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A bstract

All formal specifiers face the danger of overspecification: accidentally writing an 
overly restrictive specification. This problem is particularly acute for axiomatic 
specifications because it is so easy to write axioms which hold for some of the 
intended implementations but not for all of them (or, rather, it is so hard not to 
write overly strong axioms).

One of the best developed ways of recovering some of those implementations 
which do not literally satisfy the specification is to apply a “behavioural abstraction 
operator” to a specification: adding in those implementations which have the same 
“behaviour” as an implementation which does satisfy the specification.

In two recent papers Wirsing and Broy propose an alternative (and apparently 
simpler) approach which they call “ultraloose specification.” This approach is based 
on a particular style of writing axioms which avoids certain forms of overspecifica- 
tion.

An important, unanswered question is “How does the ultraloose approach re­
late to the other solutions?” The major achievement of this thesis is a proof that 
the ultraloose approach is semantically equivalent to the use of the “behavioural 
abstraction operator.” This result is rather surprising in the light of a result by 
Schoett which seems to say that such a result is impossible.
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Chapter 1

Introduction

Two important requirements of a framework for formal program development are 

that it should allow any “legitimate” informal program development; and that it 

should be straightforward to prove that each step in a program development is 

allowed.

All programmers know that replacing one module by another module with the same 

external behaviour has no effect on the overall behaviour of a program and so, to 

satisfy the first requirement, any framework for formal program development should 

support the replacement of “behaviourally equivalent” modules (i.e. modules with 

the same “external behaviour”). That is, program specifications should have the 

following closure property.

If a program module implements a specification then so should all be­

haviourally equivalent program modules.1

This thesis is concerned with different ways in which axiomatic (aka algebraic) spec­

ification languages achieve this closure property and with how these different ap­

proaches affect the ease of proving properties of the resulting specifications. In

1We are being deliberately vague about what we mean by “implements” and “behavioural 
equivalence.” These terms are defined in chapters 2 and 3 respectively.

1



Introduction 2

particular, we look at two closely-related languages due to Wirsing, Sannella and 

Tarlecki and to Wirsing and Broy.

The best developed axiomatic specification language which addresses the issue of 

behavioural closure is ASL proposed by Wirsing and Sannella [34,40] and developed 

further by Sannella and Tarlecki [27-30]. ASL is a kernel specification language 

used to define the semantics of higher-level specification languages such as PLUSS 

[6] and Extended ML [26].

Not all specifications written in ASL are behaviourally closed: for example, the 

specification of stacks of natural numbers in figure 1.1 admits some stack-like im­

plementations such as the obvious list-based implementation but rejects others with 

the same behaviour such as the “array and pointer” implementation in figure 1.2.2

e n ric h  Nat 
by  sign  Stack: ty p e

empty: —> Stack 
push: Nat  x Stack —> Stack 
pop: Stack —¥ Stack 
top: Stack —> Nat 
isEmpty: Stack —> Bool 

ax iom s Vs: Stack, x: Nat. top(push(x,s)) = x  
Vs: Stack, x: Nat. pop (push (x, s)) = s 
isEmpty (empty) =  True
Vs: Stack , x: Nat. isEmpty (push (x , s)) =  False

en d

Figure 1.1: Stacks in ASL

There are two reasons why the stack specification in figure 1.1 is too strong and so 

fails to have the desired closure property.

1. The use of equations between stacks is too strong.

This can be seen by considering the array and pointer implementation’s failure 

to satisfy the second axiom.

2We use an ad-hoc but, we hope, clear notation to define the “implementation.” In chapter 2 
we will see that implementations should be defined in the same language that is used to write 
specifications.
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ty p e  Stack =  P air(In t, A rray  of Nat)

empty = (0, empty Array) 
push(x, (*, a)) =  (*' +  1 , a[i]: =  x) 
pop({i,a)) = ( i -  l , a )  
top((i, a)) = a[i] 
isEmpty {{i, a)) = i == 0

Figure 1.2: A Stack Implementation

pop{push{x, empty))
= { definition of empty }
pop(push(x, (0, empty Array)))
= { definition of push }
pop((l , empfa/Array[0]: = a;))
= { definition of pop }
(0, empfa/Aran/[0]: = x)

(0, empty Array)
= { definition of empty }
empty

Although the array and pointer implementation does not satisfy this axiom, 

there is no “real” problem (from the programmer’s point of view) because 

it is not possible to distinguish pop(push(x, empty)) from empty using the 

operations provided (i.e. empty, push, pop and top).

The problem with the specification is that is that it requires two values to be 

identical when it is sufficient for them to be indistinguishable (with respect to 

the operations provided).

2. The use of universal quantification is too strong.

This can be seen for the array and pointer implementation by considering the 

fourth axiom and instantiating s with the “nonsense” value (—1, empty Array) .

Vs: Stack, x: Nat. isEmpty (push(x, s)) = False

Vx: Nat. isEmpty (push (x, (—1, emptyArray))) — False 
=  { definition of push }
Mx\ Nat. isEmpty((0, empty Array [— 1]: = x))) =  False
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= { definition of isEmpty }
Va;: Nat. (0 = — 0) = False
= { arithmetic, predicate calculus }
false

Again, the non-satisfaction of this axiom is not a “real” problem because 

“nonsense” values such as (— 1, empty Array) cannot be constructed using the 

operations provided and so will never arise during the running of a program.

The problem with the specification is that it requires a condition to hold for 

all values of type Stack when it is sufficient for the condition to hold only for 

values that can be constructed using the operations provided.

The solution to these problems adopted in ASL is to provide a “behavioural ab­

straction operator” which modifies the meaning of a specification SP by allowing 

any implementation which is behaviourally equivalent to an implementation of SP.

Wirsing and Broy’s “ultraloose framework” [2,42] takes the alternative approach of 

trying to fix the problems with equations and quantification directly. The language 

(which we shall call USL) used in this framework is closely related to ASL (it shares 

four of ASL’s five basic specification building operations.) It lacks ASL’s behavioural 

abstraction operator but achieves a similar effect by allowing the use of slightly 

different notions of equality and quantification. The specification in figure 1.3 is a 

USL specification of a stack. There are two important differences:

1. To avoid the above problems with universal quantification, the ultraloose spec­

ification uses “reachable quantification” (Vr) which only ranges over the values 

which can be constructed using the available operations.

2. To avoid the above problems with equality, the ultraloose specification uses 

a congruence =  instead of equality. (Since congruences are not “built in” to 

the specification language as equality is, it is necessary to add the last eight 

axioms specifying the reflexivity, symmetry, transitivity and substitutivity of

= • )

Unlike ASL, USL has not been extensively studied. The major contribution of this 

thesis are answers to the following questions:
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enrich Nat 
by sign Stack: type

empty: -» Stack 
push: Nat  x Stack —» Stack 
pop: Stack —>■ Stack 
top: Stack -* Aa£ 
isEmpty: Stack —» Bool 
=: Stack x 5£acA; —» Hoc/ 

axioms Vrs: Stack, x: Nat. top(push(x, s)) = x  
Vrs: Stack, x: Nat. pop (push (x, s)) = s 
isEmpty (s) =  True
Vr s: Stack, x: Nat. isEmpty (push (x , s)) = False 

Vs: Stack, s = s
V s l , s2: Stack, s i  = s2 s2 =  s i
V sl, s2, s3: Stack, s i  = s2 A s2 = s3 ^  s i  =  s3

empty = empty
V s l , si?: Stack, x: Nat. s i  =  s2 => push(x, s i )  = push(x, s2 ) 
Vsl ,s2: Stack. s i  = s2 => pop (si )  = pop{s2)
Vsl ,s2: Stack. s i  = s2 => top(sl) = top(s2)
Vsl ,s2: Stack. s i  = s2 => isEmpty(sl)  =  isEmpty(s2)

end

Figure 1.3: Stacks in USL

• Under what circum stances are USL specifications behaviourally  

closed?

We tackle this question by defining a transformation (the “ultraloose trans­

formation”) from ASL specifications such as that in figure 1.1 to USL speci­

fications such as that in figure 1.3 and identifying sufficient conditions under 

which the transformed specification is behaviourally closed.

•  There are two obvious ways of making the specification in figure 1.1 be­

haviourally closed: apply ASL’s behavioural abstraction operation; or apply 

the ultraloose transformation mentioned above.

U nder what circum stances do these two approaches give the sam e 

result?
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• For which approach is it easiest to  prove properties of the resulting  

specifications?

Since the ASL specification is shorter than the corresponding USL specifi­

cation, one might think that the ASL specification is simpler than the USL 

specification; but, Wirsing and Broy claim that the behavioural abstraction 

operator is “mathematically difficult” and that their approach avoids these 

difficulties [42 paragraphs 4-5]. It is not immediately obvious which argument 

is correct.

We tackle the question by comparing proofs for ASL and USL specifications.

Our interest in these results is twofold: they provide a basis on which to compare 

the approaches taken in ASL and in USL; and they provide useful results for use in 

proving properties of specifications and of specification transformations.

R elated Work

The notion of behavioural equivalence can be traced back to Hoare’s paper “Proof 

of Correctness of Data Representation” [13] which uses abstraction functions to 

describe the relationship between two modules. The use of functions rather than 

relations resulted in an asymmetric relation —that is, Hoare defined a behavioural 

ordering. Later work in the area of model-based formal program development (for 

example, [18,19]) generalised the abstraction function to a representation relation 

yielding an equivalence like that discussed in this thesis.

Early work on axiomatic specifications (in partciular, that of the influential ADJ 

group [9 section 5.5]) adopted a notion of implementation like that of Hoare. This 

has been developed further by (amongst others) Ehrig et al. [4] and is discussed in 

detail by Wirsing in [41].

One of the earliest uses of behavioural equivalence in the semantics of a specification 

language is that of Sannella and Wirsing discussed earlier (notable previous moves 

in this direction are those of Giarratana et al. [7] and of Wand [39]). Making the 

use of behavioural equivalence by inclusion of the behavioural abstraction operator
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in ASL allowed Sannella and Wirsing to adopt a notion of implementation which 

was very much simpler than that of the ADJ group and Ehrig et al. (this is perhaps 

the major technical innovation in ASL). The ASL language has subsequently been 

refined in a series of papers including [27-30].

Instead of explicitly including the behavioural abstraction operator in the language, 

several workers [8,11,12,17,20] have defined notions of “behavioural satisfaction” of 

axioms. Roughly, a model behaviourally satisfies an axiom iff there is a behaviourally 

equivalent model which satisfies (in the usual sense) that axiom. This approach 

(potentially) suffers from a major problem: behavioural satisfaction leads to strange 

results if we allow arbitrary first-order axioms.

For example, under the usual semantics the specification in figure 1.4 would be 

inconsistent (unimplementable) because the second and third axioms conflict but 

under a behavioural semantics based on this notion of behavioural satisfaction, this 

specification is consistent. (For example, the usual list-based implementation sat­

isfies the first two axioms directly and behaviourally satisfies the third axiom since 

the behaviourally equivalent array and pointer-based implementation satisfies the 

third axiom.)

en rich  Nat 
by sign  Stack: ty p e

empty: —>• Stack 
push: Nat x Stack —> Stack 
pop: Stack —> Stack 
top: Stack —> Nat 

ax iom s Vs: Stack, x: Nat. top(push(x, s)) = x  
Vs: Stack, x: Nat. pop (push (x, s)) = s 
Vs: Stack, x: Nat. pop(push(x, s)) 7̂  s

end

Figure 1.4: Inconsistent Stacks in ASL

To avoid this problem, this approach (severely) restricts the form of axioms allowed 

in specifications to being conditional equations. That is, axioms must be of the form

Vxs: rs. 11 = rl A . . .  Im = rm -=> I = r .
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An early attem pt to avoid the need for a radically different semantics is that of 

Maibaum, Sadler and Veloso [14,15] who used a direct encoding of Hoare’s ab­

straction function. At first glance, their approach seems very complex since it uses 

infinitary logic suggesting that it would be hard to carry out finite proofs. However, 

their use of infinitary logic could have been replaced by use of the quantifier Vr used 

in figure 1.3 for which we need only structural induction. The importance of this 

work is that using essentially the same simple notion of implementation as in ASL 

and USL, this approach allows broadly the same implementations as under the more 

complex semantics of the ADJ group. (We shall not attempt to give a more precise 

characterisation of the semantics here.)

Schoett’s impossibility theorems [36,37] show that neither the usual language of first 

order logic with equality (as used in figure 1.1) nor Wirsing and Broy’s logic (with 

Vr instead of V) is powerful enough to precisely characterise a simple behaviourally 

closed class of algebras. This seems to suggest that something like ASL’s behavioural 

abstraction operator is essential. However, as a corollary he showed that proving 

simple properties of modules using specifications written using the behavioural ab­

straction operator can require infinite proofs if one uses the proof technique sug­

gested by Sannella and Tarlecki in [27]. This suggests that the goal of a simple 

behaviourally closed axiomatic specification language is unattainable.

Most algebraic specification languages provide a way to control which sorts and 

operations are exported from a specification. We shall show that, for such languages, 

Wirsing and Broy’s logic is powerful enough to precisely characterise the class of all 

stack-like algebras (this is a corollary to our discussion of the relation between ASL 

and USL in chapter 3). (Since 1977 it has been known that allowing operations 

to be “hidden” by not exporting them greatly increases the power of specification 

languages (see, for example, [16,17]) so our result is perhaps not overly surprising. 

Indeed, in [37 section 5 ] Schoett suggests tha t operation hiding may be one way of 

avoiding the problem but does not show how it could be done. Our contribution is 

to confirm that operation hiding can be used to solve the problem and to provide a 

systematic method for doing so.)

Finally, it is worth remarking that Schoett’s thesis [35] is the only work we know
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of which relates (any of) the above theoretical notions of behavioural equivalence to 

the modularisation facilities found in programming languages. Schoett introduces 

a concept he calls “stability (for behavioural equivalence)” (discussed further in 

chapter 5) and shows that if a programming language only provides “stable” mod­

ularisation facilities, then traditional Abstract Data Type theory is valid. That is, 

it is valid to replace an implementation of a module by any behaviourally equiva­

lent module. Schoett is primarily concerned with programming languages and so 

his ideas do not directly apply to this thesis. Sannella and Tarlecki [32 section 6] 

discuss how the notion of stability can be applied to specification languages — we 

give a brief outline in chapter 5.

O rganisation of this Thesis

The remainder of this chapter discusses various pieces of notation used throughout 

this thesis.

Specifications in both ASL and USL denote a class of algebras. Chapter 2 defines 

both languages and a satisfaction relation between algebras and specifications. This 

is used to define the implementation and equivalence relations between specifica­

tions.

Chapter 3 defines the major tool used in exploring the semantics of USL specifica­

tions: behavioural equivalence.

Chapter 4 explores two of the main themes of this thesis: behavioural closure of 

USL specifications and the relationship between USL and ASL.

Having shown that the ASL and the USL approaches to behavioural closure have 

the same result, chapter 5 demonstrates an advantage of USL over ASL: it can be 

easier to prove that a USL specification satisfies a given axiom than to show that 

the corresponding ASL specification satisfies the same axiom.

Chapter 6 concludes.
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N otation

Our notation for the predicate calculus closely follows that of the Eindhoven School.

That is:

Logical O perators A, V, =», <(=> denote negation, conjunction, disjunction, im­

plication and equivalence respectively as usual.

<= pronounced “follows from,” is defined by P <= Q =  Q => P,

In decreasing binding power we have A and V; => and <=-, and

Format o f Proofs Many of our proofs have the shape 

P
<̂> { hint why P Q }
Q
=> { hint why Q => R }
R

This is used as a shorthand for P 4$ Q A Q => R  A __

Quantifiers The general pattern for a quantified expression is

(Q xs : P(xs) : F(xs))

with Q a quantifier, xs a list of variables, P(xs) a predicate in terms of the 

variables (the range) and F(xs) the term of the quantification. (F(xs ) should 

be defined for all xs that satisfy P(xs).) (For sets, the notation { x  : P(x)  : 

F(x) } is used as an abbreviation for (Ux : P(x)  : (F(a;)}).)

The following table gives a few examples in “conventional” notation and in 

the notation used in this report.

U A i U Bi (Ui : i e  I  : Ai  U Bi)

n F(*) (C\x : a C x  C b : F( x) )
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{ y | 3x e  dom (/). f ( x )  = y }  { x : x G dom(/) : f ( x )  }

One advantage of this notation that it eliminates any ambiguity as to which

variables are being quantified over (as shown in the second example).

In this thesis we make extensive use of the notion of the (downward) closure of a 

set.

D efinition 1.1 (closure)

Let A be a set and <: A ++ A a reflexive transitive relation on A.

The downward closure of a subset A' of A with respect to < (written C1<(A')) is

defined by

C1<(A') =  {a, a1: a 6 A A a' G A' A a < a : a]

A subset A' of A is said to be downward closed with respect to < if C1<(A') =  A'.

In the common case that < is an equivalence, we drop the word “downward” — 

that is we refer to C1<(A') as “the closure of A' with respect to < ” and say that A' 

is “closed with respect to < if C1<(A') =  A'.”

End D efinition.

Much of our other notation is taken from the Z specification language. (For example, 

the image of a set X  under a function /  is f(\X\j = {x: x € X : f (x )} . )

Other notation will be introduced as the need arises.



Chapter 2

The Semantics of ASL and USL

This chapter defines the language and semantics of ASL and USL. Given the sim­

ilarity between the two languages it is convenient to define the semantics of the 

“union” of the the languages and define ASL and USL as sublanguages.

In both languages, the simplest and most fundamental form of specification consists 

of a signature (which names the types and operations defined by the specification) 

and a set of axioms. For example,

spec  sign  Bool :type
True, False > Bool 

ax iom s True ^  False
Vz: Bool, x =  True V x =  False

end

The semantics of such specifications is the class of algebras satisfying the axioms. 

Section 2.1 defines signatures, algebras, axioms and related concepts. Those familiar 

with the semantics of axiomatic specifications will be able to skim everything except 

the definition of axioms.

Section 2.2 defines the specification building operations used to construct large, 

structured specifications from these components and defines the notion of imple­

mentation used in ASL and USL. Again, those familiar with ASL will be able to 

skim this section.

Finally, section 2.3 defines the sublanguages corresponding to ASL and USL.

12
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2.1 Signatures, Algebras and Axioms

This section defines the mathematical structures used to define two important as­

pects of ASL and USL: the syntax and the semantics.

The syntactic aspects of ASL and USL are signatures (which name the types and 

functions in a specification), signature morphisms (functions between signatures), 

terms (expressions) and axioms.

The semantics aspects of ASL and USL are algebras (which define interpretations 

of the types and functions in a signature). Algebras are used to give a meaning to 

terms (by defining a notion of evaluation of a term) and to axioms (by defining a 

satisfaction relation between algebras and axioms).

2.1.1 Signatures and Algebras

In essence a signature is a set of symbols with an additional (monomorphic, first- 

order) type structure. The definition of this “set with structure” is as follows.

D efinition 2.1 (signatures)

A “signature” is a triple

E  =  ( T , F , a :  F  [T] x T)

where T  and F  are disjoint sets containing the “sort symbols” and the “function 

symbols” of E  respectively/

For /  G F,  the “type” of /  in E  is o (/); and if a ( f )  = ( [ r l , . . .rm ] ,r ) ,  we write 

f ' . r l  x • • • rm  -> r  in E.  We define T p((T , F,  a )) =  T  and O p((T, F,  a))  =  F.

We write Sign to denote the class of all signatures and write JFiSign to indicate 

that E  is a signature.

End D efinition.

1 Our notation for lists is based on the functional programming language Haskell: [̂ 4] denotes 
the set of lists of A; [al, . . .  am] denotes the list of length m with elements a l , . ..  am; as -H- bs 
denotes the concatenation of the lists as and bs; and ft os denotes the length of the list as.
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[Note: In the literature, F  and a  are often replaced by a [T] x T-indexed set of 

function symbols which may be (and occasionally is) used to express “overloading” 

of function symbols, e.g. +: Nat x Nat —»• Nat and +: Int x Int -» Int could appear in 

the same signature. Our definitions resemble those of Wirsing and Schoett: in [41], 

Wirsing defines a signature as a pair ( T , F ) but leaves a  implicit; in [37], Schoett 

defines a signature as a pair (T,  a) but leaves F  implicit.]

For example, the following is a typical signature for a stack.

StackSig = ( {Nat, Stack},
{0, succ, empty, push, pop, top},

f (D,Nat),  if f  = 0;
([Nat], Nat),  if /  = succ;
(\\, Stack), if /  = empty;
([Nat, Stack], Stack), if /  = push;
([Stack], Stack), if /  =  pop;

k ([Stack], Nat),  if /  = top.
)

A/-

This notation is a bit unwieldy and so we usually use the following more readable 

notation instead.

StackSig = sign Nat, Stack: type 
0: —̂ Nat 
succ: Nat  —> Nat 
empty: —» Stack 
push: Nat x Stack —» Stack 
pop: Stack —> Stack 
top: Stack -* Nat

end

Signature morphisms are functions between signatures which respect the type struc­

ture.

D efinition 2.2 (signature morphisms)

Let E = ( T ,F ,  a) and E'  =  (T', F', a') be signatures.
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A signature morphism a from 27 to E' (written a: E  -A- E') is a function of type 

( T  U F) —> (T'  U F') such that a\t '-T —> T ' , a\p: F —> F' and, for each f ’. r l  x 

• • • r m  —>• r  in E, o(f): a ( r l ) x • • • a(rm)  —* o(r) in E' .2

The signature E  is a subsignature of E'  (written E  C E') if T  C T ' , F C F '  and 

a = a'\p-

A signature morphism a: E  —► E'  is said to be an inclusion (written a: E  «-»■ E') if 

E  C E'  and a = idruF-3

Where E  is obvious from context and 27' C E,  we sometimes use the set V  U F f to 

denote E 1.

End Definition.

In essence an algebra is an abstraction of a program module: it is a function mapping 

symbols in a signature to their interpretation (either a set of values or a function). 

Algebras abstract away from details like the execution time or space of a function: 

this reflects the emphasis of formal methods on correctness rather than efficiency.

D efinition 2.3 (algebras)

Let E = (T, F, a) be a signature.

A JC-algebra A  is a TU E-indexed family such that for each r  G T, A t is a set (the 

“carrier of r ”) and for each / :  r l  x • • • rm  -4- r  in E, A f  is a (total) function of type

A f ’. A t 1 X • • * A Tm —̂ A r

If A  and B are 27-algebras, A  is a subalgebra of B  (written A  C B) if, for each sort 

t G T, A t C. Bt and, for each function symbol / : r l  x r m  -A- r  in 27 and each 

al  G A ti , • •. am G A Tm, A f ( a l , . . .  am) = B j ( a l , . . .  am).

2The notation h\x> denotes the restriction of a function h: X  —»■ Y  to a subset X'  of its domain 
X.  That is, h\x>{x') ^  h(x’) for x' G X'.

3 The notation i d x  denotes the identity function over the set X  defined by i d x ( x )  =f x  for 
x £ X.
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The class of all i7-algebras is denoted by Alg(i7).

End D efinition.

[Our definition of an algebra is essentially the same as that of Schoett [37]. Other 

authors such as Ehrig and Mahr [5] use two functions Sa  and OP a  (respectively) to 

assign interpretations to sort and function symbols (respectively) instead of a single 

family A.]

For example, the following is a StackSig-algebra called stack.

stackNat = { 0 , 1 , 2 , . . . }
stackstack = [ { 0 , 1 , 2 , . . . } ]
stack0 = 0
stacksucc = Xx. x +  1
stackempty — [ ]
stackpuSh — Arc, s. [rr] 11 s
stackpop = Xs. if  s = [] then [] else tail(s)
stacktop = As. if s = [] then 0 else head(s)

This notation is a bit unwieldy and so we usually use the following more readable
notation instead.

stack = ( Nat = { 0 , 1 , 2 , . . . }
Stack = [Nat]
0 =  0
succ(x) = X +  1
empty = []
push(x, s) =  [rc] -H- s
pop(s) = if s = [] then [] else tail(s)
top(s) = if  s = [] then 0 else head(s)

One of the most useful operations on an algebra is to compose it with a signature 

morphism and so rename, copy or hide some of the interpretations of the symbols 

in the algebra.
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D efinition 2 .4  (reducts)

Let E  and E'  be signatures, o: E' —> E  a signature morphism and A  a i7-algebra. 

The “cr-reduct of *4” (written A\a) is the Z/'-algebra defined by

A\a = A-(r

If o is an inclusion, and B = A \a, A  is an extension of B.

End Definition.

We note that if cr is an inclusion, then A\a is the algebra obtained by restricting 

the domain of A  to the sort and function symbols named in E'  (hence the choice of 

notation). Where a is obvious from context and an inclusion, we write A\x> instead 

of A \a.

A homomorphism can be thought of as a “representation function” describing how 

values in one algebra may be represented by values in another algebra.

D efinition 2.5 (homomorphisms and isomorphisms)

Let E  be a signature with sorts T  and let A  and B be 17-algebras.

A total T-indexed function h : A \ t  —> B \ t  is a A7-homomorphism if, for each 

f \ r l  x • • • r m  —» r  in E  and values al 6 A ti , .. • am € A TTn,

hT( A f ( a l , . . .  am)) = Bf(hTl {a l ) , . . .  hTTn[am))

If h: A  —> B and h'\ B —> A  are ^-homomorphisms such that h' • h =  ida  and 

h • h' =  ids then both h and h! are said to be Z’-isomorphisms (written h \ A  = B 

or just A  =  B.)

End Definition.

[Notes: Since A  is a family (i.e. a function), A \ t denotes the T-indexed set of 

“carriers” of the sorts T. Thus, a homomorphism relates the values in one algebra 

to the values in another.



The Semantics of ASL and USL 18

The condition

hT( A f ( a l , . . .  am)) = Bf{hTl {a l ) , . . .  hTTn{am))

is known as “the homomorphism condition.”]

The following result is standard (see, for example, [5 section 3.1]):

Lem m a 2.6 (bijectivity and uniqueness of isomorphisms)

Let E  be a signature and A  and B two Z-algebras.

If h: A  —> B is a Z-isomorphism, then h is bijective; and there is exactly one E-  

isomorphism h!\B -* A  such that h' • h = id a and h • h' =  id#.

End Lemma.

It is easily seen that reducts preserve isomorphisms (that is: A  =  B => A\a = B\a). 

It has been remarked (see, for example [28 section 5] that reducts need not reflect 

isomorphisms (that is: A\a — B\a A* A  = B).

Counterexam ple 2.7 {A\z> = B\s> =£■ A  =  B)

Let E  = sign Bool Type , True, False :—»■ Bool end, E'  =  sign Bool Type end  

and let the Z-algebras A  and B be defined by

A =  { Bool = {0 ,1 }  and B =  {

True = 1 

False =  0

)  )

It is clear that A\s> — B\z> (since A \ s f = B\s>) but A ^ B .  Hence,

A \ v ^ B \ v  A  = B

Bool = { 0 ,1 }

True =  1 

False =  1

End Counterexam ple.



2.1. Signatures, Algebras and Axioms 19

D efinition 2.8 (congruences and quotients)

Let E  be a signature with sorts T , let A  be a i7-algebra.

If =  is a T-indexed equivalence over A  (that is, for each r  G T, =T: A t -h- A t is an 

equivalence) and, for each function symbol f : r l  x • • *rm —>■ r  in E  and elements 

a l , a l '  G A ti , . . .  am, am' G A Tm,

al = r i  a l 1 A . . . am =Tm am' =>- A f ( a l , . . .  am) =T A f { a l ' , . . .  am')

then we say that =  is a E-congruence over A.

If =  is a LTcongruence relation over A,  the quotient algebra A / = is defined for each 

sort t  G T by^

(A/=)t =  {a: a G A r : [a]=r }

and for each function symbol f : r l  x • • • r m - > r b y

{AU)f{{a,l\=rn . . .  [am]=r J  =  [ A f ( a l , . . .  am)]=r

End Definition.

It is well known (see, for example, [5 section 3.13]) that there is a surjective ho­

momorphism from an algebra A  to any quotient of A.  (This fact is used in the

discussion of behavioural equivalence in chapter 3.)

Lem m a 2.9 (homomorphism to quotient algebras)

Let E  be a signature with sorts T, A  a i7-algebra, and =  a ^-congruence over A.

The T-indexed function [_]= defined for each r  G T by ([-]=)r — [-](=T) a 

surjective i7-homomorphism from A  to A/=.

P roof The homomorphism condition follows immediately from the definition of 

(A/=)f.  Surjectivity of [_]= follows from the definition of (A/=)T.

End Lemma.

^For any equivalence relation =: A -<-» A, the equivalence class [a]= of an element a € A  is the 
set of all values equivalent to a. That is, [a]= =f { a 1: a' G A A a =  a': a'}-
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2.1.2 Terms, Derived Operators and Reachability

This section defines terms, interpretations and derived operators.

In essence, a i7(X)-term is an expression constructed using the function symbols in 

a signature E  and a set of variable symbols X.  Throughout this thesis, we use X  to 

denote an infinite indexed set of variable symbols such that XT and X T> are disjoint 

if r  7  ̂r ' . We say x has sort r  (written x: r) if x  G XT.

D efinition 2.10 (terms)

Let E  be a signature with sorts T  and X  a T-indexed set of variables.

The T-indexed set W ( E , X )  of finite i7-terms with variables X  is the least T- 

indexed set (with respect to C) such th a t :5

x e W { E , X ) r i i x e X T

f i t s )  G W (E,  X ) T if t s  G [T], f n s - t r  and ts G W (E,  X ) TS

We say that t is a “i7(X)-term” (or just ‘T -te rm ”) if t G W ( E ,X ) .

The set of variables used in a term t (written vars(£)) is defined by

vars(:r) =  {a;}

v a rs ( f ( t l , . . .  tm )) =  v a rs ( t l ) U . . . vars(£m)

We say that a term t is “ground” (or that t is a “ground term”) if v a rs (t) = 0.

The T-indexed set of variables used in a term t (written Vars(£)) is defined for each 

r  G T by V arsr (£) =  XT fl vars(£).

We say that a i7-term t has sort r  (written t : r )  if t G W(E,  X ) T. This is extended 

to lists and tuples of terms in the obvious way. That is,

t l , . . .  tm: r l , . . .  r m  =  t l:  t  1 , . . .  tm: rm

End Definition.

5The notation [a l , . . . a m ] € (where € I  and A is an /-indexed set) is an
abbreviation for m =  n A al  G An  A . . .  am G Ain.
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For example, empty(): Stack and top(push(x, empty())): Nat. Where obvious from 

context, we drop the redundant “()” after constant operators. For example, we write 

empty and top(push(x, empty)) for the above terms.

D efinition 2.11 (valuations and interpretation)

Let E  be a signature with sorts T, A  a i7-algebra.

A valuation is any partial T-indexed function v : X  -I-)- A  (it “assigns” values to

variables) . 5 For any set of variables xl  G X Ti, . . .  xm G XTm and values al  G A t i ,

. . . a m  G Arm we write { x l : =  a l , . . . x m : =  am} to denote the least valuation 

which, for each i G { ! , . . .  m}  assigns the value ai to the variable xi. That is, for 

each % G { ! , . . .  m},

{ x l : =  a l , . . .  xm: =  am}Ti(xi) = ai

Let t be a i7(A)-term and v: X  +> A  a valuation such that the value of vT(x) is 

defined for each x G Vars(£)r (and possibly undefined otherwise). The value (or 

“interpretation”) of t in A  under v (written tA(v)) is inductively defined by:

xA(v) = v(x)

f ( t l , . . .  tm)A{v) =  A f (tlA(v) , . . .  tmA(v))

If vars(£) =  0, the value of tA(v) is independent of v and so we define

tA = tA ({})

where {} denotes the completely undefined valuation.

To let us emphasize that a function v : X  -H A  is a valuation, we define the set 

Val(^4) to be the set of all partial T-indexed functions v: X  -H A  and the set 

Val(^4, t) to be the set of all partial T-indexed functions v: X  -H A  such that vT(x) 

is defined for each x G Vars(t).

End Definition.

6 Partial functions are used to avoid the problem that, if any carrier of an algebra is empty, 
there is no total T-indexed function v : X  -> A \ t - This solution is based on that used by Schoett 
in [37].



The Semantics o f ASL and USL 22

The following property of homomorphisms is used in chapter 3:

Lem m a 2.12 (representation of terms)

Let £  be a signature with sorts T, X  a T-indexed set of variables, A  and B , 17- 

algebras and h: A  —> B a 17-homomorphism.

Then, for any I7(X)-term t and v E Val(*4, t) a valuation.

M t t H )  =  tB(h • v)

P roof

The proof is by induction over the structure of t.

Base case (t = x)

h(xA(v))
= { definition of tA(v) }
h(v(x))
= { definition of composition }
{h • v)(a;)
= { definition of tB(v) }
xB{h • v)
□

Inductive step (t = f ( t l , . . .  tm))

Assume that h( tlA(v)) = t lB(h • v), . . .  h(tmA{v)) = tmB{h • v).

h{ f ( t l , . . .  tm)A(v))
= { definition of tA{v) }
h(Af (tlA(v),...  tmA(v)))
= { homomorphism condition }
Bf (h{tlA{v)), ...  h(tmA{v)))
= { ind. assumption: h(tlA(v)) = t lB(h • v), . . .h(tmA(v)) = tmB{h • v) }
Bf(tlB(h •?;),... tmB(h • v))
= { definition of tB(v) }
f { t l , . . . t m ) B{h • v)

So, h(xA(v)) = xB(h ■ v) and, if h( tlA(v)) = tlg(h  • i>), . . . h ( tm A(v)) = tmB{h • 

v), then h ( f ( t l , . . . t m ) A(v)) = f ( t l , . . . t m ) B(h • i>). Thus, by the principle of 

structural induction, h(tA(v)) = tB(h • v).
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End Lemma.

An element a G A r is reachable if a can be constructed using the operations named 

in 27. That is, if for some t G W(17,0)T, tA =  a.

More generally, for some subsignature 27' of 27 and subset T' of the sorts of A1, a is 

27'(T')-reachable if a can be constructed using the operations named in E' and the 

values in A \ t >- More formally,

D efinition 2.13 (reachability, reachable subalgebras)

Let A1 be a signature with sort symbols T, E'  a subsignature of 27, V  a subset of 

T  and A  a 27-algebra.

Let X '  be the T-indexed set of variables defined for each r  G T  by

XT, if r  G T'; and 

0 , otherwise.

For each sort symbol t  G T  and value a G A T, we say that a is 27'(T')-reachable if 

72.(27', T', a) where

72.(27', T \  a) =  (3t, v : t e  W ( E \  X ’)T A v G Val(M, £) : tA{v) =  a)

The 27'-algebra 72.(27', T', M) is defined for each sort symbol r  G 27' by

72(27', T', M)r =  {a: a e  Ar  A 72(27', T', a): a}

and for each function symbol f : r l  x • • • rm  —»■ r  in 27' by

72(27', T \ A ) f  = (Af)\'R,(El,Tl,A)TlY.-Tl(E',Tl,A)Tm

Let S  be a 27-algebra and / i T  H a 27-homomorphism. The homomorphism 

72(27', T', /z): 72(27', T', M) -> 72(27', T', #) is defined for each sort r  G T  by

72(27', T ' , / * ) ^ / ^ ^ , ^

End D efinition.
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[In early work on algebraic specification (including, for example, [5 section 3.15]), 

the word “generated” or “term-generated” is used instead of “reachable.” ]

It is well known (see, for example, [5 proof of theorem 4.5,41 proof of fact 2.2.5 

]) that there is an injective homomorphism to an algebra from any of its reach­

able subalgebras. (This fact is used in the discussion of behavioural equivalence in 

chapter 3.)

Lem m a 2.14 (homomorphism from reachable subalgebras)

Let 27 be a signature with sorts T, V  a subset of T, and A  a 27-algebra.

The T-indexed function h defined for each r  € T and a £ 72(27, T', A ) T by hT(a) = a 

is an injective 27-homomorphism from 72(27, T' ,A)  to A.

P roof Since all elements of 72(27, T', A ) T can be written in the form tA(v) where t £ 

W (27, X' ) T and v £ Val(M, £), it is straightforward to verify that the homomorphism 

condition holds. Injectivity follows immediately from the definition of h.

End Lemma.

The following property is less well known — it is used in chapter 3 when establishing 

properties of behavioural equivalence.

Lem m a 2.15 (quotients of reachable subalgebras)

Let 27 be a signature with sorts T, 27' a subsignature of 27 and T'  a subset of T 

and A  and B 27-algebras.

If h: A  —> B and h\ t> is surjective then

72(27', T', A)/= =  72(27', T', B)

where = : A \ t  ^  A \ t  is the 27-congruence defined for each sort r  G T and values 

al ,a2  G A r by

al =T a2 =  hT(al) = hT(a2)
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P roof

Let the T-indexed function g:lZ(E' , T ' ,B ) -» 7£(27', T' ,A) /=  be defined for each 

sort r  E T  and ( S ' , T')-reachable value b E 5 r by

<7r(&) =  {a: hT(a) =  b: a}

Then:

1 . g is bijective.

Since 7Z(E', T' ,h)  is surjective, every equivalence class in 7Z(E', T ' ,A) /=  cor­

responds to precisely one (£',  T')-reachable value in B.

2 . g is a homomorphism.

Since 7Z(E' , T', h) is surjective, it suffices to show that, for each function 

symbol f : r l  x • • • rm  —> r  and ( S ' , T')-reachable values a l , . . .  am E A Ti,...Tm

9t (Bf (hTi (a l ) , . . .  hTTn(am)))
=  { h is a homomorphism }
gT{hT( A f ( a l , . . .  am )))
=  { definition of g }
{a: hT(a) = hT( A f ( a l , . . .  am)): a}
=  { definition of =  }
{a: a = T A / ( a l , . . .  am): a}
=  { definition of [_]= }
[Af { a l , . . . a m ) j =T 
=  { definition of 1Z(U', T \ A )  }
[ n ( E ' , T ' , A ) f ( a l , . . . a m ) U r 
=  { [_]T is a homomorphism }
K(Z ' ,  T ' , A ) / = f  ([fl7]=T, . . .  [am ]=rm)
=  { M r = 0 r ( M a ) ) }
n ( E ' ,  T \  A ) /  =f  (gTi {hr! ( a l )) , . . .  gTm{hTm(am)))

Since g is a bijective JC-homomorphism, we conclude that g is a ^-isomorphism. 

Hence result.

End Lemma.
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2.1.3 Formulae and Axioms

This section defines formulae and axioms. Z-formulae are just the standard formulae 

of first-order logic with the addition of equality over Z-terms (tl  =  t2) and “reach­

able” quantification (Vflanr. P); Z-axioms are Z-formulae with no free variables. 

Reachable quantification differs from normal quantification in that we only quantify 

over reachable values.

D efinition 2.16 (well formed formulae, axioms and satisfaction)

Let Z  be a signature.

The set WFF(E)  of well-formed Z-formulae is defined as the least set satisfying

true G WFF{E)

H
oII-+o G WFF{E) if t l , t 2  in W ( E , X ) t

- P G WFF(E) if P G WFF{E)
P A Q e WFF(E) if P G WFF{E)  and Q G WFF(E)

t . P G WFF(E) if P G WF F ( E ), E'  C Z  and x G X T
Va:: r. P G WFF(E) if P G WFF(E)  and x G X T

The set of free variables in a well-formed Z-formula is defined as follows. (Note the 

use of free(P) — {a;} in the last line which removes a variable x from the set of free 

variables when it is bound by a quantifier.)

fr ee(true) = 0
free( t l  = T t2) =  vars(il) U vars(££)
free(->P) = free(P)
free(PA<5) = free(P) U free(<5)
free(Vf^£:T. P) = free(P) — {a:}
free(Vrc:r. P ) = free(P) — {a;}

The T-indexed set of free variables in a formula P (written Free(P)) is defined for

each r  G T  by Freer(P) =  XT D free(P). We extend the notation for valuations by 

defining Val(A, P) to be the set of all partial T-indexed functions v: X  +»• A  such 

th a t vT(x) is defined for each x G Free(P).
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A  well-formed Z-formula ax is a Z-axiom if free(a:r) =  0. We write A xm (Z ) to 

denote the set of all Z-axioms.

Let A  be an algebra, P  a well-formed Z-formula and v G Val(A, P) a valuation. 

The satisfaction of P  by A  with respect to v (written A  [=w P) is defined by

A  f=t, true = true
A  [=„ t l  = T t2 = t l A{v) = t2A {v)
A\ =V^ P  <¥-,(A\=v P)
A\=v P A Q = (A [=„ P) A (A  f=„ Q)
A  K  (Vf Jar: r. P) = (Va : a G A r A K(E', V ,  a) : A  K®{«:=a} P )
A  \=v (Vx: r. P) =  (Va : a G A r : A  |=v0 {i:=o} P)

For any Z-algebra A  and Z-axiom ax, A  satisfies ax (written A  |= ax) iff A  f={} ax

where {} denotes the completely undefined valuation. Also, for any set Ax  of Z- 

axioms, we write A  [= Ax  as an abbreviation for (Vax: ax G Ax: A  |= ax).

End Definition.

Our definition of reachable quantification is based on that of Schoett [36,37]. It 

differs in that we make the signature Z ' and set of sorts T' explicit whereas Schoett 

requires Z ' =  Z  and makes the set V  implicit in what he calls an “observational 

signature.”

The use of reachable quantification in the algebraic literature can be traced (at 

least) as far back as Maibaum et al. [14,15] and Poigne [2 1 ]. All these early works 

use reachable quantification for the same purpose as model-based specifications use 

invariants: to restrict the domain of concern to those values which the specifier 

expects programs to encounter during execution — that is, the reachable values.

Wirsing and Broy [42] define a family of predicates _ G Z ' for each (non-empty) 

subsignature Z ' of Z  and each sort r  G T p(Z ) with semantics

A \ = v t e K  =  7Z(E', 0 , tA(v))
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which they use to define a less general form of reachable quantification (restricted 

to the case that T' = 0) by

x: r. P =  VT: t . x £ E't => P

We could remove VT: r. P  from the definition of WFF(S)  since it can be defined as 

follows:

VXI T. P  =  V{T}X-x.  P

We define the abbreviations ^ , V, =>,<(=>,... in the usual manner. For example, we 

have:

tl t2 = -•(tl =T t2)
P V Q  dAf -.((-nP) A (--£))
P  =» Q dAf (-.p ) V Q
P & Q  dAf ( p ^ g ) A ( g ^ P )

3 x : t . P  =  - N x : t . ->P

3 % , x \ r . P  =  -N%,x \ t . - ^ P
t e Z ' { T ' ) T dAf (3 % y : r . y = T t)

It is well known that first-order logic cannot distinguish reachable and unreachable 

models of the natural numbers (see, for example, [3 corollary 2.1.7]) whereas the 

axiom

\/x: Nat . 3q°'sucĉ y: Nat . x =Nat y

can. Therefore, the addition of reachable quantification increases the expressive 

power of first-order logic.

2.2 Specifications

This section defines the semantics of the languages ASL and USL and presents some 

examples of their use. The bulk of this work lies in the definition of some “specifi­

cation building operations” which are used to construct complex specifications out 

of simple specifications.
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One important point to note about ASL and USL is that if an axiom holds in an 

ASL/USL specification, then it must hold in all implementations of that specifica­

tion. For example, all implementations of the specification Bool in the introduction 

to this chapter will satisfy the axiom

\/x: Bool, x = True V x = False

and so will have at most two elements in the sort Bool.

ASL and USL are unusual in this respect in that the semantics of many alternative 

specification languages allow implementations which do not literally satisfy the ax­

ioms as long as the user of such an implementation could not tell that the axiom was 

broken. For example, the notion of implementation proposed by ADJ [9 section 5.5] 

is based on the relationship C meaning “isomorphic to a subalgebra of” . Under this 

notion of implementation, it would be possible for an implementation of the speci­

fication Bool to have three elements in the sort Bool since such an implementation 

would have models which are isomorphic to a subalgebra of a model of Bool.

2.2.1 Specification Building Operations

Many papers have been written about ASL (see, for example, [27-30,32-34,40,41]); 

each defining a slightly different set of specification building operations.

Rather than list all operations ever defined for ASL, we shall consider only those 

operations which appear in all definitions of ASL. That is, we consider the following 

five specification building operations:

• The simplest form of specification consists of a signature and set of axioms. 

Such specifications are known as “flat” specifications.

•  Just as reducts are used to hide, rename or copy objects in an algebra, so 

the specification building operation “d erive” is used to hide, rename or copy 

objects in a specification.
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• The converse of “derive” is “translate” which is primarily used to define the 

extension of a specification to a larger signature.

• The constraints placed on implementations of the specification SP1 U SP2 con­

sists of the constraints placed on implementations of SP1 and the constraints 

placed on implementations of SP2.

•  The abstractor “behaviour” closes a specification under behavioural equiv­

alence. We have chosen to delay the definition and discussion of behavioural 

equivalence until chapter 3 to keep all discussion of behavioural equivalence 

and behavioural closure in one chapter. For now, it suffices to know that we are 

going to model behavioural equivalence of program modules by an equivalence 

relation Alg(27) ++ Alg(27) between algebras.

These five specification building operations are defined as follows:

D efinition 2.17 (specifications)

Let E  and E'  be signatures, Ax  a set of i7-axioms.

The set Spec(i7) of ^-specifications is defined as the least set satisfying

(E,Ax)
derive from SP1 by cr 
transla te  SP' by cr
SP1 U SP2
behaviour SP w rt (IN, OUT)

G Spec(27) if Ax C Axm E
G Spec(T) if SP' G Spec(T') and a: E -> E'
G Spec(T) if SP' G S p e c ^ ')  and cr: E' E
G Spec(T) if SP1, SP2 G Spec(T)
G Spec(T) if SP G Spec(T) and

IN, OUT C Tp(27)

The signature of a specification SP G Spec(i7) (written S ig (SP)) is the signature 

E.

Every well-formed specification SP G Spec(i7) determines a class of algebras 

Mod(iS'F) C Alg(i7) (the “models” of SP). This set is inductively defined by
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Mod((27, Ax)) = { A : A £ A \ % { E ) t \ A \ = A x - . A }
M od(derive from SP' by a) =f {A : A  E M od (SP') : A\a}
Mod (translate SP' by cr) = {A : A\a 6 Mod(S'.P') : A}
M od (SP1 U SP2) = M od (SP1) n  Mod(SP2)
Mod (behaviour SP w rt (IN, OUT)) = Cl {SP)

O U T

A Z'-algebra A  is said to be a model of a E-specification SP (written A: SP)  if 

A  E M od (SP). Two specifications SP1 , SP2: Spec(i7) are said to be equivalent 

(written SP1 =  SP2) if M od(5 'P l) =  M od(5'P^). A specification is said to be 

“inconsistent” if M od (ST5) =  0 and “consistent” otherwise. A specification SP  G 

SpecfT1) is said to satisfy a i7-axiom ax (written SP f= ax) if every model of SP 

satisfies ax.

E n d  D efin ition .

Om issions and Abbreviations

Many other ASL operations have been suggested in [28-30,32-34,40,41]. Some of 

these are easily defined as abbreviations using the above operations whilst others are 

rarely used but are included for completeness. (The first 6  are used in this thesis; 

quotient and extend _ to _ via _ are used as examples in chapter 5.)

•  spec sign E  =  (E, Ax)

axiom s Ax

end

• The operation export E'  from _ hides those symbols not occurring in E'\ the 

operation hide S  in _ hides those symbols that occur in a set S  of symbols.

export E'  from SP = derive from SP by cr 

hide S  in SP =  export E  — S  from SP

where cr: E'  Sig(S'P)

• The operation extend _ to  E  adds the symbols occurring in E  to a specifica­

tion.

ex ten d  SP' to  E  =  tra n s la te  SP1 by cr
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where cr: Sig(SP') *—>■ S

•  The operation _ +  _ is like _ U _ but is used to combine specifications with 

overlapping (rather than identical) signatures.

SP1 + SP2 = (extend SP1 to  S I  U S2)  U (extend SP2 to  S I  U S2)  

where S I  =  S ig (SP1) and S2 = S ig(SP2).

•  The operation im pose Ax  on _ restricts the models of a specification to those 

satisfying the axioms Ax.

im pose Ax  on SP = SP U (Sig(£P), Ax)

•  The operation enrich _ by sign S  axiom s Ax  end takes a specification SP' 

and both adds the symbols S  to the signature of SP' and imposes the axioms 

Ax  on SP'.

enrich SP ' =  SP' +  (27, Ax)

by sign S  — S '  

axiom s Ax  

end

where S '  = Sig (SP').

•  The operation reachable _ on T' restricts the models of a specification to 

those which are reachable on the sorts T ' .

reachable SP on T' =  im pose V x T . r l . x l  £ S ( T  — T ') t1

\/xm\rm. xm £ S ( T  — T')rm

on SP

where S  = Sig {SP), T = Tp(27) and V  = { r l , . . .  rm}.
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• The operation quotient _ wrt E  is defined in [29] by

M od(quotient SP wrt E) =  {A: A  £ M od(5P): A/=}

where =  is a 27-congruence determined by the set E  of 27-equations (see [29] 

for details of =).

• The operation extend _ to  SP' via cr is defined in [29] by

M od(extend SP to  SP' via cr) = {A: A  £ M od (SP): Fa(A)}

where SP' is an equational specification and Fa: Alg(Sig(5'F)) —>• Mod(S'P') 

is a free functor (see [29] for details of Fa).

• Most papers describing ASL describe an operator A for forming parameterised 

specifications; two recent papers describing ASL [30,33] define an operator 

IT for forming specifications of parameterised programs (cf. Standard ML’s 

“functors”).

We do not attempt to discuss parameterisation in this thesis. 

Im plem entation

Informal notions of stepwise implementation of a specification or stepwise program 

design are based on the idea that one program design is an implementation of another 

if it incorporates more design decisions. Sannella and Tarlecki [29] formalise this 

using the refinement relation on specifications defined by

SPl  ~  SP2 = M od (SP2) C M od (SP1)

Since the relation is transitive, we can conclude that SPl SPm if we have 

shown that SPl SP2 • • • SPm. That is, if we develop an implementation 

SPm  from SPl  in a series of refinement steps, we are guaranteed that SPm  is an 

implementation of S P l .
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At first glance, this idea of “implementing” a specification by another specification 

might seem to be rather useless: if an “implementation” is itself an ASL specifica­

tion, it will not be possible to directly execute the “implementation.” Broy et al.’s 

justification for such a definition is as follows [1 section 7]:

. . .  if it happens that SP2 specifies precisely the behaviour of particular 

data structures in a concrete programming language then a program over 

these types is both abstract and concrete. So a class of data types (for 

which software realisations are available) should be given, and the types 

of an abstract program should be replaced by algebraic implementations 

until it is based on the given target types.

An example of a specification language which includes a set of concrete data types is 

Extended ML [25,26,31] which consists of a blend of first-order logic and (a functional 

subset of) the programming language Standard ML.

2.2.2 Examples

This section gives some examples of typical specifications written in the above spec­

ification language and informally explains their meaning.

The first specification is a repeat of the specification of booleans from the introduc­

tion to this chapter. The specification has a single sort and two constant operations 

on that sort. The first axiom requires that these constants have different values; and 

the second axiom requires that every value of the sort Bool is equal to one constant 

or another. The result is that the sort Bool has precisely two values in it: True and 

False.

BoolBase =
spec sign Bool :type

True, False :—>• Bool 
axioms True ^  False

Vx: Bool, x = True V x = False
end
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Using the abbreviation x G U'(T')  from section 2.1.3, the second axiom could also 

have been written as:

\!x:Bool. x G {True, False}(0)

The second specification is a small specification of the natural numbers. The specifi­

cation has a single sort Nat and operations 0 and succ for constructing the naturals 

(1 = succ(0), 2 = succ(l),  etc.). The third axiom ensures that each value in Nat 

can be constructed using 0 and succ (eliminating values like —5 or infinity) while 

the first and second axioms ensure that every value can be uniquely constructed (so 

0 + 1 ±  2 ±  3 /  . . .).

NatBase
spec sign Nat rtype

0 '.—̂ Nat
succ : Nat —¥ Nat

axioms Vm: Nat. succ(m) ^  0
Vm, n: Nat. succ(m) = succ(n) => m = n
Vm: Nat. m G (0,succ}(0)

end

If we allowed infinitary axioms, it would be possible to replace the third axiom by

Vm: Nat. m = 0 V m = succ(O) V m = succ(succ(0)) V . . .

Our final example (figure 2 .1 ) shows how these simple specifications can be combined 

and extended to give larger specifications. The first four axioms specify the usual 

logical operators on booleans. The remaining axioms specify addition, subtraction 

and comparision operators and the constants 1 and 2.

Note that all axioms are either an exhaustive case analysis or of the form 

Vxs: rs. f (xs)  = t

so these operations are fully defined over their inputs.
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Nat =
enrich BoolBase + NatBase
by sign _ancL, _or_ : Bool x Bool -» Bool

not : Bool —>• Bool
Nat x Nat —> Nat

1, 2 :—v Nat
Nat x Nat —¥ Bool

axioms True and True = True A True and False = False
False and True = False A False and False == False
not (True) = False A not (False) = False
Vbl ,b2: Bool. bl or b2 = not(not(bl) and not(b2))
Vm,n:Nat. m + succ(n) = succ(m + n)

A m + 0 = m

A succ(m) — succ(n) = m —n
A m — 0 = m
A 0 — n = 0

A succ(m) > succ(n) = m > n
A succ(m) > 0 = True
A 0 > succ(n) = False
A 0 > 0 = True

A m < n = not(m > n)
A m < n = n > m
A m > n = not(m < n)

1 = succ(0) A 2 = succ(l)
end

Figure 2.1: Specification of Natural Numbers

2.3 The ASL and USL sublanguages

This chapter has defined a large specification language containing two smaller lan­

guages. This section defines these sublanguages.

• The first sublanguage is ASL: a specification language developed by Sannella, 

Tarlecki and Wirsing [29,30,34].

When it was first described [34], a distinguishing feature was the use of the 

behavioural abstraction operator beh av io u r _ w rt Although ASL is
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generally described in an “institution independent” manner (that is without 

reference to any particular logical framework), we shall only consider that of 

first order logic in this thesis.

That is, ASL specifications are all specifications in Spec which do not use 

reachable quantification.

• The second sublanguage is the language developed by Wirsing and Broy [2,42] 

which we call USL.

A notable feature of this language is its use of reachable quantification and 

its lack of the behavioural abstraction operator behaviour _ wrt (_, _) (chap­

ter 4 explores how “abstract” specifications can be written without such an 

operator.)

That is, USL specifications are all specifications in Spec which do not use 

behavioural abstraction.

In summary, the differences between the languages ASL and USL lies in how they 

avoid overspecification: ASL allows the behavioural abstraction operator but USL 

does not; and ASL does not allow reachable quantification but USL does.



Chapter 3

Behavioural Equivalence

Chapter 1 argues that it is important that any framework for formal program devel­

opment should allow any “legitimate” informal program development and focusses 

on the following closure property:

If a program module implements a specification then so should all be- 

haviourally equivalent program modules.

This chapter formally defines the notion of behavioural equivalence used in this 

thesis.

There are a variety of alternative definitions used in the literature and so it is impor­

tant to show how our definition relates to these definitions and to justify our choice 

over the alternatives. We show that our definition is a slight generalisation of that 

of Meseguer and Goguen [17] and slightly stronger than the notions of behavioural 

reduction and behavioural equivalence of Sannella and Tarlecki [27].

Section 3.3 explores the utility of our generalisation of Meseguer and Goguen’s defi­

nition — demonstrating that special cases correspond to isomorphism, isomorphism 

of subalgebras, etc. and investigating a few simple properties of behavioural equiv­

alence.

Section 3.4 discusses how behavioural equivalence may be applied to specifications 

and shows how the special cases discussed in the previous section give rise to a

38
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variety of common specification building operations.

In [37], Schoett identifies a set of axioms he calls “observational axioms” (written 

Axm(77V, OUT)1) and argues (without proof) that, for any observational axiom 

ax £ A x m ( I N ,  OUT),  and behaviourally equivalent algebras A  and B,

A  \= ax B \= ax

Section 3.5 defines observational axioms and verifies that their satisfaction is indeed 

invariant under our definition of behavioural equivalence.

This result is interesting for three reasons:

1 . Schoett’s argues that any notion of behavioural equivalence should satisfy this 

condition — verifying that it does so increases confidence tha t our definition 

is useful.

2. Sannella and Tarlecki have demonstrated that their notion of behavioural 

equivalence does not quite satisfy the above condition (they are forced to 

constrain the form of quantification allowed). We use this fact in demonstrat­

ing that our definition of behavioural equivalence is indeed stronger than that 

of Sannella and Tarlecki.

3. Finally, this result seems to point the way towards a subset of USL based 

only on observational axioms in which all specifications would naturally be 

behaviourally closed. Sadly, an “impossibility theorem” by Schoett [37] shows 

that the resulting language would be too weak to be useful (this result is 

discussed in section 3.6.) The weakness of such a language motivates the work 

in the next chapter where we examine the approach taken by Wirsing and 

Broy [2,42].

We begin with an informal justification for behavioural equivalence; similar justifi­

cations can be found in, for example, [17,27,34,35,37].)

1 Schoett’s notation is £ ( £ ,  V ) where V =  IN  =  OUT.
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The essence of behavioural equivalence is an attempt to model the effect of infor­

mation hiding in modular programming. Specifically, two algebras are regarded as 

behaviourally equivalent (with respect to a given “interface”) if their “visible parts” 

(as determined by the “interface”) are indistinguishable.

An example (due to Sannella and Tarlecki [27]) is of a module providing a set-like 

abstract data type Bunch and operations empty: —> Bunch, add: Nat x Bunch -» 

Bunch and E: Nat x Bunch —» Bool (as well as the types Bool and Nat and the usual 

operations on these types). There are several sensible implementations of such a 

module differing only in their implementation of the type Bunch and operations on 

that type. For example, one might have implementation A  which represents a Bunch 

by an unordered array of naturals; and implementation B which represents a Bunch 

by an ordered binary tree with no duplicates. Despite A  and B  having different 

representations, a program which uses implementation A  should be able to use 

implementation B (and vice-versa) without (other) modification. We say “should” 

because this will obviously only be true if the program treats Bunch as an abstract 

data type — that is, if it only constructs, modifies and accesses values of type Bunch 

through the available operations (empty, add and E) and if its correctness depends 

only on the values of expressions of the form

a E add(al , . . .  add(am, empty) . . .)

giving the appropriate answer. That is, A  may be replaced by B  because A  is 

behaviourally equivalent to B with respect to terms of sort Bool.

We shall now formally define the behavioural equivalence relation. It is convenient to 

begin with a special case directly inspired by the above example and then generalise.

3.1 Behavioural Equivalence —  Special Case

The uBunch example” above immediately suggests the following definition (due to 

Sannella and Tarlecki [29 example 6 .6 ]). Note that this is a special case of defini­

tion 3.5 below.
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D efin ition  3.1 (Behavioural equivalence — ground case)

Let E  be a signature with sorts T, W  a subset of W(E,  0) and let A  and B  be two 

i7-algebras.

The algebras A  and B are observationally equivalent with respect to W  (written 

A = w  B) if, for all sorts r  E T  and terms t l  , t2 E WT,

A  f= t l  = T t2 ^  B \= tl  = T t2

Let OBS be a subset of T. The algebras A  and B are be h a v io u ra l l y  e q u i v a l e n t  w i t h  

r e s p e c t  to  OBS (written A  = o bs  B) if

A  = w {s ,V)\obs &

(That is, if A  = w> & where W'  is the T-indexed set of all ground terms with sort 

t e OBS.)

End D efinition.

There are two alternative (equivalent) ways of defining this special case of be­

havioural equivalence. The first is (also) due to Sannella and Tarlecki while the 

second is based on a definition due to Meseguer and Goguen.

Sannella and Tarlecki’s alternative definition [27 section 2 ] has a more “axiomatic 

flavour” and is based on the use of axioms instead of terms. They define observa­

tional equivalence with respect to a set of axioms and suggest behavioural equiva­

lence with respect to a set of sorts as a specific instance.

D efinition 3.2 (Behavioural equivalence — alternative definition)

Let E  be a signature, OBS a subset of the sorts of E , Ax  a set of iLaxioms and A  

and B two E-algebras.

The algebras A  and B are observationally equivalent with respect to Ax  (written 

A  =Ax B) if, for all axioms ax £ Ax,

A  f= ax o  B \= ax
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The set E Q o bs  of ground ^-equations over sorts in OBS is defined by 

E Q o b s  — { l  t l , t 2 : r  £ OBS A t l , t2 £ W (E, 0)T: t l =T t2}

End Definition.

[We note that the property of observational axioms claimed by Schoett page 39 is 

almost identical to the definition of = ax- The difference is that the former is a 

property of the set Axm(/lV, OUT) while the latter is the definition of = ax•]

It is trivial to show that = o b s  is equivalent to = e q 0bs-

Meseguer and Goguen’s alternative definition of behavioural equivalence [17 sec­

tion 5] uses homomorphisms giving it a more “model-theoretic flavour.” An appro­

priate special case of their definition is the following (we delay stating the precise 

relationship of this special case to their actual definition until after the general 

definition).

D efinition 3.3 (Behavioural equivalence — alternative definition)

Let E  be a signature, OBS a subset of the sorts of E  and A  and B  two LLalgebras.

If h: A  —» B is a i7-homomorphism such that, for each sort r  £ OBS , hT is injective, 

we say that A is a (9j9£-homomorphism and write h: A  -* B.
OBS

The relation —» : Alg(i7) Alg(i7) is defined for i7-algebras A  and B by
OBS

A  —»• B iff there is a OBS'-homomorphism h: A  —> B
OBS OBS

The relation A ig ( r )  •£> A lg ^ )  is defined to be the least equivalence contain­

ing ^  . If A  B we say that A  and B are OBS-behaviourally equivalent.

End Definition.

For the uBunch example” given above, one could define a homomorphism h such 

that hfiUnch maps an array with elements a l , . . .  am to an ordered binary tree with
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elements a l , . . .  am and hMat and HbooI are identity functions. Since hsooi is injective, 

it follows that A  and B are {Bool}-behaviourally equivalent.

Using lemma 2.12  it is straightforward to show that if A  ^  B  then A  = o b s  I f  

follows from properties of equivalences that if A  B , then A  = o b s  B. (We omit 

details of the proof since it is a special case of a similar result (lemma 3.6) for the 

more general definition.)

Using the injectivity of the inclusions i x  0, A) A  and t#: 7£(i7, 0, £) *->• B 

it is straightforward to show that if A  = o b s  & then A  <— > B.
OBS

3.2 Behavioural Equivalence —  General Case

Under most circumstances, the above definitions would be perfectly adequate. How­

ever, there are some algebras which are behaviourally equivalent to the two “Bunch 

algebras” above which we might want to exclude. For example, consider the algebra 

C which is identical to A  except that CMat is the set of integers and, for any negative 

integer n, and bunch b

add(n, b) =  b 

n G b =  False

Under the above definitions, the algebras A, B and C are behaviourally equivalent 

with respect to the sort Bool since the additional elements in C are unreachable 

and so cannot be observed using ground equations. However, whilst A  and B are 

obviously quite similar, C behaves a bit differently. More precisely, while A  and B 

both satisfy the axiom

Vn: Nat , b: Bunch, n £ add(n, b) = True

the algebra C does not (if n is negative).

Such considerations suggest that we might sometimes want to use a stronger notion 

of behavioural equivalence which constrains not just the “output” sort of terms we
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consider but the “input” sorts too. That is, we might want to consider behavioural 

equivalence with respect to a set IN  of “input” sorts and a set OUT  of “output” 

sorts.

The definition of is the simplest to generalise.

D efinition 3.4 ( ^  and
ko u t  o u t '

Let 27 be a signature, IN  and OUT  subsets of the sorts in 27 and A  and B two 

27-algebras.

If h: A  —> B  is a 27-homomorphism such that h\jM is surjective and h\our  is injective, 

then h is said to be an (IN, OC/T)-homomorphism (written h :A  B).

The preorder ^  : Alg(27) -H- Alg(27) is defined for 27-algebras A  and B by 

A  ^  B iff there exists h: A  ^  B
OUT OUT

The equivalence Alg(27) «-»• Alg(27) is the smallest equivalence containing 

If A  A  B, we say that A  and B are (IN, OUT)-behaviourally equivalent.

End Definition.

This is a straightforward generalisation of the definition of behavioural equivalence 

used by Meseguer and Goguen [17]. Meseguer and Goguen discuss U-behavioural 

equivalence which is a special case of (IN, Of/T)-behavioural equivalence with IN = 

V and OUT  =  V. Their definition uses what they call U-homomorphisms which 

are homomorphisms that are bijective on all sorts in V  — again, this is just a special 

case of our (IN, OI/T)-homomorphisms with IN = V  and OUT  =  V.

It is, perhaps, worth pointing out that this is not just generalisation for the sake of it. 

Lemma 3.11 below shows that, for the special case that OUT = Tp(27), two algebras 

are (IN,  Of/Tj-behaviourally equivalent iff their (27,/A)-reachable subalgebras are 

isomorphic. That is,

A  A  B iff K (E ,  IN, A)  =  7l (E ,  IN, B)
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and so the relation with IN  7  ̂ O U T  is both meaningful and, in appropriate 

circumstances, useful. (See also section 3.4.)

There is an obvious generalisation of the definition of = o b s  and = E q 0 B S . Namely

For all sorts r  £ O U T  and terms t l , t 2  £  W ( E , X ) T (with all free 

variables in t l  and t2 being of a sort in IN )  and all valuations v £ 

Val(A, t l  = T t2 ),

A  \=v t l  = T t2 o  B  \=v t l  = T t2

However, such a definition would be well defined only if A \ w  = B\jE. Sannella 

and Tarlecki [27 section 3] avoid this requirement with the following definition. 

(Discussion of other inappropriate generalisations may be found in [27 section 3].)

D efinition  3.5 (observational and behavioural equivalence)

Let 27 be a signature with sorts T and 0 a set of 27-formulae,

For any two 27-algebras A  and B , A  is “observationally reducible to B  with respect

to </>” (written A  <* B) if, for any valuation va £ Val(w4), there is a valuation 

vb £ Val(#) with dom(va) = dom(vb) such that, for every formula (p £ (j)

A  |= va B \=vb <p

if va £ Val(A, (p).

For any two 27-algebras A  and B , A  is “observationally equivalent to B with respect

to (/>n (written A  =$ B) if A  <«/, B  and B <$ A.

Let I N  and O U T  be subsets of T. The set E Q (IN ,  O U T)  consists of all equations 

t l  —T t2  where t l  , t2  £ W ( E ,  X ) T and all variables in t l  and t2  are of sorts in IN .

End D efinition.

It is easy to show that is at least as strong as = e q {i n , o u t ) •
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L em m a  3 .6  Q = e q (i n ,o u t ))

Let E  be a signature, IN  and OUT  be subsets of the sorts in E , A  and B  two 

i7-algebras and h : A - * B a  Z'-homomorphism.

If h'- A  B , then A  = e q (i n ,o u t ) B.

P ro o f.

For all sorts r  G OUT  and terms t l  ,t% £ (with all free variables in t l

and t2 being of a sort in IN)  and all valuations v G Val(*4, t l  = T t2),

A  K  t l  =T t2
— { definition of |= t l  = t2 }
t l A (v) = t2A{v)
= { injectivity of hT }
h ( t lA (v)) = h(t2A (v))
= { lemma 2.12 }
t l i s(h  • v ) =  t2s { h  • v )
=  { definition of (= t l  = t2 }
B \=h-v t l  =T t2 
□

Hence, A  < e q (i n ,o u t ) B.

Since h is surjective on all sorts in I N , it follows that there is at least one injective 

IN-mdexed function g \ B |/# —>• A \ j n  such that g • h\w =  id.

Then, for each (p G EQ(IN,  OUT)  and valuation va G Val(^l, y>),

B \=h-va P
= { above }
A  \=va P
= { g • h = id }
A  I=g-h"va P

Since h is surjective on I N , we can let vb =  h • va. It follows that, for each 

p  G EQ(IN,  OUT)  and valuation vb G V a l(B, v)

B l=w6 p

A  |= g . vb P

and so B < e q {i n ,o u t ) A. and hence, A  = e q (i n ,o u t ) B. □

E n d  L em m a.
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It is considerably less obvious that = e q (i n ,o u t ) is weaker than We delay the

proof until later in this chapter (corollary 3.20).

3.3 Properties of Behavioural Equivalence

This section explores the extra generality of our definition: demonstrating that spe­

cial cases correspond to isomorphism, isomorphism of subalgebras, etc. developing 

an alternative characterisation of
OUT

An interesting special case of concerns isomorphisms.

L em m a 3.7 (behavioural equivalence of isomorphic algebras)

Let E  be a signature with sorts T  and A  and B  two T-algebras.

Then A  A -  B iff A  ^  B.
T

P ro o f. This follows from the fact that (T, T)-homomorphisms are bijective homo- 

morphisms and hence isomorphisms; and that isomorphisms are bijective homomor- 

phisms and hence (T, T)-homomorphisms. □

E n d  Lem m a.

*

The next two lemmas demonstrate that any algebra A  is behaviourally equivalent

to its reachable subalgebra IZ (E ,IN ,A)  and to any quotient A/=  if =  is what we

call a (E, OUT)-congruence.

L em m a 3.8 (behavioural equivalence of reachable subalgebras)

Let E  be a signature, IN  and OUT  subsets of the sorts in E  and A  a i7-algebra. 

Then,

n ( E J N , A )  A
v ' OUT
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P roo f. The homomorphism from 7Z(E, IN, A) to A  defined in lemma 2.14 is injec­

tive on all sorts and surjective on all sorts in IN.  Hence, IZ (E ,IN ,A )  A  and,
v '  o u t

so, by the definition of H(E,  IN, A) A.  □
o u t  v '  OUT

E n d  L em m a.

D efin ition  3.9 ((E,  Ot/T)-congruence)

Let E  be a signature, OUT a subset of the sorts in E  and A  a i7-algebra.

We say that a ^-congruence =  over A  is a (E, OUT)-congruence if, for all sorts

r  G OUT  and values a l ,a2  G A T,

al ~ T a2 => al = a2

E n d  D efin ition .

L em m a 3.10 (behavioural equivalence of quotient algebras)

Let E  be a signature, IN  and OUT subsets of the sorts in E, A  a i7-algebra.

If =  is a (E , OUT )-congruence over A,  then

A ^ A / =
OUT ' ~

P roof. The homomorphism [_]= defined in lemma 2.9 is surjective on all sorts and 

injective on all sorts in OUT. Hence, A  ^  A /  = and, so, by the definition of
J ’ OUT ' j  O U T ’

A  A /  =. □
OUT '

E n d  L em m a.

The following lemma shows the relationship between behavioural equivalence and 

reachability. (It is a generalisation of [27 fact 15].)

(Note here that IN  and OUT will generally be different.)
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L em m a 3.11 (behavioural equivalence and reachability)

Let E  be a signature with sort T, IN  a subset T  and A  and B two ^-algebras. 

Then,

i A s  #  n(s, iN,A)^n(s, iN,B)

P ro o f. We prove the two directions separately — the simplest is the left-to-right 

direction.

• R

1 l ( E , I N , A ) ^ n ( E , I N ,B )
= { lemma 3.7 }
1Z{E, IN, A) 1Z(E, IN, B)

=» { A c A }

n{E,  IN, A) A  K{E, IN, B)
{ lemma 3.8 }

L => R

Let the relation Alg(i7) -H- Alg(Z') be defined by

Al  ~  A2 = K (E ,  IN,  A 1 ) ^ K ( £ ,  IN,  A2)

Suppose that there is an (IN,  Ot/T)-homomorphism h: A l  A  AS .  Then, 

72.(27, IN,  h): %(E,  IN,  A l ) A  72(27, IN,  A2)

and so, by lemma 3.7, 7Z(E, IN,  A l ) =  H(E,  IN,  A2) .  That is,

A  C ~
OUT ~

Let us write R* for the least equivalence containing a binary relation R. The 

result follows by straightforward calculation:
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true
=  { above }
EL r—t

OUT'
{  set theory }

( A  )* c  h *
OUT

=  {  definition of A A  and ~  is an equivalence }
L OUT J

A A c ~
OUT
□

So, if A  B, then A  B. Hence result.
OUT

End Lemma.

We end this section with an alternative characterisation of A A .
OUT

Theorem  3.12 (.4 A A  B H ( E , I N , A ) / = a ^  72(27, IN ,B) / = b)

Let A  and B  be i7-algebras.

There exist (E, OUT) -congruences =A over IZ(E, IN,  A)  and =B over IZ(E, IN,  B) 

such that

IZ(E, IN,  A ) / = a  = IZ(E, IN,  B) / = b 

if and only if

A ^ B
OUT

P roof

Let the relation A l g ( r )  -H- A lg fT 1) be defined by A  ~  B iff there exist (E ,  OUT)- 

congruences =A, =B such that

I l { E ,  IN ,  A)/=a “  U {E , IN ,  B)/=b
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By lemma 2.15 we have that, if h:A  ^  B,  then
J  OUT

K{E,  IN,  A ) / = a  “  IZ(E, IN,  B)

where = A : A \ t  ++ A \ t  is the ( E ,  OUT)-congruence defined for each sort r  G T  and 

values al ,a2  G A r by

al =A a2 =  hr(al) = hT(a2)

Let = b : B \ t  «->■ B \ t  be equality. It is straightforward to show that

IZ{E, IN,  B) “  U(E,  IN, B)/=b

and so

A  —i  B => A ~  B
OUT

Let us write R* for the least equivalence containing a binary relation R. The result 

follows by straightforward calculation:

true
----- { above }

I N—1 C ~
OUT ~
=> { set theory }
( ’4  )» c  (~)*

OUT

=  { definition of and ~  is an equivalence j
OUT J

I N  _<— y C ~
OUT ~~

So, if A  B, then A ~ B .
OUT

To see that the converse is true, observe that

K ( E , I N , A ) / = a  * * K ( E , I N , B ) I = b  
= { lemma 3.7 }
K ( E , I N , A ) / = a  ^ n { Z , I N , B ) / = B  

=> { lemma 3.10 twice }
n z , m , A ) £ + K ( z , m , B )
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=> { lemma 3.8 twice }
A i nA  <— > B

OUT
□

Hence result.

E n d  T heorem .

3.4 Behavioural Equivalence and Specifications

This section uses the definitions and results of the previous chapter to define the 

notion of behavioural closure (verifying that it matches the discussion in chapter 1 ) 

and relates the behavioural abstraction operator to various specification building 

operations discussed in the literature.

D efin ition  3.13 (behavioural semantics, equivalence and closure)

Let E  be a signature and IN  and OUT subsets of the sorts of E.

The (77V, OUT)-behavioural semantics of a E-specification SP  is the set 

M o d JoUT{SP) of 77-algebras defined by

M od oUT(SP) = C l ^ ( M o d  (SP))
OUT

Two 27-specifications SP1 , SP2 are ( IN , OUT)-behaviourally equivalent (written 

SPl SP2)  if
OUT

M od o UT{SPl) = M o A ]gUT{SPl)

A ^-specification SP is (77V, OUT)-behaviourally closed if 

M od (SP) = M od  oUT(SP)

E n d  D efin ition .
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In chapter 1 we informally characterised behavioural closure as follows:

If a program module implements a specification then so should all be­

haviourally equivalent program modules.

“Translating” this into the usual terminology (i.e. that used throughout this report), 

that is

If a specification S P  is behaviourally closed then whenever a specification 

SP1  implements SP ,  all behaviourally equivalent specifications SP 2  also 

implement SP.

The following lemma confirms that (whichever equivalence we choose) this statement 

is true.

L em m a 3.14 (SP1 =  SP2  => (SP  SP1) (SP  SP 2))

Let 27 be a signature, =: Alg(27) -H- Alg(27) an equivalence and S P  a 27- 

specification.

If S P  is closed with respect to =  then for any 27-specifications SP1  and SP 2 ,  such 

that SP1  =  S P 2 ,

(SP  SP1) (SP  -w SP2)

P ro o f

The proof is by straightforward calculation:

(SP ~>SP1)& (SP ^  SP2)
— { definition of
(Mod(SP) 2  M od(SP1)) (Mod(SP) D M od (SP2))
=  { closure of SP }
(Cl=(Mod(£P)) D M od(SP1)) <s> (Cl=(Mod(SP)) D Mod(SP2))

{ Cl=(A) D B &  C1=(A) D C l=(B) }
(Cl=(Mod(SP)) D Cl=(Mod(SPi)) (Cl=(Mod(SP)) 2  Cl=(Mod(SPjg))
4= { Liebniz }
CL=(Mod(SP7)) = Cl=(Mod(5PI?))
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=  { definition of =  for specifications }
SP1 = SP2 
□

End Lemma.

In the previous section, we saw that behavioural equivalence is a special case of a 

variety of standard equivalences used in the literature. It is therefore possible to 

use the behavioural abstraction operator behaviour _ wrt (_, _) to define several 

standard closure operations. 2 For example:

• In [30], Sannella and Tarlecki define the closure operator isoclose by

M od(isoclose SP) =  C l~(M od (SP))

But lemma 3.7 shows that, for a signature 27 with sorts T, Therefore

isoclose is just a special case of behaviour _ wrt (_, _).

isoclose SP =  behaviour SP wrt (T, T)

where T  = T p(S ig  (SP))

•  In [30], Sannella and Tarlecki define the closure operator junk by

M od(junk IN  on SP) = C U (M od{SP))

where

A  ~  B = K (E ,  IN, A) = K (E ,  IN, B)

But lemma 3.11 shows that, for a signature E  with sorts T, Therefore

junk is just a special case of behaviour _ wrt (_, _).

junk IN  on SP = behaviour SP wrt (I N , T)

where T = T p(S ig  (SP))

2 These operations are not used in the sequel — they are included to demonstrate that the 
generality provided in behavioural abstraction is a useful operation.
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• In [30] Sannella and Tarlecki define the operator restrict _ to  _ by

M od(restrict SP to  IN)  =  {A: A  € M od(SP):U(Sig (SP),  I N , .4)}

This operator removes the junk from each model of SP.

A similar operation can be defined using the junk _ on _ operator.

restrict SP to  IN = reachable (junk IN  on SP) on IN

The use of the junk _ on _ operator adds models with differ only with respect 

to non-junk values and, in particular, adds reachable models; the use of the 

reachable operator removes the unreachable models leaving the reachable 

subalgebras of SP.

Our version of the operation differs slightly in that, even if SP  is not closed 

under isomorphism, the result (under our definition) will be closed under iso­

morphism whereas it may not be with the original definition.

3.5 Observational Axioms

So far we have considered behavioural equivalence from a very “model-theoretic” 

viewpoint — defining the relation in terms of homomorphisms. This is useful because 

it is clear how this style of definition can be used to derive a notion of behavioural 

equivalence for program modules. (See Hoare [13] for a demonstration).

This section examines behavioural equivalence from a more “axiomatic” view­

point: it identifies a set Axm(77V, OUT) of axioms such that, for any axiom 

ax £ A x m (IN, OUT).

A \ =  ax B f= ax

if A  B. That is, A xm (/A , OUT) is a set of axioms whose satisfaction is 

invariant under behavioural equivalence.
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Schoett considers almost exactly this question in the introduction to [37]. (The main 

differences are that, like Meseguer and Goguen, Schoett considers the special case 

IN = OUT  and that Schoett does not prove that he achieves his goal.)

Schoett argues that, in an “observational specification” (that is a behaviourally 

closed specification) one should disallow equations between terms of unobservable 

sorts since such equations “demand equality of representation values that is not rel­

evant to (nor even observable by) a user” [37 p. 601]. He also argues that one should 

use reachable quantification instead of (plain) quantification since unreachable val­

ues “cannot be generated with the user operations, and hence [their] existence and 

[their] properties are not relevant to the users” [37 p. 602].

Following this lead, we define the set Axm(/iV, OUT ) of “observational axioms” 

to be the set of all axioms using only equations over sorts in OUT  and reachable 

quantification with respect to the sorts IN.  That is,

D efinition 3.15 (observational formulae and axioms)

Let E  be a signature, let IN  and OUT  be subsets of the sort symbols in E.

The set WFF(IN,  OUT)  of well-formed (I N , OPT)-observational T-formulae is the 

least subset of WFF(E)  satisfying

true G WFF(IN, OUT)

c-+» II C-
K G WFF(IN, OUT)

G WFF(IN, OUT)
P A Q G WFF(IN, OUT)
VflauT. P G WFF(IN, OUT)
\/x: t . P G WFF(IN, OUT)

if r e  OUT and t l , t2  e W{E , X ) T 
if P G WFF(IN, OUT)
if P G WFF(IN, OUT) and Q G WFF{IN, OUT) 
if P G WFF{IN, OUT) and V  C IN 
if P G WFF{IN, OUT) and r  G IN

We write Axm(77V, OUT)  to denote the set of all T-axioms in WFF(IN,  OUT).  

End Definition.

Theorem  3.16 (*^* Q = A x m {i n , o u t ))

Let E  be a signature and IN  and OUT  subsets of the sorts of E.



3.5. Observational Axioms 57

If A  and B  are E-algebras and ax E A xm (IN, OUT),  then 

A  <IN > B =>■ A  \= ax 4$ B \= ax
OUT  1 1

P roof

We begin by showing that if h : A  B  then, for each i7-formula p  G

WFF(IN,  OUT)  and valuation v G Val(A,p),

A  p  B  [—/i'u p

The proof is by induction over the structure of p.

B ase case: (p = true)

For any valuation v G V al(A,  p ) .

A  \=v true
= { definition of (= }
true
= { definition of |= }
B\=h-v t ^ e  
□

B ase case: (p = tl  =T t2 a n d  r  G OUT)

This follows immediately from lemma 3.6.

In d u c tiv e  step : (p = ->P)

Suppose that, for all v G Val(A, P), A  \=v P <=> B \=h-v P • Then,

A  f=„ -iP
=  { definition of f= ->P }
~>A f=„ P
— { inductive assumption }
->B 1=h-v P
□

In d u c tiv e  step : (p = P  A Q)

Suppose that, for all v G Val(A, P  A Q), A  \=v P B \=h-v P  and A  

Q B \=f-v Q . Then,
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A  |=„ P A Q
=  { definition of (= P A Q }
A  [=„ P A A  (=„ Q 
= { inductive assumption }
B \=h-v P AB  \=h.v Q 
= { definition of |= P A Q }
B\=h-vPAQ
□

Inductive step: (Vrrrr. P  and r E IN)

Suppose that, for all v G Val(*4, P), A  \=v P B \=h-v P • Then,

A  (=w V:r: r. P 
=  { definition of |= V }
(Va. a G A-t'A ^tiu{i:=o} P)
= { inductive assumption }
(Va. a G A t - B ^^^©{x—a}) P)
— { • distributes over ® }
(Va. a G A t .B |==(/i-t>)®{x:=/i(o)}) P)
= { surjectivity of h\IN }
(V6: b G Bt :B  (=(h.w)®{*:=fc}) P)
= { definition of (= V }
B \=h-v Vx:r. P

In d u c tiv e  step : (Vflanr. P  and T; C Z/V)

Suppose that, for all v G Val(A, P), A  \=v P B \=h-v P • Then,

A Vf!a:: r. P 
= { definition of \= V }
(Va : a G Ar A 7Z{Zr, T ' , a) : A [=u©{x:=a} P)
= { inductive assumption }
(Va : a G A  A P -(P ',  T', a) : P  h / l-(v©{x:=a}) P)
= { • distributes over ® }
(Va : a G A  A P .(T ',  T', a) : P  \=(h-v)@{x:=h(a)} P)
= { surjectivity of h\IN }
(V6 : b G Bt A n{Z',  T ,  b) : B h ^ )© { -= »  P)
= { definition of (= V }
P K*t; Vt'x : t - P 
□

Hence, by the principle of structural induction, we conclude that, for any formula 

p  G WFF(IN, OUT),  and valuation v G Val(A, p)
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and hence, for any axiom ax G A xm (IN, OUT),

A  \= ax O  B \= ax

To see that the same holds when A  B, let = ax be defined as in definition 3.2
OUT

and write R* for the least equivalence containing a binary relation R. The result 

follows by straightforward calculation:

true
— { above }
IN r~ _

OUT ~  =fo,C>
=> { set theory }

( ™ )* C (=w )*OUT \

=  { definition of and ={ai} is an equivalence }
IN —

OUT ~  ={a2:}
□

Hence, for any T'-algebras A  and B and any observational axioms ax G 

A xm  (IN, OUT),

A  <IN-> B =r- A  \= ax B \= ax
OUT  1 1

End Theorem.

An immediate corollary is that a specification satisfies exactly the same set of “ob­

servations” as does its behavioural closure.

Corollary 3.17 (SP \= ax behaviour SP wrt (IN, OUT) |= ax)

Let 27 be a signature, IN  and OUT  subsets of the sorts of 27 and SP a 27- 

specification.

For any axiom ax G A xm  (IN, OUT),

SP  |= ax iff behaviour SP wrt (IN, OUT) f= ax

P roof
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behaviour SP w rt (IN , OUT) \= ax 
= { definition [= for specifications }
(VA: A: behaviour SP w rt (IN, OUT): A  |= ax)
= { definition A: behaviour SP w rt (IN, OUT), set theory }
(VA A : A  SP A A - A  A : A  [= ax)

OUT 1
= { theorem 3.16 }
(VA, A':A:SP  A A A  A : A |= ax)v QUT I /
= { set theory }
(VA:A:SP:A\= ax)
= { definition of \= for specifications }
SP \= ax 
□

End Corollary.

An interesting corollary to theorem 3.16 is that is stronger than = eq(in,out)• 

We repeat two results from [27] before stating and proving the corollary.

The first result states that the satisfaction of a set Cl(4>) of axioms is invariant under 

— <£•

Lemma 3.18 C =ci(<f>) ( [27 Fact 18].))

Let E  be a signature, and 0 a set of Z'-formulae.

Then, for any two i7-algebras A  and B, and axiom ax 6  Cl(4>),

A  =(f) B  => A  \= ax ^  B \= ax

where Cl(4>) is defined to be the closure of 0  under negation, conjunction, equiva­

lence and uniform quantification, that is, (p £ Cl((f)) implies V x s : t s . (p £ Cl((f>) and 

3xs: t s . £ Cl((/)) where xs = vars (<£>).

End Lemma.

Note that, because of the restriction to uniform quantification, Cl(EQ(IN, OUT)) 

is a proper subset of A xm  (IN, OUT). In particular, Cl(EQ(IN, OUT)) does not 

contain any formulae of the form

Va;: r. 3 y :  r. <p
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The second result is that = eq(in,out) 2  =Axm(iN,ouT)- Sannella and Tarlecki 

prove this with the aid of the following counterexample.

C o u n te rex am p le  3.19 (= eq(in,out) 2  =Axm(in,out))

Let E  =  sign Rat, Bool :type , <: Rat x Rat —¥ Bool ,True > Bool end. Let A  

and B  be algebras with Rat being, respectively, the open and closed interval 0 . . .  1 
of rational numbers. That is,

A  =  ( Bool = {0 ,1 }
True =  1
Rat = {r: 0 < r < 1: r} 
rl < r2 =  rl  < r2

)

and B =  ( Bool = { 0 ,1 }
True =  1
Rat = {r: 0 < r < 1: r} 
r l  < r2 = r l  < r2

To see that A  <EQ({Ra t } , {Boo i} )  B, consider any valuation va £ Val(A) and let 

vb =  va and observe that

A  |=Wa (rl < r2) =  True iff B  |=vb (rl < r2) = True

To see that B <EQ({Ra t} , {Boo i} )  A,  consider any valuation vb £ V al(#) and let 

v a = f  • vb where f ( r )  =  Again, observe that

A  |=ua (rl < r2) = True iff B \=vb (rl < r2) = True

Thus, A  =EQ({Ra t } , {Boo l} )  B.

However, it is easy to show that

A  ^ Ax.m({Rat} , {Bool}) B

Consider the observational axiom Va;: Rat. By: Rat. (y < x) = True which asserts 

that there is no smallest Rat. It is easy to show that

A  |= Mx: Rat. By: Rat. (y < x) =  True



Behavioural Equivalence 62

(consider y = x -r- 2) but that

B  Va;: Rat . 3 y : Rat. (y < x) =  True 

(consider x = 0).

H e n c e ,  *4. = i?Q ({.R a i},{i?o 0Z}) ^  *4  =z Axm({.Ra£},{.BooZ})

End Counterexam ple.

An immediate corollary is that the relation is strictly stronger than

= E Q ( I N ,O U T ) -

Corollary 3.20 ( A  C = eq(in,out))

Let 27 be a signature, IN  and OUT subsets of the sorts of 27 and A  and B  two 

27-algebras.

Then, by lemma 3.6,

A  B => A  =E Q( JN ,O UT )  B 

but, by counterexample 3.19,

A  = E Q ( I N , O U T ) B A  A  B.

End Corollary.

The above inequality presents us with a dilemma. If the two general cases of be­

havioural equivalence (that is, and = eq(in,out)) were equivalent, we could be

confident that the two definitions were appropriate generalisations; since the defini­

tions are not equivalent, at most one definition is appropriate (or, at least, they are 

appropriate for different tasks).

For our purposes, our generalisation of Meseguer and Goguen’s behavioural equiv­

alence (that is, is appropriate — in chapter 4 we use to give a precise

semantics to Wirsing and Broy’s ultraloose specification style.



3.5. Observational Axioms 63

We also find Sannella and Tarlecki’s restriction to uniform quantification in 

lemma 3.18 rather “untidy” in comparision to theorem 3.16.

However, Sannella and Tarlecki’s definition depends only on the notions of axiom, 

model and satisfaction provided by a logical framework and so is easily generalised 

whereas our definition depends on a rather delicate choice of relationship between 

models and so is considerably harder to generalise. This is a significant advantage 

of their definition — if such generality is required.

Before leaving the topic of observational axioms, we note the following open question:

It is straightforward to show that

< I N \  -  --  = A x m  (IN,OUT)

if IN = 0. It is interesting to ask whether the same holds if IN  is 

non-empty.

Such a result is important for two reasons:

1. Showing that the two quite different styles of definition are equivalent would 

improve confidence that our notion of behavioural equivalence is appropriate.

2. It would allow us to prove results of the form

behaviour SP wrt (IN, OUT) SP'

by showing that, for all axioms ax £ A xm  (IN, OUT),

SP |= ax SP' \= ax

Hennicker [11,12] describes a proof technique he calls “context induction” for 

showing results of this kind. (We shall not explore this in detail since it requires 

a rather unusual notion of behavioural equivalence where the set of observable 

values is defined axiomatically.)
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Lemma 3.16 shows that 

r  -= A x m  (IN,OUT)

We believe (but have not tried to prove) that the reverse only holds in the presence 

of at most countably many unreachable elements.

3.6 Schoett’s Impossibility Theorem

The introduction to this thesis suggests that it is methodologically important to 

write behaviourally closed specifications since this ensures that the following closure 

property holds.

If a program module implements a specification then so should all be­

haviourally equivalent program modules.

Since theorem 3.16 shows that any flat specification containing only observational 

axioms will be behaviourally closed it seems that we need only restrict ourselves to 

observational axioms to ensure that our specifications are behaviourally closed.

However, Schoett [36,37] has shown that observational axioms alone are too weak 

to be useful. This section outlines his result.

* *

Schoett considers “counter algebras” . That is, models of the specification Counter 

(figure 3.1).

Schoett shows that there is no finite set Ax  of observational axioms such tha t all 

algebras satisfying Ax  are behaviourally equivalent (with respect to Bool) to a model 

of Counter. (In the following it is sufficient to consider a single finite axiom since 

every finite set of observational axioms is equivalent to a single observational axiom, 

namely their conjunction.)
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Counter = enrich BoolBase
by sign Ctr: type 

zero: —»• Ctr 
inc, dec: Ctr —>• Ctr 
isZero: Ctr —> Bool 

axioms dec(zero) —ctr  zero
Vc: ctr. dec(inc(c)) = c t r  c
isZero(zero) =b00i True
Vc: ctr. isZero(inc(c)) =Booi False

end

Figure 3.1: Counter Specification

T h eo rem  3.21 (Schoett’s impossibility result [37 theorem 3.4])

For every algebra A: Counter and observational axiom ax € A xm  ({Bool}, {Bool}) 

such that A  |= ax, there is a Sig(Ccmn£er)-algebra B such that B f= ax but A  and 

B are not ({Bool}, {5oo/})-behaviourally equivalent.

In particular, there exists n > 0 such that for all terms c composed of zero, inc and 

dec,

B  |= isZero(decn(c)) =Booi False

(that is, B cannot count higher than n).

E n d  T heorem .

Schoett proves this theorem by showing how, for any algebra A: Counter and any 

number i , one can define an algebra A ^  differing in its interpretation of numbers 

above i. That is, such that,

( incUzero)A, if j  < i; and 
inc>(zero)A(i) = < .

I me (zero)a , it j  > i.

(Obviously, A  and A ^  are not ({Bool}, {5oo/})-behaviourally equivalent — con­

sider the axiom isZero(dect+1 (inct+2(zero))) =Booi True.)
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He then shows that, for any A: Counter and any finite observational axiom ax G 

A x m ({Bool}, {Bool}),

A  |= ax A {k{ax)) \= ax

where k{ax) is the maximum number of occurrences of the symbol dec in a term in 

ax.

For example, consider the algebra

A  = { Bool = {0,1}
Ctr = {0 ,1 ,2 , . . . }
True = 1 
False = 0 
zero = 0 
inc(x) = x + 1
dec(c) = if x > 0 then x — 1 else 0 
isZero(x) = if x > 0 then 0 else 1

and the axiom

ax =  V{zero'inc'decl c: (jfr' isZero(dec(c)) = False => isZero(c) = False 

In this case, k(ax) = 1 and A ^  is defined by

A {1)= ( Bool = {0,1}
Ctr = {0 ,1 ,2 , . . . }
True = 1 
False = 0 
zero = 0
inc(x) = if x > 1 then x else x + 1 
dec(c) = if x > 0 then x — 1 else 0 
isZero(x) = if x > 0 then 0 else 1

Obviously both A  and A ^  satisfy ax.
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An immediate corollary to theorem 3.21 is that the class of all algebras having the 

same behaviour as a counter cannot be specified by a finite set of observational 

axioms.

Corollary 3.22 (weakness of observational axioms)

There is no finite set Ax  =  { a x l , . . .  axm} C Axm ({5ool}, {Bool}) such that 

(S ig(Counter), Ax) = behaviour Counter wrt ({Bool}, {Bool})

P roof

Suppose that A  |= Ax => A  6  M o d j^ J j{Counter). Then, from the definition of 

M o d j^ J j  and corollary 3.17, we have that

A: Counter &  A  |= Ax

Since Counter is consistent, it follows that there is a model A  such that

A: Counter A A  f= Ax

But, by theorem 3.21,

j^(k(axlA. . .axm)) |_ ^

Since A ^  does not satisfy the observational axiom

isZero(decl+1 (inct+2(zero))) =Booi True

(where z =  k(axl  A . . .  axm)), A ^  cannot be a member of M.odIQUT(Counter). It 

follows that

(g ig (Counter), Ax)

^  / « / A . . . « ) ) :b ehav iou r Counter wrt {{Bool}, {Bool})

End Corollary.

Since no flat specification consisting of observational axioms can specify the set of 

counter-like algebras, we conclude that any language based on observational axioms 

alone will be too weak to be useful.
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3.7 Summary

This chapter defines the notion of behavioural equivalence used in this thesis and 

compares it with two significant alternative definitions — showing tha t our definition 

is a generalisation of that of Meseguer and Goguen and slightly stronger than that 

of Sannella and Tarlecki.

It also defines the notion of observational axiom and shows that satisfaction of 

observational axioms is invariant under behavioural equivalence but shows that, 

although a specification language which permits only observational axioms would 

result in behaviourally closed specifications, the language would be too weak to be 

useful.



Chapter 4

U ltraloose Specifications

In chapter 3 we presented a subset of Axm(i7) which has the property that any (flat) 

specification written using these axioms will be behaviourally closed. Sadly, Schoett 

has shown that an infinite number of these “observational axioms” are required to 

specify something as simple as a counter.

This chapter describes a slightly indirect way of writing specifications used by Wirs- 

ing and Broy [2,42] which we call “ultraloose style” (section 4.1) and characterises 

the semantic effect of this style in three previously unpublished theorems.

•  Theorem 4.5 shows that specifications written in the ultraloose style ( “ul­

traloose specifications”) are downward closed under ^  .
'  OUT

To our knowledge, this is the first attem pt to relate the (syntactic) ultraloose 

specification style to a semantic concept such as a behavioural ordering.

•  Theorem 4.7 shows that ultraloose specifications are closed under pro-
OUT

vided they contain no inequations.

This result is interesting because it provides specifiers with a precise method­

ology for developing behaviourally closed USL specifications.

•  Theorem 4.10 uses theorem 4.7 to demonstrate that any ultraloose specifica­

tion S P q {j T is semantically equivalent to the corresponding ASL specification

69
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behaviour SP wrt (IN, OUT) if SP contains no inequations or existential 

quantification.

As well as providing a precise characterisation of the semantic effect of adopt­

ing the ultraloose specification style, this result shows that, contrary to what 

Schoett’s “impossibility theorem” [37] (discussed in section 3.5) seems to sug­

gest it is possible to write useful behaviourally closed specifications in first- 

order logic — we explain why there is no conflict.

We consider theorem 4.10 to be the most important result in this thesis: it precisely 

characterises the semantic consequences of the ultraloose style; and it precisely de­

scribes the relationship between ASL and USL.

4.1 Defining Ultraloose Style

The “ultraloose style” of specification has two distinctive characteristics:

1 . The use of reachable quantification (yfN instead of V); and

2 . The use of a 27-congruence =  instead of equality.

[Later sections use these properties and lemmas 3.8 (which relates reachability to

^  ) and 3.10 (which relates congruences to ^  ) to relate this style to the relations 
o u t ' v OUT
IN , IN I—y and <— h

OUT OUT 1

Figure 4.1 gives a simple example of an “ultraloose specification” (that is a specifi­

cation written in the ultraloose style). It is identical to the specification in figure 1.3 

except that it is more explicit about the quantification and the specifications of Nat 

and Bool have been expanded.

For comparision, figure 4.2 contains a more usual specification of a stack. The main 

differences between the two specifications are:
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Stack' =
export StackSig from 
enrich Bool by 
spec sign Nat, Stack: type 

0: —̂ Nat 
succ: Nat —> Nat 
empty: —> Stack 
push: Nat x Stack -* Stack 
pop: Stack —> Stack 
top: Stack —>• Nat 
isEmpty: Stack —> Bool 
=: Stack x Stack —> Bool 

axioms Vj p̂̂ >p°P’Pus/i}s: Stack, x: Nat. top(push(x, s)) =Nat % 
^{^at^v'pop'push  ̂s: Stack, x: Nat. pop (push (x, s)) = s 
is Empty (empty) — True
\fU^PyV'P°P'push^s: Stack, x: Nat. isEmpty(push(x, s)) = False

\/m:Nat. succ(m) ^Nat 0
Vm,n: Nat. succ(m) =Nat succ(n) => m =Nat n
\/m:Nat. 3\°'sucĉ n: Nat. m =Nat n

Vs: Stack, s = s
V sl, s2: Stack, s i  = s2 s2 =  si
Msl ,s2,s3: Stack, s i  = s2 A s2 = s3 => si = s3

empty =  empty
V sl, s2: Stack, x: Nat. s i  = s2 => push(x, s i ) =  push(x, s2) 
V si, s2: Stack, si = s2 => pop(sl) =  pop(s2)
V s l , s2: Stack, s i  = s2 => top(sl) = top(s2)
Vsi  ,s2: Stack, s i  = s2 =>- isEmpty(sl) = isEmpty(s2)

end

Figure 4.1: An Ultraloose Stack Specification
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• The first four axioms in figure 4.1 (which specify operations on Stack)  are 

obtained from the first four axioms in figure 4.2 by replacing (plain) quan­

tification by reachable quantification and replacing equations t l  =  stack t2 by 

t l  = t2.

• The next three axioms in figure 4.1 (which specify the operations on Nat)  are 

identical to the last three axioms in figure 4.2.

• The next two axioms in figure 4.1 (which specify the sort Bool)  are the stan­

dard axioms specifying the booleans. (Since the specification language intro­

duced in chapter 2  does not provide a way of specifying new predicates, we 

model  predicates by functions with result type Bool  and we distinguish the 

atomic formulae true and false from the constant function symbols True and 

False.)

•  The remaining axioms in figure 4.1 specify that =Nat, = Booi and = stack together 

make up a congruence.

The remainder of this section defines how to transform a “normal specification” SP  

into an “ultraloose specification” SP IqUT. We begin with the axioms that specify 

the congruence =.

In the above example, (a characteristic function representing) a relation = T was 

specified only for the sorts r  which were not directly observable (i.e. for Stack).  To 

simplify the specification of = , it is convenient to define = T for all sorts r  in 27 and 

define a set Equali ty (OUT)  of axioms which specify that (= T) =  (=) if r  G O UT.

D efinition 4.1 (congruence axioms)

Let 27 be a signature with sorts T  and O U T  a subset of T.

The “OI/T-ultraloose signature” B o u t  is defined by

27o u t  =  27 U S ig (Bool) U { r :rG  T: (= T: t  x  t  —> Bool)}
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Stack =
spec sign Nat, Bool, Stack: type 

O'. —y Nat 
succ: Nat  -» Nat 
True, False: —>• Bool 
empty: —> S'iacA; 
push: Nat x S'tacfc —> Stack 
pop: Stack —> Stack 
top: Stack —¥ Nat 
isEmpty: Stack —> Bool 

axioms Vs: Stack, x: Nat. top(push(x, s)) =Nat x 
Vs: Stack, x: Nat. pop (push (x, s)) =stack s 
isEmpty (empty) = Booi True
Vs: Stack, x: Nat. isEmpty (push(x, s)) = b 00i False 

True ^  False
Va:: Bool, x — True V x = False

Vm:Nat.  succ(m) ^Nat 0
Vm,n: Nat. succ(m) =Nat succ(n) => m =Nat n
'i m : N a t . 3^0,sucĉ n: Nat. m =Nat n

end

Figure 4.2: A “Normal” Stack Specification
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The set of axioms EquivT that specify that (the relation with characteristic function) 

= T is an equivalence is defined by

EquivT = { V x : t .  = t ( x , x ) = B ooi True

\ /x,y:r .  =T(x,y) =Booi =r(y,x)

\ fx ,y ,z :r .  =T(x, y) =Booi True A }

=T{y,z) = B o o i True => = t { x , z ) = B ooi True

The set of axioms Subst(E) that specify that (the relation with characteristic func­

tion) =  is substitutive with respect to the operations in E  is defined by

Subst(E) = {/, rs, r: (/: rs —>• r) G O p(Z): Vzs, ys: rs.

=TS{xs,ys) =Booi True =» = r ( f ( x s ) J ( y s ) ) = Booi True}

The set of axioms Equality (OUT) that specify that (the relation with characteristic 

function) = T is the equality for each sort r  G OE/T is defined by

Equality(OUT) =  { r :  t  G OUT : (Vs, j/ : t . = T ( ^ 5 2/) = 5 oo/ True x =T y)}

Finally, the “OUT-congruence axioms” Cong(E)ouT which specify that (the T- 

indexed relation with characteristic function) =  is a (Z, OUT)-congruence is the 

set of E q u t ~axioms defined by

Cong(E)ouT — ((J t: t  G T: Equivr) U Subst(E) U Equality(OUT)

End Definition.

The remainder of the ultraloose transformation consists of a straightforward trans­

formation of Z-axioms (replacing V by VfN and =T by = T).

D efinition 4.2 (ultraloose axiom and specification transformation)

Let E  be a signature and IN  and OUT subsets of the sorts of E.
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For any formula ip G WFF(I7), the “/AT-ultraloose transformation of p ” (written 

p IN) is the Z'ot/T-formula inductively defined by

trueIN =  true

(tl  = T t2)m  = =T(t l ,  t2) =Booi True

(- ,P ) IN =  -^(PIN)

(P A Q)m  =  P 1N A Qm

(Vi: t .  P )m =  VfNx: r. P 7"

For any set yla; of 17-axioms, the “IN -ultraloose transformation of A x ” (written 

y4:r/Af) is defined by

iif | aa;; ax ^

Finally, for any flat ^-specification SP = (E, Ax),  the “(IN, OUT )-ultraloose trans­

formation of SP” (written SPqjjT) is the ^-specification defined by

S P o u t  == export E
from enrich Bool 

by sign EOUT 
axioms AxIN

Cong(E)our
end

End Definition.

For example, figure 4.3 shows the effect of the transformation on the specification 

in figure 4.2.1 We note that this differs slightly from the specification in figure 4.1 

which omits the congruence axioms for the sorts Nat , uses =Nat instead of =Nat 

and names only the operations empty, pop and push in the quantification. It is 

straightforward to show that the two specifications are, in fact, equivalent.

In the interests of readability, we often abbreviate such specifications as follows:

1 We omit the enrichment since Stack already contains the specification Bool.
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Stack ' =
export StackSig from 
spec sign

Nat, Bool, Stack: type
0: —̂ Nat
succ: —> A7z£
True, False: —> Bool 
empty: —>■ SlacA; 
pns/i: Aa£ x SlacA; —>• Stack 
pop: Stack —> Stack 
top: Stack —> Nat 
isEmpty: Stack —> Bool 
=Nat: Nat  x Nat —> Bool 
= stack'- Stack x Stack —>• Bool 

axioms
V ^ f 19s: Stack, x: Nat. = Nat (top(push(x,s)) ,x) = True 
V{Nat}t9s: Stack, x: Nat. = stack {pop {push {x, s)), s) =  True 
=Booi{isEmpty{empty),  True) =  True 

Naif19s: Stack, x: Nat. = {isEmpty(push(x,  5)), False) =  True

Nat. =Nat(succ(m), 0) ±  True 
9m,n:Nat.

=Nat{succ{m), succ(n)) = True => =Nat(m, n ) =  True 
V{Nat}%9m: Nat. 3l°'succ}n: Nat. = Nat{m,n) = True

True 7̂  False
V6: Bool, b =  True V b = False 

\/n:Nat. = Nat(n, n) = True
V n l, n2: Nat. = Nat( n l , n2 ) =  True <=$■ = Nat{n2, n l ) =  True 
Vnl ,n2 ,n3:Nat.  =Nat{n l , n2) =  True A

=Nat{n2, n3) = True => = Nat( n l , n 3 ) =  True

\fs: Stack. =stack{s,s) = True
V'si, s2: Stack. =stack{sl,s2) =  True <=> = stack{s2, s i ) =  True 
V s l , s2, s3: Stack. =stack{sl, s2) = True A

=stack{s2, s3) = True =>• = stack{sl, s3) = True

—Nat{0) 0) =  True
\/nl ,n2: Nat. = Nat{nl ,n2) = True = ^ at{succ{nl), succ{n2)) = True
=stack{empty ,  e m p t y ) =  True
Vnl ,n2: Nat, s i  ,s2: Stack. = s tacfc( s l , s2) =  True A

= Nat( n l , n 2 ) =  True  ^  =s t ack{pus h( nl ,  s i ) , p u s h { n 2 , s 2 ) )  =  True 
V s i , s2: Stack. = Stack{s l , s 2 )  =  True => = St a c k { p o p {s l ) , p o p { s 2 ) )  =  True 
V sl, s2: Stack. = Stack{s l , s2) =  True => = s t a c k { t o p { s l ), to p ( s 2 ) )  =  True 
V si, s2: Stack. =stack {s l  , s 2 ) =  True =$■

=Booi{isE m p t y ( s l ) ,  i s E m p t y { s 2 )) =  True 
V n l , n2: Na t .  = N a t { u l , n 2 ) =  True x —Nat y 

end

Figure 4.3: An Ultraloose Stack Specification
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• We abbreviate = T( t l , t 2 )  — True to t l  = T t2 and -■ (=T( t l , t 2 )  = True) to 

t l  t2.

•  If t  G OUT  we omit = T from the signature and write t l  = r t2 instead of 

t l  =T t2 in the axioms.

• We abbreviate \/fNx:r.  P  to Vrx:r.  P and add the line IN =  IN  to the 

signature.

The effect of these abbreviations is shown in figure 4.4.

We find it convenient to keep the axioms Cong{E)ouT explicit since they are re­

quired when reasoning about specifications. It would probably be more convenient 

to abbreviate them if one was more interested in creating or understanding specifi­

cations than in formal proofs.

We noted above that the function = T is not a relation but rather the characteristic 

function of a relation. The following two definitions make this more precise.

D efinition 4.3 (=(.4))

Let E  be a signature, IN  and OUT  subsets of the sorts of E, A  a i7-algebra and =  

a (E, OUT)-congruence over A.

The E q u t -algebra =  ( A )  is defined for each symbol s G E q u t  by

' A . , if 5 e I7 ;

{0 ,1} , if 5 =  Bool;

1, if 5 =  True;

0, if s =  False;

< —T if s —r •

where, for each r  G T, the function =T: A T x A t —> { 0 ,1 }  is defined by 

=T( a l , a2) =  al =T a2.

End Definition.
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StackU = export EStack from StackU'

StackU' = 
enrich Nat + Bool 
by sign Stack: type

empty: —>• Stack 
push: Nat x Stack -» Stack 
pop: Stack —> Stack 
top: Stack —> Nat 
isEmpty: Stack —> Bool 
=: Stack x Stack Bool 
IN = Nat

axioms Vrs: Stack, x: Nat. top(push(x, s)) = x  
Vrs: Stack, x: Nat. pop(push(x, 5)) = s 
isEmpty {empty) — True
Vrs: Stack, x: Nat. is Empty (push (x, s)) = False 

Vs: Stack. s = s
Vsl , s2: Stack, si = s2 <=$> s2 = si 
Vsi, s2, s3: Stack. s l = s 2 A

s2 = s3 => si = s3

empty = empty
Vsi, s2: Stack, x: Nat. si = s2 => push(x, si) = push(x, s2) 
Vsf, s£: Stack, si = s2 =$> pop(sl) = pop(s2)
Vsf, s2: Stack, si = s2 =>• top(sl) = top(s2)
Vsl , s2: Stack, si = s2 => isEmpty (si) = isEmpty(s2)

end

Figure 4.4: A Behaviourally Closed USL Stack 

D efinition 4.4 (=A)

Let E  be a signature with sorts T, IN  and OUT subsets of T  and A  a Zo ̂ -algebra. 

The ^-congruence =A is defined for each sort r  G T and values a l ,a 2  G A T by

al =T a2 =  A=a ( t l , t2) — Aiyue

End D efinition.
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K J U  1  T J r n

4.2 Closure of SPofrT under ^
UU1 OUT

The previous section defined a transformation from a “normal specification” SP  to 

an “ultraloose specification” SPq^ j, and hinted that, because of the use of reachable 

quantification and congruences in SPq[jT, there is a strong link with the relations
IN  j  IN—> and <— K

O U T  O U T

This section presents the first of three theorems which states this link more precisely. 

In particular, we show that the specification SPqjjT is downward closed under ■$ .

T h e o rem  4.5 (downward closure of SPqIjt)

Let E  be a signature, IN  and OUT subsets of the sorts of E, Ax  a set of .T-axioms 

and SP  the flat specification (U,Ax).

SPnfrT is downward closed under ^  .ul/j. 0UT

That is, if A  B and B: SPqijT then A: SPjfUT.

P ro o f

Let SP' be the specification

en rich  Bool 

by sign E 0 u t  

axiom s A x IN

Cong(E)ouT

end

By the semantics of e x p o rt E  from  _, for every model B of SPq{jT, there is an 

extension B'\ SP'.

Let B' be a model of SP' and let A  and B  be T'-algebras and h a T'-homomorphism 

such that

B = B'\S and h :A  ^  B1 O U T
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Let =  be the Z-congruence over A  is defined for a l ,a 2  G A r by

al =T a2 = = hT(al) =B hT(a2)

Since =B is a congruence, it is obvious that =(«4) satisfies the congruence axioms. 

It remains to show that =(*4) |= A x IN.

We shall show that, for each Z-formula ip and valuation v G Val(A, <pIN),

=(.4) (=„ ipIN B' (pIN

Since =(^4) and B' satisfy the same axioms (i.e. closed formulae) and B' satis­

fies all axioms in A x IN, it follows that =(A)  satisfies all axioms in A x IN and so 

=(*4)|r- SPqijT.

The proof is by induction over the structure of <p.

B ase case: (<p =  true)

For any valuation v G V al(=(.4), cp).

=(•4) trueIN
= { definition of axIN }
=(-4) l=v true
= { definition of |= }
true
= { definition of |= }
B' [=/».„ true
= { definition of axIN }
B' \=h-v trueIN 
□

B ase case: (tp = tl  = T t2)

For any valuation v G Val(=(*4), (p).

=(A) K  (tl  = T t£)IN 
= { definition of axIN }
=(A) \=v = T (t l , t2) = True 
= { definition of =(.4) }
B'=T(h(tl={A)(v)),h(t2=iA)(v))) = B'true 
= { lemma 2 . 1 2  }



4.2. Closure o f SP!fUT under ^  81
K J U  1  /O  t T>T

B’̂ ( t U w (h(v)),tSs{A)(h(v))) =  B '^ e 
= { definition of |= tl = t2 }
B' \=h.v =r(tl , t2)  = True 
= { definition of axIN }
B' H-* (tl = t2)IN 
□

Inductive step: ((p =  -iP)

Suppose that, for all v G Va\(=(A), P IN), =(.4) [=„ P IN &  B' \=h.v P IN. 

Then,

K  h P ) IN
= { definition of axIN }
=(*4) K  - ( P IN)
= { definition of |= -iP }
^ = (A )  K  p 1n
= { inductive assumption }

K -« p in
= { definition of f= ->P }
b ' K -«  - ( p in)
= { definition of axIN }
B' \=h-v ( - P ) IN 
□

Inductive step: (ip =  P A Q)

Suppose that, for all v G V al(= (4 ), (PA Q)IN), =(A)  [=„ P IN ^  B  [=&.,, P 1N 

and =(A)  K  QIN &  B \=f .v QIN. Then,

=(A)  K  ( P A Q ) in
= { definition of axIN }
=(A)  K  P IN A QIN 
= { definition of |= P A Q }
= ( A ) |=„ P IN A =(A)  (=„ QIN 
= { inductive assumption }
B K -«  P IN A B \= h.v QIN 
= { definition of |= P A Q }
B \=h.v P IN A QIN 
= { definition of axIN }
B K-t, ( P ^ Q ) IN

Inductive step: (<p — Vx : t . P)

Suppose that, for all v G V al(= (4 ), P IN), =  (.4) b=v P IN B \=h-v P IN• 

Then,
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=(A) K  (Vx:r. P )w 
= { definition of p JN }
={A) H  VfNx:r. P IN 
= { definition of |= VfN }
(Va: a E =(A)r A K(E, IN, a) : =(A) K®{«:=«} P IN)
= { inductive assumption }
(Va : a G =(A)T A F ( S , IN, a) : B K-(«©{x:=o}) P IN)
= { • distributes over © }
(Va : a G =(A)T A K (S ,IN ,  a) : B \=(h-v)®{x:=h(a)} P IN)
= { surjectivity of h\IN }
(Vb : b G =(B)r A 7 (̂27, /tf, 6) : B \={h.v)e{x:=by P IN)
= { definition of |= V }
B' \=h-v V % x : t . P in 
= { definition of ipIN }
B K -« (V®:r. P)1N

Hence, by the principle of structural induction, we conclude that, for any formula 

tp G WFF{IN, OUT),  and valuation v G Val(=(.4),y>™)

=(*4) \=V T™ <=> B' K -v  V™

Since =(*4) and B' satisfy the same axioms (i.e. closed formulae) and B' satis­

fies all axioms in A x IN, it follows that =(A)  satisfies all axioms in A x IN and so 

=  (•4) 127: SPqijT. Since =  (.4) Is =  A,  it follows that, if A  ^  B  and B: SPqIjT then
A. q p I N  

SI-  D r O UT-

E n d  T heorem .

Following the observation that the use of reachable quantification and congruences in 

ultraloose specifications suggests that there should be a link between the ultraloose 

style and the relation ^  , we have shown that SPIN OUT  is downward closed under
O U T

O U T

It is tempting to conjecture that

M o d (S P ^ T) =  Cl r_N (M o d (SP))
OUT

To see that this does not hold, consider the following pathological example:
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SP = spec r :type
axioms 3x :t . true
end

which has as models any i7-algebra A  with non-empty carrier A T (where 

E  =  Sig(S'P)). Applying the ultraloose transformation, we obtain the specification

SP§ =f spec r :type

axioms ‘Bq x : t . true

Since there are no terms in 1T(I7,0), we can easily show that for any Z^-algebra 

A! , A! t . true:

A'  \= Sg’x: r. true 
= { definition of 3 }
A'  |= -A/jfz: r. false 
= { definition of [= }
-i(Va: a E: A'T A 7Z(E, 0, a): false)
= { A't contains no (E, $)-reachable values }

true

false
a

Hence, SP§ is inconsistent and therefore cannot be the closure of the (consistent) 

specification SP.

This counterexample shows a significant difference between the ultraloose trans­

formation and behavioural abstraction. Namely, that in certain circumstances the 

ultraloose transformation can reduce the number of models of a specification whereas 

behavioural abstraction can only increase the number of models. Sections 4.3 and 4.4 

show that this can happen only if the specification uses inequations or existential 

quantification and identifies “safe” ways of using these constructs.
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4.3 Closure of SPnfrT under <— y
UU1 OUT

The previous section showed that SPjfirT is downward closed under ^  .uui  QUT

It is tempting to assume that SPq*ut will also be closed under the (weaker) relation 

However, this is not so: consider the following pathological example:

spec sign r  :type 
a, b > t 

axioms a ^  b
end

Under the ultraloose transformation, this is transformed into

gp<b 4iLf
export {r, a, b}
from spec sign Bool, r  :type

True, False > Bool 
a, b  ̂ t  

= T: r  x r  —» Bool 
axioms a b

True False
V6 : Bool, b = True V b = False
Vx: r. x =T x
Vx, y:r. x =T y & y =T x
Vx, y, z: r. x =T y A y =T z ^  x =T z
a =T a
b =T b

end

One model of SP§ is the algebra

■ 4 ^  < T =  { 0 , J }

a = 0 

b = 1

)
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This is (0 ,0)-behaviourally equivalent to the algebra B defined by

B d=M ( r  = {0}  

a = 0 

b = 0

)

(to see that A  B , consider the (0 ,0)-homomorphism hT(x) =  0).

Since B a = B&, it is easy to show that there is no reflexive relation =:Br -H- BT such

that B a =£ Bb and so B cannot be a model of SP$. Since A  B , we conclude
v 0

that SPl  is not closed under
W 0

Thus the (IN,  (2f/T)-ultraloose transformation of a specification SP which contains

inequations is not (IN, OUT)-behaviourally closed.

One complication in this statement is that is not clear what we mean when we say 

that an axiom “contains an inequation” . To see why this is vague, consider the 

following eight axioms:

-i\ f x \ T .  t l  = t2 3 x : t .  t l  /  t2

VTit. -it l  = t2 Vx :t . t l  ^  t2

~ N x :  t . t l  ^  t2 A tS /  t4 3a;: r .  t l  =  t2 V t3 =  t4

- i \ / x : r .  t l  7̂  t2 3 x : t .  t l  =  t2

Considering the first column, the first two axioms don’t lexically contain inequations 

but the last two axioms do. However, if we consider the equivalent axioms in the 

second column, the first two axioms do lexically contain inequations but the last 

two axioms don’t.

We resolve this ambiguity by “pushing negations inwards” : transforming axioms 

into “negation normal form” (see, for example, [22 section 4.4.2]). This makes use 

of V and 3 explicit allowing us to apply a simple lexical test. (The axioms in the 

second column are in negation normal form.)

D efinition 4.6 (negation normal form)
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Let E  be a signature.

The “negation normal form” of any i7-formula ip (written NNF(ip)) is inductively 

defined by

NNF(true) =  true

NNF{-<true) =  false

NNF(t l  = T t2) =  t l  = T t2

NNF(-^(tl  = T t2)) = tl  t2

N N F { P A Q )  =  NNF(P)  A NNF(Q)

N N F (^(P  A Q)) =  NN F(^P)  V NNF(^Q)

N N F (V x : t . P)  =  Vx : t . NNF(P)

N N F ( ^ ( V x :t . P)) =  3x :r. NNF(-^P)

We say that a formula 92 is in negation normal form if <p =  NNF((p).

E n d  D efin ition .

T h eo rem  4.7 (closure of SPq*ut )

Let E  be a signature, IN  and OUT subsets of the sorts of E, Ax  a set of i7-axioms 

and SP the flat specification (E,Ax) .

If all inequations in NNF(\Ax\) are over sorts in OUT, then SPq*ut is (IN, OUT)- 

behaviourally closed.

P ro o f

Let SP'  be the specification

enrich  Bool 

by sign E 0 ut 

axiom s A x IN

Cong(E)ouT

end

By the semantics of ex p o rt E  from  for every model A  of SPqjjT, there is an 

extension A': SP'.
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Let A'  be a model of SP' and A  = A ’\e .

Let B  be a i7-algebra such that A  B. Since A! satisfies the congruence axioms, 

=A' is a congruence over A \ e and so, by lemma 4.9, there is a ^-congruence =B 

over B and a homomorphism h: 77.(17, IN, A)  —» IZ(E, IN, B)/=b such that, for each 

sort r  G T  and (E, IN ) -reachable values a l , a2 G A T,

al =£' a2 => hr(al) = h(a2)

Since =A> is a congruence, =B (B) satisfies the congruence axioms.

We shall show that, for each i7-formula ip and valuation v G Val(A, (pIN),

A  \= v  V IN = »  ( B )  \=h -v V IN

provided that all inequations in NNF(ip) are over sorts in OUT.  From which it 

follows that

A'  |= A x in => =B (B) [= A x in

provided that all inequations in NNF(ip) are over sorts in OUT. Hence the result. 

The proof is by induction over the structure of NNF(ip).

B ase cases: (tp =  true and ip = false)

For any valuation v G V a lf^ ,  ip).

A' \=v trueIN
=  { definition of axIN }
A' }=„ true
= { definition of (= }
true
= { definition of (= }
=B (B) \=h-v true 
= { definition of axIN }
=B (B) 1=h.v trueIN
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Hence,

A  f=v trueIN => =B (B) trueIN

A! f=„ falseIN => = B (#) (=^.w false™

B ase case: (cp =  t l  —T t 2 )

For any valuation v £ Val(*4', <p).

A' K  ( t l  =T t2)IN 
= { definition of axIN }
A 1 = T( t l , t2) =  True 
=  { definition of |= and =A> }
t l A(v) = f  t2A (v)
=> { Liebniz }
h ( t lA (v)) =B h(t2A (v))
=  { lemma 2.12 }
t l B(h - v ) =B t2B(h • v)
= { definition of =A' and |= }

(B) K -v  = r( t lA 2 )  = True 
=  { definition of axIN }
=* (B) H ‘« («  =r

B ase case: (<p — tl  A t t2 and r  £ OUT)

For any valuation v £ V a l ^ ,  ip).

A  f = „  ( t l  A t  t 2 ) IN 
= { definition of axIN }
A ' Av = r ( t l , t2)  = False 
= { definition of f= and =A> }
t l A (v) A t t2A (v)
= { lemtna 4.9 and r  £ OUT }
h ( t l A (v))  A t h( t2A (v))
= { lemma 2 . 1 2  }
t l B(h • v) A t t2s ( h  • v)
= { definition of =A' and [= }
=B (B)  1=h-v = T( t l  1 12) = False 
= { definition of axIN }
E E * (B) Ah'v ( t l  A t  t 2 ) IN
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In d u c tiv e  steps: (ip = P  A Q and ip =  P  V Q)

Suppose that, for all v £ V a l^ ',  (P  A Q)IN), A'  [=„ P IN => B |=h.v P IN and 

A! Av QIN => B Ah-v Q™• Then,

A  Av (P A Q)IN
= { definition of axIN }
A  K  p in a ’QIN
= { definition of |= P A Q }
A  K  p in a ^ # K  QIN
=> { inductive assumption }
BAh-vP™ *BAh-v QIN
= { definition of |= P A Q }
B Ah-v P IN A QIN 
= { definition of axIN }
B Ah-v (p a Q)in 
□

By a similar proof, we may show that, if A  Av P IN B Ah-v P IN and 

A 1 Av QIN B Ah-v QIN, then

=> B A h - v ( P v Q ) IN

In d u c tiv e  step : (ip =  Va;: t .  P  and (p =  3a;: r. P)

Suppose that, for all v £ V a l^ ',  P IN), ^4' |=„ P IN => P  [=*.„ P w . Then,

.4' K  (Va;: r. P)IN 
= { definition of ipIN }
A' H  VfNx:r. P IN 
= { definition of A V/h }
(Va : a e A T A 1Z(E, IN , a) : A  |=t,©{x:=a} P IN)
=> { inductive assumption }
(Va : a G A t A U(E, IN, a) : B |=ft-(w®{i:=a}) P IN)
= { • distributes over © }
(Va : a E A r A P ( E , IN, a) : B A(h-v)®{x-.=h(a)} P IN)
= { surjectivity of /i|/^ }
( V b : b e B r A ft(27,PV, 6) : B A(h-v)e{x:=b} P IN)
= { definition of |= V }
=B (B) Ah-v^nX’.t.  P in 
= { definition of ipIN }
B Ah-v (Va;: r. P)IN

By a similar argument, we may show that

A'  K  (3^:r. P)'N =► B  K -»  (3x - .t . P )1N
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Hence, by the principle of structural induction, we conclude that, for any formula 

ip G W FF(IN , OUT), and valuation v G V al(A!,ip) such that all inequations in 

NNF(cp) are over sorts in OUT , that

A'  K  v>,N &  =B (B) K '»  <P,N 

Hence, whenever A  is a model of S P ^TrT and A  B , then =B(B) is a model ofuui 0UT \ /
SPqijt and we conclude that SPq*ut is behaviourally closed.

E n d  T heorem .

This result is important because it provides specifiers with a precise methodology 

for writing behaviourally closed specifications: first write the specification in the 

normal way (but avoiding inequations!); then apply the ultraloose transformation 

to obtain a behaviourally closed specification.

We have given counterexamples to show that it is not true that S P q {j T is (IN, OUT)- 

behaviourally closed for any specification SP. Observing that the problem lay in 

inequations, we defined negation normal form to let us identify problematic axioms 

(those whose negation normal form contains inequations t l  ^ T t 2  where r  ^ OUT) 

and showed that, if SP does not contain such axioms then S P q {jT is (IN, OUT)- 

behaviourally closed.

4.4 Equivalence of ASL and USL

The previous section showed that S P qijT is closed under (provided SP contains

no inequations). It is natural to wonder whether, for such specifications,

M od  (SPgl,T) = Cl A (SP)
OUT

But, at the end of section 4.2 we showed that this does not hold for —̂ . Since
O U T  O U T

is weaker than we may conclude that it does not hold for either.
O U T  O U T
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In this case, the problem lies in the use of existential quantification. We shall show 

that the semantics of the transformed specification SPq{jT is exactly the behavioural 

closure of the models of SP provided SP contains neither existential quantification 

nor inequations.

The proof requires two supporting lemmas. The first states that all models of SPqijT 

are behaviourally equivalent to a model of SP.

L em m a 4.8 (M od (SP’̂ UT) C M o d ^ (/r(5'P))

Let 27 be a signature, IN  and OUT  subsets of the sorts of 27, Ax  a set of 27-axioms 

and SP  the flat specification (27, Ax).

Then, for any 27-algebra A,

A  e  M odfS’P ^ r )  =5* e  M o d ^ S P )

(M od™ ; r (,5P) is defined in definition 3.13.)

P ro o f

We shall show that for any model A  of SPqi/T, there is an (I N , 0£/T)-behaviourally 

equivalent 27-algebra B such that B is a model of SP.

Let SP' be the specification

enrich  Bool 

by sign E 0 ut  

axiom s A x IN

Cong(E)ouT

end

Let A! be any model of SP' and let A  =  A'\z.

Since A! satisfies the congruence axioms, =A' is a 27-congruence. Let B  be defined
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We shall show that, for each ^-formula ip and valuation v G Val(.A, (pIN)

A ' \=v (pIN B \=h-v y>

The proof is by induction over the structure of (p.

Base case: (<p =  true)

For any valuation v G V a l^ ', (p).

A ’ \=v trueIN
= { definition of axIN }
A' \=v true
= { definition of [= }
true
= { definition of |= }
B\=h.v true 
□

Base case: (<p = tl  =T t2)

For any valuation v G Val(*4', p).

A  K  (tl =T t2)IN
= { definition of axIN }
A' |=w =T( t l , t2) = True 
= { definition of |= }
=A' r(tl A'(V),t2A'(v)) =A'True 
= { definition of =A> }
tl'A( v ) ^ ' TtZU(v)
= { definition of h }
HU a (v)) = h(t2'A(v))
= { lemma 2 . 1 2  }
t l s ( h  • v ) =  t 2 A h  • v )
= { definition of |= tl = t2 }
B \=h-v tl = t2
a

Inductive step: (ip =  -iP)

Suppose that, for all v G Val(^4', P IN), A'  |=„ P IN <=> B \=h-v P IN • Then, 

A' K  h P ) IN
= { definition of axIN }
A' k  - ( p in)
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= { definition of |= ->P }
-Vt' K  P IN

{ inductive assumption }
-iB |=h’v P
= { definition of \= ->P }
B K-i; < P)
□

In d u c tiv e  step : (cp = P  A Q)

Suppose that, for all v G Val(*4', (P A Q)IN), A'  K  P IN &  B P IN and 

A'  K  QIN &  B  (=/.„ QIN. Then,

A' j=v (P A Q)IN
= { definition of axIN }
A' K  PIN A QIN 
= { definition of f= P A Q }
A' K  P IN A A' K  QIN

{ inductive assumption }
B f=h.„ P A B \=h.v Q 
= { definition of \= P A Q }
B \=h.v P A Q

In d u c tiv e  step : (<p = Vx:r. P)

Suppose that, for all v G Val(^4', P IN), A'  |=v P IN 4=> B \=h-v P IN• Then,

A' K  (Va?:r. P)IN 
= { definition of pIN }
A' K  VfNx :r . P IN
=■ { definition of |= VfN }
(Va : a G A T A P(P, IN, a) : A  ^©{x—a} P IN)
= { inductive assumption }
(Va: a e A T A P(P, IN, a) : B (=/i-(w®{i:=0}) P)
= { • distributes over © }
(Va : a E A t A U(S, IN, a) : B h(/»-«)®{a;:=Ma)} p )
= { surjectivity of h\j^ }
(Vb : b G Br A n(E ,  IN, b) : B h(h-i,)®{x:=6} P)
= { definition of |= V }
B\=h.v VfNx:r. P
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Hence, by the principle of structural induction, we conclude that, for any formula 

ip G WFF(IN, OUT), and valuation v G V a l ^ 7,^ )

A'  !=„ y IN B \=h-v V 

Therefore we conclude that, for any i7-algebra A,

A: SP IN => B:SP

Since A  B, the result immediately follows.
o u t  J

End Lemma.

The second lemma states that all models of SP are models of SPqijT.

Lem m a 4.9 (SPqijT SP)

Let E  be a signature, IN  and OUT subsets of the sorts of E, Ax  a set of T’-axioms 

and SP the flat specification (E,Ax) .

If all existential quantification in NNF(\Ax\) is over sorts in IN  then, for any E-  

algebra A,

A: SP  =* A :S P $ UT

P roof

Let SP' be the specification

enrich Bool 

by sign E 0 U t  

axiom s A x IN

Cong(E)ouT

end

We shall show that for every model A: SP, there is an extension A! such that A': SP' 

and, hence, A: SPqijT.
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Let A  be a model of SP.

Since equality is a congruence relation, =(*4) satisfies the congruence axioms.

We shall show that, for each i7-formula p  and valuation v G Val(*4, p) such that 

all existential quantification in NNF(<p) is over sorts in IN,  that

A  p  =» =(A) \=v p IN

The proof is by induction over the structure of NNF(p).

Base cases: (p = true and p  = false)

For any valuation v G Val(^4, p).

A  \=v true
= { definition of \= }
true
= { definition of (= }
=(A) \=h-v true 
= { definition of axIN }
=(A) f=h.t, trueIN 
□

Base cases: (p — tl  = T t2 and p = tl A t t2

For any valuation v G Val(*A, p ) .

A  1=̂  tl —T t2
= { definition of |= }
t lA(v) = t2A{v)
= { definition of = and =(^4) }
— t  (tl={A)(v),t2=iA)(v)) =  ~ (^4)True

= { definition of \= }
={A) \=v =T( t l , t2) = True 
= { definition of axIN }
=(A) K  (tl =T t2)IN
n

Hence,

A  (=w tl  —T t2 => =(v4) |= v tl =T t2

and

A  |=w t l  A t  t 2  => =(«4) [=*/ t l  A t  t 2
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In d u c tiv e  step : (p = P A Q and ip = P  V Q)

Suppose that, for all v G Val(^4, P A Q), A  \=v P => ={A) \=v P IN and 

A \ = v Q =$■ =(.4) \=v QIN. Then,

A  \=v P A Q
= { definition of \= P A Q }
A \=v P A A\=v Q

{ inductive assumption }
=(*4) (=„ P IN A =(.4) \=v QIN 
= { definition of f= P A Q }
=(A) K  P IN A QIN
= { definition of axIN }
=(A) K  ( P * Q ) IN
a

By a similar proof, we may show that, if A  f=v P  => =(A)  |=„ P IN and 

A  Q => —(A) f=v QIN, then

A  l=w P  V Q => =(A) ^=v (P V Q)in 

In d u c tiv e  step : (<p = \/x:t.  P)

Suppose that, for all v G Val(.4, P), A  (=w P => =(-4) |=w P IN. Then,

A  f=„ Va;: r. P 
= { definition of |= V }
(Va: a G A r'A  [̂ ^©{x—a} P)
=$■ { predicate calculus }
(Va: a E A r A 11{P, IN, a): A  |=w®{i:=0> P)
=> { inductive assumption }
(Va: a e A r A U{S, IN, a): ={A) (=„©{*:=»} P IN)
= { definition of |= VfN }
H A )  K  V f^ :r . P IN 
= { definition of p IN }
={A) K  (V*:r. P)IN

In d u c tiv e  step : (p =  3x: t . P  and r  G IN)

Suppose that, for all v G Val(*4, P IN), A  [=„ P IN =>• B \=h-v P IN• Then, 

A  |=v 3a:: r. P
=  { definition of f= 3 ^  }
(3a. a G At-A. ^^©{x^a} P)

{ r e  I N }
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(3a: a e A t A TZ{E, IN , a): A  |=t,©{*:=o} P)
=> { inductive assumption }
(3a: a e A t A P(E, IN, a): ={A) |=t,©{x:=a} P IN)
= { definition of |= 3j^ }
=(A) K  3?n k t . P in 
= { definition of ipIN }
=(A) K  (3x:t. P) in 
□

Hence, by the principle of structural induction, we conclude that, for any formula 

ip G WFF(IN, OUT),  and valuation v G Val(^l, 9?) such that all existential quan­

tification in NNF(ip) is over sorts in IN,

A \ = v (p => =(A) \=v p IN

It follows that, for any observational axiom ax such that all existential quantification 

in NNF(ax)  is over sorts in IN,

A  f= ax => = (A) |= axIN

and so, for every model A  of SP, =(*4) is a model of SP1. Hence result.

E n d  L em m a.

We can now state and prove the major result of this thesis.

T h e o rem  4.10 (semantic effect of ultraloose transformation)

Let E  be a signature, IN  and OUT subsets of the sorts of E, Ax  a set of Z'-axioms 

and SP  the fiat Z-specification (E,Ax) .

If all existential quantification in NNF(\Ax\) is over sorts in IN  and all inequations 

in NNF(\Ax\) is over sorts in OUT, then

Mod(SP'oUT) =  M o d ^ S P )

P roof
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Mod (SP$UT) = Mod out(SP)
= { theorem 4.7 }
Mod out(SP out) = Mod0[/T(£.P)
= { set theory }
M odo u t ( S P )  Q M o d o u t ( S P q Jut ) A M odo u t ( ^ P o u t ) Q N L o d OUT(S P )  
<= { closure properties }
Mod(SP) C M od(SPgfjr) A Modo UT{ S P o u t ) Q ModqUT(SP)
= { lemma 4.9 }
Mod o u t ( S P o u t ) — Mod0[/T(S'P)
= { theorem 4.7 }
M od(SPgljT) C M odoUT(SP)

- { lemma 4.8 }
true

E n d  T heorem .

Having seen counterexamples to show that

M o d (5 'P ^ T) =  Cl in (M od (SP))

does not hold if SP contains problematic axioms (axioms containing inequations 

or existential quantification) we showed that it does hold in the absence of such 

problematic axioms.

We have therefore succeeded in precisely characterising the semantic effect of the 

ultraloose specification transformation. No such characterisation has been published 

before although we have been informed that Reichel [23] presents a similar result 

to the above. We have not been able to obtain this paper but base the following 

comparision on Reichel’s book [24 chapter 5 ] published two years later (which we 

assume presents essentially the same work).

We note three significant differences between ReichePs framework and our own:

1. The most obvious difference is that Reichel does not discuss ultraloose speci­

fications!

However, we believe ReichePs work is comparable since he obtains a similar 

effect by replacing the normal notion of satisfaction of axioms by a notion of
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behavioural satisfaction of axioms. This notion is based (in the obvious way) 

on a notion of behavioural equivalence of elements of an algebra which serves 

a similar role to the congruence =  in ultraloose specifications.

That said, we believe that a very considerable amount of work would be re­

quired to apply Reichel’s work to ultraloose specifications. (The principal 

problem is that models of ultraloose specifications can vary in their inter­

pretation of =  whereas, in ReichePs framework, the corresponding notion of 

behavioural equivalence of elements is completely determined by the other 

parts of the algebra.)

2. Reichel uses the following (less general) notion of behavioural equivalence.

For a signature E  with sorts T  and a distinguished subset I  C T, two E- 

algebras A  and B are /-equivalent (written A  =  B mod I) if there is a 27- 

algebra T  such that T  -5- A  and T  -5- B.

We believe that this definition is equivalent to 4^+  with IN  = Tp(27) and 

OUT = I. The restriction that IN  = Tp(27) avoids the need to use reachable 

quantification since, with IN = Tp(i7), t . P  and Vx: r. P  are equivalent.

3. (In order to guarantee the existence of initial models) Reichel restricts axioms 

to be conditional equations of the form

VTs: 75. 11 =ri t1 A .. Am  = rm rm => I = T r

The relative simplicity of axioms of this form avoids the need to resort to 

negation normal form to detect problematic uses of inequality and prevents 

the problem of existential quantification from arising.

To summarise: Though there are similarities to ReichePs work, our result applies 

directly to ultraloose specifications and is considerably more general both in the 

form of axioms allowed in specifications and (most significantly) in the form of 

behavioural equivalence used.

There are two immediate corollaries to theorem 4.10.
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Corollary 4.11 (Counter^™!} behaviourally closed)

The specification C o u n t e r is a ({Bool}, {Roo/})-behaviourally closed specifica­

tion of counters.

End Corollary.

This seems to directly contradict Schoett’s “impossibility theorem” (theorem 3.21) 

that one cannot specify a behaviourally closed set of counter-like algebras using only 

a finite set of axioms.

In fact, there is no contradiction: Schoett’s result applies to flat specifications 

whereas the specification Counter^q°0°01̂  consists not just of axioms but also the hid­

ing operation export _ from _. Since the late 1970’s [16,38] it has been known that 

some finite specifications with hidden operations cannot be finitely written without 

hidden operations. It is therefore not too surprising that allowing the hidden oper­

ation = stack allows a finite specification.

The. second corollary to theorem 4.10 is that the ultraloose transformation has pre­

cisely the same effect as the behavioural abstraction operator.

Corollary 4.12 (SPIqUT = behaviour SP wrt (IN, OUT))

Let 27 be a signature, IN  and OUT subsets of the sorts of E, Ax  a set of 27-axioms 

and SP  the flat 27-specification (E ,A x).

If all existential quantification in NNF(\Ax\) is over sorts in IN  and all inequations 

in NNF(\Ax\) is over sorts in OUT, then

SP™UT =  behaviour SP  wrt (IN, OUT)

End Corollary.

Thus, not only have we succeeded in precisely characterising the semantic effect 

of the ultraloose specification transformation; we have also shown how flat ASL 

specifications can be transformed into equivalent USL specifications.
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4.5 Summary

The introduction to this thesis argues that behavioural closure is an important 

property for specifications and notes that the “ultraloose specification style” used 

by Wirsing and Broy [42] appears to produce behaviourally closed specifications but 

that no-one has stated (or proved) what the precise effect of this style is.

Based on the notions of behavioural equivalence developed in the previous chapter, 

this chapter provides three results which characterise the effect of the ultraloose 

style with increasing precision.

The most important of these results is the last one (theorem 4.10) which shows that 

the semantic effect of the ultraloose transformation is to close a specification under 

behavioural equivalence (provided certain purely-syntactic side-conditions are met). 

The value of this result is threefold:

1. It provides a precise characterisation of the semantic effect of the ultraloose 

transformation;

2 . It shows how ASL and USL are related to each other; and

3. It shows that the meaning of Schoett’s “impossibility theorem” is not that 

one cannot write useful behaviourally closed specifications but that one must 

sometimes use hidden operations when writing them.



Chapter 5 

Ease of Proofs in ASL and USL

The previous chapter compares ASL with USL from a specifier’s point of view: 

showing when specifications written in each language have the same meaning. This 

chapter compares ASL with USL from an implementor’s point of view: considering 

how easy it is to prove properties of (equivalent) behaviourally closed specifications 

written in ASL and in USL.

In particular, we consider the (apparently straightforward) task of showing that 

the specification MCounter (figure 5.1) (and an equivalent ultraloose specification) 

satisfy the following axiom1

Vrn, m: Nat, c: Ctr. n < m => isZero(mdec(n, minc(m , c))) = B o o i  False (5.1)

This is typical of the kind of results one might wish to show about such a specifica­

tion.

Section 5.1 repeats Schoett’s argument [37] that the only known technique for prov­

ing the result requires an infinite proof; and section 5.2 shows that a finite proof 

is possible using the equivalent ultraloose specification. (Equivalence follows from

1 Except in specifications (where we make quantification explicit) we use Vr as an abbreviation 
for \/|^™jmc>decl throughout this chapter.
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MCounter =
enrich Nat + Counter
by sign mine, mdec: Nat x Ctr —>■ Ctr
axioms

(MCI) Vc: Ctr. minc(0, c) = c
(MC2) Vn: Nat, c: Ctr. minc(succ(n), c) = minc(n, inc(c))
(MC3) Vc: Ctr. mdec(0, c) = c
(MC4) Vn: Nat, c: Ctr. mdec(succ(n), c) = mdec(n, dec(c))

end

Counter =
behaviour enrich Bool

by sign Ctr: type
zero: —> Ctr
inc, dec: Ctr —> Ctr
isZero: Ctr —» Bool

axioms
(Cl) dec(zero) = zero
(C2) Vc: Ctr. dec(inc(c)) = c
(C3) is Zero (zero) = True
(C4) Vc: Ctr. isZero(inc(c)) = False

end
wrt ({Bool}, {Bool})

Figure 5.1: Multiple Counter — ASL

theorem 4.10 and the fact that MCounter does not contain inequations or existential 

quantification.)

Though useful to users of MCounter, the main interest of this result lies not in 

whether MCounter satisfies axiom 5.1 but in the fact that the result is difficult or 

impossible in ASL but straightforward in USL. That is, this chapter demonstrates 

a substantial difference in the ease of proving results about specifications written in 

ASL and USL.
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5.1 Difficulty of Proofs in ASL

This section discusses how one might prove that the specification MCounter satisfies 

axiom 5.1. The discussion is divided between a repeat of Schoett’s argument from 

[37 section 5] that a finite proof is impossible using a technique suggested by Sannella 

and Tarlecki and a demonstration that an alternative approach is unsound.

In essence, the task is to show a result of the form

(behaviour Counter wrt (IN, OUT)) +  SP f= ax

Since we behaviourally close Counter, the proof should only make use of behavioural 

properties of Counter. That is, the proof should only involve observational axioms 

satisfied by Counter. (Sannella and Tarlecki [27 section 4] give a slightly weaker 

inference rule — the difference is the restriction to “uniformly quantified” axioms 

discussed in section 3.5 and is not significant in the following.)

Schoett [37 p. 619] argues as follows (we have substituted our notation and refer­

ences):

“In a finite proof about the counter data type specified by 

behaviour Counter wrt ({Bool}, {Bool}), the proof rule of Sannella 

and Tarlecki can only be applied a finite number of times to yield a finite 

number of axioms in A x m ({Bool}, {Bool}). Theorem 3.21 tells us that 

this set of axioms has a model B with a number n such that for all terms 

c composed of zero, inc and dec, we have isZero(decn(c))s = True#. 

Putting c = incm(zero), we obtain

isZero(mdec(n, minc(m, zero))) 

isZero(decn(incm (zero)))

True

Since this holds for all m, the law desired by the user is false in B. 

The law therefore cannot be a consequence of a finite set of formulas in
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Axm({J9oo/}, {Bool}) and thus cannot be finitely proved with the proof 

rule of Sannella and Tarlecki.”

So, by Schoett’s argument, we cannot show the result if we treat Counter as a “black 

box” of which we can only observe (a finite set of) observational axioms. However, it 

is clear that we can prove a similar result if we “ignore” the behavioural abstraction. 

That is, we could show a result of the form

Counter +  SP \= ax

Unfortunately, it is not generally sound to conclude from this that

(behaviour Counter wrt (IN, OUT)) +  SP f= ax

as the following lemma shows.

L em m a 5.1 (ignoring behavioural abstraction is unsound)

There exist specifications SP1 and SP2 and an observational axiom ax such that

SP1 +  SP2 |= ax behaviour SP1 wrt (IN, OUT) +  SP2 \= ax

P roof

Consider the following specifications

S P 1  =f (r :type c > r  , Vx: r. x = c)

SP2 = (r :type c > r , -Nx: r. x = c)

To see that (behaviour SP1 wrt ({} ,{ t} ))  +  SP2 is consistent consider the 

model A  = (r =  {1, 2}, c = 1). Since A: SP2 and ,4’s reachable subalge­

bra is a model of SP1 and behaviourally equivalent to SP2, A  is a model of

(behaviour SP1 wrt ({}, { r } ) )  +  SP2.
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Since (behaviour SP1 wrt ({},{t})) +  SP2 is consistent, we have that 

(behaviour SP1 wrt ({}, { t})) +  SP2 ^  false 

Whereas, SP1 +  SP2 is obviously inconsistent and therefore 

SP1 +  SP2 \= false 

It follows that

SP1 +  SP2 f- a x  behaviour SP1 wrt ({}, {t}) +  SP2 |= ax

E n d  Lemma.

We conclude that the two obvious ways of showing the result cannot be used: the 

first is not finitely complete and the second is not sound. This seems to suggest 

that, since the obvious techniques cannot be applied, it is at least “difficult” and at 

worst “impossible” to prove the result for the ASL specification. We return to this 

topic in section 5.3.

5.2 Ease of Proofs in USL

This section discusses how one might prove that the ultraloose specification 

MCounter2 (figure 5.2) satisfies axiom 5.1. Though typical of the kind of result 

about MCounter2 one might wish to show, the principal interest lies not in the re­

sult but in the fact that it is perfectly straightforward to prove — in marked contrast 

to our experience in section 5.1 for the equivalent ASL specification.

As with the ASL specification, it is obvious that the result is true. It seems that 

we can prove the result by proving that MCounter2 satisfies some simple properties 

such as

Vrn, m: Nat, c: Ctr. n < m => mdec(n, minc(m, c)) =  minc(m  — n, c)

Vr m: Nat, c: Ctr. 0 < m =£> isZero(minc(m, c)) =  False
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MCounter2 ==
enrich Nat + Counter2
by sign mine, mdec: Nat x Ctr —> Ctr
axioms

{MCI') Vc: Ctr. minc{0,c) = c
(MC2') Vn: Nat, c: Ctr. minc{succ{n), c) = minc(n, inc(c))
{MC3') Vc: Ctr. mdec(0, c) = c
(MC4') Vn: lVa£, c: Ctr. mdec{succ{n), c) = mdec(n, dec(c))

end

Counter2 = 
hide = in 
enrich Bool 
by sign Ctr: type  

zero: —> Ctr 
inc, dec: Ctr —»• Ctr 
isZero: Ctr —v Bool 
=: Ctr x Ctr —>■ Bool 
IN = Bool

axioms
(Cl') dec(zero) = zero
(C#') Vr c: Ctr. dec(inc(c)) = c
{C3') is Zero {zero) ■= True
(C^') Vrc: Ctr. isZero{inc{c)) = False

Vc: Ctr. c = c
Vcl, c2: Cir. cl = c2 c2 = cl
V cl, c£, c5: C£r. cl = c2 A c2 = c3 => cl = c5

Vcl, cl?: Ctr. cl = c2 inc(cl) = inc{c2)
Vcl, cl?: Ctr. cl = c2 => dec{cl) = dec(c2)
Vcl,c2: Ctr. cl = c2 => isZero{cl) = isZero{c2) 

end

Figure 5.2: Multiple Counter — USL 

from which the result easily follows.

We cannot show these results directly because the operation =  is hidden in 

MCounter2. However, it is straightforward to transform MCounter2 into an equiva­

lent specification and to show that these results hold in this equivalent specification. 

(This ability to transform the specification into a more convenient form is the prin­
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cipal difference from the ASL case!)

Expanding Counter2, the specification in figure 5.2 is of the form

enrich Nat +  

hide =

in enrich BoolBase 

by sign CtrE 

axiom s CtrAx 

end

by sign mdec, mine : Nat x Ctr —> Ctr 

axiom s MCtrAx 

end

By moving the hide operation out and rearranging the use of +  and enrich, we 

obtain an equivalent specification of the form2

hide =

in enrich Nat +  BoolBase

by sign mdec, mine : Nat x Ctr —»• Ctr

CtrE 
axiom s CtrAx

M CtrAx

end

shown in figure 5.3.

It is now straightforward, if a little tedious, to show the result. We shall use the 

following two lemmas in the proof.

Lem m a 5.2

Counters |= Vr m, n: Nat, c: Ctr. minc(m  +  n,c)  =  m incim , minc(n , c))

2See [40,41] for rules which can be used to demonstrate that these specifications are equivalent.
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MCounterS A hide = in Counter3

Counters A 
enrich Bool + Nat
by sign mine, mdec: Nat x Ctr -* Ctr

Ctr: type
zero: —> Ctr
inc, dec: Ctr —> Ctr
is Zero: Ctr —»■ RooZ
=: Ctr x CZr —> Bool

axioms
{MCI') Vc: CZr. minc{0,c) = c
{MC2') Vn: IVaZ, c: Ctr. minc{succ{n), c) = minc{n, inc{c))
{MC3') Vc: CZr. mdec{0, c) = c
{MC4') Vn: AfaZ, c: CZr. mdec{succ{n), c) = mdec{n, dec(c))

(Cl') dec{zero) = zero
(C2 ') v j“ ™’i"c’,<eelc: Cir. dec(mc(c)) =  c
(C5') is Zero {zero) = True
(O H  ^ 2ero,mc’dec*c: (jtr isZero{inc{c)) = False

Vc: CZr. c = c
Vcl, c2: CZr. cl = c2 c2 = cl
Vcl, c£, c5: Ctr. cl = c2 A c2 = cS => cl = c#

Vcl,c£: CZr. cl = c2 mc(cl) = inc{c2)
\/cl,c2: Ctr. cl = c2 =>- dec{cl) = dec{c2)
Mcl,c2: Ctr. cl = c2 isZero{cl) = is Zero {c2) 

end

Figure 5.3: Restructured Multiple Counter

Lem m a 5.3

Counters |= Vr m: IVaZ, c: Ctr. mdec{m, minc{m , c)) =  c

Throughout these proofs we silently make use of the reflexivity of =  so that whenever 

we establish that cl =  c2 , we can conclude that cl =  cl?.
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L em m a 5.2 (mmc(m +  n, c) = minc{m, minc(n, c)))

Counters [= Vrm, n: Nat, c: Ctr. minc(m  +  n, c) =  minc(m, m inc(n, c)) 

P roof

Since Counters |= Vn: AfaL n e { 0 , succ}(0), we can use structural induction with 

respect to 0 and succ to prove the result.

Base case: n ~  0

minc{m, minc{0, c))
{ {MCI') } 

m.inc{m, c)
=  { m 0 =  m }
minc(m + 0, c)
□

Inductive Step: n =  succ{n')

Suppose that minc(m, minc(n', c)) =  minc(m  +  n1, c). Then

minc(m, minc{succ{n'), c))
{ {MC2') } 

minc(m, minc(n', inc(c)))
=  { Inductive Assumption }
minc{m + n', mc(c))

{ [MC2') } 
minc(succ(m +  n'), c)
- { succ(m + n') = m + succ{n') }
minc{m +  swcc(n'), c)

Since minc{m, minc(0, c)) = minc{m-\- 0, c) and minc(m, minc(n', c)) =  mmc(m +  

n', c) => minc(m, minc[succ{n'), c)) =  minc(m  +  5 ncc(n/), c), we conclude that

Counters \= Mrm, n: Nat, c: Ctr. minc{m +  n, c) = minc(m, minc(n, c))

End Lemma.
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Lem m a 5.3 (mdec(n, minc{n , c)) =  c)

Counters J= Vrn: Nat, c: Ctr. mdec(n, minc(n , c)) =  c

P roof

Since Counters |= Wn:Nat. n E (0,swcc}(0), we can use structural induction with 

respect to 0  and swcc to prove the result.

Base case: n = 0

mdec{0, minc{0, c))
{ (MC7P) } 

mdec(0, c)
{ {MC3') }

c
□

Inductive Step: n =  succ(m)

Suppose that mdec(m , minc(m , c)) =  c. Then

mdec(succ(m), minc{succ{m), c))
= { succ{m) = 1 + m, lemma 5.2 }
mdec(succ(m), minc{l, mmc(m, c)))

{ 1 = succ(Z?), {MC2'), {MCI') } 
mdec{succ{m), mc(mmc(m, c)))

{ } 
mdec{m, dec{inc{mine{m, c))))
= { (C*') }
mdec{m, minc{m, c)))
= { Inductive assumption }
c 
□

Since mdec{0, minc{0 , c)) =  c and mdec{m, minc{m, c)) = c =>

mdec(succ{m), minc{succ{m) , c)) =  c, we conclude that

Counters [= Vr n: AaZ, c: CZr. mdec{n, minc{n , c)) =  c

End Lemma.
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We can now prove the main result of this section: that MCounterS (and, hence, 

MCounter2) satisfies axiom 5.1.

Theorem  5.4 (n < m => -iisZero(mdec(n, minc(m, c))))

MCounterS (= Vrn, m: Nat, c: Ctr. n < m => is Zero (mdec (n, mine (m, c))) =Booi 

False

P roof

Vrn, m: Nat, c: (7£r. n < m =$> isZero(mdec(n, minc(m, c))) =Booi False 
= { arithmetic }
Vrn, m: AAt£, c: Cttr. n < m => isZero(mdec(n, minc{n + (m — n), c))) =b00/ False 
= { lemma 5.2 }
Vrn, m : Nat, c: Ctr. n < m => isZero(mdec(n, minc(n, minc(m — n , c)))) =b00z False 
= { lemma 5.3 }
Vrn, m: Nat, c: Ctr. n < m =>• isZero(minc(m — n, c)) =Booi False 
=  { arithmetic }
Vrn: ATa£, c: Ctr. n > 0 =>■ is Zero (mine (n, c)) =Booi False 
= { arithmetic }
Vrn: Aa£, c: Ctr. n > 0 =>■ isZero(minc(l + n, c)) = s00/ False 
= { lemma 5.2, 1 = succ(O), (MC2'), (MCI') }
Vrn: Afa£, c: C'fr. n > 0 =>• isZero(inc(minc(n, c))) =b00z False 

{ (C 5 ') }
Vrn: A/a£, c: (7£r. n > 0 => False =b00z False 
= { predicate calculus }
true 
□

End Theorem .

5.3 Comparision

The previous two sections demonstrate a substantial difference in the ease of proving 

results about specifications written in ASL and USL. We have shown that it is hard 

to prove that the ASL specification MCounter satisfies the axiom

Vrn, m : Nat, c: Ctr. n < m => isZero(mdec(n, minc(m , c))) = B o o i  False

but that it is straightforward to prove that the equivalent ultraloose specification 

MCounter2 satisfies this axiom.
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We considered two techniques for proving the result for the ASL specification:

1. To maintain soundness, we might restrict ourselves to using observational ax­

ioms in the proof as suggested in [27 section 4].

Unfortunately, Schoett has shown that no finite proof exists under this restric­

tion.

2 . To achieve a finite proof, we might just “ignore” the behavioural abstraction.

Unfortunately, this is easily shown to be unsound. That is, even for an obser­

vational axiom ax, we cannot conclude that

behaviour SP1 wrt (IN, OUT) +  SP2 |= ax

if

SP1 +  SP2 |= ax

holds.

These problems with behavioural abstraction in ASL seem to support Wirsing and 

Broy’s suggestion [42 paragraph 4] that the behavioural abstraction operator is 

“mathematically difficult.” They also suggest an alternative use of the ultraloose 

transformation: one might develop specifications using ASL and then transform 

them into the equivalent (but somewhat longer) ultraloose specification to eliminate 

the use of behavioural abstraction and, hence, simplify proofs.

However, a recent idea of Sannella and Tarlecki [32 section 6  ] suggests a way round 

the problems in ASL based on Schoett’s idea of stability which we briefly describe.

In Sannella and Tarlecki’s framework for program development (as described in 

[29,30]), any function k: A lg (P )  —»■ AlgfT1') gives rise to a specification building 

operator k: Spec(27) —>• Spec(27;) defined by

Mod(/c(5P)) =  {A: A  6 M od (SP): k(A)}
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Such specification building operators are known as “constructors.” For example, 

the specification building operators derive, quotient and extend _ to  _via _ are 

constructors.

The notion of constructors is important because some constructors can be easily 

implemented using programming language constructs and so a useful step in devel­

oping a program is to refine a specification SP  to a specification of the form R(SP') 

— replacing part of SP by an easily implemented constructor k . (Considerably more 

detail may be found in [29].)

A constructor R, is said to be “stable” (with respect to an equivalence relation =) 

if, for any i7-algebras A  and B ,

A  = B => k{A) = k{B)

That is, a constructor is stable if the function on which it is based doesn’t introduce 

differences between equivalent algebras.

The practical consequence of these ideas is the following:

If all specification building operators provided by a specification language 

are stable (with respect to behavioural equivalence), then the straight­

forward proof technique of “ignoring” behavioural abstraction is valid.5

In other words, if we are willing to take the (entirely reasonable) step of restrict­

ing ourselves to a stable subset of ASL, the problems encountered in section 5.1 

disappear.

5.4 Summary

This chapter considers the question of how ultraloose specifications compare with 

equivalent ASL specifications from the implementors point of view. In particular, it 

considers what one can prove about a a behaviourally closed specification.

5The reason for the problems in lemma 5.1 above is that + is not stable.
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We found that, when the behaviourally closed specification is written using the 

behavioural abstraction operator behav iour, the two obvious ways of proving that 

the specification satisfies an axiom could not be used. This supports Wirsing and 

Broy’s suggestion [42 paragraph 4] that the behavioural abstraction operator is 

“mathematically difficult” although we note that these problems disappear if we 

restrict ourselves to “stable” specification building operators.



Chapter 6

Summ ary and Conclusions

This thesis is concerned with how one might avoid overspecification when writing 

specifications. In particular, it examines two alternative approaches to writing be- 

haviourally closed specifications: using a “behavioural abstraction operator” as in 

ASL; or using reachable quantification and a very stylised form of specification as 

in USL. The main questions asked in the introduction were:

• Under what circum stances are USL specifications behaviourally  

closed?

• Under what circum stances do these two approaches give the same 

result?

• For which approach is it easiest to  prove properties of the resulting  

specifications?

The first two questions were tackled in chapter 4 which showed the following results 

(for flat specifications).

• Theorem 4.7 shows that flat ultraloose specifications are closed under
OUT

provided they contain no inequations.

116
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• Theorem 4.10 uses theorem 4.7 to demonstrate that any flat ultraloose specifi­

cation SPqijT is semantically equivalent to a corresponding ASL specification 

behaviour SP wrt (IN, OUT)  if SP  contains no inequations or existential 

quantification.

Chapter 5 tackled the third question. Using an argument due to Schoett, we saw 

tha t it was surprisingly hard to show that a behaviourally closed ASL specification 

satisfies a given axiom. Replacing the behaviourally closed specification with an 

equivalent ultraloose specification, we saw that the proof was quite straightforward. 

We concluded that, at least in this case, the more explicit style of the ultraloose 

specification was an advantage. However, ultraloose specifications are somewhat 

more verbose than their corresponding ASL specifications and so we suggested that 

it might be convenient to write an ASL specification initially and only transform 

into the ultraloose style before doing any proofs. (The soundness of this approach 

follows immediately from theorem 4.10.) An alternative approach would be to work 

in a language such as Extended ML [26] which restricts the specifier to “stable” spec­

ification building operators which allows straightforward proofs even in the presence 

of behavioural abstraction.

The focus of this thesis is very much on theoretical results rather than on their 

practical application. It is therefore worth emphasising the practical consequences 

of the above results.

• We believe that behavioural closure is an essential property of specifications. 

An easy way of ensuring that (flat) specifications are behaviourally closed is 

to use reachable quantification instead of the normal quantification and to 

use a congruence instead of equality in the way formalised in our ultraloose 

transformation. The only requirement is that the specification should not 

contain inequations (theorem 4.7).

• Modern approaches to formal program development emphasise the gradual re­

finement of specifications in a series of small steps. We believe (but have not 

attempted to demonstrate) that the more explicit specification of behavioural
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equivalence in ultraloose specifications allows specifications to be refined in 

considerably smaller (and hence, simpler) steps than is possible in ASL. Our 

demonstration of the relationship between (flat) ASL specifications and USL 

specifications provides the theoretical justification for transforming ASL spec­

ifications into USL specifications in preparation for such transformation. The 

only requirement is that the specification should not contain inequations or 

existential quantification (theorem 4.10).

Incidental R esults

Answering the above questions required us to generalise Meseguer and Goguen’s

definition of behavioural equivalence and to define the “ultraloose transformation.”

We also came across the following interesting incidental results:

•  Theorem 3.16 demonstrates that the satisfaction of “observational axioms” is 

invariant under behavioural equivalence.

This result is stronger than a similar result by Sannella and Tarlecki [27 Fact

18] for their (weaker) notion of behavioural equivalence. We find this a con­

vincing argument for the use of (our generalisation of) Meseguer and Goguen’s 

definition of behavioural equivalence rather than that of Sannella and Tarlecki.

• Theorem 4.5 shows that specifications written in the ultraloose style ( “ul­

traloose specifications”) are downward closed under ^  .
'  O U T

This suggests a link with the implementation notions of the ADJ group and 

Ehrig etc al. [4,10]which we did not pursue.

Further Work

Finally, we note the following areas for further work:

• The above results are for flat specifications only. It should be straightforward 

to extend the ultraloose transformation and associated results to handle struc-
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tured specifications although some care is required with the derive operator 

since it does not preserve closure under isomorphism (counterexample 2.7).

•  There are several alternative ways of defining an equivalence like our be­

havioural equivalence. To our knowledge, no-one has answered the question of 

whether or not these any of these equivalences are equivalent to = A x m ( i n , o u t )- 

That is, if two algebras satisfy exactly the same set of observational axioms, 

are they behaviourally equivalent and vice-versa.

We know of two partial answers:

1. For IN  = 0, it is straightforward to show that the above holds.

2. A result by Sannella and Tarlecki [27 Fact 16] suggests that this may be 

true for our definition of behavioural equivalence using infinitary obser­

vational axioms. We believe (but have not tried to prove) that this is true 

using finitary observational axioms in the presence of at most countably 

many unreachable elements.

•  It is common to base the semantics of specification languages on partial alge­

bras (that is algebras which allow partial functions as interpretations of func­

tion symbols) rather than total algebras. Partiality allows non-terminating 

computations and errors to be modelled directly.

The major problem in trying to apply the results in this thesis to specifications 

allowing partial functions is that the standard framework for partial algebras 

requires functions to be strict. This complicates the interpretation of the 

function =T:r  x t —»■ Bool as relation since it is not clear how to interpret an 

undefined result from = T.

The most direct line of attack might be to define a logical framework which 

allowed non-strict functions (or just non-strict predicates). A less radical ap­

proach might be to consider a framework in which the inbuilt (non-strict) 

predicate =  is allowed to denote an arbitrary congruence rather than equality.

•  Our motivation for considering behavioural equivalence was the desire to cap­

ture when it was possible to replace one module by another without changing
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the overall result of a program.

However, in some circumstances, the definition of behavioural equivalence we 

adopt (and most other definitions in the literature) is too strong. Consider a 

program that uses a stack module but for which we are able to show that it 

never generates stacks with more than 100 elements. In this case, it would be 

possible to use either an unbounded stack (like those considered in this thesis) 

or a bounded stack of size 100 or more. However, despite the fact that we can 

substitute one for the other in this program, bounded stacks and unbounded 

stacks are not behaviourally equivalent.

(It might be argued that allowing such bounded implementations introduces 

an undesirable degree of coupling between the module and the rest of the 

program. But, from a practical point of view, such implementations are very 

common and it is desirable to be able to be able to prove their correctness 

with respect to an appropriate specification. Furthermore, from a theoretical 

point of view, no real computers have an unbounded amount of storage and 

so it is impossible to implement unbounded data structures.)

An important area for further work is extending both the definition of be­

havioural equivalence and the ultraloose specification style to handle such 

cases.

Hennicker [11,12] describes an approach where one (axiomatically) specifies a 

family of predicates ObsT:r  -» Bool which identifies those values which are 

considered observable. This approach would provide the flexibility required 

though it is not clear how this approach would interact with the ultraloose 

specification style.
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