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SUMMARY

This thesis describes a series of studies on the use of artificial intelligence
in computerised electrocardiography, the history of which is first of all
reviewed. The relatively recent technique of using artificial neural
networks, which aim to simulate the human decision making process, is

thereafter introduced.

In a preliminary study, the vectorcardiogram derived from the twelve-lead
electrocardiogram was studied for the first time in large populations of
Caucasians and Chinese. A total of 2058 vectorcardiograms derived
from conventional twelve-lead electrocardiograms recorded from 1555
healthy Caucasians and 503 healthy Chinese were analysed to establish

the normal limits for Caucasians and Chinese, respectively.

Several conclusions can be drawn from this study:

(1) Age, sex and race dependent variations are present in the derived
vectorcardiogram;

(2) In both races, the maximal spatial QRS vector magnitude, as well
as the maximal QRS and T vector magnitude in the frontal,
horizontal and right sagittal planes, decrease with advancing age
in both sexes and are significantly larger in men in all age groups;

(3) In groups younger than 40 years, the magnitude of the maximal
spatial QRS vector is greater in Caucasians than in Chinese, while
in the groups older than 40 years, it is greater in Chinese than in
Caucasians;

(4) This new data indicates that it is necessary to take racial
differences into consideration for interpretation of the derived

vectorcardiogram.
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The first area in which neural networks were studied related to the
analysis of cardiac rhythm. In particular, the usefulness of neural
networks in separating atrial fibrillation from [sinus rhythm +
(supraventricular extrasystoles &/or ventricular extrasystoles) was
investigated. For this purpose, 3080 visually classified ECGs including
2018 with atrial fibrillation and 1062 with [sinus rhythm +
(supraventricular extrasystoles &/or ventricular extrasystoles)] were used.
Fundamental to this work was the availability of the existing University of
Glasgow ECG analysis program which was based on locally developed

deterministic logic.

This study was divided into five stages:
(1) Selection of the optimum parameters for input to a neural
network;
(2) Determination of the optimum topology of the network;
(3) Assessment of the accuracy of the network;
(4) Combining the deterministic logic result with the output from
the neural network;

(5) Modification of the existing logic.

Several conclusions can be drawn:

(1) A neural network can improve the sensitivity but slightly decreases
the specificity in detecting atrial fibrillation compared to the
existing deterministic program,;

(2) Various combinations of the neural network output and the
deterministic interpretation are not superior to the use of a neural

network alone;
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(3) Modification of the existing deterministic logic can produce
improved performance compared to the use of either a neural

network or the original logic.

The use of neural networks was also intensively studied in the
electrocardiographic diagnosis of myocardial infarction. A total of 1269
electrocardiograms [515 from patients with clinically documented
myocardial infarction (255 anterior and 260 inferior), 144 from patients
with clinically validated left ventricular hypertrophy and 610 from
normals] were used to study the usefulness of the neural network
approach. This study comprised a series of six experiments. Experiments
1, 2, 3 and 4 concerned the use of neural networks in isolation, while
experiments 5 and 6 studied the effects of implanting neural networks

into the deterministic program.

The conclusions drawn from experiments 1-4 on the use of neural
networks in isolation for the diagnosis of myocardial infarction are that:

(1) There is no significant benefit from using derived
vectorcardiographic measurements in addition to
electrocardiographic QRS and ST-T parameters as input variables
to the neural network;

(2) In the two-group situation (normal versus myocardial infarction),
the neural network is superior to deterministic logic for the
detection of myocardial infarction;

(3) In the diagnosis of anterior myocardial infarction, neural networks
trained in the three-group situation (normal versus myocardial
infarction versus left ventricular hypertrophy) perform better than

those trained in the two-group situation, whereas in the diagnosis
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of inferior myocardial infarction, there is no benefit from training
in the three-group situation;

(4) The alteration of the network topology to include three output
neurons rather than one does not lead to any improvement in the
diagnosis of myocardial infarction;

(5) Neural networks using electrocardiographic QRS and ST-T
measurements as input variables are superior to the neural
networks using QRS measurements only;

(6) The enhanced sensitivity of detecting myocardial infarction by the
neural network is more pronounced in inferior myocardial
infarction than in anterior myocardial infarction;

(7) The specificity of diagnosing myocardial infarction by the neural
network in the left ventricular hypertrophy cases decreases
compared to the original logic no matter what training

methodology is used.

Experiments 5 and 6 investigated the incorporation of neural networks
into the deterministic logic together with some modification of the logic.
Compared to the original logic, this resulted in a significant improvement
of sensitivity in diagnosing inferior myocardial infarction (from 69% to
88% on a locally collected test set) and minimal improvement in anterior
myocardial infarction (from 76% to 78% on a locally collected test set). A
final test was made on a completely independent clinically developed
database from the European Union supported project on Common
Standards for Quantitative Electrocardiography (the CSE project). The
new approach produced a relative 16% improvement in sensitivity in
reporting inferior myocardial infarction (from 65.8% using the original
program tested in 1992 on the CSE database to 76.2% on the same

database) but no significant improvement in diagnosing anterior
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myocardial infarction (72.6% versus 72.9% on the CSE database) and
also resulted in a higher specificity for the diagnosis of myocardial
infarction in left ventricular hypertrophy cases compared to using the
neural network alone. The new program was also highly specific with

respect to myocardial infarction when tested on the Chinese normals.

This study presents the first report of artificial neural networks being
implanted into a deterministic program together with modifications to
the logic for the diagnosis of myocardial infarction. This novel technique
has the advantage of allowing existing deterministic criteria to be retained
and enhanced as necessary with resultant diagnostic output produced in

a form acceptable to clinicians.

It was also learned from the present study that it takes less time and
experience to develop a well trained neural network to achieve an almost
equivalent, or in some cases, a better performance compared to
producing a specific section of deterministic logic for the diagnosis of

atrial fibrillation or myocardial infarction.

The limitation of the software based neural network approach is closely
correlated to the inherent limitation of electrocardiography in the
diagnosis of myocardial infarction, whereas in the diagnosis of atrial
fibrillation, there is no such problem because the gold standard of the
rhythm diagnosis is the ECG wave form itself.

In conclusion, neural networks, if carefully designed and appropriately
implanted into a deterministic program along with modifications to the
logic, can selectively enhance the accuracy of computer-assisted ECG

interpretation.
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CHAPTER 1

ELECTROCARDIOLOGY

1.1 INTRODUCTION

Electrocardiology in its broadest sense is the study of the electric field
generated by the individual cells of the heart. The term was first
proposed by Lempert in 1976 (Lempert, 1976). It is just over one
hundred years since the human electrocardiogram (ECG) was first
recorded by a physiologist Augustus D. Waller at the St. Mary's Hospital
in London U.K. (Burchell, 1987; Waller, 1887) and approximately sixty
years since the unipolar electrocardiographic lead was introduced by

Frank Wilson in the University of Michigan, U.S.A. (Wilson et al, 1934).

Electrocardiography has come under increasing pressure in recent years
with the advent of new techniques such as echocardiography, nuclear
perfusion scintigraphy, infarct-avid scan, and nuclear magnetic resonance
radiography which undoubtedly provide information that complements
the electrocardiogram. On the other hand, the Dutch physician H.J.d.
Wellens (1986) regretted the fact that the younger generation of
physicians is increasingly unable to interpret electrocardiograms
correctly, even though electrocardiography is nowadays part of routine
daily medical practice. Fisch (1980) also emphasized the fact that
electrocardiography is a non-invasive technique which is relatively
inexpensive and simple to use. The electrocardiogram also provides

unique information that cannot be obtained by any other investigative
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technique, e.g. ST-T changes and their prognostic importance in the

various cardiovascular abnormalities.

With the advent of modern computer techniques, the electrocardiogram
can be rapidly recorded and interpreted with portable equipment.
Therefore, it is now more practical to use the electrocardiogram as an
aid for clinical diagnosis. Much of the early work in electrocardiography
was carried out in Europe, where today there are still considerable
developmental efforts being expended, particularly in the field of
computer-assisted electrocardiographic interpretation. On the basis of
increasing numbers of electrocardiograms being recorded, there is a need
for their automated interpretation. There are also other reasons for
introducing automated analysis of ECGs. For instance, it is well known
that there is considerable interobserver variation and bias in the
interpretation of electrocardiograms. Frequently, this is due to
inexperience on the part of physicians, especially when junior hospital
doctors have to be involved in this task. On the other hand, cardiologists
who are skilled in ECG reporting may differ in their interpretation of
electrocardiograms because of using varying criteria to reach their
diagnosis. Finally, the computer does not have the human emotional
factor and distraction in the interpretation of electrocardiograms. It was
hoped that the introduction of computer-assisted ECG interpretation
would eliminate these deficiencies and, provided the programming had
been accomplished in tandem with skilled and experienced cardiologists,

could lead to a more uniform and higher standard of ECG interpretation.
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1.2 HISTORY OF ELECTROCARDIOGRAPHY

The first galvanometer had been invented by the mid-nineteenth century
and it was also generally agreed and proved around that period that
nerves, muscles and so on could be stimulated by artificial electrical
generators (Rijlant, 1980). At that time, physiologists were engaged in
exploring the discharge from electric eels, the flow of electric current
through frogs and the effects of injury. Such research work on the
biologically generated electric current was probably initiated by Galvani
but was criticised by Volta who thought that only different metals making
contact could generate electric current. Volta's work led to the
development of batteries (Snellen, 1984), while much of Galvani's
research was continued by du Bois-Reymond, who found that the action
current in muscle was opposite to the direction of a continuous current.
This phenomenon was later demonstrated by his student Hermann to be

present only following an injury to the muscle (Rijlant, 1980).

So far as is known, the first recording of cardiac electrical activity was
performed in 1856 by Kolliker and Muller's demonstration of bioelectric
potentials in the frog's heart (Kolliker & Muller, 1856). They described a
negative deflection measured by a galvanometer prior to each
contraction. Their experiments further confirmed the earlier research on
bioelectric potentials of muscles from guinea pig and frog by du Bois-

Reymond.

In 1876, a French physiologist Marey used the capillary electrometer
invented by Lippmann to record the electric activity of the frog's heart on
a photograph (Marey, 1876). Engelmann as well as Burdon Sanderson

and Page were also among the earliest researchers to plot the potential
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variation of electrical activity of a tortoise heart in 1878 (Burdon
Sanderson & Page, 1878). It is evident that these series of developments

finally led to the first known recording of the human electrocardiogram

by Waller in 1887 [Fig 1-1).

Waller also investigated the possibility of recording potentials from the
limbs of animals as well as from man. In 1889, he published further
observations of the electrocardiogram recorded from his dog Jimmie
using the capillary electrometer. It was stated by Willem Einthoven in
1912 that Waller first introduced the term "electrocardiogram” into
physiological science (Einthoven, 1912). As a consequence of the
investigations of A.D. Waller, research work began into the
establishment of electrocardiography as a method of clinical

examination.

According to Cooper (1986), a French engineer Ader invented the
amplifier and developed a highly sensitive, rapidly moving galvanometer
that used a small wire instead of a coil to register electrical potential.
Dutch physician Willem Einthoven in the University of Leiden had been
dissatisfied with the performance of the Lippmann galvanometer and
instead he used the Deprez-d'Arsonval galvanometer. He also found that
the sensitivity could be improved by replacing the coil with a single fibre
(string). He subsequently described his new galvanometer and
acknowledged the Ader galvanometer which also used a fine wire
stretched between poles of a magnet. Einthoven's wire was 0.002 mm in
diameter, approximately one tenth the thickness of that used by Ader
(Cooper, 1986). ‘
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Fig.1-1 The first human electrocardiogram recorded by Waller in 1887.
t=time in seconds, e=electrocardiogram, h=chest wall movement.
(After Waller 1887)



Einthoven's major achievement was to design a device that was sensitive
enough to record cardiac electrical potentials from the surface of the
body. He also introduced the concept known as "Einthoven's triangle"
which is now classic, whereby the body was represented in electrical
terms by an equilateral triangle, from which the mean QRS axis can be
calculated (Einthoven, Fahr & de Waart, 1913). Einthoven also first used
the terminology of P, Q, R, S, T to describe the deflection of the
electrocardiogram [Fig 1-2] and in 1906 developed a method of so called
"Telecardiography" for transmitting the electrocardiogram over
telephone lines (Burchell, 1987). At that time, leads I, I, and lIl had been
introduced and a variety of different electrocardiographic abnormalities

had been demonstrated by Einthoven (1912).

The three limb leads, denoted I, II, and Il can be represented as follows:

I =EL -ER
I =Efr-ER
)| =Ep-EL

where E[, ER and EF denote the potential at the left and right arms and

left leg, respectively. It follows that

I =1+1I

This is known as Einthoven's Law.

In 1907, electrocardiography was first introduced to clinics by Kraus and
Nicolai at the Berlin Charite Hospital (Snellen, 1984). Einthoven's early

work demonstrated to the medical profession that the electrocardiograph
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Fig.1-2 Definition ofthe deflections ofthe electrocardiogram by Einthoven (1903).
S=time in 0.1 second, Lower tracing shows P,Q,R,S, & T deflection of the ECG.



was of practical, as well as theoretical importance. Einthoven also
produced records of ventricular extrasystoles, ventricular bigeminy, and
atrial fibrillation, although it was Hering and Lewis who examined atrial
fibrillation in more detail (Snellen, 1984). In 1924, Einthoven was

awarded the Nobel prize for his contribution to electrocardiography.

By the middle of the first decade of the twentieth century, polygraphic
methods had been used to investigate the irregularity of the heart beat,
the Einthoven galvanometer had also been developed, and the
electrocardiogram had been investigated more extensively with respect to
clinical correlation. Sir Thomas Lewis in London had used bipolar chest
leads extensively in the studies of cardiac rhythmic disorders (Hollman,
1981; Snellen, 1981). He also contributed to the knowledge of the
spread of electrical excitation through the heart. His measurements of
epicardial activation established the hypothesis on the excitation of the

myocardium.

According to Macfarlane and Lawrie (1989), the English edition of the
book "Arhythmia of the Heart" written by the Dutch physician
Wenckebach was published in 1904. In his book, Wenckebach
acknowledged the Scottish physician Mackenzie's study of the pulse
which was published in 1902. All of Mackenzie's recordings were made
with a polygraph, which allowed two channels of pressure tracing to be
recorded. He recorded the arterial and jugular pulse simultaneously. In

1908, Mackenzie's book entitled "Diseases of the Heart" was published.

In 1914, Frank Wilson, at the University of Michigan, obtained a string
galvanometer and became deeply involved with electrocardiography.

During the 1920s, Wilson and his team undertook many studies
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correlating electrocardiographic findings (essentially limb leads I, 1, and
lll) with abnormalities such as ventricular hypertrophy and bundle branch
block. Nowadays, their concept of "Ventricular Gradient" is still used to
explain certain phenomena. For example, Abildskov (1987) suggested
that inequality of the "ventricular gradient” in different areas of the
myocardium might be responsible for the generation of ventricular

arrhythmias.

Nevertheless, Wilson's major contribution is acknowledged to be his
"central terminal” (Wilson, Johnston, MacLeod & Barker 1934) with
which unipolar chest leads can be recorded. In summary, however, the
concept allows the potential variation at a single point on the chest to be
recorded with respect to a relatively constant reference potential
obtained by averaging the potentials of right and left arms and the left

leg. This configuration records what is known as a "unipolar” lead. If the

potential at the Wilson central terminal is denoted by EycT then
EwcT = 1/3 (ER + EL + Ep)

The next stage in the evolution of the unipolar lead was for Wilson's
team to specify six precordial positions for the exploring electrodes,
which were slightly different from the six praecordial leads V1-V6 used
nowadays (Kossmann & dJohnston, 1935). However, in a series of
publications from 1938 to 1943 the Cardiac Society of Great Britain
and the American Heart Association agreed on six praecordial electrode

positions.

In 1942, Goldberger introduced the "augmented unipolar limb lead" to

electrocardiography. He removed the Wilson central terminal connection
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from the limb on which the exploring lead was placed and this
augmented the potential recorded by 50% (Goldberger, 1942).
Mathematically, the relationship between the modified unipolar right arm
lead (modified VR), which is modified by the removal of the right arm

connection to the Wilson central terminal, and the resultant potential of
the modified Goldberger's Terminal (EGT) for this lead is as follows:

VR = ER -EwcCT

modified VR =ER-E GT
=ER-1/2 (EL + Ep)
=3/2ER-1/2 (EL + EF + ER)
=3/2 | ER - 1/3 (EL + Eg + ER)]
= 3/2 [ ER - EwcTl
=3/2 VR

The modified VR became known as aVR. Similar circuitry was
introduced to record modified VL and VF, i.e. aVL and aVF.

Therefore, the development of conventional 12-lead electrocardiography
was completed. There were three limb leads 1, II, and Il from Einthoven;
three augmented unipolar limb leads aVR, aVL, and aVF from

Goldberger's modification of Wilson's central terminal; and six

praecordial leads V-V arising out of Wilson's central terminal.

The development of electrocardiography continued in many different
directions and progressed through the research of several gifted
electrocardiographers and electrophysiologists. Improvements in the
techniques of measurement, recording, interpretation and modelling as

well as the elaboration of various theories have all contributed to the
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widening and refining of electrocardiology as its stands today.

1.3 HISTORY OF VECTORCARDIOGRAPHY

A vector is an entity with magnitude and direction. The major difference
between the conventional 12-lead electrocardiogram and the
vectorcardiogram (VCG) is the method of display. In the
vectorcardiogram the cardiac electric potential is represented by a single
dipole, the strength and spatial orientation of which at each moment are
depicted by a spatial vector. The changing direction and magnitude of
the instantaneous vectors during each cardiac cycle are displayed as
loops formed by joining the tips of the vectors. The spatial vector loops
are viewed in three mutually perpendicular planes: horizontal, sagittal
and frontal. The phasic and directional changes of the electric forces
generated by the heart are more clearly displayed in the

vectorcardiogram, which is a still picture of one cardiac cycle.

The concept of a vector force was invoked initially by Waller (1887) at
the beginning of human electrocardiography. He produced an
isopotential map which suggested that the electromotive force of the
heart could be represented by a single dipole (Waller, 1887). Later in
1913, Einthoven and colleagues introduced the concept of measuring
the mean electrical axis of the heart which was represented by a vector

(Einthoven et al, 1913) [Fig 1-3].

By building on Waller's and Einthoven's vectorial presentation of
excitation, the experimental and mathematical work was accomplished
for characterising the spatial spread of activation on the basis of the

dipole model. In 1916, Lewis published his work about the concept of a
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Fig.1-3 Vector concept of measuring the mean electrical axis of the heart
according to Einthoven, Fahr & de Waart (1913).



vectorcardiogram (Lewis, 1916). Preliminary theoretical contributions
were on the two component model of Schutz and the "Momentanvektor"
by Koch in 1936 (Snellen, 1984). In 1960, Geselowitz expanded this to
a "multiple-dipole” theory (Geselowitz, 1960).

According to Burch (1985) and Snellen (1984), the first publication
describing a method for manually deriving a "Vectorcardiogram” from
standard limb leads was written by Williams in 1914 (Williams, 1914). In
this case, however, an amplitude was associated with each vector
direction, and if the tips of the vectors had been joined in the correct
sequence an approximate figure-of-eight configuration would have been
seen. In fact, this was later done by Mann, and the loop [Fig 1-4] thus
obtained was called a "Monocardiogram" (Mann, 1920). Mann
subsequently also invented a monocardiograph in 1925 which used a

cathode ray oscilloscope to display the vector loop (Mann, 1938).

The advent of the cathode ray oscilloscope radically changed the
approach to displaying vector loops. The advantage of the cathode ray
oscilloscope was that two separate leads could be applied to opposite
pairs of plates in order to deflect the electron beam in proportion to the
strength of the signal on each axis (Mann, 1938). According to Burch
(1985), Schellong of Germany in 1936, Wilson's team in the United
States in 1937, and Hollmann W. and Hollmann H.E. of Germany in
1937, independently developed systems for displaying vector loops
around the same period. Schellong was the first among them to publish
the vector loops recorded with the cathode ray oscilloscope (Schellong,
1936). In 1936, Rijlant also used a cathode ray oscilloscope to display
the scalar electrocardiogram (Rijlant, 1936). Although early efforts at
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1-4 Monocardiogram recorded by Mann (1920).

Fig



constructing vector loops were in the frontal plane, the use of the

oscilloscope also allowed other planes to be viewed with relative ease.

The concept of a three dimensional vector loop in space gradually grew,
and a number of lead systems were introduced to derive the components
of the resultant cardiac vectors, e.g. McFee and Parungao’s axial lead
system (McFee & Parungao, 1961) as well as Frank's corrected
orthogonal lead system (Frank, 1956).

A perfect lead system for vectorcardiography would consist of three leads

with the following characteristics (Chou & Helm, 1967):

[1] The three leads would be mutually perpendicular and each
would be parallel to one of the rectilinear coordinate axes of
the body. These axes are the horizontal or X axis (right-left
axis), the longitudinal or Y axis (superior-inferior or head-foot
axis), and the sagittal or Z axis (posteroanterior axis).

[2] The three leads would have equal strength.

[3] The lead vectors of the three leads would not only be of equal
amplitude but would also retain the same magnitude and the
same direction for all points where cardiac electromotive
forces are generated.

Vectorcardiographic leads which purportedly meet condition [1] are
referred to as "orthogonal leads". If, in addition, such leads also
reasonably meet conditions [2] and [3], they are termed "corrected
orthogonal leads”, such as those of McFee and Parungao's axial system,

and of the Frank system.

Frank (1954) made use of a tank model of a human torso in which an

artificial generator was placed in order to study the effects of different
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leads on the surface of the body. He created an image surface which
effectively delineated an imaginary torso where lines joining two points
bore a true theoretical relationship to the strength of current flow
between the two corresponding points on the actual torso. In 1956,
Frank (1956) described a seven electrode orthogonal lead system; five
electrodes are placed on the trunk and the remaining two are located on
the back of the neck and on the left leg. Four of the five thoracic leads
are placed at the level of the intersection of the fifth intercostal space
with the parasternal lines, i.e. where the plane formed by this transverse
level intersects the left and right mid-axillary lines, the sternal line, and
the vertebral line. The remaining one thoracic lead is placed at the same
level on the left side of the chest at an angle of 45¢ with respect to the
centre of the thorax, which is determined by the lines joining the other
four points. The Frank lead system is a corrected orthogonal lead

system.

Schmitt and Simonson also made many contributions to theoretical and
practical studies in electrocardiography and introduced the SVEC Il
(Stereo vector electrocardiography) system (Simonson, Nakagawa &
Schmitt, 1957). Wilson and Johnston introduced the term
"vectorcardiografn" to describe the vector loops projected on the three

mutually perpendicular planes (Wilson & Johnston, 1938).

1.4 DERIVED VECTORCARDIOGRAPHY
1.4.1 Introduction

Vectorcardiography has been recognised as a useful clinical

investigational method for the study of the spatial and temporal
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relationships of cardiac potentials (Chou, 1986). Vectorcardiography has
been claimed to be superior to electrocardiography for the diagnosis of
certain cardiovascular abnormalities, e.g. right ventricular hypertrophy
(Chou, 1986), conduction disorders, and inferior myocardial infarction
(Brohet, 1991; Starr et al, 1974; Hurd et al, 1981). The
vectorcardiogram has also been claimed to have special value in
paediatric cardiology, especially for the quantitative assessment of
ventricular hypertrophies and accurate diagnosis of wventricular

conduction disturbances (Brohet, 1991).

The clinical value of the vectorcardiogram is related to the main
characteristics of the method which displays the cardiac potentials in the
form of planar loops [Fig 1-5] in which all instantaneous vectors can be
clearly defined and identified in terms of magnitude and orientation. In
addition, the spatial and temporal relationships of the cardiac potentials
can also be clearly demonstrated. In comparison with the conventional
12-lead electrocardiogram, the vectorcardiogram has been claimed to
have the advantage of more precise delineation of the whole
depolarisation and repolarisation processes and more prominent phase
changes (Chou, 1986). Although the diagnostic superiority of the
vectorcardiogram has been claimed for decades, the conventional 12-
lead electrocardiogram is still the most widely available non-invasive

investigation performed in daily cardiological practice.

The reasons why the vectorcardiogram has not succeeded in replacing

the 12-lead electrocardiogram are as follows :

[l The conventional vectorcardiogram recording techniques are
cumbersome and time-consuming.
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[ii] The recording of a vectorcardiogram using a corrected
orthogonal lead system requires a completely different set of
electrodes compared to those used for recording the 12-lead
electrocardiogram.

liii] The interpretation of a vectorcardiogram is a skill that many
physicians have not acquired.

Several attempts were made to simplify the procedure of recording,
notably the use of the hybrid lead system by Macfarlane (1979), whereby
two additional electrodes V5R and Vpeck Were used to record both the
12 and 3-orthogonal lead electrocardiogram simultaneously. This system
has been used routinely for over 15 years in Glasgow Royal Infirmary for
ECG interpretation. However, this approach and others were never
adopted commercially because of the need for extra hardware.
Furthermore, cardiologists were generally not convinced that additional
benefits could be obtained from the vectorcardiogram. Nevertheless, its
proponents have claimed that the vectorcardiogram might still provide
complementary, if not supplementary, information to that of the
conventional 12-lead electrocardiogram (Brohet, 1991; Edenbrandt &
Pahlm, 1988b; Edenbrandt et al, 1990; Kors et al, 1992).

Much effort has been spent since the early 1960s on research
concerning computer-assisted  diagnostic  classification of the
conveﬁtional 12-lead electrocardiograms (Kors, Talmon & van Bemmel,
1986; Macfarlane, 1990a; Pipberger et al, 1960) and paediatric
orthogonal electrocardiograms (Brohet et al, 1984). Research on
reconstruction of the vectorcardiographic leads from conventional 12
electrocardiographic leads by computing a linear combination of the
electrocardiographic leads, in which the coefficients are arranged in a

reconstruction matrix, has also been investigated (Bjerle & Arvedson,
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1986; Edenbrandt & Pahlm, 1988a; Kors et al, 1990; Wolf et al, 1976).
The approach is relatively new so that research in this field is still active
and ranges from standardisation to methodological aspects of the
diagnostic classification. This vectorcardiogram reconstruction approach
has the advantage that due to utilisation of modern computer techniques,
there is no need to use additional leads other than the conventional
scalar 12 leads to derive the three orthogonal leads and to produce the

vectorcardiographic loops simultaneously.

1.4.2 Methods of Reconstructing the Vectorcardiogram

The synthesis of a particular vectorcardiographic lead can be achieved by

a linear combination of the various electrocardiographic leads (I, II, & all

praecordial leads) with the coefficients (aj, b;, - - - h;; i= 1, 2, 3) arranged

in a reconstruction matrix, i.e.

X= ail + byl + ¢1V] + d1V2 + e1V3 +

f1Vq + g1V5 + h1Ve.

Y= agl + boll + cgV] + doV2 + egV3 +
foVq + g2Vg + haVg.

Z= agl + b3ll + c3V] + d3V2 + e3V3 +
f3Va + g3V5 + h3Vg.

There are basically three approaches for determination of the

reconstruction coefficients.

(A) A single-lead approach

A vectorcardiographic lead is represented by only a single

electrocardiographic lead that resembles it best when suitably scaled. This
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is the simplest form of reconstruction. In this approach, all the input
leads have their coefficients set to zero, except one in each of the three

"Quasi-Orthogonal” electrocardiographic leads.

For example, an uncorrected orthogonal system might consist of

X =h1Vg
Y = ball
Z =d3Va

This method has been described by Kors et al (1986) in the signal-
processing part of their ECG interpretation program. From a set of
simultaneously recorded electrocardiograms and vectorcardiograms from
the same individual, the correlation coefficients between the
electrocardiographic and vectorcardiographic leads were computed. The
electrocardiographic lead which showed the highest median correlation
was chosen for each vectorcardiographic lead. The amplitude adjustment
of these electrocardiographic leads was selected as simply as possible
without compromising the signal-analysis performance. As a result, the

leads X, Y, and Z were approximated by leads Vg, II, and -0.5 Vo

respectively, i.e.
X= Vg

Y=11
Z2=-0.5V9

Bjerle and Arvedson (1986) reported another set of coefficients for leads

X, Y, and Z, namely,
X=1.06 Vg

Y= 1.88 aVF
Z=-0.532 Vo + 0.043 Vg
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(B) A model-based approach

This method was first adopted by Dower et al for the derivation of the
12-lead electrocardiogram from the Frank vectorcardiogram (Dower,
1968; Dower, Machado & Osborne, 1980). Each electrocardiographic
lead was represented as a linear combination of the X, Y, and Z
components of the vectorcardiogram with the coefficients derived from
Frank's torso model (Frank, 1956). In recent years, Edenbrandt and
Pahlm (1988 a & b) at the University of Lund, Sweden have computed
an "inverse" matrix from Dower's matrix (Dower, 1968; Dower,
Machado & Osborne, 1980) for the derivation of the vectorcardiogram

from the 12-lead electrocardiogram.

The equations are as follows:

X=-0.172V1 -0.074V2 +0.122V3 +0.231V4
+0.239V5+0.194V6 +0.1561 -0.0101I

Y= 0.057V1 -0.019V2 -0.106V3 -0.022V4
+0.041V5 +0.048V6 -0.2271 +0.88711

Z=-0.229V1 -0.310V2 -0.246V3 -0.063V4
+0.055V5 +0.108V6 +0.022I +0.102I

In this case, lead Z is directed positively to the back of the thorax.

(C) A statistical approach

In this approach, the reconstruction matrix is derived by a statistical
regression technique. Burger et al (1962) first described the use of this
technique in order to transform vectorcardiograms from one lead system
to another (Burger, van Brummelen & van Herpen, 1962). The

reconstruction coefficients, based on a learning set of simultaneously
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recorded electrocardiograms and vectorcardiograms, are calculated by
minimizing the sum of the squared differences between the target lead
and its reconstruction lead. Wolf et al (1976) derived vectorcardiograms
from electrocardiograms by this approach but the reconstruction matrix

itself was not published.

A multivariate regression obtained by using the BMDP statistical package
was recently described by Kors et al (1990b) for deriving the various
reconstruction matrices for the different segments of the P-QRS-T
complex. A visual comparison of the reconstruction results for a subset
of the learning population, using different reconstruction matrices for P,
QRS and T revealed only very minor differences. Therefore, the
reconstruction matrix from the regression on the QRS complex was

adopted and subsequently applied to the whole PQRST complex.

The equations of Kors et al (1990b) are as follows:

X=-0.13V1 +0.05V2 -0.01V3 +0.14V4
+0.06V5 +0.54V6 +0.381-0.0711
Y= +0.06V1 -0.02V2 -0.05V3 +0.06V4
-0.17V5 +0.13V6 -0.071+0.93I
= -0.43V1-0.06V2 -0.14V3 -0.20V4
-0.11V5 +0.31V6 +0.111-0.23l

1.4.3 The Advantages of Derived Vectorcardiography

Derived vectorcardiography has the following advantages compared to

other vectorcardiographic systems:

1. The use of the same set of standard electrodes as those for
recording the 12-lead electrocardiogram.
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2. The availability of complementary diagnostic information
compared to the 12-lead electrocardiogram.

3. The simplicity of calculation of XYZ leads and display of
vector loops by modern computer techniques.

4. The possibility of incorporating vectorcardiographic criteria
into a conventional 12-lead -electrocardiographic analysis
program.

Recently, the combination of the computerised electrocardiogram and
vectorcardiogram interpretation programs has been claimed to perform
significantly better than each program separately (Kors et al, 1992).
Thus, it was thought that the performance of the automated Glasgow
electrocardiographic analysis program might be further improved by
combining both electrocardiographic and derived vectorcardiographic

criteria.

1.5 HISTORY OF COMPUTERISED ECG

In 1987, Drazen et al (1988) suggested that there were 50 million
electrocardiograms reported annually by computer in the United States.
In addition, there were thought to be around 3 million
electrocardiograms interpreted annually by computer in Japan and

perhaps 8 million per year in Europe (Macfarlane, 1990a).

In the 1960s, there were only two research groups in the U.S.A, both in
Washington, D.C., investigating the use of a large digital computer for
the analysis of electrocardiograms. Pipberger's group favored the use of
simultaneously recorded three orthogonal XYZ leads (Pipberger et al,
1960), while in Caceres' group, the conventional 12-leads were recorded

separately on analogue tape using a relatively high-fidelity method and
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then processed sequentially (Caceres, Steinberg & Abraham, 1962). The
first development was the construction of a device which allowed the
electrical signals generated by the electrocardiograph to be converted
into digital data which can be handled by a computer. This was
accomplished through the construction of an analogue-to-digital
converter (Pipberger et al, 1960). Methods for digital signal filtering were
also introduced in those early days aimed principally at the removal of

60Hz mains interference.

The advantage of simultaneously recorded three orthogonal XYZ leads
was that identical cardiac cycles for all leads were being processed at the
same time. This is not so for the sequentially recorded 12-leads. Analysis
of only one lead at a time was indeed particularly difficult and caused
problems in leads where the projection of the cardiac potentials resulted

in a low amplitude QRS complex.

In order to analyse the 12-lead ECG accurately, Macfarlane (Macfarlane,
1971b; Macfarlane & Lawrie, 1974) suggested that the leads should be
recorded in groups of three simultaneously. These were "I, aVF, V1",
"aVL, II, V4"; "lll, V3, V6"; "V2, aVR, V5", Certainly by this method, the
cardiac cycles measured in one group of three leads were still different
from those in another. However, this represented a significant step in
improving the accuracy of the wave recognition process. This method
was subsequently adopted by Bonner's group in IBM (Bonner et al,
1972), although leads were recorded in groups I, I, llI; aVR, aVL, aVF;
V1, V2, V3; V4, V5, V6.

There were other major differences in approach at the beginning of

research into computerised ECG interpretation and these still persist,
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e.g. the technique of interpretation. Pipberger's group used statistical
techniques involving "prior probabilities”. This approach was different
from the "deterministic” approach which others used. The "deterministic”
approach essentially used a diagnostic tree, with rule-based diagnostic
criteria. Most multivariate statistical techniques require certain advance
knowledge of the likelihood of a particular interpretation. These "prior
probabilities” were dependent upon the population screened. Today,
there are still controversies about whether the computer is interpreting
the actual electrocardiogram or is biased by prior probabilities to such an
extent that the actual waveform is of secondary importance to the clinical
classification (Macfarlane, 1990a). Willems et al (1986) have applied this
statistical approach to the electrocardiographic interpretation using the
known clinical condition and age of the patient. Combinations of the
"deterministic logic" and "prior probability" techniques have been
investigated where at certain points in the logic of a rule-based program,
a decision is made on the basis of statistical probabilities (Zywietz et al,

1977). This area of research is still in progress.

The major technological advance of the 1970s was the advent of the
microprocessor on a single chip. This development led to revolutionary
changes in the approach to ECG analysis and the arrival of automated
ECG analysis at the bedside. In 1977, Macfarlane's group adopted a
completely new system with simultaneous acquisition of all eight
independent leads of the 12-lead ECG and three orthogonal XYZ leads
using a microprocessor-controlled electrocardiograph (Watts & Shoat,
1987) with digital transmission to a central departmental computer for

analysis in Glasgow Royal Infirmary (Macfarlane et al, 1990 b).
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In the 1980s, the most dramatic advances were in the field of
miniaturization of circuitry allowing a complete 12-lead
electrocardiographic analysis to be provided within a relatively small
electrocardiograph producing either a single-channel or a multi-channel
output together with the interpretation. The advent of the thermal writer
also allowed flexibility for the user to print whatever is required. Digital
transmission of electrocardiograms has become the method of choice,
particularly where high-speed networks are available and many
telecommunication systems worldwide are now using digital exchanges.
The development of ECG management systems has also made serial
comparison of electrocardiograms possible. The more recent availability
of optical discs has led to advances in the storage of large numbers of

electrocardiograms on a small disc.

Interpretation of complex cardiac arrhythmias by a computer system
remains a problematic area. There are two types of rhythm analysis
techniques. In one type, all leads (whether they are XYZ or 12 leads) are
recorded simultaneously for up to ten seconds and the program has the
the possibility of using a number of these leads for analysis in reaching
the diagnosis. In the other type, the 12-lead electrocardiogram may have
been recorded in four groups of three leads with varying duration fom
2.5 seconds to 5 seconds. This complicates the analysis when trying to
determine the presence of ectopic beats, particularly if they occur at a
time when the leads are switching from one group to another. Through
the years, there is no doubt that rhythm analysis by computer has been
improved, but there is probably a plateau level above which it is unlikely

that computer techniques can proceed.
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1.6 The Common Standards for Quantitative
Electrocardiography (CSE) Project

ECG computer processing can fundamentally be categorised into three

principal stages (Willems et al, 1990):

(1) Acquisition, transmission and storage of digitised ECG data.
(2) Pattern recognition and measurement.
(3) Diagnostic classification.

In each of these stages, evaluation is mandatory. Therefore, a project
entitled "Common Standards for Quantitative Electrocardiography” was
established and subsequently directed by Willems since 1978
(Macfarlane, 1990a).

The major objectives of the CSE project were formulated as follows

(Willems et al, 1990):

(1) Standardisation of ECG measurement procedures in
quantitative terms; comparative studies of measurements
performed by different programs; drawing of guidelines,
definitions and standards for measurement.

(2) Assessment of the performance of diagnostic classification of
computer programs and algorithmic documentation of their
operation.

(3) Establishment of modest ECG libraries to reach these goals.

The major landmarks have been the set of recommendations for defining
ECG waves processed by computer techniques, the creation of two
databases of electrocardiograms, one for assessing the accuracy of

measurement (Willems et al, 1990) and the other for assessing the
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diagnostic accuracy of computer programs (Willems et al, 1990), and for
the comparative assessment of cardiologists and programs (Willems et al,

1991).

More recently, two separate projects have been established, one to
consider the testing of electrocardiographs which is supported through
the program for Conformance Testing Services (CTS) of the EEC
(Zywietz & Willems, 1993) and the other to establish a Standardised
Communications Protocol (SCP) for ECG data transmission and storage
which was supported through the Advanced Informatics in Medicine
(AIM) program of the EEC (Zywietz & Willems, 1993). A European pre-
normative standard (prENV 1064) has now been established for SCP.

1.7 CURRENT USE OF COMPUTERISED ECG

Nowadays, cardiologists are submerged in the advancing waves of
technology (i.e. echocardiography, nuclear scintigraphy, and magnetic
resonance imaging, etc). Electrocardiography has suffered
understandable neglect. Nevertheless, the startling fact remains that the
single most often used, most cost-effective and most appropriate
diagnostic investigation in cardiology today is the electrocardiogram.
Ironically, it is also, despite its relative simplicity, the most frequently
misinterpreted, often with calamitous results (Macfarlane & Lawrie,
1974). The utilisation of computers for ECG analysis can not only save
time but perhaps can improve the accuracy of interpretation. It is also
acknowledged that computer-assisted ECG interpretations are not always
as accurate as those of skilled cardiologists, who have many years of
experience on which to base their ECG reporting. On the other hand,

cardiologists often disagree over an ECG interpretation. Furthermore,
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their interpretations of the same ECG on separate occasions frequently
differ, with a median repeatability of only 81.2% according to the CSE
studies (Willems et al, 1991). This underlines the problem of choosing a

yardstick with which to judge the computer.

There is stil room for improvement in computerised
electrocardiography. Because artificial neural networks are not rule-based
and can be applied in areas where rules are difficult to formalise or are ill
defined, they are theoretically particularly suitable for application to
visual pattern recognition problems. Therefore it was thought worthwhile
to investigate whether the utilisation of artificial neural networks alone or
in combination with deterministic logic for the analysis of the ECG would

bring enhanced benefit.
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CHAPTER 2

ARTIFICIAL NEURAL NETWORKS

2.1 HISTORY OF DEVELOPMENT OF ARTIFICIAL
INTELLIGENCE

By the early 1950's, there were several major developments in formal
logic and computational theory. Theorists had appreciated the enormous
power of abstract systems of symbols that can undergo rule-governed
transformations. It was thought that if these abstract systems could be
automated, then their abstract computational power would seem to be
displayed in a real physical system. This insight led to two theoretical and

computational developments (Aleksander & Burnett, 1987).

The first development according to Churchland & Churchland (1990)
was "Church's thesis”, which states that every effectively computable
function is recursively computable. "Effectively computable” means that
there is a "rote" procedure for determining the output of the function for
a given input in finite time. "Recursively computable" means more
specifically that there is a finite set of operations that can be applied to a
given input, and subsequently applied over and over again to the
successive results of such applications, to yield the output of this function

in finite time. The notion of a rote procedure is non-formal and intuitive

(Churchland & Churchland, 1990).

The second important development was mathematician Alan M. Turing's

demonstration that any recursively computable function can be computed
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in finite time by a maximally simple type of symbol-manipulating
machine that has come to be called a "universal Turing machine”

(Turing, 1950).

A "universal machine" is basically a machine which can replicate the
behaviour of all machines, both machines that actually exist and
machines that do not exist, but whose behaviour can be specified
formally and in detail. The essence of the universality of the computer,
therefore, does not lie in its real ability to perform functions in the
physical world, but in its capacity to reproduce the logical characteristics
of other systems. Therefore, as far as artificial intelligence is concerned,
the crucial point is that a computer can simulate the operations of any

other mechanisms that process information.

Turing's classic paper "Computing Machinery and Intelligence (1950)" in
which the Turing test was outlined, appeared barely two years after the
world's first computer ran the world's first stored program in a laboratory
at Manchester University U.K. on 21th June 1948. Given the right
program, a large enough memory and sufficient time, these two
developments (Church's Thesis and Turing's Demonstration) make the
standard digital computer able to compute any rule-governed input-
output function. These results imply that a suitably programmed symbol-
manipulating machine should be able to pass the Turing test for
conscious intelligence. This also formed the fundamental research
direction of "Classical" or "Program-writing" Artificial Intelligence

(Aleksander & Burnett, 1987).

Classical Artificial Intelligence has two characteristics as shown below:
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(1) The physical material of any symbol-manipulating machine is
not related to the function it computes. That is fixed by the
program of the machine.

(2) The engineering details of any machine's functional
architecture are also irrelevant, since different architectures
running quite different programs can still be computing the
same input-output function. It was said (Aleksander & Bumett,
1987) that the idiosyncratic way in which artificial intelligence
computes has nothing to do with its function.

This completes the rationale and theoretical background for "Classical

Artificial Intelligence".

2.2 INTRODUCTION TO ARTIFICIAL NEURAL
NETWORKS

For centuries, mankind has sought to understand and duplicate the
processes that constitute intelligence. The advent of modern computer
technology, with its ability to perform many complex tasks far better and
faster than the human brain, has led many to predict that this quest

would soon be completed.

Modern computers are based entirely on one or more central processor
units that are capable of only simple arithmetic and logic operations on
binary numbers. These operations can be combined to perform new
complex tasks. All such work handled by computers including
calculations, word processing and robot control, is done by translating
tasks into binary operations. Information is stored in groups of storage

elements termed "registers", which are separate from the processing unit.
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During the last two decades, the computing industries have made
astounding advances by making the binary processing units (transistors)
smaller and faster, by devising better software environments to facilitate
the translation of complex tasks into binary operations, and by

developing new applications for the technology.

These advances in technology, although impressive, have failed to
produce devices that can approach the capability of human intelligence
in pattern recognition, innovation, and creativity. There is considerable
debate about whether these capabilities will ever be duplicated by the
conventional binary computers (Searle, 1990; Churchland &
Churchland, 1990). Other researchers have started to explore alternative

architectures that hold more promise of success.

The artificial neural network approach, also referred to as connectionism
or parallel distributed processing, adopts a "brain metamorphor” of
information processing (Branscombe, 1990). The artificial neural
network is one such architecture that simulates biological nervous
systems. Its architecture, function, and use differ fundamentally from
those of conventional computers. The fundamental processing units, also
called neurons, of an artificial neural network have similar properties to
those of biological neurons. Neural networks are more like computing
memories where the operations are association of similarity. The neural
network sums positive [excitatory] and negative [inhibitory] inputs to
produce a single output, which in turn synapses with one or more similar
processing units in sequence. Hence, in contrast to conventional
computer systems, artificial neural networks have multiple processing
units functioning in tandem that serve simultaneously as both memory

and processing units. In this approach, information processing occurs
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through interactions involving large numbers of simulated neurons as

shown in Figure 2-1.

Because only numerically valued activation passes from neuron to
neuron in a neural network, neural networks are often classified as a sub-
symbolic level of computation. The input, output, and intemal state of a
neural network can all be characterised by patterns of activation across

its nodes.

These artificial network architectures were explored in the early years of
computer development but were abandoned during the 1960's. Although
cybemeticians continued to analyse the behaviour of neural networks on
paper, and were soon able to simulate it on computers, the attack had
more or less gone by the end of 1960's. The obstacles encountered were
both fundamental and irremediable.‘ On the practical front, the major
problem was undoubtedly the fact that it proved impossible to devise an
artificial equivalent of the neuron which was both reliable and easy to

manufacture in quantity.

In recent years, this situation changed following the introduction of a
"back-propagation” algorithm (Rumelhart, Hinton & Williams, 1986) for
the training of such systems, which has led to enthusiastically renewed
research in this field. Back-propagation is a generalised delta (Widrow &
Hoff, 1960) learning rule developed simultaneously by Rumelhart et al
(1986), Parker (1985), and Le Cun (1985). The back-propagation
mechanism is a powerful, general learning algorithm employing a
gradient or steepest descent heuristic that enables an artificial neural
network to self-organise in ways that improve its performance over time

(Jones & Hoskins, 1987). Among connections pointing from a given
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Input Layer
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FIG 2-1. Basic Structure of a two-layer Neural Network



input neuron, the larger modifications will involve those connections that
point to an output neuron with larger associated deltas (i.e. discrepancies
between actual and target activation levels). Back-Propagation is a
learning mechanism where an error signal is fed back through the
network altering weights as it goes, to prevent the same error from

happening again.

2.3 DESCRIPTION OF A NEURAL NETWORK

An artificial neural network is best described by layers of neurons (nodes),
which share a functional feature, interconnected by synapses [links),
which have certain connection weights or strengths that can be
excitatory [positive weights] or inhibitory [negative weights]. The basic
component of an artificial neural network is the neuron. The function of
a neuron is to compute a numerical value for onward transmission to the
next layer. A two-layer neural network with only input and output layers

is shown in Fig 2-1.

The state S; [activation level] of the ith neuron is given by the inner
product of the input X; applied to it [where Xj is the output of the jth
neuron] and the strength [weight] of the link Wij between neuron i and

neuron j.

This can be expressed by the following equation:

n .
Si= Zwij Xj
j=1

where n represents the number of input connections to neuron i.
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Such a state S; is processed by a transfer [activation] function F, which

produces the output signal Yj of the neuron as follows [Fig 2-2]:

Yi=F(S)

n
Y= F[ ZWij Xj]

j=1

The transfer [activation] function F can be linear or non-linear, and is
used to determine the outputs of a network as a function of its input

variables.

The most commonly implemented non-linear transfer function is the

sigmoid function, i.e.

1
FS)=7T"<3
: [1+e S,]

where S; is the sum of the weighted inputs to the neuron, and e is the

exponential function. The other non-linear transfer functions include

hard-limiter or step functions and threshold logic elements [Fig 2-3]. Note
that the output F(S;) satisfies: 0 < F(S;) < 1.

More complex nodes may include temporal integration or other types of
time dependencies and more complex mathematical operations than
summation. Neural network models are specified by the topology of the
network, characteristics of the nodes, and the training or leaming rules.

These rules specify an initial set of weights and indicate how weights
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FIG 2-2. Transfer Function



(A) 1.00 ;
0.75 ]
0.50 1
0.25 1
0.00 e ———— '
8 8 8 8 8
e 0 © 0 =4
®B) 1.00
0.756
0.50
0.25
0.00 - —_—t 2
8 8 8 8 S
e w © 0 e
© 1.00
0.75
0.50
0.25
0.00 = —
8 8 8 8 2
e w © 0 e

FIG 2-3. Transfer Functions
(A) Sigmoid function
(B) Linear threshold function
(C) Hard limiter or step function



should be adapted during training to improve performance (Lippmann,

1987).

2.4 The McCulloch Pitts Neuron

In 1943, W.S. McCulloch & W. Pitts (1943) of the University of Illinois
described their original research on artificial neural networks in which
they proposed a model of the neuron's logic function from which it was
already apparent that the processing circuitry at the heart of a binary

calculator could be seen in logical as well as arithmetical terms.

According to Aleksander & Burnett (1987), this had in fact been pointed
out in 1938 by Claude Shannon in a paper entitled " A Symbolic
Analysis of Relay and Switching Circuits". The essential point is that the
state of a switch can be seen as representing a "yes" or "no", a "true" or
"false” just as readily as it can be thought of as representing a "1" or a
"0". Thus the logic gates which are used to add, multiply, or apply other
mathematical operations to binary digits, can also be thought of as

"o

implementing logical functions such as "and", "or", "not", etc.

Even more importantly, Shannon showed that a circuit which is arranged
so that the output of one logic operation is fed back to provide one of
the inputs to the next operation would be capable of implementing the

"if" function.

The formal model of the neuron had been described as a threshold logic
unit, which later became known as the "McCulloch-Pitts neuron” [or M-P
neuron] (1943). The M-P neuron is characterised by a finite number of

excitatory or inhibitory inputs, a threshold level and an output. The
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inputs to and outputs from the M-P neuron can assume binary values 0
and 1.

Ji
The output @f the M-P neuron can be described as a function F of its

inputs, that can be expressed as follows:

n
S;=F [ ZWinj - T]

j=1

where Wij is the weight attached to input Xj, and T is a threshold value.

This means that the neuron can be "excited" if the total excitation which

it receives reaches or exceeds the threshold value.

Hebb (Homik, Stinchombe & White, 1989) also worked with neural
networks and developed methods allowing neural networks to learn,
whereby the weight on an activated connection between two neurons
was proportional to the correlation of activity in the two neurons,
reflecting the association of units that typically take part in the same
path.

2.5 THE PERCEPTRON

In 1958, Rosenblatt (1958) showed how a network of M-P neurons with
adjustable weights could be trained to classify certain sets of patterns.
These networks were termed "Perceptrons”. Initially, the weight settings
are arbitrary, so that any stimulation of the network produces an
arbitrary response. To obtain the desired response, the weights are
adjusted in a procedure known as "training” or "learning”. Rosenblatt

popularised the notion of the perceptron, a two layer neural network,
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where the second layer consisted of a single unit with a threshold
activation function, producing binary output. This could classify inputs

and learn weights automatically.

This network can be described as follow:

n ,
Si=F [ ZWinj - T]

=1

IfS;=+1, then selectClassA,
IfS;j=-1, then selectClassB.

where the single node computes a weighted sum of the input elements
Xj, subtracts a threshold T and passes the result ( Z Wij Xj - T) through a

hard limiting non-linear function F such that the output S; is either +1 or

-1. The decision rule is to respond with class A if the output is +1 and

with class B if the output is -1 [Fig 2-4].

M. Minsky and S Papert (1969) of Massachusetts Institute of Technology
published a book "Perceptrons: the principles . of computational
geometry" which suggested that an artificial neural network system, like
the Perceptron, which could be trained to recognise simple images such
as letters of the alphabet and which was designed by F. Rosenblatt
(1958) of Cornell University, had severe limitations in solving the
"Exclusive-OR [XOR|" problem, because the linear function of the
perceptron could only form a single decision boundary. Their publication
had a devastating effect on the research into artificial neural networks in
the early 1970's. The "Exclusive-OR" function has an output which is

logically true when the two inputs are opposite, and differs from the
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"Inclusive-OR" function which is logically true when either input is true,

i.e.
XOR OR
INPUT OUTPUT || INPUT OUTPUT
11 0 11 1
10 1 10 1
01 1 01 1
00 0 00 0

2.6 MULTI-LAYER PERCEPTRONS

The XOR problem was solved by adding an extra "hidden" layer of
neurons between the input layer and output layer of the network.
However, the addition of this extra layer caused problems as the
correlation between the outputs from the hidden layer and the outputs
from the network were not known. Multiple layer networks are feed-
forward networks with one or more layers of nodes between the input
and output nodes. In the standard feed forward neural network, neurons
are arranged in input, hidden, and output layers with interconnections
each of which is assigned a weighting factor [Fig 2-5]. Multi-layer
networks overcome many of the limitations of single-layer perceptrons,
but were generally not used in the past because effective training
algorithms were not available. This has recently changed with the
development of new training algorithms. In 1986, Rumelhart et al
(1986) developed an effective training algorithm (back-propagation delta

rules) to adjust the weights of these hidden neurons (vide infra).
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2.7 THE ARCHITECTURE OF NEURAL NETWORKS

There are two kinds of basic neural network connections: "feed-forward"
and "feed-back" connections (Lippmann, 1987). It might be inferred that
a feed-forward network simulates learned behaviour, and a feed-back

network simulates instinctive behaviour.

2.7.1 Feed-forward Network

In a "feed-forward" connection network, neurons in any layer can be
connected only to neurons in those layers above, i.e. neurons only take
their inputs from the previous layer and only send their outputs to the
next layer. Assuming the nth layer is not the output layer, the output
from any neuron in the nth layer may only be connected to neurons in
layer (n+1) and above. For the same neuron, the connections can be
spread across many layers. Neurons in a given layer do not connect to
each other. The main advantage of the "feed-forward network" is that
outputs from the networks can be computed more quickly by utilising a
single forward pass. There is no time delay while the neurons interact

with themselves and settle into a stable state.

2.7.2 Feed-back Network

In a "feed-back” connection network, the output from a neuron can be
connected to any other neuron ;n any layer of the network, even itself.
Since a neuron is allowed to be connected to any other neuron, feed-
back networks usually have only one layer. The internal neuron outputs
must be computed iteratively until they reach a stable state to reach the

output of a feed-back connection network. There is no way to predict
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how long this will take. Feed-back networks are not trained, but are
constructed. The design of the architecture of the network is usually

determined by the problem to be solved.

2.8 LEARNING ALGORITHMS OF THE NEURAL
NETWORK

The leaming algorithm is the mechanism used to adjust the weights of
the neurons in the network so that the association or correlations
between the input and output can be learmed. The learning algorithms

can be categorised as either "supervised" or "non-supervised”" (Lippmann,

1987; Soucek, 1989).

2.8.1 Supervised Learning Algorithm

The operation of a supervised learning algorithm requires a set of inputs
and desired network outputs in order to train the network to correlate
these patterns. This algorithm is applied iteratively to the network to
adjust the weights of the connections in order to reduce the overall
network errors until all the correlations between the input patterns and
output patterns are correctly learned or trained. In this algorithm, some
kind of external influence is present during training to tell the network

whether or not its output was correct.

2.8.2 Non-Supervised Learning Algorithm

A non-supervised learning algorithm does not function on the basis of
introducing the true result to the network. Instead, this algorithm is based

on competitive learning. Each neuron competes for the control of an
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active input. Neurons receiving the largest input achieve their maximum
value while all other neurons are forced to their minimum. These few
neurons will try to learn all the associations without allowing the majority
of the neurons to participate in the training. Every neuron then learns by
shifting weight from its inactive to its active inputs (Soucek, 1989).
Therefore, the capacity and generalisation abilities of this algorithm are

not very high.

2.8.3 Back-Propagation Learning Algorithm

The most frequently used supervised learning algorithm is the "back-
propagation” learning algorithm (Jones & Hoskins, 1987; Kolen &
Pollack, 1990). This learning algorithm is an iterative gradient algorithm
designed to minimise the mean square error between the actual output
and the desired output of each neuron in a multiple layer feed-forward
network. The algorithm operates on the basis that inputs are presented

to the network and the resulting outputs computed.

The rate and time for convergence of the back-propagation learning
algorithm is influenced by several factors. For instance, the initial
assignment of weights to connections in feed-forward networks which
employ the back-propagation learning algorithm has been shown to have
a significant impact on the time taken for convergence (Kolen & Pollack,
1990). The initially assigned weights introduce either correct or incorrect
associations between certain input and output patterns. Therefore, the
"back-propagation” learning algorithm must not only learﬁ the
associations between the newly implanted inputs and output patterns, but

also "unlearn" any previously incorrect associations.
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It has been suggested that the network weights should be initialised to
small random values between -0.5 and +0.5 to achieve best results. In
addition, the utilisation of limited precision hardware can introduce errors
into the connection weights themselves (Stevenson, Winter & Widrow,
1990). The rate of convergence of the "back-propagation” learning
algorithm has been shown to be influenced by the selection of the
learning rate parameters (Lippmann & Hoskin, 1987; Kolen & Pollack,
1990).

The choice of values for the learning rate parameters (gain and tolerance)
can have the greatest effect on convergence. Large values can make the
networks fail to converge because the algorithm continuously overshoots
the target by over-correcting the weight errors. Likewise, very small
values can result in the same problem because the weights are changing
too little. The convergence factor (gain) used in the back-propagation
learning algorithm of the network determines how fast the back-
propagation converges on the target output value. A large gain may
cause the back-propagation to overshoot the target continuously, thus
causing wild fluctuation in the network output. However, a gain which is
too small may cause a network to take longer to converge. The time for
convergence of the back-propagation learning algorithm is ultimately

determined by the difficulty of the problem to be solved.

Training tolerance of the network is the value by which the actual output
from the network is allowed to differ from the target output, though still
being close enough to be regarded as correct. This is a real number

between 0.0 and 1.0.
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A normalisation procedure in the training process is used to scale the
data from the training set. A maximum value and a minimum value for
each input parameter are determined. Subsequently the training data are
scaled according to such extrema in order to obtain input values ranging

from O to 1 for each parameter.

2.9 CHARACTERISTICS OF THE NEURAL NETWORK

The learning and processing capability of an artificial neural network is
determined by the architecture of the neuronal interconnections and the
training algorithm applied. The behaviour of the network is determined
by the weights (signal modulation characteristics) of the interneuronal
connections which are established during the training process. Rather
than being programmed, the artificial neural network is trained by
presenting sets of inputs together with the corresponding well classified

outputs that the trainer expects the networks to associate with the inputs.

The differences between the artificial neural network and the

conventional rule-based deterministic logic approach have been listed as

follows (Jones & Hoskin, 1987):

1. The knowledge of a neural network lies in the inter-layer
and/or inter-neuron connections and their initial weight
assignments. In contrast, much of the knowledge of an expert
system lies in the rules and logic.

2. A neural network is driven by the activation that passes from
neurons to other neurons in the other layers. In contrast, an
expert system is driven by symbols generated as a
consequence of rule-firing.
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The design or topology of an artificial neural network is to determine the
number of layers in the network and the number of neurons in each
layer. The number of neurons in the input layer is a reflection of the
number of measurements used and is subject to the bias induced from
the selection, while the number of neurons in the hidden layer and
number of hidden layers are determined by trial and error during the

initial development of a neural network.

However, the more neurons used, the greater the capacity of the
network to learn and store associations, but not necessarily to vield a
better result. With too many hidden neurons, a neural network can
simply memorise the correct response to each pattern in its training set
instead of learning a general solution. By limiting the size of the hidden
layers, the neural network is forced to develop appropriate feature
detectors to classify large sets of input patterns efficiently. These general
purpose feature detectors are more likely to be relevant to novel inputs,
so the neural network performs better when the size of the hidden layer
is reduced. This can not only increase the rate at which the computer
can simulate the network (i.e. reduce the time needed for the training),
but also improve the performance of the network (Touretzky &
Pomerleau, 1989).

The hidden layer is composed of neurons that are connected to neurons
in other layers, but do not interact with the environment directly. The
hidden layers enable the creation of an internal representation of the

problem and the correlations found in the training set.

Superficially, artificial neural networks seem to be similar to other

statistically derived algorithms in that a set of data is input and the
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answer is output. However, the relationship between the input and the
output is neither defined nor quantified explicitly in an artificial neural
network. Hence the neural network does not identify the relative
contribution of each input to the output. The pattern recognition process
is similar to the way in which a child learns to distinguish certain
differences between two animals, e.g. cats and dogs. After being fed with
examples of each pattern along with the desired output, the neural

networks correctly learn to differentiate each pattern.

Artificial neural networks have the capabilities of learning to recognise
and identify patterns based on past experience without explicitly
identifying the basis on which this task is performed. Unlike the human
brain, artificial neural networks are not susceptible to bias toward recent
or unusual events and do not suffer from emotional influence, fatigue,
and distraction. Although it is true that a neural network does not have
the capability to create or to perform intuitive reasoning that could
prevent obvious mistakes, its clinical application can still be evaluated like

any other new technology.

The advantages and disadvantages of artificial neural networks can be

summarised as follows:

Advantages:

(1) Artificial neural networks perform well with incomplete data
input.

(2) There is no longer a requirement for lengthy program
development and maintenance times.

(3) There is no "debugging” for incorrect responses.

(4) There is no need for criteria. Essentially, the neural networks
will form their own internal representations (criteria).

(5) The processing of neurons can be carried out in parallel.
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Disadvantages:

(1) The reasoning process by which a neural network comes to its
decision cannot be known.

(2) The performance of a neural network is dictated by the
composition of the training set.

(3) Deficiencies or inadequacies in neural networks can only be
noticed through actual use.

(4) There are no rules for determining the optimal number of
hidden layers and the neurons within them.

(5) It is possible for a neural network to become highly tuned to
the training data.

2.10 CURRENT CLINICAL APPLICATIONS

In recent years, artificial neural networks have been successfully applied
in clinical diagnosis especially for pattern recognition, e.g. Radiological
Images (Boone, Gross & Greco-Hunt, 1990), Quantitative Cytology
(Dytch & Wied, 1990), Electromyography (Spitzer et al, 1990). Neural
networks have also been applied as an aid for clinical decision making in
acute myocardial infarction (Baxt, 1991a & 1991b) and in
dermatological differential diagnosis (Yoon et al, 1989). In computerised
electrocardiography, applications have been focused mainly on ECG
wave form recognition (Casaleggio, Morando & Ridella, 1991) and
diagnostic classification e.g. the differentiation of right and left
ventricular hypertrophy (Bortolan, Degani & Willems, 1991), the
localisation of myocardial infarction (Bortolan, Degani & Willems, 1992),
the classification of electrocardiographic ST-T segments (Edenbrandt,
Devine & Macfarlane, 1992), the recognition of left ventricular strain
(Devine & Macfarlane, 1993), detection of atrial fibrillation (Yang,
Devine & Macfarlane, 1993b) and myocardial infarction (Yang, Devine

& Macfarlane, 1994d). Artificial neural networks have also been used for
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digital Holter ECG data compression (lwata, Nagasaka & Suzumura,
1990). Certain results from these studies are claimed to be comparable
to those of experts (Baxt, 1991, Edenbrandt, Devine & Macfarlane,
1992) and slightly better than deterministic logic with respect to
sensitivity of diagnosing atrial fibrillation (Yang, Devine & Macfarlane,

1993c).

Therefore, it was thought that the application of artificial neural networks
in computer-assisted electrocardiographic interpretation might be of
value in improving the performance of diagnostic software by introducing

objective and unbiased techniques.
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CHAPTER 3

NORMAL LIMITS OF THE
DERIVED VECTORCARDIOGRAM IN
CAUCASIANS AND CHINESE

3.1 INTRODUCTION

As derived vectorcardiography is a relatively new technique for
synthesizing the vectorcardiogram from the conventional 12-lead
electrocardiogram (Edenbrandt & Pahlm, 1988a), no large scale study of
normal limits in either Caucasians or Chinese has as yet been published.
Therefore, the present study was undertaken to establish age, sex and
race dependent normal limits of the derived vectorcardiogram in

Caucasians and Chinese.

In the conventional 12-lead ECG, significant differences between normal
Chinese and Caucasians exist in QRS and T amplitudes, as well as in the
transitional zone location, for corresponding age and sex groups
(Macfarlane, Chen & Chiang 1988; Macfarlane & Lawrie, 1989),
necessitating separate normal limits for men and women in different
races. Since the derived VCG is synthesized from the standard 12-lead
ECG and represents different displays of the same information, logically
the effects of age, sex, and race should also be expected in the derived

VCG.

Computer assisted interpretations based on combining 12-lead ECG and

VCG or derived VCG diagnoses of the CSE data base (1220 ECGs) have
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been shown by Kors et al (1992) to be statistically significantly better
than each diagnosis separately. The total accuracy of ECG + VCG and
ECG + derived VCG were 74.2% and 73.6%, respectively, compared to
69.8% and 70.2% for ECG and VCG, respectively. These authors also
showed that it is not necessary to record a separate Frank VCG, since
the derived VCG performed as well as the original Frank VCG, so it was
thought that, in future, the use of age, sex, and race related derived VCG
criteria based on well developed normal limits might enhance the

diagnostic accuracy of the Glasgow Program.

The derived VCG, however, has recently been claimed to be different in
vector loop configuration, though not in diagnostic content, compared to
the Frank VCG as evaluated by statistical techniques (Kors et al, 1990b;
Rubel, Benhadid & Fayn, 1992). These studies also confirmed that
certain variations exist between the derived VCG and Frank VCG
measurements. Therefore, it was felt necessary to establish the normal

limits of the derived VCG parameters.

Most diagnostic value of the derived VCG comes from the configuration
of the vector loop and not the scalar parameters of the orthogonal leads,
and hence this study concentrates more on the quantitative derived VCG

loop parameters.

3.2 MATERIALS AND METHODS

3.2.1 MATERIALS

A total of 1555 Caucasians (884 men and 671 Women), aged between
16 and 64, were recruited for this study between March 1981 and May
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1991 by the Department of Medical Cardiology in Glasgow Royal
Infirmary. Most were apparently healthy employees of Glasgow District
Council and Strathclyde Regional Council, Scotland. The cohort also
included 30 individuals with atypical chest pain investigated by coronary

arteriography which demonstrated normal coronary arteries.

A total of 503 Chinese individuals (248 men and 255 women), aged
between 18 and 81, were recruited between July 1985 and December
1985 by the Department of Cardiology in Taipei Veterans General
Hospital. The subjects were all residents of Taipei, Taiwan. All individuals
agreed to participate in the project voluntarily, and those who were
younger than 60 years old were selected from the general population.
None was referred from a physician's office. On the other hand,
volunteers aged 60 and older were recruited from the surgical wards of

the Veterans General Hospital in Taipei, Taiwan.

All individuals involved in the present study agreed to participate in the
project voluntarily, and other than 30 individuals with atypical chest pain,
were selected on the basis of there being a complete absence of any
history or physical signs suggestive of cardiovascular disease or any other
abnormalities known to affect the cardiovascular system, such as diabetes
mellitus, endocrine diseases, and chronic obstructive pulmonary diseases,
etc. More than 30% of the Caucasians also had a Chest X ray and/or
Echocardiographic examination performed. For individuals younger than
60 years old, it was thought unnecessary to record a chest radiograph or
to perform blood biochemistry in keeping with the recommendation of

Startt/Selvester (1986).

The age and sex distributions of both races are shown in Table 3-1.
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AGE <30 | 30-39 | 40-49 [ 50-59 | 60+ | Total

Caucasian |M | 242 | 217 210 177 | 38 |884
F 304 [131 |97 120 [19 [671
Chinese M |55 (54 47 49 43 | 248
F 149 61 53 48 44 | 255

Table 3-1 Age and sex distribution of the population
studied. (M=male, F=female.)

Certain individuals with ECG patterns of right bundle branch block, poor
R wave progression over praecordial leads (Zema et al, 1980), or minor
intraventricular conduction defects were included in this study, if their
medical history, physical examination, chest X-ray, and
echocardiographic investigation were all normal. Zema & Kligfield (1979
a & 1979b) have claimed that ECGs demonstrating poor R wave
progression and reversed R wave progression comprise approximately
8% and 2% respectively of routine adult hospital tracings. It is also well
known that the incidence of the ECG right bundle branch block pattern
in an apparently healthy population is 0.5% in men and 0.2% in women
(Ostrander et al, 1965), while the true incidence of the other normal
variants is unknown. There were no individuals with an ECG pattern of

either left bundle branch block or pre-excitation syndrome in this study.

3.2.2 METHODS

For the purpose of the present study, the 12-lead ECGs were recorded in
Taiwan on a Siemens-Elema MINGOREC 4 electrocardiograph, which
incorporated an analogue-to-digital converter operating at 500 samples
per second. A 1-mV calibration pulse generator is integral to the

MINGOREC 4, and hence all measurements were referenced to that
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signal. All leads were recorded simultaneously and were transferred to a
digital cassette which is part of the MINGOREC 4. Subsequently the
cassettes were sent to Glasgow Royal Infirmary for analysis by well
established software (Macfarlane et al 1990) which incorporated the
inverse Dower equations (Edenbrandt & Pahlm 1988a) for the derivation
of the three orthogonal X, Y, Z, leads from the 12 conventional
electrocardiographic leads, so that the derived vectorcardiographic loops
could be printed out together with selected wvectorcardiographic
measurements. The Caucasian ECGs were recorded using a locally
developed electrocardiograph (Watts & Shoat, 1987), which also had a

sampling rate of 500 samples/second.

The Glasgow program calculates a median beat from which all
amplitudes and durations can be measured but also from which
vectorcardiographic measurements and loops can be produced
(Macfarlane et al, 1990b). The program accepts all beats in an 8 or 10
second recording and from these the median beat is synthesized. All
electrocardiographic and vectorcardiographic measurements were
recorded following the recommendations of the American Heart
Association's committee on electrocardiography (1975) and of the
Common Standards for Quantitative Electrocardiography working party
(1985).

Measurements were obtained of the amplitudes and durations of the
components of the three scalar orthogonal leads X, Y, Z (Lead Z in the
present study is directed positively anteriorly) as well as of the various
vectorcardiographic parameters of the frontal, horizontal, and right

sagittal planes. These included the directions of inscription of the QRS
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vector loops, the magnitude of the initial 20 and 30 millisecond QRS

vectors, and the orientation of the initial 20 millisecond QRS vector.

The magnitude of the maximal QRS and T vectors in space and their

projection onto the frontal, horizontal, and right sagittal planes, were

determined. In this case, the Xy, YM, ZM, values which constitute the

maximal spatial vector with magnitude (Xpm2 + Ypm2 + Z?)V/2 are known

and the planar projections are calculated therefrom, e.g. the projection

of the maximum vector on to the frontal plane, has

magnitude = ( X2 + Y)?) /2

orientation = Tan -1 (Yp/Xpy)

On the other hand, the maximum frontal plane vector magnitude is

calculated from the maximum of all

where ( x; , y; ) are pairs of simultaneous measurements in X and Y

respectively. If Xg, YF represent the coordinates when the frontal plane

vector has its maximum value then

maghnitude of maximal frontal plane vector = ( Xg2 + Yg2) 1/2

orientation of maximal frontal plane vector = Tan -! (Yg/Xg)

Similar reasoning holds for the (X, Z) horizontal and (Y, Z) sagittal

planes.
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A bite in the vectorcardiogram has been defined in several ways, such as
(i) a scallop or bulge of the QRS loop (Selvester et al, 1968), (i) a
deformity of the QRS loop (Selvester, Palmersheim & Pearson, 1971),
(iii) a displacement from a smoothly transcribed loop (Selvester et' al,
1968), (iv) an indentation in a smooth vectorcardiographic loop
(Zoneraich & Zoneraich, 1977), or (v) a sudden brief introflection of the
QRS loop profile otherwise normally smooth and convex (Vitolo et al,

1982).

A vectorcardiographic bite is considered to be present if a sector of the
vector loop is found to rotate in the opposite way to the main body of
the vector loop, e.g. a counterclockwise inscribed sector in an otherwise
clockwise inscribed loop. Duration and amplitude are the most common
measurements for the quantification of a vectorcardiographic bite. The
amplitude of the bite is the largest perpendicular distance from the line
through the starting point and end point of the bite (Fig 3-1). Bite
amplitude and duration were measured using software kindly provided by
the Department of Clinical Physiology in Lund, Sweden (Edenbrandt et
al, 1989).

The various parameters were computed automatically with results being
output to a data file which was subsequently interfaced to the BMDP
Statistical Package for analysis of the data stratified by age sex, and race.
In both populations, it was used to derive mean, standard deviations and
96-percentile ranges, which are approximately equivalent to the mean =+
2 standard deviations in a normally distributed population (Simonson,
1961). The descriptive program P7D was used to list the means and
standard deviations of the various derived VCG parameters so that 96

percentile ranges of normal limits could be determined by excluding two
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B =Bite amplitude

Fig.3-1 Bite amplitude is defined as the largest perpendicular
distance from a line connecting the starting and
ending points to the sampling points inside the bite.



percent of values at each extreme of the distribution. The program P6D
was used to produce bivariate scatter plots of various derived VCG
parameters against age and to provide a correlation between the age of
each patient and the parameter under study, as well as a significance
value. The two-sample t-test program P3D was used to determine the
significance of the differences of derived VCG parameters among various

age groups and between the two sexes and races.

3.3 RESULTS

The results of the present study are shown for Caucasians and Chinese
separately in Figures 3-2 to 3-10 and Tables 3-2 to 3-29. Tables 3-6 to
3-29 are presented in Appendix 1. Most of the Tables and Figures are
self explanatory. Two sets of values are given for each parameter in the
tables. On the upper row are shown the mean results with their standard
deviations. Since the distribution of ECG data was found not to be
normal (Simonson, 1961), 96-percentile ranges were also determined for
each measurement. These 96-percentile ranges are shown on the lower
row. Such a range is more appropriate than that obtained from a mean

+ 2 standard deviations when a normal distribution is present (Simonson,

1961).

The ranges of the maximal QRS and T vector angles in the three planes
were presented with due attention being paid to the modal distribution.
Only the 96-percentile ranges of the maximal QRS and T vector angles
are presented. The ranges of the initial 20 milliseconds vector angle are
also presented in the same form. Their means are also shown in Tables

3-14 & 3-15 as their distributions were in a reasonably narrower range.
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3.3.1 Results of Vectorcardiographic Measurements

1. Direction of the inscription of the QRS vector loops in
frontal, horizontal, and right sagittal planes [Fig 3-2]
(Tables 3-2 & 3-3)

Both in Caucasians and Chinese, the dominant direction of inscription in
the frontal plane, horizontal plane, and right sagittal plane is clockwise,
counterclockwise, and clockwise respectively. In Chinese, there was no
clockwise or figure of 8 inscription for men in the horizontal plane. In
Caucasians, there were all varieties of inscriptions in all planes. The

trend of the distribution of the directions of inscription was the same in

both races.
Planes CCW Figure of 8 CW
Frontal M |203[22.9%] | 169[19.1%] | 512 [58.0%)
F 1146121.8%] | 170]25.3%] | 355 [52.9%] ‘
Horizontal | M | 867 [98.1%)] 8 [0.9%] 9 [1.0%)]
F_| 657 [97.9%] 8 [1.2%] 6 [0.9%)]
R Sagittal | M | 32 [3.6%] 74 [8.4%] 778 [88.0%)]
F |11][1.6%] 26 [3.9%] 634 [94.5%)]
Table 3-2. Direction of inscription of the QRS vector loop
in Caucasians. (CW:Clockwise, CCW: Counterclockwise)
Planes CCW Figure of 8 CW
Frontal M |43(17.3%) 47(18.9%) 158(63.7%)
( F | 54(21.1%) 52(20.3%) 149(58.4%)
Horizontal M |248(100%) |0 0
F 1249(97.6%) |0 6(2.4%)
R Sagittal M [ 10(4%) 24(9.7%) 214(86.3%)
F |6(2.4%) 18(7%) 231(90.6%)

Table 3-3 Direction of inscription of the QRS vector loop
in Chinese. (CW:Clockwise, CCW: Counterclockwise)
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2. Magnitude of the maximal spatial QRS vector [Fig 3-3]
(Tables 3-4 & 3-5)

The magnitude of the maximal spatial QRS vector in men is greater than
that of women in each age group both in Caucasians (p<0.001) and
Chinese (p<0.001). The trend of diminution of the maximal spatial QRS
vector magnitude over the total age range was significant for both sexes
not only in Chinese (p<0.001 in men and p=0.015 in women) but also
in Caucasians (p<0.001). The magnitude of maximal spatial QRS vector
is greater in Caucasians than in Chinese in the groups aged less than
forty, yet in the groups aged forty or more, there was no such
relationship; on the contrary, in the older groups', the maximal spatial
vector magnitude of Chinese was greater than that of Caucasians. The
differences between Caucasians and Chinese are statistically significant in

all age groups (p=0.0003).

M F
AGE M+SD Range M+SD Range
<30 2.39+0.62 | 1.28-3.89 | 1.76+0.46 | 0.82-2.79
30-39 [2.07+0.58 | 1.05-3.42 |1.75+0.47 | 0.94-2.74
40-49 |1.79+0.49 | 0.94-2.90 |1.46+0.41 | 0.79-2.26
50-59 | 1.65+0.45 |1.00-2.69 |1.46+0.37 | 0.78-2.22
60+ 1.57+0.43 [ 0.96-2.34 |1.37+0.51 | 0.82-2.32
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M F
AGE M+SD Range M+SD Range
<30 2.14+0.59 | 1.23-3.27 [1.63+0.41 | 0.93-2.34
30-39 | 1.95+0.51 | 1.24-2.90 |1.61+0.34 | 0.92-2.37
40-49 |1.83+0.48 | 0.96-2.72 | 1.52+0.40 | 0.95-2.43
50-59 |[1.78+0.48 | 1.03-2.98 |1.53+0.37 | 0.97-2.29
60+ 1.77+0.51 | 1.05-3.01 | 1.48+0.40 | 0.95-2.43

Table 3-5. Magnitude of maximal spatial QRS vector in
Chinese(mV). [M=male, F=female]

3. Magnitude of the projection of the maximal QRS vector onto
the frontal, horizontal, and right sagittal planes [Fig 3-4]
(Tables 3-6 & 3-7)

The magnitude of the projection of the maximal QRS vector onto the
frontal and horizontal planes is greater in Caucasians than in Chinese in
the groups aged less than forty, yet in the groups aged forty or more, it
is greater in Chinese than in Caucasians, whereas, there is no such
relationship in the right sagittal plane. The magnitude in men is
significantly greater than that in women in both Caucasians (p<0.001)

and Chinese (p<0.001) in all planes.

The age dependent magnitude decreases were found to be statistically
significant for men in all planes both in Caucasians and Chinese
(p<0.001 for Caucasians in all planes; p=0.002 for Chinese in the
frontal plane and p<0.001 in other planes). In Chinese women, the age-
related diminution of the QRS vector magnitude was found to be
statistically significant only in the right sagittal plane (p<0.001); yet in

Caucasian women, these changes were statistically significant in all
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planes (p<0.001). For differences between Chinese and Caucasians, in
the horizontal and right sagittal planes, the differences are statistically
significant (p<0.0001), whereas in the frontal plane, there is no such

significance.

4. Magnitude of the projection of the maximal T vectors onto
the frontal, horizontal, and right sagittal planes [Fig 3-5]
(Tables 3-8 & 3-9)

The magnitude of the projection of the maximal T vector onto all planes
decreases significantly with advancing age for both sexes in Caucasians
(p<0.001) as well as in Chinese (p<0.001). The magnitude in men is
significantly greater than that in women in both races in all planes
(p<0.001). There are significant differences between Caucasians and
Chinese in all planes (p=0.0037 in the frontal plane, p<0.0001 in the
horizontal and right sagittal planes).

5. Ranges of angle of the projection of the maximal QRS vector
onto the frontal, horizontal, and right sagittal planes [Fig 3-6]
(Tables 3-10 & 3-11)

Both for Caucasians and Chinese, the angle of the projection of the
maximal QRS vector in the frontal plane was found to be distributed in a

much narrower range than in the horizontal and right sagittal planes.

The maximal QRS vector angle decreases significantly with advancing
age in the frontal plane (p<0.001) for both sexes and races, while it
increases significantly in the horizontal and right sagittal planes

(p<0.001) only in men for both races (i.e. the maximal QRS vector for
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both races is directed more superiorly and anteriorly in the older age
group). In both races, the maximal QRS vector angle in men is directed

more superiorly and anteriorly than those in women.

6. Ranges of angle of the projection of the maximal T vector
onto the frontal, horizontal, and right sagittal planes [Fig 3-7]
(Tables 3-12 & 3-13)

The maximal T vector angles of women are directed more inferiorly and
posteriorly than those of men in both Caucasians and Chinese. The
trend of the maximal T angle is the same as that of the maximal QRS
angle, except for those aged 60 or over. This apparent change may be
related to the smaller number of individuals studied in the Caucasians

aged 60 or over compared to other age groups.

7. Magnitude of initial 20 milliseconds vector in frontal,

horizontal, and right sagittal planes (Tables 3-14 & 3-15)

For Caucasians, the magnitude of the initial 20 milliseconds vector in the
frontal plane increases significantly with advancing age in both sexes
(p=0.002 in men, p<0.001 in women). In the horizontal plane, the
vector magnitude decreases significantly with advancing age in both
sexes (p< 0.001 in men, p=0.019 in women). In the right sagittal plane,
the vector magnitude decreases significantly with advancing age in both

sexes (p<0.001 in men and women).

For Chinese, the magnitude of the initial 20 milliseconds vector in the
frontal plane increases significantly with advancing age in both sexes

(p=0.005 in men, p=0.003 in women). In the horizontal plane, no
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correlations with age were observed. In the right sagittal plane, the
vector magnitude decreases significantly with advancing age in both

sexes (p=0.003 in men, p=0.002 in women).

In all planes, the differences between Caucasians and Chinese are
statistically significant in all age groups (p<0.0001 in the frontal and
horizontal planes, p=0.0195 in the right sagittal plane).

8. Magnitude of initial 30 milliseconds vector in frontal,

horizontal, and right sagittal planes (Tables 3-16 & 3-17)

For Caucasians, the magnitude of the initial 30 milliseconds vector
increases significantly with advancing age in men only in the frontal
plane (p=0.009), while in the right sagittal plane the vector magnitude
was observed to decrease with advancing age in both sexes (p<0.001 in

men and women).

For Chinese, the vector magnitude was observed to increase significantly
with advancing age only in women in the horizontal plane (p=0.008),
while in the right sagittal plane the vector magnitude was found to
decrease significantly with advancing age in both sexes (p<0.001 in men

and women). In the frontal plane, no correlation with age was observed.
There were statistically significant differences between the two races

(p<0.0001 in the frontal and horizontal planes, p<0.01 in the right
sagittal plane).
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9. Ranges of initial 20 milliseconds vector angles in frontal,

horizontal, and right sagittal planes (Tables 3-18 & 3-19)

There were no significant initial 20 milliseconds QRS vector angle

changes with age in either sex or race.

10. Duration and amplitude of bites in frontal, horizontal, and

right sagittal planes.

Bites were found in only 153 Caucasians. The mean of the amplitude
was 123170 uV in the frontal plane, 114+86 pV in the horizontal
plane, and 104+75 pV in the right sagittal plane; the means of the
durations were 20+8 ms in the frontal plane, 1627 ms in the horizontal

plane, and 18+9 ms in the right sagittal plane.

Bites were found in only 102 Chinese. The mean of the amplitude was
16389 pV in the frontal plane, 140+105 pV in the horizontal plane,
and 151+103 pV in the right sagittal plane; the means of the durations
were 20+8 ms in the frontal plane, 18+9 ms in the horizontal plane,

and 17+8 ms in the right sagittal plane.

There were statistically significant differences of amplitude between the
two races (p<0.001 in the frontal and right sagittal planes, p<0.05 in
the horizontal plane), whereas, there was no statistically significant

difference in duration.
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3.3.2 Scalar Measurements

1. P wave amplitude (Tables 3-20 & 3-21)

For Caucasians, the P wave amplitude in lead X increases significantly
with advancing age in women [p<0.001]. In lead Z, P wave amplitude
decreases significantly with advancing age in both sexes [p<0.001 in

both sexes].

For Chinese, the P wave amplitude in lead X increases significantly with
advancing age in both sexes [p=0.001 in men, p<0.001 in women]. In
lead Y, P wave amplitude increased significantly with advancing age in
women [p=0.043]. In lead Z, P wave amplitude decreases significantly

with advancing age in men [p<0.001].

2. P wave duration (Tables 3-22 & 3-23)

For Caucasians and Chinese, P wave duration increases significantly with

advancing age in both sexes [p<0.001 in all leads and both sexes].

3. R wave amplitude [Fig 3-8] (Tables 3-24 & 3-25)
For Caucasians in all three orthogonal leads, R wave amplitude decreases
significantly with advancing age in both sexes [p<0.001 in all leads and

both sexes except p<0.005 for women in lead X].

For Chinese in lead Y, R wave amplitude decreases significantly with

advancing age in both sexes [p=0.001 in men, p<0.001 in women]. In
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lead Z, R wave amplitude decreases significantly with advancing age in

both sexes [p<0.001 in men, p=0.019 in women].

4. S wave amplitude [Fig 3-9] (Tables 3-26 & 3-27)

For Caucasians in lead Z, directed positively to the anterior, S wave
amplitude decreases significantly with advancing age in both sexes
[p<0.001]; while in lead X and Y, no such correlation with age was

observed.

For Chinese in lead Z, S wave amplitude decreases significantly with
advancing age only in men [p<0.001}], while there were no such age

dependent changes found in lead X and Y.

5. T wave amplitude [Fig 3-10] (Tables 3-28 & 3-29)

For Caucasians in all three orthogonal leads, T wave amplitude decreases
significantly with advancing age in both sexes [p<0.001 in all leads and

both sexes , except p=0.023 for women in lead Z].

For Chinese in all three orthogonal leads, T wave amplitude was found
to decrease significantly with advancing age in both sexes [p<0.001 for
men and women in lead X; p=0.007 for men and p=0.001 for women

in lead Y; p<0.001 for men and p=0.047 for women in lead Z].

6. Differences between two races in the amplitude of the R

wave and S wave inleads X, Y, & Z.

There were significant differences in lead Z for both R wave and S wave

amplitude in both sexes (p<0.0001), while in lead X, there were also
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statistically significant differences in the S amplitude between Caucasians

and Chinese in both sexes (p=0.0149).

3.4 DISCUSSION

3.4.1 General Discussion

The vectorcardiographic parameters measured included the directions of
inscription of the QRS vector loops, the magnitude of initial 20 and 30
millisecond QRS vectors and the direction of the initial 20 millisecond
QRS vector. These parameters were measured because of the
importance of the initial portion of the QRS vector loop for the detection
of myocardial infarction. Since the velocity of movement of the wave of
depolarisation through the myocardium is much more variable than the
direction of the initial forces, it is more difficult to quantify the effects of

loss of myocardium on terminal forces (Chou, 1986).

Bites have been reported to be found more frequently in patients
suffering from diabetes mellitus (Riff & Riff, 1974), adriamycin induced
cardiomyopéthy (Vitolo et al, 1982), and myocardial infarction
(Morikawa et al, 1987) than in normal individuals. Vectorcardiographic
bites have been claimed to represent localised small myocardial fibrotic
lesions (Selvester, Palmersheim & Pearson, 1971). Nevertheless,
vectorcardiographic bites can also be present in normal individuals
without evidence of cardiovascular abnormalities (Pipberger, 1968).
Therefore, an assessment of vectorcardiographic bites was also included

in the present study.
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Individuals with an ECG pattern of poor R wave progression over the
praecordial leads were also included in the present study. It has been
claimed that poor R wave progression is found in approximately 7% of
patients with no disease or poor electrode placement, and is not related
to patient morphology (Zema et al, 1980). Although the aetiology of
poor R wave progression in normal individuals still remains uncertain and
may be related to a complex interaction of variables, its presence in the
normal adult population cannot be neglected and therefore 30 atypical
chest pain volunteers with this pattern investigated by coronary

arteriography were also included in the present study.

3.4.2 Influence of Age, Sex and Race on ECG and VCG

measurements

Age, sex, and race have also been found to influence the normal
electrocardiographic and Frank vectorcardiographic measurements,
according to several previous reports (Draper et al, 1964; Macfarlane,
Chen & Chiang, 1988; Mizuno, 1966; Nemati et al, 1978; Pipberger et
al, 1967; Sotobata, Richman & Simonson, 1968). The single factor that
most affects the variation in electrocardiographic measurements is age
(Simonson, 1961), the influence of which is apparent from birth to
death. An earlier report (Chen, Chiang & Macfarlane, 1989) also
confirmed this finding using the 12 lead ECG in the presently studied
group of Chinese individuals in whom body mass index contributed less
than half of the variation in QRS amplitude compared to age. On the
other hand, the influence of sex tends to be more important in young
adulthood around puberty but has a much less important role to play at
either extremes of age (Macfarlane & Lawrie, 1989). Age and sex have

been found by practically all investigators to influence the normal
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electrocardiographic parameters more strongly than all other factors

(Simonson, 1961).

Significant differences of QRS wave and T wave amplitude as well as
duration have been clearly demonstrated between American Whites and
Blacks (Nemati et al, 1978). Racial variations in certain ECG parameters
do exist particularly between praecordial QRS amplitudes in
corresponding age and sex groups, e.g. between Chinese and
Caucasians (Macfarlane, Chen, & Chiang, 1988). Since the derived VCG
is synthesized from the conventional 12-lead ECG, logically these racial
variations should also be present in the derived VCG as was confirmed in
the present study, which has utilised the essentially identical ECG
recording and analysing techniques as well as derived VCG synthesis
method in both populations studied. Therefore, any differences between
the two populations in the corresponding age and sex groups can only
be derived from the racial variations and not from the processing
procedures. Thus, this comparative study illustrates and confirms the
necessity to include racial variations in ECG diagnostic criteria in order to
achieve further improvement in the sensitivity and specificity of an

automated ECG analysis program.

3.4.3 Direction of Inscription of the QRS Vector Loop

In our Chinese population and their Caucasian cohort, the directions of
inscription of the QRS vector loop in the frontal, horizontal, and right
sagittal planes (Tables 3-2 & 3-3 and Fig 3-2) were similar to those of
various published studies which used the Frank lead system in Caucasians
(Chou & Helm, 1967; Draper ‘et al, 1964; Edenbrandt et al, 1987;
Liebman et al, 1973; Lyon & Belletti, 1968; Macfarlane, Lorimer &

97



Lawrie, 1971; Nemati et al, 1978; Pipberger et al, 1967; Simonson et
al, 1960; Sotobata, Richman & Simonson, 1968; Witham & Lahman,
1970).

3.4.4 Age Dependent Changes in derived Vectorcardiographic

Magnitude Measurements

The most conspicuous age changes were found in magnitude
measurements in various previous studies using the Frank lead system in
Caucasians (Chou & Helm 1967; Edenbrandt et al, 1987; Liebman et al,
1973; Witham & Lahman, 1970). The results of the present study
coincide with this finding. The age dependent magnitude change of the
maximal spatial QRS vector was observed in both sexes (Table 3-5 & Fig
3-3).

For example, in men the mean value of the maximal spatial QRS vector
magnitude decreases from 2.39mV (Caucasian) and 2.14mV (Chinese) in
the under 30-year-old age group to 1.57mV (Caucasian) and 1.77mV
(Chinese) respectively in the over 60-year-old age group, whereas in
women, it decreases from 1.76mV (Caucasian) and 1.63mV (Chinese) to
1.37mV (Caucasians) and 1.48mV (Chinese) respectively in similar age
groups. This trend of diminution of 34% in Caucasian versus 17% in
Chinese for men and 22% in Caucasians versus 9% in Chinese for
women further highlights the variation between the two races. These
results are in concordance with the results of previous Caucasian Frank
VCG studies (Draper et al, 1964; Macfarlane & Lawrie, 1989; Nemati et
al, 1978; Pipberger et al, 1967; Sotobata, Richman & Simonson,
1968).
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The magnitude of the maximal T vector was also found to decrease with
advancing age in both sexes in the frontal, horizontal, and right sagittal
planes. The age dependent magnitude change of the maximal T vector
was more significant than that of the maximal QRS vector either in

Chinese or in Caucasians.

In the planar projections of maximal QRS vectors, age dependent
magnitude decreases were found to be significant in the frontal,
horizontal, and right sagittal planes in Caucasians and Chinese men. This
observation is similar to the studies using the Frank lead system by
Draper et al (1964), Pipberger et al (1967) and Lyon et al (1968) in
Caucasian men. In Chinese women this age dependent change was
found to be significant only in the right sagittal plane. In the planar
projections, the magnitude of the maximal QRS and T vectors was
observed to decrease with advancing age in all planes for both sexes in
Caucasians (Table 3-8) (Fig 3-5). The age dependent magnitude change
of the maximal T vector was more significant than that of the maximal
QRS vector in the horizontal and right sagittal planes, while in the frontal
plane,' this trend could be demonstrated only in the younger individuals

aged less than forty (Fig 3-4 & 3-5).

3.4.5 Age Dependent Angular Changes of the Derived VCG

The ranges of angles of maximal QRS vectors were found to shift
superiorly and anteriorly with advancing age in both sexes in Chinese, an
observation which is similar to the results of previous studies using Frank

VCGs in Caucasians.
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3.4.6 Age Dependent Changes in Scalar Measurements

In the three orthogonal leads, the P wave duration was found to increase
with age in both Chinese and Caucasians (Tables 3-20 & 3-21). This
observation may be ascribed to slowed conduction through the specific
intraatrial conduction systems or the atria. The slower conduction with
advancing age may be due to sclerodegenerative processes affecting the

conductive tissue or the atria themselves (Zoneraich & Zoneraich, 1971).

The most significant age dependent changes of the three orthogonal lead
measurements were in the amplitude of the T wave. This was noted to
decrease with advancing age in both Chinese and Caucasians. In lead X
and Y, the amplitude of the R wave was smaller in the younger Chinese
men and women than in Caucasians. Above age forty, no such relation
existed. On the other hand, in lead Z, the amplitude of the R wave was
greater in Chinese men and women than in Caucasians in each
corresponding age group (Fig 3-8). This may imply that Chinese in
general have a thinner chest wall, so that the amplitude measurements in

the anteroposterior direction are significantly greater than in Caucasians.

3.4.7 Sex Differences in Derived Vectorcardiographic

Magnitude Measurements

The present study also revealed that women had, on average, smaller
QRS and T vector loops than men in all age groups (Table 3-8 & 3-9).
There was also a statistically significant difference in magnitude in all
planes in each age group. According to an autopsy study of the normal
human heart by Kitzman et al (1988), body mass and body surface area

(BSA) in adults of both sexes are better univariate predictors of normal
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heart mass than is body height. When matched for age and BSA,
however, normal heart weight is greater in men than in women and the
correlations between heart weight and BSA were better in men than in
women. In contrast to the well established correlation between BSA and
heart mass, the relationship between age and heart mass in adults is
somewhat controversial. The present study has demonstrated
significantly larger QRS and T vector magnitudes in normal males than
in normal females, which can be implied from the fact that the normal
male has on average a greater cardiac mass and hence, cardiac
electromotive forces than the normal female. The maximal QRS and T
vectors showed a statistically significant difference in magnitude in the
frontal, horizontal, and right sagittal planes in all age groups. There was
also a statistically significant sex difference in the magnitude of maximal
spatial QRS vector in all age groups, although in a previous study of
Caucasians and Japanese by Sotobata et al (1968), it was found that the
right sagittal maximal QRS and the frontal maximal T vectors failed to
show significant sex differences in their magnitude. These variations may
be ascribed to the racial difference and the small number of subjects in
their study [102 women and 101 men]. The smaller QRS and T vector
magnitude in women have been ascribed to differences in torso size,
higher content of body fat, and smaller average heart size (Nemati et al,

1978; Sotobata, Richman & Simonson, 1968).

3.4.8 Sex Dependent Angular Changes of the Derived

Vectorcardiogram

The maximal T vector angle is one of the parameters in which the most
prominent sex differences were observed. In women, it is, in general,

directed more posteriorly or more inferiorly in each plane than in men.
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The directional difference in the horizontal plane is ascribed to the fact
that the anteroposterior component has a larger sex difference than the
leftward component because of constitutional factors (Nemati et al,
1978; Sotobata, Richman & Simonson, 1968). The present study

reconfirmed this finding.

The observation of a more posterior orientation of the maximal T vector
in women in the horizontal plane is comparable to findings by Simonson
et al (1961) and Nemati et al (1978) in Caucasians. This observation may
be inferred from the electrocardiographic observation of more marked
sex differences in lead V2 and V3 than in the left praecordial leads with a
negative mean T amplitude value for women and a positive mean value
for men in lead V1 (Macfarlane, Chen & Chiang, 1988; Nemati, Doyle
& McCaughan, 1978; Simonson et al, 1960). This is also consistent
with the findings of Mizuno (1966) that in healthy Japanese women,
there was a higher incidence of negative T waves in leads V1 through V3
than in men. This phenomenon was also found to exist in Chinese
women. In 10% of Chinese women between 40-49 years, there was a
negative T wave component in lead V2 and 6% had a similar finding in
V3. These percentages are much higher than in apparently healthy
Caucasian women who rarely have an inverted T wave in V2 and almost
never have an inverted T wave in V3 (Macfarlane, Chen & Chiang,

1988).

3.4.9 Racial Differences in Derived Vectorcardiographic

Magnitude Measurements

In a previous study of twelve-lead electrocardiograms in Chinese (Chen,

Chiang & Macfarlane 1989, Macfarlane, Chen & Chiang, 1988), the
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amplitude of the QRS complex was generally smaller in Chinese than in
Caucasians. This implies that the magnitude of the spatial maximal QRS

vector in Chinese should be smaller than that in Caucasians.

In the present study, the maximum QRS spatial vector had a mean
magnitude in Chinese of 1.89+0.53 mV in men and 1.55+0.38 mV in
women while in Caucasians it was 2.39+0.63 mV in men and
1.76+0.47 mV in women. This compares with 1.58+0.43 mV for white
males and 1.87+0.45 mV for black males (Pipberger et al, 1967), as
well as 1.35+0.36 mV for a mixed white and black female cohort using
the Frank VCG (Nemati et al, 1978). These data present a confusing
picture from small numbers of individuals in the various age groups.
Clearly, maximum values will come from the younger age group but the
number of younger blacks in the study of Pipberger et al (1967) was not
stated. In any event, derived vectorcardiographic measurements may
differ from actual Frank vectorcardiographic measurements in the same
subject. It might be concluded, however, that derived VCG amplitudes

are higher than corresponding Frank VCG measurements.
There were also statistically significant differences of the bite amplitude
between the Caucasians and Chinese, whereas there was no difference

in bite duration between the two races.

3.4.10 Summary of Similarities in the Derived

Vectorcardiographic Measurements in the two Races

The similarities of the trends in various derived VCG parameters between

Caucasians and Chinese can be summarised as follows:
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Similarities:

(1) The dominant directions of inscription of the vector loops were
the same in both races (i.e. frontal plane:clockwise, horizontal
plane:counterclockwise, right sagittal plane: counterclockwise);

(2) The magnitude of the maximal spatial QRS and T vectors in men
are greater than in women;

(3) The magnitudes of the spatial QRS and T vectors decrease with
advancing age;

(4) The maximal QRS and T vector angles are directed more
superiorly and anteriorly in the older age groups;

(5) The maximal QRS and T vector angle in men are directed more
superiorly and anteriorly than those in women;

(6) The magnitude of the initial 20 milliseconds vector increases with
advancing age in the frontal plane while it decreases in the right
sagittal plane;

(7) There is no significant age dependent change of the initial 20
milliseconds vector angle.

3.4.11 Summary of Differences in the Derived

Vectorcardiographic Measurements Between the two Races

The differences in the various derived VCG parameters between the two

races can be summarised as follows:

Differences:

(1) There is no clockwise or figure of 8 inscription of the QRS vector
loop for Chinese men in the horizontal plane;

(2) The magnitude of maximal spatial QRS and T vectors in Chinese
is smaller than in Caucasians;

(3) The magnitude of the maximal spatial QRS vector is greater in
Caucasians than in Chinese in the groups aged less than forty,
whereas in the groups aged above forty it is greater in Chinese
than in Caucasians. These phenomena also exist in the frontal
and horizontal planar projections of the maximal QRS vectors. In
the right sagittal plane, there is no such relationship;
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(4) The age dependent diminution of the maximal QRS magnitude is
only significant in the right sagittal plane for Chinese women but
is significant in all planes for Caucasian women;

(5) The magnitude of the initial 20 milliseconds vector decreases
significantly with advancing age for Caucasians but not for
Chinese in the horizontal plane.

These discrepencies between the two races may be related to
environmental, occupational, or dietary variations. In a previous 12-lead
ECG study (Macfarlane, Chen & Chiang, 1988), the body mass index
was found to be lower in the Chinese individuals compared to the
Caucasians in the corresponding age and sex groups. It might be inferred
that the difference in the magnitude of the QRS and T vector is due to
the difference in the thoracic muscle mass and the fat content, but this
cannot explain the diécrepancy for the groups aged forty or more. This
mandates further investigation and is beyond the scope of the present

study.

Although the trends of the derived VCG parameters are in concordance
with the previous observations using the Frank lead system in studies on
Caucasians and Japanese (Draper et al, 1964; Mizuno, 1966; Nemati et
al, 1978; Pipberger et al, 1967, Sotobata, Richman & Simonson,
1968), nevertheless, the quantitative derived VCG parameters and the
derived VCG vector loop configuration are different from those of the
Frank VCG measurements (Edeﬁbrandt & Pahlm, 1988; Kors et al,
1990b; Rubel, Benhadid & Fayn, 1992). The effects of age and sex on
the magnitude of the vector for both races are well demonstrated in the
present study. Thus, further investigations to assess racially dependent
derived VCG diagnostic criteria based on these normal limits are

necessary. Various cardiac conditions, e.g. myocardial infarction,
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ventricular hypertrophy, and bundle branch block, required to be

included in any such study.

3.5 CONCLUSION

The data from the present study illustrate significant age, sex and racial
variations in the derived VCG. These are of potential importance for
diagnostic  applications. The specificity of vectorcardiogram
interpretation can be further enhanced by the utilisation of age, sex, and
race-corrected normal ranges. The main use of these results is likely to lie
in obtaining diagnostic vectorcardiographic criteria which are
supplementary to those of the conventional scalar 12-lead ECG.
Macfarlane and Edenbrandt (1992), in a short discussion article, showed
how the derived vectorcardiogram could help to distinguish between
different abnormalities when the diagnosis from the scalar 12-lead ECG
alone was not clear. For example, in patients with non-specific poor R
wave progression in the 12-lead ECG, some may have derived
vectorcardiographic loops which appear normal, while others may have
loops in which bites can be detected, suggesting that the low R waves are
due to myocardial infarction. It is hoped that the present work will in
future allow highly specific vectorcardiographic criteria to be derived
from the 12-ead ECG for incorporation into an automated program for

the analysis of the resting 12-lead ECG.

The significance of these observations is that they provide further
evidence that race is an important factor that should be taken into
consideration for an automated ECG interpretation program. In

conclusion, it is hoped to incorporate age, race and sex dependent
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derived VCG diagnostic criteria into the Glasgow Program in the future

in order to improve its sensitivity and specificity.
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CHAPTER 4

SOFTWARE BASED ARTIFICIAL NEURAL
NETWORKS FOR THE DIAGNOSIS OF
ATRIAL FIBRILLATION

4.1 INTRODUCTION

Atrial fibrillation (AF) is a common atrial arrhythmia, with a prevalence of
approximately 2% in the general population (Dunn et al, 1989). It
appears more commonly in the elderly, affecting about 5% of persons
over 60 years of age, and its incidence increases with advancing age
(Kannel et al, 1982). The importance of atrial fibrillation is emphasized
by its association with between 6% and 24% of ischaemic strokes and
with about 50% of cardioembolic strokes (Cerebral Embolism Task
Force, 1986 & 1989). The definitive diagnosis of AF is usually made by
electrocardiograms (ECGs) showing an absence of discrete atrial activity,

an irregular undulating baseline, and a variable RR interval.

Before the introduction of computers for electrocardiogram
interpretation of cardiac rhythm, each ECG had to undergo visual
classification by experienced cardiologists. Since the ECG is one the
most available and most cost-effective, non-invasive investigational tools
for the diagnosis of cardiac rhythm in modermn daily cardiological
practice, demand has increased in recent years, resulting in additional
work for cardiologists. On the other hand, the interpretation of cardiac
rhythm from an ECG needs experience and expertise. For these reasons,

it was hoped that the application of computers to ECG analysis could not

108



only save time but perhaps also improve the accuracy of the
interpretation of cardiac rhythm. As far as is known, all programs for

computer-assisted ECG rhythm interpretation use deterministic logic.

Although computer-assisted ECG interpretation was introduced in the
early 1960s, rhythm analysis is still one of the problematic areas
requiring further research. In Glasgow Royal Infirmary, three orthogonal
leads X, Y, Z were initially used for the development of methods for the
interpretation of cardiac rhythm (Taylor, 1973). Subsequently, the
selection of three leads from the simultaneously recorded 12
" conventional leads was utilised for rhythm analysis (Macfarlane, 1986b;
Macfarlane et al, 1986a). Up until now, a diagnostic tree or a set of
diagnostic criteria with sharp thresholds for classification have been used
in essentially all computer-assisted rhythm interpretation programs (e.g.
Macfarlane et al, 1990b). This deterministic logic might function
satisfactorily if the measurements related to P waves or fibrillatory wave
detection were accurate and reliable. However, isolated P waves can
sometimes be missed and fibrillatory waves at higher heart rates can

often not be detected by the computer or even by human eyes [Fig 4-1a].

Deterministic logic is currently applied to rhythm analysis in computer-
assisted electrocardiographic interpretation methods developed in the
department of Medical Cardiology of Glasgow Royal Infirmary
(Macfarlane et al, 1990b). Recently, a locally developed artificial neural
network simulation software package (Devine, 1990) has become
available, and has been applied to the classification of
electrocardiographic ST-T segments (Edenbrandt, Devine & Macfarlane,
1992) and detection of electrocardiographic left ventricular strain (Devine

& Macfarlane, 1993). On the other hand, because artificial neural
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Fig.4-1a An ECG rhythm strip of atrial fibrillation with no identifiable P waves.



networks are not rule-based and can be applied in areas where rules are
difficult to formalise or are ill-defined, they are theoretically particularly
suitable for application to visual pattern recognition problems in
computerised electrocardiography, such as AF. Therefore, it was decided
to investigate whether the application of software based artificial neural
networks might offer any advantage as compared to the existing
deterministic logic for separating the AF from sinus rhythm and

(supraventricular extrasystoles &/or ventricular extrasystoles) [Fig 4-1b).

4.2 METHODS OF RHYTHM ANALYSIS IN THE
GLASGOW PROGRAM

At present, the rhythm interpretation logic is linked to the main wave
measurement section of the computer-assisted ECG diagnostic Glasgow
program (Macfarlane et al, 1990b). The QRS onsets and terminations
used in wave typing are transferred to the rhythm program together with
the measurement matrix of the 12-lead ECG and used as landmarks
around which P wave recognition can be performed. Furthermore, the
wave typing and pacemaker spike recognition logic which are in the
wave measurement program also have their results transferred to the

rhythm analysis section inside the Glasgow Program (Macfarlane,

1986b).

In the Glasgow Program, an 8 or 10 second strip of three simultaneously
recorded leads chosen from the conventional 12-lead ECG is used for
the analysis of cardiac rhythm (Macfarlane et al, 1986a; Macfarlane et
al, 1990b). These 3 leads are selected on the basis of the study of P
wave amplitudes of the average beats calculated by the main wave

measurement progré\m. Leads Il and V1 are always chosen and a third
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lead is selected from I, Ill, aVF, and aVR, depending on the P wave
amplitude. In general, this applies in the presence of an expected sinus
rhythm. If atrial flutter has been detected in lead II, then leads Ill and V1
are the other two leads which would automatically be selected. On the
other hand, if atrial flutter is not present as is the situation with over 99%
of daily routine ECGs, the program will choose leads II, V1 and one

other lead from I, Ill, aVF and aVR.

Irrespective of which three leads are selected, the configuration of the P
wave in the corresponding average beat is studied. For each P wave
configuration, a special category is assigned. This is subsequently used in
P wave recognition which is undertaken by searching the first difference
of the lead in an attempt to find a series of gradients which would
conform to the selected P wave configuration. In other words, because
the first difference of the P wave in lead II is normally different from that
in V1, cognizance of this must be taken in any search for P waves. In the
Glasgow Program, the sampling rate is 500 samples/second and the first
difference used in the P wave search utilises a difference interval of 10
samples to enhance the amplitude of the signal. If no definite P wave is
found in the average beat, such as would occur frequently in atrial
fibrillation or other dysrhythmias, for instance complete atrioventricular
block, the leads selected for analysis are Il and V1, with two different P

wave morphologies being adopted for the latter.

From the three selected leads, measurements on
(@) PR interval variability= {{minimum PR/maximum PR) x 100%]},
(b) RR interval variability = % RR intervals which differ by more than
10% from the mean RR interval,
(c) Percentage regularity of dominant RR intervals
= 100% - {{(maximum RR - minimum RR) / mean RR] x 100%)},
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(d) Presence or absence of discrete P waves,
(e) Presence or absence of multiple P waves.
and so on (Taylor, 197 3) are determined.

In the presence of atrial fibrillation, it is likely that fibrillatory "f" waves
may, for the purpose of rhythm analysis, be detected as "P" waves and
hence the concepts of multiple "P" waves and PR regularity etc can still
be used in the Glasgow ECG interpretation program (Macfarlane et al,
1986a; Macfarlane et al, 1990b).

The Glasgow rhythm interpretation program is divided into six phases:

PHASE 1

The first phase focuses on the analysis of P waves given that the various
QRS onsets and terminations are available as input data from the main
interpretation program. The purpose of this phase is to filter out the vast
majority of ECGs which show pure regular sinus rhythm. This is achieved
on the basis of the obvious criteria of finding one P wave for each

individual RR interval and a regular PR interval.

The program searches for P waves throughout most of the RR interval.
In the course of assessing the presence or absence of sinus rhythm, a
check is made for "flutter”" waves and various sections of logic are used to
detect "multiple P waves", "few P waves", "irregular PR interval" etc. If
sinus rhythm is detected but the rate exceeds 100 or is lower than 60,
further searching will be made to ensure that there are no other

complicating factors. If even one RR interval has no P wave found,

perhaps in error, further assessment is made in the next phase. If regular
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sinus rhythm is found, the remaining sections of the rhythm analysis are

not entered.

PHASE 2

In phase 2, an attempt is made to sort AF from any other irregular
rhythm which might be present, e.g. SR + (SVEs &/or VEs). There is
one other important additional test in which the RR intervals are
searched for the presence of a definite P wave. This could be such as
occurs in isolation in complete atrioventricular block, although it may
only be found in every other RR interval. The average beat calculated in

the main program is also used in searching for definite P waves.

However, the two approaches must be coupled together since various
rhythms such as junctional rhythm and atrial fibrillation will produce an
average beat with virtually no identifiable P wave as would also be the
case in complete atrioventricular block, even althodgh P waves will be

present in the record.

PHASE 3

Phase 3 contains two mutually exclusive sections of logic, one which
deals with regular rhythm and the other with irregular rhythm. The
former handles rhythms such as atrial flutter with a regular ventricular
response, or complete atrioventricular dissociation. The latter deals with
abnormalities such as second degree sino-atrial or atrio-ventricular block

or atrial bigeminy.
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PHASE 4

Phase 4 is entered only if aberrant beats have been detected and
differentiates between ventricular ectopics and supraventricular ectopics

with aberrancy, non-sustained ventricular tachycardia etc.

PHASE 5

In phase 5, the discrimination between sinus arrhythmia and sinus

rhythm with supraventricular extrasystoles is performed.

PHASE 6

The final stage of the rhythm analysis is to assess pacemaker spikes
detected by the main program particularly when these do not occur
regularly. The program is able to produce diagnostic statements which
deal with regular or demand atrioventricular sequential or ventricular

pacing as appropriate.

This final section of the analysis also decides whether a preliminary
assessment of sinus rhythm can be retained or whether it should be
changed to ectopic atrial rhythm given the presence of inverted P waves
in the inferior leads II, Ill, and aVF. The list of possible diagnoses consists
of two groups, one of which contains the dominant rhythm while the
other includes various supplementary statements. Only one dominant
rhythm, e.g. AF can be selected together with up to three supplementary

statements, e.g. ventricular extrasystoles.
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4.3 USE OF NEURAL NETWORKS IN GLASGOW
RHYTHM ANALYSIS

The neural network simulation package was written in }\C++ language
and developed locally on a DEC Microvax Il minicomputer. The software
was tested and debugged using a number of methods described
elsewhere (Devine, 1990). A supervised feed-forward type neural
network trained with a back-propagation algorithm was used in the

present study. The training tolerance was set at 0.1, and the gain was set

at 1.0.

It was decided to assess the use of an artificial neural network only in
those cases which had passed phase 1 of the analysis, entered phase 2
and reached the point where existing logic tries to separate irregular
sinus rhythm from atrial fibrillation. It was estimated that the number of

ways through the logic at that point was over 20,000.

The number of neurons in the input layer and the hidden layers, as well
as the number of hidden layers, were determined by trial and error
during the initial development of the neural networks. The training
process consisted of repeated sequential presentation of the
measurements from training set ECGs to a variety of neural networks
until the error between the output and the designated pattern could not
be improved (i.e. the error could not be reduced as it had reached a
minimum). In most of the circumstances for this study, the networks
were fully trained after more than one hundred thousand iterations, i.e.
all the ECGs in the training set were well separated into AF or Non-AF

by a set of completely adjusted weights.
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4.4 METHODOLOGY

3080 ECGs with irregular rhythm, consisting of atrial fibrillation, or sinus
rhythm (SR) with supraventricular extrasystoles (SVEs) &/or ventricular
extrasystoles (VEs), were selected from the Departmental data bank for
use in the present study. These ECGs were recorded from the patients
attending the outpatient clinics or admitted to Cardiology wards of the

Roval Infirmary from 1981 to 1992,

Gold Standard Used in the Present Study

All the interpretations of ECGs were initially made by the deterministic
logic in the Glasgow Program while ECGs were also reviewed by two
experienced electrocardiographers in order to reach consensus for every
rhythm diagnosis. The "gold standard” used in the current study was the
electrocardiographers' diagnosis. i.e. all the ECG rhythm diagnoses were
determined by the visual classification of two experienced

electrocardiographers.

The ECGs were subsequently randomly divided into five sets (Table 4-1),
each set containing both AF and Non-AF. The Non-AF group consisted
of [SR + (SVEs &/or VEs)]. Regular rhythm such as normal sinus rhythm
without any SVEs &/or VEs was not used in the present study.

The distribution of the ECGs in the five sets (A, B, C, D, & E) is shown
in Table 4-1.

The way in which the various sets of ECGs are used in the present study

is summarised in the flow diagrams (Figures 4-2a & 4-2b).
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ECG Set AF Non-AF Total
A 263 197 460
B 186 284 470
C 523 193 716
D 523 194 717
E 523 194 717
Total 2018 1062 3080

Table 4-1 Composition of the ECG sets used for the
neural network diagnosis of atrial fibrillation.

4.4.1 STAGE 1

Selection of the Optimum Input Variables for the Artificial
Neural Networks

4.4.1.1 MATERIALS

930 ECGs were divided into set A (460 ECGs) for the purpose of
training and set B (470 ECGs) for the assessment of the performance of
neural networks in order to determine the optimal number of input

variables for separating AF and Non-AF.

4.4.1.2 METHODS

The neural networks were used in isolation for the diagnosis of atrial
fibrillation. The input variables to the neural networks were selected from

the existing rhythm analysis parameters used by the Glasgow Program,

namely:
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[1] RR interval variability;

2] PR interval variability;

[3] Number of leads with definite P waves;

[4] Presence or absence of multiple P waves;

[5] Number of limb leads with definite P waves;
[6] Number of praecordial leads with definite P waves;
71 Percentage regularity of dominant RR intervals;
[81 Maximum PR interval;

[91 Minimum PR interval;

[10] Presence of regular dominant rhythm;

[11] Number of samples in mean RR interval.

Only ECG parameters of importance for the separation of atrial
fibrillation from SR+(SVEs &/or VEs) were chosen as the input variables
to the network. Three groups of neural networks with 7, 9, and 10 input
variables were used in order to determine the best topology of the input
layer. The parameters selected were 1 to 7, 1 to 9, 1 to 10, respectively,
from the above list. All the networks were designed with only a single
output neuron. The number of hidden layers varied from one to two, and

the number of neurons in the hidden layer(s) varied from 5 to 40.

The structure of the artificial neural network used for the diagnosis of

atrial fibrillation in the present study is shown in Fig 4-3.

Training and Assessment Procedures

The ECGs of set A together with the corresponding rhythm coding (AF
was assigned "1" and Non-AF was assigned "0") were fed into the
networks for the purpose of training. Usually, it required around
100,000 iterations to have a single network reach a fully trained status.

Then the ECGs of set B were run on these various well trained networks
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to evaluate their performances. The output from each neural network
was a numerical value ranging between 0.0 (Non-AF) and 1.0 (AF). The
cutoff point 0.5 was arbitrarily selected to differentiate between AF and
Non-AF, because the numerical output from the network for AF was
found to cluster in the range 0.5 to 1 and for non-AF in the range 0 to
0.5 (see Fig. 4-4). Thereafter, the selection of the optimum number of
input variables for the best performing artificial neural network was
determined by reviewing the Association Index and specificity based on

the assessment of set B ECGs using this discriminating point with value
0.5.

Sensitivity, Specificity and Association Index

In the present study, sensitivity (Se), specificity (Sp), and Association
Index (Al) (Rautaharju, Blackburn & Warren, 1976) were defined and

calculated as follows:

No of True AF detected by the specific method
Total no of True AF in the sample

Sensitivity = x 100%

No of True Non-AF detected by the specific method
Total no of True Non-AF in the sample

Specificity = x 100%

Association Index = Sensitivity + Specificity -100%
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4.4.1.3 RESULTS

The results from the ECGs of set B assessed by the neural networks with

7, 10 and 9 input variables but all with a single output are shown in

Tables 4-2, 4-3, 4-4, respectively.

From the assessment of ECGs of set B, the artificial neural networks with
9 input variables were found to have the best performance as compared
to the networks with 7 and 10 input variables (Tables 4-2, 4-3 & 4-4).
Therefore, it was decided to use the neural networks with 9 input
parameters for the diagnosis of atrial fibrillation in further studies. The 9
ECG measurements input to the optimal performing neural network for

the diagnosis of atrial fibrillation were as follows:

(1) RR interval variability;

(2) PR interval variability;

(3) Number of praecordial leads with definite P waves;
(4) Number of limb leads with definite P waves;

(5) Presence or absence of multiple P waves;

(6) Percentage regularity of dominant RR intervals;
(7) Number of leads with definite P waves;

(8) Maximum PR interval;

(9) Minimum PR interval.

The optimum performing neural network was selected from Table 4-4
on the basis of the Association Index and the specificity. Although the
neural network with a single hidden layer containing 30 neurons had the
best Association Index as compared to the double hidden layer network
(92.0% versus 91.7%), its specificity (94.7%) was lower than the other
network with 30-30 configuration in the hidden layer (94.7% versus
96.5%). As a consequence, the artificial neural network with the optimal
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performance was selected to be that with 2 hidden layers each with 30

neurons.

Number of neurons || Sensitivity | Specificity | Association
in hidden layers % % Index %

20 86.0 98.3 84.3

30 89.2 96.5 85.7

40 88.7 97.6 86.3
20-20 82.3 98.3 80.6
30-30 88.2 97.9 86.1
30-30 v2* 90.3 98.3 88.6
40-40 86.6 98.6 85.2

Table 4-2 The effect of varying design of hidden layers
on the neural network with 7 input variables assessed by
ECGs of set B.*v2 denotes a network with different initial
weights compared to another of identical design.

Number of neurons | Sensitivity | Specificity | Association
in hidden layers % % Index %
20 86.6 98.3 84.9

30 87.1 95.8 82.9

40 85.5 95.8 81.3
20-20 87.6 98.6 86.2
30-30 84.9 97.6 82.5
30-30 v2 83.9 99.3 83.2
40-40 87.1 98.3 85.4

Table 4-3 The effect of varying design of hidden layers
on the neural network with 10 input variables assessed by
ECGs of set B.*v2 denotes a network with different initial
weights compared to another of identical design.
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Number of neurons | Sensitivity | Specificity | Association
in hidden layers % % Index %

5 96.8 94.4 91.2 -
10 97.3 94.0 91.3

15 93.5 94.4 87.9

20 96.2 94.4 90.6

30 97.3 94.7 92.0

40 97.3 91.9 89.2

5-5 96.2 94.7 90.9
10-10 94.6 96.1 90.7
15-15 95.2 94.7 89.9
20-20 94.6 94.0 88.6
20-20v2 93.0 95.8 88.8
30-30 95.2 96.5 91.7
30-30v2 95.2 96.1 91.3
40-40 93.0 95.4 88.4

Table 4-4 The effect of varying design of hidden layers
on the neural network with 9 input variables assessed by
ECGs of set B. *v2 denotes a network with different initial
weights compared to another of identical design.

The effect of varying the design of the hidden layer(s) on the network
with 9 input variables is shown in Table 4-4. For the original Glasgow
program, sensitivity was 94.6% (176/186) and specificity was 98.6%
(280/284), while for the optimum performing artificial neural network,
sensitivity was 95.2% (177/186) and specificity was 96.5% (274/284).
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4.4.2 STAGE 2a

Determination of the Optimal Topology of the Hidden Layer in
the Neural Network

4.4.2.1 MATERIALS

2150 ECGs were divided into a training set of 716 ECGs (Set C) and
two test sets, each being composed of 717 ECGs (Sets D and E) which

were almost equally randomly separated.

4.4.2.2 METHODS

In this stage, the number of input variables for the neural networks was
held constant at 9, because this class of network performed better than
the other two groups of neural networks using a different number of
input parameters. For 30 separate neural networks used in the training
process, more than 100,000 iterations were required for each network
to reach the fully trained status, i.e. the rhythm of each ECG in the set C
could be well recognised by the neural network without mistake. Then
the fully trained networks were assessed by using ECGs from a separate
set D. The architecture of the hidden layer was selected at the initial
development of the neural networks. The fully trained neural networks
with a varying number of neurons in the hidden layers and different
numbers of hidden layers were subsequently tested by set D through the
assessment of the Association Index etc in order to select the best

topology of the hidden layers.

123



The numerical outputs from the neural networks for cases of AF were
found to cluster in the range 0.5 to 1 and for the Non-AF in the range 0
to 0.5, and so 0.5 was selected as the cutoff point. Therefore, it was
thought unnecessary to plot thirty Receiver Operating Characteristic
curves, one for each of the neural networks. The best performing neural
network with the optimum topology of hidden layers was then selected
by reviewing the Association Index (Rautaharju, Blackburn & Warren,
1976) based on the assessment of set D | ECGs using 0.5 as the

discriminating point.
4.4.2.3 RESULTS

The effect of the varying design of the hidden layer(s) on the networks
with 9 input variables is shown in Table 4-5. The artificial neural network
with the best performance was found to be the network with 2 hidden
layers each with 50 neurons inside and only a single output. The
sensitivity of 89.9% and specificity of 92.8% vielded an Association
Index of 82.7%. A single Receiver Operating Characteristic curve with
varying cut off points from 0.1 to 0.9 was plotted for this neural network
to assess the selection of the cutoff point 0.5. The false negative and
false positive percentages of the results were determined by comparing
the numerical output of the network with the true diagnosis of the ECG
inside set D. The Receiver Operating Characteristic curve for this neural
network for the diagnosis of atrial fibrillation is shown in Fig 4-5. The
optimal cut off point indeed appeared to be 0.5. This 9v-50-50-1 neural

network was then used in subsequent studies.
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Number of neurons | Sensitivity Specificity Association
in hidden layers % % Index %
5 92.7 83.5 76.2
5-5 91.6 89.2 80.8 -
10 93.3 84.0 77.3
10-10 92.4 84.5 76.9
15-15 91.2 86.1 77.3
20 93.3 77.8 71.1
20-20 89.1 85.1 74.2
30 91.2 88.7 79.9
30-30 91.0 85.6 76.6
40 92.7 87.6 80.3
40-40 92.9 87.6 80.5
50 92.2 86.6 78.8
50-50 89.9 92.8 82.7
50-50v2 92.0 84.0 76.0
50-50v3 90.6 88.7 79.3
60 94.0 89.2 83.2
60-60 89.9 92.3 82.2
60-60v2 92.5 88.1 80.6
70 91.8 85.1 76.9
70-70 90.6 87.6 78.2
80 94.3 85.1 79.4
30-40 91.6 82.5 _174.1
30-50 90.4 88.1 78.5
30-60 90.4 87.1 77.5
40-50 90.8 89.2 80.0
40-60 90.3 87.6 77.9
40-70 91.0 84.5 75.5
50-60 89.9 83.5 73.4
50-70 88.0 88.1 76.1
50-40 89.5 86.1 75.6

Table 4-5 Effect of varying design of hidden layer of neural network
for the diagnosis of atrial fibrillation on the set D ECGs. *v2 v3 denotes
networks with different initial weights compared to others of identical design.
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It was felt that the network with 60 hidden neurons in a single hidden
layer was too non specific (89.2%), although the Association index was
83.2%. The Association Index was in general lower in the test set of
stage 2 compared to similar networks in stage 1 where a different test

set of ECGs was studied.

4.4.3 Stage 2b

Various Methods of Combining the Interpretation from the
Deterministic Logic and Output from the Artificial Neural
Networks

4.4.3.1 MATERIALS

The materials used were the same as described in 4.4.2.1.

4.4.3.2 METHODS

Several attempts were made to improve the sensitivity and specificity of
the results for the diagnosis of atrial fibrillation by various combinations
of the Glasgow Program interpretation and artificial neural network

outputs. These methods were as follows:

[Option 1] If the Glasgow Program diagnosed "AF", this was accepted
and the diagnosis of the best neural network (9v-50-50-1)
was used for the remainder, i.e. those ECGs initially
diagnosed as "Non-AF" by the Glasgow Program were
subsequently classified by the single best performing neural

network.
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[Option 2] If the Glasgow Program diagnosed "SR + (SVEs &/or
VEs)", this was accepted and the neural network diagnosis
was used for the remainder, i.e. those ECGs initially
classified by the Glasgow Program as not having "SR +
(SVEs &/or VEs)" were subsequently classified by the single
best performing neural network.

[Option 3] The addition of the neural network output to the Glasgow
Program interpretation. The interpretation of Glasgow
Program was assigned a value "1" if "AF", and "0" if "Non-
AF". The diagnosis of the Glasgow Program and the
output of the neural network were then summed to give a
value between "0" and "2". Then, the best discriminating

point was selected by plotting an ROC curve.

The best cutoff point was also found to be 0.5 in various combinations of
the interpretation from the Glasgow Program and the output from the
best neural network (9v-50-50-1), even in option 3 [Fig 4-6].

717 ECGs (523 AF + 194 non-AF) of set E were then subsequently used
to assess the performance of the various combinations of interpretation
from the deterministic logic and output from the neural network, i.e. a
further final test set which had not been involved in any part of network

design, selection of cut off point, etc., was used.

4.4.3.3 RESULTS

The results of the various methods of combining the outputs from the
Glasgow Program and the best neural network for the diagnosis of atrial

fibrillation on test set D are shown in Table 4-6. The sensitivity and
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specificity of the original Glasgow Program was 86.2% and 93.8%,
respectively (i.e. Association Index 80.0%), whereas, the sensitivity and
specificity of the best neural network was 89.9% and 92.8%, separately
(i.e. Association Index 82.7%). The options 1 and 3 did improve the
sensitivity (Table 4-6) but jeopardised the specificity (93.8% for the‘
Glasgow Program & 92.8% for the best neural network versus 90.7%
for the two best options).

The effect of combining the deterministic logic and the best performing
network was then assessed on the basis of the study of set E ECGs (Table
4-7). The performance of the best neural network (9 input variables with
two 50-neuron hidden layers and a single output) alone (Association
Index 84.3%) exceeded that of the various combinations (Association
Index 83.2%, 81.8%, and 83.2% for option 1, 2, and 3, respectively)
and the original Glasgow Program itself (Association Index 80.8%). It
was thus demonstrated that the combination of the deterministic logic
and the best neural network did not lead to any appreciable

improvement compared to the use of a neural network alone.

Test Set D | Sensitivity | Specificity || Al

GP 86.2 93.8 80.0

NN __189.9 92.8 82.7 -
Option 1 92.3 90.7 83.0

Option 2 83.7 95.9 79.6

Option 3 92.4 90.7 83.1

Table 4-6 Results of the comparison among various
combinations of the original Glasgow Program
(GP) and the best neural network (NN) on ECGs of
test set D.
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Test Set E Sensitivity | Specificity || Al

GP 88.5 92.3 80.8
NN 92.0 92.3 84.3
Option 1 94.0 89.2 83.2
Option 2 86.4 95.4 81.8
Option 3 94.0 89.2 83.2

Table 4-7 Results of the various combinations of
the Glasgow Program (GP) and the best performing
network (NN) on the ECGs of set E.

4.4.4 STAGE 3

Modification of Existing Deterministic Logic in the Glasgow

Program

It was noted that certain patterns of the combinations of erroneous
interpretations occurred in the deterministic approach, e.g. SINUS
RHYTHM + FIRST DEGREE AV BLOCK + SVEs was sometimes
reported instead of ATRIAL FIBRILLATION. It was postulated that if
these patterns could be detected and the report modified prior to the
final output, then the sensitivity might be improved without jeopardising

the specificity.

4.4.4.1 MATERIALS

Set C (716 ECGs - 523 AF + 193 Non-AF) was used as a training set to
select the optimal method of modifying the existing diagnostic
deterministic logic in the Glasgow Program, and the 1434 ECGs of both

sets D and E were used as an independent test set.
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4.4.4.2 METHODS

After careful review of the ECGs of set C, there were two strategies A
and B proposed for the modification of the deterministic logic. Basically
the difference lay in the varying degree of prolonged PR interval.

These proposed modifications of the deterministic logic were as follows:

(1) Sinus Rhythm* + SVEs + PR interval > K ms

(2) Ectopic Rhythm + SVEs + PR interval > K ms

(3) Irregular  Supraventricular Rhythm or Irregular
Rhythm
Note that the Sinus Rhythm* includes sinus arrthythmia, bradycardia,
tachycardia, etc. ms= milliseconds.

In strategy A, K=220; while in strategy B, K=240.

Both strategies were subsequently assessed using the 716 ECGs of set C
and the best method of modification was selected by comparing the
Association Indices among the Glasgow Program, the best performing
neural network (9 input variables with two 50-neuron hidden layers and a
single output), and the modified Glasgow Program using both strategy A
and B. Then the remaining 1434 ECGs of both set D and E (1064 AF
and 388 not AF) were used as a test set to evaluate the performance of
the modified Glasgow Program in comparison with the original Glasgow

Program and the best neural network.

McNemar's test of the significance of changes was used to evaluate the

statistical significance of the improvement in sensitivity and specificity
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before and after the modification of the Glasgow Program. A P value less

than 0.05 is regarded as statistically significant.

4.4.4.3 RESULTS

The deterministic logic in the Glasgow Program modified by the strategy
A (i.e. PR > 220ms) was found to perform better for the detection of
atrial fibrillation in ECGs of set C than that modified by Strategy B (i.e.
PR > 240ms) (Association Index: 85.2% versus 84.5%).

Both modified Glasgow Programs wefe observed to perform better than
either the original Glasgow Program (Association Index: 80.0%) or the
best neural network (Association Index: 82.7%) based on the study of
ECGs of set C (Table 4-8).

Set C Sensitivity | Specificity || Al

Original GP || 86.2 93.8 80.0
NN 89.9 92.8 82.7
Strategqy A | 91.9 93.3 85.2
Strateqy B 91.2 93.3 84.5

Table 4-8 Results of the comparison among modification
of the existing deterministic logic by strategy A or B,
neural network (NN) and Original Glasgow Program (GP)
using set C as a training set.

Therefore, Strategy A was adopted for the modification of the original
Glasgow Program. The final evaluation was subsequently performed on
the remaining sets D and E (1434 ECGs). Results are presented in Table
4-9.
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The modified Glasgow Program (Association Index 83.8%) was found to
be the best among all the methods after assessment of the ECGs of set D
& E (Table 4-9).

Set D & E Sensitivity | Specificity || Al

Original GP_| 87.3 93.1 80.4

NN 91.0 92.6 83.6
Modified GP | 92.3 91.5 83.8

Table 4-9 Results of the final assessment of the modified
Glasgow Program (GP) using test sets D and E.

McNemar's test for the significance of changes was applied to evaluate
the changes in sensitivity and specificity of the Glasgow Program before
and after the modification as well as to compare the modified Glasgow
Program with the best performing neural network (9v-50-50-1). The
Tables for use in testing the significance of changes are shown below

(Table 4-10, 11, 12, & 13).

It was observed that there was a significant improvement in the
sensitivity for the detection of atrial fibrillation by the modified Glasgow
Program as compared to the original Glasgow Program (McNemar's test:
X2= 27.04, P < 0.01) and to the best performing neural network
(McNemar's test: X2= 6.82, P < 0.05). On the other hand, the original
logic was significantly more specific than the modified program
(McNemar's test: X2= 6, P < 0.05), but there was no significant
difference in the specificity of the modified logic compared to the best

network (McNemar's test: X2= 1, P =NS).
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It can be seen that the performance of the neural network for the
detection of atrial fibrillation is not superior to the use of modified

deterministic logic, but is better than the original deterministic logic.

Original(TP) | Original(FN) | Total
Modified(TP) | 890 76 966
Modified(FN) | 24 56 80

914 132 1046

X2=27.04, P <0.01.
Table 4-10 Table for the McNemar's test of significance of
changes of the sehsitivity for the detection of AF between the
modified and the original logic. [TP: True Positive, FN:

False Negative]
Original(TN) | Original(FP) | Total
Modified(TN) | 355 0 355
Modified(FP) | 6 27 33
361 27 388

X2=6, P <0.05.
Table 4-11 Table for the McNemar's test of significance of
changes of the specificity for the detection of AF between the
modified and the original logic. [TN: True Negative, FP:
False Positive]
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NN(TP) NN(FN) Total
Modified(TP) | 942 24 966
Modified(FN) | 9 71 80

951 96 1046

X2-6.82, P <0.05.

Table 4-12 Table for the McNemar's test of significance of
changes of the sensitivity for the detection of AF between the
modified logic and the best performing network. [TP: True
Positive, FN: False Negative]

NN(TN) NN(FP) Total
Modified(TN) | 349 6 355
Modified(FP) | 10 23 33

359 29 388
X2=1, P =NS.

4.5 DISCUSSION

Table 4-13 Table for the McNemar's test of significance of
changes of the specificity for the detection of AF between the
modified logic and the best performing network. [TN: True
Negative, FP: False Positive]

Currently, deterministic logic is applied in the Glasgow rhythm analysis

program and is suitable for the identification of certain rhythm

abnormalities with well defined exact limits for specific measurements,

e.g.

first degree atrioventricular

conduction block

(PR>0.22s)

tachycardia (rate>100) or bradycardia (rate<60) for heart rate. However,
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atrial fibrillation represents a continuum in respect of heart rate, RR
variability, PR regularity etc. and deterministic criteria may well not be
optimum. Therefore the purpose of the present study was to evaluate the
feasibility of the application of neural networks alone or in combination
with the original logic at a specific point in the diagnostic logic in order

to improve the detection of atrial fibrillation.

4.5.1 Design of the Present Study

First of all, it should be noted that in the present study the neural
network was applied at a particular point inside the deterministic logic of
Phase 2 of the Glasgow Program where the decision on atrial fibrillation
versus SR+(SVEs and/or VEs) is made. Therefore, for instance, regular
rhythms, or atrial flutter with fixed AV block if detected correctly, would
not be dealt with by these neural networks which were trained on ECGs
that reached the selected decision point in the logic of the Glasgow
Program. Secondly, it should also be noted that the specificity for
detecting AF in the present study was assessed against SR + (SVEs
and/or VEs) and not on regular sinus rhythm. Therefore, the specificity
would almost certainly have been higher if regular sinus rhythm had been
included in the test set. Thirdly, in an earlier report (Macfarlane, 1986b)
from this institute on the accuracy of reporting atrial fibrillation using the
Glasgow Program, a sensitivity of 98.5% was indicated, based on a study
of 94 cases of atrial fibrillation. The sensitivity of Glasgow Program for
the present ECGs was obviously lower (86.2% and 88.5% for test sets D
and E, respectively), even after modification (92.3% for both test sets D
and E), because the present study was based on a large number of more

"complex" ECGs from patients with a wide variety of acute and chronic
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cardiac diseases and probably gives a fairer reflection of the accuracy of

reporting atrial fibrillation in a tertiary referring hospital population.

4.5.2. Reasons for Using Three Sets of ECGs in Stage 2

In stage 2, the reasons why the three sets of ECGs (C, D, E) were

required are as follows:

(1) It was necessary to select the best design and optimal cutoff
point for the best neural network output and to manipulate
the various combinations of the deterministic logic results with
the neural network output through utilising sets C and D.

(2) Set E had to be used as a fifth, completely independent set for
the final assessment of the performance of the best neural
network chosen from the above mentioned process, as well as

of the modified Glasgow deterministic program.

4.5.3 Neural Network versus Deterministic Logic versus

Combination Method

The performance of the best neural network for the diagnosis of atrial
fibrillation was shown to be better than the original deterministic
program in respect of sensitivity (92.0% versus 88.5%) while preserving
the specificity (92.3%) (Table 4-7). However, the technique of combining
the output from the neural network with the interpretation from the
deterministic program did not further improve the performance for the
detection of atrial fibrillation (Table 4-7). Nevertheless, after suitable
adjustment of the existing deterministic criteria, the deterministic

program was found to have a statistically significantly (Tables 4-10 & 4-
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12) improved sensitivity (92.3%) in detecting atrial fibrillation as
compared to either the original program (sensitivity= 87.3%) or the best
neural network (sensitivity= 91.0%) (Table 4-9), but with a decreased
specificity (91.5% versus 92.6% & 93.1% respectively) (Tables 4-9, 4-
11, & 4-13).

Thus, the conclusion of this study was that assessment of the neural
network in the diagnosis of atrial fibrillation had acted as a catalyst for
the improvement of the original logic, which ultimately had a

performance essentially equivalent to that of the network.

The results also show that the performance of all the approaches varies
little depending on the test set used. For example, the same network
tested on set D, set E as well as set D & E combined had sensitivities of
89.9%, 92.0% and 91.0% with corresponding specificity of 92.8%,
92.3% and 92.8%. However, the performance of neural networks with
the same topology but different initial weights is not reproducible so that
it is the relative performance of different approaches within the same test

set that is of importance rather than absolute values of sensitivity etc.
4.5.4 Experience Concerning the Neural Network Approach
Several points can be drawn from the present study.

First of all, many years of experience required to produce a section of
deterministic logic for reporting atrial fibrillation can be replaced in a

rather short time by an artificial neural network which can achieve an

essentially equivalent performance to the original logic.
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The second point would seem to be that, in view of the foregoing, if
further improvements are to be obtained, then new input parameters will
have to be taken into consideration. For instance, the difference in area
under the curves after superimposing two RR intervals of similar length
in a Holter recording (Cubanski et al, 1993) might in the future be a
useful new input parameter for the detection of atrial fibrillation. The
possibility is that the availability of new input measurements would
enhance the performance of both deterministic logic and an artificial
neural network but the time required for an appropriate neural network

to be developed might well be less.

According to Erb (1993), the number of hidden neurons in a network
can be critical to the performance of the neural network. If there are too
few neurons inside the hidden layer of the neural network, the neural
network will lack the power it needs to classify patterns in the analysing
data. If there are too many neurons in a hidden layer, specific patterns
will be memorised. Memorisation handicaps the ability of the neural
network to generalise. In this case, an artificial neural network has so
many degrees of freedom that it responds with memorised facts rather
than with an estimated value based upon the general features of the facts
(Maren, Harston & Pap, 1991). Memorisation is analogous to fitting a
set of N data points with an N-degree polynomial. A perfect fit results,
but the fit's ability to interpolate is diminished. In a neural network,
complete memorisation is said to occur when the number of hidden

neurons equals the number of facts used to train the neural network.

Kolmogorov's theorem predicts that twice the number of input neurons
plus one is a sufficient number of hidden neurons to compute any

arbitrary continuous function (Hecht-Nielsen, 1987 & 1990), but this
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topology is not necessarily the one with the best performance. This was
clearly demonstrated in the present study. For example, the topology of
the hidden layer of the best performing neural network in stage 1 is 9v~
30-30-1 and not the 9v-20-1 (Table 4-4), while in stage 2, the best
performing network is 9v-50-50-1 and not the 9v-20-1 (Table 4-5).

It has been learned from the present study that although the increase in
the number of hidden neurons or hidden layers could shorten the time
needed for completion of the whole training process because of fewer
iterations, it took longer to have every single training run completed, and

this did not necessarily improve the performance of the neural network.

Some of the characteristics of neural networks were also learned from
the training process. Different training sets can lead to different results
(internal representations or weights) even from neural networks with the
same topology. The selection of training set ECGs has a significant,
profound effect on the performance of the networks. It was also
demonstrated that the greater the variation of the patterns of atrial
fibrillation in the training set, the more the time needed to complete the

training process.

This study also confirmed the previous report by Dassen et al (1993) that
the selection of the training set and the input variables used to train the
neural network has considerable influence on the final result, i.e. even
with the same topology of the hidden and output layers, different input
parameters or different initial weights for the same input variables can
lead to a completely different result. It was also observed that it took
longer to train a more complex neural network, but this did not

necessarily yield a better result. The number of input variables, different
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initial weights, and various topologies of the hidden layer could produce

different effects on the performance of artificial neural networks.

4.6 CONCLUSIONS

(1) The application of a trained artificial neural network improved
the sensitivity but slightly decreased the specificity for the
detection of atrial fibrillation as compared to the use of the
original deterministic logic.

(2) The performance of neural network assisted logic (i.e. various
combinations of the neural network output and the results
from the deterministic logic) was not superior to the use of a
neural network alone in the diagnosis of atrial fibrillation as
assessed in the specific test set (Tables 4-6 & 4-7).

(3) The modification of the original logic can achieve a noticeable
improvement in detecting atrial fibrillation compared to both a
neural network and the original deterministic logic.

(4) The choice of diagnostic parameters appears to be more
important than using either a neural network or deterministic
logic in the diagnosis of atrial fibrillation.

(5) The selection of test material is also an important factor that
can affect the result. Various test sets can produce different
results when tested by the same neural network.

This study only involved a small part of the rhythm analysis, and there
are still areas that could be investigated. It might be possible in the near
future to incorporate multiple neural networks at various points within
the deterministic logic framework in order to enhance the overall
accuracy of the rhythm interpretation in computer assisted ECG analysis.
Whether or not this is a realistic goal remains an area for further

investigation and beyond the scope of the present study.
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CHAPTER 5

SOFTWARE BASED ARTIFICIAL NEURAL
NETWORKS FOR THE COMPUTER
ASSISTED ECG DIAGNOSIS OF
MYOCARDIAL INFARCTION

5.1 INTRODUCTION

Myocardial infarction is one of the major cardiovascular causes of death
in Western industrialised countries. Although myocardial infarction can
only be definitely diagnosed by pathological evidence of myocardial
necrosis and scarring, clinically it is usually detected by the medical
history, subjective symptoms, physical signs, changes in the
electrocardiogram, and a rise in cardiac enzymes. Of these, the
electrocardiogram is the most readily available, relatively inexpensive,
and reproducible non-invasive investigational tool for the objective

diagnosis of myocardial infarction.

Considerable efforts have been made to improve the accuracy of
diagnosing myocardial infarction clinically. For instance, stepwise
discriminant analysis (Pozen, Stechmiller & Voigt, 1977), logistic
regression (Pozen et al, 1980), recursive partition analysis (Goldman et
al, 1982), pattern recognition (Patrick et al, 1976 & 1977), and artificial
neural networks (Baxt, 1991 a & b) have been applied in different
phases of data analysis and decision making for the detection of
myocardial infarction. These reports mainly focused on the clinical data

analysis and decision making.
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The performance of the neural network is claimed to be better than that
of physicians both in sensitivity (97.2% versus 77.7%) and in specificity
(96.2% versus 84.7%) (Baxt, 1991b). However, the study by Baxt
(1991b) included the medical history, symptoms, physical signs, and
ECG ST and T wave changes as input variables of the neural networks. It
was thought that the human observations, such as subjectively observed
signs, might have interobserver variability which could lead to a decrease
in accuracy of the neural network diagnostic system. The magnitude of
these inaccuracies will increase in parallel with interobserver variabilities
which in turn will increase when the neural networks are used outside
their place of development. In contrast, software based neural networks,
which adopt the ECG measurements as inputs, should have the same

accuracy even outside the laboratory where they were developed.

On the other hand, the ECG provides unique and objective non-invasive
evidence of myocardial ischaemia and infarction as compared to other
subjective symptoms such as chest pain, diaphoresis, etc. Therefore, only
ECG measurements were used for the neural network diagnosis of

myocardial infarction in the present study.

The definitive diagnosis of myocardial infarction, either in the acute
phase or the post myocardial infarction period, is of therapeutic and
prognostic importance (AIMS Trial Study Group, 1988; Gruppo ltaliano
per lo Studio della Streptochinasi nell'infarcto Miocardico (GISSI), 1987,
ISIS-2, 1988). In the emergency department or general wards, where
chest pain cases are usually first seen by relatively inexperienced junior
medical staff, computer-assisted ECG interpretation can provide
supplementary objective evidence to aid in the preliminary differential

diagnosis of myocardial infarction before cardiac enzyme assay results
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are available. Frank vectorcardiographic criteria for both anterior (Starr
et al, 1974) and inferior (Starr et al, 1976) myocardial infarction have
been proposed to improve the ECG diagnosis. Although lack of
superiority of the vectorcardiogram over the electrocardiogram in
detecting inferior wall myocardial infarction regardless of time since
infarction has also been claimed by one group of investigators (Lui et al,
1987), other researchers have claimed improved diagnosis of inferior
myocardial infarction using either the Frank vectorcardiogram (Chou,

1986) or the derived vectorcardiogram (Edenbrandt et al, 1990).

Computer-assisted ECG interpretation of myocardial infarction is still an
area where much research is being undertaken to improve the sensitivity
and specificity of the diagnosis. Most computer ECG analysis programs
use either deterministic logic or statistical techniques for the diagnosis of

myocardial infarction.

The main advantage of the application of the artificial neural networks
over the traditional deterministic logic techniques is their self-leaming
capacity, i.e. they do not require any background knowledge from their
designers, and they also perform relatively better in a complex
relationship representation, i.e. it takes many years to develop a
deterministic logic program as compared to several months to train a set

of neural networks to achieve almost the same level of performance.

Therefore, the aim of this part of the study was to evaluate whether the
use of software based neural networks and the addition of derived
vectorcardiographic measurements to the list of 12-lead ECG variables
input to the neural network are beneficial or not in the computer ECG

diagnosis of myocardial infarction.
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5.2 MATERIALS AND METHODS

A total of 515 ECGs were recorded from individuals who had suffered
from either old or acute myocardial infarction (255 anterior myocardial
infarction- 196 males and 59 females; 260 inferior myocardial
infarction- 210 males and 50 females). All patients had been admitted to
the Cardiology and Cardiac Surgery Wards in Glasgow Royal Infirmary
between October 1991 and September 1993. ECGs were recorded from
the acute cases in the coronary care unit within 5 days after the onset of
chest pain, and from those with an old infarct at least 3 months post

infarction.

The mean age of myocardial infarction patients included in the present

study was as follows:

AGE (years) | anterior MI inferior Ml
Mean+SD 57+15 58+10
Male 56x16 58+11
Female 60+8 61+7

Table 5-1 Mean age of myocardial infarction
patients included in the present study. (SD= standard
deviation)

All the patients selected for this study had undergone cardiac
catheterisation and left ventriculography to delineate their coronary
artery anatomy and left ventricular wall motion abnormalities. Some
patients recruited from the surgical ward also had their infarct confirmed

by the operative finding of myocardial scarring and fibrosis.

144



The clinical criteria for the inclusion of the myocardial infarction patients

were as follows:

1.Typical clinical history and physical signs.
a. Typical Clinical History.[Maximum:2 points]
i. Chest pain at the time of initial examination.
[2 points]
ii. Associated symptoms : [any one of the following
four or any of their combinations: 1 point]
Nausea and vomiting,
Profuse diaphoresis,
Sensation of terror or impending doom,
Syncope.
b. Physical signs: [any one of the following or any of
their combinations: 1 point]
i. Palpable dyskinesia,
ii. Hypotension,
iii. Soft first heart sound,
iv. Paradoxical splitting of second heart sound,
v. Accentuated third or fourth heart sound,
vi. Murmur of mitral regurgitation,
vii. Signs and symptoms of heart failure.
2, Serial electrocardiographic changes.
[Maximum: 3 points]
a. ST segment deviation [2 points]
b. T wave abnormalities [1 point]
c. Alterations of QRS complex [2 points]
d. Conduction disturbances [1 point]

3. Serial changes of cardiac enzymes. [Maximum: 3 points]
a. LDH1/LDH2 > 1 or Total LDH > 2 x Normal [2
points]
b. CKMB isoenzyme > 2.2 x Normal [2 points]
c. AST > 2 x Nomal [1 point]

4. Echocardiographic studies. [ 1 point ]
a. Wall motion abnormalities

5. Radionuclide studies. [Maximum 4 points]

a. Thallium-201 perfusion scan : filling defect
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[2 points]
b. Technetium-99 pyrophosphate infarct-avid scan :
hot spot [2 points]
6. Cardiac catheterisation and angiography.
[Maximum: 3 points]
a.Wall motion abnormalities [any of hypokinesia ,
akinesia, dyskinesia or aneurysm: 2 points]
b.High grade [>75%] stenosis of coronary arteries [1
point ]
7. Operative findings at Surgery. [Maximum: 6 points]
a. Scar [3 points]
b. Aneurysm [3 points]
# If the total score is more than 6, then the diagnosis of
myocardial infarction is made.

Anterior, anteroseptal, apical, and lateral myocardial infarction for the
purpose of the current study were classified as ANTERIOR
MYOCARDIAL INFARCTION. There were therefore two categories
used in the present study: ANTERIOR and INFERIOR
MYOCARDIAL INFARCTION.

In addition to the above ECGs from patients with myocardial infarction,
144 ECGs from clinically validated left ventricular hypertrophy patients
(91 males and 53 females) with valvular or hypertensive heart disease
without evidence of myocardial infarction were obtained. All patients had
two dimensional and M-mode echocardiographic evidence of left
ventricular hypertrophy. The criteria for left ventricular hypertrophy on
the M-mode echocardiogram were left ventricular mass greater than 132
g/m?2 for males and 109 g/m2 for females, respectively (Huwez, 1991;
Pringle, 1990). The mean age of the left ventricular hypertrophy patients
was 57112 years, while for 91 males the mean age was 57+12 years,

and for 53 females the mean age was 59+12 years.
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A total of 580 ECGs from normals were randomly selected from the
1555 ECGs in the data bank of the department of Medical Cardiology,
Glasgow Roval Infirmary. These ECGs were recorded from apparently
healthy individuals recruited for studies on the normal limits of the ECG
during 1981-1992. They were employees of the Strathclyde Regional
Council. All of them had a normal medical history, physical examination,
chest radiograph and echocardiogram. None had a cardiovascular
abnormality or other disease known to affect the cardiovascular system
e.g. endocrine disease, diabetes mellitus (Macfarlane, Chen & Chiang,
1988). In addition, 30 individuals with an electrocardiographic pattern of
poor R wave progression over the praecordial leads were also included in
the normal controls. They were being investigated for chest pain and all

had a normal coronary arteriogram and left ventriculogram.

All ECG signals were recorded by digital-to-analogue conversion with a
locally developed electrocardiograph (Watts & Shoat, 1987) with 500
samples/second (500 Hz) directly from either the patients in the wards
or apparently healthy volunteers in the normal clinics. The digitised data
were subsequently transmitted to a central computer and later retrieved
for analysis. Various measurements of durations and amplitudes of the
electrocardiographic QRS and ST-T waves as well as derived
vectorcardiographic parameters were thereafter obtained using the signal
processing software inside the Glasgow Program (Macfarlane et al,
1990b). These selected electrocardiographic and  derived
vectorcardiographic measurements were then used as input variables to
the neural networks. All electrocardiograms were interpreted by the
deterministic logic of the Glasgow Program. The derived
vectorcardiographic leads were also synthesized inside the program using

the inverse Dower method (Edenbrandt & Pahlm, 1988b). Subsequently,
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derived vectorcardiographic parameters were also extracted for input to

the neural networks.

The artificial neural network simulation package has been described in
detail in the previous chapters. Selected electrocardiographic and derived
vectorcardiographic measurements (vide infra & Table 5-2) extracted by
the Glasgow Program were fed into the input layer of various neural

networks with different topologies for the purpose of training.

Input variables AMI IMI
ECG QRS parameters(Q) 21 9
ECG ST-T parameters(ST) 21 9
dVCG parameters(V) 4 3

ECG & dVCG Measurements AMI IMI

QRS+ST-T+dVCG 46 21
QRS+ST-T 42 18
QRS+dVCG 25 12
QRS 21 9

Table 5-2 Total numbers of selected electrocardiographic
and derived vectorcardiographic parameters used as input
to the neural networks for the diagnosis of myocardial
infarction. (QRS = measurements from QRS complex, ST-T=
measurements from ST-T segment, dVCG= measurements from
derived VCG)

The total number of ECG and derived VCG parameters used as input to

the neural networks for the diagnosis of anterior and inferior myocardial

infarction is shown in Table 5-2.
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The ECG and derived VCG measurements used as the input parameters

to the neural networks for the diagnosis of myocardial infarction were as

follows:

A. Anterior Myocardial Infarction

(1)
(2)
(3)
)
)
(6)

@)

®)

€))
10)

Q wave amplitude in leads I, aVL, V2-Vg

Q wave duration in leads I, aVL, V-Vg

R wave amplitude in leads I, aVL, V2-Vg

negative T wave amplitude in leads I, aVL, V2-Vg
ST segment amplitude in leads I, aVL, V2-Vg
positive T wave amplitude in leads I, aVL, V2-Vg
maximal angle of initial 20 millisecond vector in the
horizontal plane

the area bounded by the initial 30 millisecond QRS
vector in the horizontal plane

amplitude of VCG bite in the horizontal plane
duration of VCG bite in the horizontal plane

B. Inferior Myocardial Infarction

ey
()
3
“)
&)
(6)
¢)
®
®

Q wave amplitude in leads II, I, aVF

Q wave duration in leads II, ITI, aVF

R wave amplitude in leads II, IlI, aVF

negative T wave amplitude in leads II, ITI, aVF

ST segment amplitude in leads II, ITI, aVF
positive T wave amplitude in leads II, ITI, aVF

X axis intercept in the frontal plane [Fig 5-1]
maximal QRS vector angle in the frontal plane

the area bounded by the initial 30 millisecond QRS
vector in the frontal plane

There were 4 experiments included in this study.

In experiment 1, the neural networks were trained and tested in the two

group situation (myocardial infarction versus normal) with only a single

output neuron used for diagnosis.
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Xintercept
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Fig.5-1 Xinterceptofthe derived VCG in the frontal plane
used as input to the neural network for the diagnosis
ofinferior myocardial infarction.



In experiment 2, the neural networks were trained in the two group
situation (myocardial infarction versus normal) and tested in the three
group situation (myocardial infarction versus normal versus left
ventricular hypertrophy) with only a single output neuron used for

diagnosis.

In experiment 3, the neural networks were trained and tested in the
three group situation (myocardial infarction versus normal versus left
ventricular hypertrophy) with only a single output neuron used for

diagnosis.

In experiment 4, the neural networks were trained and tested in the
three group situation (myocardial infarction versus normal versus left
ventricular hypertrophy), but with three output neurons for "Normal", "
Myocardial Infarction”, and " Left Ventricular Hypertrophy", respectively.
The diagnosis associated with the neuron having the highest output value

was selected as the classification.

The topology of hidden layers varied from one to three layers with the
number of neurons inside each layer being adjusted between 5 and 100.
The neural networks in experiments 1 to 3 had only a single output
neuron with the classification of "Myocardial Infarction” or "Non-

myocardial infarction".

In the training process, supervised feed-forward networks with a back
propagation algorithm (Rumelhart, Hinton & Williams, 1986) were used.
In all experiments except experiment 4, each ECG of the training set
was assigned a classification of myocardial infarction (1) or non-

myocardial infarction (0) and fed into the neural networks for training. In
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experiment 4, each ECG in the training set was given a classification of
myocardial infarction (1, 0, 0), normal (0, 1, 0), or left ventricular
hypertrophy (0, 0, 1). Initial weights were randomly selected by the
computer and were adjusted automatically in order to reduce the errors
in representing the designated ECG (myocardial infarction or non-
myocardial infarction except in experiment 4 where normal, myocardial
infarction, or left ventricular hypertrophy were used) during the repeated

exposure to the training set ECGs.

After more than 100,000 iterations in around 48 hours of learning for
each network, all the cases in the training set were well learned and the
neural network had the best internal representations (optimum weights)
for each assigned classification (i.e. each ECG in the training set was
correctly recognised by the neural network as myocardial infarction or
non-myocardial infarction, except in experiment 4, where the ECG was
recognised as normal, myocardial infarction, or left ventricular

hypertrophy).

The tolerance of the training was set at 0.1. The gain (which is the
convergence factor used in the back-propagation learning algorithm) of
the network was set at 1.0. After the neural networks were fully frained,
ECGs from a separate test set were-subsequently used to assess the

performance of the neural network.

The various combinations of ECG and derived VCG parameters used in
the input layer included selected QRS, ST-T, and derived VCG
measurements. The output from the neural network was a value ranging
from O to 1. In the evaluation process, a threshold value of 0.5 was used

to discriminate between myocardial infarction and non-myocardial
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infarction (i.e. if the network output was below 0.5 then there was no
infarct deemed to be present, otherwise myocardial infarction was
reported by the network). Because the numerical outputs from the neural
network for myocardial infarction were clustered from 0.5 to 1, and for
non-myocardial infarction from 0 to 0.5, it was unnecessary to plot a
Receiver Operating Characteristic curve to select the optimal
discriminating point (cf. Fig. 4-4). There were three numerical outputs
from experiment 4, one for myocardial infarction, one for left ventricular
hypertrophy, and another for normal. Each value also ranged from 0 to
1. The highest value among the three classifications was chosen as the

diagriosis of the neural network.

The topology of two examples of neural networks studied for the
diagnosis of myocardial infarction used in these experiments is shown in

Figures 5-2 and 5-3.

Definitions of the sensitivity, specificity, and Association Index (Al) for
the diagnosis of myocardial infarction used in the current study are as

follows:

Se = Sensitivity of myocardial infarction
diagnosis in myocardial infarction patients.
Specificity of myocardial infarction
diagnosis in normals.

Z

wn
§e]

]

LSp = Specificity of myocardial infarction diagnosis
in left ventricular hypertrophy patients.
Overall specificity of myocardial infarction
diagnosis in normals and left ventricular
hypertrophy patients.

Al = Se + N Sp -100%

O Al Se + O Sp-100%

O Sp
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FIG 5-2. Topology of the Neural Networks used in Experiments 1, 2 and 3.
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5.3 EXPERIMENTS 1 and 2

TRAINING IN THE TWO-GROUP SITUATION

(Myocardial Infarction versus Normal)

ARTIFICIAL NEURAL NETWORKS WITH ONLY ONE OUTPUT
NEURON

The aim of these experiments was to assess the usefulness of a neural
network trained in the two-group situation {myocardial infarction versus
normal) for the computer ECG diagnosis of myocardial infarction but

tested separately both in the two-group and the three-group situation

(myocardial infarction versus normal versus left ventricular hypertrophy).

5.3.1 EXPERIMENT 1

TESTING IN THE TWO-GROUP SITUATION

(Myocardial Infarction versus Normal)

The aim of this experiment was to test, in the two-group situation
(Myocardial Infarction versus Normal), the performance of the neural
networks trained in the two-group situation for the diagnosis of

myocardial infarction.
5.3.1.1 Materials

Anterior Myocardial Infarction

The training set consisted of 80 ECGs from patients with clinically

validated anterior myocardial infarction and 80 ECGs from normals
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(including 30 ECGs showing poor R wave progression over the
praecordial leads from apparently healthy individuals being investigated

for atypical chest pain but shown to have normal coronary arteriograms).

The test set consisted of 101 ECGs from patients with clinically validated

anterior myocardial infarction and 100 ECGs from normal subjects.

(Table 5-3)

Anterior Ml Normal
Training Set 80 80
Test Set 101 100

Table 5-3 The composition of the training set and
test set ECGs used for the neural network diagnosis
of anterior myocardial infarction in experiment 1.

Inferior Myocardial Infarction

The training set consisted of 100 ECGs from patients with clinically

validated inferior myocardial infarction and 100 ECGs from normals.

The test set consisted of 108 ECGs from patients with clinically validated

inferior myocardial infarction and 100 ECGs from normal subjects.

(Table 5-4)

Inferior Ml Normal
Training Set 100 100
Test Set 108 100

Table 5-4 The composition of the training set and
test set ECGs used for the neural network diagnosis

of inferior myocardial infarction in experiment 1
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5.3.2 EXPERIMENT 2

TESTING IN THE THREE-GROUP SITUATION (Myocardial

Infarction versus Normal versus Left Ventricular Hypertrophy)

The aim of this experiment was to test, in the three-group situation
(myocardial infarction versus normal versus left ventricular hypertrophy),
the performance of the neural networks trained in the two-group

situation for the diagnosis of myocardial infarction.

5.3.2.1 Materials

Anterior Myocardial Infarction

The training set consisted of 80 ECGs from patients with clinically
documented anterior myocardial infarction and 80 ECGs from normals
(including 30 ECGs showing poor R wave progression over praecordial
leads from apparently healthy individuals investigated for the atypical

chest pain but found to have normal coronary arteriograms).

The test set consisted of 101 ECGs from patients with clinically
documented anterior myocardial infarction, 84 ECGs from the patients
with clinically validated left ventricular hypertrophy, and 100 ECGs

recorded from normal subjects. (Table 5-5)

Anterior MI | Normal LVH
Training Set || 80 80 0
Test Set 101 100 84
Table 5-5 The composition of the training set
and test set ECGs used for the neural network
diagnosis of anterior myocardial infarction in
experiment 2.
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Inferior Myocardial Infarction

The training set consisted of 100 ECGs recorded from patients with
clinically documented inferior myocardial infarction and 100 ECGs

recorded from normals.

Inferior Ml | Normal | LVH
Training Set | 100 100 0
Test Set 108 100 84
Table 5-6 The composition of the training set

and test set ECGs used in the neural network
diagnosis of inferior myocardial infarction in
experiment 2.

The test set consisted of 108 ECGs recorded from patients with clinically
documented inferior myocardial infarction, 84 ECGs recorded from the
patients with clinically validated left ventricular hypertrophy, and 100
ECGs recorded from normal subjects. (Table 5-6)

5.3.3 Methods

A total of 306 neural networks (167 for anterior myocardial infarction
and 139 for inferior myocardial infarction) with a different number of
input variables and various hidden layer topologies were fully trained and
subsequently evaluated using ECGs from a separate test set. The method

of training is described in section 5.2.

In experiment 1, only two subsets of neural networks with or without

derived VCG input measurements (QRS+ST-T+derived VCG
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measurements versus QRS+ST-T measurements) were trained and then

evaluated.

In experiment 2, there were four subsets of neural networks trained with
various combinations of different ECG and derived VCG input variables.
Left ventricular hypertrophy cases were also included in the test set. The
4 subsets of neural networks for the diagnosis of anterior and inferior

myocardial infarction are shown in the lower part of Table 5-2.

5.3.4 The Performance of Glasgow Program on The Training
Set

The sensitivity and specificity of the Glasgow Program based on the
training set used in experiments 1 and 2 for the diagnosis of anterior and

inferior myocardial infarction are shown in Table 5-7.

Training Set Anterior Ml Inferior Ml
Sensitivity 75% 92%
Specificity 100% 100%

Table 5-7 Performance of the Glasgow Program for
the diagnosis of anterior and inferior myocardial
infarction on the training set.

5.3.5 Electrocardiographers' Interpretation of the Test Set

The same two test sets of ECGs with the composition shown in Tables 5-
5 and 5-6 used for the assessment of the performance of the neural
networks were also interpreted by two electrocardiographers without the
knowledge of age, sex and clinical information. Only 12 average beats

and two rhythm strips were given to the electrocardiographers and they
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were asked to cfe;ssify the ECG as myocardial infarction, normal or left
ventricular hypertrophy. Thereafter, the usual statistical formulae for the
calculation of specificity and sensitivity were used to assess their
performance. Their results were averaged and compared to the results

from the original Glasgow Program and the best neural networks.

5.4 RESULTS OF EXPERIMENTS 1 AND 2
5.4.1 ANTERIOR MYOCARDIAL INFARCTION

A total of 167 artificial neural networks for the diagnosis of anterior

myocardial infarction were evaluated on the test set ECGs.

The performance of all 55 neural networks using 46 input variables
(QRS+ST-T+dVCQG) for the diagnosis of anterior myocardial infarction in
experiments 1 & 2 is shown in Tables 5-8 a, b, & c (see Appendix 2).

The performance of all 52 neural networks using 42 input variables
(QRS+ST-T) for the diagnosis of anterior myocardial infarction in

experiments 1 & 2 is shown in Tables 5-9 a, b, & ¢ (see Appendix 2).

The performance of all 30 neural networks using 25 input variables
(QRS+dVCG) for the diagnosis of anterior myocardial infarction in

experiments 1 & 2 is shown in Table 5-10 (see Appendix 2).
The performance of all 30 neural networks using 21 input variables

(QRS) for the diagnosis of anterior myocardial infarction in experiments

1 & 2 is shown in Table 5-11 (see Appendix 2).
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The results of the best performing networks, Glasgow Program and
electrocardiographers for the diagnosis of anterior myocardial infarction

are shown in Table 5-16.

For the diagnosis of anterior myocardial infarction, the best performing

neural networks were as follows:

QRS+ST-T+dVCG (46v): 46v-5-5-1,

QRS+ST-T (42v): 42v-80-90-1,

QRS+dVCG (25v): 25v-90-90-1,

QRS (21v): 21v-30-30-1.
AMI GP Neural Network HE

Q+ST+V | Q+ST Q+V | Q

Se 89% | 97% 95% 91% | 88% | 85%
NSp | 100% | 99% 100% 97% | 99% | 100%
Al 89% | 96% 95% 88% | 87% | 85%
LSp |87% | 50% 49% 77% | 80% | 95%
OSp [194% | 77% 77% 88% | 90% | 98%
OAl [83% |74% 72% 79% | 78% | 83%

Table 5-16 Result of the comparison among the Glasgow
Program, the best performing neural networks, and human
experts in the diagnosis of anterior myocardial
infarction.(Q= QRS measurements, ST= ST-T measurements, V=
derived VCG measurements, HE=human experts)

From Table 5-16, it can be seen that the electrocardiographers
performed better than either the deterministic Glasgow program or the

artificial neural networks in terms of the specificity of diagnosing anterior
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myocardial infarction in the left ventricular hypertrophy cases (i.e. the
electrocardiographers had less false positive cases probably because they
knew the ECGs were from single disease cases). With respect to
sensitivity of anterior myocardial infarction, the electrocardiographers’
interpretations were inferior to both automated approaches but were

100% specific in the normal controls as was the deterministic approach.

The neural networks not using ECG ST-T measurements as input
variables performed better with respect to the specificity of anterior
myocardial infarction diagnosis in the left ventricular hypertrophy cases

compared to the networks that did use them.

When ECG ST-T parameters were used as the input variables to the
networks, the addition of derived VCG parameters seemed not to lead to
any significant improvement in the detection of anterior myocardial

infarction.

5.4.2 INFERIOR MYOCARDIAL INFARCTION

A total of 139 artificial neural networks for the diagnosis of inferior

myocardial infarction were evaluated by the test set ECGs.

The performance of all 45 neural networks using 21 input variables
(QRS+ST-T+dVCQG,) for the diagnosis of anterior myocardial infarction in
experiments 1 & 2 is shown in Tables 5-12 a, b, & ¢ (see Appendix 2).

The performance of all 36 neural networks using 18 input variables
(QRS+ST-T) for the diagnosis of inferior myocardial infarction in

experiments 1 & 2 is shown in Tables 5-13 a, b, & c (see Appendix 2).
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The performance of all 30 neural networks using 12 input variables
(QRS+dVCQG) for the diagnosis of inferior myocardial infarction in
experiments 1 & 2 is shown in Table 5-14 (see Appendix 2).

The performance of all 30 neural networks using 9 input variables (QRS)
for the diagnosis of inferior myocardial infarction in experiments 1 & 2 is

shown in Table 5-15 (see Appendix 2).

For the diagnosis of inferior myocardial infarction, the best performing

neural networks were as follows:

QRS + ST-T + dVCG (21v): 21v-20-20-1,

QRS + ST-T (18v): 18v-80-1,
QRS + dVCG (12v): 12v-70-70-70-1,
QRS (9v): 9v-10-10-10-1.

The results of the best performing networks, Glasgow Program and
electrocardiographers for the diagnosis of inferior myocardial infarction

are shown in Table 5-17.

From Table 5-17, it can be seen that the electrocardiographers'
interpretations were inferior to those of the artificial neural networks but
superior to the deterministic Glasgow Program in terms of sensitivity in
diagnosing inferior myocardial infarction. The specificity of diagnosing
inferior myocardial infarction by the electrocardiographers was equivalent
to the Glasgow Program and the neural networks using QRS+ST-
T+dVCG or QRS+ST-T measurements as input variables.

The use of ST-T measurements as additional input parameters to the

neural networks impaired the specificity of the inferior infarction
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diagnosis in the left ventricular hypertrophy cases. The Glasgow Program
was superior both to the electrocardiographers and the neural networks

in terms of inferior infarct specificity in the left ventricular hypertrophy

cases.

MI GP Neural Network HE
Q+ST+V | Q+ST Q+V 1 Q

Se 65% | 87% 87% 84% | 80% | 72%
N Sp | 100% || 100% 100% 94% | 96% | 100%
Al 65% | 87% 87% 78% | 76% | 72%
LSp [88% | 79%% 73% 82% | 85%| 81%
OSp [ 95% | 90% 88% 89% [91% | 91%
OAl |60% | 77% 75% 73% | 71% | 63%

Table 5-17 Result of the comparison among the Glasgow
Program (GP), the best performing neural networks, and
human experts in the diagnosis of inferior myocardial
infarction.(Q= QRS measurements, ST= ST-T measurements, V=

derived VCG measurements, HE= human experts)

5.4.3 General Results

There were no significant differences in the performance of the neural
networks trained in the two-group situation for the diagnosis of anterior
or inferior myocardial infarction if using the same set of input variables
and the same number of hidden layers when tested both in the two-and

three-group situations.

The results suggested that neural networks are superior to the

deterministic criteria for the diagnosis of anterior myocardial infarction
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and inferior myocardial infarction in a two-group situation by improving

the sensitivity while preserving the specificity in normals.

In the three-group situation, the incorporation of ECG ST-T parameters
improved the diagnosis of myocardial infarction but jeopardised the
specificity of myocardial infarction diagnosis in left ventricular
hypertrophy cases; the addition of derived VCG measurements to the
input variables of the neural network using ECG QRS parameters
produced better results than the network using ECG QRS parameters
only but was not so good as compared to the neural network using the

ECG QRS and ST-T measurements together.

5.5 EXPERIMENT 3

TRAINING AND TESTING IN THE THREE-GROUP SITUATION
(Myocardial Infarction vs Normal vs Left Ventricular
Hypertrophy)

ARTIFICIAL NEURAL NETWORKS WITH ONLY ONE OUTPUT
NEURON

The aim of this experiment was to evaluate whether the performance of
the neural networks could be improved after adding ECGs from left
ventricular hypertrophy cases to the training set used in experiments 1

and 2.
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5.5.1 MATERIALS

Anterior Myocardial Infarction

The training set consisted of 80 ECGs recorded from patients with
clinically validated anterior myocardial infarction and 80 ECGs recorded
from normals (including 30 ECGs showing poor R wave progression
over praecordial leads from apparently healthy individuals admitted for
the investigation of atypical chest pain but found to have normal
coronary arteriograms) and 42 ECGs recorded from patients with

clinically documented left ventricular hypertrophy.

The test set consisted of 101 ECGs recorded from patients with clinically
documented anterior myocardial infarction, 42 ECGs recorded from the
patients with clinically proven left ventricular hypertrophy, and 100
ECGs recorded from normal subjects (Table 5-18).

Anterior MI | Normal | LVH
Training Set || 80 80 42
Test Set 101 100 42
Table 5-18 The composition of the training set and
test set ECGs used for the neural network diagnosis
of anterior myocardial infarction in experiment 3.

Inferior Myocardial Infarction

The training set consisted of 100 ECGs recorded from patients with
clinically proven inferior myocardial infarction, 42 ECGs recorded from
patients with clinically documented left ventricular hypertrophy, and 100

ECGs recorded from normals.
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Inferior Ml | Normal [ LVH
Training Set | 100 100 42
Test Set 80 100 42
Table 5-19 The composition of the training set and
test set ECGs used in the neural network diagnosis

of inferior myocardial infarction in experiment 3.

The test set consisted of 80 ECGs recorded from patients with clinically
proven inferior myocardial infarction, 42 ECGs recorded from the
patients with clinically validated left ventricular hypertrophy, and 100
ECGs recorded from normal subjects (Table 5-19).

5.5.2 RESULTS OF EXPERIMENT 3

Anterior Myocardial Infarction

The performance of the artificial neural networks using varying designs
of input and hidden layers but with only a single output for the diagnosis
of anterior myocardial infarction was assessed. Full details of results of all

neural networks are given in Tables 5-20 to Table 5-23 (Appendix 2).

The best performing neural networks were as follows:

QRS+ST-T+dVCG (46v): 46v-40-40-1,

QRS+ST-T (42v): 42v-20-1,
QRS+dVCG (25v): 25v-30-30-1,
QRS (21v): 21v-40-40-1.

The best results for the neural network diagnosis of anterior myocardial

infarction in experiment 3 are summarised in Table 5-24.
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The use of derived VCG measurements in addition to the use of QRS
measurements as input variables to the neural networks did not lead to
any significant improvement in the sensitivity of diagnosing anterior
myocardial infarction if ST-T measurements were already used as inputs
to the network. There was a drop in sensitivity after addition of the

derived VCG measurements to the input.

The original Glasgow Program performed better than each of the neural
networks. The specificity of the neural networks was comparable to that
of the deterministic program in the present study, but there was a slight

decrease of sensitivity in detecting anterior myocardial infarction.

AMI GP Q+ST+V [ Q+ST | Q+V | Q

Se 8% || 87% 88% | 85% |82%
L Sp 86% | 86% 84% |86% |86%
NSp {100% || 99% 99% |100% | 100%
OSp [96% | 96% 94% | 96% | 96%
O Al 85% || 83% 82% | 81% | 78%

Table 5-24 Results of the comparison among the Glasgow
Program and the best performing neural networks with
varying input variables for the diagnosis of anterior
myocardial infarction in experiment 3. (Q=QRS measurements,
ST=ST-T measurements, V=derived VCG measurements)

Inferior Myocardial Infarction
The performance of the artificial neural networks using varying designs

of input variables and hidden layers but with only a single output for the

diagnosis of inferior myocardial infarction was assessed. Full details of
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results of all neural networks are given in Table 5-25 to Table 5-28 (see

Appendix 2).

The artificial neural networks using the same set of input parameters but
with different topologies of the hidden layer do not have a significant
difference in performance in diagnosing inferior myocardial infarction,
i.e. 21v-20-20-1 and 21v-50-1 have no pronounced difference in
performance. The results for the best neural network diagnosis of inferior

myocardial infarction in experiment 3 are summarised in Table 5-29.

The best performing neural networks were as follows:

QRS+ST-T+dVCG (21v):  21v-20-1,

QRS+ST-T (18v): 18v-10-10-1,
QRS+dVCG (12v): 12v-50-50-1,
QRS (9v): '9v-50-50-1.
IMI GP Q+ST+V | Q+ST | Q+V | Q
Se | 59% |76% 79% | 70% | 74%
LSp |83% |80% 80% | 80% | 79%
N Sp | 100% | 99% 99% | 96% | 99%
OSp | 95% | 94% 94% | 92% | 93%
OAI |54% | 70% 73% | 62% | 67%

Table 5-29 Results of the comparison among the Glasgow
Program and the best performing neural networks with
varying input variables for the diagnosis of inferior
myocardial infarction in experiment 3. (Q=QRS measurements,
ST= ST-T measurements, V= derived VCG measurements)

The addition of the derived VCG measurements to the input variables in

this series of networks led to a decrease in sensitivity but preservation of
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the specificity for the diagnosis of inferior myocardial infarction. The
networks using QRS+ST-T measurements as input variables had the best
performance in the diagnosis of inferior myocardial infarction. In
general, the use of a neural network with this design is better than the

Glasgow Program in the diagnosis of inferior myocardial infarction.

5.6 EXPERIMENT 4

TRAINING AND TESTING IN THE THREE-GROUP SITUATION
(Myocardial Infarction vs Normal Qs Left Ventricular
Hypertrophy)

ARTIFICIAL NEURAL NETWORKS WITH THREE OUTPUT
NEURONS

The aim of this experiment was to evaluate whether the alteration of the
output layer topology of the neural networks could lead to any
improvement or not in the performance of diagnosing myocardial

infarction.
5.6.1 MATERIALS

Anterior Myocardial Infarction

The training and test sets are the same as those in experiment 3 (Table

5-18).
Inferior Myocardial Infarction

The training and test sets are the same as those in experiment 3 (Table

5-19).
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5.6.2 METHODS

Standard statistical formulae were used to calculate the sensitivity and

specificity of the diagnosis of anterior and inferior myocardial infarction,

and left ventricular hypertrophy as well as specificity in normals.

The definitions and methods of calculations of these terms are shown as

follows:
AMI Se=

IMI Se=

LVH Se=

AMI Sp=

IMI Sp=

LVH Sp=

N Sp=

Sensitivity of anterior myocardial infarction
diagnosis in anterior myocardial infarction patients
Sensitivity of inferior myocardial infarction diagnosis
in inferior myocardial infarction patients
Sensitivity of left ventricular hypertrophy diagnosis
in left ventricular hypertrophy patients

Specificity of anterior myocardial infarction
diagnosis in non-anterior myocardial infarction
patients (normal+LVH)

Specificity of inferior myocardial infarction
diagnosis in non-inferior myocardial infarction
patients (normal+LVH)

Specificity of left ventricular hypertrophy diagnosis
in non-eft ventricular hypertrophy patients
(normal+MiI)

Specificity of myocardial infarction and left
ventricular hypertrophy diagnosis in normals.

5.6.3 RESULTS OF EXPERIMENT 4

Anterior Myocardial Infarction

Full details of the results of all neural networks using a varying set of

input variables and different designs of hidden layers with three outputs

169



for the diagnosis of anterior myocardial infarction, left ventricular
hypertrophy and normal are shown in Table 5-30 to Table 5-33 (see
Appendix 2).

The best performing neural networks were as follows:

QRS+ST-T+dVCG (46v): 46v-20-3,

QRS+ST-T (42v): 42v-50-50-3,
QRS+dVCG (25v): 25v-10-3,
QRS (21v): 21v-20-20-3.

The results of the best neural networks for the diagnosis of anterior
myocardial infarction are summarised in Table 5-34. It was demonstrated
that the changes in the number of neurons in the hidden layers had no
profound effect on the performance of the neural networks for the

diagnosis of anterior myocardial infarction.

GP Q+ST+V | Q+ST | Q+V Q
AMISe | 8% | 84% 86% 84% 83%
AMISp [91% | 96% 93% 96% 94%
LVHSe | 69% |76% 67% 71% 45%
LVHSp [86% | 88% 92% 85% 87%
N Sp 100% || 89% 93% 74% 81%

Table 5-34 Comparison of the results of the best performing
neural networks with the Glasgow Program (GP) for the
diagnosis of anterior myocardial infarction in experiment 4.
(Q= QRS measurements, ST= ST-T measurements, V= derived VCG

measurements)

The use of derived VCG measurements as supplementary input variables

to the neural networks led to a decrease of specificity in normal and left
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ventricular hypertrophy cases (cf. Q versus Q+V and Q4ST versus
Q+ST+V), although there was an increase of specificity in the anterior
myocardial infarction cases. The Glasgow program was better with
respect to the specificity of normals and the sensitivity of anterior
myocardial infarction. The artificial neural networks using ST-T
measurements as input parameters performed better with respect to
sensitivity and specificity in all cases compared to networks not using

them (cf. Q+ST versus Q and Q+ST+V versus Q+V).

Inferior Myocardial Infarction

Full details of the results of artificial neural networks using varying sets of
input variables and different designs of hidden layers with three outputs
for the diagnosis of inferior myocardial infarction, left ventricular
hypertrophy and normal are shown in Table 5-35 to Table 5-38 (see
Appendix 2).

The best performing neural networks are as follows:

QRS+ST-T+dVCG (21v): 21v-50-3,

QRS+ST-T (18v): 18v-50-50-3,
QRS+dVCG (12v): 12v-10-10-3,
QRS (9v): 9v-30-3.

It was also found that the changes in the number of neurons in the
hidden layers had no profound effect on the performance of the neural
networks in the diagnosis of inferior myocardial infarction. The results of
the best neural networks for the diagnosis of inferior myocardial

infarction are summarised in Table 5-39.
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There was no improvement in the specificity of inferior myocardial
infarction diagnosis in normals using this topology of neural network.
Artificial neural networks of this design were superior to the Glasgow
Program in terms of sensitivity in diagnosing inferior myocardial
infarction, but the Glasgow Program was better than neural networks of
this design with respect to specificity in all diagnoses (i.e. there were less

false positives in inferior myocardial infarction, left ventricular

hypertrophy and normal cases).
GP Q+ST+V | Q+ST | Q+V Q
IMI Se 5% | 75% 79% 69% 70%
IMI Sp 95% | 94% 95% 94% 94%
LVHSe |6%9% |67% 71% 64% 36%
LVHSp | 96% |[93% 89% 91% 88%
N Sp 100% | 94% 90% 98% 84%

Table 5-39 Comparison of the results of the best performing
neural networks with the Glasgow Program (GP) for the
diagnosis of inferior myocardial infarction in experiment 4. (Q=
QRS measurements, ST= ST-T measurements, V= derived VCG

measurements)

5.7 DISCUSSION

5.7.1 General Discussion

Certain phenomena can be observed from this study during the training
of the neural networks which are also in concordance with the previous

study by Dassen et al (Dassen et al, 1993). The performance of the
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training improved and the time required for each run increased when the
number of the neurons in the hidden layer increased (i.e. the number of
iterations needed to reach the fully trained state decreased). However,
the performance in the identification of myocardial infarction in the test
set ECGs did not improve as the number of neurons in the hidden layers
grew, but this did cause slower training and running, and required more

computer memory.

5.7.2 The Two-group Situation versus The Three-group

Situation in Training and Testing

Two-group situation

From these experiments, it has been demonstrated that for the
population studied, in anterior myocardial infarction (Table 5-16), the
Glasgow Program (Overall Association Index= 83%) performed similarly
to the electrocardiographers (Overall Association Index= 83%). The
neural network using QRS and derived VCG measurements (Overall
Association Index= 79%) was the best, and the network using QRS
measurements only (Overall Association Index= 78%) next, but their
specificity for the diagnosis of anterior myocardial infarction in the left
ventricular hypertrophy cases was not acceptable. In inferior myocardial
infarction (Table 5-17), the Glasgow Program (Overall Association
Index= 60%) performed worse than the electrocardiograpl;ners (Overall
Association Index= 63%), while the neural network using QRS, ST-T
and derived VCG measurements (Overall Association Index= 77%) was
the best, and the network using QRS only (Association Index= 71%) the

worst.
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Because in both deterministic logic based ECG interpretation and human
expert ECG analysis, left ventricular hypertrophy ECGs may be
interpreted as myocardial infarction, left ventricular hypertrophy ECGs
were also included in the non-myocardial infarction group in the present
study to make the assessment more realistic. With respect to the
specificity of diagnosing myocardial infarction in the left ventricular
hypertrophy cases, the neural network was found to be inferior to the
deterministic Glasgow Program. For example, in the diagnosis of
anterior myocardial infarction, the neural network was 50% specific
using all the ECG and derived VCG parameters as input variables versus
87% specificity of the Glasgow Program and 95% specificity of the
human expert (Table 5-16). With respect to the diagnosis of inferior
myocardial infarction in left ventricular hypertrophy cases, the neural
network was 79% specific versus 88% specificity of the Glasgow
Program and 81% specificity of the human expert (Table 5-17).

Three group situation with the topology of a single output

The neural networks trained in the three-group situation were better in
specificity but worse in sensitivity and association indices than the
networks trained in the two-group situation for the diagnosis of anterior
myocardial infarction (Tables 5-16 & 5-24). Similarly, for the diagnosis
of inferior myocardial infarction, the sensitivity and association indices of
the neural networks trained in three group situation were worse and the
specificity better than those of the networks trained in the two-group
situation (Tables 5-17 & 5-29).
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The three-group situation with the topology of three output
neurons

The neural networks using three output neurons were not superior in the
diagnosis of myocardial infarction because of their poor specificity in the
normal cases in comparison with the networks using only a single output.
Therefore, this design was shown to be unsuitable for the diagnosis of
myocardial infarction as demonstrated in the present study (Tables 5-34
& 5-39). Bortolan et al (1991) reported that a set of 39 measurements
(37 ECG variables plus age and sex) from each of 2446 ECGs was input
to train a neural network. The best network had the topology of only a
single hidden layer and five output neurons. On the basis of a test set of |
820 ECGs, it was shown to produce a specificity (i.e. sensitivity in
normals) of 80.9% which was unacceptable. The present study also
confirmed that the use of three output topology for the neural network

could jeopardise the specificity in normals.

5.7.3 Comparison with Other Studies

In the two reports from the University of Lund in Sweden, Heden et al
(1993) and Reddy et al (1993) have claimed that the improvement
gained from adding ST-T measurements and derived VCG parameters to
QRS measurements is less for anterior myocardial infarction networks

than inferior myocardial infarction networks (Tables 5-40 & 5-41).

Nevertheless, from the results of the current study, the trend of
improvements when adding either ST-T or derived VCG measurements
to the input variables of the neural networks for the diagnosis of either
anterior or inferior myocardial infarction was found to be concordant, (cf

Tables 5-16 & 5-17) i.e. the addition of derived VCG parameters to the
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QRS measurements improved the association index from 76% to 78% in
inferior myocardial infarction and from 87% to 88% in anterior
myocardial infarction, but the combination of QRS and ST-T parameters
led to a more pronounced improvement from 76% to 87% in inferior
myocardial infarction and from 87% to 95% in anterior myocardial
infarction. Furthermore, the combination of both QRS & ST-T
measurements and the derived VCG parameters resulted in an
association index of 87% for inferior myocardial infarction and 96% for
anterior myocardial infarction (Tables 5-16 & 5-17). In the Lund study,
the detailed performance of the neural networks for the diagnosis of
aﬁterior myocardial infarction was not quoted, but the results for their

inferior myocardial infarction networks are shown in Table 5-40.

IMI QRS | QRS+ST | QRS+dV | QRS+dV+ST

Se 68% | 78% 75% 84%
Sp 95% | 95% 95% 95%
Al 63% | 73% 70% 79%

Table 5-40 The performance of the Lund neural network
for the diagnosis of inferior myocardial infarction in the
two group situation (Adapted from Heden et al 1993).

The study of Reddy et al (1993) (Table 5-41) used the old (1987)
Glasgow criteria. However, the new revised Glasgow deterministic
criteria (1992) were used in the present study for the comparison with
neural networks and electrocardiographers' interpretations. Therefore, it

is not possible to draw any further conclusions from this comparison.

The neural networks seemed to perform much better in our study than

the Lund study when comparisons of two group performance were made
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(Table 5-16: Association Index= 96%, Sensitivity= 97%, Specificity=
99% in the diagnosis of anterior myocardial infarction), yet the different
sampling rate of ECG recording (250 samples/second in Lund versus
500 samples/second in Glasgow), different ECG signal processing
techniques, different ECG and derived VCG parameters used for the
input layers, and different populations of patients studied could easily
produce completely different results even when the same design and
configuration of neural networks is used. However, the trend when using
the neural network approach in the diagnosis of inferior myocardial

infarction was similar in both centres.

AMI Glasgow Criteria | Lund NN (QRS) | Expert

Se 68% 79% 82%
Sp 97% 97% 93%
Al 65% 76% 75%

Table 5-41 Comparisons of the performances of the old
Glasgow criteria (1987), Lund neural network, and
electrocardiographer in the Lund study for the diagnosis of
anterior myocardial infarction (Adapted from Reddy et al
1993).

In a recent report, Pahlm et al (1994) claimed that appending derived
VCG parameters (X intercept, early rotation, direction of maximum
vector, duration of early superior forces and direction of the initial 30 ms
vector) to the traditional scalar ECG measurements (e.g. Q duration, Q
amplitude and Q/R ratio) could have a significant improvement in
diagnostic yield in separating cases of inferior myocardial infarction from
the combined group of normals and cases with anterior myocardial
infarction. Our data do not consistently confirm this finding. This

difference may be due to the different training and testing materials, e.g.
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the inclusion of left ventricular hypertrophy cases, as well as the different
signal processing technique used. On the other hand, it is also possible
that in the current study the ECG variables used had already performed
maximally for the diagnosis of myocardial infarction, so that no
significant improvement could be shown after adding the derived VCG

measurements.

5.7.4 The Addition of Derived VCG Measurements versus ST-T

Measurements

The use of QRS measurements alone as the input variables to the neural
network had the best specificity for the diagnosis of myocardial infarction
in left ventricular hypertrophy cases. However, the performance was
worse than the original Glasgow Program. The addition of derived VCG
parameters (specificity= 82% in inferior myocardial infarction and 77%
in anterior myocardial infarction), ST-T measurements, and both
together to the input layer jeopardised the specificity of the neural
networks for the left ventricular hypertrophy cases. The addition of ST-T
measurements led to greater improvement compared to the addition of
derived VCG parameters. In the diagnosis of inferior myocardial
infarction, even the worst performing neural network did better than the
deterministic Glasgow Program in the two group situation, while in
anterior myocardial infarction, the worst two subsets of neural networks
were comparable to the Glasgow Program in the two group situation.
From the present observation, the addition of the derived VCG
measurements made no difference to the performance in the two group

situation.
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In the present study, it was demonstrated that the addition of derived
VCG measurements as input variables to a neural network had a variable
effect on performance in the diagnosis of either anterior or inferior
myocardial infarction whether or not left ventricular hypertrophy cases

were used in the test set.

This may imply that:

(1) The information needed to reach the diagnosis of myocardial
infarction can be fully supplied using the carefully selected 12-lead ECG
parameters only, so that the addition of the derived VCG measurements

does not offer any further benefit.

(2) The derived VCG provides the same diagnostic information as the
ECG, i.e. because the derived VCG is synthesized from the 12-lead ECG,

it is clearly the same data but with a different form of display.

(3) The software used to extract data from the derived VCG could have

been improved or extended, i.e. it was possibly inadequate.

On the other hand, the neural networks using QRS+ST-T measurements
as input variables were better in performance than the neural networks
using QRS measurements only. Therefore, the neural networks using

QRS+ST-T measurements were used in the present study.
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5.7.5 Comparison Among Electrocardiographers, Deterministic
Logic and Artificial Neural Network in the Diagnosis of

Myocardial Infarction

The results for the detection of myocardial infarction performed blindly
by the experienced electrocardiographers using only 12-lead ECG print
outs without derived VCGs are also shown in Table 5-16 & 5-17. In the
diagnosis of clinically proven anterior myocardial infarction cases by the
human expert, the sensitivity of myocardial infarction detection was
worst (85%) compared to the Glasgow Program (89%) and the neural
networks using QRS+ST-T+dVCG, QRS+ST-T, QRS+dVCG, QRS only
(97%, 95%, 91%, 88%). However, their specificity of myocardial
infarction detection in the normal cases was similar to that of the
Glasgow Program and the neural networks using QRS+ST-T (100%),
while their specificity of myocardial infarction diagnosis in the left
ventricular hypertrophy cases was the best (95%). In the clinically
documented inferior myocardial infarction cases, the sensitivity of the
ECGs interpreted by the human expert (72%) was intermediate to that of
the Glasgow Program (65%) and the neural networks (87%, 87%, 84%,
80%), but the specificity of the expert in the normal cases was the same
as Glasgow program and the neural networks using ST-T measurements
(100%). The specificity of inferior myocardial infarction detection in the
left ventricular hypertrophy cases by the human experts (81%) was worse
than that of the Glasgow Program (88%) and neural networks not using
ST-T measurements (QRS+dVCG 82%, QRS only 85%) but was

superior to the networks using ST-T input variables.

This suggests that the neural networks performed better than either the

human experts or the deterministic program in the two-group situation,
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but in the three-group situation, the specificity of the neural network for
myocardial infarction in left ventricular hypertrophy cases decreased

significantly.

Evaluation of the specificity of the diagnosis of myocardial infarction with
neural networks using only normal cases is very misleading. e.g. the
specificity was 96-100% in normals but 74-88% in left ventricular
hypertrophy cases. The major drawback for the neural network in
isolation approach for the diagnosis of myocardial infarction as learned
from the current study was that the specificity of reporting inferior
myocardial infarction dropped from 88% for the Glasgow Program to
73% for the network in left ventricular hypertrophy ECGs using QRS
and ST-T parameters as input variables and to 85% for the network
using only QRS parameters, although the sensitivity for the diagnosis of
inferior myocardial infarction improved from 65% to 87% and 809%,
respectively. The use of ECG ST-T measurements as input variables may
lead to a 12% (85% to 73%) decrease of the specificity in inferior

myocardial infarction detection for the left ventricular hypertrophy cases.

Thereafter, it was decided to include the ECGs from the left ventricular
hypertrophy cases in the training set to see if this approach could
improve the performance of the neural networks. In anterior myocardial
infarction (Table 5-24), the sensitivity of the neural network (88%) in the
tested population was similar to that of the Glasgow Program (89%),
whereas in inferior myocardial infarction (Table 5-29), the sensitivity of
the neural network (79%) was significantly better than the Glasgow
Program (59%), and the performance was better (73% versus 54%).
These results were calculated on the basis of only a single output with

two classifications of myocardial infarction and non-myocardial
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infarction, respectively. Thus, the addition of left ventricular hypertrophy
cases to the training sets has different effects on the diagnosis inferior

and anterior myocardial infarction.

5.7.6 Limitations of the Present Study

In the current study, the ECG data base was assembled on clinically
validated normal individuals and patients suffering from myocardial
infarction and left ventricular hypertrophy. The clinical diagnoses served

as a diagnostic "Gold Standard".

The inherent limitation of this gold standard is that the normal individuals
may not all have been free of cardiac disease, since the normal resting
12-lead ECG could not be used to differentiate among what was normal,
clinically silent ischaemia, or silent myocardial infarction. It was
demonstrated in the Framingham study by Kannel & Abbott (1984) that
25% of all myocardial infarctions are clinically silent. Furthermore, some
so called "normal" PRWP individuals who have normal large epicardial
coronary arteries demonstrated by coronary arteriography may have
unrecognised microvascular (Syndrome X) or myocardial disease. There
are also problems with the correct identification of ventricular
hypertrophy and myocardial infarction in the living data base used in the
present study. The presence of angiographic evidence of ventricular wall
motion abnormalities, e.g. hopokinesia, akinesia, or dyskinesia, does not
necessarily imply myocardial infarction. Hibernating and/or stunned
myocardium can also present with hypoknesia or akinesia (Rahimtoola,

1989).
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The definition of ventricular hypertrophy infers an increase in the size of
myocardial cells, but does not necessarily imply an increase in ventricular
mass (Laks, Morady & Swan, 1969). Ventricular mass in fact is a
variable mix of hypertrophied myocardial cells, oedema, interstitial

infiltrates, and fibrosis.

The same caveat applies to the diagnosis of myocardial infarction. The
definite pathologic gold standard of myocardial infarction is the histologic
evidence of myocardial cell necrosis, myocardial fibrosis, or both, not
necessarily wall motion abnormalities on the left ventriculogram, nuclear
scan, or echocardiogram. Wall motion abnormalities can also be present
in the chronic ischaemic cardiac situations like myocardial stunning and
hibernating myocardium. However, they do not always indicate the
presence of a myocardial scar. Nevertheless, the data base was collected

as objectively as possible.

Finally, the alteration of the number of output neurons from one to three
did not lead to any improvement in the performance of the neural
networks as compared to the original deterministic logic in both anterior
and inferior myocardial infarction (Table 5-34 & 5-39). It was therefore
thought that the implantation of the neural networks at a specific point
in the deterministic logic of the Glasgow Program might preserve the
advantage of higher myocardial infarction diagnostic specificity of the
deterministic logic in the left ventricular hypertrophy cases and also the
gain in sensitivity offered by the neural networks. This approach will be

discussed in the following chapter.
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5.8 CONCLUSIONS

Several conclusions can be drawn from the present study.

(1) In the diagnosis of anterior myocardial infarction, the neural networks
trained in the three-goup situation but with only a single output neuron
were superior both to the networks trained in the two-group situation
and the networks trained in the three-group situation but with three
output neurons. On the other hand, in the diagnosis of inferior
myocardial infarction, the neural networks trained in the two-group
situation were superior to the networks trained in the three-group

situation.

(2) The use of three output topology was not helpful in the present study
especially with respect to the specificity of normals, confirming
Bortolan's report (1991) that the use of 5 outputs led to a lower normal

specificity of only 80.9% which is completely unacceptable.

(3) In the most realistic test situation of having normal+myocardial
infarction+left ventricular hypertrophy, the best results were obtained
from 42v-20-1 in the diagnosis of anterior myocardial infarction and
18v-80-1 in the diagnosis of inferior myocardial infarction, i.e. networks

with a single hidden layer.
(4) Neural networks can significantly improve the diagnosis of both

anterior and inferior myocardial infarction in the two-group situation, but

less so in anterior myocardial infarction.
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(5) The neural network approach is better than human experts only in
the two-group situation for the computer assisted ECG diagnosis of

myocardial infarction.

(6) The use of ST-T measurements in addition to QRS data as input
parameters to the neural networks can improve sensitivity as well as
specificity in the detection of myocardial infarction. On the other hand,
the addition of derived VCG parameters has no significant benefit in the
detection of myocardial infarction if ST-T measurements have already
been used. Finally, the addition of derived VCG measurements can be
beneficial in the diagnosis of myocardial infarction if only 12-lead ECG

QRS parameters are already in use.

(7) Finally, the gold standard (clinical diagnosis) used in the present study
is the inherent limitation of the performance. There are clhicaﬁy well
documented myocardial infarction and left ventricular hypertrophy cases
with normal ECGs included in this study. This is also an inherent
limitation of the electrocardiographic classification versus the clinical

diagnosis.
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CHAPTER 6

SOFTWARE BASED
NEURAL NETWORKS IMPLANTED IN
DETERMINISTIC LOGIC FOR
THE COMPUTER ASSISTED
ECG DIAGNOSIS OF
MYOCARDIAL INFARCTION

6.1 INTRODUCTION

It was found from the previous experiments that the neural network
approach had a higher sensitivity whereas the deterministic approach
had the better specificity in diagnosing myocardial infarction. In
particular, the Glasgow Program was superior to the neural network
approach in the specificity of diagnosing myocardial infarction in left
ventricular hypertrophy cases. It was also learned from the experience
gained using neural networks for the diagnosis of atrial fibrillation, that
although there was no benefit in combining the neural network output
and the deterministic logic interpretation for the detection of atrial
fibrillation, it was still ultimately possible to improve the performance of
the computer assisted ECG interpretation program. Therefore it was
thought that the incorporation of the best neural networks into the
existing deterministic program with possible modification of the existing
logic might have some advantage over using either alone for the
computer assisted ECG diagnosis of myocardial infarction. For this

reason, two further experiments were undertaken.
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6.2 EXPERIMENT 5

GLASGOW PROGRAM WITH NEURAL NETWORK
IMPLANTATION

Aim of the study

The purpose of the present experiment was to evaluate whether the
incorporation of a neural network into the deterministic program could
improve the performance of the program in the diagnosis of myocardial

infarction.

6.2.1 ANTERIOR MYOCARDIAL INFARCTION

6.2.1.1 MATERIALS

Full clinical details of the training and test sets ECGs used in experiment
5 are described in Chapter 5 section 5.2 and Table 5-18. The

composition of the test set is shown in Table 6-1.

AMI LVH Normal

Test Set 101 42 100
Table 6-1 Composition of the test set ECGs used in

experiment 5 for the diagnosis of anterior
myocardial infarction.
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6.2.1.2 METHODS

The best performing neural networks, one for the neural network using
QRS+ST-T measurements as inputs and one for the neural network
using QRS measurements only, were selected from experiment 3 in
Chapter 5. The best performing neural network for each group was as

follows:
QRS+ST-T measurements: 42v-20-1,
QRS measurements: 21v-40-40-1.

The results of Table 5-24 indicate that the network using QRS+ST-T

measurements should be adopted for further study.

6.2.1.3 METHOD OF IMPLANTATION

The technique adopted for implantation was as follows. In the original
deterministic Glasgow Program, the logic (see Appendix 3, Table 6-2)
for the diagnosis of definite Q waves (VQ1-VQ4 in Table 6-2) in the
anteroseptal (V2,V3,V4) leads was replaced by a single neural network,
while other deterministic logic e.g. for the detection of low R waves, was

left unaltered in the program.

The revised logic functioned in the following way for anterior myocardial

infarction:

(1) Definite praecordial Q criteria were replaced by an
artificial neural network.

(2) If the output from the neural network is true (>0.5)
then if there is a Q wave in V3 or V4
set reason statement "Q waves in anterior leads" true
else
set reason statement "low R waves in anterior leads” true.
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(3) If the output from the neural network is false, other criteria
for anterior myocardial infarction are checked, e.g.
reversed R waves. Set appropriate reason statement if
necessary.

(4) Continue with remainder of the logic.

6.2.1.4 RESULTS

The results of incorporating the best neural network (42v-20-1) into the
Glasgow Program for the diagnosis of anterior myocardial infarction

(AMI) on the test set are shown in Table 6-3.

AMI Se NSp |LSp |OSp | Al
GP 89% | 100% | 86% |96% | 85%
NN 88% [99% [84% |94% | 82%

NN+GP | 93% | 99% 74% 92% 85%
Table 6-3 Results after Implementation of the best
performing neural network (42v-20-1) into the Glasgow

Program for the diagnosis of anterior myocardial infarction
on the test set (AMI= anterior myocardial infarction, L=LVH,
N=normal, O=overall, GP= Glasgow Program, NN= neural network,
NN + GP= neural network implanted in the GP)

The replacement of the definitive Q deterministic criteria by a neural
network enhanced the sensitivity of diagnosing anterior myocardial
infarction from the 89% of the original Glasgow Program to 93% (Table
6-3) with a decrease of overall specificity in normals and left ventricular
hypertrophy cases from the 96% of the original Glasgow Program to
92% but the same overall performance was preserved (Association Index
= 85%). Compared to the use of neural network in isolation, there was a

5% improvement in the sensitivity of detecting anterior myocardial
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infarction but a 2% decrease in overall specificity in normals and left
ventricular hypertrophy cases. In particular, there was a 12% and 10%
decrease of specificity in left ventricular hypertrophy cases compared to
the original Glasgow Program and neural network in isolation,
respectively. In contrast, there was no change of specificity in normals.
Therefore, the source of the decline in overall specificity came from the

decrease in left ventricular hypertrophy cases (see Table 6-3).

6.2.2 INFERIOR MYOCARDIAL INFARCTION

6.2.2.1 MATERIALS

Full clinical details of the training and test sets ECGs used in experiment
5 for diagnosing inferior myocardial infarction are described in Chapter 5
section 5.2 and Table 5-4. The composition of the test set is shown in

Table 6-4.

IMI LVH Normal

Test Set 80 42 100
Table 6-4 Composition of the test set ECGs used in

experiment 5 for the diagnosis of inferior myocardial
infarction.

6.2.2.2 METHODS

It was clearly demonstrated in the previous experiments in chapter 5 that
the neural networks trained in the three-group situation were worse in
performance than the neural networks trained in the two-group situation

(see Tables 5-17 & 5-29).
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The best performing neural networks, one for the neural network using
QRS+ST-T measurements as inputs and one for the neural network
using QRS measurements only, were therefore selected from experiment
2 in Chapter 5. The best performing neural network for each group was

as follows:
QRS+ST-T measurements: 18v-80-1,
QRS measurements: 9v-10-10-10-1.

These two best performing networks were then incorporated into the
deterministic Glasgow Program one at a time for further study. The

performance of this new program was then evaluated on the test set.

6.2.2.3 METHOD OF IMPLANTATION

In the original deterministic program, the diagnosis of myocardial
" infarction is carried out after left bundle branch block and Wolff-
Parkinson-White pattern are excluded. The definite Q wave criteria are
classified by their degree of significance from Q1 to Q4 (see Appendix 3,
Table 6-5). The evaluation of the criteria Q1 to Q4 are carried out in the

inferior leads I, Ill, and aVF in the original Glasgow Program.

In this experiment, the logic of definite Q wave criteria (Q1-Q4) was
replaced by the best performing neural network of group 1 (18v-80-1) or
group 2 (9v-10-10-10-1) one at a time. If the neural network did not
detect inferior myocardial infarction, then other "Non-Q criteria" (see

Appendix 3, Table 6-6) were tested in the inferior leads II, Il and aVF.

191



6.2.2.4 RESULTS

The results of incorporating the best neural network of each group one
at a time into the Glasgow Program for the diagnosis of inferior

myocardial infarction on the test set are shown in Table 6-7.

IMI Se NSp LSp OSp | Al

GP 59% |100% [93% [98% |57%
NN(Q+ST) 84% |100% | 74% |92% | 76%
NN(Q) 74% [96% [88% |94% |68%
GP+NN(Q+ST) [ 86% |100% | 74% |92% | 78%
GP+NN(Q) 80% [96% |86% |193% |73%

Table 6-7 Results on the test set for the diagnosis of inferior
myocardial infarction following the implantation of the best
performing neural network of each category one at a time (Q=
QRS measurements, ST= ST-T measurements) into the Glasgow
Program. (IMI= inferior myocardial infarction, GP= Glasgow Program,
NN= neural network, NN + GP= neural network implanted GP, Se=
sensitivity, Sp= specificity, N= normal, LSp= IMI Sp in left ventricular
hypertrophy cases, OSp= Overall Sp, Al= Association Index)

In the diagnosis of inferior myocardial infarction (see Table 6-7), the
implementation of the neural network into the Glasgow Program led to a
dramatic 27% increase (for the neural network using QRS+ST-T
measurements as input variables) and 21% increase (for the neural
network using QRS measurements only) in the sensitivity of inferior
myocardial infarction detection and a significant increase in the overall
performance of the program (21% and 16% increase of the Association
Index for the neural networks using QRS+ST-T and QRS measurements,

respectively).
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It can also be seen that the neural network using QRS+ST-T
measurements (Association Index= 78%) as input variables was better
than the neural network using QRS measurements only (Association
Index= 73%). On the other hand, the neural network using only QRS
measurements had a higher specificity of diagnosing inferior myocardial
infarction in the left ventricular hypertrophy cases but also had a lower
specificity of 96% in normals as compared to 100% specificity in either
the Glasgow Program or the network using QRS+ST-T measurements as

input variables.

The implementation of the neural network using QRS+ST-T
measurements as input variables into the Glasgow Program had the
advantage of enhanced sensitivity in reporting inferior myocardial
infarction while preserving the specificity in both normal and left
ventricular hypertrophy cases compared to the use of a neural network

in isolation (Table 6-7).

6.3 EXPERIMENT 6

NEURAL NETWORK IMPLANTED IN MODIFIED GLASGOW
PROGRAM

The result of Table 6-3 showed that the specificity of reporting anterior
myocardial infarction in left ventricular hypertrophy cases needed to be
improved. After careful review of the ECGs, it was thought that
modification of the existing deterministic logic might improve the
performance of the Glasgow Program with the neural network

implanted. Therefore, the aim of this next experiment was to evaluate
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the performance of the neural network implanted into the deterministic
program together with some modification of the logic for the diagnosis

of myocardial infarction.

6.3.1 ANTERIOR MYOCARDIAL INFARCTION

6.3.1.1 MATERIALS

The same test set as that of experiment 5 was used for the current study.

6.3.1.2 METHODS

Training set ECGs were carefully reviewed by two experienced
electrocardiographers and consensus was reached on how to modify
certain parts of the deterministic logic which still contained the same
neural network (42v-20-1) for diagnosing anterior myocardial infarction.
Whereas previously the neural network replaced Q wave criteria, in this
experiment the network was combined with the original Q criteria in
"OR" logical fashion. It was thought this might enhance sensitivity. On
the other hand, to improve specificity, some additional logic checking on

R wave amplitude in the anterior leads was added.

The method of using the neural network, together with the modification

of the logic, was as follows:

1. If either
the deterministic logic definite Q criteria = true
or
neural network output > 0.5 (= true)
then
set reason statement "Q waves in anterior leads"
= true.
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6.3.1.3 RESULTS

If atypical Q criteria = true

and definite Q criteria = false

then

set reason statement "atypical Q"= true.
If low R wave criteria = true

and definite Q criteria = false

and atypical Q criteria = false

then

set reason statement "low R wave" = true
If neural network = true

and low R wave criteria = false
andnoQinV2or V3

then

set reason statement "low R wave"= true
set reason statement "Q waves in anterior leads"
= false

If low R wave criteria = true

and reversed R wave criteria = false
and{(RV2>0.2mV and QV2=0) or
(RV3>0.2 mV and QV3 = 0)}

then

set reason statement "low R wave" = false.
If neural network = true

and reversed R wave criteria = false

and {RV2> 0.2 mV and QV2=0 and
RV3 >0.2 mV and QV3=0}

and {IQI> 0.15 mV or IQ/RI > 1/3

in any 2 of I, aVL, V5§, V6}

then

set "Q waves in lateral leads" = true

Table 6-8 shows that after the modification, there was a decrease in

sensitivity for the detection of anterior myocardial infarction from 93% to

90% while the specificity of 99% was preserved in normal cases and a
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small gain of 2% specificity in left ventricular hypertrophy cases (76%)
was obtained in comparison with experiment 5. Although the
performance (Association Index= 82%) decreased compared to (i) the use
of deterministic logic alone (Association Index= 85%) and (ii) the use of
neural network implanted Glasgow Program before the modification of
the logic (Association Index= 85%), the overall specificity (92%) is similar
to that before the modification (92%) but was inferior to the original
deterministic logic (96%). This version of the neural network implanted in
the deterministic program together with the first modification of the logic

was subsequently used in the evaluation of the second test set.

AMI Se NSp |LSp OSp | Al
GP 89% | 100% | 86% |96% | 85%
NN+GP 93% |99% |74% |92% |85%

NN+GP+M 90% |199% |76% [92% [82%
Table 6-8 Results of neural network implanted into the

modified deterministic program for the diagnosis of
anterior myocardial infarction evaluated on the test set.
(GP= Glasgow Program, NN= neural network, M=modifications)

6.3.2 Inferior myocardial infarction

6.3.2.1 MATERIALS

The same test set as that of experiment 5 was used in the current study.

6.3.2.2 METHODS

The result in Table 6-7 has shown that the specificity of inferior
myocardial infarction in the left ventricular hypertrophy cases is 74%, a

figure which was not acceptable. Therefore, after careful review of ECGs
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from the training set, it was decided to add the following modified
deterministic criteria for a small inferior Q wave in order to improve the
specificity of inferior myocardial infarction (IMI) diagnosis in the left
ventricular hypertrophy cases. The implementation was otherwise
unchanged, i.e. a neural network replaced Q wave criteria while "non-Q

criteria" remained.

Criteria

If the neural network reports inferior myocardial infarction
and

IQaVFampl < 0.075mV and RaVFamp > 0.15mV

then

set inferior myocardial infarction as false.

The detailed method of implantation was as follows:

1. If the neural network output > 0.5 (= true),
then
set IMI = true.
2. If IMI= true
and |QaVFamp | < 0.075mV and RaVFamp > 0.15mV
then
set IMI = false.
3. If output from the neural network = true
and QaVFamp= 0,
then
set reason statement "definite Q" = false
and reason statement "Q equivalent” =true.
4, If the neural network output = false,
then
"non-Q criteria" are used.
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6.3.2.3 RESULTS

The results of incorporating the neural network into the Glasgow
Program before and after the addition of the small inferior Q criterion for

the diagnosis of inferior myocardial infarction are shown in Table 6-9.

IMI Se NSp |LSp | OSp | Al

GP 59% | 100% | 93% | 98% | 57%
GP+NN(Q+ST) 86% | 100% | 74% | 92% | 78%
GP+NN(Q) 80% | 96% | 86% | 93% | 73%
GP+M+NN(Q+ST) || 79% | 100% | 88% | 96% | 75%
GP+M+NN(Q) 76% | 97% [ 88% | 94% | 70%

Table 6-9 Results after the implantation of the neural
networks (NN) (Q+ST=QRS+ST-T, Q=QRS) into the
deterministic Glasgow Program (GP) together with the
addition of the modified small inferior Q criterion (M) for
the diagnosis of inferior myocardial infarction (IMI).

After the addition of the modified small inferior Q criterion to the neural
network implanted Glasgow Program, it can be seen from Table 6-9 that
there was a 14% increase (from 74% to 88%) in specificity for reporting
inferior myocardial infarction in left ventricular hypertrophy cases in the
neural network using QRS+ST-T measurements and a 2% increase (from
86% to 88%) in specificity in the neural network using QRS parameters
only. There were corresponding increases in overall specificity. The
improvement in specificity was, as expected, offset by a drop in
sensitivity of 7% and 4%, respectively, still giving an increase of 20% and

17% compared to the original program.
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As a consequence, this led to corresponding small decreases of 2% and
4% respectively of the overall specificity as compared to the original
deterministic logic. However, the performance was significantly better
than that of the original deterministic program (i.e. the Association Index

improved from 57% to 75%).

6.3.2.4 FURTHER MODIFICATION

From Table 6-9, it was demonstrated that the Glasgow Program
implanted with the neural network using QRS+ST-T measurements (18v-
80-1) was superior in performance to the program implanted with the
neural network using QRS parameters only (9v-10-10-10-1). Therefore,

only the former was used in further assessment.

Despite the improvement seen in Table 6-9, it was felt that it might still
be possible to achieve further enhancements. Therefore, ECGs from the
training set were again reviewed and an additional Q/R ratio criterion in
lead aVF was then added in the hope of reducing the false positive
diagnosis of inferior myocardial infarction in the left ventricular

hypertrophy cases and normal controls.

The simplified procedure of implementation of the neural network
together with the modification of the logic for the diagnosis of inferior

myocardial infarction is shown in Fig.6-1.

The method (M1) of further modification to the section 6.3.2.2 step 2

was as follows:
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Modified
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Output >0.5
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Non-Q
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No

Inferior
Myocardial
Infarction

Fig. 6-1 Flow Chart for the Implantation of a Neural Network into the Deterministic
Logic for the diagnosis of Inferior Myocardial Infarction.



If IMI=true
and

{ 1Q! aVF < 0.075mV & R aVF > 0.075mV}
or

{IQ/Rl1aVF < 17.5% & RaVF > 0
& 1QlaVF > 0.05mV & QaVF duration < 30ms}
then

set IMI = false.

Results

The result of the further modification involving lead aVF for the diagnosis
of inferior myocardial infarction is shown in Table 6-10. It can be seen
that there was a minor decrease (1%) in inferior myocardial infarction
detection while the specificity of the inferior myocardial infarction
diagnosis was preserved in both normal controls and left ventricular

hypertrophy cases. In other words, there was no apparent gain from this

further modification.
IMI IMISe| NSp |[LSp |OSp | Al
M1 78% | 100% | 88% | 96% | 74%

Table 6-10 Results of the neural network (QRS+ST-T)
implanted in the modified deterministic program (M1) for
the diagnosis of inferior myocardial infarction on the test
set.

6.4 FINAL ASSESSMENTS

6.4.1 THE SECOND TEST SET

Because some modifications had been based on assessing training sets, it
was decided to have a further evaluation on a completely new locally

acquired test set.
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6.4.1.1 MATERIALS & METHODS

The second test set consisted of 52 ECGs recorded from patients with
clinically documented inferior myocardial infarction, 74 ECGs recorded
from cases of clinically proven anterior myocardial infarction, 230 ECGs
recorded from normals, and 60 ECGs recorded from patients with
clinically validated left ventricular hypertrophy (Table 6-11). All the ECGs
from the patients and normals were recruited and clinically validated

using methods described previously in Chapter 5, section 5.2.

Both the best anterior and inferior myocardial infarction neural networks
(42v-20-1 and 18v-80-1, respectively) together with small inferior Q and
low praecordial R modifications were implanted simultaneously into the
existing deterministic program designated as M1, and evaluated on the

second test set ECGs as shown in Table 6-11.

AMI | IMI LVH | Normal

Final Test Set | 74 52 60 230
Table 6-11 Composition of ECGs used in the second test

set for the modified neural network implanted deterministic
program in the diagnosis of myocardial infarction. (AMI=
anterior myocardial infarction, IMI= inferior myocardial infarction,
LVH= left ventricular hypertrophy.)

Separately, another method (M2) of neural network incorporation into
the deterministic logic together with modifications was introduced as

follows:
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Anterior Myocardial Infarction:

(1) If the existing deterministic criteria for anterior,
anteroseptal or septal MI are met, then ignore the
neural network result. If not, consider the neural
network output as follows:

(2) If the neural network output is true, then
if there are Q waves in V2,V3 and V4,
set "Q waves in anterior lead" true,
else
if there are no Q waves in V2, V3, and V4,
set reason statement "low R wave" true in V3,
else
if IQV4l >0.1mVor IQV3! >0.1 mV
set atypical Q = true in V3
else
set neural network output = false.

(3) If "low R wave" reason statement is true from (2)
and {(RV2>0.2 mV and QV2=0)

or (RV3 > 0.2 mV and QV3=0)} is true
then
set "low R wave" reason statement = false.

(4) Continue with existing deterministic logic to

determine age of infarct.

Inferior Myocardial Infarction:

(1) If the output of the neural network is true
and QaVF > 0 mV
and |Q/RI aVF > 17.5%
and age > 35 years
then
set probable IMI true
else set IMI false.

(2) Run the deterministic logic and obtain the results,
i.e. definite, probable, possible IMI or no IMI.

(3) Merge results of both deterministic logic and neural
network by selecting the highest probability of IMI
classification.

202



(4) Use the remainder of existing logic to determine

age of Ml if IMI = true.

6.4.1.2 RESULTS -

The results for both anterior and inferior myocardial infarction using M1

and M2 separately on the second test set ECGs are shown in Table 6-

12.
GP GP+NN+M1 | GP+NN+M2
AMISe | 76% 78% 78%
IMI Se 69% 85% 88%
N Sp 100% | 100% 100%
L Sp 93% 80% 85%
O Sp 99% 92% 97%

Table 6-12 Results of comparison on the second test set
between the original Glasgow Program (GP) and the
anterior (42v-20-1) & inferior (18v-80-1) myocardial
infarction neural networks implanted in the deterministic
program with modifications M1 or modifications M2.

From Table 6-12, it can be seen that the modified neural network
implanted program had a 16% to 19% improvement in sensitivity of
diagnosing inferior myocardial infarction and a 2% improvement in
sensitivity of diagnosing anterior myocardial infarction. There was a 7%
and 2% decrease in overall specificity for M1 and M2, respectively. This
decrease of specificity was caused by the false positive diagnosis of
myocardial infarction in the left ventricular hypertrophy cases of this test
set. There was no false positive diagnosis of myocardial infarction in the

normal controls. There was also an 5% improvement in the specificity of
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myocardial infarction diagnosis in left ventricular hypertrophy cases by
adopting the second modification as compared to the use of the first

modification.

In general, the neural network implanted deterministic program was
better than the deterministic program with respect to sensitivity in
myocardial infarction detection but worse with respect to specificity in

left ventricular hypertrophy cases.

6.4.2 TEST ON COMMON STANDARDS FOR QUANTITATIVE
ELECTROCARDIOGRAPHY (CSE) DATABASE

6.4.2.1 MATERIALS & METHODS

The main aim of the Common Standards for Quantitative
Electrocardiography (CSE) project was the development of standardised
program testing methods based upon broad international expert
consensus. This project also resulted in the establishment of ECG
databases for testing measurement and diagnostic accuracy of computer-

assisted ECG interpretation programs (Willems et al, 1990).

The case selection of the CSE database was based upon ECG
independent clinical information (Willems et al, 1991). One of the most
important aspects of this database is that the classification of individual
cases has NEVER been disclosed. It is therefore a truly independent test
set on which to assess any new developments. It consists of 1220 ECGs

from adult Caucasians, 831 males and 389 females.
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There were 382 normal individuals consisting of 286 ambulatory
normals with normal medical history, physical examination and Chest X-
ray, some of whom had normal echocardiograms. In addition, there were
96 catheterised normals with normal coronary arteriograms admitted for
the investigation of atypical chest pain or ECG ST-T abnormalities at rest

or after exercise.

There were 183 ECGs from clinically validated left ventricular
hypertrophy cases. The diagnosis was based on the findings at cardiac
catheterisation and/or echocardiographic examination. The group
included patients suffering from longstanding hypertension or left sided
valvular heart disease, either congenital or acquired. Left ventricular
hypertrophy was diagnosed primarily on left ventricular pressure (peak
aortic ventricular gradient no less than 50 mmHg) or volume overload in
115 cases. Echocardiograms were recorded in 85% of these cases. In
the remaining 68 cases of hypertension, there was M-mode
echocardiographic evidence of increased left mass index (LVMI). The
criteria used were LVMI > 110 g/m2 for females, and LVMI > 134

g/m? for males.

The ECGs collected from myocardial infarction patients consisted of 170
from patients with anterior myocardial infarction, 273 from inferior
myocardial infarction patients and 73 cases of combined infarction.
Akinesia or dyskinesia in 7 different segments of the left ventriculogram
was used in the classification of infarct locations. Cases with hypokinesia
in one or more wall segments together with an occluded or recanalised
supplying vessel and typical history of infarction were also included. All
patients had their left ventriculograms recorded in two orthogonal

projections.
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Cases with akinesia or dyskinesia in the anterolateral, anterobasal or
septal region were classified as anterior infarction. Cases with akinesia or
dyskinesia in the inferobasal, inferolateral, or true posterior segment
were coded as inferior infarction. Patients meeting criteria both for
anterior and inferior infarction or isolated apical infarction were classified
as combined infarction. There were also 31 cases in which both

infarction and hypertrophy coexisted.

All conventional 12 ECG leads and three orthogonal X, Y, Z leads were
recorded simultaneously with a sampling rate of 500 samples/second on
digital tape. The data were collected from 5 European centres (Dublin,
Glasgow, Leiden, Leuven and Louvain). A review board comprised three
cardiologists who checked the clinical information using a consensus
approach for the case selection. Many cases initially accepted from each
centre were ultimately not included, particularly normals, to avoid bias in

case selection.

- The 1220 ECGs of the CSE database were interpreted using the final
version of the modified neural network implanted Glasgow Program. The
interpretations were stored in a file and retrieved for copying to a tape
with the appropriate format. Subsequently, the tape was forwarded to
Leuven, Belgium for assessment. There, standard statistical formulae
were used to calculate the sensitivity and specificity of the artificial neural
network implanted Glasgow Program with modifications (M2) evaluated
on the CSE ECGs.

The European Conformance Testing Services for Computerised
Electrocardiography (CTS ECG, 1989-1992) have proposed the

establishment of two pilot test centres for comprehensive testing of
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computer electrocardiographs based upon harmonised international
standards (Zywietz & Willems, 1993). CTS ECG recommended the
minimum accuracy limits for diagnostic interpretation as shown in Table

6-13.

Category Sensitivity PPV
Normal 85% 60%
LVH 50% 60%
RVH 45% 60%
Anterior MI 65% 75%
Inferior MI 60% 70%
Mixed Infarction 65% 80%

Table 6-13 Recommended minimum accuracy
limits for diagnostic interpretation. PPV= positive
predictive value (adapted from Zywietz & Willems:
1993 European Conformance Testing Services).

6.4.2.2 RESULTS

The results of evaluating the M2 program on the 1220 CSE ECGs in late
August 1994 are shown in Table 6-14. It can be seen from Table 6-14
that, compared to the 1992 version of the Glasgow deterministic
program, which was also assessed in Leuven, the neural network
implanted deterministic program together with the modification of the
logic had a 10.4% and 0.3% improvement in the sensitivity of
diagnosing inferior and anterior myocardial infarction, respectively, while
the total accuracy of the new program also increased significantly by

2.6%. There was also a 1% gain in the sensitivity of detecting mixed
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infarction. On the other hand, there was a decrease of 1.6% in the

specificity of normals (=sensitivity of normals in the CSE study).

Sensitivity | 1990 CP | 1990 GP | 1992 GP | 1994 MGP
Normal 96.7% 94.0% 96.9% 95.3%
LVH 67.9% 54.1% 50.5% 53.3%
RVH 40.6% 46.4% 45.5% 39.1%
BVH 47.3% 30.2% 30.2% 38.7%
AMI 79.6% 77.9% 72.6% 72.9%
IMI 68.8% 58.8% 65.8% 76.2%
MIX 66.2% 61.0% 68.2% 69.2%
TA 76.3% 69.7% 71.4% 74.0%

Table 6-14 Comparison of the sensitivity in the
interpretation of the CSE database (1220 ECGs) among the
1990 version of 9 combined computer assisted ECG
interpretation programs (1990 CP) (including statistical and
deterministic programs), two earlier versions of the
Glasgow deterministic program (1990 GP, 1992 GP) and
the neural network implanted deterministic logic version
(1994 MGP). The figure are percentage of correct
diagnosis versus true clinical diagnosis. (LVH: left ventricular
hypertrophy, RVH: right ventricular hypertrophy, BVH: biventricular
hypertrophy, : AMI: anterior myocardial infarction, IMI: inferior
myocardial infarction, MIX: combined infarction, VH+MI:
hypertrophy and myocardial infarction, TA: total accuracy.)

The results of the positive predictive value of the modified neural
network implanted Glasgow Program are shown in Table 6-15. In
comparison with the recommended minimum accuracy limits for
diagnostic interpretation from the European Conformance Testing

Services for Computerised Electrocardiography (Table 6-13), the positive
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predictive values and sensitivity of all classifications were all well above
the recommended level, except for the sensitivity of diagnosing right

ventricular hypertrophy.

As shown in Table 6-14, in comparison with the 1990 combined
program (Willems et al, 1991), i.e. the combination of all the 9 computer
programs tested (including programs using deterministic logic or
statistical techniques), the new program was 7.4% and 3% more sensitive
in detecting inferior and mixed myocardial infarction, respectively,

although it was 6.7% less sensitive in diagnosing anterior myocardial

infarction.

Category Sensitivity | PPV

Normal 95.3% 97.9%
LVH 53.3% 89.6%
RVH 39.1% 78.3%
Anterior MI 72.9% 96.6%
Inferior Ml 76.2% 93.1%
Mixed Infarction | 69.2% 96.2%

Table 6-15 Results of the neural networks implanted
Glasgow Program together with modifications tested on the
CSE database. (PPV= positive predictive value)

It was also of interest to compare the specificities of diagnosing anterior
and inferior myocardial infarction in the left ventricular hypertrophy
cases using the different programs. The results are shown in Table 6-16.
The new program was 1% more specific in diagnosing anterior
myocardial infarction and 2.5% less specific in diagnosing inferior

myocardial infarction in left ventricular hypertrophy cases compared to
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the 1992 version of the deterministic program. With respect to the
diagnosis of anterior myocardial infarction, there was 0.5% increase of
specificity in normals but a 1.1% decrease in specificity of reporting
inferior myocardial infarction in normals compared to the 1992 version

of the Glasgow deterministic program.

1990 1992 1994

AMI LSp 95.1% 95.4% 96.4%
AMI NSp 96.3% 98.2% 98.7%
IMI LSp 95.1% 94.0% 91.5%

IMI NSp 99.7% 99.5% 98.4%
Table 6-16 Results of the comparisons of the specificities of

diagnosing anterior and inferior myocardial infarction in the
left ventricular hypertrophy cases (LSp) and normals (NSp)
using the different versions of the Glasgow Program (1990,
1992 and 1994).

6.5 TEST ON ECGs FROM CHINESE
NORMALS

The final modified neural network implanted Glasgow Program (M2) was
also assessed on the 503 Chinese ECGs described in detail in Chapter 3.

The specificity of the diagnosis of anterior and inferior myocardial
infarction was 99% in both cases. This compares with 98.7% and 98.4%
respectively for the 382 Caucasian ECGs in the CSE study analysed by
M2.
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6.6 DISCUSSION

6.6.1 Value of Implanting a Neural Network into the

Deterministic Glasgow Program

As far as is known, this is the first report concerning the implantation of
neural networks into a deterministic program together with modification
of the existing logic for the computer-assisted ECG diagnosis of

myocardial infarction.

There was a clear benefit from using this approach in the diagnosis of
inferior myocardial infarction, whereas no benefit was obtained in the

diagnosis of anterior myocardial infarction.

The major drawback of incorporating a network was shown to be the
sacrifice of the high specificity of reporting inferior myocardial infarction
in left ventricular hypertrophy cases using the original deterministic
program. Thus, additional modifications were subsequently introduced in
order to improve the specificity of reporting myocardial infarction in left

ventricular hypertrophy cases.

The reason why a neural network can not perform better than the
deterministic program with respect to the specificity of diagnosing
myocardial infarction in left ventricular hypertrophy cases may be
ascribed to the fact that left ventricular hypertrophy shows a continuum
of different age, sex, and amplitude dependence. The diagnosis of left
ventricular hypertrophy by the experienced electrocardiographer is also
usually made on the consideration of the age, sex and other clinical

information, e.g. Hypertension, Aortic valvular disease, etc. Under this
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circumstance, an artificial neural network using only ECG parameters as
input variables normalised solely by amplitude and duration and not
stratified by age and sex factors may not have enough information to
handle this complex situation. Perhaps the only solution for improving
the diagnostic specificity in left ventricular hypertrophy cases would be to
train multiple neural networks corresponding to each age and sex group
normalised by the measurements inside each group. In the time available
for the present study, it was not feasible to collect such an enormous

training material and to train so many networks.

On balance, however, a comparison of the implanted neural network
versus isolated neural network versus Glasgow Program indicates that in
future, the section of the Glasgow Program dealing with inferior
myocardial infarction should contain an implanted neural network. The
situation as regards anterior myocardial infarction is currently less clear.
All attempts to increase performance have not been successful. It might
be worth implanting a neural network for the diagnosis of anterior
myocardial infarction into the Glasgow Program if new parameters could
be found, because it takes longer to develop a section of deterministic

logic than to train a neural network.

It seemed that the performance of various neural networks was not
significantly different if the same set of input measurements was used.
The input parameters used were also a limitation of this software based
neural network approach. Essentially, the neural network uses the same
information collected from the signal processing part of the existing
deterministic logic. This may be an inherent limitation that the
information supplied by the deterministic logic has a plateau and the

performance of the neural network can only be developed to this level. It
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might be possible that training a neural network with more complete
ECG wave forms rather than maximum amplitudes could further
enhance its diagnostic power in the future. The neural networks required
less time to be developed than a deterministic program and might still be
further refined by new leaming algorithms or new input parameters. It
might also be possible to design a more sophisticated network structure

to perform this task.

6.6.2 Theoretical Consideration

Kolmogorov's theorem has already been mentioned. It was of interest
that the best neural networks for the diagnosis of both anterior and
inferior myocardial infarction had only a single hidden layer. In anterior
myocardial infarction, with 42 inputs, the number of hidden neurons (20)
was well within the limit (2n+1) of the theorem. Paradoxically, in inferior
myocardial infarction with 18 inputs to the network there were 80
hidden neurons and a significant improvement confirmed by the
independent CSE database. Therefore, theory and practice are two

different matters.

6.6.3 Assessment On CSE Database

The results of the assessment of the final version of the program on the
CSE database showed that the sensitivity for each diagnosis was above
the recommended minimum accuracy limits except in the diagnosis of
right ventricular hypertrophy (Tables 6-13 & 6-15). In this case, the fall
in sensitivity of reporting right ventricular hypertrophy from 45% to
39.1% was probably related to the introduction of new continuous

equations for the upper normal limits of amplitude. These equations
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were developed for neonates, children and adults and probably require
adjustment but as their development does not form part of this thesis, no

further comment is offered.

The total accuracy of the program also improved from 71.4% with the
1992 version to 74.0% with the 1994 version, a significant
improvement. In particular, the new 1994 program had a pronounced
improvement in the diagnosis of inferior myocardial infarction and a
small gain in the sensitivity of detecting anterior infarct and mixed
infarct. The new program M2 had already been shown to be better in
the detection of inferior myocardial infarction on the locally collected
second test set. This assessment on the CSE database further confirmed
that the new program is more sensitive in the diagnosis of inferior
myocardial infarction, and suggested that all of the tests undertaken on
the locally collected data were indeed valid because of the mirroring of

trends in each test set.

In the diagnosis of inferior myocardial infarction, there was a decrease of
specificity in both left ventricular hypertrophy cases and normals. In the
diagnosis of anterior myocardial infarction, there was an increase of
specificity in the left ventricular hypertrophy cases and in normals. This
was concordant with the result on the locally collected second test set
where the overall specificity of reporting myocardial infarction
decreased, particularly in left ventricular hypertrophy cases. The
difference in the trend was that the specificity in the normals of the local
test set was 100% for both programs. This might be because the 230
normals collected locally were all ambulatory normals, while 96 cases
inside the 382 normals in the CSE database were in fact patients with

normal coronary arteriograms admitted for the investigation of atypical
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chest pain or ECG ST-T abnormalities at rest or after exercise. These
cases might not be free from microvascular disease, and might have
been reported as myocardial infarction by either the deterministic logic

or the neural network implanted deterministic program..

The sensitivity of diagnosing anterior myocardial infarction did not
change significantly, but the sensitivity of detecting inferior myocardial
infarction had a 10.4% increase on the CSE database and a 19%
increase on the locally collected second test set. This increase was
overdue because the performance of diagnosing inferior myocardial
infarction by the 1992 version of the Glasgow Program (65.8%) was
below the 1990 combined program (68.8%). As regards the diagnosis of
anterior myocardial infarction, every computer program with higher
sensitivity than the Glasgow Program had lower specificity in normals in
the 1990 CSE study (Willems et al, 1991). The 1992 version of the
Glasgow Program (72.6%) was slightly less sensitive than the average

(74.5%) in the diagnosis of anterior myocardial infarction.

The neural network technique considerably increases the sensitivity in
diagnosing inferior myocardial infarction but not anterior myocardial
infarction. This may be because the deterministic Glasgow program
diagnosis of anterior infarct already has reached a diagnostic plateau
and can not be improved without sacrificing the specificity in normals as
shown by comparing the 1990 CSE study results (Willems et al, 1991)
with the 1992 results. The 94.0% specificity for normals in 1990 was
caused by low R waves in V2, V3 being misinterpreted as anteroseptal
infarction. When this was corrected in 1992 by adding the need for
inverted T waves to accompany low R waves for the diagnosis of anterior

myocardial infarction, the specificity in normals increased to almost 97%
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but the sensitivity in the CSE classification of anterior myocardial
infarction fell from 77.9% to 72.6%, showing the direct link between

sensitivity and specificity.

On the other hand, in inferior myocardial infarction, the 1992 version
gave a sensitivity of 65.8% which approached the sensitivity of the 9
combined programs (Table 6-14) and yet the use of the network
produced a significant improvement. In this case, the benefit of using a

neural network is clear.
6.6.4 Assessment On Chinese Normals

The neural networks implanted in the modified deterministic program
were also assessed on the 503 ECGs from the Chinese normals used in
the chapter 3. The result showed 99% specificity in normals for both
anterior and inferior myocardial infarction which was lower than in the
locally collected 230 Caucasian normals (100% for both anterior and
inferior myocardial infarction) but higher than in the CSE database 382
Caucasian normals (98.7% for anterior myocardial infarction and 98.4%
for inferior myocardial infarction). The reason for this discordance in the
results might be based on the fact that the way of collecting Chinese
normals was not the same as that of collecting the CSE normals, i.e.
there were no patients with chest pain or abnormal ST-T changes

included in the Chinese cohort.

The results of Chapter 3 and Chapter 6 raise the question of whether
the training of neural networks should be race dependent. On the one
hand, the 99% specificity of the neural networks developed in

Caucasians and tested in Chinese suggests that the approach need not
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be race dependent. On the other hand, the results may disguise racial
dependence because normals should not exhibit significant Q waves in
the inferior or anterior leads in any event, while the modifications to the
logic also inhibited the false positive diagnosis of myocardial infarction in
the presence of small R waves. On balance, because there is known
racial variation in these ECG parameters, especially in amplitude
measurements, between Caucasians and Chinese in each corresponding
age group as demonstrated in Chapter 3 and a previous study
(Macfarlane, Chen & Chiang, 1988), logically, the neural network for
the diagnosis of myocardial infarction should also be trained with
materials from different races. Thus, in future, it might be valuable to
recruit myocardial infarction and left ventricular hypertrophy cases from

the Chinese population for further study of neural networks.

6.6.5 Advantages of Neural Network Implantation

The present study has shown that the incorporation of an artificial neural
network in a deterministic program has the following advantages over

using either alone:

(1) There is improved control of specificity in diagnosing
myocardial infarction in left ventricular hypertrophy
cases.

(2) Reasons can be retained together with diagnostic
statements, in order to provide more support for the
diagnosis of certain abnormalities, e.g. "T inversion is
also present” provides supplementary evidence of
reporlarisation abnormalities in the diagnosis of
myocardial infarction. In addition, this can also provide
more information and reassurance to the less
experienced physicians in clinical decision making.
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(3)

(4)

More control is obtained compared to using a single
neural network in isolation for diagnosing all major
abnormalities.

It is possible to preserve the timing of events, e.g.
acute, old, etc. which can not be obtained from the use
of single neural network in isolation unless it is trained
with large numbers of suitably classified cases and has
multiple output neurons as appropriate. Alternatively, if
neural networks are used in isolation, it would be
necessary to train one neural network for each
classification, i.e. old, acute etc. and so there would be
multiple neural networks involved for the diagnosis.
Another consideration is that the collection of the
training materials and the time needed for training is
not economical compared to the incorporation of the
neural networks into an existing deterministic program.

6.7 CONCLUSIONS

The implantation of a neural network into the deterministic program
together with modification of the logic improved the sensitivity but
decreased the overall specificity in normals for the diagnosis of either
anterior or inferior myocardial infarction compared to the original
deterministic program. The enhanced sensitivity was more pronounced
in inferior myocardial infarction which was the same as demonstrated in

the experiments using neural networks in isolation.

It was learned that various methods of implanting a neural network into
the logic with different modifications can lead to different results. Thus,

the selection of the optimal point inside the deterministic logic for
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incorporation and the choice of a suitable method of modification has an

important influence on the performance of the program.

In conclusion, the neural network implanted deterministic program has
an improved performance and clearly can be of use in the computer-
assisted ECG diagnosis of myocardial infarction. Further improvements,

however, can still be expected.
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CHAPTER 7

CONCLUSIONS

7.1 GENERAL CONCLUSIONS

Several conclusions can be drawn from the current experience based on

the study of the normal derived vectorcardiograms and the use of neural

networks for the diagnosis of atrial fibrillation and myocardial infarction.

(1)

(2)

The artificial neural network approach can be beneficial if used
selectively for certain diagnoses, e.g. it has been shown in the
present study that a neural network implanted into deterministic
logic together with some modification of the existing logic can
improve performance dramatically in the diagnosis of inferior
myocardial infarction (10.4% increase of sensitivity on the CSE
database). On the contrary, there was no such improvement in the
diagnosis of anterior myocardial infarction (0.3% increase of
sensitivity on the CSE database), underlining the selective nature of

the benefits of neural networks.

It is also demonstrated from the present study that the neural
network implanted deterministic program (using only twelve-lead
ECG measurements) can produce the equivalent diagnostic
accuracy (74%) on the CSE database as the Modular ECG Analysis
System program (Kors et al, 1992) which (i) combined 12-lead ECG
and derived VCG interpretations to obtain 73.6% accuracy, and (ii)
combined 12-lead ECG and Frank VCG interpretations to obtain
74.2% accuracy. The accuracy of this 12-lead ECG program alone
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(3)

(4)

(5)

(6)

was 69.8%. However, this thesis has demonstrated that if the
appropriate 12-lead ECG measurements are used, there appears to
be no gain from adding VCG parameters to ECG measurements

for automated ECG analysis.

This study has shown that it tékes considerably less time and
experience to develop a well trained neural network than to
produce a specific section of deterministic logic for the diagnosis of
atrial fibrillation or myocardial infarction in order to achieve at least
an equivalent performance. An artificial neural network may even
be considerably superior to the original well developed deterministic
logic as exemplified in this study with respect to the detection of

inferior myocardial infarction.

Artificial neural networks can be integrated with an existing
deterministic program to assist its interpreting capability. The
neural network integrated deterministic program can have the
advantage of preserving the diagnostic reason statements and the
timing descriptors (old, acute) for myocardial infarction statements

which can further clarify the diagnosis for physicians.

In some situations, the choice of diagnostic parameters appears to
be more important than using either a neural network or

deterministic logic as shown in the study of atrial fibrillation.

The use of the artificial neural network approach is unlikely to
provide the solution to all the diagnostic classification problems in
computer-assisted ECG interpretation, e.g. the age, sex and racial

variations of the twelve-lead ECG reported previously (Macfarlane,
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Chen & Chiang, 1988) and of the derived VCG measurements as
demonstrated in the present study (Chapter 3; Yang & Macfarlane,
1994 b&c) cannot easily be dealt with by a single neural network.
Although the use of multiple neural networks trained according to
age, sex and race could be a solution, it is impractical to obtain
such training materials without an extremely large scale

international effort.

Although "Kolmogorov's theorem" (i.e. Twice the number of input
neurons + 1 = optimum number of hidden neurons) predicts the
sufficient number of hidden neurons for computing any arbitrary
continuous function, in this study neural networks with a sufficient
number of hidden neurons did not always perform better than other
neural networks either in the detection of atrial fibrillation (chapter
4) or in the diagnosis of myocardial infarction (chapter 5). The
experience of the present study suggests that there is no means of
predicting the optimum topology or the performance of a neural
network before it is assessed by the test set. Performance in the
present study was evaluated by the Association Index, with
emphasis being placed on obtaining a high specificity for a

particular diagnosis.

7.2 LIMITATIONS OF THE CURRENT STUDY

There are so many waveform measurements in electrocardiograms that

the possibility of training a single neural network to interpret all ECGs

accurately with high specificity is limited. Indeed, a patient with an old

myocardial infarction may well have a normal ECG, so that myocardial

infarction can not be diagnosed either by the deterministic or neural
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network approach, or even by the experienced electrocardiographer
(Figs 7-1 & 7-2). In other words, the limitations of artificial neural
networks are closely related to the inherent limitations of
electrocardiography itself in the diagnosis of myocardial infarction,
because the gold standard used is the clinical diagnosis, whereas in the
diagnosis of atrial fibrillation, there is no such clinically related problem,
because the gold standard of the rhythm diagnosis is the ECG wave form
itself. On the other hand, the number of ECGs collected is never
sufficient for use in the training set for a neural network. The more
varieties of ECGs of certain classifications used in the training process,
the better will be the performance of the neural network in diagnosing
that abnormality. Therefore, it is still possible that more training material
will be collected for the development of neural networks in the future. In
addition, this study has used a limited number of measurements for each
lead. Perhaps newer approaches combining detailed classification of ST-
T segments (Edenbrandt, Devine & Macfarlane, 1992) with separate Q

wave classification networks will offer further improvement.

7.3 ARTIFICIAL NEURAL NETWORKS versus
DETERMINISTIC CRITERIA

Deterministic methods appeal more to the cardiologist than neural
network approaches because they are more readily understood.
Deterministic criteria may also be selected on the basis of a knowledge of
well-established electrophysiological processes. This approach is also
reasonably flexible so that alterations to existing criteria can be
implemented, and new diagnostic categories easily added (Bailey &
Horton, 1977;»Kors & van Bemmel, 1990). However, the deterministic

approach sets sharp thresholds for decision making. If, for example, a
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30 msec Q wave is required for the diagnosis of myocardial infarction,
then any value less than this is not considered to represent infarction,
even 29 msec, but in the clinical situation, a cardiologist will not
discriminate to such a level and will interpret the pattern as a whole.
Artificial neural networks have a mathematically more complex way of
associating an ECG pattern with a diagnosis which is completely different

from and more flexible than the deterministic logic.

In making an ECG interpretation, an experienced electrocardiographer
considers other wave forms, e.g. ST-T changes and demographic
characteristics, namely, age, sex, race, symptoms and signs as well as
clinical history. In essence, electrocardiographers follow Bayesian
probability theory in ECG diagnosis, and subconsciously use more

flexible thresholds for the actual ECG measurements.

7.4 THE FUTURE OF ARTIFICIAL NEURAL
NETWORKS IN ELECTROCARDIOGRAPHY

The use of neural networks as well as deterministic and statistical
approaches for ECG analysis requires a substantial amount of data from
different populations since it is known that ECG and derived VCG
parameters vary according to age, sex, and race. The present study has
underlined these differences by looking at the derived VCG in Caucasians
and Chinese but it was not feasible to pursue these differences by
obtaining training cases of myocardial infarction, etc., in Chinese
patients. Therefore, it is also reasonable to predict that in the future,
race-related training sets will be used to design neural networks to

enhance computerised ECG interpretations.
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It would certainly be possible to train multiple neural networks each using
only a single lead measurements (e.g. three neural networks, which use
V2, V3 and V4 measurements as inputs respectively, but run together
for the diagnosis of anteroseptal myocardial infarction) and to introduce
new diagnostic parameters as input variables in order to improve
performance. It is also feasible to classify QRS and ST-T segments
separately. This could lead to the incorporation of multiple artificial
neural networks at particular points of the deterministic logic. In other
words, within a deterministic program, it is quite conceivable that a
whole series of neural networks could be invoked to determine whether
or not a set of ECG wave measurements was suggestive of atrial
fibrillation, anterior or inferior myocardial infarction, myocardial
ischaemia etc. The present study therefore represents a step forward in
utilising artificial neural networks in a limited but realistic manner in

automated ECG interpretation.
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APPENDIX 1
SUPPLEMENTARY TABLES FOR CHAPTER 3

Table 3-6 Magnitude of the projection of the maximal QRS vector onto
the frontal(F), horizontal(H), and right sagitta(R) planes in 1555
Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+
F male M+SD | 20394525 | 180214489 | 15864462 | 15034424 | 14014373
Range 1083-3146 | 874-2936 728-2493 780-2485 848-2081
F female | M+SD | 15384404 | 15124420 | 12894369 | 12884334 | 12681524
Range | 722-2462 | 740-2384 743-2067 677-1961 552-2309
H male M1SD | 2088+515 | 18504475 | 16404427 | 15364390 | 14174363
Range 1074-3205 | 1004-2891 | 858-2586 897-2335 | 861-2146
H female | M+SD | 15064392 | 1504+400 | 1306+355 | 13124312 | 12704475
Range | 696-2422 | 881-2380 759-2008 691-2014 | 799-2240
R male M+SD [ 17484605 | 14854580 [ 12264452 | 10704402 | 11184406
Range | 796-3315 561-3075 515-2221 491-1862 | 528-1918
R female | MiSD | 12784442 | 12544432 | 10184349 1021i362 8204298
Range | 519-2277 643-2209 395-1777 421-1857 | 591-1281
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Table 3-7 Magnitude of the projection of the maximal QRS vector onto
the frontal(F), horizontal(H), and right sagittal(R) planes in 503 Chinese
[microVolts]

Age <30 30-39 40-49 50-59 60+

F male MiSD | 18914468 | 17461464 | 16524473 | 16504412 | 166214489

Range 1061-2961 | 904-2622 | 711-2660 1027-2520 | 794-2465

Ffemale | MiSD | 14974350 | 14964319 | 13714342 | 142314351 | 14064394

Range | 872-2011 903-2010 657-2247 854-2072 | 944-2363

H male MiSD | 18764475 | 1705+390 | 16491419 | 15924411 | 16081467

Range 1174-2852 | 1132-2359 | 934-2459 962-2431 732-2452

Hfemale | M+SD | 13114326 | 13614296 | 13424342 | 13884338 | 13564365

Range | 756-2122 | 884-1998 951-2310 818-2083 774-2266

R male M+SD | 15124559 | 13474497 | 11944406 | 10794521 | 10861430

Range | 754-2792 | 596-2388 586-2085 503-2795 532-1872

R female | M+SD | 11644395 | 1082+344 | 10404371 | 9524308 8731328

Range | 496-2055 481-2058 520-1917 426-1585 429-1488
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Table 3-8 Magnitude of the projection of the maximal T vector onto
the frontal(F), horizontal(H), and right sagitta(R) planes in 1555
Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+

F male MiSD | 527+199 4721174 424+177 | 392+161 | 430+190

Range 197-1002 159-855 158-838 129-783 111-708

F female | MiSD | 396+130 3774135 324+122 | 3194124 | 305%151

Range 170-681 161-704 90-581 104-591 79-691

H male M<SD | 649+196 587176 543+173 | 5214179 | 4974201

Range | 302-1088 280-992 257-945 213-911 146-968

H female | MiSD | 403+136 3944130 3384122 | 331+114 | 309+147

Range 172-730 191-729 96-577 99-625 162-614

R male M+SD | 5154169 4611154 430+£146 | 414+148 | 403+165

Range | 212-895 216-830 176-758 159-714 132-762

R female | M+SD | 2974110 286197 25490 255483 2461104

Range | 110-595 | 110491 | 93-461 110415 | 157-474

228



Table 3-9 Magnitude of the projection of the maximal T vector onto
the frontal(F), horizontal(H), and right sagittal(R) planes in 503 Chinese
[microVolts]

Age <30 30-39 40-49 50-59 60+

F male M=SD 530+166 | 470+£196 | 416+156 | 4324196 | 3774155

Range 209-836 | 119-893 | 127-758 117-767 | 152-715

F female Mz+SD 406x111 | 377+133 [ 325107 | 287+136 | 2854127

Range 205-600 | 129-625 | 149-499 | 77-579 123-579

H male Mz=SD 639+176 | 573+184 | 503+173 | 506+189 | 4321141

Range 319-963 | 290-895 | 224-879 | 155-848 [ 220-790

H female M+SD 3844113 | 3724146 | 319+124 | 293+141 | 2754129

Range 203-557 | 131-680 | 136-653 | 81-613 124-558

R male M1SD 473+141 | 433+141 [ 354+146 | 3604129 | 325+123

Range 221-777 | 213-733 | 127-690 | 121-621 154-598

R female M+SD 258498 245107 | 218485 198180 183473

Range 130-448 | 87-574 103-376 | 55-339 77-334
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Table 3-10 96-percentile ranges of angles of the projection of maximal
QRS vector onto the frontal(F), horizontal(H), and right sagittal(R) planes
in 1555 Caucasians [degrees]

| Age <30 30-39 40-49 50-59 60+
F male 12-63 0-+57 -3-+454 -1-+43 -6 - +58
F female 13-59 16-54 6-48 6-53 0-47
H male -105-+14 | -100-+422 | -104-+432 | -116-+25 -109 - +25
H female -85 -+4 -97--5 -109 - +13 -108 - +16 -107 - +27
R male 33-190 16-212 22-207 25-204 115-180
R female 70-199 101-193 64-200 38-195 83-183

Table 3-11 96-percentile ranges of angle§ of the projection of maximal

QRS vector onto the frontal(F), horizontal(H), and right sagittal(R) planes
in 503 Chinese [degrees]

| Age <30 30-39 40-49 50-59 60+
F male 7-60 6-51 9-57 5-66 3-56
F female 16-67 8-52 9-49 1-45 5-43
H male -69 - +20 =77 - +46 =71 - 421 -113 - +17 -106 - +29

H female -101 - +8 -66 - +26 -91 - +19_ -66 - +32 -48 - +23

R male 92-197 11-186 87-183 11-187 36-180

R female 80-178 54-194 27-184 21-221 27-204
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Table 3-12 96-percentile ranges of angles of the projection of maximal
T vector onto the frontal(F), horizontal(H), and right sagittal(R) planes in
1555 Caucasians [degrees]

| Age <30 30-39 40-49 50-59 60+
F male 1-60 6-53 3-56 3-51 10-81
F female 8-50 9-48 9-56 7-53 0-153
H male 13-81 5-79 6-77 2-78 2-65
H female -15 - +62 -15 - +68 10-77 -18 - +77 -6-+105
R male -4 - +66 -1-+84 -1 - +69 -2 - +89 4-85
R female 0-+110 -3 - +100 -5 - 482 -12 - +103 0-102

Table 3-13 96-percentile ranges of angles of the projection of maximal

T vector onto the frontal(F), horizontal(H), and right sagittal(R) planes in
503 Chinese [degrees]

Age <30 30-39 40-49 50-59 60+
Fmale 5-43 1-46 5-43 -4-44 2-46

F female 6-47 -2 - +65 10-58 -1 - +66 -19 - +59
H male 20-62 5-73 11-67 13-69 -1-+60

H female -22 - +55 -50 - +52 -47 - +50 -31 - +67 -34 - +48

R male -1 - +62 -4 - +69 2-56 -5 - +62 0-86

R female -55 - +109 -41 - +174 -85 - +138 -40 - +129 -26 - +120
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Table 3-14 Magnitude of the projection of the initial 20 mS QRS
vector onto the frontal(F), horizontal(H), and right sagittal(R) planes in
1555 Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+

F male M1SD | 165128 | 1921140 | 193+187 | 2404167 | 210+159

Range [ 20-468 20-549 17-766 32-575 39-482

Ffemale | M3SD | 183+140 | 1654100 | 2104154 | 207+136 | 2174160

Range | 21-554 28-399 10-475 19-675 87-667

H male MiSD [ 450+190 | 385+168 | 357+154 | 347+153 | 3161146

Range 143-898 132-786 105-809 105-684 69-562

H female | M3SD | 347+147 | 3294134 | 295+113 | 330£156 | 294+179

Range 127-665 121-641 126-531 109-749 97-731

R male MiSD | 4244188 | 339+164 | 299+128 | 2854118 | 2661145

Range | 94-876 99-776 85-629 98-563 85-586

R female | M3SD | 312+144 | 2934138 | 2384106 | 2514126 | 2364135

Range 107-645 99-776 43-479 73-702 32-486
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Table 3-15 Magnitude of the projection of the initial 20 mS QRS
vector onto the frontal(F), horizontal(H), and right sagittal(R) planes in
503 Chinese [microVolts]

Age <30 30-39 40-49 50-59 60

F male MiSD | 241+158 | 260£172 | 3204200 | 2414220 | 3474213

Range | 47-579 56-597 81-593 21-686 33-724

Ffemale | MESD | 2194205 | 266+183 | 2744190 | 303200 | 3644290

Range 14-506 29-600 56-657 48-657 28-861

H male M+SD | 4914220 [ 4354200 | 463+206 | 3941189 | 4314208

Range 170-815 163-845 154-719 157-804 132-782

H female | M+SD | 4703226 | 4274191 | 431+215 | 3954186 | 446+257

Range 139-955 189-758 188-711 85-729 82-865

R male M2SD | 4284215 | 3304196 | 343+146 | 3154124 | 287+131

Range 139-730 87-739 129-583 101-519 111-520

R female | MiSD | 4163206 | 3394157 [ 361+193 | 2744135 | 268+149

Range | 122-823 163-696 140-540 87-594 68-525
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Table 3-16 Magnitude of the projection of the initial 30 mS QRS
vector onto the frontal(F), horizontal(H), and right sagittal(R) planes in
1555 Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+
F male M+SD | 810+374 868+373 8821349 9021348 885£236
Range | 210-1610 259-1828 288-1860 223-1717 370-1199
F female | MiSD | 8741322 8191286 8241265 8894281 8761464
Range '267- 1600 274-1318 397-1551 280-1359 228-2219
H male M£SD | 8604325 8981340 905330 9094327 8741242
Range | 333-1564 379-1784 399-1788 342-1706 466-1252
H female | MESD | 8174301 760259 793424 87114268 85114443
Range | 286-1594 320-1241 424-1443 384-1377 245-2122
R male MiSD | 6431276 5634294 5144238 459+197 4581230
Range | 237-1400 178-1219 191-1174 195-907 186-966
R female | MiSD | 6071262 536+198 4784202 5161256 3784170
Range | 229-1333 213-967 174-973 194-1416 139-658
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Table 3-17 Magnitude of the projection of the initial 30 mS QRS
vector onto the frontal(F), horizontal(H), and right sagittal(R) planes in

503 Chinese [microVolts]

Age <30 30-39 40-49 50-59 60+

F male M1SD | 9624487 | 9294457 1031+368 | 10214343 | 11074395
Range | 194-1667 | 134-1690 | 526-1726 | 458-1557 | 491-1669

F female | MESD | 9524348 | 9184358 | 921+394 | 10134333 | 9994471
Range | 431-1519 | 201-1675 | 123-1473 | 495-1474 | 376-1695

H male M1SD | 998+393 | 9364394 1048+316 .| 1013+301 | 1098+373
Range | 352-1498 | 310-1570 | 556-1650 | 604-1466 | 607-1703

H female | M+SD | 8661314 8534302 | 9091366 10061305 | 10184368
Range | 397-1526 | 447-1532 | 279-1514 | 506-1455 | 468-1582

R male M1SD | 7064270 | 6471307 600+228 5454240 | 540+178
Range | 305-1292 | 284-1247 | 257-949 248-951 303-797

R female | M1SD | 681+291 5884229 | 5234287 | 499+207 | 4854212
Range | 296-1248 | 302-1029 | 163-957 220-827 187-869
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Table 3-18 Angle of the projection of the initial 20 mS QRS vector

onto the frontal(F), horizontal(H), and right sagittal(R) planes in 1555
Caucasians [degrees]

Age <30 30-39 40-49 50-59 60+
F male Mean | -27 -12 0 +10 0
Range | -177 - +162 | -169 - +157 | -164 - +160 | -160 - +159 | -123 - +95
F female | Mean | +6 -7 +16 +9 +25
Range | -170-+163 | -171-+4173 | -136- +163 | -143 - +108 | -142 - +161
H male Mean | +83 +70 +63 +63 +58
Range | +19-+127 | 0-+131 -9 - +117 +12- 4122 | +1-+109
H female | Mean | +64 +69 +56 +47 +58
Range | -35-+123 +10-+123 | -8-+111 -24-+110 | 0-+178
R male Mean | +2 +6 +13 +13 +13
Range | -26 - +80 -33 - +89 -23-+4112 | -18-477 -35 - +81
R female | Mean | +17 +10 +23 +27 +22
Range | -25-+142 | -24-+69 -15-+107 | -23-+119 | -11-484
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Table 3-19 Angle of the projection of the initial 20 mS QRS vector
onto the frontal(F), horizontal(H), and right sagittal(R) planes in 503

Chinese [degrees]

Age <30 30-39 40-49 50-59 60+
F male Mean | -13 -16 0 0 +7

Range | -154 - +162 | -150 - +155 | -73 - +55 -136 - +83 | -77 - +76
F female | Mean | +10 +5 -5 +6 +3

Range | -132-+93 | -160-+105 | -122-+50 | -134-+69 | -72- +58
H male Mean | +71 +71 +51 +59 +53

Range | +9-+118 +21-+115 | 0-+492 +19-+105 | +19-+99
H female | Mean | +58 +63 +49 +48 +45

Range | +5 - +105 +2-+113 -1-+110 | +8-+128 | +10-494
R male Mean | 45 +5 +12 +12 +12

Range | -24 - +40 -23 - +50 -29 - +84 -14 - +55 -19 - +48
R female | Mean | +19 +16 +17 +17 +16

Range | -20 - +68 -15 - 482 -37 - 490 -31- 475 -30 - +68
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Table 3-20 P wave amplitude in three orthogonal leads in 1555
Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+

X male M1SD 71422 74121 73+£22 74121 68125

Range 31-119 32-118 36-132 43-123 24-119

X female M+SD 69420 76122 76123 78421 75+26

Range 33-122 36-122 41-124 37-128 30-138

Y male M<SD 111451 11044 | 109442 | 105341 109441

Range 21-236 35-215 39-212 36-198 49-178

Y female M+SD 110448 119451 108144 113442 | 116160

Range 23-223 29-235 34-214 42-198 26-233

Z male M1SD 51121 46+21 42418 41420 45+25

Range 20-95 13-111 13-84 13-80 14-93

Z female M+SD 44117 42417 40+17 38+16 35+13

Range 14-81 14-85 12-82 11-65 10-60
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Table 3-21 P wave amplitude in three orthogonal leads in 503 Chinese

[microVolts]
Age <30 30-39 40-49 50-59 60+
X male M1SD 57+17 61122 66x15 69+18 65116
Range 29-95 22-93 41-100 40-102 36-92
X female | MtSD 59+17 64116 68117 69428 80421
Range 35-94 32-90 38-99 37-156 46-117

Y male M+SD 111+56 122445 | 102443 | 112448 | 120440

Range 25-214 42-218 34-164 33-193 50-190

Y female | M+SD 105%51 110459 112429 122168 120437

Range 26-203 31-239 62-167 43-199 40-184

Z male MtSD 45%19 37114 34114 3412 3114
Range 12-93 15-69 13-66 16-61 12-67
Z female | M+SD 40+13 40+14 41£15 37+15 37+15
Range 16-61 19-76 19-74 10-60 14-63
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Table 3-22 P wave duration in

Caucasians [m$S]

three orthogonal leads in 1555

| Age <30 30-39 40-49 50-59 60+

Male M1SD 98+14 103+11 107411 108+11 110+12
Range 66-122 78-124 86-128 80-128 90-130
Female M+SD | 97+11 100+10 104£10 104+13 104+12
Range 72-116 78-116 82-124 64-128 88-130

Table 3-23 P wave duration in three orthogonal leads in 503 Chinese

[mS]

| Age <30 30-39 40-49 50-59 60+
Male M+SD 10316 106+13 105412 107411 109+11
Range 66-134 86-132 76-124 84-124 82-122
Female M£+SD | 96413 104+19 109£19 106+13 112+16
Range 64-118 70-148 86-148 80-132 78-140
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Table 3-24 R wave amplitude in three orthogonal leads in 1555
Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+

X male M+SD | 1662+457 | 15334431 | 1403430 | 13754380 | 1200+362
Range | 937-2800 | 686-2445 662-2417 720-2014 | 744-1932

X female | M3SD | 12261339 | 12264365 | 1106+323 | 11184285 | 12781464
Range | 565-1961 579-1970 620-1749 592-1761 539-2225

Y male M+SD | 11614458 | 9094455 6864392 5774338 6461392
Range | 327-2238 138-2125 40-1508 109-1460 84-1502

Y female | M3SD | 9064343 873+317 6551259 6141308 5494212
Range | 319-1749 | 297-1481 237-1163 135-1309 245-1155

Z male M2SD § 5194227 4241243 3661186 357+168 3114187
Range | 154-1022 | 91-1067 49-868 103-706 56-669

Z female | MiSD | 3321149 3174146 2554118 2631144 319+143
Range | 74-700 103-667 45-490 60-725 68-563
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Table 3-25 R wave amplitude in three orthogonal leads in 503 Chinese
[microVolts]

Age <30 30-39 40-49 50-59 60+

X male MiSD | 15761400 | 14614368 [ 14361430 | 14444408 | 14851484

Range | 883-2571 826-2148 | 681-2266 | 717-2218 734-2298

X female | M4SD | 11344327 | 12024297 [ 11734311 | 12844336 | 12394405

Range | 660-1755 717-1742 | 510-1995 640-1839 700-2191

Y male M3SD | 9661502 8911481 765+395 7441439 7201442

Range | 79-1935 38-2073 151-1538 192-1766 170-1615

Y female | M+SD | 916+332 869+277 7124267 6344287 5854311

Range | 348-1634 313-1386 191-1187 196-1220 120-1180

Z male M+SD | 526+250 5021232 3974227 407+171 4241186

Range | 136-969 210-1136 | 60-927 155-754 118-720

Z female | M+SD | 3924239 369+129 325146 3641181 3584206

Range | 97-1165 131-600 114-644 100-757 100-881
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Table 3-26 S wave amplitude in three orthogonal leads in 1555
Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+
X male MiSD | [-270]£175 | [-260]£197 | [-289]+176 | [-253]+166 [ [-345]+181
Range | [-640]-[-61] | [-650]-[-66] { [-568]-[-99] [ [-582]-[-91] | [-622]-[-94]
X female | MiSD | [-168]+100 | [-199]+110 | [-181]+140 | [-196]+135 | [-164]+98
Range | [-364]-[-52] | [-337]-[-64] | [-341]-[-42] | [-416]-[-61] | [-344]-[-42]
Y male M+SD | [-157]193 [-184]+161 | [-172]+127 | [-174]*+155 | [-178]+140
Range | [-306]-[-36] | [-419]-[-42] | [-402]-[-35] | [-372]-[-49] | [-446]-[-48]
Y female | M+SD | [-145]+88 [-139]£117 | [-136]+108 | [-161]1+94 [-181]+104
Range | [-269]-[-46] | [-292]-[-53] | [-251]}-[-37] | [-286]-[-59] [ [-408]-[-102]
Z male MiSD | [-1383]4471 | [-1049]+372 | [-989]+353 | [-865]+322 [ [-811]+307
Range | -2056--633 | -1676 --534 | -1519 - -475 | -1361 - -373 [ -1285 - -439
Z female | M3SD | [-916]£328 | [-990]+388 | [-792]+270 | [-744]+301 | [-658]+253
Range | -1503 - -423 | -1530 - -528 | -1253 - -436 | -1315 - -338 | -1097 - -271
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Table 3-27 S wave amplitude in three orthogonal leads in 503 Chinese

[microVolts]
Age | <30 30-39 40-49 50-59 60+
X male M1SD | [-264]+214 | [-328]4238 | [-309]x163 [ [-260]+196 [ [-342]+193
Range | [-35]-[-695] | [-63]-[-743] | [-65)-[-589] [ [-62]-[-495] | [-102]}-[-612]
X female | M#SD | [-210]+161 | [-171]4123 | [-212]493 | [-226]+121 | [-282]+194
Range | [-43]-[-481] [ [-66]-[-342] | [-94]-[-321] [ [-92]-[-357] [ [-82]-[-657]
Y male | M4SD | [-175]4129 | [-115]485 | [-174]+100 | [-136]+158 [ [-89]+52
Range | [-42]-[-428] | [-32]-{-269] | [-33]-[-403] | [-30]-[-239] [ [-35]-[-159]
Y female | MiSD | [-142]192 [-127]+67 [-144]£90 [-164]£141 | [-1711477
Range | [-54]-[-322] | [-60]-[-233] | [-62]-[-224] | [-44]-[-325] | [-72]-[-287]
Zmale | MiSD | [-1140]+422 | [-946]+280 | [-844]+257 | [-794]+369 | [-755]+280
Range | -575--1908 | -652--1507 | -501--1190 | -443--1252 | -282--1133
Z female | M+SD | [-768]14£275 | [-767]£276 [ [-735]+244 | [-692]+240 | [-609]1+£308
Range | -424--1179 | -455--1292 | -324--1080 | -390--1079 | -115--1149
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Table 3-28 T wave amplitude in three orthogonal leads in 1555
Caucasians [microVolts]

Age <30 30-39 40-49 50-59 60+

X male M1SD | 4621186 418+162 375+167 352+155 364+182

Range 145-934 122-801 89-823 101-716 60-660

X female | MtSD | 3394117 3254125 276+113 270+112 261+140

Range 137-604 119-644 54-513 70-559 31-619

Y male MiSD | 247+111 2124100 189497 16679 209+118

Range | 44-529 45-464 41-416 57-366 72-470

Y female | M+SD | 202478 184177 162168 16773 170£79

Range | 65-388 62-352 47-326 33-324 42-329

Z male MiSD | 468+179 420+158 3924151 382+160 3411166

Range 138-862 130-803 116-705 94-701 109-730

Z female | MiSD | 2284114 2261104 202492 199+86 209482

Range | 43-555 52-429 55-425 28-62 38-369
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Table 3-29 T wave amplitude in three orthogonal leads in 503 Chinese
[microVolts]

Age <30 30-39 40-49 50-59 60+

X male M=SD | 483£159 4231184 383£144 3871189 330£133

Range | 199-810 114-808 104-688 101-718 140-636

X female | MESD | 351198 3314127 2861106 254+131 2594117

Range 189-517 108-615 116-491 58-524 116-505

Y male MiSD | 220+88 205£103 156182 178498 175+103

Range | 87-414 59-406 56-349 24-416 48-444

Y female | M3iSD | 199483 179483 155+54 135+66 135462

Range | 46-372 60-317 47-251 31-294 51-267

Z male MiSD | 442+143 3931142 3284149 3221121 284+115

Range | 209-710 191-718 121-690 135-618 72-498

Z female | M+SD | 1724100 168+118 152497 152187 138167

Range | 47-390 49-509 40-351 32-332 42-277
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APPENDIX 2
SUPPLEMENTARY TABLES FOR CHAPTER 5

Se=Sensitivity, Sp=Specificity, LVH Sp=Sp of MI in the ECGs from
LVH cases, Al=Association Index=Se+Sp-100

Table 5-8a, b & ¢ The performance of the 55 neural networks using
46 input variables (QRS+ST-T+dVCG) with only a single output neuron
for the diagnosis of anterior myocardial infarction

Table 5-8a The performance of the 15 artificial neural networks with

single hidden layer on the test set ECGs for the diagnosis of anterior
myocardial infarction.

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

5 93 100 93 48
10 93 100 93 46
15 93 100 93 45
20 92 100 92 49
25 92 100 92 50
30 92 100 92 45
35 92 100 92 50
40 94 100 94 43
45 92 100 92 44
50 92 100 92 49
60 93 100 93 48
70 93 100 93 49
80 93 100 93 46
90 92 100 92 50
100 92 100 92 45
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Table 5-8b The performance of the 16 artificial neural networks with
two hidden layers on the test set ECGs for the diagnosis of anterior
myocardial infarction.

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

5-5 97 99 96 50
10-10 93 100 93 49
15-15 92 100 92 48
25-25 92 100 92 49
30-30 93 100 93 45
35-35 92 100 92 51
40-40 922 100 92 44
45-45 92 100 92 49
50-50 92 100 92 46
60-60 93 100 93 45
70-70 92 100 92 44
70-90 92 100 92 46
80-80 92 100 92 50
80-90 92 100 92 50
90-90 92 100 92 50
100-100 93 100 93 48

248



Table 5-8c The performance of the 24 artificial neural networks with
three hidden layer on the test set ECGs for the diagnosis of anterior
myocardial infarction.

Number of neurons in | Se Sp Al LVH Sp
the hidden layers

5-5-5 95 99 94 49
10-10-10 94 100 94 50
15-15-15 94 99 93 46
20-20-20 93 100 93 54
20-20-100 92 100 92 48
25-25-25 92 100 92 46
30-30-30 92 100 92 48
30-30-100 93 100 93 52
35-35-35 92 100 92 50
40-40-40 92 100 92 45
45-4545 92 100 92 48
45-45-100 92 100 92 52
50-50-50 92 100 92 46
50-50-100 94 100 94 52
60-60-60 93 100 93 46
60-60-100 92 100 92 49
70-70-70 93 100 93 45
70-70-90 93 100 93 45
80-80-80 92 100 92 45
80-80-100 93 100 93 46
90-90-90 93 99 92 44
90-90-100 92 100 92 45
90-100-100 93 100 93 45
100-100-100 93 100 93 49
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Table 5-9a, b & ¢ The performance of 52 neural networks using 42
input variables (QRS+ST-T) with only a single output neuron for the
diagnosis of anterior myocardial infarction

Table 5-9a The performance of the 14 artificial neural networks with a

single hidden layer on the test set ECGs for the diagnosis of anterior
myocardial infarction.

Hidden layers Se Sp Al LVH Sp
5 %4 99 93 50
10 %24 100 %24 48
15 94 98 92 45
20 94 100 94 46
25 94 100 94 48
30 94 100 94 48
35 ’ 93 100 93 48
40 93 100 93 46
45 94 99 93 49
50 94 100 94 46
60 93 100 93 48
70 94 100 94 49
80 94 100 94 46
90 94 100 94 48
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Table 5-9b The performance of the 19 artificial neural networks with
two hidden layers on the test set ECGs for the diagnosis of anterior
myocardial infarction.

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

5-5 93 100 93 48
10-10 94 100 94 49
15-15 94 100 94 46
20-20 94 100 %4 46
25-25 94 100 94 48
30-30 94 100 94 48
35-35 %4 100 94 48
40-40 94 100 924 49
45-45 %4 100 94 48
50-50 94 100 94 48
50-60 95 100 95 44
50-70 24 100 %24 48
60-60 94 100 94 48
70-70 94 100 94 48
70-90 93 100 93 48
80-80 95 100 95 42
80-90 95 100 95 49
90-90 924 100 94 48
100-100 93 100 93 48
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Table 5-9¢ The performance of the 19 artificial neural networks with

three hidden layers on the test set ECGs for the diagnosis of anterior
myocardial infarction.

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

5-5-5 94 99 93 40
10-10-10 94 100 94 48
15-15-15 94 100 94 44
20-20-20 94 100 %4 46
25-25-25 93 100 93 46
30-30-30 94 100 %24 48
35-35-35 93 100 93 45
40-40-40 94 100 924 44
45-45-45 93 100 93 42
50-50-50 93 100 93 49
50-50-100 94 100 94 48
60-60-60 95 100 95 42
70-70-70 93 100 93 45
70-70-100 93 100 93 45
80-80-80 94 100 94 49
80-80-100 94 100 %4 48
90-90-90 93 100 93 46
90-90-100 93 100 93 44
100-100-100 94 100 94 45
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Table 5-10 The performance of the 30 neural networks using 25 input

variables (QRS + dVCG) for the diagnosis of anterior myocardial
infarction

Number of neurons in the || Se Sp Al LVH Sp
hidden layers

10 78 99 77 77
15 80 96 76 71
20 84 97 81 74
30 81 99 80 79
40 72 100 72 76
50 81 96 77 74
60 77 96 73 77
70 79 98 77 79
80 75 97 72 74
90 76 98 74 81
10-10 83 99 82 70
1515 82 100 82 75
20-20 85 929 84 75
30-30 84 99 83 74
40-40 84 98 82 74
50-50 82 99 81 71
60-60 85 98 83 74
70-70 80 100 80 77
80-80 86 98 84 77
90-90 91 97 88 77
10-10-10 80 98 78 81
15-15-15 82 98 80 75
20-20-20 85 98 83 74
30-30-30 81 929 80 80
40-40-40 82 98 80 76
50-50-50 84 99 83 80
60-60-60 84 96 80 69
70-70-70 83 97 80 74
80-80-80 88 97 85 79
90-90-90 83 99 82 79
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Table 5-11 The performance of the 30 neural networks using 21 input
variables (QRS) for the diagnosis of anterior myocardial infarction

Number of neurons in the | Se Sp Al LVH Sp
hidden layers

10 81 99 80 73
15 77 100 77 79
20 78 99 77 75
30 74 929 73 86
40 79 100 79 77
50 76 100 76 80
60 74 29 73 82
70 75 99 74 76
80 72 100 72 82
90 71 99 70 81
10-10 78 98 76 74
1515 89 98 87 79
20-20 83 29 82 77
30-30 88 99 87 80
4040 85 99 84 81
50-50 83 100 83 80
60-60 84 100 84 82
70-70 81 100 81 83
80-80 82 100 82 76
90-90 81 100 81 79
10-10-10 79 100 79 80
15-15-15 84 98 82 83
20-20-20 84 99 83 79
30-30-30 81 100 81 82
40-40-40 84 100 84 85
50-50-50 82 29 81 83
60-60-60 88 99 87 80
70-70-70 86 99 85 81
80-80-80 81 99 80 80
90-90-90 82 100 82 80
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Table 5-12a, b, & ¢ The performance of the 45 neural networks using
21 input variables (QRS + ST-T + dVCG) and only a single output for
the diagnosis of inferior myocardial infarction.

Table 5-12a The performance of the 12 neural networks with a single

hidden layer for the diagnosis of inferior myocardial infarction.

Number of neurons in| Se Sp Al LVH Sp
the hidden layer

5 86 100 86 76
10 87 100 87 76
15 85 100 85 75
20 87 100 87 75
30 86 100 86 74
40 86 100 86 71
50 86 100 86 70
60 88 100 88 75
70 86 100 86 75
80 86 100 86 71
90 87 100 87 71
100 85 100 85 74
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Table 5-12b The performance of the 12 neural networks with two
hidden layers for the diagnosis of inferior myocardial infarction

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

5-5 87 100 87 76
10-10 85 100 85 77
15-15 87 100 87 77
20-20 87 100 87 79
30-30 87 100 87 75
4040 87 100 87 76
50-50 87 100 87 76
60-60 87 100 87 75
70-70 87 100 87 76
80-80 86 100 86 77
90-90 84 100 84 73
100-100 87 100 87 77
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Table 5-12c¢ The performance of the 21 neural networks with three
hidden layers for the diagnosis of inferior myocardial infarction

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

5-5-5 86 100 86 79
10-10-10 87 100 87 76
15-15-15 86 100 86 77
20-20-20 87 100 87 77
20-30-40 87 100 87 79
25-50-100 86 100 86 79
30-30-30 87 100 87 77
30-60-90 87 100 87 77
40-40-40 85 100 85 79
50-50-50 87 100 87 76
50-50-100 86 100 86 77
60-60-60 87 100 87 79
70-70-70 87 100 87 76
70-70-100 86 100 86 80
70-80-90 86 100 86 80
80-80-80 87 100 87 77
80-80-100 87 100 87 77
90-90-90 88 100 88 76
90-90-100 86 100 86 76
90-100-100 87 100 87 77
100-100-100 87 100 87 77
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Table 5-13a, b, & ¢ The performance of the 36 neural networks using

18 input variables (QRS + ST-T) and only a single output for the
diagnosis of inferior myocardial infarction.

Table 5-13 a The performance of 12 neural networks with a single

hidden layer for the diagnosis of inferior myocardial infarction

Number of neurons in| Se Sp Al LVH Sp
the hidden layer

5 85 100 85 71
10 85 100 85 73
15 85 100 85 73
20 88 100 88 68
30 85 100 85 70
40 85 100 85 71
50 86 100 86 71
60 87 100 87 71
70 84 100 84 71
80 87 100 87 73
90 86 100 86 71
100 86 100 86 69
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Table 5-13b The performance of 12 neural networks with two hidden
layers for the diagnosis of inferior myocardial infarction

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

5-5 84 100 84 75
10-10 85 100 85 75
15-15 84 100 84 75
20-20 83 100 83 75
30-30 84 100 84 75
40-40 84 100 84 75
50-50 82 100 82 77
60-60 84 100 84 75
70-70 84 100 84 75
80-80 83 100 83 75
90-90 84 100 84 74
100-100 84 100 84 75
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Table 5-13c The performance of 12 neural networks with three hidden
layers for the diagnosis of inferior myocardial infarction

Number of neurons in| Se Sp Al LVH Sp
the hidden layers

10-10-10 84 100 84 71
20-20-20 84 100 84 76
30-30-30 84 100 84 70
40-40-40 84 100 84 75
50-50-50 84 100 84 74
50-50-100 84 100 84 75
60-60-60 83 100 83 75
70-70-70 84 100 84 75
80-80-80 85 100 85 75
80-80-100 84 100 84 75
90-90-90 84 100 84 76
100-100-100 183 100 83 77
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Table 5-14 The performance of the 30 neural networks using 12 input

variables (QRS + dVCG) for the diagnosis of inferior myocardial
infarction.

Number of neurons in the || Se Sp Al LVH Sp
hidden layers

10 72 96 68 83
15 74 96 70 85
20 73 96 69 83
30 74 98 72 83
40 74 98 72 83
50 75 97 72 85
60 74 95 69 85
70 76 96 72 85
80 75 96 71 86
90 73 97 70 85
10-10 76 95 71 85
15-15 79 93 72 85
20-20 78 95 73 85
30-30 76 95 71 85
40-40 75 96 71 85
50-50 74 96 70 85
60-60 77 96 73 85
70-70 77 93 70 87
80-80 82 95 77 83
90-90 81 93 74 83
10-10-10 78 95 73 85
151515 78 94 72 83
20-20-20 80 %24 74 83
30-30-30 77 94 71 85
40-40-40 81 92 73 81
50-50-50 80 95 75 82
60-60-60 81 93 74 81
70-70-70 84 94 78 82
80-80-80 82 94 76 82
90-90-90 84 94 78 82
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Table 5-15 The performance of the 30 neural networks using 9 input
variables (QRS) for the diagnosis of inferior myocardial infarction.

Number of neurons in the || Se Sp Al LVH Sp
hidden layers

10 77 96 73 85
15 76 96 72 85
20 76 96 72 85
30 77 98 75 85
40 75 97 72 85
50 77 95 72 83
60 75 97 72 86
70 78 96 74 85
80 76 95 71 83
90 76 95 71 85
10-10 75 96 71 85
15-15 75 95 70 85
20-20 77 95 72 85
30-30 77 95 72 85
40-40 76 97 73 83
50-50 77 96 73 83
60-60 78 96 74 85
70-70 73 96 69 85
80-80 79 96 75 83
90-90 77 96 73 83
10-10-10 80 96 76 89
151515 77 96 73 83
20-20-20 78 95 73 86
30-30-30 76 97 73 83
40-40-40 77 95 72 85
50-50-50 73 95 68 85
60-60-60 76 98 74 83
70-70-70 73 97 70 85
80-80-80 74 97 71 85
90-90-90 ' 74 96 70 85
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Table 5-20 Results of neural networks using 46 input variables
(QRS+ST-T+dVCG,) and only a single output neuron for the diagnosis of
anterior myocardial infarction.

Number of neurons | Al Sensitivity Specificity
in the hidden layers

20 66 73 93
30 81 85 96
40 80 85 95
50 80 84 96
20-20 72 80 92
30-30 81 85 96
*40-40 83 87 96
50-50 82 88 94
30-30-30 79 86 93
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Table 5-21 Results of neural networks using 42 input variables
(QRS+ST-T) and only a single output neuron for the diagnosis of
anterior myocardial infarction.

Number of neurons | Al Sensitivity Specificity
in the hidden layers

*20 82 88 94
30 79 86 93
40 77 85 92
50 78 86 92
20-20 79 87 92
30-30 77 86 91
40-40 78 85 93
50-50 78 85 93
30-30-30 78 85 93
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Table 5-22 Results of neural networks using 25 input variables
(QRS+dVCG) and only a single output neuron for the diagnosis of
anterior myocardial infarction.

Number of neurons | Al Sensitivity Specificity
in the hidden layers

20 66 73 93
30 68 74 924
40 69 75 94
50 71 77 94
20-20 72 80 92
30-30* 81 85 96
40-40 75 81 94
50-50 80 86 94
30-30-30 79 85 94

265



Table 5-23 Results of neural networks using 21 input variables (QRS)

and only a single output neuron for the diagnosis of anterior myocardial
infarction.

Number of neurons | Al Sensitivity Specificity
in the hidden layers

20 72 78 924
30 75 77 98
40 73 79 94
50 73 75 98
20-20 76 79 97
30-30 75 81 94
40-40* 78 82 96
50-50 77 81 96
30-30-30 73 79 94
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Table 5-25 Results of neural networks using 21 input variables
(QRS+ST-T+dVCG) and only a single output neuron for the diagnosis of
inferior myocardial infarction.

Number of neurons in| Al Se Sp
the hidden layers

10 69 75 94
20* 70 76 94
30 69 75 94
40 69 75 94
50 69 74 95
10-10 68 74 94
20-20 67 73 94
30-30 68 73 95
40-40 67 73 94
50-50 67 73 94
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Table 5-26 Results of neural networks using 18 input variables
(QRS+ST-T) and only a single output neuron for the diagnosis of inferior
myocardial infarction.

Number of neurons in| Al Se Sp
the hidden layers

10 72 78 94
20 70 76 94
30 69 76 93
40 70 76 %24
50 70 76 94
10-10* 73 79 94
20-20 70 76 94
30-30 70 76 94
40-40 72 78 94
50-50 70 76 94
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Table 5-27 Results of neural networks using 12 input variables
(QRS+dVCG) and only a single output neuron for the diagnosis of
inferior myocardial infarction.

Number of neurons in| Al Se Sp
the hidden layers

10 53 61 92
20 51 64 87
30 65 75 90
40 58 68 90
50 60 68 92
10-10 56 64 92
20-20 60 69 91
30-30 56 65 o1
4040 61 70 91
50-50* 62 " 170 92
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Table 5-28 Results of neural networks using 9 input variables (QRS)
and only a single output neuron for the diagnosis of inferior myocardial

infarction.

Number of neurons in| Al Se Sp
the hidden layers

10 63 70 93
20 62 70 92
30 61 70 91
40 61 69 92
50 61 70 91
10-10 58 65 93
20-20 57 65 92
30-30 64 70 94
40-40 62 69 93
50-50* 67 74 93
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Table 5-30 Results of neural networks using 46 input variables

(QRS+ST-T+dVCG) and three output neurons for the diagnosis of
anterior myocardial infarction.

AMI LVH Normal

Se Sp Se Sp Sp
10 86 95 71 88 89
*20 84 96 76 88 89
30 84 96 69 88 90
40 86 96 69 88 89
50 86 96 69 88 88
20-20 88 95 74 89 87
30-30 87 9% 64 91 922
40-40 86 95 64 91 94
50-50 85 95 74 87 85
30-30-30 | 88 92 69 90 87
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Table 5-31 Results of neural networks using 42 input variables
(QRS+ST-T) and three output neurons for the diagnosis of anterior
myocardial infarction.

AMI LVH Normal

Se Sp Se Sp Sp
10 87 92 55 91 94
20 85 94 64 89 90
30 86 91 64 91 89
40 88 93 60 92 93
50 88 92 60 92 93
20-20 85 94 67 91 93
30-30 88 95 69 91 92
40-40 90 92 62 93 93
*50-50 86 93 67 92 93
30-30-30 |90 92 50 95 95
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Table 5-32 Results of neural networks using 25 input variables

(QRS+dVCQG) and three output neurons for the diagnosis of anterior
myocardial infarction.

AMI LVH Normal

Se Sp Se Sp Sp
*10 84 96 71 85 74
20 78 95 69 83 73
30 78 93 57 86 75
40 79 95 64 85 78
50 81 94 62 83 72
20-20 83 93 60 83 70
30-30 83 96 67 84 75
40-40 82 94 57 84 70
50-50 78 924 52 78 68
30-30-30 | 83 94 62 88 79
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Table 5-33 Results of neural networks using 21 input variables (QRS)

and three output neurons for the diagnosis of anterior myocardial
infarction.

AMI LVH ' Normal

Se Sp Se Sp Sp
10 77 96 50 79 64
20 75 94 52 87 79
30 75 98 57 81 72
40 74 %2 55 80 73
50 75 97 62 85 78
*20-20 83 94 45 87 81
30-30 77 95 64 76 60
4040 74 93 48 79 66
50-50 82 924 50 82 69
30-30-30_| 80 96 67 75 56
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Table 5-35 Results of neural networks using 21 input variables
(QRS+ST-T+dVCG) and three output neurons for the diagnosis of
inferior myocardial infarction.

IMI LVH Normal

Se Sp Se Sp Sp
10 79 94 64 86 84
20 75 94 67 91 93
30 78 94 64 91 92
40 78 95 64 88 90
50* 75 94 67 93 94
10-10 74 94 62 90 94
20-20 78 95 64 89 92
30-30 75 96 71 88 90
40-40 74 94 62 87 88
50-50 70 95 64 86 93
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Table 5-36 Results of neural networks using 18 input variables
(QRS+ST-T) and three output neurons for the diagnosis of inferior
myocardial infarction.

IMI LVH Normal

Se Sp Se Sp Sp
10 78 94 55 93 95
20 78 93 60 87 86
30 78  loa  |e0o |92 93
40 80 94 57 93 93
50 76 94 60 93 95
10-10 |69 94 64 91 98
2020 |74 95 64 86 87
3030 |75 95 67 91 92
4040 |70 95 64 89 90
50-50* |79 95 71 89 90
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Table 5-37 Results of neural networks using 12 input variables
(QRS+dVCG) and three output neurons for the diagnosis of inferior
myocardial infarction.

IMI LVH Normal

Se Sp Se Sp Sp
10 73 89 38 86 74
20 68 89 19 84 73
30 71 91 43 83 74
40 68 90 43 86 76
50 65 92 43 78 70
10-10* 69 94 64 91 98
20-20 66 91 45 79 70
30-30 68 90 45 78 67
40-40 73 91 38 78 65
50-50 65 93 40 84 82

277



Table 5-38 Results of neural networks using 9 input variables (QRS)
and three output neurons for the  diagnosis of inferior myocardial

infarction.

IMI LVH Normal

Se Sp Se Sp Sp
10 70 89 21 91 76
20 70 92 33 83 71
30* 70 94 36 88 84
40 66 90 31 87 76
50 61 92 31 83 74
10-10 68 94 38 81 76
20-20 65 91 31 81 69
30-30 66 93 38 84 78
40-40 71 92 31 86 76
50-50 74 93 43 82 75
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APPENDIX 3
SUPPLEMENTARY TABLES FOR CHAPTER 6

Table 6-2 The deterministic criteria for the diagnosis of Q waves in
ANTEROSEPTAL (V2, V3, V4), ANTERIOR (V3, V4), OR SEPTAL (V2)
leads in the original Glasgow Program. (VQIl= definitive Q criteria, VQ2=
Atypical Q criteria, VQ3= low R wave criteria, VQ4= Reversed R wave
progression criteria, QRVH= right ventricular hypertrophy criteria, PRWP=
poor R wave progression criteria)

vVQl (a) 1) 1QI>0.2mV

and (2) Q>0.03 secs

and (3) QRS peak to peak amp>0.2mV
or (b) (1)Ramp=0

and (2)ISI>0.2mV

and (3)S >0.03 secs

and (4) QRS peak to peak amp>0.2mV

vQ2 (a) 1) IQI>0.10 mV

and (2) Q> 0.015 secs

and (3)IQ/RI>1/4 or R=0

and (4) QRS peak to peak amp>0.2mV
or (b) ()R < 0.065 mV

and (2)ISI>0.14 mV

and (3)S>0.015 secs

and (4)ISR''>1/4

VQ3 (@ (1)R<0.11mV
and (2)R'< 2R amp, or RBBB,
or IVCD of RBBB type is present.
and (3)IR/SI<0.125
and (4) QRS peak to peak amp>0.2mV
and (5) RVH is not present

vVQ4 (1) RV(n)-RV(n+1)>0.02mV

(2) R<0.3mV in those 2 leads
(3) R' <R in those 2 leads
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QRVH (a)

or

PRWP

and
and
(b)

and

and

and

and

(1) R>0.3mV with S=0 or
R<0.1mV withR' > 0.3mV

(2) RBBB or IVCD or IVCD

of RBBB type are not present

(3) STV2<0.12mV or ST<1/2 T+
(1) R<0.3mV or S is not 0OmV

(2) Sor S'<-0.5mVinlead I

(3) there is a clinical classification of
congenital heart disease --- etc.

(4) RBBB or IVCD of RBBB type
not present.

(1) RV3<0.3mV & R'V3<0.3mV
(2) None of VQ1-VQ4 is true.

Table 6-5 Traditional deterministic Q wave criteria for the diagnosis of

inferior myocardial infarction inside the original Glasgow Program. (All the

criteria are definite Q waves)

Q1

and
and

Q2

and
and

Q3
and
and

[

(1) Q>35mS, and IQ/RI>20%
or(2) Q>40 mS
IQ>0.09 mV
peak-peak QRS>0.15mV

(1) Q>35mS, with IQ/RI>20%
or(2) Q>30mS, with IQ/RI>1/3
1QI>0.2mV
peak-peak QRS>0.15mV

Q>26mS or IQ/RI>20%

IQI>0.14 mV
peak-peak QRS>0.15mV
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2

(1) Q>30mS and T- <-0.1mV
or(2) IQ/RI>1/3 and Q>20mS
and b 1QI>0.075mV

and c peak to peak QRS>0.2mV
and d (1) T-<-0.05mV
or(2) ST > 0.06 mV

Table 6-6 Non-Q criteria for the diagnosis of inferior myocardial infarction
preserved inside the original deterministic Glasgow Program

A. (1) IQ/RI>25% in lead II and IQI>0.1 mV,
and (2) Frontal QRS axis<0
and (3) Age > 20 years old

B. (1) ()R amplitude IT < R amplitude IIT
and (ii) QRS axis not greater than -30°
and (iii) R amplitude IIT < 0.20 mV

or 2 (i) Q > 0.015 seconds & R<0.1mV
& $>0.02 seconds in aVF
and (ii) peak to peak QRS > 0.15 mV
in aVF
C. (1) T axis < -109 in frontal plane
(2)Rinlead I < 0.90 mV

(3) IQRI > 25% in any 2 of II, ITI, and aVF
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