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Abstract

This thesis describes a study of quark and gluon jets produced from decays
of the Z° boson to qgg and qgy final-states. These were obtained from 1.2
million hadronic events produced by the LEP e*e~ collider and recorded in
the ALEPH detector at CERN during 1990-92. A sample of gluon jets was
obtained by identifying b-quark jets in bbg events where the b-quark had decayed
semileptonically. Quark jets were identified in ¢gy events where one of the
jets contained an isolated photon. The mean particle multiplicity, transverse
momentum, rapidity of tracks and fragmentation function of the quark and gluon
jets were compared as a function of the energy of the jets. The angular size of
the jet cores also were analysed to determine the relative particle multiplicity in
the jet cores. The quark and gluon jet differences were found to be greatest in
the jet cores compared to the whole jet. The gluon/quark jet ratio of particle
multiplicities in the jet cores was found to be closer to the perturbative QCD
prediction for gluon radiation from the partons.

The particle flow between the quark jets was measured in qgg, bbg and qgy
events and compared to JETSET Monte Carlo predictions and a QCD calculation
of the soft gluon flow in these event types. The JETSET predictions matched

the particle flow data reasonably well, whereas the soft gluon calculation did not
represent the data.
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Chapter 1

Introduction.

1.1 The fundamental structure of matter.

According to current understanding, two types of elementary particles exist,
those with 1 integer spin called fermions, and those with integer spin called
bosons. Matter is built up from these particles, which are held together by four
fundamental interactions, the strong and weak nuclear forces, electromagnetism
and gravity. Below the scale of the atom the effects of gravity are generally
insignificant, so it will not be discussed in any detail here. The forces can be
described by gauge field theories, in which the responses between fermions are
mediated by bosons. These are summarised in Table 1.1. Incorporated into the
framework of the theories are symmetries, which give rise to the properties of

the interactions. The introduction of the symmetries into the theories gives the
raison d’etre for the gauge bosons.

1.2 Electroweak interactions and the Standard
Model.

Quantum electrodynamics (QED), the field theory describing electromagnetism,
involves the symmetry group U(1) [1]. Transformations under this symmetry
can be considered as rotations in complex phase space, which can be performed
in any order. Symmetry groups whose transformations commute are known as
abelian groups. A consequence of this abelian nature is that charge must be
locally conserved, so that the boson propagator of the U(1) group, the photon,
cannot carry charge and thus cannot form self-interactions. The perturbative
calculation of QED cross-sections involve higher-order internal loop processes
which are divergent. However the theory is renormalisable, such that the
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Interaction Symmetry Gauge bosons Fermion interactions
group
Electromagnetism | U(1l)y photon quarks, charged leptons
Weak SU(2)L w+, w-, z° quarks, leptons
Strong SU(3) | gluon (8 flavours) quarks
Gravity SL(2,C) graviton particles with mass

Table 1.1: Summary of the four forces in nature.

predicted interactions between the fermions are finite. The renormalisation
introduces an effective charge, mass and wave function for the electron, governed
by a coupling constant o which determines the strength of the coupling of the
electron to the photon.

The theory of electromagnetism has been combined with weak theory to form
the theory known as the Standard Model of electroweak interactions [2], where
the couplings of the bosons are unified at energies of ~ 10'® GeV. The Standard
Model is an SU(2)r @ U(1l)y gauge theory, that is, it is symmetric under both
the SU(2)r and U(1)y groups. Compared to the U(1) group, transformations
under SU(2) are more complex, involving a set of 2 x 2 unitary matrices with
determinant 1. These do not commute, so the SU(2) group is non-abelian.
To maintain invariance of the theory under local SU(2) transformations, the
additional gauge bosons, known as the W+, W~ and Z°, carry weak charge and
can undergo self-interactions. The symmetries in the theory are broken by the
Higgs mechanism to give masses to the W+, W~ and Z°. Local non-abelian gauge
theories have been proved to be renormalisable, such that the weak interactions
are finite.

In the Standard Model there exists three generations of fermions organised
in a hierarchy according to mass. Each family consists of a neutrino, a charged
lepton, an up-type quark and a down-type quark, plus the antiparticle of each
fermion. These particles are summarised in Table 1.2. The existence of all these
fermions and the four electroweak gauge bosons have been shown experimentally
in high energy interactions, apart from the top quark and tau neutrino. However
these are required to exist within the framework of the Standard Model and high
precision electroweak measurements are strong evidence for the existence of both
the top quark and tau neutrino. The measurements indicate that the top quark
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will probably be seen by the CDF and DO experiments at Fermilab.

1.3 Quantum chromodynamics.

Leptons are influenced by electromagnetism, the weak nuclear force and grav-
ity. Quarks also feel the strong nuclear force, which is described by quantum
chromodynamics (QCD), a gauge theory with SU(3) symmetry [3]. The bosons
carrying this force are the gluons. There is strong experimental evidence both
for the existence of gluons, and that SU(3) is the correct symmetry group in the
theory [4]. QCD introduces an additional quantum number called colour. The
strong nuclear force is considered to act between particles with colour charge in
the same way that electromagnetism acts between particles with electric charge.
The theory involves three types of colour charge. Each quark is given a red,
green or blue colour charge for example, whilst each antiquark has anti-red, anti-
green or anti-blue colour charge. Transformations under SU(3) involve a set of
3 x 3 unitary matrices with determinant 1. These do not commute, so QCD
is a non-abelian gauge theory. To maintain local invariance of QCD under its
transformations, the gluon propagators must carry colour charge and can form
self-interactions via tree level three-gluon and four-gluon vertices. This has a
large influence on the properties of QCD, in particular at low energies where the
coupling of the gluons, aj,, increases rapidly and “confinement” occurs, such that
the quarks and gluons are bound together to form hadrons. The strength of as
at low energies has consequences for the calculation of the interactions of quarks
and gluons, since perturbation theory cannot be used in this regime. Another
property of QCD is that of asymptotic freedom, where the coupling goes to zero
as the separation becomes small, equivalent to high momentum transfer Q2.

Generation
1 2 3
Quarks Up Charm Top
Down Strange Bottom

Leptons | e-neutrino | py-neutrino | 7-neutrino
Electron Muon Tau

Table 1.2: The three generations of fermions in the Standard Model.
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1.4 Z° boson production at the LEP Collider.

The Large Electron Positron Collider, LEP, at CERN, Geneva has a primary
purpose of investigating electroweak interactions [5]. Electrons and positrons are
accelerated in opposite directions inside a 27 kilometre beam pipe to energies of
45.6 GeV (see Figure 1.1). The e and e~ are collided with a total centre of
mass energy of 91.2 GeV. This energy is very close to the mass of the Z° boson
and at a resonance in the cross-section for the interaction of the et and e~ via
the production and decay of a Z°. The basic process is depicted in the Feynman
diagram in Figure 1.2. The Z° boson produced in the interaction decays to a
fermion and anti-fermion pair (ff), each carrying away half the centre of mass
energy. Excluding the top quark, any of the fermions within the Standard Model
can be produced. The ALEPH experiment has been designed to observe the decays
of the Z° The detector is located around the beam pipe at one of the collision
points of the et and e~ beams, and is described in Chapter 3.

1.5 Radiation of gluons and photons in Z° decays.

The cross-section for ff production is modified by higher order processes such
as initial-state radiation from the e* and e~ (I'igure 1.3a), final-state radiation
from the fermion or anti-fermion (Figure 1.3b), or internal loops. When a qg
pair is produced, either the ¢ or § may radiate a hard photon or gluon. To first
order these processes are similar, but differ in the strength of the coupling of
the quark to each boson. The quark, antiquark and hard gluons may then lose
energy by further radiation of gluons. At some energy scale, the quarks and
gluons present form hadrons, which appear in the detector as jets of particles,
pointing in approximately the same direction as the original hard partons.

1.6 Gluon radiation and hadronic jet formation.

The radiation of photons or gluons from quarks can be calculated in perturbation
theory. However the production of hadrons in ¢gy and qgg events is also partly a
non-perturbative process, which cannot at present be calculated. The hadronic
jet formation process is described in more detail in the following chapter. By
studying the jets and the particle flow in these events, an attempt can be made to
assess the influence of perturbative and non-perturbative mechanisms in hadronic
events.

The analyses presented in Chapters 4 - 6 has made use of over 900,000
hadronic Z° decays recorded in the ALEPH detector in 1990, 1991 and 1992.
These statistics were sufficient to select particular types of event where the jets



50 (100 GeV). 27km

- SPS
_— 22 GeV (e+) Tkm
) - ~ . =

Batl N \'

~~[LINAC (electron)
200 MeV

Figure 1.1: Diagram showing the main features of the LEP collider.
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Figure 1.2: The process ete~ — ff at LEP.
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(b) Final-state radiation from the f or f

Figure 1.3: The lowest-order processes giving rise to initial-state or final-state
radiation at LEP.

emanating from quarks and from hard gluons could be readily identified. The
capability to pick out photons and leptons in the hadronic data was used to
distinguish ¢gy events and pinpoint jets from b and ¢ quarks in ¢gg events. This
enabled a clear comparison to be performed of quark and gluon jets with a range
of energies (Chapter 5). The particle flow in between the jets was also compared
to a perturbative calculation of the soft gluon flow in the event (Chapter 6). From
these analyses conclusions are drawn in Chapter 7 about the role of perturbative
physics in describing the jet formation process. :



Chapter 2

Hadronic jets from etTe™
collisions.

2.1 The process e™ + e~ — hadrons.

The formation and decay of the Z° boson in et e~ interactions was outlined
in the previous chapter. The most common decay mode of the Z° is to a ¢g
pair, as depicted by the Feynman diagram in Figure 2.1, with the ¢ and g each
carrying half the Z° energy. As the q and § move apart, they “fragment” into
jets of hadrons due to the strength of the strong nuclear force. This Z° decay is
thus seen as a pair of back-to-back jets in the detector. In Figure 2.2 a two-jet
event is depicted on the ALEPH event display. At LEP energies, events commonly
occur with three, four or more hadronic jets. These multi-jet events provide
strong evidence [4] for the existence of gluons as the bosons mediating strong
interactions. In the case of a three-jet event (Figure 2.4), the basic process is the
radiation of a hard gluon by the primary q or g, as shown in Figure 2.3. A four-jet
event (Figure 2.6) can be initiated in several different ways. Both q and § can
radiate a hard gluon (Figure 2.5a), or one primary parton can radiate two hard
gluons (Figure 2.5b). Alternatively, one hard gluon may be radiated, which can
itself radiate a gluon or split into a ¢ pair as depicted in Figures 2.5¢ and 2.5d.

2.2 Multi-jet events.

The number of jets in a hadronic event can be defined using a jet-clustering
algorithm. These involve some measure of the separation between particles and a
method of combining the momentum and energy of the tracks if their separation
is small. The “JADE” algorithm [6] has been used in many analyses to cluster
hadrons into jets. Here an invariant mass M;; is computed for each pair of tracks
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et

Figure 2.1: The process e+ -fe —>q+ ¢q at LEP.

K ALEPH pru Run~i6768  £vt-5906
wmill

Figure 2.2: ALEPH event display depicting a two-jet event recorded in the
detector. This shows an end-view through the barrel section with hits in the
tracking chambers and energy deposits in the calorimeters.
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Figure 2.3: The lowest-order processes which give rise to a 3-parton filial-state at
LEP.

Run-9063 Evl. —

Figure 2.4: ALEPH event display depicting a three-jet event recorded in the
detector. This shows an end-view through the barrel section with hits in the
tracking chambers and energy deposits in the calorimeters.
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Figure 2.5: Ezxamples of the lowest-order processes which give rise to a 4-parton
final-state at LEP. This list of diagrams is not erhaustive since some terms
involving gluon radiation from the antiquark and terms with the gluons crossed
have not been included.
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evt-8852

Figure 2.6: ALEPH event display depicting a four-jet event recorded in the
detector. This shows an end-view through the barrel section with hits in the
tracking chambers and energy deposits in the calorimeters.

i and j, given by the formula:
= 2EiEj(l - cos0™)

The pair of particles with the lowest invariant mass are then merged to form
a “pseudo-particle” with a combination of the momentum and energy of the
two particles. is recomputed for the pseudo-particle and the remaining
tracks. This process is repeated until the invariant mass between all the remaining
particles and pseudo-particles is greater than some user defined cut-off ycut. given

by:
Mfj

yut 2
ETOT
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Scheme E Eq P

Energy E,’j =F;,+ Ej Eij =FE; + Ej Eij = ‘pijl

Ei
Momentum | pi; = pi+p; | pij = 35(Pi + i) | Pis = pi +

Table 2.1: Combination schemes for the JADE clustering algo-
rithm.
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Figure 2.7: Jet rates measured by ALEPH using the JADE jet clustering algorithm
with E combination scheme.
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The clusters that remain are taken to be the jets. The tracks can be combined
together according to different schemes, which are summarized in Table 2.1.
The E scheme combines the tracks in a Lorentz invariant way that leads to
pseudoparticles with mass. However in QCD calculations jets are generally treated

as massless objects. The other combination schemes combine 4-vectors to form
massless objects.

The jet rates measured by the ALEPH Collaboration [7] are shown in Figure 2.7
for the E scheme. The jet rates for the JADE algorithm have been calculated using
second-order QCD perturbation theory [8]. This calculation has been fitted to the
data to obtain values for a;. Due to the effect of higher-orders, the 3- and 4-
jet rates are incorrect in the calculation. To obtain a better fit to the data, an
optimised QCD scale was used. The coupling constant a,(u?) at a particular
renormalisation scale u? is related to the QCD scale parameter Azrs by

2
In {In | £
127 (153 — 19N [ (AM—)]
o () = 16! ) 2

B (33 —2N¢)In (%)2 (33 — 2Ny)* ln( w )

Asrs

where Ny, the number of active flavours is 5. Azrz and the scale u? are not
determined by perturbation theory and have been obtained by fitting the second-
order jet rates to data [9]. More recently, the jet rates have been determined
using the DURHAM clustering algorithm [10]. This operates in a similar manner
to the JADE algorithm, but the invariant mass squared is replaced by:

M} = 2min (Ef, Ef) (1 — cos b;;)

This is a measure of the transverse momentum kr of each particle with respect
to the other particle. This algorithm clusters softer particles in a more intuitive
manner than JADE, where they can be clustered to form separate jets. Another
advantage of the kr-based DURHAM algorithm is that it allows a good approx-
imation of the QCD jet rates calculation to all-orders. The leading logarithms
and next-to-leading logarithms for each order in the calculation can be summed
leaving only the subleading terms. This calculation gives a good fit to the data [11]
for a large variation in the scale parameter u?, including u? = MZ%. Various
measurements of o, by ALEPH [11, 12] are summarized in Table 2.2. The result
using the all-orders summation predictions gives a lower error than the exact
second-order calculations and is compatible with the other measurements
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Method Measured
as(Mz) value

QcD corrections to Z° line shape. 0.118 + 0.018
Second-order differential 2-jet rate using 0.121 £ 0.008
JADE E, clustering algorithm.

Second-order energy-energy correlations 0.117 4+ 0.005
Hadronic T-decays 0.118 £ 0.005

All-orders resummed predictions for differential | 0.125 + 0.005
2-jet rate, heavy jet mass and thrust variables.

Table 2.2: Summary of a;(Mz) measurements by ALEPH.

2.3 Fragmentation.

The jet formation process is known as “fragmentation”. This is depicted in
Figure 2.8. With the assumption of “local parton-hadron duality”, perturbative
QcD can successfully predict the jet rates, particularly if higher orders are
approximated. This is represented by the perturbative region (i) in the schematic
diagram. After a certain amount of gluon radiation, the virtuality for the
interactions of the partons drops and a, increases. At some point s becomes
sufficiently large that perturbative QCD is no longer valid. In the absence of any
simple QCD description at this scale, a number of phenomenological Monte Carlo
models [13]- [21] have been devised to describe the non-perturbative region (ii).
This stage in the jet formation process is known as “hadronisation”, since it
is here that “colourless” hadrons are formed from the colour-charged partons.
The final stage of fragmentation (iii), involves the decay of unstable hadrons.
The lifetimes and branching ratios for many decays have been measured and the
results incorporated in the Monte Carlo models. A simulation of the effects of
detectors on the hadrons is often added to the Monte Carlo so that the prediction
can be compared directly with experimental measurements.

Perturbative QCD can be used to predict certain inclusive distributions where
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> (i) (iii > > (iv)

Figure 2.8: Diagram depicting the various stages on the fragmentation of partons
into hadrons.

the local parton-hadron duality hypothesis can be applied. This states that the
hadron distributions follow the parton distributions. The hypothesis originated
from analytical studies of the inclusive momentum spectra of partons compared
to hadrons [22]. Perturbative Qecd also predicts successfully the energy-energy
correlations and the thrust distributions of hadrons. The calculations cannot be
applied to event features which are not infrared safe. Furthermore, perturbative
Qcd is not able to predict the final hadron species produced in fragmentation,
although the theory does involve flavour generating mechanisms.

The prediction of the inter-jet particle flow in three-jet events can be made us-
ing analytical Qcd with certain approximations. This is outlined in Sections 2.6.1
- 2.6.4. Perturbative Qecd cannot be used to describe all the features of hadronic
events. Instead Monte Carlo models are used which have the perturbative physics
incorporated together with some mechanism for generating the non-perturbative
physics.
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2.3.1 Monte Carlo fragmentation models.

The purpose of Monte Carlo fragmentation models is to attempt to describe
fully the features of hadronic events, and to give further understanding to the
underlying fragmentation mechanisms. The models tend to be subdivided into
the processes depicted in Figure 2.8. The perturbative QCD process (Stage i)
can be treated using an exact second-order matrix element calculation, or more
commonly using leading-logarithm approximations, known as the parton shower
approach, which gives a better description of the shape of events. The nature
of hadronic events is influenced by coherence effects, where the radiation of soft
gluons at wide angles for successive gluon radiation is suppressed. If a parent
parton radiates a gluon and either of these partons then radiates a softer gluon,
where the softer gluon is radiated at an angle greater than the first branching, it
acts as if it were radiated from the initial parton. This is equivalent to ordering
in the emission angles of gluons.

Hadronisation (Stage ii) is treated in several different ways in the models.
Independent fragmentation was first used to describe the fragmentation of a
jet [13]). In this method hadrons are split off from each parton, leaving it
with scaled down energy. An energy-independent fragmentation function is
used to describe the fraction of the remaining energy removed by each hadron.
Independent fragmentation models have fallen into disrepute and are rarely used
in LEP studies, since they do not model the data well, particularly in three-jet
events [23, 24]. This may be due in part to the lack of theoretical study of these
models, however other models now exist with more intuitive features. Collinear
divergences can cause problems with independent fragmentation models and they
can also suffer from non-conservation of flavour, energy and momentum. Instead
of independent fragmentation, two hadronisation schemes are widely used, known
as cluster fragmentation and string fragmentation. These are embodied in the
HERWIG and JETSET models, which are described briefly in the following sections.

Cluster Fragmentation in the Herwig model.

In the HERWIG model [20], a parton shower is used to describe the perturbative
stage of the jet fragmentation. This follows the modified leading-logarithm ap-
proach with coherence effects implicit in the process. At some shower cut-off scale,
specified by a parameter in the model, the gluons present are split into quark-
antiquark pairs. The non-perturbative region is treated using “preconfinement”,
with the quarks and antiquarks combined to form colourless clusters with cluster
mass of a few GeV. The clusters are considered as superpositions of a series of
broad resonances. The cluster decays are treated as two body decays which are
dominated by phase space, with the decays isotropic in the rest frame of the
cluster. Each allowed cluster decay channel is given a weight according to the
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density of states of the decay products. This gives a very simple treatment of
hadronisation, with few free parameters in the model.

String Fragmentation in the Jetset model.

The JETSET model [21] uses either a parton shower or the second-order matrix
element calculation to generate the perturbative stage of fragmentation. In the
non-perturbative region a linear confinement principle is evoked, with the colour
field lines from each colour charge confined between the partons. This colour flux
tube is approximated by a string at its centre, stretched between the partons,
and with constant energy per unit length of ~1 GeV/fm. As the partons move
apart, the string between is stretched such that the potential energy of the string
increases. At some point the string may break by the production of a quark-
antiquark pair, with each joined by a string-piece to one of the original partons.
Further breaks in the string-pieces may occur if their invariant mass is large
enough. During this process, the remaining string pieces form the hadrons. Where
a string break occurs, an energy-independent fragmentation function is used to
describe the fraction of energy taken by each string-piece. This fragmentation
function is symmetric and can be applied to either end of the string, as the string
breaks are causally disconnected.

Where there is only a quark and antiquark present after the perturbative step,
the string is stretched directly between the two partons. If in addition there are
gluons present, these are treated as kinks in the string, with each gluon attached
to two string pieces. This formulation, unlike Independent Fragmentation models,
is safe from collinear divergences. In the limit of vanishing gluon energy, the two
parton string picture is regained, so string fragmentation is infra-red safe. As
a consequence of the gluon having two strings attached, the ratio of the gluon
to quark string force is two. Compared to cluster fragmentation, this allows
more scope for quark and gluon jet differences to arise in the non-perturbative
hadronisation stage. The effect of the string model on gluon jet fragmentation is
discussed further in Section 2.6, where the string is seen to have an influence on
the particle flow in three-jet events generated using JETSET.

2.4 Final-state radiation from quarks.

Photon radiation from leptons is a QED process which can be successfully
calculated using perturbation theory. Quarks carry charge, enabling them to
radiate photons in the same way as leptons, but with a lower coupling to the
photon due to the fractional charge of quarks. Photon radiation from quarks
is complicated by competion with gluon radiation. The lowest-order Feynman
diagram for photon radiation from a final-state quark is shown in Figure 2.9.



18 CHAPTER 2. HADRONIC JETS FROM E+*E~- COLLISIONS.

,),*/Zo ,),*/Zo

Figure 2.9: Final-state radiation from the primary q or § at LEP.

Comparing this to Figure 2.3, where a gluon is radiated from the final-state quark,
it can be seen that to first-order the two processes are similar. The relative rates
for these two processes to first-order is given by the ratio of the coupling of the
quark to the photon or gluon, that is e2agep/Cras. The higher-order processes

are more complicated in QCD, due to the effects of colour and the triple and
quartic-gluon vertex.

When combining photon and gluon radiation together, the calculation of the
rates of events with multi-jets and photons becomes more involved [25]. After
the first radiation of a photon or gluon, the energy of the quark available for
further radiation is reduced. Furthermore, the quark recoils during emission
to conserve transverse momentum. There is also the problem of time-ordering,
where the photon can be emitted before or after gluon radiation. It was
explained in Section 2.3.1 that when gluons are successively radiated from a quark,
angular-ordering occurs, and the later gluons are emitted with lower transverse
momentum. Using the same idea, if a soft photon is emitted from a quark with
a transverse wavelength which is long compared to the interaction region, then
it cannot resolve the details of the interaction, and must be emitted at a later
time than the gluon. The order of photon and gluon emission thus depends on
the relative energies that each carries. In events with two jets and an isolated
photon, the photon has high transverse momentum with respect to the jet axis,
so it is likely to have been emitted before gluon radiation had occurred. In events
of this type, the initial radiation of the photon is thus kinematically similar to the
radiation of a hard gluon, which initiates a three-jet event. By comparing these
two event types, the effect of the radiation of a hard gluon on the perturbative
and non-perturbative stages of fragmentation can be studied.

The rates of events with an isolated photon and a number of hadronic jets
has been studied by the LEP collaborations and compared with Monte Carlo
results. The analyses involve clustering of hadronic events using a jet algorithm,
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identification of photons from a background of neutral hadrons and some form of
isolation criterion to define a photon from final-state radiation. Contradictory
results have been obtained because the event cuts used in each analysis can
limit the available phase space to measure photon emission in different ways.
The isolation condition for the photon has been defined using an isolation cone
method [26, 27] and using a jet clustering algorithm [28]. However, if either of
these methods is introduced in the theoretical calculations, then problems such
as infrared singularities can occur.

2.5 Gluon jets.

Three-jet events from et e~ collisions were first seen by the TAsso Collab-
oration at the PETRA collider, running at a centre of mass energy /s of
27 GeV [29]. These provided evidence for the existence of gluons. Less was
known about the fragmentation of gluons than about quark fragmentation, since
at 1/s ~ 30 — 35 GeV the jets are often poorly separated for the purpose of jet
comparisons. Furthermore, the difficulty in identifying gluon jets from quark jets
gives rise to some differences in the results between experimental studies.

2.5.1 Theoretical prediction for quark and gluon jet mul-
tiplicities.

The gluon jet fragmentation is initially influenced by the ggg-coupling, instead of
the gqg-coupling in the case of quark jets. To first order and in the limit of infinite
jet energy, this gives a predicted ratio between gluon and quark jet multiplicities

of %: = %. Higher order corrections have been calculated [30] which modify this
ratio to:

<N Spuark 4 o

< N >gluon _ 9 1— as(Q2) 1 n Nf 2Npr
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giving a ratio of ~2 at the ete~ collider energies. The fragmentation of heavy
quarks gives softer jets with higher multiplicity, compared to jets from lighter

quarks, so the presence of b-quark jets will further reduce the ratio of multiplicities
of gluon and quark jets.

2.5.2 Experimental quark and gluon jet measurements.

Most of the experimental measurements of quark and gluon jet properties have
been made at ete™ colliders. Some analyses used energy-ordering to separate



20 CHAPTER 2. HADRONIC JETS FROM EtE~- COLLISIONS.

quark and gluon samples. Quark jets have also been taken from two-jet events
for comparison. Some attempts have been made to unfold the quark and gluon
jet properties from the samples, but identification of the quark and gluon jets
remains the greatest challenge in the experimental studies.

The JADE collaboration [31] selected three-jet events from ete™ data at
/s =33 GeV. The lowest energy jet (jet 3) in each event had energies in the
range 6-10 GeV and was assumed to be the gluon jet. These were compared to
the medium energy jet (jet 2) in three-jet events at \/s = 22 GeV, which had
jet energies in the same range, and was assumed to be a quark jet. Another
comparison was made with quark jets from two-jet events (jet 1) at /s = 14
GeV. The ratio of the mean transverse momentum of tracks in the jet:

_ <PpL>

iy =
<pL>;

was determined, comparing the gluon jet sample (jet 3) and the quark jet samples
(jet 2 or jet 1). For the first comparison, < r3; > was measured to be 1.1340.04 for
all particles and 1.10 £ 0.05 for charged! particles only. In the second comparison
< ra; > was 1.16 + 0.02 between jet 3 and jet 1 from the two-jet events. From
the first comparison, the ratio of multiplicities was measured as 1.06 + 0.02 for
all particles and 1.07 £ 0.02 for charged particles only.

The HRS Collaboration [32] studied three-fold-symmetric three-jet events with
Vs = 29 GeV at PEP. The jets in each event were ranked by multiplicity and
the jet with highest multiplicity was “tagged” as the gluon jet. After corrections
the ratio < ny > / < n, > was measured as 1.2975:37 % 0.20.

The MARK 1I Collaboration [33] examined the fractional momentum distri-
bution z, = 1’_,;%] for charged track i im jet j for the three-fold-symmetric three-jet

events at 1/s = 29 GeV. Compared to two jet events at \/s = 19.3 GeV, the gluon-
tagged jets had fewer particles with x, > 0.4. The Tasso Collaboration [34]
carried out a similar measurement for three-jet events at /s ~ 35 GeV compared
to two-jet events at /s ~ 22 GeV amnd reported no significant difference between
quark and gluon jets.

The AMY Collaboration [35] hawe analysed asymmetric three-jet events from
TRISTAN with /s = 50 — 60.8 GeV. A mean core energy fraction was defined as
the fraction of the jet energy withim a. cone of half angle 60° around the jet axis.
The lower energy jets with higher gluon content were found to contain a smaller
mean core energy fraction than the higher energy jets in each event. The former
also had a lower mean rapidity for the leading particle in the jet.
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