the RTO analysis. 
Datasets were sampled under the PPS scheme using the week of reporting time discrete variable. 

  Epidemic Phase 

Sample proportion 𝛽 Exponential Peak Decline Plateau 

𝑃𝑒𝑥𝑝   195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 
1 (𝑛=2026) Ref. 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.93 

0.75 (𝑛=1519) 1.15±0.09 166.00±14.18 356.68±38.58 159.19±10.75 28.12±4.98 
0.5 (𝑛=1013) 1.37±0.09 141.45±14.71 300.68±32.20 132.19±10.97 23.85±4.79 
0.25  (𝑛=506) 1.95±0.20 97.84±13.06 205.85±27.93 106.28±10.26 20.68±3.92 
0.05 (𝑛=101) 2.94±0.58 70.83±16.35 138.34±29.59 74.80±18.77 18.29±4.44 

5.4 Sampling within epidemic phases 

In the previous sections, the impact of sampling WGSs at reduced rates 𝑠 on the 

accuracy of reconstructed population sizes as estimated by the full WGS data was 

evaluated, either considering a simple random or a more structured sampling scheme. 

With these methods WGSs have been sampled from the entire time frame of the UK 

2001 FMD epidemic, therefore providing a more homogeneous sampling which is less 
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biased in the diversity of the genetic signal carried by the selected WGSs. To account 

for a more biased and unstructured sampling, a SRS scheme with a low sampling rate 

𝑠≈0.03 has been applied to each of the UK 2001 FMD epidemic phases (i.e. exponential, 

decline and tail end), where the index IP (IP4) was included in each of the sampled 

datasets. For this assessment, to recover the prevalence, the three scaling formulations 

for the infection prevalence 𝑁∗, as ranked in §4.3.1, were used for scaling 𝑁𝑒 obtained 

from the BSP. In addition and to explore a model which include sampling uncertainty 

in its mathematical formulation, the Birth-Death model (BDM) which accounted for 

incomplete sampling (Stadler, 2009) has been used to assess the sample probability 𝜌 

predicted by this method using the very same sampled WGSs. The BDM is implemented 

in BEAST 1.8.0 (Drummond et al., 2012). 

5.4.1 Exponential phase 

The infection prevalence 𝑁∗ curves predicted for the exponential phase of the 

UK 2001 epidemic were characterised, on a visual inspection (Figure 5-14), by large 

relative variability between sampled datasets (CV=0.47±0.01), which was reported for 

all of the scaling formulations applied (Table 5-10). Although the relative shape and 

trajectory of the epidemic phase was preserved, the accuracy in matching the actual 

infected population size, as estimated using the full WGS data, was found to be reduced 

on average by 65.4% and 58.4% when using the 𝑁𝑒 scaled by the epidemiological 

generation time 𝜏  and assuming 𝑁∗ scaled using the NLFT formulation, respectively. 

Predicted estimates were found to differ on average of 67.5±19.2 and 81.1±24.7 to 

those obtained using the full WGS data for the scaled-𝑁𝑒 and the NLFT scaling 

formulations, respectively (Table 5-10). A high variability was reported when scaling 

the 𝑁∗ using the 𝑣𝑎𝑟(𝑅𝑡) formulation (CV=0.30). The sample probability estimated 

using the BDM (𝜌=0.10±0.03) was reasonably matching the empirical value of the 

sample proportion (𝑛=60, 𝑠=0.06) given the actual number of infected cases reported 

within the time frame of the exponential phase (Table 5-11). 
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Figure 5-14. Epidemic size of the UK 2001 FMD exponential phase estimated from 12 realisations of FMDV 
WGS simulated database (𝒏=2026) resampled at a rate 𝒔≈0.03. The three plots shows the scaled 𝑁𝑒 , the 
infection prevalence 𝑁∗ derived by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and Rasmussen (2012) form, 
and the infection prevalence 𝑁∗ derived from the NLFT scaling formulation using the prevalence-to-incidence ratio 
𝜏𝑝. Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were 

sampled under the SRS scheme. 

Table 5-9. Time specific number of infected cases estimated from 12 realisations of FMDV WGS simulated 
database (𝒏=2026) and at a sampling rate 𝒔≈0.03. 𝛽 parameter designates the slope of the regressor of the RTO 
analysis. The infection prevalence 𝑁∗ was scaled by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and Rasmussen 
(2012) form, and by the NLFT scaling formulation using the prevalence-to-incidence ratio 𝜏𝑝. Datasets were 

sampled under the SRS scheme. 

  Infection Prevalence 𝑵∗ 

Epidemic Phase 𝑁𝑒 𝑣𝑎𝑟(𝑅𝑡) 𝜏𝑝 

Exponential Prevalence 195.01±2.15 195.01±2.15 195.01±2.15 
 WGS full data 145.17±9.34 469.08±22.00 173.53±12.55 
 SRS (𝑛=60, 𝑠≈0.03) 67.48±19.23 217.89±63.25 81.14±24.69 
 𝛽  4.14±1.64 1.29±0.51 3.49±1.38 

Decline Prevalence 203.17±0.83 203.17±0.83 203.17±0.83 
 WGS full data 182.77±9.40 590.85±24.23 218.50±13.66 
 SRS (𝑛=60, 𝑠≈0.03) 120.34±53.41 391.82±175.13 144.38±65.08 
 𝛽  2.05±0.78 0.63±0.24 1.72 ±0.66 

Plateau Prevalence 30.62±0.04 30.62±0.04 30.62±0.04 
 WGS full data 24.75±1.34 80.04±4.50 29.58±1.93 
 SRS (𝑛=60, 𝑠≈0.03) 15.14±4.02 48.77±12.42 8.19±5.28 
 𝛽  2.07±0.48 0.64±0.14 1.74±0.43 

Table 5-10. Comparison of the empirical proportion 𝒔 of IPs reported during the UK 2001 FMD epidemic 
according to each epidemic phase and the corresponding sample probability 𝝆 obtained using 12 
realisations of the BDM (Stadler, 2009). 

 Empirical  BDM 

Epidemic Phase 𝑛 𝑁 𝑠  𝜌 

Exponential 60 1037 0.06  0.10±0.03 
Decline 60 537 0.11  0.39±0.08 
Plateau 60 457 0.13  0.63±0.05 
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5.4.2 Decline phase 

The prevalence data by time estimated using the sampled datasets with all the 

three different scaling formulation was not able to recover the true shape and 

trajectory of the true UK 2001 FMD decline phase, thus visually appeared as a flat line 

(Figure 5-15). For the scaled 𝑁𝑒 data and the NLFT formulations, estimates were found 

to be lower than the values obtained with the full WGS data (absolute difference of 

85.0±49.4 IPs and 76.8±38.9), whilst the infection prevalence 𝑁∗ derived using the 

𝑣𝑎𝑟(𝑅𝑡) formulation was estimated as higher than the full WGS data (absolute 

difference of 192.9±169.9 IPs) (Table 5-9). All of the scaling formulations returned a 

large variability between estimates extracted from different realisations of the model 

(average CV values of 0.44±0.01). The BDM estimated that the data were drawn from 

~20% more samples (𝜌=0.39±0.08) than the real sample proportion (𝑛=60, 𝑠=0.11) 

(Table 5-10). 

 
Figure 5-15. Epidemic size of the UK 2001 FMD decline phase estimated from 12 realisations of FMDV WGS 
simulated database (𝒏=2026) resampled at a rate 𝒔≈0.03. The three plots shows the scaled 𝑁𝑒 , the infection 
prevalence 𝑁∗ derived by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and Rasmussen (2012) form, and the 
infection prevalence 𝑁∗ derived from the NLFT scaling formulation using the prevalence-to-incidence ratio 𝜏𝑝. 

Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled 
under the SRS scheme. 

5.4.3 Tail end phase 

Evaluating the infected population size estimates obtained by sampling at a low 

rate from the cases reported during the tail end phase (Figure 5-16), a low absolute 
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difference between the sampled datasets and the full WGS estimates was described for 

all the scaling formulations (average value of 15.3±2.9), with the WGS data being higher 

than the scaled 𝑵𝒆 data and the freely mixing formulations. However, a high relative 

variability between datasets was observed, estimated in an average CV value of 

0.27±0.02 (Table 5-9). It should be noted that, as already described in Chapter 4, the 

BSP reported an increased number of infected cases in the last weeks, failing to 

describe the actual fading out of the epidemic. The BDM analysis returned a sample 

probability 𝝆 of 0.63±0.05 (Table 5-10), which was higher than the real sample 

proportion drawn from the list of reported cases within the time frame of the tail end 

phase (𝒏=60, 𝒔=0.13). 

 
Figure 5-16. Epidemic size of the UK 2001 FMD tail end phase estimated from 12 realisations of FMDV WGS 
simulated database (𝒏=2026) resampled at a rate 𝒔≈0.03. The three plots shows the scaled 𝑁𝑒 , the infection 
prevalence 𝑁∗ derived by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and Rasmussen (2012) form, and the 
infection prevalence 𝑁∗ derived from the NLFT scaling formulation using the prevalence-to-incidence ratio 𝜏𝑝. 

Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. Datasets were sampled 
under the SRS scheme. 

5.5 Conclusion 

This chapter analysed the impact of the size and structure of the sampled 

dataset on the accuracy of the reconstructed viral demographies. The results generated 

should provide information on how the demographic signal carried by sequence data 

becomes imprecise and weaker when reducing the number of samples. Using a simple 

random sampling protocol (SRS scheme) to generate WGS sub-datasets from the 
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complete simulated dataset from the UK 2001 epidemic, an approximately linear decay 

in the accuracy in the reconstruction of the actual infected population size was 

observed, which was particularly pronounced for datasets containing less than 50% of 

the full WGS data. In contrast, for a highly sampled dataset, the estimated absolute 

difference with the full WGS data was found to be relatively low, with average values 

of 8.0±6.6 IPs for 𝑠=0.75. At a lower sampling rate (𝑠=0.25) this value became larger, 

estimated to be on average 36.3±8.5 IPs, whilst the accuracy was reduced by more than 

50% when sampling only 5% of the total infected population. This was also reflected 

by the shape and trajectory of the epidemic curve reconstructed by scaling 𝑁𝑒 to the 

infection prevalence 𝑁∗: at a rate 𝑠≤0.05 the epidemic peak was found to be flatter, 

therefore providing less accurate information on the total size of the epidemic event. It 

is interesting to note that at 𝑠=0.25 the size of the predicted infected population size 

was found to be half of the empirical prevalence (𝛽=1.98±0.26). The majority of the 

reduced accuracy at lower sampling rates was focussed on the peak and decline phases 

of the epidemic, whilst at both the exponential and the tail end phases, the recovered 

𝑁∗ size reconstructed from the sampled datasets was similar to the estimates obtained 

using the full WGS data. 

As suggested by the results obtained using the PPS sampling scheme, a 

correlation might be described between the type of variable used to select the samples 

and the accuracy in the reconstruction of the size of the infection prevalence 𝑁∗ when 

analysing datasets constructed at lower sampling rates. For example, when PPS 

sampling from the PDF the TN93 genetic distance variable the accuracy of the infected 

population size estimated at 𝑠=0.25 was higher in comparison with the SRS scheme 

(reduced accuracy of 39.0% and 41.1% for PPS and SRS schemes, respectively. This 

finding would indicate that the structure of the genetic data and, therefore, the 

demographic signal is more preserved when sampling using the PPS scheme thus 

producing more precise results. As a confirmation, when using the PDF of the genetic 

distance variable, accounting for the extent of the genetic signal of the full WGS data 

for sampling via the PPS, the reduced accuracy at 𝑠=0.05 was estimated to be 43.4%, in 

contrast with a value of 53.5% obtained using the simple SRS scheme. In addition, the 

𝛽 parameters estimated by PPS sampling were found to be lower than the values 

obtained using the SRS scheme. Accounting for the spatial and temporal structure of 

the epidemic process within the PPS sampling protocol did not significantly improve 

on the accuracy of the estimated population size as opposed to the SRS scheme, with 
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the reconstructed epidemic peak largely flattening at low sampling rates. At 𝑠=0.05, the 

accuracy was reduced on average by 49.8±11.5%, 50.7±13.5%, 50.7±0.06% and 

55.4±10.0% for the regional, spatial transmission, month and week samplings, 

respectively, also reporting larger 𝛽 estimates. In addition, as already observed for the 

continuous genetic variables, the precision of the population size estimates between 

different sampled datasets were higher in comparison to the SRS scheme 

(CV=0.15±0.03), returning average CV values of 0.26, 0.24, 0.21 and 0.20 for the 

regional, spatial transmission, month and week samplings, respectively.  

Analysis of each UK 2001 FMD epidemic phases when using very small (𝑠≈0.03) 

and relatively biased sampled datasets confirmed what was already observed with a 

larger sample size. For the exponential phase, the population size estimates produced 

using the SRS sampled data were reported to be relatively inaccurate, with a reduced 

accuracy of 53.2±14.2% estimated using the NLFT scaling formulation, and producing 

nosier (CV=0.27) curves compared with the full WGS data (CV=0.18). The infection 

prevalence 𝑁∗ curve obtained for the decline phase using the sampling data was akin 

to a flat line, thus not capturing the real trend of the prevalence data extracted from the 

empirical infected population size, a feature that was also described for the tail end 

phase analysis, although the latter produced the oscillatory trend observed during the 

last three months of the epidemic fadeout. These findings were unexpected considering 

that a constant linear transformation between scaled 𝑁𝑒  estimates and the real infected 

population size during an exponential epidemic phase, or a steady endemic state has 

been previously described (Koelle and Rasmussen, 2012, Magiorkinis et al., 2013), 

assuming that the generation time 𝜏 is constant through time. Although this holds true, 

visually inspecting and comparing both the reconstructed and the empirical epidemic 

curves, it is not valid when comparing the size of both the 𝑁𝑒 or the infection prevalence 

𝑁∗ with the real number of infected cases. It should be noted that, as already described 

in Chapter 4, the BSP reported an increased number of infected cases in the last weeks 

of the tail end epidemic phase, failing to describe the actual fading out of the epidemic. 

The BDM computed for estimating the sample probability 𝜌 was able to detect, 

albeit slightly higher, the number of IPs reported only for the exponential phase 

(𝜌=0.10±0.03, 𝑠=0.06), whilst was failing to recover the true data for both the decline 

and the tail end phases. When sampling 50% of the full WGS data regardless of the 

epidemic phase, the BDM estimated a 𝜌=0.32, lower than the empirical value although 

it was included within the 95% confidence interval (95%HPD 0.07 to 0.54). In addition, 
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estimates of the sampling probability 𝜌 obtained using the BD Skyline model (Stadler 

et al., 2013) or the BDSIR model implemented in BEAST 2.3.0 software (Bouckaert et 

al., 2014) were not significantly different from those presented here [data not shown]. 

Although it would be difficult to detect deviation of the sampling process from the BDM 

form in a real world scenario, one of the assumptions of the BDM is that the sampling 

rate should be constant through time (Boskova et al., 2014), which should hold true in 

the case of the SRS scheme here adopted for homogeneous sampling from each phase 

of the UK 2001 FMD epidemic. Therefore, as previously demonstrated and the results 

here confirmed (Stadler et al., 2015), the BDM correctly reflects the real sampled 

proportion of infected population only during an exponential growing phase with a 

constant sampling rate, whilst for other scenario its estimates might be largely biased 

by the misspecification of the sampling process formulated by the BDM (Volz and Frost, 

2014). 

 Lastly, comparing the coalescent-based method (i.e. scaled 𝑁𝑒 estimated 

obtained using the BSP plot) with the BDM for reconstructing the real infected 

population size from partially sampled sequence data, pro and cons of both methods 

might be perceived. Although the accuracy and precision of the BDM estimate was 

largely high when investigating the exponential phase of an epidemic when the 

coalescent-based approach failed to provide an accurate picture, the coalescent 

approach performed better in assessing the real infected population size of the entire 

epidemic (as evaluated using the SRS scheme). It has been observed that 

epidemiological dynamics reconstructed using both the coalescent-based approach 

and BDM might be largely biased when assessing epidemic with 𝑅0 value close to 1 or 

with small effective susceptible populations (Popinga et al., 2015), which might be the 

case for the UK 2001 FMD epidemic. 
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CHAPTER 6 

Phylodynamics of the UK 2001 FMD epidemic 

using available WGS data: a preliminary analysis 

6.1 Rationale 

Throughout the studies presented in this thesis, the research focus has been on 

investigating the relationship between the empirical epidemic size and the 

corresponding predicted infection prevalence 𝑁∗ recovered solely from genetic data. It 

has been also observed how this relationship might be less accurately established 

when improperly structured samples of genetic data are used. The complex 

relationship between the empirical epidemic size and the predicted infection 

prevalence 𝑁∗ has been studied in silico from the UK 2001 FMD epidemic where the 

demography of the infected population is well understood. An evolutionary simulation 

framework of the whole UK 2001 FMD epidemic has been developed, which has been 

informed by the space-time dynamics of the transmission events as reconstructed 

using the fully resolved epidemiological data. However, some of the results obtained 

from this project can only be validated sometime after its completion, when the full 

dataset of UK 2001 FMDV WGSs will be available. At the time of writing, an initial set 

of the WGS (n=154) is available that have been generated from the archive of clinical 

samples collected at the time of the outbreak (n=1404) by the Epi-SEQ EMIDA-ERA 

NET funded project (www.episeq.eu/index_files/Page1077.htm). Accordingly, this 

chapter presents a preliminary characterisation of the UK 2001 FMD epidemic based 

on these real data, enabling testing of the hypotheses suggested by the results obtained 

from the analyses of the simulated data presented in Chapters 4 and 5 and, therefore, 

to initially validate their assumptions with a relatively small subset of the real WGS 

data [~11% of the total clinical samples collected at the time of the outbreak (𝑛=1404), 

~8% of the total number of reported IPs (𝑛=2026)]. In addition, a random subset of 

the simulated data representative of the sample of the 𝑛=154 real WGSs was obtained 

to compare the population dynamics recovered from the real data with that derived in 

silico. 

http://www.episeq.eu/index_files/Page1077.htm
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6.1.1 Brief description of the UK 2001 FMD epidemic event 

Between February and September 2001, a total of 2026 IPs were reported to be 

infected by FMD in UK, defining the largest FMD epidemic recorded following the 

eradication of the disease from Europe. It has been estimated that during the seven 

months of the epidemic almost 6.5 million animals were culled to control the outbreak, 

with a total financial cost of about £8 billion shared between the private and public 

sectors (Donaldson et al., 2006). On 19th February 2001 suspect cases of FMD were 

reported to the MAFF (later re-organised as DEFRA) from an official veterinary 

inspection at an abattoir in Essex (IP01), southeast England. The causative agent was 

confirmed as type O PanAsia FMDV strain by the WRLFMD at the Institute for Animal 

Health, Pirbright, on the 20th of February (Gibbens et al., 2001, Knowles et al., 2001b). 

Infected pigs were delivered to the abattoir from farms in southeast and northern 

England. Forensic tracing and inspecting farms which supplied livestock to the Essex 

abattoir found clinical signs of FMD in pigs fed unprocessed waste food (swill) at the 

index premise in Heddon-on-the-Wall (IP04), Newcastle-upon-Tyne, northeast 

England (DEFRA, 2002). It has been allegedly attributed that illegal import of FMDV 

contaminated pork products from Asia has been the likely way by which FMD was 

introduced into UK, although tests performed failed to recover the virus. The initial 

expansion phase of the epidemic was driven by three main events: the infection via 

airborne route to Prestwick Hall Farm, Callerton, (IP06) 5km away from the index case 

(Gloster et al., 2003); the movement of infected sheep from IP06 to the Hexham 

livestock auction market in Northumberland; the movement of infected sheep bought 

at the Hexham market to Longtown market in Cumbria before entering into the 

national sheep marketing system. It has been reconstructed through epidemiological 

investigations that the sheep moved from Longtown market were disseminated to 10 

of the 12 geographical IP clusters that were identified during the epidemic before the 

first case was reported the 19th of February (Gibbens et al., 2001, Mansley et al., 2003). 

The trigger of the exponential phase of the epidemic was thus mainly due to the 

dissemination of infected sheep through the marketing network across the country and 

then to local spread across clusters of IPs within each affected geographical area 

(Mansley et al., 2011). Within the first 10 weeks from the beginning of the epidemic 

~1600 IPs were reported, reaching a peak between the 27th and 29th of March. In the 

20 weeks of the tail end phase of the epidemic (from May to September), 400 farms 
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were reported as infected, with the last case confirmed on the 30th of September in 

Cumbria. These last cases were identified in previously unaffected and widely 

separated areas and mainly characterised by local spread (Mansley et al., 2011). 

Although the overall picture of the UK 2001 FMD epidemic has been largely 

reconstructed through epidemiological analysis of data generated through field 

investigations, the source for the majority of the IPs remains unidentified. 

6.2 Materials and methods 

6.2.1 Generating the UK 2001 FMDV WGS  

The 154 FMDV WGSs analysed in this study were partially obtained from the 

WRLFMD database of already published WGS of the UK 2001 FMD epidemic (𝑛=39) 

(Cottam et al., 2006, Cottam et al., 2008a, Konig et al., 2009), with further 115 WGS 

newly generated from the Epi-SEQ EMIDA-ERA NET funded project 

(www.episeq.eu/index_files/Page1077.htm), which is focused on the genetic 

characterisation of the entire UK 2001 FMD collection of clinical samples stored at the 

WRLFMD, The Pirbright Institute – UK. For the samples, sequencing was performed on 

an Illumina MiSeq NGS sequencer using a 12.5pM pool in a 2×250-2×300 cycle 

sequencing reaction using a 600 cycle v.3 cartridge. The protocol that has been used 

for generating the consensus level sequences from FMDV clinical samples has been 

previously published (Logan et al., 2014). The geographical locations and frequency of 

the time of collection for the 154 WGSs used in this study are detailed in Figure 6-1. 

http://www.episeq.eu/index_files/Page1077.htm
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Figure 6-1. Geographical location and frequency in time of the 𝒏=154 WGS generated from the samples 
collected during the UK 2001 FMD epidemic and analysed in this study. Counties are coloured according to the 
total number of samples present.  

6.2.2 Data analysis 

6.2.2.1 Recovery the evolutionary and demographic signal 

BEAST 1.8.0 package (Drummond et al., 2012, Drummond and Rambaut, 2007) 

was employed to estimate the evolutionary clock rate of the UK 2001 FMD epidemic 

and to reconstruct the demography of the infected population. The analysis was 

undertaken with the TN93 substitution model and testing both the strict and random 

local clock evolutionary models (Drummond and Suchard, 2010). The average rate of 

the clock model was fixed as the one previously estimated from the 𝑛=39 already 

published FMDV WGS (2.33×10-5 nt/site/day) and defining a gamma distribution 

𝛤(𝜅, 𝜃) of 𝜅=0.0086 and 𝜃=1000.0 for the substitution rate prior. A piecewise constant 

Bayesian skyline model with 10 groups was used as tree prior (Drummond et al., 2005). 

Other priors were set with the defaults parameters. The MCMC chain was run for 100 

million iterations, sub-sampling every 10000 states. Convergence of the chain was 

assessed using Tracer 1.5 removing the initial 10% of the chain as burn-in. The MCC 

tree was summarised using TreeAnnotator 1.8.0 and constructed using FigTree 1.4.2. 

To reconstruct the demography of the FMDV population from the real 154 FMDV WGSs 

data, the scaling formulations previously tested and which produced the highest fit (as 
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reported in §4.3.1) were here used to recover the infection prevalence 𝑁∗ from the 𝑁𝑒 

estimated from the BSP. These were the scaled 𝑁𝑒 formulation, the 𝑣𝑎𝑟(𝑅𝑡) 

formulation using the Koelle and Rasmussen (2012) form, and the one assuming a 

freely mixing population (Frost and Volz, 2013). This methodology was used for both 

the real and simulated WGSs. 

6.3 Results 

6.3.1 Evolutionary patterns 

The observed evolutionary distances and total nt changes calculated from the 

root (IP04) increased linearly with time (𝑅2=0.93; 𝐹1,153=1993, 𝑝<0.001) (Figure 6-2). 

The root-to-tip distance of substitutions between the index IP04 and the latest 

reported IP2027 was estimated to be 50 nt, although the maximum number of nt 

substitutions across all the WGSs was 78 nt between IP1945 and IP2027 (maximum 

genetic distance 0.01 base substitution per site). It is interesting to note that these two 

IPs were located in two separate geographical clusters and phylogenetically not related 

(IP1945 collected in Powys, Wales, and IP2027 in Cumbria), thus defined within two 

different evolutionary chains. In addition, two pairs of identical sequences were 

observed, namely IP28/IP536 and IP44/IP96. 
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Figure 6-2. Accumulation of nucleotide differences estimated from the index IP (IP4) for the FMDV WGS 
alignment (𝒏=154) generated from the clinical field samples collected during the UK 2001 FMD epidemic. 
Size of the points increases with increased number of nt substitutions. Shaded area represents 95% confidence 
intervals for the fitted line. 

Nucleotide changes were reported in a total of 567 sites across the FMDV 

genome, of which 86 sites found within the noncoding regions at the 5' and 3' ends and 

481 sites were identified within the ORF. Of these substitution sites in the ORF, 58 were 

detected within the VP1 coding region (12.1% of the total coding sites). The molecular 

clock estimated from BEAST returned a value of 2.18×10-5 nt/site/day (95%HPD 

1.87×10-5 to 2.48×10-5). This result was comparable with those estimated from 

previously published studies [2.26×10-5 nt/site/day, using a relaxed-exponential clock 

model with 23 WGSs (Cottam et al., 2006); 2.08×10-5 nt/site/day, using a relaxed-

constant clock model with 22 WGSs (Cottam et al., 2008a); 2.37×10-5 nt/site/day here 

re-estimated using the same strict clock model with 39 WGSs (§3.3.2.1)]. 

6.3.2 Demographic change of infected population size over 

time 

The reconstructed viral infection demography of the UK 2001 FMD epidemic 

estimated from the BSP and scaled to the infection prevalence 𝑁∗ is presented in Figure 

6-3, along with the empirical epidemic curves produced using the prevalence data 

defined in §3.2.2.2. On a visual inspection, the shape and trajectory of the 𝑁∗ curve 

matched the real epidemic curve, although the recovered epidemic peak (39th day) was 

found to be shifted earlier in time than the reported (43rd-46th day). In addition, the 
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end of the decline phase (~50th day) was again earlier than the reported (~80th day). 

The skyline scaled 𝑁𝑒 was found to follow the exponential size of the 𝑃𝑒𝑥𝑝 prevalence 

(absolute difference of 47.2 IPs), although describing an earlier and lower in size 

epidemic peak (absolute difference of 101.6 IPs) (Table 6-1). The tail end phase was 

higher in size than the actual number of IPs reported during that phase (absolute 

difference of 33.6 IPs). The 𝑁∗ estimates derived using the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation 

of the Koelle and Rasmussen (2012) form were reported to be largely higher than any 

empirical prevalence data, with an absolute difference of the epidemic peak size of 

645.9 IPs from the 𝑃𝑒𝑥𝑝. Differently, the 𝑁∗ recovered from the BSP estimates and 

derived using the NLFT scaling formulation closely matched the empirical epidemic 

curve estimated from the 𝑃𝑒𝑥𝑝 prevalence at its exponential and peak phases (absolute 

difference of 19.8 and 39.1 IPs, respectively). However as already described, the 

decline phase was found to end ~30 days before the empirical estimated date and the 

final tail end phase was characterised by a relatively higher average number of 

reported IPs (absolute difference of 45.5 IPs). 

Table 6-1. Time specific number of infected cases estimated using the infection prevalence 𝑵∗ recovered 
from the BSP analysis of the 𝒏=154 WGSs generated from the clinical samples collected during the UK 2001 
FMD epidemic. Predicted number of infected cases were estimated using the scaled 𝑁𝑒 (A), the infection prevalence 
𝑁∗ derived by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and Rasmussen (2012) form (B), and the infection 
prevalence 𝑁∗ derived from the NLFT scaling formulation using the prevalence-to-incidence ratio 𝜏𝑝 (C). 𝑃𝑒𝑥𝑝 

prevalence data was estimated as defined in §3.2.2.2. 

  Epidemic Phase 
  Overall Exponential Peak Decline Tail End 

Prevalence 𝑃𝑒𝑥𝑝  88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Effective Population Size 𝑁𝑒  86.79 147.85 338.19 98.64 64.24 
Infection Prevalence [𝒗𝒂𝒓(𝑹𝒕), 𝝉𝒄] 𝑁∗  278.64 474.66 1085.70 316.66 206.23 
Infection Prevalence (𝝉𝒑) 𝑁∗  102.84 175.18 400.70 116.87 76.11 

Extracting the simulated WGSs from the same premises from which the real 

𝑛=154 sequences were generated and reconstructing the population dynamics of the 

UK 2001 FMD epidemic from this simulated sample generated, the infection prevalence 

𝑁∗ curves along with the scaled 𝑁𝑒 presented in Figure 6-4. Although the shape and 

trajectory match that of the empirical epidemic curve, the exponential phase was 

characterised by two incremental steps with the epidemic peak roughly matching that 

of the empirical prevalence (at around the 42-43th day from the start of the epidemic), 

followed by a sudden drop of the decline phase ending at the ~50th day. This matched 

the findings observed from the real data, although the biphasic exponential growth is 

more marked in the simulated data. However, results of the simulation were describing  

𝑁𝑒 and 𝑁∗ derived using the NLFT scaling formulation to be lower in size than the 
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empirical prevalence (absolute difference at the peak of 320.4 and 297, respectively), 

whilst the 𝑁∗ estimates derived using the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation of the Koelle and 

Rasmussen (2012) form  largely recovering the 𝑃𝑒𝑥𝑝 (absolute difference at the peak 

of 55.6). This differed from the identified relationship between empirical prevalence 

and 𝑁∗ for each of the scaling formulation applied to the real data. In addition, the 

molecular clock rate estimated was relatively higher than the one derived from the real 

𝑛=154 WGSs, returning a value of 3.12×10-5 nt/site/day (95%HPD 2.81×10-5 to 

3.44×10-5), with the HPD interval of which did not contain the clock rate used for the 

simulation and was not overlapped with the HPD of the real data. 

Table 6-2. Time specific number of infected cases estimated using the infection prevalence 𝑵∗ recovered 
from the BSP analysis of the simulated 𝒏=154 WGSs. Predicted number of infected cases were estimated using 
the scaled 𝑁𝑒 (A), the infection prevalence 𝑁∗ derived by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and 
Rasmussen (2012) form (B), and the infection prevalence 𝑁∗ derived from the NLFT scaling formulation using the 
prevalence-to-incidence ratio 𝜏𝑝 (C). 𝑃𝑒𝑥𝑝 prevalence data was estimated as defined in §3.2.2.2. 

  Epidemic Phase 
  Overall Exponential Peak Decline Tail End 

Prevalence 𝑃𝑒𝑥𝑝  88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Effective Population Size 𝑁𝑒  27.99±4.83 63.25±10.78 119.40±20.91 29.78±8.66 14.79±4.25 
Infection Prevalence [𝒗𝒂𝒓(𝑹𝒕), 𝝉𝒄] 𝑁∗  90.05±13.37 203.55±30.47 384.18±58.40 95.60±26.04 47.53±12.75 
Infection Prevalence (𝝉𝒑) 𝑁∗  33.49±5.95 76.54±12.71 142.83±25.70 35.75±10.95 17.70±5.17 
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Figure 6-3. Demography of the UK 2001 infected viral population estimated from the BSP and recovered 
using the infection prevalence 𝑵∗ scaling formulations defined in §4.3.1. The three plots shows the scaled 𝑁𝑒 
(A), the infection prevalence 𝑁∗ derived by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and Rasmussen (2012) 
form (B), and the infection prevalence 𝑁∗ derived from the NLFT scaling formulation using the prevalence-to-
incidence ratio 𝜏𝑝 (C). Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 
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Figure 6-4. Demography of the UK 2001 infected viral population estimated from the simulated data and 
recovered using the infection prevalence 𝑵∗ scaling formulations defined in §4.3.1. The three plots shows the 
scaled 𝑁𝑒 (A), the infection prevalence 𝑁∗ derived by the 𝑣𝑎𝑟(𝑅𝑡) scaling formulation using the Koelle and 
Rasmussen (2012) form (B), and the infection prevalence 𝑁∗ derived from the NLFT scaling formulation using the 
prevalence-to-incidence ratio 𝜏𝑝 (C). Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined 

in §3.2.2.2. 
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6.4 Discussion 

This chapter undertakes preliminary analyses to combining epidemiological 

and genetic data to recover the phylodynamics of the UK 2001 FMD epidemic. 

Previously, studies have investigated the temporal and spatial dispersal of FMDV 

across the UK 2001 FMD epidemic using WGSs generated from the clinical samples 

collected from each IPs, although only focusing on dissecting the evolutionary patterns 

of the virus (Cottam et al., 2006), and investigating transmission links within 

epidemiologically isolated clusters (Cottam et al., 2008a, Konig et al., 2009). However, 

these studies used less than ~2% of the total number of reported IPs, which limits 

generalisation to the full epidemic event. In this study a larger database of WGSs 

(𝑛=154, ~8% of the total number of reported IPs, and ~11% of the collected clinical 

samples) have been used, with the aim of recovering the infected population dynamics 

of the UK 2001 FMD epidemic. This has been achieved by employing a phylodynamic 

method (the BSP) and using those scaling formulations identified from chapter 4 to be 

effective in recovering the empirical prevalence. It should be noted that this initial 

dataset was primarily extracted from the full collection of clinical samples of the UK 

2001 FMD epidemic with the main purpose of testing and validating the protocol for 

generating the consensus level sequence from NGS reads, providing confidence in the 

accuracy of the sequences. Therefore, samples were not selected for sequencing at 

random, and this is likely to bias the demographic signal derived from the sequence 

data. 

The reconstruction in time of the infected population demography using the 𝑁𝑒 

estimated from the BSP produced results different to those anticipated and based on 

studies reported in chapter 4. Every scaling formulation used for recovering the 

infection prevalence 𝑁∗ produced results that differed from those reconstructed from 

the simulated WGSs. The highest ranked scaling formulation derived from §4.3.1 

(which expresses the phylogenetic structure by NLFT and use the prevalence-to-

incidence ratio 𝜏𝑝) was found using the real data to closely match the prevalence 

estimated from the 𝑃𝑒𝑥𝑝 data. However, it is visually clear that this relationship is 

almost perfectly observed for the exponential phase of the epidemic, whilst the 

infected population size of the later phases was not recovered. The 𝑁∗ curve drops 

more rapidly after the peak than that reported form the empirical prevalence data, 
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producing an earlier tail end phase which was also overestimated in size. This 

behaviour of the 𝑁∗ curve has been also recovered from the simulated data, and 

therefore could be due to the structure of the sample dataset thus biasing the estimates 

obtained from both the real and the simulated datasets. As previously described, the 

sampled dataset here used for analysing the UK 2001 FMD epidemic has not been 

randomly selected. In fact, 85% of the total WGSs were from IPs reported between the 

first two months (February and March) of the epidemic, which might substantially bias 

the genetic diversity recovered over time. As observed from chapter 5, reducing the 

amount of samples and biasing the collection in time and space could substantially 

affect the estimates produced by the BSP analysis and, thus, the recovered infection 

prevalence 𝑁∗ by any scaling formulation. 

A more speculative and critical discussion should be devoted to questioning the 

reason for the lack of fit between the simulated and real data. It might be argued that 

the genetic mutations (estimated as root-to-tip distance) raised from the simulation 

are produced with an error. However, 50 and 84.5±7.5 nt changes at the root-to-tip 

level (from IP04 to IP2027) have been estimated for the field isolates and the simulated 

data, respectively (absolute difference of 14.5±7.5 nt). Therefore, the higher number of 

changes obtained from the simulation would have led to increased genetic diversity, 

differently to what reported. This comment might be also valid to explain the observed 

difference in the clock rate recovered from the real and simulated data, estimated at 

values of 2.18×10-5 and 3.12×10-5 nt/site/day, respectively. 

As already discussed in chapter 3, the substantially different behaviour 

observed between the real and simulated data might be due to the effect of within-farm 

evolutionary processes. In a real epidemic, genetic change might accrue from within-

farm evolutionary processes, for which multiple cycles of infection might be present on 

each IP. Genetic diversity derived from the swarm of unsampled genome at the within-

farm level might contribute to the size of the ‘effective population’, although at 

consensus level this variability could not be recovered. However, the process 

developed for simulating the virus evolution does consider, although using a very 

simplified algorithmic implementation, the characterisation of the within-farm 

dynamics, which might contribute to the genetic diversity observed between the 

sequences recovered from each IP. On this line, it would be interesting to see if the 

observed nt change per farm transfer estimated from the real data (if the real 
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transmission tree would ever be resolved) would match with the value obtained from 

the simulated data. 

Another explanation could be that the reconstruction of the transmission tree 

that has been used as a backbone for the Markovian evolutionary simulation differed 

importantly from the real one. However very similar results were obtained running 

different realisations of the transmission tree reconstruction model (as could be 

evinced from §4.3) and, in addition, the bias in the structure of the 𝑛=154 in estimating 

the real shape of the epidemic curve (peak and decline phase) have been observed 

similarly with the simulated data, thus suggesting that the underling transmission tree 

has been largely recovered. It is, thus, clear that despite attempts in explaining this 

unresolved and unexpected behaviour, it merits further investigations.  

The effective control of FMD, and any other infectious disease, relies on a close 

epidemiological investigation of the spatio-temporal dynamics of pathogen dispersal, 

along with the understanding of the evolutionary drives which contributes to the 

transmission process. Although this initial investigation made use of a small and not 

uniformly structured dataset, it can preliminarily define the potential resolution which 

the UK 2001 FMD epidemic might provide for contributing to seminal works on the 

development of new epidemiological tools which can be used to further enhance our 

ability in predicting and controlling future outbreaks.  
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CHAPTER 7 

Final Discussion and Concluding Remarks 

With the development of the discipline of ‘phylodynamics’ (Grenfell et al., 2004), 

seminal studies from several research groups have contributed to our understanding 

of how epidemiological dynamics can be recovered from an estimated phylogeny 

(Drummond et al., 2002, Lemey et al., 2009a, Stadler et al., 2012). Population genetic 

models have also provided the substrate to augment the information derived from the 

ancestral relationship of sampled lineages with population dynamics inference, to 

derive a more detailed representation of how the genetic diversity (and the 

corresponding concept of ‘effective population size’ 𝑁𝑒) leaves imprints in genetic 

sequences about past population dynamics. This theory reminds us how 

epidemiological and evolutionary forces act within the same time frame, and why 

genetic data sampled from infected hosts can reveal the dynamics of disease spread 

(Drummond and Rambaut, 2007, Frost and Volz, 2010, Kuhnert et al., 2014). Scholars 

have shown how the demographic history of infectious disease reconstructed from 

genome sequences follow in relative size the observed disease dynamics (Rambaut et 

al., 2008). However, evolutionary dynamics accruing from high population complexity, 

which is often the case for infectious disease of viral origin, could challenge the ability 

of analytical approaches used in phylodynamic inference to produce robust estimates 

(Bennett et al., 2010, Siebenga et al., 2010, Rasmussen et al., 2014a). Degrees of 

uncertainty still exist on how these methods perform for reproducing the real scale and 

size of disease outbreak trends as estimated through empirical epidemiological data. 

Our ability to genetically characterise pathogens has increased exponentially in the last 

ten years, driven by the advance in high-throughput sequencing technology and the 

ability to rapidly generate WGSs at low costs, enabling genetic sequences to be 

provided from each individual in an infected population and thus leading to really 

large-scale and high resolution population genetic studies for the first time. 

In this thesis the exhaustively-sampled UK 2001 FMD epidemic has been used 

to investigate how established phylodynamic methods based on a coalescent model [i.e. 

the Bayesian skyline plot (Drummond et al., 2005)] perform to recover the 

demographic history estimated from time series of case reports, thus enabling capture 
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of the real dynamic of the infected population. Although in viral systems 𝑁𝑒 has often 

been interpreted in an epidemiological sense as the effective size of an infected 

population, previously it has been shown that coalescent rates are governed by both 

incidence and prevalence, so that BSP estimates might not accurately be used to infer 

prevalence alone (Frost and Volz, 2010, Volz 2012). The aim of this study was to 

attempt to identify a valid formulation which can be used to scale the population 

genetics parameter 𝑁𝑒 (derived from the BSP) to a measure of empirical prevalence 

data, here termed the infection prevalence 𝑁∗. This theoretical relation has been 

investigated defining prevalence data according to the timing of FMD disease 

progression, and attempting to account for complex variabilities in the population 

structure under study. I conclude, that different relationships can be established 

between the infection prevalence 𝑁∗ and the prevalence data. The best fit between 𝑁∗ 

and the empirical prevalence was found by expressing the phylogenetic structure by 

the number of lineages as a function of time and using the prevalence-to-incidence 

ratio 𝜏𝑝 (Frost and Volz, 2013). I here demonstrated, albeit in silico, how this quantity 

effectively resolves the shape and trajectory of the prevalence computed from the  𝑃𝑒𝑥𝑝 

prevalence data, where infected cases are defined to exist over the time interval from 

exposed to being culled. This result provides further insights in how the relationship 

between 𝑁𝑒  and prevalence can be defined in a closed viral epidemic system, although 

this might be not so straightforward. In fact, it has also been established here that the 

variability in the number of secondary cases per primary infection 𝑅𝑡 greatly impacts 

on the ability of the BSP to recover the real number of infected cases: increasing the 

variance in the reproduction number of the infected population [i.e. 𝑣𝑎𝑟(𝑅𝑡)] 

significantly impacts on the accuracy of the estimator. This is in line with the 

theoretical definition of the BSP model, which assumes that viral lineages are sampled 

from a single, freely mixing population. Therefore it is clear that this assumption can 

always be violated in practice and, thus, be invalid in complex epidemiological systems. 

Thus, accounting for the effect of the variance in the reproductive success [i.e. 𝑣𝑎𝑟(𝑅𝑡)] 

in scaling 𝑁𝑒 , 𝑁∗ estimates were observed to correlate with the infected population size 

derived from the 𝑃𝑒𝑥𝑝 prevalence data at a very high level of population structure (i.e. 

in a system with a high value of 𝑣𝑎𝑟(𝑅𝑡) and presence of ‘super-spreaders’). In addition, 

the fit from the scaling equation, that expresses the phylogenetic structure by the 

number of lineages as a function of time, suggests that in a more homogeneous FMD 

system [i.e. when 𝑣𝑎𝑟(𝑅𝑡)≈1] the predicted infection prevalence 𝑁∗ is a good 



Chapter 7 – Final Discussion and Concluding Remarks 

171 

 

approximation to the empirical IP count (𝑃𝑒𝑥𝑝 derived). This stands as a demonstration 

that because every IP in a homogenous system has the same chance of transmitting 

infection to subsequent generations and, therefore, the average time between 

infections (i.e. the serial case interval) is the only possible scaling factor that is 

maintained constant through the system. It is therefore clear that the results generated 

provide further supporting evidence that the population structure greatly impacts on 

estimation of demographic dynamics (Frost and Volz, 2010, Frost and Volz, 2013, 

Rasmussen et al., 2014a, Pybus et al., 2012). Although structured coalescent models 

define population structures within its model definition, current phylogenetic 

implementation (Vaughan et al., 2014) might not be able to fully capture heterogeneity 

in contacts and transmission among infected individuals. It might be, therefore, 

essential to account for variability in the infected population structure within the 

model specification for population size estimates to be more accurate. 

A unique feature of the evolutionary process implemented here for generating 

the genetic variability of the UK 2001 FMD simulated epidemic is that the virus is 

constrained to evolve along a well-reconstructed transmission tree, thus enabling the 

preservation of the dependencies of sampled lineages along the transmission tree 

which are then recovered from the simulated sequences. In addition, in order to 

account for high within-farm genetic diversity, the coalescent event was set to be early 

in infection, backward in time of the first related coalescent ancestor (i.e. the infection 

time of the infector farm rather than the infection time of the infected farm). Most 

phylodynamic models assume that the timing of coalescent events in the phylogeny 

coincides with the timing of the transmission events. This is obviously not the case 

when a significant genetic variation exists at the within-host and/or within-farm level 

as, for examples, in the case of highly population structured infectious disease 

epidemics. It has been previously reported how the within-farm genetic diversity can 

contribute to the genetic diversity observed between sampled sequences (Ypma et al., 

2013) and, therefore, ignoring this aspect could have led to false estimates of the 

population size. 

Traditionally, methods used for measuring, quantitatively and qualitatively, the 

burden of pathogen spread within populations rely on surveillance data collected 

through either disease monitoring programs or during epidemics. As already 

discussed, in recent years there has been a substantial expansion in the volume of 

genetic data generated within surveillance programs and larger multi-gene sequences 
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and WGS are now becoming routine for disease monitoring. Therefore, the potential 

utility of using molecular methods for estimating infected population dynamics is to 

support surveillance programs or more conventional control practices. Although in 

practice this would require less field effort than conventional serosurveillance studies 

and the deployment of fewer economic resources, sensitivity of the analyses generated 

through the use of phylodynamics tools to non-random sampling is a widely recognised 

problem (St Onge et al., 2012, Stack et al., 2010, Volz and Frost, 2014). It is often the 

case that collected samples would not be representative of the entire infected 

population, introducing on in the efficacy by which population-level information is 

extracted and, thus, impacting on the accuracy of reconstructed population dynamics. 

This might be more relevant when considering endemic disease affecting developing 

countries with poor health infrastructure. In these setting the availability of less-

intensive and more error prone sampled data challenges the evaluation of the health 

status and, thus, the design of effective control policies. Considering FMD as an 

example, analysis of sequence data based on the VP1 coding regions collected from 

Southeast Asian countries revealed the potential impact of undisclosed cases (and 

potentially misreported disease events) on the maintenance of the disease within an 

endemic setting (Knowles et al., 2012). This leads to the inability of the FMD research 

community to capture the real burden of the disease and, thus, to generate the 

necessary resources to control FMD in these ecosystems. 

The effect of sampling strategies on phylodynamic inferences and, thus, on the 

reconstructed temporal dynamics of viral populations has not been exhaustively 

explored and, moreover, no attempts have been put forward the assessment of the 

impact of population structures in an infectious disease context (Chikhi et al. 2010, 

Stack et al., 2010, de Silva, Ferguson and Fraser, 2012). Results reported within this 

thesis provides further information on how the demographic signal carried by 

sequence data becomes imprecise and weaker when reducing the number of samples. 

In order to address this research question, scenarios from the UK 2001 FMD simulation 

were intended to represent sampling for the population of an epidemic virus across 

multiple spatial, temporal and genetic structures. It has been shown that, when 

sampling at a rate of less than 50% of the total infected population, the 𝑁∗ curve was 

reported to generate underestimates of the infectious prevalence and, more 

understandably, more variable estimates with greater standard errors. In addition, 

with a sample of only 25% of the total infected population the predicted infection 
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prevalence 𝑁∗ was found to be half of the empirical prevalence. It has been also 

observed how accounting for the spatial and temporal structure of the transmission 

process within the sampling protocol does not significantly improve the accuracy of 

the estimated population size at very low sampling rates, in contrast to more 

evolutionary based sampling approaches which represent the extent of the genetic 

signal (i.e. accounting for the length of the evolutionary process generated between 

serial cases or the observed genetic distance between sequences). It should be further 

noted from the analysis of these results that sampling methods designed in a more 

biased and unstructured fashion (i.e. strictly sampling from some infected populations 

and not others) can falsely suggest population dynamics trends (spurious temporal 

variation in the BSP reconstruction as, for example, population declines), which would 

in fact be entirely sampling artefacts and, therefore, not truly reflecting the real 

demography of the infected population. This leads to the conclusion that the impact of 

the size and structure of the sampled dataset on the accuracy of the reconstructed viral 

demographies is relevant at any scale of the transmission process and, therefore, the 

results derived from this study can provide relevant material to be used in order to 

inform sampling strategies designed to investigate disease dynamics at endemic level. 

For example, undisclosed (i.e. unsampled) cases maintain endemicity at a fixed level, 

which could be difficult to account for when the structure of the sampled population is 

biased. As already discussed, the coalescent model, from which the BSP is derived, 

assumes that the samples are randomly collected from a homogeneous population 

(Griffiths and Tavare, 1994b), a criterion which in a real scenario would not be always 

satisfied. In addition, the BSP model does not specifically account for the sampling 

process, resulting in more biased estimates when the population is not randomly 

sampled (Popinga et al., 2015). Therefore, estimates of population dynamics based on 

coalescent based methods would benefit from the further integration of surveillance 

information for the specification of the sampling process, which would lead to 

reduction in the bias of the inference methods. In fact, time series of sequence data can 

be effectively used for recovering the population size through time if the sampling 

process can be correctly specified (Volz and Frost, 2014). 

It has been already demonstrated how genetic data carries signal on 

evolutionary forces, demographic size and structure of populations. However, the 

challenge here lies in how to rigorously make these estimations accurate and unbiased. 

A further unresolved question is how genome sequences must be examined for 
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epidemiological characterisation. Methods drawn from phylodynamic inference 

combine powerful epidemiological and population genetics tools that can provide 

valuable insights into the dynamics of viral disease. However, the sensitivity of the 

majority of these models on their assumptions makes estimates less reliable when 

these are violated, as it has been here reported. Therefore, to be applied as reliable 

tools supporting control programs, more focused theoretical research is required to 

model with much more details the processes driving the evolutionary shape of a 

natural population. This could take into account the structural inhomogeneity of the 

infected population, the non-random effect derived from partial sampling, the 

evolutionary interplay driven by coexisting lineages (as in the FMD case) within an 

ecosystem and the sample size at which the phylodynamic inference starts to be 

reliable. The further development of phylodynamics methods which integrate 

inferences of both genetic and epidemiological processes would thus likely provide a 

promising framework to address these challenges. 

 



 

 

APPENDICES 

Appendix 1 

FMDV type O CATHAY VP1 Philippines sequences database. Designation and origin of the FMDV clinical samples (n = 112) collected from the 

Philippines between 1994 and 2005 and processed in this study. †Date received by the WRLFMD was used where exact collection date was missing. 

Virus Designation Tree Code Region Location Date of Collection† Species GenBank No Reference 

O/PHI/2/94 O/PHI/2/94 - - 06/12/1994† Porcine KM243034 (Di Nardo et al., 2014) 
O/PHI/5/94 O/PHI/5/94 - - 06/12/1994† Porcine KM243035 (Di Nardo et al., 2014) 
O/PHI/6/94 O/PHI/6/94 - - 06/12/1994† Porcine KM243036 (Di Nardo et al., 2014) 
O/PHI/8/94 O/PHI/8/94 Calabarzon Bagong Nayon 08/09/1994 Porcine KM243037 (Di Nardo et al., 2014) 
O/PHI/10/94 O/PHI/10/94 Calabarzon San Isidro 28/10/1994 Porcine KM243038 (Di Nardo et al., 2014) 
O/PHI/11/94 O/PHI/11/94 Calabarzon - 07/12/1994 Porcine KM243039 (Di Nardo et al., 2014) 
O/PHI/12/94 O/PHI/12/94 Ilocos - 13/12/1994 Porcine KM243040 (Di Nardo et al., 2014) 
O/PHI/1/95 O/PHI/1/95 Central Luzon Tenejero 05/01/1995 Porcine KM243041 (Di Nardo et al., 2014) 
O/PHI/2/95 O/PHI/2/95 Ilocos - 12/01/1995 Porcine KM243042 (Di Nardo et al., 2014) 
O/PHI/3/95 O/PHI/3/95 Central Luzon - 15/01/1995 Porcine KM243043 (Di Nardo et al., 2014) 
O/PHI/5/95 O/PHI/5/95 Ilocos - 09/02/1995 Porcine DQ164946 (Knowles et al., 2005) 
O/PHI/6/95 O/PHI/6/95 Central Luzon Santa Ines 23/03/1995 Porcine KM243044 (Di Nardo et al., 2014) 
O/PHI/9/95 O/PHI/9/95 NCR - 23/03/1995 Porcine KM243045 (Di Nardo et al., 2014) 
O/PHI/10/95 O/PHI/10/95 Bicol - 06/04/1995 Porcine KM243046 (Di Nardo et al., 2014) 
O/PHI/11/95 O/PHI/11/95 NCR - 06/04/1995 Porcine KM243047 (Di Nardo et al., 2014) 
O/PHI/12/95 O/PHI/12/95 Calabarzon Calabuso 03/10/1996† Porcine KM243048 (Di Nardo et al., 2014) 
O/PHI/13/95 O/PHI/13/95 Calabarzon Ampid 03/10/1996† Porcine KM243049 (Di Nardo et al., 2014) 
O/PHI/14/95 O/PHI/14/95 Central Luzon - 03/10/1996† Porcine KM243050 (Di Nardo et al., 2014) 
O/PHI/1/96 O/PHI/1/96 Central Luzon - 03/10/1996† Porcine KM243053 (Di Nardo et al., 2014) 
O/PHI/2/96 O/PHI/2/96 Central Luzon - 03/10/1996† Porcine KM243054 (Di Nardo et al., 2014) 
O/PHI/3/96 O/PHI/3/96 Eastern Visayas - 03/10/1996† Porcine KM243055 (Di Nardo et al., 2014) 
O/PHI/5/96 O/PHI/5/96 Bicol - 01/09/1996 Porcine KM243056 (Di Nardo et al., 2014) 



 

 

O/PHI/6/96 O/PHI/6/96 Ilocos Aliaga 01/10/1996 Porcine KM243057 (Di Nardo et al., 2014) 
O/PHI/7/96 O/PHI/7/96 Calabarzon Mahabang Parang 01/11/1996 Porcine KM243058 (Di Nardo et al., 2014) 
O/PHI/2/97 O/PHI/2/97 NCR - 16/01/1997 Porcine KM243059 (Di Nardo et al., 2014) 
O/PHI/3/97 O/PHI/3/97 Ilocos - 01/01/1997 Porcine KM243060 (Di Nardo et al., 2014) 
O/PHI/4/97 O/PHI/4/97 Central Luzon Poblacion 01/02/1997 Porcine KM243061 (Di Nardo et al., 2014) 
O/PHI/5/97 O/PHI/5/97 CAR Guisad 01/02/1997 Porcine KM243062 (Di Nardo et al., 2014) 
O/PHI/6/97 O/PHI/6/97 Central Luzon - 01/03/1997 Porcine KM243063 (Di Nardo et al., 2014) 
O/PHI/7/97 O/PHI/7/97 NCR Payatas 01/03/1997 Porcine KM243064 (Di Nardo et al., 2014) 
O/PHI/8/97 O/PHI/8/97 Central Luzon Malibong Bata 01/03/1997 Porcine KM243065 (Di Nardo et al., 2014) 
O/PHI/10/97 O/PHI/10/97 Bicol Cabangan 01/03/1997 Porcine KM243066 (Di Nardo et al., 2014) 
O/PHI/11/97 O/PHI/11/97 Bicol - 06/04/1997 Porcine KM243067 (Di Nardo et al., 2014) 
O/PHI/12/97 O/PHI/12/97 Central Luzon - 19/11/1997† Porcine KM243070 (Di Nardo et al., 2014) 
O/PHI/13/97 O/PHI/13/97 Central Luzon Balatong 19/11/1997† Porcine KM243071 (Di Nardo et al., 2014) 
O/PHI/14/97 O/PHI/14/97 Bicol - 19/11/1997† Porcine KM243072 (Di Nardo et al., 2014) 
O/PHI/15/97 O/PHI/15/97 Central Luzon Sampaga 19/11/1997† Porcine KM243073 (Di Nardo et al., 2014) 
O/PHI/16/97 O/PHI/16/97 Central Luzon - 19/11/1997† Porcine KM243074 (Di Nardo et al., 2014) 
O/PHI/1/98 O/PHI/1/98 Central Luzon - 01/01/1998 - KM243075 (Di Nardo et al., 2014) 
O/PHI/2/98 O/PHI/2/98 Central Luzon - 01/01/1998 - KM243076 (Di Nardo et al., 2014) 
O/PHI/3/98 O/PHI/3/98 Central Luzon Matatalaib 01/01/1998 - KM243077 (Di Nardo et al., 2014) 
O/PHI/4/98 O/PHI/4/98 Central Luzon - 01/01/1998 - KM243078 (Di Nardo et al., 2014) 
O/PHI/5/98 O/PHI/5/98 Calabarzon - 01/01/1998 - KM243079 (Di Nardo et al., 2014) 
O/PHI/6/98 O/PHI/6/98 Calabarzon - 01/01/1998 - KM243080 (Di Nardo et al., 2014) 
O/PHI/8/98 O/PHI/8/98 Central Luzon - 01/01/1998 - KM243081 (Di Nardo et al., 2014) 
O/PHI/9/98 O/PHI/9/98 NCR Nepomuceno 01/01/1998 - KM243082 (Di Nardo et al., 2014) 
O/PHI/10/98 O/PHI/10/98 - - 01/01/1998 - KM243083 (Di Nardo et al., 2014) 
O/PHI/11/98 O/PHI/11/98 NCR Malinta 01/01/1998 - KM243084 (Di Nardo et al., 2014) 
O/PHI/12/98 O/PHI/12/98 - - 01/01/1998 Porcine KM243085 (Di Nardo et al., 2014) 
O/PHI/13/98 O/PHI/13/98 - - 01/01/1998 Porcine KM243086 (Di Nardo et al., 2014) 
O/PHI/14/98 O/PHI/14/98 - - 01/01/1998 Porcine KM243087 (Di Nardo et al., 2014) 
O/PHI/15/98 O/PHI/15/98 - - 01/01/1998 Porcine KM243088 (Di Nardo et al., 2014) 
O/PHI/16/98 O/PHI/16/98 - - 01/01/1998 Buffalo KM243089 (Di Nardo et al., 2014) 
O/PHI/18/98 O/PHI/18/98 - - 01/01/1998 Porcine KM243090 (Di Nardo et al., 2014) 
O/PHI/19/98 O/PHI/19/98 Central Luzon - 01/01/1998 Porcine KM243091 (Di Nardo et al., 2014) 
O/PHI/20/98 O/PHI/20/98 Central Luzon - 01/01/1998 - KM243092 (Di Nardo et al., 2014) 
O/PHI/21/98 O/PHI/21/98 Central Luzon - 01/01/1998 Porcine KM243093 (Di Nardo et al., 2014) 
O/PHI/22/98 O/PHI/22/98 Central Luzon - 01/01/1998 Porcine KM243094 (Di Nardo et al., 2014) 
O/PHI/23/98 O/PHI/23/98 Central Luzon - 01/01/1998 Porcine KM243095 (Di Nardo et al., 2014) 
O/PHI/25/98 O/PHI/25/98 NCR Nepomuceno 01/01/1998 Porcine KM243096 (Di Nardo et al., 2014) 
O/PHI/30/98 O/PHI/30/98 Calabarzon - 01/01/1998 Porcine KM243097 (Di Nardo et al., 2014) 
O/PHI/1/99 O/PHI/1/99 Central Luzon - 01/01/1999 Porcine KM243098 (Di Nardo et al., 2014) 



 

 

O/PHI/3/99 O/PHI/3/99 Central Luzon Cupang West 01/01/1999 Porcine KM243099 (Di Nardo et al., 2014) 
O/PHI/4/99 O/PHI/4/99 Central Luzon Tungkong Mangga 01/01/1999 Porcine KM243100 (Di Nardo et al., 2014) 
O/PHI/5/99 O/PHI/5/99 Western Visayas - 01/01/1999 Porcine KM243101 (Di Nardo et al., 2014) 
O/PHI/10/99 O/PHI/10/99 Central Luzon - 01/01/1999 Porcine KM243102 (Di Nardo et al., 2014) 
O/PHI/3/2000 O/PHI/3/00 Bicol Tagas 02/02/2000 Porcine KM243103 (Di Nardo et al., 2014) 
O/PHI/5/2000 O/PHI/5/00 Central Luzon Santa Rosa 08/02/2000 Porcine DQ164947 (Knowles et al., 2005) 
O/PHI/6/2000 O/PHI/6/00 NCR Fairview 13/02/2000 Porcine KM243104 (Di Nardo et al., 2014) 
O/PHI/7/2000 O/PHI/7/00 Central Luzon Santo Rosario 21/02/2000 Porcine KM243105 (Di Nardo et al., 2014) 
O/PHI/8/2000 O/PHI/8/00 Central Luzon Santa Cruz 22/02/2000 Porcine KM243106 (Di Nardo et al., 2014) 
O/PHI/9/2000 O/PHI/9/00 Central Luzon Pritil 01/03/2000 Porcine KM243107 (Di Nardo et al., 2014) 
O/PHI/13/2000 O/PHI/13/00 Central Luzon Santiago 02/03/2000 Porcine DQ164948 (Knowles et al., 2005) 
O/PHI/14/2000 O/PHI/14/00 Mimaropa - 11/03/2000 Porcine DQ164949 (Knowles et al., 2005) 
O/PHI/15/2000 O/PHI/15/00 Mimaropa - 11/03/2000 Porcine KM243108 (Di Nardo et al., 2014) 
O/PHI/16/2000 O/PHI/16/00 Mimaropa - 11/03/2000 Porcine KM243109 (Di Nardo et al., 2014) 
O/PHI/17/2000 O/PHI/17/00 Mimaropa - 11/03/2000 Porcine KM243110 (Di Nardo et al., 2014) 
O/PHI/19/2000 O/PHI/19/00 Bicol - 07/04/2000 Porcine KM243111 (Di Nardo et al., 2014) 
O/PHI/23/2000 O/PHI/23/00 Calabarzon San Andres 24/05/2000 Porcine KM243112 (Di Nardo et al., 2014) 
O/PHI/24/2000 O/PHI/24/00 Bicol Rawis 24/05/2000 Porcine KM243113 (Di Nardo et al., 2014) 
O/PHI/26/2000 O/PHI/26/00 Central Luzon Tabon 29/06/2000 Porcine KM243114 (Di Nardo et al., 2014) 
O/PHI/27/2000 O/PHI/27/00 Central Luzon - 04/07/2000 Porcine KM243115 (Di Nardo et al., 2014) 
O/PHI/4/2001 O/PHI/4/01 Central Luzon - 01/01/2001 Porcine KM243116 (Di Nardo et al., 2014) 
O/PHI/5/2001 O/PHI/5/01 Central Luzon - 01/01/2001 Porcine KM243117 (Di Nardo et al., 2014) 
O/PHI/6/2001 O/PHI/6/01 Central Luzon Dulong Bayan 01/01/2001 Porcine KM243118 (Di Nardo et al., 2014) 
O/PHI/7/2001 O/PHI/7/01 Central Luzon Dulong Bayan 01/01/2001 Porcine KM243119 (Di Nardo et al., 2014) 
O/PHI/8/2001 O/PHI/8/01 Central Luzon Poblacion 01/01/2001 Porcine KM243120 (Di Nardo et al., 2014) 
O/PHI/9/2001 O/PHI/9/01 Central Luzon Santo Cristo 01/01/2001 Porcine KM243121 (Di Nardo et al., 2014) 
O/PHI/10/2001 O/PHI/10/01 Central Luzon Partida 01/01/2001 Porcine KM243122 (Di Nardo et al., 2014) 
O/PHI/5/2003 O/PHI/5/03 CAR - 10/02/2003 Porcine DQ164950 (Knowles et al., 2005) 
O/PHI/10/2003 O/PHI/10/03 NCR - 04/03/2003 Porcine DQ164951 (Knowles et al., 2005) 
O/PHI/14/2003 O/PHI/14/03 NCR Dian 21/03/2003 Porcine KM243123 (Di Nardo et al., 2014) 
O/PHI/17/2003 O/PHI/17/03 Central Luzon Santa Filomena 08/04/2003 Porcine DQ164952 (Knowles et al., 2005) 
O/PHI/18/2003 O/PHI/18/03 Calabarzon Balibago 07/05/2003 Porcine KM243124 (Di Nardo et al., 2014) 
O/PHI/20/2003 O/PHI/20/03 Calabarzon Balibago 07/05/2003 Porcine KM243125 (Di Nardo et al., 2014) 
O/PHI/21/2003 O/PHI/21/03 Calabarzon Pagrai 13/05/2003 Porcine DQ164953 (Knowles et al., 2005) 
O/PHI/23/2003 O/PHI/23/03 Calabarzon - 15/05/2003 Porcine DQ164954 (Knowles et al., 2005) 
O/PHI/1/2004 O/PHI/1/04 Ilocos Cabaroan Daya 13/01/2004 Porcine DQ164955 (Knowles et al., 2005) 
O/PHI/2/2004 O/PHI/2/04 Central Luzon - 16/01/2004 Porcine DQ164956 (Knowles et al., 2005) 
O/PHI/3/2004 O/PHI/3/04 NCR Kamuning 05/02/2004 Porcine DQ164957 (Knowles et al., 2005) 
O/PHI/4/2004 O/PHI/4/04 NCR Nepomuceno 24/03/2004 Porcine DQ164958 (Knowles et al., 2005) 
O/PHI/5/2004 O/PHI/5/04 NCR Pinagbuhatan 01/06/2004 Porcine DQ164959 (Knowles et al., 2005) 



 

 

O/PHI/6/2004 O/PHI/6/04 NCR Dagat-Dagatan 21/06/2004 Porcine DQ164960 (Knowles et al., 2005) 
O/PHI/7/2004 O/PHI/7/04 Central Luzon Ayson 29/06/2004 Porcine DQ164961 (Knowles et al., 2005) 
O/PHI/8/2004 O/PHI/8/04 Central Luzon - 14/07/2004 Porcine DQ164962 (Knowles et al., 2005) 
O/PHI/9/2004 O/PHI/9/04 Calabarzon Mayamot 21/07/2004 Porcine DQ164963 (Knowles et al., 2005) 
O/PHI/10/2004 O/PHI/10/04 NCR Project 8 04/08/2004 Porcine DQ164964 (Knowles et al., 2005) 
O/PHI/11/2004 O/PHI/11/04 NCR - 03/09/2004 Porcine DQ164965 (Knowles et al., 2005) 
O/PHI/12/2004 O/PHI/12/04 Calabarzon Calabuso 29/09/2004 Porcine DQ164966 (Knowles et al., 2005) 
O/PHI/1/2005 O/PHI/1/05 NCR La Loma 16/02/2005 Porcine KM243127 (Di Nardo et al., 2014) 
O/PHI/2/2005 O/PHI/2/05 NCR - 23/02/2005 Porcine KM243128 (Di Nardo et al., 2014) 
O/PHI/3/2005 O/PHI/3/05 NCR La Loma 03/03/2005 Porcine KM243131 (Di Nardo et al., 2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 2 

FMDV type O CATHAY VP1 sequences database. Designation and origin of the VP1 sequences (𝑛 = 210) retrieved from either GenBank or the 

WRLFMD databases and belonging to the O CATHAY topotype. †Date received by WRLFMD, year of collection or GenBank submission date were 

used where exact collection date was missing. 

Virus Designation Tree Code Country Location Date of Collection Species GenBank No Reference 

O/CHA/Akesu/58 O/CHA/Ake/58 China Akesu 01/01/1958† Bovine AJ131469 (Zhao et al., unpublished data) 
O/CHA/Akesu-MIII/58 O/CHA/AkeOMIII/58 China Akesu 01/01/1958† - AY359854 (Wang et al., unpublished data) 
O/TAI/Ban/60 O/TAI/Ban/60 Thailand Bangkok 01/01/1960† Porcine KM243030 (Di Nardo et al., 2014) 
O/HKN/21/70 O/HKN/21/70 Hong Kong Hang Tau 13/03/1970 Porcine AJ294911 (Knowles et al., 2001a) 
O/HKN/1/73 O/HKN/01/73 Hong Kong Lantau Island 01/01/1973 Porcine AJ294912 (Knowles et al., 2001a) 
O/HKN/19/73 O/HKN/19/73 Hong Kong Ha Cheung Sha 19/06/1973 Bovine AJ294913 (Knowles et al., 2001a) 
O/HKN/3/75 O/HKN/03/75 Hong Kong Ping Shan 23/12/1974 Porcine AJ294915 (Knowles et al., 2001a) 
O/HKN/27/77 O/HKN/27/77 Hong Kong - 01/01/1977 Porcine KM243031 (Di Nardo et al., 2014) 
O/HKN/33/77 O/HKN/33/77 Hong Kong Tin Ping Shan 01/01/1977 Porcine AJ294916 (Knowles et al., 2001a) 
O/AUR/Tha/81 O/AUR/Tha/81 Austria Thalheim 18/03/1981† Porcine KM243032 (Di Nardo et al., 2014) 
O/HKN/14/82 O/HKN/14/82 Hong Kong Hei Ling Chau 25/02/1982 Porcine AJ294917 (Knowles et al., 2001a) 
O/GER/Wup/82 O/GER/Wup/82 Germany Wuppertal 16/06/1982† Porcine KM243033 (Di Nardo et al., 2014) 
O/HKN/6/83 O/HKN/06/83 Hong Kong Pok Fu Lam 18/12/1982 Bovine AJ294919 (Knowles et al., 2001a) 
O/HKN/7/85 O/HKN/07/85 Hong Kong Ma On Kong 25/01/1985 Porcine AJ294920 (Knowles et al., 2001a) 
O/CHA/Gua/86 O/CHA/Gua/86 China Guangdong 01/01/1986† Porcine AJ131468 (Zhao et al., unpublished data) 
O/HKN/12/91 O/HKN/12/91 Hong Kong Shek Kwu Chau 26/11/1991 Porcine AJ294921 (Knowles et al., 2001a) 
O/HKN/93 O/HKN/93 Hong Kong - 01/01/1993† Porcine AJ131470 (Zhao et al., unpublished data) 
O/1685/RUS/95 O/RUS/Mos/95 Russia Moscow 16/06/1995 Porcine AJ004680 (Sherbakov et al., unpublished data) 
O/HKN/1/96 O/HKN/01/96 Hong Kong Lau Fau Shan 16/01/1996 Porcine KM243051 (Di Nardo et al., 2014) 
O/HKN/7/96 O/HKN/07/96 Hong Kong - 06/02/1996 Bovine AJ294922 (Knowles et al., 2001a) 
O/HKN/16/96 O/HKN/16/96 Hong Kong Lei Uk 29/03/1996 Porcine KM243052 (Di Nardo et al., 2014) 
O/HKN/20/96 O/HKN/20/96 Hong Kong - 17/04/1996 Bovine AJ294924 (Knowles et al., 2001a) 
O/TAW/97 O/TAW/97 Taiwan - 01/04/1997† Porcine AY593835 (Carrillo et al., 2005) 
O/TAW/Yun/97 O/TAW/Yun/97 Taiwan Yunlin 01/04/1997† Porcine AF308157 (Beard and Mason, 2000) 
O/TAW/Chu/97 O/TAW/Chu/97 Taiwan Chu-Pei 01/04/1997† - AF026168 (Tsai et al., 2000) 
O/TAW/TL/97 O/TAW/TL/97 Taiwan - 01/04/1997† Porcine AF030259 (Lai et al., unpublished data) 
O/TAW/Tao018/97 O/TAW/Tao018/97 Taiwan Taoyuan 01/04/1997† Porcine AF095863 (Tsai et al., 2000) 



 

 

O/TAW/Tai041/97 O/TAW/Tai041/97 Taiwan Tainan 01/04/1997† Porcine AF095864 (Tsai et al., 2000) 
O/TAW/Pin060/97 O/TAW/Pin060/97 Taiwan Pingtun 01/04/1997† Porcine AF095865 (Tsai et al., 2000) 
O/TAW/Tai077/97 O/TAW/Tai077/97 Taiwan Taichung 01/04/1997† Porcine AF095866 (Tsai et al., 2000) 
O/TAW/Hsi079/97 O/TAW/Hsi079/97 Taiwan Hsinchu 01/04/1997† Porcine AF095867 (Tsai et al., 2000) 
O/TAW/Nan089/97 O/TAW/Nan089/97 Taiwan Nantou 01/04/1997† Porcine AF095868 (Tsai et al., 2000) 
O/TAW/Tai109/97 O/TAW/Tai109/97 Taiwan Taipei 01/04/1997† Porcine AF095869 (Tsai et al., 2000) 
O/TAW/Tai110/97 O/TAW/Tai110/97 Taiwan Taipei 01/04/1997† Porcine AF095870 (Tsai et al., 2000) 
O/TAW/Tai111/97 O/TAW/Tai111/97 Taiwan Taitung 01/04/1997† Porcine AF095871 (Tsai et al., 2000) 
O/TAW/Tao113/97 O/TAW/Tao113/97 Taiwan Taoyuan 01/04/1997† Porcine AF095872 (Tsai et al., 2000) 
O/TAW/Hsi128/97 O/TAW/Hsi128/97 Taiwan Hsinchu 01/04/1997† Porcine AF095873 (Tsai et al., 2000) 
O/TAW/Yun136/97 O/TAW/Yun136/97 Taiwan Yunlin 01/04/1997† Porcine AF095874 (Tsai et al., 2000) 
O/TAW/Tai145/97 O/TAW/Tai145/97 Taiwan Taipei 01/04/1997† Porcine AF095875 (Tsai et al., 2000) 
O/TAW/Tai150/97 O/TAW/Tai150/97 Taiwan Taipei 01/04/1997† Porcine AF095876 (Tsai et al., 2000) 
O/TAW/Kao153/97 O/TAW/Kao153/97 Taiwan Kaohsiung 01/04/1997† Porcine AF095877 (Tsai et al., 2000) 
O/TAW/Chu158/97 O/TAW/Chu158/97 Taiwan Chunhwa 01/04/1997† Porcine AF095879 (Tsai et al., 2000) 
O/TAW/Mia165/97 O/TAW/Mia165/97 Taiwan Miaoli 01/04/1997† Porcine AF095879 (Tsai et al., 2000) 
O/TAW/Tai168/97 O/TAW/Tai168/97 Taiwan Tainan 01/04/1997† Porcine AF095880 (Tsai et al., 2000) 
O/TAW/Tai181/97 O/TAW/Tai181/97 Taiwan Tainan 01/04/1997† Porcine AF095881 (Tsai et al., 2000) 
O/TAW/Tai186/97 O/TAW/Tai186/97 Taiwan Taichung 01/04/1997† Porcine AF095882 (Tsai et al., 2000) 
O/TAW/Chu188/97 O/TAW/Chu188/97 Taiwan Chunhwa 01/04/1997† Porcine AF095883 (Tsai et al., 2000) 
O/TAW/Hsi189/97 O/TAW/Hsi189/97 Taiwan Hsinchu 01/04/1997† Porcine AF095884 (Tsai et al., 2000) 
O/TAW/Kao190/97 O/TAW/Kao190/97 Taiwan Kaohsiung 01/04/1997† Porcine AF095885 (Tsai et al., 2000) 
O/TAW/81/97 O/TAW/81/97 Taiwan Yilan 17/04/1997 Porcine KM243068 (Di Nardo et al., 2014) 
O/TAW/83/97 O/TAW/83/97 Taiwan Taitung 24/04/1997 Porcine KM243069 (Di Nardo et al., 2014) 
O/VIT/3/97 O/VIT/03/97 Vietnam - 26/08/1997† Porcine AJ294930 (Knowles et al., 2001a) 
O-TW-185-97 O/TAW/185/97 Taiwan - 07/12/1997 Porcine GQ292726 (Lin et al., 2010) 
O-TW-205-98 O/TAW/205/98 Taiwan Tainan 07/01/1998 Porcine GQ292727 (Lin et al., 2010) 
O-TW-210-98 O/TAW/210/98 Taiwan Yunlin 23/01/1998 Porcine GQ292728 (Lin et al., 2010) 
O-TW-219-98 O/TAW/219/98 Taiwan Tainan 07/04/1998 Porcine GQ292729 (Lin et al., 2010) 
O/HKN/1/99 O/HKN/01/99 Hong Kong Mong Tseng Tsuen 05/01/1999 Porcine AJ294925 (Knowles et al., 2001a) 
O/TAW/4/99 O/TAW/04/99 Taiwan Penghu 01/02/1999 Porcine AJ294928 (Knowles et al., 2001a) 
O-TW-241-99 O/TAW/241/99 Taiwan Yunlin 14/02/1999 Porcine GQ292730 (Lin et al., 2010) 
O-TW-242-99 O/TAW/242/99 Taiwan Yunlin 20/02/1999 Porcine GQ292731 (Lin et al., 2010) 
O-TW-244-99 O/TAW/244/99 Taiwan Penghu 23/02/1999 Porcine GQ292732 (Lin et al., 2010) 
O/HKN/10/99 O/HKN/10/99 Hong Kong Pak Sha Tsuen 19/03/1999 Porcine AJ318836 (Knowles et al., unpublished data) 
O-TW-249-99 O/TAW/249/99 Taiwan Pingtun 15/04/1999 Porcine GQ292733 (Lin et al., 2010) 
O-TW-251-99 O/TAW/251/99 Taiwan Kaohsiung 20/04/1999 Porcine GQ292734 (Lin et al., 2010) 
O-TW-252-99 O/TAW/252/99 Taiwan Tainan 21/04/1999 Porcine GQ292735 (Lin et al., 2010) 
O-TW-253-99 O/TAW/253/99 Taiwan Hsinchu 29/04/1999 Porcine GQ292736 (Lin et al., 2010) 
O-TW-255-2000 O/TAW/255/00 Taiwan Taoyuan 22/10/2000 Porcine GQ292737 (Lin et al., 2010) 



 

 

O/CHA/YM/YN/2000 O/CHA/YMYN/00 China Yunnan 18/12/2000 Porcine HQ412603 (Xin et al., unpublished data) 
O/CHA/F29 O/CHA/F29 China - 01/01/2001† Porcine AF403048 (Lou and Du, unpublished data) 
O/HKN/4/2001 O/HKN/04/01 Hong Kong - 01/01/2001 Porcine DQ164875 (Knowles et al., 2005) 
O-TW-256-2001 O/TAW/256/01 Taiwan Taipei 25/02/2001 Porcine GQ292738 (Lin et al., 2010) 
O/HKN/S01/2001 O/HKN/S01/01 Hong Kong - 01/07/2001 Porcine JF968125 (Hui and Leung, 2012) 
O/HKN/S03/2001 O/HKN/S03/01 Hong Kong - 01/07/2001 Porcine JF968126 (Hui and Leung, 2012) 
O/HKN/S04/2001 O/HKN/S04/01 Hong Kong - 01/07/2001 Porcine JF968127 (Hui and Leung, 2012) 
O/HKN/S05/2001 O/HKN/S05/01 Hong Kong - 01/07/2001 Porcine JF968128 (Hui and Leung, 2012) 
O/HKN/19/2001 O/HKN/19/01 Hong Kong Sheung Shui 28/09/2001 Porcine DQ164876 (Knowles et al., 2005) 
O/HKN/S06/2001 O/HKN/S06/01 Hong Kong - 01/10/2001 Porcine JF968129 (Hui and Leung, 2012) 
O/HKN/S09/2001 O/HKN/S09/01 Hong Kong - 01/10/2001 Porcine JF968130 (Hui and Leung, 2012) 
O/HKN/S10/2001 O/HKN/S10/01 Hong Kong - 01/10/2001 Porcine JF968131 (Hui and Leung, 2012) 
O/VIT/13/2002 O/VIT/13/02 Vietnam - 01/01/2002 - DQ165025 (Knowles et al., 2005) 
O/HKN/S11/2002 O/HKN/S11/02 Hong Kong - 01/01/2002 Porcine JF968132 (Hui and Leung, 2012) 
O/HKN/S12/2002 O/HKN/S12/02 Hong Kong - 01/01/2002 Porcine JF968133 (Hui and Leung, 2012) 
O/HKN/S13/2002 O/HKN/S13/02 Hong Kong - 01/01/2002 Porcine JF968134 (Hui and Leung, 2012) 
O/HKN/S14/2002 O/HKN/S14/02 Hong Kong - 01/01/2002 Porcine JF968135 (Hui and Leung, 2012) 
O/HKN/1/2002 O/HKN/01/02 Hong Kong Yuen Long 22/01/2002 Porcine DQ164877 (Knowles et al., 2005) 
O/HKN/3/2002 O/HKN/03/02 Hong Kong Yuen Long 31/01/2002 Porcine DQ164878 (Knowles et al., 2005) 
O/HKN/2002 O/HKN/02 Hong Kong - 01/02/2002 Porcine AY317098 (Feng et al., 2004) 
O/HKN/S15/2002 O/HKN/S15/02 Hong Kong - 01/04/2002 Porcine JF968136 (Hui and Leung, 2012) 
O/HKN/S17/2002 O/HKN/S17/02 Hong Kong - 01/04/2002 Porcine JF968137 (Hui and Leung, 2012) 
O/HKN/S18/2002 O/HKN/S18/02 Hong Kong - 01/04/2002 Porcine JF968138 (Hui and Leung, 2012) 
O/HKN/S19/2002 O/HKN/S19/02 Hong Kong - 01/04/2002 Porcine JF968139 (Hui and Leung, 2012) 
O/HKN/S20/2002 O/HKN/S20/02 Hong Kong - 01/04/2002 Porcine JF968140 (Hui and Leung, 2012) 
O/HKN/S22/2002 O/HKN/S22/02 Hong Kong - 01/05/2002 Porcine JF968141 (Hui and Leung, 2012) 
O/HKN/S24/2002 O/HKN/S24/02 Hong Kong - 01/06/2002 Porcine JF968142 (Hui and Leung, 2012) 
O/HKN/S25/2002 O/HKN/S25/02 Hong Kong - 01/06/2002 Porcine JF968145 (Hui and Leung, 2012) 
O/HKN/S32/2002 O/HKN/S32/02 Hong Kong - 01/10/2002 Porcine JF968143 (Hui and Leung, 2012) 
O/HKN/S34/2002 O/HKN/S34/02 Hong Kong - 01/10/2002 Porcine JF968146 (Hui and Leung, 2012) 
O/HKN/S44/2002 O/HKN/S44/02 Hong Kong - 01/10/2002 Porcine JF968147 (Hui and Leung, 2012) 
O/HKN/S72/2003 O/HKN/S72/03 Hong Kong - 01/01/2003 Porcine JF968148 (Hui and Leung, 2012) 
O/HKN/S73/2003 O/HKN/S73/03 Hong Kong - 01/01/2003 Porcine JF968148 (Hui and Leung, 2012) 
O/HKN/S74/2003 O/HKN/S74/03 Hong Kong - 01/01/2003 Porcine JF968149 (Hui and Leung, 2012) 
O/HKN/S75/2003 O/HKN/S75/03 Hong Kong - 01/01/2003 Porcine JF968150 (Hui and Leung, 2012) 
O/HKN/S76/2003 O/HKN/S76/03 Hong Kong - 01/01/2003 Porcine JF968151 (Hui and Leung, 2012) 
O/HKN/2/2003 O/HKN/02/03 Hong Kong - 01/01/2003 Porcine DQ164879 (Knowles et al., 2005) 
O/HKN/3/2003 O/HKN/03/03 Hong Kong - 01/01/2003 Porcine DQ164880 (Knowles et al., 2005) 
O/HKN/S78/2003 O/HKN/S78/03 Hong Kong - 01/02/2003 Porcine JF968152 (Hui and Leung, 2012) 
O/HKN/S79/2003 O/HKN/S79/03 Hong Kong - 01/02/2003 Porcine JF968153 (Hui and Leung, 2012) 



 

 

O/HKN/S80/2003 O/HKN/S80/03 Hong Kong - 01/02/2003 Porcine JF968154 (Hui and Leung, 2012) 
O/HKN/S81/2003 O/HKN/S81/03 Hong Kong - 01/02/2003 Porcine JF968157 (Hui and Leung, 2012) 
O/HKN/S83/2003 O/HKN/S83/03 Hong Kong - 01/02/2003 Porcine JF968155 (Hui and Leung, 2012) 
O/HKN/S84/2003 O/HKN/S84/03 Hong Kong - 01/02/2003 Porcine JF968159 (Hui and Leung, 2012) 
O/CHA/XJ1/03 O/CHA/XJ1/03 China - 01/08/2003† Bovine AY373583 (Li et al., unpublished data) 
O/HKN/3/2004 O/HKN/03/04 Hong Kong - 28/01/2004 Porcine DQ164881 (Knowles et al., 2005) 
O/VIT/2/2004 O/VIT/02/04 Vietnam Quang Nam 01/02/2004 Porcine DQ165033 (Knowles et al., 2005) 
O/HKN/4/2004 O/HKN/04/04 Hong Kong - 11/02/2004 Porcine DQ164882 (Knowles et al., 2005) 
O/VIT/3/2004 O/VIT/03/04 Vietnam Quang Nam 01/03/2004 Porcine DQ165034 (Knowles et al., 2005) 
O/HKN/6/2004 O/HKN/06/04 Hong Kong - 02/03/2004 Porcine DQ164883 (Knowles et al., 2005) 
O/HKN/7/2004 O/HKN/07/04 Hong Kong - 18/03/2004 Porcine DQ164884 (Knowles et al., 2005) 
O/HKN/0238/2004 O/HKN/0238/04 Hong Kong - 01/06/2004 Porcine JF968160 (Hui and Leung, 2012) 
O/HKN/1738/2004 O/HKN/1738/04 Hong Kong - 01/06/2004 Porcine JF968161 (Hui and Leung, 2012) 
O/HKN/2037/2004 O/HKN/2037/04 Hong Kong - 01/06/2004 Porcine JF968162 (Hui and Leung, 2012) 
O/HKN/2038/2004 O/HKN/2038/04 Hong Kong - 01/06/2004 Porcine JF968163 (Hui and Leung, 2012) 
O/HKN/2140/2004 O/HKN/2140/04 Hong Kong - 01/06/2004 Porcine JF968144 (Hui and Leung, 2012) 
O/HKN/2228/2004 O/HKN/2228/04 Hong Kong - 01/06/2004 Porcine JF968164 (Hui and Leung, 2012) 
O/HKN/2231/2004 O/HKN/2231/04 Hong Kong - 01/06/2004 Porcine JF968166 (Hui and Leung, 2012) 
O/HKN/2235/2004 O/HKN/2235/04 Hong Kong - 01/06/2004 Porcine JF968165 (Hui and Leung, 2012) 
O/HKN/2332/2004 O/HKN/2332/04 Hong Kong - 01/06/2004 Porcine JF968167 (Hui and Leung, 2012) 
O/HKN/2822/2004 O/HKN/2822/04 Hong Kong - 01/06/2004 Porcine JF968169 (Hui and Leung, 2012) 
O/HKN/2838/2004 O/HKN/2838/04 Hong Kong - 01/06/2004 Porcine JF968168 (Hui and Leung, 2012) 
O/HKN/3039/2004 O/HKN/3039/04 Hong Kong - 01/06/2004 Porcine JF968170 (Hui and Leung, 2012) 
O/HKN/S93/2004 O/HKN/S93/04 Hong Kong - 01/07/2004 Porcine JF968123 (Hui and Leung, 2012) 
O/HKN/S95/2004 O/HKN/S95/04 Hong Kong - 01/07/2004 Porcine JF968124 (Hui and Leung, 2012) 
O/HKN/S97/2004 O/HKN/S97/04 Hong Kong - 01/07/2004 Porcine JF968122 (Hui and Leung, 2012) 
O/HKN/8/2004 O/HKN/08/04 Hong Kong - 11/08/2004 Porcine DQ164885 (Knowles et al., 2005) 
O/HKN/9/2004 O/HKN/09/04 Hong Kong - 11/08/2004 Porcine DQ164886 (Knowles et al., 2005) 
O/HKN/10/2004 O/HKN/10/04 Hong Kong - 11/08/2004 Porcine DQ164887 (Knowles et al., 2005) 
O/HKN/11/2004 O/HKN/11/04 Hong Kong - 11/08/2004 Porcine DQ164888 (Knowles et al., 2005) 
O/HKN/12/2004 O/HKN/12/04 Hong Kong - 11/08/2004 Porcine DQ164889 (Knowles et al., 2005) 
O/HKN/13/2004 O/HKN/13/04 Hong Kong - 21/12/2004 Porcine KM243126 (Di Nardo et al., 2014) 
O/HKN/P115/2005 O/HKN/P115/05 Hong Kong - 01/01/2005 Porcine JF968171 (Hui and Leung, 2012) 
O/HKN/P125/2005 O/HKN/P125/05 Hong Kong - 01/01/2005 Porcine JF968172 (Hui and Leung, 2012) 
O/VIT/1/2005 O/VIT/01/05 Vietnam - 01/01/2005 Bovine HQ116276 (Abdul-Hamid et al., 2011) 
O/HKN/9/2005 O/HKN/09/05 Hong Kong - 25/02/2005 Porcine KM243129 (Di Nardo et al., 2014) 
O/HKN/10/2005 O/HKN/10/05 Hong Kong - 25/02/2005 Porcine KM243130 (Di Nardo et al., 2014) 
O/HKN/P179/2005 O/HKN/P179/05 Hong Kong - 01/03/2005 Porcine JF968173 (Hui and Leung, 2012) 
O/HKN/12/2005 O/HKN/12/05 Hong Kong - 11/03/2005 Porcine KM243132 (Di Nardo et al., 2014) 
O/HKN/14/2005 O/HKN/14/05 Hong Kong - 14/03/2005 Porcine KM243133 (Di Nardo et al., 2014) 



 

 

O/HKN/15/2005 O/HKN/15/05 Hong Kong - 14/03/2005 Porcine KM243134 (Di Nardo et al., 2014) 
O/HKN/P235/2005 O/HKN/P235/05 Hong Kong - 01/05/2005 Porcine JF968158 (Hui and Leung, 2012) 
O/VIT/9/2005 O/VIT/09/05 Vietnam Hai Duong 30/05/2005 Porcine HQ116281 (Abdul-Hamid et al., 2011) 
O/VIT/11/2005 O/VIT/11/05 Vietnam Ha Giang 18/06/2005 Porcine HQ116282 (Abdul-Hamid et al., 2011) 
O/HKN/17/2005 O/HKN/17/05 Hong Kong - 04/07/2005 Porcine KM243135 (Di Nardo et al., 2014) 
O/HKN/18/2005 O/HKN/18/05 Hong Kong - 04/07/2005 Porcine KM243136 (Di Nardo et al., 2014) 
O/HKN/19/2005 O/HKN/19/05 Hong Kong - 04/07/2005 Porcine KM243137 (Di Nardo et al., 2014) 
O/HKN/20/2005 O/HKN/20/05 Hong Kong - 04/07/2005 Porcine KM243138 (Di Nardo et al., 2014) 
O/VIT/12/2005 O/VIT/12/05 Vietnam Long An 28/07/2005 Porcine KM243139 (Di Nardo et al., 2014) 
O/HKN/22/2005 O/HKN/22/05 Hong Kong - 15/11/2005 Porcine KM243140 (Di Nardo et al., 2014) 
O/HKN/23/2005 O/HKN/23/05 Hong Kong - 15/11/2005 Porcine KM243141 (Di Nardo et al., 2014) 
O/HKN/24/2005 O/HKN/24/05 Hong Kong - 21/11/2005 Porcine KM243142 (Di Nardo et al., 2014) 
O/HKN/25/2005 O/HKN/25/05 Hong Kong - 21/11/2005 Porcine KM243143 (Di Nardo et al., 2014) 
O/TAI/5/2005 O/TAI/05/05 Thailand - 26/11/2005 Porcine HQ116235 (Abdul-Hamid et al., 2011) 
O/TAI/6/2005 O/TAI/06/05 Thailand - 27/11/2005 Porcine HQ116236 (Abdul-Hamid et al., 2011) 
O/HKN/P370/2005 O/HKN/P370/05 Hong Kong - 01/12/2005 Porcine JF968174 (Hui and Leung, 2012) 
O/HKN/P371/2005 O/HKN/P371/05 Hong Kong - 01/12/2005 Porcine JF968175 (Hui and Leung, 2012) 
O/HKN/P372/2005 O/HKN/P372/05 Hong Kong - 01/12/2005 Porcine JF968176 (Hui and Leung, 2012) 
O/MAY/8/2005 O/MAY/08/05 Malaysia Tanjong Sepat 02/12/2005 Porcine HQ116202 (Abdul-Hamid et al., 2011) 
O/VIT/1/2006 O/VIT/01/06 Vietnam Long An 01/01/2006 Porcine HQ116284 (Abdul-Hamid et al., 2011) 
O/VIT/2/2006 O/VIT/02/06 Vietnam Dong Thap 11/01/2006 Porcine HQ116285 (Abdul-Hamid et al., 2011) 
O/VIT/3/2006 O/VIT/03/06 Vietnam Tien Giang 12/01/2006 Porcine HQ116286 (Abdul-Hamid et al., 2011) 
O/HKN/1/2006 O/HKN/01/06 Hong Kong - 26/01/2006 Porcine KM243144 (Di Nardo et al., 2014) 
O/HKN/2/2006 O/HKN/02/06 Hong Kong - 26/01/2006 Porcine KM243145 (Di Nardo et al., 2014) 
O/HKN/3/2006 O/HKN/03/06 Hong Kong - 26/01/2006 Porcine KM243146 (Di Nardo et al., 2014) 
O/HKN/4/2006 O/HKN/04/06 Hong Kong - 26/01/2006 Porcine KM243147 (Di Nardo et al., 2014) 
O/HKN/5/2006 O/HKN/05/06 Hong Kong - 26/01/2006 Porcine KM243148 (Di Nardo et al., 2014) 
O/HKN/6/2006 O/HKN/06/06 Hong Kong - 26/01/2006 Porcine KM243149 (Di Nardo et al., 2014) 
O/HKN/1/2007 O/HKN/01/07 Hong Kong - 10/01/2007 Porcine KM243150 (Di Nardo et al., 2014) 
O/HKN/P389/2007 O/HKN/P389/07 Hong Kong - 01/02/2007 Porcine JF968177 (Hui and Leung, 2012) 
O/HKN/P390/2007 O/HKN/P390/07 Hong Kong - 01/02/2007 Porcine JF968178 (Hui and Leung, 2012) 
O/HKN/P391/2007 O/HKN/P391/07 Hong Kong - 01/02/2007 Porcine JF968179 (Hui and Leung, 2012) 
O/HKN/P392/2007 O/HKN/P392/07 Hong Kong - 01/02/2007 Porcine JF968180 (Hui and Leung, 2012) 
O/HKN/P393/2007 O/HKN/P393/07 Hong Kong - 01/02/2007 Porcine JF968181 (Hui and Leung, 2012) 
O/HKN/2/2007 O/HKN/02/07 Hong Kong - 23/03/2007 Porcine KM243151 (Di Nardo et al., 2014) 
O/HKN/3/2007 O/HKN/03/07 Hong Kong - 25/10/2007 Porcine KM243152 (Di Nardo et al., 2014) 
O/HKN/4/2007 O/HKN/04/07 Hong Kong - 25/10/2007 Porcine KM243153 (Di Nardo et al., 2014) 
O/VIT/1/2008 O/VIT/01/08 Vietnam Ho Chi Minh 01/01/2008 Porcine HQ116291 (Abdul-Hamid et al., 2011) 
O/VIT/9/2008 O/VIT/09/08 Vietnam Ho Chi Minh 04/02/2008 Porcine KM243154 (Di Nardo et al., 2014) 
O/HKN/1/2008 O/HKN/01/08 Hong Kong - 10/11/2008 Porcine KM243155 (Di Nardo et al., 2014) 



 

 

O/HKN/2/2008 O/HKN/02/08 Hong Kong - 10/11/2008 Porcine KM243156 (Di Nardo et al., 2014) 
O/HKN/3/2008 O/HKN/03/08 Hong Kong - 10/11/2008 Porcine KM243157 (Di Nardo et al., 2014) 
O/HKN/4/2008 O/HKN/04/08 Hong Kong - 10/11/2008 Porcine KM243158 (Di Nardo et al., 2014) 
O/HKN/P395/2008 O/HKN/P395/08 Hong Kong - 01/12/2008 Porcine JF968182 (Hui and Leung, 2012) 
O/HKN/P397/2009 O/HKN/P397/09 Hong Kong - 01/01/2009 Porcine JF968183 (Hui and Leung, 2012) 
O/HKN/P398/2009 O/HKN/P398/09 Hong Kong - 01/01/2009 Porcine JF968184 (Hui and Leung, 2012) 
O/HKN/1/2009 O/HKN/01/09 Hong Kong - 04/01/2009 Porcine KM243159 (Di Nardo et al., 2014) 
O/HKN/2/2009 O/HKN/02/09 Hong Kong - 04/01/2009 Porcine KM243160 (Di Nardo et al., 2014) 
O/HKN/P399/2009 O/HKN/P399/09 Hong Kong - 01/02/2009 Porcine JF968185 (Hui and Leung, 2012) 
O/TAW/1/2009 O/TAW/01/09 Taiwan Mai-Liao 04/02/2009 Porcine KM243161 (Di Nardo et al., 2014) 
O-TW-257-2009 O/TAW/257/09 Taiwan - 17/02/2009 Porcine GQ292739 (Lin et al., 2010) 
O-TW-258-2009 O/TAW/258/09 Taiwan - 17/02/2009 Porcine GQ292740 (Lin et al., 2010) 
O/HKN/24/2010 O/HKN/24/10 Hong Kong - 06/12/2010 Porcine KM243162 (Di Nardo et al., 2014) 
O/HKN/25/2010 O/HKN/25/10 Hong Kong - 06/12/2010 Porcine KM243163 (Di Nardo et al., 2014) 
O/HKN/26/2010 O/HKN/26/10 Hong Kong - 06/12/2010 Porcine KM243164 (Di Nardo et al., 2014) 
O/HKN/3/2011 O/HKN/03/11 Hong Kong - 24/08/2011 Porcine KM243165 (Di Nardo et al., 2014) 
O/HKN/4/2011 O/HKN/04/11 Hong Kong - 24/08/2011 Porcine KM243166 (Di Nardo et al., 2014) 
O/HKN/5/2011 O/HKN/05/11 Hong Kong - 24/08/2011 Porcine KM243167 (Di Nardo et al., 2014) 
O/HKN/6/2011 O/HKN/06/11 Hong Kong - 24/08/2011 Porcine KM243168 (Di Nardo et al., 2014) 
O/HKN/7/2011 O/HKN/07/11 Hong Kong - 24/08/2011 Porcine KM243169 (Di Nardo et al., 2014) 
O/HKN/8/2011 O/HKN/08/11 Hong Kong - 14/11/2011 Porcine KM243170 (Di Nardo et al., 2014) 
O/HKN/9/2011 O/HKN/09/11 Hong Kong - 14/11/2011 Porcine KM243171 (Di Nardo et al., 2014) 
O/HKN/1/2013 O/HKN/01/13 Hong Kong - 02/04/2013 Porcine KM243172 (Di Nardo et al., 2014) 

 

 

 

 

 



 

 

Appendix 3 

Details of the full-genome sequences (𝑛=39) processed from FMDV clinical samples 

collected during the UK 2001 FMD outbreak. 

WRL No IP No Report Date County Location Specie GenBank No 

UKG/11/2001 1 19/02/2001 Essex Cheale Meats Abattoir Porcine DQ404180 
UKG/126/2001 4 22/02/2001 Northumberland Burnside Farm Porcine DQ404179 
UKG/150/2001 6 23/02/2001 Northumberland Prestwick Hall Farm Bovine DQ404176 
UKG/173/2001 7 24/02/2001 Devon Burdon Farm Bovine DQ404175 
UKG/246/2001 14 25/02/2001 Durham Sawmill Depot Ovine This study 
UKG/220/2001 16 26/02/2001 Northamptonshire Blunts Farm Ovine DQ404173 
UKG/417/2001 27 28/02/2001 Cumbria Smalmstown Farm Bovine FJ542365 
UKG/621/2001 38 01/03/2001 Staffordshire Hot Hill Farm Bovine DQ404172 

UKG/1450/2001 104 08/03/2001 Cumbria Drumburgh Castle Bovine FJ542366 
UKG/1558/2001 133 09/03/2001 Cumbria West End Farm Bovine FJ542367 
UKG/1734/2001 191 10/03/2001 Cumbria Bowness Hall Bovine FJ542368 
UKG/2000/2001 201 12/03/2001 Cumbria Northview Farm Ovine FJ542369 
UKG/2085/2001 227 14/03/2001 Cumbria Blackrigg Farm Bovine FJ542370 
UKG/2526/2001 342 19/03/2001 Cumbria Burnfoot Bovine FJ542371 
UKG/2640/2001 348 19/03/2001 Cumbria Old Sansfield Farm Bovine FJ542372 
UKG/3952/2001 878 31/03/2001 Durham Softley Farm Ovine EF552688 
UKG/4014/2001 913 01/04/2001 Durham Low Lands Farm Bovine EF552693 
UKG/4141/2001 927 02/04/2001 Durham Bucksfield Farm Ovine EF552689 
UKG/4569/2001 1070 06/04/2001 Northumberland Hexhamshire Common Ovine DQ404171 
UKG/4998/2001 1182 10/04/2001 Durham Paddock Mire Farm Bovine EF552694 
UKG/5470/2001 1256 12/04/2001 Durham High West Garth Farm Bovine EF552696 
UKG/5681/2001 1378 13/04/2001 Durham Cleatlam High Farm Ovine EF552697 
UKG/7038/2001 1404 20/04/2001 Durham No4 Middridges Farm Ovine DQ404169 
UKG/7299/2001 1439 22/04/2001 Durham Jubilee Wood Farm Ovine EF552692 
UKG/7675/2001 1448 23/04/2001 Durham East Farm Ovine DQ404170 
UKG/8098/2001 1515 30/04/2001 Durham Cliffe Bank Farm Ovine EU214601 
UKG/9011/2001 1575 10/05/2001 North Yorkshire Cowside Farm Bovine DQ404168 
UKG/9161/2001 1583 11/05/2001 Durham Keverstone Grange Bovine EF552691 
UKG/9327/2001 1597 14/05/2001 Durham Killerbay Hall Farm Ovine DQ404167 
UKG/9443/2001 1619 17/05/2001 Durham Burton House Ovine EF552695 
UKG/9788/2001 1654 28/05/2001 Durham The Grange Bovine DQ404166 
UKG/9964/2001 1692 03/06/2001 Durham New Moor Farm Bovine DQ404165 

UKG/11676/2001 1757 17/06/2001 Somerset Beardley Farm Bovine DQ404164 
UKG/14339/2001 1945 11/08/2001 Powys Rheld Farm Bovine DQ404163 
UKG/14391/2001 1948 14/08/2001 Cumbria Helton Head Bovine DQ404161 
UKG/14476/2001 1956 16/08/2001 West Yorkshire Chandlers Cote Farm Ovine DQ404162 
UKG/14524/2001 1970 23/08/2001 Northumberland Taylorburn Bovine DQ404160 
UKG/14603/2001 1976 26/08/2001 Northumberland The Hope Bovine DQ404159 
UKG/15101/2001 2027 24/09/2001 Northumberland Dukesfield Hall Ovine DQ404158 

 

 

 

 

 

 

 

 



 

 

Appendix 4 

Table A4-1. Epidemiological parameters estimated from the reconstructed transmission tree of the UK 2001 
FMD epidemic according to the type of database used and the corresponding points in time of the control 
policies implemented. 

Data Parameter Scenario Average (95 PI) Min-Max 

2026 IPs Number of Secondary Cases (𝑅𝑡) Full 0.99 (0 – 6) 0 – 27 
  Before NMB 5.5 (0.1 – 18.5) 0 – 20 
  After NMB 1.2 (0 – 7) 0 – 27 
  After 24/48h IP/CP 0.8 (0 – 5) 0 – 20 
 Generation Time (𝜏) Full 7.2 (3 – 14) 0 – 20 
  Before NMB 2.2 (0 – 4.9) 0 – 5 
  After NMB 7.5 (3 – 14) 3 – 20 
  After 24/48h IP/CP 6.9 (4 – 13) 3 – 19 

 Transmission Distance Full 27.6 (0.6 – 218.3) 0.1 – 543.2 
  Before NMB 273.7 (1.5 – 464.7) 0.8 – 466.8 
  After NMB 22.3 (0.4 – 172.2) 0.1 – 286.5 
  After 24/48h IP/CP 30.5 (0.7 – 255.2) 0.1 – 473.9 

 Time to cull interval Full 9.1 (4 – 23) 5 – 16 
  Before NMB 8.5 (6 – 11) 6.1 – 10.9 
  After NMB 9.8 (5 – 23) 6 – 17 
  After 24/48h IP/CP 8.8 (4 – 21) 5 – 16 

 Incidence 𝐼𝑒𝑥𝑝  Full 8.9 (0 – 42) 0 – 52 
   Before NMB 4.1 (0.3 – 8.7) 0 – 9 
   After NMB 29.8 (12.1 – 51.1) 6 – 52 
   After 24/48h IP/CP 5 (0 – 26) 0 – 27 

  𝐼𝑙𝑒𝑠  Full 8.7 (0 – 43.2) 0 – 47 
   Before NMB 1.3 (0 – 3.7) 0 – 4 
   After NMB 26.2 (5.9 – 47) 5 – 47 
   After 24/48h IP/CP 5.8 (0 – 28.9) 0 – 47 

  𝐼𝑟𝑒𝑝  Full 9 (0 – 42.4) 0 – 46 
   Before NMB 1.5 (0.1 – 3.8) 0 – 4 
   After NMB 23.3 (3.5 – 46) 0 – 46 
   After 24/48h IP/CP 6.4 (0 – 34.5) 0 – 43 

 Prevalence 𝑃𝑒𝑥𝑝  Full 88.3 (2 – 424.2) 1 – 442 
   Before NMB 18.3 (3.3 – 46.5) 3 – 49 
   After NMB 272.7 (63 – 437.6) 52 – 442 
   After 24/48h IP/CP 56.9 (2 – 303) 1 – 384 

  𝑃𝑙𝑒𝑠  Full 46.2 (1 – 221) 0 – 230 
   Before NMB 4.3 (1 – 12.2) 1 – 13 
   After NMB 137.2 (22.9 – 229) 15 – 230 
   After 24/48h IP/CP 31.2 (1 – 179.8) 0 – 217 

  𝑃𝑟𝑒𝑝  Full 20.4 (0 – 114.2) 0 – 127 
   Before NMB 0.4 (0 – 2) 0 – 2 
   After NMB 68.8 (4 – 122.6) 4 – 127 
   After 24/48h IP/CP 12.2 (0 – 76) 0 – 103 

1616 IPs Number of Secondary Cases (𝑅𝑡) Full 0.99 (0 – 6) 0 – 22 
  Before NMB 5.5 (0.1 – 20.1) 0 – 22 
  After NMB 1.2 (0 – 6) 0 – 15 
  After 24/48h IP/CP 0.8 (0 – 5) 0 – 14 

 Generation Time (𝜏) Full 7.1 (4 – 13) 0 – 20 
  Before NMB 1.8 (0 – 3.9) 0 – 4 
  After NMB 7.5 (4 – 14) 3 – 20 
  After 24/48h IP/CP 6.7 (3.8 – 13) 3 – 16 

 Transmission Distance Full 31.3 (0.6 – 255.2) 0.1 – 551.1 
  Before NMB 363.3 (52 – 464.9) 8 – 466.8 
  After NMB 20.8 (0.5 – 154.2) 0.1 – 271.6 
  After 24/48h IP/CP 36 (0.7 – 302) 0.1 – 474.1 

 Time to cull interval Full 9 (4 – 22) 5 – 15.6 
  Before NMB 9.5 (8 – 11) 8.1 – 10.9 



 

 

  After NMB 9.7 (5 – 22) 6 – 16 
  After 24/48h IP/CP 8.6 (4 – 21) 5 – 15 

 Incidence 𝐼𝑒𝑥𝑝  Full 7.3 (0 – 31.5) 0 – 42 
   Before NMB 4.1 (0.3 – 8.4) 0 – 9 
   After NMB 23.2 (8 – 37.6) 8 – 42 
   After 24/48h IP/CP 4.2 (0 – 16) 0 – 22 

  𝐼𝑙𝑒𝑠  Full 7.2 (0 – 31) 0 – 38 
   Before NMB 1.2 (0 – 3) 0 – 3 
   After NMB 20.9 (5 – 37.1) 5 – 38 
   After 24/48h IP/CP 4.8 (0 – 21.2) 0 – 38 

  𝐼𝑟𝑒𝑝  Full 7.4 (0 – 30) 0 – 41 
   Before NMB 1.5 (0.1 – 3.8) 0 – 4 
   After NMB 19.1 (3.5 – 38.4) 0 – 41 
   After 24/48h IP/CP 5.2 (0 – 25) 0 – 30 

 Prevalence 𝑃𝑒𝑥𝑝  Full 71.5 (3.6 – 323.3) 1 – 336 
   Before NMB 17.5 (4 – 43.1) 4 – 45 
   After NMB 217.2 (61 – 335.1) 52 – 336 
   After 24/48h IP/CP 45.8 (3 – 211.7) 1 – 270 

  𝑃𝑙𝑒𝑠  Full 36.8 (1.6 – 167.1) 1 – 179 
   Before NMB 4.3 (1 – 12.2) 1 – 13 
   After NMB 109.1 (21.9 – 177) 14 – 179 
   After 24/48h IP/CP 24.5 (2 – 125.1) 1 – 155 

  𝑃𝑟𝑒𝑝  Full 16.6 (0 – 92) 0 – 100 
   Before NMB 0.4 (0 – 2) 0 – 2 
   After NMB 56 (4 – 99.1) 4 – 100 
   After 24/48h IP/CP 9.7 (0 – 53.5) 0 – 73 

1428 IPs Number of Secondary Cases (𝑅𝑡) Full 0.99 (0 – 6) 0 – 19 
  Before NMB 4.5 (0.1 – 17.1) 0 – 19 
  After NMB 1.2 (0 – 6) 0 – 17 
  After 24/48h IP/CP 0.8 (0 – 5) 0 – 13 

 Generation Time (𝜏) Full 7 (3 – 13) 0 – 23 
  Before NMB 2.2 (0.1 – 4) 0 – 4 
  After NMB 7.4 (4 – 13) 3 – 19 
  After 24/48h IP/CP 6.7 (3 – 12.4) 2 – 16 

 Transmission Distance Full 32.3 (0.7 – 260.5) 0.1 – 551.1 
  Before NMB 274.4 (2.7 – 464.9) 2.1 – 466.8 
  After NMB 22.9 (0.6 – 154.1) 0.1 – 271.6 
  After 24/48h IP/CP 36.8 (0.8 – 301.1) 0.2 – 469.6 
 Time to cull interval Full 8.9 (3 – 25) 5 – 15.3 
  Before NMB 8.5 (7 – 10) 7.1 – 9.9 
  After NMB 9.7 (4 – 25) 6 – 16 
  After 24/48h IP/CP 8.4 (3 – 23) 5 – 15 
 Incidence 𝐼𝑒𝑥𝑝  Full 6.5 (0 – 26.5) 0 – 31 
   Before NMB 3.9 (0.3 – 9.7) 0 – 10 
   After NMB 19.2 (5 – 29.2) 5 – 31 
   After 24/48h IP/CP 4 (0 – 14.8) 0 – 17 

  𝐼𝑙𝑒𝑠  Full 6.3 (0 – 26) 0 – 32 
   Before NMB 1.1 (0 – 2.7) 0 – 3 
   After NMB 17.5 (5 – 30.2) 5 – 32 
   After 24/48h IP/CP 4.4 (0 – 19) 0 – 28 

  𝐼𝑟𝑒𝑝  Full 6.5 (0 – 26) 0 – 39 
   Before NMB 1.5 (0.1 – 3.8) 0 – 4 
   After NMB 16.4 (2.6 – 34.6) 0 – 39 
   After 24/48h IP/CP 4.7 (0– 19.6) 0 – 24 

 Prevalence 𝑃𝑒𝑥𝑝  Full 62.4 (3 – 263.7) 1 – 279 
   Before NMB 15.2 (2.3 – 39.1) 2 – 41 
   After NMB 181.8 (53.4 – 275) 49 – 279 
   After 24/48h IP/CP 41.5 (3 – 158.9) 1 – 204 

  𝑃𝑙𝑒𝑠  Full 31.9 (1.6 – 140.3) 1 – 149 
   Before NMB 4.2 (1 – 11.2) 1 – 12 
   After NMB 91.9 (19.9 – 149) 12 – 149 



 

 

   After 24/48h IP/CP 21.7 (2 – 90.9) 1 – 112 

  𝑃𝑟𝑒𝑝  Full 14.7 (0 – 80) 0 – 88 
   Before NMB 0.4 (0 – 2) 0 – 2 
   After NMB 49.2 (4 – 88) 4 – 88 
   After 24/48h IP/CP 8.8 (0 – 45.5) 0 – 60 



 

 

Appendix 5 

Table A5-1. Genetic parameters estimated from the simulated FMDV WGS data of the UK 2001 FMD epidemic 
according to the type of database used and the corresponding points in time of the control policies 
implemented. 

Data Parameter Scenario Average (95% PI) Min-Max 

2026 IPs Nt Substitution/Transmission Link Full 4.5 (0 – 21.4) 0 – 56 
  Before NMB 6.2 (3.1– 13.1) 3 – 14 
  After NMB 6.1 (0 – 31.7) 0 – 56 
  After 24/48h IP/CP 3.3 (0 – 16.5) 0 – 31 

 Evolutionary Duration (∆𝑡) Full 14.9 (10 – 24) 8 – 35 
  Before NMB 11 (9.1 – 12) 9 – 12 
  After NMB 14.9 (10 – 24) 8 – 35 
  After 24/48h IP/CP 14.6 (10 – 23) 8 – 34 

1616 IPs Nt Substitution/Transmission Link Full 1.4 (0 – 4) 0 – 7 
  Before NMB 3.4 (2.1 – 4) 2 – 4 
  After NMB 1.4 (0 – 4) 0 – 6 
  After 24/48h IP/CP 1.3 (0 – 4) 0 – 7 

 Evolutionary Duration (∆𝑡) Full 9.9 (6 – 18) 4 – 27 
  Before NMB 19.4 (16 – 23.7) 16 – 24 
  After NMB 9.5 (6 – 15.5) 4 – 21 
  After 24/48h IP/CP 9.9 (5 – 18) 4 – 27 

1428 IPs Nt Substitution/Transmission Link Full 4.1 (0 – 17) 0 – 36 
  Before NMB 9.2 (3 – 14.9) 0 – 15 
  After NMB 4.7 (0 – 20.8) 0 – 36 
  After 24/48h IP/CP 3.7 (0 – 15) 0 – 22 

 Evolutionary Duration (∆𝑡) Full 14.7 (10 – 23) 7 – 31 
  Before NMB 11 (9.1 – 12) 9 – 12 
  After NMB 14.7 (10 – 22) 7 – 26 
  After 24/48h IP/CP 14.6 (10 – 23.5) 8 – 30 
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Appendix 6 

A6.1 Scaled 𝑵𝒆 formulation 

A6.1.1 Epidemiological generation time 𝜏 

 

Figure A6-1. Scaled 𝑵𝒆 estimated from 12 realisations of the UK 2001 FMDV simulated WGS data and 
reconstructed using the full IPs (𝒏=2026) epidemic dataset. Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) 
prevalence data as defined in §3.2.2.2. Generation time is defined with the epidemiological 𝜏 formulation (§3.2.2.3). 

Table A6-1. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled 𝑵𝒆 recovered from the BSP analysis. Generation time is defined with the 
epidemiological 𝜏 formulation. 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Generation Time 𝜏 7.16±0.07 7.59±0.12 - 6.48±0.09 7.18±0.09 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Effective Population Size 𝑁𝑒 77.69±3.50 145.17±9.34 351.03±37.41 182.77±9.40 24.75±1.34 
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A6.1.2 Serial case interval 𝜏𝑐 

 
Figure A6-2. Scaled 𝑵𝒆 estimated from 12 realisations of the UK 2001 FMDV simulated WGS data and 
reconstructed using the full IPs (𝒏=2026) epidemic dataset. Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) 
prevalence data as defined in §3.2.2.2. Generation time is defined with the serial case interval 𝜏𝑐  formulation 
(§3.2.2.3). 

Table A6-2. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled 𝑵𝒆 recovered from the BSP analysis. Generation time is defined with the 
serial case interval 𝜏𝑐  formulation. 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Serial Case Interval 𝜏𝑐  8.69±0.01 9.95±0.29 22.16±0.46 22.09±0.01 12.68±0.01 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Effective Population Size 𝑁𝑒 64.47±2.16 120.45±6.26 291.22±28.72 151.69±6.44 20.54±1.08 
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A6.2 𝒗𝒂𝒓(𝑹𝒕) scaling formulation 

A6.2.1 Epidemiological generation time 𝜏 

 
Figure A6-3. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. The variance in the secondary cases per 
primary infection 𝑅𝑡 was assumed a normal parameterisation of 𝜎2 (A) and using the Koelle and Rasmussen (2012) 
formulation (B) (§4.2.2.1). Generation time is defined with the epidemiological 𝜏 formulation (§3.2.2.3). Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 
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Table A6-3. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [𝝈𝟐 parameterisation (§4.2.2.1)]. Generation time is defined with the epidemiological 𝜏 formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Generation Time 𝜏 7.16±0.07 7.59±0.12 - 6.48±0.09 7.18±0.09 

𝑹𝒕 Variance 𝜎2 3.91±0.1 6.49±0.25 0.9±0.19 1.88±0.12 3.28±0.18 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 302.76±15.48 565.55±35.19 1368.77±157.52 712.17±37.69 96.44±5.87 

Table A6-4. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [Koelle and Rasmussen (2012) parameterisation (§4.2.2.1)]. Generation time is defined with the 
epidemiological 𝜏 formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Generation Time 𝜏 7.16±0.07 7.59±0.12 - 6.48±0.09 7.18±0.09 

𝑹𝒕 Variance 𝑣𝑎𝑟(𝑅𝑡) 3.91±0.1 6.49±0.25 0.9±0.19 1.88±0.12 3.28±0.18 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 302.10±15.46 564.31±35.21 1365.73±157.14 710.59±37.56 96.24±5.86 
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A6.1.2 Serial case interval 𝜏𝑐 

 
Figure A6-4. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. The variance in the secondary cases per 
primary infection 𝑅𝑡 was assumed a normal parameterisation of 𝜎2 (A) and using the Koelle and Rasmussen (2012) 
formulation (B) (§4.2.2.1). Generation time is defined with the serial case interval 𝜏𝑐  formulation (§3.2.2.3). 
Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 
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Table A6-5. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [𝝈𝟐 parameterisation (§4.2.2.1)]. Generation time is defined with the serial case interval  
𝜏𝑐  formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Serial Case Interval 𝜏𝑐 8.69±0.01 9.95±0.29 22.16±0.46 22.09±0.01 12.68±0.01 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 251.18±9.44 469.08±22.00 1135.15±121.01 590.85±24.23 80.04±4.50 

Table A6-5. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [Koelle and Rasmussen (2012) parameterisation (§4.2.2.1)]. Generation time is defined with the serial case 
interval 𝜏𝑐  formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Serial Case Interval 𝜏𝑐 8.69±0.01 9.95±0.29 22.16±0.46 22.09±0.01 12.68±0.01 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 250.68±9.42 468.14±21.96 1132.88±120.76 589.67±24.18 79.88±4.49 
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A6.3 NLFT scaling formulation 

 
Figure A6-5. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. Generation time is parameterised as the 
prevalence-to-incidence ratio 𝜏𝑝 (Frost and Volz, 2013) (§3.2.2.3, §4.2.2.2). Epidemic curve was estimated from the 

𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 

Table A6-6. Overall and time specific number of infected cases estimated under 12 realisations for the UK 
2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical epidemiological data and the scaled 
infection prevalence 𝑵∗ estimated by expressing the phylogenetic structure by NLFT. Generation time is 
defined with the prevalence-to-incidence ratio 𝜏𝑝 formulation (§3.2.2.3, §4.2.2.2). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Prevalence-to-Incidence Ratio 𝜏𝑝 12.15±0.40 7.81±1.15 11.85±2.71 15.33±0.97 12.82±0.52 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 92.87±5.14 173.53±12.55 419.61±47.58 218.50±13.66 29.58±1.92 
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Appendix 7 

A7.1 Scaled 𝑵𝒆 formulation 

A7.1.1 Epidemiological generation time 𝜏 

 
Figure A7-1. Scaled 𝑵𝒆 estimated from 12 realisations of the UK 2001 FMDV simulated WGS data and 
reconstructed using the full IPs (𝒏=2026) epidemic dataset. Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) 
prevalence data as defined in §3.2.2.2. Generation time is defined with the epidemiological 𝜏 formulation (§3.2.2.3). 

Table A7-1. Overall and time specific number of infected cases estimated under 12 realisations of the UK 
2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical epidemiological data and the scaled 𝑵𝒆 
recovered from the BSP analysis. Generation time is defined with the epidemiological 𝜏 formulation. 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Generation Time 𝜏 7.16±0.06 7.53±0.13 - 6.51±0.8 7.22±0.16 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Effective Population Size 𝑁𝑒 78.92±2.68 188.91±9.70 309.98±29.78 166.68±7.46 29.60±1.59 
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A7.1.2 Serial case interval 𝜏𝑐 

 
Figure A7-2. Scaled 𝑵𝒆 estimated from 12 realisations of the UK 2001 FMDV simulated WGS data and 
reconstructed using the full IPs (𝒏=2026) epidemic dataset. Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) 
prevalence data as defined in §3.2.2.2. Generation time is defined with the serial case intarval 𝜏𝑐  formulation 
(§3.2.2.3). 

Table A7-2. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations of the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled 𝑵𝒆 recovered from the BSP analysis. Generation time is defined with the 
serial case interval 𝜏𝑐  formulation. 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Serial Case Interval 𝜏𝑐  5.91±0.1 7.57±0.11 5.91±0.1 6.93±0.07 5.35±0.67 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Effective Population Size 𝑁𝑒 53.05±2.58 194.83±13.77 377.68±56.53 57.50±2.41 13.92±0.76 
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A7.2 𝒗𝒂𝒓(𝑹𝒕) scaling formulation 

A7.2.1 Epidemiological generation time 𝜏 

 
Figure A7-3. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. The variance in the secondary cases per 
primary infection 𝑅𝑡 was assumed a normal parameterisation of 𝜎2 (A) and using the Koelle and Rasmussen (2012) 
formulation (B) (§4.2.2.1). Generation time is defined with the epidemiological 𝜏 formulation (§3.2.2.3). Epidemic 
curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 
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Table A7-3. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [𝝈𝟐 parameterisation (§4.2.2.1)]. Generation time is defined with the epidemiological 𝜏 formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Generation Time 𝜏 5.91±0.1 7.57±0.11 5.91±0.1 6.93±0.07 5.35±0.67 

𝑹𝒕 Variance 𝜎2 4.28±0.45 12.18±2.25 4.28±0.45 2.75±0.52 2.23±0.19 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 473.22±70.83 1909.05±342.34 2596.79±489.78 570.11±115.94 65.12±11.45 

Table A7-4. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [Koelle and Rasmussen (2012) parameterisation (§4.2.2.1)]. Generation time is defined with the 
epidemiological 𝜏 formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Generation Time 𝜏 7.16±0.06 7.53±0.13 - 6.51±0.08 7.22±0.16 

𝑹𝒕 Variance 𝑣𝑎𝑟(𝑅𝑡)) 3.91±0.1 6.49±0.25 0.9±0.19 1.88±0.12 3.28±0.18 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 457.15±64.73 1841.59±304.18 2502.47±427.95 553.17±120.88 63.10±11.60 
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A7.1.2 Serial case interval 𝜏𝑐 

 
Figure A7-4. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. The variance in the secondary cases per 
primary infection 𝑅𝑡 was assumed a normal parameterisation of 𝜎2 (A) and using the Koelle and Rasmussen (2012) 
formulation (B) (§4.2.2.1). Generation time is defined with the serial case interval 𝜏𝑐  formulation (§3.2.2.3). 
Epidemic curve was estimated from the 𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 
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Table A7-5. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [𝝈𝟐 parameterisation (§4.2.2.1)]. Generation time is defined with the serial case interval  
𝜏𝑐  formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Serial Case Interval 𝜏𝑐 5.91±0.1 7.57±0.11 5.91±0.1 6.93±0.07 5.35±0.67 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 525.52±102.25 2630.05±547.78 7709.00±2269.60 197.63±39.01 32.92±6.18 

Table A7-6. Overall and time specific number of infected cases (both incidence and prevalence) estimated 
under 12 realisations for the UK 2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical 
epidemiological data and the scaled infection prevalence 𝑵∗ estimated under the assumption of variance in 
𝑹𝒕 [Koelle and Rasmussen (2012) parameterisation (§4.2.2.1)]. Generation time is defined with the serial case 
interval 𝜏𝑐  formulation (§3.2.2.3). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Serial Case Interval 𝜏𝑐 5.91±0.1 7.57±0.11 5.91±0.1 6.93±0.07 5.35±0.67 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 506.81±90.27 2534.95±482.26 7399.55±1999.10 191.84±41.39 31.91±6.26 
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A7.3 NLFT scaling formulation 

 
Figure A7-5. Infection prevalence 𝑵∗ estimated from 12 realisations of the UK 2001 FMDV simulated WGS 
data and reconstructed using the full IPs (𝒏=2026) epidemic dataset. Generation time is parameterised as the 
prevalence-to-incidence ratio 𝜏𝑝 (Frost and Volz, 2013) (§3.2.2.3, §4.2.2.2). Epidemic curve was estimated rom the 

𝑃𝑒𝑥𝑝 (blue) prevalence data as defined in §3.2.2.2. 

Table A7-7. Overall and time specific number of infected cases estimated under 12 realisations for the UK 
2001 FMD full IPs (𝒏=2026) epidemic dataset from the empirical epidemiological data and the scaled 
infection prevalence 𝑵∗ estimated by expressing the phylogenetic structure by NLFT. Generation time is 
defined with the prevalence-to-incidence ratio 𝜏𝑝 formulation (§3.2.2.3, §4.2.2.2). 

  Epidemic Phase 
  Overall Exponential Peak Decline Plateau 

Prevalence-to-Incidence Ratio 𝜏𝑝 11.63±0.21 8.07±0.21 11.64±0.21 11.71±0.4 12.7±0.26 

Prevalence 𝑃𝑒𝑥𝑝 88.42±0.32 195.01±2.15 439.83±3.19 203.17±0.83 30.62±0.04 

Infection Prevalence 𝑁∗ 124.38±5.42 394.48±24.14 543.42±43.98 233.20±16.51 27.27±1.93 
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