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N ote on  T h esis O rganisation
Because of the num ber of figures involved in this thesis the figures have been separated from 

the main text of the thesis. Consequently the thesis is presented as two volumes, Volume 

1 contains the text of the Thesis and Volume II contains the figures and appendices. This 

allows easy cross referencing of the text, figures and appendices.

In addition this thesis is organised into 4 self contained parts;

Overview

Part I The Guadalquivir Basin  

Part II The Gibraltar Arc Flysch

Part III The use o f the External Basins in the Interpretation o f the Betic Orogen.

Each part has its own separate system  of chapter and figure organisation, this applies to both 

Volume I and Volume 2.
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A bstract

The Betic m ountain chain of Southern Spain, together with the Rif M ountains of N.W. Africa 

forms the w estern-m ost extension of the Alpine m ountain chain in Europe. The Orogen 

formed as a direct result of the interaction between the African and Iberian plates which took 

place from the late Cretaceous onwards. The origin of the Betics is far from understood and 

there are several conflicting hypotheses concerning the origin of the Orogen.

There are two major external basins to the Betic Orogen in S outhern  Spain, the 

Guadalquivir Basin and the G ibraltar Arc Flysch, and both provide im portant insights into 

its tectonic history.

The Guadalquivir Basin lies on the northern margin of the External Zone Tertiary fold- 

th ru s t belt of the Betic Orogen and  sou th  of the Palaeozoic Iberian M eseta. It can be 

subdivided into structurally distinct regions, an undeformed autochthonous basin which lies 

to the north of a  deformed allochthonous basin. The origin of the Guadalquivir Basin 

(previously interpreted as being the foreland basin to the Orogen) is questioned. S tructural 

sedimentological and provenance studies dem onstrate th a t the Guadalquivir Basin is not a  

foreland basin because; 1. It formed as  an  integral part of the destruction of the Iberian 

passive margin during which time thin skinned thrusting generated a  basin on the northern 

margin of the External Zones, 2. The fill and unconformities of th is basin were controlled by 

eustasy rather by the tectonic incursion of an orogenic wedge being driven onto the Iberian 

Margin, 3. The basin did not form by the downward flexure of the lithosphere in response 

to an orogenic load. Therefore the basin cannot be considered to be a  true foreland basin. 

The clastic sedimentation in the Guadalquivir Basin was controlled by the emergence of the 

External Zone th ru st sheet, during the late Miocene, which was related to the thin skinned 

thrusting. During this time the recycling of material, th a t had originally been derived from 

the Palaeozoic Iberian Meseta, took place. A thrusting event a t the the end of the Miocene/ 

early Pliocene led to the destruction of the Guadalquivir Basin which was subdivided into the 

allochthon and autochthon seen today.

The G ibraltar Arc flysch nappes link the External Rif of North Africa to the External 

Zone of Southern Spain. The largest un it of the Gibraltar Arc is the Aljibe Flysch which can 

be subdivided into the Beneiza Flysch and Aljibe Arenites, which are Oligo-Miocene in age. 

The Beneiza Flysch is characterised by th in  sandstones and siltstones th a t are interpreted 

to have been deposited by turbiditic currents. These pass rapidly upwards into the thick 

bedded and super-m ature Aljibe Arenites, which are entirely dominated by w ater escape- 

s tru c tu res. The contact between these  two u n its  m arks a  dram atic change in the 

depositional environment a t the beginning of the Miocene. The Aljibe Flysch is interpreted 

as recording the development of a  basin  plain th a t became tectonically segregated a t the 

beginning of the Miocene, a t which tim e new and tectonically confined basins developed. 

Tectonic instabilities created elsewhere in the External Zone resulted in mobilisation of large 

am ounts of sedim ent which was rapidly deposited in the newly created basins. The flysch 

un its  have subsequently  been th ru s t westwards post-Lower Miocene during which time 

peridotites were emplaced into m id-crustal levels



Consideration of the tectonic and sedim entary history of the Guadalquivir Basin and 

G ibraltar Arc Flysch provides an  im portant insight into the tectonic history of the Betic 

Orogen. Data collected during the study  of these basins, combined with im portant new 

published data  from the Alboran Sea and Ronda Peridotites, has resulted in the rejection of 

the widely accepted ‘extensional collapse’ model and  in the identification of strike-slip 

tectonism and transcurren t movements as the main m echanism  for the building of the Betic 

Orogen. Miocene transcu rren t movements in the Betic area resulted in the  break up the 

Iberian passive margin, the em placement of metamorphic terranes and in the formation of 

th ru sts  in the Gibraltar Arc through a  complicated history of transtension and transpression 

in the region of the Alboran sea.
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This thesis aim s to describe the  tectonic and sedimentological relationships of two basins, 

the G uadalquivir Basin and the G ibraltar Arc Flysch basin, th a t lie on the periphery of the 

Betic m ountain  chain in southern  Spain. These basins are believed to have been generated 

by the interaction between African and Iberian plates. The Betic orogen itself has been the 

subject of some controversy, and  its tectonic history is not yet fully understood. It is believed 

th a t the basins in question may provide some insight into the development of the Orogen.

The purpose of this section is to highlight the tectonic setting of the orogen, the various 

hypotheses which have been proposed for its development and  the maun areas of disagree

ment between workers. This will provide a  background for the discussion of the basins.

This section will then  go on to describe how basins in general m ay be used in the 

interpretation of orogens and  how the Guadalquivir and G ibraltar Arc Flysch basins might 

add to the tectonic interpretation of the Betic Orogen.

The final part of th is  section will clearly state the aim s and objectives of th is thesis.

1. THE BETIC OROGEN
1.1 Introduction

The Betic m ountain chain of Southern  Spain (Fig. 0 . 1), together with the Rif M ountains of 

NW. Africa, the Alboran sea  and the Gibraltar Arc, forms the western-most extension of the 

Alpine m ountain chain in Europe (Banda and  Ansorge, 1980). The history of the Betics spans 

some 90 Ma„ from the late Cretaceous to Pleistocene times. The orogen formed as a  direct 

resu lt of interaction between the Iberian and  African plates (Dewey e t al., 1973, 1989; 

K am pschuur and Rondell, 1974; Torres-Rold&n, 1979; B anda and Ansorge, 1980)

1.2 Plate T ectonic Setting  (Fig. 0 .2 )

During the early part of the Cretaceous Iberia acted as a  separate plate, moving independently 

of Africa & Europe as spreading in the  north Atlantic occurred (Dewey et al., 1973, 1989; 

Malod and  Mauffret, 1990; Roest and Sirvastava, 1991). At some time before the Santonian 

(84 Ma.) Iberia a ttached  itself to  the African plate (Sirvastava e t al., 1990) welding the 

Moroccan and  Oran Terrains to Africa (Dewey et al., 1973). This resulted in a  new active 

boundary in  the Bay of Biscay, separating the African /Iberian plate from the Eurasian plate. 

Sirvastava (1990) proposed th a t a t 42 Ma. th is plate boundary shifted to the Pyrennean Arc, 

leading to com pression between E urasia and  Africa and to the creation of the Pyrennean 

Alpine m ountain chain. During th is later period there was no movement in southern Iberia. 

At around 32 Ma. (lower Oligocene) the plate boundary jum ped again to the G ibraltar Arc 

(Sirvastava e t a t ,  1990), creating a  new active plate boundary between E urasia /Iberia  and 

Africa. However, no major movement occurred until 27 Ma. (Upper Oligocene), when Iberia 

rotated eastw ard into Africa (Dewey etaL, 1973) leading to compression and major strike slip 

movements between Africa and Iberia. The overall result was the subduction of the African 

Margin from 27 Ma. onwards. This subduction, and the interaction of Africa and Iberia is
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thought to have been responsible for the formation of the Betic m ountain chain.

1.3 Tectonic Subdivision (Fig. 0 .1 )

In the past the Orogen which formed between Africa and  Iberia has been described and 

discussed in term s of separate southern  Spanish and North African com ponents. This led 

to some confusion as to the tectonic subdivision of the Betic Orogen. An attem pt, therefore, 

will be made to address the Betic orogen in term s of both of these  com ponents. This will 

produce a  slightly modified tectonic subdivision.

The Betic orogen (and its north African counterpart) can be divided into four distinct 

tectonic Zones

1. The Internal zone of southern Spain and Internal R tf of north Africa.

2. The External Zones; which are divided into the Subbetic and  Prebetic Subzones of 

southern Spain and the External Rif of north Africa. The Subbetic subzone is linked 

to the External Rif of north Africa by the G ibraltar Arc (Platt and Vissers, 1989; 

Doblas, 1989), which contains Oligocene Flysch nappes (Torres-Roldan, 1979; Platt 

and Vissers, 1989: Sanz-De-Galdeano, 1990).

3. The Alboran Sea; occupies the region between southern Spain and North Africa. It 

is a  topographic low bounded by the high m ountain  chains of the Internal Zone, 

G ibraltar Arc and External Rif (Torres-Roldan, 1979; Banda & Ansorge, 1980; Sanz- 

De-Galdeano, 1990; Platt & Vissers 1989).

4. The external basins; are those basins which lie on the periphery of the orogen bu t 

are thought to have been generated by am orogenic m echanism . They include the 

Guadalquivir Basin on the southern margin of the orogen and the Gibraltar Arc Flysch 

deposits in the west. It is the external basins which are the subject of this dissertation.

1.3 .1 Internal Zone

The Internal Zone of the Betic M ountain chain, sou thern  Spain, consists of a  series of 

overthrust tectonic nappes (Egeler e t a l ,  1972 & Egeler & Simon, 1969). These tectonic 

nappes form three th ru s t sheets, stacked from bottom to top these are: the Nevado-Filabride 

(deepest), the Alpujarride (intermediate) and the Malaguide (highest). All are metamorphosed 

to varying degrees, but the lowest sheet, the Nevado-Filabride, is m ost consistently at higher 

grade than  the higher Alpujarride and  Malaguide th ru s t sheets.

1.3.2 Nevado-Filabride Thrust Sheet

The Nevado-Filabride exhibits a  polyphase metamorphism (Nijhus, 1964; Puga & Diaz- 

de-Frederico, 1978; Gomez-Pugnaire & Femandez-Soler, 1987). Both K am pschuur et al., 
(1974) and Torres-RoldAn (1979) recognised 3 m etam orphlc facies, glaucophane-schist, 

greenschists and a  greenschist and  amphibolite facies. K am pschuur etal. (1974) attributed 

the glaucophane-schist facies to an  old, pre-Alpine, D i metamorphlc event tha t persisted into
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Permo-Triassic times. A second more static metamorphism, D2, produced retrograde facies 

and a  m uch later, Alpine, D3 event gave rise to the glaucophane-schist amphibolite facies 

(Lagenberg, 1972). Torres-RoldAn (1979), however, suggested th a t during the first Alpine 

m etam orphism  some of the rocks of the Nevado-Filabride were subjected to an  abnormally 

low geothermal gradient. This was then subsequently overprinted by a  change towards much 

lower pressures.

Some of the confusion in the interpretation of the metamorphic history was removed 

by the further subdivision of the Nevado-Filabride into two th ru s t nappes (Bakker et al., 

1989). (1). A lower low -pressure/low -tem perature un it term ed the Veleta Complex, is 

overthrust by (2) The M ulhacen Complex, which displays high-pressure/low -tem perature 

m etamorphism . Both units were subsequently overprinted by a  m edium  grade m etam or

phism  of low-pressure type.

Bakker etal. (1989) dem onstrated th a t the Mulhacen complex underw ent a t least five 

phases of deformation related to continent to continent collision. This was followed by an 

intermediate m etamorphism th a t was produced during crustal thinning and  heterogeneous 

extension. Bakker etal. (1989) suggested tha t it was during this extension th a t units in the 

Alpujarride were juxtaposed against the Nevado-Filabride complex.

1.3.3 Alpujarride Thrust Complex

Early workers such as Egeler etal. (1969), Aldaya (1970) Boulin (1970) and Komprobst (1974) 

considered the Alpujarride to be unaffected by Alpine metamorphism , since the medium- 

high grade assem blages present are usually associated with pre-Alpine orogenic cycles. 

However, Torres-Roldan (1979) dem onstrated th a t the Alpujarride is characterised by an  

intermediate to low pressure kyanite/sillim anite assemblage overprinted by a  lower pressure 

andalusite/sillim anite assemblage. This was interpreted as reflecting a t least two major 

metamorphic events, the later one being syn-Alpine. Zeck etal. (1992) recorded uplift of 15- 

20 Km at rates of 5-10 Km/My in the final stages of orogenic development. Such  high rates 

have been attributed to the slab detachm ent of the African plate from the base of the Iberian 

plate and associated diapirism  in the upper-m antle.

1.3.4 Malaguide Thrust Unit

Alpine metamorphism is confined to the lower most part of the Malaguide th ru s t unit (Egeler 

et al., 1969), and  has been correlated with m etam orphism  in the  lower portions of the 

Alpujarride. They both display sim ilar metamorphic assem blages (Torres-RoldAn, 1979). 

Above this lower zone the rocks become progressively less affected by metam orphism  (Egeler 

etal., 1969; Torres-RoldAn, 1979).

1.3.5 Internal Rif, N. Africa.

The Betic zone is continued across the Gibraltar Arc to form the Internal Rif of north west 

Africa (Kampschuur etal., 1974). The Nevado-Filabride th ru s t unit is only found in the Betic 

Cordillera of southern Spain, while the Alpujarride th ru s t unit is similar to the Sebtide unit 

of the Internal Rif. The Malaguide th ru s t un it has counterparts in both the Gomarides of the
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Interned Rif and the Kabylias of the Tell m ountains of North Africa (Sanz-De-Galdeano, 1990).

1.3.6 External Zone

The External zone of the Betic Orogen consists of unm etam orphosed Triassic to lower 

Miocene rocks (Garcia-Hemandez etal., 1979) tha t form a  complicated structural belt. These 

Rocks are dom inantly sedim entary with some localised sub-m arine volcanic and  sub- 

volcanic mafic igneous un its  of early Cretaceous age (K am pschuur et al., 1974; Garcia- 

Hernandez etal., 1979). Juxtaposition of the Internal and External Zones took place during 

the Eocene to early Miocene Alpine shortening period (Garcia-Hemandez etal., 1979; Sanz- 

De-Galdeano, 1990). Most shortening took place in the mid Miocene

The Triassic-Miocene cover of the  External Zone has been detached and  th ru s t 

northw ard on Triassic Evaporite decollements (Garcia-Hemandez et al., 1979). Thrusting 

extends into the Guadalquivir Basin where rocks of the External Zone form an  Olistostrome 

within lower Miocene sedim ents (Garcia-Rossell, 1973). Compressive deformation initiated 

in the Early Oligocene resulted in uplift followed by flysch deposition, the flysch now forming 

an extensive part of the G ibraltar Arc. De-Smet (1984) and Leblanc & Oliver (1984) reported 

a substan tial strike-slip com ponent in the External Zone. However, Banks & W arburton

(1991), used seismic data  to dem onstrate tha t all of the observable tectonic detachm ents of 

the eastern part of Internal Zone were th ru s t faults with a  dom inant transport direction to 

the north.

1.3.7 Subdivision o f the External Zone (Fig 0.3)

Blumenthal (1927) subdivided the External Zone into Prebetic and Subbetic Subzones based 

on palaeogeographic criteria. The Prebetic subzone consists principally of rocks of shallow 

marine origin while those of the Subbetic subzone are mainly of pelagic marine origin (Fig.

0 .3a) The Prebetic and Subbetic Subzones are separated by an  Intermediate Unit of mixed 

stratigraphic origin th a t cannot be assigned to either.

The Subbetic and Prebetic Subzones also have very different structural styles and this 

has caused some confusion as  to w hether these divisions are stratigraphical or structu ral 

divisions. Structurally the Subbetic subzone is characterised by nappe features, contrasting 

with the m uch more shortened Prebetic subzone. Shortening of the order of 15-25 Km has 

been recorded by Dabrio & Lopez-Garrido (1970). The northern  margin of the Prebetic 

subzone displays reverse faulting and imbricate structu res which give way southw ards to a  

m uch gentler fold/fault geometry. The southern margin of the Prebetic subzone is overthrust 

by the Subbetic subzone (Garcia-Hem andez etal., 1979).

The palaeogeographic analysis of G arcia-Hem andez etal. (1979), Hermes (1978) and 

others has led to the further division of the  Subbetic subzone into three units, the Subbetic 

Internal Unit, the Subbetic Middle Unit and the Subbetic External Unit (Fig. 0.3a,b). The 

deposition of the Subbetic and  Prebetic subzone and Interm ediate Unit took place on an 

extended continental margin of Triassic terrestrial red beds and evaporites (Pacquet, 1969). 

Later extension resulted in the formation of two basins whose contents are now classified 

as the Subbetic Middle Unit and  the Interm ediate Unit, these basins were separated by a

Overview



The Betic Orogen Page 7

palaeo-high which now forms the External Subbetic Unit. This basin and graben set was 

bounded to south by a  platform, which forms the Internal Subbetic and to the north by the 

Prebetic subzone (see Fig 0.3b).

In contrast to Garcia-H em andez et al. (1979), Hermes (1978) and Dabrio & Lopez- 

Garrido (1970), B lankenship (1992) produced a  s tru c tu ra l/ palaeogeographical in terpreta

tion based on seismic reflection profiles, subsurface well control and balanced cross- 

sections. (Fig. 0.3c) This model regards the External Zone as a  single basin, m ade up of the 

Intermediate Unit and Middle Unit of the Subbetic subzone bounded by two palaeo-highs, 

the Prebetic subzone to the north, and platformal sedim ents of the External and Internal 

Units to the south. B lankenship (1992) suggests tha t this basin subsequently underw ent a  

total of 200km of shortening.

1.3.8 The Alboran Sea

The Alboran sea is unusual in th a t it forms a topographic low of thinned continental c ru st 

(Doblas et al., 1989; Sanz de Galdeano, 1990 ) in w hat is essentially the core of the Betic 

orogen.

The area is underlain by continental c rust and by anomalously low seismic velocity 

mantle (Banda etal., 1980). It is broken by E-W trending horst and graben structures. Linear 

magnetic anomalies suggest the w idespread presence of Neogene extrusive and intrusive 

igneous rocks (Galdeano et al., 1974).

The Alboran sea , because of its peculiarities had been ignored by many workers until 

Torres-RoldAn (1979) suggested th a t was a  product of the extensional collapse of the orogen. 

Doblas et al. (1989), Platt et al. (1989) and Zeck et al. (1992) went on to suggest th a t its 

formation was driven by orogenic collapse which occurred when the lithospheric root of the 

orogen was removed and replaced by mantle. The upwelling of mantle caused doming in what 

is now the Betic Cordillera and gravity driven collapse in w hat is now the Alboran sea.

1.3.9 External Basins

1. The Guadalquivir Basin; lies on the northern margin of the Tertiary fold belt of the External 

Zone and south of the Palaeozoic Iberian Plate. It trends NE-SW and is term inated to the NE 

by the overthrust sequence of the External Zone. In th is area NW-directed allochthonous 

units of the External Zone of the Betics have apparently overridden the basin (Banks & 

W arburton, 1991). To the SW the basin opens into the Gulf of Cadiz where sedim entation 

is continuing along the coastal strip  between Heulva and Sanluca de Barrameda. There are 

two structurally  distinct areas from which the stratigraphy of the basin has been recon

structed. One immediately south  of the Iberian Plate is autochthonous. The other is south 

of the fault bounding the orogen, and is allochthonous. The basin fill is characterised by fine 

grained sediments, mainly m arls with some sequences of finer grained sandstone and  rare 

conglomerates (Martinez del Olmo e t al., 1984; SuArez Alba et al., 1988). On the SE margin 

of the basin and extending along the length of the Guadalquivir basin there is a  band of 

disrupted rocks referred to as an  Olistostrome (Gracia D uenas, 1969; Gracia Rosell, 1973; 

Garcia Hernandez eta l., 1980). This m arks the contact between the basin and the External
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Zone.

The Guadalquivir basin has been interpreted as being both the foreland basin to the 

Betic Orogen (Torres RoldAn, 1979; Martinez del Olmo, 1984 and SuArez Alba et al., 1988) 

and also as a  series of piggy back style basins (Roldan Garcia et al., 1991). Sanz de Galdeano 

& Vera (1992) believe th a t the Guadalquivir basin began life as an  open gulf, the North Betic 

Strait, which in mid Miocene time was converted to a  foreland basin. The olistostrome has 

a  highly sheared m atrix and is interpreted as being emplaced by gravity sliding. Sanz de 

Galdeano & Vera (1992) report th a t th is zone of gravity sliding existed as a  ‘highly mobile 

sector’ along the southern  margin of the North Betic S trait during the lower Miocene.

2. The Gibraltar Arc Flysch; links the External Rif of N. Africa with the External Zone of 

southern  Spain and encloses the Alboran sea to the west. It consists of a  series of flysch 

nappes which have been th ru s t westwards during the ‘radial’ collapse of the Betic Orogen 

(Platt & Vissers, 1989)

Sanz de Galdeano & Vera (1992) refer to this area as the ‘Campo del Gibraltar Complex’. 

They suggested th a t it originated from m aterials originally deposited in the no rth  Africa 

Flysch Trough which existed south and south-west of the Flyschs' present position. Tertiary 

turbidites and hemipelagites are reported within the Gibraltar Arc Flysch, while Bourgeois 

(1978) reports tha t part of these deposits were re-sedimented during the Burdigalian, forming 

tectono-sedim entary units.

1.4 Geological History: A com parison o f hypotheses

In this section some attem pt will be made to synthesize the varying models proposed for the 

development of the Betic Orogen. The conflicting evidence and argum ents provided by 

various authors, sum m arised in Fig. 0 .4 , will be highlighted in this section.

The Betic Orogen has been variously seen as compression dominant, as reflecting a 

large am ount of strike slip between interacting plates and as an  area th a t has undergone a  

large am ount of extension during orogenic collapse. These alternative views will be discussed 

below. In addition the problems concerning the characteristics of the Subbetic/Prebetic 

Subzones of the External Zone and the external/peripheral basins will be examined.

1.4 .1 Compressional Tectonism and Metamorphism.

Most au thors agree th a t for a t least part of its history the African /Iberian plate boundary 

acted as a  major zone of compression as Africa and Iberia converged. The direction of dip of 

the subducting plate is still unclear, bu t Banda & Ansorge (1980) suggest th a t the African 

plate does not simply dip under Iberia and  Davies et al. (1993) showed the Iberian plate 

steeply dipping under Africa.

The earliest m etam orphism  recorded in the orogen is late Cretaceous (85-65 Ma.) 

occurring in the Nevado-Filabride th ru s t un it (Doblas & Oyarzun, 1989; Bakker e ta l ,  1989; 

Monie et al., 1991). This may have been brought about by burial during the attachm ent of 

Iberia to Africa, when the Oran and  Moroccan terranes were accreted on to the Iberian plate 

(Dewey eta l., 1973; 1989). This is problematic since it would require the rocks to have been
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burled for some 47 million years during the relatively inactive period in which the active plate 

margin lay in the Pyrenean trough, not between Africa and Iberia (Sirvastava e t al., 1990a; 

1990b). It was not until the late Oligocene (27Ma) th a t the Iberian/African plate margins 

became active again. Many authors place the main uplift and exhumation of the Betic orogen 

a t th is time (Platt & Vissers, 1989; de Jong e ta l ., 1992) Bakker eta l., 1989).

However, the Nevado-Filabrides and Alpujarride tectonic subdivisions of the interned 

zone individually display veiy different structural and metamorphic histories (Bakker eta l., 

1989). They cannot have been juxtaposed by simple th ru s t stacking and exhum ation such 

as might have occurred in a  purely compressional regime. Their association can be explained 

by either strike slip tectonism  or by extensional collapse of the orogen.

1.4.2 Strike Slip Tectonism

Egler (1969) dem onstrated th a t the superim posed Nevado-Filabride A lpujarrides th ru s t 

sheets have very different s truc tu ra l and metamorphic histories th a t reflect a t least two 

th ru s t phases.

One way of producing such  juxtaposition is by strike slip tectonism. Several workers 

including De Sm et (1984), LeBlanc (1984) and A ndriexeta l. (1971) have em phasised the 

im portance of dextral strike slip faulting in the Subetics subzone of the External Zone (Fig

0 . 1). LeBlanc and Oliver (1984) believe th a t the Internal Zone/External Zone boundary is 

a  strike slip contact th a t originally separated the Iberian plate margin and the Alboran 

microplate /African plate margins. Platzman e t aL (1993) and Allerton et al. (1993) also 

appealed to a  large strike slip component, acting in the Betic orogen to explain palaeomagnetic 

rotations of s tructu ra l blocks in both the Internal and External zones. Their da ta  indicate 

a  dextral shear regime acting on the Betic orogen and rotating blocks during the latest 

Oligocene and  earliest Miocene. Blocks are unrotated in the latest Miocene indicating th a t 

relative movement had ceased by the latest Miocene.

1.4.3 Extensional Collapse

Balyana & Garcia D uenas (1986), Garcia Duenas (1993), Doblas & Oyarzun (1989) and Platt 

(1983) have all observed extensional faults and low angle detachm ents within the Internal 

Zone. There is a  widely held view th a t these are the product of large scale extension th a t 

occurred within the Betic Orogen.

Platt & Vissers (1989) suggested th a t the high grade Nevado-Filabride th ru s t sheet was 

exhum ed by the extensional detachm ent of the overlying Alpujarride th ru s t sheet. It was 

proposed th a t simple th ru s t stacking during Oligocene (c. 27 Ma.) led to the burial and  high 

grade metamorphism of the Nevado-Filabride th ru s t sheet. Subsequently as the northward 

progression of Africa slowed, the subducting African plate fell away from the base of the 

Iberian plate. This resulted in the diapiric upwelling of m antle below the Betic orogen. The 

net effect of th is was a  doming of the  internal zone and the detachm ent of the Alpujarride 

th ru s t sheet exposing the high grade Nevado-Filabride th ru s t sheet. Extension progressed 

to such  an  extent th a t the Alboran sea opened up. Platt & Vissers (1989) placed the initial 

extensional event a t 19 Ma. (Burdigalian). However, such an age is inconsistent with an uplift
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date of 27 Ma. for the Nevado-Filabride th ru s t sheet obtained from the dating of Phengite 

grains (Bakker et al., 1989). This implies th a t the Nevado-Filabride was exposed by the 

Burdigalian not buried by th ru s t stacking. Moreover Bakker et al. (1989) and de Jong et al. 

(1992) both placed the initial extension a t between 27 Ma. and 24 Ma., and give an initial 

metamorphic burial age of pre 30 Ma. Zeck eta l. (1992) placed the major uplift slightly later 

a t between 23 Ma. and  19 Ma. and  indicated th a t the m inim um  age of extension is 

constrained to before 19 Ma., when Burdigalian sedim ents sealed the detachm ent which 

separates the Alpujarride from the Malaguides.

Doblas and Oyarzun (1989) proposed a  core complex style of extensional tectonism tha t 

is similar to the mechanism inferred by Platt and Vissers (1989). Doblas and Oyarzun (1989) 

envisaged a  single extensional event starting  m uch later between the Serravallian and  

Tortonian (15-6.5 Ma.) and continuing into the Messinian. De Jong et al., (1992) used the 

step heating of phengite micas to give a  40A r/39Ar minimum age of 30 Ma. for the cooling 

of the main tectonic m etam orphic phase. This was followed by a  series of local events 

resetting the grains a t 17-19 Ma., 13-15 Ma. and 8 -1 0  Ma. dates which were coeval with 

volcanism in the eastern Betics. These ages are interpreted as reflecting periods of crustal 

and sub-crustal extension. Two further ages of 18.5 Ma. and 21.5 Ma. represent periods of 

overthrusting and crustal thickening which separated the main extensional events.

Within the extensional collapse model there is a  need to explain the juxtaposition of 

th ru s t sheets th a t have different tectonic and m etam orphic histories. P latt and Vissers 

(1989) do not take this into account, and their model would require the removal of a t least 

12 Km of crust from between the Nevado-Filabride and Alpujarride th rust sheets for it to be 

consistent with the metamorphic and  tectonic schem es proposed by other workers.

It is possible th a t extensional collapse can be combined with strike slip tectonism to 

explain the formation of extensional features and yet rem ain consistent with the tectonic 

and metamorphic data

Most workers have seen the External zones and  External basins as separate geological 

problem s, and  have no t fully linked them  to the m echanism s of the Betic Orogen, as 

discussed above. As a  consequence the geological problems concerning the External Zones 

and External Basins will be discussed separately below:

1.4.4 External Zone

The External zone was formed from a  Mesozoic sedim entary sequence which was detached 

from its Palaeozoic basem ent and th ru s t northwards onto the Iberian craton. It is composed 

of Triassic to Miocene aged rocks (Blankenship, 1991). The External Zones have been 

subdivided into the Subbetic and Prebetic Subzones (Fig 0 . 1, 0.3) which consist respectively 

of basinal and shelf facies. (Garcia-Hemandez, 1980; Banks and  W arburton (1991) They are 

therefore defined mainly in term s of their palaeogeographic regime (Fig. 0.3) although they 

appear to have an  additional tectonic significance, with the Prebetic subzone dominating in 

western Iberia and the Subbetic subzone found in eastern  Iberia overthrusting the G uad

alquivir Basin (Fig 0 . 1). However there is some dispute about the true Palaeogeographic 

position of these un its (see section 1.1 & Fig 0 .3) and  about the timing and  am ount of

Overview



The Betic Orogen Page 11

transport during thrusting. Blankenship (1991) dem onstrated a  series of duplex structures 

in the External Zone which host 200 Km of nappe displacement. This is disputed by others 

(Reichter, 1993; Sanz de G aldeano e t al., 1993; Molina and Ruiz-Oritz (1993); Garcia 

Hernandez, 1980) who suggest th a t the External zone has only been locally displaced by 10- 

15 Km and rem ains broadly in its original stratigraphical position.

1.4.5 External Basins.

The external basins are those lying on the periphery of the Orogen but considered to have been 

generated by it. There are two possible external basins associated with the Betic Orogen; the 

Guadalquivir Basin and the G ibraltar Arc Flysch (see section 1.1 and Fig 0 . 1). It is these 

basins th a t form the main subject of th is thesis.

The origins of these basins m ust be considered in light of the timing of tectonic and 

m etam orphic events referred to above. If the extensional collapse of the orogen started  

between 27-25 Ma., as isotopic dating suggests, then the origin of both the Guadalquivir and 

the Gibraltar Arc Flysch basins is problematic

Sanz de Galdeano & Vera (1992), Martin del Olmo (1984), Su&rez Alba et al., (1988) and 

Torres Rold&n (1979) all regard the Guadalquivir Basin as the foreland basin to the Betic 

m ountain chain. However there is no trace of the basin before 27 Ma. a t which time, according 

to many authors, the extensional collapse of the orogen began. Sanz de Galdeano & Vera

(1992) suggest tha t the Guadalquivir basin originally existed as a proto-Guadalquivir basin, 

filled by m arls and olistostromes, and in the mid Miocene was converted to a  true foreland/ 

foredeep type of basin. Almost all the authors, including Sanz de Galdeano & Vera (1992) 

agree tha t by the time the foreland Guadalquivir Basin was supposed to be forming the orogen 

was actually undergoing extension. One would expect a  true foreland basin to form during 

the compressional phase (Allen et al., 1986). During extensional collapse it is more likely tha t 

any foreland basin be destroyed as it is overridden by the spreading edge of the collapsing 

orogen. It is not clear w hat kind of basin  might be expected on the external margins of a  

collapsing orogen. Moreover, recent work by Roca & Desegaulx (1992) suggests th a t in the 

east of the orogeny the equivalent of the  Guadalquivir basin emerges from the overthrust 

external zone to form the Valencia trough. This trough is shown to be an  extensional basin, 

disrupted late on its history by compressional th rusting and this may be a  more likely origin 

for the Guadalquivir basin. The present southern margin of the present Guadalquivir Basin 

is m arked by a  broad band of d isrup ted  rock, referred to  as  an  ‘olistostrom e’. The 

‘olistostrome’ appears to be allochthonous making the southern margin of the Guadalquivir 

Basin a  tectonic rather th an  stratigraphic contact.

There is little published about either the  sedimentology or origin of the G ibraltar Arc 

Flysch. However, it is known th a t deposition of the Flysch spans a t least the Oligo/Miocene 

(Bourgeois, 1978). Platt & Vissers (1989) imply th a t the G ibraltar Arc was th ru s t out radially 

during extensional collapse. Thrusting appears to be coincident with the deposition of the 

Flysch and it is not clear w hat relationship there was between th is and the extensional 

collapse of the Betic Orogen.
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It can be seen from the above tha t there are severed points that need to be addressed 

before the tectonic history of the Betic Orogen can be resolved :-

1. How does the earliest phase of Cretaceous m etamorphism (65 Ma.) relate to the 

proposed main phase of th ru s t stacking a t around 30 Ma., and what happened during 

the intervening 47 million years between these two events?

2. When precisely did extensional collapse of the Orogen begin and  how did it 

progress?

3. Was the extensional collapse phase solely responsible for exhum ation of the high 

grade Nevado-Filabride tru s t sheet or did some uplift occur during an  earlier phase 

of th ru s t stacking?

4. How m uch displacem ent has occurred in the External Zone: what is the timing of 

this displacement, and is it related to an extensional or compressional regime within 

the orogen?

5. How do the external basins fit into the orogenic scenario? Is the formation of the 

Guadalquivir and Gibraltar Arc Flysch basins linked to tectonism in the Betic Orogen 

or are they unrelated, and  merely disrupted by orogenic events late in their history?

6. Is the olistostrome found along the southern  margin of the Guadalquivir basin, a 

sedim entary unit, or was it emplaced tectonically?
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2 ROLE OF BASINS IN INTERPRETING OROGENS

Basins are of considerable value in interpreting orogens, and  th is value depends on the 

recognition of the relationship between the orogen and the basin. A num ber of classification 

schem es have been proposed. The general principles of these schemes are discussed before 

a  suitable scheme is selected to provide a rigorous framework for discussing the Guadalquivir 

and Gibraltar Arc Flysch basins of the Betic Orogen.

2.1 Classification o f Basins.

Basins are essentially formed in areas of prolonged subsidence of the Earths surface. Such 

subsidence may be driven by a  variety of processes which are ultimately related to those 

which cause the lithosphere to subside. The lithosphere is divided into a  series of plates 

which move relativ to each other and Interact a t their margins. Plate margins can be classified 

as divergent, convergent, constructive, destructive or strike slip. Excellent reviews of plate 

boundaries can be found in m ost basic textbooks, and will not be discussed further.

Because basins are related to subsidence of the lithosphere which is primarily caused 

by plate interaction, those schem es which classify basins in term s of their plate tectonic 

setting seem to be the m ost useful:-

Dickinson (1974) em phasized both the position of the basin in relation to the plate 

margin and the type of plate margin closest to the basin. By this scheme Dickinson (1974) 

recognised five major basin types: -

1. Oceanic Basins.

2. Rifted continental basins or extensional basins.

3. Arc trench systems.

4. Suture belts, or orogens.

5. Intracontinental basins.

A sixth type was added to this list by Reading (1982) who suggested tha t strike slip/transform  

margin basins were a  separate and distinct category th a t needed to be added to the scheme 

of Dickinson (1974).

Many basins associated with su tu re  belts or orogens (type 4 of Dickinson, 1974), have 

been studied in detail leading to a  variety of subdivisions:

Besly (1988) recognised th a t basins within orogenic belts could be classified in term s 

of their position relative to the orogen. Similar to Bally & Snelson (1980) Beslys' work (1988) 

was based on the position of Carboniferous basins in  northw est Europe relative to the 

Varisican Orogenic belt and differentiated basin types:-
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Table 1. Basin classification scheme of Bally & Snelson (1980)

1. Basins located on rigid lithosphere not associated w ith formation o f  
m egasutures.

1.1 Related to formation of oceanic crust
1.1.1 Rifts
1.1.2 Oceanic Transform fau lt associated basins
1.1.3 Oceanic abyssal plains
1.1.4. Atlantic type passive margins which straddle continental & oceanic crust.

1.1.4.1 Overlying earlier rift system s
1.1.4.2 Overlying earlier transform  system s
1.1.4.3 Overlying earlier back arc basins of (3.2.1) and (3.2.2) type

1.2 Located on pre-Mesozoic continental lithosphere
1.2.1 Cratonic basins

1.2.1.1 Located on earlier rift grabens
1.2.1.2 Located on former backarc basins of (3.2.1) type.

2. Perisutural basins on rigid lithosphere associated  w ith formation o f com pres
sional megasuture

2.1 Deep sea trench or m oat on oceanic c ru st adjacent to B-subduction margin
2.2 Foredeep and underlying platform sediments, or moat on continental c ru st adja
cent to A-subduction zones.

2.2.1 Ramp with buried grabens bu t with little or no blockfaulting
2.2.2 Dominated by block faulting

2.3 Chinese-type basins associated with distal blockfaulting related to com pres
sional m egasuture and  without associated A-subduction margin.

3. Episutural basins located and m ainly contained in com pressional m egasuture
3.1 Associated with B-subduction zone

3.1.1 Forearc basins
3.1.2 Circum Pacific backarc basins

3.1.2.1 Back arc basins floored by oceanic c rust and associated with B- 
subduction
3.1.2.2. Back arc basins floored by continental or interm ediate crust, asso
ciated with B-subduction

3.2 Backarc basins, associated with continental collision on concave side of A- 
subduction Eire

3.2.1 On continental cru st or Pannonian-type basins
3.2.2 On transitioned and  oceanic crust or W. Mediterranean type basins

3.3 Basins related to episutural megEishear system s
3.3.1 Great basin-type basin
3.3.2 California-type basins

1. Internal Basins, which Eure entirely allochthonous and  have undergone extensive 

deformation and m etam orphism , or are early post orogenic features located within 

the internal allochthon

2. Peripheral basins, are initially located in the orogenic foreland, bu t a t later stages 

of orogeny become involved in deformation and  low grade metamorphism . The fills 

of such basins Eire now preserved in allochthonous or para-autochthonous positions.

3. External Basins , are autochthonous in more distEd positions in the foreland, Eind 

have fills which were affected only by m oderate or slight deformation in the la test 

stsiges of orogeny, and are unm etam orphosed

Perhaps the most detailed and comprehensive scheme is th a t of Bally & Snelson (1980).
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This emphasized the characteristics of lithospheric behaviour rather than  the ‘geographical' 

relationships of Dickinson (1974) and  in many respects is an  elaboration of both the 

Dickinson (1974) and Besly (1988) views. This scheme is sum m arised in Table 1, it divides 

the basins into those associated with either major su tu re  belts on compressive margins or 

those associated with non-compressive margins. The basins of compressive m argins are 

subdivided into perisutural and episutural basins. Perisutural basins are associated with 

compressional megasutures, bu t do not occur within m egasutures, while episutural basins 

are basins located within compressional m egasutures. Perisutural basins are equivalent to 

the External and peripheral basins defined by Besly (1988) while E pisu tural basins are 

equivalent to Internal Basins.

The scheme of Bally & Snelson (1980) is considered to provide the m ost comprehensive 

classification of basins, and will be used when considering basins in relation the Betic orogen.

2 .2  The Classification o f Neogene Basins o f th e  B etic Orogen

Sanz de Galdeano & Vera (1992) subdivided the Neogene Betic Orogenic basin into internal 

and external basins under a  scheme comparable to tha t of Besly (1988) referred to above. The 

in ternal basins are early post orogenic features th a t are contained within the internal 

allochthon. They include the G ranada Basin, the Almeria basin and others which thought 

to have formed during the extensional collapse of the orogen (Platt & Vissers, 1989). The 

external basins include the Guadalquivir basin and possibly also the Gibraltar Arc flysch. The 

Guadalquivir basin is interpreted to be a  foredeep basin produced by the downwards flexure 

of the Iberian margin as it was overridden by the African plate, creating a  depocentre on the 

northern margin of the orogen (Sanz de Galdeano & Vera, 1992).

Under the scheme of Bally & Snelson (1980) the Betic Orogen is a type-A subduction 

margin, th a t is, a  collisional margin involving continental crust. The basin types defined by 

Sanz de Galdeano & Vera (1992) are equivalent to ep isu tu ral type 3.3 (internal) and 

perisutural, type 2.2 (external) of Bally & Snelson (1980), Table 1. However, there is some 

debate as to whether the Guadalquivir Basin is an  external, orogenic foredeep type of basin 

as suggested by Sanz de Galdeano & Vera (1992) or an  extended continental margin basin 

resembling the Valencia Trough and not associated with the Betic megasuture. Because this 

is a  major point of confusion external (foredeep) and extensional (rifted continental margin) 

basins will be compared to highlight their characteristic differences.

2.2.1 External Foredeep Orogenic Basins

Foredeep or foreland basins are defined as sedim entary basins lying between the front of an 

orogen and the adjacent craton (Allen et al., 1986). Foreland basins develop a t the front of 

active th ru s t belts, where the transport direction is toward the basin (Allen et al., 1986). The 

progression of these th ru sts  causes the overridden foreland lithosphere to flex downwards, 

creating a  depocentre. Dickinson (1974) proposed two genetic classes of foreland basin:-

1. Peripheral basins, are s itua ted  against th e  outer-arc of the orogen during  

continent-continent subduction (type A-subduction of Bally & Snelson, 1980; Table 

1)
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2. Retro-arc basins; are situated behind a magmatic arc and linked with subduction 

of oceanic lithosphere (type B-subduction of Bally & Snelson, 1980; Table 1).

Where a basin lies ahead of the active th ru s t front it is term ed a  ‘foredeep’ basin, where 

it rides on top of the moving th ru st sheet, and behind the th ru s t front it is a  ‘th ru s t sheet top’ 

basin (Ori & Friend, 1984) or a  ‘piggy back basin’.

However, foreland basins vary greatly from these simple models, particularly in term s 

of the state of the lithosphere supporting the basin an  it is im portant to know w hat kind of 

c rust a  basin evolves from (Allen e ta l., 1986).

The foreland basin is filled by detritus from the overriding orogen as this is uplifted and 

subject to denudation. The first deposits are often fine grained and  are commonly turbidites 

as in the Hecho Group of the Pyrenees (Labaume et al., 1985) and  the  Palaeozoic foreland 

basin of Quebec (Hiscott et al., 1988). Later deposits are dom inated by shallow water or 

continental coarse-grained M olasse-type deposits. Molasse foreland basins are predomi

nantly filled with terrigenous sedim ents and  are commonly coarse grained (Homewood etal., 

1986). The Silwalik sub-Him alayan basin (Graham e t al., 1975) is a  good example of a  

molasse. However, the term  m olasse is often confused since it has been used for both 

tectonofacies and lithofacies, which m ust clearly be differentiated in any description of a  

foreland basin. Miall (1978) has interpreted the typical deposition pattern  of foreland basins 

and related it to orogenic growth. The early deepwater stage indicates the onset of growth 

of the orogen, when topography was subdued  and  sedim entary  delivery rates low. The 

Molasse stage occurs later when a  m ountain belt has grown to its ‘steady state’ size when 

rapid erosion counter balances uplift. It is during this stage tha t the basin is filled by molasse 

type deposits tha t are derived from the orogen. Allen eta l. (1986) suggest th a t the early stage 

may reflect the loading of an  initially stretched lithosphere. For a  normal unstretched crust, 

emergence and the shedding of a  clastic wedge accompanies the onset of shortening. For a  

progressively th inner cru st the onset of rapid clastic sedim entation is increasingly delayed 

as it awaits the emergence of the orogenic belt above sea level.

2.2.2 Rifted Continental Margin (Extensional) Basins

Lithospheric stretching produces an  evolutionary sequence from intracontinental rifts to 

passive margins. Rifting occurs a t sites of crustal extension characterised by high heat flows 

and volcanic activity. Rifting may operate by an  active or passive mechanism:-

Active Rifting ; in which a  therm al plume acting on the base of the lithosphere causes 

updoming and crustal thinning.

Passive Rifting; tensional stresses acting on the crust causing lithospheric thinning 

and the passive upwelling of the asthenosphere.

Passive continental m argins th a t have been extended or rifted are characterised by 

seaward thickening prism s of m arine sedim ent overlying a  faulted basem ent consisting of 

syn-rift sequences. Post-rift seaward thickening prisms are formed of shallow water deposits. 

The uniform stretching model of McKenzie (1978) has been widely applied to the initial 

extension of passive margins (LePichon & Sibuet, 1981). In this model stretching of the whole
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lithosphere occurs instantaneously, resulting in crustal thinning, asthenosphere upwelling 

and the formation of listric rotational faults in the region of crustal thinning. Other au thors 

have appealed to asymmetrical stretching of the lithosphere (Coward, 1986; Wernicke, 1985; 

Lister 1989), leading to a  basin and range complex. Basin and range complexes such as the 

Basin and  Range of Colorado, North America (Wernicke, 1985; Lister 1989) lead to the 

formation of exposed metamorphic core complexes flanked by listric rotational faults seated 

on a  major zone of detachm ent.

Following the initial rifting and deposition of syn-rift sedim ents, the thinned c ru s t 

subsides (this is the drifting phase of Allen & Allen (1986)). There are several m echanism s 

which have been postulated to cause such subsidence and basin formation in the post-rift 

phase (Allen & Allen, 1986):-

1. Subsidence due to sediment loading; sedim entary loads enhance the tectonically 

driven subsidence. But this alone cannot cause sufficient subsidence to explain the 

thick sequences of shallow water deposits th a t may occur on a passive margin.

2. Subsidence due to phase changes; such as tha t from gabbro to denser eclogite a t 

the base of the lithosphere.

3. Subsidence due to creep of ductile lower crust; thought to be caused by unequal 

ductile loading across the margin.

4. Subsidence due to cooling following lithospheric thinning; the upwelling of the 

asthenosphere is followed by therm al contraction.

Allen & Allen (1986) sum m arised the geological characteristics of extended passive margins, 

which are as follows; -

1. They overlie earlier rift systems which are generally sub-parallel or less commonly 

at high angles to the ocean margin.

2. An early syn-rift phase of sedimentation can be differentiated from a  later drifting 

phase, the two are often separated by an  unconformity.

3. Some passive margins exhibited considerable sub-aerial relief a t the end of rifting 

(leading to major unconformities).

4. Some passive m argins are underlain by linked extensional fault systems.

5. The drifting phase is characterised by gravity-controlled deformation such  as salt 

tectonics, m ud diapirism, slum ps, slides, listric growth faults etc.

Two general kinds of passive margin have been differentiated, starved m argins 2-4 Km 

thick, and nourished margins 5-12 km thick (Allen & Allen, 1986), the formation of these are 

dependent on sedim ent supply and  am ount of sub-aerial relief generated a t the end of the 

rifting phase.

2 .3  Basin Developm ent in  Relation to  Orogens

If basin configuration is largely a  product of plate configuration, type and relative motions 

of the plate margin then ‘the basin geometry and tectonic style is directly related to plate 

tectonic forces th a t have occurred through its history’. The interaction of plates tends to

Overview



External Basins and Orogens Page 18

produce large am ounts of detritus generated by volcanic, activity, by denudation of thickened 

crustal welts and by gravity sliding from disrupted plate margins. It therefore seems likely 

th a t detritus produced a t plate m argins will be concentrated in basins or depocentres tha t 

are generated by the plate interactions.

From these inferences, by analysis of the tectonic history and fill history of the basin 

the local plate configuration and their history of interaction can be partly or wholly deduced. 

Basin analysis may resolve a  part of the tectonic history of a  plate margin which cannot be 

resolved using tectonic and metamorphic data alone. Such studies are best made in the light 

of analogues from other basins/p lates such as the Himalayas or the Alpine m ountain chain, 

which have been docum ented.

In order to analyse a  basins history the tectonic style and provenance of the sediments 

(source) of the basin m ust be determined. Changes in the tectonic style and  provenance 

history can be used to track the history of plate interaction and development of an  orogen.

2.3.1 Tectonics

The tectonic style of a  basin is related to the overall tectonic regime which governs a  plate 

boundary. It can be easily determined by basin analysis whether a  basin has been formed 

in a  compressional, extensional, or strike slip regime. Many basinal areas dem onstrate a  

change in style reflecting a  change in tectonic style. H ouseknecht (1986) described the 

evolution of the Atoka formation of the Arkoma Basin in south-central USA from a  passive 

margin to a  foreland basin. S tratigraphical analysis of the basinal sedim ents and the 

identification of regional unconform ities was used to pin-point the exact time when this 

transition took place. Sim ilar d a ta  may be used to give an indication of when the onset of 

orogenic m ountain uplift took place. Unconformities can be further used to identify periods 

of tectonic activity and generated instability within an  orogen. Uplift in a  basin and correlative 

unconform ities may denote th e  propagation of the  th ru s t front of the orogen, likewise 

subsidence may denote lithospheric flexure of the foreland, also generated by propagation 

of the th ru s t front.

W hen considering an  orogenic foreland basin it im portant to differentiate between 

foredeep and piggyback basins and determine w hether there is a  transition from the former 

to the latter. Such knowledge can fix the position of a  th ru s t front and through this the 

geological history of the orogen.

It may be th a t the observed tectonic style of an  orogenic basin, internal or external is 

incompatible with the supposed configuration of the orogen at the time of the basin formation. 

Recognition of th is may lead to the reappraised of the tectonic history of an  orogen.

2.3.2 Provenance

Provenance studies aim to constrain the location of sedim ent source areas for a  basin and  

define the pathways by which sedim ent is transferred from source to deposition (Haughton 

et al., 1991). In order to achieve th is m any geological disciplines, including mineralogy, 

geochemistry, geochronology sedimentology and  petrography are integrated into a  basin 

analysis framework.
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In order to determine the provenance of a  sedim entary package contained within a 

known stratigraphic interval, three main tools are used:-

1. Palaeocurrent; the palaeocurrent is determ ined from a  variety of sedim entary 

s tructu res including pebble imbrication, cu rren t lineations and cross-bedding. A 

large data base is required to reduce the error inherent in such m easurem ents, and 

to identify a  regional rather than  local flow. The palaeocurrent is used to determine 

the dispersal pattern within a basin and to trace tha t pattern  back to a  source block.

2 . Petrography ; is used to determ ine the mineralogy of the sedim ent, and is most 

commonly applied to siliciclastic rocks. The mineralogy of the sedim ent is a  product 

of the character and n a tu re  of denudation of the source. D ickinson et al. (1983), 

G raham  et al. (1986), Allen e ta l. . (1991) and Ingersoll (1977) have all shown tha t 

quantitative petrology can be used to determ ine the source of the sedim ent, and 

ultimately the plate tectonic setting (Fig 0.5).

3 . Maturity, is a  qualitative m easure of the degree to which the sedim ent has 

undergone weathering before and during transport and may indicate the time span 

between denudation and deposition. The most m ature sedim ents are typically well 

sorted, with well rounded grains and lack the more epigeneticaly unstable grains, 

such as mafic minerals. The most m ature sedim ents are quartz arenites, containing 

more th a n  90% quartz . M aturity is im portan t because (1) it can d isto rt the 

provenance of a sedim ent if the source indicator m inerals are lost and (2) gives an 

indication of the num ber of transport/deposition  cycles a  sedim ent has been 

through.

Quantitative provenance m ethods can be used to interpret the characteristics of the 

source and the nature of the sedim entary basin:

They may identify palaeogeography and tectonic setting. Provenance is often incorpo

rated into palaeogeographic reconstructions, particularly in areas of complex tectonics. 

Bluck (1983) and Dempster & Bluck (1989) used provenance to dem onstrate th a t Ordovician 

sedimentary rocks tha t are found in faulted contact with Dalradian rocks in Scotland did not 

originate from the Dalradian. This is despite the fact the Dalradian is known to have been 

undergoing uplift a t the time of sedimentation. This led to the re-interpretation of Ordovician 

palaeogeography of Scotland. Dickinson e t al. (1983) dem onstrated th a t there is a  clear 

relationship between the petrography, provenance and the plate tectonic setting of north 

American Phanerzoic sandstones on a  series of ternary plots (Fig. 0 .5)

They may identify the source blocks of the sedim ents th a t fill the basin. The mineralogy 

of the sedim ent provides im portant constraints on the mineralogy of the source area. It gives 

an  indication of w hat terrains or metamorphic belts were exposed a t the time of sedim ent 

derivation. Evans & Magne Rajetzky (1991) have used provenance to construct a  record of 

Alpine metamorphic and structu ra l events.

They may identify igneous evolution. A detritial record may be all th a t remains of some 

crustal blocks and higher crusted levels. Provenance may be the only m eans of determining 

the evolution of ancient plate margins. A more complete picture of magmatism can be derived
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by looking at both provenance and the remains of arc basem ent (Longman et a l., 1979; Leitch 

& Willis, 1982).

They may identify crusta l evolution. Fine grained sedim ents can sam ple a  large 

continental area (Haughton e t al., 1991) and have been used to trace the evolution of the 

upper crust. Trace element analysis can be used to infer the composition of the upper crust 

and isotopic data can constrain the pattern  of crustal growth.

2.3.3 The Provenance History

Changes in provenance through the history of a  basin can be used to m ap changes in the 

nature of the source. This can give an  indication of what terrain was exposed a t w hat time, 

and also from which crustal level it originated. A foreland basin fill can be looked a t in term s 

of provenance and can be treated as a  ‘recording’ of orogenic evolution. G raham  eta l. (1986) 

used the Sphinx Conglomerate of south-w est M ontana to m ap the changing provenance in 

a foreland basin. These data  were used to deduce the terrain evolution of the Madison Range 

of the Rocky M ountains. Allen (1991) analysed Torridonian detritus and inferred the timing 

of m antle contribution to the Laurentian cru st in north west Scotland. Rapson (1965), 

examined Ju rassic  and Cretaceous rocks in the south west Rocky M ountains and was able 

to trace the unroofing history of the Nevadan-Laramide fold th ru s t belt in the southern  

Canadian Cordillera. A recent advance has been the use of single grain analysis to determine 

provenance, an  example is the isotopic age dating of single detrital micas in sedim ents 

(Kelley & Bluck, 1989; 1992).

2 .4  External Basins o f the Betics: Their Potential as an Orogenic Window

From the discussion in section 1.1.4 it can be seen th a t the evolution of the Betic Orogen 

is far from fully understood. The external basins (the Guadalquivir Basin and the Gibraltar 

Arc Flysch basin) are an integral part of the Betic orogenic history. Most of the studies of these 

external basins of the Betic Orogen have been very generalized, with few data to support their 

interpretations. There has been no attem pt to link the development of the external basin to 

th a t of the Betic Orogen. By utilizing the techniques outlined in section 1.2.3 it m ay be 

possible to resolve some of the conflicting hypotheses proposed for the Betic Orogen and to 

determ ine the timing of some of the orogenic events. Clearly there are two questions th a t 

m ust be addressed in trying to produce such a  basin-orogen linkage.

1. How are the basins classified under the  scheme of Bally & Snelson (1980)

2 What is the provenance and provenance history of the basins, and how does it relate

to the source, and to the tectonic history of the source?
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3 AIMS AND OBJECTIVES OF THESIS
In this section the aims and objectives of the research th a t is the subject of this thesis will 

be sum m arised:-

The main aim of the conducted research has been to utilize data  from the external 

basins of the Betic Orogen, the Guadalquivir and Gibraltar Arc Flysch basins, to critically 

evaluate the conflicting hypotheses which have been proposed to explain the tectonic 

evolution of the Betics. In order to achieve th is there are several objectives th a t m ust be 

reached:

3.1 Objectives.

1 The basins' classifications under the scheme of Baity & Snelson (1980), as outlined in Table 

1., m ust be determined

2. The sedimentology of the basins' m ust be described and some attem pt made to establish 

a palaeogeography.

3. The provenance and provenance history of the basins needs to be determined.

From these three objectives it should be possible to determine whether or not the basins 

are truly linked to the orogen, as proposed by Sanz de Galdeano & Vera (1992), or whether 

they are merely coincidental with the orogenic history of the Betics. If the basins are tied in 

with the orogenic history then  some attem pt will be m ade to trace the development of the 

orogen using the tectonic and provenance history of the basins. If the basins are not 

considered to be orogenic, then there may be im portant inferences which can be made about 

the overall plate tectonic history and  timing of the orogenic assembly.

3 .2  Thesis Organisation.

The thesis is organised into three parts. Part I deals with the Guadalquivir basin, its tectonic/ 

stratigraphic setting, provenance and  palaeogeography. From th is the s ta tu s  of the 

Guadalquivir basin is assessed relative to the basin classification scheme of Baity & Snelson. 

Part II is similar in format to Part I and  deals with the G ibraltar Arc Flysch basin. Part HI 

places both basins in context with the Betic orogen and  assesses implications for the 

interpretation of the orogenic history of sou thern  Spain. The cu rren t literature will be 

assessed in the light of th is interpretation
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CHAPTER 1 INTRODUCTION

1.1 General Setting

The Guadalquivir Basin lies on the northern margin of the External Zone of the Tertiary fold 

th ru s t belt of the Betic Orogen and south of the Palaeozoic Iberian Meseta (Fig 1.1). It has 

a  NEE-SWW orientation and is bounded to the SE by the overthrust sequence of the Prebetic 

Subzone, a  subdivision of the External Zone fold th ru st belt. Here NW directed allochthonous 

units of the Prebetic Subzone have apparently  overridden the Guadalquivir basin to rest 

directly on the Iberian M assif and  its Mesozoic cover (Fig. 1.1). Recent work by Roca and 

Desegaulx (1992) suggests th a t the Guadalquivir basin emerges to the E from beneath the 

overthrust zone to form the Valencia Trough. To the SWW the basin opens into the Gulf of 

Cadiz where sedim entation is continuing on the shelf and along the coastal strip  between 

Huelva and Sanluca de Barram eda.

There are two structurally  distinct regions within the Guadalquivir Basin:

1 The Undeformed Allochthonous Basin, lies to the north  of the allochthonous 

Guadalquivir th ru s t front (Fig. 1.1).

2 The Deformed Allochthonous Basin, lies to the sou th  of the th ru s t front. It is 

transported  (along with parts  of the External Zone) northw ards over the au toch

thonous part of the basin (Sanz de Galdeano & Vera, 1992; Blankenship, 1991). The 

basin behind the th ru s t front now forms a  complex pattern of outcropping alloch

thonous basin and External Zone sedim ents (Fig 1.1).

The allochthonous part of the basin contains bands of disrupted rocks th a t has been 

described as an  olistostrome (Fig 1.1) (Garcia Duenas, 1969; Garcia Hernandez eta l., 1980; 

Sanz de Galdeano & Vera, 1992). Both the allochthonous and autochthonous parts of the 

basin are characterised by a  fill dom inated by fine grained sedim ents (mainly marls) with 

some coarse grained sandstones and more locally conglomerates (Sanz de Galdeano & Vera, 

1992; Roldan Garcia & Rodriguez Fernandez, 1991)

The whole of the Guadalquivir region is presently undergoing uplift, and much of the 

exposure of Tertiary sedim ents in the basin is created by erosion of poorly defined terraces 

which record th is emergence.

1.2 Stratigraphic Setting

The general relationship of the stratigraphy of the Guadalquivir basin to th a t of the External 

Zone is shown in Figure 1.2. This litho-stratigraphic sum m ary has been constructed using 

the stratigraphy defined by Roldan G arcia (1985a,b). The Guadalquivir basin fill rests 

unconformabty on rocks of the External Zone and is divided by several unconformities which 

were generated in the Serravallian, Tortonian and Messinian. In places, the autochthonous 

Guadalquivir Basin is overthrust by rocks of both the External Zone and the allochthonous 

Guadalquivir Basin. Olistostrom es are found mainly in the lower Miocene (Aquitanian to 

Serravallian) and appear to be m ost abundan t in the region around the th ru s t front of the
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emergent External Zone. Sanz de Galdeano and Vera (1992) divided the Guadalquivir basin 

fill up into two distinct sub-basinal units, the North Betic S tra it of the Proto- Guadalquivir 

Basin (Lower and Middle Miocene) and the Foreland G uadalquivir Basin (Upper Miocene) 

(Figs. 1.2, 1.3). The Proto-Guadalquivir basin formed ais the North Betic S trait in the Lower 

Miocene which then evolved into a  Foredeep type of basin  during the Middle Miocene (Fig 1.3). 

The olistostromes are considered to be intercalated with sedim ents belonging to the Foredeep 

Basin of the North Betic S trait (Sanz de Galdeano and  Vera; 1992).

1.3 Previous Models for Basin Formation

The m ost complete, and certainly the  m ost recent, model for the developm ent of the 

Guadalquivir Basin is th a t of Sanz de Galdaeno & V era (1992). However the model is not 

consistent with new data presented in this thesis. It is nevertheless the best model published, 

and can be sum m arised as follows:

In Burdigalian times the Subbetic underwent a  WNW, ESE compression, during which 

time a  marine basin appeared within the Subbetic. This basin formed the North Betic Strait 

connecting the Atlantic Ocean to the M editerranean and evolved during the Mid Miocene. As 

a  result of continued deformation in the Subbetic a  mobile sector appeared on the southern 

border of the North Betic S trait in which huge olistostromes formed. These olistostromes are 

interpreted as reflecting im portant re-sedim entation on the Subbetic th ru s t front. Towards 

the mid Miocene a new depocentre developed near the sou thern  margin of the North Betic 

Strait, forming a  foredeep to the Guadalquivir basin (Fig. 1.3)

During the Mid Miocene the mobile sector of the North Betic S trait continued to receive 

olistostromic m asses, indicating a  continued processes of s tructu ra l disorganisation in the 

Subbetic subzone. In central and w estern sectors of the  mobile area the depocentre was 

displaced towards the NW to occupy the area of the presen t Guadalquivir Basin. The last 

movement of olistostrome m asses occurred during the Serravallian.

In Tortonian tim es the North Betic S trait was in terrup ted  as the Prebetic subzone 

suffered a  N & NW displacement. The mobile sector d isappeared and the North Betic S trait 

was transform ed into the Foreland Guadalquivir Basin. This basin continued to subside in 

the Messinian until finally major uplift of the Betic chain ended communication between the 

Atlantic and M editerranean.

A num ber of other au thors have produced models w hich deal with specific aspects of 

the  G uadalquivir B asins history. Suarez Alba e t al., (1989) recognised a Neogene 

Guadalquivir Foreland Basin and produced a  cross-section (Fig 1.4). Using seismic facies 

analysis and field studies, turbidite sedim ents were identified in the Guadalquivir Basin. In 

all, six turbidite bodies were identified. These showed a  westward progradation with a  palaeo- 

flow axial to the basin. However no morphological palaeo-talus or preferential sedim ent 

supply was identified.

Roldan G arcia & Rodriguez Fernandez identified several un its  in the allochthonous 

part of the basin. These have been interpreted as being piggy back basins which developed 

over th ru s t sheets th a t moved northw ards during the m id-upper Serravallian & Tortonian.

This thesis will re-evaluate these models and their evidence in the light of new field
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outcrop and map data. The new data  will be used to generate severed alternative models for 

the formation of the Guadalquivir Basin th a t are more consistent with the  observed field 
relationships.

1.4 Study Area

The Guadalquivir Basin has been studied in the area around Montilla, Cordoba Provence (Fig.

1.1) This area was selected because it contains reasonable exposure of both the alloch

thonous and autochthonous parts of the Guadalquivir Basin. It is also covered by three well 

constrained Geological m aps (Rold&n Garcia et al., 1985a,b; Leyva Cabello, 1973). O ther 

areas were found to be poorly exposed and with no published m aps available. The locations 

of sections recorded in sedim entary logs and  from which sam ples were taken are shown on 

the maps in Foldouts 1,2 and 3. These are modified from published maps of Rold&n Garcia 

et al., (1985a,b) and Leyva Cabello (1973).
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CHAPTER 2  

TECTONO-STRATIGRAPHIC ANALYSIS

2.1 Introduction

The allochthonous and au tochthonous parts of Guadalquivir basin have been studied in 

detail in the area of Baena and Montilla (Fig. 1.1). The exposure in th is area is generally poor, 

but field observations have been combined with geological m aps seismic sections and bore

hole data  to produce a  reasonably well constrained tectono-stratigraphic history

The study is based on three published geological maps, those of Roldan-Garcia e t al. 

(1985a,b) and  Leyva Cabello (1973). A seismic section and  bore-holes (Fig. 2.1), located 

within the study area (Fig. 1.1), have been combined with outcrop observations to produce 

revised maps (Foldouts 1,2 & 3). The lithologies and sedim entary facies of the Guadalquivir 

basin are reinterpreted in Chapter 3, and have been used in conjunction with these m aps to 

produce a revised stratigraphy (Fig. 2.2). The revised m aps, seismic section and boreholes 

have been used to construct three detailed cross-sections (Foldouts 4,5 & 6). Cross-sections, 

maps, and field data  have been used to  outline a  chrono-stratigraphy which is compared to 

the global eustasy  curve and  known tectonism  of the Betic Orogen. The resu lt is a  new 

tectono-stratigraphic history for the area.

The allochthonous and au tochthonous parts  of the G uadalquivir basin have been 

previously interpreted as being two separate basins tha t developed contemporaneously with 

thrusting  (Sanz de Galdeano & Vera, 1992; Roldan Garcia & Rodriguez Fernandez, 1991). 

However, sedimentological analysis (Chapter 3) dem onstrates th a t the sedim ents in the 

allochthonous and autochthonous portions of the Guadalquivir Basin are alm ost identical 

in term s of their facies, facies associations and petrography. Detailed provenance analysis 

(Chapter 4) have also revealed th a t sedim ents in the allochthonous and autochthonous basin 

have the same source in the Spanish Meseta. Because of these similarities the allochthonous 

and autochthonous basins are considered to have been part of sam e basin for m uch of the 

Miocene and not two separate basins.

2 .2  Data Sources

In order to construct a  tectono-stratigraphic history of the Guadalquivir basin several data  

sources have been combined.

2.2.1 Maps

Three 1:50.000 geological m aps published by the Institu te Geologico y Minero Espana cover 

the study  area (Roldan-Garcia e t aL, 1985a,b; Leyva Cabello, 1973). These are the Baena 

sheet, ref. 967/17-39, the Montilla s h e e t , ref. 966.16-39 and  the Espejo sheet, ref. 944/16- 

38. The m aps were produced mainly through the use of colour aerial photography and 

satellite imaging. Because of poor exposure it was found th a t the m aps could not be improved 

by conventional mapping. However, where appropriate, critical geological boundaries have 

been checked, and .where necessary, modifications have been made.
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From the inspection of the m aps (Foldouts 1,3 & 3) it was found th a t the study area 

could be divided into two distinct geological zones (Fig. 1.1), an allochthonous zone and an  

autochthonous zone. The au toch thonous zone is characterised by lower A quitanian to 

M essinian sedim entary rocks which are largely undeformed and generally flat lying. The 

allochthonous zone consists of Mesozoic and Palaeogene rocks of the External Zone th a t are 

found together with Lower Miocene rocks tha t are similar in character to rocks found in the 

autochthonous zone. These rocks are often intensely deformed and are cu t by num erous 

faults. The boundary between these two zones broadly coincides with the boundary 

suggested by Sanz de Galdeano & Vera (1992) and Roldan Garcia etal. (1985b) tha t separates 

the allochthonous and autochthonous parts of the Guadalquivir Basin.

2.2.2 Seismic & Bore Hole Data

A seismic line, published by Blankenship (1992), and shown in Figure 2.1 passes through 

the study area 8 Km west of Baena (Fig. 1.1). This line crosses both the allochthonous and 

autochthonous parts of the Guadalquivir Basin. The line is constrained by boreholes situated 

a t Nueva Carteya (37°36’N, 04°25’W) and Rio Guadalquivir (27°3rN , 04°15’W) (Fig. 1.1 & 

Foldout 1) the successions of these boreholes are shown in Table 2.1.

Table 2.1 Results of Boreholes drilled a t Nueva Carteya and Rio Guadalquivir

Rio Guadalquivir H -1 Nueva Carteya 1
Depth to top of (m) Age Depth to top of (m) Age

0-206 Miocene Unknown Miocene
206-256 Eocene Unknown Cretaceous
256-932 Lower Cretaceous Unknown Jurassic
1668-2070 Middle Ju rassic Unknown Triassic
2070-3774 Lower Ju rassic Unknown

3227 Thrust
Thrust
3774-3849

3849-4346
4346-4709

Thrust
4709-4984

4984-5069

Upper Palaeocene- 
Middle Eocene 
Lower Cretaceous 
Upper Ju rassic

Upper Palaeocene- 
Middle Eocene 
Red beds

3227m -3554 Miocene

From Blankenship (1993)

From the interpretation of the seismic line and the borehole data, several im portant 

observations can be made:-

1 The borehole a t Nueva Carteya and  the seismic line show a series of th ru s t nappes 

composed of folded Mesozoic rocks of the External Zone. At Nueva Carteya the borehole 

encountered 327m of Lower Miocene s tra ta  a t a  depth of 3227m below the th ru s t nappes. 

This clearly dem onstrates th a t rocks of the External Zone are th ru s t over Miocene sedimen

tary rocks of the Guadalquivir Basin.
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2 At the northern end of the seismic line there is an undisturbed Lower Miocene to 

Upper Miocene succession. This is the autochthonous part of the Guadalquivir Basin. The 

base of the Guadalquivir basin succession rests on Triassic rocks which rest in tu rn  upon 

the Palaeozoic basem ent of the Iberian Foreland.

From these observations it can be deduced tha t the allochthonous rocks are th ru st over 

the autochthonous part of the Guadalquivir Basin, and  tha t the thrusting movements were 

a t least post-Lower-Miocene in th is area, bu t may have started  earlier elsewhere. The 

au toch thonous p art of the basin  is believed to lie below the th ru s t nappes (Fig. 2.1) 

(Blankenship, 1992).

However, the seismic section does not resolve the issue of whether or not the th ru sts  

cu t through the Upper Miocene sedim ents of the Guadalquivir Basin. Blankenship (1992) 

suggested th a t the th ru s ts  are blanketed by Tertiary sedim ents of the Guadalquivir river 

basin but conceded th a t there was no field da ta  to support this view (Blankenship, 1993). 

Because of poor exposure and extensive cultivation it seems unlikely tha t the th rusts  can be 

observed directly. However, it may be possible to resolve th is question by the analysis of 

Geological m aps (Section 2.4).

2.2.3 Field Data

Field da ta  collected from the study  area are mainly in the form of sedim entary logs and  

petrographic analyses of sam ples (Chapter 3 & Appendix I). The sites from which the logs 

and sam ples were derived are shown on the m aps in Foldouts 1, 2 &3.

Field studies and sample collections were restricted by the poor exposure found in this 

intensively cultivated area. Despite th is restriction the Miocene to upper M essinian 

sedim ents have been logged and  over 100 samples have been collected. The logged sections 

and sam ples have been located on Foldouts 1,2 & 3.

The field da ta  have been used  to determ ine lithologies and facies, and to interpret 

depositional environm ents and palaeogeography of the Guadalquivir Basin. The field data  

are fully interpreted in C hapter 3 and will not be discussed further here. The lithological and 

environm ental interpretations have been incorporated into the stratigraphic revision (Fig.

2.2) discussed in section 2.3.

2 .3  R evisions

The seismic section, bore holes and field data  have been used to produce revised geological 

m aps and a  revised stratigraphy.

2 .3 .1 Revised Maps

The principal am endm ents to  the m aps have been the identification of: 1) the external 

zone th ru s t front and 2) the allochthonous and  autochthonous portions of the Guadalquivir 

Basin succession, and the boundary between them  (Foldouts 1,2 &3). Minor revisions to 

geological boundaries have also been made where it was found to be appropriate. Figure 2.3 

shows a  panoram ic view of the  External Zone th ru s t front and the allochthonous and 

autochthonous portions of the Guadalquivir basin.
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The External Zone th ru s t front has been marked on previously published maps and 

cross-sections (Garcia H ernandez et al., 1989; Roldan-Garcia e t al., 1985a,b; Sanz de 

Galdeano & Vera, 1992; Blankenship, 1992). It divides rocks of the overthrust External Zone 

from those of the Guadalquivir Basin. In the Baena Montilla study area this boundary is 

marked by a  series of th ru s t contacts which are defined by a  dramatic change in topography 

from a  gently undulating, low lying land in the north to high m ountains in the south (Fig. 2.3). 

The m ountains in the sou th  are characterised  by largely undeform ed Mesozoic and  

Palaeogene limestones tha t are found in normal stratigraphic sequence, except where cu t by 

th ru sts . The lower land is formed by rocks of the allochthonous zone characterised by a 

complicated outcrop pattern  of Mesozoic and Palaeogene rocks of the External Zone and  

Lower to Mid Miocene rocks of the Guadalquivir Basin (Fig. 2.4). Geological juxtapositions 

in this area are commonly out of stratigraphic sequence. In places, rocks of the External Zone 

are th ru s t over Lower Miocene sedim entary rocks of the allochthonous Guadalquivir Basin. 

An example of this is seen in the Baena Klippe (Foldout 1) where Palaeogene rocks m e th ru st 

over Lower Miocene rocks.

The boundary between the allochthonous and  autochthonous units of the Guadalqui

vir Basin (Foldouts 2 & 3) separates the flat lying undeformed sequence of Upper Miocene 

sedim entary rocks from deformed and  faulted External Zone rocks and lower to Mid Miocene 

sedim entary rocks of the allochthonous zone. The boundary cam also be seen on seismic 

sections (Fig. 2.1), separating rocks in the south th a t are cu t by th ru s ts  from rocks in the 

north th a t appear to be unaffected by thrusting.

The alloch thonous/au toch thonous boundary shown in Foldouts 2 & 3 has been 

marked on the m aps where deformed Mesozoic, Palaeogene, and lower to Mid Miocene rocks 

were found juxtaposed against the undeformed Upper Miocene sequence. In places th is 

boundary has been inferred across areas of non-exposure. Parts of the allochthonous zone 

are so intensely deformed th a t individual stratigraphic units could not easily be identified. 

This relationship is seen in the NE com er of Foldout 2 and the SE com er of Foldout 3. In these 

areas (Localities 81-91, Foldout 3) outcrops of Mid Miocene and Upper Miocene rocks have 

been found which are similar to rocks found in the autochthonous part of the Guadalquivir 

Basin (Fig. 2.5). This has also been observed by Leyva Cabello (1973). This indicates th a t 

the allochthonous p art of the  G uadalquivir Basin con ta ins mid and  Upper Miocene 

sedim entary rocks which are im portant to argum ents presented in section 2.4.

2.3.2 A Revised Stratigraphy fo r  the Guadalquivir Basin

It is not the purpose of this section to construct a  new, alternative stratigraphy for the Baena 

Montilla region. The aim is to revise the stratigraphy of the autochthonous (undeformed) 

Guadalquivir basin succession using the seismic sections, bore hole data, field da ta  and 

revised geological maps. No attem pt h as been made to revise the stratigraphy of the External 

Zone as it is not the main subject of th is  thesis.

The main revisions th a t have been made to the stratigraphy are to the thicknesses, 

lithologies and environm ental interpretations of the stratigraphic units defined by Roldan- 

Garcia et al. (1985a,b) and Leyva Cabello (1973). The new lithological and environmental
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interpretations are based on the field and petrographic studies tha t are discussed in Chapter

3. The revised m aps (Foldouts 1,2 & 3) and sedim entary logs (Appendix I) have been used 

to identify unconformities in the Guadalquivir basin. These were found to coincide with 

unconformities identified by Roldan-Garcia et al. (1985a,b) and Leyva Cabello (1973). The 

final revision has been to remove the ‘Olistostrome’ from the stratigraphy. The reasons for 

th is are discussed in section 2.4. The revised stratigraphy for the Guadalquivir Basin is 

sum m arised in Figure 2.2.

The Guadalquivir Basin in the Baena Montilla region is a  minimum of 700m and a  

maximum of lKm thick. The base of the basin fill is of Aquitanian age (Roldan-Garcia et al., 

1985a,bj and  res ts  unconform ably on deformed Palaeogene and  Mesozoic m arls and  

limestones of the External Zone (Fig. 2.6). The limestones dip steeply to the W while the marls 

are effectively horizontally bedded. The limestones below the m arls have a surface th a t is 

irregular over 10m. Deep depressions are commonly filled by limestone boulders (Fig. 2.6). 

This palaeo-topography resembles karst surfaces described by Jackus (1977), Legrand & 

Stringfield (1973), Sweeting (1973) and  reviewed by E steban & Klappa (1983). As a  

consequence the palaeo-topography has been tentatively interpreted as a  palaeo-karst 

indicating sub-aerial exposure. The surface is exposed in only one locality (Location 9, 

Foldout Map 1, Ref. 522 340), consequentially the karst could not be fully characterised.

The lower and Mid Miocene rocks of the Guadalquivir basin are dominated by diatom 

and globgerinid m arls indicating th a t deposition took place in a  pelagic sea-way. The upper 

parts of the marl sequence (Serravallian) are dissected by channelised marine debris flows. 

These are unconformably overlain by between 25 and 50 m etres of Tortonian sandstones tha t 

are intercalated with marls. Sandstone facies analysis indicates tha t deposition during the 

Tortonian took place on a  shallow marine shelf. Beach deposits are locally present. Another 

unconformity separates the Tortonian sandstones from distinctive lower M essinian calc- 

lithic sandstones which are also interbedded with m arls (Fig. 2.2). The calc-lithic arenites 

have been interpreted as having been deposited on a  tidaly dominated shallow m arine shelf 

with both lagoonal and patch reef environments. They are overlain unconformably by upper 

Messinian conglomerates th a t were deposited in coastal fan deltas fed by an extensive fluvial 

system. This succession is overlain by deposits of the Q uaternary Guadalquivir river basin.

To sum m arise, in the Baena Montilla region the rocks of the Guadalquivir basin rest 

unconformably on rocks of the external zone. Prior to  the development of the basin the 

external zone was deformed and a t least part of it appears to have been sub-aerially exposed. 

Three unconform ities have been identified in the  basin  succession, a t the base of the 

Tortonian, between the Tortonian and  M essinian and  in the M essinian. Overall the  

Guadalquivir basin succession is a  shallowing up sequence, progressing from pelagic marine 

deposits in the Aquitanian to fluvial deposits in the Messinian. Minor fluctuations within this 

sequence are observed in the Tortonian and Messinian.

The allochthonous part of the Guadalquivir Basin has been transported northward over 

the autochthonous part of the basin, as is supported by seismic sections (Fig. 2.1). If the 

allochthonous and autochthonous zones were originally part of the same basin, as indicated 

by sedimentological and  provenance d a ta  (Chapter 3 & 4), then  the basin would have
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extended m uch fu rther south. This would place the sou thern  margin of the Miocene 

Guadalquivir Basin m uch further south  than  the present external zone th ru s t front.

2 .4  Inferences

From the revised m aps and stratigraphy im portant inferences can be made concerning the 

nature of the A llochthonous/A utochthonous boundary and the s ta tu s  of the olistostrome 

described by G arcia D uenas (1969), Garcia Hernandez et al. (1980) and Sanz de Galdeano 

& Vera (1992).

2.4.1 Nature o f the Allochthonous/Autochthonous Boundary

Geological contacts along the boundary separating the allochthonous zone deposit from the 

autochthonous Guadalquivir Basin sequence (Foldout Maps 2 & 3) are not stratigraphically 

consistent. To explain this the Upper Miocene rocks m ust either unconformably overlie the 

Allochthonous sheet or else the boundary m ust represent a  tectonic contact (i.e. thrust).

The seismic section (Fig. 2.1) and interpretation of Blankenship (1992) shows tha t the 

boundary between the allochthonous and  autochthonous zones is a  th ru s t contact. The 

autochthonous rocks of the Guadalquivir basin can be extrapolated below the allochthon. 

However it is no t clear in these sections w hether the  th ru s ts  cu t the  U pper Miocene 

succession or whether the Upper Miocene blankets the th ru sts  (as suggested by Blankenship 

(1992)). Several key observations have been made th a t resolve this question:-

1 The study area is divided into two distinct zones (Fig. 1.1, Foldout 2). In the western 

portion of the Baena Montilla region, Upper Miocene rocks of the autochthonous Guadalqui

vir basin  are exposed. By co n tra st the easte rn  portion of the area  is dom inated by 

allochthonous rocks belonging to the Guadalquivir Basin and the External Zone (Fig. 2.7a). 

The autochthonous rocks are exposed in the Rio Guadajoz river valley which is topographically 

lower than  the area to the east in which the allochthonous rocks are exposed (Fig. 2.7a). Other 

N-S trending river valleys found along the E-W allochthonous th ru s t front also contain 

exposures of autochthonous Guadalquivir Basin rocks. This observation may be interpreted 

in one of two ways, in structu ra l or in stratigraphical term s. If the allochthonous rocks were 

th ru s t northward following the deposition of Upper Miocene sedim ents then autochthonous 

rocks would lie beneath  the allochthonous th ru s t sheet. The underlying autochthonous 

Upper Miocene rocks would have then  been exposed by rivers cutting down through the 

allochthonous th ru s t sheet (Fig. 2.7b). An alternative hypothesis to this is th a t the present 

river system s follow the course of older Miocene palaeo-valleys. Sub-aerial exposure 

occurring a t the end of the  Lower Miocene and following a  phase of thrusting would have led 

to the formation of river valleys along the th ru st front margin. These valleys would have been 

subsequently filled by Upper Miocene m arine sediments. However the first rocks seen in 

Upper Miocene above the candidate unconformity are marine and not fluvial, and there is no 

evidence for the substan tial sub-aerial exposure th a t would have been required to create such 

large valleys.

2 . Another im portant observation is th a t both Mid and  Upper Miocene rocks occur
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within the allochthonous zone. These have been deformed and transported along with the 

rest of the allochthonous sheet (Fig. 2.5). Therefore th rusting  m ust have taken place after 

the deposition of the Upper Miocene sediments.

In conclusion it seem s likely th a t the boundary between the allochthonous and 

autochthonous units is a  th ru st contact. This view is supported by seismic data. Thrusting 

m ust have taken place after the deposition of the Upper Miocene sedim ents and therefore the 

th ru sts  m ust somehow cu t Upper Miocene sedim ents.

2.4.2 Status o f the Olistostrome

O listostrom es are stratigraphic un its  which are generally separated from overlying and 

underlying formations by depositional contacts (Hsu, 1974). They are distinct from melanges 

which are tectonic units bounded by shear surfaces (Hsu, 1974). Olistostromes may range 

from boulder beds to graded turbidites and are developed on a  local scale. In contrast, 

melanges are usually developed on a  regional scale. Melange terranes show different degrees 

of severity of fragmentation and mixing, grading from internally coherent allochthonous 

slabs to broken formations on to pervasively sheared and intimately mixed melanges.

The sou thern  margin of the p resen t Guadalquivir basin is m arked by a  band of 

disrupted rock interpreted as an ‘olistostrome’ (Garcia Rosell, 1973). It m arks the boundary 

between the allochthonous and autochthonous units of the Guadalquivir Basin (Sanz de 

Galdeano & Vera, 1992). Sanz de Galdeano & Vera (1992) suggested tha t the ‘olistostromes’ 

formed during Lower Miocene times and  were shed from a  mobile front th a t was created as 

the th ru s t fronts of the External Zone encroached on the  North Betic S tra it of the 

Guadalquivir Basin. However, field and  m ap observations indicate th a t these deposits are 

not ‘olistostromes’ but tectonic ‘melanges’.

The ‘olistostromes’ of Garcia Rosell (1973) and Sanz de Galdeano & Vera (1992) are of 

a regional scale, developed along the entire allochthonous front defining the southern limit 

of the present Guadalquivir Basin. They contain huge slabs of External Zone material, mainly 

consisting of Triassic deposits (Fig. 2.4). The m ost disrupted rocks are found close to the 

allochthonous/au tochthonous boundary, interpreted as a th ru s t front. This description 

alone is closer to the definition of a  melange than  th a t of an olistostrome, the latter tending 

to be more locally developed and  with sedim entary contacts (Hsu, 1974).

No ‘olistostrome’ type m aterial was found intercalated with the Lower Miocene marls 

in the Baena, Montilla region, even in localities where abundant ‘olistostromes’ are close by. 

Sanz de Galdeano & Vera (1992) clearly state th a t the ‘olistostrome’ was deposited during 

the Lower Miocene into the Guadalquivir Basin. If it were deposited during the Lower Miocene 

then  it should be found intercalated with contem poraneous sedim ents, namely the marls. 

This is not the case in the Baena Montilla region.

There are more detailed observations th a t can made about the ‘Olistostrome’. Figure 

2.9 shows a  roadside exposure o f‘Olistostrome’ which consists of intimately mixed material 

of m any lithological types. Some blocks are similar in character to the autochthonous Upper 

Miocene deposits of the G uadalquivir Basin. In particular conglomerates dom inated by 

limestone clasts have only been found elsewhere in Messinian deposits of the Guadalquivir

Part I: The Guadalquivir Basin



Chapter 2: Tectono-Stratigraphic Analysis Page 34

Basin, and are thought to have been generated from the denudation of External Zone rocks 

(Chapter 4). Other areas of the Baena Montilla region previously mapped as ‘olistostromes’ 

(Roldan-Garcia et al., 1985a,b; Leyva Cabello, 1973) have been found to contain deformed 

Upper Miocene sedim ents (Fig. 2.5). In general the olistostromes are dominated by Triassic 

red m arls and by evaporite deposits.

From these observations several things can be deduced concerning the nature of the 

‘olistostromes’: They have formed m uch later them was suggested by Sanz de Galdeano & 

Vera (1992) as material incorporated into them  indicates a  post-M essinian age In outcrop 

this often forms a  pervasively mixed formation, comprising rocks ranging in age from Triassic 

to Messinian. It is difficult to envisage how such a  mixed unit could have formed by normal 

sedim entary processes. Triassic m arls and evaporites are known to form the decollement 

horizon of th ru s ts  in the External Zone (Garcia H ernandez e t al., 1979; Banks and 

W arburton, 1991), and this, taken with the observation th a t the m ost disrupted rocks are 

close the allochthonous/autochthonous th ru s t boundary, suggests th a t the ‘olistostromes’ 

are associated with th ru s ts . Allerton e t al. (1993) also show Triassic m aterial between 

Ju rassic  and Cretaceous allochthons in their cross-sections (Fig. 0 . 1)

B lankenship (1993) noted th a t no Ju ra ss ic  carbonates found have been in the 

‘olistostromes’. This is surprising since other authors (Sanz de Galdeano & Vera, 1992) insist 

tha t the ‘olistostromes’ were derived from External Zone th ru s t sheets th a t encroached on 

the basin. If th is were the case then Jurassic  carbonates, which are stratigraphically higher 

level than the Triassic, would have been exposed first. Thus Ju rassic  material should have 

been shed before the Triassic.

In conclusion, it seem s likely th a t the so called ‘olistostrom es’ formed along post 

M essinian th ru s ts . As the external zone was th ru s t northw ard on Triassic Evaporite 

decollements, material from the base and front of the th ru st sheets was sheared off and mixed 

with Triassic red marls. This material included Upper Miocene deposits of the Guadalquivir 

Basin and so the thrusting m ust have taken place after the Messinian. If the ‘olistostromes’ 

are associated with th rusting  and  are tectonically produced then they should be termed 

‘melanges’ according to the definition of Hsu (1974). Thus, the ‘olistostromes’ have been re

defined as  ‘m elanges’ and have been removed from the stratigraphy of the Guadalquivir 

basin.

2.5  Cross-Sections

Three geological cross-sections, with their locations shown on Figure 1.1, have been drawn 

for the Baena, Montilla region (Foldouts 4, 5 & 6). These incorporate data  taken from the 

revised geological maps (Foldouts 1,2 & 3), the seismic (Fig. 2.1) and borehole data (Table 2.1) 

of Blankenship (1992) and new field data  (Appendix I). One is orientated E-W (Foldout 4) and 

the other two S-N (Foldouts 5 & 6). The symbols and key are as for the revised geological m aps 

in Foldouts 1, 2 & 3.

The E-W cross-section in Foldout 4 extends from the allochthonous unit in the east to 

the autochthonous unit in the west. The autochthonous Guadalquivir rocks are exposed in 

a  river valley the significance of which has been discussed in section 2.4 (Fig. 2.7). In this
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section the allochthonous th ru st over the autochthonous unit, as can be seen in the seismic 

section (Fig. 2.1). The allochthonous unit in the east consists of a  series of overthrust nappes 

composed of Mesozoic and  Palaeogene rocks of the External Zone. These are overlain 

unconformably by Lower Miocene rocks of the Guadalquivir Basin fill, which are also cu t by 

the thrusts. The Lower Miocene rocks are folded near the th ru st fronts. Within the allochthon 

the Baena Klippe overlies the high level th ru st separating the folded Palaeogene rocks from 

Mesozoic rocks below. This may be a  rem nant of a  roof th ru s t th a t formed as part of a  duplex 

system. The deformed Palaeogene rocks are overlain unconformably by Lower Miocene rocks 

which form the base of the Guadalquivir Basin fill (Fig. 2.6). The autochthon in the west is 

composed largely of flat lying sedim entary rocks of the Guadalquivir Basin Unconformities 

have been identified within th is sedim ent pile, between the Mid Miocene and  Tortonian, 

between the Tortonian and Messinian and within the Messinian. Upper Messinian rocks are 

too thin to be shown on the cross-section. The autochthonous Guadalquivir basin deposits 

may overlie Triassic rocks belonging to the external zone (not shown on cross-section), as 

indicated on the seismic section of Blankenship (1992) in Figure 2.1. Both the allochthonous 

and autochthonous rocks rest on the Palaeozoic basem ent of the Iberian Foreland.

The south-north cross-section in Foldout 5 is a  section across the m ap in Foldout 1. 

This covers the allochthonous zone only (Fig. 1.1). In the area considered this is similar in 

character to the allochthonous part of the cross-section in Foldout 4. The Baena Klippe is 

shown in a  south-north section, on which the folded Palaeogene rocks can be clearly seen. 

The folds are overturned and  have axial traces th a t trend E-W. To the north the Klippe 

overthrusts Lower Miocene rocks of the Guadalquivir basin.

The south-north cross-section 3, foldout 6 is a  section across the m aps in Foldout 2 

& 3. The sou thern  half of the section is composed of sedim ents of the autochthonous 

Guadalquivir Basement. To the north the allochthon is downfaulted against these rocks. The 

allochthonous rocks are highly deformed here and individual stratigraphic units could not 

be differentiated. However, they are known to include Tortonian rocks (Fig. 2.5). An 

undulating topography in th is area has been interpreted as reflecting folding (Leyva Cabello, 

1973). These folds have in tu rn  been interpreted as th ru s t tip folds tha t hide blind thrusts. 

The allochthon is th ru s t over autochthonous Upper Miocene rocks to north, these rocks, 

because of poor exposure, are only known as Upper Miocene rocks. They clearly belong to 

the Guadalquivir Basin fill.

From these individual cross-sections a  generalized sou th  north cross-section has 

describing the southern  margin of the Guadalquivir Basin has been produced (Fig. 2.9). 

Klippes are interpreted as being rem nants of roof th ru sts  to a  duplex system while melanges 

are shown associated with the th ru s t faults. This sum m ary section forms the basis for 

constructing a  tectonic/stratigraphic history for the Baena Montilla region (Section 2.8).

2 .6  Chrono-Stratigraphy

The chrono-stratigraphy of the autochthonous Guadalquivir basin fill is shown in the form 

of a  Wheeler (1958) type chrono-stratigraphic diagram (Fig. 2.10). In th is the stratigraphic 

units are plotted in term s of their vertical and lateral continuity through time. In Figure 2.10
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relative time is shown on the left y  axis, thickness on the right y  axis and lateral continuity 

on the x  axis. The time scale is adjusted to thickness. Unconformities and related hiatuses, 

shown in the diagram, are plotted in time and space. A hiatus is defined as a space-time value 

of non-deposition (i.e. places where stratigraphy is m issing) and is thought to develop during 

a  regressive/transgressive episode.

The chrono-stratigraphic diagram  has been constructed  for the  au toch thonous 

Guadalquivir Basin succession from the revised geological m aps (Foldouts 1,2 & 3), cross- 

sections (Foldouts 4,5 & 6) and new field data (Appendix I). The southern part of this diagram 

is well constrained, while the resolution to the north is restricted by poor exposure. Part of 

the stratigraphy is missing where allochthonous rocks are downfaulted against the autoch

thonous Guadalquivir Basin deposits. Unconformities and inferred hiatuses identified in the 

basin are shown. Most of the unconform ities involve sm all tim e-gaps, a lthough the 

Messinian (6.5 Ma.) unconformity cu ts out the Tortonian in the south. The exact age of the 

base of the Guadalquivir Basin is unknown bu t has been estim ated as Aquitanian (Roldan- 

Garcia e t  al. , 1985a,b). If this is correct then part of the Aquitanian is missing and the hiatus 

is m uch larger than shown in Figure 2.10. There is evidence th a t a  Karst surface developed 

before deposition of the Aquitanian (section 2.3) and th is supports the hypothesis th a t the 

floor of the Guadalquivir Basin is a  m uch larger h ia tus than  shown.

H iatuses in the G uadalquivir basin are produced by regressive transgressive cycles 

that may, or may not have involved sub-aerial exposure. It is im portant to know w hether these 

cycles are a  product of tectonism, global eustasy  or a  combination of both.

2 .7  Chrono-Stratigraphy Compared to  Global Eustasy  

and Tectonism  in  the B etic Orogen

In order to determine the relative influences of eustasy  and  tectonism on the sedim entation 

of the Guadalquivir Basin the chrono-stratigraphy has been plotted against both the Global 

E ustasy curve of Haq et al. (1987) and  tectonism  observed in the Betic Orogen (Fig. 2.11).

The basal deposits of the Guadalquivir Basin are Aquitanian pelagic m arls th a t rest 

unconformably on Palaeogene limestones. These limestones were folded and subject to su b 

aerial exposure tha t resulted in karstiflcation prior to the deposition of the Aquitanian. The 

unconformity is dated a t between 19 & 23 Ma. (Roldan - Garcia e t a t ,  1985a,b) which m eans 

tha t the limestones were probably deformed before 23 Ma., during the Oligocene. The timing 

of the deformation coincides with the s ta rt of extension in the Betic orogen (see Overview, Fig. 

0.4). The 19-23 Ma. unconformity also coincides with a  major sea-level fall th a t m arks the 

base of super cycle TB2 of Haq et al. (1987). It may be th a t the sea level fall was amplified 

by the com pression and uplift of th e  External Zones, to produce substan tia l sub-aerial 

exposure a t this time. The kars t surface was subsequently  flooded and a  pelagic seaway 

established, with the deposits coinciding with the transgressive part of cycle TB2.1 of Haq 

e ta l. (1987).

Other unconformities in the Guadalquivir Basin do not seem to reflect tectonism, but 

do appear to correlate reasonably well with sea-level falls. In particular the Tortonian hiatus 

correlates with a large sea level fall a t  the base of super-cycle TB3 of Haq eta l. (1987) which
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produced m ajor sequence boundaries world wide. A compressive event is recorded in the 

Betic orogen a t the base of the Tortonian by Ott d Estevou & M ontenat (1990), but this has 

not been recognised by other workers. However it led Sanz de Galdeano & Vera (1992) to 

attribute the emergence of internal basins in the Betic Cordillera to a  combination of both the 

sea level fall a t the base of supercycle TB3 and reported compression in the orogen.

The two unconformities in the Messinian appear to correlate with sea-level falls at the 

bases of cycles TB3.3 and TB3.4 of Haq eta l. (1987). This correlation is supported by Sanz 

de Galdeano & Vera (1992) who also a ttribute the appearance of reefs and evaporites in the 

eastern Guadalquivir and Almeria basins to the same sea level falls.

The overall shallowing up of the G uadalquivir Basin (Section 2.3, Fig. 2.2) fits the 

known general trend in sea-level, falling during the Miocene.

Thus the sea-level curves, when compared with tectonism observed in the Betic orogen, 

suggest tha t the unconformity a t the base of the Guadalquivir Basin succession reflects both 

tectonism and eustatic sea-level fall. O ther unconformities appear to have been Eustatically 

driven, although com pression may have influenced th a t a t the base of the Tortonian. The 

overall Guadalquivir Basin succession can be tied into the general sea-level trend during the 

Miocene.

2 .8  A T ectonic & Stratigraphic History for th e Guadalquivir Basin

From the data  and discussion above a  tectonic and stratigraphic history can be produced for 

the Guadalquivir Basin in the Baena-Montilla region. This is sum m arised in Table 2.2 and 

Figure 2.12. Figure 2.12 also gives an  indication of the probable movements tha t Africa 

underw ent in relation to Iberia during the Miocene.

2 .8 .1 Mesozoic to Palaeogene.

The external zone consists mainly of limestones and m arls deposited on a  basin /g raben  

topography during the Mesozoic and Palaeogene (Garcia Hernandez etal., 1980; Blankenship, 

1992). The basin graben structure of the Palaeozoic basem ent implies th a t the Iberian Margin 

was undergoing extension a t th is time. The am ount of extension for the Iberian margin has 

not been determined. At the end of the Oligocene the Mesozoic /Palaeogene cover was folded, 

indicating a  conversion from an  extensional to a  compressional regime.

The Mesozoic Palaeogene cover may have been detached from its Palaeozoic basem ent 

during compression (Fig. 2 .12a), but th is is uncertain. Compression and uplift in the external 

zone combined with a  major sea-level fall to produce substan tial sub-aerial exposure. This 

resulted in karst erosion of Palaeogene limestones exposed in the area.

2.8.2 Lower-Mid Miocene

A transgression over the Karst surface a t the beginning of the Miocene brought with it the 

first deposits of the  G uadalquivir basin . This may have resu lted  from a  sea  level rise 

coinciding with the subsidence of the  passive margin formed as the northw ard progression 

of Africa slowed and the Betic Orogen underwent extension. Globgerinid and diatom marls 

were deposited in the basin, indicating th a t it formed a  pelagic seaway during lower and Mid
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Miocene times. Later on deposition in the basin was in terrupted by debrites tha t were 

deposited prior to the formation of the Tortonian unconformity. The debrites may record the 

onset of the development of an unconformity elsewhere, this will be discussed in Chapter 3.

Table 2.2
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2.8.3 Tortonian

A sea-level fall a t the beginning of the  Tortonian resulted in the formation the unconformity 

th a t now separates the Tortonian from the Mid Miocene. This may have been accentuated 

by the com pression and uplift in th e  Betic orogen recorded by O tt d ’ Estevou, (1990). A 

transgression during the Tortonian led to the deposition of shallow marine siliciclastics.
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Facies analysis of these rocks indicates deposition on a shallow m arine storm dominated 

shelf. The end of the Tortonian is m arked by ano ther sea-level fall th a t resulted in an  

unconformity and the Tortonian hiatus.

2.8.4 Messinian

Messinian deposits unconformably overlie the Tortonian and Lower Miocene deposits and 

are dominated by shallow marine, lagoonal, coastal fan and fluvial deposits. The fluvial 

deposits are separated from the marine succession by an  unconformity tha t developed 

during in the mid Messinian.

2.8.5 Post Messinian (Pliocene )

Renewed compression in the External Zone of the Betics orogen resulted in thrusting in 

Baena Montilla region which divided the Guadalquivir Basin into allochthonous and 

autochthonous units and formed the tectonic melanges. Thrusting may have been d u 

plex style, with basal detachm ents and roof th ru s ts  (Fig 2.12d). The cover was probably 

detached on Triassic evaporite deposits. Thrusts may have based on older detachm ents 

developed during the Oligo/Miocene shortening phase. Sedim entation in the Baena- 

Montilla region continues today as part of the Guadalquivir river basin

2.9  Conclusions

From the study of the Baena-Montilla region several im portant facts concerning the origin 

and history of the Guadalquivir basin have been deduced.

1 The Guadalquivir basin developed between two compressional phases, that may or 

may not be related to tectonism in the Betic Orogen, but it is largely unaffected by tectonism 

during its Miocene history.

2  The Guadalquivir basin contains deposits, principally m arls which are less than  1km 

thick. This indicates tha t the basin did not receive m uch detritus during its Miocene histoiy.

3  Seismic data  and  stratigraphic relationships indicate th a t thrusting disrupted the 

G uadalquivir Basin a t the end of the  Miocene. Thrusting m u st have taken place after 

Messinian deposition.

4  Lithosomes in the G uadalquivir basin previously described as olistostromes are 

actually tectonic melanges. Their formation was associated with a  post Messinian thrusting 

phase.

The Guadalquivir sedim entary rocks represents a  basin fill th a t was largely passive, 

with unconform ities being driven by eustatic  sea-level falls. The basin deposits have 

previously been subdivided into the North Betic S trait and Foreland Basin successions on 

the strength of differing tectonic styles and the presence or absence o f‘Olistostromes’ (Sanz
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de Galdeano & Vera, 1992). Because new data indicates tha t the basin has a passive fill and 

th a t there are no ‘olistostrom es’ there now seem s little point in making this distinction. 

Therefore, from a  stratigraphic point of view, the Miocene fill of the Guadalquivir basin should 
not be subdivided.
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CHAPTER 3  

SEDIMENTOLOGY & PALAEOGEOGRAPHY

3.1 Introduction

This chapter aims to detail sedimentological investigations th a t have been carried ou t upon 

Miocene rocks of the Guadalquivir Basin. The Miocene rocks of the Basin has been split into 

four stratigraphical un its bounded by unconformities. For each of these units facies and 

micropalaeontological analyses have been used to determine the environm ents of deposition 

which form the basis of palaeogeographical reconstructions. The micropalaeontology is fully 

outlined in Appendix II, and the results have been incorporated into the facies analysis in 

this chapter. Numbers of locations referred to in this chapter are given on the m aps contained 

in Foldouts 1,2 & 3 and grid references refer to published Institu te Geologico Y Minero De 

E spana (IGME) m aps (see Appendix 5).

3 .2  General Stratigraphy

This sedimentological investigation uses the stratigraphic framework of Roldan-Garcia 

(1985a,b) and Leyva-Cabello (1973) which was determined from detailed bio-stratigraphical 

analysis. They recorded four unconformities within the Miocene rocks of the Guadalquivir 

Basin (Fig. 3.1) (Roldan-Garcia eta l., 1985a,b; Leyva-Cabello, 1973. These have been dated 

as sub-Oligo/Miocene (21 Ma.), sub-Tortonian (11 Ma.), sub-Lower M essinian (7 Ma.) and  

Intra-M essinian (6 Ma.). The sub-Oligo/M iocene unconform ity defines the base of the 

G uadalquivir Basin succession (Sanz-de-Galdeano, 1992) and  separates the deformed 

Palaeogene rocks of the External Zone from m arls belonging to the Guadalquivir Basin. This 

unconformity was observed in the field (Location 9, Foldout Map 1, Ref. 522 340) and  is 

m arked by a  karst surface developed on Palaeogene limestones (Fig. 2.6). The M essinian 

unconformity can also seen in outcrops (Location 44, Foldout Map 2, Ref. 514 325) and 

logged section. Fig. 3.2). At locality 44 (Ref. 514 325) the unconformity is seen to cu t ou t 

Tortonian rocks leaving the M essinian rocks resting directly on Lower to Mid Miocene Marls. 

The other two unconformities, the Tortonian and  the Intra-M essinian are not exposed and 

are no t immediately apparen t on Geological m aps (Foldout Maps 1.2&3). However, the 

stratigraphy of Roldan-Garcia (1985a,b) and Leyva-Cabello (1973) is partly based on bore

hole da ta  and observations from other parts  of the Guadalquivir Basin. For these reasons 

and  because there is no evidence to  suggest th a t these observations are incorrect, the 

unconform ities are accepted a s  being presen t in the s tudy  area. For the purposes of 

sedimentological analysis the unconformities have been used to  divide the stratigraphy into 

four successions (Fig. 3.1). Each succession is treated separately in term s of facies analysis, 

facies interpretation and interpretation of environm ents of deposition.

3 .3  Lower & Mid M iocene Facies Analysis

Aquitanian to Serravallian rocks are  exposed in both allochthonous and  autochthonous 

portions of the Guadalquivir Basin and  are lithologically and palaeontologicaly identical in
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each, although they are best seen In the allochthonous portion (Foldout Map 1). The 

Aquitanian to Serravallian conformable succession unconformably overlies deformed Pal

aeogene rocks of the External Zone and are them selves cu t by sub-Tortonian and  sub- 

M essinian unconformities (Fig. 2.10). The maximum thickness of the succession (deduced 

from cross-sections of the study area) is 450m. The succession is dominated by clays, fine 

grained carbonates and partly indurated  lim estones (Fig. 3.3). Sam ples were found to 

contain both calcareous and  siliceous microfossils (Appendix II), with the calcareous 

microfossils dominant. Taken as a  whole the Lower-Mid Miocene rocks of the Guadalquivir 

Basin can be classified as marls, following the classification scheme of Berger (1974b). The 

succession term inates with erosionally based lenticular beds of stratified m arls which 

contain boulders (Fig. 3.4).

Facies within the Lower-Mid Miocene succession are defined on the basis of calcareous 

and siliceous microfossils ratios, ratios of planktonic and  benthonic fauna, presence or 

absence of lam inae and  n a tu re  of the  lam inae. Four facies are recognised w ithin the 

succession, thinly bedded marls, thickly bedded marls, laminated diatomites and  a  boulder 

facies. All four facies are found in both allochthonous and autochthonous portions of the 

basin fill.

3.3.1 Thinly Bedded Facies

This facies, typified by exposures a t location 23 (Foldout Map 1, Ref. 541 331), consists of 

m arls with bedding less than  10cm thick (Fig. 3.5). Bed-bounding surfaces are typically 

p lanar or gently undulating (< 1 cm undulation), carry clay partings and  occasionally are 

marked by grove m arks. Internally beds may contain planar lamination, or lack structures. 

The m icrofauna is dom inated by planktonic Foraminifera typical of open ocean environ

m ents. Benthonic Foraminifera include Gyroidina sp. cf. alttformls, Uvigerina peregrlna, 

Ciblcides cf. pachydeimis and Cycammina which indicate water depths greater than  200m 

(Appendix II). O stracods present are dom inated by Cytherella cf. postdenticulata  which 

indicate circalittoral to upper bathyal environm ents. A sm all num ber of O stracods (e.g. 

Agrenocythere hazelae) are m ore typical of Bathyal depths greater th an  800m. A few 

Radiolaria and  Diatoms are also present in th is facies.

3.3.2 Thickly Bedded Marls;

Marls with beds thicker than  50 cm (Fig. 3.6) have been described a t several localities and 

are best exposed a t Location 31 (Foldout Map 1, Ref. 543 339). The beds lack structures and 

the Microfauna is dominated by Foraminifera with both planktonic and benthonic Forms. 

The benthonic forms include Gyroidina sp. cf. alttformis, Pyrgo, Ciblcides cf. pachydeimis, 

Planulina and Cycammina typical of upper bathyal, and outer-shelf environments with water 

depths of between 75m and  200m  (Appendix II). Siliceous microfossils are absent

3.3.3 Laminated Diatomites

This facies, best exposed a t Location 44 (Foldout Map 2, Ref. 514 325), is m ade up  of 

alternating clay-rich and carbonate-rich laminae (Fig. 3.7) which range in thickness from few
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millimetres up to several centim etres. The clay rich lam inae are dom inated by siliceous 

microfossils with abu n d an t diatom s and  a  few radiolaria (Fig. 8a). The diatom  flora is 

monospecific, dom inated by Concinodiscus (Fig. 3.8b). By co n trast the  carbonate rich 

lam inae are dom inated by planktonic foram inifera which are  typical of open oceanic 

environm ents and diatoms and  radiolaria make up less than  30% of the microfossils.

3.3.4 Boulder Facies

This facies is best exposed in the allochthonous portion of the basin, particularly a t Location 

40 (Foldout Map 1, Ref. 530 334). Boulder fills are found in the au toch thonous zone 

immediately beneath the sub  M essinian and sub  Tortonian unconformities and may actually 

define the sub-Tortonian surface (Fig. 3.1). The facies is characterised by large angular and 

sub-rounded blocks in an unstratified marl matrix (Fig. 3.4). The boulders consist of lithified 

m arls and partly indurated fine grained limestones and are between 0.12 and 1.92m in 

diameter with an  average of 0.54m (Appendix IV). The boulders and  their matrix form stacked 

lenticular units th a t are 1.5m to 4m thick and are 3- 15m wide (Appendix IV). A few of the 

lenticular units have a  winged geometry with 10-50cm thick wings extending up to 2m from 

the margins of the lenticular units (Fig. 3.9).

3.3.5 Facies Distributions and Associations

Because of limited exposure it h as  not been possible to asses  the  la teral or vertical 

distribution of the facies nor to determine facies associations. However, all four facies Eire 

present in both the allochthonous and autochthonous portions of the basin. The Lower-Mid 

Miocene succession is remarkably similar in term s of lithologies, facies and micropalaeontology 

across the allochthonous au toch thonous boundary. There is some indication th a t the 

boulder facies is limited to the upper parts of the succession, and  seems to have developed 

immediately before the formation of the Tortonian unconformity and may even define the 

unconformity. This facies may either be 1) the pre unconform ity facies, and  therefore 

represents the onset of sea-level fall or 2) coincidental with the unconformity and  therefore 

define the unconformity. Rold&n-Garcia e ta l. (1985a,b) noted th a t a  ‘brecciated facies’ in 

the Langhian and Serravallian deposits of the Guadalquivir Basin and this is assum ed to be 

the ‘boulder facies’.

3.3.6 Facies Interpretations

Marls containing marine biota, including foraminifera, radiolaria and diatoms are associated 

with pelagic open m arine environm ents (Scholle e t al. , 1983). Pelagic sedim ents with 

abundan t planktonic foraminifera, radiolaria and diatoms are associated with warm waters 

and with areas of high productivity, th a t are commonly associated with areas of up  welling. 

P resent pelagic carbonate facies are confined to latitudes between 6 0 °  north and south  

(Berger, 1974; Davies & Gorsline, 1976). Rocks collected from the Lower-Mid Miocene 

succession of the Guadalquivir Basin show a  surprising lack of the coccolith detritus th a t is 

so common in Miocene pelagic environm ents. In addition no agglutinated foraminifera are 

present in the assemblage suggesting the possibility of some other processes having affected
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the m icrofaunal assem blage. Pelagic sedim ents are known to be winnowed by bottom 

cu rren ts  and  winnowing m ay destroy the  more fragile biogenic com ponents such  as 

agglutinates. C urrent activity in the thin bedded facies is suggested by planar lamination 

and current lineation. Despite the possibility th a t more fragile fauna may be missing, the 

microfaunal assemblage still indicates tha t the m arls were deposited in water depths ranging 

from circalittoral to bathyal (Appendix II). Clays w ithin the m arls are  either evenly 

disseminated or form distinct laminae (Fig. 3.7) and indicate detrital terrigenous or volcanic 

input. Detrital input suggests a  hemipelagic rather than  a  purefy pelagic environment. The 

input of detrital material is known to be controlled by changes in ocean currents which vary 

according to climate and sea-level (Kennedy & Garrison, 1975). ‘Contam inating’ detritus 

such  as clays is deposited in the central Pacific far from terrestrial sedim ent sources. This 

includes small am ounts of fine grained, wind-blown quartz and large volumes of clay (Rex et 

al. , 1969). Thus the marls in the Lower-Mid Miocene succession may have been deposited 

in deep water environm ents, and yet still received some terrigenous detritus via surface 

winds.

Micropalaeontological analysis (Appendix II) suggests th a t the observed facies were 

deposited in varying water depths. The thin bedded and thick bedded facies are characterised 

by benthonic Foraminifera which indicate outer-shelf and  bathyal environm ents in w ater 

depths of between 200m and 800m. The laminated diatomites consist of alternating diatom- 

rich clay laminae and foraminifera-rich carbonate laminae. The abundance of both of these 

indicate waters of high productivity. The diatoms are monospecific, consisting of Concinodiscus, 

known to favour oceanic warm w aters (Hajos, 1973; Gombos, 1987). Diatoms are primary 

producers, while planktonic foraminifera and radiolaria Eire consum ers feeding on diatoms. 

C ertain species of diatom s are known to bloom periodically in oceans (Burckle, 1978) 

resulting in dram atic increases in the num bers of one or two species. Such an increase in 

producers may have led to a  corresponding increase in the num bers of consum ers such as 

foraminifera. A bloom would be followed by a  rapid decline of diatoms, as population and 

consum ption increased, leading to an  increase in the deposition of diatom detritus. A 

reduction in the num bers of diatom s would resu lt in a  decline in the num ber of consuming 

foraminifera, as these could not be supported by the rem aining diatoms. Thus, diatom 

blooms would be followed by increased deposition of diatom tests, while their decline would 

be closely followed by a  rapid decline of foraminifera resulting in the m ass deposition of 

foraminifera tests. The populations of diatom s and foraminifera would peak a t slightly 

different tim es and th is is ultim ately responsible for the alternation of layers seen in the 

laminated diatomite facies. Against th is background of cyclical deposition terrigenous clays 

were deposited via surface cu rren ts, bu t these were swam ped by periodic increase in  

carbonates with the  decline of expanded foram inifera populations. Sim ilar lam inated 

diatom ites have been observed in deep sea  cores (H aslett pers. comm.) and have been 

interpreted in a  similar m anner.

The upper part of the Lower/Mid Miocene succession has been dissected by erosional 

hollows th a t were later filled by boulder debris. The hollows have a  ‘channel form’ with wing

like extensions. The deposits resemble debris-flows found in a  bank margin facies of the
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Devonian of the Rocky Mountains, Alberta Canada (Cook etal., 1972). Such debris-flows are 

produced when carbonate slopes fail. Boulders th a t are produced raft in a  m ud slurry th a t 

may cu t a  channel down slope (Loucks et al., 1985). Slope failure th a t may be related to a 

fall in sea-level, tectonic activity or over-steepening by deposition. The boulders in the Lower- 

Mid Miocene succession are lithologically sim ilar to the m arls and  indurated  limestones 

found beneath the debrites. Derivation of m aterial from the underlying succession would 

require the erosion of Lower-Mid Miocene rocks. This could be achieved by a relative sea-level 

fall produced during tectonic uplift, eustasy  or a  com bination of the  two. The Tortonian 

unconformity (11 Ma.) is attributed to a  major eustatic sea-level fall at the base of Super Cycle 

TB2 th a t may have been enhanced by uplift in the Betic Cordillera (Chapter 2.7). The 

development of debrites in the Mid Miocene may record the onset of this sea-level fall, and 

so m ark the sub-Tortonian unconformity.

In sum m ary, the lower to Mid Miocene succession of th e  G uadalquivir Basin is 

characterised by marls deposited in a  hemipelagic sea-way with depths ranging from upper 

Bathyal (200m) to Bathyal (>800m). During the Mid Miocene debrites developed which may 

indicate the onset of the relative sea-level fall th a t ultim ately led to the formation of the 

Tortonian unconformity.

3 .4  Tortonian Facies Analysis

Tortonian sedim entary rocks are exposed in both the allochthonous and autochthonous 

portions of the basin where they consist of sandstones interbedded with m arls. In the 

autochthonous part of the basin these are between 25m  and 60m  thick. In allochthonous 

portion the th ickness of the Tortonian rocks is unknow n, bu t they are known to be 

lithologically identical. Petrographically the sandstones are lithic arenites with lithic clasts 

forming 20-50% of the grains and between 20 and 90% (average 50%) of these are carbonate 

(Fig. 3.10). As a  consequence of th is large carbonate lithic component the sandstones have 

been termed calc-lithic arenites. Tortonian calc-lithic arenites also contain varying am ounts 

of bioclastic material which include foraminifera, pelmatozoah fragments, shell fragments 

and ostracods. The microfaunal assem blages Eire described in Appendix II.

The TortoniEin succession  has been subdivided into three mciin facies, thin bedded 

sandstones, tabular sandstones and thick bedded sandstones, all of which show  a  range of 

sedimentEiiy structures.

3 .4 .1 Thin Bedded Sandstones

These sandstones form beds typically less than  20cm thick with p lanar bounding surfaces 

lacking flute m arks or other sole structures.

The sandstones are predominEmtly fine grained calc-lithic arenites (Fig. 3.11). Bio

clasts are foraminifera, pelmatozoa and  shell fragments; Analysis (Appendix II) shows tha t 

the Foraminifera are dominated by planktonic forms, with a  few benthonic forms, typified by 

Ciblcides cf. walherstaifi, suggesting th a t the sandstones were deposited in Ein upper bathyal 

environm ent with depths greater th a n  200m.

IntemEilly the sandstones are characterised by low single scours, p lanar lamination.
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small humm ocks, bioturbatlon or a  lack internal structu res. Any com bination of these 

structures may occur in any one bed. In general the thin bedded sandstones form small (less 

than  lm) coarsening- and thickening- up cycles (Fig. 3.13). In these cycles, m arls pass into 

th in  2-3cm  sandstones which may be p lanar lam inated or lack stru c tu res. The p lanar 

lam inated sandstones may give way to thicker 10-20cm sandstone beds which contain low 

angle scours or sm all hum m ocks. These H um m ocky/scoured beds may finally pass into 

planar laminated or structureless bioturbated beds in places. Hummocks in these cycles 

have 10- 15cm am plitudes and consist of convex- and concave-up lamination th a t intersects 

a t low angles. Laminae generally thicken towards the centres of the hummocks. The low 

angle scours are similar to the hum m ocks but only consist of concave-up laminae.

Interbedded m arls also contain bioclasts including foraminifera, pelmatozoa and a  few 

radiolaria, carbonate lithic grains and rare quartz grains in a  carbonate m ud matrix (Fig. 

3.12). The foraminifera assemblage is dominated by planktonic forms typical of open oceanic 

environments.

3.4.2 Tabular Sandstones

This facies is characterised by tabu lar 20cm- lm  thick sandstone beds with planar or gently 

undulating (over 3cm) bounding surfaces. The beds are commonly massive but may contain 

low angle scours, hummocky cross-stratification, planar lamination or may be bioturbated 

(Fig. 3.14). Lithologically the sandstones are calc-lithic arenites with up  to 20% of the clasts 

consisting of Bioclasts which include foraminifera, pelmatozoa, and  shell fragments. The 

m icrofauna of this facies has been analysed (Appendix II) and the assemblage is dominated 

by planktonic foraminifera. Hummocky-cross stratification in th is facies is similar to th a t 

in the thin-bedded facies, except th a t the hummocks have am plitudes of between 50cm and 

1 m. Low angle scours are similar to the hummocky cross-stratification but contain concave- 

up laminae only. S tructures within the sandstones may grade vertically into each other and 

common transitions include p lanar lam ination passing into struc tu re less  sandstones, 

structureless sandstones giving way to humm ocks or bioturbatlon, bioturbatlon giving way 

to p lanar lam ination, and  b io turbatlon  and  hum m ocks changing to scour-dom inated 

horizons.

3.4.3 Thick Bedded Sandstones

This facies is characterised by sandstone beds thicker than  lm  and containing a  range of 

sedim entary structu res. S truc tu res observed include p lanar lam ination, gently dipping 

(< 10°) p lanar lam ination, low angle truncations and  scours, trough cross-stratification, 

hummocky cross-stratification, ripple cross-lamination, convolute lamination and bioturba- 

tion (Fig. 3. 15). Lithologically the sandstones are fine, medium and coarse grained calc-lithic 

arenites th a t may fine upwards. The microfauna of this facies is dominated by ostracods and 

foraminifera. The Ostracods are typified by Gymocytheridea meniscus, Cypridesls gp torosa 

and Cytheridea expansa, which are typical brackish forms (Appendix II). The foraminifera 

are dom inated by near-shore or coasta l benthonic forms such  as Ammonia  gp becarri, 

Elphidtum crispum  and Elphidium Uexcavatum ”. Benthonic forms include Stilostomella,
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Frondicularia and Nonion boueanum  which are more typically associated with infralittoral 

and mid-shelf deposits, but these are present in much smellier num bers than  the near shore 
coastal forms.

The thickest sandstones are dominated by planar and gently dipping planar lamination 

often occurring together (Fig. 3.15). O ther sandstone beds are dom inated by low angle 

scours, trough cross-stratification and hummocky cross-stratification. The trough cross

stratification is formed by troughs 50cm to lm  across. Hummocky cross-stratification and 

the low angle scours are similar to structures observed in the thin bedded and tabular facies, 

except for m uch larger am plitudes of between 75cm and  1.5m. The tops of the beds are 

commonly bioturbated. Common sequences of structu res within th is facies include planar 

lamination passing into inclined planar lamination which gives way to massive sandstones 

(Fig. 3.15). P lanar lam ination may pass upward into structureless and  bioturbated sands 

(Log a t Location 92, Ref. 522 343; Appendix I). Planar lamination, hummocks, scours and 

trough cross-stratification tend to occur together a t the base of the thick-bedded facies, 

immediately above the tabular sandstone facies (Log a t Location 5, Ref. 529 343 and 91, Ref. 

521 348; Appendix I).

3.4.4 Cyclicity Observed in the Tortonian

Overall the Tortonian succession can be split into 3-4 coarsening/thickening up cycles, one 

of which is seen a t Location 5a (Ref. 529 343) (Fig. 3.16). In these cycles, marls pass up into 

th in  bedded sandstones which give way in tu rn  to tabu lar sandstones and finally thick 

bedded sandstones. The th ickness of cycles varies between 6m and  25m, although the 

complete succession is not fully exposed a t any one locality. All three facies types and cycles 

are found exposed in both the allochthonous and autochthonous zones of the Guadalquivir 

Basin fill. However the poor exposure has not allowed the correlation of these cycles across 

the basin.

3.4.5 Facies Interpretation

The Tortonian succession consists of thickening up cycles of intercalated sandstones and 

marls yielding a  m icrofauna th a t indicates a  marine environment of deposition. The cycles 

are characterised by sequences of m arls, m arls with thin sandstones, tabular sandstones 

and thick bedded sandstones.

The thin bedded facies consists of fine grained sandstones containing a  foraminiferal 

assem blage which is associated with upper bathyal and  outer-shelf environm ents. The 

sandstone beds contain planar lamination, low-angle scours and  humm ocks which indicate 

a  high energy environm ent in which unidirectional flows have interacted with the sediment. 

Bioturbatlon is also evident, and this may indicate quieter periods with reduced sedim enta

tion rates and lower flow velocities.

The hum m ocks in th is  facies are  morphologically sim ilar to  hum m ocky cross- 

stratification docum ented from a  wide range of environm ents including rivers, estuaries, 

beach deposits, shallow m arine shelf and  distal shelf deposits (Harms et al., 1975; Walker, 

1983; 1985; S un, 1990; Scott, 1992; Brenchley e t al., 1993). Despite th is range of
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environments, such structures are commonly attributed to the action of storm waves on shelf 

sands, in which high velocity oscillatory flows rework the sedim ent (Walker et al., 1983; 

Brenchley, 1985; Duke eta l., 1991). However, such structu res have also been shown to be 

deposited by either purely unidirectional flows or unidirectional flows with a  combined weak 

oscillatory flow com ponent (Sun, 1990; Myrow & Southard, 1992). The low angle scours in 

the thin bedded facies are similar to low angle cross lamination described by Corbett et al. 

(in press), which is a ttribu ted  to unidirectional flows (Sun, 1990). Hummocky cross- 

stratification and low angle scours have been more fully docum ented by Myrow & Southard 

(1990) who refer to humm ocks as symmetrical ripples and low angle scours as asymmetrical 

ripple forms. They experim entally determ ined the effects of varying com binations of 

oscillatory and unidirectional flow on the production of symmetrical and  asymmetrical ripple 

forms (or hum m ocks and low angle scours) (Fig. 3.17). Smaller hummocks, similar to those 

observed in the thin bedded facies, are attributed to very weak oscillatory flows. Asymmetrical 

ripples or low angle scours are produced by unidirectional flows with only the weakest of 

oscillatory flows taking part in the processes. Using these data it seems likely th a t structures 

in these th in  bedded sandstones were formed by unidirectional flows th a t produced the 

planar lamination, low angle scours and small humm ocks.

The tabu lar sandstone facies consist of fine to medium grained sands whose faunal 

assemblage indicates an outer shelf environment. Low angle scours and hummocky cross

stratification are also present and  are similar to structu res found in the thin bedded facies, 

except th a t they have larger am plitude (50cm - lm). Increasing sizes of sym metrical and  

asymmetrical s truc tu res indicate an  increase in the oscillatory flow com ponent and higher 

orbital velocities (Fig. 3.17; Myro and  Southard, 1990). Within this facies planar lamination 

often grades into low angle scours, hum m ocks and then into bioturbated or structureless 

sands. This transition is typical of sequences docum ented by Myrow & Southard  (1990) in 

which strong unidirectional flows are reduced and give way to oscillatory flows which are 

m aintained or m ay increase. Such  series of planar lamination, hum m ocks/sym m etrical 

ripples and bioturbatlon are typically found in tem pestite deposits (Kreisa, 1981; Aigner, 

1982; Seilacher, 1982; Brenchley, 1985). Tem pestites are density curren ts generated by 

storm action on the shallower parts of the shelf, such currents have been observed in modem 

environm ents and  are known to move sedim ent to depths of 200m  or more (Komar e t al., 

1972; Hickley a t al., 1985). Subsequent and  substan tial reworking of these sedim ents by 

oscillatory currents, generated by th e  lowering of wave base during storm s, can occur a t 

depths of up  to 100m (Cacchione & Drake, 1982; Luteneuer, 1986; Drake & Cacchione, 

1989). The micropalaeontology (Appendix II) indicates th a t the tabu lar sandstones were 

formed in depths less th a n  100m, and  so within the influence of storm  wave base and 

associated oscillatory currents.

An increasing oscillatory com ponent is observed in the transition from the th in  bedded 

sandstones to tabu lar sandstones (Fig. 3.14), reflecting an increase in the influence of storm  

wave base. In the more distal components of tempestites, oscillatory currents may be present 

but unidirectional flow and fall-out from suspension Eire the main m echanism s of deposition 

(Brenchley, 1985). More proximEil deposits show a  greater influence of oscillatory currents.
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Thus, the increasing oscillatory com ponent observed in the lower parts  of the Tortonian 

cycles represents a  transition from distal to more proximal tempestites. This inferred shift 

from distal thin bedded tem pestites to more proximal deposits is also suggested by an 

increasing lithic com ponent in the sandstones, decrease in the percentage of bioclasts 

(Appendix IV) and  an  increase in sandstone th ickness. Such a  shift from thin  bedded 

sandstones to thicker tabu lar sandstones with p lanar lamination, low angle scours and 

humm ocky cross-stratification has been docum ented in tem pestite and  wave-dominated 

cycles in the Ordovician Beach Formation, Bell Island, Newfoundland (Brenchley etal., 1993) 

and these cycles are also thought to signify a shift from distal to more proximal deposits.

Thus it is likely tha t the thin bedded and tabular facies are outer shelf to upper bathyal 

sedim ents th a t have been deposited via storm  induced density currents. The tabular facies 

shows an increase in the influence of oscillatory flows th a t indicates the influence of storm 

wave base, which can only occur at depths of less than  100m. This inferred shallowing is also 

indicated by the micropalaeontological analysis of sam ples from these facies (Appendix II).

The thick bedded facies consists of fine, medium and coarse-grained sands tha t display 

a wide range of structures characteristic of high energy environments. Micropalaeontological 

analysis (Appendix II) places the sandstones in a  proximal, near-shore environment. The 

presence of trough cross-stratification, cross-stratification and mega-ripples indicates the 

influence of strong unidirectional cu rren ts  (Harms e t al., 1975). Hummocky cross- 

stratification and low angle scours with am plitudes of between lm  and 2m, are typical of 

‘classical ‘ hummocky cross-stratified deposits described by (Hamblin & Walker 1979; Dott 

& Bourgeois, 1982; Walker e t al., 1983; Duke e t al., 1991). Symmetrical wave ripples 

(Hummocks) of this scale are thought to have been produced by high velocity orbital currents 

with little or no unidirectional flow component (Fig. 3.17; Myrow & Southard, 1992). Such 

flows are strongly associated with the reworking of shallow marine deposits by oscillatory 

currents reflecting a  wave base lowered during seasonal storm s, Bioturbatlon within the 

sandstones of the thick bedded facies (Fig. 3.16) indicates th a t high energy events were 

separated by ‘quiet periods’.

In shallow near-shore environm ents thick sandstones with a  diverse range of high 

energy structu res are associated with proximal beach environm ents (Clifton et al., 1971; 

Schwartz eta l., 1973; Cant, 1974; Swift, 1975; Howard & Reineck, 1981; McCubbin, 1982). 

In beach environm ents deposits can be split into lower shoreface, transition  zone, mid 

foreshore and back shore (Fig. 3.18).

The lower shoreface is characterised by sands th a t reflect storm  and fair-weather 

conditions (Elliot, 1978 p 162-167) and these are typically dominated by hummocky cross

stratification, trough cross-stratification and tabu lar cross-lamination. Similar structu res 

are observed in thick bedded facies found immediately above the tabu lar sandstone facies 

(Fig. 3.16) and are interpreted as indicating a  shift from outer-mid shelf deposits to proximal 

shallow m arine/lower shoreface deposits.

The transition zone of the shoreface is dominated by breaker su rf and swash (Fig. 3.18) 

and by longshore current bed forms reflecting high energy flow. Deposits of the transition 

zone are dominated by p lanar lam inae and cu rren t lineated beds with occasional ripples
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(Hayes & Kana, 1976; Komar 1976). Thick sandstones observed a t Location 93 (Ref. 521 343) 

(Fig. 3.15) Eire dominated in the lower parts by pl£Ln£ir lam ination with occasional tabu lar 

cross-lctminae Eind ripple cross lamination indicating the migration of dune and ripple scale 

s tructu res. In the mid-Foreshore mega-ripples may occur on the highest energy beaches 

(Clifton e ta l.,  1971; Hawley; 1982).

Internal structu res of the foreshore are limited to low single planar lam ination (2-3°) 

th a t generally dip seaw ard (Thompson, 1937; Hoyt & Weimer, 1963). The thick bedded 

sandstones in the Tortonian (Fig. 3.15) display planar lamination th a t passes into inclined 

plansir lamination. This is interpreted as  a  representing a  shift from the transition zone, 

typified by planar lamination, to foreshore deposits containing inclined p lanar lamination. 

S tructureless ssinds above th is zone may have been deposited in a  back-shore region (Fig. 

3.18) since such zones are known to be devoid of high energy structures.

Thus, the sedimentEiry structu res suid micropEilaeontology (Appendix II) indicate th a t 

the thick bedded facies is a  product of deposition Eind sedim ent reworking th a t has taken 

place in a  near-shore, high energy environment. Sedimentary structures, (Fig. 3.15), indicate 

tha t beach deposits may be present, indicating shoreface, foreshore and back-shore deposits.

The Tortonian succession is chEiracterised by a num ber of thickening up  cycles 

recording the transition from thin bedded facies, into a  tabular facies which pass finally into 

thick bedded facies. Interpretation of these facies indicates tha t the cycles represent repeated 

trEinsitions from distal ou ter shelf to  proximal beach deposits. SimilEir cycles have been 

observed in modem progradational shorelines (Elliot, 1978). Progradation occurs when there 

is a  constan t sedim ent supply, stable sea-level and  low to m oderate subsidence rates 

(Bernard etal., 1962). Repetition of such cycles, as is observed in the Tortonian, occurs when 

there is a  reduction in sedim ent supply, rise in sea-level or increase in subsidence (Fischer, 

1961; Kraft, 1971). On wave-dominated shelves, such  as the TortoniEin shelf, transitions 

from distal tempestites to proximal near-shore deposits, contEiined within upwards coarsen

ing sequences are similar to transitions observed by Howard & Reineck (1981), Clifton eta l., 

(1971) and Davidson & Greenwood (1974, 1976). A striking example of th is is the Ju rassic  

Femie-Kootenay Formation, Alberta, C anada (Fig. 3.19, Hamblin & Walker, 1979). In this 

succession tem pestites pass into off-shore tab u la r ssm dstones th a t Eire dom inated by 

hum m ocky cross-stratification and finally into shoreface and  foreshore deposits. The 

Guadalquivir Tortonian succession is remarkably similEir to cycles observed in the Femie- 

Kootenay Formation which provides a  good model for interpreting depositional cycles found 

in the Guadalquivir Basin TortoniEin Shelf succession.

3 .5  Lower Messinian Facies Analysis

The largest outcrop and  best exposure of the Lower M essinian is in the autochthonous 

portion of the basin  fill. Sm all ou tcrops of Messinisin rocks Eire Eilso p resen t in the 

allochthonous portion of the basin fill which have lithologies and facies com parable with 

those in the autochthonous portion. The Lower Messinian is less than  150m (Rold&n-Garcia, 

1985b) and  is chEiracterised by m arls, csilc-lithic Eirenites, bioclastic grEiinstones and  

conglomerates. It has been split into five distinct facies types; marls, thin bedded calc-lithic
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arenites, calc-lithic arenites with high energy structures, bioclastic grainstones and con

glomerates. The conglomerates can be subdivided into m atrix-supported channel-fills and 
clast-supported groups.

3.5.1 Marls

The marls are carbonate m uds with scattered quartz grains and bioclasts. The bioclasts are 

dominated by foraminifera, with rare pelmatozoan and shell fragments. The foraminiferal 

assemblage is characterised by both shallow-nearshore and open-m arine shelf benthonic 

forms and indicates a  mixing of faunas from different environments.

3.5.2 Thin Bedded Calc-Lithic Arenites

This facies is typified by planar-bounded calc-lithic arenite beds less th a n  20cm thick, 

intercalated with marls (Fig. 3.20). Sandstone beds in this facies lack internal stratification 

or other sedimentary structures. The calc lithic arenites consist of quartz grains, lithic grains 

and bioclasts in a fine grained carbonate m atrix (Fig. 3.21). They Eire generally matrix- 

supported with an average of 40% of the rock m atrix forming. Bioclasts can form up to 28% 

of the grains, with an  average of 12%. They are dom inated by foraminifera, with some 

ostracods present. The rem aining c lasts Eire lithic fragm ents, up  to 90% of which Eire 

CEirbonate sedim entary lithics (Appendix IV). O stracods in this facies (Appendix II) are 

dominated by Cyprideis gp torsa, Cytheridea cf. Expansa  and Cyamocytheridea meniscus, 

typicEil of brackish environm ents. The foraminiferEil assem blage contsdns Ammonia gp. 

hecarri, Elphidium crispum  and  Elphldlum Uexcavatum n which Eire also Eissociated with 

brackish environments, bu t in addition species more typical of open shelf environm ents are 

also present, Eilthough in sm aller num bers.

The thin bedded facies often forms smEill 20- 50 cm fining up cycles (Fig. 3.22). These 

are characterised by sharp based celIc-lithic arenites containing less than 40% marl matrix, 

passing up into sandy marls and finally into fine grEiined marls

3.5.3 Calc-Lithic Arenites

This facies is characterised by medium to coarse grained CEilc-lithic arenites with less than  

10% m arl matrix. Beds in th is facies range from 20cm to several metres thick. Lithic clasts 

form 20% -50% of the clasts with monocrystEilline qusirtz making up  the rem ainder (Fig. 

3.23). Up to 90% of the lithic components are sedimentary grains and more than  80% of these 

are CEirbonate. The arenites commonly display a  range of structures, including mega-ripples 

bed forms, trough cross-stratification, tabu lar cross-stratification, humm ocky cross-strati

fication and  low angle scours.

Mega-ripples bed forms are best exposed a t location 64, near Montilla (Foldout Map 2, 

Ref. 514 330) where they have been studied in some detEiil (Fig. 3.24). In outcrop they have 

wavelengths of between 1.5m and 6m. The foresets are commonly draped by m arls tha t yield 

m arine microfossils. In places the mega-ripples are scoured (Fig. 3.24) Eind the scoured 

surfaces are also filled by marls. Lenticular ssmdstones with erosional bounding surfaces are 

intercEilated with the mega-ripples. Within the mega-ripples, foresets Eire defined by m arl/
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mud drapes which are sometimes in closely spaced pairs or bundles (Fig. 3.24). Lower angle 

m arl/m ud-draped  se t boundaries separate  mega-ripples and  tru n ca te  the high angle 

foresets. The m icrofauna from mega-rippled sandstones is dominated by foraminifera and 

ostracods. The foraminiferal assemblage is dominated by Ammonia gp. Becarri, a  near shore/ 

brackish  form, bu t also con tains Nodosaria which is more typical of infralittoral and 

circalittoral deposits. The ostracod assemblage is dominated by open shelf forms such  as 

Aurila and Xestoleberis, bu t in contrast to the foraminiferal assemblage the brackish forms 

are absent. Overall, the microfaunal assem blage indicates derivation from both shallow 

marine shelf and nearshore/b rack ish  environm ents (Appendix II).

O ther outcrops of calc-lithic arenites, such as those a t location 97 & 65 (Foldout Map

2, Refs. 522 351 & 517 332) contain trough cross-stratification, tabular cross-stratification, 

hum m ocky cross-stratification, low angle scours and  bioturbated horizons (Fig. 3.25). 

Troughs are 50cm- lm  long and up to 50cm deep. Foresets often dip in opposite directions, 

forming herringbone cross-stratification in se ts 40-50cm  high. The hum m ocky cross

stratification consists of convex-up Eind concave-up lsiminae intersecting a t low singles (10- 

15°). The lam inae tend to th icken tow ards the centres of the hum m ocks which have 

am plitudes l-2m . Low angle scours Eire similar to the humm ocks, except they consist of 

concave-up laminae only. The micropalaeontological analysis (Appendix II) of sam ples taken 

from th is facies has revealed a  diverse assem blage of ostracods and foraminifera. The 

ostracods are dominated by Cytheridea expansa, Cytheridea gp torosa and Cyamocytheridea 

meniscus, which Eire all brackish forms. In addition, however, ostracods more typical of open 

shelf environm ents (Nonurocythereis, semlnulum  and  Nonurocytheris laevigata) and  of 

ou te rshe lf/upper bathyal environm ents (Aurilla) are also p resen t Eilthough in smsdler 

num bers than  the brackish forms. Ilocypris was also found in some of the samples, Eind this 

is usuEilly associated  with freshw ater. The foraminiferal assem blage (Appendix II) is 

dominated by planktonic forms, bu t benthonic forms such as becarri, Bolivina, Ciblcides Eind 

Nodosaria indicate a  mixture of upper-bathyal, shelf and near-shore varieties.

3.5.4 Bloclastic Grainstones

Lithologies in th is facies Eire dom inated by bioclasts Eind lithic grains in a  carbonate mud 

m atrix bu t are always clast supported (Fig. 3.26). The rocks are poorly sorted and  bioclasts 

consist of foraminifera, bryozoa, echinoderm  fragments, shell fragm ents and calcareous 

Eilgae. The last are dom inated by the encrusting forms Lithothamnium, Lithophylium , and  

Archaeolithothamnium.

3.5.5 Conglomerates

Two types of conglomerate are recognised in the Lower M essinian deposits of the Eilloch- 

thonous and  autochthonous portions of the Guadalquivir Basin fill, a  m atrix-supported 

m arine conglomerate Euid a  clsist supported conglomerate.

The matrix-supported conglomerate, typified by exposure a t location 99 (Foldout map

3, Ref. 510 344), is dom inated by lim estone, csilc-lithic Eirenite and chert clasts. The 

conglomerate forms a lenticulEir body with an erosional bEise cutting into bedded CEilc-lithic
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arenites. The m argins of the body interfinger with calc-lithic arenite (Fig. 3.27) and 

conglomerate beds thin and pinch ou t away from the main body. The m atrix-supported 

conglomerate, a t location 99 (Ref. 510 349), is a  maximum of 2m thick, and  is overlain by 

25cm of m arls which are followed by bioclastic grainstones.

The clast-supported-conglom erate, dom inated by lim estone clasts, is extensively 

exposed in a  disused quarry a t location 9 (Foldout Map 2, Ref. 522 340). The conglomerate 

at th is locality can be subdivided into two separate units (Fig. 3.28). The lower unit has a  

m arl m atrix th a t yields a  m arine microfauna. This is overlain by a  conglomerate with a  

sandier matrix lacking any marine microfauna. The two conglomerates are separated by a 

50cm marl which locally contains rootlets. The lower conglomerate contains large erosional 

truncations (Fig. 3.29) tha t forming mega trough like structures. Troughs are up  to 15m deep 

and 20m -60m  wide. The m arl m atrix of th is lower un it contains both foraminifera and 

ostracod faunas tha t indicate a  m arine influence.

3.5.6 Facies Interpretation

In general the faunal assemblages of the Lower Messinian deposits indicate a  strong brackish 

influence with a few sam ples yielding freshwater fauna. The foraminiferal, and ostracod 

assem blages imply a  protected, brackish, shallow-water environment, and the presence of 

conglomerates with rootleted horizons suggests a  near coastal situation. However, microfossils 

tha t indicate a protected brackish environment were also found in sandstones containing 

high energy structu res typical of open shelf environm ents. Most sam ples with brackish 

faunas were also found to contain m id-shelf and  outer-shelf faunas. Consequently, it 

appears th a t both brackish and open-shelf sedim ents and faunas Eire being reworked and 

mixed. Before such processes can be considered the facies m ust be interpreted individuEilly

Calc-lithic arenites similEir to those in the TortoniEin contsiin structures such  as trough 

cross-stratification, tabular cross-stratification Eind hummocky cross-stratification typical 

of high energy regimes. In places tabulsir cross-stratification sets form herringbone cross 

s tra ta  indicating bi-direction£il curren t flows. Such patterns of changes in flow direction are 

commonly Eissociated with tidal currents. Large scsile trough cross-stratiflcation indicates 

the migration of lunate ripples and  dunes. Large simplitude hummocky cross-stratification, 

also occurs within these ‘high energy* deposits. Symmetrical ripples or hum m ocks of this 

scsile Eire produced in oscillatory flows, with high orbitEil velocities and have little or no 

unidirectional flow component (Fig. 3.17; Myrow & Southard, 1991). Such oscillatory flows 

are m ost commonly produced by the lowering of wave base during storm s which rework shelf 

sedim ents (Hamblin & Walker 1979; Dott & Bourgeois, 1982; Walker e ta l.,  1983; Duke et 

al., 1991). Thus despite the faunal indications, the sandstones were deposited on an  open 

storm  dominated shallow m arine shelf.

At one locality (Fig. 3.24) stacked mega-ripples are present in calc-lithic arenite rocks 

with a dominEmtly open-shelf faunEil sissemblage. The mega-ripples are chEiracterised by 

bundled mud-draped foresets and low angle set bounding surfaces. Such structures are 

chsiracteristic, Eilthough not definitive, features of tidEil deposits (de Raaf & Boersma, 1971; 

Reineck & Singh, 1973 p97-102). Mud drapes in tidal deposits are associated with deposition
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of suspended sediment during slack water, between ebb and flow currents , and paired mud 

drapes together with their changes in frequency are attributed to ebb-flood and neap-spring 

cycles (Allen, 1982). Low angle truncation surfaces, term ed ‘reactivation surfaces’ are the 

product of asymmetrical ebb-flood cycles (Allen, 1980) (Fig. 3.30). During the dom inant flow 

stage, which may either be the ebb or flood stage, mega-ripples migrate in the direction of flow. 

During the reversed, subordinate, flow if the current is not strong enough to produce ripple 

migration the ripple face may be eroded. Reactivation surfaces form a t a  lower angle th an  

the foresets and so trunca te  them. During slack water, suspended m ud particles are 

deposited on the reactivation surfaces. In the marine environment mega-ripples often form 

on the surfaces of tidal sand-ridges with wavelengths 10 to 15 km -CReineck, 1963; Houbolt, 

1968). However, in open shelf settings, mud drapes and low-angle erosion surfaces may not 

necessarily reflect tidal periodicities, they are ju s t as likely to be formed by a  combination of 

abnormally high suspended sedim ent concentration and low current velocities over a  longer 

period (McCave, 1970). Such conditions may immediately follow a  storm. Further evidence 

of storm  activity is reflected in the scours and lenticular sandstones of the mega-rippled 

deposits of the Lower Messinian. These features indicate erosion followed by m ud deposition 

from suspension, a  characteristic of storm  cycles (Brenchley e t al., 1993). Despite th is 

ambiguity the herringbone cross-bedding clearly indicates reversals of flow directions as in 

tidal currents. When features are taken together it seems likely th a t the Lower Messinian 

sedim ents were influenced by tidal currents.

Thus it seem s th a t s tru c tu res  found within the calc-lithic arenites do indicate the 

deposition of sedim ents on a  shallow m arine shelf, during the Lower M essinian. These 

sedim ents were reworked by storm  and tidal cu rren ts, producing a  complex series of 

sedim entary structures.

Poorly-sorted bioclastic grainstones are typically found in shoals or patch reef 

environments. ‘High energy’ skeletal shoals are found on bank margins and intercalated with 

mid shelf deposits. Skeletal shoals fringing the bank margin on the sea-ward side, reflect 

a  high energy zone of wave shoaling (Wilson, 1975). Shoals developed in Pennsylvanian and 

Wolfcampian limestones in West Texas are interpreted as shelf deposits worked into patches 

by wave shoaling processes (Kerr, 1977). Both bank margin shoals and mid shelf shoals form 

in shallow  water, high energy zones and  are characterised  by bioclastic grainstones, 

waekestones and packstones with foraminifera, echinoderms, bryozoa, calcareous algae and 

shell fragments in varying proportions.

Deposits th a t share som e characteristics of shoal deposits occur in patch  reef 

environments. Facies sequences th a t record the growth of patch reef m ounds can be split 

into three phases (Wilson, 1975). Bioclastic lime m uds with thin skeletal sands are overlain 

by lime m uds. These pass upw ards into a  well bedded mound cap containing encrusting 

algae and  bioclastic debris including pelmatozoa, bryozoa and benthonic foraminifera. 

Facies sequences in the Lower Messinian a t locations 44 (Ref. 514 325) and 61 (Ref. 506 334) 

(Appendix I) are similar to these patch reef facies sequences. Marls with th in  calc-lithic 

arenite and bioclastic grainstones beds pass into algal-llaminated and bioclastic grainstones. 

Because the skeletal shoal and patch reef cap deposits are so similar it has been impossible
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to distinguish between the two environments. There is no evidence for bioherm s and the 

bioclastic grainstones lack the internal stratification typical of high energy shoals. However, 

both types of environm ents Eire found in shsillow waters and generally occur in m id-shelf 
positions.

Thus the Lower Messinism deposits reflect a  shcdlow msirine shelf th a t w eis  influenced 

by both wave and  tidal induced cu rren ts  and  on which skeletal shoEds or patch  reefs 

developed. These open-shelf deposits were sepEtrated from more proxfrnsil, lagoonEil and 

brackish environm ents, implied by the faunal Eissemblage. Such environm ents are usually 

separated by a  coralline barrier reef or by elongate sandbsirs tha t develop on the shelf margin. 

BeiII (1967) observed tha t tidal sandbelts, in the Baham a Banks, separate open shelf margin 

deposits from lagoonal deposits. Such tidal bar belts may extend for up  to lOOKm Eilong the 

shelf msirgin (Newell, 1955; Dravis, 1977; Palmer, 1979). Mega-ripples found in Lower 

Messinian rocks of the Guadalquivir Basin may have formed psirt of ju s t  such a  tidal bsir belt, 

tha t separated high energy deposits from lagoonal deposits. The skeletal sands, sdso found 

in the Lower Messinian, may have formed as shoals on the sea-ward side of the tidal bars, 

although mega-ripples Eind skeletEil grainstones Eire not found together.

Finally, the conglomerates provide im portant evidence of Lower Messinism depositionEil 

environments.

The clast supported conglomerates form a  facies sequence in which conglomerates 

containing marine microfossils give way to conglomerates with a  bsirren sandy m atrix . A 

rootlet horizon separates the two units providing evidence of sub-aerial exposure. Overall the 

facies sequence represents a  transition from a  m arine to a  sub-aeriEil conglomerate and so 

places the environm ent of deposition in coastal waters. Conglomerates within coastsil fan 

deposits have been docum ented from the Devonian of Norway (Steel & Gloppen, 1980) Eind 

the Miocene of Turkey (HaywEird, 1983). Cosistal fans form where confined streEuns emerge 

into open coastal w aters (Daily e ta l., 1980) and indicate th a t fluviEil system s were emerging 

onto a shelf. Alluvial fans th a t prograde into seas, generally emerge from a  coast th a t has 

a  high relief (FreidmEm & Ssmders, 1978; Gvirtman & Buchbinder, 1978).

Large erosional truncations in the mEirine conglomerate (Fig. 3.29) may record shifting 

fan lobes similar to those recorded by Collinson (1978). Hummocky lobes in f)ord fan deltas 

of British Colum bia (Prior & Bom hold, 1988) are formed by coarse-grained depositional 

system s th a t develop close to the sedim ent source. However these lobes are rarely preserved 

and the erosionEil truncations Eire more likely to be products of chutes and  channels radiating 

across the lobes. The transport of coarse stream  debris across a fan produces chutes and 

channels which are best developed on the lower segm ent of the cone surface which is often 

subm arine (Prior & Bomhold, 1988) These chutes are generally filled by cobbles th a t are of 

a  size compEuable to those in the Lower Messinism conglomerates.

The m atrix-supported conglomerates are contained within a  lenticular body with an  

erosional base cutting into marine calc-lithic arenites. This body has a  channel like form 

Eind is overlain by a  th in  mEirls and skeletal calc-lithic arenites (Fig. 3.27). Thus a  channel 

has been cut into the shelf deposits. Because the conglomerate interfingers with calc-lithic 

Eirenites of m arine origin, the channel itself m ust have been part of a  subm arine channel
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system. Subm arine channels may form as part of a shelf by-pass system conducting coastal 

deposits to the shelf edge and often term inating in subm arine canyon or shelf slope-break 

deposits. Such channels can be up to 50Km long and examples are recorded in the Cambro- 

Ordovician of Alberta, C anada (Stow, 1978), similar channels are noted by W hittaker (1974).

Overall the Lower M essinian represents a  combination of fluvial/coastal fan, lagoonal 

and open-marine shelf deposits. The lagoonal and open shelf environment may have been 

separated by a  tidal bars tha t developed on the shelf margin. Any model m ust be provide 

a sheltered lagoonal environm ent th a t contains brackish w ater and  yet still allow the 

movement of brackish faunas onto the open shelf.

Lithic fragments in the arenites are dominated by sedim entaiy lithics (Chapter 4) which 

can only have been produced by the denudation of limestones in a  sub-aerial environment. 

They have been transported onto the shelf and reworked by wave/tidal currents. An obvious 

conduit for this detritus is through the coastal fan delta in the Lower Messinian. Palaeocur- 

rents (Fig. 3.31) suggest tha t the fan was channelling detritus to the west, placing the source, 

and th u s  the coastline, to the east. However this may only represent one lobe of a  fan, and 

fans commonly have a  splay of lobes which may give palaeocurrents th a t vary over 180°.

The coastal fan may have been the proximal part of a  larger fan delta th a t prograded 

out on to the shelf. Delta system s include both lagoonal and m arsh environm ents (Elliot, 

1978, p l20) in inter-distributary areas. If a  delta was being built on the Lower Messinian 

shelf then the delta-front would have been subject to both wave and tide processes (as the 

shelf is known to have been). Modem examples of w ave/tide dom inated deltas are the 

Burdekin, Irrawaddy, Mekong, Niger and Chinoco deltas (Allen, 1965). In such  deltas linear 

shore-parallel bars develop on the delta front in response to the expansion of tidal currents 

as they pass from the confines of channels onto the open shelf. These barriers protect a  

brackish lagoonal environm ent and separate it from the wave-dominated shelf (Oomkens, 

1974). Bars are not continuous, bu t are breached by tidal channels which allow brackish 

water and sedim ent from the lagoons to be transported to the open shelf (Oomkens, 1974). 

The sedim ent ‘flushing* processes would have been enhanced by the constant shifting of the 

channels and reworking of the barrier bar and inter-distributary lagoonal deposits. During 

major storm s sedim ent and  w ater from the open shelf would have been carried over the 

barrier bar or along the delta channel to form wash-over deposits containing open shelf 

m arine faunas. The processes of sedim ent flushing and storm  washover were ultimately 

responsible for producing the mixed faunal assemblage now observed in the Lower Messinian 

rocks.

3 .6  Upper M essinian Facies Analysis

Upper Messinian rocks are best exposed in the autochthonous portion of the Guadalquivir 

Basin fill, bu t are also found in the allochthon where they form part of the ‘olistostrome’ 

complex re-interpreted as  a  melange associated with late Miocene thrusting (Chapter 2). In 

the autochthon the Upper M essinian is a  m axim um  of 50m  thick, and is thought to be
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The succession is characterised by marls calc-lithic arenites and conglomerates, t  our 

facies are recognised, fine to coarse grained calc-iithic arenites, calc-iithic arenites with thin 

conglomerates, grey and red marls with rootlets and conglomerates. Microfossils are absent.

3.6.1 Calc-Lithlc Arenites.

This facies is characterised by fine-medium-coarse grained calc-lithic arenites. These are 

composed of monociystalline quartz (60-80%) and lithic grains (20-40%) in a  m arl matrix. 

The lithic com ponent of the arenites is dominated by sedim entary fragments (80-90%) of 

which 50-70% are marl. M etamorphic grains account for less than  10% of the total lithic 

population. The rocks contain cross-stratification, planar lamination, and low angle scours. 

Tabular cross-stratification may display asymptotic bases. The foresets are often picked out 

by drapes of carbonaceous material (Fig. 3.32) or by lines of small pebbles, which define sets 

5 -30cm thick. Low angle scours with wavelengths of 5-20cm are up  to 10cm deep and are 

often filled by coarse calc-lithic arenites.

3.6.2 Calc-Lithic Arenites With Thin Pebble Beds

Commonly pebble beds are intercalated with the calc-lithic arenites (Fig. 3.33) and range 

from single pebble to several pebble thickness. These are laterally continuous for 15-30m,. 

Pebbles are often imbricated and are commonly associated with ripple cross-lam ination in 

the arenites.

3.6.3 Grey/Red Marts With Rootlets

Colour stratified m arls a t location 46 (Foldout Map 2, Ref. 511 338) are intercalated with 

conglomerates and calc-lithic arenites (Fig 3.34). The upper portions of the m arls commonly 

contain rootlets and may contain carbonate nodules. The most common colour variation in 

stratification is red marls passing into mottled dark grey/light grey marls and finally into light 

grey m arls which may contain rootlets and carbonaceous laminations.

3.6.4 Conglomerates

This facies is typified by pebble and cobble sized clasts (0.1-3.2cm) in a  calc-lithic arenite 

matrix. The clasts may be rounded to sub-angular bu t are mostly rounded. They are 

dominated by quartzite, limestone and chert with a  few calc-lithic arenite and metamorphic 

clasts present (A full clast survey is given in Appendix IV). The conglomerates Eire contained 

within bedded units with erosional bases, clasts are commonly imbricate and  form cross- 

stratification (Fig. 3.35). The cross-strata form sets tha t are 5 -50cm thick and yield bi-modal 

current directions. Coarsening-upward units range from coarse grained calc-lithic arenites 

to cobble sized clasts (Fig. 3.36). A few fining upward units are also present (Fig. 3.34).

In places the conglom erates are m atrix  supported, bu t these conglom erates also 

contain cross-strata yielding bi-modal curren t directions

3.6.5 Facies Associations and Distributions
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The logs from locations 46 (Ref. 511 338) and 47 (Ref. 510 340), given in Appendix I and

Figures 3.34 & 3.36, display the typical vertical tacies distributions of the Upper Messinian 

succession. The calc-lithic arenites and conglomerates form both coarsening-up and fining- 

up sequences and the conglomerate beds (Fig. 3.37) almost always have erosional bases. The 

calc-lithic aren ites contain ing ripple cross-lam ination, tab u la r cross-lam ination  and  

carbonaceous m aterial are often associated with th in  pebble horizons and coarse grained 

sandstone beds,. The marls almost always show a  vertical colour stratification sequence with 

red m arls overlain by grey marls, with a  gradational contact between the two.

3.6.6 Facies Interpretation

The Upper Messinian rocks lack the microfauna typical of the underlying succession, and the 

evidence of rootlets and  carbonaceous m aterial suggests th a t the conglom erates were 

deposited in a  sub-aerial environment. The colour stratification in the m arls is similar to 

stratification in palaeosols of the Eocene Willwood Formation In the Big Horn Basin. The 

colour-stratified m arls are interpreted as palaeosols considered to have developed on the 

overbank deposits of a  tluvial system  (Krauss & Brown, 1988). The colour stratification is 

evidence of pedogenesis, the upper grey horizon reflecting the concentration of organic m atter 

and the red colouration the concentration of Fe sesquioxides below. Comparison with the 

Willwood Formation suggests th a t the U pper Messinian rocks contain tairly m ature palaeosols 

and this m ust indicate tha t there was a  substantial period of sub-aerial exposure during the 

Upper Messinian.

Because the palaeosols are intercalated with conglomerates, the conglomerates are 

also interpreted as having been deposited in a  sub-aerial environment. S tructu res in the 

conglomerates such as cross-stratification indicate cu rren t deposition and the erosional 

bases indicate deposition as part of a  channelised fluvial system. Coarse grained conglom

erates th a t are intercalated with rocks th a t show evidence for subaerial exposure, are most 

commonly associated with fluvial braid-plain system s (Collinson, 1978).

Fluvial braid plain deposits can  be divided into channels an d  bars th a t produce 

horizontally bedded imbricate gravel deposits th a t may appear massive where the texture is 

coarse and uniform (Boothroyd & Ashley, 1975; Church & Gilbert, 1975; Rust 1972, 1975). 

The channels are subject to the fastest flowing currents and consequentially th is is where 

the largest clasts are im bricate (Rust 1972b). Numerous low sinuosity channels develop 

across the braid plain, and channel switching leads to cycles of channel abandonm ent and 

channel re-activation. Where channels Eire abandoned they become filled by sand, Eind the 

gravel floor is draped by ssmdy sedim ent which migrates during deposition eis ripples and 

dunes (Williams & Rust, 1969).

Erosionally based conglomerates th a t fine upwards (Fig. 3.37) were probably deposited 

in channels. The coarse grained deposits were deposited on the floors of eroded channels and 

subsequent abandonm ent led to the deposition of finer sedim ent resulting in the fining up  

cycles. Ultimately, if the channel w e is  not reactivated pedogenesis may have occurred, 

producing palaeosols and rootlets

Channels in braided plain system s are complemented by bars dom inated by coarse
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clastic deposition. Bars may be either longitudinal or transverse with respect to the channel 

axis. Both types of bar are characterised by coarsening up sequences and commonly contain 

cross-stratification (Ore, 1964; Bluck, 1976 ; Bluck, 1982).

In longitudinal bars, the coarse clasts are segregated as thin gravel sheets (Boothroyd 

& Ashley, 1975) and imbricate gravels form with the long axes of the clasts transverse to the 

current (McDonald &Baneijee, 1971, Boothroyd & Ashley, 1975). In longitudinal bars such 

imbrication tends to be unidirectional and is best developed a t the heads of the bars (Bluck, 

1974 ).

Transverse bars tend to produce extensive sets of cross-bedding as  they migrate 

downstream (Ore, 1964; Smith, 1970). Such cross-bedding can be produced in any one of 

four ways; (i) migration of small deltas of sand and gravel on the bar front, (ii) migration of 

mega-ripples in channels cu t through the bar, (iii) migration of sand ripples on the bar top 

and  (iv) the migration of the steep m argins of the bar (Bluck 1974). The orientations of 

foresets and of long axes of imbricated clasts is much more variable than  in longitudinal bars 

(Bluck, 1974) and the cross-stra ta  produced by the accreting margin of bar are the most 

variable of the cross-strata types. In modem deposits the large cross-strata of bar margins 

tend to dip away from the main channel (Bluck, 1974).

The Upper Messinian deposits contain coarsening up sequences of conglomerates (Fig.

3.37) with imbrication and cross-strata tha t is unidirectional in some beds and bi-directional 

in others. From the above discussion, the conglomerates can be interpreted as the products 

of deposition within m igrating bars. There is evidence for both transverse  bars and 

longitudinal bar deposits. Longitudinal bars are represented by segregated sands and 

conglom erates with unidirectional im brication orientations and no large cross-strata , 

transverse bars by thicker conglomerates containing cross-strata with variable orientations.

Palaeocurrents have been m easured from both cross-strata and imbricated clasts (Fig.

3.38). The cross-strata in the bars show the greatest variability while the imbricated clasts 

give a  more consistent palaeocurrent direction. Palaeocurrents derived from im bricated 

clasts appear to be norm al to those derived from cross-strata. This is consistent with the 

models of Ore (1964) and  Bluck (1974; 1976) who dem onstrated  th a t cro ss-stra ta  in 

transverse bars tend to be variable and dip away from the main channel. Imbrication is best 

developed in channels and  longitudinal bars and in m odem  system s these give the m ost 

reliable palaeocurrent directions (Bluck, 1974; 1976). Thus, in the  Upper M essinian the 

cross-strata are products of transverse bars whose margins migrated away from the channels 

while imbrication reflects curren ts acting on channel floors and on longitudinal bar fronts. 

Analysis of the imbricated clasts (Fig. 3.38) indicates th a t the stream s flowed from the SW 

to the NE.

In conclusion, during the Upper Messinian the floor of the Guadalquivir Basin in the 

Baena-Montilla region was sub-aerially exposed. A braided fluvial plain developed th a t 

carried coarse clastic material from the SW to the NW, indicating a  source which m ust have 

been in the External Zones. The nature of the conglomerates indicates th a t the hinterland 

feeding the braid-plain m ust have had some considerable relief. The clast compositions and 

palaeocurrents Eire more fully discussed in Chapter 4.
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3 .7  Summary o f the Palaeoenvironm ental 

Evolution o f the Guadalquivir basin

The Miocene Guadalquivir Basin succession is a  progradational sequence in which there is 

a  shift from an open marine seaway in the Lower Miocene to a  terrestrial fluvial system in the 

Upper Messinian. A bathymetric curve illustrating th is shift can be constructed from both 

facies interpretations and micropalaeontological analysis (Fig. 3.39). The Lower Miocene was 

deposited a t bathyal depths (200-800m). This is limited by an  unconformity and  deposition 

at the beginning of the Tortonian marks a  major shift to shallow-shelf depths (<200m). During 

the Tortonian the basin experienced rapid changes in water depth, fluctuating between outer- 

shelf and near-shore environm ents. During the Lower Miocene a  mid-shelf to near-shore 

environment was established in the Baena-Montilla area and deposition became influenced 

by delta incursion and brackish waters. In the Upper M essinian there was another major 

shift of sea level, leading to local sub-aerial exposure and the establishm ent of a  fluvial braid 

plain. From the bathymetric curve (Fig. 3.39) it can be seen that, overall, the Miocene 

Guadalquivir Basin sequence reflects a  relative sea-level fall. This correlates with the general 

trends in global sea-level during the Miocene (Fig. 2.11) (Haq e ta L, 1987), which led to the 

M editerranean Messinian Salinity Crisis.

From facies interpretation, micropalaeontology and inferred sea-level change record 

the palaeoenvironmental evolution of the Guadalquivir Basin can sum m arised as a series of 

block diagram s (Figs. 3.40-3.43):

3 .7 .1 Lower Miocene Environment

During the Lower Miocene the Guadalquivir Basin was dominated by an open seaway (Fig. 

3.40) characterised by the deposition of pelagic biogenic detritus from the water column and 

fine grained terrigenous d e tritu s  via surface cu rren ts. The sea  supported  a  diverse 

community of foraminifera, radiolaria and  diatoms which bloomed periodically. During the 

Mid Miocene tim es the sea-floor was disrupted by the deposition of debrites the formation 

which may have been triggered by the onset of the sea-level fall th a t generated the Tortonian 

unconformity.

3.7.2 Tortonian Environments

The Tortonian was dominated by the deposition and reworking of clastic m aterial on a  storm- 

dom inated shelf fringed by coastline beach deposits (Fig. 3.41). Periodic storm s induced 

density curren ts th a t deposited sands in w aters on the outer m argins of the  shelf. The 

Tortonian seaway was typified by a  fluctuating sea-level which caused periodic progradation 

of the shoreline followed by rapid flooding, leading to  the formation of thickening and 

coarsening up  cycles. The relative sea-level changes could have been brought about by 

fluctuating sedim ent supply, minor fluctuations in lobal sea-level or tectonic activity in the 

Betic Orogen. The base of the Tortonian succession has been interpreted to be a  product of 

a major sea-level fall tha t was possibly amplified by tectonism in the Betics (Chapter 2, section 

2.7). The cycles within the Tortonian represent smaller higher frequency fluctuations which
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are not usually associated with tectonism or major eustatic changes. It is more likely tha t 

these minor fluctuations are controlled by a  fluctuating sedim ent supply or very minor 

changes in the globed sea-level curve.

3.7.3 Lower Messinian Environment

During the Lower Messinian a  delta was built onto a storm /tide dominated shelf (Fig. 3.42). 

The delta deposits formed in terdistributaiy  bars separating brackish pools from the open 

shelf. Sedim ent was transported  onto the shelf via tidal channels which also acted as a  

conduit for the transport of brackish faunas. In places skeletal debris was reworked into 

shoals which formed on the open shelf or on bar margins. Sediments were also transported 

from the open shelf into the brackish pools, probably as wash over deposits during storm s 

bu t perhaps also via tidal channels which breached interdistributary bars.

3.7.4 Upper Messinian Environment

The Upper Messinian was m arked by a  major shift of the coastline basin ward, resulting in 

sub-aerial exposure of the shelf (Fig. 3.43). Alluvial ferns fed a  braid plain dom inated by 

anastom osing low sinuosity channels and bars th a t conducted coarse grained detritus from 

the hinterland to the coastline.

3 .8  Palaeogeography o f the M iocene Guadalquivir Basin

Using the environmental interpretations it is possible to construct a generalised palaeoge

ography for the Miocene G uadalquivir basin. However, before th is can be assessed  the 

configuration of the shelf and position of the coastline m ust be determined.

Broadly speaking a  depositional margin can fall in one of two categories, a  shelf with 

a  marginal break or a ram p margin (Fig. 3.44). Shelf break margins and ram p margins have 

been reviewed by Van Wagoner et al. (1990) who devised a  set of criteria for differentiating 

the two types:

3.8.1 Shelf Break Margin 

A shelf break margin is characterised by

1. well defined shelf, slope and basin floor topography;

2. shelf dips less than  0.5°, slopes of 4 -6°, with 10° dips along sub-m arine canyon 

walls ;

3. a  relatively ab rup t shelf-break separating low-angle shelf deposits from m uch 

more steeply dipping slope deposits ;

4. a  relatively ab rup t transition  from shallow water into m uch deeper water;

5. Incision in response to  sea-level fall below the depositional-shoreline break if 

subm arine canyons form; and

6 . probable deposition of basin-floor subm arine fans and slope fans
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3.8.2 Ramp Margins

Ramp margins are characterised by

1. uniform, low angle dips of less them 1° with m ost dips less th an  0.5°

2 . no abrupt changes in gradient separating relatively low dips from m uch steeper 

dips;

3. no abrupt changes in water depth from shallow water to m uch deeper water;

4. Incision to, but not below lowstand shoreline in response to a  relative falls in sea- 

level and;

6 . deposition of lowstand deltas and  other shoreline sandstones in response to sea- 

level fall (basin floor subm arine fans and slope fans unlikely to be deposited on the 

ram p margin).

In the Miocene Guadalquivir Basin succession we have evidence for deep-water pelagic 

deposits, in the Lower Miocene and shallow shelf deposits from the Tortonian onwards. There 

is no gradational change between these and they are never found together within coarsening 

up cycles. The above criteria suggest th a t there is shelf break separating the deep water 

deposits from shallow water deposits. There is also evidence for incision during the Mid 

Miocene in the form of debrite deposits. The debrites are intercalated with the deep water 

deposits and so incision m ust have occurred below depositional shoreline break, at or below 

the shelf break. In conclusion it appears th a t the evidence points strongly to the Miocene 

Guadalquivir Basin having a  shelf break margin as opposed to a  ram p style margin.

The relative position of the coastline can be determined by considering the palaeocur

rent data  and provenance indicators (Chapter 4). Palaeocurrent data  from the braided stream  

deposits in the upper Messinian indicate th a t stream s flowed from the SW towards the NE. 

D ata from the coastal fan deposits in the Lower Miocene show palaeocurrents to the W 

although fan deposits can vary by as m uch as 180°. The most reliable palaeocurrents are 

those from the braided stream s which would generally have flowed from the hinterland across 

the coastal plain towards the coastline, placing the hinterland to the S and the seaway to the 

north. In addition to the palaeocurrent data, provenance studies outlined in C hapter 4, 

indicate th a t a  large proportion of the detritus came from the External Zones which would 

have been located to the south, th is suggests th a t there was relief in th is direction and this 

would also place the coastline sou th  of the seaway.

In the final analysis it appears th a t the Miocene Guadalquivir Basin was rimmed by a 

shelf break th a t separated deep water from shallow water. Material was fed from south  to 

north, from the External Zones to the shelf via braided stream s and fan deltas. A generalized 

palaeogeography for the Miocene Guadalquivir Basin which takes into account the environ

m ental interpretations outlined above is given in Figure 3.45.

3.9  Allochthon & Autochthon: Part o f  the Sam e Basin ??

One of the main questions arising from the tectonic, stratigraphical and  sedimentological 

analysis of the rocks in the Baena-M ontilla area is w hether or not the allochthon and
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autochthon were originally part of the sam e basin fill, or two separate basins juxtaposed 

during thrusting. There cire several lines of evidence suggesting tha t a  single basin existed 

prior to thrusting  th a t extended m uch further south  than  the present Guadalquivir Basin 
does today.

1) There is no evidence for the s tructu ra l segregation of the basin. Aquitanian to 

Messinian rocks are incorporated into the melange complex associated with la te/post 

Miocene thrusting (Chapter 2, section 2.4) and thrusting previously interpreted as 

Mid Miocene, has been shown to be a t least late Messinian (Chapter 2). So for the 

basins' Miocene history there is no evidence for a structured break.

2) Sedimentological analysis has shown th a t rocks with identical stratigraphical 

ages, microfaunal assemblages, lithologies and facies, are found in both the alloch

thon and autochthon. This is particularly apparent in the Lower-Mid Miocene and 

Tortonian.

43 The petrography and consequentially the provenance, of sedim entary rocks in 

the allochthon and autochthon Eire identical (Chapter 4).

Thus structursd, sedimentological, palaeontologicsd and lithological evidence indicates that 

the autochthon and Eillochthon elem ents within the Guadalquivir Basin formed a single basin 

that extended southwsud past the present boundEuy.

3 .10  Conclusions

In conclusion the Miocene Guadsdquivir succession formed in a  single basin characterised 

by deepwater and shsdlow mEirine shelf deposits sepsirated by a  shelf bresik (Fig. 3.45). A 

fluvial braid plain dominated the southern part of the basin and channelled detritus from the 

External Zone to coastal delta systems. The detritus was reworked on the shelf by storm  and 

tidsil currents th a t led to the mixing of nesir shore smd shelf faunas. Through the Miocene 

the coastline prograded northw ard out across the shelf in direct response to a  relative sea- 

level fall th a t w eis  most probably eustaticsilly driven.
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CHAPTER 4  

PROVENANCE OF THE GUADALQUIVIR BASIN SEDIMENTS

4.1 Introduction

Provenance studies are designed to identify the location and nature of a  sediment source and 

the pathways by which sedim ents are dispersed (Haughton e ta i ,  1991). In order to produce 

a reliable fingerprint of the source several techniques m ust be employed. Before the 

implications of provenance data  can be evaluated, the bias away from the source composition 

that may be inherent in the sedimentary rocks m ust be assessed Such bias away from source 

composition can brought about by hydraulic segregation (sorting), diagenesis and sedim ent 

recycling.

This chapter describes the methods and resu lts  of provenance studies of Miocene 

sedim entary rocks in the Guadalquivir Basin. These have been carried out to identify the 

nature of the source for sedim ents in the Guadalquivir Basin.

Three candidate sources can be identified; the Hercynian M assif to the north, the 

External Zone of the Betic Orogen and the Internal Zone of the Betic Orogen which are both 

to the south  (Fig. 4.1).

The Hercynian Massif forms the northern margin of the Basin. It is characterised by 

a  complex series of te rran es  th a t contain  Precam brian, Ordovician, Devonian and 

Carboniferous metam orphosed and unm etam orphosed rocks (Anderson, 1978). The te r

ranes have been affected by several Precambrian and Hercynian deformation and metamor

phic episodes. Rocks present include, schists, amphibolites gneisses, marbles, quartzites, 

shales, greywackes, conglomerates, limestones and sandstones (Martinez Garcia e ta L ,  

1986). Numerous granites and granitoid bodies have invaded the terranes and these have 

been dated as pre-Hercynian, syn-Hercynian and post-Hercynian (Corretege, 1978). G ran

ites have been dated a t between 310-318 m.y. (Corretege, 1978) and include the Pedroches 

Batholith which dominates the southern  margin of the Iberian Massif. As a  consequence of 

the presence of the granitoid bodies, many of the rocks in the Hercynian M assif have been 

overprinted by contact m etam orphism . The northern margin of the Guadalquivir Basin is 

characterised by late Miocene fan delta deposits which are believed to have emerged from the 

Hercynian hin terland  (Juan  Fernandez, pers. comm.). These fan deltas may have fed 

Hercynian detritus into the Guadalquivir Basin during the late Miocene

The southern margin of the  Guadalquivir Basin is formed by the External Zone of the 

Betic Orogen and is dominated by Triasslc to Lower Miocene unmetamorphosed sedimentary 

rocks (Garcia Hernandez etaL, 1979). These represent sedim ents deposited on an  extending 

plate margin present before the formation of the Betic M ountain Chain. The External Zone 

is dom inated by m arls and lim estones deposited in shallow m arine and pelagic marine 

environm ents. (Garcia H ernandez e t al., 1979; Blankenship, 1992). These rocks were 

deformed and th ru s t northw ard by movements th a t occurred in the Betic Orogen during 

latest Oligocene and Miocene tim es (Chapter 2).

The Internal Zone forms the metamorphic core of the Betic Orogen and consists of a
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series of nappes m etamorphosed to varying degrees, bu t generally characterised by a high 

pressure m etamorphism (Egeler & Simon, 1969; Egeler eta l., 1972). The earliest recorded 

m etamorphism is late Cretaceous (85-65 Ma.) (Doblas & Oyarzun, 1989; Bakker eta l., 1989; 

and Moine e ta l ., 1991). A discussion concerning the complexity of Internal Zone m etamor

phism  is given in the Overview (Section 1.3).

Provenance studies of the sedim entary rocks of the Guadalquivir Basin fill are aimed 

a t assessing the contribution of each of these three sources to the basin. To fully characterise 

the sedim ents a  m ulti-disciplinary approach has been adopted, including the  use of 

petrography, geochemistry, geochronology and palaeocurrent data.

Petrography has been used to determine the general characteristics of sandstones in 

the Guadalquivir Basin succession, and an  attem pt has been made to asses any bias which 

may have been introduced during hydraulic segregation, diagenesis or sedim ent recycling. 

Taking the assessed  bias into account, the petrography has been quantified and the 

framework composition been plotted on Q, F, Lt ternary plots. These give a  general indication 

of the plate setting and plate configuration for the Guadalquivir Basin.

The quantitative petrographic data  has been compared with the clast composition of 

conglomerates interpreted to have been deposited in fluvial braid plains and coastal fans that 

aire thought to have fed marine sediments into the Basin (Chapter 3). These deposits Eilsoyield 

palaeocurrent data  giving the general transport direction of the sedim ents.

Following general analysis of petrography and clast composition, attention has been 

focused on the metEimorphic clasts of the sandstones. Geochemistry has been used to 

characterise detrital white micas which were com pared with white micas derived from the 

Internal Zone of the Betic Orogen. The micas have also been dated, using single grain 40Ar/ 

39Ar isotopic dating techniques, to determine their age of cooling Emd thus their likely source.

All the data, from petrography, palaeocurrents, geochemistry and geochronology, are 

combined and an  Eissessment of the sedim ent source made.
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Table 4.1
SAMPLE AGE ENVIRONMENT OF DEPOSITION
GQ1 Upper Miocene N margin fan deposits

GQ2 Upper Miocene N margin fan deposits

GQ3 Tortonian shallow marine shelf

GQ6 Tortonian tem pestites

GQ7 Tortonian shallow marine shelf

GQ79(b) Tortonian tem pestites

GQ93 Tortonian tem pestites

GQ97 Tortonian shoreface/near coast

GQ99 Tortonian tem pestites

GQ100 Tortonian shoreface/near coast

GQ101 Tortonian shoreface/near coast

GQ 103(a) Tortonian shoreface/near coast

GQ104 Tortonian shoreface/near coast

GQ98 Tortonian shoreface/near coast

GQ79(a) Lwr Messinian tidal/sto rm  shelf

GQ77(b) Lwr Messinian marine conglomerate m atrix

GQ78(b) Lwr M essinian brackish / lagoonal

GQ88 Lwr Messinian brackish / lagoonal

GQ89 Lwr M essinian brackish / lagoonal

GQ92 Lwr M essinian tidal bar

GQ20 Lwr Messinian tidal /s to rm  shelf

GQ95 Lwr M essinian tidal/sto rm  shelf

GQ106 Lwr M essinian tidal/sto rm  shelf

GQ40 Lwr Messinian tidal/sto rm  shelf

GQ84 Lwr M essinian brackish /  lagoonal

GQ85 Lwr M essinian brackish / lagoonal

GQ72 Upper M essinian fluvial conglomerate m atrix

GQ73 Upper M essinian fluvial conglomerate m atrix

Table 4.1 Sam ples, from autochthonous and allochthonous portions of the Guadalquivir 
basin. All these sam ples have been used in petrographic studies which form part of a  detailed 
provenance investigation of the Basin. Environm ental interpretations are based on those 
given in C hapter 3

Part I: The Guadalquivir Basin



Chapter 4: Provenance Page 69

4 .2  Quantitative Petrography

Petrography forms the foundation of this provenance study. It relies on the identification and 

quantification of m inerals and clasts.

The petrographic framework mode of a  sedim entary rock is the product of sedim entary 

processes, source composition and source mixing (Haughton eta l., 1991).

4.2.1 Samples

Sam ples were collected from Tortonian and M essinian sandstone units found in the 

Guadalquivir Basin succession exposed in the Baena-Montilla study area. Lower and Mid 

Miocene rocks were not included as they are dominated by m arls and lack sandstones. To 

gain a representative view of the sandstones, samples were collected from all of the lithofacies 

th a t have been identified in allochthonous and  autochthonous portions of the basin fill 

(Chapter 3). In addition, sam ples were collected from upper Miocene rocks found on the 

northern margin of the basin. These were deposited in large subm arine and subaerial fans, 

thought to have been fed by detritus originating from the Hercynian Massif (Juan  Fernandez 

pers. comm.). Sample locations are given on Figure 4.2. Samples represent the full range 

of environm ents believed to have existed in the Guadalquivir basin (Table 4.1)

4.2.2 Methods

The sam ples (Table 4.1) were im pregnated with blue stained resin and thin-sectioned. To 

facilitate the identification of feldspars the sections were subsequently stained with barium 

chlorite and rhodizonate following the method of Bailey and Stevens (1960).

Point-counts of the framework modes of each th in  section were conducted using a  

mechanised point-counting stage. The stage-advance was set to increment a  distance equal 

to the average grain size. Two counts were conducted on each th in  section. The first 

quantified the proportion of monocrystalline quartz (Qm), plagioclase (P), K-feldspar (K) and 

lithic fragments (Lt) in each sample. A total of 500 grains was counted. The second count 

was designed to provide a  detailed inventory of the lithic fragm ents in term s of their 

metamorphic, volcanic and sedim entary com ponents. The m etam orphic com ponent was 

split into metamorphic grain types, based on the method outlined by Rapson (1965) and 

Ingersoll & Suczek (1979). A total o f500 lithic fragments were counted and classified for each 

sample. Metamorphic grain types were recognised as follows;

phyllitic sch ist (Ph.Sch) fragm ents of m icaceous rock with a  d istinct schistose 

fabric, (i.e. a  well developed, finely spaced cleavage);

quartz , m ica and feldspar aggregate (Q-M-F Ag) fragmets of quartz, mica and 

feldspar aggregates lacking a  distinct fabric;

quartz, m ica and feldspar tecton ite  (Q-M-F Tect) fragments composed of quartz, 

m ica and feldspar with a  d istinct fabric such  as  grain flattening, elongation or 

alignment;

quartz and m ica aggregate (Q-M Ag) fragments containing only quartz and mica
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lacking a  distinct fabric;

quartz m ica tec ton ite  (Q-M Tect) fragments containing quartz and mica with a 

distinct fabric such  as grain flattening, elongation or alignment; 

polycrystalline quartz tecton ite  (Qp Tect) fragments of polycrystalline quartz in 

which grains are flattened, elongated or aligned to form a  distinct fabric;

Micas (Micas) single mica grains;

polycrystalline m icas (Micas p) fragments containing more than one mica grain, but 

without a  schistose fabric;

polycrystalline quartz fragments of polycrystalline quartz lacking a  distinct fabric; 

quartz and feldspar aggregate (Q-F Ag) fragments containing quartz and feldspar 

but lacking a  distinct fabric and

contact m etam orphic m inerals (Contact meta) m inerals associated with the 

contact m etam orphism  of country rocks. The commonest is corderite.

Sedimentary lithic fragments were also divided into generic lithic fragment types which 

are as follows;

sandstone (Sand) fragments containing identifiable quartz, feldspar and  lithic grains 

of sedim entary origin;

argillite other than marls (Argillite) m ud-rock fragments, excluding carbonate; 

polycrystalline carbonates (Carb pc) carbonate fragments in which grains are 

identifiable;

Marl (Marl) carbonate m ud rock in which separate grains could not be identified and 

Chert (Chert) cryptocrystalline quartz fragments.

Framework modes, outlined above, were used to derive other modal values character

izing the rock sample, including the total num ber polycrystalline quartz grains (Qp), the total 

num ber of metamorphic lithic fragments (Lm), the total num ber of volcanic lithic fragments 

(Lv) the total num ber of sedim entary lithics (Ls), the total num ber of volcanic and meta- 

volcanic lithic fragments (Lvm) and  the total num ber of sedim entary and m eta-sedim entary 

lithic fragments (Lsm). These variables were calculated as follows;

Qp=Qp Tect+Qp

Lm=Ph.Sch+Q-M-F Ag+Q-M-F Tect+Q-M Ag+Q-M Tect+Micas+Mica p+Q-F

Ag+Contact Meta

Lv=Total num ber of hypabyssal volcanic grains

Ls=Sand+Argillite+Carb pc+Marl+Chert

Lvm=Lv

Lsm=Lm+Ls

In addition to counting framework grains the individual grain sizes were m easured. 

M easurem ent was made with a  graduated ocular th a t was calibrated using a  thin section 

glass with a  millimetre scale etched upon it. To gain a  representative sample of the grain-
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Table 4.2
Sample GQ 88 GQ89 GQ92 GQ 20

Age Messinian Messinian Messinian M essinian
Facies brackish brackish tidal bar tidal/sto rm  shelf

Q-F-Lt count
Qm 224 313 240 364
P 18 12 13 3
K 12 5 0 5
Lt 246 170 247 127

Total feldspar 30 17 13 8

Lithic count

Meta lith ics
Ph. Sch 0 0 0 0
Q-M-F Ag 20 19 15 13
Q-M-F Tect 0 0 0 0
Q-M A 20 73 12 28
Q-M Tect 0 0 3 9
Qp Tect 0 13 2 16
Micas 18 0 6 25
Mica p 0 13 2 19
9 p 38 75 25 131
Q-F-Ag 0 0 0 0

Contact Meta 0 0 0 0

Volcanic Lithics
Hypabyssal 0 0 1 0

Sed Lithics
Sand 14 15 0 5
Argillite 0 0 0 0
Carb pc 184 160 188 79
Marl 170 85 228 142
Chert 24 26 9 22

Unknown Lt 12 21 9 11

Calculations
Qp 38 88 27 147
Lm 58 105 38 94
Lv 0 0 1 0
Ls 392 286 425 248
Lvm 0 0 1 0
Lsm 450 391 463 342

Grain size
Mean (phi) 1.56 1.29 1.28 1.80
Sorting 0.91 0.75 0.68 0.52

Table 4 .2  Petrographic framework modal d a ta  for Upper Miocene sandstones of the  
Guadalquivir Basin. The full da ta  set is given in Appendix IV.
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size population the following method was employed (Bluck pers. comm.);

(1) The longest axis of an  arbitrary num ber of grains is m easured (e.g. 10 grains) and 

their m ean size is plotted against the num ber of grains counted (Fig. 4.3);

(2) Step 1 is repeated and the m ean for the new num ber of grains is plotted (10+10, 

the mean of 20 grains);

(3) S teps are repeated and  d a ta  plotted until the  re su ltan t graph  produces a  

consistent mean (Fig. 4.3). Once the mean becomes consistent the population mean 

has been obtained and a  representative sample of the population has been measured.

From the grain size population, sorting (standard  deviation from the mean) was 

calculated using the Folk & Ward (1957) formulae:

O 0=  084-016 + 095+05  
4 6.6

where CJ0= sorting
0 n= percentile value 0 n  m easured from cumulative frequency curves, plotted for 

the grain size population, a t the nth percentage frequency.

A sample of the petrographic da ta  set, outlining the count variables, is given in Table 

4.2. The full data  set can be found in Appendix IV. In addition to the point count data  the 

stratigraphical age and environm ental interpretation (derived from C hapter 3) is given for 

each sample. Estimates of the percentage of bioclastic grains and matrix is also given for each 

sample where appropriate.

4.2.3 A ssessm ent o f Sediment Bias

The petrographic signature of the sedim entary rocks in a  basin may not be a  true reflection 

of the source, but may be ‘biased’ in some way. Bias can be brought about by hydraulic 

segregation and sedim ent recycling during transport or by diagenesis.

During transport and deposition grains are subject to attrition and hydraulic segrega

tion. During prolonged transport and  associated hydraulic action original polycrystalline 

fragments may be broken up  into their component parts. Tortosa et al. (1991) dem onstrated 

th a t polyciystalline quartz content decreases with grain size. Polycrystalline quartz is broken 

down into its component monocrystalline quartz grains by attrition. The sm aller monocrys

talline grains may then be hydraulically segregated into the finer sediment fraction. Thus the 

finer grain sizes may not accurately reflect the true lithic content of the source rock. This 

problem also applies to other polycrystalline lithic fragments. For example a  sandstone 

lithoclast (indicative of a  source in sedim entary rocks) composed of quartz feldspar and lithic 

fragments is easily broken up into monocrystalline quartz, feldspar and metamorphic lithic 

fragments, which may then be subject to hydraulic segregation. This is further complicated 

by the fact th a t grains th a t are less resistan t to attrition, in particular feldspars and lithics, 

are lost during prolonged transport by attrition and hydraulic segregation processes (Morton, 

1985).
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Recycling is the processes by which sedim ents Eire reworked from one basin to another. 

During recycling hydraulic segregation and attrition processes are prolonged. This may biEis 

the composition towards more m ature grains tha t Eire less likely to discriminate the source 

(Luepke, 1984; Morton, 1985; Magne & Maure, 1990). Recycling may also result in a complex 

sedim ent mixture involving different sources (Haughton, 1991). Thus the data  derived from 

recycled sedim ents seldom reflects the palaeotectonic setting of a  sedim entary basin.

During burial, diagenetic changes tEike place in sedimentEiiy rocks. The circulation of 

aggressive fluids through the rocks may dissolve certEdn minersds su ch  as feldspEirs. 

Precipitation of other minerals, such eis carbonate, may fill pores or replace minerals. Thus, 

any rocks th a t have undergone significant diagenetic sdteration will not accurately reflect 

their source (Morton, 1984; Milliken, 1988; Humphreys et al., 1991).

Grain size smd sorting of a  sedim ent are directly related to processes of transport and 

hydraulic segregation (Haughton et Ed., 1991). Because of this relationship the bias inherent 

in the rocks of the Guadalquivir Basin can be assessed by comparing the occurrence of easily 

broken lithics with grain size and sorting variation within the sample population. The lithic 

com ponents chosen for compsirison Eire metsimorphic lithics (Lm), sedim entary lithics (Ls) 

polycrystEilline qusirtz (Qp) Eind monociystsilline quartz fragments (Qm). With increased 

sorting and finer grain sizes it is expected th a t here will be a  reduction of Qp in favour of Qm 

smd Ls in favour of Lm. These trends, if present will reflect the disaggregation of the grains 

and the sorting of the resu ltan t components into the finer fractions. The lithic components 

of the SEindstones can also be compEired to the facies interpretations of the successions from 

which the samples were derived. Facies and the environments of deposition Eire closely tied 

to the overall hydraulic regime.

Figures 4.4-4.9 show the vEiriation of Ls, Lm, Qp, Qm and Qm with m ean grain size, 

sorting smd facies for samples taken from the Guadalquivir Basin. For each plot a  vsulety of 

regression lines were fitted. The best correlation co-efficient th a t could be obtained for any 

of the  plots was 0.242 which, for the  num ber of psiired ssimples, is not a  significant 

correlation, even a t the 10% level. It is considered th a t overall the plots present a  random  

distribution, and tha t there is no signiflcEint variation of the modal framework compositions 

with grain size, sorting or facies

There is, however, a  distinct difference between samples taken from the Baena-Montilla 

region and sam ples taken from the northern margin fan deltas. Samples from the northern 

margin fans have higher Eimounts of Qp and Lm smd significantly lower am ounts of Ls (Fig. 

44 & 4.5).

If sedim ent was being transported  from northern-m argin fan deposits to the Baena- 

Montilla region then the implication is th a t a  large proportion of the Lm and Qp components 

were removed during transport. However, the Baena-Montilla rocks Eilso have a  large Ls 

component (Fig. 4.10) smd it seems unlikely tha t Lm and Qp would be lost without there being 

a  corresponding reduction in Ls, and this therefore implies different sources for the two areas. 

The full implications of these observations Eire assessed in the light of palaeocurrent and 

geochemicEd data.

Sedim ents th a t have largely been derived from older sedim entary rocks may have a
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large sedimentary lithic (Ls) component. Rocks from the Baena-Montilla area Eire dominated 

by Ls fragments, which vsiry between 40% and 90% with Em average of 69% (Fig. 4.10). By 

comparison, the northern margin rocks contain less than  5% Ls fragments. Thus, it appears 

th a t the southern  part of the GuadEdquivir Bsisin, in the Baena Montilla region, received 

detritus from older sedim entary rocks/o r older basins, while the northern margin received 

detritus from the Hercynism M assif metamorphic terranes. This suggests th a t a t least two 

sources contributed to the GuadEdquivir Basin one of which was an  older uplifted sedim en

tary basin.

The sedim entary  rocks of the  G uadalquivir Basin Eire lsurgely uncem ented and  

consequentially friable. There is no evidence for the feldspars or sedim entary lithic grains 

going over to clay minerals. Overall there is no evidence, in thin section or under the scEinning 

electron microscope, for the dissolution of minerals or for the growth of new minerals. These 

rocks are not considered to have been buried to smy great depth smd diagenesis is not 

considered to have been a  significsmt factor in controlling the framework composition modsd 

values.

Several conclusions can be drawn concerning the nature of the sedim entary rocks in 

the G uadalquivir Basin and possible ‘b ias’ introduced during tran sp o rt and  hydraulic 

sorting.

(1) There is no significant vsiriation of the modal compositions with grain size, sorting 

or facies. Therefore hydraulic transport processes are not considered to have induced 

a  significEint biEis into the Guadalquivir ssimple populations.

(2) There is a  fundam entsd difference between sandstones found in the Baena- 

Montilla region of the Guadsilquivir Basin smd those on the northern margin. The 

northern  margin is dom inated by Lm and  Qp while the Baena-M ontilla region is 

dominated by Ls fragments.

(3) There Eure two possible explanations for this difference; a) th a t Lm clasts have been 

lost during transport or b) th a t there were two or more sources contributing to the 

basin;

(4) The Baena-Montilla sample population is dominated by Ls, and so the petro
graphic modEd compositions do not reflect the originEd source of the metEimorphic, 
volcanic smd igneous detritus but indicate the destruction of earlier sedimentEiry 
rocks and/or basins.

It should also be noticed th a t sedim entary rocks in the allochthon could not be differentiated 

from those in the autochthon, using petrographic techniques. This is consistent with the 

invsiriance of facies across the two portions of the basin (Chapter 3} smd as a  consequence 

the allochthon and autochthon sire considered to be parts of the sam e bEisin.

4.2.4 Petrographic Characteristics in Relation to Plate Setting.

While recognising the ‘biEis’ inherent in determining provenance of sedim entary rocks, it is 

nevertheless possible to use framework modal da ta  to give a  general indication of the tectonic 

regime in which the sedim ents were deposited. Modal vsdues were plotted on Q, F, Lt type
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ternary plots and compared with published data on sedim ents for which the tectonic regime 

was known. Three plots have been employed (Fig. 4.11) Qm, F and Lt (Dickinson etal., 1983); 

Qp, Lvm and Lsm (Ingersoll & Suczek,1979) and Lm, Lv and Ls (Ingersoll & Suczek,1979). 

Full explanations for these plots are provided in the references.

In the Qm, F, Lt plot (Fig. 4.12), the Baena-Montilla and northern margin compositions 

plot in the recycled orogenic field and vary between quartzose recycled and  transitional 

recycled groups Recycled orogenic detritus is derived from su ture belts in which sedim en

tary, volcanic and metamorphic rocks are involved in uplift and thrusting. Tectonic settings 

include subduction complexes, su ture belts of collisional orogens and thin-skinned foreland 

fold th ru s t belts along the flanks of arc or collisional orogens (Dickinson e t al., 1983). 

Quartzose recycled detritus indicates th a t the orogenic uplift involved sedim ents th a t were 

ultim ately recycled from cratonic sources. Transitional recycled detritu s also contains 

metamorphic and sedim entary detritus recycled directly from the orogen itself. The position 

on this plot of the Guadalquivir Basin data set comes as no surprise because of the proximity 

of the Betic Orogen. Older sedim entary rocks, th a t once formed part of the passive margin 

are known to have been involved in Betic Orogenic uplift. These rocks now form part of the 

External Zone fold th ru s t belt flanking the southern  margin of the Guadalquivir Basin and 

sedim ent could easily have been derived from this zone.

The Qp, Lvm and Lsm plot of the data  set (Fig. 4.13) displays a  similar trend with data 

grouping in the su tu re  belt field. Both the Qm, F and Lt plot (Fig 4.12) and  the Qp, Lvm 

and Lsm plot (Fig 4.13) strongly suggest th a t Guadalquivir Basin sedim ents were derived 

from an  orogenic su tu re belt, namely the Betic Orogen.

The Lm, Lv, Ls plot (Fig. 4.14) confirms this observation for the B aena Montilla data set 

and also eliminates the possible involvement of a  subduction complex, clearly placing the 

sedim entary rocks in a  su tu re  belt setting. This plot also suggests the recycling of detritus 

from sedim entary rocks deposited on a  rifted continental margin. This again is consistent 

with previous tectonic models in which an  extending passive margin is known to have existed 

on the Iberian plate, prior to the formation of the Betic Orogen suture belt (Garcia Hernandez, 

1979; Blankenship, 1992). However, in this plot the northern margin data  plot near the Lm 

upper com er (Fig. 4.14) and outside the su ture belt field. This supports the view th a t there 

is a  fundam ental difference in the  source of detritus for the northern margin sedim entary 

rocks and th a t for the Baena-Montilla region.

While these plots confirm the general tectonic setting they fail to em phasize or utilize 

the dom inant Ls fragments in the  Baena-Montilla sedim entary succession. By analysing 

these fragments it may be possible to determine the nature of the sedim entaiy succession 

which formed the source for the Guadalquivir Basin sedim entary rocks. The Ls fragments 

have been plotted in term s of their sandstone, carbonate and chert com ponents (Fig. 4.15). 

Clearly the population is dom inated by carbonate fragments. These are m ade up  of both 

polycrystalline carbonate and  m arl fragm ents in  alm ost equal proportions (Fig. 4.16). 

Because the sandstones are dom inated by carbonate lithic clasts they have been classified 

as calc-lithic arenites, the preferred term  used elsewhere in this thesis. The External Zone 

foreland fold th ru s t belt is dom inated by carbonate rocks (Fig. 1.2), bu t limestones are also
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found in terranes of the Hercynian Massif (Martinez Garcia eta l., 1986) and carbonate litho- 

clasts could have been derived from either of these areas. In addition the lower part of the 

G uadalquivir Basin succession is dom inated by m arls dissected by channels containing 

debris-flows (Fig. 3.2; Chapter 3). Marl clasts could easily have been derived from within the 

Guadalquivir Basin.

In conclusion the petrographic framework modal d a ta  dem onstrates th a t the sedi

m ents of the Guadalquivir Basin were derived from sedimentary and metamorphic rocks th a t 

formed part of a  suture belt complex, which m ust have been the Betic Orogen. The carbonate 

fragm ents could have been recycled from the External Zone of the Betic Orogen, from the 

Hercynian Massif or from within the Guadalquivir Basin itself. Metamorphic lithic fragments 

could also have been recycled from the Hercynian M assif or from lithic sandstones in the 

External Zone. In order to resolve this ambiguity conglomerates in the Guadalquivir Basin 

succession have been analysed, together with their corresponding palaeocurrents . Geo

chem ical and geochronological techniques have been employed to determ ine the ultimate 

source of the metamorphic lithic fragments.

4 .3  Clast Com position o f Conglomerates

Conglomerates are found in both Lower Messinian coastal fan deposits and Upper Messinian 

fluvial deposits of the Guadalquivir Basin succession exposed in the Baena-M ontilla area 

(Figs 3.42 & 3.43). Clasts have been surveyed in both these deposits and their lithological 

com ponents are sum m arised in Figure 4.17. The full data  set is given in Appendix IV. The 

lower M essinian coastal fan deposits are dominated by limestone clasts, while the Upper 

M essinian deposits are predom inantly quartzite and limestone clasts. Both conglomerate 

sequences contain calc-lithic arenite clasts, calc-lithic arenites are only found in Lower 

M essinian and Tortonian deposits of the Guadalquivir Basin.

The carbonate elastics, suggest th a t detritus was supplied from a  limestone succes

sion. This supports deductions m ade from the petrographic data. However, the conglom

erates also contain m eta-quartzite clasts which increase in frequency in the Upper Messin

ian. Quartzites are exposed in the Hercynian Massif (Martinez Garcia et a/., 1986) and are 

also found in conglomerates in the  External Zone (Perez-Lopez, 1991) and the Alpujarride 

nappes of the Internal Zone of the Betic Orogen (J. Hughes pers. comm.). The presence of 

calc-lithic arenite clasts supports the view th a t recycling of GuadEdquivir Basin sedim ents 

was taking place as calc-lithic arenites are only found with the Guadalquivir Basin fill.

OverEdl the conglomerate clast population reflects the same provensmce as the 

ssmdstones.

4 .4  Palaeocurrent Data

Palaeocurrent data from conglomerates in coastal fern smd fluvial deposits provides a  useful 
insight into the transport pathways smd ultimately the locations of the sources relative to the 
GuadEdquivir Basin.

4.4.1 Data

Part I: The Guadalquivir Basin



Chapter 4: Provenance Page 77

Palaeocurrents have been determ ined from im bricated pebbles in Lower M essinian fan 

deposits and from both imbricated pebbles and cross-strata in the Upper Messinian Fluvial 

deposits. As discussed in C hapter 3, sections 3.5, 3.6 and 3.7, the m ost reliable data  are 

those m easured from imbricated clasts in the fluvial deposits. The cross s tra ta  in the fluvial 

deposits and the imbrication in the fan deposits can vary over 180°. Palaeocurrent data  taken 

from fluvial imbricate clasts suggests th a t these were deposited by currents th a t flowed SSW 

to NNE (Fig. 4.18). Because the fluvial deposits are the products of low sinuosity stream s 

(Chapter 3, section 3.7) this was almost certainly the dom inant transport direction.

4.4.2 Transport Pathways

Conglomerates deposited by braided stream s in the Baena-Montilla region of the G uadalqui

vir Basin have transported clasts from exposed External Zone Rocks in the south to a  marine 

basin in the north (Chapter 3 section 3.8). This is view is supported by the clast composition 

and palaeocurrent data. The conglomerates contain little metamorphic detritus, explaining 

the lack of metamorphic detritus in the Baena-Montilla sandstones. Thus, it appears th a t 

the carbonate fragments found in the Baena-Montilla area were derived from the limestone 

succession in the External Zone which m ust have fringed the southern margin of the Basin. 

However, carbonate m aterial was also recycled within the Basin, as indicated by the calc- 

lithic arenite clasts. The northern margin deposits contain few sedim entary clasts and  are 

dominated by metamorphic clasts believed to have been derived from the Hercynian Massif 

(Juan  Fernandez pers. comm.). Thus, there is strong evidence for three separate sources 

contributing to the Guadalquivir Basin sediments, the External zone of the Betic Orogen, the 

Hercynian Massif, and recycled Guadalquivir Basin sediment.

4.5  G eochem istry & Geochronology o f Detrital White Micas

Attention is now focused on the  m etam orphic lithic c lasts  in the sedim entary rocks. 

Metamorphic detritus could have been sourced from the Hercynian Massif, from the Betic 

Internal zone or from a  com bination of the two. In order to discriminate between the two a  

geochemical characterisation of m etam orphic minerals, known to vary with pressure and 

tem perature conditions, was undertaken.

4.5.1 Geochemical Variation o f White Micas

Detrital white micas were chosen in preference to other metamorphic minerals for geochemical 

analysis because;

(1) they vary significantly with changing pressure and tem perature in the muscovite 

-celadonite and muscovite-paragonite solid solution systems;

(2) detrital white m icas Eire surprisingly res is tan t m inerals, com pared to other 
abundan t metamorphic minerEils;

(3) lsirge simounts of white m ica could be separated rapidly from the rocks. Other 

metamorphic minerEils were found to be difficult to extract from the rocks, much less 

abundant, smd are often highly altered;
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(4) da ta  for In ternal Zone m icas had already been collected, and  provided a 

comparison;

(5) single white micas can be dated using 40Ar-39Ar isotope laser-probe methods.

Chemicalty, white micas vary between muscovite-celadonite and muscovite-paragonite 

substitutions,

KAl2(AlSi3)Oio(OH)2+(Mg, Fe)2+ +Si4+ = K((Mg,Fe)Al)Si40io(OH)2+2Al3+ 

muscovite celadonite

KAl2(AlSi3)O10(OH)2+Na+ = NaAl2(AlSi3)O10(OH)2+K+ 

muscovite paragonite

Muscovite varies towards celadonite compositions by the substitution of Fe3+ for Aliv and by 

the Tscherm ak exchange (Mg,Fe2+vl)Siiv = Al^.Al^ (Guidotti, 1984). The Tscherm ak 

exchange can be represented by plotting (Mg+Fe2+) against Si (Fig. 4.19). In th is if all the 

(Mg+Fe2+) in muscovite is charge-balanced by Si replacing Aliv, the points should cluster 

along the ideal Tscherm ak substitu tion  line (Fig. 4.19) (Guidotti, 1984). This plot can be 

further modified by plotting the Si/A1 ratio in preference to Si (Fig. 4.20). Since Si substitutes 

for Aliv the Si/Al ratio should increase tow ards celadonite end m ember-com positions. 

Complete solid solution can occur between celadonite and muscovite (Guidotti, 1984; 

Dempster, 1991). The Tschermak exchange reaction is known to be controlled by metamor

phic conditions with celadonitic white m icas being stable a t low tem perature and high 

pressure and  muscovite being more stable a t higher tem peratures and lower p ressures 

(Velde, 1965; Powell & Evans, 1983; M assonne & Schreyer, 1987). Muscovite white mica 

compositions are characteristic in igneous rocks (T. Dempster, 1994 pers. comm.).

4.5.2 Samples

Samples were collected from sandstones in the Tortonian and Messinian successions of the 

Guadalquivir Basin. Seven sam ples were collected from a  range of sandstone lithofacies a t 

different localities. Two samples were collected from northern margin fan delta-deposits, and 

for comparison samples were also collected from the G ranada basin, a  Miocene basin within 

the Betic Orogen. The G ranada basin has received metamorphic detritus, mainly in the form 

of schistose pebbles and boulders, from the surrounding metamorphic Internal Zone rocks 

(J. Hughes pers. comm.). G ranada Basin samples were analysed a t the University of Glasgow 

by J . Hughes. Sample locations are given in Figure. 4.21.

4.5.3 Methods

Mica was extracted from the sam ples by coarse crushing followed by crushing in a  TEMA® 

mill in water. The addition of w ater preserves the integrity of the micas while reducing the 

quartz and feldspar fractions. (Kelley & B luck , 1989). The samples were subsequently sieved 

to remove the fine grained quartz and  feldspar fraction. They were further purified by passing
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through a Frantz Isodynamic separator in which micas are separated on the basis of their 

magnetic susceptibility, following standard  procedures.

The resulting residue containing white micas was m ounted in resin and analysed a t the 

University of Glasgow using a  Cameca SX50 electron microprobe. The da ta  were reduced 

using ZAF techniques and cations per formula unit calculated on the basis of 22 oxygens. 

The Fe2+/F e3+ ratio was estim ated by ratio, following the m ethods of Schum acher (1991)

Part of the data  set is given in Table 4.3 and the full data  set can be found in Appendix 

IV. The analysis of the white micas has given lower them normal (c90%) oxide totals. Good 

analysis usually gives totals of 94-96% the rest being made up by water molecules. These 

lower totals could have been caused by one of two factors; the mica surfaces may not have 

been perfectly flat, causing dispersion of the electron beam, or the micas may have been 

slightly altered during tran sp o rt to the basin. However the m ica analyses are within 

acceptable limits and, because the main area of interest is the ratio of the cations, little error

Table 4 .3
GQ21M.2 GQ21M.6 GQ21M.9 GQ21M.1 GQ5M.3

Si02 44.35 59.44 43.47 3.91 6.03
Ti02 0.12 0.44 0.11 0.30 0.26
A1203 36.93 19.63 37.22 37.94 35.39
C r203 0.00 0.05 0.04 0.00 0.03
MgO 0.78 0.56 0.83 0.36 0.86
CaO 0.01 0.03 0.44 0.01 0.06
MnO 0.03 0.05 0.00 0.00 0.02
Fe203 0.90 0.90 1.35 0.85 1.03
FeO 0.14 0.14 0.21 0.14 0.16
N a20 1.95 0.14 3.02 0.41 0.70
K20 5.00 8.75 3.48 6.24 5.49

Total 90.21 90.13 90.17 90.16 90.03

Si 6.03 8.12 8.15 5.92 6.20
Ti 0.01 0.01 0.00 0.03 0.03
A1 5.96 3.12 3.06 6.18 5.74
Cr 0.00 0.01 0.00 0.00 0.00
Mg 0.12 0.11 0.11 0.07 0.18
Ca 0.00 0.00 0.01 0.00 0.01
Mn 0.00 0.01 0.00 0.00 0.00
Fe3 0.09 0.09 0.12 0.09 0.10
Fe2 0.02 0.02 0.02 0.02 0.02
Na 0.52 0.04 0.04 0.11 0.19
K 0.87 1.53 1.53 1.10 0.96

Total 13.62 13.06 13.04 13.52 13.43

Table 4 .3 . Representative white m ica compositions. Cations per formulae based on 22 
oxygens. Fe +2/F e+3 estim ated by ratio (a full da ta  set is given in Appendix IV).
would be produced by the slightly lower than  normal totals (T. Dempster, 1994 pers. comm.).

4.5.4 Geochemistry o j the White Micas

The detrital white micas of the Guadalquivir Basin and Interned zone contain little paragonite. 

However, there is a  significant variation between muscovite and  celadonite compositions.
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The data  collected have been plotted on a  modified Tschermak substitution diagram in which 

Mg+Fe2+ is plotted against the  Si/A l ratio (Fig. 4.22). The da ta  fall into two distinct 

populations. Micas taken from the GuadEdquivir Basin, including the northern  margin 

sam ples tend towsirds muscovite compositions, while micEis from the Internal Zone tend 

towards celadonite compositions. Clearly the Intemsd Zone micas form a  distinct population 

when com pared to the GuadEdquivir Basin micas. Therefore, it seem s unlikely th a t the 

Guadalquivir Basin micas were derived from the Internal Zone. The micas from the Baena- 

Montilla region (southern margin) of the Basin plot in sam e group as those of the northern 

margin micas, implying a  similar source. Metamorphic clasts found in northern msirgin fan 

deposits are thought to have been derived from Hercynian terranes (Juan  Fernandez pers. 

comm.) smd it is likely th a t the Baena-Montilla micas were also ultimately from th is source. 

The southern margin of the Hercynian Massif is dominated by granitic batholiths, and large 

areas of country rock have been affected by contact metsimorphism. This explsdns the 

tendency for white micas from this source to approach muscovite compositions since these 

are more stable at high tem peratures. The white micEis in the GuadEdquivir Basin could have 

been derived either from granites sm d/or metamorphic rocks in the HercyniEm Massif.

This hypothesis can tested by age dating the MIcels, as the Betic Orogen smd HercyniEm 

Massif contEdn rocks of radically different ages.

4.5.5 Geochronology using A r/A r Dating Methods

40A r/39Ar dating relies on the sam e principle as 40K /40Ar dating. 40K decays to daughter 

elements 40Ca and 40Ar. 40K occurs naturally in rocks and so the ratio of 40K /40Ar and the 

half life allow the age of closure of the isotopic system (i.e cooling) to be determined.

40A r/39Ar dating takes advantage of th is system. A sample is irradiated to transform  

a  proportion of 39K to 39Ar. 39K is a  stable isotope ofK occurring naturally in rocks. Following 

irradiation, the 40A r/39Ar ratio is determined. The 40Ar is the radiogenic product of 40K and 

39Ar is produced from 39K during irradiation of the ssimple. The 40A r/39Ar ls proportionEil 

to the ^ A r / ^ K  ratio smd so proportionEil to the age. This is so because 39Ar is dependent 

upon the am ount of 39K present in the sample Ernd the 39K /40K ratio is essentially consistent 

in nature. To determine the am ount o f39Ar produced during irradiation a  s tandard  sample 

of accurately known K-Ar age is irradiated with the unknown. The Etge of the unknow n is 

derived by comparison with the 40A r/39Ar of the flux of the monitor standard .

The great advsmtEige of 40A r/39Ar over 40k / 49At is th a t only one isotopic analysis is 

required Eind the technique can be preformed on single grEdns via lsiser probe analysis. A 

full review of 40A r/39Ar isotopic dating techniques can be found in McDougall & Harrison 

(1988).

Single micEis were hand picked from the processed sam ples. The grEdns were then  

w ashed ultrasonicEdly in distilled w ater and  placed in speciEdly designed Eduminium 

containers, which were irradiated a t Michigan State University Reactor. The m icas were 

dated a t the Sottish Universities Reactor Research Centre, E ast Kilbride by P. McConville 

using 40A r/39Ar isotopic laser probe analysis, following methods outlined by McConville et 

a l ,  (1988) and Kelley & Bluck (1989; 1992)
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Before the results of 40A r/39Ar dating can be considered, the reliability of the samples 

m ust be assessed. K can be lost by alteration during weathering and this loss of will affect 

the am ount of radiogenic Ar produced and ultimately distort the age determination. Because 

of th is it is necessary to assess the mobility of K within a  grain. Mobile K is compared with 

an immobile framework elements such  as A1 and K loss is reflected as low K/A1 ratios (Kelley 

& Bluck, 1992).

To assess K mobility 4 grains, 2 selected prior to irradiation and  2 selected following 

irradiation, were traversed by a  series of electron microprobe analyses, a  total of 23 analyses. 

A mean K /al ratio of 0.35 was determined with a  standard  deviation of 0.025 (7.2%). The 

variation within each grain is sim ilar to the variation observed for all four grains (Fig. 4.23) 

apart from one analysis which varied by 0.065 (18.5%). This probably reflects an  analysis 

taken close to a  crack or cleavage plane. Overall, the population of K/Al ratios has a  common 

composition and there is no evidence for significant K loss before or after irradiation. Based 

on this, the chance of analysing an area tha t has experienced K loss is less than  10% and so 

the isotopic ages are considered reliable.

In addition to the analysis for K loss, the mica grains have also been examined with a  

scanning electron microscope using back-scattered imaging. No zoning or compositional 

variation was observed. However the detrital grains Eire probably fragments of larger grains 

and these may have been compositionally zoned. On the basis of this mica population it is 

impossible to assess compositionEil vEuiation within the original grains.

Due to difficulties during the irradiation of the sEtmples, only a  few grains could be 

accurately analysed. The resu lts of these analyses (Table 4.4) may have been subject to 

hydrocarbon contsimination, the probability of which is reflected in the larger than  normal 

errors Eissigned to the analyses in Table 4 (P. McConville pers. comm.).

Because few mica ages were obtained and because the EmEdyses may be subject to 
errors the results can only provide a  very generEd indication of the rEinge of ages for the 

Guadalquivir Basin mica population.
The ages determined for the micsis vsuy between 1302 Ma. smd 250 Ma. Even when 

lsirge errors are tEiken into the account these Eire m uch older th a t the oldest metamorphic 

rocks recognised in the Betic Orogen, which Eire 85-65 Ma. (B akkeretaf., 1989; Moine eta l., 

1989). However, the Hercynian M assif contsdns Pre-CEimbrian to Carboniferous rocks. 

(Martinez Garcia et al., 1986). Thus, if the mica isotopic ratios Eire a  reflection of actual ages
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then grains can only have come from the Hercynian Massif.

Table 4 .4
Sample Isotopic Age Air Corrected Age Fraction Radiogenic
GQ6 535 + -28 251+-82 43%

GQ6 481 +-17 328 +-46 65%

GQ9 681 +-47 263 +-126 34%

GQ9 1224 +-15 250 +-45 66%

GQ9 1224 +-34 1152 +-42 92%

GQ14 961 +-42 475 +-73 43%

GQ21 1195 +-58 267 +-90 17%

GQ21 391 +-24 270 +-81 41%

GQ37 1316 +-34 1302 +-35 99%

Table 4 .4 . 40A r/39Ar ages (in Ma.) for individual detrital micas. Monitor 
J  value=0.01211. Background correction on 39Ar < 30%.

4.5.6 Source o f Metamorphic Detritus

In conclusion, the micas in the Guadalquivir Basin are geochemically distinct from those 

originating from the Internal Zone of the Betic Orogen. Micas in the Baena-Montilla region 

(southern margin) of the Basin are geochemically similar to micas found in northern margin 

fan deposits which are believed to have been derived from the Hercynian Massif. Isotopic 

dating, despite its unreliability, also suggests derivation from the Hercynian Massif as 

opposed to the Betic Orogen. In the  final analysis it seem s m uch more likely th a t the 

m etam orphic detritus originated from the Hercynian M assif ra ther than  from the Betic 

Orogen.

4 .6  Conclusions
Provenance data  can be am biguous and conclusions based on one method should be 

treated with some scepticism. However, the provenance of the Guadalquivir Basin sediments 

has been analysed using a  variety of independent techniques and these results lead to the 

same conclusions:

(1) Sedim entary rocks from the northern m argin of the Basin are petrographically 

distinct from those in the Baena-Montilla region (southern margin). The northern 

margin rocks are dominated by metamorphic lithic clasts while those from the Baena 

Montilla region are dom inated by sedim entary carbonate lithic clasts.

(2) Within the Baena-M ontilla region (southern margin) of the basin there is no 

difference between sedim entary rocks in the autochthon and those in the allochthon 

both are characterised by m arls and calc-lithic arenites.

(3) Sedim entary lithic clasts in the Guadalquivir Basin were mainly derived from the 

External zone and from within the Basin itself bu t with possible additions from the 

Hercynian Massif. This conclusion is supported by petrographic data, by conglom

erate clast surveys and  by palaeocurrent analysis.
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(4) It seem s likely th a t m etam orphic detritu s  was ultim ately derived from the 

Hercynian Massif and is mainly concentrated along the northern margin of the basin. 

Little of th is reached the southern margin (Baena-Montilla area) of the basin.

(5) There is no evidence for the contribution of detritus from metamorphic rocks in 

the Intemail Zone of the Betic Orogen.

Much of the sedim entary lithic detritus in the Guadalquivir Basin is believed to have 

been derived from the External Zone. Prior to its conversion to a  foreland fold-thrust belt the 

External Zone formed part of an extending passive margin flanking the southern margin of 

the Iberian Plate. Presumably, the passive margin basin could have received detritus from 

the Hercynian Massif th a t formed part of the Iberian plate. Metamorphic detritus could have 

been subjected to recycling, first being deposited on the passive margin and then  passed from 

the External Zone to the Guadalquivir Basin. During the recycling from the External Zone 

to the southern margin of the Guadalquivir basin, the northern margin of the basin would 

still have been receiving detritus directly from the Hercynian Massif. By th is processes an 

asymmetric metamorphic detritus signature would have been generated across the basin, 

with the northern margin receiving metamorphic detritus directly from the Hercynian Massif 

while the sou thern  margin mainly received sedim entary  detritu s  with some recycled 

metamorphic fragments from the External Zone.

In the final analysis, three m ain sources of sedim ent have been identified, for the 

Miocene of the Guadalquivir Basin the Hercynian Massif to the north, the External Zone to 

south, and detritus recycled from within the Guadalquivir Basin itself. Figure 4.24 is a  

provenance model for the Guadalquivir Basin which takes into account provenance data and 

the palaeogeographic reconstruction given in Chapter 3 (Fig. 3.45)
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CHAPTER 5: STATUS OF THE GUADALQUIVIR BASIN 

(a syn th esis)

5.1 Previous Interpretations

The Guadalquivir Basin has previously been interpreted as a  foreland basin th a t formed as 

a foredeep in front of the Betic Orogen fold th ru st belt (Martinez del Olmo, 1984; Suarez Alba 

et aL, 1988; Sanz de Galdeano and Vera, 1992). During thrusting the southern  part of the 

basin is considered to have developed on top of the northward translating th ru s t sheet as a  

series of satellite basins (Roldan-Garcia, 1991). These basins are classified as ‘piggy back’ 

basins following the scheme of Ori & Friend (1984). The implication of these models is tha t 

the arrival of the orogenic wedge caused the downwards flexure of the Iberian Plate in front 

of it, creating a  trench.

However, this interpretation of the Guadalquivir Basin as a  ‘Foreland Basin’ is largely 

on the basis of its geographical position with respect to the orogenic th ru s t front. Under the 

classification schem e of Bally & Snelson (1980) the use of location alone is considered 

inadequate. Accurate classification m ust take into account lithospheric behaviour during 

basin formation.

5.2  Characteristics o f a Foreland Basin

Im portant to the considerations of foreland basins are the criteria by which they are defined 

and the evolutionary patterns of sedim entation in them.

5.2.1 Definition o f a  Foreland Basin

A Foreland basin is most simply defined as a  sedim entary basin lying between the front of 

a m ountain chain and an adjacent craton (Allen etal., 1986). However, this definition is based 

purely on geographical location and  in addition m any au tho rs  have implied distinct 

m echanism s of formation. To include this the definition can be extended to:

‘a  foreland basin is a  basin th a t develops in front of an  active orogenic belt as the 

response of flexurally com petent lithosphere to loads applied during the emplacement 

of th ru s t sheets and to loads transm itted from the subduction zone.’ (W aschbusch 

& Royden, 1992).

Foreland basins can be subdivided on the basis of the type of collisional margin (i.e. 

continent-continent or continent-oceanic) and lithosphere involved. The type of lithosphere 

is critical to basin formation, since the degree and rate of flexure and th u s  the rate of basin 

subsidence is dependent on the com petence of the lithosphere being loaded (Watts and 

Cochran, 1974; Beaumont, 1978; Molanar, 1988; McNutt & Kogan, 1988).

Although this is reasonably clear, confusion has arisen in defining foreland basins from 

inferring geographical, geometrical or mechanistic properties in a single term. The failure to 

separate such  properties has led to am biguous definitions.
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In order to remove this ambiguity, definition m ust be separated into two parts, generic 

and mechanistic. In the generic part the geographical location and overall geometry of the 

basin are im portant and in the mechanistic part it is the m eans by which the basin formed 

th a t is im portant. Generically, a  foreland basin m ust be situated  between the front of a  

m ountain chain and adjacent craton and m ust display asymmetry with the deepest part of 

the basin lying immediately in front of the m ountain chain (Fig. 5.1). In order to satisfy the 

m echanistic part of the definition, th is geometry m ust have been bought about by the 

downward flexure of the lithosphere in response to the translation of the orogenic front on 

to the foreland (Beaumont, 1981)

Classic examples of basins th a t satisfy th is definition can be found in the Molasse 

troughs of the Alpine Chain (Homewood e ta l., 1986; Pflfiner, 1986; Puigdefabregas, 1986) 

the northwestern Himalayan Foredeep (Johnson etal., 1986) and the Appalachian and Rocky 

M ountain basins of North America (Tankard, 1986).

The Guadalquivir Basin is evaluated in the light of this discussion.

5.2.2 Evolution o f a Foreland Basin

Once a foreland basin has been identified, the history of the basin fill is critical to the 

understanding of the evolution of the basin and  the tectonic history of its orogenic wedge.

The development of a  foreland basin can be divided into two distinct phases related to 

the emergence of the translating  fold th ru s t belt. During the ‘pre-emergence stage’ the 

subsiding foredeep is flanked by a  subm arine th ru s t belt and  its clastic supply is typically 

derived from a  d istan t or extra-orogenic source (Fig. 5.2). In the second ‘post-emergence 

stage’ the th ru s t belt itself becomes a  major sediment contributor (Fig. 5.3). In Alpine foreland 

basins these stages are characterised  by d istinct phases term ed ‘flysch’ and  ‘m olasse’ 

respectively (Hsu, 1970; Van Houten, 1974; Mitchell & Reading, 1986). Unfortunately these 

term s have become confused as they have been used for both lithofacies and  tectonofacies. 

This situation has arisen because the early flysch stage of deposition is often caught up in 

the th ru s t tectonics of the later stages of basin evolution, as in the northern Apennine Basin, 

Italy (Ricci Lucchi, 1986). It is contended here th a t the term s should be restricted  to 

lithofacies, bu t these need not be restricted to foreland basins. Essentially, the flysch stage 

is characterised by turbidites deposited in deep oceanic water. By contrast, the classical 

Alpine molasse forms a t a  later stage as the th ru s t belt emerges and  is characterised by 

continental and shallow water deposits (Dzulinski & Smith, 1964). In the northern Apennine 

Basin the molasse is mostly the product of re-sedim entation into deeper w ater bu t is still 

thought to reflect emergence of the fold-thrust belt (Ricci Lucchi, 1986).

The geometry of a  foreland basin Is largely controlled by the rate a t which the orogenic 

th ru s t belt is translated onto the foreland. In the simple case, such  as the northern Alpine 

Molasse Basin (Homewood eta l., 1986), th ru sts  stack up on the margin of the basin and there 

is little migration of the depocentre (Fig. 5.4). If the th ru s t front migrates onto the foreland 

the basin may become divided and  form a  complex series of minor basins (Fig. 5.5), often on 

top of the translating th ru s t sheets. These are termed piggy-back basins (Ori & Friend, 1984). 

By th is m eans a  foreland basin can become divided into autochthonous and allochthonous
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units as the depocentre m igrates across the foreland..

In most cases, during deposition of the molasse the foreland basin is fed by the orogenic 

wedge stage and in the very last stages may become filled by metamorphic detritus from the 

internal orogen. By tracing the heavy mineral assemblage in the molasse deposits it may be 

possible to determine the unroofing history of the orogen itself.

5 .3  Stratigraphical Considerations o f the Guadalquivir Basin

Before the s ta tu s  of the G uadalquivir Basin can  be assessed  there  several im portant 

stratigraphical considerations th a t need to be highlighted.

There is some variation in defining the  base of the sequence which forms the 

Guadalquivir Basin. The Lower Miocene Marls (Fig. 2.2) a t the base of the succession are 

regarded as the continuation of sedim entation in the External Zone by Roldan-Garcia, 

(1985a,b) and Blankenship (1992). These rocks are considered to have been deposited on 

an  extending passive margin (Garcia Hernandez eta l., 1980; Blankenship, 1992) destroyed 

by compressional tectonism  during the Oligo-Miocene Betic orogeny.

Alternatively, Sanz de Galdeano & Vera (1992) suggest th a t the lower Miocene was 

deposited in part of a  m arine basin, the North Betic Strait, th a t was separate from both the 

External Zone passive margin sequence and the Guadalquivir Foreland Basin sequence. The 

Miocene succession was subdivided into these two separate basins (the lower Miocene North 

Betic S trait and the Upper Miocene Foreland Basin) on the basis of tectonic style and presence 

or absence of olistostromes (Sanz de Galdeano, 1992).

However, data  presented in th is thesis dem onstrates th a t the Lower Miocene rocks of 

the G uadalquivir Basin were separated from those of the Oligocene External Zone by an 

im portant compressional deformation th a t resulted in substantial subaerial relief (Chapter 

2, section 2.8). Therefore the lower Miocene Marls are distinct from sedim ents of the External 

Zone.

In this thesis the olistostromes are considered to be tectonic melanges associated with 

post-M essinian th rusting  (see C hapter 2, section 2.4) and  the Lower Miocene m arls are 

separated  from the Tortonian clastic rocks by an  unconformity considered to have been 

generated by a eustatic sea-level fall ra ther than  by a  major tectonic event (see C hapter 2, 

section 2.7). Therefore there is no major tectonic break between the Lower and Upper Miocene 

parts of the Guadalquivir Basin. These data indicate tha t there cannot have been two distinct 

basins. If the Guadalquivir Basin is a  foreland basin, as many suggest, then it seem s likely 

th a t the Lower Miocene m arls represent the ‘pre-emergence’ flysch stage and  the  Upper 

Miocene deposits the ‘post emergence’ molasse.

In conclusion, the Miocene Guadalquivir Basin, as defined here, formed in a  compres

sional regime which was distinct from the extensional system th a t characterised the External 

Zone. The fill of the Basin is considered to have been relatively continuous, and  punctuated 

only by unconform ities generated during eustatic  sea-level falls, a s  opposed to  tectonic 

interactions.
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5 .4  Status o f the Guadalquivir Basin

Before the Guadalquivir Basin can be classified in the Bally & Snelson (1980) scheme it m ust 

be determ ined w hether or not it satisfies the generic (geography and  geometry) and 

m echanistic criteria for the definition of a  foreland basin as outlined in section 5.2.

5.4.1 Geographical Location and Geometry o f the Basin

The Guadalquivir Basin is situated between the External fold th ru st belt of the Betic Orogen 

and the cratonic Iberian Massif. In cross-section it appears to have a  ‘classic’ foreland basin 

geometry. To highlight th is similarity the cross-section of the Basin (derived in C hapter 2) 

can be compared with a  cross-section across the Northern Apennine Basin (Fig. 5.6). Both 

basins can be subdivided into an allochthon and an  autochthon and each is characterised 

by th rusting  and ‘olistostrome’ or ‘melange’ type deposits (Fig. 5.6).

The fill of the Guadalquivir Basin is typical of fills in other foreland basins (Miall, 1978). 

Initial basin formation (Lower Miocene, Fig. 2.2) was characterised by sedim entation in deep 

oceanic waters (Chapter 3, section 3.3) equivalent to the ‘pre-emergence flysch’ deposits in 

other Alpine foreland basins (Labaume e ta l., 1985, Ricci Lucchi, 1978). The sedim ents of 

the basin fill shallowed up through the Miocene, culminating in shallow-water and continen

tal fluvial deposits (Fig. 2.2) equivalent to ‘post em ergence’ m olasse-stage deposits in 

Himalayan and Alpine foreland basins. (Perkash eta l, 1980, Houten, 1974). This transition 

from ‘flysch’ to ‘molasse’ is typical of m any foreland basins (Allen eta l., 1986) although the 

Palaeozoic foreland basin of Quebec (Hiscott e t al., 1986) and  the Cretaceous-Tertiary 

Magallanes basin of South America (Biddle e t al., 1986) remained essentially deep-water 

throughout their history.

The clastic deposits of the Guadalquivir Basin, which first appeared in the Tortonian, 

were derived from the External Zone fold th ru s t belt (Chapter 4, sections 4.4 & 4.6; Fig. 4.24). 

The arrival of clastic rocks is interpreted as reflecting the time when the External Zone fold- 

th ru s t belt became sub-aerially exposed and it m arks the beginning of the ‘post -emergence’ 

(molasse) stage of the basin

Thus, the Guadalquivir Basin is a  foreland basin in the ‘generic’ (geographic and 

geometric) sense and the fill is typical of m any foreland basins. However, there are some 

im portant features th a t distinguish it from other foreland basins.

The location with respect to  the orogenic wedge is far from clear. Balanced cross- 

sections, derived from seismic refraction data, (Banks & W arburton, 1991; Figure 6) show 

th a t the Guadalquivir Basin lies 50 Km from the orogenic wedge, close to the flexural bulge 

(Fig. 5.7). There is no evidence for the development of a  Miocene basin immediately in front 

of the orogenic wedge where most subsidence due to lithospheric flexure would have occurred 

(Allen & Allen, 1990, page 99, section 4.2).

The basin fill is rem arkably thin, less than  1 km. Of th is fill, less than  150m is clastic 

(Chapter 3) none of it is derived from the metamorphic rocks of the internal orogen (Chapter 

4, section 4.5). This is unusual when compared to other foreland basins which may contain 

between 1.5 Km and 6 Km of sediment, a  large proportion of which is clastic and derived from 

the orogen (Allen et al., 1986). Most foreland basins s ta rt as deep-water troughs in which
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topography is relative subdued and sedim ent delivery rates low, leading to an  under-filled 

basin (Miall, 1978). In later stages, as the fold-thrust belt emerges, rapid erosion leads to the 

rapid filling of the basin by orogenic material, some of which is of metamorphic origin. This 

rapid filling stage was never achieved in the Guadalquivir Basin, which appears to have been 

m aintained as an under-filled basin throughout its history.

In the Banks & W arburton (1991) cross-section (Fig. 5.7) the G uadalquivir Basin is 

hardly detectable, manifesting itself as a  thin cover of sedim entary rocks resting upon the 

detached External Zone. When the Basin is compared with the scale of the Orogen it appears 

considerably smaller them a  Foreland Basin would be expected to be.

5.4.2 Mechanism o f Formation o f the Guadalquivir Basin

Critical to the definition of a  foreland basin is the m echanism  by which it forms. A foreland 

basin develops in response to subsidence brought about by flexure of the lithosphere during 

its loading by an  orogenic wedge. Consequentially, the foredeep of a  foreland basin develops 

immediately in front of the orogenic fold th ru s t belt where subsidence is a t its greatest (Fig.

5.8). This process takes place during compression brought about by the collision of two plates 

causing the orogen to be driven onto the foreland or flexing lithosphere (Allen e t al., 1986).

However, the Guadalquivir Basin did not form during the compressional phase of the 

orogen, but during its extensional phase (see Overview, Section 1.4). Hence, the Basin formed 

on the margin of an extending orogen. Extension in the internal part of the orogen manifested 

itself a s  th rusting  a t its m argins in the External Zone and G ibraltar Arc Flysch (Platt & 

Vissers, 1989; page 543 & Fig. 6). Seismic refraction data  suggest th a t the External Zone is 

a thin skin th ru st belt with a  fundam ental detachm ent 8-10 Km below the top of basem ent 

(Banks & W arburton, 1991, page 280). The implication is th a t during extension in the 

Internal parts  of the orogen thin slices of the External Zone were driven onto the Iberian 

Craton. This is shown in Figure 5.7 (Banks & W arburton, 1991).

A key question which now arises is w hether enough material was emplaced on to the 

Iberian Massif during extension within the orogen to cause lithospheric flexure. Flexure may 

have occurred during compression of the orogen, but this ended in the Oligocene, before the 

formation of the Guadalquivir Basin. There is no evidence to suggest th a t a  foreland basin 

existed before this time. It seems unlikely th a t the emplacement of m aterial by thin skinned 

thrusting  could have produced sufficient load to cause significant flexure of the  lithosphere 

and basin subsidence. However, th is requires the detailed modelling of the response of the 

Iberian Plate to loading by thin skinned th ru s t slices, and th is is beyond the scope of this 

thesis.

When the position of the Guadalquivir Basin in relation to the flexural bulge is taken 

into account the question of flexure or non-flexure becomes irrelevant. Subsidence due to 

flexure decreases with distance from the orogenic belt (Kominz & Bond, 1982; 1986) and is 

alm ost negligible near the flexural bulge (Fig. 5.8). Indeed there is likely to be uplift on the 

flexural bulge rather than  subsidence (Fig. 5.8)

Because of the involvement of orogenic extension, the loading of the Iberian Plate by 

thin skinned thrusting, and the position of the Guadalquivir Basin relative to the flexural
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bulge, it is unlikely tha t basin subsidence was caused by lithospheric flexure during orogenic 

loading. Some other m echanism  m ust be sought for the formation of the Guadalquivir Basin.

5.4.3 Classification o f the Basin

While the Guadalquivir Basin is ‘generically’ a  foreland basin it is unlikely to have formed by 

the flexural response of the lithosphere to orogenic loading. Thus, by definition the Basin 

cannot be considered to be a  true foreland basin. This makes classification of the basin under 

the Badly & Snelson (1980) scheme extremely difficult. Essentially it is a  perisutural basin 

on rigid lithosphere associated with the formation of a compressional m egasuture and so falls 

into type 2 basins of Bally & Snelson (1980) (Table 1, Overview). However it is not a  trench 

or a  foredeep and does not fall into the sub-classes of type 2 basins. The problem with the 

classification scheme is th a t it does not take into account the peculiarities of the Betic Orogen 

and  its history of extension.

Indeed there is the difficulty of whether or not this sequence can be considered to have 

formed in a  true basin a t all. The Guadalquivir Basin is really ju s t a  fragment of thin cover 

of sedim entary rocks over the External Zone and flexural bulge of the Iberian Massif (Fig. 5.7). 

This cover formed as the External Zone, once an extending passive margin, was converted 

to a  fold-thrust belt by compression a t the edge of an  extending orogenic welt. It may be th a t 

the Basin merely represents the final stages of the ‘rolling up’ of a  passive margin sequence 

during the extension of an orogen.

In the final analysis, the G uadalquivir basin is alm ost impossible to classify using 

existing schemes, but it is certainly not a  true foreland basin. It is considered to  be a  unique 

product of the peculiarities of the Betic Orogen and its formation.

5 .5  Model for the Formation o f th e  Basin

The Guadalquivir basin formed as part of an  extending orogen, where the extension in the 

In ternal Zone produced com pression in the outer m argins of the orogen (Fig. 5.9). The 

initiation of extension in the Internal Betic Zone is dated as 27-24 Ma. (Overview, Fig. 0.4) 

which coincides with the compression and subaerial exposure of the External Zone (Chapter

2.8). The karst surface, formed as a  result, represents the base of the Guadalquivir Basin 

succession which then developed during the Miocene.

Before the formation of the  G uadalquivir Basin, rocks of the External Zone were 

deposited on an  extended continental margin of Triassic terrestrial red beds and  evaporites 

(see Overview, section 1.3). The External Zone formed as a  series of grabens (see Overview, 

Fig. 0.3). These have previously been interpreted as having been broken up by th rusting  

induced by com pression as  the African Plate accreted onto the Iberian m argin (Garcia- 

Hemandez, 1979; Banks & W arburton, 1991; Blankenship, 1992). However, sedimentation 

in the External Zone is known to have continued into the latest Oligocene and maybe into the 

Lower Miocene w ithout significant change in the basin configuration (Blankenship, 1992 ; 

Roldan Garcia et al., 1985a,b). The earliest m etam orphism  recorded in the Internal Betic 

rocks is Cretaceous and com pression is known to have continued through the Palaeogene 

(see Overview, Fig. 0.4) during which time the External Zone m aintained its profile. The first
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compressional event in the External Zone is not recorded until the latest Oligocene (Chapter 

2, section 2.9) the time when extension of the orogen was initiated. Thus, the passive margin 

basins were broken up and th ru s t onto the Iberian Massif during compression induced by 

extension of the Internal parts of the orogen.

The suggestion here is th a t the Passive Margin was not significantly influenced by 

tectonism in the Betic area until extension within the orogen was initiated. This implies tha t 

the orogenic wedge was not driven onto the Iberian margin during the Palaeogene compres

sional phase and th a t loading of Iberia did not take place until after extension had occurred. 

During extension Iberia was loaded by thin slices of detached External Zone rocks, but this 

load was probably insufficient for flexure of the lithosphere. If the loading of Iberia only took 

place during thin skinned thrusting, then th is explains the absence of a  foreland basin on 

the Iberian plate.

There is strong evidence th a t the Internal Zone of the Betic orogen did not generate sub

aerial relief during the Miocene as 1km of Miocene marine m arls Eire found unconformably 

overlying metamorphic rocks of the Internal Zone (Rodriguez Fernandez, 1993; Fig. 3). Platt 

& Vissers (1989; page 543) suggest tha t the Betic orogen subsided below sea-level in response 

to crustal th inning during Miocene extension. It has been suggested th a t the  Betics of 

southern  Spain did not generate any sub-aerial relief until late Miocene or early Pliocene 

times (Bluck & Hughes pers. comm.). If this is correct then the lack of metamorphic detritus 

in the Guadalquivir Basin is explained since a t the time of formation of the Guadalquivir 

Basin metamorphic rocks of the Interned Zone would have been covered by a  marine basin.

In the final analysis it appears th a t the Guadalquivir Basin formed as an integral part 

of the destruction of the Iberian Passive margin during extension of the internal parts of the 

Orogen. Thin skinned thrusting generated a  basin on the margin of the External Zone. The 

fill and unconformities of this basin were controlled by eustasy rather than  tectonic incursion 

(Chapter 2, section 2.7) and  clastic sedimentation by the emergence of External Zone th ru st 

sheets during the late Miocene. The final thrusting event in the External Zone disrupted the 

Guadalquivir Basin succession and  led to its division into the autochthon and allochthon 

seen today. This model is sum m arised in Figure 5.10 and provides a  working hypothesis for 

discussion in Part III of th is thesis.
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Chapter 1: In troduction
1.1 General Geological Setting

The Gibraltar Arc is formed from a series of th ru st nappes which link the External Rif of North 

Africa to the External Zone of southern  Spain (Fig. 1.1). The Flysch nappes are generally 

referred to as the ‘Campo del G ibraltar Complex’ (Olmo-Sanz et al., 1987; Fontbote et al., 

1986; Sanz de Galdeano & Vera, 1992) and make up  a  large part of the G ibraltar Arc. The 

Flysch deposits extend from Ubrique in the North to Tarifa on the southern  peninsula of 

Spain.

The Flysch Nappes have been subdivided into num erous tectono-stratigraphic units, 

the largest of which is the Aljibe Flysch (Fig. 1.1) with a  minimum stratigraphic thickness of 

1400m (Olmo-Sanz et al., 1987). It is this unit th a t is the subject of this part of the thesis. 

The Aljibe Flysch can be further subdivided into the Beneiza Flysch and the Aljibe Arenites 

(Fig. 1.2) which are of Oligo-Miocene age (Chauve, 1960; Didion, 1969)

The Beneiza Flysch is composed of arenites, limestones and marls th a t are interpreted 

as having been deposited as turbidites during the Oligocene (Olmo-Sanzeta l., 1987). The 

Aljibe Arenites, dated as Lower Miocene (Chauve, 1961; Didion, 1969), are composed of thick 

bedded quartz arenites and are characterised  by graded bedding, p lanar lam ination, 

convoluted lamination, dish structu res, pillow structu res and other w ater escape features 

(Bourgois, 1978; Olmo-Sanz et al., 1987).

1.2 Previous Interpretations

The ‘Campo del G ibraltar’ complex which includes the Aljibe Flysch is considered to have 

originated from materials deposited in an Oligo-Miocene North Africa Flysch Trough th a t lay 

S-W of the present position of the Flysch (Sanz de Galdeano & Vera, 1992). Bourgois (1978) 

reported th a t the Aljibe Arenites were subject to im portant re-sedim entation processes 

during the Burdigalian, resulting in the formation of tectono-sedim entary units. The North 

African Flysch Trough was subsequently displaced westward during Miocene thrusting tha t 

is interpreted to have been induced by the extensional collapse of the Betic Orogen (see Part 

I, Chapter 5, Fig. 5.9) (Platt & Vissers, 1992)

1.3 Study Area

The Aljibe Flysch has been studied in two areas (Fig. 1.1), in the Cortes del Frontera region 

(study area 1), and in exposures found on the southern coast of Spain (study area 2). In the 

Cortes region a  series of transect were made across the Flysch nappes (Figs. 1.4-1.6) and the 

resulting logs form the basis of th is study. The coastal a rea provided excellent exposures of 

sedim entary structu res in wave w ashed rocks. All location num bers refer to the locations 

given in Figures 1.4-1.6 and a  sam ple of the logs generated from the transec ts is given in 

Appendix III.
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T ecton o-stratigrap h ic  H istory
1.4 Cross-Section

An E-W cross-section, located on Figure 1.3, draw n for the Cortes region (Fig. 1.7) 

incorporates data  from published maps (Olmo-Sanz et al., 1987), the th ru s t transects (Figs. 

1.4-1.6), the logged sections (Chapter 2) and other field observations.

1.4.1 Description

The cross-section features a  series of th ru s t units. The eastern portion of the cross-section 

is characterised by nappes of Alpujarride and Malaguide rocks belonging to the Internal Zone 

(m etam orphic rocks) of the  Betic Orogen. The cen tral sector con tains deformed bu t 

unm etam orphosed Sub-Betic rocks belonging to the External Zone of the Betic Orogen. A 

full review of the Internal and External Zones of the Betic Orogen is given in the Overview 

(Section 1.3), The western portion of the cross-section consists of the Aljibe Flysch nappes, 

which form a  series of imbricate th ru s t nappes (Fig. 1.8). Where the Malaguide rocks are 

found in tectonic contact with the Sub-Betic External Zone they form a  series of upright, 

vertical beds. This zone is referred to as the Dorsal Zone (Olmo-Sanz et al., 1987) and consists 

of both Internal Zone and External Zone rocks together with thin slices of Flysch.

The axial traces of the folds and  of the th ru s t contacts trend  north-south  and  the 

dom inant transport along the th ru s ts  is interpreted to be to the West.

The Alpujarride, Malaguide, Subbetic, External Zone and Aljibe Flysch Units are 

separated  by low angle tectonic contacts. No stratigraphic contacts have been observed 

between any of these units in the G ibraltar Arc. Thrust nappes in the Flysch Eire cu t by a  

series of normEil faults and in places the Flysch is down-faulted against Subbetic ExternEil 

Zone rocks. The th ru s t contacts are often chEiracterised by thin slices of Triassic deposits 

th a t contsiin evaporltic horizons, particularly between the Flysch and Sub-Betic, External 

Zone Units (Fig. 1.9).

1.4.2 Interpretation

The low angle contacts between the tectonic units have been interpreted eis being low single 

detachm ent faults (Doblas & Oyarzun, 1989, Fig. 2, page 432; Platt & Vissers, 1989). It has 

been suggested th a t these Eire the product of extension during the diapiric rise of peridotites 

(Doblas & Oysirzun, 1989) which formed a  core-complex flanked by a series of low-Eingle 

detachm ents (Fig. 1.10). T hrusting was generated within the Flysch Units as they were 

detached  from the core complex peridotites and  moved westward. The m ain zone of 

detachm ent, as in other parts of the Betic Orogen, appears to be in Triassic evaporite deposits 

which belong to the External Zone. The implication here is that, prior to this extensional event 

the Flysch Unit covered the  External and Internal Zones of the Betic Orogen, extending 

eastw ards past its present location
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1.5 Stratigraphic Evolution

The Flysch deposits are completely detached from their basem ent forming highly alloch- 

thonous un its  and stratigraphical contacts are only preserved within the nappes. As a 

consequence, the true stratigraphical relationship between the Flysch deposits and  the 

External/In ternal zones is unknown. Within the Flysch the Beneiza Flysch is conformably 

overlain by the Aljibe Arenites (Fig. 1.2). O ther Flysch units in the Campo del G ibraltar 

complex form thin  th ru s t slices between the Aljibe Flysch and the Sub-Betic External Zone 

units or Dorsal Zone. These units are so fragmented th a t it has been impossible to determine 

their true stratigraphical relationship with the Aljibe Flysch.

1.6 Conclusions

The G ibraltar Arc is formed by a  series of highly allochthonous units tha t have been th rust 

westward during extension related to the diapiric rise of a  Peridotite core zone. The true 

stratigraphical relationship between the Aljibe Flysch and other tectonic units has not been 

observed, bu t it is thought that, prior to detachm ent, the Flysch formed a sedim entary cover 

th a t blanketed the Internal and External Zone rocks of the Betic Orogen.
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Chapter 2 

Sed im en to logy  & Palaeogeography o f  th e  Aljibe F lysch

2.1 Introduction

The Aljibe Flysch is the largest tectono-sedim entary un it found w ithin the ‘Cam po del 

Gibraltar’ complex (Fig. 1.1). This unit is formed from a  series of imbricate flysch nappes tha t 

extend across the central sector of the Gibraltar Arc, from Algeciras in the south to Ubrique 

in the north, covering approximately 3000 Km2.

For the purposes of study  the Aljibe Flysch un it can be divided into two distinct 

stratigraphical units, the Late Oligocene Beneiza Flysch, and  Early Miocene Aljibe Arenites 

(Fig 1.2).

A series of E-W logged transec ts has been constructed for individual nappes of the 

Flysch deposits (Figs. 1.4-1.6). These form the framework for detailed sedimentological and 

palaeogeographical studies of the Aljibe Flysch and its sub-units.

2.2  The Beneiza Flysch

The Late Oligocene su b -u n it of the Aljibe Flysch is made up  of m onotonously bedded 

siltstones, sandstones, and m udstones of unknown total stratigraphical thickness (mini

m um 5 m.).

2.2.1 Description

This su b -u n it consists of th in  (< 20cm) siltstones and  tabu lar fine grained sandstones 

intercalated with m arls (Fig. 2.1). Petrographically the sandstones are quartz and lithic 

arenites (Fig. 2.2). The lithic fragments are dominated (>70%) by sedim entary fragments and 

of the sedim entary lithic clasts more th an  90% are carbonate lithic grains. The remaining 

lithic fragments Eire metamorphic or highly altered fragments.

The bounding surfaces of the tabu lar beds Eire planar with occasional sole markings. 

A simple ichnofauna may be found on bed surfaces which is m ost commonly entirely the 

branching form Chondrlties (Fig. 2.3). Internally the beds display convolute lamination, cross 

lamination or planar lamination bu t may be structureless (Fig. 2.4). Typically the sedim en

tary structu res form complete or psirtial Bouma sequences. The complete Bouma sequence 

(Fig. 2.5) is composed of sole m arkings a t the base of a  massive or graded bed (A), passing 

upwards into planar laminated, convolute laminated or structureless sandstones (B), ripple 

cross lam ination (C), planar lam ination (D) and finally structureless siltstones (E).

In the Beneiza Flysch, of a  total observed 137 upward-fining beds, only 13% displayed 

the complete Bouma sequence (A->E) the rest displaying partiEil sequences (Fig. 2.6). The 

m ost common partial Bouma sequence (46% of observed beds) included massive graded bed 

with sole m arks passing into convolute lam ination or p lanar lam ination (A->B) Eind the 

sequence A,B,C was obtsiined in only 18% of beds.
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2.2.2 Interpretation

Bouma sequences and partial Bouma sequences are typically observed in turbidite-deposited 

sediments (Walker 1967). Classically turbidites are characterised by repetitive interbedded 

sandstones and shales with planar tops and bases (Walker, 1984; page 172). No scouring 

or channelling occurs on the bases of such beds on a  scale greater than  a few centimetres. 

The sandstones tend to have sharp  bases tha t grade upwards into fine sandstones, siltstones 

and mudstones, and the undersides of the beds may bear sole markings. Turbidite-deposited 

beds contain a  com bination of parallel lam ination, ripple cross-lam ination, convolute 

lamination and  graded bedding (Walker 1967; M utti & Ricci Lucchi, 1972, Walker 1978) 

which can ideally be described by a Bouma sequence.

The Beneiza Flysch sub-unit conforms to th is general description of classical turbidites 

and the presence of complete and  partial Bouma sequences suggests tha t it was deposited 

by turbidity currents. Turbidity currents are density currents of suspended sedim ent and 

water that flow downslope, driven by gravity acting on the density difference between the flow 

and the surrounding water m ass (Walker. 1984). Such currents are known to operate in a  

wide range of environments, ranging from lakes and reservoirs to deep marine environments. 

Micropalaeontological analysis of the Beneiza Flysch ( Chauve, 1960; Didion, 1969) suggests 

th a t deposition took place in deep oceanic waters.

2.3  The Aljibe Arenites

2 .3 .1 General Characteristics

The Aljibe Arenites represent the Lower Miocene su b -u n it of the Aljibe Flysch tectono- 

sedimentary unit. This sub-unit has a  stratigraphical thickness of 2-3Km and is composed 

of thick (up to 10 m) sandstones interbedded with m arls and siltstones. Petrographically the 

sandstones are fine, medium and coarse grained quartz arenites, with more than  98% of the 

framework being well rounded quartz grains (Fig. 2.7). Sandstone beds may coarsen or fine 

upwards (Fig. 2.8). Internally the sandstones generally appear to be massive, except where 

exposed in wave washed rocks in coastal sections (Study Area 2; Fig 1.1) in which they Eire 

dominated by complex sedim ent fluidization struc tu res  (see 2.3.6). Rare planEir cross- 

stratification, trough cross-stratification, p lanar lEimination and  bioturbation are also 

present in the ssmdstone beds.

2.3.2 Logged Transects

Two detsdled logged transects have been constructed across a  single folded th ru s t nappe (Fig. 

1.5). These transects have been taken through opposite limbs of a  syncline and utilize the 

Beneiza Flysch/Aljibe Arenite transition (Oligo-Miocene boundary) as the datum . Transect 

2 (locations 40-50) is approxim ately 3000m  long Euid T ransect 3 (locations 58-65) is 

approximately 1500m long. The logged transec ts Eire sum m arised as  lithologicsd logs in 

Figures 2.9 & 2.10, full logs are given in Appendix III.

In Figures 2.9 & 2.10 the lithologies are divided into sandstones, heterolithic intervals 

and marl intervals agEdnst which sandstone bed thickness and  sand percentage have been

Part lb  The Gibraltar Arc Flysch Basin



Chapter 2: Sedimentology & Palaeogeography Page 100

plotted. Heterolithic intervals include thin sandstones and siltstones interbedded with marls 

in which the sandstones are no more than  3cm thick. Where sandstone beds are thicker they 

are classified as sandstones ra th e r than  being included in heterolithic intervals. The 

percentage sandstone has been calculated from the percentage sandstone per metre, and 

each metre interval has been overlapped by 25cm so tha t they reflect running averages. The 

logged transects contain considerable intervals of non-exposure as indicated on Figures 2.9 

& 2 . 10 .

In total 248 sandstone intervals have been observed within the logged transec ts and 

these have a  minimum thickness of 3cm and a  maximum of 900cm. The average thickness 

is 66cm with a standard  deviation of 102cm. A total of 132 heterolithic and m arl intervals 

have been observed with a  minim um  thickness of I cm and a  maximum of 1200cm with an 

average thickness of 60cm (standard deviation of 124 cm). In the logged transects the total 

observed sandstone interval thickness is 2 2 1 m and the total observed thickness of heterolithic 

and m arl intervals is 79m giving a  sandstone/heterolith ic ratio of 3:1. However, th is ratio 

may be distorted due to the fact th a t the heterolithic intervals are less well exposed them the 

sandstone Intervals.

Each logged section can be subdivided into a  series of coarsening/thickening-up cycles 

2 -30m thick. Cycles are shown in Figures 2.9 & 2.10 numbered as C l, C2, C3....etc. Cycles 

aire more difficult to identify where they sire cut by areas of non-exposure. Typically the bases 

of cycles are marked by dark grey msirls, which psiss into heterolithic intervals and then thick 

bedded ssmdstones. A few of the identified cycles appear to fine/thin upwards, notably cycle 

C 16 in transec t 3 (Fig. 2.10), bu t these are m uch rarer in comparison to the more norm al 

coarsening/thickening up  cycles. Within the cycles individuEil ssmdstone intervals, in ter

preted as being beds, m ost commonly fine upwsuds, Edthough some may also cosirsen 

upwEuds (Fig. 2.8). Grain sizes in these intervsils range from fine sand  (phi 3) to micro

conglomerates (phi -1). IndividuEil sandstone beds may have planar or erosional bases the 

latter with a  relief of up  to 50cm. No large-scale channels have been observed. The sandstone 

beds legged in Study Area 1 (Fig. 1.1) generally appear massive with rare exsunples of cross

stratification, trough cross-stratification, parallel lamination bioturbation and  w ater escape 

structures. However, in wave-washed rocks in coastal exposures (Study Area 2; Fig. 1.1) they 

appear to  be dom inated by complex w ater escape features with primEuy depositionEd 

structures, such els cross-stratification, largely obscured.

These logged tran sec t are typicsil of the Aljibe Arenites exposed th roughou t the 

GibraltEir Arc and the arenites show a  surprising lack of facies variation over th is wide area.

2.3.4 Description o f the Sedimentary Structures

While the logged transects include sandstones that appear m assive and structureless, wave 

washed surfaces of the SEime rocks exposed in coastal sections show  a  complex range of 

sedimentary structures. The structures are similar to water-escape structures described by 

Lowe (1975). Because of th is similarity, the structures in study area 2 can be classified  

according to the schem e of Lowe (1975) which resolves water escape features into six bEisic 

types; dark laminae, dish structured laminae, convolute laminae, pillEirs, sand m ounds and
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diffuse structures.

Dark laminae; are mm (< 0.5cm) scale laminae which are picked out by heavy minerals 

clays and micas forming characteristic dark streaks. The dark laminae are often overlain by 

lighter bands of quartz and feldspar up to 5cm thick. The laminae vary from planar or gently 

undulating to complex ‘stylolite’ type laminae (Fig. 2.11).

Dish structured laminae; are formed by laterally discontinuous concave-upwards 

laminae (Fig. 2.12). The dishes are generally 2-5cm in section and are often separated from 

each other by vertical pillars. The dishes vary from gently undulating (Fig. 2.12) to deep, 

upward curving dishes 4-5cm deep (Fig. 2.13), term ed mega-dishes by Lowe (1975). Dish 

s tructu res are commonly associated with dark, flat lam inae and pillars separate  mega

dishes. Dishes are often found in fine medium grained sandstones th a t overlie massive 

coarse grained (micro-conglomerate) sandstones (Fig. 2.14).

Convolute laminae; are folded and  deformed laminae picked out by concentrations of 

heavy minerals and clays. Convolutions range in scale from a  few centim etres to metres. 

Three types of convolute lamination can be recognised; simple overturned folds (Fig. 2.15), 

diapirs (Fig. 2.16) and disrupted diapirs (Fig. 2.17).

Overturned folds; are simple fold structu res characterised by steeply inclined, over

tu rned  synform s and  antiform s. These are sim ilar to sedim entary slum p s tru c tu re s  

described by Helwig (1970) and Woodcock (1976).

Diapirs; are m ushroom  shaped convolutions th a t em anate from a point or pillar. 

Diapirs often contain pillars in their cores and can be stacked to form series.

Discontinuous diapirs; are those where the lam ination becomes discontinuous and 

fragmented a t their tops. (Fig. 2.17).

Pillars; are elongate and often diffuse streaks of massive, lighter coloured sand  1cm to 

175cm high (mean height 20cm, with m ost being between 0-20cm). Five types of pillars can 

be recognised and  classified according to the scheme outlined by Lowe (1975);

Type A pillars; are those associated with mega-dishes, forming between the upward 

curving margins of the dishes, these are generally small, less than  2cm in height (Fig. 

2.18).

Type B Pillars; are unrelated to dishes and range from a  few millimetres to metre scale. 

These may be straight or sinuous, or may bifurcate (Figs. 2.19, 2.20).

Type C pillars; are diffuse lenticular streaks, the free-surface pillars of Lowe (1975). 

They are associated with the upper layers of beds, where bedding surfaces can be 

interpreted (Fig. 2.21).

Type D pillars; are narrow irregular streaks l-5cm  in diameter. On the surfaces of 

the beds they form en-echelon sets (Fig. 2.22). Type D pillars have been termed stress 

pillars by Lowe (1975).
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Type E Pillarsi are intrusions or large dykes 10-30cm wide and up to 3m in length (Fig. 

2.23). These are rare, and usually cross-cut other sedim entary s tructu res. The 

margins of the intrusions are often picked ou t by concentrations of heavy minerals 

on bed surfaces. These intrusions may term inate as sandstone m ounds on bedding 

surfaces.

Other pillars not classified by Lowe (1975);

1. Pillars of coarse sand  tha t often appear to be downwards penetrating (Fig. 2.24).

2. Pillars found in the cores of diapirs (Fig. 2.25).

Sand m ounds; are formed where intrusions break bedding surfaces (Fig. 2.26). Such 

m ounds are commonly surrounded by concentric rings of heavy minerals.

Diffuse Streaks; are zones of complete mixing of dark  and light sandstone, giving a  

mottled appearance (Fig. 2.27). Horizons of th is type lack other well developed 

structures and are up to 70cm thick and laterally continuous for more than  10m.

2.3.5, The Idealised Sequence o f Structures

The structures are not randomly distributed but are ordered into distinct sequences to form 

repeating cycles. A typical sequence is shown in Figure 2.28 from which an  idealised 

sequence can be constructed (Fig. 2.29).

In th is ideal sequence (Fig. 2.29) the base is m arked by coarse grained (micro- 

conglomeratic) sandstone with or without convolute fold structu res (A). This basal horizon 

passes up into dark  laminae (B) which give way to dish structu red  laminae (C). At higher 

levels the dishes are commonly replaced by mega-dishes, usually associated with Type A 

pillars (D). The larger pillars of this horizon may develop into diapirs (E) and additional pillars 

are commonly be found in the cores of the diapirs. The top of the sequence is m arked by fine 

to medium grained sandstone in which free surface (Type C) pillars or diffuse streaks can be 

found (F).

While this ideal sequence is common in the Aljibe Arenites there are dramatic variations 

from the ideal cycle. Any part of the sequence A,B,C,D,E,F may be missed out (i.e A,B,E,F). 

Common variations include coarse sandstone passing directly into sandstones with Type B 

pillars or dykes (Fig 2.30) into which the coarse sandstone may be injected (Fig. 2.30). Other 

sequences may include only pillars passing into convolute diapirs (Fig. 2.31) or dishes 

passing directly into diapirs and missing ou t the pillar/m ega-dish (D) stage (Fig. 2.32).

The larger pillars and dykes commonly cross-cut other water-escape structures. Many 

horizons contain only diffuse streaks and other structures cannot be recognised. Any of the 

structu res described may be deformed, either overturned (Fig. 2.33) or folded into more 

complex features.
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2.3.6 Heterolithic Intervals

The heterolithic intervals between the sandstone beds also display complex convolute 

structures (Fig. 2.34). They commonly show folding and faulting , injection structures such 

as sm all dykes, and  complex sediment-mixing patterns (Fig. 2.34). The siltstones and 

m udstones of the heterolithic intervals often mix with the bases of overlying sandstones 

forming indistinct gradational boundaries. Overall the heterolithic intervals are rarely 

preserved as laminated or well bedded sedim ents and almost always display water escape 

structures.

2.3.7. Interpretation o f the Sedimentary Structures

The struc tu res described are identical to features described by Lowe (1975) which are 

interpreted as water escape structures.

Water-escape is the process by which water is expelled from sediments as they become 

consolidated during compaction. Water-escape most commonly occurs in sedim ents th a t 

are rapidly deposited to form a  loosely packed sedim ent with a  high porosity containing 

in terstitial water (Nicholls et al., 1994). Rapid deposition and loose packing is m ost 

commonly associated with the proximal parts of deep sea fans, with areas around the m ouths 

of channels and with overbank deposits (Lowe, 1975; Allen, 1982).

The early consolidation of sediments involves a  processes of fluid escape during which 

time the grains become more tightly packed. Fluid escape occurs by three basic mechanisms; 

seepage, liquefaction and fluidization, the interaction of these leads to the formation of the 

complex range of water escape structures.

Seepage is the slow movement of fluid through a  sediment, and is the most common 

mechanism by which w ater is expelled from sedim ents (Lowe, 1975). It involves the slow 

upwards percolation of w ater in response to the pressure gradient induced by sedim ent 

loading. Seepage does not account for the formation of water escape features, unless flow 

rates are high, in which case a  fluidized or liquefied state is approached (Lowe, 1975).

D uring liquefaction the grains are temporally suspended in response to a  sudden 

increase in fluid flow rates and pore pressure. Following rapid suspension the sedim ent 

alm ost im mediately begins to settle back through the fluid to re-estab lish  the grain 

framework (Lowe, 1975). During this process a  sudden loss of shear resistance is experienced 

by the sedim ent during which time it is easily deformed and ‘slum p’ s truc tu res such  as 

convolute folds may form. During liquefaction water-escape structures may form during the 

initial tem porary fluidization stage and  water escaping from liquefied beds may fluidise 

higher sedim entary layers. Beds th a t have undergone liquefaction are characterized by 

sandstone dykes, sand  volcanoes and extrusions tha t Eire commonly found in association 

with slum ps smd m ass flow structu res (folds and convolute lamination).

A sediment becomes fluidized when the grains Eire suspended for longer periods by the 

upwards movement of pore fluids. By this processes the sediment is transformed from a body 

of granular materisil into a fluid-like state. Fluidization is likely to occur in coarse grained 

silts and sand sized material, while coarser SEinds and gravels and finer silts generally de
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water by seepage. Coarse sands and gravels are highly permeable and water escapes readily, 

preventing the high fluid p ressu res necessary for the high fluid velocities th a t cause 

fluidization from being established. Where coarse grained material is subject to higher fluid 

velocities the grains are often too heavy to be lifted and suspended (Lowe, 1975). Finegrained 

silts are relatively impermeable and  as a  resu lt the movement of pore water is prevented 

(Lowe, 1975). If the fluid follows preferred escape paths, perhaps taking advantage of 

inherited weakness, the surrounding sedim ent will quickly become consolidated by losing 

w ater to the fluidization channel (Lowe, 1975). Where such  fluidization channels form, 

convection cells of fluidized m aterial may be set up (Kunii & Levenspiel, 1969).

Often there is no clear distinction between liquefaction and fluidization as there is a  

transition from one process to the other. Where fluidized horizons develop the surrounding 

sedim ent may become liquefied. As fluid velocities decrease a  fluidized horizon may be 

converted to a  liquefied horizon as the grains settle out to re-establish the grain frameworks. 

Lowe (1975) also infers th a t an  initial bu t tem porary period of fluidization is required to 

suspend grains in order to bring about the liquefaction of a  sediment.

The process by which individual water-escape structu res form, has been described in 

detail by Lowe (1975), and these explanations, with some modification, can be applied to 

water-escape structu res in the Aljibe flysch;

Dark laminae; reflect the presence of horizontal fluidization paths where the fluid is 

forced to flow horizontally by the presence of permeability barriers. Micas and clay minerals 

become concentrated along the boundaries of the fluid channels. The concentrations of these 

minerals are enhanced if the fluid seeps into the sedim ent adjacent to the pathway. During 

seepage the more mobile grains, such  as m icas and  clays, approaching the channel 

boundaries are sucked into the pores of the surrounding sedim ent, where they become 

trapped. This has the effect of further reducing the permeability of channel walls, and thus 

may serve to m aintain fluidization longer.

In addition to clays and micas, dark  laminae may be formed by heavy minerals. As the 

lighter and  more mobile grains such  as  quartz and  feldspar are fluidized the heavier, less 

mobile grains may settle out, accum ulating below the lighter coloured fluidization paths 

(Lowe, 1975).

Elutriation may also play a  part in segregating grains. Upwards escaping fluids move 

lighter minerals upwards, bu t heavier minerals may not be fluidized, and in effect behave as 

if liquefied, settling out from the m ain fluidized flow. By this process heavy minerals can settle 

th rough the fluid as the lighter m inerals rem ain suspended and  rise If a  denser, less 

permeable, layer is encountered by a  rising fluid the denser layer may settle through the fluid 

as cohesive bodies (Nicholls e t al., 1994). If the upw ard flow decelerates the  previously 

suspended, lighter, minerals also begin to settle. Thus, in irregular flows, where decelerating 

flows are common, bands of heavy or coarse m aterial overlain by finer grained lighter material 

may form. This is im portant, because observed upward-fining cycles may actually be the 

products of intense water escape ra th e r than  reflecting primary depositional processes.

Dish structures; Lowe (1975) suggested th a t dishes form by the subsidence of sediment 

over the central parts of horizontal flow paths. In experiments, dishes have been observed
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to form as denser material settles through a fluidized horizon (Nicholls etal., 1994). Increased 

fluidization velocities lead to an  increase in the curvature of the dishes as subsidence 

becomes more pronounced. The upwards-curving margins of the dishes form discontinuities 

where fluidization can be concentrated and  it is a t these points th a t horizontal flow is 

converted to vertical flow and pillars form. Further growth of the pillars may bend up the 

edges of the dishes, leading to more pronounced curvature and the formation of mega-dishes.

Convolute laminae; Diapiric s truc tu res have been produced experimentally by the 

gravitational deformation of layers of silicone, in which underlying lighter silicone rises and 

denser overlying silicone sinks (Ramberg, 1981). A similar process has been observed by 

Nicholls eta l. (1994) in which non-fluidized layers sink into fluidized layers. Thus, fluidized 

sediment may rise up through a  denser non fluidized layer, with flow usually Initiated a t a  

discontinuity. As the fluidized layer rises and the denser layer sinks the fluidized material 

may expand into overlying layers. The descending pillars observed in the Aljibe Arenites 

probably record the downward movement of non fluidized layers into the fluidized horizons. 

During diapiric expansion the flow velocity is reduced e ls  the flow becomes less confined and 

sediment may begin to settle out. Once the fluidized flow is reduced to allow liquefaction to 

take over the expansion of the diapir stops Eillowing it to be preserved. If the expsmding diapir 

reaches a less dense layer, or discontinuity, the fluidized metss may suddenly expand into the 

surrounding sediment, rupturing the top of the diapir. Diapirs may e lIs o  periodicEdly pinch 

off from the main body of the fluidized sediment, forming discreet rising bodies of material 

or a  series o f ‘stacked diapirs*.

Pillars; Models for pillar growth have been developed by Lowe (1975). Pillars grow where 

horizontal fluidization is converted to  verticEil fluidization. This commonly occurs a t 

discontinuities where fluidized sedim ent csm be concentrated. This concentration results in 

the rapid growth of the pillEtrs which propagate by erosion of the overlying sediment. During 

propagation the pillEtrs may bifurcate. Lowe (1975) suggested th a t where a pillar of rising fluid 

reaches a  permeability barrier a  convection cell may be set up  in which the elutriation of heavy 

minerals can take place. The precise m echanism  by which different types of pillars form is 

more fully outlined by Lowe (1975).

Sand m ounds; Where large intrusions (pillars) breEtk through and  extrude fluidized 

sediment onto the surface of a  bed, sand  mounds form. Mounds formed in this m anner are 

referred to as sstnd volcanoes (Lowe, 1975; Nicholls eta l., 1994). In the Aljibe Arenites these 

are preserved on bedding surfaces as m ounds surrounded by concentric rings of concen

trated heavy minerals. Lowe (1975) suggested th a t heavy m inerals sue rolled up the sides of 

the conduits supplying the volcEmoes, although this has never been proved experimentally. 

Concentric rings, such as those seen surrounding m ounds in the Aljibe Arenites, may suggest 

seversil periods of activity of the volcEinoes. Lowe (1975) cited th is as evidence for the 

replenishm ent of interstitial w ater a t depth.

Total sedim ent mixing; is represented by diffuse streaks. The layers containing these 

lack well defined structures and represent zones which have been completely fluidized. This 

requires large am ounts of water, high fluid velocities and high permeability (Nicholls eta l., 

1994)
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2.3.8 Interpretation o f the Idealised Sequence

The idealised sequence can be understood by considering the processes by which water 

escape is initiated and progresses. The following interpretation is based on the detailed 

account of the formation of water escape structures a t different fluid flow rates given by Lowe 

(1975)

Initiation; While most sediments consolidate by gradual water seepage during compaction, 

some sedimentary units, such as those of the Aljibe Arenites, experience violent consolidation 

soon after or concurrent with deposition. Violent consolidation involves the expulsion of 

water by liquefaction and fluidization processes.

Rapid consolidation can be induced in two main ways; 1) by earthquake shock or 2) by 

rapid deposition leading to rapid loading and consolidation.

During earthquakes sedim ents with large volumes of interstitial fluid may become 

instantaneously liquefied, because of a  change in packing of the grains. This releases water 

which may fluidize supradjacent layers.

The rapid deposition of sand  and  gravel initiates the consolidation of immediately 

underlying sediments. Water escaping from such layers may liquefy or fluidize supradjacent 

layers. Lowe (1975) considered loading consolidation a  significant process th a t is m uch more 

common than initiation by earthquake shock. Loading consolidation is most profound where 

sands are dum ped rapidly onto soft unconsolidated argillaceous substrates. The rate and 

magnitude of loading (and the corresponding fluidization velocities) bears a  direct relation

ship to the depositional rate.

Heterolithic intervals (containing argillaceous material) in the Aljibe Arenites show 

evidence for significant water escape. It is suggested th a t these layers provided a  significant 

proportion of the fluid responsible for the fluidization of the overlying sandstones. The base 

of the idealised sequence is commonly marked by coarse grained sediment an d /o r convolute 

folds. The coarse sands would have been highly permeable and would have th u s  acted as 

conduits for the transfer of water from the heterolithic stra ta  to the fine and medium grained 

sands above, which would have been readily fluidized.

In other cases, w ater escaping from underlying layers may have first liquefied an 

immediately overlying layer. This would have reduced the shear resistance of the sedim ents 

so that the layer became prone to hydroplastic deformation. Subsequent folding of this layer 

squeezed out water which was added to the volume of fluid available for the fluidization of 

supradjacent layers (Fig. 2.37).

Progress o f consolidation;. Consolidation may progress in three ways; by slow seepage, 

by a gradual increase in fluid escape rates, or by a  rapid increase in fluid escape rates followed 

by a  gradual decline (Lowe, 1975). The idealised sequence (A,B,C,D,E,F; Fig. 2.29) can be best 

interpreted by considering the second case, tha t of the gradual increase of fluid escape rates.

In this scenario, water escaping from the lower layers of a  sediment pile (i.e heterolithic 

intervals) would have been added to th a t contained in overlying layers. This would have 

resulted in an upwards increase in the volume of fluid available for fluidization and would 

be accompanied by an  upward increase in fluid velocity as the water was expelled upwards
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under increasing pressure. Flow would be enhanced by the consolidation of the lower layers, 

preventing the fluid from flowing back down through the sediment. Thus, the idealised water 

escape sequence (Fig. 2.29) represents a sequence of escape stru c tu res  which evolve in 

response to upward increasing fluidization pressures and  velocities.

Initially, a t the base of the sedim ent pile, flat consolidation lamination begin to form 

and as the rate of fluid flow increases these laminae became more frequent and darker to form 

horizon B (Fig. 2.29). As the horizontal flow rates increase subsidence may occur over the 

horizontal flow paths leading to the formation of dishes between which sm all isolated pillars 

may appear (horizon C ). At higher discharge rates, induced by the increasing volume of fluid, 

the flow becomes concentrated a t local discontinuities (such as the margins of dishes). Where 

this occurs horizontal flow is converted to vertical flow, and the erosive propagation of pillars 

(horizon D) may occur. Upon reaching finer grained sedim ents, in the upper parts of the 

graded bed, the pillars may meet permeability barriers, and diapirs form which expand into 

the overlying fine grained sedim ent (horizon E). If the volume of fluid continues to increase 

the diapirs may rupture suddenly, releasing a large volumes of fluid into the upperm ost 

layers. At this point complete fluidization may occur, leading to sedim ent mixing and  the 

formation of the diffuse streaks (horizon F). Where the fluid breaks the surface of the bed, 

free surface pillars and extrusions form.

Where the fluidization velocity increases rapidly, ra ther than  gradually, the dark  

laminae and dishes associated with lower fluid velocities may be m issed out. The first 

structures seen may be dykes, pillars and diapirs. In extreme circum stances whole layers 

may become fluidized instantaneously or dykes, term inating in volcanoes, may form directly 

from the lower heterolithic or coarse grained intervals. Abrupt increases in fluid velocities 

are most common in finer-grained and  clay-rich sands where permeability barriers are 

common (Lowe, 1975). Fluidization may not take place during initial compaction because 

of these low permeabilities. Increasing pore pressures during loading may lead to ruptures 

into which pore fluids rush . It is by th is process th a t clastic dykes and  sand  volcanoes are 

thought to form (Lowe, 1975).

Large pillars and dykes often cu t earlier fluidization structures and  bedding surfaces. 

This suggests th a t initial consolidation and fluidization may leave a m eta-stable framework 

with a  large am ount of residual pore fluid th a t cannot escape (Lowe, 1975). Continued 

consolidation and loading leads to increased pore pressures until a  break occurs. The fluids 

then ru sh  into the break and  rapid fluidization leads to the  formation of cross-cutting 

structures.

2.3.9 Inferred Rates o f Deposition

Water escape structu res are known to form m ost readily in environm ents in which; 1) the 

episodic deposition of fine and m edium grained sands, from aqueous currents of declining 

velocities takes place and 2) where alternate intervals of sand and m ud are instantaneously 

deposited a t an overall high m ean sedim entation rate (Lowe, 1975; Nicholls e ta l., 1994).

In Study Area 2 the  Aljibe Arenites are com posed of heterolithic intervals and 

sandstone horizons th a t are alm ost entirely dominated by w ater escape structures. Many
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of the sandstone beds described from the logged sections (Appendix 3) appear to be normally 

graded, suggesting tha t they were deposited from currents with declining velocities. Little 

else about the mode of deposition can be determined as any primary depositional structures 

have been destroyed by water escape processes.

From the above observations and  in terpreta tions several facts abou t the rate of 

deposition and nature of consolidation can be deduced;

1) A bundant w ater escape structures are present in almost all of the sandstone 

beds exposed in study area 2 suggesting continuous rapid deposition for the Aljibe 

Arenites.

2) The largest cross-cutting dykes and pillars are less common than  the early 

fluidization structures described in the idealised sequence (Fig. 2.35). This indicates 

th a t m ost of the fluid was expelled during initial deposition and th a t initial fluid 

transfer was extremely efficient.

The implication is th a t the arenites were deposited rapidly, from a  source with a  very 

specific sedim ent type, and th a t consolidation and water expulsion were, in effect, in stan ta

neous.

2 .4  Beneiza Flysch to  Aljibe Arenite Transition

The boundary between the Beneiza flysch and the Aljibe Arenites, the sub-units of the Aljibe 

Flysch, can be directly observed in a  road-cutting which is located on Fig. 1.1. Here the Aljibe 

Arenites have a  sharp, non-gradational contact with the Beneiza Flysch (Fig. 2.36). Across 

the contact there is a dram atic change from th in  bedded turb id ites containing Bouma 

sequences to thick de-watered sandstones. There is no evidence for erosion of the underlying 

Beneiza Flysch along the base of the Aljibe Arenites.

2.5  Interpretation o f th e Aljibe Flysch

The Beneiza flysch is composed of th in  sandstones th a t were periodically deposited from 

turbidity cu rren ts and  th u s  represen t m oderate to low rates of deposition from a  distal 

source. These are in contrast to the Aljibe Arenites which are dominated by thickly bedded 

sandstones th a t m ust have been deposited a t sustained  high rates.

Classical turbidites such as those of the Beneiza Flysch are associated with the distal 

parts of subaqueous depositional system s, m ost commonly subm arine fans, fan deltas or 

basin plains (Bouma, 1962; Walker & Mutti, 1973; Hiscott, 1981, Walker, 1984,) Turbidity 

curren ts are initiated by the mobilisation of sedim ent in the more proximal parts  of the 

depositional system , usually  by m ass movements such  as slope failure and  sedim ent 

slumping (Lowe 1976; Walker, 1978)

The proximal parts of these system s are dominated by m ass flow deposits sustained  

by rapid sedim entation (Walker, 1978; Normark, 1978). M ass movements lead to the 

deposition of thick sand beds with a  m eta-stable grain framework and high water content. 

It is these beds, which are prone to liquefaction and  fluidization th a t are responsible for 

initiating grain flows (coarse grained turbidites) which may evolve into classical turbidites
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downslope (Lowe, 1976; Walker, 1984). As a  consequence, sandstones tha t are dominated 

by water escape s truc tu res are interpreted as representing the transition  between m ass 

movement and turbidite deposits.

The micropalaeontological evidence (Chauvel960; Didion, 1969), and  the fact th a t 

shallow marine and coastal deposits are absent, suggests tha t the Beneiza Flysch and Aljibe 

Arenites were deposited as part of a  deep sea system in which rapid sedimentation, mass flow 

and turbidites all operated.

2.5 . 1 Deep Sea Depositional System s

Deep water environments can be subdivided into three basic types; slope aprons, subm arine 

fans and  basin  plains, each of w hich has  a  d istinct facies arch itec tu re  and  spatia l 

arrangem ent (Stow, 1992)

Slope aprons are deposited between the shelf break and basin floor. Deposition and 

erosion takes place on slopes of between 2-7°. Slope aprons may be constructive, building 

ou t into the basin plain by slope progradation (Piper et al., 1976; Mullins et al, 1984) or 

destructive and dominated by slum ping and sliding (Hill, 1984). Many slope aprons are cut 

by canyons which feed isolated lobes a t the base of the slope (Carter, 1979). Overall upward 

coarsening sequences may resu lt from distinct phases of slope progradation (Stow, 1992) 

Where a  slope apron develops on an  active fault margin, very narrow thick sedimentary 

wedges may accum ulate a t the front of the slope as a  result of confinement by down-faulting 

(Gawthorpe, 1986). Faulted aprons are dominated by slope parallel arrangem ents of coarse 

grained facies in which localised tectonic activity can produce fining upwards and symmetri

cal vertical sequences (Gawthorpe, 1986; Stow, 1992).

Subm arine fans are distinctive and  often isolated constructional features th a t form at 

the base of a  slope where subm arine canyons emerge (Stow, 1992) The rad ius of such  

features ranges from a  few kilometres to tens of Kilometres. Subm arine fans Eire complex 

system s in which distinct morphologicEil elem ents can be recognised (Normark, 1978; 

Walker, 1978; Nilsen & Abbot, 1981, Piper and Normark, 1983). These elements have been 

reviewed by Stow (1992) and cam be sum m arised as follows;

a) Canyons and channels, tributary and distributary channels with meandering and 

straight segments, abandoned chsinnels, hailf filled smd buried channels.

b) Irregular slum ps, slides, and debris flow m asses.

c) Broad levees smd lobes Eure found between the channels and build up  a t the ends 

of channels.

d) Sm ooth cu rren t m oulded in terchannel and  interslope areas  dom inated by 

turbidity currents.

These elements give rise to a  complex facies architecture which includes debrites Eind 

conglomerates, thick bedded sandstones, slum p structu res, channelised sandstones and 

th in  bedded turbiditic sandstones interbedded w ith shales (Ruiz-Ortiz, 1983;. Piper & 

NormEirk , 1983; Prior & Bomhold, 1989).

Several fan types can be recognised, in which growth is controlled by slope morphology
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and sedim ent supply. The end m em bers of fan morphology are outlined by Stow (1992); 

Radial fa n s  have a  true fan morphology and develop from a  single feeder channel. Elongate 

fa n s  develop sub-parallel to the source area. They usually have an irregular upper fan 

dom inated by slum ping and  complex networks of tribu tary  networks. An elongate facies 

distribution develops with a  high ratio of m ud to sand. Fan deltas develop partly in shallow 

w ater and consequently contain proximal shallow w ater facies. Such fans also contain 

turbidites in their more distal portions.

Basin plains have a  very gentle relief and often contain the distal portions of subm arine 

fans. They include large areas of smooth or current modified sea floor dom inated by thin 

turbidite deposited silts and fine sands. Two types of basin plain are recognised, undersupplied 

and oversupplied. U ndersupplied basin  plains are dom inated by fine grained facies, 

sillciclastic and biogenic sedim ents with an overall thickness of less than 1km. Oversupplied 

basin plains develop in tectonically active areas where syn-sedim entary faulting may take 

place. The basin plain is filled rapidly with sedim ents with m ounded overlapping fill 

geometries and chaotic distributions of coarse and fine grained facies.

2.5.2 The Aljibe Flysch Compared to Deep Sea Depositional System

The Aljibe Flysch is characterised by w hat is an essentially simple facies architecture in which 

thin bedded turbidites (Beneiza Flysch) pass rapidly into thick bedded sandstones tha t were 

deposited a t sustained high rates (Aljibe Flysch). The Aljibe Flysch lacks the facies diversity 

normally associated with fan deposits and  lacks evidence of channels, in terd istribu taiy  

lobes, slum p structures, or channel abandonm ent.

The Beneiza Flysch sub-un it is characterised by deposits similar to those found in 

distal parts of subm arine fans or associated with underfilled basin plains where fine sands 

and silts deposited by turbidity currents are dominant. The Aljibe Arenites represent a  thick 

accum ulation of very rapidly deposited coarse sands, in which there is little facies variation. 

Such accum ulations are most likely to have been deposited a t the foot of slopes or in overfilled 

basin plains, where the basin  is confined by active down-faulting. However, tectonically 

controlled deposits usually include large scale slum p deposits, debrites and  conglomerates 

which are absen t from the Aljibe Arenites. In addition the channel system s th a t usually 

characterise the proximal pats of slope aprons Eire also missing.

There is a  rapid transition from turbidites in the Oligocene Beneiza Flysch to rapidly 

deposited ssmdstones in the Miocene Aljibe Arenites. There is no evidence across this contact 

for the progradation tha t would be expected in a  shift from distal turbidites to more proximELl 

coarse grained sandstones. Also surprising is the fact th a t there is no facies common to both 

the Beneiza Flysch Euid Aljibe Arenites. The implication is that, across the Oligo-Miocene 

boundary there is a  sudden and  catastrophic chEinge from a  relatively quiet basin plain 

environm ent to one dominated by the rapid deposition of huge Eimounts of coarse grained 

sedim ent. If the Aljibe Arenites Eire a  product of deposition in a  tectonicEilly confined basin 

then the Beneiza Flysch/Aljibe Arenites transition probably reflects the initiation of tectonic 

activity. At this time the basin plEiin was broken up by faulting. A large am ount of sediment, 

th a t was originally deposited elsewhere, was mobilised and rapidly transported to the newly

Part Ii: The Gibraltar Arc Flysch Basin



Chapter 2: Sedimentobgy & Palaeogeography Page 111

created tectonically confined basin.

2 .6  Conclusions

In the final analysis it seems most likely tha t the Aljibe Flysch records the development of a 

basin plain th a t became tectonically segregated a t the beginning of the Miocene. This 

tectonism created instabilities elsewhere which resulted in the mobilisation of large Eimounts 

of sediment. This was deposited in new tectonically confined basins in which a  thick wedge 

of sedim ent with restricted facies accum ulated.

However, th is is problematic because there is no evidence for slum ps, channels or 

conglomerates th a t would normally be associated with tectonically active deep sea  basins. 

This doubt is fu rther com plicated by the fact th a t the Aljibe Flysch is now a  highly 

allochthonous unit and, as a  consequence, the configuration of the basem ent a t the time of 

deposition is unknown. The relationship of the Aljibe Flysch to other tectono-sedim entary 

units is Eilso unknown. Because the Aljibe Flysch csm only be studied as an  isolated tectonic 

sedimentEiry unit, any conclusions drawn m ust be treated as wholly speculative.
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Chapter 3  

S ta tu s o f  th e  Gibraltar Arc

3.1 Interpretation o f the Aljibe Flysch

The largest tectono-sedim entary unit of the G ibraltar Arc Flysch, the Aljibe Flysch Unit, 

records two distinct basinal phases. The Oligocene Beneiza Flysch sub -un it contains 

turbidites tha t were deposited in the distal portion of an  open basin plain. By contrast the 

lower Miocene Aljibe Arenites represent the deposition of siliciclastic m aterial into tectoni

cally confined basins. The transition from the Beneiza Flysch to the Aljibe Arenites implies 

an im portant phase of basin re-configuration and, thus, may pin-point the occurrence of a  

major tectonic event a t the beginning of the Miocene. Because the Aljibe Flysch is now highly 

allochthonous it is difficult to determ ine the precise natu re  of basin configuration by 

reference to the basin deposits alone. In order to fully understand  the G ibraltar Arc Flysch 

Oligo-Miocene basins and place them  in a  meaningful tectonic framework it is necessary to 

determine;

1. The s ta tu s  of the cru st prior to the creation of the Miocene confined basins.

2. The precise nature of the tectonic event th a t characterises the Oligo-Miocene 

boundary which is marked by the Beneiza Flysch-Aljibe Arenites transition.

3. The timing of th rusting  th a t converted the Aljibe Flysch into the allochthonous 

Flysch Nappes th a t are observed in the Gibraltar Arc today.

3.2  Status o f the Crust Prior to  D eposition o f the Aljibe Arenites

The Beneiza Flysch is contemporaneous with Oligocene sedim ents of the Betic External Zone 

which represent sedimentation on an  extended Iberian Passive Margin (Part I, C hapter 5.5). 

Sedimentation in the External Zones of the Betic Orogen is known to have continued into the 

latest Oligocene without significant change to the External Zone extensional basin configu

ration and it is suggested tha t the Iberian Passive Margin was not affected by Betic Tectonism 

until late Oligocene/early Miocene times (Part I, Chapter 5.5).

If the Beneiza Flysch is associated with deposition on the Iberian Margin then  it is 

interpreted as deep-w ater sedim ents th a t were deposited on the d istal portion of the  

Palaeogene Iberian Passive margin.

3.3  Nature o f  th e Oligo-Miocene Tectonic Event

It is generally accepted tha t extensional tectonism began in the Betics a t the beginning of the 

Miocene (Overview 1.3.4; Fig 0.4). This is supported by seismic sections constructed across 

the Alboran Sea which clearly dem onstrate tha t the first sedim ents deposited in extensional 

basins are late Oligocene-early Miocene in age (Campillo e ta l., 1992). Thus, it seem s likely 

that the Beneiza Flysch/Aljibe Arenite (Oligo-Miocene) transition is coincident with the s ta rt 

of extension in the Betics. Extension resulted in  the break up  of the Iberian Passive Margin 

and the creation of confined extensional basins in the G ibraltar Arc region. Break up of the 

passive margin also led to the mobilisation of External Zone sedim ents (in this case m ature 

arenites) th a t were rapidly transported to the newly created extensional basins.
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There is no petrographic evidence for the deposition of material within the Aljibe Flysch 

derived from either the peridotites or metamorphic complexes tha t characterise the Internal 

Zone of the Betics. This suggests tha t they were not exposed during Lower Miocene times. 

Similar conclusions are drawn from provenance studies conducted in the Guadalquivir Basin 

(Part I, Chapter 4).

3 .4  Timing o f Thrusting in the Gibraltar Arc

Thrusting of the flysch nappes clearly post-dates the deposition of the lower Miocene Aljibe 

Arenites. However, because these now form highly allochthonous units the precise timing 

of thrusting cannot be determined by reference to the flysch deposits alone. The timing and 

nature of the thrusting event will be discussed in the light of recent papers concerning the 

emplacement of the peridotites in Part III of this thesis.

3 .5  Conclusions (A Model For Formation)

The Aljibe Flysch (the largest tectonic un it of the G ibraltar Arc Flysch) records three 

distinctive phases of Betic tectonic history.

1. The Oligocene deposition of turbidites in the distal portion of the Iberian Passive 

Margin (External zones).

2. The s ta rt of extension in the lower Miocene led to the formation of confined basins 

into which sedim ent, mobilised from the Palaeogene Iberian Passive Margin, was 

deposited.

3. The Flysch units were subsequently th ru s t westward (post-lower Miocene).

This model has some im portant implications to the understanding of the evolution of 

the Betics. The history derived from the Aljibe Flysch is incompatible with the models of Platt 

& Vissers (1989) and Doblas & Oyarzun (1989) th a t are outlined in Chapter 1 (Introduction 

to the Gibraltar Arc) because;

1. The external Zone is unaffected by Betic tectonism  prior to the s ta rt of extension 

in the Lower Miocene. Platt & Vissers (1989) model requires crustal stacking during 

the Palaeogene for which there is no evidence within the Mesozoic and  Palaeogene 

succession of the Iberian Passive Margin. It is difficult to envisage how metam or

phism of crusta l blocks found in the Internal Zone could have taken place near the 

Iberian Margin without significantly affecting th a t margin.

2. Platt & Vissers (1989) and Doblas & Oyarzun (1989) suppose tha t extension and 

contem poraneous diapiric rise of the m antle (leading to peridotite emplacement) 

caused thrusting  a t the m argins of the Betics. However, th rusting  in the Gibraltar 

Arc clearly post dates the creation of extensional basins and  actually leads to their 

destruction. In addition, the Flysch deposits contain no metamorphic or peridotite
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detritus suggesting tha t during lower Miocene extension there was no exhumation of 
the peridotites or metamorphic core complexes.

The essence of the problem is th a t it is difficult to distinguish between the passive 

margin and extension tha t may have occurred during the building the Betic Orogen. It may 

be tha t the Aljibe Flysch, and other contemporaneous flysch units of the G ibraltar Arc, are 

unique in th a t they reflect the transition from a  passive margin sequence to an  orogenic 

sequence.

These problems will be further discussed in Part III of this Thesis where evidence from 

both the Guadalquivir Basin and Gibraltar Arc Flysch will be used to asses models proposed 

for the Betic Orogen. This will lead to the rejection of extensional collapse and  simple core 

complex models and the consideration of alternative models.
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DISCUSSION: THE SIGNIFICANCE OF THE GUADALQUIVIR 
BASIN AND GIBRALTAR ARC FLYSCH TO THE EVOLUTION

OF THE BETIC OROGEN

1 Introduction

Important insights into the tectonic history of the Betics, in particular Oligo-Miocene events, 

Eire recorded in the extemsil basins of the Betic Orogen. They c e u i be used to te s t the 

hypotheses which have been proposed for the tectonic evolution of the Betic Orogen. There 

is now a need to combine observations m ade in the External basins with d a ta  th a t have 

recently been published concerning the tectonic evolution of the Alboran Domain. Together 

these provide a  unique insight into the Betic Orogen. A model m ust be sought to expladn all 

of the data including those from the Betics collected by other workers, which may at first 

appesir contradictory.

2  Tectonic History Derived From the Study o f the External Basins

The tectonic, sedim entary and palaeogeographic histories of the Guadalquivir Basin and 

G ibraltar Arc Flysch have been completely revised in this thesis. If these basins Eire linked 

to the Orogen then  certain inferences can be drawn from the interpretation of these basins;

It has been dem onstrated tha t the External Zones remEiined undisturbed throughout 

the Mesozoic and Palaeogene and were not affected by tectonic movements until the end 

Oligocene-early Miocene (Psirt I, Chapter 5.5; Psirt II, C hapter 3.2). The Mesozoic smd 

Palaeogene rocks of the External Zone sire known to have been deposited on an  extended 

IberiEin passive msirgin (Roldan Garcia, 1985a,b; Blsmkenship, 1992) which m ust have 

remsiined intact until latest Oligocene times .

The implication, derived from the re-interpretation of the externEd basins, th a t the 

Iberian margin was not significantly affected by Betic Tectonism until the early Miocene is 

problem atic since the Internsd Zone rocks were m etam orphosed during Mesozoic smd 

Psilaeogene times (Egeler e ta l., 1972; B akkerefaL , 1989; Monie, 1991; Zeck e ta l.,  1992; 

De Jong 1992). If m etam orphism  of these nappes took place on the Iberian Margin then  it 

seems unlikely th a t the passive margin could have remained unaffected by the tectonism  

responsible for these metamorphic events. This will be discussed further in section 7 where 

terrane tectonism is considered as a  possible mechEuiism in the building of the Betics.

It is generally accepted th a t the Betic Orogen was undergoing extension by the s ta rt of 

the Miocene (Overview, Section 1.4; Fig. 0.4). It has sdso been dem onstrated th a t a t  the 

beginning of the Miocene the External Zone rocks (belonging to the Iberian passive margin) 

were subject to compression on their northern margin (PeuI I, Chapter 5.5), and to probable 

extension Edong their western margin (Part II, Chapter 3.3). This is interpreted as recording 

the break-up of the passive margin, which ultimately led to the formation of the Guadalquivir 

Beisin in the north smd to the formation of small confined extensional basins in the west (in 

the region now occupied by the G ibraltar Arc). Instabilities created in the External zone led 

to the mobilisation of sedim ent which w eis  rapidly transported to the west and redeposited 

in the newly created bEisins (Psirt II, Chapter 3.3) Both basins have subsequently been subject
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to com pression and  thrusting , resulting in the creation of allochthonous units. In the 

Guadalquivir Basin the thrusting is post Messinian (Part I, Chapter 2.8) while in the Gibraltar 

Arc it is post Lower Miocene (Part II, Chapter 3.4). The precise timing of these events is 

unknow n, and  it may be th a t the th ru stin g  in both areas is tied to the  sam e Betic 

compressional event, which would have been post M essinian (i.e. Pliocene).

It has been dem onstrated tha t neither the Guadalquivir Basin nor the G ibraltar Arc 

Flysch contain detritus from the metamorphic rocks of the Internal Zone (Part I, C hapter 4; 

Part II, Chapter 2). This implies tha t the metamorphic blocks were not exposed or were not 

in their present positions during the depositional history of these basins. This suggests th a t 

the Internal Zones were exhumed or were emplaced into their present positions during the 

mid to late Miocene.

To sum m arise; it appears th a t the first major tectonic event did not take place in 

southern Iberia until the end of the Oligocene-early Miocene. This event was almost certainly 

extensional and a t this time im portant new basins opened up along the northern and  western 

margins of the External Zone. These basins were subsequently subject to compression which 

created allochthonous units. The timing of this compression is unclear, but it may have been 

late Miocene or even Pliocene.

The history derived from the Guadalquivir Basin and  Gibraltar Arc Flysch can now be 

used to critically evaluate the conflicting hypotheses proposed for the Betic Orogen.

3 The Alboran Domain

The understanding of the Alboran Domain (Fig. 1), which includes both the Alboran Sea and 

the Ronda peridotites is critical to the understanding  of Betic tectonic history. Recent 

publications provide im portant clues concerning the history of the Alboran Sea and  the 

related Betic tectonism.

There are two im portant pieces of evidence th a t m ust be discussed; The nature of the 

emplacement of the Ronda peridotites, and the interpretation of new seismic and bore hole 

data  for the Alboran sea.

3.1 Ronda Peridotites

The outcropping Ronda peridotites are sub-continental upper m antle bodies em placed 

within the Alpujarride units which are made up  essentially of m id-crustal rocks recording 

Alpine m etamorphlsm (Tome e ta l., 1992; Grevillia & Remaidi, 1993). The peridotites are 

a suite of ultramafic rocks consisting mostly of lherzolites and harzburgites with m inor 

am ounts of dunites, pyroxenites, gabbros, and leucocratic dykes (Grevillia & Remaidi, 1993).

Classically, the peridotites are interpreted as having been exhum ed by extension 

during diapiric upwelling of the m antle which produced the low angle detachm ents th a t 

characterise the Internal Betics (Doblas & Oyarzun, 1989; Part II, Chapter 1.4). However, 

th is interpretation is questionable since it fails to explain how the peridotites became 

emplaced into m id-upper-crustal rocks. By contrast m any authors have dem onstrated th a t 

the mantle lithosphere slab was emplaced by large scale th rusting  (Lundeen, 1978; Dickey 

eta l., 1979; Tubia & Cuevas, 1986,1987; Balyana& Garcia Duenas, 1991). In addition the
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thinning th a t has occurred in the Alboran Sea is considered to have been insufficient to be 

wholly responsible for the complete exhumation of the peridotites (Tome eta l. , 1989,; Davies 

eta l., 1993; Tubia et al., 1993).

Several models have been developed th a t better explain the em placem ent of the 

peridotites, and these are critically examined below;

Torne et al. (1989) suggested th a t the peridotites were initially emplaced during the 

Palaeogene, coeval with the building of the Alboran domain. The peridotites were considered 

to constitute a slab of lithospheric mantle emplaced within units of the Alpujarride tha t rested 

on the Nevado Filabride units (Fig. 2), although how this was achieved is not made clear by 

Torne eta l. (1989). The same model suggested th a t a t a  later stage crustal stacking, related 

to th ru s t stacking in the G ibraltar Arc and  rifting in the  Alboran sea  unrooted and  

dismembered the peridotites, placing them  in their present locations. While th is model was 

an improvement on the purely extensional model of Doblas & O yarzun (1989) it is still 

unsatisfactoiy because it is not clear how the initial phase of Palaeogene emplacement took 

place. Presumably if the m antle peridotites were emplaced above the Nevado Filabride unit 

then some process of th ru st stacking is envisaged. A similar m echanism  was suggested by 

Platt & Vissers (1989) who described the Palaeogene formation of a  collisional ridge by crustal 

thickening. The em placement of mantle bodies into the upper crust during the Palaeogene 

would have required considerable crustal reorganisation of the Iberian margin. However, this 

is inconsistent with data  derived from the Guadalquivir Basin and Gibraltar Arc Flysch which 

clearly dem onstrate th a t there was no major tectonic reorganisation of the Iberian Passive 

Margin during the Palaeogene (see section 2, this chapter).

Further progress in understanding has been made by Davies et al., (1993) who used 

detailed petrographic and geochemical studies to support a  model in which the peridotites 

formed above a  subducting plate (Fig. 3). They considered th a t subduction took place during 

collision between Europe and Africa and th a t uplift a t 85 Ma. uplifted the peridotites by an 

initial 150 km. In the absence of evidence for slow uplift of the peridotites, Davies e ta l., (1993) 

considered th a t there was a  tectonic h ia tus between 80-25 Ma. This is a  reasonable 

deduction as Sirvastava e t al., (1990a,b) and Roest & Sirvastava (1991) dem onstrated tha t 

the main locus of plate boundary activity was in the Pyrenean trough and not between Africa 

and Iberia. At around 25 Ma. the plate boundary between Africa & Iberia became active again 

(Sirvastava et al., 1990a,b) and Davies et al., (1993) record a  rapid uplift in the peridotites. 

They attributed this to slab detachm ent and  emplacement of asthenosphere in the place of 

the subducted slab. This led to the rise of the crust, to lithospheric extension and  nappe 

emplacement. Rapid cooling over the last 20 m.y. led to subsidence and the creation of the 

Alboran Sea (van Wees et al., 1992).

By contrast Tubia et al., (1993) have relied on the detailed struc tu ra l analysis of the 

G ibraltar Arc and Alboran domain in order to produce a  model for the em placement of the 

peridotites They have dem onstrated  th a t there is th inned  continental c ru s t above the 

Peridotites, suggesting em placem ent by continental rifting. This extension is further 

supported by the presence of closely spaced isograds. During extension lower grade rocks 

were brought down against higher grade rocks. Tubia e t al., (1993) record stretching
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lineations orientated to N110°E and a  top to the E-S-E shear sense. It is suggested tha t the 

peridotites were uplifted by this extensional event and were subsequently emplaced into their 

present positions by thrusting. Lineations record a  th ru st transport direction to N70°E. The 

m easured lineations are im portant because they suggest th a t extension and  thrusting was 

sub-parallel to the trend of the Betics. If th rusting  was produced by N-S convergence then 

the lineations should be perpendicular to the trend of the Betics.

Tubia e t al. (1993) conclude th a t there were two tectonic phases involved in the 

em placement of the peridotites, an early extensional phase (Fig. 4), and  a  later th rusting  

phase. The peridotites were first raised by extension, although they did not initially reach 

the surface. They were subsequently  em placed into the G ibraltar Arc by th rusting . 

Lineations oblique to the tren d  of the Betics are in terpreted as  indicating strike-slip  

tectonism. In this scenario extension is related to transtension and thrusting  is related to 

transpression. Transcurrent tectonism is compatible with the strike-slip motion of Africa and 

Iberia from Ju rassic  to Tertiary times (Dewey, 1989). Overall this model is favoured by the 

data  presented in this thesis because;

1 It is compatible with the tectonic history interpreted from the G ibraltar Arc Flysch 

basins. These record a phase of extension a t the beginning of the Miocene followed 

by th ru s t stacking (Part II, C hapter 3). This model also places extension before 

compression, and th is is compatible with the history deduced for the Gibraltar Arc 

(section 2, this chapter).

2 It explains the two phases of tectonism recorded by the Ronda peridotites, both of 

which are manifest both structurally (Tubiaeta l., 1993) and petrographically (Davies 

eta l., 1993).

3  It does not require an  initial Palaeogene compression and crustal thickening which, 

as is dem onstrated throughout this thesis, is not recorded in the External Zone of the 

Iberian Passive Margin.

4  It is compatible with the strike-slip history recorded in the Alboran sea, outlined 

below.

3.2 The Alboran Sea

The Alboran sea is formed on continental c ru s t thinned in a  series of extensional grabens 

(Overview 1.3.3). The m echanism  by which it formed has been the sub ject of some 

controversy, with m any of the models proposed lacking the support of detailed structu ra l 

data. Recently, Campillo et al. (1992) have deduced a  tectonic history for the Alboran Sea 

from detailed seismic stratigraphy and bore hole data. The air gun profiles outlined by them 

represent the most detailed survey of the area to date.

Campillo et al. (1992) dem onstrated tha t the first sedim ents deposited in the Alboran 

graben basins are of early Miocene age, indicating th a t extension was initiated a t the 

beginning of the Miocene. Other workers have also concluded th a t extension started  a t the 

beginning of the Miocene (Overview 1.4; Fig 0.4). This is consistent with tectonic histories 

derived for both the Guadalquivir Basin and G ibraltar Arc (Part I, Chapter 2; Part II, Chapter

Part HI: Discussion



Evolution o f the Betic Orogen Page 121

3) which dem onstrate tha t a major tectonic reorganisation took place at the beginning of the 

Miocene. Campillo eta l. (1992) also described significant boundary parallel displacements 

along the northern and  southern margins of the Alboran sea, indicating considerable strike- 

slip movements. Major decollements separate the sedim entary and Alboran Domain units 

from the  underlying continental lithosphere and  individualized complexed struc tu res are 

recognized in the metamorphic nappes. From these observations a  model o f‘orogenic float’, 

which favours the longitudinal tran sp o rt of te rranes along strike slip faults has been 

proposed, based on the models of Oldow (1990). Campillo et al., (1992) deduced a  detailed 

Miocene and Pliocene history for the Alboran sea incorporating the plate movement models 

developed by Sirvastava et al. (1990a). The principle elements of this are;

Pre-Tortonian, during the initiation of extension the western Alboran basins were 

created as a  series of small deep faulted depressions. These Eire perhaps anEilogous 

the confined basins th a t believed to have formed during the bresik-up of the ExtemEd 

Zone and in which the Aljibe Arenites were deposited (Psirt II, C hapter 3).

The Tortonian is msirked by a  series of transgressive deposits tha t onlap the structural 

highs. Normal faulting became active along the E & W boundaries of the Alboran Sea, 

while along the N-S margins transcu rren t movements were predom inant.

The Messinian  m arks a  period of com pressional tectonics and of global sea-level 

lowering. T ranscu rren t movem ents and  extension occurred a t the  end of the 

Messinian.

During the Pliocene, transtensionEil movements resulted in the formation of small pull 

apEirt basins. Transtension continued throughout the Pliocene.

During the Late Pliocene, active strike-slip faulting also led to the formation of small 

pull-apart basins. The Alboran Ridge developed where such strike-slip faults were 

blocked by the development of positive flower structu res (Campos, 1992)

Finally in the Late Pliocene to Recent, trsm stension was converted to transpression, 

resulting in struc tu ra l inversions.

In summEiry, the Alboran Sea records trEmscurrent movements in which trsmstension, 

dom inant in the Miocene, evolved towsirds transpression in the late Pliocene. In the Lower 

Miocene the formation of major decollements led to the strike-slip emplacement of metamor

phic terranes.

The thrusting observed in the G ibraltar Arc (PeuI  n, Chapter 3) has been dated as ‘post 

Lower Miocene’, bu t w ithout an  accurate control on its precise timing. It may be th a t the 

thrusting in the G ibraltar Arc and  associated emplacement of the peridotites coincided with 

the change from transtension  to transpression  in the Pliocene, this, however, cannot be
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proved from the data  presented here.

4 A Rejection o f the Extensional Collapse Model

The Miocene extension of the Betic orogen has previously been attributed to the collapse of 

an overthickened collisional ridge (Platt & Vissers, 1989). Such a  model has formed the basis 

for the interpretation of data  collected from the Betics by a num ber of workers.

However extensional collapse is incompatible with interpretations of the Gibraltar Arc 

Flysch, the Guadalquivir Basin succession and the Alboran domain, (see discussions above). 

These data and the reasons for rejecting the extensional collapse model can be sum m arised 

as follows;

1 The extensional collapse model requires the presence of a  collisional ridge prior to 

the onset of extension (Platt & Vissers, 1989). This implies th a t crustal thickening by th ru s t 

stacking occurred during the Palaeogene. However, data  from the Guadalquivir Basin (Part 

I, C hapter 5), the G ibraltar Arc (Part II, C hapter 3) and  observations m ade by Garcia- 

Hemandez (1980) & Blankenship (1992) show th a t in the External Zone (part of the Iberian 

Passive Margin) sedim entation continued until the late Oligocene w ithout significant 

disruption to the graben basin profile. There is no evidence for the disruption of the External 

Zone by compression during the Palaeogene and, therefore, it is unlikely th a t a  collisional 

ridge formed prior the Miocene. At the end of the Oligocene or during the early Miocene the 

External Zone became disrupted by compression in the north (Part I, Chapter 5.5), and by 

extension in the west (Part in, Chapter 3.5). Both of these events coincide with the s ta rt of 

extension in the Internal parts of the Betics (Overview, Section 1.4). It is interpreted th a t the 

Iberian Passive margin became affected by Betic tectonism  in the late Oligocene/ early 

Miocene. This movement was dominated by extension and therefore the first Betic event was 

extensional. There is no evidence for the pre-Miocene compression th a t would be required 

to build a  collisional ridge.

2  D ata from the Ronda peridotites and  Alboran Sea (section 3) suggest th a t Miocene 

extension was followed by a  com pression caused by the transition  from transtension  to 

transpression in an  overall strike-slip regime. This interpretation is supported by observa

tions made in the Gibraltar Arc which suggest th a t the formation of extensional basins during 

the early Miocene was followed by th ru s t stacking post-Mid Miocene (Part HI, C hapter 3.5). 

This counters the extensional collapse model, which requires th a t th ru s t stacking occurred 

first and was followed by extension.

3  The extensional collapse model does not adequately explain the major transcurren t 

movements th a t have been observed in both the Alboran Sea (Campillo etal., 1992) and other 

parts of the Betic Orogen (Overview, Section 1.4.2).

Clearly the extensional collapse model of Platt & Vissers (1989) is inadequate for the 

Betic Orogen. There is a  need for new, alternative models th a t take into account all of the
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data collected from the Betics.

5 The Case for Strike-Slip Tectonism

There is a substantial weight of evidence for strike slip movements in the Betics. This can 

be found in the plate tectonic history, the observation of strike-slip faults and the presence 

of Alboran pull-apart basins and in paiaeomagnetic rotations

5.1 Plate Tectonic History

The plate tectonic history deduced by Dewey (1989) and  Sirvastava, (1990a; 1990b) and 

outlined in the Overview (section 1.2) shows th a t from 27 Ma. Iberia rotated into Africa. 

Dewey (1989) reported th a t m uch of th is movement was taken up by strike-slip faulting 

between Africa and Iberia. S tress fields derived from struc tu ra l studies and outlined by 

Campillo etal. (1992) suggest substantial strike-slip movements along the southern  border 

of Iberia during the Miocene. Roest (1990) also identified im portant strike-slip movements 

along the Azore-Gibraltar fracture zone, which is essentially the boundary between the 

African and Iberian plates.

5.2 Strike-Slip Faults

Andrieux et al. (1971) De Sm et (1984) and Leblanc & Oliver (1984) have em phasised the 

im portance of dextral strike-slip faulting in the Subbetic subzone of the External Zone. 

Leblanc & Oliver (1984) suggested tha t the Internal Zone-External Zone boundary is a  strike 

slip contact tha t originally separated the Iberian plate from the African plate. Egeler & Simon 

(1969) also appealed to strike-slip movements as the main m echanism  for the juxtaposition 

of the Nevado Filabride and  Alpujarride th ru s t sheets, which have very different and  

contrasting structu ra l and metamorphic histories.

The interpretation of recent seismic data  from the Alboran Sea suggests th a t both the 

northern and southern margins of the Alboran Sea were dominated by strike slip tectonism 

during the Miocene and this eventually led to the formation of pull-apart basins in the Alboran 

Sea (Campilloe ta l., 1992).

The evidence for strike-slip faulting has been largely ignored during the evolution of 

more popular models such  as the extensional collapse (Platt & Vissers, 1989) and core

complex models (Doblas & Oyarzun, 1989). However, it is becoming increasingly difficult to 

ignore the accumulating weight of evidence for the presence of substantial strike-slip faulting 

in the Betic Orogen.

5.3 Paiaeomagnetic Rotations

Platzman, (1992), Platzman et al. (1993) and Allerton et al. (1993) have all reported im portant 

paiaeomagnetic rotations of structu ra l blocks in the External Zone and Gibraltar Arc of the 

Spanish Betics and in the Rif Arc of north Africa. These rotations have occurred about vertical 

axes and are interpreted as reflecting movements on locally developed strike-slip faults.

Allerton et al. (1993) observed clockwise rotations of 200° since the latest Oligocene in 

the External Zone. Rotations are believed to have occurred during strike slip movements on
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th ru s t boundaries. Allerton e t al. (1993) suggested th a t ro tations were a  resu lt of 

compressional deformation in the Betics induced by the oblique convergence of the African 

& Iberian m argins. C om pression and  associated  s trike slip m ovem ents indicate a 

transpressional rather than  a  purely com pressional regime.

Platzman (1992) and Platzman eta l. (1993) recorded substantial rotation of structural 

blocks in the Gibraltar Arc and Rif Arc of Morocco. Clockwise rotations in the Gibraltar Arc 

contrast with anti-clockwise rotations in the Rif Arc.

Platzm an (1992) rejected the hypothesis th a t the Betics developed in a  zone of 

distributed dextral strike-slip, because in such  a  situation the rotations should be consist

ently counter-clockwise and they are not. Counter-clockwise rotations cannot be reconciled 

with a  model of dextral strike slip.

Platzm an (1992) pointed ou t th a t clockwise ro tations in the north  and  counter 

clockwise rotations in the south could be accounted for if there were a  strike slip emplacement 

of a  microplate. This envisages the westward movement of an  independent Alboran 

microplate which indented the margin of Africa (Andrieux etal., 1971; Leblanc & Oliver, 1984; 

Boullin et al., 1986). Andrieux et al. (1971) proposed th a t this westward movement was 

accommodated by right-lateral displacement along the northern boundary of the Alboran Sea 

and by left-lateral movement along the southern margin. This is consistent with the large 

strike faults observed along these margins (Campillo et al. (1992). However, Platzman (1992) 

rejects this model firstly on the grounds tha t a t the tip of the plate indentor (in the region of 

the G ibraltar Arc) there should be no rotation, whereas there is a  rotation, and  secondly 

because the Alboran Sea has  a  non-rigid plate-like charac ter and  lacks a  definable 

mechanism to drive the plate. This conclusion is made despite the fact th a t the rotation of 

Africa into Iberia may actually supply a  plate-driving mechanism.

Platzman (1992) favours a  model in which structured blocks are rotated as they are 

detached during the extensional collapse of an elongate collisional ridge, appealing to the 

model of Platt & Vissers (1989). Extensional collapse is interpreted to have produced dextral 

shear and clockwise rotations north of the ridge and counter clockwise rotations south  of the 

ridge (Fig. 5).

However, while Platzmans' (1992) model is appealing, it fails to explain the formation 

of major strike-slip faults on the northern and southern margins of the Alboran Sea and also 

fails to take into account the oblique convergence of Africa and Iberia. Furtherm ore there is 

(as already highlighted) difficulty with the extensional collapse model since there is no 

evidence for the th ru s t stacking required for the formation of a  collisional ridge prior to the 

Miocene extension.

In conclusion, there is a  wide variety of geological d a ta  suggesting th a t strike-slip 

tectonism is an  im portant m echanism  in the formation of the Betic Orogen. Some of these 

may be incorporated in an  extensional collapse model (Platzman, 1992). However, exten

sional collapse requires the formation of a  collisional ridge prior to extension. There is no 

evidence, in either the external basins or the Alboran Sea, of a  collisional ridge in southern 

Iberia existing prior to  the initiation of extension.
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6 The B etics as a History o f Transtension-Transpression

Several w orkers, th rough the  use of single-grain radiom etric dating techniques, have 

identified repeated cycles of compression and extension in the metamorphic nappes of the 

Internal Zone.

De Jong etal. (1992) used Ar40/A r39 dating of single phengite grains to identify periods 

of extension and compression in the Nevado Filabride rocks of the Internal Zone. They also 

used step heating m ethods to identify a  minimum age of cooling of 30 Ma. This event was 

followed by a  series of local resetting events a t 17-19 Ma., 13-15 Ma. and 8-10 Ma. which were 

each coeval with volcanism in the eastern Betics. These events Eire interpreted as reflecting 

periods of crustal and  sub-crustal extension. Two further ages a t 18.5 Ma. Eind 21.5 Ma. Eire 

interpreted to represent periods of overthrusting sepEirating the main extension events.

Thus, the Miocene records a  complex history of extensional and  com pressional 

episodes Eind not the simple conversion from th rust stacking to extension suggested by Platt

6  Vissers (1992). The history of repeated extension and  compression is consistent with a  

strike-slip model, similar to th a t proposed by Tubia et al. (1993) and by Csimpillo et al. (1992) 

in which strike-slip is m anifest as either transtension  or trEinspression depending on the 

precise orientation of the transcurren t stress field a t the time.

It is well known th a t su tu re  zones form ideal strike-slip boundaries (Sylvester, 1988) 

in order to accommodate horizontal plate motions. Examples of strike -slip su tu re  belts can 

be found in the Indo-Eurasian collision (Fitch, 1972; Karig, 1980; Tapponiereta/., 1986) Eind 

in the SemEuigko fault system, northern S um atra  (Page e ta l.,  1979; Hla & Maung, 1987. 

Orogen-psirallel strike-slip faults are pEirticulEirly well developed in present subduction Eire 

complexes chsiracterised by oblique convergence (Fitch, 1972; Oxbrugh, 1972; Ssileeby, 

1977).

If it is accepted th a t the Betic su tu re  belt is the product of oblique convergence then 

it seems likely th a t m uch of the horizontal component of the displacement would have been 

accommodated by strike-slip movements. Strike-slip may have produced transtension or 

trsm spression depending on the Etrrangement of the stress  field which would change in 

response to chsmges in the rate and single of convergence.

7 A question o f Terrane T ectonism  ???

It can be dem onstrated th a t the nappes of the Internal Zone have contrasting structural E ind  

metamorphic histories (Egeler & Simon, 1969) and have been recently juxtaposed (Andrieux, 

1971; DeSmet, 1984; Leblanc & Oliver, 1984; Tubia e ta l.,  1993). In particular, the high 

pressure and  low tem perature metamorphic rocks of the Nevado Filabride (Kampschuur & 

Rondell, 1979) are juxtaposed against the low grade Alpujarride rocks (Torres-Roldan, 1979). 

The contact between these two units is characterised by mylonitic and cataclastic rocks (Platt 

& Behrm ann, 1985). The extensional collapse models (Platt & Vissers, 1989) E in d  core 

complex type models Doblas & Oyarzun, 1989) do not adequately explain the juxtaposition 

of nappes th a t have very different tectonic E in d  m etam orphic histories. If the high grade 

Nevado-Filabride rocks were exhum ed by extension alone, then up  to 12 Km of crust would 

have had to be removed from between the Nevado Filabride and Alpujarride units in order that
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the model should remain consistent with the metamorphic and tectonic schem es proposed 

for these two units (Overview, Section 1.4.3). There is no evidence in the Betics for such 
‘missing’ crust.

One way to superim pose crustal blocks with very different histories is by the accretion 

of terranes onto the margin of Iberia. These blocks would have been metamorphosed and 

exhumed elsewhere and then transported to the Iberian margin during the Miocene. This is 

sim ilar to the model proposed by Campillo e t al. (1992) who favoured the longitudinal 

transport of terranes by strike slip faulting.

Discrete c ru s ta l fragm ents can  be expelled sideways along strike slip faults of 

convergent margins, a process referred to as ‘tectonic escape’ (Burke & Sengor, 1986). This 

may have been the mechanism by which crustal blocks in the Internal Zone, were transported 

along strike slip faults parallel to the su tu re  belt. Campillo et al. (1992) refer to  discrete 

detached blocks in the Alboran sea as ‘orogenic float’ and also postulate a  model of tectonic 

escape for their emplacement. An excellent review of tectonic escape can be found in Sylvester 

(1988).

In a  tectonic domain composed of discrete blocks and subject to shortening individual 

blocks may move relative to one another. This results in the opening of large basins between 

the blocks as they are wedged away from each other by movements along strike slip faults 

(Fig. 6) (Hill, 1982; Wu & Wang, 1988). This may be the m echanism  by which the Internal 

Basins (Overview, Section 2.2) opened during the Miocene. If this is so then the Internal 

Basins would represent transtensional ‘pull-apart basins’ rather than  extensional ‘domino 

fault-block’ type basins, as suggested by Platt & Vissers (1989) and Doblas & Oyarzun (1989).

8 Problems Associated With a Strike Slip Model

While the above discussion clearly favours strike slip faulting as the main mechanism for the 

building of the Betics, there Eire distinct problems and several contradictions associated with 

such  a  model.

8.1 The Guadalquivir Basin Problem

It has been dem onstrated  th a t the G uadalquivir Basin is not a  foreland basin, bu t is 

associated with the destruction of the Iberian Passive margin during the Miocene extension 

of the Betic Orogen (Part I, Chapter 5.5). The depositional history of the basin is marked first 

by compression a t the end of the Oligocene. This resulted in deformation of the Mesozoic 

and Palaeogene External Zone sedim ents (Part I, C hapter 2.9). A second, post-Messinian, 

phsise of compression resulted in the break up  of the Guadalquivir Basin and in the creation 

of the autochthonous Eind Eillochthonous zones of the Orogen (Psirt I, Chapter 2.9).

The initial discussion, in Part I, C hapter 5, attributed the early Miocene compression 

in the region of the GuadEilquivir Basin to th rusting  induced a t the margin of a  collapsing 

collisionEil ridge, following the model of Platt & Vissers (1989). In this model the spreading 

of overthickened cru st is Eilleged to cause extension in the Internal Zones and compression 

a t its margins in the ExtemEil Zone (Platt & Vissers, 1989).

However, this is inconsistent with the Eirguments presented above which dem onstrate
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that there is no evidence for the existence of a  collisional ridge prior to the Miocene extension. 

Moreover, Miocene extension is attributed to transtension induced during major strike slip 

movement between the African and Iberian plates. If th is is so then it becomes difficult to 

explain the late Oligocene compression of the northern External Zone because;

1 If there is no collisional ridge, then spreading of the crust onto the Iberian margin 

(induced by extensional collapse) is unlikely.

2 If transtension in a  strike slip regime is the main mechanism, then tectonism would 

have been areom modated in a relatively narrow zone in the region of the Alboran Sea. It is 

difficult to envisage how transtension or transnression could have induced comnression in
O  i  A

the Guadalnuivir Basin, which is some distance awav from the zone of strike slln faulting.A A O

One explanation is th a t the compression recorded along the northern margin of the 

External Zone (prior to the formation of the Guadalquivir Basin) may reflect the arrival of the 

terranes envisaged by Campillo et al. (1992). Because Africa was essentially converging with 

Tberia, alheit obliquely, space would he required to accommodate the terrane blocks. This 

space may have been created by the compression and thin skin th rusting  of the External 

Zones. Thus, while extension is the main mechanism in the Alboran Domain the emplace

ment of terranes, which were in effect driven onto the Iberian Margin, produced compression 

in part of the External Zone. The inference here Is tha t during the Miocene the External Zone 

was broken up by extension in the west and compression in the north.

The post-Messinian thrusting tha t caused the break up of the Guadalquivir Basin (Part 

I. Chapter 2.9) may record the time when transtension was converted to transpression, as 

the convergence between Africa and Iberia became less oblique and generated structura l 

inversions (Campillo e ta l., 1992). Pliocene compression and uplift has also been recorded 

along the eastern Iberian margin in the Valencia trough (Janssen e ta l.. 1993).

8.2 The Betic Movement Zone Problem

Within the Internal Zone of the Betic orogen the high grade Nevado Filabride unit is separated 

from the higher Betic nappes by a  broad zone of heterogeneous ductile shear. This is 

characterised by mylonites passing upw ards into cataclastic rocks (Fig. 7) and is known as 

the Retie Movement Zone (Platt & Behrm ann, 1985). Extensional mylonites overlain by 

cataclastic rocks are characteristic of detachm ent faults as in the Basin & Range of California 

(Platt & Vissers, 1989). The Betic Movement Zone is therefore interpreted as the  main zone 

of detachm ent th a t developed during the Miocene Extension of the Internal Zone (Platt & 

Vissers, 1989). The formation of mylonites in the Betic Movement Zone post-dates the high 

grade m etam orphism  of the  Nevado Filahride unit. The transition  from nre-mylonite 

amphibolites to cataclastic rocks is interpreted to reflect uplift during nappe em placement 

(Platt & Behrmann, 1985). Q uartz lineations in the Mylonites are orientated to the NNE and 

indicate elongation (i.e. extension) NNE-SSW (Platt & Behrm ann, 1985).

The Betic Movement Zone has been interpreted to be the product of a  detachm ent to
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the NNE and SSW th a t was generated during extension and gravitational spreading of the 

Orogenic belt (Platt & Vissers, 1989). However, as discussed, there is no evidence for 

overthickened pre-extensional crust and the extensional collapse model fails to explain the 

initial jux tapositions of the Nevado Filabride and  higher Betic nappes with different 

metamorphic and  structu ra l histories. While the strike-slip model provides an  alternative 

to the extensional collapse model there is some difficulty in explaining the formation of the 

Betic Movement Zone by strike-slip movements alone.

One possible explanation is tha t strike slip movements were characterised by repeated 

phases of transtension  Eind trsinspression, as suggested by Campillo et al. (1992). During 

transpression, the terranes th a t were emplaced laterally by strike slip faults were buried by 

th ru s t stacking. The Nevado Filabride rocks could have attained their metamorphic grade 

elsewhere, prior to terrane emplacement. This initial transpressional event resulted in the 

juxtaposition of the Nevado Filabride unit and the higher Betic nappes, with the Nevado 

Filabride being buried to some depth. During subsequent trsmstension a  zone of detachm ent 

formed as the higher Betic nappes became extended. This resulted in the re-exposure of the 

Nevado Filabride rocks and in their uplift in response to unloading during detachm ent. Such 

a model allows for both the juxtaposition of nappes with very different histories as  well sis the 

uplift of the Nevado Filabride in a  ‘core complex’ style detachm ent. Both of these can be 

integrated in an  overall strike-slip model.

9 A Model for the Evolution o f the B etic Orogen

From the above discussions Eind those found in Part I, C hapter 5 Eind Psirt II, C hapter 3, a 

‘best fit model’ for the Betics can be derived. This takes into account new and im portant data  

from the Guadsilquivir Basin, from the G ibraltar Arc Flysch and from the Alboran Domain. 

This model, for which there is compelling evidence, attem pts to integrate the vsirious lines 

of evidence from the Betic Orogen into an  overall scenario of strike-slip movement,.

9 .1 Cretaceous to Early Miocene (Fig. 8a)

Prior to the Miocene the boundary between African and Iberian plates was lsirgely inactive, 

with the main movements taking place in the Pyrenean trough between Iberia and  E urasia 

(Sirvastava et al., 1990a). In effect southern Iberia experienced a  tectonic h iatus between 65- 

27 Ma. (Campillo eta l., 1992). During this relatively quiet interval, deposition of the ExtemEil 

Zone rocks took place on w hat was essentiEilly an  extended passive margin (Fig. 8a). There 

is no evidence for Betic tectonism  affecting the Iberian Passive Margin a t th is time.

9.2 Miocene (Fig. 8b)

The beginning of the Miocene corresponded with the  s ta rt of Betic Tectonism in sou thern  

Iberia as the plate boundary again becsime active and Africa rotated into Iberia (SirvEistava 

e t al., 1990a). The first events recorded were extension of th e  Alboran DomEdn and  

compression along the northern m argin of the External Zone (in the region now occupied by 

the Guadalquivir Basin). Extension in the Alboran Domain is believed to have been brought 

about by the oblique convergence of Africa and Iberia resulting in strike-slip movements Eind
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the development of a  mainly transtensional regime. This extension resulted in the break up 

of the western parts of the External Zone and the formation of small and confined pull-apart 

basins into which sediment, mobilised from the External Zone, was rapidly deposited. This 

deposition is represented by the Aljibe Flysch of the G ibraltar Arc (Part II, C hapter 3). 

Compression along the northern margin of the External Zone is more difficult to explain but 

may have been induced by the arrival of metamorphic terranes which required buckling of 

the margin to accommodate them. These terranes, which now form the Internal Zones, are 

interpreted as having been emplaced by lateral movements along strike slip faults, perhaps 

by a ‘tectonic escape’ mechanism  (Campillo eta l., 1992). Compression led to the formation 

of the Guadalquivir Basin, confined by the uplifting External Zone rocks.

Through the Miocene the Betic orogen mainly experienced transtensional movements, 

punctuated by periods of transpression. Repeated phases of transtension and transpression 

are reflected in the variations in the Ar40/Ar39 isotope system in phengitic micas from the 

Internal Zone, implying local resetting (De Jong e t al., 1992). During early transpression, 

th ru st stacking of the metamorphic terranes may have led to burial of the Nevado Filabride 

unit and the juxtaposition of the Nevado Filabride, Alpujarride and Malaguide terrane blocks.

During transtension, the Ronda peridotites were uplifted, although initially not all the 

way to the surface. The Nevado Filabride unit, buried during transpression, was uplifted to 

form a  ‘core complex’ by the detachm ent of the higher Betic nappes. This detachm ent was 

associated with the formation of the  Betic Movement Zone. Transtension also led to the 

formation of the Internal Zone basins, such  as the G ranada Basin, as a  series of pull-apart 

basins. Strike-slip movements continued into the Pliocene.

9.3 Pliocene (Fig. 8c)

Towards the end of the Pliocene the convergence of Africa Eind Iberia becsime less oblique eis  

Africa began to move in a  more northerly direction (Campillo et al., 1992). As a  result the 

msiinly transtensional became progressively more transpressionEd. Related com pression 

resulted in tectonic inversions in the GibraltEu* Arc Eind Alboran Sea. Thrusts formed the 

peridotites were em placed into their p resent positions. The Guadalquivir Basin, became 

subdivided into the Eillochthonous and  autochthonous zones present today.

10 Unresolved Problems
The above model is an  attem pt to fit various tectonic, mefamorphic and sedimentary histories 

into an overall model of strike-slip tectonism . While th is model is appealing and explains 

most of the features of the Betics, it contEiins several unresolved problems;

1 It is considered th a t extension in the Betic Orogen begEin a t the beginning of the 

Miocene. This is tru e  for the  Alboran Domain, b u t in the  area  now occupied by the 

Guadalquivir Basin the first event w e is  clearly com pressional deformation. This has been 

explained by the arrival of metamorphic terranes on the southern  margin of Iberia causing 

com pression in the outer pEirts of the  External Zone. However, such  a  model requires 

simultEineous extension in the western parts Eind compression in the northern parts of the
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External Zone. It is difficult to see how th is could have been achieved, even by the 

emplacement of terranes. Also, it seems unlikely th a t deformation would have been induced 

by strike-slip tectonism  so far away from the main zone of strike-slip movement.

2 Zeck et al. (1992) recorded very rapid uplift in the Internal Zones. It is difficult to 

envisage how such rapid uplift rates could have been induced by transtension alone and 

without the involvement of some other mechanism, such  as the diapiric emplacement of hot 

mantle material a t the base of the crust.

3 There is no explanation of how the terranes originally obtained their metamorphic 

grade. This poses a  fundam ental question about the origins of the Internal Zones. If they 

are the rem nants of an older subduction zone, where was this zone located and a t what time 

was it active?

4  It is suggested tha t the Betic Orogen records transtension, punctuated  by periods 

of transpression, bu t the nature of these events and their precise timing is unknown. It is 

not known when th ru st stacking of the Internal Zones took place or when they wrere exhumed. 

The timing of these events is vital to gaining an  understanding of the Betic Orogen

5 The crust in the Alboran sea is much th inner than  could have been brought about 

by transtension alone. This poses the question of w hether or not the Alboran Sea represents 

a micro-plate and, if it does, was it already thinned prior to its emplacement.

11 Future work

This study has dem onstrated how external basins may be of use in interpreting the history 

of an  orogen. However the work presented represents a  small parts of the basins studied. 

While the areas studied are considered to be representative of the basins in question it is now 

necessary to extend the study in both the Guadalquivir Basin and the Gibraltar Arc in order 

to fully test the hypotheses pu t forward.

In addition, there are several key questions th a t have arisen from discussions which 

need to be more fully investigated ;

1 The establishm ent of the provenance and  timing of emplacement of the metamorphic 

terranes of the Internal Zones is vital. These Zones have been subject to m any studies 

including radiometric dating and the results of these studies and derived dates have been 

applied to the Betics as a  whole. However, if these rocks are terranes then data, and more 

specifically, the radiometric dates m ay only apply to the terrane blocks and their place of 

origin only, and  not to the Betic Orogen as a  whole. The timing of emplacement is critical as 

this will pin point the time after which the radiometric dates become significant to the Betics.

2  The exact tim ing of th ru stin g  in the flysch nappes of the G ibraltar Arc and the 

Guadalquivir Basin is unknowm. Indeed it is not even knowm whether or not th rusting  in 

these two areas was contemporaneous. As the th ru s t events record a  time of major structural
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inversion, their exact chronology is critical to the understanding of the Betic Orogen.

Finally the Betic Orogen of sou thern  Spain has received m uch attention and  most 

models have been generated from data collected only from Spain. However, the Orogen also 

includes rocks found along the northern margin of Africa. Clearly there is also a  need to study 

these  in order to determ ine if the  tectonic, m etam orphic and sed im entary  h istory  is 

compatible with th a t deduced from southern  Spain. This is an  entirely unknow n quantity  

and merits the initiation of major field investigations.

12 Conclusions

The external basins of the Betic Orogen provide im portant insights into the tectonic history 

of the Orogen Eind in particulsu- into Oligo-Miocene events. D ata gsiined from the study of 

these basins have been used to test vsirious hypotheses for the formation of the Orogen Eind 

these have led to the development of new models. The tectonic history derived from the study 

of the External Basins has been combined with im portant new data  from the Alboran Sea 

and  Ronda peridotites This has resulted in the rejection of the widely accepted ‘extensional 

collapse’ model and in the identification of strike-slip tectonism and transcurren t movements 

a s  the m ain m echanism  for the building of the Betic Orogen. Miocene tran scu rren t 

m ovements in the Betic a rea  resulted  in the break up  the Iberian passive margin, the 

emplacement of metamorphic terrEines, Eind in the formation of th ru sts  in the Gibraltar Arc 

through a  complicated history of transtension and transpression in the region of the Alboran 

Sea.
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T h esis C onclusions

The Guadalquivir Basin and the G ibraltar Arc Flysch Basins are considered to be basins 

linked to the development of the Betic Orogen. Their tectonic and palaeogeographic histories 

are critical to gaining a  full understanding of the Orogen.

The detailed study of both of these basins has led to a  complete revision of their tectonic 

and palaeogeographic histories. These revisions can be sum m arised as follows;

The Guadalquivir Basin

1 The Guadalquivir Basin developed between two compressional phases, bu t was largely 

unaffected by tectonism  during its Miocene history.

2 Prior to the formation of the Guadalquivir Basin the External Zone was unaffected by Betic 

Tectonism. The External Zones m aintained their passive margin basin profile until the onset 

of the late Oligocene/early Miocene com pressional event th a t led to the formation of the 

Guadalquivir Basin. This suggests tha t the Hercynian Passive Margin was not subjected to 

Betic tectonism  until early Miocene times.

3 Seismic da ta  and stratigraphic relationships indicate th a t thrusting disrupted the basin 

at the end of the Miocene following the deposition of Messinian sediments.

4 Lithosomes in the Guadalquivir Basin previously described as ‘olistostromes’ are actually 

tectonic melanges and their formation was associated with the post-M essinian thrusting  

event (post basin).

5 The Guadalquivir Basin contains deposits, principally marls, which are less than 1 Km 

thick indicating th a t the basin did not receive m uch detritus during its Miocene history.

6 Sedimentological and  m icropalaeontological stud ies dem onstrate th a t the Miocene 

Guadalquivir Basin formed as a  single basin characterised by deepwater and shallow marine 

deposits separated by a  shelf break. A fluvial braid plain dominated the southern part of the 

basin and channelled detritus from the External Zone to coastal fan deltas. The detritus was 

reworked on the shelf by storm  and  tided currents th a t led to the mixing of near-shore and 

shelf faunas. Storm  tempestite currents transported some of the detritus to the deeper parts 

of the basin. Through the Miocene the coastline prograded northw ards across the shelf in 

direct response to a  relative sea-level fall th a t was m ost probably eustatic. There is no 

evidence for the existence of a  m ajor turbidite basin, as is suggested by other authors.

7 Detailed provenance studies indicate th a t sedim entary lithic clasts were mainly derived 

from the External Zones, part of the Palaeogene Iberian Passive Margin, and from within the 

basin itself. Some material was also derived from the Hercynian Massif.
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8 White mica geochemistry and geochronology indicates tha t metamorphic detritus was 

ultimately derived from the Hercynian Massif. Some of this may have been recycled from the 

External Zone, which would have received detritus from the Hercynian M assif prior to its 

break up and prior to the formation of the Guadalquivir Basin.

9 There is no evidence for the derivation of material from the Internal Zone rocks of the Betic 

Orogen.

10 While the Guadalquivir Basin geographically appears to be a  foreland basin it is unlikely 

to have been formed by the flexural response of the lithosphere to orogenic loading. Thus, 

by definition, it cannot be considered to be a  foreland basin.

11 In the final analysis it can be dem onstrated th a t the Guadalquivir Basin formed as an 

integral part of the destruction  of the Iberian Passive Margin. Thin skinned th rusting  

generated a basin on the northern margin of the External Zones. The fill and unconformities 

of this basin were controlled by eustasy  ra ther th an  by tectonic incursion, and  clastic 

sedimentation was driven by by the emergence of the External Zone th ru st sheets during the 

late Miocene. A fined Late Miocene thrusting event disrupted the Guadalquivir Basin and led 

to its division into the allochthon and autochthon.

The Gibraltar Arc Flysch Basins

1 The G ibraltar Arc is formed by series of highly allochthonous units tha t have been th ru st 

westwards.

2 The largest tectono-sedim entary unit of the Gibraltar Arc is the Aljibe Flysch. This flysch 

sequence consists of mainly quartz arenites deposited by turbidites and grain flows. They 

are often in upward coarsening sequences th a t term inate in sandstones with abundan t 

dewatering features

3 The Aljibe Flysch records the development of a  turbidite dom inated basin plain on the 

sou thern  margin of the External Zones during the Oligocene. This became tectonically 

segregated a t the  beginning of the Miocene a t which time restricted extensional basins 

formed.

4 Tectonism related to the break up  the basin plain, created instabilities elsewhere in the 

External Zone. This led to the mobilisation of large am ounts of sedim ent th a t were rapidly 

deposited in the new tectonically confined basins in which thick wedges of sediment, with 

restricted facies, accum ulated.

5 The Gibraltar Arc sedim entary basins record the break up of the External Zones, and this 

may represent the tectonic transition  from the Iberian Passive Margin to the Betic Orogen.
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The tectonic and Palaeogeographic history, deduced for the G uadalquivir Basin and 

G ibraltar Arc Flysch basins have been used, in conjunction with da ta  collected by other 

authors, to critically examine various models proposed for the evolution of the Betic Orogen. 

This can be sum m arised as follows.

1 There is no evidence for Betic tectonism  affecting the Iberian Passive Margin prior to the 

supposed Miocene ‘extensional collapse’ event.

2 If Betic tectonism did not affect the Iberian Margin during the Palaeogene then it is unlikely 

tha t a  collisional ridge formed prior to the Miocene. If th is is the case then extension cannot 

have been caused by the collapse of an  overthickened orogenic wedge.

3 There is a  substan tial weight of evidence for major strike slip movements having occurred 

in the Betic Orogen.

4  Many features of the Betic Orogen can be explained through a history of transtension and 

transpression th a t occurred In an  overall strike-slip regime.

5 The Internal Zones of the Betic Orogen may have been emplaced as terrains during strike 

slip movements. A model of orogenic float and  tectonic escape is envisaged for terrain  

emplacement.

From all of the above, a  ‘best fit’ model for the Betic Orogen has been derived which can 

be sum m arised as follows;

1 Prior to the Miocene, Iberia existed as  an  extended passive margin th a t was unaffected by 

Betic tectonism.

2 The first orogenic event is recorded a t the end of the Oligocene/ early Miocene.

3 The Orogen developed in response to the oblique convergence of Africa and Iberia resulting 

in strike slip movements and the development of a  mainly transtensional regime.

4  T ranstension resu lted  in the partia l uplift of peridotite bodies and the formation of 

extensional basins in the regions of the Gibraltar Arc, Alboran Sea and  Internal Zones.

5 Transtension was punctuated  by periods of transpression  during the Miocene. This 

resulted in the th ru s t stacking of metamorphic terrains th a t were emplaced along the strike 

slip margin and the em placement of peridotites Into mid crustal levels.

6 Towards the end of the Pliocene the convergence of Africa and Iberia became less oblique 

and the transtensional regime became progressively more transpressional. This resulted in
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tectonic inversions in the G ibraltar Arc and  Alboran Sea and  the em placem ent of the 

Peridotites into their present position.

Conclusions
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Figure O. I The Alboran sea and surrounding mountain chains.
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Figure 0 .1  (a) Alboran sea and surrounding m ountain chains, modified from Platt &Vissers 
(1989) and  Torres-Roldan (1979). (b) S tructu ral cross section through the External Zone of 
the Eastern  Betic Cordillera, from Allerton e ta l. (1993)
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Figure 0.2. Successive positions of Africa relative to Europe.

A /  E urasia

c - <  ^

/ /̂ i48m.y jqq to 148 m .y  

|  Africa

® ^ E u r a s i a ^

_  ^
148 to 80 m.y

,148 m.y \

\  /  Africa V  y
* ̂  \80 m.y ; ^

C E urasia 

80 to  63 m.y ^

Iberia begins to [ J  
rotate Into Africa * i

/ /
Mm-yJ j  Africa ' %

( *,80 m.y V.

D f  Eurasia 

63 to 53 m .y

53 “-yQ  Africa \ \
f  *,63 m.y \  *

E  E urasia 
53  to  9 m.y ^  \

Iberia rotates L J  
Into Africa —■ 1

53 m y.-f Africa *\*/9m.y A

F  j | Eurasia 
9 to 0  m .y ^

Spreading In ■ -i 
Alboran domain /* t

/7 V? m-y 
I* Africa o m.A'

Figure 0 .2 . Successive positions of Africa relative to Europe a t 180 m.y., 148m.y., 80 m.y, 
63 m.y., 53 m.y., 9 m.y., and  present as constructed by Dewey e ta l. ((1973). The arrows 
represent the sim plest path Africa could have taken relative Europe. The relative motion 
of Iberia is in the  opposite direction to  the arrows.
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Figure. 0 .3  The subdivision of the External Zone.
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Figure. 0 .3 . A) shows the subdivision of the External Zone according to various authors. 
Equivalent un its  for each schem e are shown. A) relates to (B & C) which show the two 
contrasting models for the palaeogeography of the External Zone of the Betic Orogen; B) 
shows the interpretation of Garcia H ernandez et al. (1980); C) shows the recent model of 
B lankenship (1992) which is m uch sim pler and  is based on borehole data  and seismic 
reflection profiles. Equivalent units are shown by arrows. Diagram after Blankenship (1992).
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Figure 0.4  A summary o f hypothesis proposedfor the Betic Orogen.
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Figure 0 .4  A sum m ary of the conflicting hypotheses proposed for the tectonic evolution of 
the Betic Orogen. Numbers (in bold) indicate the sources of the data  which are as follows: 
1 Dewey (1973), 2 Roest and Sirvastava (1990), 3 Sirvastava et aL (1990), 4 Moine et aL (1991),
5 Bakker e t al. (1989), 6 de Jong eta l. (1992), 7 Platt & Vissers (1989), 8 Zeck eta l. (1992), 
9 Platzman eta l. (1993), 10 Allerton eta l. (1993), 11 Garcia Hernandez (1980), 12 Martinez
6  Ruitz Oritz (1993), 13 Blankenship (1992), 14 Sanz de Galdeano & Vera (1993), 15 Bourgois 
(1973). Column on the right indicates the tectonic events most authors (1-15) agree with and 
therefore the most likely.
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Figure 0 .4  A summary of hypothesis proposed for the Betic Orogen.

Canvas Figure

Figure 0 .4  A sum m ary of the conflicting hypotheses proposed for the tectonic evolution of 
the Betic Orogen. Numbers (in bold) indicate the sources of the d a ta  which are as follows: 
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Figure 0 .5  Sedimentary rocks from known plate tectonic settings.
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Figure 0 .5  Sedim entary rocks from known plate tectonic settings can be plotted in terms of 
their com ponents. Such  plots and quantitative petrology can be used to determine the 
general plate tectonic setting of other sedim entary rocks. Plot taken from Dickinson et al. 
(1983).
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Figure 1.1 Baena-MontiUa study area for the Guadalquivir Basin. The area was selected on 

the basis of exposure and because it contains both autochthonous and allochthonous rocks. 

The area is constrained by three geological m aps (Foldouts 1,2 & 3; Roldan G arcia et al., 

1985a,b; Leyva Cabello, 1973). Seismic section (Fig. 2.1) and boreholes are located on the 

map.
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Figure 1.1 The Baena-Montilla study area
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Figure 1.2 Lithostratigraphic correlation diagram.
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Figure 1.2 Lithostratigraphic correlation diagram for the Betic External Zone and Guadalqui

vir Basin; 1 unconformity, 2 base of the North Betic Strait, 3 base of the foreland Guadalquivir 

Basin, 4 th ru s t contact, 5 olistostromes, 6  marls, 7 evaporites, 8 limestones, 9 sandstones, 

10 calc-lithic arenites, 11 conglomerates. Constructed from Garcia Hernandez (1980) and 

Sanz de Galdeano & Vera (1992).
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Figure 1.3 Basin development in the Betic Orogen.

B asins o f  th e  B etic  Orogen
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From Sanz-de-Galdeano & Vera (1992)

Figure 1.3 Basin development in the Betic Orogen during the Lower Miocene; (A) Burdigalian 

to Serravallian, (B) from the Tortonian onwards.
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Figure 1.4 Cross-section across the Guadalquivir Basin.

Cross-Section Across the Guadalquivir Basin 
During the Neogene
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Figure 1.4 Cross-section across the Guadalquivir Basin, as interpreted by Suarez Alba e t al. 

(1992).
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Chapter 2: Tectono-Stratigraphic Analysis

Figure 2.1 Seismic profile across the Guadalquivir Basin.

Page 172

Photocopy of seismic section.

Figure 2.1 Seism ic profile and  in terp reted  line draw ing across the allochthon and 
autochthon of the  Guadalquivir Basin. Line of transect and constraining bore hole (Nueva 
Carteya) is located on Fig. 1.1. Seism ic line an d  in terpreted  line drawing taken from 
Blankenship (1992).
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Figure 2 .1 Seism ic profile across the Guadalquivir Basin
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e x t r x p o l a t e d  TOt 
MESDZOlC • TERTl

Figure 2.1 Seism ic profile and interpreted line drawing across the allochthon and  
autochthon of the Guadalquivir Basin. Line of transect and constraining bore hoie (Nueva 
Carteya) is located on Fig. 1.1. Seism ic line and interpreted line drawing taken from 

Blankenship (1992).

i.
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Figure 2.2 A revised stratigraphy fo r  the autochthonous Guadalquivir Basin.

A Revised Stratigraphy of the Guadalquivir Basin
Scale 1:5000
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Deformed Palaeogene 
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Figure 2.1 A revised stratigraphy for the autochthonous Guadalquivir Basin. Stratigraphy 
revised from Roldan G arcia et al., (1985a,b) and  Leyva Cabello (1979) on the basis of field 
data , seismic sections (Fig. 2.1) and borehole data  (Blankenship, 1992; 1993). Lithological 
an d  environm ental in terpreta tions are based on field and petrographic studies th a t are 
d iscussed in C hapter 3
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Figure 2.3 A panoramic S-N view across the Guadalquivir Basin.

Page 174

Photo-montage foldout

Figure 2 .3 A panoram ic S-N view across the Guadalquivir Basin showing the External Zone 
(EZ), the External Zone th ru s t front (EZT), the allochthonous Guadalquivir Basin (ALGQ) and 
the  au tochthonous Guadalquivir Basin (AUGQ). Photo taken from Ref. 543 334, looking E.
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Figure 2.4 Part o f the allochthonous Guadalquivir Basin.

Figure 2.4 Part of the allochthonous Guadalquivir Basin showing Triassic (T) and Cretaceous 
(K) sediments of the External Zone and Lower-Mid Miocene marls of the Guadalquivir Basin. 
Section is approximately 20 m high.
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Figure 2.5 Deformed Tortonian sedim ents.

A

Deformed Tortonian S andstones Found 
W ithin the  Allochthonous G uadalquivir Basin

correlation 30 m.

Grey
san d s to n e

m

Grey
sa n d s to n e Thick sa n d s to n e  

beds
Thick san d sto n e  
bedsS an d s to n e

M arls

Figure 2.5 Deformed T ortonian sed im en ts  found in the  allochthonous portion of th e  
Guadalquivir Basin. (A) Photo of vertical Tortonian sandstones. (B) Line drawing of section 
of deformed Tortonian sedim ents. From  location 5 (Ref 529 343).
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•;.*
• \r.\-: • V \ i

. • : • .*» j

• V  
• •••*•••■

: •;.*

•.*. *.•. • >

:Aquitanlan m arls of the;/ 
G uadalquivir basin

Steeply dipping beds

Figure 2.6 Photo and line diagram of the base of the Guadalquivir Basin.

The Base of the Guadalquivir Basin

Line Diagram of Photograph Above

Figure 2.6 Photo and  line diagram  from location 18 (Foldout Map 1, Ref 543 334) of the base 
of the G uadalquivir Basin. Lower Miocene m arls of the  Guadalquivir Basin unconformably 
overlie deformed Palaeogene lim estones of the External Zone. A karst surface characterises 
the unconformity and indicates th a t a  substan tial period of subaerial exposure separated the 
External Zone from m arine sedim ents of the G uadalquivir Basin.
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Figure 2.7 Nature of the allochthonous-autochthonous boundary.
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Figure 2.7 N ature of the allochthonous-autochthonous boundary. A: cross-section E-W 
across the autochthon-allochthon in the Baena-M ontilla study area. B: the boundary as a 
th ru s t contact. C: the boundary as  an  unconformity inferring a  palaeovalley.

Part I The Guadalquivir Basin: Figures



Chapter 2: Tectono-Strattgraphic Analysis

Figure 2.8 'Olistostrome' mapped in a roadside outcrop.

Page 179

Fig 2.8 Canvas Fig.

Figure 2.8 ’Olistostrome' m apped in a  roadside outcrop (Baena-Allcaudete road 5Km from 
Allcaudete ). The ’olistostrom e’ consists of intim ately mixed material of many lithological 
types. The ’olistostrome’ contains rocks from both the External Zone and the Guadalquivir 
Basin. The youngest rocks are M essinian conglomerates, thought to belong to fluvial deposits 
of the  Guadalquivir Basin. The ’olistostrome’ has been re-interpreted as a  melange tha t has 
a tectonic origin.
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Figure 2.9. Generalized cross-section.

Page 180

Fig. 2.9- Canvas

Figure 2.9. Generalized cross-section across the External Zone and Guadalquivir Basin of 
the Betic Orogen.
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Figure 2.10 Chronostratigraphic diagram.
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Figure 2.11. Chrono-stratigraphy plotted against global eustasy and tectonism.
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Figure 2.12 The tectonic and stratigraphic evolution of the External Zone and Guadalquivir 

Basin. A: Mesozoic-Palaeogene; External Zone sedim ents are deposited on an extending 

passive margin. B: Oligo-Miocene; rocks of the External Zone are deformed and sub-aerial 

exposure led to the karstiflcation of Palaeogene limestones. C: Miocene; sedim ents of the 

G uadalquivir Basin are deposited over the deformed External Zone rocks. D: Post-Messinian 

(Pliocene); Com pression in the  region of the G uadalquivir basin  led to th rusting  and the 

division of the basin into an  allochthon and autochthon. The inferred relative motion of Africa 

is shown, although th is  may be subject to further modification in later discussions.
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Figure 2.12 Tectonic and stratigraphic evolution.
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Figure 3.1 Lithostratigraphy o f the Guadalquivir Basin.
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Figure 3.1 Lithostratigraphy of the Guadalquivir Basin, modified from Roldan Garcia et aL, 
(1985a,b)

Part I The Guadalquivir Basin: Figures



Chapter 3: Sedimentoloqy Page 187

Figure 3.2 The sub-Messinian unconformity.
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Figure 3.2 Sedim entary log from location 44 (Foldout Map 2, Ref 514 325). Tortonian 
sedim entary rocks are  cut ou t by the sub-M essinian unconformity.
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Figure 3.3 Lower Miocene marls.

Figure 3.3 Typical exposure Lower Miocene m arls of the Guadalquivir Basin exposed in the 
Baena Montilla a rea  (Location 30, Ref 543 338). H am m er is 40 cm  long.
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Figure 3.4. Lower Mi

ocene boulder facie s.
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Figure 3.5 Thinly bedded Jacies.

Figure 3.5 Thinly bedded facies from Lower Miocene Marls of the Guadalquivir Basin exposed 
a t location 23 (Foldout Map 1, Ref 541 331). Thinly bedded facies are defined as marls with 
less than 10 cm beds. Hamm er is 40 cm long.

Figure 3.6 Thickly bedded marls.

Figure 3.6 Thickly bedded m arls from Lower Miocene m arls of the Guadalquivir Basin. Marls 
with beds thicker th an  50 cm are exposed at location 31 (Foldout Map 1, Ref 543 339) Bed 
bounding surfaces are m arked by dashed  lines. Internally the beds lack struc tu res or any 
form of stratification. Hamm er is 40 cm  long.
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Figure 3.7 Laminated dlatomites.

Figure 3.7 Lam inated diatom ites from the Lower Miocene G uadalquivir Basin exposed at 
location 44 (Foldout Map 2, Ref 514 325). (Cy) Clay rich laminae. (Ca) C arbonate rich 
laminae. Penknife is 12 cm long.
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Figure 3.8(a) Diatom ooze.

Figure 3.8(a) Diatom ooze from the  clay rich laminae of the lam inated diatomite (Fig 3.7) 
showing Diatoms (D) and  Radiolaria (R).

Figure 3.8(b) Conclnodiscus sp.

Figure 3.8(b) Conclnodiscus sp.. location 44 (Ref. 514 325), Lower Miocene lam inated 
D ia to m ite  f a c i e s .  The d ia t o m  flora from the c l a y  rich l a m i n a e  is monospecific, dominated by 
Conclnodiscus .

Part I The Guadalquivir Basin: Figures



Chapter 3: Sedtmentoloqu_____________________________________________________ Page 194

Figure 3.9 Lenticular units In the boulder facies

Base of channels
lm.

S c h e m a t i c  d i a g r a m  o f  ' w i n g e d  c h a n n e l  g e o m e t e r y . ’

'Wing' attached to channel

Figure 3.9 Schem atic diagram  of lenticular un its  found in the boulder facies a t locality 40 
(Foldout Map 1, Ref. 530 334). The lenticular units have a  winged channel type of geometry.

Figure 3.10 Photomicrograph o f calc-llthlc arenlte.

1 m m

Figure 3.10 Photom icrograph of calc-lithic aren ite  from Tortonian sand sto n es  of the  
Guadalquivir Basin. (Q) quartz clast. (C) carbonate clast.
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Figure 3.11 Photomicrograph o f fine grained calc-llthic arenlte.

1 mm
Figure 3.11 Photomicrograph of fine grained calc-lit hie arenite from sandstone beds found 
in Tortonian th in  bedded facies of the Guadalquivir Basin. (Q) quartz clasts. (C) carbonate 
clasts.

Figure 3.12 Photomici >/i o f bioclastic marls.

1 m m
Figure 3.12 Photomicrograph of bioclastic marls tha t are found interbedded with calc-lithic 
arenites in the th in  bedded facies, Tortonian sedim ents of the Guadalquivir Basin. Bioclasts 
are dominated by planktonic Foraminifera, but may also include Pelmatozoa and Radiolaria.
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Figure 3.13 Thin bedded and thick bedded, Tortonian sedimentary cycles.
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Figure 3.13 Ideal log of th in  bedded and  th ick  bedded facies found in the Tortonian 
sedim entary cycles, the ideal log is inferred from logs given in Appendix I.
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Figure 3.14 Log o f the tabular bedded facies.
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Figure 3 .14 Log of the tab u la r bedded facies found in Tortonian coarsening up  cycles. 
Sedim entary log taken  a t location 5(b) (Ref 529 343).
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Figure 3.15(a). Photo o f thick bedded sandstones.

*

Figure 3.15(a). Photo of logged section given in Figure 3.15(b) showing thick bedded 
sandstones. Tortonian G uadalquivir Basin. Ham m er is 40 cm long.
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Figure 3 .15(b) Sedim entary log of the thick bedded facies from the Tortonian sedim entary 
succession. Sedim entary log taken  from location 93 (Foldout Map 2. Ref 521 343)
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Figure 3 .15(b). Sedimentary log of the thick beddedfacies.
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Figure 3.16 Cyclicity observed in the Tortonian.

>>o

■a<uTD■a<U
OQ
c

i

CO
£uajbu

::

:

r a w
Cyclicity in the Tortonian

mrnmm
■ r n m m m

fit

m m m mmrnmm

Bioturbated

Bioturbated

1 m.

Bioturbated

Bioturbated 

rey sand lens

Bioturbated

Key as for F igures 
3 .14  & 3 .1 5

Hummocks

T

scs
15cm
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Figure 3.16 Cyclicity observed in the Tortonian sedim entary succession. Sedim entary log 
taken from Location 5(a) (Ref 529 343).
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Figure 3.17 Plot showing the production of asymmetrical and symmetrical bedforms.
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Figure 3.17 Plot showing the production of asym m etrical and symmetrical bedforms with 
varying com binations of unidirectional and oscillatory flow velocity. 3D asymmetrical ripples 
are equivalent to low-angle scours and  symmetrical 3D ripples are equivalent to hummocky 
cross-stratification. With increasing oscillatory flow symmetrical bedforms (i.e. hummocky 
cross-stratification) become dom inant. With increasing unidirectional flow asymm etrical 
bedforms (i.e. low angle sours) become dom inant. Diagram from Myrow & Southard (1991).
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Figure 3.18 Profile of a barrier beach.
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Figure 3.18 Generalized profile of the barrier beach and shoreface environm ents From 
Reinson (1984).

Figure 3 .19  Coarsening-upwards sequence produced by the progradation of a storm- 

dominated beach.
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Fig. 3.19. Ju rassic  Femie-Kootenay Formations. Alberta, C anada (After Hamblin & Walker, 
1979). Large scale coarsening-upwards sequence produced by the progradation of a storm- 
dominated beach face in a  wave dom inated delta (Diagram from Elliot, 1978).
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Figure 3 .20 Sedimentary log of Lower Messinian sedimentary rocks.
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Figure 3 .20 Sedim entary log of Lower M essinian sedim entary rocks found a t location 61 
(Foldout Map 2, Ref 514 325). Log shows th in  bedded and skeletal grainstone facies.
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Figure 3.21 Photomicrograph o f fine grained calc-lithlc arenite

1 m m

Figure 3.21 Photom icrograph of fine grained calc-lithic arenite. (Q) quartz  clast. (C)

carbonate clast.

---------------------------------------------------------------
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Figure 3.22 Sedimentary log o f lower Messinian fining up cycles.
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Figure 3.22 Sedim entary log of fining up  cycles found in the th in  bedded facies of the Lower 
Messinian sedim entary succession. Black and white boxes represent individual fining up 
cycles, one box represents one cycle. From  location 75 (Foldout Map 2, Ref 500 339)
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Figure 3.23 Photomicrograph o f calc-llthic arenite.

1 m m

Figure 3.23 Photomicrograph of calc-lithic arenite from the Messinian Guadalquivir Basin. 
(Q) quartz clast. (C) carbonate clast.
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Figure 3.24 Diagram of mega-ripple bed

Figure 3.24 Diagram of mega-ripple bed forms observed at location 64 (Foldout Map 2, Ref 
514 330).
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Figure 3.25 Sedimentary structures in calc-lithic arenite.
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Figure 3.26 Photomicrographs of Bioclastic grainstones.
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Figure 3.26 Photomicrographs of Bioclastic grainstones from the Messinian Guadalquivir 

Basin.
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Figure 3.27 Log of channelised matrix supported conglomerate.
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Figure 3.27 Sedimentary log taken from Lower Messinian rocks exposed at location 99 
(Foldout Map 3, Ref 510 344). Log shows the channelised matrix supported conglomerate 
that is observed to be interbedded with marine calc-llthic arenites.
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Figure 3.28 Lower Messinian conglomerates from the Guadalquivir Basin exposed at location 
9 (Foldout Map 2, Ref 522 340). The conglomerate can be divided into two separate units. 
The lower unit has a marl matrix (m) and the upper unit has sandy matrix (s). The two units 
are separated by a rootleted horizon (r). Section is approximately 15m high.

Figure 3.29 Eroslonal truncations in Lower Messinian conglomerates.

Figure 3.29 Erosional truncations in Lower Messinian conglomerates exposed at location 9 
(Foldout Map 2. Ref 522 340). Section is approximated 15m high.
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Figure 3.28 Lower Messinian conglomerates.
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Figure 3.30 A theoretical model; to explain the formation of low-angle reactivation surfaces 
in sand waves formed by reversing currents. Diagram from Allen (1980).
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Figure 3.30 The formation of low-angle reactivation surfaces in sand waves
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Figure 3 .3 1 Palaeocurrent data from the Lower Messinian coastal fan  deposits

N
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measured =33

Palaeocurrent data m easured from clast imbrication, coastal 
conglomerate, Lower M essinian

Figure 3.31 Palaeocurrent data from the Lower Messinian coastal fan deposits. Palaeocur- 
rents derived from the dip direction of imbricate clasts. The approximate strike of the orogenic 
(External Zone) front is also shown
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Figure 3.32 Laminae picked out carbonaceous material.

Figure 3.32 Laminae picked out carbonaceous material (c) which commonly define foresets 
in Upper Messinian conglomeratic deposits of the Guadalquivir Basin. Pencil is 12 cm long.

Figure 3.33 Calc-llthic arenite with thin pebble horizons.

Figure 3.33 Calc-lithic arenite with thin pebble horizons that are common in Lower 
Messinian conglomerates of the Guadalquivir Basin. Photo from location 46 (Foldout Map 
2). Hammer is 40 cm long.
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Figure 3.34 Sedimentary log of Upper Messinian conglomerates.

Red Marl

Figure 3.34 Sedimentary log of Upper Messinian conglomerates showing colour stratified 
marls and fining up units. Log taken from location 46 (Foldout Map 2, Ref 511 338)
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Figure 3.35 Conglomerates from the Upper Messinian Guadalquivir Basin.

Figure 3.35 Conglomerates from the Upper Messinian Guadalquivir Basin characterised by 
im bricate clasts (I) and cross stratification (S). Photo from location 46 (Foldout Map 2. Ref 
511 338). Section is 4 m high.
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Figure 3.36 Sedimentary log of Upper Messinian conglomerates.
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Figure 3.36 Sedimentary log of Upper Messinian conglomerates showing coarsening up 
sequences and pebble draped cross-strata. Log taken from location 47, Foldout Map 2 (Ref 
510 340).
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Figure 3.37 Upper Messinian conglomerates.

Figure 3.37 Upper Messinian conglomerates contain both coarsening up (c) and fining up 
(f) sequences. Photo from location 46 (Foldout Map 2, Ref511 338). Section is approximately 
10 m high.
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Figure 3.38. Palaeocurrent data taken from  Upper Messinian Jluvial deposits.
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Figure 3.38 Palaeocurrent data taken from Upper Messinian fluvial deposits. A) palaeocur
rent data derived from the dip direction of imbricate clasts. B) palaeocurrent data derived 
the dip direction of cross-stratification.
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Figure 3.39 Palaeo-bathymetery o f the Guadalquivir Basin succession.
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Figure 3.39 Palaeo-bathymetery of the Guadalquivir Basin succession, derived from facies 
analysis and micro-palaeontology (Appendix 2).
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Figure 3.40 Palaeogeography during the Lower-Mid Miocene.
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Figure 3.41 Palaeogeography during the Tortonian.

Part I The Guadalquivir Basin: Figures

Fi
gu

re
 

3.
41

 
Pa

la
eo

ge
og

ra
ph

y 
of 

the
 

G
ua

da
lq

ui
vi

r 
Ba

sin
 

du
rin

g 
the

 
To

rto
ni

an
.



Chapter 3: Sedimentoloqu Page 224

Figure 3.42 Palaeogeography during the Lower Messinian.
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Figure 3.43 Palaeogeography during the Upper Messinian.
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Figure 3.44 Two possible margin configurations.

Margin Configurations

A) R a m p  M a r g in

•V- •••• ..
■ •.'« ••••

- • • • jrr*r •

’Uradationai
Contact

B) S h e l f  B r e a k  M a r g in

Submarine Canyon

Shallow Marine Deposits 

Deep Marine Deposits

Figure 3.44 Two possible margin configurations. A) a margin with a ramp, B) a margin with 
a shelf break. Modified from Van Wagoner e t al. (1990).
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Figure 3.45 A generalized palaeogeography.
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Figure 4 .1 Candidate source rocks.
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Figure 4.2 Sample locations.
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Figure 4.3 Obtaining a representative sample of the grain size poulation.

Obtaining a Representative Grain Size Sample From the Grain Size Population 
Using an Incremental Calculation of the Sample Population Mean

2.0 i

v

CO 
£ 1.0 
asIha
a03<L>

0.0
0

Overestimated Mean

1 \ ^ • 'Q. r-i
 1 3  r---'' u l—------Population Mean

A
Underestimated Mean

130 grains is a representative 
sample of the grain population

100

Number of Grains Measured
200

Figure 4.3 An example of the graph used to obtain a  representative sample of the grain size 
population for a  given sample using the following method; (1) The longest axis of an arbitrary 
number of grains is measured (e.g. 10 grains) and their mean size is plotted against the 
number of grains counted; (2) Step 1 is repeated and the mean for the new number of grains 
is plotted (10+10, the mean of 20 grains); (3) Steps are repeated and data plotted until the 
resultant graph produces a  consistent mean (Fig. 4.3). Once the mean becomes consistent 
the population mean has been obtained and a representative sample of the population has 
been measured.
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Figure 4.4 Variation o f petrographic parameters.

Variation of Qm and Qp with Grain Size
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□ Beana-Montillia sample area
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B

Figure 4.4 Graphical representations of petrographic param eters m easured from the 
Guadalquivir Basin samples; A) Variation of mono-crystalline quartz (Qm) with mean grain 
size, B) Variation of poly-crystalline quartz (Qp) with mean grain size.

Part I The Guadalquivir Basin: Figures



Chapter 4: Provenance Page 233

Figure 4.5 Variation of petrographic parameters.

Variation of Ls and Lm with Grain Size
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Figure 4.5 Graphical representations of petrographic param eters measured from the 
Guadalquivir Basin samples; A) Variation of sedimentary lithics (Ls) with mean grain size, 
B) Variation of matamorphie lithics (Lm) with mean grain size.
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Figure 4.6 Variation of petrographic parameters.

Variation of Qm and Qp with sorting
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Figure 4.6 Graphical representations of petrographic param eters m easured from the 
Guadalquivir Basin samples; A) Variation of mono-ciystalline quartz (Qm) with sorting, B) 
Variation of poly-crystalline quartz (Qp) with sorting.
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Figure 4.7 Variation o f petrographic parameters.

Variation of Lm and Ls with sorting
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Figure 4.7 Graphical representations of petrographic param eters measured from the 
Guadalquivir Basin samples; A) Variation of sedimentary lithics (Lm) with sorting. B) 
Variation of metamorphic lithics (Ls) with sorting.
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Figure 4.8 Variation of petrographic parameters.
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Figure 4.8 Graphical representations of petrographic param eters measured from the 
Guadalquivir Basin samples; A) Variation of mono-crystalline quartz (Qm) with facies type, 
B) Variation of poly-crystalline quartz (Qp) with facies type.
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Figure 4.9 Variation of petrographic parameters.
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Figure 4.9 G raphical rep resen ta tions of petrographic param eters m easured  from the 
Guadalquivir Basin sam ples; A) V ariation of sedim entary lithics (Ls) with facies type, B) 
Variation of m etam orphic lithics (Lm) with facies type.
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Figure 4.10 Occurrence o f sedimentary lithics.

Sedim entary Lithic C last Content (%) for 
Sam ples Collected from the Guadalquivir Basin

00

CQ-4->
GQ

i S~V
U
£

40

CQcd

N. Margin 
Delta

Guadalquivir Basin 
in the Baena-Montilla Area

Figure 4.10 B ar chart showing the occurrence of sedim entary lithics as a  percentage of the 
total num ber of lithic clasts in a  given sample. Notice the m arked difference between samples 
collected from the northern  m argin deltas and  sam ples collected from the southern  margin 
(Baena-Montilla area) of the basin.
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Figure 4.11 Petrographic ternary plots.

Qm
A

Craton
Interior

Quartz ose 
Recycled
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Continental

\  A  Transitional
Recycled \  Recycled
Orogen \ S

/  /  Dissected Arc

Basement / .  - Magmatlc
upuft F

/  Transitional Arc
Lithic
Recycled

F LtFrom Dickinson etaL,  (1983)

Lm

Suture Belts

Magmatic Arcs

Mixed
Magmatic Arcs /  \  i 
and suduction Complexes

Rifted
Continental Margins

Mixed Magmatic Arcs and / _____ \  \
Rifted Continental Margins

From Ingersoll an d  Suczek (1979)
LsLv

Figure 4.11 Ternary diagram s used for plotting petrographic da ta  from which the tectonic
setting of the basin can be Inferred. A) Mono-crystalline quartz (Qm), feldspar (F) and lithic 
fragments (Lt). B) Metamorphic lithics (Lm), volcanic lithics (Lv) and sedim entary lithics (Ls).
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Figure 4 .11(c) Petrographic ternary plots.

Figure 4.1 1(c) Ternary diagram  used  for plotting petrographic da ta  from which the tectonic 
setting of the basin  can be inferred. C) Poly-crystalline quartz (Qp), volcanic and  meta- 
volcanic lithics (Lvm) and  sedim entary and m eta-sedim entary lithics (Lsm).

M ixed M agm atic Arcs 
and  su b d u c tio n  Com plexes 
an d  T rench S lo p e ,--------

Mixed M agm atic a rcs \  > 
and  Rifted C ontinen ta l \  
M argins (Back arc  B asins)

Suture
Belts

^ M ag m a tic  Forearcs

Key for Petrographic Ternary Plots 

A. B.
Qm= m onociystalline quartz Lm= m etamorphic lithic grains
F= feldspar Ls= sedim entary lithic grains
Lt= total lithic grains Lv= volcanic lithic grains

C .
Qp= polycrystalline quartz
Lvm= volcanic and  m eta volcanic grains
Lsm= sedim entary and  m etasedim entaiy grains

LsmFrom Ingersoll and Suczek (1979)

Rifted
C ontinen tal M argins

Lvm
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Figure 4.12 Qm, F, Lt plot fo r  the Guadalquivir Basin.
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co<
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A N orth m arg in  D elta
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Figure 4.12 Petrographic data  from the Guadalquivir Basin plotted on the Qm, F, Lt ternary 
plot as given in  Fig. 4 .1 1(a).

Part I The Guadalquivir Basin: Figures



Chapter 4: Provenance Page 242

Figure 4.13 Qp, Lvm, Lsm plot fo r  the Guadalquivir Basin.

9P

Qp .S u tu re  Belt

LsmLvm

o B aena  M ontilla Area 
A N orth m arg in  D elta

LsmLvm

Figure 4.13 Petrographic da ta  from the Guadalquivir Basin plotted on the Qp, Lvm, Lsm 
tem aiy plot as given in Fig. 4 .1 1(c).
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Figure 4.14 Lm, Lv, Ls plot fo r  the Guadalquivir Basin.
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A N orth  m arg in  D elta

LsLv

Figure 4.14 Petrographic data from the  Guadalquivir Basin plotted on the Lm, Lv, Ls ternary 
plot as given in Fig. 4 .1 1(b).
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Figure 4.15 ternary plot /o r  sedimentary lithics.

Sandstone

o B aena  M ontilla A rea 
A N orth m argin  D elta

ChertCarbonate

Figure 4.15 Ternary plot for sedim entary  lithics showing the proportion of sandstone, 
carbonate and chert clasts for sam ples from the G uadalquivir Basin.
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Figure 4.16 Lithological variation Carbonte lithic-clasts.

4000

3 0 0 0 -

2000  -

1000 H

Carbonate Lithic Clast Components

Marl Crystalline Carbonate

Carbonate Lithics

Figure 4.16 Bar chart showing the lithological variation (marl and crystalline carbonate) of 
carbonate clasts observed in sam ples taken from the Guadalquivir Basin.
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Figure 4.17 Composition o f clasts fo u n d  in Messinian deposits.

Clast Composition of M essinian Conglomertes 
of the Guadalquivir Basin
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Lithology
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Upper Messinian 
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a ren ite

chert m eta- Q uartz ite
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c la ts

Lithology

Figure 4.17 Lithological composition of clasts found in Messinian deposits of the G uadalqui
vir Basin. A) C lasts from lower M essinian fluvial deposits, B) C lasts from upper M essinian 
fluvial deposits. Full d a ta  se t can be found in Appendix IV.
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Figure 4.18 Palaeocurrent data.

M a j o r  T r e n d :  2 5 *

W

S Number of observations 87

P a laeo cu rren t d a ta  derived from  im brication

Figure 4.18 Palaeocurrent d a ta  tak en  from im bricate clasts found in upper M essinian 
deposits. These deposits Eire the product of low sinuosity stream s, and so this is almost 
certainly the dom inant transport direction.
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Figure 4.19 The Tschermak exchange fo r  muscovite micas.

Muscovite-Celadonite Variation Represented by 
the Tschermak Exchange

C eladonite
1.2 (Mg,Fe+2vl)Sllv=AlviAl1'

higher p ressu re  
low er tem p re tu re

1.0

+(N<Du.+too
S lower p re ssu re  

h igher tem p re tu re

0 .4

0.2 Ideal Tschermak 
Substitution

M uscovite

7 .06.86.66.2 6 .46.0

Si

Figure 4.19 G raphical represen tation  of the  Tscherm ak exchange for muscovite micas 
(Guidotti, 1984). Muscovite varies tow ards celadonite compositions by the substitu tion  of 
Fe3+ for Aliv and  by the Tscherm ak exchange (Mg,Fe2+vi)Silv = Al^.Al^. If all the (Mg+Fe2+) 
in muscovite is charge-balanced by Si replacing Aliv, the points should cluster along the ideal 
Tschermak substitu tion  line.
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Figure 4.20 Modified graphical representation o j the Tschermak exchange.

Muscovite-Celadonite Variation Represented by 
a Modified Tschermak Exchange

C eladonite
1.2 (Mg,Fe+2vl )Stlv =AlvlAl*

h igher p ressu re  
low er tem p re tu re

0.8
+cs<L>U*+
OH
£ 0.6

lower p re ssu re  
h igher tem p re tu re

0 .4

0.2

M uscovite

1.41.2 1 .31.0
Si/Al

Figure 4.20 G raphical representation of the Tscherm ak exchange modified by plotting the 
Si/Al ratio in preference to Si on the X-axis. Since Si substitu tes for AP the Si/Al ratio should 
increase tow ards celadonite end member-compositions.
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Figure 4.22 Geochemical variation o f white micas collected from  the Betic Orogen.

1.0

Geochemical Variation of Detritial White Micas Found 
in the Betic Orogen and Guadalquivir Basin
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Figure 4.22 Geochemical analysis of white m icas collected from the Betic Orogen. Results 
plotted on a  modified Tscherm ak exchange diagram  (Fig. 4.20). Micas collected from the 
Guadalquivir Basin plot tow ards muscovite com positions while m icas collected from the 
Internal Zone (G ranada Basin) plot tow ards celadonite compositions.
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Figure 4.23 K/Al  variation across detritial white micas.

0.8
GQ 2 1 a -1 

GQ21a-20.7

0.6 GQ37-post irradiation 

GQ27-post irradiation0.5

< 5  0.4

w
0.3

0.2

0.1

0.0
0 2 3 5 6 71 4

Probe Transect Line

Figure 4.23 K/Al variation across detritial white micas sampled from the Guadalquivir Basin. 
Micas were analysed before and after irradiation. Variation of K/Al gives and indication of 
K loss from th e  grains from which the  reliability of isotopic dating (K/Ar and Ar/Ar) can be
assessed.
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Figure 4.24 Provenance model.
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Figure 5 .1 The 'generic'foreland basin.

Schem atic Diagram of the 'Generic' Foreland Basin

Orogenic T hrust Belt

Foreland Basin

Distal Clastic 
Sedim ents

Clastic Wedge
C ratonOrogen

Figure 5.1 The generic' foreland basin can be defined as a  basin th a t exists between an  
orogenic m ountain belt and adjacent craton. The deepest part of a  foreland basin is always 
adjacent to the orogenic wedge.
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Figure 5.2 Early fly sch ' stage of a foreland basin.

Early 'Flysch' Stage of a  Foreland Basin

Sea-Level

Craton

Deposition of Turbidites
Orogenic 
Thrust Belt

Figure 5.2 Early 'flysch' stage of a foreland basin. In the early stages of foreland basin 
development the orogenic th ru s t belt is submerged. Sedim entation in the foreland basin is 
in the form of turbidites which are derived from distal orogenic or extra-orogenic sources.

Figure 5.3 Late molasse stage o f a foreland basin.

Late 'Molasse’ Stage of a Foreland Basin

Molasse charcterised by 
shallow w ater and  terrigenous 
s e d im e n ts

Sea-Level

Craton

Early Stage 'Flysch' 
T hrust Belt

Figure 5.3 Late molasse stage of a  foreland basin. Following the emergence of the orogenic 
thrust belt, shallow w ater and terrigenous sedim ents are deposited as a  clastic wedge in the 
foreland basin. D etritus is sourced from the orogenic th ru s t belt

Part I The Guadalquivir Basin: Figures
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Figure 5.4 A simple foreland basin profile.

Simple Foreland Basin

Figure 5.4 A simple foreland basin profile produced by th ru sts  stacking upon the margin and 
no migration of depocentre. From Ricci Lucchi (1986)

Figure 5.5 Complex foreland basins.

Complex

Split into minor basins

Associated with piggyback basin

Deformed

Figure 5.5 Complex foreland basins produced as the th ru s t front and depocentre migrate into 
the foreland basin. From Ricci Lucchi (1986)
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Figure 5.6 Comparison o f the Guadalquivir Basin with the Apennine foreland basin.
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Figure 5.8. Theoretical response of the lithosphere to a load.

Flexural
Bulge

Unloaded Lithosphere

Figure 5.8. Theoretical response of the  lithosphere to a  load V (i.e. an  orogenic wedge. Note 
uplift a t flexural bulge. From Allen & Allen (1990; page 97).
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Figure 5.10. Schematic diagram showing the evolution o f the Betics.

Part I The Guadalquivir Basin: Figures



Part II 
The Gibraltar A 

Flysch Basin

Figures



Chapter 1 
Introduction 81 

Tectono-Stratigraphic
History

Figures



13 ^2 p

c/3



G
eo

lo
gy

 
of 

th
e 

G
ib

ra
lta

r 
A

rc
, 

Be
tic

 
O

ro
ge

n,
 S

ou
th

er
n 

Sp
ai

n
Chapter 1: Introduction

Page 268

Figure I . I Geology o f the Gibraltar Arc
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Figure 1.2 Stratigraphy o f the Aljibe Flysch.

Litho-Stratigraphy of the Aljibe Flysch

Stratigraphical
Age
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Figure 1.2 Stratigraphy of the Aljibe Flysch exposed in the Gibraltar Arc. Modified from Olmo- 
Sanz et al. (1987) using information derived from logged transects across flysch nappes in 
the Cortes de la Frontera region (Chapter 2 & Appendix III).
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Figure 1.3 Study Area I for the Aljibe Flysch.
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Figure 1.4 Transect I across the Aljibe Flysch.

Page 272

Canvas Fig.

Figure 1.4 Transect 1 across the Aljibe Flysch. A cross-section for the transects shown below 
the map. Location numbers refer to sample and sedimentary log locations. A sample of the 
logs is given in Appendix III
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Figure 1.5 Transects 2 & 3 across the AljibeFlysch.

Page 273

Canvas Fig.

Figure 1.5 Transects 2 & 3 across the AljibeFlysch. A cross-section for the transects is shown 
below the map. Location numbers refer to sample and sedimentary log locations. A sample 
of the logs is given in Appendix III
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Figure 1.6 Transect 4 across the Aljibe Flysch.

Page 274

Canvas Fig.

Figure 1.6 Transect 4 across the Aljibe Flysch. Location num bers refer to sample and 
sedimentary log locations. A sample of the logs is given in Appendix III
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/ 7 Cross-section across S tu d y  A rea  1
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Figure 1.7 Cross-section across Study Area 1 ( C e r t logt  ( A p p e n d i x  III), a n d  

derived from published maps (Olmo-Sanz et al..
°iher field observations.
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Figure 1.8 Flysch nappes o j the Gibraltar Arc.

 ̂Igure 1.8 Flysch nappes of the Gibraltar Arc with thrust contacts marked (T). (a) E-W cross- 
Spr'.ion through nappes, (b) N-S strike section. Sandstone beds in (b) proximately 15m high.
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F igure  1.9 Tectonic contacts  in the Gibraltar Arc.

(a)

jFigure 1.9 Tectono-strat igraphic u n its  w ithin tr.e G ic ra lta r  Arc are o_..en separated by lo 
tectonic contacts, (a) the Miocene A ljibe Arenites (AA) are juxtaposed against T riassic  

p o s i t s  of the External Zone (EZ) . (b) th ru s t contacts are often characterised by th in  slices
Triassic m aterial th a t  contains h a li te  and gypsun (HG) evaporite  horizons. Carrera lens 

1 centre of outcrop i s  7cm in  diameter.
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Figure 1.10 Schematic diagram showing the genesis of the G ibraltar Arc. Low angle 
detachments form in response to crustal extension (A). Extension of the crust is coeval with 
the diapiric rise of the mantle (B). Extension is considered to have progressed far enough to 
allow the exposure of mantle peridotite bodies (C). Diagram form Doblas & Oyarzun (1989).
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Figure 1.10 Genesis o f the Gibraltar Arc.

Page 279

Genesis Of the Gibraltar Arc

A

Thrusting

Flysch Metamorphic 
Core Complexes

Upper
Mantle

lower crust
Mantle (Peridotites) 
Core Complex

.Direction of 
Extension

t
Diapiric Rise 
Of Mantle

Low Angle 
Detachment

Modified from Doblas & Oyarzun (1989)
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Figure 2.1 The Beneiza Flysch and the Aljibe Arenites.

Figure 2.1 Outcrop showing the stratigraphic contact between the Beneiza Flysch (F) and the 
Aljibe Arenites (AA). The Beneiza Flysch consists of thin (<20cm) siltstones and fine grained 
sandstones intercalated with marls. Photo taken at road cutting located on Fig. 1.3 (Study 
Area 1).
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Figure 2.2 Photomicrographs of sandstones from the Beneiza Flysch

1 mm

1 mm

Figure 2.2 Photomicrographs of sandstones from the Beneiza Flysch. 
a: Quartz arenites.
b: Lithic arenites containing both quartz (Q) and Carbonate (C) lithoclasts.
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Figure 2.3 Ichnojauna Chondrities.

<•4 *Ny

Figure 2.3 Ichnofauna,Chondrities found on bedding surfaces in the Beneiza Flysch, sub
unit of the Aljibe Flysch. Scale bar is 2cm long.
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Figure 2.4 Sedimentary log of part of the Beneiza Flysch, a  sub-unit of the Aljibe Arenites. 
Log from location 66 (Fig. 1.5, Ref 282 051).
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Logged Section of the Beneiza Flysch 
(Sub-Unit of the Aljibe Arenites)

Marl

Siltstone

Sandstone

Key

Convolute
Lamination

Cross-Stratified 
/ y y y s  Lamination

Planar Lamination

Trough-Cross
Lamination

scour & fill

parallel 
lamination-

convolute
lamination

I

8 4 -1 -6  -8 phi

sole marks

2 0  cm

Figure 2.4 Sedimentary log of part of the Beneiza Flysch
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j j  Upper flat bed.
sandy parallel lamination

Redrawn from Walker (1994; page 173)

Figure 2 .5  The ideal Boum a sequence.

Figure 2.5 The ideal Bouma sequence, from Walker (1984). The Bouma sequence is the 
sequence of sedimentary structures that would be expected to form during deposition from 
a single turbiditic flow. However, many turbidite deposits are formed from only part or parts 
of the ideal sequence.

The Ideal Bouma Sequence

Rapid deposition. Quick bed 
Massive or graded bed with 
convolute lamination.

E f t l  Turbidite mud.
Mud introduced by the turbidity 
current.

Delicate parallel laminations of 
'  silt and mud.

Q  Rippled bed.
Rippled and/or convoluted.

E(h) Hemipelagic Mud.
The hemipelagic background 
mud of the basin
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Figure 2 .6  Occurence o f  com plete and  partial Boum a sequences.

The Occurrence of Complete 
and Partial Bouma Sequences 

in the Beneiza Flysch.
Sequence
C->D

Complete Bouma 
Sequence A->E

Key A,B,C,D,E refers to the ideal 
Bouma sequence given in Figure 2.5

Figure 2.6 A pie chart showing the percentage occurrence of complete and partial Bouma 
sequences in Beneiza Flysch sandstone beds. Key A->E refers to the Ideal Bouma sequence 
given in Fig. 2.5.

Figure 2 .7  Photomicrograph o f  Aljibe Arenite sandstones.

F igure 2.7 Photomicrograph of sandstones tha t sure representative of the Aljibe Arenites. 
Q u artz  clasts generally constitute more than 98 percent of the framework grains and are 
usually well rounded.
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Figure 2.8 Sedimentary leg of part of the Aljibe Arenites. Log shows thick, apparently massive 
sandstones and displays both coarsening and fining up sequences. Log from location 32 (Fig. 
1.4, Ref 287 052).
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r B i o t u r b a t i o n

L°§§cd Section of Part of the Aljibe Arenites 
(Sub-Unit of the Aljibe Flysch) 
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J  r\Vi\^ Bioturbation

Trough-Cross
Stratification

I

I

phi

1 m.

Figure 2.8 Sedim entary log o f  part o f  the Aljibe Arenites.
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Figure 2.11 Dark laminae in the Aljibe Arenites.
Page 293
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figure 2.12 Dish structured laminae.
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Figure 2.13 Mega-dishes and associated vertical pillars.

Mega-Dish Structures and Associated 
Pillar Structures

Pillar S tructu re
Mega-Dishes

Figure 2 .13 Diagram of mega-dishes and associated vertical pillars. Mega-dishes are defined 
as deep upw ard curving dishes tha t are 4-5cm deep.
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Figure 2.14 Dish stru.ctu.red. laminae that overlie micro-conglomerates.
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figure 2.15 Convolute overturned folds.
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figure 2.16 Convolute diapir emanating from a pillar.
Page 302
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Figure 2.17 Diapirs with disrupted tops.
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f i g u r e  2.18 Type A  pillas and associated mega-dishes.
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figure 2.19 Sinuous pillar.
Page 308
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f i g u r e  2.20 Bifurcating pillar.
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Chapter Sedimentology & Palaeogeography.
figure 2.21 Type C pillars.
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Chapter Sedimentology & Palaeogeography.
Figure 2.22 Type D pillars.

Page 314



OJ
9u72
<u+->
c(U
<vA

<L>A

OACu

<uCO+->
cn

T3

O
c3
a
U
8. js
* *  co jy
^ c(N -S
£ S 3 y
£  £



Chapter 2: Sedimentology & Palaeogeography.

figure 2.23 Sandstone intrusion.
Page 316
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figure 2.24 Downwards descending pillar.

Part II The Gibraltar Arc Flysch Basin: Figures



u
3
X
tn<u4->
cu

5c
<UJD

<D
js
r*5o
<h
o
o
sz
CL

Q
'-
a3

03
<—o
<u'«ou
<v '00J3 3•h* O
B c
T3 3o3 O3
<2 00
a. 0
H o
3 X!
a a
Cl o
io <l>(N oo
csi 3

XItUu V
3 s:
Jop 4->

3



Cfiaptef 2 : Sedimentology & Palaeogeography.

figure 2.25 Pillar fo u n d  in the core o f a diapir.
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figure 2.26 Sand mound.
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figure 2.27 Diffuse streaks fo u n d  in zones o f complete mixing.
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f i g u r e  2.28 Typical sequence o f  structures fo u n d  in the Aljibe Arenites.
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Figure 2 .29  The idealised sequence o f  w a ter escape structures.

The Idealised Sequence of 
Water Escape Structures

(free surface pillars)

P  diffuse streaks

convolute diapirs

t^v mega-dishes and 
^  associated pillars

C  dish structures

B  dark flat lamination 

(convolute folds)

A  micro-conglomerate

base of sandstone 
bed

Heterolithics

Constructed from the Aljibe Arenites (Fig. 2.28) 
(sub-unit of the Aljibe Arenites)

Figure 2.29 The idealised sequence of water escape structures constructed from sequences 
exposed in the Aljibe Arenites.
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chapter 2: Sedimentology & Palaeogeography. Page 329

figure 2 .3 0  Coarse sa n d sto n e  p a ss in g  directly into type  B pilars.
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figure 2.31 Pillars p a ss in g  directly into convolute diapirs
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figure 2.32 Dish structured laminae passing directly into convolute diapirs.

Part II The Gibraltar Arc Flysch Basin: Figures



'CUDc
jd

Bo
CO

<u
13o
C/3

COD-M
c
<D

4
OJX2

<D£

T3
<D
C
Wh3
t ,<U>
O
CO
CO
(N
<D
Vh3Kao



r.hapter Sedimentology & Palaeogeography. _________ Page 335

figure 2.33 Overturned pillars.
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Figure 2 .34 Heterolithic intervals, Aljibe Arenites.

Nature of Heterolithic Intervals in the Aljibe Arenites
(Sketches from  fie ld  notebook)

. • • ; .  •.

Base o f 70cm  sand  b e d : ^ ^ # o :
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iiMl Silt
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24
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figure 2.34 Diagrams of heterolithic intervals found in the Aljibe Arenites. Heterolithics are 
Pervasively mixed and display injection structures.
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Figure 2 .35 Height distribution o f pillars m easured fro m  the Aljibe Arenites.
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(Aljibe Arenites)
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Primary pillar structures Secondary pillars (coss cutting) 
(non cross-cutting) —► ^ — intrusions & large dykes — ►

pillar height (cm)

Figure 2.35 Histogram showing the height distribution of pillars measured from the Aljibe 
Arenites. Primary non-cross-cutting pillars are much more common than secondary cross
cutting features such as dykes or intrusions. This suggests that cross-cutting pillars are 
rarely formed relative the occurrence of fluidisation events.
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Chapter 2: Sedimentology & Palaeogeography.

Figure 2.36 The Beneiza Flysch to Aljibe Arenites transition.
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Figure 1 The Alboran dom ain
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(The Betic Orogen, Southern Spain & North Africa)
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figure 1 A summary geological map for the Alboran domain and surrounding area. Figure 
modified from Davies e t al. (1993) and Campillo e t  al. (1992).
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Figure 2 Model fo r  em placm ent o f the peridotites.

; Europe
30 Km

60  Km

Lithosphere
90 Km

100 km

Asthenosphere

A: Palaeogene

T h ru stin g  In G ibraltar Arc

R onda P erid otites
A lb o ra n  Sea

E x ten sio n

Europe
30 K m

60  Km Lithosphere

Asthenosphere90 Km

100 km

B: Miocene

Peridotites 

Jj Alpujarride

Nevado Filabride

Figure 2. Model for emplacement of the peridotites. Diagram inferred from explanation given 
by Tom6 et al. (1989). (A) peridotites initially emplaced during Palaeogene, at which time they 
constituted a slab of lithospheric mantle within units of the Alpujarride. How this was 
achieved is not made clear but presumably Tome et al. (1989 ) envisaged a phase of thrust 
stacking. (B) During the Miocene crustal stacking, related to thrusting in the Gibraltar Arc 
and rifting in the Alboran sea, unrooted and dismembered the peridotites placing, them in 
their present position.
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Figure 3 Proposed evolution of the western Mediterranean. A: Formation of high-P, low-T 
metamorphic facies during continental collision at -85  Ma. and subsequent nappe emplace
ment. These events caused uplift of diamondiferous eclogites, diamond graphitization, and 
the first stage of nappe emplacement. B: Slab detachment at -20  Ma. resulted in rapid uplift 
of hot asthenosphere and emplacement of second generation of nappes. C: cooling of hot 
asthenospheric mantle caused rapid subsidence of orogen core and a topographic inversion. 
Margins of fold belt returned to lithostatic equilibrium, unroofing peridotite massifs. Figure 
from Davies et al. (1992)
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Figure 3 Proposed evolution o f  the w estern  M editerranean
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Figure 4(a) Schem atic cross-section across the Maldguide Complex and Los Reales Nappe.

m & r ' '  ■' ■'' y ■^ rss'ss\S\tiimmiimt^yy/ / /  " y V  mayur?/✓✓✓
x /  x/• >-

rocks'

■Malaguide Com plex-

GREYW ACKES

F a u lt

100 m
From  T u b ia  et al. (1993)

N
Los Reales Nappe--------------------------------

MIGMATITES

Figure 4(a) Schematic cross-section showing structures related to extensional deformation. 
Roll-over anticlines develop when the contact between the Malaguide Complex and Los 
Reales Nappe cuts across competent layers of the Malaguide Complex. Restoring the slope 
of the Los Reales-Maldguide contact to the horizontal, this structure reflects a hangingwall 
ramp. Gouge and fault breccias mark out the Malaguide-Los Reales contact, whereas S-C 
mylonites can be seen in underlying schists or along deeper contacts. This structural 
variation along the same extensional deformation episode suggests that the Malaguide-Los 
Reales contact is an extensional fault. Figure from Tubia et al. (1993).

Figure 4(b) Proposed geodynam ic model fo r  the extensional deform ation in the Los Reales- 

Malaguide domain.

astehenospheric
diapir

Malaguides 

Los Reales

Lithospheric
Mantle

from Tubia et a i  (1993)

Figure 4(b) Proposed geodynamic model for the extensional deformation in the Los Reales- 
Malaguide domain. Shear zones penetrate into the lithosphere mantle, in accordance with 
the mylonitization of upper levels of the Ronda peridotites. Stretching lineations (thin arrows) 
are oblique to the rift axis, marked by plagioclase peridotites, suggesting a transtensional
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Figure 5 Time-averaged motion o f Eurasia and  Africa.

> / \X X a X X a X X X /

Continental 
Margin 888< Platform

Basin

Gibraltar
Coastline

♦ i 't-
Tetuan [ 
Coastline1

1 0 0  Km

From Platzman (1992)

Figure 5. Schematic diagram illustrating time-averaged motion of Eurasia and Africa relative 
to the margin of the Alboran domain from 27 Ma. to the present (modified from Platt & Vissers, 
1989). Regional configuration during mid-Oligocene is shown with coastlines around 
Gibraltar and Tetuan for reference. Along the northern margin relative motion between 
Eurasia and the Alboran margin is derived from (1) motion of margin relative to the centre 
of mass extending the Alboran domain and (2) motion of centre of mass of extending Alboran 
domain relative to Eurasia. Along the southern Alboran margin, the motion of Africa relative 
to the margin is derived from (1) motion of margin relative to the Alboran center of mass (2) 
motion of Alboran centre of m ass relative to Eurasia, and (3) motion of Eurasia relative to 
Africa (from Dewey et al., 1989)
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Figure 6 Rotation in sim ple shear zone.

Pre-Deformation

Post- Deformation

Sedimentary
Basins*

R ota tion  o f 
B locks

modified from Sylvester (1988)

Figure 6 Mechanism of rotation in simple shear zone. Small block model 
(i.e. terrain blocks) with variable internal rotation. Sedimentary Basins 
may open up between blocks, and this may be the mechanism by which 
the internal basins of the Betic Orogen formed (Diagram modified from 
Sylvester (1988).
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Figure 7 Structural sections through the Betic Movement Zone.
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Figure 7 Structural sections through the Betic Movement Zone. (A) section normal to main 
phase folds and stretching lineation. (B) section parallel to the main phase stretching 
lineation, and hence probable direction of nappe transport. Figure modified from Platt & 
Behrmann (1986).
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figure 8(a) Iberian margin 6 5 -2 7  Ma.
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Figure 8(a) Iberian margin 65-27 Ma. Plate boundary inactive between Iberia & Africa (Sirvastava. 
etal., 1990a), with main plate movements at this time accommodated between Iberia & Eurasia 
leading to the building of the Pyrenean mountain chain. During this inactive period sedimentation 
°1 the External Zone rocks took place on an extended Iberian Margin. Plate movement model 
Modified from Dewey et al. 1973) using data from Sirvastava, et al. (1990a).
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Figure 8(b) During the Miocene the plate boundary became active as Africa rotated into Iberia 
(Sirvastava et al., 1990a). The first events recorded were extension in the Alboran Domain 
and compression along the northern margin of the External Zones (in the region now 
occupied by the Guadalquivir Basin). Extension in the Alboran Domain led to the break up 
of the western parts of the External Zone and the formation of small and confined pull-apart 
basins into which sediment, mobilised from the External Zone, was rapidly deposited. 
Compression along the northern margin of the External Zone is more difficult to explain but 
may have been induced by the arrival of metamorphic terranes which required deflection of 
the plate boundary to accommodate them. These terranes, which now form the Internal 
Zones, are interpreted to have been emplaced by lateral movement along strike slip faults. 
Plate movement model modified from Dewey et al. 1973) using data from Sirvastava, et al. 
(1990a).
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Figure 8(c) Towards the end of the Pliocene the convergence of Africa and Iberia became less 
oblique, as Africa began to move in a  more northerly direction (Campillo et al., 1992). This 
resulted in the mainly transtensional regime becoming more transpressional. Related 
compression resulted in tectonic inversions, movements including the thrusting and the 
emplacement of peridotites into their present position and the destruction of the Guadalqui
vir Basin, which became subdivided into the allochthonous and autochthonous zones 
present today. Plate movement model modified from Dewey et al. 1973) using data from 
Sirvastava, et al. (1990a).
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The following appendix gives a representative sample of sedimentary logs taken from the 
Guadalquivir Basin. For each log the location numbers Eire given. For each location there 
is a corresponding grid reference and relevant thesis map which are given in Appendix V. 

Thesis maps are can be found in Foldouts 1.2 &3 (Maps).
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Key to Logs Taken From the 
Guadalquivir Miocene Basin

Lithology

m m

m  *

Marl

Laminated 
Diatomite Clay/ 
Globgerinid Marls

Calc-Lithic
Arenite

Siltstone

Skeletal
Grainstones

Carbonaceous
Detritus

Conglomerate

Rootlets

Conglomerate 
with Algal Bound 
Clasts & Oyster 
Shell Fragments

Sedimentary Structures

Hummocky Cross- 
Stratification (HCS)

Swaley Cross- 
Stratification (SOS)

Planar Lamination

Bioturbation

Cross -Stratification

Convolute - Lamination

— Ripple Cross- 
Lamination

Asymptotic X-lamination

Palaeocurrent vector
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GQ 8 2

Sample

Serravallian-Lwr Messinian 
Location 44

Lwt

Messinian

Unconformity

Slum p

Diatomite

Globgerinid
Marl
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Tortonian 
Location 5 & 5(b)

(Logged by Granada University 
Dept of Geology; Juan-Fem andez pers. comm.)

Location

fflBBBfiBjg
Location
5(b)
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oq  i d  p m r 5* ^
r-? Bioturbated

Tortonian 
Location: LGQ5

Bioturbated

■;V ;̂V;vyv;Vr;.W^
1 m .

GQ 100

Q Bioturbated

3 Bioturbated 
rrey sand lens

A llo c h th o n o u s
S e c tio n

Logged section

Fold S tru c tu re

a m m  Bioturbated

GQ 99

r= HCS

1 . ' ..■..

15cm

Fold Axis
Loading seen 
on base of bed.

Sample cl |slt | f c |pb|cb|
8 4  - 1 - 6  -8 phi

15m
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Tortonian
Location: 5(b)

30 cm m issing

30 cm m issing

■  \

mm

8 4 - 1 - 6 - 8  phi
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Tortonian
Location: 80

M R M *'■:v:'S « v s;ivW

| p w r *

GQ 97 ^
-A'M Inclined parallel 
m lamination (2-5°)

Bioturbated

Bioturbated
GQ 98

1 m.

Sample ci isitl f ’H j c  Tp̂ T̂ J
1 san d
8 4 -1 -6 -8 phi



Tortonian
Location: 81

®io tu rbation

W m Z m m

S cour

25 cm  
th in  HCS 
Beds

Sam ple ^1* | "sit [ f 1 m
c l isltr s^ d  ipb lcb

8 4 - 1 - 6 - 8  phi
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Tortonian 
Location LGQ92

V- * r̂ l ̂
12 cm bed

W ® m m

*■ ." i•" *■•* i•" V"V" i "’i." V.1

i H

f H H
B ioturbation

AAWWg$A 1 m.

Sample c l H f s ^ d  M cbj
8 4 - 1 - 6  -8 phi
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Tortonian 
Location: LGQ 93

m s m . 

t e w
i l i ?  

l i i  

n i i i
m m m
I l l s  

iiW:
m m m m

a C ross-lam ination

S yn-sed im entary  
deform ation

Flat silt clasts

B ioturbation
Siltstone

m sm m
■ im m -mm*Mi C oarse san d sto n e  & 

silts tone  rip-up c lasts

S a n d s to n e /s ilts to n e  in terbedded

12 cm

S a m p le ^ !slt] f  imJ cI I sand .
8 4 - 1 - 6 - 8  phi
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Sam ple

GQ24-

GQ23

GQ22

GQ21

GQ20

1 m

■ •- •

GQ40

Fault

*****

m m

Lower M essinian 
Location 8
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t o

Lower M essinian 
Location: 9

3
d r  S a n d y  m a t r ix

Marl matrix

" C h a n n e l B a s e  
( e r o s io n )

1 m.

Sam ple ci | sit I fsltlf s'SF |pblcH
8 4 - 1 - 6 - 8  phi
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m m m
Vv.W^v'-v-Ftt-.Vv.V-'.̂ FFv.

^•^v-^v.W v:

:; w ^ w ; . '

;- ^ ^ v - ^ - .4

^.^■ vW v.^

mm mmm

mmm

§m
m

^ • ;y ;M
M i  .its

Lwr Messinian 
Location: 49

1 m .

Sample dTsitf f 1 m ' c jpbjcblI I sand i I i 
8 4 - 1 - 6 - 8  phi
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Lower M essinian
Location: 52

1 m.

Limestone
Pebbles

s am ple^T |slt
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Lower M essinian 
Location: 58

W &
m d  mm

* tmm
GQ 89

mm
m

m m

g q  88 m m
Y ; 11v >"•Basil
*
®wr *

iS
Wi^ ■ • r v
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20 cm.
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\ontinues 
for 5 m.

Mi
Lower M essin ian  
Location: 61

■ V *V" i?'Ti ?■•*■*.^ 4 ^

kg&&&aa&u

m ^ m

cl [sit f  i m 1 c 
sand pbjcb

1 m .

i i SdllU i- i i
8 4 - 1 - 6  -8 phi
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g?£%aBS«® 
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^ 5 & * W S a

Lower Messinian 
Location: 65
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m i

M M

i**iStUI
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W m $ *
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1 m.
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Lower M essinian 
Location: 72

1 m .
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Page 373

Appendix I



B
la

ck
 

& 
w

h
it

e 
b

ox
es

 
re

p
re

se
n

t 
cy

cl
e 

th
ic

k
n

es
s

Guadalquivir Basin Logs__________________________ Page 3 74

Lwr M essinian 
Location. GQ75

GO 95

mmm

t e #
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120 m.

Matrix \
supported
conglomerate

Bedded
calc-arenite

Skeletal
Grainstone

Lower Messinian 
Location : 99

Sample sit f  ! m I c 
sand

4 *1 -6 -8 phi
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Upper M essinian 
Location: 46(a)

ulyf
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Grey Marl

Red Marl

045

Upper Messinian 
Location: 46(b)

GQ 73

i'i

t e £ »
m sm

,W v-;y

GQ 72
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Appendix II 

M icropalaeontology o f  th e  Guadalquivir B asin
In trod uction

Microfossils have been separated from samples taken from the Aquitanian to Lower 
Messinian succession of the Guadalquivir Basin. The ostracods and foraminifera have been 

studied in detail and specimens identified as far e l s  possible. Diatoms and Radiolaria are also 

present although they have not been studied in detail. Attention has been focussed on the 
benthonic faunas as they provide the most reliable environmental indicators. Planktonic 
foraminifera have not been subject to detailed identification, but the percentage of each 
assemblage which they represent is recorded. Identification of the specimens was carried out 
by M. Keen at the University of Glasgow.

The ostracods and foraminifera have been identified, and their environments inter
preted, using general micropalaeontological references; Several papers have been published 
on various aspects of the palaeo-ecology of Miocene foraminifera (Berggren & Haq, 1976; Van 
de Poel, 1992; Cita etal., 1978; Wright, 1978a,b). Murray (1991) deals with foraminiferal 
ecology in general, with relevant descriptions of Mediterranean and adjacent Atlantic living 
benthonic faunas. There Eire no such general works deEtling with ostracods and the 

environmentEd details Eire scattered through the literature. The generEil technique of using 
ostracods in paJaeo-environmental studies can be seen in Keen (1993). Aranki (1987) and 
Pari (1968) list ecologicsd data for many of the species recorded here, while several chapters 

of De Dekker et al. (1988) desil with palaeo-environmental Eispects.
This appendix Etims to outline the methods of sepEuration, the micropEdaeontology of 

Lower/Mid Miocene, Tortonisin sind Lower Messinian sedimentary rocks and the palaeo- 
bathometry inferred. The data is presented in the form of tables and plates of the most 

important species are given at the end of the appendix.

Methods

Samples were collected from each of the lithofacies identified in the Miocene succession of 

the Guadalquivir Basin. The samples were disaggregated by treatment for 3 days in 10% 

hydrogen peroxide solution. They were then wEished through a series of mesh sieves to 
separate 90 pm, 125 pm  and 250 pm  size fractions. The residues were dried in an oven at 

70 °C and exEimined under a binoculEir microscope.

Micropalaeontology
Problems Associated With Allochthonous Specimens
In many of the samples the planktonic foraminifera were found to be most abundant in the 

fine (90mm) size fraction, common in the medium (125mm) fraction but absent from the 

coarse (250mm) fraction. The finer fraction is not dominated by small species but by small 

specimens of species that would normally be distributed across elU the size fractions in an 
in-situ assemblage. Planktonic forms Eire more easily transported Eind the dominance of 

smELll plsuiktonic specimens in the sussemblages suggests tha t the planktonic foraminiferal
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fraction of many of the samples is allochthonous. Therefore the planktonic specimens are 
considered to be an unreliable palaeo-environmental indicator. An exception to this is the 
Tortonian samples dominated by deepwater forms, in both the benthonic and planktonic 
assemblages. In these samples the planktonic and benthonic forms are both considered to 
be in-situ as both the planktonics and benthonics are dominated by deepwater forms. In the 
Messinian samples the benthonic forms show a more normal size distribution, with a 

population structure tha t contains both juvenile and adult specimens. In these cases the 

benthonic specimens are considered to be autochthonous, and are therefore a reliable 
palaeo-environmental indicator.

Because the planktonic assemblages may contain allochthonous specimens, and 
because the benthonic assemblages are considered more likely to be autochthonous, the 
benthonic specimens have been studied in more detail. The benthonic assemblages have 

consequentially been used to infer the palaeo-environment of deposition for the Guadalquivir 
Basin sedimentary rocks.

Lower to Mid Miocene

In samples from the Lower/ Mid Miocene marls the ostracod and foraminiferal assemblages 
are dominated by circalittoral, upper bathyal and bathyal forms. By contrast samples taken 
from clay laminae found in laminated clay/carbonate rocks were found to be dominated by 

radiolaria and diatoms. The Diatom assemblage of one sample (GQ 67) is monospecific, 
characterised by Concinodiscus.

Overall the Lower/Mid Miocene faunal assemblage indicates outershelf to bathyal 

environments of deposition, with a few samples from the laminated facies, indicating bathyal 

depths in excess of 1 0 0 0 m

Tortonian
Three Tortonian samples from the thin bedded, and tabular facies contain no ostracods and 

are dominated by a planktonic foraminiferal assemblage indicative of open ocean waters 

Benthonic foraminifera are also found to be present, but in much smaller numbers than the 

Planktonic forms. The benthonic species indicate upper bathyal to bathyal environments 
and depths in excess of 200m. The thin bedded facies also contain radiolaria indicating a 

bathyal environment and depths probably in excess of 1 0 0 0 m.
By contrast, the thick bedded facies contain both ostracods such as Cyamocytheridea 

meniscus, Cyprideis gp. torosa and Cytheridea cf. expansa and foraminifera such as Ammonia 

gp. becarri, Elphidium crispum and Elphidlum “excavatum” typical of present coastal and 
brackish waters. The ostracods show a  population structure of adults and several moult 

stages which is usually thought to indicate an autochthonous assemblage. Foraminifera and 

ostracods typical of open shelf environments are also present, but in much smaller numbers 

than the brackish forms. The open shelf fauna may have been transported into the protected 

environments.
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Lower Messinian

Ostracods from the Lower Messinian include elements from several different coastal facies 
including;

(1) freshwater [Ilocypris,and large Cyprideis);

(2) Hypohaline (i.e “brackish water”) (Cyprideis gp. torosa );

(3) polyhaline to euhaline (i.e. coasted bays) (Cyamocytheridea, Pontocythere and
Cytheridea cf. expansa);

Species typical of shoreline open marine environments are also present, including 
Nonurocythereis, Loxoconcha and Hemicythere,, but in much smaller numbers. Some open 

marine ostracod are deformed and this is thought to indicate that they have been transported.
The general implication of the ostracod assemblage is tha t faunas from several 

environments, ranging from coastal to open marine have been transported and mixed 
together. The population structure indicates that mixing probably occured in near coastal 
waters.

The benthonic foraminifera are dominated by Ammonia gp becarri and Elphidium which 
together constitute over 80% of individuals present. These forms are associated with coastal 

environments and mild hyper-salinity. Ammonia is commonly infaunal in muddy sands in 
brackish hyposaline inner shelf waters while Elphidium is epifaunal, living on sand 

substrates on the inner shelf in depths of no more than 50m. An Ammonia becarri association 
is well known in the Mediterranean and Atlantic provinces and is found in m arshes and 

lagoons of variable salinity (Murray, 1991).

O ther foraminifera in the Lower Messinian samples are more typical of infralittoral, 

circalittoral and upper bathyal environments. These occur in much smaller numbers than 
brackish forms and are interpreted as allochthonous and have been transported into coastal 

waters.
Like the ostracods, the foraminifera indicate more than one environment, confirming 

that sediments from different parts of the shelf were mixed together by transport processes.
Thus, the Lower Messinian foraminiferal and ostracod assemblages differentiate four 

main coastal facies although various degrees of mixing are recognised. Sample GQ21 (from 
the thin bedded facies) has the strongest freshwater influence, samples GQ 8 8  and GQ89 

(also from the thin bedded facies) indicate a strong brackish influence but lack the freshwater 

forms. Finally Samples GQ22 and GQ21, (taken from calc-lithic arenites), are more typical 

of shallow coastal waters and but contain a mixture brackish and open marine forms.

Palaeo-bathymetry
The species of the ostracod assemblages have been examined quantitatively and can be used 

to give a  general palaeo-bathometry for the Guadalquivir basin (Fig ApII. 1). The Lower/Mid 

Miocene is characterised by fauna from circalittoral and bathyal environments indicating 

depths of deposition below 200m. The Tortonian thick bedded facies and Lower Messinian 

samples show a mixing of faunas from brackish, shelf and circalittoral environments with
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varying proportions of forms from each environment (Fig. ApII. 1).

The foraminiferal assemblage, assessed in a more qualitative manner, supports this 
inferred palaeo-bathometry, with the addition of faunas from Tortonian thin bedded and 
tabular facies which are more typical of bathyal environments. The faunal assemblages have 

been combined with lithofacies interpretations and derived stratigraphy to produce a 
bathymetry curve for the Guadalquivir Basin (Fig. ApII.2). This clearly shows a shallowing 

through the Miocene succession from bathyal conditions in the Lower Miocene to coastal 
waters in the Lower Messinian. In the Tortonian there was some fluctuation between near 
shore and outer shelf environments indicating rapid relative sea-level changes. This cyclicity 
is reflected in the sedimentary cycles in the Tortonian succession (Part I, Chapter 3).

Tabulation o f  data

The data from analysis of ostracods and foraminifera have been tabulated, and these data 

have been incorporated into the sedimentary interpretations given in Part I, Chapter 3. In 
these tables samples are shown in terms of lithofacies and environmental interpretations 

derived prior to the incorporation of the micropalaeontological data. The environmental 
association of each group or species is usually associated is given in column 2  of the tables. 
The ostracod data have been quantified and the numbers indicate the number of specimens 

of each species or group that were found in any given sample. The Foraminiferal data are 
qualitative and specimen abundance is classified as;

Dominant species that make up more than 50% of the assemblage of a given

sample.

Abundant species that make up 20-50% of the assemblage of a given sample.

V species present, but make up less than 2 0 % of the assemblage

Plates
Plates I, II and III show a selection of the most important microfossils identified in sedimentary 
rock samples taken from the Guadalquivir Basin. The location numbers refer to locations 

given in Foldout Maps 1,2 & 3 (contained in the back of this Thesis).
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Stratigraphy of the Guadalquivir Basin
Scale 1:5000
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figure ApII.2 Stratigraphy of the Guadalquivir Basin showing lithofacies interpretations 
(Chapter 3 ) and the palaeo-bathymetry derived from faunal assemblages present in samples.
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P late I: Foram inifera

1 Elphidium crispum (Linne), diameter 1000 pm, Lower 
Messinian. location 89.

2 Elphidium gp Uexcavatum", diameter 450 pm, Lower Messinian, location 21

3 Florilus boueanum (d’Orbigny), diameter 650 pm. Lower Messinian, location 22.

4 Ammonia gp. becarri (Linne), diameter 1250 pm, Lower Messinian, location 22.

5 Ammonia gp. becarri (Linne), diameter 1250 pm, Lower Messinian, location 21.

6  Cibicides cf. wullerstorfl (Schawager), diameter 600 pm, Tortonian, location 107.

7 Heterolipa subhaidingeri (Parr), diameter 250 pm. Lower Messinian, Location 95.

8  Cibicides sp., diameter 500 pm, Lower Messinian, location 95.

9 Heterolipa subhaidingeri (Parr), diameter 500 pm, Lower Messinian, location 95.
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P late II: Foram inifera

1 Nodosariid height 1000 pm, Lower Messinian, location 21.

2 Bolivina sp.. height 900 p m, Lower Messinian, location 21.

3 Orthomorphina sp., height 900 pm, Lower Messinian, location 21.

4 Bigenerina sp., height 2000 pm. Lower Messinian, location 21

5 Uvigerina hispida (Schwager), height 1000 pm. Lower/Mid Mocene, location 35.

6  Uvigerina peregrina (Cushman), height 400 pm, Lower/Mid Miocene, location 44.

7 Uvigerina gp bonineasis (Fornasini), height 850 pm. Lower Mid/Miocene, location 44.

8  Orbulina Universia (d’Orbigny), diameter 450 pm, Tortonian, location 79.

9 Lenticulina sp., height 500 pm, Lower/Mid Miocene, location 35.

10 Lenticulina sp., height 850 pm. Lower/Mid Miocene, location 35.

11 Globigerrinid sp., height 450 ^m, Lower/Mid Miocene, location 35.

12 Globigerrinid sp., height 250 pm, Lower/Mid Miocene, location 35.





P late III: O stracods
1 Nonurocythereis gp. laevigata (Pieci & Russo), length 500 pm, Lower Messinian, location 9 5

2 Nonurocythereis seminulum (Sequenza), length 500 pm, Lower Messinian, location 21

3  Paleoblitocythere sp., length 500 pm, Lower/Mid Miocene, location 35.

4  Krithe sp., length 500 ^m. Lower/Mid Miocene, location 44.

5 Krithe sp., length 500 /um. Lower/Mid Miocene, location 44.

6  Cyamocytheridea meniscus (Dorak), left valve, length 500 /um. Lower Messinian, location 89

7 Cyprideis gp. torosa (Jones), female, left valve, length 500 um. Lower Messinian, location 89

8  Cyprideis gp. torosa (Jones), male, left valve, length 1000 pm, Lower Messinian, location 89

9 Urocythereis gp.Javosa (Roemer), right valve, length 900 pm, Lower Messinian, location 89.

10 Cytherella cf. postdenticulata (Oertli), length 1000 pm, Lower/Mid Miocene, location 35.

11 Cytherella sp. length 1000 pm, Lower/Mid Miocene, location 44.

12 Henryhowella asperimma (Reuss), length, 1000 pm, Lower Messinian, location 95.

13 Ilyocypris sp. b, length 550 pm, Lower Messinian, location 95.

14 Ilyocypris sp. a, length 700 pm, Lower Messinian, location 95.

15 Aurila sp. a, length 500 pm, Lower Messinian, location 8 8 .

16 Cytheridea cf. expansa (Carbonneli), left valve, length 500 ̂ m, Lower Messinian, location 95.

17  Henricythere triangularis (Oertli), left valve, length 650 pm. Lower Messinian, location 95.

18 Pontocythere cf. elongata (Brady), left valve, length 550 pm, Lower Messinian, location 95.

19  Acanthocythereis gp hystrix (Reuss), length 500 pm, Lower Messinian, location 95.

2 0  Costa batei batei (Brady), right valve, length 550 pm, Lower Messinian, location 95.

21  Macrocypris cf bathyalensis (Halings), length 1500 pm. Lower/Mid Miocene, location 44
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Aljibe Flysch Sedimentary Logs Page 400

The following appendix gives a representative sample of sedimentary logs taken from the 
Aljibe Arenites (Gibraltar Arc). For each log the location numbers are given. For each location 

there is a corresponding grid reference and relevant thesis map which are given in Appendix 

V. Thesis maps can be found in Part II, Figures 1.4,1.5 & 1.6.
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Key
Lithology

Marl

Siltstone

Sandstone

Micro-conglomerate

Sedimentary Structures

Trough cross-lamination

Convolute lamination

i.i r' i Diffuse streaks, lighter coloured
111 v * sand (Bloturbatlon ??)

Planar lamination

Cross - lamination
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Location 27

F1 7
scour & fill

parallel 
lamination
convolute
lamination

sole marks

20 cm

Sample cl lsltl f mj °  pbicb I I sand 
8  4 -1 -6  - 8  phi
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Aljibe Fli/sch Sedimentary Lops

Location 66 
Transect 3

Sole structures

—  Sole structures

I
I

A / w y v ySample ci sitj f ^ c  pb cb
8  4 -1-6  - 8  phi

Page 404
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Sample

I M P

low angle scours

Location 6pw y w jryiffjffjr?;

sand
8 4

I

i

1 m.
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I '7* .* *' . •

Sample cl :slt
s ^ d  > b!cbl

-1 -6 -8 phi

Location 8
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Sample
r -m -w -w -t

T w rg
sand cb| 

-1 -6 -8

Location 31. 
T ransec t 1

I

|  1 m.

p h i
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M M A A

Location 32 
T ransect 1

sandC i P b l c b l 
8 4 -1 -6 -8 phi

2  m  m i s s i n g
/ ^ v V S A A A
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M A a a a
5 m  m i s s i n g

AAAAAA

. • s'. v v v \i\" .\< v

M AAAA
5 m  m i s s i n g
^ A A A A A

I

I
m

Location 34 
T ransect 1

lm .

Sample ci | sit | f g c |pb|cb|
8 4 -1 -6 -8 phi
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Aljibe Flysch Sedimentary Logs

A A y y w \
i

m m

Location 41 
T ransect 2

Sample ci | sit , f s^ d c pb cb
8 4 -1 -6  -8 phi

Page 4 11
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I sand

A A A A

A A A A A A

Aljibe Flgsch Sedim entary Logs 

A B

A A a a a a
8 m missing 

C

Page 4 12

A A A A A A
15m missing

A A A A A A
7m missing
/ V \ A / \ A / \

5 m missing

A A A A A A

. W a a a a
12m missing

Location43 
T ransect 1
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AAAAAA

I n t e r n a l
s t r u c t u r e s ? ?

m.

Location 44 
T ransec t 2
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A A M M  Location 45 
T ransect 2

I

I

lm .

AAAAAA
Sample cl j  sltjf g£̂ d c pb cb

8 4 - 1 - 6 - 8  phi
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A

V

Sample C)
sand

8 4 1 -6 -8
phi

Location 46 
T ran sec t 2

1 .5m  m iss in g
A

2m missing

B
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Sample

11 m of marl and 
siltstone

1 m.

Location 45 
T ransect 2

d * : ' il* !* 1
8 4 -1 -6 -8 phi
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Location 50 
T ransect 2

1 m.

phi

Page 4 1 7
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I 111 I U | 1
sand  !Pb c b

Location 51 
T ransect 2(a)
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AAAA

m

r

I

Location 52 
Transect 2(a)

I

I

1 m.

Sample i^.cb sand >r  I 1 
8 4 - l -6 -8 phi

Page 4 19
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ywv\ Location 53 
T ransect 2(a)

I

I

1 m.

Sample
AAAA

m ’c pb|cbi sand Ir I l
4 -1 -6 -8 phi

Page 420
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S S H

AAAA
Sample ci |sit | f c |pb j cb

8 4 1 -6 -8 phi

/v\/vw\
T h ic k  b e d d e d  m e d iu m  c o a r s e  
s a n d s t o n e s  c o n t i n u e  fo r  2 0 m .

Location 59 
T ransec t 3
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Location 62 
T ransect 3

1 m.

phi

/w vw \

IAA7VW\
«  !Pb !cbSample ci

8 4 -1 -6  -8
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Sample

AAAA

AAAA
f  m e  

sandc l s it

Location 63 
T ransect 3
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A

I I  sand r l l  
8 4 -1 -6  -8

phi Location 64
T ransec t 3
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Lower M iocene Boulder F acies  
From  th e  Guadalquivir B asin

The following data sets represent a detailed survey of the boulder facies found at location 40 
(Ref. 530 334) in the Lower Miocene Guadalquivir Basin.

The data set is in two parts, lenticular unit dimensions, and a detailed survey of the 

clasts present within the lenticular units. The lenticular units are figured in Volume 2, Part 
I (Fig. 3.9).

Lenticular Unit D im ensions

The lenticular units are recognised where erosional bounding surfaces form stacked 

lenticular units which occasionally have a winged geometry. Nine units are recognised at 

location 40, exposed in a N-S orientated section. Measurements made of these unit were as 

follows:

Ht o f  B a se

This is the height (m) measured from the base of the section to the lowest part of the basal 

bounding surface of the lenticular unit. The base of the section is defined by a road.

W idth

This is the maximum horizontal width (length), in metres, of the lenticular unit.

Max Depth

This is the maximum vertical depth (thickness) of the lenticular unit and is measured in 

metres.

Min Depth

This is the minimum vertical depth (thickness) of the lenticular u n it . This thickness was 

measured only where it was maintained for a distance of at least 0.5 m and was at least 0.5 

m away from the end (termination) of the unit.

Clast Survey

This data set represents a detailed survey of the clasts (boulders) found within the lenticular 

units of the boulder facies. The clasts were classified as follows:

Unit No.

This refers to the unit number, as  is given in the lenticular unit data set, within which the 

clast was found. E.g. Unit 1, Clast 1 is the first clast in unit number 1.

Clast

A reference number given to the clast. Clasts were numbered within each lenticular unit.

Appendix IV
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Lithology

The lithology of the clast. Lithologies were defined as follows;
Marl

Calclte, crystalline calcite clasts in which individual crystals can be recognised 

Rew orked  clasts are conglomeratic clasts that are interpreted to have been reworked 

from the underlying lenticular units

Type I is a lithology that is characterised by brown stained, indurated limestone 

(dolomite ??). These clasts commonly contain fractures that are filled by calcite.

Long Axis

This is a measurement (in cm) of the long axis of the clast and is defined by the maximum 

diameter of the clast.

Short Axis

A measurement of the short axis (in cm) of the clast and is defined by the minimum diameter 

of the clast.

Long A xis Orien

The orientation of the clast was measured as a dip and dip direction in the N-S section. This 

is a 2 dimensional measurement only. An orientation of 18 N means that the long axis of the 

clast dips 18 degrees towards the northern end of the section.

H tfrom  Ch Base

This the vertical measured distance from the base of the lenticular unit to the approximate 

centre of the clast.

Sam ple

A reference number for samples taken of the clasts.

Appendix IV
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Lower Miocene Boulder Facies 
Lenticular Unit Dim ensions

Unit No. H tofB ase(m ) Width (m) Max Depth (m) Min Depth(m)

0.00 15.00 2.00 0.20
0.00 6.00 2.00 0.30
0.68 3.00 1.15 0.33
0.60 3.50 2.00 0.30
0.00 7.00 2.00 0.20
1.80 8.50 1.50 30.00
0.00 15.00 2.50 0.20
0.00 8.00 1.50 0.40
0.00 6.00 1.44 0.20



S u rv e y  o f C la s ts  F o u n d  in  Low er M iocene  B o u ld e r Facies

Unit No.

2

3

4

5

Clast Lithology Long Axis (cm) Short Axis(cm) Long Axis Orien Ht fom Ch

1 marl 0.26 0.19 22 N 0.10
2 marl 0.22 0 .10 18 N 0.53
3 marl 0 .20 0.05 20  N 0.47
4 calcite 0.14 0.06 38 S 0.41
5 marl 0.15 0.06 2 S 0.78
6 marl 0.17 0.06 3 S 0.72
7 marl 0.33 0 .17 30 S 1.20
8 marl 0.26 0 .20 35 S 0.97
9 marl 1.14 0.70 15 S 0.15
10 marl 0.22 0.14 10 S 1.52
11 reworked 0.55 0 .30 70 N 0.69
12 reworked 0.35 0 .20 20  S 0.79
13 marl 0.38 0.20 20  S 1.05
14 marl 0.17 0.13 20 S 1.05
15 marl 0 .29 0.18 20 S 1.09
16 marl 0 .40 0.15 0 1.20
17 marl 0.42 0.15 15 N 1.30
18 marl 0.30 0.30 0 0 .00
19 marl 1.20 0 .37 30 S 0 .80
20 marl 0.31 0 .20 45 S 0.63
21 type I 0.24 0 .10 80 S 1.07
22 type I 0.36 0.70 10 S 0.20
23 type I 0.54 0.22 0 0.84
24 type I 1.30 0 .70 10 S 1.02
25 type I 0.35 0.18 0 0 .00
26 type I 0.80 0.62 0 0 .00
27 marl 0 .60 0.52 5 S 0 .30
28 type I 0 .50 0 .30 0 2 .00
29 type I 0 .40 0.20 80 S 2 .00
30 reworked 0.65 0.60 85 S 0.00

1 marl 0 .50 0.26 10 S 1.30
2 reworked 0.40 0.36 90 1.20
3 reworked 0.50 0.30 15 S 1.10
4 type I 0.60 0.43 0 0 .00
5 type I 0 .30 0.30 0 0.84
6 type 1 0 .70 0 .32 15 S 1.64
7 type I 0 .85 0 .66 0 0 .52
8 type I 0 .20 0 .15 0 0 .89
9 reworked 1.20 1.10 0 0 .40
10 marl 0 .15 0.05 5 N 1.05
1 1 marl 0 .20 0.15 90 1.11
12 marl 0 .30 0.22 25 N 1.20

1 marl 0 .40 0.28 0 0 .68
2 marl 0 .44 0.15 5 S 1.07
3 marl 0 .25 0.10 0 1.22
4 marl 0 .5 0 0.15 0 0 .90
5 marl 0 .24 0.16 5 N 1.24
6 marl 0 .40 0.26 0 0 .90
7 marl 0 .68 0.10 0 1.17

1 reworked 1.50 0.70 0 0 .80

1 reworked 1.10 0.38 0 0 .60
2 type I 0 .8 0 0.33 0 0 .20
3 type I 0 .5 0 0.40 0 1.80
4 type I 0 .5 0 0.40 0 1.80
5 type I 0 .33 0.18 0 0 .56
6 marl 0 .2 7 0.10 0 0.81
7 marl 0 .23 0.16 90 1.22
8 marl 0 .54 0 .29 30  N 0.10
9 marl 0 .90 0.55 20  N 0.10
10 marl 1.00 0 .76 28 N 0.30

Sample

GQ 69

GQ 70 

GQ 71



Channel No. Clast Lithology Long Axis (cm) Short Axis(cm) Long Axis Orien Ht fom Ch Base Sample

1 marl 0.31 0.23 90 2.02
2 marl 0.30 0 .13 90 2.02
3 reworked 0.32 0 .18 90 1.93
4 marl 0 .15 0.1 1 90 2.01
5 marl 0 .34 0.26 90 1.98
6 marl 0 .30 0.29 90 1.98
7 marl 0.25 0 .28 0 1.98
8 marl 0.74 0.44 0 2.04
9 reworked 0.35 0.14 0 2.20
10 reworked 0.20 0.15 30  S 2.02

7 1 reworked 0.44 0.26 85 N 0.74
2 type I 1.18 0.61 0 0.00
3 type I 1.02 0.64 10 S 0.15
4 type I 0.53 0.26 12 S 0.00
5 reworked 0 .28 0.50 60 0.95
6 marl 0 .40 0.21 0 0 .99
7 marl 0.85 0 .20 0 2 .00
8 type I 0 .20 0.16 60  S 0 .80
9 reworked 0 .60 0 .40 5 N 0.65
10 reworked 0 .70 0.44 0 1.31
11 reworked 0 .80 0 .70 0 1.10

8 1 marl 1.00 0.46 15 N 0.69
2 reworked 0 .80 0.42 85 S 0 .98
3 marl 0.61 0.42 85 S 0.98
3 marl 0.61 0.42 90 0.90
4 reworked 0.31 0.32 0 0.85
5 marl 0 .50 0 .33 0 0.75
6 marl 0 .60 0 .2 0 35 S 0.84
7 marl 0.33 0 .15 80  S 0.90
8 marl 0 .26 26 .00 0 0.85
9 type I 0 .33 0 .24 10 N 0.92
10 type I 0 .88 0.33 5 N 1.02
1 1 type 1 0.44 0 .26 0 1.15
12 marl 0 .40 0.33 0 1.50
13 marl 0 .45 0 .35 0 1.55

9 1 marl 0 .50 0 .30 80 S 0.00
2 marl 0 .60 0.42 70 S 0 .00
3 marl 0 .44 0 .40 0 0.00
4 marl 0 .83 0 .74 0 0 .00
5 type I 0 .60 0.32 0 0.20
6 type I 0 .47 0 .40 76 S 0 .30
7 type I 0 .44 0.26 62  S 0 .38
8 type I 0 .32 0 .34 90  N 0.24
9 marl 0 .48 0 .30 85 N 0 .00
10 marl 0 .60 0 .24 0 0.26

1 marl 0 .28 0 .16 38  S 0.46
2 type I 0 .40 0 .25 20  S 2 .12
3 type I 0 .50 0 .14 0 1.82
4 marl 0 .50 0 .47 0 0.00
5 marl 0 .44 0 .33 85 N 0.34
6 marl 0.26 0 .17 0 0 .88
7 marl 0 .93 0 .82 45 S 1.14
8 reworked 0.44 0 .29 15 S 0.52
9 marl 0 .83 0 .44 0 0 .00
10 marl 1.45 0 .77 2 0  S 0.75
11 type I 0 .82 0 .70 80  N 0 .79
12 type I 0 .77 0 .77 0 1.92
13 type I 0 .99 0 .80 30  S 0.45
14 marl 0 .68 0 .36 45 S 1.45
15 marl 1.23 0 .40 0 2 .45
16 marl 0 .40 0 .30 0 0 .68
17 marl 1.92 1.00 44 S 0 .00
18 type I 0 .58 0 .24 44 S 0 .45
19 marl 0 .90 0 .60 90 0 .34
2 0 type I 1.35 0.85 6 0  S 0 .00
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Q u antitative Petrogrphy o f  Sam ples from  
T he Guadalquivir B asin

The following data set represents the results of petrographic point counts conducted on 

samples from the Guadalquivir Basin.

Point-counts of the framework modes of each thin section were conducted using a 

mechanised point-counting stage. The stage-advance was set to increment a distance equal 

to the average grain size. Two counts were conducted on each thin section. The first 

quantified the proportion of monocrystalline quartz (Qm), plagioclase (P), K-feldspar (K) and 

lithic fragments (Lt) in each sample. A total of 500 grains was counted. The second count 

was designed to provide a detailed inventory of the lithic fragments in terms of their 

metamorphic. volcanic and sedimentary components. The metamorphic component was 

split into metamorphic grain types, based on the method outlined by Rapson (1965) and 

Ingersoll & Suczek (1979). A total of 500 lithic fragments were counted and classified for each 

sample. Metamorphic grain types were recognised as follows;

phyllitic sch ist (Ph.Sch) fragments of micaceous with a distinct schistose fabric, 

(i.e. a well developed .finely spaced cleavage);

quartz , m ica and feldspar aggregate (Q-M-F Ag) fragments of quartz mica and 

feldspar aggregates lacking a distinct fabric;

quartz, m ica and feldspar tec to n ite  (Q-M-F Tect) fragments composed of quartz 

mica and feldspar with a distinct fabric such as grain flattening, elongation or 

alignment;

quartz and m ica aggregate (Q-M Ag) fragments containing only quartz and mica 

lacking a distinct fabric;

quartz m ica tec to n ite  (Q-M Tect) fragments containing quartz and mica with a 

distinct fabric such as grain flattening, elongation or alignment; 

polycrystalline quartz tecton ite  (Qp Tect) fragments of polycrystalline quartz in 

which grains are flattened, elongated or aligned to form a distinct fabric;

M icas (Micas) single mica grains;

polycrystalline m icas (Micas p) fragments containing more than one mica grain, but 

without a schistose fabric;

polycrystalline quartz fragments of polycrystalline quartz lacking a distinct fabric; 

quartz and feldspar aggregate (Q-F Ag) fragments containing quartz and feldspar 

but lacking a distinct fabric and

co n ta ct m etam orphic m inerals (Contact m eta) minerals associated with the 

contact metamorphism of country rocks. The commonest is cordorite.

Sedimentary lithic fragments were also divided into generic lithic fragment types which 

are as follows;

sandstone (Sand) fragments containing identifiable quartz, feldspar and lithic grains 

of sedimentary origin;
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argillite other than marls (Argillite) mud-rock fragments, excluding carbonate; 

polycrystalline carbonates (Carb pc) carbonate fragments in which grains are 
identifiable;

Marl (Marl) carbonate mud rock in which separate grains could not be identified and 

Chert (Chert) cryptocrystalline quartz fragments.

Framework modes, outlined above, were used to derive other modal values character

izing the rock sample, including the total number polyciystalline quartz grains (Qp), the total 

number of metamorphic lithic fragments (Lm), the total number of volcanic lithic fragments 

(Lv) the total number of sedimentary lithics (Ls), the total number of volcanic and meta- 

volcanic lithic fragments (Lvm) and the the total number of sedimentary and meta- 

sedimentary lithic fragments (Lsm). These variables were calculated as follows;
Qp=Qp Tect+Qp

Lm=Ph.Sch+Q-M-F Ag+Q-M-F Tect+Q-M Ag+Q-M Tect+Micas+Mica p+Q-F

Ag+Contact Meta
Lv=Total number of hypabyssal volcanic grains

Ls=Sand+Argillite+Carb pc+Marl+Chert

Lvm=Lv

Lsm=Lm+Ls
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C last Surveys for C onglom erates  
Found in  th e  M essin ian  Guadalquivir B asin

The following data  sets represent the results of surveys carried out for the clast population 

of M essinian conglom erates found in the G uadalquivir Basin. C lasts were sam pled at 

location 9 (Ref. 522 340), location 47 (Ref. 510 340) and location 48 (Ref. 510 340). The 

param eters m easured for each clast were as follows;

Long Axis

The long axis (m easured in cm) is defined as the maximum diam eter of the clast.

Short Axis

The short axis (m easured in cm) is defined as the maximum diam eter of the clast. 

Lithology

The clast lithologies are defined as  follows;

c.a Calc-lithic arenites. This lithology is typical of Miocene rocks exposed in the 

G uadalquivir Basin,

L Limestone clasts,

Ch C hert clasts (cryptocrystalline quartz), 

m Any m etam orphic clast,

Dol Dolomitic limestone clasts, 

i Any igneous clast,

Q Q uartzite clasts.

Angularity
The angularity  of the clasts was estim ated in the  field and is defined as  follows; 

a Angular and sub-angular clasts, 

r Rounded and well rounded clasts.

Angularity was not estim ated a t location 47.
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Clast Survey: Lower Messinian Location 9 (Fan Delta)

Clast No. Long Axis (cm) Short Axis (cm) L ithology Angularity

1 13 7 c.a a
2 6 5 c.a a
3 2 1 1 r
4 5 2 I a
5 4 3 ch r
6 4 3 c.a r
7 6 3 1 r
8 5 3 m r
9 4 2 m r

10 5 6 ch r
11 3 3 ch r
12
13

2
3

1
2

1
do l

r

14 7 4 1 r
15 3 9 ch r
16 4 2 c .a r
17 9 2 ch r
18 3 2 1 r
19 4 1 m r
20
21

7
3

4
3

ch
1

r

22 7 2 ch r
23 3 4 1 r
2 4 3 4 I r
25 4 3 c.a a
26 7 6 c.a a

27 3 3 1 a
28 2 1 1 a

29 3 3 1 r
30 1 3 1 r

31 2 4 1 r
32 3 3 ch r

33 4 5 1 r

34 6 3 1 r

35 2 4 1 r

36
37

4
6

4
4

1
c.a

r

38 4 3 c.a r

39 2 4 c.a r

40 1 1 m r

41 4 3 1 a

42 3 2 ch r

43 2 6 I a

44 4 3 1 a

45 4 3 1 a

46 5 4 1 a

47 6 4 ch r

48 6 4 c .a r

49 3 2 ch a

50 4 4 1 r



Clast survey: Upper Messinian Location 4 7  (Fluvial)

Clast No. Long Axis (cm) Short Axis (cm) Lithology

1 11.00 3.00 9
2 5.00 4.00 9
3 5.00 4.00 L
4 3.00 1.00 m
5 2.00 2 .00 ch
6 6 .00 2.00 c.a
7 0.20 0.10 9
8 0.20 0.10 L
9 0.30 0.20 9
10 4.00 2 .00 ch
1 1 0.50 0.30 m
12 2.00 1.00 9
13 3.00 2.00 L
14 2.00 1.00 L
15 2.00 2.00 9
16 2.00 2.00 L
17 4.00 2 .00 L
18 4.00 2 .00 L
19 1.00 1.00 9
20 0.30 0 .10 ch
21 2.00 2 .00 ch
22 3.00 2 .00 m
23 4.00 4.00 9
24 5.00 5.00 9
25 3.00 5 .00 ch
26 4.00 2 .00 9
27 3.00 5 .00 L
28 3.00 3 .00 L
29 6.00 4.00 9
30 3.00 3.00 L
31 2.00 1.00 9
32 0.10 0.10 ch
33 0.20 0.10 m
34 4.00 4 .00 9
35 8.00 4 .00 9
36 1.00 2 .00 L
37 2.00 2 .00 L
38 4.00 4.00 L
39 9.00 4.00 m
40 4.00 4.00 ch
41 3.00 2 .00 L
42 3.00 1.00 L
43 4.00 3 .00 L
44 4.00 2 .00 9
45 3.00 3.00 ch
46 4.00 3 .00 ch
47 2.00 2 .00 c.a
48 3.00 2 .00 c.a
49 4.00 3 .00 L
50 5.00 4 .00 c.a



Clast Survey: Upper Messinian Location 4 8  (Fluvial)

ast No. Long Axis (cm) Short Axis (cm) Lithology Angute

1 4 3 ch r
2 3 3 ch r
3 2 1 m r
4 2 2 m r
5 1 1 9 r
6 1 1 9 r
7 1 1 9 r
8 5 1 s a
9 20 13 c.a r
10 4 4 m r
1 1 5 9 9 a
12 6 4 L r
13 4 2 i r
14 3 4 ch a
15 12 8 c.a r
16 4 2 i a
17 9 5 c.a r
18 4 4 ch a
19 4 3 m a
20 4 7 c.a r
21 6 3 m r
22 2 2 s r
23
24

8
7

4
7

9
ma

a

25 6 5 s r
26 3 5 9 a
27 4 2 ch r
28 8 4 m r
29 4 4 ch r
30 3 4 ch r
31 5 3 b a
32 4 6 m r
33 3 9 m r
34 4 1 i r
35 9 4 c.a a
36 4 2 ch a
37 3 1 ch a
38 4 1 s a
39 3 2 s a
40 3 4 m a
41 7 9 ch a
42 14 4 i a
43 3 2 c.a a
44 19 14 c.a a
45 4 6 m s
46 3 2 ch s
47 1 1 i s
48 3 1 ch s
49 I 1 i s
50 2 1 i s
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Palaeocurrent D ata

The following d a ta  represent the resu lts of palaeocurrent m easurem ents from M essinian 

conglomerate deposits in the Guadalquivir Basin. Palaeocurrents were m easured a t location 

9 (Ref. 522 340) location 47 (Ref. 510 340) and location 48 (Ref 510 340).

Palaeocurrents were m easured from im bricate clasts  at location 9 and  from cross- 

stratification and imbricate clasts a t locations 47 & 48. Palaeocurrents are given as a  bearing 

representing direction to which the cu rren t flowed

Appendix IV



Palaeocurrent Data

Age
L ocation

F a c ies
Source

Lw r M ess in ian  
Loc. 9 

Fan D e lta  
Im b rica te  C lasts

U pper M ess in ian  
Loc. 47. 48 

F lu v ia l B ra ided  
C ross S ra tif lc a tio n

U pper M ess in ian  
Loc. 47. 48 

F lu v ia l B ra ided  
Im b rica te  C lasts

270 220 45 27
278 180 60 28
28 0 21 0 360 23
260 24 0 60 22
262 2 4 0 30 21
265 2 20 50 20
28 0 180 48 19
2 85 2 4 0 55 2
2 9 0 2 5 0 360 3
2 44 26 0 30 2
2 55 26 0 25 3
2 33 220 45 5
222 3 6 0 60 6
275 3 5 0 20 7
2 78 3 48 28 8
279 33 3 94
27 6 3 20 5 95
275 2 70 16 96
2 7 4 2 68 5 100
273 25 30 55
245 245 35 88
243 246 45 100
191 150 45 103
190 158 48 12
192 149 32 45
193 180 60 82
194 180 72 80
198 178 35 43
2 7 4 120 36 42
273 124 58 22
27 4 330 69 25
2 8 0 300 32 28
285 301 45

310 32
320 65
160 89
160 50
140 42
170 18
270 17
300 16
300 15
312 33
180 34
313 323
31 4 33
315 55
34 0 45
31 0 48
29 0 46
29 0 20
22 22

31 0 23
311 29

25
24
26
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M ica A nalysis

The following da ta  set represents the resu lts  of the geochemical analysis of white micas 

collected from th e  Guadalquivir Basin and Internal Zones of the Betic Orogen (G ranada 

Basin). The da ta  from the Internal Zones was collected by John Hughes a t the University of 

Glasgow.

All the micas were analysed at the University of Glasgow using a  Cameca SX50 electron 

m icroprobe. The da ta  was reduced using ZAF techniques and cations per form ula un it 

calculated on the basis of 22 oxygens. The Fe2+ /F e ^  ratio was estim ated by ratio, following 

the m ethods of Schum acher (1991)
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Tabulated Data Page 449

M easured P illar H eight from  th e  Aljibe A renites

The following data  is the result of m easurem ents made in the Aljibe Arenites in the G ibraltar 

Arc (Study Area 2; Part II, Fig. 1.1)

The vertical heights of pillar structu res were m easured. Pillars are defined in Part II. Chapter 

2 (Section 2.3.4)

Appendix JV



M easured Pillar Height (cm ) in th e  Aljibe Arenites

46 3 30 10 14
13 5 9 10 15
62 32 65 37 25
20 80 37 120 13

4 23 52 3 25
3 5 15 7 21
4 6 13 17 10
5 4 17 10 18
4 4 45 8 6
3 33 28 9 12
9 35 32 22 15

16 18 49 9 14
5 16 83 7 '35
7 5 88 95 19
3 14 16 12 17
4 7 18 12 9

20 7 22 8 9
8 7 16 13 8
5 12 18 11 16

26 15 29 15 37
14 39 27 10 8
60 28 21 57 8
14 5 21 12 5
60 5 3 4 25
15 7 3 7 33
13 8 3 19 6
22 4 85 3 15
20 5 29 11 18
30 7 27 22 12
48 27 19 11 34

113 15 80 12
163 15 45 27
163 9 15 38

5 29 58 17
4 20 25 11
8 24 10 18
4 3 30 6
5 2 47 28
8 5 10 7

16 7 8 31
4 45 17 4
4 6 16 6
8 7 24 7
2 18 23 18
2 5 46 7
3 4 38 7
2 28 10 7
6 15 55 8
7 14 71 4
8 9 16 10

22 17 3 20
8 3 18 6



A ppendix V

Locations, Grid 
References



Locations & Grid Refs. Page 452

The following pages give the  most im portant localities and  their grid references for the 

Guadalquivir Basin and G ibraltar Arc Flysch study areas. Grid references refer to the grids 

given in 1:50000 geological maps. Where appropriate the m aps included in this thesis, which 

display the location num bers, are also cited. The geological m aps are published by the 

Instituto Geologico Minero de Espana, Madrid, Spain. These maps can be obtained from most 

governm ent book-sellers in Spain.

The geological m aps have topographic base m aps, which are as follows:

Guadalquivir Basin

1:50 .000  Geological Map Topographic Map

Sheet 944(16-38) Geografica dibujo y reproduccion:
Instituto Geogaflco y Industria  (16-38)

Sheet 945 (17-38) A.M.S Serie M 781 (17-38)

Sheet 966(16-39) A.M.S Serie M 781 (16-39)

Sheet 967(17-39) A.M.S Serie M 781 (17-39)

Gibraltar Arc Flysch

1:50 .000  Geological Map Topographic Map

Sheet 1.064(14-45) Servico Geografico del Ejericito (14-45)

Note: Not all topographic m aps are available to the public.

Appendix V



G uadalquivir B asin  L ocations

Location Grid Ref. Geological Map Publisher Thesis Map

5 529 343 1:50,000, Sheet 945 (17-38) IGME, Spain n /a
8 515 331 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
9 522 340 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
10 515 331 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
18 543 334 1:56,00b. Sheet 967 ( i'7-39) IGME, Spain Foldout 1 (map)
19 540 431 1:50,660, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
20 540 431 1:56,666. Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
21 541 331 1:50.66b. Sheet 967 ( i '7-39 j IGME, Spain Foldout 1 (map)
22 541 331 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
23 541 331 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
27 540 329 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
28 540 329 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)

28b 540 329 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
29 543 329 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
30 543 338 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
31 543 339 1:50,000, Sheet 967 (17-39) IGME. Spain Foldout 1 (map)
32 543 340 1:50,000, Sheet 967 (17-39) IGME. Spain Foldout 1 (map)
33 531 330 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
34 531 329 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
35 531 330 1:50,000, Sheet 967 (17-39) IGME. Spain Foldout 1 (map)
36 531 331 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
37 530 330 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
38 532 333 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
39 530 334 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
40 530 334 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
41 532 340 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
42 532 339 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
43 534 338 1:50,000, Sheet 967 (17-39) IGME, Spain Foldout 1 (map)
44 514 325 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
46 511 338 1:50.000. Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
47 510 340 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
48 510 340 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
49 510 335 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
50 503 332 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
51 503 332 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
52 508 335 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)

52(a) 508 336 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
53 513 323 1:50,000. Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
54 513 324 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
55 511 324 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
56 510 324 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
58 502 329 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
59 497 333 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
60 597 335 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
61 506 334 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
62 514 325 ...i'V5b.bbb. Sheet 966 (16-39j IGME, Spain Foldout 2 (map)
63 515 324 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
64 514 330 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
65 517 332 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
66 517 332 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
67 517 334 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (mapj
68 517 333 1:50.000. Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
69 519 335 i :50.66b. Sheet 966 (16-39) IGME. Spain Foldout 2 (map)



70 519 335 1:50.000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
71 523 341 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
72 505 336 1:50,000. Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
73 504 336 i:50,600, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
74 337 502 i :50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
75 500 339 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
76 507 336 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
77 507 336 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
78 508 338 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
79 500 327 1:50,000, Sheet 966 (16-39) IGME, Spain Foldout 2 (map)
80 505 328 1:50,000, Sheet 966 (16-39) IGME. Spain Foldout 2 (map)
81 524 345 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
82 524 343 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
83 524 344 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
84 524 343 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
85 524 344 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
86 523 344 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
87 521 346 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
88 521 346 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
89 522 346 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
90 523 347 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
91 521 348 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
92 522 343 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
93 521 343 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
94 518 352 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
95 358 520 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
96 523 353 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
97 522 351 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
98 512 345 1:50,000, Sheet 944 (16-38) IGME. Spain Foldout 3 (map)
99 510 344 1:50,000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)
100 508 349 1:50.000, Sheet 944 (16-38) IGME, Spain Foldout 3 (map)



Gibraltar Arc F lysch  L ocation s

Location Grid Ref. Geological Map Publisher Thesis Map

6 274 052 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
7 275 052 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
8 275 052 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
9 275 053 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
10 275 053 1:50000, Sheet 1.064(14-45) IGME Spain n /a
11 276 053 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
12 276 053 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
13 275 054 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
14 275 054 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
15 275 054 1:50000, Sheet 1.064(14-45) IGME Spain n /a
16 278 054 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
17 279 055 1:50000, Sheet 1.064(14-45) IGME Spain n /a
18 280 055 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
19 280 055 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
20 281 055 1:50000, Sheet 1.064(14-45) IGME Spain n /a
21 283 054 1:50000, Sheet 1.064(14-45) IGME Spain n /a
22 283 055 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
23 284 055 1:50000, Sheet 1.064(14-45) IGME Spain n /a
24 284 055 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
25 284 055 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
26 285 066 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
27 286 054 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
28 286 053 1:50000, Sheet 1.064 (14-45j IGME Spain n /a
31 287 052 1:50000, Sheet 1.064 (14-45) IGME Spain Part n. Fig. 1.4
32 287 052 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.4
33 287 052 1:50000. Sheet 1.064 (14-45j IGME Spain Part II, Fig. 1.4
34 287 052 1:50000, Sheet 1.064 (14-45)" IGME Spain Part II, Fig. 1.4
35 286 052 1:50000, Sheet 1 .064(14-45j IGME Spain Part II, Fig. 1.4
36 286 052 i -.50000, Sheet 1.064 (14-45j IGME Spain Part II, Fig. 1.4
37 286 052 1:50000, Sheet 1.064(14-45) IGME Spain Part II, Fig. 1.4
38 286 052 1:50000. Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.4
39 286 052 1:50000. Sheet 1.064 (14-45j IGME Spain Part II. Fig. 1.4
40 285 051 1:50000. Sheet 1.064 (14-45) IGME Spain Part II. Fig. 1.5
41 285 051 1:50000. Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1.5
42 285 051 1:50000. Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5
43 285 051 1:56666. Sheet 1.064 (14-45) IGME Spain Part II. Fig. 1.5
44 285 050 1:50000, Sheet 1.064 (14-45j IGME Spain Part II, Fig. 1.5
45 285 050 1:50066. Sheet 1.064 ("i4-45j IGME Spain Part ii. Fig. 1.5
46 284 050 i:50666. Sheet 1.064 (14-45j IGME Spain Part ii. Fig. 1.5
47 284 050 1:56666. Sheet 1.064 (14-45) IGME Spain Part ii. Fig. i .5
48 284 050 1:50000, Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1.5 

Part ii. Fig. 1.549 284 049 1:50000. Sheet 1.064 (i'4-45) IGME Spain
50 284 049 1:50000, Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1.5

..5 1 " 284 048 1:56666. Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5

52 284 048 f:56666. Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1.5
...52""' 284 048 1:56666, Shieet 1.064 (14-45) IGME Spain Part ii. Fig. 1.5

53 284 048 1:50666. Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5

54 284 048 1:50666. Sheet 1.064 (14-45) IGME Spain Part ii, Fig. 1.5
55 284 048 i:50666, Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1.5

..56.... 284 049 1:56666, Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1 5 
Part ii. Fig. 1.557 283 049 i:50666. Sheet 1.064 (14-45j IGME Spain

58 283 049 1:56666. Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1 5

59 1:50666, Sheet 1.064 (14-45) IGME Spain Part ii. Fig. 1.5



60 283 050 1:50000. Sheet 1.064(14-45) IGME Spain Part II, Fig. 1.5
61 283 050 1:50000, Sheet 1.064 (14-45) IGME Spain Part II. Fig. 1.5
62 283 050 1:50000, Sheet 1.064(14-45) IGME Spain Part II, Fig. 1.5
63 283 051 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5
64 282 051 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5
65 282 050 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5
66 282 050 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5
67 282 050 1:50000, Sheet 1.064 (14-45) IGME Spain Part 11, Fig. 1.5
68 282 049 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5
69 281 049 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.5
70 280 049 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
71 280 049 1:50000, Sheet 1.064 (14-45) IGME Spain n /a
72 279 048 1:50000. Sheet 1.064 (14-45) IGME Spain n /a
73 286 047 1:50000. Sheet 1.064 (14-45) IGME Spain n /a
74 285 047 1:50000. Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
75 285 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
76 285 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
77 284 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
78 284 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
79 284 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
80 284 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
81 284 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
82 283 046 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
83 283 046 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
84 283 046 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
85 283 046 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
86 282 047 1:50000, Sheet 1.064(14-45) IGME Spain Part II, Fig. 1.6
87 282 047 1:50000. Sheet 1.064 (14-45) IGME Spain Part II. Fig. 1.6
88 282 047 1:50000, Sheet 1.064(14-45) IGME Spain Part II, Fig. 1.6
89 282 047 1:50000, Sheet 1.064 (14-45) IGME Spain Part II, Fig. 1.6
90 282 047 1:50000. Sheet 1.064(14-45) IGME Spain Part II, Fig. 1.6
91 281 047 1:50000, Sheet 1.064(14-45) IGME Spain Part II, Fig. 1.6
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