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Abstract

Ceramic composites deform in tensile states of stress by matrix micro-
cracking. The deformation of SiC-AlO; and SiC-SiC composites has been
modelled in two ways. Firstly a computational damage mechanics approach
has been developed. In the analysis the effect of individual cracks is
represented by a damaged continuum. This approach is valid over size scales
which encompass multiple matrix micro-cracking, and does not attempt to
model the response of a component to a single dominant crack. The damage
analysis is compared with an experimental approach based on a polymer
analogue of the ceramic composite. The polymer composite system has no
modulus mismatch between fibre and matrix and exhibits similar deformation
modes to the ceramic systems. In the computational model, micro-cracking
and flow in tension and compression were represented by intersecting Mohr-
Coulomb, yield, or micro-cracking surfaces. The computational model allows
orthogonal arrays of cracks to be formed normal to the directions of maximum
principal strain associated with the crack formation surface. This model was
refined to incorporate the anisotropic effects of fibres with the introduction of
reinforcing elements. Subsequent deformation was described by a combination
of an incrementally damaged elastic stress-strain relationship and a classical
elastic plastic relationship. The results of numerical modelling were
compared with experiments on ceramic composites and the model polymer
systems. The unrefined micro-damage constitutive model was also used to
analyse a component of an exhaust diffuser unit of a modern air breathing
engine and to discuss the micro-mechanics of single dominant crack growth in

a ceramic composite.
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1. Introduction

Composite materials are not new, but have been extensively used
throughout history in a wide variety of applications. The fundamental
principle is to combine two or more materials to form a system which
exhibits a desired mechanical property. A common example is the mud and
straw building blocks used in ancient civilisations. Individually the
constituents are brittle and flimsy, but when combined provide a solid and
durable structure. This classical method of altering a material’s properties is
the basis of modern composite design.

The development of modern composites began with fibre reinforced
plastics and has been further advanced by the introduction of tough ceramic
and metal composites. This rapid expansion was spurred during the 1960’s by
the development of carbon and boron fibres which have high elastic moduli.
This allowed the production of stiff, low weight composites. The low
densities and high temperature capabilities of ceramics have made ceramic
composites attractive to the aerospace industry.

The attraction to the aerospace industry has two important aspects, the
first being the low density. In the aerospace industry the cost of transporting
1kg during one year of operation can be considered lost capital, if this weight
is incorporated into the aircraft structure. The second aspect is more complex.
In a gas turbine engine the efficiency increases with the operating
temperature. If an engine operates at a higher temperature the thrust to
weight ratio of the engine also increases. The use of ceramic composites
allows the engine to operate at higher temperatures with improved
efficiency. A higher thrust is produced which in turn allows the engine to be
reduced in size and weight. The reduction in engine size and increased
efficiency saves fuel, increases the cargo carrying capacity, and produces a
higher profit margin due to the savings in fuel.

The aerospace industry has strict controls which must be satisfied prior to
the commissioning of any components. Testing procedures for metallic
components are well established, however, there is less experience with the

behaviour of ceramic composites. The introduction of ceramic composites to



the harsh and demanding aerospace environment has generated a
fundamental need to develop a detailed understanding of how such
materials perform in high stress and high temperature environments. If the
unique capabilities of these new materials are to be fully exploited it is
essential that corresponding techniques for analysis and testing are
developed.

The novel work in this thesis is concerned with developing techniques by
which complex deformation modes inherent to ceramic composites can be
more fully understood. This understanding is then exploited to produce a
constitutive model describing the material characteristics. This goal has
necessitated mechanical testing followed by comparisons of experiments with
computational solutions. Ceramic composites involve high manufacture
costs and very slow manufacturing times. For these reasons a polyester model
material which has very similar deformation characteristics to the ceramic
has been used in the initial development and benchmarking of the

computational model.



2 Mechanical Properties of Composites

2.1 Introduction

The engineering application of composites depends on their stiffness,
strength, and toughness. Composites allow these properties to be designed
for a given application. This chapter is concerned with the design of ceramic
composites from a knowledge of the mechanical properties of the constituent
phases. The argument is developed for a two phase composite but may be

extended to three or more phases.

2.2 Elastic Moduli

Consider the shear modulus (G¢) of a two phase composite material in
which the volume fractions of the two phases are Vi and V, as shown
schematically in figure 2.1. The composite modulus may be expressed as a
function of the moduli G¢ and Gy, of the two phases. A complete solution of
this problem must satisfy equilibrium and compatibility. If the shear strain
(y) is assumed to be equal throughout the composite, compatability is

satisfied and the composite shear stress is:

T =YG¢ =Y VG + YViGt (2.1)

This leads to an expression for the shear modulus of the composite usually
attributed to Voigt (Clyne et al 1993).

GVoigt = Vme + Vfo (2.2)

However in the interface between the matrix and the fibres, equilibrium
is not satisfied due to the modulus difference between the two phases. The
theorem of minimum potential energy (McClintock et al 1966) states “The
strain energy obtained from displacements compatible with any boundary

conditions, integrated over the entire volume, will be a minimum for the



exact displacement distribution.” Considerations of the potential energy of a
two phase material (Clyne et al 1993) where the shear strain is constant
throughout leads to the relation.

192G, <192V, Gn + 1PV iGy 23)
2 2 2

Goyee = VinGm + ViGt Ge < Goyy (2.4)
This provided Voigt with an upper bound solution for the composite

modulus. Reuss applied the minimum potential energy theorem but

assumed the shear stress to be constant throughout (Clyne 1993):

112 112 1y.12
2G, <26, '3 VG, 25)
-1
G = (22 %f) Ge 2 Gep 26)
m

This provides a lower bound solution for the composite modulus. Figure
2.2 shows equations 2.4 and 2.6 as upper and lower bounds on the shear

modulus. The true composite modulus lies between the two estimates.
GVoigt 2 Gc 2 GReuss (27)

If the Poisson's ratio of the two phases match then the Young’s modulus for

a composite (E¢) can be bounded in a similar way.

-1
VB + ViEe 2 Eg 2 (Vﬁm +}5L§) 28

In general, ceramic fibre-matrix composites are anisotropic. The energetic
argument has been developed for isotropic materials but can also be extended

to anisotropic materials.



2.3 Anisotropy

Anisotropy is an important feature of composites, which is now
reviewed, drawing on reviews by Hull (1981) and Kelly et al (1986). This leads
to a brief discussion of laminate theory (Jones 1975).

The state of stress of a body can be described by six independent stress
components 611, 022, 033, 123, T31, T12 referred to orthogonal cartesian axes as
shown in figure 2.3 where 1;; = 7;;. Here the first suffix defines the normal to
the plane on which the stress is acting and the second defines the direction
the force is acting. Hooke’s Law in tensor notation relates the applied stress
(o3;) to the strain (gx) by a stiffness Cjjx:

0jj = Cijui €k (2.9)

Similarly the strain can be made the subject of the equation and related to

the stress by a compliance tensor Sjji.
€ij = Sijk1 Okl (2.10)

Symmetry of the stiffness matrix requires that Cjju= Cjin= Cijx= Cjin. In
order to use matrix notation it is convenient to compact the notation and
replace the suffixes 11, 22, 33, 23, 31, 12 by 1, 2, 3, 4, 5, 6, writing the stiffness

matrix as:

o1 Ci1 Ci2 Ci3 Cis Cyis Cys €1
o2 Ci2 Ca2 Ca3 Cag Cps5 Coyg )
o3 |_| Ciz3 Ca3 C33 C3q4 C35 Cs6 €3 @2.11)
123 Cis Cos C3g Cys Cys Cue Y23
131 Cis Czs C35 C4s Css Csg Y31
L T1i2 1 L Cis Co6 C36 Ca6 Cs6 Ces 1L Y12 |

where 123 = 04, 113 = 05, T12 = O¢, Y23 =§84- 31 =%85 and y12 =%Es
The stiffness matrix may be simplified by arguments based on symmetry.
Orthotropic symmetry requires that the material has three orthogonal axis

such that a rotation of 180 degrees about any axis leaves the properties



unchanged. For an orthotropic material, referred to its material axes,

equation 2.10 can be reduced to:

o) Ci1 Ci2 C2 0 0 O €1
o)) Ci2 C2 C2 0 0 O (3
03 |_| Ci2 C2C3 0 0 O €3 212
123 0 O O C4 0 O Y23 (2.12)
131 0 0 0 0 GCss O Y31

L Ti2 . 0 0 0 0 0 C66 4L Y2

In uniaxial tension in the 1 direction the strain €; is related to the stress
o1 by the Young’s modulus E.:

€ = =0 (2.13)

i p—

The transverse strains €;, €3 for the same loading are determined from

Young’s modulus, Poisson's ratio (v) and the applied stress o;:

(2.14)

From equations 2.13 and 2.14, equation 2.12 may be written for an

isotropic material as:

" EA1-v¥) VEA1-v) VEA1-V} 000 ]
[ o1 ] VE(1-v) Ef1-v) vE(1-v) 000 || & |
(0] €
o vE(L-v) vE(1-v)) E1-v) 00O & | o
3| 0 0 0 GO0O Y23 '
131 0 0 0 0G0 Y31
L T2 0 0 0 00G Y12

These equations show that the stresses and strains are a function of

modulus and Poisson's ratio. The shear modulus (G) is also a function of E
and v.

G=

E
2(14v)

(2.16)



Consider now a state of plane stress where 03, 14 and 15 are zero. For an

orthotropic material in plane stress, equation (2.12) can be written as:

o1
(o) =
T12

This theory may be applied to a laminate in plane stress. The relation

Cia Coa O €1 (2.17)
0 0 GCesll M2

Cn Ci2 0} €1

between the principal stresses and the strains for a laminate is often written

in terms of a reduced stiffness matrix Q:

o] Q1 Q2 O €1
o |=| Q2 Qn O €1
T12 0 0 Qesl| M2

(2.18)

The reduced stiffness matrix Q can also be written as a function of Young's
modulus and the Poisson's ratio. The fundamental difference between the
stiffnesses Q;; and Qy, arise from dissimilar moduli E; and E; in the 1 and 2
directions. The difference in transverse modulus affects the Poisson's ratio
term such that it depends on the orientation of the applied tensile stress.
Poisson's ratio is defined by the ratio of the transverse strain to the strain in

the direction of loading (v12= ::—1) Similarly v;= ;sfl It follows that for an
2 1

orthotropic material the stress-strain relation in plane stress are.

E1 V21E1 0
1 (1-viava1) (1 -viavy) &1
va1Eq E, 0
- € 2.19
%2 (1-viava1) (1 -viavai) 1 (2.19)
T2 0 0 Gys Y12

Equation (2.19) applies to loading in a principal direction. If a specimen is

tested off the principal axes then the resultant stress must include shear

terms. The stiffness matrix is then expanded and takes the form:

611 612 616
(_212 622 626
—Ql 6 626 666

(2.20)



This is the transformed reduced stiffness matrix. The components of this
matrix (Q) include terms to describe the angle of offset coupled with principal
stiffness components Q.

Consider now a cross-ply laminate manufactured from two unidirectional
laminate layers orientated perpendicular to each other. The stress-strain

relationship will has form:

Oc1 Qc11 Qe12 Qeis €c1
02 | =| Qc21 Qc22 Qe26 || €2 (2.21)

Tc12 Qc16 Qc26 Qco6 1| Ye12

Here the suffix (c) relates to the cross-ply orientation. For an orthotropic
laminate in plane stress the shear terms are zero (i.e. Qc26 = Qc16 =0) in the
direction of the principal axes. The stiffness matrix can then be determined
by summing the stiffness of the two layers weighted by the volume fraction
of the laminates (Va,Vb).

Qc11=VaQq; + Vb Q2

Qc12=VaQ2+VbQ12=Q2 (2.22)
Qc22=VaQxn+VbQy

Qcs6 = Va Qss + Vb Qg6 = Qg

The off axis stress-strain relationship can also be developed using the
same theory as in equation (2.20) and (2.21). From these it is possible to
determine the modulus of laminates.

Simple laminate theory is limited since no account is taken of the
interlaminar stress and only in plane stresses are considered (Jones 1975). As
a result classical laminate theory is incapable of predicting the high
interlaminar shear stresses that in many cases actually cause failure. This is
demonstrated more fully at a free edge of a laminate where the interlaminar

shearing stresses are very high and may become singular (Jones 1975).



2.4 Composite Strength

2.4.1 Introduction

The prediction of the strength of a fibrous composite loaded parallel to the
fibres, requires a knowledge of the failure stresses and strains of individual
fibres. Initially it is appropriate to assume that both the fibres and the matrix
are linear elastic and perfectly reliable. In this scenario there are two possible
modes of deformation which are determined by the relative failure strains of
the constituents. In the case where the fibre failure strain is lower than that
of the matrix then the fibres will fail. If however the fibre failure strain is
greater than the matrix then the matrix fails after which the fibre-matrix
interface debonds with the fibre sliding inside the matrix. This section
describes the essential strength characteristics of these two deformation

mechanisms drawing on reviews by Kelly (1966) and Aveston et al (1971).
2.4.2 Mechanics of Fibre Pullout

Kelly (1966) considered a composite of a ductile matrix and brittle fibres
with ultimate tensile strengths oy and og. In any fibrous composite there is
a limiting fibre volume fraction (Vpi,) which must be exceeded before the

fibres contribute to the composite strength such that:

Oc= Omu(1-Vy) Vi< Vmin (2.23)

Below Vyin the matrix dominates the response, and the strength of the
composite is a function of the ultimate tensile strength of the matrix. Above
this fibre volume fraction the strength of the composite is largely determined
by the fibres, and composite failure occurs at the fibre failure strain. The
contribution of the matrix to the composite stress is therefore limited by the

stress in the matrix at the fibre failure strain (/).



Gc= OV + O 1-Vi) V> Viin (2.24)

Figure 2.4 shows the composite strength for varying fibre volume
fractions of ductile and brittle continuous fibres. There is a minimum fibre
volume fraction V;; , that must be exceeded in order to provide a composite
with an ultimate breaking strength greater than that of the matrix alone.

The effect of discontinuous fibres in a matrix was considered by Kelly
(1966). Figure 2.5 shows a fibre of length L contained within a matrix under

uniform axial tension. Equilibrium of a small element of fibre requires:
dogmr2+ 2nrtdx =0 (2.25)

Here r is the fibre radius, do; is the change in fibre stress over the element
and dx is the length of the fibre over which a constant interfacial shear stress

(7) acts. Integrating equation (2.25) with og=0atx =0 gives:

op=2LX (2.26)

At x=12—' the stress in the fibre is a maximum. This produces a stress
distribution along the fibre similar to that shown in figure 2.6 for increasing
fibre lengths. Substituting the fibre failure stress (o) into equation 2.26 gives
the critical fibre length (L) or length to raise the stress in the fibre to its

failure stress.

L= % (2.27)

The critical fibre length (L.) determines whether the fibres will pullout or
break. If the fibre length is less than the critical fibre length then all the fibres
pull out. If however the fibre length is greater than the critical fibre length

then the fraction of fibres that pullout is given by If This applies only when

the fibres all have the same failure stress and are very reliable.

The average stress (op) in the fibre is given by:

10



or=0g (1- 2= (2.28)

The average stress o can be incorporated into equation 2.23 in place of the
fibre stress of to give an expression for the strength of a composite with
discontinuous aligned fibres.

0. = o1 - ZL—E)Vf + 0(1-V) Vi> Vinin (2.29)

The fibres used in ceramic composites are generally brittle and exhibit
large strength variations. Due to the inherently variable strength of fibres a
statistical approach must be taken in determining the mode of failure (Rosen
1970). Consider a composite containing high modulus fibres with large
variations in strength (ie low reliability). The strength of a composite
depends on the strength and reliability of the fibres. The probability that an
individual fibre contained within a population of fibres will break can be
represented by a probability density function p(ao'g) as shown in figure 2.7.
Here o is the fibre stress while o, is a normalising curve fitting constant. This
expresses the variable strengths of individual fibres by the probability p(a%) do

that a fraction of the fibres will break between a given stress 6 and ¢ + do. The

fraction of fibres breaking below a stress (g—) is given by a cumulative

probability density function P(B_‘l).
o]

)= f A do 230

O O
o 0 o

Curve fitting functions can be used to describe P(él) as long as the following
o]

boundary conditions are satisfied.

P(l)c =0 (2.31)
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The fraction of broken fibres P(Gl} as shown in figure 2.8 can be expressed
0

by a two parameter Weibull distribution as:

P(i) =1-exp (G%}B (2.32)

O

Here o, and B are curve fitting constants. Differentiating allows the

probability density function p(cﬁ-) to be expressed as:
(o]

p(O'o) (60) exp (60);3 (2.33)

Consider a bundle of fibres not in contact with each other and subject to
the same stress. At a fibre stress (BQ) the fraction of broken fibres is P(BQ) and
[o)

the fibre stress borne by the bundle (0' } is given by:

(o ) [oe) (1 - Hop))= () exe - (oo)ﬁ (2.39)

Ob
Go
break, and the stress in the remaining fibres increases further. At a point

This expression indicates that as the applied stress ( ) increases, fibres

dependent on the fibre reliability and the normalising fibre strength (co) a
critical fraction of fibres remain that support the applied stress. Increasing the

individual fibre stress (i) results in a reduction in the stress borne by the

Oo
bundle as shown in figure 2.9 due to the reduction in the number of
remaining fibres. The maximum stress borne by the bundle (g—b is
O/max

determined by differentiating and equating equation (2.32) to zero, giving the

expression.

(%) - (Bﬁ) exp (El) (2.35)

Oo/max
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at a fibre stress of:

O _ ([3)3 (2.36)

From the probability density function the fibre stress at which the
probability of fibre failure is maximum can be determined by putting the
differential of equation (2.33) to zero. This gives the modal failure stress for

an individual fibre as:

_0_) _ (M)f_s (2.37)
Co B

Comparing the mean strength of an individual fibre to the mean bundle
strength it can be seen from equations (2.36) and (2.37) that the modal fibre
strength is significantly stronger than the bundle strength. This analysis
applies when the bundle contained a very high number of fibres (N). The
central limit theorem (Daniels 1945) shows that the distribution of bundle
strength is Gaussian with a standard deviation proportional to YN. This
predicts a standard deviation approaching zero and complete reliability for a
bundle where N =0, This produces a highly reliable configuration with an
infinitely narrow probability density curve, as shown in figure 2.7, compared
to the individual fibre strength distribution curve. The disadvantage of a low
average bundle strength is compensated by an increase in reliability with the
number of fibres.

The effect of embedding the fibres in a matrix is now considered. The
principal difference between a fibre composite and a fibre bundle is that in a
bundle when a fibre breaks it can no longer sustain a load. When this
happens in a composite the load can be transferred to the matrix and back to
the fibre on the other side of the break. This can only occur in fibres with a
length L 2L, where L. is the critical transfer length. The composite can then
be visualised as a chain of fibre bundles of length L.. It becomes apparent that
the length of the fibres in the composite will then affect the overall strength
(Rosen 1970 )

13



A single fibre (of length L >L) may break in more than one place

simultaneously. The probability of failure not occurring in a fibre is given by:

(1 - P(c)) = exp {o%)ﬁ (2.38)

The probability of a fibre of length L >L. not failing is given by the
product of the probability of the individual component lengths L. not failing:

L
[

(1-P(o)) =exp- aﬁlf (2.39)

By following the argument leading to equation (2.35) the contribution of

the fibres (%fi) to the composite strength is given by:
0 /max

fos) - (%) . Y (2.40)

Figure 2.7 compares the strength distribution for a single fibre with a
composite and a bundle. In this diagram the fibre lengths are L >>L; with
both the bundle and the composite containing an infinite number of fibres.
From this diagram it can be seen that the composite has a greater average
strength than both the bundle and the single fibre with an added increase in
reliability for large numbers of fibres.

Substituting of, for of in equation 2.23 gives the strength of a composite in
terms of matrix strength (om), the fibre reliability (B), nominal strength (oo),
the fibre volume fraction (Vpand the length ratio of the fibres (ﬁ).

Ge= (((i)[}) ) exp (ﬁ))oovf + (1-V)) (2.41)
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2.4.3 Mechanics of Matrix Micro-Cracking

The deformation and final failure mode of composites may involve
either single, or multiple cracking. Initially one of the phases will start to fail
with the formation of a single crack. This transfers the load to the remaining
phase. If the load cannot be supported by this phase then the composite will
fail and the crack will propagate leading to a single failure. If however the
transferred load is supported by the remaining phase then multiple cracking
can occur before final failure of the composite.

Aveston et al (1971) considered two specific cases: brittle fibres in a ductile
matrix and a brittle matrix with ductile fibres. For brittle fibres in a ductile
matrix the failure strain of the fibres, &g, is significantly lower than that of
the matrix, €q,. In the case of a composite in which the fibre failure strain is
higher than matrix failure strain, cracking will initiate in the matrix. When
the matrix cracks, the fibres bridging the crack support the load and lead to
multiple fracture. If the fibres fail with the onset of the first micro-crack then
single fracture is observed. In this case the load borne by the fibres at failure

cannot be supported by the matrix, resulting in single fracture.
ot Ve> (1 - V) (61 - c'm) (€s < €Emu) (2.42)
Here o, is the stress in the matrix at a strain equal to the failure strain of

the fibre and V; is the fibre volume fraction. Multiple fibre fracture will occur
when:

68 Ve < (1 - Vg) (Omu - Oim) (€5s < Emu) (2.43)

In the case of a brittle matrix and ductile fibres, the fibre failure strain is
higher than that of the matrix. In this case a similar relation describes the

onset of multiple fracture of the matrix:

.Vt > (1 - Vg) O + gV (2.44)
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This is represented graphically in figure 2.10 where oy is the fibre stress at a
strain equal to the failure strain of the matrix. In this figure a critical value of
the fibre volume fraction V; dictates the occurrence of single or multiple
fracture.

Figure 2.11 shows the stress-strain response of a unidirectional composite
where multiple matrix micro-cracking is stabilised by ductile fibres. In this
diagram the stress strain curve is broken down into three regions. The first
zone is linear elastic. The stress in the fibres and matrix is eE¢ and €En,
respectively. Here g is the composite strain while E; and E,,, denote the elastic
modulii of the fibre and the matrix. In the second region micro-cracking has
occurred in the matrix which breaks into blocks of average length 2L
producing stress gradients along the fibre and the matrix. Figure 2.12 shows
the stresses acting on the matrix and the fibre as well as the notation and the
coordinate system which will be used. At the crack (n =L) the matrix stress in
the direction of loading must be zero since this is a free surface. During
micro-cracking a mode II or shear crack in the fibre-matrix interface causes
debonding over a length Ls on either side of the matrix crack. Following
debonding, sliding occurs between the fibre and the matrix over the length L
along which a constant frictional shear stress (1) is assumed to act. From
figure 2.12, the matrix stress increases linearly from zero over the debonded
length L. The relation between the stress in the fibre and the debond length
L; is given in equation 2.26 where L replaces the fibre length x. The resulting
fibre stress is caused by the fibre sliding in the matrix and transferring a stress
to the matrix through a constant interfacial shear resistance. The remainder
of the matrix is fully bonded to the fibre and is assumed to have the same
strain (e =&y, = &J).

Equations 2.25 and 2.26 show the stress distribution along a fibre of length
(x) as a result of a constant interface shear stress. For a constant shear stress (1)
acting over a length (x) on the fibre radius (r), the force in the fibre is 2rr T x.
In figure 2.12 if the shear stress (1) is constant along the debonded length L,
then from equilibrium the force in a fibre of radius R and cross sectional area

A is given by:

Of) Af = OfyoAf + 2T TR{N - (L - L} (2.45)
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The fibre stress oy, is a function of the distance 1 from the mid point of a
matrix block of half length L where sliding is occurring over a length Ls. The
bracketed term {n - (L - L} adopts the Macauley notation in which a negative

argument is taken to be zero. This gives the stress in the fibre as:
Gf(n) = cf(n =0) + 2% ‘n - (L - Ls} (246)

At the crack (n =L) the stress in the composite is borne totally by the fibre
and:

O,
Ofn 1) = ch‘ = Ofo) T '21% {Ls} (2.47)

It follows that the stress in the fibre oy, _,, is given by

o,
Oty =y~ itLs) (2.48)
The stress along the fibre may now be written:

Ot =yi - 2iLe) + 0 - L -Ly) (2.49)

The average stress in the fibre (6 is determined by integrating over the
block length.

L

8f=%f Gf{n) dTl (250)
0

5.2 0c 2ty y, il

of Ve R(LS} T (2.51)

The matrix is now considered. From figure 2.12 the axial force in an

annulus of matrix of area Ap, and length L by equilibrium is:

Oy Am = Omy-0Am - 20 TR(M - (L - Ly) (2.52)
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Here the matrix stress is Op,, and the radius over which the shear stress (1)
acts is R. The bracketed term {n - (L - Ls} again adopts Macauley notation. This

gives the stress in the matrix as:

\4
Omm) = Omen -0) - ZI%'—{Vf n-(L-Ls) (2.53)
m
At the crack, the stress in the matrix oy,_,,= 0. Hence from equation

(2.53) the matrix stress O, ., is:

V
Gty = 5 L) (2.54)

Thus far it has been assumed that the matrix is perfectly reliable with a

constant matrix micro-cracking stress (Gpy). In these circumstances the stress

in the matrix cannot exceed o, hence:

Ny
Vim

N

{Ls) (2.55)

Omu

It follows that for a composite with a deterministic matrix micro-cracking
stress () and a known interfacial shear stress then the debond length (Ly) is

fixed. The stress in the matrix as a function of  will then be:

Omigy = O - %l;{n ~(L-Ly) (2.56)

The average stress in the matrix (op) is given by the integral.

L

8m=% f Oumgyy AN (2.57)
0

— L 2

O =°m“'§vl,fl{ ﬁ} (2.58)

The stress in the composite (o) is obtained from the rule of mixtures.
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Oy = VmOmyy + V£ Ofiy)

(2.59

The composite stress at any section 1 is the sum of the fibre and matrix

stresses.

GC(“)':Vm[Gmu“ZI%“\\,/—;{ﬂ'(L-L}]+Vf[v —l{L}+2‘C{T] L - L}

Octy) = Vm Omu + O - %{Ls}
an) = Gc + Vm [Gmu‘ '2% VVL {LS }:|
m

From equation 2.55 lcmu- 2t Vi {LS}] is zero hence.

R Vn

Octm = Oc

(2.60)

(2.61)

(2.62)

(2.63)

This demonstrates the consistency of the argument which results in
equations 2.49 and 2.56 where their addition weighted by the volume

fractions, is equal to the composite stress on every section.

The average stress in composite (o) is the sum of the average stresses in

the fibres (op) and the matrix (o).

Ec =V,Omn + Vs Ef

2

{Ls)?
L

+ V¢

— L
cc=Vn{omu-%\\,,—f{ 5
m

Sc_ 2t T

0'c—Vmo—mu"' Oc - Vf%g{ )

G = G + Vil Ome - 2/ (L)

From equation 2.43 [cmu- lth{Ls}] is zero hence.
m

RV,
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(2.65)

(2.66)

(2.67)



Oc = O, ' (2.68)

This again demonstrates the consistency of the argument leading to
average stresses in the fibre and matrix 6t m This now allows the calculation
of the average contribution to the composite stress of the fibre and the matrix
in the micro-cracking region of the response curve.

In the third region of figure 2.11, micro-cracking has saturated and further
micro-cracking can not occur in the matrix. This happens when the block
lengths are not long enough to raise the stress in the matrix to the matrix
micro-cracking stress. Subsequently the matrix can only be broken into blocks
of length greater than or equal to Ls , since this is the minimum length
required to raise the stress in the matrix to micro-cracking. It follows that at
saturation the matrix is broken into blocks of lengths between Ls and 2L,.
Kimber et al (1982) gave the average spacing of cracks in a brittle matrix with
continuous fibres as 1.33L;. Taking the average block length 2L as 1.33L; the

average stress in the fibre taken from equation 2.51 is therefore given by:

Gi=Oc_ T =4
Of = v, 2R{Ls} for 2L 3Ls (2.69)

Similarly the average stress in the matrix from equation 2.58 is given by:

G = O - %%Vl; L for 2L =41, (2.70)

From these two equations the average stress in the composite
(Cc = VmOm + Vi 0p) correctly reduces to o.. After micro-crack saturation the
average fibre stress given in equation 2.69 is dependent on the composite
stress minus a constant stress (EIR—{LS})' Consequently the matrix stress is
constant past micro-crack saturation and dependent on the average block
length. Knowledge of the block length (2L =1.33L;) therefore allows the
interfacial shear stress to be calculated for a given distribution of micro-cracks

and a known matrix micro-cracking stress:

1__°'muR Vm

~ 15038 L V; 2.71)
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The strain distribution along the length of the block is now considered.
The initial loading is linear elastic up to the failure strain of the matrix
whereupon matrix micro-cracking occurs. The matrix continues to micro-
crack, until the density of micro-cracks eventually saturates. After this point
the stiffness of the composite is dictated by the fibre modulus and the fibre
volume fraction up to the failure stress og V. Micro-crack initiation occurs

when the strain in the composite reaches the failure strain of the matrix &,

A stress of magnitude \";“ corresponding to the load in the matrix then
f

transfers to the fibre bridging the crack. The additional stress on the fibre

(0\‘;‘“) decays to zero at distance L, either side of the crack. The average
f

additional strain on the fibre over the block length 2L; is therefore:

st 550 a7

Where E denotes the modulus and the subscripts f and m the fibre and
the matrix.

For a composite with continuous fibres, the average fibre strain is
identical to the average composite strain. If the matrix is broken into blocks
of length 2L = 2L, the total strain in the fibres is given by the micro-cracking

strain plus an additional strain given by equation 2.72:

This represents a lower bound for the strain at micro-crack saturation.
If all the block lengths are L the additional stress in the fibre is still given

by% but reduces to (2’—’\",! over a length L;/2. This means that the additional
£ f

strain in the fibre does not go to zero but to strain of ]25‘]’;:—‘5%“ The average
Ve

additional strain in the fibre over a block length L is:
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Enfmu | Emmu _ 3Em€my
2EfVes 4EfVys 4EfVs (2.74)

If at micro-crack saturation the block length is L then the strain in the
fibres is:

(2.75)

This is an upper bound for the strain to cause micro-crack saturation in
the composite. It is assumed that the failure strain of the fibre is constant. For
block lengths of 2Ls and L; there is a distribution of strain along the fibre. For
this reason failure of the composite occurs when the local strain in the fibre
reaches the fibre failure strain &y The composite failure strain (en) is
therefore lower than the fibre failure strain. This provides upper and lower
bounds on the composite failure strain (€,) corresponding to block lengths of
Ls and 2L,.

(efu - Enfmy

Ememu)
2 EfVs

) <Em < (8“’ " AEVg

(2.76)

In the micro-cracking region the number of micro-cracks per unit length

increases with strain. For a block length of 2Ls the micro-crack density, p,

1

cannot exceed
2L

cracks per unit length, the average additional strain in the

fibres is:

P Enemu _ P LsEmEmu
_1 2V¢Es ViEs (2.77)
2L

Therefore the total strain in the composite is:

(2.78)

If the composite is unloaded, the region between the lengths L;/2 and L, is
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considered to be elastic for a constant shear resistance to sliding. In this case
the residual strain is half the average additional strain on the composite.

This gives the strain on unloading as:

P LeEnEmy
2 ViEs (2.79)

If the fibres are linear elastic to failure the inelastic strain after micro-crack

saturation for block lengths of 2L; is then a maximum at 5'2,8‘]‘3‘“ For block
‘ fEf

lengths of Ls a similar process is followed resulting in a maximum unload

strain from micro-crack saturation of E’“—E’“‘l.
4 ViE¢

The theories documented in this section attempt to describe the strength
and mode of deformation of a fibrous composites. A general understanding
of the mechanics of these materials is required to tailor these properties for a
specific task. More specifically an understanding of the micro-mechanics of
deformation allows the development of computational continuum models

of fibrous composite.
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2.5 Toughening Mechanisms

Fracture toughness is the ability of a material to resist crack propagation.
Ceramics have inherently low resistance to fracture due to the strongly
directional nature of their interatomic forces which inhibit plastic
deformation. Understanding the mechanisms which drive or arrest crack
propagation in ceramic composites can be used to design high toughness
components.

Two fundamentally different approaches to this problem have been
adopted: flaw control and the introduction of toughening mechanisms. The
first accepts the inherent brittleness of the material and attempts to limit the
size of flaws produced by processing. The second is a more recent advance in
which toughness is enhanced by modifying the micro-structure or inclusion
of a reinforcement. Individual mechanisms include, transformation
toughening, micro-crack toughening, ductile reinforcement and fibre or
whisker reinforcement (Ruhle et al 1989). Each of these mechanisms has
produced critical stress intensity factors ranging from 10MNm3 to greater
than 30MNm 7 with the higher values produced by fibre reinforcement. These

toughening mechanisms are now reviewed briefly.
2.5.1 Transformation Toughening

A variety of lattice transformations have been identified in inorganic
materials. The most widely used for toughening is the ZrO, (zirconia)
martensitic transformation. ZrO; undergoes two phase transformations.
Three of the crystallographic modifications that exist are cubic (c), tetragonal
(t) and monoclinic (m) symmetry. Stability of these structures occurs over

temperature ranges as shown in figure 2.13

2680 °C 2370°C 950°C
melt————cubic———=tetragonal _, ™ monoclinic
1150°C

Figure 2.13 Phase transformations of ZrO,
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Tough ZrOjalloys typically contain t-ZrO; particles within a ceramic
matrix where the start of the martensite transformation is suppressed below
room temperature. The martensitic transformation is induced in t-ZrO,
particles not by thermal effects but by stress, and specifically by the hydrostatic
tensile stress field ahead of a crack. This transformation is essentially the
source of toughness for ceramics containing ZrO, as discussed by Evans et al
(1986).

ZrOj toughened ceramics are based on several micro-structures as
described by Ruhle et al (1989). An important micro-structure arises from the
densification in the t-ZrO; phase, followed by cooling to room temperature.
Providing the grain size is less than the critical size required for the
transformation. This produces a single phase material t-ZrO; called
tetragonal zirconia polycrystals (TZP). This can also be used as one of the
components in a ceramic composite referred to as a zirconia dispersed
ceramic (ZDQC).

An alternative micro-structure comprises t-ZrO;in a cubic matrix. This
material is generally formed by sintering in the cubic phase field and cooling
to the two phase field where the tetragonal phase forms as precipitates. These
precipitates, if small, remain tetragonal down to very low temperatures. This
type of material is commonly referred to as partially stabilized zirconia (PSZ).
If however the precipitates are large then they transform thermally to m-
ZrO;. The processing route by which these materials are formed therefore
govern the size and distribution of ZrO; phases.

Stress induced transformations can be regarded as processes dominated by
a volume increase. Similarly t - m transformations, ahead of a crack relax the
strain and resist further crack propagation. This transformation occurs ahead
of the pre-existing cracks which implies the absence of toughening for crack
initiation. Further crack extension causes a zone ahead of the crack to unload
inducing hysteresis and toughening.

After substantial crack growth steady state transformation is achieved. A
transformation zone profile is created bounding the diminished transformed
material ahead of the crack. The zone size is governed by a martensitic

nucleation law. More specifically the size of the zone reduces with increasing
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temperature and reduction in particle size. Ruhle et al (1989) has expressed
this as a function of temperature and particle size. More specifically the
operating temperature range of the material is limited by the transformation

phase selected during composite manufacture.
2.5.2 Micro-Crack Toughening

Micro-crack toughening has been documented by Buresch (1978),
Hoagland et al (1975) and Evans (1976). Microcracks occur in areas of local
tensile stress. This stress can be induced by thermal expansion mismatch
and/or by phase transformations. The toughening mechanism is based on a
similar toughening to transformation toughening, in that the volume
increase results in strain relaxation and consequent stress relief.
Microcracking thus results in a reduction in Young’s modulus within the
process zone. Consequently constitutive relations for microcracking solids
are nonlinear.

The initiation of microcracks ahead of a macrocrack provides a
toughening mechanism for the extension of the main crack. However the
toughness varies during crack propagation due to the reducing modulus. An
example of this toughening is Al,0; toughened by monoclinic Zr0; given by
Ruhle et al (1989). Here the reduction in modulus and level of plastic strain
are dependent on the micro-structure. This also effects the location of the
microcracks in the Z10, particles or the Al;0; matrix. The distribution of
micro-cracks also depend on the particle size and local stress distribution.

A potentially detrimental effect of microcrack toughening is the incidence
of thermal microcracks at the largest particles due to thermal mismatch
(Ruhle 1976). These cracks can be strength limiting and result in a tough
material with moderate strength. The levels of toughening achieved by
microcracking are the lowest of the toughening mechanisms described in
this study. Its use is however enhanced when coupled with fibre

reinforcement.
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2.5.3 Ductile Reinforcement Toughening

Ductile reinforcement toughening has the ability to increase the
toughness of ceramics significantly (Ruhle 1989). The reinforcement
mechanisms include crack bridging (Ashby et al 1989, Sigl et al 1988) and
crack shielding as well as energy dissipation associated with a plastic zone
(Marshall et al 1989).

Crack shielding mechanisms operate by creating a process zone which
inhibits stress concentrations at the crack tip. Crack shielding occurs when
the stress field of a single crack nucleates micro-cracks around the crack tip.
Kelly (1986) discusses two toughening mechanisms involving crack
shielding. The first mechanism operates by shielding the crack from the
applied stress intensity by means of a process zone. The second mechanism,
and arguably the more dominant, arises from the increase in surface area
from the nucleation combined with the depletion of the modulus through
micro-cracking and dilation of the micro-cracking zone.

Ruhle (1989) identified crack bridging as the most effective toughening
mechanism using ductile reinforcement. This was analysed by considering
the local stresses at the crack tip producing plastic deformation of the
toughener bridging the crack. The plastic deformation observed can be large
and yield considerable increases in toughness. Crack bridging can be affected
by both particulate reinforcements and a continuous ductile phase.

Gerberich (1971) produced ductile reinforcement of an aluminium matrix
by the introduction of stainless steel fibres. This composite produced twice
the value of K/oys compared to the best steels at the time where K is the
stress intensity factor and ovs is the yield stress. This was primarily attributed
to an increased work to fracture caused by the high strength fibres ductile
necking. This extended work by Cooper et al (1967) who established a
relationship for the fracture toughness of laminated composites using both
ductile and brittle tungsten fibres and silica fibres in a copper matrix.

Cao et al (1989a) experimented with Nb and Nb-alloy wire reinforcements
in a TiAl cylinder. The composite cylinders were manufactured by hot
isostatic pressing generally referred to as HIPing. Toughening was again

achieved by ductile fibres which exhibited extensive plastic deformation after
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matrix failure. Experimental results produced a stress intensity factor of 13
MPa m"*. It was estimated that by using reinforcements of Imm diameter
that a toughness of 115MPa m'? could be achieved.

Sigl et al (1988) demonstrated crack bridging by cemented carbides in the
form of a continuous ductile network, for a tungsten-carbide cobalt
composite. In this composite the cobalt is the ductile phase binding the
carbide together. More commonly these are sometimes referred to as
"cermets" and are widely used for machine tool tips (Reed 1987). The crack
propagates between the carbide particles and across the cobalt matrix. At the
cobalt yield stress small voids appear on the crack plane. These grow
deforming the cobalt plastically and bridging the crack hence contributing to
the toughness of the composite.

2.5.4 Fibre Reinforcement Toughening

The fracture toughness and strength of ceramic composites remain
competing requirements. Altering the structure of the material to enhance
toughness generally has the effect of reducing strength. However the
toughness of a composite can be very much greater than either of its
constituents. An example given by Kelly (1986) involves a glass-reinforced
plastic. Here the resistance to crack propagation of the polyester resin and the
glass is 100 Jm-2 and 10 Jm-2. In contrast the resistance to crack propagation of
the composite is of the order 10°Jm2. This increase in toughness is
significant and much higher than the sum of the constituent resistances to
fracture. Similarly high strength ceramics are relatively common and levels
of strength can be an order of magnitude higher than those produced by
metals. This allows for a sacrificial reduction in strength compensated by an
increase in toughness. The highest levels of toughness in ceramic composites
are produced by fibre reinforcement toughening.

Fibre toughening has similarities to ductile fibre reinforcement
toughening, in which matrix cracking transfers the stress onto the fibre (Cox
et al 1991). Incorporating this method of toughening can substantially
increase the fracture toughness of a composite (Laird et al 1991). Evans et al

(1989)b attributed the toughness in these composites to fibre pullout where
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the fibre-matrix interface dictates the toughness. Figure 2.14 shows fibres
bridging a crack. As the crack opens the fibres have three basic mechanisms
of failure which may occur separately or concurrently. These are brittle fibre
fracture, the plastic deformation of ductile fibres and finally fibre pullout.
The brittle failure of the fibre requires the least work and provides a
negligible contribution to toughness. With ductile fibres, the contribution to
toughening is limited to the plastic deformation of the fibre. The pulling out
of a fibre produces a shear stress on the fibre matrix interface significantly
increasing the fracture toughness. Work reviewed by Kelly (1986) describes
how the work of fracture is affected by the length of fibres in a composite (L)
as well as the critical fibre length (L., equation 2.27). From this review, the
work done in pulling a fibre out of a matrix is force on the fibre times the
distance moved. As the fibre pulls out so the surface area of the fibre in
contact with matrix reduces. The work done withdrawing a fibre whose end

is a distance x from the matrix crack is given by:

Work done = ntr? f of dx (2.80)
0

From equation (2.26) o¢ = '2% and hence the work done is:
Work done = ntrtx2 (2.81)

If the fibre length is greater than the critical fibre length then the fraction

of fibres that pullout is If The work done per unit area of specimen cross

section to withdraw all the fibres which pull out is:

-

B ) d 2
W= 1?;2 %)f Ty = Yzf %) (%Q) ForL<L,L.=L  (2.82)
0

In this equation the maximum work is achieved by maximising L. and
keeping the fibre length L close to L. For increasing L the work decreases. If

the fibre length L is below the critical value then work of fracture is
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determined by setting L. =L producing a reduction in the work. Equation
(2.82) also indicates that increasing the interfacial shear resistance (1) will
increase the work. However from equation (2.27), increasing t reduces the
critical fibre length, reducing the work and hence the toughness.

The toughness of a fibre-matrix composite may be optimised by balancing
the fibre, the matrix and the interface mechanical properties (Thouless 1989).
The effect of the interface on the mechanical behaviour of the composite is
strongly affected by its debond strength (Charalambides et al 1989) and its
interfacial shear stress (Cao et al 1990). In the case of a brittle matrix and
brittle fibre composites the interfacial properties characterise the response.
High debond and interfacial shear resistance results in small fibre pullout
lengths and low composite fracture toughness. It follows that the interface
must be balanced with the fibre strength to encourage large fibre pullout
lengths and high work to fracture.

The toughening mechanisms of a composite has been considered for
materials in which the fibres failure strain is significantly higher than that of
the matrix. Reviews by Hutchinson et al (1990), Evans et (1989)b Bao et al
(1993) and Thouless (1989) discuss and model the influence of the interface
on the fibres bridging a macroscopic crack. Enhanced toughness requires that
a crack propagating through the brittle matrix leaves in its wake intact
undamaged fibres bridging the crack. To achieve this, the strength of the
fibre-matrix interface must be sufficiently low to favour fibre debonding on
the crack flanks and maximise the growth of the debond crack before fibre
failure. If the interfacial shear resistance is too large, fibre debond lengths will
be small and the resulting pullout lengths and work to fracture reduced
accordingly. Conversely if the interface resistance is too small then large fibre
debond lengths are produced resulting in low pullout work hence low
toughness.

Hutchinson et al (1990) modelled fibre debonding and fibre pullout using
constant friction and also Coulomb friction. Both analyses consider
debonding arising from a mode II crack growing from the mode 1 crack face.
As the debond crack grows contact between the fibre and the matrix is
prevented over a critical length and thus offers no resistance to sliding. At

this point the load curve levels remaining unchanged until the failure stress
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in the fibre is reached, after which pullout is observed. A similar model by
Bao et al (1993) considered the effects of cycling of broken fibres in the wake
of a mode I fatigue crack.

Aveston et al (1971) considered the energy involved in producing
multiple cracking in a brittle matrix surrounding fibres with higher failure
strains than the matrix. When the crack initially traverses the matrix under
conditions of fixed load the strain in the matrix will be g, The formation of

the crack must be energetically favourable.

Work is done (AW) by the applied stress since the body increases in length.
The extension can only occur over the length of fibre that has debonded

given by 2L with a shear resistance (). By symmetry the increase in length is
(Eme
EfVs

area of composite is

Lssmu). If the stress in the composite is Ecem,, the work done per unit

2 w2 i
AW = E"%—Vrﬂ e .r(1+ Em—Vm) (2.83)
f '

Here E is the elastic modulus and V the volume fraction with the
subscripts f and m denoting fibre and matrix. Work must also be done in
debonding the fibre from the matrix over the length 2L; in a mode II type
crack with a shear resistance 1. Here the energy absorbed Y4, will be:

— 26, VG

(2.84)
T

Ydb
Here Gy is the energy per unit area of debond. After debonding the matrix
slides back over the fibre thus work is done against the sliding resistance 1 .

This energy per unit area of the crack surface is
EhVa 3

_ Eme)
o emur(l +Enln (2.85)

Us

Here r is the fibre radius. After sliding occurs the matrix strain decreases

thus reducing its strain energy by AUp,:
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Emul (2.86)

Consequently there will be an increase in the fibre strain energy described

by

- E%1V12n 3 ( Emvm)
AUs= 2TV Eur{l + 3EV; (2.87)

In the matrix the work done creating a fracture surface is y,. A crack may

only form in the matrix when:
2YmVm + Yap + Us + AUs = AW + AU, (2.88)

Substituting equations 2.83-2.87, allows 2.88 to be written as:

Omu ECEJ?'nvzm 3
2v,.1(ym + Gy )s ERn chur (2.89)

The energy Gy cannot be estimated but is assumed to be less than 1y

therefore by setting Gy equal to ¥, a limit is set given by:

2
2Vt 1 + Oma) < EcEme €3 (2.90)
T 6TEfo

With the assumption that Gp < Y, then a lower limit on equation 2.89 can
be established by setting G = 0 hence:

2
2V, iy < EERVE 3 2.91)
61EV?

Rearranging equation (2.91) gives the micro-cracking strain as:

1
1217, EfVZ i3
—(————W’“ fvf)’ (2.92)

u=
EE2Vr
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For a matrix with a constant failure strain incremental increases in strain
past initial matrix micro-cracking will result in sets of cracks normal to the
direction of loading with crack spacing between L; and 2L, In an ideal
composite this results in a constant stress over the micro-cracking region. In
practical terms this is not observed due to a variation of the micro-cracking
strain in the matrix causing the composite stress to rise during micro-
cracking.

For a composite with fixed fibre and matrix material properties, a constant
fibre volume fraction and a constant interfacial shear stress then the matrix
micro-cracking strain is a function of the fibre radius. Aveston et al (1971)
documented an example of this where values relating to a general ceramic
composite were applied to equation (2.92). These included a matrix and fibre
elastic moduli of 140GPa and 440GPa, a fibre volume of 0.5 and an interfacial
shear stress estimated at 20MPa. The failure strain of many ceramic materials

is ~103 hence from equation (2.92) a fibre radius of 350um was predicted. To
raise the failure strain to 0.01 with the material and interfacial properties
remaining constant would require a fibre radius of 0.35um. In addition from
equation (2.44) the required fibre strength for multiple matrix micro-cracking
to occur would be of the order 50GPa. Hence to increase the failure strain of
ceramics requires very strong fibres.

Aveston et al (1971) also considered a case where the matrix cracks as a
result of thermal stress. For a composite with matrix thermal expansion
coefficient (o) greater than the fibre equivalent os then when the composite

is cooled by a temperature difference AT, cracking will not occur until a strain
er =(0m - af)AT. Following the argument developed by equations (2.83) to

(2.88) but with AW equal to zero and AUf having a negative value Aveston
developed the expression:

2V, 7., < EERVEr [STEfo]3 (2.93)
61EvZ L Ec

Using a similar argument to that which leads to equation (2.92) it must
therefore be possible to limit the thermal strain er in the composite via the
variation in the fibre radius. It follows that increasing the radius would
ensure that the composite would not micro-crack during processing. This is
however in direct competition with the requirement to increase the failure
strain of the matrix.
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Figure 2.3 State of stress of a body defined by nine stress components
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Figure 2.4 Composite strength for varying fibre volumes
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rami mposite Manufacture

3.1 Introduction

Ceramic composites are manufactured in an attempt to create a material
that exhibits high temperature capabilities, low density and an acceptable level
of toughness for structural engineering applications. The initial step in
creating a ceramic composite is the manufacture of the fibre. This is followed
by the fabrication of a fibre preform and finally by densification with a
compatible matrix.

The processing of ceramic fibres prior to the formation of the preform
may involve drawing or extruding. These processes are reviewed along with
alternative fibre manufacturing routes. Preform manufacture techniques such
as knitting, weaving and braiding are also reviewed. The preform essentially
controls the fibre architecture and toughness of the composite. Densification
techniques described include sol-gel, chemical vapour processing, hot pressing
and the DIMOX process. This chapter outlines the main manufacture

processes used in the manufacture of ceramic matrix composites.
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3.2 Fibre Manufacture

3.2.1 Introduction

The development of viable engineering composites is dependant on the
production of fibres. The evolution of carbon, boron and kevlar fibres central
to reinforced plastics has been reviewed by Hull (1981). Interest is restricted to
ceramic fibres for high temperature ceramics or metal-matrix composites,

drawing on reviews by McColm et al (1986) and Mathews et al (1994).
3.2.2 Air Drag or Blow Spinning

Manufacture of a fibre by the air drag process begins with a molten
ceramic reservoir extruded through a die. High velocity air jets are forced
over the fibre. This both cools and exerts a frictional force, to draw the fibre.
The air flow cools the fibre over a length after which it is wound onto a
mandrel. The fibre diameter can be altered by varying the distance from the
die to the air jets and the air jet velocity.

Drag from the air accelerates the fibre from the initial contact of the air
jets. Between this point and the mandrel the air velocity drops and the fibre
travels faster than the air. The air slows the motion of the fibre through a drag
effect causing the fibre to bend and vibrate. For this reason the distance to the
mandrel must be kept below a critical value to prevent the fibre breaking.

A variation of this process is blow spinning in which a thin stream of the
molten liquid is cooled by compressed air or steam prior to the fibre being
wound. This process is more commonly applied to glass fibre but is used to
manufacture ceramic fibres with compositions in the Al,03-SiO; system in the

temperature range 1800-2000 C.

3.2.3 Sol-Gel Processes

Modern sol-gel techniques allow processing temperatures of the order of

100°C. The manufacture of a sol gel begins with a solution (sol) or viscous
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medium. The content of the initial solution includes a mixture of colloidal
suspension (gel forming medium) and solutions. The sol is passed through a
liquid removing processes such as vacuum drying after which a gel is formed.
The gel may now follow the blow-spin process coupled with a drying process
which prevents binding of neighbouring fibres on the mandrel. Careful
monitoring of the water content and viscosity of the gel are crucial for
consistent fibre manufacture. In comparison to the fibre melt process the sol
gel process results in inferior mechanical properties. The strength of SiO,
fibres formed from the sol gel process (600MN/m?) is less than the melt fibre
(700MN/m?2) due to surface defects created during the drying process.

The extrusion of modern ceramic fibres is usually based on the sol gel
process. The viscosity of the gel is adjusted during its formation to allow
extrusion with modest forces. After this the fibre is heat treated to crystallize
the gel then wound onto a mandrel. In this process the applied force and the
viscosity of the gel limit the fibre diameter. The applied force in this case may
be used to either drawn or extruded fibres. After the initial forming process,
moisture is removed by passing the fibre through heating chambers prior to
winding to eliminate binding.

The extrusion process can be modified to manufacture short fibres. By
altering the viscosity of the gel, droplets can be produced. Forcing the droplets
through a high velocity spinning disc produces short fibres with aspect ratios
(fibre length/fibre diameter) of the order 60 which then collect on the inside of
the drum. The distance from the disk to drum is adjusted to allow for the
fibres to dry to eliminate binding.

3.2.4 Crystallization Process

Manufacture of an Al,O; fibre using the crystallization process begins with
a concentrated solution of AICl; impregnated into a rayon or cotton thread.
The thread is rapidly heated, crystallising the solution and evaporating the
solvent. The thread is burned off leaving the crystallised medium. Full
saturation of the thread prior to burning results in the formation of an oxide
skeleton through the finished fibre. Problems occur when saturation is not

achieved due to the transport of the solution along the thread, commonly
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termed wicking. Oxidation of the thread in this state results in hollow fibres.
This may be avoided if threads with low wicking rates are used in conjunction
with a rapid oxidation process. Other examples of fibres made from this
process include MgO, ZrO; and TiO,

3.2.5 Vapour Phase Manufacture

In this process a filament is heated in a chemical vapour. A reaction is
caused and the fibre grown from deposited vapour. This process is used to
manufacture large diameter boron fibres (greater than 20 pm). Here a mixture
of H; and BCl3 vapours are deposited onto a 10 pm tungsten filament
resistance heated to 1100 C causing a reaction hence deposition. As the fibre
diameter grows so the temperature to cause the reaction falls to a critical level
where deposition ceases. This limits the maximum fibre diameter to 100 pm.
In this process careful temperature control is required to ensure repeatability
and small crystal sizes. Problems are encountered when this fibre is used
above 1100C with the possibility of interdiffusion leading to boron phases and
flaw generation. A common failure of this fibre occurs through longitudinal
splitting as a result of thermal mismatch of expansion coefficients at the fibre-
matrix interface.

Continuous Silicon Carbide and Nicalon SiC fibres are also formed by
chemical vapour deposition. In this case of SiC fibres, a mixture of SiH4 and H;
vapour is passed over a resistance heated graphite coated monofilament at
1300 C. During this passage the thickness of the deposited layer increases and
the temperature of the outside of the fibre drops. The lower deposition
temperature affects the structure of the depositing SiC. Coarser grains are then
produced in the fibre over a diameter of 40pum in the outer layers of the fibre
during the final stages of deposition. Finally a 1um protective coating of
carbon is deposited onto the fibre to prevent degradation and sustain fibre
strength.

3.2.6 Chemical Transformation of a Precursor Fibre

The classical route to manufacture high performance carbon fibres has
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been through the chemical transformation of a polyacrylonitrile (PAN) fibre
(McColm et al 1986). The PAN fibre has a 2 dimensional molecular
arrangement of the C-C...N-C-C bonds forming the nucleus of the hexagonal
graphite ring structure. Light oxidation provides shape stabilisation, after
which the fibre is pyrolised to remove N; and H;O. The fibre is finally
graphitised at temperatures of the order 2200 C.

The finished fibre properties are affected by the process route prior to
oxidation. Pre-oxidation treatments can be used to enhance the structure,
crystallinity and the orientation of the polymer chains. These treatments can
be achieved by stretching the precursor fibre at temperature in various
mediums. The most effective treatment is stretching in N, gas at 220 C. This
produces a finished fibre with a failure stress of 2.75 GPa and a modulus of
207GPa. This is significantly improved when compared to an untreated fibre
with a failure stress of 1.38 GPa and a modulus of 145 GPa.
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3.3 Preform Manufacture

3.3.1 Introduction

The manufacture of preforms using continuous ceramic fibres follows
paths established by the textile industry in the manufacture of cloth by
weaving and knitting. An alternative method utilises knowledge gained in
the manufacture of ropes through braiding. All these methods aim to create, a
high fibre volume composite with the fibres arranged in an architecture that
introduces toughening to the densified preform. This section summarises the
techniques and configurations developed for preform manufacture drawing
on reviews by Ko (1989) , Klein (1986) and McColm et al (1986)

3.3.2 Woven Preforms

The weaving of a preform can take many forms of which the simplest is
the plain weave shown in figure 3.1. Klein (1986) describes variations of this
weave, some of which are also shown in figure 3.1. These variations exhibit
the basic 2D characteristics associated with the plain configuration but with a
bias to one axis. Composites created from 2D weaves consist of layers of
woven fibre cloths pressed together, densification follows and a 2D laminate is
produced. Such composites are highly anisotropic with the main strength and
modulus in the direction of the fibres. Through thickness properties are often
of an order of magnitude lower, giving rise to delamination under out of
plane loading (Cao et al 1989)b.

In an attempt to reduce the anisotropy, the woven layers can be stitched
together to increase the through thickness strength. Offsetting the layers
combined with the stitching reduces the maximum directional strength and
stiffness but results in a more isotropic material (Yang et al 1986). Other
methods of increasing the through thickness properties are to weave a
number of layers simultaneously allowing individual fibres to share layers.
This can be done by weaving a fibre in one layer, taking it out and weaving it

into another layer. If this is repeated with several fibres then the layers are
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joined. This can have greater effect on the through thickness properties than
stitching the layers but results in a reduction in the maximum mechanical
properties.

Triaxial weaving, as shown in figure 3.2, typically consist of three yarns
interwoven at an angle of sixty degrees to one another. This form of weaving
is two dimensional and results in similar disadvantages to that of the plain
weave with similar remedies. The main advantages of this weave are its high
in plane shear resistance, its large fibre volume fraction and an improved
resistance to unravelling.

Weaving is not restricted to two dimensions. Complex three dimensional
preforms can be created using 3 and 4D weaves with improved isotropic
properties but with a significant increase in cost. Figure 3.3 shows typical 4D
layup. The 3D weave can be used to create solids as in a 3D block billet
weaving where the fibres are aligned orthogonally. Typical uses of the 3D
cylindrical weave include rocket nozzles where reinforcement in the through
thickness properties are required.

The 4D layup as shown in figure 3.3 has similar improving characteristics
to that of the triaxial weave. These weaves are used in cases where strength is
needed in more than three directions, introducing strength where it is
required as in complex components and resistance to interlaminar shear

failure.
3.3.3 Braided Preforms

Ko (1989) defined braiding as 'a fabric formation process that intertwines
three or more yarns in the bias direction.' This intertwining is the basic
method through which ropes are typically formed. Braiding is however not
restricted to cylindrical components but can be used to manufacture a large
variation in shapes. The most basic of these processes is the 2D braid.

Figure 3.4 shows a typical example of a 2D braid. The nature of braiding
allows the formed braid to be stretched or contracted. This is utilised in the
formation of cylindrical 2D braids where the braid is formed over a shaped
mandrel, with high production rates achieved at low cost. Braiding also has

the advantage of allowing fibre orientation in a specified direction adding
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strength where required. One disadvantage of braiding is a susceptibility to
fibre crimping resulting in a loss of composite strength.

Triaxial braiding advances the 2D braid by introducing a stiffener in the
direction where added strength is required. This can be used to create a hollow
cylindrical form over a mandrel. In this process 0° fibres are laid along the
mandrel axis with the braid formed round these. This is as versatile as the
standard 2D braid but with added shear resistance. An example of a structure
based on this braid is that of a 3/4 size formula one chassis created using a 144
carrier braider and a monocoque unibody chassis (Ko 1988).

The 2D and triaxial braiding processes are used to create a layered or
hollow preforms. Solid objects can be formed using 3D braiding. In this
process the same basic braiding action is similar to the 2D braid. Carriers are
moved in orthogonal directions followed by a compacting motion. With this
process a variation of shapes may formed by the positioning of the carriers.
Figure 3.5 shows a typical 3D braid. A large number of fibre strands can be used
in the formation of solid 3D braids, a particular example being a cartesian 3D
braiding machine that can handle 12,222 fibres (Bittence 1987).

When additional directional strength is required 4D braiding can be used.
A 4D braid is formed by the addition of stiffened fibres laid in a particular
direction and a 3D braid created around them. An example of this is the 4D
Triaxial braid shown in figure 3.6 which is radial reinforcement added to a 3D
triaxial braid.

3.3.4 Knitted Preforms

Knitting interloops continuous fibres to form a preform layer. The
process is identical to those developed for textile manufacture. The basic form
of this is the plain knit as shown in figure 3.7. Knit geometries can vary
considerably to control the loop density. However the bending imparted to the
fibres in the formation of the loops can significantly reduce the strength of
stiffer ceramic fibres. To counter this, solid fibres or tows may be laid into the
knit as shown in figure 3.8. Two dimensional laminates may be formed by
knitting together solid fibres aligned perpendicular to each other. An
advantage of this is that the fibres are not damaged through bending as in the
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0-90 woven process. A disadvantage is that lower fibre volumes are created.
Three dimensional knits are available incorporating solid fibres as in the
strengthened 2D laminates. In this case layers or mats of fibres can be laid in
the direction required for maximum strength and systematically knitted
together to form a solid. An example of a component manufactured using this
process is carbon/carbon aircraft disc brakes (Ko 1989). These are knitted as a
continuous helical strip with radial strengtheners. This strip is then collapsed

and impregnated to form the disc.

55



3.4 Preform Densification

3.4.1 Introduction

The densification of a fibre preform is the final process in the
manufacture of a modern ceramic composite. The prime objective of the
process is to densify the preform with the absence of voids or inclusions and
in a finished shape requiring no surface finishing. This section reviews
techniques used in attaining these requirements by sol-gel, chemical vapour

and directed metal oxidation processes.

3.4.2 The Sol Gel Manuacture Process

Composite manufacture using a solution gelatinous (sol-gel) technique
has been developed at G.E.C. Alsthom Engineering Research Centre (Hyde
1988). In this technique the matrix is formed from solutions containing
refractory precursors. Densification of the preform is achieved either by
impregnating the fibre preform or by coating the fibres prior to preform
manufacture with the precursor solution. In both cases the composite
undergoes a heat treatment during which the solution solidifies forming the
matrix.

The sol-gel technique used to densify a fibre preform can best be described
in four steps. The technique is very similar to polymerisation in that it
chemically bonds small molecules together to form large chains and
networks. A typical starting point for formation of a silica matrix is hydrolysis
of an alkoxide (in this case tetraethoxysilane). In the presence of acids this

process yields solutions containing hydroxides as shown in figure 3.9.
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RO ——Si——OR + 4HOH —» HO—Si OH + 4ROH

OR OH

Figure 3.9

The second stage involves the loss of water through condensation as

shown below in figure 3.10.

(HO)Si - OH + HO — Si(OH) — (OHRSi— O— Si(OH) + H,0

TREATMENT  SILICA
Figure 3.10

Repetition of this reaction results in the formation of a solution
containing small chains and networks of the metal oxide, known as a sol.
Cross linking between the chains and networks results in larger groups until a
solid is formed. The solid is generally gelatinous and termed a gel. Following
a heat treatment at a temperature of 1000°C, the gel produces a uniform dense
ceramic matrix. Conventionally prepared powders of similar composition
require processing at softening temperatures of the order 1700°C. Due to the
high softening temperatures it is acceptable to use a sol-gel processed
composite in applications where the operating temperature is continuously

above the gel-matrix processing temperature.
3.4.3 Chemical Vapour Densification
3.4.3.1 Introduction

The formation of a composite through a chemical vapour process
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requires a surface reaction and a mass transfer of the ceramic precursors in a
gaseous state. Gases containing the precursors diffuse through the preform via
gaps or pores between the fibres. On contact with the fibres a reaction takes
place which results in the decomposition of the ceramic on the fibre. This
surface reaction can be achieved between several ceramics. Problems are
immediately encountered with the process, the most prominent being that of
surface densification. Resulting in little, or no, further vapour infiltration of
the preform as shown in figure 3.11. The adoption of sensitive manufacture
techniques can succeed in producing highly densified composites. An attribute
of chemical vapour processing is the ability to deposit ceramics at medium
and low temperatures, depending on the nature of the activation of the
reaction. The processes to be examined are chemical vapour deposition,

isobaric/isothermal, and forced chemical vapour infiltration.
3.4.3.2 Chemical vapour deposition

Chemical vapour deposition is a process used to form coatings on metals,
ceramics and ceramic fibres. Various coatings, including borides, carbides,
nitrides and silicides, can be formed by this process. In chemical vapour
deposition the thin layer is formed molecule by molecule. The parent
material is vaporised and thermally decomposed to form a reaction product
which forms a coating. In many cases fibres are pre-coated prior to preform
manufacture to create an interface between the fibre and the matrix. This
allows better control of the interfacial properties of the fibres during pullout,
enhancing the toughness of the composite.

This process is useful in producing a uniform coating on a complex
surface, but can results in surface densification when used to densify ceramic
preforms. Reed (1987) described the reaction to produce silicon carbide

deposited below 1000°C from CHsSiCl; in the presence of hydrogen as:

H,
CHiSiClay — SiCesy + 3HCly

Figure 3.12

58



The purity of the deposit, and the deposition rate, are dependent on the
initial composition, the pressure and the temperature of the process. This
process forms the basic mechanisms on which all other chemical vapour

processes are based.
3.4.3.3 Chemical Vapour Infiltration (CVI)

The chemical vapour infiltration process is concerned with densifying a
ceramic preform through pores or gaps between the fibres. The deposition rate
is extremely sensitive to temperature and pressure gradients. Deposition
depends on the reactant gas diffusing into the preform to allow a uniform
growth of the ceramic. The deposition rate is therefore dependent on surface
kinetics governing the diffusion rate. Forcing the deposition rate above that of
the diffusion will result in surface densification and a dramatic reduction in
the densification of the preform.

Rossignol et al (1984) modelled a porous fibre preform as a cylindrical
pore in which a matrix was deposited through chemical vapour infiltration.
This extended work by Van Den Breckal et al (1981) who showed that the
deposition rate on a flat surface was controlled by a dimensionless group
known as the Sherwood number. Van Den Breckal (1981) established that low
deposition rates were achieved with low Sherwood numbers.

Naslain et al (1989) examined the effect of temperature and pressure on
the deposit profile of a cylindrical pore. An incremental computational
procedure allowed the pore to be gradually sealed by the deposit and a
measure of the uniform deposit depth made. This was then be used to
estimate ideal conditions for high densification of preforms. Thes findings
indicated that low temperatures and pressures combined with large pore
diameters (of the order 100um) produced high deposition over the length of
the pore, and low Sherwood numbers.

Using a similar dimensionless grouping to the Sherwood number, Fitzer
et al (1986) derived the maximum depth at which a pore could be deposited
uniformly with a ceramic. The findings were consistent with those of Naslain

et al (1989) where low temperatures and large pore diameters produced highly
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densified preforms.
3.4.3.4 Forced Chemical Vapour Infiltration (FCVI)

Methods of accelerating the manufacture of isobaric/isothermal chemical
vapour infiltration have been the subject of much recent research. Work
documented by Besmann et al (1989) claimed a reduction in manufacture time
of a composite from weeks to less than 24hrs. The process, known as forced
chemical vapour infiltration, produced specimens with 90% of the theoretical
density and strengths of 400-450MPa and noncatastrophic failure.

This process replaces the steady state conditions used in
isobaric/isothermal chemical vapour infiltration for one containing
temperature and pressure gradients. In isobaric/isothermal chemical vapour
infiltration processes, low deposition rates are required to prevent surface
densification of the preform. FCVI encourages surface densification on one
side of the preform with densification proceding it from that surface to the
other.

The introduction of pressure and temperature gradients allows the
deposition of the ceramic and the direction of matrix formation to be
controlled. Gases entering the ceramic preform are at a low temperature and
high pressure. At the low temperature the gas does not react with the preform
and no deposition occurs. Continuing through the preform the gas pressure
drops whereupon it encounters the hot surface resulting in rapid deposition
at the outer surface of the preform. As the deposition grows so heat is
transferred towards the cooled gas inlet via conduction through the newly
formed matrix. The process continues until complete densification is
achieved. Extremely sensitive control of pressure, temperature and rate of

cooling are required to create a composite using this process.
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3.4.4 DIMOX Densification Process

The Directed Metal Oxidation (DIMOX) process was developed by the
Lanxide Corporation to densify preforms with the product of a liquid metal-
gas reaction (Newkirk et al 1987). For example molten aluminium and oxygen
are reacted to form alpha aluminium oxide. Similarly the use of nitrogen
forms aluminium nitride. The nature of the reaction product allows it to
form in and around porous preforms.

The preform is placed in contact with the parent molten metal as shown
in figure 3.13. During the reaction a reaction product grows from the original
metal surface. To sustain the reaction wicking occurs along microscopic
channels in the reaction product. The resulting matrix is a ceramic/metal
composite interconnected in three dimensions with a metal content typically
between 3-15% by volume (Schiroky et al 1989). The matrix is free of
impurities at the grain boundaries. This is a desirable feature for high
temperature applications. An advantage of this process is the ability densify
shapes too intricate for CVI with low levels of porosity. The final shape of the
composite may be controlled during processing by fixing a barrier or casing
around the preform restricting the growth of the reaction product.

Of particular relevance to the present work is SiC/Al,O3; whose
manufacture by the DIMOX process is now described. Nicalon fibres, with
diameters of the order of 20 um and a boron nitride coating of the order 1um
thick, are woven into a 0-90 cloth. Layers of the woven cloth were laid and
compressed in a porous mould then partially densified with a 2um layer of
SiC by the CVI process. This serves the dual purpose of binding the preform
into a stable shape and providing a suitable reaction surface for metal oxide
deposition. An alumina matrix is formed by the DIMOX process followed by a
nitriding treatment to reduce the level of metal in the matrix. The finished
component is therefore a multiphase composite. Figures 3.14 and 3.15 show
the cross sections of an undeformed SiC/Al;,03 composite. Figure 3.14 shows
the SiC fibre with the boron nitride interface, the CVI layer and densified
Alumina matrix. The crack shown in figure 3.15 is a result of the thermal

stresses produced during cooling from the process temperature to ambient.
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Figure 3.1 Basic Weaves
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Figure 3.2 Triaxial Weaves



Figure 3.3 Four Dimensional Layout
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Figure 3.4 Two Dimensional Braid
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Figure 3.5 Three Dimensional Braid
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Figure 3.7 Plain Knit Configurations
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Figure 3.8 Directionally Strengthened Knits
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Figure 3.11 Surface densification of a preform caused by closing of pores in the
preform surface thus preventing the oxide vapour flowing into the centre and
densifying.
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Figure 3.13 The DIMOX process configuration
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Figure 3.14 Cross section ofa SiC-Aiumina composite with the SiC
Fibre, Boron coating, a CVI layer of SiC and the Alumina Matrix.



Figure 3.15 Cross section ofa SiC-Alumina composite with a thermal
induced crack traversing the Alumina matrix.
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4 Materials
4.1 Introduction

From an engineering viewpoint the use of ceramic composites in high
temperature environments is an inviting prospect. However the expense of
manufacturing these materials is very high and there is the added
disadvantage of long manufacture times. The expense can be balanced by the
technical advantage gained over a company’s competitors. Laboratory
testing has demonstrated the potential of these materials at high
temperatures although little is known regarding design guidelines for
ceramic composites.

It is proposed to use ceramic composites to upgrade high temperature
aero engine components where the super alloys currently used are at the
peak of their performance. Particular interest has focused on the exhaust
diffuser unit of an EJ 200 engine manufactured by Rolls-Royce. This non-
critical component in the engine serves as a test bed into which advanced
materials may be introduced. Information currently available on ceramic
composites is limited. This can be partly attributed to the difficulties of
fabrication which are hampered by problems of producing reliable material
properties. By the nature of the manufacturing processes, the composites
frequently contain damage in the form of matrix micro-cracking or porosity.
Porosity is an inherent biproduct of the densification process. Micro-
cracking can occur during cooling from the manufacturing temperature as a
result of a modulus mismatch between the fibres and matrix. It is desirable
that this damage is minimised and as a result a candidate materials for the
exhaust diffuser unit of the engine include SiC-SiC composites whose low
modulus and thermal expansion mismatch prevents thermo-elastic
cracking. This material is manufactured using chemical vapour deposition
which is both an expensive and slow process. The structure of such
composites usually consists of continuous woven fibres embedded in a
brittle matrix with a weak fibre-matrix interface. The failure strain of the

matrix is significantly lower than the fibre so that the resulting tensile

75



deformation is through matrix micro-cracking.

The development of the necessary knowledge for effective design
requires initial testing of generic shapes followed by prototype manufacture
and testing. This process is slow and requires a right first time approach. For
these reasons a model material has been investigated with the aim of using
this to accelerate and reduce the cost of the development of the design
guidelines for ceramic composites. Butler (1992) has proposed a polymer
model of SiC-SiC which is intended to have similar deformation modes to
the ceramic composite. The material is inexpensive and has a processing
time of a day as against months for the ceramic composite. It was proposed
to investigate the use of the polymer system to provide an experimental
benchmark of the constitutive relations without the complication of
processing damage. This work was extended into testing generic shapes or
sub-elements representing configurations expected in aero-engine
components. The sub-elements featured chamges in cross section and ‘T’
joints. The results of the sub-element tests were then be compared with
computational solutions using developed constitutive relations.

Although the polymer system was intended to provide vital
information regarding the design of composite components there was still
be a requirement to benchmark the constitutive relations using a ceramic
composite. Currently, the expense and slow manufacture of the SiC-5iC
composite has resulted in a lack of material with uniaxial data produced by
Hillier (1991). The requirement to benchmark the polymer against a ceramic
was satisfied using sub-elements of SiC-Al;03 manufactured using the
DIMOX process. This material deforms through matrix micro-cracking as in
the SiC-SiC and the polymer systems. This chapter examines the
characteristics of the polymer composite and the SiC-Al;03 composite.

Initial testing focused on the properties of the constituents of the
polyester composite. Matrix tensile specimens were manufactured and
tested to failure. Fibre data was produced by experiments on bundles of
unimpregnated polyester fibre tows and single tows impregnated with the
polyester matrix. The response of the polyester composite was then
examined. Tests were performed to determine the elastic modulus and the

failure modes in tension and compression. The effect of a tensile load acting
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at an angle to the fibres was investigated by testing specimens with fibre
orientations ranging from 0-90 to 45-45. The uniaxial 0-90 testing was
extended to include cycling of specimens to failure. The analysis of the
hysteresis loops formed provided information of the development of
micro-damage, the extent of micro-cracking and the development of
inelastic strains. In addition to the testing of woven preforms, the
experiments on the polymer examined the uniaxial response of knitted fibre
architectures. These experiments investigated the effect of fibre volume
fraction on the mechanical properties as well as the failure modes

Testing was extended to included the constituents of the SiC-AlO3
system with tests limited to individual SiC fibre tows. Uniaxial composite
data was supplied by Merril (1993). Compared to the polymer system the test
data available on the ceramic is restricted. However due to the similar
deformation modes of the ceramic and the polymer it was hoped to apply
any principles developed for the polyester to the SiC-Al,O; system.

The experimental work provided input data for a computational model
of both the polymer and the SiC-Al,03 system. This was based on the work
of Aveston et al (1971). The computational model was then used to analyse
the sub-elements.
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4.2 Polyester Matrix Properties

The matrix was prepared from polyester resin (Spectra 1991) and
hardener (Pergan 1991) in the ratio 50:1 by weight, mixed and stirred until
the hardener was completely dissolved. The mixture was left to stand in an
ultrasonic bath for two minutes to remove any air bubbles. The matrix
material was then poured into tensile specimen mould, the dimensions of
which are shown in figure 4.1. This was allowed to stand for 4 hours during

which time the matrix set. The basic thermoset reaction is:

HO-R-OH+H-P-H—--R-P-+2H;0

alcohol + acid alkyl ester + water 4.1

The resulting composite was cured for two hours at a temperature of
180C, removed from the oven and allowed to cool in situ. The tensile
specimens were tested on a Lloyds 10000 testing machine at a displacement
rate of 0.2mm/min with an extensometer mounted directly onto the

specimen.

Figure 4.2 shows a typical stress strain response of the polyester matrix.
The average elastic modulus was 3.8GPa. Micro-cracking and failure were
coincident at a stress of 24MPa and a strain of 0.0065. The material exhibited

a brittle linear elastic response with no indication of yield prior to failure.

4.3 Polyester Fibre Tests

4.3.1 Method

Unimpregnated fibre bundles were formed from strips of woven
polyester cloth containing between fourteen and sixteen fibre tows. These
were wound around a mandrel to which they were bonded with polyester
resin. The mandrel was then gripped as shown in figure 4.3. This removed
any pinching and reduced the stress concentration at the grips. The

specimens were tested on an Instron testing machine with the specimen
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displacement recovered by an extensometer mounted between the grips.
The fibre radius was measured using a SEM to be 11um with an average of
220 fibres in a tow.

Individual tows were removed from the woven cloth and saturated in
the polyester matrix. The tows were lightly stretched, to remove any
“wrinkles” produced by the weaving, then cured. The impregnated tows
were cut to length, wrapped, bonded to a mandrel and gripped between
rubber pads, to remove any stress concentrations, as shown in figure 4.4.
Displacements were recorded using a laser extensometer with reflective

tape attached directly onto the fibres.
4.3.2 Fibre Tow Results

Figure 4.5 shows the stress-strain response of two fibre bundles of
unimpregnated tows. The load is normalised to give the stress/fibre. To
determine the cross section area of a single tow, a 0-90 woven composite was
considered. Here the composite has a fibre volume fraction of 36%
containing eighty eight tows in the direction of loading over a section area
of 4x10°m2 The volume fraction incorporates both the axial and the
transverse tows. The area fraction of the tows aligned in the direction of
loading of the composite was therefore 18%. This gave an average tow area
of 8.2 x 10®m2. Using this area the modulus, taken over the gauge length,
was 5.4 GPa with an initial failure stress of 760MPa at a strain of 16.5%.

It was observed during the 