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Abstract

The cathepsin B cysteine protease enzyme performs a role in protein turnover
and degradation within the lysosomes of vertebrates. This proteolytic enzyme is also
thought to perform related roles in the processing of antigens and protein precursors, as
well as a role in bone resorption. A pathological role for cathepsin B in tumour cell
invasion has also been suggested. Enzymes with cathepsin B-like activities are thought
to be excreted and/or secreted by a variety of parasitic nematode and trematode species.
To date, multigene families with the potential to encode cathepsin B-like enzymes have
only been reported in parasitic nematode and trematode species, suggesting that these
enzymes may be important for parasitism by these species. The work presented in this
thesis demonstrates that the free living nematode species, Caenorhabditis elegans, also
possesses a cathepsin B-like multigene family indicating that such multigene families are
not unique to parasitic nematode and trematode species. Four genes with homology to
vertebrate cathepsin B were isolated from the genome of C.elegans and were named cpr-
3, cpr-4, cpr-5 and cpr-6. Phylogenetic analysis clusters the proteins encoded by these
four genes with known cathepsin B enzymes and away from other, related enzymes such
as cathepsins Hand L.  Since the four genes possess distinct genomic architectures, they
appear to have arisen from ancient gene duplication events. This is supported by
phylogenetic analysis which clusters the predicted proteins encoded by these four genes
and cpr-1, a previously isolated C.elegans cathepsin B-like gene (Ray and McKerrow,
1991), into three groups which are almost as diverged from one another as each is to the
vertebrate cathepsin B enzymes. The expression of cpr-3, cpr-4, cpr-5 and cpr-6 as lacZ
reporter transgene fusions in transgenic worms suggests that these four genes are all
exclusively expressed in the intestinal cells of C.elegans. Analysis of the temporal
expression patterns of these four genes using semi-quantitative reverse transcription
polymerase chain reaction indicates that the four genes exhibit distinct but overlapping
temporal patterns of expression during C.elegans development. These results suggest a
differential requirement for cathepsin B-like enzymes, or combinations of enzymes,
within the intestine during C.elegans development.
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Chapter 1

General Introduction

1.1. The Phylum Nematoda

The phylum Nematoda is large, containing 10,000 described nematode species,
and its members are among some of the most widespread and numerous of all
multicellular animals. Members of this phylum extend from the polar regions to the
tropics and inhabit all types of marine and terrestrial environments including; high
altitudes, hot springs, deserts and oceans. Parasitic nematodes are equally diverse,
displaying all the different degrees of parasitism and attacking virtually all groups of
plants and animals. Despite the diverse environments and very different lifestyles of
different nematode species, all are morphologically and anatomically very similar. All
nematode species have a long slender body and a circular cross section (hence the name
‘roundworms’). The general body plan comprises two concentric tubes separated by the
pseudocoelomic space. The outer tube consists of the cuticle, the hypodermis, muscle
and nerve cells while the inner tube consists of the intestine and its lumen. The gonads of
adult worms are contained in the pseudocoelomic space. For a more in-depth overview

of the characteristics of the phylum Nematoda, see Barnes (Bamnes, 1980).

1.2. Caenorhabditis elegans biology

The free-living soil nematode, Caenorhabditis elegans, has been the subject of
extensive studies and is the most well characterised of all nematode species. It is a filter
feeder whose diet consists primarily of bacteria. C.elegans can be easily maintained in
the laboratory on agar plates or in liquid culture using Escherichia coli as a food source
(Brenner, 1974) and the life cycle takes only approximately 3'2 days to complete under
optimal conditions. The two sexes, hermaphrodite and male, are a similar size,
approximately Imm in length and 70y in diameter. However, the two sexes can be
distinguished by virtue of different anatomical features (see Section 1.2.2). C.elegans
propagates primarily by hermaphroditic self-fertilisation since hermaphrodites cannot



fertilise one another and males, which are capable of fertilising hermaphrodites, occur in

the population only at a low frequency (approximately 1/700).

1.2.1. C.elegans development

The life cycle of C.elegans, like all other nematode species, involves four larval
stages, named L, - L,. Eggs are fertilised internally and early embryogenesis occurs
within the parent. The later stages of embryogenesis occur after the eggs have been laid.
Embryogenesis is rapid, taking only approximately 14 hours to complete in optimal
conditions.  After hatch, the morphology of the resulting 1* stage larvae (L) is
superficially quite similar to the adult. Three further larval stages occur (L,, L; and L)
prior to generation of the adult approximately three days after hatch. The end of each
larval stage is punctuated by a moult. At each moult, the old cuticle is shed to reveal a
newly synthesised cuticle beneath. During shedding of the old cuticle, pharyngeal
pumping stops for a brief period known as lethargus. Under conditions of overcrowding
or starvation, the L, larvae can enter an alternative developmental pathway to generate
dauer larvae which are long-lived and resistant to unfavourable conditions (Riddle,
1988). In more favourable conditions, these dauer larvae moult to L, stage larvae and
resume normal development.

The body wall of C.elegans and the shell of eggs and developing embryos are
transparent. This feature, in conjunction with Nomarski microscopy (a high resolution,
non-destructive light microscopy technique), has made it possible to describe the
complete embryonic (Sulston e al., 1983) and post-embryonic (Sulston and Horvitz,
1977) cell lineages of C.elegans. These studies followed individual nuclei in live animals
and compared the resulting observations to the cellular anatomy of the worm, determined
at both the light and electron microscope levels. These studies have revealed that both
the embryonic and post-embryonic cell lineages are highly invariant, with each lineage
rigidly determined and giving rise to a fixed number of cells of strictly specified fates.
Although the relationship between cell ancestry and cell fate is fixed, there is little
correlation between them. Thus, the six founder cells, AB, MS, E, C, D and P,
generated by the first four cleavages, do not correspond exactly to specific germ layers.

However, three founder cells do give rise to ‘pure’ clones; E gives rise exclusively to the



intestine, D produces body wall muscle (but not all body wall muscle) and P, gives rise
to the germ-line.

As a result of the cell lineage studies described above, the entire period of
C.elegans development is very well characterised. Embryogenesis can be divided into
two stages of approximately the same length; first, the cell proliferation and
organogenesis stage and second, the morphogenesis stage. During the first stage, cell
divisions, cell movements and some cell deaths take place. By the end of this phase the
gastrulated embryo is spheroid with a fixed number of cells (approximately 550) whose
fates are rigidly determined. During the second phase, cell proliferation stops almost
completely and morphogenesis occurs. During this stage, the embryo elongates more
than threefold, neural processes grow out and interconnect, the embryo begins to move
actively and cuticle synthesis occurs.

The L, stage larvae comprise approximately 550 somatic nuclei in both
hermaphrodites and males. Both sexes possess a gonadal primordium at this larval stage
which comprises four cells. The number of somatic nuclei increases to 959 in the mature
adult hermaphrodite and 1031 in the mature adult male. These additional nuclei are
generated both by division of non-gonadal somatic blast cells and by proliferation of the
gonadal primordium during post-embryonic development.

The non-gonadal somatic blast cells make up approximately 10% of the non-
gonadal nuclei of both hermaphrodite and male L, stage larvae (Sulston and Horvitz,
1977). As a result of division of these blast cells, the number of non-gonadal somatic
nuclei increases to about 810 in the mature adult hermaphrodite and 970 in the male. In
both sexes, the daughter cells arising from these divisions contribute to the hypodermis,
nervous system, intestine and musculature. Most of the additional male-specific cells are
located in the specialised structures of the male tail which are required for copulation.

The remaining somatic nuclei of the mature adult hermaphrodite and mature adult
male are generated by proliferation of the gonad. The hermaphrodite and male gonad
develops during the larval stages, from a gonadal primordium comprising four cells in
the L, stage. Of these four morphologically similar cells, two contribute to the somatic
gonad and two to the germ-line tissue. The somatic gonad of both sexes develops
according to an invariant pattern of cell divisions (Kimble and Ward, 1988), resulting in

approximately 140 nuclei contributing to the hermaphrodite gonad and 60 nuclei to the



male gonad. Though gonadogenesis occurs throughout larval development, the
structures of the gonad only begin to be easily visible around the late L; stage. Sexual
maturation continues to the end of the L, stage, culminating in the opening of the
hermaphrodite vulva and morphogenesis of the male tail at the final moult.

1.2.2. C.elegans anatomy

The complete anatomy of C.elegans has been determined at the cellular level
mostly using reconstructions of electron micrographs of serial sections.  This
information, in conjunction with the invariance of cell number and cell fate (discussed
above), has allowed every cell in the worm to be identified and given a unique label. The
anatomy of C.elegans is typical of all nematode species and essentially consists of two
concentric tubes separated by pseudocoelomic space. The outer tube is made up of a
cuticle, hypodermis, neurones and muscle which all surround the pseudocoelom. The
inner tube consist of the intestine and its lumen. The gonads of both sexes are contained
within the pseudocoelomic space (Figure 1.1A).

The cuticle is made up of collagen, organised into three main layers, and is
synthesised by an underlying external epithelium called the hypodermis. Accordingly, the
hypodermis extends over the entire surface of the worm, including parts of the lumen of
the pharynx and anus. Two elevated longitudinal ridges, called alae, mark the lateral
surfaces of the adult cuticle. These alae are synthesised by seam cells, a subset of
hypodermal cells which underlie the alae. On solid surfaces, C.elegans crawls on one
side with the alae contacting the surface of the medium. Movement itself is attained
using four strips of striated body wall muscle running along the length of the animal
(Figure 1.1A).

The alimentary canal comprises the pharynx, the intestine and the rectum. The
pharynx functions to ingest, concentrate and process food prior to pumping it into the
intestine. Accordingly, the pharynx is made up of muscles, epithelial cells and nerves.
The lumen of the pharynx is lined with cuticle and this cuticle is continuous with the
body cuticle. The pharyngeal cuticle possesses several specialised structures the most
obvious of which are the knob like structures in the terminal bulb (Figure 1.1B), which
grind up food. The pharynx is connected to the intestine via the pharyngeal-intestinal



valve. The intestine is comprised of two rows of eight cells (int2-int9) and an anterior
ring of four cells (int1). The four cells comprising int1 represent the point of attachment
of the intestine to the cells of the pharyngeal-intestinal valve. The intestine is attached to
the rectum via the intestinal-rectal valve, a very similar structure to the pharyngeal-
intestinal valve. The rectum itself is made up of three pairs of endothelial cells. The
rectum is associated with three sets of muscles required for excretion which are coupled
by gap junctions and innervated by a single neuron.

The hermaphrodite and male gonads have very different structures (Figure 1.1B).
The hermaphrodite gonad has two lobes, one extending anteriorly and the other
posteriorly from the centre of the worm. Each lobe is U-shaped and comprises an ovary
(at the distal end), an oviduct and a spermatheca (at the proximal end). At the distal end,
the ovaries are syncytial and contain germ-line nuclei. As the nuclei move proximally,
they progress through the stages of meiosis and are in diakinesis by the time they reach
the oviduct. By this stage, each of the germ-line nuclei are enclosed by membranes to
form large oocytes. The oviduct terminates at the spermatheca, containing amoeboid
sperm. The two spermathecae (one from each lobe) are connected by a common uterus
which contains fertilised eggs. The uterus opens to the outside via a vulva protruding
from the ventral surface of the adult hermaphrodite.

The male gonad is a single lobed, U-shaped structure which extends anteriorly,
flips back on itself and then extends posteriorly to the cloaca. At the end distal to the
cloaca, the germ-line nuclei are mitotic. These nuclei become meiotic, and advance
through the various stages of meiosis, as they travel proximally to the seminal vesicle.
The sperm are stored in the seminal vesicle until copulation, when they are released via
the vas deferens and cloaca. The male tail has specialised neurons, muscles and
hypodermal structures required for mating, including two spicules that are inserted into
the hermaphrodite vulva to aid the transfer of sperm.

The nervous system is the most complex organ of C.elegans, accounting for 37%
and 46% of somatic nuclei in hermaprodites and males, respectively (Chalfie and White,
1988). The nervous system, including all the neural connectivities, has been completely
reconstructed from electron micrographs of serial sections (White e al., 1986). The
system is divided into two almost independent units, the 20 nerve cells of the pharynx
and the nerve cells of the rest of the body. Most of the cell bodies of these neurons are



organised into ganglia. Most of the neuronal processes from these cells form a ring
around the outer surface of the pharynx (the nerve ring) or contribute to nerve bundles
running the length of the body (most notably, the dorsal and ventral nerve cords). Most
of the sensory neurons run anteriorly from the nerve ring to sensory structures in the
head (sensilla) while most motor neurons run posteriorly from the nerve ring to the body
wall muscle. A more detailed overview of C.elegans anatomy is given by J White

(1988).
1.2.3. C.elegans genetics

The haploid genome of C.elegans is relatively small, with approximately 10° bp
(100 megabases) of DNA. Wild-type hermaphrodites possess five pairs of autosomes
(A) and a pair of X chromosomes (XX) while males possess five pairs of autosomes and
only a single X chromosome (XO). The ratio of X chromosomes to autosomes has been
shown to be the primary sex-determining signal of C.elegans by altering the X:A ratio
(Hodgkin et al., 1979; Madl and Herman, 1979).

C.elegans has been the focus of much classical genetic analysis and its mode of
reproduction has been very useful in this respect. On one hand, genetic crosses, which
are essential for classical genetic analysis, can be performed between hermaphrodites and
males. On the other hand, the predominant self-fertilising hermaphroditic mode of
reproduction allows easier isolation of recessive mutations, since homozygous worms
appear in the F2 generation automatically, without the need for sibling crosses. Large
scale genetic screens have been performed using chemical mutagenesis and radiation.
Indeed, one of the earlier screens (Brenner, 1974) identified at least 77 genetic loci,
distributed over the 6 linkage groups. Since then, over 1200 genetic loci have been

identified using classical genetic approaches (S.Martinelli pers. comm.).
1.3. C.elegans as an experimental system
The features of C.elegans biology discussed above make it a very useful system

for experimental analysis. The worm is easily maintained in the laboratory and has a

short life cycle, facilitating genetic analysis. The worm is sufficiently simple to allow



thorough analysis, as evidenced by the work performed on the cell lineage and anatomy
of this worm, yet is sufficiently complex to allow studies of cell interaction, animal
development and behaviour. Furthermore, extensive classical genetic analysis of
C.elegans has contributed substantially to our understanding of how individual genes
participate in the development and behaviour of this nematode species.

There are several additional features which make C. elegans an extremely
powerful experimental system. First, methods for transforming C.elegans have been
developed which allow genetically engineered genes to be reintroduced (Stinchcomb et
al., 1985; Fire, 1986). Second, a physical map has been generated which covers over
95% of the C.elegans genome and this map has been aligned with the genetic map. The
alignment of the physical and genetic maps, in conjunction with C.elegans transformation
techniques, has greatly facilitated the isolation and cloning of mutationally defined genes
using mutant rescue approaches. The physical map and its uses are discussed in more
detail in Chapter 3, Sections 3.1.1-3.1.3. Third, the ongoing C.elegans genome
sequencing project (discussed in Chapter 3, Section 3. 1.2) will elucidate the structure of
the entire C.elegans genome and will allow identification of those genes not defined by
mutations. Fourth, a powerful technique for reverse genetics is available for C.elegans
and will allow the functions of many of the genes identified by the genome sequencing
project to be determined. The technique uses polymerase chain reaction (PCR) to detect
insertions of the Tcl transposon in, or near, a gene of interest. In brief, the method
requires the use of mutator strains of C.elegans which activate Tcl transposition and
excision at high frequency in the germ-line. Genomic DNA from a number of
populations of these worms are screened by PCR using primers s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>