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Summary 

Suppressor of cytokine signalling 3 (SOCS3) is a potent inhibitor of the mitogenic, 

migratory and pro-inflammatory pathways responsible for the development of neointimal 

hyperplasia (NIH), a key contributor to the failure of vascular reconstructive procedures. 

However, the protein levels of SOCS3, and therefore its potential to reduce NIH, is limited 

by its ubiquitylation and high turnover by the proteasome. I hypothesised that stabilisation 

of endogenous SOCS3 by inhibiting its ubiquitylation has the potential to limit vascular 

inflammation and NIH. Consequently, the aim of this PhD was to identify the mechanisms 

promoting the rapid turnover of SOCS3.  

 

Initial experiments involved the identification of residues involved in regulating the 

turnover of SOCS3 at the proteasome. I assessed the ubiquitylation status of a panel of 

FLAG tagged SOCS3 truncation mutants and identified a C-terminal 44 amino acid region 

required for SOCS3 ubiquitylation. This region localised to the SOCS box which is 

involved in binding Elongin B/C and the formation of a functional E3 ubiquitin ligase 

complex. However, the single lysine residue at position 173, located within this 44 amino 

acid region, was not required for ubiquitylation. Moreover, Emetine chase assays revealed 

that loss of either Lys173 or Lys6 (as documented in the literature) had no significant 

effect on SOCS3 stability 8 hrs post emetine treatment. 

 

As mutagenesis studies failed to identify key sites of ubiquitylation responsible for 

targeting SOCS3 to the proteasome, LC-MS-MS analysis of a SOCS3 co-

immunoprecipitate was employed. These data were searched for the presence of a Gly-Gly 

doublet (+114 Da mass shift) and revealed 8 distinct sites of ubiquitylation (Lys23, Lys28, 

Lys40, Lys85, Lys91, Lys173, Lys195, Lys206) on SOCS3 however Lys6 ubiquitylation 

was not detected. 

 

As multiple Lys residues were ubiquitylated, I hypothesised that only a Lys-less SOCS3, in 

which all 8 Lys residues were mutated to Arg, would be resistant to ubiquitylation.  

Compared to WT SOCS3, Lys-less SOCS3 was indeed found to be completely resistant to 

ubiquitylation, and significantly more stable than WT SOCS3.  These changes occurred in 

the absence of any detrimental effect on the ability of Lys-less SOCS3 to interact with the 

Elongin B/C components required to generate a functional E3 ligase complex. In addition, 
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both WT and Lys-less SOCS3 were equally capable of inhibiting cytokine-stimulated 

STAT3 phosphorylation upon co-expression with a chimeric EpoR-gp130 receptor. 

 

To assess whether SOCS3 auto-ubiquitylates I generated an L189A SOCS3 mutant that 

could no longer bind the Elongins and therefore form the E3 ligase complex required for 

ubiquitylation. A denaturing IP to assess the ubiquitylation status of this mutant was 

performed and revealed that, despite an inability to bind the Elongins, the L189A mutant 

was poly-ubiquitylated similar to WT SOCS3. Together these data suggested that SOCS3 

does not auto-ubiquitylate and that a separate E3 ligase must regulate SOCS3 

ubiquitylation. 

 

This study sought to identify the E3 ligase and deubiquitylating (DUB) enzymes 

controlling the ubiquitylation of SOCS3. Our initial strategy was to develop a tool to 

screen an E3 ligase/DUB library, using an siARRAY, to sequentially knockdown all 

known E3 ligases in the presence of a SOCS3-luciferase fusion protein or endogenous 

SOCS3 in a high content imaging screening platform. However, due to a poor assay 

window (<2) and non-specific immunoreactivity of SOCS3 antibodies available, these 

methods were deemed unsuitable for screening purposes. In the absence of a suitable tool 

to screen the si-ARRAY, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate (co-IP) 

was investigated. I performed a SOCS3 under conditions which preserved protein-protein 

interactions, with the aim of identifying novel E3 ligase and/or DUBs that could potentially 

interact with SOCS3.  

 

These data were searched for E3 ligase or DUB enzymes that may interact with SOCS3 in 

HEK293 cells and identified two promising candidates i) an E3 ligase known as HectD1 

and ii) a DUB known as USP15. This thesis has demonstrated that in the presence of 

HectD1 overexpression, a slight increase in K63-linked polyubiquitylation of SOCS3 was 

observed. Mutagenesis also revealed that an N-terminal region of SOCS3 may act as a 

repressor of this interaction with HectD1. Additionally, USP15 was shown to reduce 

SOCS3 polyubiquitylation in a HEK293 overexpression system suggesting this may act as 

a DUB for SOCS3. The C-terminal region of SOCS3 was also shown to play a major role 

in the interaction with USP15.  

 

The original hypothesis of this thesis was that stabilisation of endogenous SOCS3 by 

inhibiting its ubiquitylation has the potential to limit vascular inflammation and NIH. 
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Consistent with this hypothesis, immunohistochemistry visualisation of SOCS3, in human 

saphenous vein tissue derived from CABG patients, revealed that while SOCS3 was 

present throughout the media of these vessels the levels of SOCS3 within the neointima 

was reduced. Finally, preliminary data supporting the hypothesis that SOCS3 

overexpression may limit the proliferation, but not migration, of human saphenous vein 

smooth muscle cells (HSVSMCs) is presented. 

 

It is expected that multiple E3 ligases and DUBs will contribute to the regulation of 

SOCS3 turnover.  However, the identification of candidate E3 ligases or DUBs that play a 

significant role in SOCS3 turnover may facilitate the development of peptide disruptors or 

gene therapy targets to attenuate pathological SMC proliferation. A targeted approach, 

inhibiting the interaction between SOCS3 and identified E3 ligase, that controls the levels 

of SOCS3, would be expected to reduce the undesirable effects associated with global 

inhibition of the E3 ligase involved. 
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1 Introduction 

1.1 Cardiovascular disease 

Though lipid-lowering (e.g. statins) and antihypertensive (e.g. angiotensin-converting 

enzyme (ACE) inhibitor) therapies have significantly reduced the risk of developing 

cardiovascular diseases (CVD), these debilitating conditions still accounted for 

approximately 17.5 million deaths worldwide in 2012 [1]. In 2014, CVD was responsible 

for 27% of all UK deaths, 70,000 of which  were attributed to coronary heart disease 

(CHD) specifically [2]. CHD is defined as the process by which “the walls of the coronary 

arteries become narrowed by the gradual accumulation of fatty material called atheroma” 

[2].  In some patients, statins and ACE inhibitors may no longer provide an effective 

therapy for the prevention of CHD. As such, surgical revascularisation may be required 

including coronary artery bypass grafts (CABG), balloon angioplasty or stent implantation 

(also known as percutaneous coronary intervention [PCI]). However, in-stent restenosis 

(ISR) is detectable in ~12% of stent implants at 1 year follow-up [3] and it is estimated that 

>50% of CABG procedures fail within 10 years [4]. Patients may be at risk of further 

myocardial infarctions and require repeat re-vascularisation procedures. Currently around 

17,000 CABG and 92,000 PCI procedures are carried out in the UK each year therefore 

finding ways to increase the patency of these interventions would have a significant impact 

[2]. 

 

1.1.1 CHD-Atherosclerosis pathogenesis 

There are three discrete layers of the artery including the adventitia, media and intima 

(Figure1-1). Atherosclerosis may be described as “hardening of the arteries”[5] and is a 

direct result of atheroma plaque formation within the intimal layer of the blood vessel [6]. 

An endothelial monolayer lines this intimal region, forming the luminal surface, and 

therefore prevents cells within the blood from being exposed to tissue factors that may 

promote clotting. As such, maintaining the integrity of the endothelium is vital to preserve 

the artery function. However, hypertension or prolonged exposure to elevated circulating 

low-density lipoprotein (LDL) cholesterol and pro-inflammatory cytokines may increase 

the permeability of this endothelial monolayer [6] (Figure 1-2). As a result, LDL 

cholesterol accumulates within the intimal layer of the artery and promotes the recruitment 

of monocytes. Circulatory monocytes adhere to the blood vessel wall and cross the 
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endothelial barrier to the intima where they differentiate into macrophages. Tissue 

macrophages are thought to further increase the absorption of LDL from the circulation 

(via scavenger receptors) and give rise to “lipid-laden foam cells” which are a hallmark of 

atheromatous plaques [6]. As the disease progresses, the plaque expands through the 

activation, proliferation and migration of SMCs from the media to the intimal layer of the 

blood vessel. Commonly a fibrous cap forms on the luminal surface of the plaque and the 

composition of both structures determine the risk or vulnerability of the plaque to rupture. 

Vulnerable plaques have a lipid rich core and show a degree of neovascularisation, intra-

plaque haemorrhage and calcification [7, 8]. Importantly, the fibrous cap is extremely thin 

with a reduced SMC and collagen content [9]. It is thought that proteolytic enzymes known 

as matrix metalloproteases (MMPs) within the plaques are responsible for digestion of the 

fibrous cap ECM and so can promote rupture [10]. Consequently, tissue factors are 

exposed resulting in the recruitment of platelets involved in the formation of thrombi [8]. 

The atherosclerotic vessel may become partially or completely occluded resulting in 

ischaemia of the tissue supplied by this vessel. In the case of the coronary artery this would 

result in a myocardial infarction and requires reperfusion in order limit irreversible damage 

to the myocardium.     

 

 

 

Figure 1-1: Structure of the arterial wall 

The outermost adventitial layer contains connective tissue, fibroblasts and mast cells [6]. In contrast, the 

medial layer is composed largely of smooth muscle cells (SMCs) and the smaller intimal layer of 

extracellular matrix (ECM). In man the intima also contains some SMCs [6]. The intimal layer is lined by a 

monolayer of endothelial cells forming the endothelium which provides an interface between the circulation 

and the arterial wall. Figure adapted from Servier Medical Art http://servier.com/Powerpoint-image-bank.  

http://servier.com/Powerpoint-image-bank


 
 

Figure 1-2: Formation of the atherosclerotic plaque. 

(a) Initially the intimal region of the blood vessel is relatively small. However, chronic hypertension or exposure to high levels of cholesterol (LDL) and pro-inflammatory cytokines 

may lead to endothelial dysfunction. (b) The endothelial monolayer becomes “leaky” allowing LDL to enter and accumulate within the intimal layer and provides a substrate for 

oxidative enzymes. The resulting oxidised lipids promote the expression of leukocyte adhesion receptors and the production of chemokines by the now activated endothelial cells [11]. 

Various inflammatory cells such as macrophages are recruited to this site promoting the expansion of the atheromatous plaque within the inner layer of the artery and so narrowing the 

lumen. (c) Smooth muscle cell (SMC) migration from the media to the intima then contributes to (d) fibrous cap formation which is susceptible to rupture and may result in thrombus 

formation. Figure reproduced from [6] with permission.  
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1.1.2 Revascularisation of atherosclerotic vessels 

Statins serve as a competitive inhibitor of the 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) reductase enzyme that is required for cholesterol synthesis [12]. A meta-

analysis study involving more than 30,000 patients from 5 different trials, revealed that 

statin treatment reduced LDL synthesis by 28% and was associated with a 31% decrease in 

the risk of an adverse coronary event [13]. As such, the cholesterol lowering “statin” 

family provide the first-line pharmacological therapy for the treatment and prevention of 

cardiovascular diseases such as atherosclerosis [14]. However, where pharmacological 

management of atherosclerosis is unsuccessful, surgical intervention may be required to 

achieve effective revascularisation. Following a myocardial infarction, ischaemic damage 

to the blood vessel supplying the heart (coronary artery) is irreversible. As such, coronary 

artery bypass grafting (CABG) procedures in which the internal mammary artery (IMA) is 

grafted onto the left anterior descending coronary artery, or more commonly saphenous 

vein (SV) to other coronary vessels, is largely successful at restoring function [15]. 

However, these conduits are susceptible to atherosclerosis and neointimal hyperplasia 

(NIH), and thus requiring further intervention [16]. In 2004, one study compared the long 

term patency of IMA versus SV grafts and revealed that while 85% of IMA conduits were 

patent at 10 years follow up, only 61% of SV grafts were functional [15]. A more recent 

review of clinical trial data revealed that 50% of all SV conduits failed within 10 years and 

patients therefore required repeat revascularisation procedures [17]. 

 

 An alternative strategy for the treatment of atherosclerotic vessels is the use of 

percutaneous coronary intervention (PCI) procedures such as stenting (Figure 1-3). A stent 

is a “mesh-like” cylindrical structure which is inserted into the diseased artery and 

expanded in order to restore the diameter of the lumen and therefore blood flow through 

the vessel [18]. However, the success of this revascularisation procedure has been limited 

due to the damage to the blood vessel wall that may result during stent deployment leading 

to NIH. NIH is defined as “the abnormal migration and proliferation of VSMCs with 

associated deposition of extracellular connective tissue matrix” [19] and may lead to the 

accelerated re-narrowing of the blood vessel (stenosis). During stent deployment, 

endothelial denudation exposes the vessel lining to mitogens in the blood or cytokines 

released by inflammatory cells, therefore driving VSMC exit from the quiescent phase 

[20]. Figure 1-4 summarises the steps involved in the development of ISR caused by 

neointimal thickening of the arterial wall.  
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Figure 1-3: Stent revascularisation of the artery 

(A) Progression of the atheromatous plaque within the lining of the coronary arterial wall may lead to 

complete occlusion (myocardial infarction [MI]) and is often fatal. Plaques which are refractory to statin 

treatment may require PCI procedures such as stenting.  (B) Stent implant involves balloon angioplasty in 

which balloon inflation drives the expansion of the stent. The balloon catheter is removed and the expanded 

stent physically holds the artery open restoring blood flow to the tissues supported by the artery. The 

cardiologist may choose to insert a bare metal stent (BMS) or drug-eluting stent (DES). Figure A-B adapted 

from Servier Medical Art. 

 

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
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Figure 1-4: In-stent restenosis is driven by NIH thickening of the injured arterial wall which may be initiated following stent deployment 

Stent deployment or balloon angioplasty procedures induce mechanical injury to the blood vessel wall. This includes the disruption of the endothelial monolayer lining the lumen of the 

vessel (denudation) and disruption to the intimal and medial layers of the inner wall [21]. Following this, pro-inflammatory mediators and mitogenic growth factors are released. 

VSMCs exit the resting (G0) phase of the cell cycle, proliferate and migrate from the media to the intima driving neointimal lesion formation and vessel remodelling ultimately reducing 

the lumen diameter. Integrity of the endothelial layer lining the lumen is important as loss of this barrier promotes platelet adhesion and thrombosis. Following CABG procedures, 

thickening of the saphenous vein wall is an adaptation to the higher arterial pressure experienced [17]. However, following endothelial denudation there is no barrier to limit VSMC 

proliferation and migration. Neointimal lesions enlarge, reducing the lumen diameter, and reducing blood flow to the myocardium. Figure adapted from [22] with permission. 
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Despite the emergence of drug-eluting stents (DES), which release anti-proliferative 

compounds to inhibit this cell growth, neointimal lesions may still form within the stent 

(in-stent restenosis; ISR) impeding blood flow once again [23]. Moreover, drugs such as 

rapamycin non-selectively inhibit EC as well as SMC proliferation thus preventing re-

endothelialisation at sites of injury caused by stent deployment [24]. This increases the risk 

of in-stent thrombosis therefore current guidelines recommend dual anti-platelet therapies 

such as aspirin and platelet P2Y12 inhibitor [25]. Though the rate of ISR remains low, it is 

the increase in number of patients undergoing stent procedures that translates to a large 

number of patients requiring repeat revascularisation due to ISR [23]. Without further 

intervention, complete vessel occlusion may result and is often fatal. 

ISR is one of the major drawbacks of BMS implants. However, the development of DESs 

was shown to reduce the incidence of this complication [26, 27]. In spite of this, a study 

which compared the long term patency of two DESs (Taxus and Cypher) with BMSs 

revealed that delayed healing of the stented vessel was significantly greater in patients that 

received the DES [28]. This short-coming was as a result of “late stent thrombosis” within 

the vessel. Damage to the arterial wall during stenting may expose tissue factor, fibronectin 

and collagen present in the media and adventitia, thus promoting thrombosis [22]. 

Simultaneously, locally secreted growth factors and cytokines induce VSMC entry into the 

S phase of the cell cycle, driving  proliferation and migration to the intima and thereby 

contributing to the neointimal lesion. Joner and co-workers [28] proposed that anti-

proliferative compounds inhibit the wound healing response of the arterial wall that results 

following stent implant [28]. The length of the stent (enlarged area of pathology) correlated 

linearly with an increase in the likelihood of thrombosis. It was hypothesised that 

deployment of a longer stent was technically more challenging and that the struts may not 

insert into the vessel wall flush across the entire length, and as a result pre-disposes the 

vessel to thrombus formation [28]. Conversely, according to  the literature late stent 

thrombosis in patients with BMSs is relatively rare [26]. As such, patient compliance with 

two anti-platelet treatments is essential in order to reduce the incidence of thrombus 

formation within the DES vessels [28].   
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1.2 Cytokine signalling 

1.2.1 Interleukin 6 classic vs. trans-signalling 

Interleukin 6 (IL6) was first described in 1986 though it was initially referred to as B-cell 

stimulatory factor (BSF-2) responsible for the promotion of antibody secretion by B cells 

[29]. IL6 is a soluble protein, with a molecular weight of ~21kDa, produced by various cell 

types including fibroblasts, endothelial cells and immune cells such as monocytes and T-

cells [30]. In addition, IL6 is a cytokine that has the ability to interact with a membrane 

bound or soluble form of the IL6 receptor (IL6R). The IL6R is an 80kDa protein that is not 

ubiquitously expressed, rather its expression is limited to the cell surface of hepatocytes 

and various subsets of white blood cell subtypes [31]. Interestingly, in 1990, Hibi and co-

workers demonstrated that the IL6-mediated ligand activation of the IL6R requires the 

association with a gp130 dimer in order to drive intracellular signalling (e.g. the 

JAK/STAT pathway) [32].  A Jurkat T cell line was initially shown to be unresponsive to 

IL6 exposure in vitro. However, transfection with an IL6R-expressing construct resulted in 

a modest increase in the number of high and low affinity binding sites for IL6. Importantly, 

the overexpression of both the IL6R and gp130 resulted in a synergistic, 5 fold increase in 

the number of high affinity binding sites for IL6 [32]. This provided evidence to support 

the role of the gp130 in IL6 classic signalling i.e. where both the IL6R and gp130 are 

expressed on the cell surface.  

Interestingly, IL6 trans-signalling via gp130 facilitates the IL6-mediated activation of 

JAK/STAT signalling in cells which do not express the endogenous membrane-localised 

IL6R (reviewed in [31]). Trans-signalling involves IL6 binding to a soluble IL6R (sIL6R) 

to form the IL6-sIL6R complex in the circulation. The sIL6R is thought to be synthesised 

following i) alternative splicing of IL6Rα mRNA [33, 34] or ii) matrix metalloprotease 

(ADAM17 or ADAM10) shedding of a sIL6R from the cell surface of IL6R-expressing 

hepatocytes and monocytes [35, 36]. Moreover, the literature proposes that while IL6 

classic signalling mediates an anti-inflammatory and regenerative response required for 

activities such as wound healing, trans-signalling is thought to shift toward a pro-

inflammatory response [30, 31, 37]. Accordingly, pro-inflammatory IL6 trans-signalling 

must be appropriately controlled via regulation by protein inhibitors of activated STAT 

(PIAS), protein tyrosine phosphatases (PTPs) and members of the suppressor of cytokine 

signalling (SOCS) family.  
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1.3 Suppressors of cytokine signalling (SOCS) 

SOCS3-mediated regulation of IL6-JAK/STAT signalling was of specific interest to this 

project and is therefore described in detail. The literature describes 8 members of the 

Suppressor of Cytokine Signalling (SOCS) family including SOCS1-7 and the cytokine-

inducible src homology 2 (SH2)-domain containing protein (CIS) [38]. All members of 

the SOCS family contain a C-terminal SOCS box in addition to an SH2 domain however 

only SOCS1 and SOCS3 possess an N-terminal kinase inhibitory region (KIR) which is 

required for the inhibition of receptor-associated JAKs (Figure 1-5). The contrasting 

structural organisation of SOCS family members is related to their diverse functions.  CIS, 

SOCS1, SOCS2, and SOCS3 are predominantly involved in cytokine receptor regulation in 

contrast to SOCS4, SOCS5, SOCS6 and SOCS7 which, for the most part, are involved in 

receptor tyrosine kinase (RTK) regulation [39]. 

 

Figure 1-5: The structural organisation of members of the SOCS family 

SOCS1-3 and CIS are largely involved in the negative regulation of signalling events at cytokine receptors. 

Cytokine receptors do not possess intrinsic kinase domains and therefore rely on receptor associated kinases 

such as the JAKs for activation and downstream signalling. Conversely, receptor tyrosine kinases (RTKs) 

possess an intrinsic kinase domain and following ligand activation, by growth factors for example, SOCS4-7 

may be involved in the negative regulation of downstream signalling events. Of note, SOCS1 and SOCS3 

share a similar domain structure in that the KIR is located in the C-terminus. Figure adapted from [39] and 

[40] with permission. 
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The first member of the SOCS family described in the literature was CIS which was shown 

to interact with activated IL3 and erythropoietin receptors (EpoR) [41]. Subsequently, 

SOCS1 (initially referred to as JAK-binding protein (JAB)) was identified in a yeast 2 

hybrid screen using the JH1 domain of JAK2 as bait [42]. At the same time, Starr and co-

workers reported the cloning of SOCS1 in addition to two structurally related proteins 

denoted SOCS2 and SOCS3 based on the order of their discovery [43]. SOCS1
-/-

 knockout 

mice died as neonates (2-3 weeks of age) and this was later shown to be due to the 

hyperactivation of interferon γ  (IFNγ) signalling pathways resulting in multiorgan disease 

[44]. Mice in which the SOCS1 and IFNγ gene were knocked out (SOCS1
-/-

, IFNγ
-/-

) or 

SOCS1
-/- 

knockout mice injected with antibodies raised against IFNγ were protected from 

disease and premature mortality [44]. As such, SOCS1 is largely associated with the 

negative regulation of IFNγ signalling events. SOCS3 knockout mice (SOCS3
-/-

) died 

during embryogenesis at day 11-13 therefore SOCS3 is non-redundant [45]. Though 

embryo development progressed as normal, malformations in the placental tissue meant the 

embryo could no longer be supported [45]. As such, in vivo SOCS3 investigations require 

conditional knockouts (typically using a Cre-lox system) or gene knockdown (e.g. using 

short hairpin (sh) RNA) techniques for spatio-temporal regulation of expression. Though 

SOCS1 and SOCS3 share structural similarities such as the presence of the N-terminal 

KIR, they regulate diverse signalling pathways which may vary with cell type. For the 

purpose of this PhD project, SOCS3-mediated inhibition of IL6-JAK/STAT signalling was 

of most interest and is discussed in detail. 

 

1.3.1 SOCS3 orchestrates a negative feedback loop with the JAK-

STAT pathway 

SOCS3 is a key regulator of the JAK/STAT pathway and expression is driven by STAT 

transcription factors forming a non-redundant negative feedback loop (Figure 1-6). 

Interestingly, the Kinase Inhibitory Region (KIR) present in the short N-terminal region of 

SOCS-1 and 3 were shown to interact with and inhibit JAK1, JAK2 and TYK2 activity. 

Following ligand activation, cytokine receptors dimerise at the plasma membrane [46]. 

Cytosolic Janus Kinases (JAKs) are recruited and activated via trans-phosphorylation 

events (Figure 1-6).  Subsequently, JAK phosphorylates the intracellular domain of the 

cytokine receptor providing docking sites for Src homology 2 (SH2) domain containing 

proteins such as signal transducer and activator of transcription 3 (STAT3). The 
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JAK/STAT pathway proceeds (Figure1-6) with SOCS3 forming a negative feedback loop, 

the disruption of which may promote an uncontrolled pro-inflammatory response. 

 

 

Figure 1-6: The JAK/STAT-SOCS3 negative feedback loop 

Circulatory IL6 interacts with a soluble or membrane bound isoform of the IL6 receptor α (IL6Rα). The 

activated IL6Rα subsequently dimerises with the glycoprotein 130 receptor (gp130R) on the plasma 

membrane initiating the activation of receptor associated JAKs. JAK activation (trans-autophosphorylation) 

and the subsequent phosphorylation of pYXXQ motifs, on the gp130R cytoplasmic tail, provides 

phosphotyrosine (pY) docking sites for the STAT proteins. Following recruitment to the gp130R, STAT3 is 

phosphorylated by receptor associated JAKs promoting the dissociation and dimerisation of STAT3. The 

STAT3 dimer then translocates to the nucleus where it functions as a transcription factor driving the 

expression of genes involved in proliferation. STAT3 also drives the expression of SOCS3 which may (1) 

inhibit JAKs directly, (2) compete with SHP2 for pY residues (potentially switching off the Ras-MAPK 

pathway) or (3) target proteins to the proteasome for degradation. SOCS3 expression is therefore induced by 

the very pathway that they inhibit (JAK/STAT) forming a negative feedback system. Modified from [47] 

with permission. 

 

1.3.2 Structural organisation of the SOCS3 protein provides an 

insight into its function 

The domain structure of SOCS3 is illustrated in Figure 1-7. The central SH2 domain is 

involved in substrate recognition whereby SOCS3 interacts with phosphotyrosine (pY) 
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residues on target proteins. The KIR is located at the N-terminus of the protein and plays a 

major role in the SOCS3-mediated inhibition of receptor associated JAKS (section 

1.3.7.4). To date, the SOCS box motif has been described in over 70 proteins and is 

involved in targeting substrates for degradation [48]. This is due to the ability of the C-

terminal SOCS box to bind adaptor proteins (Elongin B and C) which provides a platform 

for the formation of a multi-subunit E3 ligase complex (involving Cul5 and Rbx2) which 

catalyses the ubiquitylation of substrates bound by the SOCS3 SH2 domain (section 1.3.8).  

 

 

 

 

Figure 1-7: Schematic of SOCS3 protein structure 

The SOCS3 protein is 225 amino acids in length with a molecular weight of ~25-27kDa. SOCS3 contains an 

extended N-terminal region (Ext-N), Kinase Inhibitory Region (KIR), Extended SH2 subdomain (ESS), SH2 

domain, PEST sequence (rich in Pro (P), Glu (E), Ser (S), and Thr (T) residues) and the C-terminal SOCS 

box which contains the so-called “BC box” and “Cul5 box”. The KIR may be involved in the direct 

inhibition of JAKs. The SH2 domain is involved in substrate (phospho-Tyr) recognition. The PEST domain 

is involved in protein degradation and stability. The BC box and Cul5 box are located within the SOCS box 

and bind Elongin B and C and Cul5 respectively. The SOCS box provides a platform for the formation of an 

E3 ligase complex. The location of all known Lys residues (K) for both human 

(http://www.uniprot.org/uniprot/O14543) and mouse (http://www.uniprot.org/uniprot/O35718) SOCS3 is 

shown. Figure adapted from [49] with permission. 
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Interestingly, the SH2 domain allows SOCS3 to associate with various membrane-bound 

receptors and, in some instances, regulate their downstream signalling pathways 

(summarised in Table 1-1). 

 

Receptor interacting with 

SOCS3 

Function of SOCS3 Literature 

reference 

Erythropoietin Receptor (EpoR) The negative regulation of Epo 

signalling in erythropoeisis. 

[50], [51] 

Leptin Receptor (LeptinR, 

ObRb) 

Inhibition of leptin signalling. 

Outcompetes SHP-2 for Y985 to 

switch off ERK activation.  

[52, 53] 

Insulin-like Growth Factor I 

Receptor (IGFIR) 

SOCS family members (CIS and 

SOCS1-3) are thought to exhibit 

functional redundancy in the negative 

regulation of IGFIR signalling. 

[54], [55] 

Granulocyte Colony-

Stimulating Factor Receptor (G-

CSFR) 

Involved in G-CSFR downregulation 

by targeting the receptor for lysosomal 

degradation. 

[56] 

Gp130 Receptor (Gp130R) Inhibition of Gp130R signalling (JAK-

STAT pathway). Outcompetes SHP-2 

for pY757 (mouse) or pY759 (human). 

[57, 58] 

Table 1-1: Receptors known to interact with SOCS3 and the functional consequence in cell signalling 

pathways. 

The SH2 domain of SOCS3 facilitates the recognition and binding to phosphotyrosines (pY) with specificity 

defined by the surrounding residues [59]. For example, inhibition of leptin signalling by SOCS3 required a 

hydrophobic (water repelling) residue 2 positions upstream of the target pY on the cytoplasmic tail of the 

leptin receptor [52].  

SOCS3 may be induced by various cytokine and growth factor stimuli. The following 

section reviews the role of SOCS3 as a negative regulator of various signalling pathways. 

1.3.3 Erythropoietin signalling 

Erythropoietin (Epo) is a hormone produced by the kidney and following ligand activation 

of the EpoR, the JAK/STAT pathway is initiated driving the proliferation and maturation 

of erythrocytes (erythropoiesis) [60]. In 2000, Sasaki et al demonstrated that SOCS3 could 
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interact with both the EpoR (pY401) and receptor associated JAK2 [50]. As a result, 

SOCS3 was shown to outcompete STAT5 for the pY401 docking site and terminated the 

proliferation of a pro B cell line (Ba/F3) used in the study.  Following this discovery, a 

higher affinity interaction between SOCS3 and the EpoR was identified at the 

pY429/pY431 motif located on the intracellular domain of the EpoR [51]. The authors 

proposed that SOCS3 may therefore compete with the PTP SHP-1 for pY429/pY431 

however this was not investigated further. Interestingly, Hookham and co-workers 

described the hyper-phosphorylation of SOCS3 by a constitutively active JAK2 mutant 

(V617F) found in many myeloproliferative neoplasms (MPN) [61]. This study reported 

that SOCS3 could no longer negatively regulate Epo signalling in the presence of the JAK2 

V617F mutant resulting in the uncontrolled proliferation of cells that contributed to the 

disease [61]. Similarly, Elliot and co-workers reproduced these data and demonstrated that 

other JAK2 mutations, found in MPN patients, could also evade SOCS3-mediated 

inhibition [62]. However, this area remains controversial as Haan and colleagues provide 

conflicting evidence that showed JAK2 V617F was sensitive to SOCS3 inhibition in 

Human Embryonic Kidney 293 (HEK293) cells expressing the EpoR [63]. The sensitivity 

of JAK V617F to SOCS3 may therefore depend on the cell type under investigation. 

 

Nevertheless, it is clear that SOCS3 plays a key role in the negative regulation of Epo 

signalling. A Japanese MPN patient with a SOCS3 (F136L) germ line mutation and 

somatic JAK2 deletion (N542-E543) has now been described [64]. Interestingly, in vitro 

experiments revealed that cells expressing SOCS3 (F136L) displayed increased EPO-

induced proliferation and may therefore promote disease progression [64].  

 

1.3.4 Leptin signalling 

Leptin is a cytokine, encoded by the obese (ob) gene, involved in energy homeostasis 

through the regulation of feeding behaviour [65]. As such, perturbation through leptin 

resistance or mutation of leptin signalling components may contribute to the development 

of obesity: an important risk factor for cardiovascular morbidity and mortality. 

Interestingly, SOCS3 has been shown to inhibit leptin receptor signalling by competing for 

pY985 with SHP2 on the intracellular domain of the receptor [52]. Consequently, SHP2 

activation cannot proceed and therefore the ERK/MAPK pathway remains switched off. 

More recently, Pedroso and co-workers conducted a study involving conditional neuronal 

SOCS3 knockout mice [53]. These data revealed that the SOCS3-depleted mice were 
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resistant to diet-induced insulin resistance and that SOCS3 may therefore represent a useful 

inhibitory target for the treatment of type II diabetes.  

 

1.3.5 Insulin-like growth factor I signalling 

The Insulin-like growth factor I receptor (IGFIR) is a receptor tyrosine kinase that is 

activated upon Insulin Growth Factor I (IGF-I) ligand binding [55]. IGFIR has a variety of 

roles including the promotion of cell proliferation and differentiation amongst others. As 

such, increased IGFIR signalling has been implicated in the progression of cancers such as 

breast cancer [66] and prostate cancer [67]. Though IGFIR has been a therapeutic target of 

interest for many years, the efficacy of inhibitors for this pathway in clinical trials has been 

largely underwhelming [68]. 

 

Previously, yeast-two hybrid analysis and in vitro co-immunoprecipitation studies 

confirmed that SOCS3 was constitutively bound to IGFIR [54]. Following IGF-I 

stimulation, SOCS3 was then tyrosine phosphorylated suggesting that SOCS3 may be a 

substrate for the IGFIR.  However the functional consequence of this post-translational 

modification to SOCS3 was not investigated further. Moreover, in a HEK293T 

overexpression system, four members of the SOCS family (CIS and SOCS1-3) were 

shown to inhibit JAK1/2-mediated STAT3 activation at the IGIFR [55]. Though SOCS1 

and SOCS3 were shown to be more potent negative regulators of the JAK/STAT pathway, 

this provided an example of functional redundancy within the SOCS family. Loss of 

negative regulation by SOCS3 may not be associated with aberrant signalling. It then 

follows that therapeutic strategies have largely been centred around monoclonal antibodies 

raised against the IGFIR as opposed to pharmacological interventions downstream [68].   

 

1.3.6 Granulocyte Colony-Stimulating Factor signalling 

Granulocyte Colony-Stimulating Factor (G-CSF) is a cytokine which plays central role in 

the proliferation of neutrophil precursor cells [69]. SOCS3 was shown to dock specifically 

at pY729 on the activated G-CSFR and promote the Lys632 ubiquitylation of the receptor 

[56]. Consequently, the G-CSFR was internalised into an endosome and was targeted for 

lysosomal degradation. This SOCS3-mediated receptor internalisation and therefore 

downregulation was responsible for the attenuation of G-CSF signalling thereby regulating 

the proliferation and differentiation of neutrophil precursor cells. Interestingly, a recent 
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review conducted by White and Nicola noted that conditional SOCS3 KO studies failed to 

describe pathologies associated with the loss of SOCS3-mediated regulation of G-CSF 

signalling and that this may suggest functional redundancy amongst SOCS family 

members [49].   

 

1.3.7 The mechanism of SOCS3-mediated IL6-gp130R-

JAK/STAT inhibition 

1.3.7.1 SOCS3 docks at pY757 on the intracellular domain of the gp130R 

Following the induction of SOCS3 by a STAT driven promoter, SOCS3 was shown to 

dock at pY757 (mouse equivalent to Y759 in humans) on the intracellular domain of the 

activated gp130R [57]. To map the site of SOCS3-gp130R interaction, Nicholson et al 

generated a chimeric erythropoietin/glycoprotein 130 receptor (Epo/Gp130R) construct 

and employed a panel of luciferase reporter genes as a readout of receptor activity [57]. 

The Epo/Gp130R chimera is composed of the erythropoietin receptor extracellular domain 

fused to the trans-membrane and intracellular domain of the glycoprotein-130 receptor. 

Stimulation of cells transfected with erythropoietin (epo) induces a gp130R response at the 

chimeric receptor only as HEK293 cells do not express an endogenous EpoR. Interestingly, 

mutation of the Epo/Gp130R Y757 site (Tyr757phe) resulted in a “four-fold” increase in 

receptor activity despite SOCS3 overexpression. Furthermore, in order to achieve 50% 

inhibition at the chimeric receptor, the amount of SOCS3 required at the mutant receptor 

(Tyr757Phe) was >10-fold greater (50ng) than that of the WT receptor (4ng). Importantly, 

loss of Y757 on gp130R did not result in 100% loss of JAK/STAT inhibition, suggesting 

the direct inhibition of JAK2 by SOCS3 may still proceed [57]. Together these data 

confirmed that pY757 on the intracellular domain of the gp130R played a major role in 

SOCS3-mediated inhibition of IL6-JAK/STAT signalling.   

 

1.3.7.2 The dual interaction of SOCS3 with the gp130R and JAK2 facilitates 

the negative regulation of the JAK/STAT pathway. 

Binding affinity experiments revealed that SOCS3 had a dissociation constant (KD) of 

42nM for pY757 on the intracellular domain of the activated gp130 receptor signifying a 

high affinity interaction [57]. Subsequent competitive binding assays confirmed that the 

interaction of SOCS3 with a JAK2 peptide was “10,000 fold weaker” than that of SOCS3 
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with the gp130R pY757 containing peptide. Collectively, these data suggested that SOCS3 

mediated inhibition of IL6-JAK/STAT signalling may initially involve SOCS3 docking at 

pY757 on the cytoplasmic tail of gp130R as opposed to direct inhibition of JAK2 [57].  

 

More recently, the crystallisation of a SOCS3-JAK2-gp130R complex revealed that 

SOCS3 interacts with both receptor and receptor-associated JAK simultaneously [70]. This 

may explain Nicholson and co-workers’ previous observation that the Epo/Gp130R mutant 

(Tyr757Phe) required a t>10-fold greater concentration of SOCS3 to achieve 50% 

inhibition at the chimeric receptor [57]. The availability of a pY757 docking site on gp130 

allowed SOCS3 to form a higher affinity SOCS3-JAK2-gp130R complex [70]. In fact, 

Kershaw et al hypothesised that if the concentration of cytosolic SOCS3 were great 

enough (>1μM) this would bypass the requirement for simultaneous binding of SOCS3 to 

JAK2 and Gp130R. Indeed, the Nicholson paper, published in 2000, demonstrated that at 

higher concentrations of SOCS3 JAK/STAT inhibition was still observed even with the 

introduction of a Y757F mutation.  

 

1.3.7.3 JAK3 is resistant to inhibition by SOCS3  

SOCS3 exerts an inhibitory function on receptor associated JAK1, JAK2 and TYK2 in 

contrast to JAK3 which was not sensitive to SOCS3 inhibition [59]. Mutagenesis studies 

revealed this was due to the absence of the hydrophobic amino acid sequence (GQM) in 

the JAK3 protein insertion loop [59]. The GQM sequence is highly conserved across 

vertebrate species (zebrafish to humans ) for JAK1, JAK2 and TYK2 with the exception of 

zebrafish TYK2 which contains a “GQT” motif as opposed to “GQM” (Figure1-8) [71]. At 

the expected GQM motif position (1071-1073) the amino acid sequence of JAK3 shows a 

high degree of variability across the species (Figure 1-8). 
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Figure 1-8: The GQM sequence is located on the JAK insertion loop of JAK2, Jak1 and TYK2 

Sequence alignment of the JAK insertion loop revealed JAK3 did not contain the “GQM” motif and 

comprised a high degree of sequence variation. The “GQM” motif was highly conserved across the species 

for JAK1, JAK2 and TYK2 suggesting SOCS3 may interact with all three molecules. Figure modified from 

[71] with permission.  

Interestingly, Babon et al hypothesised that the absence of JAK3 sequence conservation in 

this region indicated that other members of the SOCS family were not involved in the 

regulation of JAK3 activity [71]. In recent years, zebrafish have provided a useful model 

organism for cardiovascular disease [72-74]. As such, the high degree of JAK sequence 

conservation between man and zebrafish is an encouraging observation and may facilitate 

the translation of future SOCS3 studies in vivo. However, sequencing of the zebrafish 

genome has identified two SOCS3 genes- SOCS3a (Accession: ZDB-GENE-030131-

7349]) and SOCS3b (Accession: ZDB-GENE-040426-2528]) which may complicate in 

vivo studies. The GQM sequence, at position 1071-1073, on JAK2 is located within the 

JAK insertion loop and facilitates the binding of SOCS3 via the ESS, SH2 and KIR 

domain collectively (Figure1-7)[70]. However, following the crystallisation of the SOCS3-

JAK2-gp130R complex, Kershaw et al noted that following SOCS3 docking, at the GQM 

motif, minimal structural changes were observed in JAK2 [70].  

1.3.7.4 The role of the SOCS3 kinase inhibitory region (KIR) 

Importantly, the N-terminal KIR of SOCS3 was shown to associate with, and therefore 

block, the substrate binding domain of JAK2 [70]. For that reason, the authors described 

SOCS3 as a “pseudosubstrate” of JAK2 as cognate substrates could no longer interact. 

http://zfin.org/ZDB-GENE-030131-7349
http://zfin.org/ZDB-GENE-030131-7349
http://zfin.org/ZDB-GENE-040426-2528
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Interestingly, SOCS3 inhibition of JAK2 was lost upon mutation of a key residue 

(Phe25Ala) within the KIR of SOCS3 [70]. Moreover, deletion of the first three residues 

within the KIR led to a rightward log order increase in the IC50 for SOCS3-mediated 

inhibition of JAK2 . Finally, the crystal structure of the SOCS3-JAK2-gp130R complex 

revealed that a positively charged residue within SOCS3 (Arg21) flanks the KIR and 

interacts with the JAK2 substrate binding domain serving as a phosphomimetic. The 

“pseudosubstrate” hypothesis was confirmed when mutation of the first three residues of 

the KIR (19-21) to tyrosine residues led to the phosphorylation of SOCS3 at these sites i.e. 

SOCS3 could be transformed into a JAK2 substrate. Together these data confirmed the 

significance of the KIR. However SOCS3 was not shown to be a direct inhibitor of JAK2 

activity, rather SOCS3 appears to act as a pseudosubstrate that blocks the access of bona 

fide JAK2 substrates.      

 

1.3.7.5 SOCS3 may outcompete JAK/STAT components for phosphotyrosine 

docking sites. 

It is likely the JAK-STAT pathway involves significant cross-talk with the MAPK pathway 

and this is supported by the fact that many ligands activate both pathways [75]. In fact, 

mutagenesis experiments, in which JAK association with a cytokine receptor was 

abolished, revealed ERK/MAPK activation was also lost [76].  

 

SH2-containing protein tyrosine phosphatase (SHP) enzymes were initially described in 

1991 [77] and are known to provide an additional layer of regulation for cytokine 

signalling [78]. The literature describes two distinct SHP isoforms (SHP-1 and SHP-2) 

which function by removing the charged phosphate group of pY residues on the 

intracellular domain of activated receptors. Interestingly, SHP-2 is synthesised in an 

inactive conformation that requires a post-translational modification, cysteine oxidation, in 

order to achieve the active conformation (Figure1-9) [79]. Once active, the protein tyrosine 

phosphatase SHP-2 can dock at target pY residues and in turn positively or negatively 

regulate signalling pathways. 
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Figure 1-9: SHP-2 protein tyrosine phosphatase activation 

SHP-2 contains two n-terminal SH2 domains which facilitate the interaction with phosphotyrosine (pY) 

residues on target substrates. SHP-2 also contains a C-terminal tyrosine phosphatase domain which removes 

phosphate groups from target pY residues. In the inactive state, the SH2 domains of SHP-2 interact with the 

phosphatase domain rendering it catalytically inactive. However, following the oxidation of a C-terminal 

cysteine residue on SHP-2 a conformational change is induced releasing the SH2 domains from the 

phosphatase domain. SHP-2 is now catalytically active. Modified from [79] with permission.  

Following its activation, SHP-2 has the ability to activate the Ras-ERK1,2 pathway as 

depicted in Figure 1-10 [80]. Conversely SHP-2 was also shown to de-phosphorylate 

STAT5A and thus may also function as a negative regulator of the JAK/STAT pathway 

[81]. Interestingly, SOCS3 may compete with SHP-2 for pY759 on the intracellular 

domain of the gp130 receptor [58]. As a result of the SOCS3-pY759 interaction, SHP-2 

can no longer activate the Ras-ERK1,2 signal cascade therefore limiting the expression of 

mitogenic gene profiles (Figure1-10).  

 



Introduction                                                                                                   21 
 

 
 

 

Figure 1-10: SHP-2 mediated activation of the Ras-ERK1,2 pathway 

Circulatory IL6 interacts with a soluble or membrane bound isoform of the IL6 receptor α (IL6Rα). The 

activated IL6Rα subsequently dimerises with the glycoprotein 130 receptor (gp130R) on the plasma 

membrane initiating the activation of receptor associated JAKs. JAK activation (trans-autophosphorylation) 

and the subsequent phosphorylation of the YSTV motif, on the gp130R cytoplasmic tail, provides a 

phosphotyrosine (pY759 in humans or equivalent pY757 in mouse) docking site for SHP-2. SHP-2 is 

subsequently phosphorylated by the receptor associated JAKs leading to the recruitment of Grb2 (growth-

factor-receptor-bound protein 2) which is bound to Sos (son-of-sevenless). Sos serves as a guanine nucleotide 

exchange factor (GEF) for the Ras protein and therefore activates Ras  by generating Ras-GTP. Subsequently 

the ERK1/2-MAPK pathway is activated driving the expression of genes involved in proliferation, 

differentiation and development [80]. However, SOCS3 may compete with SHP-2 for pY759 on the gp130R 

and so inhibits activation of the Ras-ERK1.2 pathway by SHP-2 [58]. Figure reproduced from [82] with 

permission. 
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1.3.8 SOCS3 targets substrates for degradation 

Ubiquitylation is a post-translational modification in which a single ubiquitin moiety or a 

chain of ubiquitin molecules are transferred to Lys residues on specific protein substrates 

[83]. Interestingly, the C-terminus of SOCS3 contains a 40 residue SOCS box region [49, 

84] which provides a platform for the assembly of an Elongin-Cullin-SOCS
SOCS3

 

(ECS
SOCS3

) ubiquitin ligase complex (Figure 1-11B) [48]. Following ECS
SOCS3

 ligase 

complex formation, the ubiquitin-activating (E1) and ubiquitin-conjugating (E2) enzymes 

are recruited and catalyse the polyubiquitylation of target proteins that specifically interact 

with SOCS3 [85]. As mentioned previously, SOCS3 binds to phospho-Tyr sites on target 

proteins via its SH2 domain, while the SOCS box provides the platform for ECS
SOCS-3

 

ligase complex formation and the interacting protein now provides a substrate for 

ubiquitylation. 
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Figure 1-11: Schematic of the SOCS3 protein and formation of the E3 ubiquitin ligase complex 

(A) Schematic of the SOCS3 protein structure. The SH2 domain binds phosphotyrosine residues on substrate 

proteins. Within the SOCS box, the BC box binds Elongin B and Elongin c providing the platform for the 

ubiquitin ligase machinery. The SOCS3 substrate bound by its SH2 domain may now be ubiquitylated and 

targeted to the proteasome. KIR denotes kinase inhibitory region. (B) Formation of the ECSSOCS-3 

ubiquitin ligase complex. Initially Elongin B and C bind the C terminal BC-box of SOCS3 and recruit Cullin-

5 to the scaffold. Cullin-5 then interacts with RING finger domain of Rbx 2 to form the E3 ligase complex. 

Rbx2 recruits the E2 conjugating enzyme bringing ubiquitin (7.6KDa) and substrate in close proximity for 

ligation (ubiquitylation) by the E3 ligase [86]. Lys48 linked ubiquitylated substrates are then targeted to the 

26S proteasome for degradation. Mono-ubiquitination provides a weaker but sufficient signal for degradation 

than poly-ubiquitin chain formation. Known SOCS3 substrates from in vitro investigations have been 

reviewed previously [47]. Sialic acid-binding Ig-like lectin 7 (SIGLEC 7); Janus kinase 1 (JAK1); sialic acid-

binding Ig-like lectin 3 (SIGLEC 3); focal adhesion kinase 1 (FAK1); insulin receptor substrate 1/2 (IRS1/2); 

granulocyte colony-stimulating factor receptor (G-CSFR); indoleamine 2,3-dioxygenase (IDO). Figure 1-11 

A adapted from [49] and B adapted from [48] with permission. 

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 
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Table 1-2 summarises the proteins known to interact with SOCS3 that are subsequently 

targeted for degradation (recently reviewed by our group [47]). Of these, six are known to 

be targeted for degradation by the proteasome (expression was stabilised in the presence of 

a proteasome inhibitor). Conversely, the Granulocyte Colony-Stimulating Factor Receptor 

(G-CSFR) provides an example of SOCS3-mediated receptor downregulation via 

ubiquitin-mediated lysosomal degradation [56].  
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Substrate targeted for 

proteasomal degradation 
Function of SOCS3 

Literature 

reference 

Indolaemine 2,3-dioxygenase 

(IDO) 

 

Targets IDO for proteasomal 

degradation in CD8+ dendritic cells 

(DCs). Induced murine tolerogenic DCs 

to become immunogenic. 

[87] 

Insulin Receptor Substrate 1/2 

(IRS-1/2) 

 

Targets IRS-1/2 for proteasomal 

degradation. Impaired insulin 

signalling. May contribute to insulin 

resistance and/or diabetes.   

[88, 89] 

Sialic Acid-Binding 

Immunoglobulin-Like-Lectin 

(Siglec)-7 

Targets Siglec-7 for proteasomal 

degradation. Inhibition of Siglec-7-

mediated Ba/F3 cell proliferation. 

[90] 

CD33 

 

Targets CD33 for proteasomal 

degradation. Loss of CD33 mediated 

inhibition of Ba/F3 cell proliferation. 

[91] 

Janus Kinase 1 (JAK1) Loss of the SOCS box enhanced the 

accumulation of P-JAK1. SOCS3 may 

target hyper-phosphorylated JAK1 for 

proteasomal degradation in murine 

embryonic stem cells.  

[92] 

Focal Adhesion Kinase 1 

(FAK1) 

FAK1 Y397 interacted with SOCS3 and 

was subsequently targeted for 

proteasomal degradation. Y397F 

mutagenesis stabilised FAK1 

expression in the presence of SOCS3. 

[93] 

Substrate targeted for 

lysosomal degradation 

 

 
 

Granulocyte Colony-Stimulating 

Factor Receptor (G-CSFR) 

Interacts with Y729 on G-CSFR. Lys 

632 ubiquitylation targets G-CSFR for 

lysosomal degradation. Receptor 

downregulation. Switch off G-CSFR 

signalling. 

[56] 

Table 1-2: SOCS3 substrates targeted for degradation. Table adapted from [47]. 
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1.3.9 The mechanism of SOCS3 turnover 

1.3.9.1 Proteasomal degradation 

The exact mechanisms responsible for SOCS3 protein turnover remain unknown. However 

it is likely that multiple routes of SOCS3 proteolysis exist and the contribution of each will 

vary between cell systems. Several studies have described the rapid turnover of SOCS3 via 

the 26S proteasome [94-96].  As a polyubiquitylated substrate, SOCS3 has a short 

biological half-life of ~40-120 mins which is cell type dependent [97]. The use of 

pharmacological inhibitors of the proteasome such as MG132, LLnL and epoxomicin has 

been instrumental in establishing its important role in SOCS3 turnover.  

 

In 1999, Zhang and co-workers were the first to describe the stabilisation of the SOCS3 in 

the presence of a proteasome inhibitor [96]. A macrophage cell line (J774) was stimulated 

with IL-6 with or without the proteasome inhibitor LLnL over a 180 min time period to 

induce endogenous SOCS3 expression, SOCS3 protein levels increased between the 30 

and 180 min time points in the presence of LLnL. Conversely, in the control group, SOCS3 

expression peaked at the 60 min time point after which SOCS3 protein levels declined. 

However, as immunoblot analysis was conducted on SOCS3 IP samples and densitometry 

analysis was not performed, the significance of these data were not verified.    

 

Later in 2003, another study identified the proteasome as a major route of SOCS3 turnover 

in a murine pro-B cell line (Ba/F3) [95]. Sasaki and co-workers generated an N-terminally 

truncated SOCS3 mutant that was resistant to ubiquitylation and turnover at the 

proteasome. Specifically, Lys6 was shown to be critical for the recognition and 

degradation of SOCS3 at the proteasome. Furthermore, a C-terminally truncated SOCS3 

(lacking the SOCS box) that fails to bind components of the E3 ligase complex was also 

stabilised. The authors suggest that SOCS3 auto-ubiquitylation was responsible for the 

rapid turnover of this signalling molecule however the study failed to fully investigate the 

mechanism of SOCS3 ubiquitylation [95]. In vitro autoubiquitylation assays are relatively 

simple and assessing whether the SOCS box of the Lys6 mutant had the ability to interact 

with components of the E3 ligase complex would be informative. Finally, the authors did 

not consider the role of external E3 ligases that may regulate SOCS3 ubiquitylation and 

provide a therapeutic target for stabilising SOCS3. 
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1.3.9.2 Tyrosine phosphorylation regulates SOCS3 stability 

Haan et al demonstrated that phosphorylation of SOCS3 at Tyr
204 

and Tyr
221

 within the C-

terminal SOCS box region destabilised SOCS3 by targeting it for degradation via the 

proteasome [94]. In this study sodium pervanadate, a tyrosine phosphatase inhibitor, was 

employed to preserve the phosphorylation of SOCS3 at these two key Tyr residues. The 

authors demonstrated that activation of the receptor tyrosine kinase EGFR also triggered 

Tyr phosphorylation and down-regulation of SOCS3 to almost undetectable levels [94]. 

Conversely, the SOCS3
Y204F,Y221F

mutant was resistant to tyrosine phosphorylation which 

correlated with an increase in SOCS3 stability. In addition to this, a cycloheximide chase 

assay revealed that in the presence of sodium pervanadate, the half-life of WT SOCS3 was 

reduced from 8 hrs to 4 hrs suggesting tyrosine phosphorylation played a key role in 

regulating the stability of SOCS3 [94]. Subsequent experiments confirmed JAK1 and 

JAK2 could also mediate the phosphorylation of SOCS3 in vitro. Following this, a 

decrease in SOCS3 expression was observed however this was rescued in the presence of a 

proteasome inhibitor. The key finding of this paper was that phosphorylation of SOCS3 at 

Y204 and Y221 correlated with an inability of the SOCS box to interact with Elongin C (a 

component of the E3 ligase machinery) [94]. Consequently, SOCS3 was degraded at the 

proteasome.  

 

These data suggest that a therapeutic strategy to stabilise SOCS3 expression must ensure 

SOCS3 is still functional. As mentioned previously, SOCS3 provides a platform for the 

formation of the E3 ubiquitin ligase complex and targets substrates bound to the SH2 

domain for proteasomal degradation (Figure1-11). The SOCS3
Y204F,Y221F

mutant, though 

more stable than the WT, may not have the ability to target substrates for degradation (the 

authors failed to assess this) [94]. To date, 7 putative SOCS3 substrates have been 

identified (Table 1-2) however it is likely that many more substrates exist that are yet to be 

described. 

 

In 2003, Haan et al used a COS-7 overexpression system to show that JAK1 or JAK2 

catalysed the phosphorylation of SOCS3 [94]. The same group later reported that 

stimulation of mouse embryonic fibroblasts (MEFs), but not HEK293T cells, with IL6/s-

IL6R and MG132 induced and stabilised the expression of endogenous SOCS3 [98]. 

Though SOCS3 tyrosine phosphorylation was observed, this did not correlate with the 

kinetics of JAK activation nor did it require the association of SOCS3 with the gp130R 

[98]. This subsequent study confirmed that in MEF cells this was a JAK independent post 
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translational modification predominantly mediated by Src itself or a related Src family 

kinase [98]. Collectively these data support the differential regulation of SOCS3 stability 

in different cell types. This also highlights that it may be more informative to assess the 

mechanism of endogenous SOCS3 turnover as opposed to the use of an overexpression 

system where possible. 

 

1.3.9.3 Role of the SOCS3 PEST motif in determining stability 

In 1986, Rogers and co-workers performed a literature search with the aim of identifying 

sequence similarities between eukaryotic proteins which possess relatively short half-lives 

(less than 120 mins) [99]. This seminal work identified a common feature known as the 

PEST motif: a sequence rich in pro (P), glu (E), ser (S) and thr (T) residues. A PEST motif 

is also found in SOCS3, located within the SH2 domain at position 129-162 as depicted in 

Figure1-7. Interestingly, pulse chase experiments have revealed that deletion of the PEST 

motif (SOCS3ΔPEST) enhanced protein stability when compared to WT SOCS3 [100]. The 

subsequent deletion of the N-terminus, PEST motif and SOCS box region (
22-

185
SOCS3ΔPEST) further enhanced the stability of SOCS3 [100]. Moreover, 

pharmacological inhibition of the proteasome specifically stabilised the expression of 

SOCS3ΔPEST but not WT SOCS3 [100]. These data suggested that the proteasome was a 

major route of SOCS3 degradation in the absence of the PEST motif however full length 

WT SOCS3 was resistant to proteasome-mediated turnover and therefore must be degraded 

via an alternative route in HEK293T cells. Additionally, inhibition of caplain proteases and 

the lysosomal machinery had no obvious effect on WT SOCS3 stability in HEK293T cells 

and the authors failed to establish the mechanism of SOCS3 turnover in this cell system 

[100]. However, Haan et al previously confirmed that MG132-mediated proteasomal 

inhibition stabilised the expression of SOCS3 that was co-expressed with JAK1 in 

HEK293T cells [94]. As such, these data conflict with the Babon and co-workers 

observations [100]. 

 

1.3.9.4 Role of calpain proteases in determining SOCS3 stability  

The calpain proteases comprise a family of 14 related proteins [101]. Calpain proteases are 

Ca
2+

-dependent enzymes that rely on a nucleophilic Cys residue for proteolysis of target 

substrates [101]. The most well characterised members of this family are μ-calpain and m-

calpain that require μM and mM Ca
2+

 concentrations respectively for catalytic activity 

[102]. In 2015, Miyazaki and colleagues demonstrated that SOCS3 was degraded via μ-
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calpain proteolysis in human aortic endothelial cells (HAECs) [103]. The siRNA-mediated 

knockdown of endogenously expressed μ-calpain inhibitor calpastatin (CAST) resulted in a 

decrease in SOCS3 protein levels and a corresponding increase in STAT3 activation as 

measured by Tyr705 phosphorylation [103]. SOCS3 mRNA levels were unchanged 

confirming SOCS3 transcription was unaffected. Moreover, stimulation of the CAST-

depleted HAECs with a calpain inhibitor (ALLM) restored SOCS3 protein levels and 

reduced STAT3 activation [103]. These data confirmed that the calpain protease system 

could play a role in SOCS3 degradation in this cell type. Calpain inhibitor therapies are 

currently being developed by several groups [104] with potential applications in 

cardiovascular disease [105], traumatic brain injuries [106, 107] and cancer [101, 108] 

amongst others. However, calpain inhibitor therapies have failed to progress beyond pre-

clinical studies due to a lack of calpain isoform specificity [104, 109]. As such, a more 

targeted approach aimed at stabilising SOCS3 may be more productive.  

More recently, the regulation of SOCS3 turnover was shown to involve both the calpain 

and proteasomal degradation pathways [84]. Initially, endogenous SOCS3 was induced via 

LPS stimulation in RAW264 macrophage cells. The addition of a calpain inhibitor 

(calpeptin) or proteasome inhibitor (epoxomicin) each prolonged the half-life of 

endogenous SOCS3 by 1 hr and 1.3 hrs respectively [97]. Interestingly, inhibition of both 

pathways produced a synergistic 10-fold increase in the half-life of SOCS3 to ~9 hrs. 

These data confirmed the importance of two distinct degradation pathways regulating 

SOCS3 turnover in a monocytic cell line, and suggest that the evolution of functional 

redundancy between calpain and proteasomal pathways ensures that the temporal and tight 

regulation of SOCS3 stability is maintained. 

The same group have also utilised a modified, cell penetrable form of SOCS3 (CP-SOCS3) 

to show that SOCS3 dampened the inflammatory response in animal disease models [110]. 

CP-SOCS3 was modified to include a hydrophobic sequence that facilitated crossing of the 

plasma membrane phospholipid bilayer [110]. Subsequently, the CP-SOCS3 isoform was 

shown to exhibit an extended half-life of >6 hrs when compared to endogenous SOCS3 

with a half-life of 0.7 hrs [110]. The group proposed that the inclusion of this hydrophobic 

sequence at the N-terminus of SOCS3 repressed proteolysis of SOCS3 via the PEST motif-

calpain pathway, although this was not tested directly [110]. Interestingly, a follow up 

study in 2010 revealed that deletion of the C-terminal SOCS box region from CP-SOCS3 

also increased the half-life of the protein by >40-fold and that this was attributable to a loss 
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of proteasomal degradation [97]. Mapping the preferred sites of Lys ubiquitylation may 

provide further insight into the disparity in SOCS3 stability described. 

1.3.9.5 SOCS2 as a regulator of SOCS3 stability 

In 2005, Tannahill et al demonstrated that SOCS2 played a role in targeting SOCS3 for 

proteasomal degradation in a suspension B cell line (Ba/F3s) [111]. Overexpression of 

SOCS2 in these cells reduced SOCS3 protein levels and following cytokine stimulation the 

ability of SOCS3 to negatively regulate JAK/STAT signalling was diminished. 

Interestingly, an intact SOCS box on SOCS2, allowing the formation of the ECSSOCS2 E3 

ligase complex, was required for proteasomal degradation of SOCS3 [111].  

1.4 Epigenetic modulation of SOCS3 expression in disease 

Epigenetics describes a reversible change to the gene expression profile that is not a direct 

result of alterations to the DNA sequence [112]. Though epigenetic modifications provide 

an additional layer of regulation for gene expression, the aberrant epigenetic silencing of 

many genes is thought to play a major role in diseases such as cancer [112]. An emerging 

role for epigenetic regulation of SOCS3 expression has been documented in the literature.  

1.4.1 SOCS3 promoter hyper-methylation in cancer 

DNA methylation is an epigenetic modification in which a methyl group is added to the 5’ 

of a cytosine base that is adjacent to a guanine base (CpG motif) [112]. Interestingly, 

hypermethylation of CpG islands within the promoter region of SOCS3 has been described 

in many cancer cell lines including lung cancer [113], breast cancer [113], hepatocellular 

carcinoma [114] and adenocarcinoma [115]. SOCS3 hypermethylation was also described 

in a patient with cholangiocarcinoma (CCA) [116]. Isomoto and co-workers employed 

demethylating compounds, to cleave the methyl groups from the SOCS3 promoter region 

in a CCA cell line [116]. This successfully restored the expression of a functional SOCS3 

protein that exerted inhibition of STAT3 activation [116]. In the absence of SOCS3 

negative regulation, prolonged IL6-mediated JAK/STAT signalling drives the expression 

of anti-apoptopic and mitogenic gene profiles which contribute to tumour progression.  

Conversely, epigenetic silencing of SOCS1 and 2 were shown to play a role in some 

ovarian and breast cancers where SOCS3 expression was unaffected [117]. 
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1.4.2 SOCS3 promoter hyper-methylation in cardiovascular 

disease 

Following myocardial infarction (MI) or transient ischaemic attack (TIA), the coronary 

artery may be narrowed therefore restricting blood flow to the heart. Percutaneous 

coronary intervention is a revascularisation procedure which may involve stent implant 

into the narrowed blood vessel (section 1.1.2). However, mechanical injury occurs during 

this procedure causing the release of pro-inflammatory and mitogenic factors including 

tumour necrosis factor α (TNFα) and insulin growth factor 1 (IGF1) respectively. Gupta et 

al previously showed that stimulation of porcine coronary artery smooth muscle cells 

(PCASMCs) with tumour TNFα or IGF1 alone upregulated the expression of SOCS3 

[118]. Conversely, stimulation with both TNFα and IGF1 led to a decrease in SOCS3 

expression. Similarly, Dhar et al confirmed this response in human CASMCs and revealed 

that hyper-methylation of the SOCS3 promoter occurred in the TNFα+IGF1 treatment 

group only [119]. The DNA methyltransferase 1 enzyme was also shown to be 

significantly upregulated in this group facilitating the covalent attachment of methyl 

groups to CpG islands in the SOCS3 promoter [119]. Silencing SOCS3 expression in this 

instance contributes to disease progression as loss of JAK/STAT control in vascular 

smooth muscle cells (VSMCs) may drive neointimal lesion formation and re-narrow the 

blood vessels. 

 

1.4.3 Histone acetylation and deacetylation regulates 

transcription factor access to the SOCS3 promoter 

Histone acetylation involves the addition of a negatively charged acetyl group to the lysine 

residue(s) of positively charged histone proteins [120]. This action is catalysed by histone 

acetytransferase (HAT) enzymes that neutralise the positive charge of the histone [120]. As 

such, the neutralised histones possess a reduced affinity for the negatively charged DNA 

and therefore promote the formation of euchromatin. Euchromatin is the gene-rich, open 

form of chromatin that facilitates access to the promoter region by the machinery required 

to drive transcription [121]. 

 

A study conducted in RAW264 monocytic cells described the role of epigenetic 

modifications in driving SOCS3 expression following LPS exposure [122]. Initially, 

euchromatin formation at the SOCS3 promoter was driven by the acetylation of histone 3 
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and 4. Subsequently, c-Fos, c-Jun and STAT3 transcription factors gained access to the 

SOCS3 promoter region and so inducing the expression of endogenous SOCS3 [122]. In 

the absence of histone acetylation, the SOCS3 promoter would be inaccessible to 

transcription factors and RNA polymerase II due to the dense packaging of histones and 

DNA (heterochromatin structure). Thus, the tight regulation of the chromatin structure is 

important for the maintenance of the JAK/STAT-SOCS3 negative feedback loop to avoid 

the detrimental effects of hyper-activation [122]. 

 

Conversely, histone deacetylase (HDAC) enzymes reverse the action of HATs by cleaving 

the acetyl group from histones and so promote the silencing of genes by limiting 

transcription factor access to the promoter region. As such, HDAC inhibitors promote the 

transcriptionally active euchromatin state and may provide a useful therapy in the 

treatment of some cancers. Curcumin is derived from turmeric and was recently shown to 

be a potent inhibitor of HDAC activity [123]. A study conducted in human leukaemia cells 

revealed that knockdown of HDAC8 or curcumin treatment correlated with increased 

histone 3/4 acetylation and was associated with an increase in SOCS1 and SOCS3 

expression [123]. Moreover, primary cells derived from patient myeloproliferative tumours 

were cultured in vitro and treated with curcumin leading to the upregulation of SOCS3 

expression by more than 2 fold in 67% of these patient tumour cell samples. Sodium 

Butyrate [124] and Trichostatin A [125] were also previously shown to act via HDAC8 

inhibition  however as curcumin is a naturally occurring anti-oxidant found in tumeric 

spice it may therefore provide a well-tolerated anti-cancer therapy in man [126]. 
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1.5 Ubiquitylation 

1.5.1 Ubiquitylation is an ATP dependent process involving 

three discrete enzymes 

Ubiquitylation is a reversible post-translational modification (PTM) in which a ubiquitin 

moiety (8.5kDa) is covalently attached to a target Lys (K) residue on its substrate [127]. 

Ubiquitylation requires the sequential activity of three distinct enzymes referred to as the 

E1 (activating enzyme), E2 (conjugating enzyme) and an E3 (ligase enzyme) and has been 

reviewed recently [127]. Figure 1-12 illustrates the stepwise conjugation of ubiquitin to an 

acceptor Lys residue on target substrates. Initially, in the presence of ATP, a thioester bond 

is created between a cysteine residue (SH group exposed) located in the E1 active site and 

the C terminus of ubiquitin [127]. Following this, the ubiquitin moiety is transferred to a 

cysteine (thioester link) positioned in the active site of the E2 conjugating enzyme. The E3 

ligase then interacts with the substrate and E2 conjugating enzyme forming an E3 ligase 

complex. The E3 then catalyses the direct, or indirect, transfer of the ubiquitin molecule 

from the E2 to the ε-amino group of the Lys acceptor in doing so creating a covalent 

isopeptide bond. 

 

There are two E1 activating enzymes, 37 E2 conjugating enzymes and over 600 human E3 

ligase enzymes [127]. The E3 ligase is the specificity determining factor for substrate 

recognition ensuring protein ubiquitylation is a highly selective and tightly regulated 

process. There are three main families of E3 ubiquitin ligases that catalyse the attachment 

of ubiquitin to Lys. The Really Interesting New Gene (RING) domain E3s contain a RING 

domain that interacts with the E2-ubiquitin moiety [128]. The E3 then catalyses the 

transfer of ubiquitin from the E2 active site directly to the substrate acceptor Lys. Within 

this family, the E3s have been further sub-divided based on their structure. For example the 

Cullin RING E3 ligases require the interaction of a Cullin scaffold protein in addition to an 

F box protein that recruits the substrate. In contrast, Homology to the E6AP C Terminus 

(HECT) class of E3s transfer ubiquitin from the Cys residue of the bound E2 to a cysteine 

residue on the E3 itself before catalysing ubiquitin conjugation to the target Lys [128]. 

HECT E3 activity therefore involves two stages that may be described as indirect 

ubiquitylation. The most recent family to be described in the literature were the RBR E3s 

which includes the Parkin E3 [128]. This class of E3s were initially thought to be a sub-

class of the RING E3 family due to the presence of two distinct RING domain structures. 
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However, the RBR E3s contain a catalytic Cys residue that mediates the indirect transfect 

of ubiquitin to the substrates acceptor Lys i.e. functions similar to the HECT family.  

 

 

 

Figure 1-12 Ubiquitylation is a reversible modification that may regulate protein stability 

Initially the E1 enzyme activates ubiquitin (Ub), in a ATP dependent manner, transferring the Ub moiety to a 

cysteine residue located within the E1 enzyme. Ub is then transferred to the conjugating E2 enzyme which 

interacts with its cognate E3 ligase partner. The E3 ligase is the specificity determining factor that interacts 

with the appropriate substrate. The E3 ligase then catalyses the conjugation of Ub to the target Lys residue on 

the interacting substrate. Depending on the linkage type, the ubiquitylated substrate may be targeted for 

proteasomal or lysosomal degradation and the amino acids are recycled for cellular processes. Alternatively, 

de-ubiquitylase (DUB) enzymes may cleave the ubiquitin chains from the substrate and so reverse the action 

of the E3 ligase. DUBs may therefore stabilise the expression of a protein that has otherwise been targeted 

for degradation. The Ub molecules cleaved by the proteasome or DUB action are then recycled and available 

for ubiquitylation of substrates once again. Figure adapted from [129] with permission.  
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1.5.1 Deubiquitylation of substrates 

The human genome encodes around 100 deubiquitylase (DUB) enzymes that reverse the 

action of the E3 ubquitin ligases and may therefore promote substrate stabilisation or 

attenuate cell signalling events (Table 1-3) [130].  

 

DUB family 
Number of 

family members 
Mechanism 

Ubiquitin-Specific Proteases (USPs) 56 Cysteine protease 

Ubiquitin C-Terminal Hydrolases (UCHs) 4 Cysteine protease 

Ovarian Tumour Proteases (OTUs) 16 Cysteine protease 

Machado–Joseph disease domain 

(Josephins) 
4 Cysteine protease 

Monocyte Chemotactic Protein-Induced 

Protein (MCPIPs) 
7 Cysteine protease 

JJAB1/MPN/MOV34 (JAMMs) 12 Zn
2+

 metalloprotease 

Table 1-3: DUB families and the mechanism of catalysis 

 

DUBs hydrolyse the isopeptide bond between the last two ubiquitin molecules in the chain 

and so progressively reduce polyubiquitin chain length. There are six DUB families (Table 

1-3) described in the literature though DUB activity has not been confirmed for a small 

sub-set of predicted DUBs and the full complement of DUB substrates has not been 

elucidated. There are two mechanisms of DUB catalysis i) Cys proteases which involve a 

catalytic Cys residue in the active site and ii) Zn
2+

 metalloproteases that activate a water 

molecule to facilitate hydrolysis of the isopeptide bond [130]. A growing number of human 

diseases have been associated with the loss of DUB function, thereby reinforcing the 

importance of appropriately regulating ubiquitylation at the cellular level [131]. Singhal 

and co-workers provide a comprehensive review of DUB activity in human disease an 

example of which is the cylindromatosis (CYLD) protein [131]. CYLD is a known tumour 

suppressor that possesses DUB activity and is involved in the negative regulation of NF-

ᴋB signalling. Loss of CYLD activity was shown to play a role in the progression of skin 

cancer and highlights the significance of DUB activity in the body [131].    
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1.5.2 Ubiquitin chain arrangement 

There are 3 general arrangements of substrate ubiquitylation including mono-

ubiquitylation, multi-mono-ubiquitylation and poly-ubiquitylation (Figure 1-13). The 

ubiquitin chain conformation and linkage type determines the intracellular response to this 

modification.   

 

 

Figure 1-13: There are 3 main ubiquitylation arrangements: mono, multi-mono and poly 

Monoubiquitylation describes an event in which a single ubiquitin molecule is covalently attached to one 

substrate lysine residue for example histone HB2 is modified at lys120 only [132]. Similarly, the epidermal 

growth factor receptor (EGFR) provides an example of mono-multi-ubiquitylation in which several K 

residues on EGFR are modified by a single ubiquitin molecule [133]. Moreover, ubiquitin possesses 7 

internal K residues facilitating the formation of poly-ubiquitin chains at one or more lysine residues on the 

substrate surface. Figure modified from [127] with permission. 

Ubiquitin is small 76 amino acid protein which possesses 7 internal lysine residues (K6, 

K11, K27, K29, K33, K48 and K63) and so facilitates the formation of poly-ubiquitin 

chains [127].  This involves the formation of an isopeptide bond between Gly76 of the last 

ubiquitin in the chain and the ε-amino-group of any of the seven Lys residues on the next 

ubiquitin extending the chain. To date, Lys48- and Lys63-linked chains have been best 

characterised. 
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1.5.3 Lys48 polyubiquitin chains target substrates for 

degradation at the 26S proteasome 

In 1989, Chau and co-workers were the first to describe the degradation of a substrate that 

was conjugated specifically to Lys48-linked poly-ubiquitin chains [134]. It is now widely 

accepted that Lys48-linked chains target modified substrates for degradation, in an ATP 

dependent manner, at the 26S proteasome [127]. Expressed in both the nucleus and the 

cytoplasm, the 26S proteasome is a large (2000kDa) multi-subunit enzyme that contains 

two 19S regulatory subunits and a 20S catalytic subunit at the centre (Figure 1-14) [135].  

 

 

 

Figure 1-14: Assembly of the 26S proteasome 

The 26S proteasome is involved in the selective degradation of proteins conjugated to lys48-linked 

polyubiquitin chain(s). Two 19S regulatory subunits sandwich a central 20S catalytic subunit and promote 

the degradation of substrates in the presence of ATP. Figure reproduced from [135] with permission.  

 

The 19S regulatory domains initially recognise and bind to the poly-ubiquitin chain(s) 

conjugated to a protein substrate. The poly-ubiquitin chain is then removed and the 

substrate denatured to facilitate entry into the cylindrical 20S catalytic core.  Finally, the 

protein substrate is digested into small, peptide fragments (3-25 amino acids) that can no 

longer form a functional protein conformation, and which are released back into the 

nucleus or cytosol. In the cytosol, proteolytic enzymes then rapidly cleave the peptide 

fragments to provide an additional source of amino acids for the translation of nascent 

proteins [136]. It has been reported that Lys48-linked chains required at least 4 ubiquitin 

molecules in order to target a substrate to the proteasome for degradation [137]. In this 
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way, protein stability within the cell can be tightly regulated at the 26S proteasome by this 

Lys48-linkage-specific modification. However, more recently the literature has described 

the 26S proteasomal degradation of a mono-ubiquitylated substrate known as paired box 3 

protein (PAX3) [138]. Though this may be considered a rare event, it is likely that other 

mono-ubiquitylated substrates targeted for proteasomal degradation will emerge in the 

literature. It is also important to investigate the functional consequence of linkage specific 

ubiquitin modifications. One cannot assume an increase in Lys48-linked poly-

ubiquitylation will translate to a decrease in protein stability. 

 

More recently, the literature has suggested that substrates conjugated to non-Lys48 

polyubiquitin chains can also undergo some level of digestion at the 26S proteasome. Xu et 

al stimulated yeast cells with a proteasome inhibitor (MG132) for 0-2 hours and assessed 

the abundance of polyubiquitin linkages via mass spectrometry [139]. With the exception 

of Lys63 polyubiquitin chains, proteasomal inhibition resulted in the accumulation of all 

polyubiquitin linkage types (K6, K11, K27, K29, K33 and K48). Though the largest 

increase in relative abundance was observed for Lys48 polyubiquitin chains, these data 

provided evidence to support a role for proteasome-mediated degradation of other linkage 

types in a eukaryotic system [139]. 

 

1.5.4 Lys63 polyubquitin chains: non-proteolytic or 

proteolytic 

In contrast to Lys48-linked polyubiquitylation, Lys63-linked chains are generally 

associated with a non-proteolytic role within the cell including the regulation of  NF-κB 

signalling [140],  DNA damage repair [141] and immune responses within the cell [142]. It 

is argued that the structure of the Lys63-linked chains does not promote the recognition by 

or interaction with the 19S regulatory domain of the proteasome and therefore substrates 

are not targeted for degradation [143]. In addition, a study recently showed that Lys63-

linked chains interact with a complex involving the Endosomal Sorting Complex Required 

for Transport (ESCRT0) which inhibits binding to the proteasome and therefore protein 

degradation [144].  In this study, Lys48 polyubiquitin chains were shown to associate with 

members of the Rad23 protein family which subsequently promotes binding to the 

proteasome [144].  
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While Lys63-linked chains may not promote degradation via the 26S proteasome, there is 

evidence to suggest they target proteins for lysosomal degradation, as exemplified by the 

DJ-1 protein [145]. Though its function remains unknown, mutation of the DJ-1 gene is 

associated with early onset Parkinson’s Disease. Typically, misfolded isoforms of the DJ-1 

protein are targeted for proteasomal degradation to avoid aggregation of the misfolded 

protein [145]. However, in the presence of a proteasome inhibitor (MG132) the E3 ligase 

Parkin was shown to catalyse Lys63-linked polyubiquitylation of misfolded DJ-1 targeting 

the protein for an endosomal compartment called an aggresome. DJ-1 was then targeted for 

the lysosomal degradation pathway. The authors proposed that loss of the E3 ligase Parkin 

would promote the accumulation of misfolded protein aggregates and result in protein-

induced cellular dysfunction [145].  

 

Additionally, a study conducted in 2013 described the conjugation of mixed Lys48-Lys63 

polyubiquitin chains to the low density lipoprotein (LDL) receptor [146]. Interestingly, 

formation of this heterogenous ubiquitin chain was associated with both proteasome and 

lysosome-mediated degradation [146]. This may provide an example of functional 

redundancy to ensure the appropriate expression levels of a receptor that is involved in 

cholesterol metabolism and plays a role in diseases such as atherosclerosis [147].      

 

A recent review summarised the existing literature on how Lys63-linked ubiquitylation 

could regulate the activation of and crosstalk between various signalling pathways by 

recruiting proteins that contain ubiquitin-binding domains (UBDs) [148]. The Toll like 

receptor 4 (TLR4) and IL-1 pathways provide an excellent example for the role of Lys63-

linked ubiquitylation and in their review Chen et al proposed a working model for the 

activation of these pathways [148]. Following ligand activation, the adaptor protein 

MyD88 and Ser/Thr kinases IRAK1 and IRAK4 dock at the intracellular domain of the IL-

1 or TLR4. An E3 ligase called TRAF6 is subsequently recruited and activated by the 

ser/thr kinases and an accessory protein TIFA. TRAF6 then catalysed the conjugation of 

Lys63-linked ubiquitin chains to itself (auto-ubiquitylation) and two additional signalling 

molecules IRAK1 and NEMO. Consequently, TAB2 and TAB3 kinases were recruited via 

an intrinsic ubiquitin binding domain resulting in the downstream activation of JNK and 

p38 MAPK pathways. Thus the authors propose a model whereby Lys63-polyubiquitin 

chains allow the signalling components involved in this the pathway to be in close enough 

proximity to drive the activation of the JNK and p38 downstream effectors [148].   
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1.5.5 The N-terminal α-amino group of a protein may be 

ubiquitylated 

Interestingly, N-terminal ubiquitylation of substrates at non-Lys acceptor sites has been 

described [149]. A study conducted in 1998 revealed that N-terminal ubiquitylation of 

MyoD, a protein involved in muscle development, regulated its stability and that mutation 

of all potential Lys acceptors had no effect on MyoD turnover when the N-terminus of the 

protein was available [150]. However, the insertion of a MYC epitope- tag at the N-

terminus of the protein appeared to inhibit proteasomal degradation [150]. Thus, 

investigating the ubiquitylation status of substrates is complex, may be context dependent, 

and it is possible that under different experimental conditions the pattern and preferential 

site(s) for ubiquitin conjugation may vary.  

 

Within the field of cancer, pharmacological inhibitors targeting different effectors within 

the ubiquitin cascade (E1, E2, E3 or DUBs) have been developed [151]. However, similar 

to proteasome inhibitors, one of the major disadvantages of this strategy is the inability to 

selectively inhibit the ubiquitin-proteasome system (UPS) in tumour cells only [151].  

1.5.6 Ubiquitin-like proteins (UBLs) 

Ubiquitin-like proteins (UBLs) are so called due their structural arrangement involving the 

presence of the “β-grasp” ubiquitin fold [152]. Similar to ubiquitin, most UBLs require 

activation in order to modify a substrate and involve the sequential activity of specific 

enzyme cascades. Neddylation and SUMOylation represent two of the best characterised 

UBL modifications in the literature and Table 1-4 outlines the sequence similarity shared 

with ubiquitin [152].  
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Ubiquitin/Ubiquitin-

like protein 

Sequence identity 

with ubiquitin (%) 
Role 

Ubiquitin 100 
Target substrate for degradation, DNA 

damage response, cell signalling. 

NEDD8 58 
Activation of cullin-RING E3 ubiquitin 

ligases 

SUMO-1 14 Protein-protein interactions, subcellular 

localisation, compete for Lys with 

Ubiquitin 

SUMO-2 13 

SUMO-3 13 

Table 1-4: The contrasting roles of ubiquitin-like proteins (UBLs) and their sequence homology to 

ubiquitin. Table adapted from [152]. 

 

1.5.6.1 SUMOylation  

Similar to ubiquitylation, SUMOylation is a PTM catalysed by specific E1-E3 enzymes, in 

which an 11kDa small ubiquitin-like modifier (SUMO) group is covalently attached to an 

acceptor Lys on target proteins [153]. There are three isoforms of SUMO: SUMO-1, 

SUMO-2 and SUMO-3 however SUMO-1 does not participate in polySUMO chain 

formation [154]. In contrast to ubiquitylation, SUMOylation is more specific and requires 

the E2 SUMO-conjugating enzyme Ubc9 to recognise the consensus motif (Ψ-K-X-E/D 

where Ψ is any hydrophobic residue) on substrates[153]. SUMOylation confers a diverse 

range of functions on target proteins, including altering substrate activity, cellular 

localisation, protein-protein interaction profile or increasing substrate expression resulting 

from the blocking of ubiquitination [155].  

 

SUMOylation was first observed in 1996 when investigators described a modified form of 

the RanGAP1 protein [156]. RanGAP1 associates with the nucleopore complex (NPC) that 

facilitates the import and export of proteins from the cytoplasm to the nucleus and vice 

versa. Unmodified RanGAP1 localised to the cytoplasm however following SUMOylation, 

and a 20kDa increase in molecular weight, the SUMO-RanGAP1 isoform was found to 

associate with the NPC [156]. This was the first evidence to suggest SUMOylation could 

promote protein-protein interactions and so alter the cellular localisation of a substrate. 

Accordingly, SUMOylation provides an important layer of regulation for protein stability 

and activity as evidenced by the contribution of SUMOylation to pathologies such as 
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Alzhiemer’s disease [157], cancer [158], Huntington’s disease [159] and more recently 

heart failure [160].  

 

1.5.6.2 NEDDylation 

NEDDylation is a PTM in which the neural precursor cell expressed developmentally 

downregulated protein 8 (NEDD8) UBL is covalently attached to a lysine acceptor on its 

substrate [161]. Similar to ubiquitylation and SUMOylation, NEDDylation is achieved 

through the sequential action of specific E1 activating, E2 conjugating and E3 ligase 

enzymes. NEDDylation of cullin is essential for the activation of cullin-RING E3 ubiquitin 

ligases and therefore provides an additional layer of regulation to the ubiquitin system 

[162, 163]. However Cys protease deNEDDylation enzymes have been described and 

therefore regulate the NEDDylation of status of substrates within the cell.  

 

Inhibition of the NEDDylation process has been investigated as an anti-cancer therapy. In 

2009, Soucy and co-workers characterised a pharmacological inhibitor of the E1 

Neddylation Activation Enzyme (NAE) known as MLN4924 [164]. This small molecule 

inhibitor shared structural similarities to AMP and was shown to occupy the nucleotide 

binding domain of NEA. Accordingly, the ATP-dependent activation of NEDD8 by NEA 

is not possible thereby blocking the NEDDylation of substrates. Unlike the global 

proteasome inhibitor bortezomib, treatment of cells with MLN4924 in vitro stabilised the 

expression of a smaller collection of proteins that are targeted for proteasomal degradation 

i.e. substrates of the cullin-RING E3 ligase family [164]. Pre-clinical studies have 

suggested that MLN4924 induced apoptosis may be a useful tool for the treatment liver 

cancer [165], urothelial carcinoma [166] and NF-ᴋB–dependent lymphomas [167]. Studies 

to investigate the role of NEDDylation for non-cullin-RING E3 ligase substrates are 

currently underway and may reveal an additional layer of regulation for cell signalling 

pathways [161].  

 

1.5.7 Identifying putative sites of ubiquitylation 

 At present, no known consensus sequence for ubiquitylation has been described and 

therefore predicting sites of ubiquitylation can prove challenging. Protein conformation 

may also be a consideration when predicting sites of ubiquitylation, if the Lys acceptor is 

not exposed on the protein surface it is unlikely that the E3 ligase machinery could gain 

access. It is however possible to map PTMs such as ubiquitylation via liquid 
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chromatography mass spectrometery (LC-MS) analysis [168]. Previously, the isopeptide 

bond was formed between the C-terminal (Gly76) of ubiquitin and the ε-amino group of 

the target Lys [168]. Prior to LC-MS analysis, protein samples are digested with trypsin 

cleaving protein-protein interactions and creating shorter peptide fragments. However, as 

ubiquitin is cleaved from the Lys, a Glycine doublet (Gly
75

-Gly
76

) remains on the acceptor 

Lys. Identification of this Glycine doublet (2*57.02=~114 Da) on the digested peptide(s) 

facilitates the mapping of ubiquitylation sites [127]. More detailed analysis of substrate 

ubiquitylation can be achieved using the absolute quantification of ubiquitin (Ub-AQUA) 

method following trypsin digestion [169]. A set of isotope-labelled standard peptides are 

employed in order to measure the abundance of unbranched versus branched ubiquitin 

chains and therefore informs the investigators on ubiquitin chain arrangement [170]. Due 

to improved peptide standards that represent all ubiquitin-linkage types (K6, K11, K27, 

K29, K33, K48 and K63) it is also possible to determine the linkage type of polyubiquitin 

chains via this method [169]. 

 

1.6 SOCS3 in the vasculature 

1.6.1 JAK/STAT signalling and NIH. 

JAKs are critical modulators of proliferation in VSMCs [171]. Interestingly, in a rat model 

of carotid artery balloon injury, JAK2 and STAT3 were upregulated and constitutively 

activated (phosphorylated) in the injured blood vessel 7 days following surgery [172]. The 

investigators demonstrated that injured blood vessels stimulated with angiotensin II 

(AngII) ex vivo enhanced JAK2/STAT3 upregulation and promoted VSMC proliferation 

contributing to NIH [172]. This provides a rationale that SOCS3 mediated inhibition of 

JAK, in addition to the dampening of inflammatory infiltrate to the stented vessel, may 

attenuate restenosis and the prevalence of NIH. 

 

1.6.2 SOCS3 and a role for endothelial barrier function? 

At the vascular endothelium, IL6 acts as a pro-inflammatory cytokine [37, 173, 174] . The 

integrity of the vascular endothelium (VE) is key for the prevention of thrombosis in 

addition to providing a barrier to injury following PCI or vein graft procedures [20, 175]. 

SOCS3 functions as part of a negative feedback loop for signalling through the JAK/STAT 
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pathway at the IL6/gp130 receptor complex (Figure 1-6). However, following mechanical 

injury, the VE may switch to a ‘dysfunctional’ phenotype with a diminished contractile 

capacity, promoting a smouldering pro-inflammatory environment and increasing the risk 

of thrombus formation [176].  

 

In primary endothelial cells derived from human vein (human umbilical vein endothelial 

cells; HUVEC) or arterial (human aortic endothelial cells; HAECs) tissue, SOCS3 has 

been shown to be induced via an alternative JAK-STAT-independent mechanism involving 

cyclic AMP (cAMP)[177]. Forskolin (Fsk) is an activator of adenylyl cyclase which 

catalyses the synthesis of the second messenger  3',5'-cyclic adenosine monophosphate or 

“cyclic AMP”(cAMP)[178]. Stimulation of human ECs with Fsk, resulted in a transient 

increase in intracellular stores of cAMP that was associated with an increase in SOCS3 

expression and a decrease in IL6- and leptin-mediated activation of STAT3 [177]. 

Interestingly, this cAMP-mediated induction of SOCS3 required a protein known as 

EPAC-1 (exchange protein directly activated by cAMP-1). EPAC-1 is a guanine nucleotide 

exchange factor (GEF) involved in the activation of Rap1 and Rap2 small GTPases and 

whose activation is associated with improved endothelial barrier function [179]. As such, 

Sands and co-workers proposed a unique cAMP/Epac/SOCS3 pathway may be involved in 

maintaining the integrity of the vascular endothelium in addition reducing endothelial 

inflammation often associated with disease [177].   

 

1.6.3 SOCS expression in atherosclerosis 

As discussed previously in section 1.1.1, atherosclerosis is a chronic inflammatory disease 

often manifesting in the coronary artery and is a result of atheromatous plaque formation 

within the intimal layer of the blood vessel [6]. Comprised of a lipid core surrounded by 

infiltrating leukocytes, VSMC cells and an outer fibrous cap, this thickening process 

reduces the lumen diameter, impeding blood flow and therefore oxygen supply to the heart 

as seen in NIH (Figure 1-2). 

 

The vulnerable shoulder region of the atherosclerotic plaque is located either side of the 

lipid core and is the site of rupture in ~66% of cases [180]. In 2009, Ortiz-Munoz and co-

workers performed immunofluorescence visualisation of SOCS1 and SOCS3 in human 

atherosclerotic plaque tissue. This study revealed that both SOCS1 and SOCS3 were 

significantly upregulated in the shoulder region when compared to the fibrous cap 
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surrounding the plaque [181]. Of note, SOCS1 and SOCS3 co-localised with cell specific 

markers for VSMCs and macrophages indicating the increase in SOCS expression was cell 

specific. Additionally, overexpression of SOCS3 in VSMCs was shown to attenuate the 

proliferative effects of IL6, LDL and foetal calf serum (FCS) exposure in vitro. 

Conversely, a significant increase in VSMC proliferative capacity was observed in controls 

where SOCS3 was not overexpressed [181]. Collectively, these data suggested that SOCS3 

may serve as a negative regulator for VSMC activation and therefore have a protective role 

against atherogenesis.  

 

Mice in which the apolipoprotein E gene is deleted (apoE
-/-

) display hypercholesterolaemia 

and spontaneously develop atherosclerosis on a normal chow diet [10]. As such, the apoE
-/-

 

strain provides a useful experimental model of atherosclerosis. Ortiz-Munoz and 

colleagues knocked down SOCS3 expression (siRNA delivery using PEI) in the 

vasculature of apoE
-/-

 mice that were maintained on an atherogenic diet for 5 weeks [181]. 

This resulted in a significant reduction in SOCS3 protein expression in the aorta coupled 

with an increase in atherosclerotic lesion size when compared to control groups. Moreover, 

SOCS3 depletion was associated with an increase in VSMCs, macrophages and CD4
+
 T-

lymphocytes present in the plaque, indicative of the contribution of SOCS3 in regulating 

the proliferation/migration of VSMCs and recruitment of pro-inflammatory cells. Based on 

these observations, stabilising SOCS3 expression in immune cells may suppress the 

leukocyte infiltration to sites of NIH as seen in murine atherosclerotic plaques where 

SOCS3 was overexpressed [181].  

 

As mentioned previously, increased protein levels of both SOCS1 and SOCS3 were 

detected in VSMCs and macrophages located in the inflammatory shoulder region of 

human plaques [181]. Accordingly, the role of SOCS1 has also been investigated murine 

models of atherosclerosis [182, 183]. Gene delivery of SOCS1 reduced the size and 

enhanced the stability of atherosclerotic plaques in older mice [183]. The overexpression 

of SOCS1 in a macrophage cell line (RAW 264.7) in vitro promoted M2 macrophage 

polarisation which is associated with an anti-inflammatory role [183]. In addition, 

accelerated progression of atherosclerosis and an increase in M1 (pro-inflammatory) 

macrophages was observed in ApoE KO mice that were also deficient in SOCS1 [182]. 

Together these data provide the rational for athero-protective SOCS1 gene therapies which 

have an obvious effect on not only disease progression but the polarisation of infiltrating 

macrophages. However, caution must be warranted with gene therapies as overexpression 



Introduction                                                                                                   46 
 

 
 

of SOCS3 in T cells, for example,  reduced IL-17 production and enhanced the progression 

of atherosclerosis [184]. As such, the role of SOCS proteins appears to be cell type 

dependent with regards atherogenesis. 

 

 

1.6.4 Reducing inflammatory infiltrate to the intimal layer 
reduced neointimal lesion growth  

Following revascularisation procedures such as stenting, mechanical injury to the arterial 

wall triggers the progression of neointimal lesions and promotes re-narrowing of the 

modified vessel (section 1.1.2). Consequently, endothelial denudation may expose tissue 

factors (laminin, collagen, fibronectin and von Willebrand factor) to cells in the circulation 

and so promotes the adherence of platelets to the site of injury [20]. This then leads to the 

recruitment of leukocytes, which is mediated via the interaction of P-selectin, expressed on 

the platelet cell surface, and P-selectin glycoprotein ligand 1 (PSGL) on the leukocyte 

[185]. 

 

A study conducted by Phillips et al investigated the effects of blocking leukocyte 

recruitment in a murine model of NIH [186]. A wire filament was inserted into the carotid 

artery of apoE
-/-

 mice inducing mechanical injury, endothelial denudation and promoting 

NIH. Monoclonal antibodies (mAbs) specific for either platelet adhesion molecule P-

selectin or its leukocyte-localised ligand PSGL were then injected intraperitoneally in an 

attempt to physically block this cell-cell interaction. Strikingly, the neointimal lesion size 

was reduced by 50% and 80% in the 100 μg and 200 μg P-selectin mAb treatment groups 

respectively [186]. Similarly, the administration of 100 μg PSGL mAb reduced lesion size 

by 55% when compared to controls [186]. Notably, the macrophage content within the 

lesion was significantly reduced supporting the role of inflammatory cell infiltration in the 

progression of NIH.  

 

However a subsequent review of this work raised concerns over mAb persistence in the 

circulation [185]. Re-endothelialisation of the denuded artery may be a slow process and 

continue 3-4 weeks following initial injury. Shah et al argued that if the mAb does not 

persist for the duration of re-endothelialisation, new platelets may be synthesised providing 

an additional supply of P-selectins and therefore facilitating leukocyte diapedesis (rolling 

along blood vessel wall before migration to the intimal layer) [185].   

 



Introduction                                                                                                   47 
 

 
 

In addition, Resistin is a pro-inflammatory cytokine that can drive a STAT3-dependent 

increase in SOCS3 expression for up to 18 hrs following stimulation of human ECs in vitro 

[187]. Interestingly, knockdown of the SOCS3 gene in these cells was associated with a 

decrease in expression of cell adhesion molecules such as P-selectin. One concern over 

therapies that would promote stabilisation of SOCS3 to limit NIH or inflammatory disease 

is that if SOCS3 is upregulated in ECs, then P-selectin expression may be elevated 

promoting rolling adhesion of leukocytes (therefore a pro-inflammatory environment) and 

thrombus formation. However this was just one report in the literature therefore further 

investigation is required. 

 

1.6.5 SOCS3 limits pathological angiogenesis 

SOCS3 was recently shown to regulate pathological angiogenesis in various murine 

models of disease including retinopathy, lung carcinoma and skin melanomas [188]. In the 

retinopathy models, conditional knockout of SOCS3 specifically in vascular ECs revealed 

a significant increase in pathological retinal angiogenesis and therefore disease progression 

[188]. Interestingly, physiological angiogenesis and repair of the retinal blood vessel wall 

was unaffected by the loss of SOCS3 [188]. More recently, the Retinoic-acid-receptor–

related orphan receptor alpha (RORα) was shown to drive pathological retinal angiogenesis 

[189]. RORα is a transcription factor and using chromatin immunoprecipitation (ChIP) was 

shown to bind the SOCS3 promoter region to effectively silence SOCS3 transcription. 

SOCS3 was shown to protect against this RORα–mediated retinopathy and dampen the 

associated pro-inflammatory response [189]. 

 

Similarly, in mice injected with melanoma or lung carcinoma cells, loss of SOCS3 in the 

vasculature was associated with an increase in neovascularisation, tumour size and 

therefore tumour aggression [188]. In a murine model of small cell lung cancer, adenoviral 

delivery of the SOCS3 gene was also shown to reduce tumour progression and the 

neovascularisation required to support tumour growth [190]. The protective role of SOCS3 

involved inhibition of the AKT pathway specifically. This led to the downregulation of 

HIF1α, a subunit of the HIF1 transcription factor known to drive mitogenic gene profiles 

and angiogenesis that promote tumourigenesis [190]. Together these data indicate that 

SOCS3 has a specific role in limiting pathological angiogenesis. Hence it may be deduced 

that strategies designed to stabilise SOCS3 expression may have a therapeutic benefit in 

the context of pathological angiogenesis. 
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However, loss of SOCS3 in the vasculature promotes endothelial cell proliferation required 

for the sprouting of new vessels [188]. In vitro, knockdown of SOCS3 in human retinal 

ECs and mouse ECs was achieved using siRNA. Following this, cells were then stimulated 

with insulin growth factor -1 (IGF-1) and tumour necrosis factor-α (TNFα) driving a 

significant increase in proliferation which correlated with an increase in STAT3 activation 

[188]. In the context of SOCS3-mediated inhibition of NIH, the suppression of vessel re-

endothelialisation would be detrimental and may promote thrombosis. As such, it would be 

advantageous for therapies that stabilise SOCS3 expression to selectively inhibit VSMC 

proliferation and migration.    

 

1.7 Migration and proliferation of VSMCs 

1.7.1 SOCS3 mediated inhibition of focal adhesion kinase 1 

(FAK1) prevents cellular migration. 

Integrin activation, through interaction with extracellular matrix (ECM) components or 

neighbouring cells, induces integrin clustering at the plasma membrane, formation of focal 

adhesions and recruitment of FAK1 [191]. Subsequently, Tyr phosphorylation and 

therefore activation of FAK1 initiates signal transduction pathways promoting cellular 

migration and proliferation. However, it was recently shown that SOCS3 interacts with P-

Y379 on FAK1 thereby targeting it for proteasome-mediated degradation [93, 114]. This 

phospho-Tyr provides a docking site for Src-kinase and switches on the mitogen-activated 

protein kinase (MAPK) pathway (Figure 1-10). Activation of the MAPK pathway may also 

drive VSMC proliferation and is therefore a therapeutic target for NIH [192, 193]. Liu and 

co-workers stimulated 3T3 fibroblasts with platelet-derived growth factor (PDGF) and 

fibronectin (FN) activating the cell surface PDGFR and integrins respectively [93]. 

Interestingly, immunoprecipitation experiments revealed FAK1 and SOCS3 interacted 

exclusively following stimulation in vitro.  Moreover, kinase assays confirmed this 

interaction inhibits FAK activity and targets both proteins to the proteasome via 

polyubiquitylation. Additionally, in a hepatocellular carcinoma cell line, SOCS3 

methylation induced epigenetic silencing of the SOCS3 gene, therefore inhibition of FAK1 

was lost, enhancing cell migration and proliferation, a key feature of cancer cells [114].  
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1.7.2 SOCS3-mediated downregulation of matrix 

metalloproteinases (MMPs) limits cell migration 

To date, 23 members of the matrix metalloproteinase (MMP) family have been described 

[194]. The MMPs are a family of Zn
2+

-dependent endopeptidases that digest specific 

components of the ECM. MMP-2 and MMP-9 are STAT3-responsive genes [195] that can 

degrade ECM and thereby facilitate cellular migration [196, 197]. Interestingly, in situ 

analyses of human melanomas have revealed that a reduction in SOCS3 expression was 

associated with upregulation of MMP-2 and MMP-9 in addition to poor patient outcome 

[198]. Expression of these MMPs facilitated cancer cell migration and tumour invasion. 

Moreover, loss of SOCS3 has been shown to enhance the proliferation, migration and 

invasive potential of hepatocellular carcinoma (HCC) cells [199]. siRNA-mediated 

knockdown of SOCS3 in a HCC cell line has been shown to result in the up-regulation of 

MMP-2/9 expression and increased cell proliferation, migration and invasion in a panel of 

in vitro assays [199]. A similar observation was made in an in vivo model of HCC whereby 

the loss of SOCS3 enhanced tumour progression [199]. Moreover, since treatment with a 

STAT3 inhibitor reduced tumour progression in vivo, the authors proposed that the 

JAK/STAT-SOCS3 negative feedback loop was key for HCC tumour suppression [199].  

 

Similarly, SOCS3 may play a key role in limiting cell migration that contributes to other 

inflammatory pathologies. Gao and colleagues investigated the JAK inhibitor tofacitinib as 

a therapy for the chronic inflammatory disease psoriatic arthritis (PsA) [200]. Treatment of 

primary PsA synovial fibroblasts with tofacitinib in vitro resulted in a significant reduction 

in STAT3 activation and MMP-2/9 expression. Importantly, this reduction in MMP 

secretion was associated with a decrease in cellular migration which otherwise contributes 

to the disease progression [200]. 

 

More specific to the cardiovascular system, MMP-2 was shown to be constitutively 

expressed in VSMCs, though a further increase in expression may be driven by stressors 

such as arterial wall stretch [201]. Similarly, MMP-9, though not constitutively expressed, 

has been shown to be inducible in a rat carotid artery injury model [202]. MMPs are 

thought to degrade the basement membrane of VSMCs facilitating the “phenotypic switch” 

(discussed in section 1.7.3)  required for migration during NIH lesion formation [203]. 

Southgate et al employed a pig model of NIH (autologous saphenous vein into carotid 

artery interposition grafting) to investigate the role of MMPs during neointimal thickening 
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[204]. Investigators revealed that MMP-2 and MMP-9 expression was elevated at 7 and 28 

days post vein graft however these levels had returned to baseline at 168 days post graft. 

The authors noted that this expression profile coincided with the timeframe of neointimal 

thickening and the proliferation of VSMCs, suggesting that MMPs may provide a 

therapeutic target of interest for NIH [204]. Tissue inhibitors of metalloproteinases 

(TIMPs) are highly specific, endogenous inhibitors of MMPs and provide a candidate for 

gene therapy [203]. A study conducted by the Baker group revealed that overexpression of 

the TIMP3 gene could reduce NI lesion progression in a pig vein graft model [205]. 

Following the success of this investigation, the authors stated that they were seeking 

approval for adenovirus-TIMP3 clinical trials in man [205]. 

 

Furthermore, it has been reported that VSMC and macrophage secretion of MMPs 

promotes the hyper-degradation of ECM components in atherosclerotic lesions and 

contributes to plaque rupture [206]. As such, therapies that limit MMP-2/9 expression or 

activity may attenuate VSMC migration and vessel remodelling that contributes to NIH 

and atheromatous plaque rupture.  

 

1.7.3 IL-6 signalling and cyclin D1 expression in VSMCs 

Following vessel injury, the release of mitogenic growth factors and pro-inflammatory 

cytokines drives the VSMC phenotypic switch [207]. In a healthy blood vessel, VSMCs 

exist in the quiescent phase and function to maintain vascular tone [207]. Exogenous 

stimulation of VSMCs by mitogenic factors alters the gene expression profile resulting in a 

so-called “synthetic phenotype” which is characterised by the acquisition of capacities to 

proliferate and migrate (Figure 1-15).  

 

IL-6 is a pro-inflammatory cytokine secreted by macrophages (innate immune system), T 

cells (adaptive immune system), VSMCs [208] and ECs [209]. Importantly, single 

nucleotide polymorphism (SNP) analysis of the IL-6R gene has revealed a subclass of 

variants associated with a higher circulating level of the cytokine ligand [210]. Moreover, 

this increase in plasma IL-6 was shown to correlate with an increased risk of developing 

CHD. IL-6 is thought to play a central role in driving VSMC migration following arterial 

vessel injury. In a study conducted by Liu and colleagues, SMCs derived from rat thoracic 

aortas were stimulated with the receptor tyrosine kinase ligand (PDGF-BB) in vitro [211]. 

This led to the induction of IL-6 expression and promoted SMC cell migration. 
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Interestingly, administration of an IL-6-neutralising antibody was able to suppress cell 

migration, thereby confirming a role for the cytokine in VSMC motility [211].    

 

 

 

 

 

 

Figure 1-15: The VSMC phenotypic switch 

VSMCs normally exist in the resting G0 phase of the cell cycle and exhibit quiescence. This is referred to as 

the differentiated “contractile” phenotype. Following vessel wall injury, mitogenic growth factors and 

cytokines are secreted locally by both macrophage and VSMCs. This results in a switch to the synthetic 

phenotype permitting exit from the resting G0 phase and cell proliferation and migration to the intimal layer 

of the blood vessel proceeds. It is this aberrant proliferation and migration that contributes to pathologies 

such as neointimal thickening following PCI procedures. 

A subsequent study mirrored these findings, showing that in vitro stimulation of VSMCs 

with increasing concentrations of IL-6 produced a dose-dependent increase in cell 

migration [212]. Active gp130 recruits STAT3 and following STAT3 activation, 

dimerisation and translocation to the nucleus an increase in cyclin D1 expression was 
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observed. Cyclin D1 is associated with cell growth and proliferation by promoting entry to 

the S-phase of the cell cycle [213]. Interestingly, knockdown of cyclin D1 was shown to 

ablate VSMC motility and therefore confirmed as a causative gene in VSMC migration 

[212]. Moreover, an in vivo rat model of balloon injury to the carotid artery revealed this 

increase in STAT3 activation and cyclin D1 expression correlated with an increase in NIH 

lesion [212]. Conversely, adenovirus-mediated overexpression of dominant negative 

STAT3 or gp130 reduced cyclin D1 expression, SMC migration and importantly NIH 

lesion size [212].  

More recently, the JAK-STAT3 pathway was shown to play a role in driving the 

contractile to synthetic phenotypic switch in VSMCs [214]. VEGF stimulation of VSMCs 

induced STAT3 activation and inhibited the expression of contractile gene profiles [214]. 

Furthermore, siRNA mediated knockdown of STAT3 suppressed this phenotypic switch 

and maintained a contractile VSMC population [214]. As such, the IL6-JAK-STAT3 

pathway is a key regulator of VSMC activation and migration to the intimal region of the 

injured vessel wall. As described previously in section 1.3.1, SOCS3 is an important 

negative regulator of STAT3 signalling, and therefore enhancing SOCS3 stability may 

limit STAT3-driven VSMC proliferation and migration that is responsible, in part, for NIH 

and vessel stenosis. 

1.7.4 SOCS3 induction in the vasculature and downregulation 

in neointimal lesions 

Ortiz-Munoz et al have investigated the ability of SOCS3 to regulate JAK/STAT signalling 

in the vasculature [181]. This study reported that SOCS3 can be induced in VSMCs via 

stimulation with pro-inflammatory cytokines (IL6 and IFNγ), mitogenic growth factors 

such as IGF-1 and low density lipoproteins (LDLs) involved in the development of 

atherosclerotic plaques [181]. They also showed that SOCS3 overexpression in vitro could 

reduce the expression of pro-inflammatory molecules (Monocyte Chemoattractant Protein-

1; MCP-1 and Intercellular Adhesion Molecule 1; ICAM-1) by VSMCs [181]. Moreover, 

immune complex (IgG bound to antigen) stimulation of the FcγR has also been shown to 

enhance SOCS3 expression in monocytes (precursor of macrophages), in SMCs lining the 

kidney vasculature (mesangial cells) [215] and mouse VSMCs [181]. Interestingly, in 

vascular endothelial cells, cAMP has been shown to promote SOCS3 induction through a 

guanine nucleotide exchange factor Epac-1 [177]. Collectively, these data suggest that 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755091/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755091/
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approaches to increase and/or stabilise SOCS3 expression in the vasculature has the 

potential to reduce the localised inflammation and VSMC proliferation responsible for 

driving NIH in the injured vessel. 

 

A detailed characterisation of the nature of inflammatory response triggered by surgical 

procedures such as vein grafting, balloon angioplasty or stent implantation is currently 

lacking. However, one recent study revealed that SOCS3 expression was significantly 

reduced in a porcine model of NIH [118]. Yucatan mini-pigs were fed a high cholesterol 

diet over an 8 month period and at the 4 month time-point balloon angioplasty of the 

coronary artery was performed, thereby inducing a profound NIH [118]. 

Immunohistochemistry revealed a decrease in SOCS3 protein expression in the NIH lesion 

suggesting loss of this negative regulator promotes VSMC proliferation and migration to 

the expanding intimal layer [118].  

  

More recently, Xiang and colleagues have employed a rat model of vein grafting 

(autologous jugular vein-to-carotid-artery) to investigate the role of SOCS3 in NIH [216]. 

7 days post procedure, quantitative real-time PCR (qRTPCR) and immunoblot analysis of 

vein graft tissue confirmed both transcript (mRNA) and protein levels of inflammatory 

markers were significantly higher in the vein graft tissue compared to controls. 

Interestingly, activated STAT3 and SOCS3 were also elevated in the vein graft treatment 

group suggesting a role for the JAK/STAT3 pathway in vessel remodelling. Moreover, in 

vitro stimulation of VSMCs with the mitogenic growth factor PDGF-BB led to an increase 

in the expression of inflammatory markers including SOCS3 and STAT3 [216]. However, 

overexpression of SOCS3 (adenoviral delivery) resulted in a significant decrease in 

inflammatory markers expressed by the VSMCs following PDGF-BB stimulation. 

Collectively, these data support an anti-inflammatory role for SOCS3 in the vasculature. 

 

In the same study, adenoviral delivery of SOCS3, prior to vein grafting in vivo, 

significantly reduced neointimal lesion size [216]. Moreover, histological staining of the 

vein tissue for proliferating cell nuclear antigen (PCNA), a marker of proliferation, 

confirmed VSMC proliferation was reduced in the SOCS3 treatment group compared to 

controls. Accordingly, these data suggest therapies to enhance SOCS3 expression in the 

injured vessel may dampen the pathological inflammatory response and expansion of 

neointimal lesions that contribute to re-stenosis.  
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1.8 Hypothesis 

I hypothesise that stabilising the expression of SOCS3 in the vasculature will 

limit neointimal growth. 

 

Figure 1-16: Hypothesis:  stabilisation of SOCS3 expression by limiting turnover will limit neointimal 

growth 

SOCS3 expression is induced upon stimulation by pro-inflammatory cytokines, such as IL6 and IFNγ, or 

mitogenic growth factors. However, SOCS3 has a short biological half life and is rapidly turned over at the 

proteasome. We hypothesise that stabilising SOCS3 expression will inhibit proliferation of VSMCs via 

inhibition of the JAK/STAT pathway. Additionally, SOCS3 would target FAK1 for degradation at the 

proteasome and thus block VSMC migration from the media to the intima which contributes to NIH. Finally, 

SOCS3 would reduce expression of STAT3 responsive genes MMP2 and MMP9 involved in the degradation 

of ECM and the promotion of cell migration. Ultimately, enhancing SOCS3 expression would limit NIH 

following PCI or CABG procedures.   
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1.9 Aims 

There is an unmet clinical need for a therapy to reduce the incidence of NIH following 

CABG, balloon angioplasty and stent implant procedures. Currently available DESs, 

though effective at reducing VSMC proliferation and NIH, have an off-target effect of 

inhibiting re-endothelialisation of the injured vessel, thereby increasing the risk of further 

re-stenosis and thrombosis. The literature provides evidence in support of my hypothesis 

that strategies to stabilise the expression of SOCS3 in VSMC should limit NIH without 

interfering with re-endothelialisation of injured vessels. The aim of this PhD was to 

identify the mechanisms promoting the rapid turnover of SOCS3.  

 

Key aims were: 

1. To identify and investigate candidate residues as key regulators of SOCS3 

turnover at the proteasome.  

 

2. To develop a functional SOCS3 that is resistant to proteasomal degradation. 

 

3. To develop a tool to screen an E3 ligase library, using an siARRAY, to 

sequentially knockdown all known E3 ligases in the presence of a SOCS3-

luciferase fusion protein or endogenous SOCS3 in a high content imagine 

platform. 

 

4. To identify external E3 ligase or deubiquitylase (DUB) enzymes controlling 

SOCS3 turnover and identify the sites of SOCS3 ubiquitylation via LC-MS-MS 

analysis. 

 

5. To investigate SOCS3 protein expression within the various layers of a human 

blood vessel, specifically the human saphenous vein. 

 

6. Conduct preliminary functional investigations to assess the effect of lentivirus-

mediated SOCS3 overexpression on HSV SMC proliferation and migration in 

vitro. 
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2 Materials and Methods 

2.1 Materials 

 

Agilent Technologies, UK: 

XL1-Blue Competent Cells (cat. no. 200249). 

XL10-Gold Ultracompetent Cells (cat. no. 200315) 

QuikChange Lightening Site Directed Mutagenesis kit (cat. no. 210518) 

 

Applied Biosystems  

1x TaqMan® Universal Master Mix II no UNG (cat. no. 4440040) 

 

Bio-Rad Laboratories Ltd, UK: 

Precision Plus Protein
TM

 Kaleidoscope
TM

 Standards (cat. no. 161-0375) 

 

Carestream Health, UK:  

Medical X-ray Blue/MXBE Film (cat. no. 7710783) 

 

Cyagen, USA: 

Customised Lys-less lentivirus cDNA vector  

 

Fischer Scientific, UK: 

Opti-MEM® I Reduced Serum Media (cat. no. 11058021) 

Laemmli Sample Buffer (Bio-Rad Laboratories, 161-0737)  

NuPAGE® Sample Reducing Agent (cat. no. NP0004) 

NuPAGE® Novex® 10% Bis-Tris protein gel (cat. no. NP0301BOX) 

NuPAGE® MOPS SDS Running Buffer (20X) (cat. no.NP0001)  

GeneArt Gene Synthesis service produced the customised Lys-less cDNA insert 

GE Healthcare Life Sciences, UK: 

Amersham
TM

  Protran
TM

0.2 μm pore Nitrocellulose Membrane (cat. no. 10600001) 

 

 

 

http://www.thermofisher.com/order/catalog/product/NP0001
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Invitrogen
TM

, UK: 

Colloidal Blue staining kit (cat. no. LC6025)  

 

Merck Biosciences, UK: 

MG-132 (cat. no. 474790) 

Forskolin (cat. no. 344270) 

Perkin-Elmer Life Sciences, UK: 

Enhanced chemiluminescence (ECL) reagents (cat. no. NEL 104) 

 

Promega, USA: 

Wizard® Plus SV minipreps (cat. no. A1330) 

6 x Blue/Orange Loading Dye (cat. no. G1881) 

1kb DNA ladder (cat. no. G5711)  

100bp DNA ladder (cat. no. G2101)  

Dual-Luciferase® Reporter Assay System (cat. no. E1910) 

 

PromoCell, Germany: 

Smooth Muscle Cell Basal Medium 2 (Promocell, C-22262)  

Smooth Muscle Cell Medium 2 SupplementMix (Promocell, C-39267)  

Qiagen, UK: 

Endofree plasmid Maxi kit (cat. no. 12362) 

Polyfect Transfection reagent (Qiagen, 301105) 

 

Roche Applied Science, UK: 

Complete, EDTA-free protease inhibitor cocktail tablets (cat. no. 11836170001) 

 

Sigma-Aldrich, UK: 

Greiner CELLSTAR® white flat bottom 96 well plate (cat. no. 655083) 

Dulbecco's Modified Eagle's Medium (DMEM) (cat. no. D6046) 

Foetal bovine serum (FBS) (cat. no. F9665) 

L-glutamine (cat. no. G7513)  

Penicillin-Streptomycin solution (cat. no.  P0781) 

Dublecco’s Phosphate Buffered Saline (cat. no. D8537)  

1x Trypsin-EDTA solution (cat. no. T3924) 

Endothelial Cell Growth Medium (EBM-2) supplemented with EGM
TM

-2 Bulletkit (Lonza 
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Trypsin-EDTA solution (cat. no. 4299) 

Ampicillin (cat. no. A9393) 

Kanamycin (cat. no. K1377) 

Goat serum (cat. no. 9023) 

Donkey serum (cat. no. 9663) 

Paraformaldehyde (cat. no. 158127) 

Anti-FLAG M2 affinity gel (cat. no. A2220) 

Emetine (cat. no. E2375) 

Protein G-Sepharose 4B Fast Flow (cat. no. P3296) 

Sterile filtered cell culture water (cat. no. W3500) 

Tween – 20 (cat. no. P5927) 

30% (w/v) acrylamide/0.8% (w/v) bis-acrylamide (cat. no. A3699) 

Anti-mouse IgG (peroxidase-conjugated) (cat. no. A4416) 

Anti-rabbit IgG (peroxidase-conjugated) (cat. no. A6154) 

Anti-Goat IgG (peroxidase-conjugated) (cat. no. A5420) 

Soybean trypsin inhibitor (cat. no. T9003) 

Benzamidine (cat. no. 12072) 

Bovine serum albumin (cat. no. A7030) 

N, N, N’,N’-tetramethylethylenediamine (TEMED) (cat. no. T9281) 

Phenylmethylsulphonyl fluoride (PMSF) (cat. no. P7626) 

Puromycin (cat. no. P8833) 

 

VWR International Ltd, UK: 

Corning® 6 well flat bottomed cell culture plate (cat. no. 734-1599) 

Corning® 60mm cell culture dish (cat. no. 734-1699) 

Corning® 100mm cell culture dish (cat. no. 734-1815) 

 

Cell lines: 

WT (SOCS3+/+) and SOCS3-/- MEFs [88] provided by Prof. Akihiko Yoshimura (Kyushu 

University, Japan) were available as liquid nitrogen-frozen stocks. 

 

Human endothelial angiosarcoma (AS-M.5) [217] provided by Dr Vera Krump-

Konvalinkova V (Johannes Gutenberg University, Germany).  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Krump-Konvalinkova%20V%5BAuthor%5D&cauthor=true&cauthor_uid=14741847
http://www.ncbi.nlm.nih.gov/pubmed/?term=Krump-Konvalinkova%20V%5BAuthor%5D&cauthor=true&cauthor_uid=14741847
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2.2 Methods 

2.2.1 Cell Culture 

All cells were maintained in T150 cm flasks at 37°C in 95% (v/v) air/5% (v/v) CO2 in a 

humidified cell culture incubator and passaged at ~80-85% confluency. 

2.2.1.1 Culture of HEK293 and murine embryonic fibroblasts(MEFs) 

Human embryonic kidney (HEK) 293 cells, HEK  293 cells stably expressing SV40 large 

T antigen (HEK293T), and mouse embryonic fibroblasts (MEFs) were maintained in 

Dulbecco's Modified Eagle's Medium (DMEM) (Sigma®, D6046) supplemented with 10% 

(v/v) foetal bovine serum (FBS) (Sigma®, F9665), 1mM (v/v) L-glutamine (Sigma®, 

G7513) and 50U/ml (v/v) Penicillin-Streptomycin solution (Sigma®, P0781).Passage of 

cells was performed by washing a T150 cm flask with 2 mls tissue culture grade 

Dublecco’s Phosphate Buffered Saline (PBS) followed by incubation with 2 mls 

1xTrypsin-EDTA solution (Sigma®, T3924) for 3-4 mins at 37°C to allow detachment 

from the flask surface. Trypsinisation was inactivated by the addition of 8 mls fresh media 

and cells were pelleted by centrifugation (200g, 5 mins at room temperature). Supernatant 

was removed and the cell pellet was gently re-suspended in the appropriate volume of fresh 

media. Cells were split 1 in 20 into fresh T150 cm flasks at each passage. 

2.2.1.2 Culture of AS-M.5.5, HSVEC and HUVECs 

Human endothelial angiosarcoma (AS-M.5) [217], human saphenous vein endothelial cells 

(HSVECs) and human umbilical vein endothelial cells (HUVEC) were maintained in 

Endothelial Cell Growth Medium (EBM-2) supplemented with EGM
TM

-2 Bulletkit 

(Lonza). Passage of cells was performed as above except 2 ml of Trypsin-EDTA solution 

(Sigma®, 4299) was used for cell detachment. AS-M.5 cells were split 1 in 20 and 

HSVEC/HUVECs were split 1 in 6 per passage. HSVEC and HUVEC cultures were not 

used beyond passage 5 and morphological differentiation was monitored routinely. 

2.2.2 Culture of HSVSMCs 

Human saphenous vein smooth muscle cells (HSVSMCs)[218] were maintained in Smooth 

Muscle Cell Basal Medium 2 (Promocell, C-22262) with manufacturer-provided 
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supplement mix (Promocell, C-39267) plus 10% (v/v) FBS (Sigma®, F9665) (to give a 

final total FBS concentration of 15% (v/v) FBS), 1mM (v/v) L-glutamine (Sigma®, 

G7513) and 50U/ml (v/v) Penicillin-Streptomycin solution (Sigma®, P0781). HSVSMCs 

were cultured in T75cm flasks (37°C; 5% CO2) and split 1 in 2 per passage. HSVSMC 

cultures were used at passage 3-4 in experiments and morphological differentiation was 

monitored routinely. 

2.2.2.1 Coating of plastic ware with poly-D-lysine for HEK293 cells 

HEK293 cells are a useful overexpression system however following transfection and 

washing procedures were fragile and detached from uncoated plastic ware. As such, prior 

to the plating of HEK293 cells in 6 well plates, 6 cm or 10 cm dishes, plastic ware was 

coated in 2 ml poly-D-lysine. Excess poly-D-lysine was removed via pipette and plates 

were allowed to air dry for 1 hour at room temperature before seeding cells.  

2.2.3 Cloning of cDNA constructs in E.coli 

2.2.3.1 Transformation of competent E. coli 

cDNA plasmids containing the gene of interest were first propagated by transforming 

competent XL1-Blue E.coli (Agilent Technologies, 200249). Initially, 1.5 ml 

microcentrifuge tubes were chilled on ice prior to the addition of 45μl E. coli XL1 Blue 

suspension and 50-100ng DNA. Samples were then gently swirled and incubated on ice for 

20 mins before heat-shock transformation (1.5 min, 42°C water bath). Samples were then 

placed on ice for 2 mins prior to the addition of 455μl pre-warmed (37°C) Luria Bertani 

(LB) broth (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) sodium chloride, pH 

7.5). Cultures were then agitated (180rpm, 37°C) for 45 mins. Following this, 100 μl of the 

culture was spread onto dry LB-agar (LB broth with 1.5% (w/v) MP-agar) plates 

supplemented with 50 μg/ml ampicillin for antibiotic resistance selection. Plates were then 

incubated at 37°C overnight. E.coli containing the plasmid of interest expressed an 

ampicillin resistance gene and therefore replicated overnight to form single colonies. 

Subsequently, plates were removed from the incubator and stored at 4°C for a maximum of 

2 weeks until required. 



Materials and Methods                                                                                    61 
 

 
 

2.2.3.2 Transformation of ultracompetent E.coli for ligations. 

E. coliXL10-Gold Ultracompetent Cells (Agilent Technologies, 200315) were transformed 

and plated onto dry LB-agar plates as above with the exception that heat-shock was 

performed for 30 seconds in a 42°C water bath. 

2.2.3.3 Glycerol stock preparation 

Single colonies were picked from LB agar plates, using a P200 sterile pipette tip, and used 

to inoculate 5 ml LB broth supplemented with 50 μg/ml ampicillin (Amp) or kanamycin 

(Kan) where specified. Initial 5 ml cultures were agitated (180 rpm 37°C) overnight until 

turbid. 1 ml of the overnight culture was then mixed with 0.4 ml 50% (v/v) glycerol in a 

sterile cryovial by pipetting gently up and down 5 times. Glycerol stocks were then rapidly 

frozen by immersion in dry ice before storage at -80°C freezer.  

2.2.4 DNA plasmid isolation, quantification and visualisation 

2.2.4.1 Small scale: Wizard® Plus SV Miniprep 

Single colony-derived glycerol stocks were used to generate starter cultures. Initially a 

P200 sterile pipette tip was used to scrape a sample from the glycerol stock and inoculate 5 

ml LB broth (Amp or Kan) at the concentration described in section 2.2.3.3. The starter 

culture was then agitated overnight (180 rpm, 37°C) to facilitate bacterial replication. DNA 

was purified from turbid 5 ml starter cultures using the Wizard® Plus SV miniprep kit 

(Promega, A1330). All centrifugation and incubation steps were carried out at room 

temperature. The bacterial pellet was harvested via centrifugation (5 min, 10,000 x g) and 

the supernatant removed. The resultant pellet was then resuspended in 250 μl of Cell 

Resuspension Solution (50 mM Tris-HCl, pH 7.5, 10 mM EDTA, 100 μg/ml RNase A) by 

vortexing and transferred to sterile 1.5 ml microfuge tubes. Lysis was performed via the 

addition of 250 μl Cell Lysis Solution (0.2 M NaOH, 1% (w/v) SDS) and inverting 4-6 

times prior to incubating for 5 min ensuring partial clearing of the sample. Subsequently, 

10 µl of Alkaline Protease was added to the sample, inverting 4-6 times, and incubating for 

5 min to inactivate endonucleases released during bacterial lysis which may cut the DNA 

construct of interest. The lysis reaction was then inactivated by adding 350 µl of 

Neutralisation Solution (4.09 M guanidine hydrochloride, 0.759 M potassium acetate, 2.12 

M glacial acetic acid, pH 4.2) and mixed by inversion. The neutralised lysate was then 
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transferred to spin columns within a 2 ml collection tube for centrifugation (14,000 x g, 1 

min). The flow through was removed from the collection tube and 750 μl Column Wash 

Solution (60% (v/v) ethanol, 60 mM potassium acetate, 8.3 mM Tris-HCl (pH 7.5), 0.04 

mM EDTA (pH 8.0) added to the spin column prior to further centrifugation (14,000 x g, 1 

min). This step was repeated using 250 μl Column Wash Solution and centrifugation 

(14,000 x g, 2 min). The spin column was then transferred to a sterile 1.5 ml microfuge 

tube and elution of the DNA plasmid was performed by the addition of 50 µl nuclease free 

water, incubating for 1 min, and centrifugation (14,000 x g, 1 min). DNA was then stored 

at -20°C until required. 

2.2.4.2 Large scale: EndoFree Plasmid Maxiprep 

Larger DNA stocks were generated by initially growing 5 ml starter cultures for 8 hours 

(180 rpm, 37°C) as described above. This was then transferred to a glass conical flask 

containing 250 ml LB broth supplemented with Amp or Kan (section 2.2.3.3) overnight 

(180 rpm, 37°C). The DNA was then purified using the EndoFree Plasmid Maxi Kit 

(Qiagen, 12362) as per manufacturer’s instruction. The bacterial pellet was harvested via 

centrifugation (15 min, 6,000 x g, 4°C) and the supernatant removed. The resultant pellet 

was then resuspended in 10 ml of Buffer P1 (50 mM Tris-HCl (pH 8.0), 10 mM EDTA, 

100 μg/ml RNase A, Lyse blue reagent 1:1000) by vortexing and transferred to sterile 1.5 

ml microfuge tubes. Lysis was performed via the addition of 10 ml buffer P2 (0.2 M 

NaOH, 1% (w/v) SDS) and homogenised by vigorously inverting 4-6 times prior to 

incubating for 5 min at room temperature. Successful lysis was indicated by the mixture 

turning blue.  Neutralisation of cell lysis was performed via the addition of 10 ml of chilled 

buffer P3 (3.0 M potassium acetate, pH 5.5) and mixing by inversion 4-6 times. 

The neutralised lysate was then transferred to a QIAfilter Cartidge with screw cap nozzle 

and incubated for 10 mins at room temperature. The screw cap nozzle was then removed 

and a plunger gently inserted into the cartridge in doing so filtering the lysate into a 50 ml 

collection tube. Following this, endotoxins removal was facilitated by addition of 2.5 ml 

buffer ER (composition not available) to the filtered lysate and incubated on ice for 30 

min. A Qiagen-tip 500 was placed in a test tube rack within plastic tray for collection of 

wash buffers. The tip was then equilibrated with 10 ml buffer QBT (750 mM NaCl, 50 mM 

MOPS (pH 7.0), 15% (v/v) isopropanol, 0.15% (v/v) Triton® X-100). When buffer QBT 

has run through the tip, the filtered lysate was applied and allowed to enter the resin by 

gravity flow. The tip was then washed with 2x30 ml Buffer QC (1.0 M NaCl, 50 mM 
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MOPS (pH 7.0), 15% (v/v) isopropanol). Finally the DNA was eluted with 15 ml Buffer 

QN (1.6 M NaCl, 50 mM MOPS (pH 7.0), 15% (v/v) isopropanol) and collected in a 30 ml 

NalgeneTM, Oak Ridge High-Speed Polycarbonate Centrifuge tube. The DNA was then 

precipitated by adding 10.5 ml isopropanol, mixed by inversion and pelleted by 

centrifugation (30 min, 15,000 x g, 4°C). The supernatant was discarded and the 

white/clear pellet washed with 5 ml endotoxin-free 70% (v/v) ethanol and a final 

centrifugation (10 min, 15,000 x g, 4°C) performed. Supernatant was discarded, and the 

DNA pellet was allowed to air dry for 10 min before gentle re-suspension in TE buffer (10 

mM Tris-Cl (pH 8.0), 1 mM EDTA) and transfer to a 1.5 ml microfuge tube for storage at -

20°C. 

2.2.4.3 Quantification of plasmid DNA concentration 

DNA concentration was determined using a NanoDropTM 2000 spectrophotometer 

(ThermoScientifc). This system measures the absorbance of UV light at defined 

wavelengths. Both RNA and DNA absorb UV light at 260nm. Conversely, protein absorbs 

UV light at 280nm therefore the 260/280nm ratio should be ~1.8 for DNA. A 260/280 nm 

ratio notably lower than 1.8 may suggest protein contamination in the sample. The 260/230 

nm ratio indicates salt or chemical contaminants in the sample as molecules such as EDTA 

absorb UV light at 230nm. A 260/230 nm ratio ~2.0-2.2 was considered acceptable.  

2.2.4.4 DNA gel electrophoresis 

Gel electrophoresis allows the visualisation of DNA (such as plasmids or PCR products) 

according to size. DNA has an overall negative charge and so during electrophoresis 

migrates through the agarose gel matrix toward a positive electrode (anode). Agarose gels 

were prepared by dissolving 1-2% (w/v) agarose in 1 x Tris-Acetate-EDTA (TAE) buffer 

(0.04 M Tris – Acetate, 0.001 M EDTA) using a microwave. Upon cooling, 10 μl ethidium 

bromide, which intercalates with DNA, was added to the molten gel before pouring. Once 

the gel had set, DNA samples were prepared in 6 x Blue/Orange Loading Dye (Promega, 

G1881) at a ratio of 1:10 dye to DNA. To facilitate molecular sizing, a 1kb (Promega, 

G5711) and 100bp (Promega, G2101) DNA ladder was prepared (1:5 ratio of dye to DNA) 

and run on each gel. Electrophoresis was performed at 80 V for >1hr and the fractionated 

DNA visualised by UV trans-illumination and image capture using a Bio-Rad Laboratories 

Gel Doc System. 

http://biotech.about.com/od/buffersandmedia/ht/TAE.htm
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2.2.5 SOCS3 mutagenesis 

2.2.5.1 SOCS3 truncation mutants 

In order to map the essential regions for SOCS3 ubiquitination in cells we received 

progressive human SOCS3 truncation mutants from Professor Fred Schaper of the 

University of Magdeburg and have been described previously [219]. Each mutant was 

cloned into a PCMV-2-FLAG vector and possessed an N-terminal FLAG tag [219].  

Schematic presented in Figure 2-1: Schematic of the SOCS3 protein 

 

Figure 2-1: Schematic of the SOCS3 protein 

The region of the SOCS3 molecule covered by the N terminal and C terminal truncations are illustrated via 

the arrows. ΔC84 denotes deletion of the C terminal 84 amino acid residues; ΔC40 denotes deletion of the C 

terminal 40 amino acid residues; ΔN36 denotes deletion of the N terminal 36 amino acid residues and ΔN20 

denotes deletion of the N terminal 20 amino acid residues. The structural domains of SOCS3 include the 

kinase inhibitory region (KIR); Src Homology 2 (SH2) domain and the SOCS box which provides the 

platform for the E3 ligase machinery. Within the SOCS box is the BC box where Elongin B and C interact 

and the Cul box where Cullin interacts. Elongin B, Elongin C and Cullin are components of the E3 ligase 

machinery required for ubiquitylation of substrates. 

2.2.5.2 Site-directed PCR mutagenesis 

To investigate the role of individual amino acid residues on SOCS3 stability, mutagenesis 

was performed in which a codon was mutated resulting in an alternative amino acid being 

incorporated during protein translation. To facilitate this, the QuikChange Lightening Site 

Directed Mutagenesis kit (Agilent®, #210518) was used. Mutagenic primers were 

designed manually with the following properties: site of mutation in the centre of the 

primer, 25-45 nucleotides in length, G/C clamp at the 3’end, 40-60% G/C content and 

melting temperature (Tm) >78°C according to the manufacturers calculation: 
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Tm (C°) = 81.5 + 0.41(%GC) (675/N) - % mismatch 

N = nucleotide length of primer 

% mismatch = the % of bases in the primer that will not base pair with the WT cDNA 

template 

The reverse mutagenic primer used was the reverse compliment of the forward mutagenic 

primer. The thermocycling protocol was as follows (Table 2-1: PCR mutagenesis 

thermocycling protocol: 

Number of 

cycles 

Temp (C°) Duration Function 

1 

 

95 2 min Denaturing 

18 95 

60 

68 

20 sec 

10 sec 

2 min 30 sec (30 secs per kb 

plasmid) 

Denaturing 

Annealing 

Elongation 

1 68 5 min Final elongation 

1 4 - Store until use 

Table 2-1: PCR mutagenesis thermocycling protocol 

 

DpnI digestion of the parental WT template strand was then performed via the addition of 

2 μl DpnI enzyme to the amplicon mix and incubated at 37°C for 5 min. Finally, 10 μl of 

the PCR mix was used to transform XL10-Gold Ultracompetent Cells as described in 

section 2.2.3.2. Single colonies were isolated from ampicillin-innoculated agar plates and 

DNA amplified via maxi-prep (section 2.2.4.2). To ensure that no additional mutations 

were incorporated, the sequence was verified via DNA sequencing (Dundee Sequencing 

and Services
TM

) and the predicted amino acid sequence verified using an online tool 

(http://web.expasy.org/translate).  

  

http://web.expasy.org/translate
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SOCS3 

mutant 

DNA 

mutation 

5’-3’ sense 

Forward primer 

5’-3’ sense 

Reverse primer 

5’-3’ anti-sense 

K6Q AAGCAG GTCACCCACAGCCAGTTTCCC

GCCGCC 

GGCGGCGGGAAAGTGGCTGTG

GGTGAC 

K173R AAGAGG GGCGAGAGGATTCCGCTGGT

ACTGAAC 

 

GTTCAGTACCAGCGGAATCCT

CTCGCC 

Table 2-2: Mutagenic primers used for PCR mutagenesis of K6Q and K173R SOCS3 

 

2.2.5.3 Generation of a Lys-less human SOCS3 

In order to synthesise a more stable isoform of SOCS3 we hypothesised that mutation of 

all 10 Lys residues, within the SOCS3 open reading frame, to non-ubiquitinatable Arg 

should block proteasomal degradation and therefore enhance SOCS3 stability. The 

sequence containing a C-terminally Flag epitope-tagged human SOCS3 open reading 

frame in which each Lys was mutated to Arg  at positions 6, 23, 28, 40, 85, 91, 122, 173, 

195 and 206) was generated by GeneArt® and subcloned into a pcDNA3.1 mammalian 

expression vector. A summary of the WT and mutant SOCS3 constructs used are shown in 

Table 2-3: 

SOCS3 variant Species Vector backbone Epitope tag 

WT Mouse pcDNA3.1 c-terminal FLAG  

K6Q Mouse pcDNA3.1 c-terminal FLAG  

L189A Mouse pcDNA3.1 c-terminal FLAG  

    

WT Human pCMV-FLAG-5a c-terminal FLAG  

K173R Human pCMV-FLAG-5a c-terminal FLAG  

Lys-less (GeneArt) Human pCMV-FLAG-5a c-terminal FLAG  

    

ΔN20 Human pCMV-2-FLAG n-terminal FLAG  

ΔN36 Human pCMV-2-FLAG n-terminal FLAG  

ΔC40 Human pCMV-2-FLAG n-terminal FLAG  

ΔC84 Human pCMV-2-FLAG n-terminal FLAG  

Table 2-3: SOCS3 construct description 
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2.2.6 Transfection of cDNA 

DNA is negatively charged molecule and combined with the large size of this molecule 

DNA cannot diffuse across the plasma membrane of cells. As such, we employed the 

Polyfect Transfection reagent (Qiagen, 301105) to facilitate the efficient delivery of DNA 

into the cell. Using this method, branched dendrimers form a spherical structure to 

encapsulate the DNA molecule. The dendrimer-DNA capsule possesses a net positive 

charge which facilitates interaction with negatively charged glycoprotein receptors on the 

plasma membrane surface. The DNA is then delivered across the phospholipid bilayer via 

the endocytosis of the dendrimer capsule. Table 2-4 summarises the optimised parameters 

based on the manufacturer’s recommendation: 

Dish 

 

Cell 

density 

DNA 

(μg) 

OptiMEM® 

(Life 

Technologies) 

(μl) 

Polyfect 

reagent 

(μl) 

Medium 

to add to 

cells (ml) 

Medium to 

add to 

complexes 

(ml) 

6 well plate 8x10
5
 2 100 20 1.5 0.6 

6cm dish 13x10
5
 5 150 40 3 1 

10cm dish 26x10
5
 8 300 80 7 1 

Table 2-4: Optimal conditions for DNA transfection with polyfect reagent 

 

2.2.7 Cell protein analysis via immunoblotting 

2.2.7.1 Cell harvesting 

Initially, six well dishes of cells were placed on ice and medium was removed. Cell 

monolayers were then washed with 400 μl ice cold PBS per well to remove residual media 

and any pharmacological treatments. After removal, cells were harvested via the addition 

of 100 μl radioimmunoprecipitation assay (RIPA) buffer (50 mM sodium HEPES [pH 7.5], 

150 mM sodium chloride, 5 mM EDTA, 10 mM sodium fluoride, 10 mM sodium 

phosphate, 1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) sodium 
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dodecyl sulphate (SDS), 0.1 mM phenylmethylsulphonyl fluoride, 10 μg/ml soybean 

trypsin inhibitor, 10 μg/ml benzamidine, and EDTA-free complete protease inhibitor mix) 

and scraping with a plastic cell scraper. The sample was then transferred to a 1.5 ml 

microfuge tube and placed on a rotating wheel (20 rpm, 4°C, 30 mins) to facilitate cell 

lysis and solubilisation. Samples were then centrifuged (21,000 x g, 4°C, 15 mins) to 

remove detergent-insoluble cell debris and the supernatant transferred to a fresh 1.5 ml 

microfuge tube for storage at -20°C until required. 

2.2.7.2 The bicinchoninic acid (BCA) protein assay 

The BCA assay is a sensitive and rapid method for the quantification of protein 

concentration in detergent extracts [220]. This is particularly useful for immunoblot 

analysis as it allows equal protein loading per lane on the gel. The assay relies on the 

reduction of Cu
2+

 (present in BCA reagent B) to Cu
+
 by proteins in the sample. The Cu

+
 

then reacts with the BCA reagent A to form a purple colour (greenpurple colour change). 

There is a linear correlation between the intensity of purple colour and protein 

concentration therefore the absorbance at ~562 nm is measured by a spectrophotometer to 

quantify this.  

The BCA assay was performed in clear, 96 well, flat-bottomed plates with standards and 

samples performed in duplicate. Standard curves were prepared using 0-2 mg/ml BSA in 

the appropriate sample buffer (RIPA /NDB/co-IP buffer). The sample was diluted 1 in 5 (2 

μl sample + 8 μl buffer) to which 200 μl of the BCA reagent mix was added. The BCA 

reagents were prepared in a 20 ml universal at a ratio of 9.8 ml reagent A (1% (w/v) 4,4 

dicarboxy-2,2 biquinoline, disodium salt, 2% (w/v) sodium carbonate, 0.16%(w/v) sodium 

potassium tartate, 0.4% (w/v) sodium hydroxide, 0.95% (w/v) sodium bicarbonate, pH 

11.25) to 0.2 ml reagent B (4% (w/v) copper sulphate) prior to addition to the plate. The 

plate was left at room temperature for approximately 15 mins or until a graded green 

purple colour change was observed across the standards. The plate was read at 492 nm 

using the POLARstar OPTIMA microplate reader and the mean absorbance calculated. 

Absorbance at 492 nm was selected as this was the closest filter to 560 nm available on our 

microplate reader. A % covariance <5 was deemed acceptable for each duplicate 

standard/sample. 
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2.2.7.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) and Immunoblotting 

Detergent-soluble whole cells lysates were prepared for SDS-PAGE in 30 μl 50:50 

sample:sample buffer ((50 mM Tris (pH 6.8), 10% (v/v) glycerol, 12% (w/v) SDS, 0.0001 

% (w/v) bromophenol blue, 1 mM DTT). Using the BioRad Mini-PROTEAN® cell 

system, samples were fractionated via SDS-PAGE on 7-12% (w/v) poly-acrylamide gels in 

running buffer (27.4 mM Tris, 0.19 M glycine, 0.1 % (w/v) SDS) at a constant voltage of 

150V. Protein markers (Bio-Rad, Precision Plus Protein™ Kaleidoscope™ Standards, 

#161-0375, range 15-250 kDa) prepared in sample buffer were run in parallel to facilitate 

estimation of the relative molecular mass of immunoreactive bands. Electrophoretic 

transfer onto nitrocellulose blotting membrane (0.2 μm pore size, Amersham
TM

 Protran
TM

, 

10600001) was then performed using a Mini PROTEAN® Tetra Cell (Bio-Rad) transfer 

system. The transfer was performed in transfer buffer (24.7 mM Tris, 0.19 M glycine in 

20% (v/v) methanol) at a current of 400mA for 45 mins. For proteins with an estimated 

molecular mass >100kDa the transfer duration was increased to 60 min and proteins 

>250kDa for 100 min. 

2.2.7.4 Blocking nitrocellulose membrane and incubation with primary 

antibody 

The membrane blocked with 5% (w/v) dried milk powder (Marvel) in Tris-buffered saline 

+ Tween 20 (TBS/T: 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM CaCl2, 0.05% (v/v) 

Tween 20) for 1hr at room temperature or overnight at 4°C to reduce non-specific antibody 

reactivity. Following this, membranes were incubated in a sealed bag with 2 ml of the 

appropriate primary antibody (Table 2-5) diluted in milk-TBS/T, or 5% (w/v) BSA-TBS/T 

for phosphor-specific antibodies, and agitated overnight at 4°C.  

2.2.7.5 Incubation with secondary antibodies and immunoblot visualisation 

Membranes were then washed in TBS/T (3x10 mins) at room temperature by agitating on a 

shaker (150 rpm). Following the last wash, the nitrocellulose was incubated for 1hour at 

room temperature with the appropriate horseradish peroxidise (HRP)-conjugated secondary 

antibody or protein G (Molecular Probes®) (Table 2-6) diluted in milk-TBS/T before a 

final set of washes with TBS/T (3x10 mins). Protein bands were then visualised using a 

chemiluminescence method in which 2 ml of ECL reagent (Western Lightening® Plus 
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ECL, Perkin Elmer, NEL104001EA) was added to each membrane for 1 min with gentle 

agitation. Residual ECL substrate was removed via gentle dabbing on tissue paper and 

immunoreactive bands were visualised following exposure to Medical X-ray Blue/MXBE 

Film (Carestream Health, 7710783)and development using a X-OMAT 2000 processor 

(Kodak). 

2.2.7.6 Stripping of membranes 

The nitrocellulose membrane was incubated in stripping buffer (0.15 M NaCl, 0.1 M 

Glycine, pH 2.6) for 30 mins at room temperature with shaking. The membrane was then 

washed in TBS/T (3 x 5 mins) and blocked in 5% (w/v) dried milk before incubation with 

primary antibody as described in section 2.2.7.4.  
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2.2.7.7 Gel components 

10% resolving gel: 3.4 ml (v/v) dH20, 2.5 ml (v/v) Buffer 1 (1.5 M Tris, pH 8.8, 0.4% 

(w/v) SDS), 0.65 ml (v/v) 50% (v/v) glycerol, 0.032 ml (v/v) ammonium persulphate 

(APS, 0.3 mg/ml), 0.008 ml (v/v) TEMED, 3.3 ml 30% (w/v) acrylamide/bis-acrylamide.  

The percentage of the resolving gel was altered by adjusting the volumes of distilled 

deionised water (dH20) and acrylamide/bis-acrylamide as follows: 

8% resolving gel: 4.07 ml dH20, 2.64 ml 30% (w/v) acrylamide/bis-acrylamide 

12% resolving gel: 2.74 ml dH20, 3.96 ml 30% (w/v) acrylamide/bis-acrylamide 

Stacking gel: 3.4ml (v/v) dH20, 1.34 ml (v/v) Buffer 2 (0.5 M Tris-HCl, pH 6.8, 0.4% 

(w/v) SDS), 0.054 ml (v/v) ammonium persulphate (APS, 0.3 mg/ml), 0.007 ml (v/v) 

TEMED, 0.63 ml 30% (w/v) acrylamide/bis-acrylamide (37.5:1) 
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Primary 

Antibody 
Manufacturer 

Catalogue 

number 

Species 

raised 

in 

Dilution 

 

Prepared  

in 

HA 

(YPYDVPDYA) 
Sigma-Aldrich 

SAB4300603-

100UG 
Rabbit 1:1000 

5% (w/v) 

dried milk 

Myc (9E10, 

EQKLISEEDL) 
In house N/A- Mouse 1:1000 

5% (w/v) 

dried milk 

FLAG 

(DYDDDDK) 
Sigma-Aldrich F3165 Mouse 1:1000 

5% (w/v) 

dried milk 

SOCS3 In house Bleed 4827 Rabbit 1:1000 

5% (w/v) 

dried milk 

SOCS3 Abcam ab16030 Rabbit 
1:200-

1:1000 

5% (w/v) 

dried milk 

SOCS3 
Santa Cruz 

Biotechnology 

sc-7009 

 
Goat 

1:200-

1:1000 

5% (w/v) 

dried milk 

GFP In house N/A- Sheep 1:2000 

5% (w/v) 

dried milk 

Ubiquitin (P4D1) 
Santa Cruz 

Biotechnology 

sc-8017 

 
Mouse 1:1000 

5% (w/v) 

dried milk 

Ubiquitin 

(linkage-specific 

K63)  

Abcam ab179434 Rabbit 1:1000 

5% (w/v) 

dried milk 

HectD1 
Proteintech 

Group 
20605-1-AP Rabbit 1:500 

5% (w/v) 

dried milk 

USP15 
MRC-PPU 

reagents 
DU 19772 Sheep 1:1000 

5% (w/v) 

dried milk 

Table 2-5: Primary antibodies used for immunoblotting and immunofluorescence studies.(Continued 

overleaf) 
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GAPDH Abcam Ab8245 Mouse 1:20,000 

5% (w/v) 

dried milk 

Phospho-STAT3 

(Tyr705) 
Cell Signaling 

9131 

 
Rabbit 1:500 

5% (w/v) 

BSA 

STAT3 Cell Signaling 
9132 

 
Mouse 1:1000 

5% (w/v) 

dried milk 

JAK2 Abcam ab37226 Mouse 1:1000 

5% (w/v) 

dried milk 

Phospho-JAK2 

(Tyr1007/1008) 
Cell Signaling 3771 Rabbit 1:1000 

5% (w/v) 

BSA 

Table 2-5: Primary antibodies used for immunoblotting and immunofluorescence studies. 

 

Secondary 

antibody 

Conjugant Manufacturer Catalogue 

number 

Species 

raised in 

Dilution 

Rabbit HRP Sigma-Aldrich A6154 Goat 1:1000 

Mouse HRP Sigma-Aldrich A4416 Goat 1:1000 

Non-

antibody 

reagents 

     

Protein G HRP Millipore 18-161 N/A- 1:200 

Table 2-6: Secondary antibodies and non-antibody reagents used for immunoblot visualisation 
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2.2.7.8 Densitometry  

Where appropriate, densitometry analysis of immunoblot data was performed on non-

saturating films using Totallab v2.0 (Phoretix) by normalising the expression of the protein 

of interest expression to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (N=3). 

These data were then plotted as a % of the relevant control group (set at 100%). 

2.2.8 Immunoprecipitation 

Immunoprecipitation (IP) describes the isolation of a protein of interest by incubating a 

detergent-soluble extract with a specific primary antibody raised against the target protein 

antigen. IP is a useful method to determine whether 2 or more proteins interact either 

directly or indirectly within a protein complex at the time of cell harvest and under various 

experimental conditions. Moreover, under denaturing conditions, IP can be used to 

determine the ubiquitylation status of a target protein. Importantly, the type of IP dictated 

which lysis buffer was used. Denaturing IP to investigate the ubiquitylation status of 

SOCS3 mutants 

Denaturing IP conditions were used to assess the ubiquitylation status of SOCS3. HEK293 

cells were seeded in 6cm dishes on day 1 (section 2.2.2.1) and co-transfected on day 2 

(section 2.2.6) with 2 μg/well Ubiquitin-HA (Ub-HA) ± 2μg /well WT or mutant SOCS3-

FLAG (ΔN20, ΔN36, ΔC40, ΔC84 truncation/K6Q/L189A/K173R/Lys-less) as described 

in Table 2-3. On day 4, cells were treated with MG132 (6 μM, 2 hrs) prior to placing on 

ice, removal of medium and washing with ice-cold PBS.  Cells were lysed by the addition 

of 100 μl/well denaturing IP buffer (DNB; 50 mM sodium-HEPES, pH 7.5, 100 mM 

sodium chloride, 1 mM N-ethylmaleimide, 2% (w/v) SDS, 0.1 mM phenylmethylsulphonyl 

fluoride, 10 μg/ml soybean trypsin inhibitor, 10 μg/ml benzamidine, and EDTA-free 

complete protease inhibitor mix). This ensured that SOCS3 ubiquitylation was specifically 

detected and not the ubiquitylation of any interacting protein. In addition, the DNB, 

containing NEM, inactivated de-ubiquitylating enzymes (DUBs) [221] which remain 

active in non-denaturing cell lysis buffers and may therefore reduce the ubiquitylation of 

target proteins following cell harvest. The sample was briefly vortexed and warmed to 

95°C on a heat block before probe sonication (10seconds, 40% amplitude with a 2mm 

diameter tip, Vibra-Cell – Sonics & Materials, Inc., VCX130) to homogenise. The sample 

was then diluted 1 in 2 with non-denaturing buffer (NDB; 50 mM NaHEPES pH7.5, 100 

mM NaCl, 1 mM N-ethylmaleimide, 1.1% (v/v) Triton-X-100, 0.55% (w/v) sodium 

http://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate_dehydrogenase


Materials and Methods                                                                                    75 
 

 
 

deoxycholate + EDTA-free complete protease inhibitor mix) and centrifuged (21,000 x g, 

4°C, 15 mins) to remove insoluble cell debris. Following protein quantification, 500 μg 

protein was equalised to a total volume of 1 ml with NDB buffer and added to 30 μl 50% 

(v/v) anti-FLAG-coated Sepharose bead slurry (Sigma®). Samples were rotated overnight 

(15rpm, 4°C) to facilitate antibody reactivity with the antigen. Samples were then 

centrifuged (300 x g, 4°C, 1min) and washed 3 times in 1 ml NDB buffer centrifuging (300 

x g, 4°C, 1min) in between each wash. Supernatant was removed and the bead pellet re-

suspended in 30 μl 12% (w/v) SDS buffer + 1mM dithiothreitol (DTT). Samples were then 

placed on a 95°C heatblock (5 min) to promote elution of protein from the beads prior to 

SDS-PAGE.  All IP samples were loaded onto the SDS-PAGE gel (section 2.2.7.3) using a 

Hamilton® syringe to ensure no beads were transferred which may block the poly-

acrylamide gel pores. 

Finally, immunoblotting was performed probing for HA epitope-tagged ubiquitin (anti-HA 

antibody H6908), FLAG tagged SOCS3 (anti-FLAG antibody F3165) and GAPDH 

(section 2.2.7.4). 

2.2.8.1 Co-Immunoprecipitation (co-IP) of SOCS3-interacting proteins. 

Co-IP is a less stringent than a denaturing IP and was used to investigate whether two or 

more proteins interact either directly or indirectly as part of a protein complex in detergent-

soluble cell extracts.  

On day 1, HEK293 cells were initially plated in 6 cm dishes (section 2.2.2.1) and co-

transfected (section 2.2.6) on day 2 with 1 μg/well Elongin B, 1 μg/well Elongin C 

±2μg/well WT or mutant (ΔC84/L189A/Lys-less) SOCS3 as described in Table 2-3. On 

day 4, cells were treated with MG132 (6 μM, 2 hrs) prior to harvesting in co-IP buffer (50 

mM sodium HEPES (pH7.4), 150 mM sodium chloride, 5 mM EDTA (pH8.0), 1% (v/v) 

Triton X-100, 10% (v/v) glycerol, 0.1 mM phenylmethylsulphonyl fluoride, 10 μg/ml 

soybean trypsin inhibitor, 10 μg/ml benzamidine, and EDTA-free complete protease 

inhibitor mix). Following protein quantification by BCA assay (section 2.2.7.2), samples 

were equalised for protein content (500 μg) and co-IP buffer was added to a final volume 

of 1 ml. Sample was then added to either 30 μl 50% (v/v) protein G-Sepharose bead slurry 

(in co-IP buffer)with 15μl peptide affinity-purified anti-SOCS3 antibody (in-house, 4827) 

or 30 μl 50% (v/v) anti-FLAG-coated Sepharose bead slurry (in co-IP buffer, Sigma®). 

Samples were rotated overnight (15 rpm, 4°C) to facilitate antibody reactivity with the 
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antigen. Samples were then centrifuged (300 x g, 4°C, 1min) and washed 3 times in 1 ml 

co-IP buffer, centrifuging (300 x g, 4°C, 1min) in between each wash. The supernatant was 

removed completely and the bead pellet re-suspended in 30 μl 12% (w/v) SDS buffer + 

1mM dithiothreitol (DTT). Samples were then placed on a 95°C heatblock (5 min) to 

promote elution of protein from the beads prior to removal with a Hamilton® syringe for 

loading onto SDS-PAGE gels. Finally, immunoblotting was performed probing for myc 

epitope-tagged Elongin B and C (anti-myc antibody 9E10), FLAG tagged SOCS3 (anti-

FLAG antibody F3165) and GAPDH (section 2.2.7.4). 

2.2.9 Emetine chase to investigate the stability of WT vs. mutant 

SOCS3 

SOCS3 KO MEFs seeded in 10 cm dishes (section  2.2.1.1) were transfected (section  

2.2.6) with 8 μg/dish FLAG-tagged human WT SOCS3, FLAG-tagged mouse WT SOCS3 

or mutant (K6Q/K173R/Lys-less) SOCS3 (Table 2-3). The next day, cells were trypsinised 

and split into 7 wells of two 6 well plates (section 2.2.1.1). The following day, cells were 

treated with protein synthesis inhibitor Emetine (100 µM) for up to 8 hrs. 

A positive control in which cells were treated with Emetine (100 μM) and MG132 (6 μM) 

was included. MG132 acts as a proteasome inhibitor therefore stabilising SOCS3 

expression in the presence of Emetine. Comparing the 8 hr Emetine only vs. 8 hr Emetine 

+ MG132 treatment group allows us to confirm whether the Emetine treatment was 

effective at inhibiting protein synthesis in each experiment. Non-transfected cells were also 

included to provide a negative control for SOCS3 immunoreactivity. Following Emetine 

treatment, cells were harvested in RIPA buffer and analysed for SOCS3 and GAPDH 

expression by SDS-PAGE and immunoblotting (section 2.2.7.3-2.2.7.5, Table 2.4) 

2.2.10 Optimising the sensitivity of the Epo/Gp130 chimeric 

receptor (Epo/Gp130R) assay to measure SOCS3 functionality 

HEK293 cells were co-transfected with 2 μg WT/mutant (Y759F) Epo/Gp130 chimeric 

receptor or JAK1 cDNA (section 2.2.6). Prior to harvesting, cells were serum starved (3 

hrs, 37°C, 5%CO2) and treated with ±50-500 ng/ml erythropoietin (Epo), 30,000 units 

interferon-α (IFNα) or vehicle only (PBS)  for 15 min (37°C, 5%CO2). The stimulation 

was then terminated by removal of the media and addition of 400 μl ice cold PBS. Cells 
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were harvested in RIPA buffer and analysed for phosphorylated STAT3 and total STAT3 

expression by SDS-PAGE and immunoblotting (section 2.2.7.3-2.2.7.5, Table 2.4). 

2.2.11 The identification of an E3 ubiquitin ligases and DUBs 
controlling SOCS3 turnover: the development of a SOCS3-
luciferase fusion protein as a tool to screen an E3 ligase siRNA 
library 

2.2.11.1 Investigating the proteasome as a major route of SOCS3 turnover 

in AS-M human endothelial cells 

AS-M and MEF cells were stimulated with±50 μM Forskolin (Fsk) and ±6 μM MG132 (5 

hrs, 37°C, 5% CO2).The stimulation was then terminated by removal of the media and 

addition of 400 μl ice cold PBS. Cells were harvested in RIPA buffer and analysed for 

SOCS3 and GAPDH expression by SDS-PAGE and immunoblotting (section 2.2.7.3-

2.2.7.5, Table 2.4). 

2.2.11.2 The identification of a cell system to be used in an E3 ligase 

siRNA library screen 

MEF or AS-M.5 cells in 6 well plates were treated with or without forskolin (Fsk; 50 µM) 

with or without MG132 (6 µM) before harvesting in RIPA lysis buffer and analysis of 

SOCS3 and GAPDH expression by SDS-PAGE and immunoblotting (section 2.2.7.3-

2.2.7.5, Table 2.4). 

2.2.11.3 Generation of a SOCS3-Firefly Luciferase fusion protein  

The cytomegalovirus (CMV) promoter fused to the mouse SOCS3 open reading frame 

(accession number O35718) was amplified via polymerase chain reaction (PCR). The 

primers used were as follows: forward primer: 

GGGGGAGAATCTAGACGTTACATAACTTACGGTAAATG (XbaI site underlined), 

rev primer:  AAAAGGAGACTCGAGGATAAGTGGAGCATCATACTG (XhoI site 

underlined)) using Pfu DNA polymerase as per manufacturer’s instructions (Promega). 

The template used was an existing construct (pcDNA3.1/mouse FLAG-SOCS3, Table 2-3) 

previously generated in the Palmer lab. PCR products were resolved by gel electrophoresis 

(80V; 1.5hr) on a 1% (w/v) agarose gel. The predicted size of the CMV-SOCS3 amplicon 

was ~1200bp. The predicted CMV-SOCS3 1200bp amplicon was excised from the gel 

http://www.uniprot.org/uniprot/O35718
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using a sterile blade. To purify the DNA from the gel a QIAquick Gel Extraction 

Kit (Qiagen, 28704) was used. The now purified PCR product was subsequently digested 

with XhoI and XbaI (2units/enzyme) as per the manufacturer’s instructions (Promega). The 

digested products were then resolved by agarose gel electrophoresis as above and bands 

were excised and purified as per the manufacturer’s instruction (QIAquick gel extraction 

kit; Qiagen). 

The XhoI-XbaI digested PCR product and similarly digested p-lenti-MCS vector (Pierce
TM

 

LentiLuc Packaging kit) were ligated at molar ratios of 1:3, 1:6 and 1:9 vector:insert with 

T4 DNA ligase as per the manufacturer’s instructions (Promega, M1801). The ligation 

product (p-lenti-CMV-SOCS3-Luc) was then used to transform XL10-Gold 

Ultracompetent E.coli (Agilent Technologies) that were subsequently plated onto dry LB-

agar plates (Amp) as described in section 2.2.3.2. Colonies were then picked and the 

cDNA construct was purified using Wizard® Plus SV minipreps (Promega) as described in 

section 2.2.4.1. We then screened for successfully ligated p-lenti-CMV-SOCS3-Luc by 

digesting with XhoI-XbaI and resolving the products on a 1% (w/v) agarose gel. The 

presence of a 1200bp fragment, representing CMV-SOCS3, indicated ligation was 

successful. The ligated constructs were then sequenced in its entirety to confirm that no 

erroneous mutations had been introduced (Dundee DNA Sequencing & Services). 

2.2.11.4 Luciferase assay 

In order to assess the enzymatic activity of the luciferase component of the SOCS3-Luc 

fusion protein, luciferase assays were performed on whole cell lysates using a luciferase 

assay kit as per the manufacturer’s instructions (Dual-Luciferase® Reporter Assay System, 

Promega, E1910). Briefly, HEK293 cells were transfected with either p-lenti-SOCS3-Luc 

or a p-lenti control construct (section 2.2.6). 48 hrs post transfection, cells were harvested 

in the lysis buffer provided with the kit. Lysates were subject to two rapid freeze-thaw 

cycles on dry ice to ensure complete cell lysis. Increasing volumes of sample 0-40 μl were 

plated in triplicate into white, flat bottomed 96 well plates prior to the addition of 100 μl 

luciferase assay reagent (LAR). The luminescence signal was quantified immediately using 

the POLARstar OPTIMA microplate reader (BMG Labtech).Generation of SOCS3-Luc 

lentivirus particles. 
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2.2.11.5 Generation of a SOCS3-Luc lenti virus 

Lentivirus (LV) particles expressing SOCS3-Luc under a CMV promoter were generated 

via triple transfection of 12x T150cm flasks of HEK293T cells as described previously 

[218, 222]. Each flask was transfected with 50 μg p-lenti-SOCS3-Luc, 17.5 μg envelope 

plasmid (pMD.G2, which encodes the envelope of vesicular stomatitis virus; VSVg) [222] 

and 32.5 μg integrase packaging plasmid (pCMV delta R8.74) [223] using 3 μl 

polyethylenimine (PEI) transfection reagent in 10 ml OptiMEM. Flasks were incubated for 

6 hrs (37°C, 5% CO2) before replacing the OpitMEM with 20 ml fresh growth media and 

returning the cell culture incubator. Media containing the virus particles (20 ml/flask) was 

removed 48 hrs post infection, filter sterilised (using a 0.22 μm filter unit attached to a 

vacuum pump, Millipore, SCGPU05RE) and stored at 4°C overnight. To each T150 cm 

cell flask, a further 20 ml of fresh media was gently pipetted into one corner of the flask, to 

avoid cell detachment, before returning to the cell culture incubator overnight. Spent media 

was then removed, filter sterilised as above and pooled with the 48 hr media for storage at 

4°C until concentration of the virus that day. 

A mouse WT SOCS3 and human Lys-less SOCS3 lentivirus was also generated as above 

using lentivirus plasmids synthesised by Cyagen Biosciences Inc. 

2.2.11.6 Concentration of the lentivirus particles 

Virus particles were concentrated using an ultracentrifuge. Initially, ~18 ml media 

containing LV particles was loaded into open top 14x95 mm Ultra-Clear
TM

 tubes 

(Beckman Coulter Ltd). Subsequently, virus particles were concentrated via 6 x 1 hr 7 min 

ultracentrifugation cycles at 4°C (SW40 rotor, 90353 × g; 23,000 rpm; acceleration 

maximum; break 9;   Beckman Optima™ L-80 XP) decanting the supernatant in between 

centrifugation cycles avoiding disruption of the invisible virus particle pellet. The final 

pellet was re-suspended in 100 μl OptiMEM and incubated for 20 min on ice. Virus 

samples were then aliquoted (10 μl) into 0.5 ml microfuge tubes and stored at -80°C. Virus 

samples were used once and were not subjected to multiple rounds of freeze-thawing. 

2.2.11.7 Measuring virus particle titre 

Virus titres were measured via the TaqMan® quantitative real time PCR (qPCR) method 

quantifying the incorporation of LV into a host cell genome as described previously [224]. 
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Primer/probe sets targeted at the late reverse transcriptase gene were employed as follows: 

100 nM LRT-P probe, 5’(FAM)-CAGTGGCGCCCGAACAGGGA-(TAMRA)3’; 300 nM 

forward primer MH531 5’-TGTGTGCCCGTCTGTTGTGT-3’ and 300 nM reverse primer 

MH532 5’-GAGTCCTGCGTCGAGAGAGC-3’ (Applied Biosystems). 

On day 1, HEK239T cells were seeded at a density of 5x10
4
 cells/well in 12 well plates 

and returned to the incubator overnight to facilitate cell adhesion. On day 2, cells were 

infected with virus particles (titration of stock 10
-2

 – 10
-6

) and returned to the incubator. 

72hrs post infection, cells were harvested in 200 μl PBS and the DNA was extracted as per 

manufacturer’s instruction (Qiagen, QiaAMP DNA mini kit). 

For qPCR, 250ng DNA of each sample was loaded into 384 well plates. In conjunction 

with this, a standard curve of the expression plasmid used to make the virus (p-lenti-CMV-

SOCS3-Luc) was performed (1x10
13

-10
4
 plasmid copies) on the same plate. Samples were 

performed in triplicate with a non-template control included to confirm there was no 

reagent contamination. To each sample, 1x Mastermix (TaqMan® Universal Master Mix II 

no UNG, Applied Biosystems, 4440040) was added in addition to the late reverse 

transcriptase primer/probe sets described above to a final volume of 12.5 μl. PCR 

amplification was performed as follows: 

50°C – 2 min 

95°C- 10 min 

95°C – 15 sec 

60°C – 1 min 

The copy number of the virus particles was then calculated by reading off the standard 

curve.   

2.2.11.8 Generation of AS-M.5 clonal cell lines stably expressing SOCS3-

Luc 

The SOCS3-Luc LV particles co-expressed a puromycin resistance gene to allow for 

selection of cell lines that have stably incorporated the LV genome. Preliminary so-called 

40 cycles 

https://www.mvls.gla.ac.uk/Stores/StoreItem/Details/4758
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“kill curve” experiments determined that a puromycin concentration of 2 µg/ml was 

sufficient to kill parental AS-M.5. cells within 2 days (image not shown). 

AS-M.5cells were grown to 40% confluency in 10 cm dishes and infected with SOCS3-

Luc LV particles (2 IFU/cell) the following day. On day 3, growth medium was replaced 

and, 48hrs post infection, cells were trypsinised (section 2.2.7.1). The resulting cell pellet 

was re-suspended in media supplemented with 2 μg/ml puromycin and serial dilutions of 

the re-suspended mix were plated in 10 cm dishes in puromycin-containing selection 

medium. Cultures were maintained for up to 14 days, replenishing media every 48hrs, until 

single puromycin-resistant clones could be picked for expansion.  Initially, clones were 

expanded in 24 well plates, and upon reaching confluence were plated into duplicate 6 well 

plates. One set of 6 well plates were used for screening for SOCS3-Luc-expressing clones 

by treatment with or without MG132 (6 µM, 2 hrs) and harvesting for luciferase assay 

(section 2.2.11.4). The assay window (AW) for each clone was calculated as: (mean 

luminescent signal with MG132) - (the mean luminescent signal without MG132). Clones 

were identified by a single letter of the alphabet A-P. 

To increase the AW of the AS-M.5 SOCS3-Luc clone E, cells were treated with or without 

Emetine (100 μM) and with or without MG132 (6 μM) over a 7 hr time course. Lysates 

were harvested for luciferase assay (section 2.2.11.4) and the AW between each treatment 

group time point was calculated as above. 

2.2.12 Immunofluorescence visualisation of SOCS3 in MEFs and 
HUVECs as a method for screening an E3 ligase siRNA library. 

WT MEFs, SOCS3 knockout MEFs or HUVECs were plated on glass coverslips in 6 well 

plates and grown to 60% confluence. Following stimulation with either 10 μM Fsk + 6 μM 

MG132 or vehicle (DMSO) only for 5hrs, cells were washed with PBS (2x1 ml) before 

fixation with 3% (w/v) paraformaldehyde (PFA), prepared in PBS, on ice (15 min). PFA 

was then removed and replaced with 2 ml methanol on ice (10 min). Further PBS washes 

were performed (3x1 ml) before permeabilisation on ice for 10 mins with 2 ml PBS, 0.1% 

(v/v) Triton-X-100. Subsequently, a further 3x1 ml PBS washes were performed to remove 

residual detergent. Coverslips were then incubated with blocking solution (PBS containing 

0.1% (v/v) Triton-X-100 and 3% (v/v) donkey serum) for 1hr at room temperature. 

Primary antibodies were prepared in blocking solution as follows: WT and SOCS3 KO 

MEFs were incubated with 0-2 μg/ml rabbit anti-SOCS3 (ab16030), HUVECs were 
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incubated with 2 μg/ml goat anti SOCS3 (sc-7009) or 1 μg/ml rabbit anti-SOCS3 

(ab16030) and negative controls were incubated with 3% (v/v) donkey serum. Coverslips 

were then placed in  a humidifying chamber (2hrs, 4°C) before washing with PBS (3x1 ml) 

and incubation with Alexa Fluor® 488 donkey anti-rabbit IgG secondary antibody (diluted 

in PBS containing 0.1% (v/v) Triton-X-100) in the dark (humidifying chamber, 1hr, 4°C). 

Subsequently, coverslips were washed in PBS (3x1 ml) before nuclear staining with DAPI 

(LifeTechnologies, D1306) as per manufacturer’s instruction. Additional 3x1 ml PBS 

washes were performed before mounting onto glass slides (Thermo Scientific Shandon™ 

Immuno-Mount™). Immunolocalisation of SOCS3 was then visualised under oil 

immersion using a 63x objective fitted to a Zeiss LSM Pascal Exciter confocal imaging 

system. Representative images are shown. WT and SOCS3 KO MEF lysates were also 

prepared in parallel by harvesting cells in RIPA lysis buffer and immunoblotting for 

SOCS3 (ab16030) and GAPDH (ab9484) (section 2.2.7.3-2.2.7.5). 

2.2.13 Reversed-phase liquid chromatography tandem mass 
spectrometry (LC-MS) screen to identify E3 ligase/DUB enzymes 
interacting with SOCS3. 

2.2.13.1 IP of SOCS3 for LC-MS-MS analysis 

HEK293 cells seeded in four 10cm dishes (section 2.2.1.1) were transfected with 10 

μg/dish FLAG-tagged pcDNA3.1 murine WT SOCS3 (two plates) or 10 μg pcDNA3.1 

only as a negative control (two plates) using Polyfect as described in section 2.2.6. The 

next day, cells were harvested in a modified co-IP lysis buffer (50 mM Na HEPES pH7.4, 

150 mM NaCl, 0.5 M EDTA (pH8.0), 1% (v/v) Triton-X-100, 10% (v/v) glycerol, 0.1 mM 

PMSF, 1 mM sodium orthovanadate, 6 μM MG132, 10 μg/μl benzamidine, 10 μg/μl 

soybean trypsin inhibitor, EDTA-free complete protease inhibitor mix) with the SOCS3 

transfected samples pooled together and the pcDNA3.1 transfected samples pooled 

together. 

Following protein quantification (section 2.2.7.2), samples equalised for protein content 

(15 mg) and volume (3 ml) were loaded into 15 ml Falcon
TM

 tubes and pre-cleared of non-

specific binding proteins by incubating each sample with 60 μl of a 50:50 protein G 

Sepharose bead slurry (Generon, PC-G25). A further 8.5 mls lysis buffer was added to 

each tube and samples were rotated for 30 mins (12rpm, 4°C) prior to gentle centrifugation 

(5 min, 300 x g, 4°C). The supernatant was then transferred to a fresh 15 ml Falcon
TM

 tube 

containing 240 μl of a 50% (v/v) anti-FLAG M2 affinity gel bead slurry. Samples were 

http://www.lifetechnologies.com/order/catalog/product/D1306
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rotated for 3 hrs (12rpm, 4°C) before further centrifugation (5 mins, 300 x g, 4°C). The 

supernatant was discarded, beads were re-suspended in 1 ml co-IP lysis buffer and 

transferred to 1.5 ml microfuge tubes for centrifugation (1 min, 300 x g, 4°C). The beads 

were then washed 3x1 ml in lysis buffer with centrifugation (1 min, 300 x g, 4°C) between 

washes. Finally, samples were eluted from the beads via the addition of 35μl 2x Laemmli 

Sample Buffer (Bio-Rad Laborotories, 161-0737) plus 10 μl NuPAGE® Sample Reducing 

Agent (Novex, NP0004®). Samples were the placed on a heat block (5 min, 95°C) and the 

eluate transferred to a fresh microfuge tube via Hamilton® syringe for storage at -80°C 

until required. 

2.2.13.2 SDS-PAGE and in-gel protein visualisation. 

All procedures were conducted in a laminar flow hood to minimise keratin contamination 

which may reduce the quality of LC-MS data.  

Samples were initially resolved via SDS-PAGE on a NuPAGE® Novex® 10% Bis-Tris 

protein gel with NuPAGE® MOPS SDS Running Buffer (x20) at a constant 150V for 

1.5hrs. The gel was disassembled and protein visualised using a Colloidal Blue staining kit 

(LC6025, Invitrogen
TM

). This kit is based on the Coomassie Brilliant Blue stain [225] 

where under acidic buffer conditions, the Coomassie dye interacts with the hydrophobic 

(water repelling) or basic amino acid residues that form the protein structure. Briefly, the 

gel was incubated with the colloidal blue stain for 30 mins at room temperature before de-

staining with distilled deionised water for 1 hr. 

2.2.13.3 Band excision and trypsin digestion. 

Following protein band visualisation, gel slices (8 per lane) were excised and de-stained 

and extracted from the acrylamide gel before digestion. Briefly, proteins were reduced with 

50 μl 10 mM DTT at 60°C for 30 mins followed by alkylation with 50 μl 50 mM 

iodoacetamide, in the dark, at room temperature for 30 mins. Subsequently, the solvent 

was removed and the samples were washed with 50% (v/v) acetonitrile (ACN)/50 mM 

ammonium bicarbonate (AMBIC) and dried using a SpeedVac. In-gel trypsin digestion 

was performed via the addition of 20 μl 0.05 μg/ml sequencing grade trypsin in 50 mM 

AMBIC overnight at 30°C. Digests were then extracted via the addition of a 50% (v/v) 

ACN/2.5% (v/v) formic acid solution for 20 mins at room temperature prior to drying 
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using a SpeedVac. Finally, the dried peptides were re-dissolved in a 5% (v/v) ACN/0.25% 

(v/v) formic acid solution and stored at -20°C until required. 

2.2.13.4 LC-MS-MS analysis. 

The LC-MS-MS run and analysis was performed by Dr David Sumpton (Beatson 

Institute). Reversed-phase liquid chromatography tandem mass spectrometry analysis was 

performed on a LTQ-Orbitrap Velos coupled to a Proxeon Easy-LC. The peptide mixtures 

were loaded onto a C18 guard column (1.9 µm; 0.1 × 20 mm) and separated on a C18 in-

house packed emitter (1.9 µm; 0.075 × 150 mm) over a 60 min linear gradient. The 

Orbitrap was set to analyse the survey scans (m/z 350-1600) at 60000 resolution and the 

top 10 ions in each duty cycle were selected for MS/MS in the LTQ linear ion trap. The 

data were searched against the Swiss-Prot Mus musculus database (50807 entries) using 

Mascot v2.4.1 software (Matrix Science Ltd.) [226]. All Mascot result files were then 

loaded into Scaffold v4.3.4 proteomic software [227]. The data were combined with the 

previous experiments raw files (n=2) and searched against the same database using 

MaxQuant (v1.4.1.6) for both protein identification and label free quantitation [228, 229]. 

MaxQuant software is free to download at www.maxquant.org. The MaxQuant ID 

information was then pooled with the Mascot results in the same Scaffold analysis.  

To confirm the endogenous site(s) of ubiquitylation on SOCS3, the LC-MS/MS data were 

searched for a glycine-glycine signature at each individual lysine. The presence of this 

signature confirmed ubiquitylation had occurred at this site [230] and this was determined 

by a +114 mass shift from unmodified lysine. 

2.2.14 Investigating SOCS3 in the vasculature 

2.2.14.1 Immunolocalisation of SOCS3 in HSV tissue. 

Surplus HSV tissue was derived from 3 individual patients (281A, 304A, 306D) 

undergoing CABG procedures. The tissue was fixed in 10% (v/v) formalin and paraffin 

embedded by Mrs Nicola Britton (Institute of Cardiovascular and Medical Sciences, 

University of Glasgow). Paraffin-embedded tissue was then sectioned to provide slices that 

were 4μm thick using a Leica Finese 325 microtome (Fisher Scientific). Tissue was 

mounted onto glass slides by floating the tissue sections in a 37°C water bath and allowing 

http://www.maxquant.org/
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the wax to gently melt. Following this, slides were heated in a 60°C oven (3hrs) and 

transferred to a 40°C oven overnight to ensure adherence of tissue to the glass slides. 

Initially, paraffin was removed by washing sections in Histoclear (2 x 5 min) followed by 

re-hydration of tissue through a gradient of ethanol troughs (100%  90%  70% (v/v)) 

for 5 mins each. A final wash in distilled deionised water was performed (minimum of 6 

mins) to avoid drying out prior to an antigen retrieval step. Antigen was retrieved by 

incubating slides with citrate buffer (8 mM trisodium citrate, 2 mM citric acid, pH 6.0) and 

heating in a microwave for 20 min topping up with buffer if boiled over. Slides were then 

allowed to cool for a further 30 min to allow the antigen to fold correctly. Slides were then 

rinsed under running cold tap water before quenching of endogenous peroxidase activity 

by incubation with 3% (v/v) H202 in methanol (20 min) followed by washing in PBS + 

0.1% (v/v) Triton-X 100 (2 x 5 min). Blocking was achieved by incubating sections with 

20% goat serum (diluted in TBS/T) for 1 hr in a humidifying chamber to minimise non-

specific binding. Blocking solution was removed by gently dabbing the edge of the slide 

on tissue paper. Rabbit anti-SOCS3 (ab16030) or rabbit IgG control primary antibody was 

prepared in 2% goat serum (diluted in TBS/T) at a concentration of 0.01 mg/ml or 0.005 

mg/ml and incubated with the appropriate sections (4°C, overnight) in a humidifying 

chamber. The following day, sections were washed in PBS + 0.1% (v/v) Tween20 solution 

(3 x 5 min) to remove residual primary antibody. Following this, the biotinylated goat anti-

rabbit (Ba-100) secondary antibody, provided with the Vectastain® ABC universal kit 

(PK-6200), was prepared in 2% goat serum (diluted in TBS/T) at a concentration of 1:300 

and incubated with sections for 30 min at room temperature.  Sections were then washed in 

PBS + 0.1% Tween20 (3 x 5 min) and incubated with ABC reagent (30 min, room 

temperature). Sections were washed twice in PBS before addition of the pre-prepared 3,3’-

diaminobenzidine (DAB) substrate (DAB substrate kit, Vector labs SK-400) for 1-5 min. 

Staining time was determined by microscopic evaluation of development on the SOCS3 

primary antibody (0.01 mg/ml) slide. Finally the reaction was quenched by immersing 

sections in running tap water (5 min). Nuclei were then counterstained with haematoxylin 

(1 min) and immersed in running tap water (5 min) before dehydration of the sections in an 

ethanol gradient (70%  90%  100% (v/v)) for 6 mins each with a final wash in 

histoclear (6 min). Slides were mounted using Histomount (National Diagnostics) and 

allowed to dry in a fume hood for 24hrs. Finally, tissue images were taken on the Olympus 

BX41 microscope at x4 and x10 objectives and analysed using the QCapture Pro 6.0 

Software. Representative data were shown.  
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2.2.14.2 Optimising the infection efficiency of the Sffv-GFP LV in HSVECs. 

HSVEC and HSVSMCs are primary human cell cultures may prove challenging to 

transfect, as such the efficiency of LV infection and gene expression was assessed in 

surplus HSVECs. HSVECs were plated in 6 cm dishes (5x10
5
 cells/dish) and infected with 

0-20IFU/cell GFP LV the following day. 48 hrs post infection, GFP expression was 

visualised using the Axiovert 40 CFL (Carl Zeiss Microscopy, LLC) fluorescent 

microscope and Carl 4.0 software. The infection efficiency was calculated as the 

proportion of cells expressing GFP in a given area. Samples were then harvested in RIPA 

lysis buffer for SDS-PAGE and immunoblotting for GFP (in-house) and GAPDH 

(Ab8245) (section 2.2.7.3-2.2.7.5). 

2.2.14.3 Proliferation assay 

BrdU cell proliferation assays (Roche) were employed to assess HSVSMC proliferation 

following SOCS3-Luc or GFP LV infection (as per the manufacturer’s instructions). 

Briefly, SMCs were seeded in white 96 well, flat bottomed plates (1x10
3
 cells/well). The 

following day, cells were serum starved for 72hrs before returning to 15% (v/v) FBS SMC 

media and infection with 0-20IFU/cell SOCS3-Luc or control GFP viruses (48hrs). 31hrs 

post infection BrdU label was added to each well and cells were returned to the incubator 

for 17hrs. Each well was then fixed and BrdU incorporation measured by measuring 

absorbance at 450nm using a plate reader (POLARstar OPTIMA).  

2.2.14.4 Migration assay 

The in vitro scratch assay previously described by Liang and colleagues [231] was 

employed to measure cellular migration following SOCS3 overxpression on SMCs. 

HSVSMCs were seeded at 1x10
9
 cells/well in 6 well plates and grown to 100% 

confluence. Cells were then serum starved for 72 hrs (MEM, 0.2% (v/v) FBS, 1 mM (v/v) 

L-glutamine, 50 U/ml (v/v) Penicillin-Streptomycin solution to induce cell quiescence. 

Subsequently, 3 scratches/well were made with a P200 tip followed by a PBS (1 ml) wash 

to remove detached cells. Reference marks (2 vertical scratches on the plastic plate) were 

made to specify which area of the scratch to image and cells were returned to 15% (v/v) 

FBS SMC media or fresh 0.2% (v/v) FBS media as above. At this point, cells were 

infected with SOCS3-Luc or GFP virus particles (0-10IFU/cell) and scratch wounds were 

imaged at 0 and 24hr time-points with representative images shown.   

https://www.micro-shop.zeiss.com/?l=en&p=us&f=a&i=10081
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2.2.14.5 Statistical analysis 

Results were expressed as the mean ± standard error of the mean (SEM) representing error 

bars. The statistical significance between treatment groups was assessed using an unpaired, 

two-tail t-test or one way ANOVA with Bonferroni correction as stated. A P-value <0.05 

was deemed significant. 
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3 Investigating the regulation of SOCS3 stability 

3.1 Introduction 

The role of SOCS3 as a negative regulator of JAK/STAT signalling has now been well 

characterised however little is known about the regulation of SOCS3 turnover specifically. 

Multiple routes of SOCS3 degradation exist though the contribution of each may be 

dependent on the cell type under investigation. For example, calpain protease-mediated 

degradation of SOCS3 was recently described in the literature [103]. In addition, 

phosphorylation has previously been shown to destabilise SOCS3 levels by promoting 

proteasomal turnover [94]. Deletion of the PEST motif within SOCS3 was also reported to 

stabilise SOCS3 levels [100]. SOCS3 has previously been shown to be polyubiquitylated 

and consequently targeted for degradation at the proteasome. For this reason, SOCS3 has a 

relatively short biological half-life that varies from 40-120 mins depending on the cell type 

[97]. Sasaki et al generated an N terminal truncation mutant of SOCS3 and found that 

deletion of 11 residues at the N terminus or mutation of Lysine 6 (Lys6) specifically 

enhanced the stability of the protein in Ba/F3 cells (murine pro-B cell line) [95]. As such 

Lys6 is thought to be the master regulator of SOCS3 stability however the precise 

mechanism of SOCS3 turnover remains unclear. Interestingly, studies in which the C-

terminal SOCS box was deleted showed that SOCS3 failed to bind other components of the 

E3 ligase complex and that this also enhanced the stability of SOCS3 [95]. Accordingly, 

the group proposed that SOCS3 was autoubiquitylated as opposed to an external E3 ligase 

catalysing this post-translation modification of SOCS3. 

3.1.1 Aims 

Though Lys6 has been reported to be a key regulator of SOCS3 stability [95] no other 

group has reproduced this finding nor has any follow up study been published in the 

literature. As such, the mechanism of SOCS3 turnover remains controversial. In this study 

the identification of key lysine residues involved in targeting SOCS3 for proteasomal 

degradation was performed. In addition, we assessed whether SOCS3 has the ability to 

autoubiquitylate and regulate its’ own turnover. Furthermore, we characterised a Lysine-

less SOCS3 mutant and compared its stability with WT SOCS3 via Emetine chase 

experiments. Finally we adapted the existing Epo/Gp130R assay to measure Lys-less 

SOCS3 function and determine whether mutagenesis affected the ability of SOCS3 to 

inhibit JAK/STAT signalling.     
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3.2 Results 

3.2.1 Identification of key lysine residues involved in SOCS3 ubiquitylation 

Previously, it had been shown that Lysine 6 (K6) was an important regulator of SOCS3 

turnover in Ba/F3 cells (murine pro-B cell line) [95]. To investigate the role of K6 further, 

we generated a FLAG epitope-tagged K6Q SOCS3 mutant and expressed the construct in 

HEK293 cells in parallel with a similarly FLAG epitope-tagged wild type (WT) SOCS3 

and HA epitope-tagged ubiquitin (Figure 3-1). Immunoprecipitation of the WT vs. K6Q 

SOCS3 mutant with anti-FLAG conjugated Sepharose beads and blotting for HA tagged 

ubiquitin was performed. Discrete stepwise increases in immunoreactivity (from ~37 kDa 

to >250 kDa) were detected for WT SOCS3 consistent with polyubiquitylation (Figure 3-

1).  K6Q mutated SOCS3 was polyubiquitylated similar to WT SOCS3 (Figure 3-1 B), and 

densitometry analysis confirmed that mutation of K6 had no effect on SOCS3 

ubiquitylation (Figure 3-1 C). Both WT and the K6Q mutated SOCS3 were insensitive to 

proteasome inhibition (MG132 treatment) suggesting the proteasome was not the major 

route of SOCS3 degradation in HEK293 cells (Figure 3-1 B-C). 

3.2.2 Emetine treatment to assess the role of Lys6 on SOCS3 protein stability 

Though the K6Q SOCS3 mutant was still ubiquitylated in HEK293 cells (Figure 3-1), it 

was important to confirm that this mutant was degraded at the proteasome and that loss of 

K6 did not alter the stability of SOCS3. To establish the role of K6 in controlling SOCS3 

stability, we expressed FLAG-tagged WT or K6Q SOCS3 in SOCS3 KO MEF cells. Use 

of the SOCS3 KO cell line ensured only that we measured the stability of the transfected 

SOCS3 construct only and not endogenous SOCS3. The cells were stimulated with a 

protein synthesis inhibitor, Emetine, for the indicated time points (0-8 hrs). A positive 

control in which cells were treated with Emetine plus MG132 was included to confirm the 

proteasome was the major route of degradation. Immunoblotting for FLAG-tagged SOCS3 

confirmed that turnover of the K6Q mutant was comparable to the WT SOCS3 turnover 

(Figure 3-2 A-B). Both WT and K6Q SOCS3 protein levels decreased gradually over time 

and was no longer detected following 8 hrs Emetine treatment (Figure 3-2 A and B). There 

was no statistically significant change in stability (P>0.05) between WT and K6Q SOCS3 

(Figure 3-2 C). From these data, we concluded that the proteasome was a major route of 

SOCS3 degradation in a mouse fibroblast cell line and that Lys 6 was not a key regulator 

of SOCS3 stability. 
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Figure 3-1: SOCS3 K6Q mutant was subject to poly-ubiquitylation (continued overleaf)… 

(B) 

(A) 
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Figure 3-1: SOCS3 K6Q mutant was subject to poly-ubiquitylation 

HEK293 cells were transiently transfected with 2μg FLAG tagged WT or K6Q SOCS3 and HA tagged 

Ubiquitin (Ub-HA). SOCS3 was then immunoprecipitated from lysates with anti-FLAG coated Sepharose 

beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples 

were resolved by SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) Mouse 

anti-FLAG (1:1000) was used in western blotting with protein G-HRP (1:1000) for band visualisation. (B) 

Rabbit anti-HA (1:1000) with anti-rabbit IgG-HRP (1:1000) secondary antibody. Membranes were then 

stripped and were probed with mouse anti- GAPDH (1:20,000) and anti-mouse IgG-HRP to provide a 

loading control. The upper bands represented poly-ubiquitination chains. (C) Densitometry analysis was 

performed using Total lab by normalising SOCS3 polyubiquitylation (Ub-HA blot) to the amount of SOCS3 

present in the FLAG-SOCS3 IP blot. The data were presented as mean ± SEM. One-way ANOVA with 

Bonferroni correction was performed using GraphPad software where P < 0.05 was deemed significant. (C) 

There was no significant difference in the ubiquitylation status of WT and K6Q mutated SOCS3 in the 

presence or absence of MG132 suggesting that in HEK239 cells Lys 6 is not the only site of ubiquitylation. 

The experiment was repeated to N=3 and representative data shown. 

  

(C) 
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Figure 3-2: SOCS3 K6Q mutant was not more stable than WT SOCS3 (Continued overleaf) 

(A)  
 
 
 
 
 
 
 
 
 
 
 
 
(B)  
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(C)  

 

Figure 3-2: SOCS3 K6Q mutant was not more stable than WT SOCS3. 

HEK293 cells were seeded in 10 cm dishes and transfected with 10µg FLAG tagged WT human SOCS3 

or K6Q mutant the following day. 24 hrs post transfection, cells were trypsinised and split into 7 wells of 

2 x 6 well plates. 48 hrs post transfection, cells were then stimulated with ± Emetine (100 μM) and ± 

MG132 (6 μM) for the indicated time (0-8 hrs). UTF denotes untransfected. (A-B) Whole cell lysates 

were resolved via SDS-PAGE and immunoblot analysis performed with anti-FLAG and anti- GAPDH. 

Representative image shown (N=3). (C) Densitometry analysis was performed using Total lab by 

normalising SOCS3 expression to GAPDH. The data were presented as mean ± SEM % SOCS3 

remaining where the 0 hr time point was set to 100%.  Student’s t-test (2-tailed, un-paired) was 

performed at each time point where P<0.05 was deemed significant. The K6Q SOCS3 mutant was not 

significantly more stable than WT SOCS3.  
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3.2.3 Mapping the site of SOCS3 ubiquitylation 

Having eliminated a role for Lys6 in controlling SOCS3 ubiquitylation in HEK293 cells, 

we tested a range of N- and C-terminal truncation mutants of SOCS3 in an attempt to 

identify key Lys residues involved in SOCS3 ubiquitylation. A panel of FLAG tagged 

SOCS3 truncation mutants were expressed in HEK293 cells and immunoprecipitated using 

anti-FLAG beads (Figure 3-3). Immunoblotting for HA-tagged ubiquitin confirmed that 

poly-ubiquitin chains were visible in whole cell lysates and IP samples for WT, ΔN20, 

ΔN36 and ΔC40 SOCS3 (Figure 3-3).However, the ΔC84 SOCS3 truncation revealed no 

poly-ubiquitin chains and was comparable to the HA-ubiquitin only control (Figure 3-3). 

From these data, we concluded that the region of SOCS3 spanning aa142-185 was essential 

to observe ubiquitylation of SOCS3.  

 

 

 

 

 

(A) 

Figure 3-3: Identification of a C-terminal, 44 amino acid, region required for SOCS3 ubiquitylation 

(Continued overleaf)… 
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Figure 3-3: Identification of a C-terminal, 44 amino acid, region required for SOCS3 ubiquitylation 

(A) Schematic showing WT SOCS3 and truncation mutant structure. The 44 amino acid peptide sequence 

present in ΔC40 but not ΔC84 is shown and the single lysine
173

 present highlighted. (B) and (C) HEK293 

cells were transiently transfected with 2μg FLAG tagged WT or truncated (ΔN20, ΔN36, ΔC40, ΔC84) 

SOCS3 and HA tagged Ubiquitin (Ub-HA). SOCS3 was then immunoprecipitated from lysates with anti-

FLAG coated Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg 

whole cell lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane for 

western blotting. (B) Immunoblotting of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG 

(1:1000) and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (C) Immunoblotting of whole cell 

lysates and IP SOCS3 with rabbit anti-HA (1:1000) with anti-rabbit IgG-HRP (1:1000) secondary antibody 

to detect HA tagged ubiquitin. Membranes were then stripped and probed with mouse anti-GAPDH 

(1:20,000) and anti-mouse IgG-HRP to provide a loading control. Molecular weights (Mw) in kDa are 

shown. The upper bands in (C) represented poly-ubiquitin chains. Deletion of 84 residues in the C-terminus 

of SOCS3 (ΔC84) resulted in a loss of ubiquitination and identified an important 44 amino acid region of 

SOCS3 involved in ubiquitination. The experiment was repeated to N=3 and representative data shown. 
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3.2.4 Investigating the potential for SOCS3 to auto-ubiquitylate 

Auto-ubiquitylation of SOCS3 would require the formation of an E3 ligase complex at the 

C-terminal SOCS box involving Elongin B and C (components of the E3 ligase 

machinery). Previously, alanine scanning identified a conserved Leucine residue (Leu189) 

within the SOCS3 SOCS box that was required for Elongin B and C to interact [232]. As 

such, the Palmer lab generated an L189A mutation in the C-terminal BC box of SOCS3 

(Jamie Williams, University of Glasgow). To examine whether the L189A SOCS3 mutant 

could interact with Elongin B and Elongin C we co-expressed MYC-tagged Elongin B and 

C in the presence of FLAG-tagged WT vs. L189A SOCS3 in HEK293 cells. 

Immunoprecipitation of the WT vs. L189A SOCS3 mutant using anti-FLAG beads and 

immunoblotting for MYC tagged Elongin B and C revealed that the L189A mutant could 

not interact with the Elongins in contrast to WT SOCS3 (Figure 3-4). These data were 

consistent with Babon and co-workers original work that revealed Leu189 was required for 

Elongin interaction. Moreover, to further examine whether SOCS3 was auto-ubiquitylated, 

we co-expressed FLAG-tagged WT or L189A SOCS3 with HA-tagged ubiquitin in 

HEK293 cells (Figure 3-5). Immunoprecipitation of SOCS3 using anti-FLAG beads and 

immunoblotting for HA-tagged ubiquitin revealed that the L189A SOCS3 mutant was 

ubiquitylated similar to the WT (Figure 3-5). The ΔC84 SOCS3 truncation was included as 

a negative control for no ubiquitylation and was again comparable to the HA ubiquitin only 

lane (Figure 3-5 B). The L189A mutant failed to interact with Elongin B and C (Figure 3-

4) but otherwise contained all the necessary Lys residues intact for ubiquitylation to 

proceed (Figure 3-5 B). Densitometry analysis confirmed that L189A mutated SOCS3 was 

polyubiquitylated similar to WT SOCS3 (P > 0.05) (Figure 3-5 C). Together these data 

suggested that SOCS3 was not auto-ubiquitylated and that an external E3 ligase may 

regulate the ubiquitylation of SOCS3. Additionally, to assess whether the loss of ΔC84 

SOCS3 mutant ubiquitylation (Figure 3-3) was due to an inability to bind components of 

the E3 ligase machinery, a co-IP of Elongin B and C with  ΔC84 SOCS3 was performed in 

parallel to the WT and L189A SOCS3 mutant as above (Figure 3-4). Similar to the L189A 

SOCS3 mutant, the ΔC84 SOCS3 mutant was unable to interact with Elongin B and C in 

HEK293 cells (Figure 3-4). Though ΔC84 SOCS3 could no longer interact with the 

Elongins, the fact that the ΔC40 SOCS3 mutant was ubiquitylated despite the deletion of 

the SOCS box (aa186-225) suggested that formation of the E3 ligase complex on SOCS3 

was not required for ubiquitylation and therefore SOCS3 was not auto-ubiquitylated.   
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Figure 3-4: Effect of the L189A point mutation and ΔC84 truncation on SOCS3 ubiquitylation 

HEK cells were transiently transfected with 2μg FLAG tagged WT or mutant (L189A, ΔC84) SOCS3 and 

MYC tagged Elongin B and Elongin C. SOCS3 was then immunoprecipitated from lysates with anti-FLAG 

coated Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 20 μg whole 

cell lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane for western 

blotting. (A) Immunoblotting of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) 

and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell lysates and 

IP SOCS3 with mouse anti-MYC (1:1000) with anti-mouse IgG-HRP (1:1000) secondary antibody to detect 

MYC tagged Elongin B and C. Membranes were then stripped and probed with mouse anti-GAPDH 

(1:20,000) and anti-mouse IgG-HRP to provide a loading control.  WT SOCS3 interacted with Elongin B and 

C in contrast to the L189A and ΔC84 mutants which could no longer interact with the MYC tagged Elongin 

B and C. The experiment was repeated to N=3 and representative data shown.  
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Figure 3-5: The SOCS3 (L189A) SOCS box mutant was ubiquitylated in contrast to the ΔC84 mutant 

(Continued overleaf)… 
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Figure 3-5: The SOCS3 (L189A) SOCS box mutant was ubiquitylated in contrast to the ΔC84 mutant 

HEK293 cells were transiently transfected with 2μg FLAG tagged WT or mutant (L189A, ΔC84)SOCS3 and 

HA tagged Ubiquitin (Ub-HA). SOCS3 was then immunoprecipitated from lysates with anti-FLAG coated 

Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 20 μg whole cell 

lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane for western 

blotting. (A) Immunoblotting of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) 

and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell lysates and 

IP SOCS3 with rabbit anti-HA (1:1000) with anti-rabbit IgG-HRP (1:1000) secondary antibody to detect HA 

tagged ubiquitin. Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) and anti-

mouse IgG-HRP to provide a loading control. The upper bands in (B) represented poly-ubiquitin chains. (C) 

Densitometry analysis was performed using Total lab by normalising SOCS3 polyubiquitylation (Ub-HA 

blot) to the amount of SOCS3 present in the FLAG-SOCS3 IP blot. The data were presented as mean ± SEM. 

One-way ANOVA with Bonferroni correction was performed using GraphPad software where P < 0.05 was 

deemed significant. ** P <0.001 (C) There was a significant decrease in ΔC84 SOCS3 polyubiquitylation (P 

< 0.001) when compared to WT and L189A SOCS3. The experiment was repeated to N=3 and representative 

data shown.  
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3.2.5 Investigating whether Lys173 is a key site of SOCS3 ubiquitylation 

Having isolated a C-terminal region of SOCS3 (aa142-185) that was required for 

ubiquitylation (Figure 3-3), sequence analysis identified only one potential ubiquitylation 

site (Lys173) within this region. To determine whether Lys173 (K173) was a key site for 

SOCS3 ubiquitylation, and therefore turnover, we generated a FLAG-tagged K173R 

SOCS3 mutant and co-expressed the construct with HA-tagged ubiquitin in HEK293 cells 

in parallel with WT SOCS3 as described in Figure 3-1. Immunoprecipitation of the WT vs. 

K173R SOCS3 mutant with anti-FLAG beads and immunoblotting for HA tagged ubiquitin 

confirmed both were poly-ubiquitylated as shown by the immunoreactive laddering 

consistent with the addition of ubiquitin chains (Figure 3-6 B). Negative controls for 

ubiquitylation were provided by the ΔC84 SOCS3 truncation and the HA-ubiquitin only 

lanes which revealed no poly-ubiquitin chains (Figure 3-6 B). Densitometry analysis 

revealed that there was a significant reduction in K173R SOCS3 ubiquitylation when 

compared to WT SOCS3 (Figure 3-6 C). We concluded that K173 may provide a key site 

of ubiquitylation for SOCS3 and therefore regulate its turnover.  

 

3.2.6 Emetine treatment to assess the role of Lys173 on SOCS3 protein 

stability 

Though a significant decrease in the ubiquitylation of the K173R SOCS3 mutant was 

observed (Figure 3-6 C), it was important to assess if this mutant was still turned over at 

the proteasome and whether loss of K173 altered the stability of SOCS3. To establish the 

role of K173 in controlling SOCS3 stability, we expressed FLAG-tagged WT or K173R 

SOCS3 in SOCS3 KO MEFs. The cells were stimulated with a protein synthesis inhibitor, 

Emetine, for the indicated time points (0-8 hrs). A positive control in which cells were 

treated with Emetine plus MG132 was included to confirm the proteasome was the major 

route of degradation. Immunoblotting for FLAG-tagged SOCS3 confirmed that turnover of 

the K173R mutant was comparable to the WT SOCS3 turnover (Figure 3-7 A-B). Both WT 

and K173R SOCS3 expression decreased gradually over time and expression was 

abolished following 8 hrs Emetine treatment (Figure 3-7 A and B). With the exception of 

the 2 hr time point, there was no statistically significant change in stability (P>0.05) 

between WT and K173R SOCS3 (Figure 3-7 C).  From these data, we concluded that Lys 

173 was not a key regulator of SOCS3 stability in a mouse fibroblast cell line.  
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Figure 3-6: SOCS3 K173R mutant was subject to poly-ubiquitylation (Continued overleaf)… 
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Figure 3-6: SOCS3 K173R mutant was subject to poly-ubiquitylation  

HEK293 cells were transiently transfected with 2μg FLAG tagged WT, or K173R SOCS3 and HA tagged 

Ubiquitin (Ub-HA). SOCS3 was then immunoprecipitated from lysates with anti-FLAG coated Sepharose 

beads. Lysates (30 μg) and IP samples (500 μg) were resolved by SDS-PAGE and transferred to 

nitrocellulose membrane. (A) Rabbit anti-SOCS3 (1:1000) was used in western blotting with anti-rabbit IgG-

HRP (1:1000) secondary antibody. (B) Membranes were then stripped and probed with rabbit anti-HA 

(1:1000) with anti-rabbit IgG-HRP (1:1000) secondary antibody. After a final strip membranes were probed 

with mouse anti- GAPDH (1:20,000) and anti-mouse IgG-HRP to provide a loading control. The upper bands 

in (B) represented poly-ubiquitination chains. (C) Densitometry analysis was performed using Total lab by 

normalising SOCS3 polyubiquitylation (Ub-HA blot) to the amount of SOCS3 present in the FLAG-SOCS3 

IP blot. The data were presented as mean ± SEM. One-way ANOVA with Bonferroni correction was 

performed using GraphPad software where P < 0.05 was deemed significant. * p<0.05 and ** p<0.001 (C) 

There was a significant decrease in K173R SOCS3 polyubiquitylation when compared to WT SOCS3 (P < 

0.05).  There was also a significant reduction in ΔC84 ubiquitylation when compared to WT SOCS3 (p< 

0.001). These data suggested that Lys 173 was a key site of SOCS3 polyubiquitylation in HEK293 cells. The 

experiment was repeated to N=4 and representative data shown. 

 

 

 

 

 

(C) 
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Figure 3-7: K173R SOCS3 mutant was not more stable than the WT SOCS3 (Continued overleaf).  

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
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Figure 3-7:  K173R SOCS3 mutant was not more stable than the WT SOCS3 8 hrs post emetine 

treatment 

HEK293 cells were seeded in 10 cm
 
dishes and transfected with 10µg FLAG tagged WT human SOCS3 or 

K173R mutant the following day. 24 hrs post transfection, cells were trypsinised and split into 7 wells of 2 x 

6 well plates. 48 hrs post transfection, cells were then stimulated with ±Emetine (100 μM) ±MG132 (6 μM) 

for the indicated time (0-8 hrs). (A-B) Whole cell lysates were resolved via SDS-PAGE and immunoblot 

analysis performed with anti-FLAG and anti- GAPDH. Representative image shown (N=3). (C) 

Densitometry analysis was performed using Total lab by normalising SOCS3 expression to GAPDH. The 

data were presented as mean ± SEM % SOCS3 remaining where the 0 hr time point was set to 100%. 

Student’s t-test (2-tailed, un-paired) was performed at each time point where P<0.05 was deemed significant. 

The K173R SOCS3 was significantly more stable than WT SOCS3 at the 2 hr time point only. 

  

* 
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3.2.7 Mapping the sites of SOCS3 ubiquitylation via LC-MS-MS 

The issue of redundancy proved challenging to assign the sites of ubiquitylation via 

SOCS3 mutagenesis. Thus to identify putative acceptor Lys residues of ubiquitin on 

SOCS3 LC-MS-MS analysis was employed. FLAG tagged WT SOCS3 or pcDNA3.1 was 

overexpressed in HEK293 cells and a co-IP of SOCS3 was performed using anti-FLAG 

beads.  The SOCS3 or pcDNA3.1 control eluate was subsequently prepared for LC-MS-

MS analysis at the Beatson Institute (Dr David Sumpton). To identify putative sites of 

ubiquitylation on SOCS3 the LC-MS-MS data were searched for the presence of a Gly-Gly 

doublet (+114 Da mass shift) through Mascot and MaxQuant software. Table 3-1 

summarises the peptide fragments containing the ubiquitylated lysine residues and the 

position of these modified sites (K
23

, K
28

, K
40

, K
85

, K
91

, K
173

, K
195

 and K
206

). A mass shift 

of +114 Da was identified at K
23

 by the MaxQuant analysis only and similarly K
91 

was 

identified by the Mascot analysis only (Table 3-1). K
40

 was identified as ubiquitylated by 

both software packages however the scores were relatively low (Table 3-1).  

The schematic in Figure 3-8 A illustrated the location of the lysine ubiquitylation sites as 

defined by the LC-MS-MS data in Table.  K
23

 and K
28

 were located in the KIR domain, 

K
40

, K
85

, K
91 

and K
173 

in the SH2 domain and finally K
195 

andK
206 

were located in the c-

terminal SOCS box region (Figure 3-8 A). Figure 3-8 B outlined the process by which 

ubiquitin was cleaved following trypsin digestion, leaving the Gly-Gly doublet which is 

identified as a +114 Da mass shift. Figure 3-8 C shows an example MS/MS spectrum of 

the peptide AYYIYSGGEKIPLVLSR that was ubiquitylated on Lys173 of SOCS3. The 

mass shift of +114 Da (below y8, blue and below b10, red) was computed by comparing 

the mass of each lysine against an unmodified lysine (data not shown). The LC-MS-MS 

analysis did not identify Lys6 as a key site of ubiquitylation on SOCS3 (Figure 3-8) and 

was consistent with previous investigations that showed the K6Q SOCS3 mutant was not 

resistant to ubiquitylation in HEK293 cells (Figure 3-1). These data confirmed that no 

single Lys residue was ubiquitylated and therefore regulates SOCS3 stability in HEK293 

cells (Figure 3-8). Functional redundancy exists for the attachment of ubiquitin to target 

Lys residues on SOCS3 (Figure 3-8). 
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Lysine site Peptide ID Sequence 
Mascot Ion 

score 

MaxQuant 

P-score 

Start 

position 

Stop 

position 

K
23

 (R)LkTFSSKSEYQLVVNAVR(K) - 112.24 22 39 

K
28

 (R)LKTFSSkSEYQLVVNAVR(K) 63.09 154.69 22 39 

K
28

 (K)TFSSkSEYQLVVNAVR(K) 62.53 193.31 24 39 

K
40

 (R)kLQESGFYWSAVTGGEANLLLSAEPAGTFLIR(D) 34.28 73.361 40 71 

K
85

 (R)HFFTLSVkTQSGTK(N) 69.19 153.14 78 91 

K
91

 (R)HFFTLSVKTQSGTkNLR(I) 36.39 - 78 94 

K
173

 (K)RAYYIYSGGEkIPLVLSR(P) 54.7 130.27 163 180 

K
173

 (R)AYYIYSGGEkIPLVLSR(P) 58.87 148.36 164 180 

K
195

 (R)kTVNGHLDSYEK(V) 60.98 186.51 195 206 

K
206

 (K)TVNGHLDSYEkVTQLPGPIR(E) 46.6 84.249 196 215 

Table 3-1: Identifying putative sites of ubiquitylation on murine SOCS3 

Scaffold 4.3.4 summarised the Lys-ɛ-Gly-Gly modifications identified using both Mascot and MaxQuant software. Sites identified by the peptides marked in pink should be viewed 

with caution; these were identified either by only one search engine or a low score or both. The peptide identifications marked in yellow appear to be of high quality and correspond to 

Lys173. Start and stop position denotes the location of the peptide fragment within the SOCS3 protein i.e. position along the 225 amino acid protein sequence. 8 putative sites of 

ubiquitylation (K
23

, K
28

, K
40

, K
85

, K
91

, K
173

, K
195

and K
206

) were identified though Lys173 provided the most reliable data suggesting ubiquitylation. 
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Figure 3-8: The identification of ubiquitylation sites on murine SOCS3 

The LC-MS/MS data were searched for a glycine-glycine signature at each individual lysine (K) to identify 

specific sites of ubiquitin modification. (A) Schematic depicting the sites of ubiquitylation on SOCS3 

identified. (B) Following trypsin digestion, ubiquitin is cleaved leaving a Gly-Gly doublet with a mass shift 

of + 114 Da. The MS/MS analyser reads the peptide fragment from left to right (red) and right to left (blue). 

(C) Example MS/MS spectrum of peptide AYYIYSGGEKIPLVLSR ubiquitylated on Lys173 of SOCS3. 

Following trypsin digestion the remnant signature (Lys-ɛ-Gly-Gly) remains at the site of ubiquitylation as the 

poly-ubiquitin chain is cleaved. The result is a mass shift of +114 Da compared to the other unmodified Lys 

residues. Charged peptide fragments retained within the MS analyser are denoted b if charge retained on N 

terminus (red) and y if charge retained on C terminus (blue) of the fragment. m/z denotes the mass:charge 

ratio. A mass shift of +114 Da was observed at Lys173 on this peptide indicating ubiquitylation. Figure in 

(A) adapted from [49].  
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3.2.8 Characterisation of a Lysine-less SOCS3 mutant 

3.2.8.1 Investigating the ubiquitylation status of a Lysine-less SOCS3 

mutant   

Poly-ubiquitylation of a target Lysine residue(s) marks a protein for degradation at the 26S 

proteasome. LC-MS-MS analysis confirmed that functional redundancy exists for the 

attachment of ubiquitin to target Lys residues on SOCS3 (Figure 3-8). As such, we 

hypothesised that mutation of all 10 Lys residues (Lys  Arg) to generate a so-called 

"Lys-less" SOCS3 would provide a SOCS3 mutant that was resistant to ubiquitylation and 

proteasomal degradation while potentially maintaining functionality in terms of its capacity 

to inhibit JAK-STAT signalling. The Lys-less SOCS3 construct contained a FLAG-tagged 

SOCS3 open reading frame (ORF) in which all 10 Lys residues were mutated to Arg, an 

amino acid which has the same positive charge as Lys at physiological pH but which 

cannot be ubiquitylated. 

To determine the ubiquitylation status of the Lys-less SOCS3 we co-expressed HA tagged 

ubiquitin in the presence or absence of FLAG tagged WT or Lys-less SOCS3 in HEK293 

cells. Immunoprecipitation of SOCS3 with anti-FLAG beads and immunoblotting for HA-

tagged ubiquitin revealed that Lys-less SOCS3 was not ubiquitylated in contrast to the WT 

SOCS3 that was ubiquitylated (Figure 3-9 B). The negative control for ubiquitylation (HA-

tagged ubiquitin only) showed no ubiquitylation on the HA-ubiquitin immunoblot and was 

comparable to the Lys-less SOCS3 IP (Figure 3-9 B). Densitometry analysis confirmed 

there was a significant reduction in Lys-less SOCS3 ubiquitylation when compared to the 

WT SOCS3 (Figure 3-9 C). These data were not due to a lack of Lys-less SOCS3 

expression as it was detectable at comparable levels to WT in the lysates and the Flag IP 

(Figure 3-9 A). We therefore concluded that mutation of all 10 Lys residues within SOCS3 

produced a Lys-less SOCS3 mutant that was resistant to ubiquitylation. 
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Figure 3-9: Assessing the ubiquitylation status of Lys-less SOCS3 (Continued overleaf)… 
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Figure 3-9: Assessing the ubiquitylation status of Lys-less SOCS3 

HEK293 cells were transiently transfected with 2μg HA tagged Ubiquitin (HA-Ub); 2μg FLAG tagged WT 

or Lys-less SOCS3. SOCS3 was then immunoprecipitated from lysates with anti-FLAG coated Sepharose 

beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples 

were resolved via SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) 

Immunoblotting of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) and protein 

G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell lysates and IP SOCS3 

with rabbit anti-HA (1:1000) with anti-rabbit IgG-HRP (1:1000) secondary antibody to detect HA tagged 

ubiquitin. Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) and anti-mouse 

IgG-HRP to provide a loading control. (C) Densitometry analysis was performed using Total lab by 

normalising SOCS3 polyubiquitylation (Ub-HA blot) to the amount of SOCS3 present in the FLAG-SOCS3 

IP blot. The data were presented as mean ± SEM. Student’s t-test (2-tailed, un-paired) was performed using 

GraphPad software where P < 0.05 was deemed significant. * P < 0.05. (C) There was a significant reduction 

in Lys-less SOCS3 polyubquitylation when compared to WT SOCS3 (P < 0.05). The experiment was 

repeated to N=3 and representative data shown. 

 

 

 
 
(C) 



Investigating the regulation of SOCS3 Stability 111 
 

 

3.2.8.2 Emetine treatment to the compare the stability of WT and Lys-less 

SOCS3 

Having confirmed the Lys-less SOCS3 mutant was resistant to ubiquitylation (Figure3-9), 

we hypothesised that this would reduce the proteins turnover at the proteasome and 

therefore enhance its stability. To test this hypothesis we expressed FLAG-tagged WT or 

Lys-less SOCS3 in SOCS3 KO MEF cells (Figure 3-10). The cells were stimulated with a 

protein synthesis inhibitor, Emetine, for the indicated time points (0-8 hrs). A positive 

control in which cells were treated with Emetine plus MG132 was included to confirm the 

proteasome was the major route of degradation. Immunoblotting for FLAG-tagged SOCS3 

confirmed that Emetine treatment did not lead to the downregulation of Lys-less SOCS3 

protein expression in contrast to the WT SOCS3 (Figure 3-10 A-B). The Lys-less SOCS3 

mutant was significantly (P<0.05) more stable than WT SOCS3 at the 4 and 8 hr time 

points (Figure 3-10 C). From these data, we concluded that loss of all 10 Lys residues 

within SOCS3 blocked its turnover at the proteasome and therefore significantly enhanced 

its stability in SOCS3 KO MEFs. 

3.2.9 Functional assessment of the Lys-less SOCS3 mutant 

We examined the functionality of Lys-less SOCS3 via 2 criteria i) the ability to interact 

with components of the E3 ligase machinery and ii) the ability to inhibit JAK/STAT 

signalling.  First, we examined its capacity to bind the other components required to make 

a functional E3 ligase complex, i.e. Elongin B and Elongin C [48]. MYC tagged Elongin B 

and C was co-expressed with or without WT, Lys-less or L189A SOCS3 in HEK293 cells. 

Immunoprecipitation of SOCS3 with anti-FLAG beads and immunoblotting for MYC 

tagged Elongin B and C was then performed. The L189A SOCS3 mutant was previously 

shown not to interact with the Elongins (Figure 3-4) and was therefore included as a 

negative control for this experiment (Figure 3-11). In contrast to the L189A mutant, WT 

and Lys-less SOCS3 could both interact equivalently with the Elongins (Figure 3-11). 

From these data we concluded that the Lys-less SOCS3 mutant could form an E3 ligase 

complex at the C-terminal SOCS box, a requirement for SOCS3-mediated substrate 

degradation [47].  

Future functional studies will involve LV mediated SOCS3 overexpression in primary 

vascular cells that may be difficult to transfect. Thus a Lys-less and WT SOCS3 LV was 

generated. To confirm the LV SOCS3 ORF was in frame and expressed well, HEK293 
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cells were infected with two different batches of FLAG-tagged Lys-less LV particles 

(Figure 3-12 A). Immunoblotting for FLAG-tagged SOCS3 confirmed that both batches 

(A-B) of the Lys-less SOCS3 LV expressed well in HEK293 cells at the expected 

molecular weight ~27kDa (Figure 3-12 A). Similarly, HEK293 cells were infected with 

increasing volumes of FLAG-tagged WT SOCS3 LV (Figure 3-12 B). Immunoblotting for 

FLAG-tagged SOCS3 confirmed that the WT SOCS3 LV expressed well in HEK293 cells 

at the expected molecular weight ~27kDa and that increasing the volume of virus infected 

(20-40 μl) was associated with an increase in SOCS expression (Figure 3-12 B). These 

data confirmed that the Lys-less and WT SOCS3 LV particles express well however virus 

titres must be calculated prior to use for future investigations.  

 

 

Figure 3-10: Lys-less human SOCS3 was more stable than WT SOCS3. (Continued overleaf…) 

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
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Figure 3-10:  Lys-less human SOCS3 was more stable than WT SOCS3. 

HEK293 cells were seeded in 10cm
2
 dishes and transfected with 10µg FLAG tagged WT human SOCS3 or 

Lys-less mutant the following day. 24 hrs post transfection, cells were trypsinised and split into 7 wells of 2 x 

6 well plates. 48hrs post transfection, cells were then stimulated with ±Emetine (100 μM) and ±MG132 (6 

μM) for the indicated time (0-8hrs). (A-B) Whole cell lysates were resolved via SDS-PAGE and immunoblot 

analysis performed with anti-FLAG and anti- GAPDH. Representative image shown (N=3). (C) 

Densitometry analysis was performed using Total lab by normalising SOCS3 expression to GAPDH. The 

data were presented as mean ± SEM % SOCS3 remaining where the 0 hr time point was set to 100%.  

Student’s t-test (2-tailed, un-paired) was performed at each time point where * P < 0.05 was deemed 

significant. The 2 hr time point (outlier) was removed for illustration. The Lys-less SOCS3 mutant was 

significantly more stable than WT SOCS3 at the 4hr and 8hr time points. 
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Figure 3-11: Lys-less SOCS3 interacts with components of the E3 ligase machinery. 

HEK293 cells were transiently transfected with 2 μg FLAG tagged WT or mutant (L189A, lys-less) SOCS3 

and MYC tagged Elongin B and Elongin C. SOCS3 was then immunoprecipitated from lysates with anti-

FLAG coated Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg 

whole cell lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane for 

western blotting. (A) Immunoblotting of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG 

(1:1000) and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell 

lysates and IP SOCS3 with mouse anti-MYC (1:1000) with anti-mouse IgG-HRP (1:1000) secondary 

antibody to detect MYC tagged Elongin B and C. Membranes were then stripped and probed with mouse 

anti-GAPDH (1:20,000) and anti-mouse IgG-HRP to provide a loading control.  WT and Lys-less SOCS3 

interacted with Elongin B and C in contrast to the L189A mutant which could no longer interact with the 

MYC tagged Elongin B and C. The experiment was repeated to N=3 and representative data shown. 
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Figure 3-12: Generation of a WT SOCS3 and Lys-less LV 

HEK293 cells were infected with 20 μl Lys-less human SOCS3 LV particles (batch A or B) or transfected 

with or without 4 μg Lys-less human SOCS3 LV cDNA construct for 48 hrs. (B) HEK293 cells were infected 

with 20-40 μl WT mouse SOCS3 LV particles or transfected with or without 4 μg WT mouse SOCS3 LV 

construct for 48 hrs. Prior to harvesting, cells were treated with 6 μM MG132 for 2 hours and cell lysates 

were then prepared for immunoblotting with mouse anti-FLAG (1:1000) and IgG-HRP. Membranes were 

then stripped and probed with mouse anti-GAPDH (1:20,000) and IgG-HRP to provide a loading control. 

The Lys-less and WT SOCS3 LV expressed well in HEK293 cells at the expected molecular weight ~27kDa.  
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3.2.10 Developing a method to assess SOCS3 function 

3.2.10.1  Optimising the sensitivity of the Epo/Gp130 chimeric receptor 

(Epo/Gp130R) assay to measure SOCS3 functionality 

The Epo/Gp130R chimera is composed of the extracellular ligand binding domain of the 

EpoR fused to the trans-membrane and cytoplasmic/signalling domain of the Gp130R as 

described previously [58]. To assess the function of SOCS3, we optimised the existing 

Epo/Gp130R assay described by Schmitz et al. [58]. Briefly, overexpression of the 

chimeric receptor and stimulation with Epo led to the induction of a Gp130R response 

within the cell [58]. As such, measuring the ability of SOCS3 to inhibit STAT3 activation 

(P-STAT3 at Y705) would provide a readout of SOCS3 activity. Immunoblot analysis 

using a phospho-specific STAT3 (Y705) antibody was used to confirm the status of 

STAT3 activation. 

 

Optimisation of the Epo stimulation was initially performed by expressing the 

Epo/Gp130R in HEK293 cells and stimulating with Epo (50-500 ng/ml) for 15 mins prior 

to harvesting (Figure 3-13 A). Immunoblotting for P-STAT3(Y705) and total STAT3 

confirmed Epo treatment induced STAT3 phosphorylation at 50-500 ng/ml in contrast to 

vehicle treatment groups which failed to induce P-STAT3 (Figure 3-13A). As a positive 

control for P-STAT3 immunoblotting, a JAK1 construct was expressed in HEK293 cells 

and stimulated with 30,000 units IFNα leading to the induction of P-STAT3 (Figure 3-

13A). 

 

To investigate the minimum concentration of WT SOCS3 required to inhibit P-STAT3, 

WT or mutant (Y759F) Epo/Gp130R was co-expressed with FLAG tagged WT SOCS3 (0-

2 μg) in HEK293 cells (Figure 3-13 B-G). At 2 μg SOCS3, complete inhibition of P-

STAT3 was observed (Figure 3-13). Titration of SOCS3 down to 0.005 μg, also 

demonstrated complete inhibition of P-STAT3 (1:400 ratio of SOCS3 to receptor) (Figure 

3-13 D-E). This decrease in P-STAT3 expression was statistically significant (P<0.05) 

over the concentration range 0.005-0.05 μg SOCS3 (Figure 3-13 F). However, these data 

varied between experimental repeats and therefore reproducibility of N numbers was an 

issue (Figure 3-13B-G).  
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To assess whether the Lys-less SOCS3 mutant could inhibit STAT3 Y705 phosphorylation 

at the chimeric receptor we co-expressed 2 μg Epo/GP130 ± 2 μg FLAG tagged WT or 

Lys-less SOCS3 in HEK293 cells (ratio of 1:1 receptor to SOCS3) (Figure 3-14). 

Immunoblotting for STAT3 Y705 phosphorylation revealed a band in the Epo/GP130R + 

Epo lane only (Figure 3-14A). In the presence of WT or Lys-less SOCS3 STAT3 Y705 

phosphorylation was not detected though faint bands were observed in the untransfected 

(UTF) lanes. Densitometry analysis confirmed that following Epo stimulation, the presence 

of WT and Lys-less SOCS3 led to a significant (P<0.001) decrease in STAT3 Y705 

phosphorylation compared to the maximum stimulation (Epo/Gp130R + Epo only) (Figure 

3-14B).  
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Figure 3-13: SOCS3 mediated inhibition of STAT3 phosphorylation at the Epo/Gp130R 

chimera(Continued overleaf) 
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Figure 3.13: SOCS3 mediated inhibition of STAT3 phosphorylation at the Epo/Gp130R chimera 

(Continued overleaf)… 
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Figure 3-13: SOCS3 mediated inhibition of STAT3 phosphorylation at the Epo/Gp130R chimera. 

(A) HEK293 cells were co-transfected with 2 μg WT/mutant (Y759F) Epo/Gp130 chimeric receptor or JAK1 

cDNA. Prior to harvesting, cells were serum starved (3hrs, 37°C, 5%CO2) and treated with ±50-500 ng/ml 

Epo, 30,000 units interferon-α (IFNα) or vehicle only (PBS) (15 min, 37°C, 5%CO2). Cell lysates (30 μg) 

were resolved by SDS-PAGE and transferred to nitrocellulose membrane. Mouse anti-P-STAT3 (1:1000) and 

rabbit anti-total STAT3 (1:1000) was used in western blotting. 50 ng/ml EPO was sufficient to stimulate 

STAT3 phosphorylation. Data shown were N=1. (B-E)  HEK293 cells were co-transfected with 2 μg WT or 

mutant (Y759F) Epo/Gp130 chimeric receptor ±0-2 μg WT SOCS3. Prior to harvesting, cells were serum 

starved (2  hrs, 37°C, 5%CO2) and treated with 50 ng/ml Epo + or PBS (-) (15 min, 37°C, 5%CO2). Cell 

lysates (30 μg) were resolved by SDS-PAGE and transferred to nitrocellulose membrane. Mouse anti-P-

STAT3 (1:1000), rabbit anti-total STAT3 (1:1000) and mouse anti-FLAG (1:1000) was used in western 

blotting where stated. (F-G) Densitometry analysis was performed using Total Lab software. P-STAT3 

expression was normalised to total STAT3 and expressed as a % of the maximum (0 μg SOCS3 + Epo set at 

100%). Each concentration of SOCS3 analysed was performed at N=1-4 as indicated in figure (F-G). 

Student’s T-test (2-tailed, un-paired) was performed for each SOCS3 concentration vs. 0 μg SOCS3 + Epo 

where N numbers permitted.  P<0.05 (*) and P<0.01 (**) was deemed significant (Excel). 0.005 μg SOCS3 

was sufficient to inhibit STAT3 phosphorylation in the presence of WT Epo/Gp130R + Epo however the 

inherent variability of this assay meant that N numbers could not be completed to N=3 for each SOCS3 

concentration.  

** 
* 

** 
** 

WT Epo/GP130 receptor 

Mutant Epo/GP130 receptor 

(F) 

(G) 
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Figure 3-14: Lysine-less SOCS3 mediated inhibition of STAT3 phosphorylation at the Epo/Gp130R 

chimera. 

HEK cells were co-transfected with 2 μg WT Epo/Gp130 chimeric receptor ±2 μg WT or Lys-less SOCS3. 

Prior to harvesting, cells were serum starved (2 hrs, 37°C, 5%CO2) and treated with 100 ng/ml Epo + or PBS 

(-) (15 min, 37°C, 5%CO2). Cell lysates (30 μg) were resolved by SDS-PAGE and transferred to 

nitrocellulose membrane. Mouse anti-P-STAT3 (1:1000), rabbit anti-total STAT3 (1:1000) and mouse anti-

FLAG (1:1000) was used in western blotting where stated. Experiments were repeated to N=3 and a 

representative immunoblot shown. (B) Densitometry analysis was performed using Total Lab software. Y705 

P-STAT3 expression was normalised to total STAT3. The data shown represent the mean ± SEM % of the 

maximum STAT3 Y705 phosphorylation (0 μg SOCS3 + Epo set at 100%) of three independent experiments. 

One-way ANOVA was performed using InStat GraphPad software (* P < 0.001) with Bonferroni correction. 

2 μg WT or Lys-less SOCS3 was significantly reduced STAT3 Y705 phosphorylation at the Epo/Gp130R.     

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 
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3.3 Discussion 

The aim of this chapter was to understand the mechanism of SOCS3 degradation, at the 

proteasome, and in doing so identifying key points of regulation that when modified may 

enhance SOCS3 stability. 

 

Sasaki et al previously generated an N-terminal truncation mutant of SOCS3 and found 

that mutation of Lys6 (K6) specifically or N-terminal truncation (ΔN11) enhanced the 

stability of the protein in Ba/F3 cells (murine pro-B cell line) [95]. In addition, the group 

found that a major route of SOCS3 turnover was the 26S proteasome as MG132 

proteasomal inhibition enhanced SOCS3 stability. To investigate this further, we generated 

a SOCS3 K6Q mutant and showed that loss of K6 did not affect the ubiquitylation status of 

SOCS3 (Figure 3-1). Moreover loss of this residue did not stabilise SOCS3 following 

proteasome inhibition in HEK293 cells (Figure 3-1) contradicting the existing literature in 

the Ba/F3 cell line. However, Sasaki noted that this may be a cell specific response which 

may explain the conflicting results [95]. Consistent with the existing literature [100], we 

have shown that inhibition of the proteasome had no obvious effect on SOCS3 stability 

suggesting the proteasome is not a major route for SOCS3 degradation in HEK293 cells 

(Figure 3-1). To our knowledge since publication by Sasaki et al 2003, initial reports of K6 

regulation of SOCS3 stability have not been followed up or characterised in detail. 

Therefore, this suggests that control of SOCS3 stability and targeting for degradation may 

be cell type specific. A suspension pro B cell line may not be the most appropriate model 

of SOCS3 regulation in the vasculature. 

 

In order to map the essential regions for SOCS3 ubiquitylation, in HEK293 cells, we 

assessed the ubiquitylation status of progressive SOCS3 truncation mutants. The key 

finding of this experiment was the identification of a ubiquitin resistant SOCS3 mutant 

(ΔC84) despite the presence of upstream lysine residues (Figure 3-3). Conversely, loss of 

the C-terminal 40 residues did not affect the ubiquitylation status of SOCS3. This led us to 

identify a 44 amino acid region (aa142-185) in the C-terminal domain of SOCS3 that is 

required for SOCS3 ubiquitylation to proceed in HEK293 cells (Figure 3-3). These data 

suggested that either the machinery required for catalysing ubiquitylation may no longer 

assemble or that preferential K residues within the 44 amino acid region were no longer 

available. In contrast to phosphorylation and sumoylation, there is no consensus sequence 

for ubiquitination therefore predicting Lys residues that may be sites of ubiquitylation 

using bioinformatic tools was not possible [233].  
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The SOCS box is located at the C-terminus of the SOCS3 protein and contains binding 

sites for components of the E3 ligase machinery to bind. The SOCS box provides a 

platform for the sequential assembly of the E3 ligase complex in which Elongin B and C 

must first dock at the SOCS box [48]. Failure of the Elongins to interact at this site means 

Cul5 and Rbx1 can no longer bind and the E3 ligase complex cannot assemble. As a result, 

SOCS3 substrates, bound by the SH2 domain, can no longer be ubiquitylated and targeted 

for the proteasome.  

It has been argued that SOCS3 auto-ubiquitylation was responsible for the rapid turnover 

of this signalling molecule [95]. Sasaki and colleagues generated a C-terminal truncation 

mutant, in which the SOCS box was removed; therefore components of the E3 ligase 

complex (Elongin B and C) could not interact. The authors showed that the C-terminal 

truncation mutant and the K6Q mutant were significantly more stable than WT SOCS3 in 

the Ba/F3 cell line suggesting that this provided evidence for SOCS3 auto-ubiquitylation. 

However, we hypothesised that one or more external E3 ligases may be involved in 

regulating the protein turnover.  

Babon and co-workers previously demonstrated that the conserved Leu189 on SOCS3 was 

required for Elongin B and C interaction however the ubiquitylation status of this mutant 

was never investigated [100].  In order to test whether SOCS3 auto-ubiquitylates itself or is 

targeted by an external E3 ligase(s), the Palmer lab generated an L189A SOCS box mutant. 

The L189A SOCS3 mutant was poly-ubiquitylated and was comparable to the WT SOCS3 

(Figure 3-5). The absence of ubiquitin chains on ΔC84 SOCS3 confirmed that the poly-

ubiquitylation observed was not an artefact of SOCS3 expression and that it was a specific, 

post-translational modification of the L189A and WT SOCS3 protein. Subsequently, we 

demonstrated that the L189A and ΔC84 (SOCS box deleted) mutation on SOCS3 disrupted 

the interaction with Elongin B and C (Figure 3-4). However, WT SOCS3 was able to bind 

the Elongins confirming Leucine189 (L189) was required for this interaction and therefore 

the formation of the E3 ligase complex on SOCS3. If the L189A mutant were not 

ubiquitylated this would suggest an auto-ubiquitylation event by SOCS3 as upstream and 

downstream Lys acceptors were still available. However, our data confirmed that despite 

an inability to bind the Elongins (Figure 3-4) the L189A mutant was ubiquitylated (Figure 

3-5). Furthermore, the ΔC40 SOCS3 truncation mutant was shown to be ubiquitylated 

despite the deletion of the SOCS box (aa186-225) (Figure 3-3). Together these data 

suggested that formation of the E3 ligase complex at the SOCS box was not essential for 
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SOCS3 ubiquitylation and that the 44aa region identified between the ΔC40 and ΔC84 

mutants controls sensitivity to ubiquitylation by a separate E3 ligase.  

 

Within this 44 amino acid region identified in the truncation studies (Figure 3-3) human 

SOCS3 contains one single lysine at position 173 (K173) (accession number O14543). To 

assess whether this residue was a key point of regulation for SOCS3 stability we first 

generated the K173R SOCS3 mutant and tested its ubiquitylation status (Figure 3-6). 

Densitometry analysis revealed that mutation of K173 significantly reduced the 

polyubiquitylation status of SOCS3 (Figure 3-6 C) however this mutation was shown to 

stabilise SOCS3 expression 2 hrs post emetine treatment only (Figure 3.7). It would be 

advantageous for a SOCS3 therapy to possess enhanced stability over a longer period of 

time (i.e. beyond 2 hrs) to maximise the inhibition of VSMC proliferation and migration. 

As such, these data suggest Lys173 is not a master regulator of SOCS3 turnover (Figure 

3.7) and it is likely that functional redundancy exists within the ubiquitin proteasome 

system (UPS). In the absence of a preferred lysine, upstream/downstream lysine residues 

may provide a site for ubiquitin conjugation due to the lack of consensus sequence 

requirement. Similarly, Lys acceptor functional redundancy was observed by King and co-

workers whilst characterising the ubiquitylation of cyclin B [234]. Functional redundancy 

may be advantageous for the maintenance of appropriate protein levels as many disease 

states can be attributed to the accumulation of misfolded proteins including Altzheimer’s, 

Huntington’s and Parkinson’s disease [235]. Interestingly, mitochondrial dysfunction may 

play a role in the pathogenesis of Parkinson’s disease [236]. An E3 ligase called Parkin is 

recruited to and ubiquitylates the dysfunctional mitochondrial outer membrane and 

consequently targets it for autophagy and lysomsomal degradation. Importantly, mutation 

of the Parkin gene (PARK2) has been associated with the early development of 

Parkinson’s disease [237]. In this disease setting, the evolution of more than one external 

E3 ligase regulating the ubiquitylation of dysfunctional mitochondria may be 

advantageous. 

Initial mutagenesis studies failed to identify key sites of ubiquitylation responsible for 

targeting SOCS3 to the proteasome (Figure 3-1– 3.7). To identify putative sites of 

ubiquitylation on SOCS3 the LC-MS-MS data were searched for the presence of a Gly-Gly 

doublet (+114 Da mass shift). 8 distinct sites of ubiquitylation (K
23

, K
28

, K
40

, K
85

, K
91

, 

K
173

, K
195 

and K
206

) were identified though Lys173 provided the most reliable data as 

highlighted in yellow (Table 3-1). Of note, the +114 Da mass shift was identified at K
23

 

and K
91 

by one software analysis package only (MaxQuant and Mascot respectively) 

http://www.uniprot.org/entry/O14543
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warranting caution when interpreting these data (Table 3-1). Importantly, a site of 

modification identified by both software packages enhanced the reliability of a true 

positive hit. Similarly, though K
40

 was identified as ubiquitylated by both software 

packages, the scores were relatively low again warranting caution when interpreting these 

data (Table 3-1). Lys173 was previously identified as a preferred site of ubiquitylation in 

the truncation studies (Figure 3-3) and via LC-MS-MS (Table 3-1, Figure 3-8) however 

loss of this residue failed to significantly influence SOCS3 stability (Figure 3-7).  

Together, these data confirmed that functional redundancy governs SOCS3 ubiquitylation 

i.e. when the preferred lysine is not available, upstream/downstream targets were 

ubiquitylated.  

One of the disadvantages associated with using LC-MS-MS analysis to map the 

ubiquitylation sites on SOCS3 was that ubiquitylation could not be discriminated from a 

different post translational modification called neddylation. Neddylation describes the 

conjugation of a small protein (NEDD8) to the target lysine. During LC-MS-MS sample 

preparation, trypsin digestion cleaves the NEDD8 group leaving a Gly-Gly doublet (mass 

shift +114 Da) at the modified lysine which is the signature also used to recognise a 

ubiquitylation event. However, in 2011 Kim et al published a study which suggested that 

ubiquitylation was responsible for ~75% of Gly-Gly motifs detected on trypsin digested 

peptide fragments [238]. The authors, treated cells with a ubiquitin cleaving enzyme 

(ubiquitin-specific-protease 2; USP2cc) before performing a di-glycine enrichment 

technique using an anti–K-ɛ-GG antibody (reviewed by [230]) and MS analysis of cell 

extract peptide fragments. Immunoblot analysis confirmed that ubiquitylation was 

abolished in the presence of the USP2cc enzyme and that the number of peptide fragments 

modified by the di-glycine motif was reduced by 75% compared to cell extracts that were 

not treated with USP2cc.  

 

Similarly, ISG15ylation is a post translational modification in which a ubiquitin like group 

(Interferon-Stimulated Gene 15; ISG15 [239]) is conjugated to a lysine residue and 

following protein trypsin digestion the di-glycine signature (K-ɛ-GG) is left intact. 

However, immunoblotting in other cell types confirmed this PTM occurs following 

interferon (IFN)-α/β stimulation only [127]. The present study (Table 3-1) was conducted 

in HEK293 cells in the absence of IFN-α/β and therefore excluded the possibility that the 

K-ɛ-GG signature identified on SOCS3 (Table 3-1) was due to ISG15ylation. 
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A final consideration when interpreting the LC-MS-MS data (Table 3-1) is that it was not 

possible to confirm whether mono, multi-mono or poly (Lys
48

 vs. Lys
63

)-ubiquitin chains 

were conjugated at each of the 8 ubiquitylation sites identified on SOCS3. The pattern of 

ubiquitylation and linkage of the poly-ubiquitin chain(s) will determine the cell response to 

this PTM such as protein degradation at the proteasome (Lys
48

) or the induction of a 

signalling cascade (Lys
63

) [127].  

 

To discriminate between Lys
48

 and Lys
63

 linked chains the overexpression of mutant 

ubiquitin constructs may be of use [240]. Mutation of internal Lys residues on ubiquitin 

(LysArg; K48R or K63R) impedes the assembly of poly-ubiquitin chains at the substrate 

ubiquitin acceptor site. Mono-ubiquitylation may proceed and immunoblot analysis would 

reveal an 8.5kDa band shift for the protein of interest as opposed to the stepwise laddering 

that represents poly-ubiquitin chains [240]. The use of a K63R mutant ubiquitin was 

previously used in a yeast study to investigate the role of Lys
63

 linked ubiquitin chains in 

regulating DNA repair pathways [241]. Alternatively, Kaiser et al described a method in 

which purification of the protein of interest is followed by MS analysis using different 

mass:charge (m/z) windows [240]. Each m/z window corresponds to one of the various 

ubiquitin chain linkage types (K6, 11, 27, 29, 33, 48, 63). The sequential analysis of the 

spectra allows the user to deduce which linkage type was present at the Lys acceptor site 

[240]. More recently, the use of a “middle-down MS” technique to determine whether 

poly-ubiquitin chains were linear or branched structures was described [242]. Middle-

down MS employs a less stringent trypsin digestion stage allowing the discrimination of 

linear chains (single Gly-Gly motif on Ub-1-74 detected) and branched chains (two Gly-

Gly motifs on Ub1-74 detected) [242]. 

 

3.3.1 Enhancing the stability of SOCS3 

We hypothesised that the beneficial effects of SOCS3 on VSMC proliferation, migration 

and vascular inflammation responsible for the development of NIH are compromised by its 

ubiquitylation and rapid turnover by the proteasome. As such, strategies that stabilise 

SOCS3 levels by inhibiting its ubiquitylation have the potential to enhance its beneficial 

effects. Failure to identify a single lysine residue controlling SOCS3 ubiquitylation (Figure 

3-1 - 3-7) led to the generation of a Lys-less SOCS3 construct which was shown to be 

resistant to ubquitylation in HEK293 cells (Figure 3-9). Importantly, loss of all 10 lysine 

residues on human SOCS3 (Lys-less) did not disrupt the interaction with Elongin B and C 
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and therefore the formation of the E3 ligase complex (Figure 3-11). To confirm whether a 

loss of ubiquitylation resulted in an increase in protein stability, we performed Emetine 

chase assays over an 8 hour time period. Mutation of Lys6 to Gln (K6Q) had no effect on 

murine SOCS3 stability with complete protein degradation observed after 8 hours protein 

synthesis inhibition (Figure 3-2). Mutation of Lys173 to Arg (K173R) enhanced the 

stability of SOCS3 at the 2 hr time point only. However, at following 8 hrs emetine 

treatment the band for SOCS3 was no longer visible on the immunoblot suggesting 

complete degradation (Figure 3-7). It would be advantageous for a SOCS3 therapy to be 

significantly more stable than endogenous SOCS3 over a longer period of time. 

Interestingly, the stability of the human Lys-less SOCS3 protein was significantly greater 

than the WT SOCS3 (Figure 3-10). This enhanced stability was associated with a loss of 

ubiquitylation (Figure 3-9) suggesting ubiquitylation plays a key role in controlling 

proteasomal turnover of SOCS3 in MEF cells. 

A more stable SOCS3 molecule may provide a useful candidate for gene therapy. With the 

advent of drug eluting stents the more stable Lys-less SOCS3 molecule could be delivered 

locally and so avoids the complication of raising SOCS3 expression globally. Alternatively 

CABG procedures are amenable to ex vivo adenovirus mediated gene therapies where the 

saphenous vein conduit for example may be incubated with the virus prior to grafting [21]. 

For example, in 2011, a phase 2 clinical trial used the adeno-associated virus type 1 vector 

to successfully deliver the Sarcoplasmic Reticulum Ca
2+

-ATPase (SERCA) via intra-

coronary infusion in patients with heart failure [243]. 

Additionally, the adenovirus mediated delivery of SOCS3 was shown to be protective in 

mouse models of rheumatoid arthritis (RA) [244]. Shouda and co-workers described the 

hyper-activation of STAT3 in the synovial tissue of patients with RA specifically. In 

attempt to control the deleterious effects of STAT3 hyper-activation, the investigators 

injected adenovirus particles expressing SOCS3 into the ankle joint of mice with RA. 

These data confirmed that the localised overexpression of SOCS3 significantly reduced the 

disease pathology. We therefore hypothesise that the use of a more stable SOCS3 isoform 

such as Lys-less SOCS3 would pro-long and potentially enhance the beneficial effects of 

this therapy in RA models of disease.   
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3.3.2 Assessing the functionality of SOCS3 mutants 

It was essential that mutagenesis of SOCS3, to enhance its stability, did not impair the 

function of SOCS3 as an inhibitor of the JAK/STAT pathway. As such, a strategy for 

measuring SOCS3 activity was devised by adapting the existing Epo/Gp130R assay [58]. 

The Epo/Gp130R chimera is composed of the extracellular domain of the erythropoietin 

receptor fused to the trans-membrane and intracellular domain of the glycoprotein-130 

receptor as described previously [58]. Schmitz et al previously demonstrated inhibition of 

STAT3 phosphorylation (P-STAT-3), by SOCS3, at this transiently expressed receptor in 

COS-7 cells [58]. We therefore selected this system as a measure of SOCS3 activity in 

HEK293 cells. Stimulation with Epo induces a gp130R response at the chimeric receptors 

only as HEK293 cells do not express an endogenous EpoR. Accordingly, the population of 

cells which failed to take up the Epo/Gp130R cDNA construct during transfection did not 

influence the P-STAT3 end point measure i.e. we can measure a response in transfected 

cells only. The optimisation of this assay involved identifying the minimum concentration 

of WT SOCS3 that was sufficient to inhibit STAT3 activation i.e. the ratio of receptor to 

SOCS3. Initially, a 1:1 ratio of receptor to SOCS3 (2 μg) effectively blocked the activation 

of STAT-3 at the WT Epo/Gp130R (Figure 3-13 B). As such, a titration of SOCS3 was 

performed with 0.005-0.05 μg effectively reducing the activation of STAT-3 (Figure 3-

13C-E).  

Importantly, the Epo/Gp130R mutation (Y759F) prevents SOCS3 docking at the 

intracellular domain of gp130R. It was expected this mutation would block SOCS3 

mediated inhibition of the JAKs responsible, in turn, for STAT3 phosphorylation. 

However, SOCS3 appeared to have a partial effect on STAT3 activation at the Y759F 

mutant receptor at a receptor to SOCS3 ratio of 1:1 (Figure 3-13B). Interestingly, at lower 

concentrations of SOCS3 this inhibition appeared to be lost (Figure 3-13 C-E).  One 

possible explanation may be that at higher SOCS3 concentrations (e.g. 2 μg, Figure 3-13 

B) SOCS3 directly interacts with and inhibits JAK activity through its KIR domain. 

Typically, the gp130 docking site (Y759) promotes this inhibition by bringing SOCS3 into 

close proximity with JAK [57] thought this is not essential [70]. Schmitz described this 

observation as a “receptor independent mechanism” [58].  

 

However, these data at lower concentrations of SOCS3 were not reproducible and 

completion of each SOCS3 concentration to three experimental repeats (N=3) was not 

possible as reflected in the densitometry analysis (Figure 3-13 F-G) where statistical 
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significance was tested only when sample N≥2. Though SOCS3 significantly reduced 

STAT3 activation at the WT receptor (Figure 3-13 F) the variability of these data rendered 

the assay unsuitable as a measure of SOCS3 function over the lower SOCS3 concentration 

range. We were able to obtain reproducible SOCS3-mediated inhibition at high 

concentrations of SOCS3 however this likely reflected gp130-dependent and gp130-

independent (direct JAK inhibition) aspects of its functionality (Figure 3-13B). Thus, the 

Epo/Gp130R assay provided a robust indicator of SOCS3 function at a 1:1 ratio of receptor 

to SOCS3 (Figure 3-13B).  

 

Similar to WT SOCS3, the Lys-less SOCS3 mutant significantly inhibited STAT3 

activation at the chimeric receptor (1:1 ratio) following Epo stimulation (Figure 3-14). The 

Lys-less SOCS3 mutant was previously shown to interact with Elongin B and C 

(components of the E3 ligase machinery) (Figure 3-11) suggesting that mutagenesis 

induced conformational change to the protein structure did not impede SOCS3 function. 

Moreover, the ability of Lys-less SOCS3 to inhibit STAT3 activation in the Epo/Gp130R 

assay (Figure 3-14) provided further evidence that SOCS3 mutagenesis was not 

detrimental to protein function. Lys-less SOCS3 may therefore provide a useful tool for 

therapeutic strategies that aim to control the hyperactivation of the IL6-mediated 

JAK/STAT pathway.      

 

Overall, this chapter has provided evidence that SOCS3 is not auto-ubiquitylated contrary 

to the existing literature [95]. We propose that one or more external E3 ligases may be 

involved in regulating SOCS3 protein turnover. Moreover, we have mapped 8 putative 

sites of SOCS3 ubiquitylation and generated a more stable Lys-less SOCS3 mutant. 

Mutation of all 10 lysine residues along the SOCS3 molecule did not impair its ability to 

interact with components of the E3 ligase machinery or inhibit STAT3 activation in the 

Epo/Gp130R assay. Accordingly, the functional Lys-less SOCS3 mutant may be a more 

potent inhibitor of SMC proliferation in NIH though this remains to be tested.    

3.3.3 Limitations of the study  

In this chapter it was demonstrated that the proteasome was not a major route of SOCS3 

degradation in HEK293 cells, a finding which was also reported by Babon and co-workers 

[100]. A cell system in which endogenous SOCS3 expression could be induced and where 

the proteasome is a major route of SOCS3 degradation would be a more suitable model.  
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One possibility would be the WT and SOCS3 KO MEFs used for the imaging experiments 

in chapter 4, although these also have the limitation of being a non-vascular cell type. 

 

Several experiments in chapter 3 used the transfection of plasmid cDNA as a method of 

overexpressing a gene of interest in the cell. One of the major limitations of this method is 

that transfection efficiency, and therefore copy number, will vary between cells. The 

transfection efficiency will also vary depending on the size of the plasmid. It may be 

argued that changes in ubiquitylation status were attributed to variation in transfection 

efficiency and thus plasmid copy number between cell populations. I employed PolyFect 

Transfection reagent, which relies on the formation of a dendrimer-DNA capsule, to 

facilitate efficient delivery of DNA across the cell membrane (section 2.2.6). However 

incubation of cells with this transfection reagent >24 hrs or at high concentrations was 

cytotoxic therefore it was important to optimise the transfection protocol for each cell type 

based on the manufacturers recommendations (data not shown). 

Furthermore, HEK293 cells may be regarded as a synthetic overexpression system. I 

selected this immortalised cell line as the efficiency of plasmid expression in primary 

vascular cells, using standard transfection reactions, is often substantially lower versus 

HEK293 cells. It would be informative to assess the ubiquitylation of SOCS3 in primary 

vascular cells (endothelial and smooth muscle) which have a high transfection efficacy. 

Alternatively, virus particles could be employed as a method of stable overexpression of 

the gene of interest. 

Emetine chase time course experiments were conducted to investigate the effect of 

mutagenesis on SOCS3 stability (Figure 3-2, 3-7 and 3-10). Data analysis involved 

normalising WT/mutant SOCS3 protein levels to the housekeeping gene GAPDH that was 

used as a loading control. Three independent experimental repeats were performed and the 

data were presented as a percentage of the maximum i.e. vehicle/time point 0. However, 

using this method, it is possible that during statistical analysis the significance is affected 

by low errors and may therefore increase the likeliness of a type I error. Moreover, to 

combat the issue of variation in transfection efficiency we transfected a 10 cm dish of 

SOCS3 KO MEFs, trypsinised this cell population and seeded the transfected MEFs in 6 

wells plates for emetine chase. One of the drawbacks of this procedure was that the 

transfected cells did not proliferate as well in the 6 well plates and so the protein 

concentration of whole cell lysates was low. It may therefore be argued that the emetine 

chase immunoblot data is difficult to interpret due to low protein expression (Figure 3-2, 3-
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7 and 3-10). As with the HEK293 system, it would be informative to assess the kinetics of 

SOCS3 turnover in primary vascular cells that would be the target of a SOCS3 stabilising 

therapy. 
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4 The identification of novel SOCS3 interactors: 

E3 ligase and DUB enzymes controlling SOCS3 

turnover 

4.1 Introduction 

Ubiquitylation is a reversible PTM of a lysine acceptor that requires the sequential activity 

of three distinct enzymes referred to as the E1 (activating enzyme), E2 (conjugating 

enzyme) and an E3 (ligase enzyme) [127] (section 1.5). The E3 ligase is the specificity 

determining factor for substrate recognition of which three families have been described 

including the Really Interesting New Gene (RING) domain, Homology to the E6AP C 

Terminus (HECT) and RING-between-RING (RBR) E3s [128]. Polyubiquitin chains may 

be linkage specific with Lys48 modifications targeting substrates for proteasomal 

degradation and Lys63 modifications regulating signalling events or targeting substrates 

for lysosomal degradation. Importantly, deubiquitylase (DUB) enzymes may reverse the 

action of E3 ubquitin ligases and can therefore promote substrate stabilisation or attenuate 

cell signalling events. 

Previously, Sasaki and colleagues reported that SOCS3 must auto-ubiquitylate and regulate 

its’ own turnover at the proteasome [95]. However, data generated in this thesis challenges 

this hypothesis and supports the role of an external E3 ligase to catalyse SOCS3 

ubiquitylation. The C-terminal SOCS box binds adaptor proteins Elongin B and C. 

Subsequently, this provides a platform for the formation of an E3 ligase complex 

(involving Cul5 and Rbx2) which catalyses the ubiquitylation of substrates bound by the 

SOCS3 SH2 domain (section 1.3.8). In chapter 3 of this thesis, SOCS3 containing a single 

amino acid substitution (Leu189Ala, L189A) within the C-terminal “BC box” was 

incapable of binding the Elongin proteins required for E3 ligase activity (Figure 3-4) and 

was ubiquitylated to a similar extent as WT SOCS3 (Figure 3-5). Therefore the 

ubiquitylation and stability of SOCS3 must be controlled by one or more separate E3 

ubiquitin ligases.  

Previously, a cell-based ubiquitylation assay was used to successfully screen for inhibitors 

of the MDM2-MDMx E3 ligase that regulates p53 stability [245]. In the resting cell, p53 

levels are maintained at a relatively low level through the action of MDM2. However, 
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following mutagenesis, p53 levels must increase to inhibit cell cycle progression. To 

achieve this, MDM2 auto-ubiquitylates and therefore targets itself for proteasomal 

degradation. Inhibitors of the MDM2 E3 ligase would enhance p53 stability and may 

therefore provide a useful therapy for cancer. The overexpression of an MDM2-luciferase 

fusion protein in HEK293T cells allowed the investigators to measure changes in MDM2 

expression (and therefore stability) using a luminometer [245]. A decrease in luminescent 

signal indicated MDM2 ubiquitylation and proteasomal degradation. Therefore in the 

presence of an MDM2-MDMx inhibitor the MDM2-luciferase fusion protein would be 

stabilised. We sought to adapt this assay to identify E3 ligases controlling SOCS3 turnover 

using a commercially available siRNA library (si-ARRAY) for over 300 known E3 ligases. 

4.1.1 Aims 

In this chapter, the development of a SOCS3-luciferase and immunofluorescence based 

assay to screen an E3 ligase si-ARRAY was investigated. In addition, LC-MS-MS analysis 

of a SOCS3 co-immunoprecipitate was performed to identify E3 ligase or DUB enzymes 

that interact with SOCS3 and potentially regulate its turnover at the proteasome. 

Functional validation of an E3 ligase (HectD1) and a DUB (USP15) identified in the LC-

MS-MS screen was performed. Finally, the role of Cullin-RING-Ligases (CRLs) was 

determined by assessing SOCS3 ubiquitylation status in the presence of a neddylation 

inhibitor. 
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4.2 Results 

4.2.1 The proteasome is a major route of SOCS3 degradation in a 

human endothelial cell line. 

Several studies have demonstrated that SOCS3 is rapidly turned over either by the 

proteasome [94-96] or via a calpain-dependent process [103]. However, it is likely that the 

mechanism of SOCS3 turnover is cell type dependent as a study conducted in HEK293T 

cells demonstrated that pharmacological inhibition of the proteasomal, calpain or 

lysosomal pathways did not enhance the stability of SOCS3 [100]. To determine the 

contribution of the proteasome to SOCS3 degradation in the cell lines used in our study, 

MEFs and ASM.5 cells were stimulated with ±Fsk ±MG132 for 5 hrs. Immunoblotting for 

SOCS3 revealed that, in both cell types, SOCS3 levels appeared to be increased in the 

Fsk+MG132 vs Fsk or MG132 alone treatment groups (Figure 4-1). Densitometry analysis 

of the AS-M and MEF immunoblot confirmed this was a significant increase in SOCS3 

levels (P<0.001) in the Fsk + MG132 treatment group by ~4fold (Figure 4-1B-C). In 

contrast, either Fsk or MG132 treatment alone resulted in a slight increase in SOCS3 levels 

(P>0.05) (Figure 4-1B-C). 

 

 

 

 

 

(A) 

 

Figure 4-1: The proteasome is a major route of SOCS3 turnover in AS-M human endothelial cells. 

(Continued overleaf) 
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Figure 4-1: The proteasome is a major route of SOCS3 turnover in AS-M human endothelial cells. 

(A) AS-M and MEF cells were treated ±50 μM Forskolin (Fsk) and ±6 μM MG132 (5 hrs, 37°C, 5% CO2) 

before harvesting in RIPA lysis buffer. Immunoblotting of cell lysates for SOCS3 revealed an accumulation 

of SOCS3 in the +Fsk,+MG132 group and to a lesser extent  the +Fsk,-Mg132 group The experiment was 

repeated to N=3 and representative immunoblot shown. (B-C) Densitometry analysis of the immunoblots 

were performed (N=3). The mean data with SEM error bars were plotted and statistical significance tested 

using a one-way ANOVA with Bonferroni correction (GraphPadPrism, ** P < 0.01), *** P < 0.001). cAMP-

induced SOCS3 accumulation was significantly greater in the presence of MG132 in both AS-M and MEF 

cell lines (P < 0.01). 
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4.2.2 Generation and characterisation of a SOCS3-Luciferase 

fusion protein for a luciferase assay based screen 

Previously, a screen to identify small molecule inhibitors of the Mdm2 E3 ligase were 

identified using a luciferase cell based assay [245]. Mdm2 is an E3 ligase that auto-

ubiquitylates itself and the tumour suppressor p53. Herman et al, generated an Mdm2-

luciferase fusion protein as a reporter of Mdm2 stability. Subsequently they performed a 

high throughput screen of small molecules to determine which compounds correlated with 

an increased luminescent signal i.e. Mdm2-Luciferase expression [245].  

 

Our screening strategy was to generate a stable AS-M cell line expressing a SOCS3-

Luciferase fusion protein for use in an si-ARRAY to screen for E3 ligases that control 

SOCS3 turnover. Knockdown of the E3 ligase controlling SOCS3 turnover would result in 

an increase in SOCS3-Luciferase stability and therefore luminescent signal. 

 

To confirm the SOCS3-Luciferase fusion protein was in frame, expression in a mammalian 

cell line was investigated (Figure 4-2). HEK293 cells were transfected with WT SOCS3 or 

SOCS3-Luc and immunoblotting for SOCS3 revealed a prominent band at ~27KDa in the 

WT lane vs ~86KDa band in the SOCS3-Luc lanes (Figure 4-2A). In contrast, 

immunoblotting of lysates with a luciferase antibody revealed an 86KDa band in the 

SOCS-luc lanes only (Figure 4-2). These data were consistent with the predicted molecular 

weight of luciferase ~59KDa accounting for the larger SOCS3-Luc size observed (Figure 

4-2). 

 

To examine whether the SOCS3-Luc fusion protein was ubiquitylated, the co-expression of 

WT SOCS3 or SOCS3-Luciferase with HA tagged ubiquitin (HA-Ub) was performed in 

HEK293 cells (Figure 4-3). IP of SOCS3, under denaturing conditions, and 

immunoblotting for SOCS3 revealed WT SOCS3 was expressed at a molecular weight of 

~27KDa in contrast to the SOCS3-Luc construct which was detected at a higher molecular 

weight ~86KDa (Figure 4-3A). Similarly, the HA immunoblot of IP samples revealed 

SOCS3-Luc poly-ubiquitin chains were present at a higher molecular weight than WT 

SOCS3 (Figure 4-3 B). Collectively these data confirmed that SOCS3-Luc fusion protein 

was in frame and can be functionally expressed in a mammalian cell.  
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Figure 4-2: Detection of the SOCS3-Luciferase fusion protein by western blotting. 

HEK293 cells were transiently transfected with 2 μg FLAG tagged WT (lane 2), 2 μg SOCS3-Luciferase (lane3) or untransfected (lane1).  Lysates (30 μg) were resolved by SDS-

PAGE and transferred to nitrocellulose membrane. (A) Rabbit anti-SOCS3 (1:1000) was used in western blotting with anti-rabbit IgG-HRP (1:1000) secondary antibody. (B) Mouse 

anti-luciferase (1:150) was used to visualise luciferase tagged SOCS3. Membranes were then stripped and probed with mouse anti- GAPDH (1:20,000) and anti-mouse IgG-HRP to 

provide a loading control. The experiment was repeated to N=3 and representative immunoblot shown. SOCS3-LUC was detected only in lane 3 at the expected molecular weight 

~86KDa confirming expression in a mammalian cell line under the CMV promoter (A-B). 

(A)                                                                                 (B) 
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Figure 4-3: The SOCS3-Luciferase fusion protein was expressed and ubiquitylated in HEK293 cells. 

HEK293 cells were transiently transfected with 2 μg HA tagged Ubiquitin ± 2 μg WT SOCS3-FLAG or 2 μg 

SOCS3-Luciferase. Lysates (20 μg) were resolved by SDS-PAGE and transferred to nitrocellulose 

membrane. (A) Immunoblotting of whole cell lysates and IP SOCS3 with rabbit anti-SOCS3 (1:1000) and 

anti-rabbit IgG-HRP (1:1000) secondary antibody. (B) Rabbit anti-HA (1:1000) and anti-rabbit IgG-HRP 

(1:1000) secondary antibody to detect HA tagged ubiquitin. The upper bands in (B) represented poly-

ubiquitin chains.  Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) and anti-

mouse IgG-HRP to provide a loading control. The experiment was repeated to N=3 and representative 

immunoblot shown. SOCS3-Luciferase fusion protein was expressed at a higher molecular weight (86KDa) 

than WT SOCS3 (27KDa) (A). Similarly, the poly-ubiquitin chains on SOCS3 luciferase were observed at a 

higher molecular  weight than the WT SOCS3 molecule (B). 

 

(A)    

 

 

 

 

 

 

 
 
 

(B)                                                   

GAPDH 
(37KDa) 

GAPDH 
(37KDa) 
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4.2.3 Generation of a lenti virus (LV) expressing the SOCS-Luc 
fusion protein 

Screening an E3 ligase si-ARRAY using a luciferase cell based assay required the 

generation of a stable cell line expressing SOCS3-Luc.  LV vectors incorporate the gene of 

interest into the host cell genome of both proliferating and non-proliferating cells and 

therefore facilitate the generation of stable cell lines [246]. When generating a stable cell 

line it was important not to infect AS-M cells with too many LV particles. Very high levels 

of SOCS3-Luc protein expression may impair the ability of the luciferase assay to detect 

the effect of proteasome inhibition or identify an E3 ligase controlling SOCS3 turnover in 

the si-ARRAY. 

 

Initially we assessed the linearity of the luciferase assay by infecting AS-M cells with 

SOCS3-Luc LV (10IFU/cell). Cells were treated ±MG132 for 2 hrs prior to harvesting for 

the luciferase assay and these data were plotted as a line graph to assess the linearity of the 

assay (Figure 4-4). Increasing the volume of lysate sample correlated with an increasing 

luminescent signal up to 240,000 RLU (Figure 4-4).  

 

Figure 4-4: Quantification of the SOCS3-Luciferase luminescent signal. 

AS-M.5 cells stably expressing SOCS3-Luciferase were treated with MG132 (6 μM, 2 hrs) and lysates were 

prepared for luciferase assay. Increasing volumes of sample (0-40 μl) were tested (in technical  triplicates) 

and these data presented as mean luminescent signal ±SEM. Luminescent signal increased with increasing 

volume of sample from 0-240,000 relative luminescent units (RLU). 
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In addition, we investigated the effect of MG132 on increasing concentrations of SOCS3-

Luc LV in AS-M cells. Initially, AS-M cells were infected with 0-10IFU/cell LV (48 hrs) 

±MG132 for 2 hrs prior to harvesting lysates for immunoblot analysis of SOCS3-Luc 

expression and endogenous ubiquitin (Figure 4-5). Immunoblotting with the luciferase 

antibody revealed an 86kDa SOCS3-Luc band in cells infected with 10IFU/cell of LV 

particles (Figure 4-5 A). Immunoblot analysis with the SOCS3 primary antibody revealed 

an 86kDa SOCS3-Luc band in the 2, 5 and 10 IFU/cell LV infected cells (Figure 4-5 B). 

Immunoblots for endogenous ubiquitin revealed darker poly-ubiquitin chain smears in the 

MG132 treated lanes (Figure 4-5 A-B). Densitometry analysis of the SOCS3 primary 

antibody immunoblots showed that MG132 treatment significantly increased SOCS3-Luc 

expression at the 5IFU/cell concentration only (P < 0.001). 

 

4.2.4 Screening stable AS-M SOCS3-Luc single clones for MG132 

sensitivity 

Stable AS-M cells expressing SOCS3-Luc were isolated using puromycin (2 mg/ml) 

resistance selection. Single clones were isolated and expanded treating ± MG132 for 2 hrs 

before harvesting for luciferase assay (Figure 4-6). The AW was calculated as the 

difference between the mean luminescent signal of clone with MG132 and without 

MG132. A larger AW was advantageous as in a screening environment there should be no 

overlap between positive and negative controls in order to correctly identify the E3 ligase 

from the si-ARRAY (improved sensitivity). AS-M clone E presented the largest AW of 

2.12 when treated with MG132 therefore this clone was taken forward (Figure 4-6). An 

independent repeat of clone E returned an AW of 1.2 which was lower than the original 

2.12 observed (Figure 4-6).  
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Figure 4-5: The effect of MG132 on increasing concentrations of SOCS3-Luciferase virus in AS-M 

cells. (Continued overleaf)… 

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
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Figure 4-5: The effect of MG132 on increasing concentrations of SOCS3-Luciferase virus in AS-M 

cells. 

AS-M cells were infected with increasing concentrations of SOCS3-Luciferase lentivirus (0-10IFU/cell) for 

48 hours. Following this, cells were treated with ±6 μM MG132 for 2 hours and cell lysates were then 

prepared for immunoblotting with (A) mouse anti-luciferase (1:150) and mouse anti-ubiquitin (1:400) or (B) 

rabbit anti-SOCS3 (1:1000) and mouse anti-ubiquitin (1:400). Membranes were then stripped and probed 

with mouse anti-GAPDH (1:20,000) and anti-mouse IgG-HRP to provide a loading control. The experiment 

was repeated to N=3 and representative immunoblots shown. (C) Quantification of SOCS3-Luc expression 

was determined by densitometry analysis (TotalLab software) of the SOCS3 immunoblots. SOCS3 

expression was normalised to GAPDH and expressed as a % of the maximum (10IFU + MG132 set at 

100%). Data shown represent the mean SOCS3 expression ±SEM from three independent experiments. 

Statistical significance was tested using a one-way ANOVA with Bonferroni correction (GraphPadPrism, 

***P < 0.001). SOCS3-Luc expression appeared to increase with increasing concentration of virus (IFU) (A-

B). At MOI 5, MG132 treatment significantly increased the expression of SOCS3-Luciferase (P < 0.001) (C).  

(C) 
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Figure 4-6: Luciferase screening: single colonies of AS-M.5 cells which demonstrated stable expression of the SOCS3-Luciferase fusion construct. 

AS-M.5 cells were infected with a SOCS3-Luciferase lentivirus (MOI 1) and cells stably expressing the construct were selected for by supplementing growth media with puromycin 

antibiotic. Cells were then grown in 10 cm dishes until single colonies were observed. Single colonies were expanded and plated in 6 cm dishes on day 1.  On day 2 cells were treated 

with MG132 (6 μM) or DMSO for 2hrs and harvested for luciferase assay. Luciferase assay samples were performed in technical triplicates and data were presented as the mean 

luminescent signal/ μg protein with SEM error. The assay window (AW) was calculated as follows: mean luminescent signal with MG132 treatment – mean luminescent signal without 

MG132 treatment. Clone E revealed the largest assay window (2.12) in contrast to the remaining clones which possessed an assay window <2. 
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4.2.5 A strategy for increasing the luciferase AW with Emetine 
and MG132 treatment 

To determine whether the inhibition of protein synthesis + proteasome inhibition would 

increase the AW of SOCS3-Luc clone E, Emetine/MG132 time course experiments were 

conducted (0-7hrs) and lysates were prepared for luciferase assay (Figure 4-7). Figure 4-7 

(A-C) represents three independent experiments. MG132 and Emetine treatment alone 

showed a trend toward decreasing luminescent signal over time (Figure 4-7). Similarly, 

Emetine + MG132 treatment groups revealed a trend of decreasing luminescent signal over 

time as expected. However, when the AW was calculated for each time point (mean signal 

in Emetine alone group – mean signal in Emetine + MG132) the assay window was not 

increased beyond 2.12 as observed in Figure 4-6. Moreover the AW calculated for each 

treatment group varied markedly between independent experiments (Figure 4-6A, B and 

C). Thus, the luciferase cell based assay was not taken forward, as a tool to screen the si-

ARRAY, due to variability of these data and low AW. 

 

4.2.6 An alternative si-ARRAY screening approach: 

immunofluorescence of endogenous SOCS3 for a high content 

biology screen 

Due to the inherent variability of the luciferase assay data and limited size of the AW, an 

alternative screening approach was tested. Previously, we demonstrated that the major 

route of endogenous SOCS3 turnover was via the proteasome in AS-M.5 human 

endothelial cells (Figure 4-1). As such, immunofluorescence visualisation of endogenous 

SOCS3 was investigated as a tool to screen the E3 ligase si-ARRAY. Essentially, siRNA 

mediated knockdown of the E3 ligase would increase SOCS3 stability and therefore the 

intensity of the immunofluorescent signal.   

 

We conducted a small scale immunofluorescence visualisation of SOCS3 in WT and 

SOCS3 KO MEFs using confocal microscopy (Figure 4-8). The Abcam 16030 SOCS3 

primary antibody was titrated from 0-2 μg/ml however SOCS3 expression appeared 

unchanged in the control (vehicle only) when compared to Fsk + MG132 treated cells at 

various gain settings (Figure 4-8 A). Moreover, SOCS3 expression was detected in SOCS3 

KO MEFs (Figure 4-8 A). In parallel to immunofluorescence experiments, lysates were 

prepared and immunoblotting for SOCS3 confirmed that stimulation with fsk induced 

endogenous SOCS3 expression and MG132 inhibited proteasome mediated degradation 
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(Figure 4-8 B). SOCS3 was detected (~27KDa) in the WT MEFs treated with Fsk + 

MG132 only (Figure 4-8 B). An intense band was observed in all lanes at ~25KDa (Figure 

4-8 B). This smaller band represented non-specific interaction of the SOCS3 Abcam 

primary antibody which may explain the aberrant immunofluorescence results. Similar 

results were obtained using the SC-7009 and in-house SOCS3 antibodies (data not shown).  

 

To investigate whether this was a cell specific problem with the SOCS3 primary 

antibodies, a 5 hr Fsk/MG132 time course was performed in HUVECs and 

immunofluorescent visualisation of SOCS3 was performed using the Abcam (Ab16030) 

(Figure 4-9 A) or SantaCruz (SC-7009) (Figure 4-9B) SOCS3 primary antibody. 

Immunofluorescent images revealed that stimulation with or without Fsk or MG132 had no 

obvious effect on SOCS3 expression in HUVECs (Figure 4-9 A-B). Cell lysates were 

prepared in parallel and immunoblotting for SOCS3 confirmed that Fsk induced 

endogenous SOCS3 expression and MG132 inhibited proteasome mediated degradation in 

HUVECs (Figure 4-9C-D). However, the Ab16030 (Figure 4-9 C) and in-house (Figure 4-

9 D) SOCS3 primary antibodies revealed non-specific bands at ~25kDa and ~39kDa 

respectively. These data confirmed Fsk and MG132 were active therefore the aberrant 

immunofluorescence data must be attributed to non-specific immunoreactivity of the 

SOCS3 antibodies tested. Consequently, an siRNA screening approach was not progressed 

and alternative methods to identify an E3 ligase(s) controlling SOCS3 turnover were 

investigated. 
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Figure 4-7: Luciferase assay: MG132 and Emetine time course in AS-M.5 cells stably expressing the 

SOCS3-Luciferase fusion construct (Continued overleaf)…  

 
(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
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Figure 4-7: Luciferase assay: MG132 and Emetine time course in AS-M.5 cells stably expressing the 

SOCS3-Luciferase fusion construct 

AS-M.5 cells stably expressing SOCS3-Luc were selected for by supplementing growth media with 

puromycin antibiotic. Cells were then grown until single colonies were observed. Clone E of the AS-M stable 

cells were seeded in 6 well plates and treated ± MG132 (6 μM) ± Emetine (100 μM) or vehicle only (control) 

for 2hrs, 5hrs and 7hrs. Cells were then harvested and luciferase assay performed (technical triplicates). The 

data were plotted as the mean luminescent signal/ μg protein with SEM error bars. (A) data from N=1, (B) 

data from N=2, (C) data from N=3. The assay window (AW) was calculated as follows: mean luminescent 

signal with MG132 treatment – mean luminescent signal without MG132 treatment. The inherent variability 

of the luciferase assay was observed between experimental repeats (A-C). Though MG132 + Emetine 

treatment appeared to increase the assay window the variability of the data limited progression to a luciferase 

based siRNA screening platform to identify the SOCS3 E3 ligase (A-C).  

 
(C) 
 
 
 
 
 
 
 
 



Identification of novel SOCS3 interactors                                                       148 
 

 
 

         

(A)                            (B) 

Figure 4-8: Immunofluorescence visualisation of SOCS3 in MEFs. 

WT and SOCS3 knockout (KO) MEF cells were grown on glass coverslips and stimulated with ±Fsk (10 

μM) and MG132 (6 μM) or vehicle (DMSO) only for 5 hrs. (A) Cells were then fixed in paraformaldehyde, 

permeabilised in 0.1% Triton X-100, blocked in rabbit serum and stained with a rabbit anti-SOCS3 primary 

antibody (Ab16030) over a concentration range of 0.5-2 μg/ml for 16 hrs at 4°C. Incubation with donkey 

anti-rabbit secondary antibody (AlexaFlour 488) (2 hrs, 4°C) was followed by DAPI nuclear staining and 

coverslips were mounted on glass slides for visualisation with the confocal microscope. (B) Whole cell 

lysates were prepared in parallel for immunoblotting with SOCS3 and GAPDH. The SOCS3 primary 

antibody revealed non-specific binding in the SOCS3 knockout MEF cells (A). Western blot analysis 

confirmed the absence of SOCS3 in the KO MEFs however SOCS3 was induced and stabilised in the WT 

MEF population (B). A prominent non-specific band was observed at ~23KDa on the SOCS3 immunoblots 

(B). The experiment was repeated to N=2 and representative images and immunoblots shown. 
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Figure 4-9:  Immunofluorescence visualisation of SOCS3 in HUVECs (Continued overleaf)… 

 
(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
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(C) 

 

(D) 

Figure 4-9: Immunofluorescence visualisation of SOCS3 in HUVECs 

HUVECs were grown on glass coverslips and stimulated with ±Fsk (10 μM) ± MG132 (6 μM) or vehicle 

(DMSO) for 0-5 hrs. (A-B) Cells were then fixed in paraformaldehyde, permeabilised in 0.1% Triton X-100, 

blocked in rabbit or goat serum and stained with 1 µg/ml rabbit anti-SOCS3 primary antibody (Ab16030) (A) 

or 2 µg/ml goat anti-SOCS3 (SC-7009) (B) for 16 hrs at 4°C. Incubation with donkey anti-rabbit 

(AlexaFlour® 488) or donkey anti-goat (AlexaFlour® 594) secondary antibody (2 hrs, 4°C) was followed by 

DAPI nuclear staining and coverslips were mounted on glass slides for visualisation with the confocal 

microscope. (C-D) Whole cell lysates were prepared in parallel for immunoblotting with SOCS3 ab16030 

(C) or In-house (D) primary antibodies. Immunoblotting for GAPDH was performed as a loading control. (A-

B) Immunofluorescence did not reveal a change in SOCS3 expression over the 5 hr Fsk/MG132 time course 

suggesting non-specific binding of the Ab16030 and SC-7009 primary antibodies (A and B respectively). (C-

D) Immunoblot analysis of lysates confirmed the FSK and MG132 stimulation worked. SOCS3 expression 

was maximal at 5 hrs Fsk + MG132 treatment (C-D). However, non-specific bands were visible at ~25 kDa 

(below SOCS3) or at ~39kDa (above SOCS3) for the Ab16030 and in-house SOCS3 antibodies respectively. 

The experiment was repeated to N=2 and representative images and immunoblots shown. 

(37KDa) 

(37KDa) 

(27KDa) 

(27KDa) 
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4.2.7 The identification of SOCS3 interacting E3 ligase or DUB 
enzymes via LC-MS-MS 

To identify potential E3 ligase and DUB enzymes that control proteasome-mediated 

SOCS3 turnover we used LC-MS-MS and subsequent bioinformatics analysis to identify 

proteins that co-immunoprecipitated with SOCS3. FLAG tagged WT SOCS3 was 

overexpressed in HEK293 cells and a co-IP of SOCS3 was performed using anti-FLAG 

beads. The co-IP sample was resolved via SDS-PAGE and protein was visualised using 

Coomassie stain (Figure 4-10). An intense black band (~25kDa) was observed in both the 

pcDNA3.1 and WT SOCS3 lane representing the light chain fragment of the anti-FLAG 

IP antibody (Figure 4-10). SOCS3 was visible at ~27kDa in the WT SOCS3 lane 

however this band was absent in the pcDNA3.1 control lane (Figure 4-10). Bands 

superior to this, and unique to the SOCS3 lane, may represent interacting proteins. The 

co-IP was more efficient in experimental repeat 2 (N=2) as the number and intensity of 

the bands visualised above 27kDa in the SOCS3 lane was greater than that of 

experimental repeat 1 (N=1) (Figure 4-10). 

 

Following protein visualisation, the pcDNA3.1 and WT SOCS3 samples were excised 

from the gel and prepared for reversed-phase liquid chromatography tandem mass 

spectrometry analysis (performed by Dr David Sumpton, Beatson Institute). These data for 

experimental repeat 1 (N=1) and 2 (N=2) were analysed through MaxQuant (v1.4.1.6) and 

Mascot (v2.4.1) separately before being pooled and loaded into the Scaffold (v4.3.4) 

software for viewing (Figure 4-11). At a protein threshold of 95%, 713 proteins were 

identified as unique to the SOCS3 co-IP sample (Figure 4-11). These data were manually 

filtered by searching for gene name containing the word “ubiquitin” (Figure 4-11). 17 E3 

ligase/ubiquitin related genes were identified in addition to 4 DUBs (Table 4-1). UBR2, 

HECTD1 and HERC2 were the most abundant E3 ligases identified by the screen with an 

abundance score ≥28. The detection of interacting proteins in the N=2 results indicated that 

the co-IP was more efficient for this experimental repeat as suggested by the Coomasie 

stain (Figure 4-10). For example, the E3 ligase KCMF1 had an abundance score of 28 in 

the N=2 data set however this protein was not detected in the N=1 MS-MS data set 

(abundance score of 0) (Table 4-1). Similarly, the USP9x, USP15 and USP11 DUBs had 

an abundance score of ≥25 in the N=2 data set however this score was <4 in the N=1 data 

set (Table 4-1). 
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Figure 4-10: Co-Immunoprecipitation of SOCS3-FLAG in HEK293 cells for Mass Spectrometry. 

HEK293 cells were transiently transfected with 10 μg FLAG tagged WT SOCS3 or pcDNA3.1. SOCS3 was 

then immunoprecipitated from whole cell lysates with anti-FLAG coated Sepharose beads. (A) IP samples 

(10 mg) were resolved by SDS-PAGE and Coomasie stain was performed. The intense black band at 

~25KDa represents light chain fragments of the IP antibody. SOCS3 was visible at ~27KDa in the SOCS3 

sample (black arrow) and absent in the pcDNA3.1 control lane. Superior bands unique to the SOCS3 lane 

may represent interacting proteins at the time of cell harvesting. Each band was excised from the gel, de-

stained and subject to trypsination. Following a series of extractions and dehydration, the dried peptides were 

re-suspended in 5% (v/v) ACN/0.25% (v/v) formic acid solution and stored at -20°C until LC-MS/MS 

analysis. These data were collated from two experimental repeats.   

SOCS3 

(27kDa) 
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Figure 4-11: LC-MS-MS data analysis using Mascot v2.4.1 and Scaffold 4.3.4 software to identify 

potential SOCS3 interacting proteins 

The SOCS3 or control co-IP samples were prepared for LC-MS-MS analysis as described in section 2.2.13. 

EXP-1 and EXP-2 denotes results from experimental repeat 1 and 2 respectively. Reversed-phase liquid 

chromatography tandem mass spectrometry was performed on a LTQ-Orbitrap Velos coupled to a Proxeon 

Easy-LC by Dr David Sumpton at The Beatson Institute, Glasgow. These data were searched against the 

Swiss-Prot Mus musculus database (50807 entries) using Mascot v2.4.1 software. The data were combined 

with the previous experiments raw files (n=2) and searched against the same database using MaxQuant 

(v1.4.1.6) for both protein identification and label free quantitation. The MaxQuant ID information was then 

pooled with the Mascot results and loaded into the Scaffold 4.3.4 proteome software package for viewing. 

The probability threshold was set at 95% increasing the likeliness of correct protein identification in the LC-

MS sample. These data were searched for protein name containing the word “ubiquitin” and this list was 

manually filtered for E3 ligase and DUB enzymes.    
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E3 ubiquitin protein ligases 

      Protein 

Accession 

Number 

Protein names Gene names 
Unique 

peptides 

Sequence 

coverage 

(%) 

Mol. 

weight 

(kDa) 

EXP 1 

abundance 

EXP 2 

abundance 

Q6WKZ8 E3 ubiquitin-protein ligase UBR2 Ubr2 21 14.20 199.20 32.11 33.95 

Q69ZR2 E3 ubiquitin-protein ligase HECTD1 Hectd1 16 7.30 289.23 29.28 30.82 

Q4U2R1 E3 ubiquitin-protein ligase HERC2 Herc2 8 2.10 523.38 28.30 29.07 

O08759 Ubiquitin-protein ligase E3A Ube3a 7 10.00 99.82 27.98 27.38 

O70481 E3 ubiquitin-protein ligase UBR1 Ubr1 2 1.60 200.24 27.10 0.00 

O35445 E3 ubiquitin-protein ligase RNF5 Rnf5 2 9.40 19.84 26.79 0.00 

Q80TP3 E3 ubiquitin-protein ligase UBR5 Ubr5 59 24.10 308.96 8.43 10.40 

A2AN08 E3 ubiquitin-protein ligase UBR4 Ubr4 96 19.60 570.29 7.34 35.61 

A2AFQ0 E3 ubiquitin-protein ligase HUWE1 Huwe1 57 17.60 482.63 6.14 33.52 

E9PUJ6 Probable E3 ubiquitin-protein ligase MYCBP2 Mycbp2 19 5.80 517.36 3.90 30.69 

Q80UY2 E3 ubiquitin-protein ligase KCMF1 Kcmf1 8 24.10 41.79 0.00 28.09 

Q3U487 E3 ubiquitin-protein ligase HECTD3 Hectd3 3 4.20 97.35 0.00 27.06 

Q91YL2 E3 ubiquitin-protein ligase RNF126 Rnf126 2 7.00 34.08 0.00 26.25 

Table 4-1: Ubiquitin related proteins identified as possible SOCS3 interactors via mass spectrometry (Continued overleaf) 

Table4-1: Ubiquitin related proteins identified as possible SOCS3 interactors via mass spectrometry(Continued overleaf). 
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Table4-1: Ubiquitin related proteins identified as possible SOCS3 interactors via mass spectrometry 

Protein list generated in Mascot v2.4.1 and MaxQuant v1.4.1.6 software and loaded into the Scaffold 4.3.4 proteome software package. The EXP1 log2 1-SOCS3/ 1-Control and The 

EXP1 log2 2-SOCS3/ 2-Control indicate the abundance of the peptide fragments in identified in the MS/MS data. These data were normalised to the abundance of the peptide identified 

in the control sample and logged (log2). The greater the abundance of a peptide, the more likely the protein is a SOCS3 interactor. EXP1 and EXP2 denotes experimental repeat 1 and 2 

respectively. These data were searched for protein name containing the word “ubiquitin” and this list was manually filtered for E3 ligase and DUB enzymes. 17 E3 ligase related 

proteins were identified in addition to 4 deubiquitylase related proteins. 

Q80U95 Ubiquitin-protein ligase E3C Ube3c 3 3.20 123.97 0.00 26.20 

Q8CH72 E3 ubiquitin-protein ligase TRIM32 Trim32 3 6.10 72.06 0.00 25.76 

Q3U1J4 DNA damage-binding protein 1 Ddb1 45 39.7 126.85 2.96 2.35 

O88738 Baculoviral IAP repeat-containing protein 6 Birc6 44 10.8 529.41 4.07 33.69 

Deubiquitylases 

       Q4FE56 Ubiquitin carboxyl-terminal hydrolase 9x Usp9x 5 2.70 290.21 3.55 28.57 

Q8R5H1 Ubiquitin carboxyl-terminal hydrolase 15 Usp15 7 9.40 112.32 0.60 26.98 

Q99K46 Ubiquitin carboxyl-terminal hydrolase 11 Usp11 2 3.40 105.38 0.00 25.03 

Q6A4J8 Ubiquitin carboxyl-terminal hydrolase 7 Usp7 8 8.50 127.99 2.03 0.00 
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4.2.8  Immunoblot validation of SOCS3 interacting proteins 

To validate the interaction of SOCS3 with various targets identified in the LC-MS-MS 

screen (Table 4-1), we co-expressed FLAG tagged WT SOCS3 with a construct expressing 

the target of interest and performed a co-IP of SOCS3 using anti-FLAG beads (Figure 4-12 

– 4-15 and Figure 4-18). Immunoblotting for the target of interest, and SOCS3, was 

performed to confirm this interaction was not an artefact of the LC-MS-MS analysis which 

could not be repeated to N=3 due to the associated cost. 

 

Following immunoblot analysis, HA-tagged DDB1 was detected in the whole cell lysate at 

~127kDa however this band was absent in the IP lane containing SOCS3 and DDB1 

(Figure 4-12). Similarly, immunoblot analysis revealed GFP-tagged USP9x was expressed 

in the whole cell lysate at ~130kDa however this band was absent in the IP lane, 

containing SOCS3 and GFP-USP9x (Figure 4-13). These data confirmed that both DDB1 

and USP9x were not bona fide SOCS3 interactors as suggested by the LC-MS-MS screen 

(Table 4-1). 

Investigating whether UBR5 interacted with SOCS3 was not possible as the HA-tagged 

UBR5 construct did not express in HEK293 cells (Figure 4-14). A positive control for the 

HA primary antibody was included (HA-ubiquitylated SOCS3 lysate) confirming the 

primary antibody was immunoreactive with HA tag antigen (Figure 4-14). Due to time 

constraints on the project constructs which failed to express in HEK293 cells were not 

investigated further. 

 

4.2.9 HectD1 was identified as a potential E3 ligase for SOCS3 

HectD1 is a lys63(K
63

)-specific E3 ubiquitin ligase that was recently shown to ubiquitylate 

the adenomatous polyposis coli (APC) protein and so promote the negative regulation of 

Wnt signalling [247]. HectD1 was identified as a novel SOCS3 interactor in our LC-MS-

MS screen (Table 4-1). Accordingly, validation of this interaction via co-IP of FLAG 

tagged SOCS3 with HectD1 using anti-FLAG beads was performed.  Immunoblotting for 

HectD1 revealed that HectD1 was expressed in the whole cell lysate at ~290kDa (Figure 4-

15). The presence of a 290kDa band in the IP lane containing SOCS3 and HectD1 

confirmed this was a bona fide interaction (Figure 4-15). 
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Figure 4-12: DDB1 did not interact with SOCS3 in HEK293 cells 

HEK293 cells were transiently transfected with 2 μg FLAG tagged WT SOCS3 and HA tagged (DNA 

damage-binding protein 1 (DDB1). 48 hrs post transfection cells were treated with MG132 for 2 hrs (37°C, 

5% C02) prior to harvesting in co-IP buffer. SOCS3 was then co-immunoprecipitated from lysates with anti-

FLAG coated Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg 

whole cell lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane for 

western blotting. (A) Immunoblotting of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG 

(1:1000) and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell 

lysates and IP SOCS3 with rabbit anti-HA (1:1000) with anti-rabbit IgG-HRP (1:1000) secondary antibody 

to detect HA tagged DDB1. Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) 

and anti-mouse IgG-HRP to provide a loading control.  WT SOCS3 did not interact with DDB1 (B). The 

experiment was performed to N=1. 

 

  

(A) 

 

 

(B) 

 

GAPDH 
(37KDa) 
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Figure 4-13: USP9x-GFP did not interact with SOCS3 in HEK293 cells 

HEK293 cells were transiently transfected with 2 μg FLAG tagged WT SOCS3 and GFP tagged USP9x.  48 

hrs post transfection cells were treated with MG132 for 2 hrs (37°C, 5% C02) prior to harvesting in co-IP 

buffer. SOCS3 was then co-immunoprecipitated from lysates with anti-FLAG coated Sepharose beads. IP 

samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples were 

resolved by SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) Immunoblotting 

of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) and protein G-HRP (1:1000) 

to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell lysates and IP SOCS3 with sheep anti-

GFP (1:1000) with protein G-HRP (1:1000) to detect GFP tagged USP9x. Membranes were then stripped and 

probed with mouse anti-GAPDH (1:20,000) and anti-mouse IgG-HRP to provide a loading control.  WT 

SOCS3 did not interact with USP9x-GFP (B). The experiment was performed to N=1.  

(A) 

 

 

(B) 

 

GAPDH 
(37KDa) 

GAPDH 
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Figure 4-14: UBR5 did not interact with SOCS3 in HEK293 cells 

HEK293 cells were transiently transfected with 2μg FLAG tagged WT SOCS3 and HA tagged UBR5.  48 hrs 

post transfection cells were treated with MG132 for 2 hrs (37°C, 5% C02) prior to harvesting in co-IP buffer. 

SOCS3 was then co-immunoprecipitated from lysates with anti-FLAG coated Sepharose beads. IP samples 

(500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples were resolved by 

SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) Immunoblotting of whole 

cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) and protein G-HRP (1:1000) to detect 

FLAG tagged SOCS3. (B) Immunoblotting of whole cell lysates and IP SOCS3 with rabbit anti-HA (1:1000) 

with anti-rabbit IgG-HRP (1:1000) secondary antibody to detect HA tagged UBR5. Membranes were then 

stripped and probed with mouse anti-GAPDH (1:20,000) and anti-mouse IgG-HRP to provide a loading 

control.  WT SOCS3 did not interact with UBR5. The experiment was performed to N=1.   

(A) 

 

(B) 

 

GAPDH 
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Figure 4-15: SOCS3 interacts with HectD1 in HEK293 cells 

HEK293 cells were transiently transfected with 2 μg FLAG tagged WT SOCS3 and HA tagged mutant 

HectD1 (cys
2579

gly). 48 hrs post transfection cells were treated with MG132 for 2 hrs (37°C, 5% C02) prior to 

harvesting in co-IP buffer. SOCS3 was then co-immunoprecipitated from lysates with anti-FLAG coated 

Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell 

lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane for western 

blotting. (A) Immunoblotting of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) 

and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell lysates and 

IP SOCS3 with rabbit anti-HectD1 (1:1000) with protein G-HRP (1:1000) secondary antibody to detect 

HectD1. Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) and anti-mouse 

IgG-HRP to provide a loading control.  WT SOCS3 interacts with HectD1 (cys
2579

gly). The experiment was 

repeated to N=3 and representative immunoblot shown. 

 

 

 

 

 

In order to map the sites(s) of interaction between HectD1 and SOCS3 we assessed 

progressive SOCS3 truncation mutants. A panel of FLAG tagged SOCS3 truncation 

(A) 

 

 

(B) 

 

GAPDH 
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mutants were co-expressed with HectD1, in HEK293 cells, and immunoprecipitated using 

anti-FLAG beads (Figure 4-16). Immunoblotting for HectD1 revealed that WT SOCS3 in 

addition to the SOCS3 truncation mutants (ΔC84, ΔC40, and ΔN36) interacted with 

HectD1 (Figure 4-16). The ΔN20 SOCS3 truncation mutant showed a faint band for 

HectD1 following co-IP suggesting a very weak interaction. 

 

Moreover, to investigate whether HectD1 increased SOCS3 ubiquitylation, FLAG tagged 

SOCS3 was expressed in HEK293 cells in the presence of WT or catalytically inactive 

HectD1 (cys
2579
gly). Cysteine

2579 
is located in the active site of HectD1 and is required 

for HectD1 enzyme activity therefore the cys
2579
gly mutant was catalytically inactive 

[248]. A denaturing IP was performed and immunoblotting for HA tagged ubiquitin 

revealed a slight increase in the poly-ubiquitylation of SOCS3 in the presence of WT 

HectD1 when compared to mutant HectD1 (Figure 4-17 B) however densitometry analysis 

confirmed that this was no a significant increase in SOCS3 ubiquitylation (Figure 4-17 C). 

Together these data suggested that HectD1 may not be a major regulator of SOCS3 

ubiquitylation in HEK293 cells. The literature described HectD1 has as a K
63

-specific E3 

ligase therefore immunoblot analysis using a K
63

-specific ubiquitin antibody was 

performed. Similarly, immunoblotting for K
63

-linked ubiquitin showed a slight increase in 

the poly-ubiquitylation of SOCS3 in the presence of WT HectD1 when compared to 

mutant HectD1 (Figure 4-17 A). 
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Figure 4-16: Mapping the interaction of HectD1 and SOCS3 

HEK293 cells were transiently transfected with 1 μg FLAG tagged WT or mutant(ΔC84, ΔC40, ΔN36, 

ΔN20) SOCS3 and HA taggedHectD1. 48hrs post transfection cells were treated with MG132 for 2 hrs 

(37°C, 5% C02) prior to harvesting in co-IP buffer. SOCS3 was then co-immunoprecipitated from lysates 

with anti-FLAG coated Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 

30 μg whole cell lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane 

for western blotting. (A) Immunoblotting of whole cell lysates and IP for SOCS3 (αFLAG) with mouse anti-

FLAG (1:1000) and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole 

cell lysates and IP with rabbit anti-HectD1 (1:1000) with protein G-HRP (1:1000) to detect HectD1. 

Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) and anti-mouse IgG-HRP to 

provide a loading control.  WT, ΔC84, ΔC40 and ΔN36 SOCS3 interacted well with HectD1 in contrast to 

the ΔN20 SOCS3 truncation mutant which revealed a very faint band for HectD1 in the co-IP lane. Loss of 

the n-terminal 20 residues of SOCS3 appeared to reduce the ability of SOCS3 to interact with HectD1. The 

experiment was repeated to N=3 and representative immunoblot shown.  
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Figure 4-17: Investigating the effect of HectD1 on SOCS3 ubiquitylation (Continued overleaf)… 
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Figure 4-17: Investigating the effect of HectD1 on SOCS3 ubiquitylation 

HEK293 cells were transiently transfected with 2 μg HA tagged ubiquitin (HA-Ub), 1 μg FLAG tagged WT 

SOCS3 and 3 μg WT HectD1 or mutant HectD1 (cys
2579

gly). 48 hrs post transfection cells were treated with 

MG132 for 2 hrs (37°C, 5% C02) prior to harvesting in denaturing IP buffer.   SOCS3 was then 

immunoprecipitated from lysates, under denaturing conditions, with anti-FLAG coated Sepharose beads. IP 

samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples were 

resolved by SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) Immunoblotting 

of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) to detected FLAG tagged 

SOCS3. The membrane was stripped and sequentially re-probed with rabbit anti-HectD1 (1:1000), rabbit 

anti-K-63 linked ubiquitin and mouse anti-GAPDH (1:20,000). (B) Immunoblotting of whole cell lysates and 

IP SOCS3 with rabbit anti-HA (1:1000) to detect HA tagged ubiquitin. Membranes were then stripped and 

re-probed with mouse anti-GAPDH (1:20,000). (A-B) Immunoblot visualisation was achieved using protein 

G-HRP (1:250) and enhanced chemiluminescence.  (C) Densitometry analysis was performed using Total lab 

by normalising SOCS3 polyubiquitylation (Ub-HA blot) to the amount of SOCS3 present in the FLAG-

SOCS3 IP blot. The data were presented as mean ± SEM. One-way ANOVA with Bonferroni correction was 

performed using GraphPad software where P < 0.05 was deemed significant. (C) WT HectD1 overexpression 

led to a slight increase in SOCS3 poly-ubiquitylation compared to the mutant HectD1 however this was not 

significant (P >0.05) and suggests that HectD1 is not a major regulator of SOCS3 ubiquitylation. The 

experiment was repeated to N=3 and representative immunoblot shown. 

 

  

(C) 
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4.2.10 USP15 was identified as a potential DUB for SOCS3 

USP15 was identified as a novel SOCS3 interactor in our LC-MS-MS screen (Table 4-1). 

Accordingly, validation of this interaction via co-IP of FLAG tagged SOCS3 with USP15 

using FLAG tagged beads was performed.  Immunoblotting for USP15 demonstrated that 

USP15 was expressed in the whole cell lysate at ~112kDa (Figure 4-18). The presence of a 

112kDa band in the IP lane containing SOCS3 and USP15 confirmed this was a bona fide 

interaction (Figure 4-18).  

 

 

 

Figure 4-18: SOCS3 interacts with USP15 in HEK293 cells 

HEK293 cells were transiently transfected with 2 μg FLAG tagged WT SOCS3 and MYC tagged USP15. 

48hrs post transfection cells were treated with MG132 for 2 hrs (37°C, 5% C02) prior to harvesting in co-IP 

buffer. SOCS3 was then co-immunoprecipitated from lysates with anti-FLAG coated Sepharose beads. IP 

samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples were 

resolved by SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) Immunoblotting 

of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) and protein G-HRP (1:1000) 

to detect FLAG tagged SOCS3. (B) Immunoblotting of whole cell lysates and IP SOCS3 with mouse anti-

MYC (1:1000) with protein G-HRP (1:1000) secondary antibody to detect MYC tagged USP15. Membranes 

were then stripped and probed with mouse anti-GAPDH (1:20,000) and anti-mouse IgG-HRP to provide a 

loading control.  WT SOCS3 interacts with USP15. The experiment was repeated to N=3 and representative 

immunoblot shown. 
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In order to map the sites(s) of interaction between USP15 and SOCS3 we co-expressed a 

panel of FLAG tagged SOCS3 truncation mutants with USP15, in HEK293 cells, and 

immunoprecipitated SOCS3 using anti-FLAG beads (Figure 4-19). Immunoblotting for 

USP15 revealed that WT and ΔN36 SOCS3 had the strongest interaction with USP15. A 

faint band for USP15 was detected in the ΔN20 SOCS3 co-IP lane however no interaction 

was observed with the ΔC40 or ΔC84 SOCS3 truncation mutants (Figure 4-19). 

 

 

 

Figure 4-19: WT and ΔN36 SOCS3 co-immunoprecipitated with USP15 

HEK293 cells were transiently transfected with 1 μg FLAG tagged WT or mutant(ΔC84, ΔC40, ΔN36, 

ΔN20)SOCS3 and MYC taggedUSP15. 48hrs post transfection cells were treated with MG132 for 2 hrs 

(37°C, 5% C02) prior to harvesting in co-IP buffer. SOCS3 was then co-immunoprecipitated from lysates 

with anti-FLAG coated Sepharose beads. IP samples (500 μg) were split over two gels (250 μg/gel) alongside 

30 μg whole cell lysate. Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane 

for western blotting. (A) Immunoblotting of whole cell lysates and IP for SOCS3 (αFLAG) with mouse anti-

FLAG (1:1000) and protein G-HRP (1:1000) to detect FLAG tagged SOCS3. (B) Immunoblotting of whole 

cell lysates and IP with sheep anti- USP15 (1:1000) with protein G-HRP (1:1000) to detect USP15. 

Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) and anti-mouse IgG-HRP to 

provide a loading control.  WT and ΔN36 SOCS3 interacted with USP15. A faint band for USP15 was 

detected in the ΔN20 SOCS3 co-IP however ΔC84 and ΔC40 truncation mutants could no longer interact 

with USP15. The experiment was repeated to N=3 and representative immunoblot shown. 
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Moreover, to investigate whether USP15 reduced SOCS3 ubiquitylation, FLAG tagged 

SOCS3 was expressed in HEK293 cells in the presence of WT or catalytically inactive 

USP15 (C269S). A denaturing IP was performed and immunoblotting for HA tagged 

ubiquitin revealed a slight decrease in the poly-ubiquitylation of SOCS3 in the presence of 

WT USP15 only (Figure 4-20). However densitometry analysis confirmed that WT USP15 

did not significantly reduce the ubiquitylation of SOCS3 in the HEK293 cell system 

(Figure 4-20 C). 

4.2.11 The cullin-RING E3 ligase family do not control SOCS3 
ubiquitylation 

The cullin protein family require activation in order to form part of an E3 ligase complex. 

This is achieved via neddylation which describes the addition of a NEDD8 (neural 

precursor cell expressed developmentally downregulated protein 8) group [162, 163]. To 

examine whether the E3 ligase(s) controlling SOCS3 ubiquitylation require member(s) of 

the cullin protein family (cullin-RING ligases; CRLs), a neddylation inhibitor (MLN4924) 

was employed. HEK293 cells were transfected with 1 μg HA tagged ubiquitin ± 1 μg 

FLAG tagged WT SOCS3 (Figure 4-21). Cells were then treated with vehicle or a titration 

of MLN4924 for 24 hrs and MG132 for 2 hrs before harvesting. IP of SOCS3, under 

denaturing conditions, and immunoblotting for HA tagged ubiquitin revealed that 

MLN4924 treatment (1.2-4.8 μM) had a minimal effect on SOCS3 ubiquitylation (Figure 

4-21B). It is possible that the laddering of the ubiquitin chains appears to move down 

slightly with increasing concentration of the inhibitor however densitometry analysis 

confirmed there was no significant change in SOCS3 ubiquitylation in the presence of 

MLN4924 (Figure 4-21C). As a control for MLN4924 activity, immunoblotting of lysates 

for p27 confirmed that in the presence of MLN4924, but not vehicle only, p27 expression 

was detected (Figure 4-21D).  
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Figure 4-20: Investigating the effect of USP15 on SOCS3 ubiquitylation (Continued overleaf)… 
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Figure 4-20:  Investigating the effect of USP15 on SOCS3 ubiquitylation 

 HEK293 cells were transiently transfected with 2 μg HA tagged ubiquitin (HA-Ub), 1 μg FLAG tagged WT 

SOCS3 and 3 μg MYC tagged WT USP15 or mutant USP15 (C269S). 48 hrs post transfection cells were 

treated with MG132 for 2 hrs (37°C, 5% C02) prior to harvesting in denaturing IP buffer.   SOCS3 was then 

immunoprecipitated from lysates, under denaturing conditions, with anti-FLAG coated Sepharose beads. IP 

samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples were 

resolved by SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) Immunoblotting 

of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) to detect FLAG tagged 

SOCS3. The membrane was stripped and re-probed with sheep anti-USP15 (1:1000). (B) Immunoblotting of 

whole cell lysates and IP SOCS3 with rabbit anti-HA (1:1000) to detect HA tagged ubiquitin. Membranes 

were then stripped and probed with mouse anti-GAPDH (1:20,000) to provide a loading control. (A-B) 

Immunoblot visualisation was achieved using protein G-HRP (1:250) and enhanced chemiluminescence. (C) 

Densitometry analysis was performed using Total lab by normalising SOCS3 polyubiquitylation (Ub-HA 

blot) to the amount of SOCS3 present in the FLAG-SOCS3 IP blot. The data were presented as mean ± SEM. 

One-way ANOVA with Bonferroni correction was performed using GraphPad software where P < 0.05 was 

deemed significant. (C) WT USP15 overexpression led to a slight decrease in SOCS3 poly-ubiquitylation 

compared to the mutant USP15 however this was not significant (P >0.05) and suggests USP15 is not a major 

regulator of SOCS3de- ubiquitylation. The experiment was repeated to N=3 and representative immunoblot 

shown.  
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Figure 4-21: Inhibition of neddylation had no effect on SOCS3 ubiquitylation (Continued overleaf)…  
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Figure 4-21: Inhibition of neddylation had no effect on SOCS3 ubiquitylation 

HEK293 cells were transiently transfected with 2 μg HA tagged ubiquitin (HA-Ub) ± 1 μg FLAG tagged WT 

SOCS3. 24 hrs post transfection, cells were treated with DMSO vehicle or MLN4924 inhibitor (1.2 μM, 2.4 

μM, 4.8 μM) for 24 hrs (37°C, 5% C02) before harvesting in denaturing IP buffer. SOCS3 was then 

immunoprecipitated from lysates, under denaturing conditions, with anti-FLAG coated Sepharose beads. IP 

samples (500 μg) were split over two gels (250 μg/gel) alongside 30 μg whole cell lysate. Samples were 

resolved by SDS-PAGE and transferred to nitrocellulose membrane for western blotting. (A) Immunoblotting 

of whole cell lysates and IP SOCS3 (αFLAG) with mouse anti-FLAG (1:1000) and protein G-HRP (1:1000) 

to detect FLAG tagged SOCS3 (B) Immunoblotting of whole cell lysates and IP SOCS3 with rabbit anti-HA 

(1:1000) with protein G-HRP (1:1000) to detect HA tagged ubiquitin. (C) Densitometry analysis was 

performed using Total lab by normalising SOCS3 polyubiquitylation (Ub-HA blot) to the amount of SOCS3 

present in the FLAG-SOCS3 IP blot. The data were presented as mean ± SEM. One-way ANOVA with 

Bonferroni correction was performed using GraphPad software where P < 0.05 was deemed significant. (A-

C) Inhibition of neddylation did not affect SOCS3 ubiquitylation status (p>0.05) suggesting the Cullin RING 

E3 ligase family may not regulate SOCS3 ubiquitylation and turnover in HEK293 cells. (D) Immunoblotting 

of whole cell lysates with mouse anti-p27 (1:300) and goat anti-mouse IgG-HRP (1:1000) secondary 

antibody to detect p27. Membranes were then stripped and probed with mouse anti-GAPDH (1:20,000) and 

goat anti-mouse IgG-HRP to provide a loading control. p27 degradation was blocked in the presence of 

MLN4924 confirming MLN4924 was active (D). The experiment was repeated to N=3 and representative 

immunoblot shown. 
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4.3 Discussion 

SOCS3 is a poly-ubiquitylated protein with a relatively short half life (40-120 mins) that 

varies with cell type [97]. Gupta and colleagues [118] were the first to describe a 

significant reduction in SOCS3 expression in neointimal lesions derived from porcine 

coronary artery injury models. This led to our hypothesis that stabilising SOCS3 

expression may limit the VSMC proliferation and migration contributing to NIH.  

 

We aimed to identify the E3 ligase enzyme(s) responsible for the polyubiquitination of 

SOCS3 and therefore targeting it to the 26S proteasome. Knockdown of this E3 ligase gene 

in vivo may provide a useful tool for SOCS3 stabilisation and therefore reduction of NIH 

in patients undergoing PCI or CABGs. As such, we sought to develop an in vitro tool by 

which an E3 ligase siRNA library could be screened to identify the E3 ligase responsible 

for SOCS3 ubiquitylation.  

 

First described in 2003, the AS-M.5 human endothelial cell line was derived from a male 

patient’s scalp angiosarcoma (AS-M) [217]. For screening purposes, the use of an 

immortalised vascular cell line, as opposed to primary cells, would allow a degree of 

flexibility in terms of passage number and the risk of infection. As such we sought to 

characterise the ubiquitylation and turnover of SOCS3 in AS-M cells. 

 

It was previously shown in human umbilical vein endothelial cells (HUVECs) that 

endogenous SOCS3 may be induced via a PKA independent cAMP route and not 

exclusively through the classic JAK/STAT pathway [177]. Interestingly, knockdown of the 

guanine nucleotide exchange factor (Epac1) in HUVECs abolished this cAMP mediated 

induction of SOCS3 and so elucidated a novel mechanism of SOCS3 induction in the 

vasculature [177].  As such, to investigate the proteasome as a route for endogenous 

SOCS3 turnover, we employed an adenylyl cyclase activator (Forskolin; Fsk) and a 

proteasome inhibitor (MG132) in AS-M and MEF cell lines. Consistent with the existing 

literature in HUVECs [177], FSK + MG132 stimulation significantly upregulated and 

stabilised the expression of endogenous SOCS3 in AS-M cells (Figure 4-1) and would 

therefore be amenable to an siARRAY screen for the SOCS3 E3 ligase(s).  

 

In order to make a stable AS-M.5 cell line expressing the SOCS3-luciferase fusion protein, 

LV particles were generated using the p-lenti-CMV-SOCS3-Luc construct. LV vectors 
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have the advantage of incorporating the gene of interest into the host cell genome of both 

proliferating and non-proliferating cells [246]. Consequently, stable expression of the gene 

of interest may be achieved as opposed to the transient expression attained with non-viral 

vectors. It was important to select and expand an individual clone when generating a stable 

cell line to ensure the copy number of the SOCS3-luciferase gene was the same in all cells. 

If by chance, the cell population in one well of the assay had considerably more copies of 

the SOCS3-Luc gene this would suggest that the knockdown of an E3 ligase enhanced 

SOCS3 expression. As such, copy number variations between individual cells may result in 

false positive hits and therefore reduce the assay sensitivity (the ability of the assay to 

identify true positives) and specificity (the ability of the assay to identify true negatives). 

 

Additionally, the linearity of the assay was assessed to ensure experiments were conducted 

within the linear range (Figure 4-4). Out with the linear range of the assay (signal plateau) 

other molecules such as luciferin [substrate] or ATP may be rate limiting factors. 

 

Emetine is a protein synthesis inhibitor which blocks translation of mRNA at the ribosome 

and as previously mentioned MG132 is a peptide inhibitor of the proteasome. Our 

hypothesis was that in the AS-M.5 stable cell lines, SOCS3-Luc was transcribed and 

translated at such a high rate that any degradation at the proteasome was concealed in the 

luciferase assays. As such, treatment with Emetine would inhibit nascent translation of the 

SOCS3-Luc protein, at the same time MG132 treatment blocking proteasome degradation.  

Consequently, due to the inherent variability of the luciferase assay data and limited size of 

the AW for the most promising AS-M.5 stable clone E (Figure 4-6 and Figure 4-7) a 

luciferase based screening platform was considered unsuitable for the si-ARRAY.     

 

An alternative strategy investigated was to develop a high content biology platform to 

screen the E3 ligase si-ARRAY (Figure 4-8). Immunofluorescence visualisation of 

endogenous SOCS3 may be performed in an automated, high throughput setting. Many of 

the high content imaging platforms have centred around small molecule drug discovery 

and predicting compound toxicity in man by quantifying an immunofluorescence signal 

using computer generated algorithms [249, 250]. The si-ARRAY to identify an E3 ligase 

controlling SOCS3 turnover would be amenable to a high content biology screen on the 

basis that knockdown of the E3 ligase would increase SOCS3 stability and therefore the 

intensity of the immunofluorescent signal. Initially, immunofluorescence visualisation of 

endogenous SOCS3 was investigated in WT vs SOCS3 KO MEFs however staining for 
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SOCS3 was observed in the SOCS3 KO MEFs (Figure 4-8 A). Conversely, 

immunoblotting of lysates, generated in parallel, showed SOCS3 expression was exclusive 

to WT MEFs (Figure 4-8 B). Moreover, a non-specific band, below that of SOCS3, was 

observed across all lanes in the western blot image (Figure 4-8 B). This further supports 

non-specific interaction of the Abcam 16030 primary antibody which may explain the 

ambiguous immunofluorescence result.  

 

To determine whether this non-specific immunoreactivity was a cell specific problem in 

MEFs, we performed a Fsk/MG132 time course in HUVECs employing the Abcam 16030 

and SantaCruz SC-7009 SOCS3 primary antibodies (Figure 4-9). Similarly, the HUVEC 

immunofluorescence data suggested the vehicle treatment group expressed SOCS3 to 

comparable levels as Fsk + MG132 treatment groups (Figure 4-9 A-B). Of note, 

immunoblot analysis using the ab16030 (Figure 4-9 C), in-house (Figure 4-9 D) and sc-

7009 (data not shown) SOCS3 primary antibodies also revealed non-specific bands. 

Together, these data suggested non-specific immunoreactivity of the ab16030 and sc-7009 

antibodies used for immunofluorescence in HUVECs. For that reason, the 

immunofluorescent visualisation of SOCS3 approach was deemed unsuitable for screening 

an E3 ligase siARRAY. In the absence of a suitable tool to screen the E3 ligase siARRAY 

alternative methods to identify an E3 ligase were investigated including LC-MS-MS.   

 

In 2008, a genome wide study described 617 distinct E3 ligases [251]. As such, screening 

an E3 ligase si-ARRAY via immunoblot analysis of whole cell lysates was not deemed 

time or cost effective. In the absence of a suitable luciferase assay or high content biology 

tool to screen the si-ARRAY, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate was 

investigated. These data were searched for E3 ligase or DUB enzymes that may interact 

with SOCS3 in HEK293 cells (Table 4-1) with the view to conduct functional validation in 

a vascular cell type in the future. Co-IP and immunoblot validation of these targets in 

HEK293 cells (a useful overexpression system) identified two promising candidates i) an 

E3 ligase known as HectD1 (Figure 4-15) and ii) a DUB known as USP15 (Figure 4-18).   

 

Lys48(K
48

)-linked ubiquitylation targets proteins for proteasomal degradation [148]. In 

contrast, K
63

-linked ubiquitylation is generally associated with a non-proteolytic role 

including the regulation of  NF-κB signalling [140],  DNA damage repair [141] and 

immune responses within the cell [142]. However, the literature describes the endocytosis 

and lysosomal degradation of cell surface proteins following K
63

-linked ubiquitylation, a 



Identification of novel SOCS3 interactors                                                       175 
 

 

modification that for some proteins required only two ubiquitin moieties in the chain [252]. 

Interestingly, Zhang and co-workers recently described the formation of mixed K
48

 and K
63

 

polyubiquitin chains by the E3 ligase IDOL (inducible degrader of the LDL receptor) 

[146]. Consequently, the LDL receptor was degraded via the lysosomal or proteasomal 

route illustrating the complexity of ubiquitin signalling within the cell.    

 

HectD1 has been described as a lys63(K
63

)-specific E3 ubiquitin ligase [247, 248]. In order 

to validate the HectD1-SOCS3 interaction, a co-IP was performed immunoblotting for 

HectD1 (Figure 4-15). Due to problems with the availability of a WT HectD1 construct, 

the co-IP was performed with the catalytically inactive point mutant (ΔHectD1; 

cys
2579

gly). Nevertheless, ΔHectD1 was shown to interact with WT SOCS3. Upon the 

arrival of the WT HectD1 construct future investigations employed WT HectD1 where 

appropriate.  

 

The literature on HectD1 is relatively sparse with only 29 publications cited by PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed). As such, interpreting the role of a potential 

interaction with SOCS3 proved challenging. Denaturing IP experiments revealed that 

HectD1 slightly increased the poly-ubiquitylation of SOCS3 when compared to the 

catalytically inactive HectD1 mutant (cys
2579

gly) in HEK293 cells (Figure 4-17). 

Immunoblotting with a K
63

-linked ubiquitin antibody confirmed this subtle change in 

ubiquitylation status was attributed to an increase in K
63

-linked ubiquitin chains 

specifically (Figure 4-17 A). However, as poly-ubiquitin chains appear as a black laddering 

down the immunoblot membrane, densitometry analysis to quantify this change in 

ubiquitylation status was not possible. Accordingly, caution should be warranted when 

interpreting these raw data by eye.   

 

Recently, HectD1 was shown to conjugate K
63

-linked poly-ubiquitin chains to the 

adenomatous polyposis coli (APC) protein [247]. Investigators treated cells with HectD1 

siRNA and performed an IP using a K
63

-linkage specific ubiquitin antibody to pull down 

Lys
63

 modified proteins only. Immunoblotting for APC revealed that siRNA mediated 

knockdown of HectD1 resulted in an obvious decrease in APC poly-ubiquitylation (lighter 

poly-ubiquitin smear on the blot) [247]. To confirm HectD1 induced changes to the 

ubiquitylation status of SOCS3 observed in the present study were not due to loading error 

(IP sample split over two gels) a similar method should be employed (Figure 4-17). A 

http://www.ncbi.nlm.nih.gov/pubmed
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GAPDH protein loading control for whole cell lysates was performed on the same gel as 

the IP samples.  

 

To our knowledge, no E3 ligase for SOCS3 has been described in the literature and the 

identification of an E3 ligase controlling SOCS3 turnover may provide a useful therapeutic 

target. The development of a peptide disruptor to specifically disrupt the interaction 

between SOCS3 and the E3 ligase may avoid the off target effects associated with an E3 

ligase inhibitor. In order to generate a peptide disruptor it is important to map the residues 

on both SOCS3 and the E3 ligase involved in the protein-protein interaction. Though 

HectD1 has been shown to be a K
63

 linked-ubiquitin E3 ligase ([247, 248]), and therefore 

may not control proteasomal turnover, it was still of interest to map the interaction site 

with SOCS3. As such, we assessed the ability of progressive SOCS3 truncation mutants to 

interact with WT HectD1. Loss of 84 or 40 residues at the C-terminus of SOCS3 did not 

affect the interaction with HectD1 (Figure 4-16). Similarly, loss of 36 residues at the n-

terminus of SOCS3 did not affect the interaction with HectD1 (Figure 4-16). Interestingly, 

loss of 20 residues at the n-terminus of SOCS3 impaired its ability to interact with HectD1 

as only a faint band was detected in the co-IP. Similarly, the band for HectD1 in the WT 

SOCS3 co-IP was not as prominent as the ΔN36 ΔC40 or ΔC84 SOCS3 mutants. These 

data suggested that a region between residues 20-36 on SOCS3 may be a strong repressor 

of the HectD1 interaction. A possible mechanism of the SOCS3-HectD1 interaction is 

depicted in Figure 4-22.   
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Figure 4-22: Possible mechanism to explain why SOCS3 mutagenesis enhanced the ability of SOCS3 to 

interact with HectD1. 

Considering WT SOCS3 and ΔN20 SOCS3 did not interact as well with HectD1, the region between the n-

terminal 20-36 residues may act as a repressor of this interaction. One possible explanation is that the n-

terminal 20-36 residues interacts with the extreme c-terminus in such a way to occlude the central region 

which governs the interaction with HectD1. Therefore, loss of the n-terminus or c-terminus would enhance 

the ability to bind the E3 ligase HectD1. 

As mentioned previously, the limited literature on HectD1 meant that predicting the 

functional significance of the SOCS3 interaction was challenging. Interestingly, knockout 

mouse models for both the HectD1 [253] and SOCS3 [45] were shown to be embryonic 

lethal due to malformation of the placenta during development. Though HectD1 may not 

be responsible for marking SOCS3 for proteasomal degradation, both proteins may be 

involved in a complex developmental signalling pathway. Conversely, SOCS3 was 

previously shown to interact with IRS-1/2 [88], Siglec-7 [90] and CD33 [91] targeting 

them for ubiquitin-mediated proteasomal degradation. As such, it is possible SOCS3 could 

target HectD1, and other interactors identified in the LC-MS-MS screen (Table 4-1), for 

proteasomal degradation.  

Sequence alignment analysis has predicted that the human genome encodes ~79 DUB 

enzymes [254]. Ubiquitin-specific protease 15 (USP15) was initially described in 1999 

[255] and is a member of the DUB family that contain a conserved “Cys” and “His” motif 

involved in the cleavage of ubiquitin [254]. The identification of a DUB regulating the 

ubiquitylation and therefore stability of SOCS3 would be a novel discovery. We 

 WT                   ∆N20                    ∆N36                  ∆C40                ∆C84 
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hypothesised that enhancing the stability and therefore expression of SOCS3 would reduce 

the development of NIH in CABG or PCI vessels. Interestingly, upregulation of the DUB 

for SOCS3 may provide a therapeutic strategy to achieve this. To identify the region of 

SOCS3 required for the interaction with USP15, progressive SOCS3 truncation mutants 

were assessed for their ability to interact with USP15 in vitro. Interestingly WT SOCS3 

and the ΔN36 SOCS3 truncation mutant were able to interact with USP15 however the 

band for USP15 appeared to be more prominent in the ΔN36 lane (Figure 4-19). Of note, 

deletion of the N-terminal 20 residues (ΔN20) resulted in a loss of SOCS3-USP15 

interaction (Figure 4-19). These data suggested that a region between residues 20-36 on 

SOCS3 may be a strong repressor of USP15 interaction. Additionally, loss of this 

interaction with the SOCS3 truncation mutants ΔC84 and ΔC40 suggested the C-terminal 

region of SOCS3 plays a major role in the interaction with USP15 (Figure 4-19). 

 

To examine the functional significance of the SOCS3-USP15 interaction, a denaturing IP 

was performed to investigate the effect of USP15 on SOCS3 ubiquitylation. The poly-

ubiquitin laddering in the WT SOCS3 only or WT SOCS3 + mutant USP15 lanes were 

more prominent than in the presence of the WT USP15 DUB (Figure 4-20). These data 

suggested that though USP15 appeared to de-ubiquitylate SOCS3 (Figure 4-20 B) this was 

not significant (Figure 4-20 C). Poly-ubiquitylation was still present and it is therefore 

likely that multiple DUBs may be involved in this process: a further example of functional 

redundancy within the system.  

 

Moreover, USP15 was recently shown to de-ubiquitylate and stabilize the expression of an 

E3 ligase (Mdm-2) which in turn regulates the stability of the tumour suppressor p53 

[256]. In the study conducted by Zou et al 2014, IP of Mdm-2 and immunoblotting for 

total ubiquitin revealed a striking decrease in Mdm-2 poly-ubiquitylation in the presence of 

WT USP15 but not in the presence of the catalytically inactive USP15. We have assessed 

the role of USP15 on SOCS3 ubiquitylation by a similar method however the USP15-

mediated reduction in SOCS3 ubiquitylation was more subtle (Figure 4-20) than that 

observed for Mdm-2 by Zou et al [256]. This further supports the hypothesis that more 

than one DUB may be responsible for the de-ubiquitylation and therefore stabilisation of 

SOCS3.  

 

Interestingly, Hetfeld and colleagues demonstrated that USP15 could de-ubiquitylate and 

stabilise the RING-domain E3 ligase Rbx1 [257]. The authors showed that USP15 
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enhanced the stability of Rbx1 following 6 hrs cycloheximide treatment (an alternative 

protein synthesis inhibitor to Emetine) [257]. Densitometry analysis confirmed a 

significant stabilising effect of WT USP15 on Rbx1, when compared to a catalytically 

inactive USP15 mutant (C783A). However, examination of the raw data (immunoblot) 

shows that these results appeared to be more subtle than Rbx1 turnover in cells transfected 

with Rbx1 + empty vector. Our data revealed a similar pattern where the WT SOCS3 

+pcDNA3.1 empty vector lane appeared to show more poly-ubiquitylation than in the 

presence of catalytically inactive USP15 (C269S) (Figure 4-20). 

 

The literature describes how SOCS3 provides a platform for the formation of an E3 ligase 

complex that subsequently ubiquitylates substrates bound by SOCS3 (Figure 1-11). It is 

possible that USP15 interacts with Rbx1 within this E3 ligase complex and not directly 

with SOCS3 as the co-IP technique involved a less stringent lysis buffer and aimed to 

preserve protein-protein interactions. Rbx1 may bind USP15 and therefore bring this DUB 

in close proximity with SOCS3 however confirmation of this would require further 

investigation. To test this hypothesis a co-IP for SOCS3 and USP15 in the presence of 

siRNA mediated knockdown of Rbx1 should be performed.  

 

Previously we described the formation of a multi-protein E3 ligase complex on SOCS3 

(Figure 1-11) that involved Elongin B, Elongin C, Rbx1 and Cul5 proteins. We have 

provided evidence to support the hypothesis that SOCS3 does not auto-ubiquitylate and 

that an external E3 ligase(s) controls the ubiquitylation of SOCS3 (Chapter 3: Figure 3.4-

3.5). Accordingly, the ubiquitylation of SOCS3 by an external E3 ligase would still require 

the assembly of an E3 ligase complex to catalyse the ubiquitylation of SOCS3. Over 600 

E3 ubiquitin ligases have been described in the literature including the cullin-RING ligase 

(CRL) family, of which there are around 350 members.  

 

Neddylation is a post translational modification which describes the covalent attachment of 

a ubiquitin like protein (NEDD8) to a substrate (reviewed by [258]). Interestingly, in 1999 

the human cullin protein family (cul1-5) were shown to be subject to neddylation[259]. In 

order for neddylation of cullins to proceed an E1 NEDD8 activating enzyme (NAE)[260] 

and an E2 NEDD8-conjugating enzyme (Ubc12)[261] are required. Importantly, cullin 

neddylation is required for the activation of the CRL E3 ubiquitin ligase family. Following 

its activation, a CRL is then available to participate in the formation of an E3 ubiquitin 

ligase complex and catalyse the ubiquitylation of its target substrate. With this in mind, we 
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employed a neddylation inhibitor (MLN4924) to assess whether members of the CRL 

family were responsible for the ubiquitylation and therefore proteasomal turnover of 

SOCS3. MLN4924 inhibits the E1 NAE and therefore cullin activation cannot proceed. In 

the presence of this neddylation inhibitor, there was a slight decrease in the laddering of 

SOCS3 ubiquitylation however this was a subtle observation and densitometry analysis 

confirmed there was no significant effect on SOCS3 ubiquitylation (Figure 4-21 B-C). 

These data suggested that though a CRL E3 ligase may be involved in the regulation of 

SOCS3 turnover it is unlikely to play a major role. The overall aim of this PhD was to 

identify a key E3 ligase or DUB with a significant contribution to SOCS3 stability and 

would therefore provide a useful therapeutic target. As such, future work should not focus 

on the role of the CRL family of E3 ligases in the regulation of SOCS3 turnover at the 

proteasome.     

Furthermore, in 2000, Podust and colleagues confirmed that the CRL (SCF
Skp2

) mediated 

degradation of a protein called p27
Kip1

 required neddylation activity [262]. More recently, a 

study conducted in a pro-B cell line (Ba/F3) revealed that stimulation of cells with 

MLN4924 inhibited p27 turnover [164]. For that reason, as a positive control for 

MLN4924 activity, whole cell lysates were immunoblotted for p27 (Figure 4-21 D). The 

absence of p27 expression in the vehicle treatment group confirmed that the DMSO 

vehicle used to dissolve MLN4924 was not responsible for the enhanced stability of p27 

observed in the MLN4924 treatment group only (Figure 4-21 D).  

To summarise, the development of luciferase and immunofluorescence based assays to 

screen an E3 ligase si-ARRAY was unsuccessful due to technical limitations such as poor 

assay window and non-specific immunoreactivity of the SOCS3 antibodies available. As 

such, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate was performed and 

identified >700 SOCS3 interacting proteins including seventeen E3 ligases and four DUBs. 

HectD1, a K
63

-linked E3 ligase, was shown to interact with WT SOCS3 and truncation 

studies suggested that the SH2 domain of SOCS3 may facilitate this protein-protein 

interaction. Moreover, HectD1 appeared to slightly increase the ubiquitylation status of 

SOCS3 though these changes were subtle and not amenable to densitometry analysis. 

Additionally, USP15 (DUB) was also shown to interact with and decrease the 

ubiquitylation status of SOCS3 suggesting a role in the regulation of SOCS3 turnover. It is 

possible that the N-terminal 20 residues of SOCS3 serve as a repressor of USP15 

interaction. Investigating the effect of HectD1 and USP15 on SOCS3 stability in a vascular 

setting is vital to explore therapeutic strategies in the vasculature specifically. Moreover, 
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validation of the remaining E3 ligase and DUBs identified in the LC-MS-MS screen is 

warranted as it is likely multiple E3s and DUBs regulate the ubiquitylation status and 

therefore stability of SOCS3. Ultimately, we would aim to identify candidate E3s or DUBs 

with a significant contribution to the regulation of SOCS3 turnover. One therapeutic 

strategy would be to develop a peptide disruptor to specifically target the E3-SOCS3 

interaction, enhancing SOCS3 stability, and therefore expression. Similarly, candidate 

DUBs may be amenable to gene therapy strategies reducing K
48

-linked ubiquitylation and 

therefore the proteasomal turnover of SOCS3. The advent of drug eluting stents and CABG 

procedures, employing virus infected conduits, may facilitate such therapies in the future.  

 

4.3.1 Investigating non-specific immunoreactivity of primary 
antibodies 

I hypothesised that the immunofluorescence investigations failed due to non-specific 

immunoreactivity of the SOCS3 primary antibody. To confirm this future experiments 

would involve i) siRNA-mediated knockdown of SOCS3 in MEFs/HUVECs and testing 

whether the so called “non-specific” bands were detected on an immunoblot of whole cell 

lysates and ii) assess whether the SOCS3 antibody binds the peptide sequence it was raised 

against in vitro. It is possible that the detergent Triton X-100 was too stringent and 

impaired the ability of the SOCS3 primary antibody to interact with the epitope on SOCS3 

specifically. Future experiment should involve following the data sheet of the primary 

antibody as opposed to in-house protocols optimised for specific cell types. 

 

 

4.3.2 Limitations of the study 

There were some limitations of this study. Firstly, the SOCS3 immunoprecipitation 

experiments used for LC-MS/MS analysis to identify the novel E3/DUBs were performed 

in a non-vascular cell line (HEK293). HEK293 cells were selected as they provided an 

immortalised cell system that allowed reproducible and robust expression of FLAG tagged 

SOCS3 and ensured isolation of sufficient SOCS3 protein quantities for LC-MS/MS 

analysis (as a rough guide, pull down proteins visible by Coomassie staining following 

SDS-PAGE). The efficiency of plasmid expression in primary vascular cells, using 

standard transfection reactions, is often substantially lower versus HEK293 cells. In fact, 

the standard transfection reagent employed in the Palmer lab (PolyFect) does not document 

the efficiency of “hard to transfect” primary cells instead highlighting the success rate in 
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immortalised cell lines. More recently, transfection kits such as Nucleofector
TM

 and 

Cytofect
TM

 have reported improved efficiencies in primary smooth muscle cells however 

the cost associated is much higher than standard reagents. Using electroporation one group 

reported a 98% transfection efficiency in HUVECs [263] and this method warrants further 

investigation in primary VSMCs or ECs derived from HSV tissue. It was imperative that 

overexpression of SOCS3 was high to avoid insufficient SOCS3 protein content in the co-

IP sample, thereby reducing the sensitivity of detection of interacting proteins in the LC-

MS-MS analysis. 
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5 Investigating SOCS3 in the vasculature 

 

5.1 Introduction 

 

Procedures such as CABG and coronary angioplasty/stent implant are standard treatment 

options for patients presenting with asymptomatic coronary artery disease for whom 

pharmacological therapy is no longer effective [264]. However the patency of surgical and 

percutaneous intervention is limited by the accelerated re-narrowing of these vessels 

(neointima thickening) and susceptibility to atherosclerosis [264] (section 1.1).  

 

In section 1.6 of this thesis we describe the role of JAK/STAT signalling in the vascular 

disease. Constitutive activation of the JAK2/STAT3 pathway was reported in an animal 

model of carotid artery balloon injury and provided the rationale that SOCS3 mediated 

inhibition of JAK may attenuate restenosis and the prevalence of NIH [172]. Similarly, 

Xiang and co-workers observed an increased in activated STAT3 and SOCS3 in a rat 

model of vein grafting suggesting a role for the JAK/STAT3 pathway in vessel 

remodelling [216].  

 

SOCS3 is also thought to protect against the development of atherosclerosis. Ortiz-Munoz 

and co-workers described SOCS regulation of JAK/STAT signalling in vascular cells and 

their contribution to the progression of atherosclerosis [181]. SOCS3 was shown to limit 

the proliferative capacity of VSMCs in vitro whilst siRNA-mediated knockdown of 

SOCS3 in vivo increased atherosclerotic lesion size in apoE
-/-

 mice [181]. Collectively, 

these data suggested that SOCS3 may serve as a negative regulator for VSMC activation 

and therefore a protective role against atherogenesis (section 1.6.3).  

 

Interestingly, SOCS3 may play a role in the regulation of VSMC proliferation and 

migration which are key features of NIH (section 1.7). In a pig model of NIH SOCS3 

expression was significantly reduced in the expanding NI lesion itself [118]. These data 

suggested that loss of this negative regulator in vivo promotes VSMC proliferation and 

migration from the media to the expanding intimal layer [118]. Additionally, in 3T3 

fibroblasts [93] and a hepatocellular carcinoma (HCC) cell line [114], SOCS3 was shown 

to target activated FAK1 to the proteasome for degradation and therefore inhibited cellular 

migration. Similarly, knockdown of SOCS3 in a HCC cell line resulted in the up-
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regulation of MMP-2/9 expression and increased cell proliferation, migration and invasion 

in a panel of in vitro assays [199]. 

 

SOCS3 is a critical negative regulator of JAK/STAT signalling. As such, it would be 

interesting to assess whether SOCS3 has the ability to limit STAT3-driven proliferation 

and migration of VSMCs responsible, in part, for NIH and vessel stenosis. 

5.1.1 Aims 

In the current study the localisation of SOCS3 within the various layers of a human blood 

vessel, specifically the human saphenous vein, was assessed. Moreover, preliminary 

functional investigations were conducted to assess the effect of SOCS3 overexpression on 

HSV SMC proliferation and migration in vitro. 
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5.2 Results 

 

5.2.1 SOCS3 localised to the media, intima and endothelium of 
HSV tissue 

Human saphenous vein (HSV) conduits are commonly used in coronary artery bypass 

procedures as an alternative to the internal mammary artery (IMA). Though the patency of 

HSV conduits is generally lower than the IMA, the HSV has the advantage of length and 

accessibility in patients. To investigate SOCS3 protein expression within the various layers 

of a human blood vessel, immunohistochemistry was performed in HSV tissue derived 

from patients undergoing CABG procedures. SOCS3 localised to the medial, intimal and 

endothelial layers of the blood vessel (Figure 5-1 a-b). SOCS3 appeared to be less 

abundant in the intimal region compared to the medial layer (Figure 5-1a-b). The isotype 

IgG control revealed faint background staining using DAB (Figure 5-1 c-d). The intima 

was pronounced and the blood vessel lumen appeared narrowed (Figure 5-1). 

  

 

5.2.2 Investigating the effect of SOCS3 overexpression on HSV 
SMC proliferation 

Before conducting experiments with primary vascular cells, we tested the ability of a GFP 

LV to overexpress a tractable gene (GFP) in HSVECs. The GFP virus was titrated (0-

20IFU/cell) and imaged using a fluorescent microscope. At an MOI of 2, the efficiency of 

infection was ~100%, which decreased slightly at the higher MOIs (MOI 5 = 82%, MOI 10 

= 88% and MOI 20 = 93%) (Figure 5-2 A). Immunoblot analysis performed in parallel 

revealed increasing the concentration of GFP virus correlated with an increase in GFP 

protein expression (Figure 5-2 B).  

 

To assess whether the overexpression of SOCS3 in the SMCs would limit proliferation, a 

BrdU incorporation assay was performed. HSV segments left over from coronary bypass 

procedures were obtained, with ethical approval, and SMC cultures obtained from these. 

HSV SMCs were quiesced and infected with or without GFP or SOCS3-Luc LV particles. 

The BrdU assay revealed a trend toward decreased SMC proliferation in the presence of 

the SOCS3-Luc LV when compared to the no virus and GFP virus controls (Figure 5-3). In 

the absence of virus, serum starvation for 120 hrs resulted in an obvious reduction in BrdU 
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incorporation compared to the no virus control returned to serum containing media (Figure 

5-3). Moreover, when viewed microscopically cell death was evident in the no virus, serum 

starved wells (data not shown).   

 

5.2.3 Overexpression of SOCS3 in SMCs did not limit cell 
migration 

To determine whether the overexpression of SOCS3 in SMCs would limit cell migration, a 

scratch-wound assay was performed. Initially, HSV SMCs were quiesced before creating a 

scratch using a p200 tip. The growth medium was then replaced with fresh low serum 

media (0.2%FBS) or SMC media containing 15% FBS (Figure 5-4). At this point cells 

were infected with SOCS3-Luc or GFP LV particles and cell migration at the wound site 

observed at 12 hrs and 24 hrs post infection time point. SOCS3 overexpression appeared to 

have no influence on VSMC migration when compared to GFP infected or no virus 

controls (Figure 5-4). In wells in which 15% FBS SMC media was replenished, at the time 

of virus infection, cell migration appeared to be more obvious than the groups maintained 

in 0.2%FBS for 96 hrs (Figure 5-4). Cell death was not observed after 96 hrs in 0.2% FBS 

(Figure 5-4).  
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Figure 5-1: Immunolocalisation of SOCS3 in human saphenous vein tissue. 

Paraffin embedded veins were cut to 4 μm sections, deparaffinised and probed with rabbit anti-SOCS3 (10 

μg/ml) (A and B) or rabbit IgG (C and D) and biotinylated goat anti-rabbit (1:300) secondary antibody. 

SOCS3 was visualised using DAB and nuclei counterstained with haematoxylin. HSV tissue from three 

individual patients were analysed via IHC and representative images shown. Scale bar = 100 μm. (A) (x4) 

and (B) (x10) SOCS3 localised to the media (M), neointima (NI) and endothelium of HSV tissue though 

some adventitial fibres also showed positive staining. The lumen (L) appeared narrow. (C) (x4) and (D) (x10) 

rabbit IgG control revealed faint background staining with DAB.   

(A)                                                                                            (B) 

(C)                                                                                            (D) 

                    X4                                         X10                                                                   

SOCS3 
Ab16030 
10µg/ml 

 
 
 
 
 
 
 

IgG 
10 µg/ml 
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Figure 5-2: Optimising the MOI of the Sffv-GFP lentivirus in HSVECs. 

HSVECs were infected with 0-20 IFU/cell of the Sffv-GFP lenti virus for 48 hours. (A) GFP expression was 

visualised using a fluorescent microscope. The infection efficiency at each MOI was calculated by counting 

the proportion of cells expressing GFP in a select region of each dish. (B) Whole cell lysates were prepared 

in parallel and immunoblotting for GFP and GAPDH was used as a loading control. The virus infection 

efficiency was greatest at an MOI of 2 (100%) (A). As the concentration of virus increased, the expression 

level of GFP increased as shown in the GFP immunoblot (B). The HSVEC primary cell cultures were 

susceptible to Sffv-GFP lentivirus infection with a high efficiency over the MOI concentration range 2-20. 

Experiment was performed to N=1. 

(A)   
 
 
 
 
 
 
 
 
 
                                                                        
(B) 
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Figure 5-3: The effect of SOCS3 overexpression on HSV SMC proliferation. 

HSV SMCs were serum starved for 72 hrs in 0.2%FBS. Cells were then infected with 0-10 MOI Sffv-GFP 

lentivirus or CMV-SOCS3-Luciferase lentivirus for 48 hrs. 31 hrs post virus infection, BrdU label was added 

to the cells according to manufacturer’s instruction. BrdU incorporation was then measured using a 

fluorescent plate reader (POLARstar OPTIMA). Samples were prepared in technical replicates of 3 and the 

mean BrdU incorporation plotted with SEM error bars. A “cells only control” was included, in triplicate, on 

the plate and the average BrdU incorporation subtracted to provide a background subtraction. N=1 

preliminary data shows a trend toward a decrease in HSV SMC proliferation following SOCS3-Luciferase 

overexpression when compared to the GFP virus and no virus controls. Serum starvation (in 0.2% FBS) for 

120 hrs resulted in cell death. Experiment was performed to N=1.  



190 
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Figure 5-4: The effect of SOCS3 overexpression on HSV SMC migration. 

HSV SMCs were serum starved for 72 hrs in 0.2%FBS. Cells were then infected with 20 MOI Sffv-GFP lentivirus or CMV-SOCS3-Luciferase lentivirus for 48 hrs and returned to 15% 

FBS or maintained in 0.2% FBS for wound assay. Images were taken at 0, 12 and 24 hr post wound time points. Samples were prepared in 3 technical replicates and representative 

images shown. The dotted lines show areas where cells were mostly absent. Preliminary data shows no effect of SOCS3 overexpression on the migration of HSV SMCs. Experiment 

was repeated to N=2 and representative images shown. 
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5.3 Discussion 

SOCS3 has been implicated in vascular pathologies. Notably, adenoviral delivery of the 

SOCS3 gene in a rat model of vein grafting (autologous jugular vein-to-carotid-artery) 

recently confirmed that SOCS3 overexpression significantly reduced NI thickness at 2 

weeks and 4 weeks post procedure [216]. SOCS3 has also been implicated in other 

vascular pathophysiologies such as atherosclerosis [181]. Interestingly, SOCS3 expression 

was significantly elevated in the inflammatory shoulder region when compared to the 

fibrous cap of human atherosclerotic plaques [181]. Furthermore, IL-6 or low-density 

lipoprotein (LDL) stimulation of VSMCs has been shown to promote proliferation in vitro 

[181]. However, the transient overexpression of SOCS3 in these cells was sufficient to 

block this proliferative response [181]. Together these data support our hypothesis that 

enhancing the stability of SOCS3 may limit the VSMC proliferation that contributes to NI 

lesion formation following CABG or PCI.  

 

As such, we sought to investigate the expression of SOCS3 protein within the various 

layers of the HSV blood vessel. IHC revealed SOCS3 localised to the medial, intimal and 

endothelial layers of the blood vessel though some staining was observed in the adventitial 

fibres (Figure 5-1 a-b). Importantly, SOCS3 expression appeared to be reduced in the 

intimal region compared to the media (Figure 5-1 a-b). This would support the hypothesis 

that loss of SOCS3 expression in SMCs of the medial layer facilitates the proliferation and 

migration to the intimal layer. However, in the absence of co-localisation with cell specific 

markers (αSMA) we cannot confirm SOCS3 expression in the SMCs. Interestingly, Gupta 

et al showed SOCS3 expression was significantly downregulated in the NI of porcine 

arteries subject to wire injury [118]. Though our data showed positive staining for SOCS3 

at the NI, using the DAB system it was not possible to quantify expression. Future 

experiments should involve the use of fluorescent antibodies and co-localisation of SOCS3 

with VSMC cell specific markers. Previously α-smooth muscle actin (α-SMA) and smooth 

muscle-myosin heavy chain (SM-MHC) have been employed to distinguish VSMC from 

other cell types [265]. Additionally, staining for endothelial cell specific markers such as 

von Willebrand factor (vWf) or vascular cell adhesion molecule (VCAM1) would confirm 

whether SOCS3 expression was altered in the endothelium specifically [266]. We 

hypothesise that cells within the NI lesion would stain negative for vWF and VCAM1 due 

to the absence of endothelial cells. Additionally, we would expect the NI to contain a large 

proportion of SMCs (stain positive for α-SMA and SM-MHC) and that co-localisation of 
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SOCS3 with these cell specific markers would be reduced in the NI lesion compared to the 

medial layer of the blood vessel. 

 

As mentioned previously, the HSV tissue was obtained from patients undergoing CABG 

procedures. HSV tissue sections were not subject to culture ex vivo and were instead 

formalin fixed on day 0. As such, we did not expect the NI of these vessels to be as 

enlarged and with reduced luminal diameters. One consideration is that the patients were 

undergoing a CABG procedure due to significant pathology of the coronary artery 

therefore it is possible other vessels within the body, including the saphenous vein, may be 

diseased.    

 

Before conducting proliferation and migration assays in primary vascular cells the ability 

of a GFP LV to infect primary HSVECs was performed.  At an MOI of 2, the efficiency of 

infection was ~100%, which decreased slightly at MOIs 5-20 though still >80% (Figure 5-

2Figure 5-2). As such, the MOI of the SOCS3 virus progressed to proliferation and 

migration assays was within this range to ensure high efficiency of infection. The use of a 

Fluorescence-Activated Cell Sorting (FACS) platform would provide a more accurate 

assessment of infection efficiency however for the purpose of this project this was not 

essential.  

 

Human saphenous vein (HSV) conduits are commonly used in coronary artery bypass 

procedures as an alternative to the internal mammary artery (IMA) due to accessibility and 

increased length. Our hypothesis was that overexpression of SOCS3 in the SMCs, derived 

from HSV tissue, would limit proliferation via inhibition of the JAK/STAT pathway. To 

test this hypothesis, we serum starved HSV SMCs for 72 hrs inducing quiescence and 

synchronising all cells to the same stage of the cell cycle (G0) (Figure 5-3). Failure to 

synchronise all cells to the same stage of the cell cycle would otherwise introduce an 

additional variable that may skew these data output. It was essential to return serum at the 

time of virus infection to avoid cell death as seen in the no virus, serum starved control 

(Figure 5-3). Furthermore, the return of serum containing growth media facilitates exit 

from the stationary G0 phase of the cell cycle which is required to measure DNA 

replication during the S phase of the cell cycle.    

 

The BrdU incorporation assay (Chemicon®) was used to indirectly assess proliferation and 

relies on the incorporation of a modified nucleotide base (5-bromo-2’deoxyuridine), in 
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place of thymidine, into nascently synthesised DNA. The first generation BrdU assay was 

described in 1975 [267] though today employs more sophisticated monoclonal antibodies 

and a colourimetric plate reader to accurately quantify BrdU base incorporation [268]. 

Alternative methods such as the MTT assay relies on the reduction of a tetrazolium salt 

(MTT) to the coloured formazan and quantification this colour change [269]. However the 

MTT assay may not be a reliable indicator of cell proliferation as it measures the metabolic 

activity of viable cells as opposed to DNA synthesis or cell number: cells may be 

metabolically active but not proliferating. Moreover, since it was first described in 1957 

[270], the incorporation of tritiated (H
3
)-thymidine has widely been accepted as the gold 

standard for measuring DNA synthesis [268, 271]. However, use of the BrdU 

incorporation assay avoids the costs and hazards associated with handling radiolabelled 

products therefore this was used to investigate the effect of SOCS3-Luc overexpression on 

HSV SMC proliferation (Figure 5-3Figure 5-3). These preliminary data revealed a trend 

toward decreased SMC proliferation when SOCS3-LUC was compared to the GFP virus 

control (Figure 5-3Figure 5-3). However, the overexpression of a SOCS3-Luc fusion 

protein raised the argument that the luciferase tag (~59kDa) introduced a variable to the 

experiment and may be responsible for the reduction in proliferation observed (Figure 5-

3Figure 5-3). For that reason, we generated a CMV-SOCS3 LV (Chapter 3, Figure 3-12 b) 

however due to time constraints of this project it was not possible to complete proliferation 

assays using the CMV-SOCS3 LV. Future investigations will employ the SOCS3 LV in 

three independent proliferation assays. Moreover, the effect of SOCS3 on SMC 

proliferation should be confirmed using an additional method such as the xCELLligence 

system (ACEA Biosciences. Inc). The xCELLigence platform employs tissue culture plates 

that have been coated with gold electrodes. An electrical current is then applied across the 

plate and any increase in cell number impedes this electrical current. The resulting change 

in current flow can be quantified and used to measure cell proliferation in real-time.   

 

Recently, it has been shown that the overexpression of SOCS3 limited the migration of rat 

thoracic aorta VSMCs [216]. SOCS3 was overexpressed using an adenoviral vector and  

migration was stimulated with the addition of PDGF-BB [216]. SOCS3 overexpression 

significantly inhibited rat VSMC migration therefore we sought to replicate this result in 

human saphenous vein SMCs. These preliminary data suggested SOCS3-Luc did not 

reduce SMC migration when compared to the GFP control virus (Figure 5-4). However, 

similar to the proliferation assay, the overexpression of a SOCS3-Luc fusion protein to 

investigate migration was not deemed appropriate As such, the migration assay was not 
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progressed beyond N=2. Future work will involve the SOCS3 LV to remove the argument 

that the 59kDa luciferase tag may influence the result. It will be important to quantify the 

distance of the “scratch closure” from three independent experiments using analysis 

software (e.g. Image J) as described in the literature [231]. Again, assessing the effect of 

SOCS3 overexpression on SMC migration should be confirmed via an additional method 

such as 2D trans-well migration assays in which chemotaxis toward an inflammatory 

stimuli may also be introduced [272].  

Interestingly, the Xiang et al publication, in which SOCS3 overexpression was shown to 

significantly limit rat VSMC migration and proliferation (MTT and BrdU assay), did not 

include a serum starvation period to induce quiescence prior to the experiment [216]. Our 

experimental design for both proliferation and migration assays incorporated a serum 

starvation to synchronise the population of cells plated to the same stage of the cell cycle. 

Moreover, the stimulus for migration in the Xiang paper was the PDGF-BB ligand only. 

This may be considered an oversimplification of the in vitro experiment as during vascular 

injury in vivo multiple mitogenic stimuli would drive the proliferation and migration of 

VSMC in the media to the intimal layer. 
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6 Final Discussion 

Since the year 2002, the number of PCI procedures performed in the UK each year has 

more than doubled from ~44,000 to 92,000 [2]. Though the number of CABG procedures 

has declined from ~25,000 to 17,000 during this time, this method of surgical intervention 

remains an important strategy for more complex coronary lesions [2]. However, the 

patency of these revascularisation procedures remains relatively poor with >50% CABG 

procedures failing within 10 years [4] and ISR observed in ~12% of stent implants [3]. 

DESs though effective at reducing VSMC proliferation and therefore NIH, have an off 

target effect of inhibiting re-endothelialisation of the injured vessel and so patients are at 

risk of late in-stent thrombosis [28]. As such, there is an unmet clinical need for a therapy 

to reduce the incidence of NIH following CABG, balloon angioplasty or stent implant 

procedures. To address this problem we must generate novel therapies that maximise the 

benefit of these interventions while reducing the risk of adverse effects such as late in-stent 

thrombosis. We must identify new targets specifically involved in the development of NIH 

in these settings. The literature provides evidence in support of strategies to stabilise the 

expression of SOCS3 in VSMCs and therefore limit NIH without interfering with re-

endothelialisation of injured vessels (section 1.6-1.7). The primary aim of this thesis was to 

investigate the mechanism of SOCS3 turnover and identify therapeutic targets that would 

facilitate the stabilisation of SOCS3. 

 

SOCS3 is an important inhibitory regulator of the JAK/STAT pathway and its expression 

is, in part, driven by STAT transcription factors to form a non-redundant negative feedback 

loop (section 1.3). Loss of SOCS3 expression has been described in various cancers [113-

116] and animal models of NIH (coronary balloon angioplasty of atherosclerotic pigs) 

[118]. Moreover, therapeutic strategies to enhance the expression of SOCS3 have been 

described for acute inflammation following staphylococcal enterotoxin B or LPS exposure 

[110], rheumatoid arthritis [244] and collagen induced arthritis [273]. SOCS3 delivery 

appeared to be an effective therapy reducing the detrimental effects of the acute 

inflammatory response to SEB or LPS [110] and also in reducing the pathology of arthritic 

joints [244, 273]. 

 

Ubiquitylation is a reversible PTM in which a ubiquitin moiety is covalently attached to a 

target Lys (K) residue on its substrate [127] (section 1.5). Amongst many functions, this 

PTM has been shown target proteins for degradation at either the proteasome or lysosomes, 
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play a role in DNA damage repair and regulate immune responses. Interestingly, Sasaki 

and co-workers reported that the ubiquitylation of Lys6 was a key regulator of SOCS3 

stability in a pro B (Ba/F3) cell line and that the proteasome was a major route for SOCS3 

degradation [95] (section 1.3.9). In Chapter 3 of this thesis, it was demonstrated that Lys6 

was not required for SOCS3 ubiquitylation and therefore turnover in HEK293 cells. In 

fact, pharmacological inhibition of the proteasome had no obvious effect on SOCS3 

expression suggesting an alternative route for SOCS3 degradation in this cell type. Babon 

and co-workers also demonstrated that pharmacological inhibition of the proteasome, 

lysosome or calpain degradation pathway had no significant effect on the stability of WT 

SOCS3 in HEK293T cells [100]. However, it is likely that the mechanism of SOCS3 

turnover is dependent on the cell system under investigation which would explain the 

disparity between the results in this thesis and Sasaki et al [95].  

 

To identify the residues required for the ubiquitylation of SOCS3, the ubiquitylation status 

of a panel of SOCS3 truncation mutants was assessed in transfected HEK293 cells. 

Initially, these data suggested that a C-terminal 44 amino acid region was required for 

SOCS3 ubiquitylation. However mutagenesis of the single Lys173 to Arg in this region 

had no discernible effect on either SOCS3 ubiquitylation or stability. Accordingly, we 

conducted LC-MS-MS analysis of SOCS3 isolated by immunoprecipitation following 

expression in HEK293 cells to directly identify putative sites of ubiquitylation. These 

revealed 8 distinct sites of ubiquitylation (K23, K28, K40, K85, K91, K173, K195, K206) 

confirming functional redundancy exists within this system. These novel data provided the 

rational for the generation of a so-called “Lys-less” SOCS3 mutant, in which all 8 Lys 

residues were mutated to Arg. Compared to WT SOCS3, Lys-less SOCS3 was shown to be 

significantly more stable whilst retaining its function as a negative regulator of JAK/STAT 

signalling in vitro.  

 

The C-terminus of SOCS3 contains a 40 residue SOCS box region [49, 84] which provides 

a platform for the assembly of an ECS
SOCS3

 ubiquitin ligase complex (section 1.3.8). To 

date, the literature has described seven SOCS3 substrates that are subsequently targeted for 

proteasomal or lysosomal degradation (section 1.3.8 ). It had previously been reported that 

deletion of the C-terminal SOCS box stabilised SOCS3 similar to the Lys6 (K6Q) SOCS3 

mutant [95]. Though deletion of the SOCS box may render SOCS3 resistant to 

ubiquitylation and therefore turnover, this may also enhance the stability of SOCS3 

substrates. For example, stabilisation of the SOCS3 substrate FAK1 may promote cell 
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migration and contribute to disease progression. It is likely that additional SOCS3 

substrates will emerge in future, therefore mutated SOCS3 which are resistant to 

ubiquitylation but cannot assemble an ECS
SOCS3

 ubiquitin ligase complex may have a 

detrimental effect on SOCS3 function. It is important that therapies to enhance the stability 

of SOCS3 do not compromise the functionality of SOCS3, interfere with phoso-

tyrosine/substrate binding and permit the formation of the ECS
SOCS3

 ubiquitin ligase 

complex.  

 

Sasaki and colleagues proposed that SOCS3 may autoubiquitylate to regulate its own 

turnover at the proteasome [95]. However, this thesis has provided evidence to support the 

role of an external E3 ligase for SOCS3 (Chapter 3). The L189A SOCS3 mutant was 

previously described by Babon and co-workers [100] and was unable to interact with the 

elongins (components of the E3 ligase machinery). Interestingly, despite an inability to 

form the E3 ligase complex at the C-terminal SOCS box, we have demonstrated that the 

L189A SOCS3 mutant was polyubiquitylated to the same degree as WT SOCS3 in 

HEK293 cells. These data suggested that formation of the E3 ligase complex at the SOCS 

box domain was not essential for SOCS3 ubiquitylation and that one or more separate E3 

ligases may be responsible for this modification. 

 

The current study investigated the mechanism of SOCS3 turnover in a human endothelial 

(AS-M.5) cell line (Chapter 4). The proteasome was identified as the major route of 

endogenous SOCS3 turnover in this vascular cell type. Our initial strategy to identify the 

E3 ligase controlling proteasome-mediated SOCS3 turnover was to develop in vitro tools 

to screen an E3 ligase siRNA library (siARRAY). As such, AS-M.5 stable cell lines were 

developed that expressed a SOCS3-Luc fusion protein that theoretically could be used in a 

luciferase-based siARRAY screen to identify E3 ligases which, when knocked down, 

would have produced an increase in SOCS3-Luc activity. However, during optimisation of 

this assay the calculated assay window was low (<2) and was deemed unsuitable for 

screening purposes. As an alternative approach, a previously developed in vitro 

fluorescence and cell-based high throughput screen for inhibitors of virus mediated gene 

transfer [249] was investigated as a platform to screen the E3 ligase siARRAY. However, 

this was also deemed unsuitable due to non-specific immunoreactivity of commercially 

available and in-house SOCS3 primary antibodies in immunofluorescence applications.  

In the absence of a suitable tool to screen the si-ARRAY, LC-MS-MS and bioinformatic 

analysis of SOCS3 isolated by immunoprecipitation following expression in HEK293 cells 
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was performed to identify any potential interacting E3 ligase and DUB enzymes that may 

control SOCS3 turnover (Chapter 4). This screen highlighted two promising candidates 

that co-immunoprecipitated with SOCS3 i) a Lys63 specific E3 ligase known as HectD1 

and ii) a cysteine protease DUB known as USP15. 

 

As discussed previously, little is known about the function of HectD1 with only 29 

publications cited in PubMed (section 4.3). Interestingly, HectD1 was recently shown to 

catalyse the Lys63 linked polyubiquitylation of the APC protein involved in the negative 

regulation of Wnt signalling [247]. The Wnt pathway controls cell fate and plays a crucial 

role during embryogenesis [274]. As such, it is not surprising that deregulation of this 

pathway has deleterious effects and has been implicated in many cancers [274].  However, 

rather than target APC for degradation, ubiquitylation by HectD1 promoted the interaction 

of APC with another protein called axin that was required for the formation of a 

“destruction complex” [247]. This destruction complex phosphorylates β-catenin which is 

subsequently targeted for Lys48 linked polyubiquitylation and proteasomal turnover [247]. 

In Chapter 4, preliminary investigations suggested that HectD1 may catalyse the Lys63-

linked ubiquitylation of SOCS3 when both were co-expressed in HEK293 cells. However, 

the significance of this modification is not clear and thus further research is required. It is 

possible that this PTM of is not involved in regulating the inherent stability of SOCS3 

rather it is involved in regulating protein-protein interactions as described for APC [247]. 

Subsequent investigations employing a neddylation inhibitor have indicated the CRL E3 

family are not involved in the ubiquitylation of SOCS3 which narrows the search for 

candidate E3s.  

 

As discussed previously (section 1.5.1), DUB enzymes reverse the action of the E3 

ubquitin ligases by cleaving ubiquitin chains, in a progressive manner, and may therefore 

promote substrate stabilisation [130]. USP15 was recently shown to deubiquitylate and 

stabilise the expression of an E3 ligase (Mdm-2) which in turn regulates the stability of the 

tumour suppressor p53 [256]. Interestingly, preliminary investigations suggested that 

USP15 may catalyse the deubiquitylation of SOCS3 when overexpressed in HEK293 cells 

(Chapter 4). Though it is likely multiple DUBs play a role in the stabilisation of SOCS3, 

USP15 warrants further investigation as a therapeutic target for SOCS3 stabilisation.  

Chapter 5 contains preliminary data from preliminary investigations of SOCS3 expression 

in the vasculature. However due to the time constraints of this PhD, further work is 

required to complete the analysis. The literature suggests that SOCS3 plays an important 
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role in vascular pathology associated with CHD. In support of this, SOCS3 overexpression 

in vitro has been shown to reduce inflammatory gene expression and proliferation in 

VSMCs, while siRNA-mediated knockdown of SOCS3 in vivo was shown to enhance the 

progression of atherosclerosis in ApoE
-/-

 mice [181]. Moreover, IHC analysis of neointimal 

lesions from a pig coronary artery injury model revealed a significant decrease in SOCS3 

expression in proliferating neointimal smooth muscle versus normal media [118]. In 

Chapter 5, the expression of SOCS3 protein within the various layers of a human 

saphenous vein (HSV) taken from a patient undergoing bypass surgery was investigated. 

These experiments demonstrated that SOCS3 immunoreactivity localised to the media, 

intima and endothelium of HSV tissue derived from patients undergoing CABG. 

Interestingly, SOCS3 expression appeared to be reduced in the intimal region compared to 

the media, consistent with the in situ observations described by Gupta et al in the porcine 

coronary artery injury model [118]. Initial studies also revealed a trend toward decreased 

serum-stimulated HSVSMC proliferation in the presence of the SOCS3-Luc LV (SOCS3 

overexpression) when compared to GFP LV and no virus controls. These data were 

consistent with proliferation studies conducted by Xiang et al that reported SOCS3 

overexpression reduced rat VSMC proliferation [216] and the Ortiz-Munoz [181] study 

that demonstrated SOCS3 overexpression effectively blocked IL6/LDL induced 

proliferation in murine VSMCs.  

By linking signals initiated by integrins and growth factor receptors to the actin 

cytoskeleton, focal adhesion kinase (FAK) is a critical mediator of VSMC migration and 

proliferation in NIH [275]. SOCS3 has been shown to specifically bind Tyr397-

phosphorylated FAK1, thus targeting it for ubiquitylation and proteasomal degradation [93, 

114]. In Chapter 5, preliminary investigations indicated that the overexpression of SOCS3 

had no effect on HSVSMC migration in the scratch assay. However, Xiang and colleagues 

reported that SOCS3 overexpression reduced the migration of SMCs derived from rat 

thoracic aortas in vitro[216]. As noted previously, WT and Lys-less SOCS3 LV without 

the luciferase tag have now been generated and will be used in future 

proliferation/migration studies by the Palmer lab. This will remove the possibility that the 

~59kDa luciferase tag might have been compromising SOCS3 function in the proliferation 

and migration assays. 

Together these observations suggest SOCS3 expression in the vasculature has the potential 

to suppress localised inflammation resulting from perturbation of the vascular 
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endothelium, but also reduce VSMC migration and proliferation leading to the NIH 

responsible for graft failure and in-stent restenosis.  

 

6.1 Current therapies for the treatment of ISR are limited 

Revascularisation using DESs have reduced the incidence of ISR when compared to BMSs 

however neointimal lesions may still form within the DES [23] (Section 1.1.2). The release 

of non-selective cell cycle inhibitors from the DES limits the proliferation of endothelial 

cells and slows re-endothelialisation of the stented vessel [24]. This increases the risk of 

late in-stent thrombosis and is one of the major limitations of DESs. As such, many 

patients still receive BMSs which are associated with a high incidence of ISR.  The 

treatment of ISR remains problematic and dual anti-platelet therapies such as aspirin and 

platelet P2Y12 inhibitor are recommended in patients receiving a stent [25]. A recent 

review conducted by Alfonso et al summarised the pitfalls of the most common ISR 

treatment strategies [276]: 

1. Balloon angioplasty – beneficial in the short term however often results in recurrent 

ISR. 

2. Drug coated balloon angioplasty – shown to be more effective than balloon 

angioplasty alone for the treatment of ISR however repeat stenting with a DES may 

be the preferred treatment option.  

3. Atherectomy to remove neointimal tissue within the stent – clinical trials suggested 

this did not improve the incidence of re-current ISR. 

As such, there is an unmet clinical need for the treatment and prevention of ISR. I 

originally hypothesised that stabilising the protein levels of SOCS3 would be a useful 

therapeutic strategy to reduce NIH and improve the patency of revascularisation 

procedures (section 1.8). The following section summarises the advantages and 

disadvantaged of a therapy to stabilise SOCS3 protein levels (section 6.2). 

6.2 The pros and cons of SOCS3 stabilising therapies 

One of the main challenges of a therapy to stabilise SOCS3 protein levels is the ability to 

target this VSMCs specifically. In atherogenesis, the role of SOC3S appears to be cell type 
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dependent and highlights the potential for a non-selective SOCS3 stabilising therapy to 

promote disease progression (section 1.6.3). Table 6-1 summarises the pros and cons that 

may be associated with SOCS3 stabilising therapies to limit NIH. 

Advantages Disadvantages 

Attenuate VSMC proliferation [181, 216] 

that contributes to neointima formation. 

Inability to selectively target SOCS3 

therapy to VSMCs: 

 Inhibition of leptin signalling may 

result in patients becoming obese 

[65]. 

 Inhibition of endothelial cell 

proliferation will prevent re-

endothelialisation over the denuded 

are of the blood vessel following 

PCI or CABG. 

 SOCS3 expression was associated 

with M1 macrophage polarisation 

(pro-inflammatory) in unstable 

atherosclerotic lesions [277].  

 SOCS3 overexpression in T cells 

was shown to promote the 

development of atherosclerosis 

[184].  

Promote FAK1 degradation [93, 114] and 

therefore limit migration of VSMCs from 

the media to the intima that drives 

expansion of the neointima and reduction in 

lumen diameter. 

Reduce the expression of STAT3 

responsive genes such as MMP2 and MMP9 

involved in vascular remodelling and 

VSMC migration [195]. 

Reduce inflammatory gene expression in 

VSMCs [181, 216] and suppress localised 

inflammation induced by stent deployment. 

Targeting the E3 ligase/DUB for SOCS3 

may enhance the specificity of therapeutic 

intervention and the effectiveness of the 

therapy [278].  

Table 6-1: Advantages and disadvantages that may be associated with stabilising SOCS3 protein levels 

to limit NIH. 

 

In 2005, Jo et al generated a modified, cell penetrable form of SOCS3 (CP-SOCS3) that 

dampened the inflammatory response in animal disease models [110] (section 1.3.9). CP-

SOCS3 was modified to include a hydrophobic sequence that facilitated crossing of the 

plasma membrane phospholipid bilayer [97, 110]. This cell penetrable feature would be 

required for any future SOCS3 therapy employed in the vasculature.  

As discussed in chapter 1, SOCS1 and SOCS3 are the best characterised members of the 

SOCS family. SOCS1 is pre-dominantly associated with the negative regulation of IFNγ 
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signalling events [44]. In contrast, SOCS3 is largely involved in the non-redundant 

negative regulation of other cytokines including IL-6, LIF, IL-11, leptin and G-CSF [71]. 

As such, it would not be anticipated that a SOCS3 stabilising therapy would have an 

impact other SOCS signalling pathways.   

6.3 How this thesis has advanced our scientific 
knowledge 

The aim of this PhD was to investigate the mechanism of SOCS3 turnover and develop a 

functional SOCS3 that is resistant to degradation (section 1.9).  As discussed previously, 

Sasaki et al showed that Lys6 was required for the recognition and degradation of SOCS3 

at the proteasome in Ba/F3 cells [95]. However, in the HEK293 system I have shown for 

the first time that K6 is not required for the ubiquitylation of SOCS3 and that loss of this 

residue did not significantly enhance the stability of the protein (chapter 3). Using LC-MS-

MS analysis of a SOCS3 coIP I have identified 8 putative sites of ubquitylation (K
23

, K
28

, 

K
40

, K
85

, K
91

, K
173

, K
195

 and K
206

). To our knowledge, these data are a novel contribution 

to the literature and for the first time suggest that functional redundancy among the lysine 

acceptors on SOCS3 exists. To date, no further investigations of Lys6 as a master regulator 

of SOCS3 stability have been published and the LC-MS-MS data I have generated 

suggests that the regulation of SOCS3 stability is cell type dependent.  

Failure to identify a single lysine residue controlling SOCS3 turnover led to the generation 

of a novel “Lys-less SOCS3” that was functional and resistant to degradation (chapter 3). 

Lys-less SOCS3 may provide a useful candidate for adenovirus mediated gene therapy to 

reduce the incidence of NIH lesions following CABG or PCI. Alternatively delivery of 

Lys-less SOCS3 into joints affected by rheumatoid arthritis may prevent disease 

progression and warrants further investigation [244]. 

Moreover, the identity of the E3 ubiquitin ligase(s) responsible for catalysing 

ubiquitylation of SOCS3 is unclear providing a gap in the literature. I have provided 

evidence to support the role of an external E3 ligase controlling SOCS3 stability and now 

challenge the existing hypothesis of SOCS3 autoubiquitylation that was proposed by 

Sasaki et al in 2003 [95] (chapter 3). Moreover, LC-MS-MS analysis of a SOCS3 co-IP 

identified 17 candidate E3 ligases and 4 DUBs that may interact with SOCS3 (chapter 4). 

To our knowledge, the DUB(s) responsible for cleaving poly-ubiquitin chains from SOCS3 

are yet to be identified. As such, the candidate E3 and DUB enzymes identified in chapter 
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4 warrant functional validation and may provide novel targets for the design of small 

molecule inhibitors or peptide disruptors in the future.     

Finally, preliminary data presented in chapter 5 suggests that SOCS3 may limit the 

proliferation of VSMCs derived from HSV tissue consistent with Xiang et al’s work in rat 

thoracic aorta VSMCs [216]. Immunolocalisation performed in HSV tissue also revealed 

SOCS3 localised to the medial, intimal and endothelial layers of the blood vessel. 

Interestingly, SOCS3 appeared to be less abundant in the intimal region compared to the 

medial layer. These data were consistent with Gupta and co-workers findings in a porcine 

coronary artery injury model [118] and provide further evidence in support a SOCS3 

therapy to reduce the incidence of ISR in man. 

6.4 Future work 

In chapter 4 of this thesis, we confirmed HectD1 and USP15 were bona fide SOCS3 

interactors and not simply an artefact of LC-MS-MS analysis. However, denaturing IPs 

revealed that the overexpression of HectD1 or USP15 did not have a significant impact on 

SOCS3 ubiquitylation status in vitro. Nevertheless, functional assessment of HectD1 and 

USP15 should still be considered and the effect on SOCS3 protein levels investigated. In 

addition to this, screening the remaining E3 ligase and DUB candidates described in Table 

4-1 is vital.  

 

As discussed previously SMC proliferation and migration contribute to the expansion of NI 

lesions following CABG or stent deployment (section 1.1.2). Moreover, these 

revascularisation procedures are often associated with endothelial denudation. Loss of the 

endothelium means there is no barrier to limit this SMC proliferation and migration in 

addition increasing the risk of thrombosis. As such, the functional role of candidate E3 

ligases or DUBs should be investigated in primary VSMCs and ECs prepared from human 

saphenous vein (HSV) tissue and human coronary arteries (available commercially).   

 

Initial experiments would involve reconstituting SOCS3 ubiquitylation in the above 

VSMCs and ECs via lentivirus-mediated overexpression of SOCS3 and the candidate E3 

ligase or DUB in vitro. Exposure to the proteasome inhibitor MG132 would facilitate the 

accumulation of ubiquitylated SOCS3 prior to denaturing IP to assess the ubiquitylation 

status of SOCS3 (section 2.2.8). The identification of a bona fide E3 ligase for SOCS3 
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would result in a significant increase in SOCS3 polyubiquitylation. Conversely, the 

overexpression of a bona fide DUB would reduce the accumulation of polyubiquitylated 

SOCS3. Additionally, it would be interesting to assess the effect of siRNA-mediated 

knockdown of the endogenous E3 ligase or DUB for SOCS3 in both VSMCs and ECs. I 

hypothesis that knockdown of the E3 ligase(s) for SOCS3 would enhance SOCS3 protein 

levels and limit the proliferation and migration of VSMCs. Conversely, knockdown of the 

SOCS3 DUB(s) may further reduce SOCS3 protein levels and promote the proliferation 

and migration of these vascular cells.  

 

Following this, it would be useful to generate and test catalytically inactive mutants of the 

E3 ligase and assess their ability to function as dominant-negative inhibitors of SOCS3 

ubiquitylation in primary vascular cells. Depending on the class of E3 ligase responsible 

(HECT, single RING finger or multi-subunit RING finger [278]), mutations of specific 

conserved amino acids, critical for ubiquitin transfer to the substrate, are sufficient to 

inactivate the E3. 

 

The expression of candidate E3 ligase and DUB genes at the molecular level may be 

assessed using quantitative reverse transcription real-time PCR (qRT-PCR) and at the 

protein level via immunoblot analysis. Following this, the effects of manipulating E3 ligase 

or DUB levels on the rate of SOCS3 turnover could be examined using some of the 

techniques employed in this thesis, such as Emetine chase assays as described in Chapter 3. 

It would be predicated that siRNA-mediated knockdown of a functionally significant E3 

ligase targeting SOCS3, or transient expression of a catalytically inactive dominant-

negative version, would reduce the rate of SOCS3 degradation/increase t1/2, while 

overexpression of the E3 ligase should accelerate SOCS3 degradation and decrease t1/2 and 

vice versa for a SOCS3 DUB. 

 

Having examined the consequences for SOCS3 turnover and expression, it will be 

important to examine the impact of manipulating E3/DUB expression on key SOCS3-

regulated functional endpoints in VSMCs and ECs that are relevant to the development of 

NIH. This would include measuring i) SMC proliferation in response to growth factors 

(e.g. PDGF), cytokines (e.g. IL-6) and proatherogenic lipoproteins; ii) pro-inflammatory 

signalling, as determined by assessment of IL-6-stimulated activation of STAT3 and 

expression of STAT3-responsive genes such as monocyte chemoattractant protein-1 

(MCP-1/CCL2), MMP2/9, intracellular adhesion molecule-1 (ICAM-1), and vascular 
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endothelial growth factor (VEGF); and iii) cell migration in response to 10% (v/v) serum 

as described in Chapter 5. 

 

The expression pattern of candidate E3/DUBs such as HectD1 or USP15 in vivo should be 

investigated. This would involve harvesting tissue from various organs of healthy rodents 

and performing qRT-PCR analysis of gene expression in addition to immunoblot analysis 

of protein levels. It would also be critical that manipulation of the E3/DUB controlling 

SOCS3 stability translates into reduced pathology in tissue and animal models of NIH. 

Using an ex vivo HSV organ culture model, surplus HSV tissue may be cultured for 0-14 

days to allow formation of the neointima [279]. Tissue sections would then be embedded 

in paraffin wax and IHC performed to examine any changes in the expression of SOCS3 

and its E3/DUBs over time. Additionally, the in vivo mouse model of in-stent re-stenosis 

may be used to generate tissue sections from stented vessels [280]. Again IHC to 

determine the localisation of SOCS3 and E3/DUB expression within the stented vessel 

would provide valuable information about the role of SOCS3 during NI lesion formation.  

The availability of a mouse model of in-stent re-stenosis would also allow genetic 

interrogation of the contributions of VSMC versus EC-derived SOCS3 in conferring 

protection from distinct aspects of the NIH phenotype by using Cre-lox technology to 

generate mice in which SOCS has been specifically deleted from smooth muscle cells 

(SOCS3
fl/fl

; Tagln-Cre
+
) or vascular ECs (SOCS3

fl/fl
,; Cdh5-Cre

+
). Others have employed a 

similar strategy, using the Cre-lox system, to generate conditional gene knockouts in SMCs 

[281-283]  and ECs [188, 284, 285] specifically. Interestingly, Stahl and co-workers 

generated mouse models in which SOCS3 was specifically deleted in endothelial cells and 

revealed that SOCS3 was an important negative regulator of pathological angiogenesis 

[188].  

 

6.5 Potential therapeutic strategies 

In 2011, Stringer and Piper developed a DUB fusion protein that was resistant to 

ubiquitylation [286]. The group were investigating whether the ubiquitylation of a protein 

called ESCRT (endosomal sorting complexes required for transport) was required for its 

function [286]. As such, they fused the catalytic domain of various DUBs to ESCRT which 

effectively reversed the ubiquitylation of ESCRT [286]. Using a similar method, it may be 

possible to validate candidate DUBs regulating SOCS3 ubiquitylation. Moreover, if the 

SOCS3-DUB fusion protein significantly enhanced the stability of SOCS3 this may 
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provide a candidate for gene therapy. Stringer and Piper confirmed that DUB fusion did 

not alter the localisation of ESCRT nor did it impair the function of the protein [286] 

which would be an important feature of a SOCS3-DUB fusion protein. This approach 

would also be highly specific [287] and thus avoid detrimental side effects of global 

inhibitor therapies such as the proteasome inhibitor bortezomib [288].    

 

Bortezomib is a non-specific proteasome inhibitor and in 2003 was FDA approved for the 

treatment of multiple myeloma (a myeloproliferative cancer) [288]. However, this non-

selective inhibition of protein degradation is associated with undesirable side effects such 

as peripheral neuropathy (an extremely painful disease) upon subcutaneous injection [289]. 

In addition, the development of resistance to bortezomib in some cancer patients has been 

documented, further undermining the benefits as a therapy.  

 

A targeted gene therapy employing a more stable form of SOCS3 may avoid the off target 

effects and toxicity associated with a global proteasome inhibitor therapy such as 

bortezomib. CABG procedures in man would facilitate the local delivery of adenoviral 

gene vectors containing Lys-less SOCS3 or SOCS3-DUB fusions. CUPID 1 (Calcium Up-

Regulation by Percutaneous Administration of Gene Therapy In Cardiac Disease) is now a 

phase II clinical trial in which heart failure patients received an intracoronary infusion of 

an adenovirus containing the sarcoplasmic reticulum calcium ATPase gene 2a (SERCA2a) 

gene [243, 290]. At 3 year follow up, the results were promising with an 82% reduction in 

“pre-specified recurrent cardiovascular events” in patients who received the highest dose 

of the treatment when compared to control subjects [290]. As discussed previously, the 

endogenous MMP inhibitor TIMP3 provides another example of a candidate for gene 

therapy within the cardiovascular setting [205].  

 

Alternatively, the identification of a separate E3 ligase that regulates SOCS3 ubiquitylation 

may provide a novel target for which specific disruptor peptides can be designed. Peptide 

disruptors specific for the regulatory I domain of protein kinase A (PKA) and A kinase-

anchoring proteins (AKAP) have been developed based on peptide array data [291]. 

Peptide array technology allows the investigator to map the “minimal binding sequence” 

required for the protein-protein interaction and therefore defines the region a disruptor 

should target. Investigators subsequently screen peptides that selectively bind SOCS3 with 

higher affinity than the E3. The disruptor peptide would then effectively block the SOCS3-

E3 interaction and therefore stabilise SOCS3 expression. In this way, the E3 ligase may 
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continue to regulate the ubiquitylation of other substrates. This feature would be lost if a 

small molecule inhibitor of the E3 were employed.   

 

In conclusion, the role of SOCS3 in the vasculature warrants further investigation and 

provides a novel therapeutic target to alleviate the low patency of surgical intervention 

procedures to treat CHD. 
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