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Abstract

This thesis investigates and develops new methods for locating a human face in a
computer image. The need for such a technique has long been recognised in many
automatic face processing applications such as face recognition or facial image
compression. Other studies have attempted face location and the related task of face
feature location, with varying degrees of success, on face images captured in controlled
conditions; so that the face is on a plain background or is of a fixed size. The result of
this study has been the development of a location system that can cope with background
clutter, variable size images, slightly rotated faces and changes in overall lighting. This
improvement in face location technique has been achieved without an increase in

processing time.

The overall system concurrently finds possible eyes, noses and mouth in the image and a
control system combines these feature proposers into the complete face location system.
The first part of the system consists of robust preprocessors based on previously
identified intensity signatures that indicate the possible presence of the desired facial
features. Roughly, these signatures are continuous vertical troughs in intensity for noses,
continuous horizontal troughs in intensity for mouths and multi-direction troughs in
intensity for the eyes. These preprocessors reduce the image search space without
rejecting the true facial features being searched for. This reliable reduction in search
space 1is the main contributor to the efficiency of the entire system. The second part of
the system analyses the intensity gradient directions on features using statistical methods
that were previously trained on many manually located facial features. This technique,
called the PRODIGY, combines probability density functions of real and false features in
a likelihood function. This function gives an output for each feature pertaining to the
likelihood of it being a real facial feature or a distracter (false) feature. The control
system combines the possible features with a statistically controlled spatial model of how
the individual features are related to each other. It then selects the most likely set of
proposed features as the location of the face in the image.

The overall system proved to be successful on a high proportion of face images and the
usefulness of the technique is demonstrated by a simple but effective face recognition

system.
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1. Introduction

This thesis is concerned with automatic location of human faces by machine. Previous
work in this general area has concentrated upon automatic face feature location, in which

case a computer finds facial features such as the nose, mouth, chin, eyes, hair, etc. Two
major examples of work of this kind are Kanade (1977) and Tock (1992). The present
study focusses primarily on automatic face location, whereby a computer or machine

finds the position and size of a human face within a scene containing a person.
Incidentally, techniques which concern automatic face feature location are also
developed.

It is important for many face processing applications that the location of the face in a
computer image is known. The most common of automatic face processing applications,
face recognition, depends on such location. For a system to distinguish between two face
images it is necessary for it to know the position and size of the face and some of its
facial features. In the work of Kanade (1977), Sutherland et al (1992), and Jia and
Nixon (1992) the face is located before the task of recognition commences. Other face
recognition techniques such as WISARD (Stonham 1986) and principal component
analysis in the case of Turk and Pentland (1991) do not involve automatic face location,
but the systems are essentially presented with faces that are centred in the image or are of
a fixed size. This can be thought of as presenting the system with a pre-located face. In
addition to face recognition the work in this thesis is motivated by many other
applications of face processing, some of which are given towards the end of this
introduction.

1.1 Purpose

For most people it is a trivial task to find a face in a given picture but for a computer,
being presented with a list of numbers, this is an onerous task. The face is embedded
within the list of numbers and may occupy a small proportion of the numbers or cover
almost all of them. Any face detector will be distracted by background clutter much of
which can have similar characteristics to the face. The purpose in this research is to
design a face location system that minimises the number and magnitudes of the
constraints required of an input face image. In our context a constraint is a restriction
placed on the image acquisition conditions, the expression of the person, or the position
of the person used in the image. Many systems demonstrated in the past have depended
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on images acquired under a number of constraints. Table 1 shows a list of the categories

and types of constraints that others often require of face images.

CATEGORY | SUB-CATEGORY | TYPE OF CONSTRAINT OFTEN USED
Translation scale The person is seated at a fixed distance from the camera
position The face is in a fixed position, possibly positioned using
cross hairs on the viewfinder
orientation Camera and subject oriented vertically
Pose occlusion Full face seen
rotation Head pointing straight on to the camera
face tilt Eyes level with camera
Lighting level Constant lighting level from image to image
direction The lighting across the face should be even
Noise camera The same camera should use from image to image
intensity resolution |f 256 grey levels
clutter Plain background
Artefacts coloured All white '
' moustaches No moustaches
beards No beards
| glasses No glasses
sex All male
Expression Straight, expressionless face

Table 1: Common constraints placed on images being used for face research

Kirby et al (1990) who performed image compression on faces apply most of the
constraints in table 1. Craw et al (May, 1992) have mentioned the use of constraints on
expression, artefacts, some noise, lighting and pose. The face location techniques in this
thesis are specifically designed to significantly reduce the constraints on position, scale
and background clutter and to do this with computational efficiency.

1.2 Approach

Face location and face feature location systems can usually be separated into two
functional sections. This first part consists of individual facial feature locators. The
second part is the control system that spawns each facial feature locator at the
appropriate time. The control system gathers evidence from each detector to determine
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the most probable location of the face. The system described in chapter 5 uses this model
for face location. (See chapter 2 for a further discussion on control systems.)

As already mentioned, the work in this thesis relates closely to theses by Kanade (1977)
and Tock (1992). Kanade was one of the first to attempt automatic location of facial
features on face images. Kanade's system was simple but effective. The control system
followed a fixed sequence of events. This is known as the serial approach. Most of the
location used integral projection; a technique that projects the contours of the face onto
a one dimensional graph. The program then analyses the graph for specific facial feature
patterns. The techniques Kanade described depend on the fact that each image is of a
large face on a plain background roughly centred in the image. Tock’s (1992) work built
upon Sheperd’s (1986) police ‘mug-shot’ retrieval system. Sheperd's system used 37
manually located points, on one thousand face photographs, for face recognition
experiments. Tock endeavoured to automate the location of these 37 facial feature
points. In Tock’s research he noted the weakness in a sequential control system (cf.
Kanade, 1977) in that if it fails to find any one feature the rest of the system breaks
down, and no further features in the sequence are located. Therefore he developed an
expert system for the control structure that ‘runs’ the facial feature detectors in varying
orders depending on the information gathered so far. The failure of a single feature
detector does not cause the whole system to fail. This is because another feature detector
may find it or predictions from other detectors will assist in location.

The system developed in this thesis for face location has a control system based on
multiple feedback between facial feature locators. This is followed by a statistical method
that selects the most likely position of the face on the image. This approach maintains the
computation efficiency of Kanade's serial approach and introduces flexibility as in Tock’s
approach. The purpose of the research is to locate faces irrespective of background
clutter, face size or position. Therefore, the system cannot make use of integral
projection to make an initial estimate of the location of the face, neither can head outline
locators be used since the background could be the same intensity as the hair or skin. As
a result, one approach adopted was to use internal facial features such as the nose rather
than external features like the ears. This is because the image background does not affect
these features. To maintain flexibilty to the size and position of faces a second approach
was to design scale and position independent preprocessors.

The facial features chosen as for the automatic face location system were the nose, eyes,
and mouth. Locating the nose, although novel, is appropriate because it is a relatively
ridged facial feature, not usually occluded and does not change significantly with
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expression. The eyes and mouth were chosen because they also are not usually occluded.
The peak and trough preprocessors, described in chapter 3, propose positions of the
eyes, nose and mouth on the image. These preprocessors proved to be scale and position
independent and computationally efficient compared to other preprocessor techniques
such Yuille et al’s (1988). The nose and mouth versions of the preprocessor give the
coordinates and size of each proposed facial feature.

The preprocessors described above produce many proposed facial feature locations. The
approach chosen to determine which of the features is the ‘real’ one was to apply a
technique that would attach a confidence value to each feature. This allows the control
system to make valued judgements on the features without deleting poorly located
features at an early stage. The process developed to calculate the confidence values is the
PRODIGY (proportions of gradient directions, Robertson and Sharman, 1992, see
appendix 8.5) technique which statistically analyses the directions of intensity change on
the proposed facial features. The strength of PRODIGY is that it is able to cope with
change in scale and overall lighting.

1.3 Test results and accomplishments

The techniques developed in the research were tested mainly on a specifically designed
bank of faces as described in appendix 8.2, and on a separate independent test database
of unconstrained faces. The test showed that the technique was successfully independent
of scale!, position, small head rotations, absolute lighting level, camera, background
clutter, digitising equipment, gender and faces with glasses. It is not independent of faces
with beards, moustaches, unusual lighting or of significantly rotated or tilted faces. The
program to locate faces takes about 1 minute on a 20 MHz 386 or 15 seconds on a 33
MHz 486. Tests with the face location program on the fronto parallel faces in the face
bank showed that it successfully located 86% of the faces.

By constrast Kanade’s (1977) techniqué is not independent to background clutter or
scale. He reported that his technique located 75% of faces in his face bank successfully.
Tock claimed that his system found 86% of faces in his test set, all of which were full
face images of a ‘reasonable size’. He claims some independence to clutter and scale and
the program is reported to take upwards of 5 minutes on a SUN 4. This figure needs to

IIndependent of scale for images with faces over 20 pixels wide.
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be put in context because Tock’s system is a facial feature location system as compared
to the present study, which involves face location.

1.4 Applications

A prominent application for the work described in this thesis is that of face recognition.
There have been numerous researchers working on this problem: Nakamura et al (1991),
Huang et al (1990), Gallery et al (1992), Hancock (1990), Rickman et al (1992),
Sutherland et al (1992), Allinson et al (1992), Jia et al (1992), Akamatsu et al (1992),
Turk and Pentland (1991). Face recognition has uses in computer surveillance of
buildings, controlled entry systems, user authentication for computers, or mug shot
retrieval (Sheperd, 1986). Face recognition is, however, only a branch of computerised
face processing research and is only one consequence of face location.

Automatic face processing can be of use in cosmetic applications such as surgery,
hairdressing and make overs. Once a system has located a face and its facial features then
it can test changes in facial characteristics, hairstyle? or makeup. The operator, customer
or patient can then verify the new appearance before enabling the start of any procedure.

Combining automatic face processing with location of the whole human body opens up
new avenues in the world of entertainment. If a system electronically tracks the motion
of the human body and facial features then it could also animate a cartoon or puppet to
imitate the movements.

Video phones and the standards they use for compression are already available (CCITT,
1989). These standards allow for improvements in the compression technique (Trew et
al, 1992). The system can achieve this by retaining more detail over certain areas of the
image than others. An automatic face processing machine would locate the face and its
features in the scene and pass this information to the compression algorithm. The
algorithm can then concentrate efforts more on the detailed facial features such as the
eyes and mouth and less on the nose and cheeks.

2New Image Salon System II, P.O. Box 30, Cranbrook, Kent, TN17 1JQ - This system is not totally

automatic. It requires the user to locate the face for it.
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Face location has potential in picture enhancement of surveillance videos of crimes. The
videos are often of poor quality despite a five second clip having over 100 pictures of the
thief. The system would locate the face in each frame and process them together to
produce a higher quality picture of the criminal.

Face location also has applications in photography. For example if a system locates the
face in an image then it can also control the camera to ‘focus on’, ‘zoom in on’ or track
the face. Often the processing stage of photograph production reveals that the picture
suffers from ‘red eye’. In this case then a face location system could locate the eye and
process it to normalise some of the ‘red eye’ effect.

1.5 Format of the thesis

This thesis has 6 chapters. Chapters 1 and 2 describe the problem and the background to
the research. Chapters 3 and 4 describe techniques for locating facial features and then
chapter 5 describes techniques for locating the whole face. Experimental results are
displayed at the end of chapters 3, 4 and 5. Finally chapter 6 discusses observations and
conclusions.

The background chapter, chapter 2, begins with an overview of computer vision. It
discusses some of the approaches to vision problems and argues for the approach taken
to solve the face location problem. The importance of face location especially in the
context of face recognition is then discussed. This is followed by a survey of recent work
in automatic face location, including a discussion of available control structures. The
chapter finally examines the testing of face location systems and describes the face bank
created for designing and testing our techniques.

Others have used peak and trough preprocessors to aid facial feature location. Chapter 3
presents an efficient algorithmic method of locating peaks and troughs. Techniques for
proposing the location of eyes, noses, and mouths based on these preprocessors are
described. The chapter also examines further adaptations that cope with uneven lighting
on the subject.

Chapter 4 presents the PRODIGY technique, which uses the output of the peak and
trough preprocessor as part of its input and gives a confidence value relative to the
likelihood of a predicted facial feature being a real facial feature.
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Chapter 5 draws the research together by describing a control system to combine the
individual feature detectors into a single face location system. It consists of a multiple
feedback technique followed by a statistical springs method. This chapter displays
examples of the output of the face location system. It then presents a simple face
recognition system that demonstrates the usefulness of the face location system.

Chapter 6 draws conclusions on the results given in chapter 3, 4 and 5 and also discusses
the viability of the techniques and comments on future development. In closing the
chapter discusses the extent of the research and its merits.



2. Background

Automatic face processing is part of the more general area of computer vision. This
chapter begins by discussing some aspects of computer vision and lists some general
methods of tackling the vision task. This is followed by a detailed survey of recent
methods in automatic location of faces. The discussion includes location primitives,
higher level control structures and testing methodologies.

First, a brief history of automatic face processing follows which shows how the
development of computers has enabled different aspects of the field to be researched. In
the early days data was obtained manually. This data consisted of spatial distances
measured from photographs (Goldstein et al, 1971, Kaya and Kobayashi, 1972). Later
digitisers became available which could convert photographs into an array of pixels in
several seconds. However, because computers were not powerful most of the algorithms
were programmed in machine code and consisted mostly of integer operations (Kanade,
1977). In recent years researchers have had access to frame grabbers and faster
processors enabling the use of complex statistical analysis and morphological operators.
As this research is being concluded, colour digitisers and cameras are becoming readily
available along with powerful computers capable of processing these images (Akamatsu
et al, 1992).

2.1 Computer Vision

Vision research covers a wide range of topics and applications. Rosenfeld (1992)
describes Computer Vision as follows:

“The general goal of computer vision is to derive information about a
scene by computer analysis of images of that scene ... a computer
vision system attempts to (partially) describe the scene as consisting
of surfaces or objects.”

The computer usually obtains these images from a frame grabber by digitally sampling a
picture from a TV camera at regularly spaced grid points. The frame grabber passes the
image as an array or matrix of pixels to the vision system. Each element of the matrix
indicates the colour or intensity of the scene at one of the grid points. If / represents the

image matrix then:
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Intensity or colour at pixel i, j = 1; ; €))

where i is the row number of the matrix and j is the column number.

There are many approaches to tackling the ‘vision problem’. Large vision systems often
combine approaches that can be split into three general areas. In these areas the
approaches:

1. Analyse the way that humans can visualise scenes and simulate the human vision
system on a computer. Many assume that because we know that the human system
works then simulating the human visual system will produce a working computer
vision system. Neural networks are a class of techniques based on the human
neural system. These techniques have the benefit that they can often adapt to new
environments. The human neural system is, however, not yet fully understood and
this is reflected in the limited capabilitiy of some of these techniques.

2.  Treat computer vision as an inverse graphics problem. This entails trying to
mathematically calculate what arrangement of background and objects would
produce a given scene. This is often called model based vision. If an accurate
model of the objects is available then these techniques would be robust. However,
appropriate models are difficult to find unless the scene is considerably
constrained. These techniques can also be computationally explosive and often
require operators such as genetic algorithms (Goldberg, 1989 and Robertson and
Sharman, 1990, see appendix 8.4) or simulated annealing to navigate the huge
search spaces.

3.  Treat each problem as a special case and design an algorithm for each task based
on statistical and visual observations of the signals produced by the objects in the
scene. An example of such a technique is the bar-code system. The bars on
products are designed specifically for the vision system and consist of high contrast
black and white stripes that enable simple transformation to a one dimensional
signal. Synchronisation bars at the beginning of the object also encode the size of
the bar-code. These techniques have the advantage that they are computationally
efficient but lack adaptability to unforeseen environments.

The face location problem described in this thesis uses the third approach. Observations
in the changes in intensity resulted in the peak and trough algorithms (see chapter 3).
Statistical observations about the gradient directions on face features enabled the
development of the PRODIGY technique described in Chapter 4. One reason for this
approach is the computational efficiency of the technique which gives an acceptable
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response time on the development equipment. Another is because the human face
deserves special attention due to the importance of face processing applications.

Others have demonstrated real time vision systems based on observations. One example
of this is in a system where a robot arm picks up a cube3. The cube is white on a black
table and the algorithm finds it by thresholding the image. The location of the bright part
of the thresholded image is the two dimensional image location of the cube. The system
translates the 2D coordinates into 3D coordinates and gives the robot instructions on
how to pick up the cube. Webster (1992) demonstrated a system where a robot was
taught to play golf. To find the golf ball the computer scans the image from the bottom
upwards until it finds a bright spot and assumes the spot to be the golf ball. Another
demonstration showed a system for tracking the motion of a JCB arm*. This system has
prior knowledge of where the arm is likely to be (within 10-20 pixels). By fitting a
straight line to the output of an edge detector the machine determines the actual position.
These three applications show the power of using observations for real time vision
systems. However, although the three systems described above have been shown to work
they are all likely to fail when taken out of laboratory conditions. This could be due to
poor lighting, background clutter or poor contrast. The systems all require highly
constrained inputs and so are not robust in the unconstrained ‘real’ world.

The use of statistics to test and quantify any observations will inevitably improve the
strength of the systems. For this reason the statistical PRODIGY technique was
developed. The face location system in the present study uses statistics to improve the
stability over a wide range of conditions. Even so the range of inputs used to design and
the test system, understandably, puts limits on the flexibility of the vision system. It is,
however, reasonable that assumptions must be made to facilitate any progress. Rosenfeld
(1992) says that valid assumptions can and should be made to confine the vision
problem:

“In fact, in many situations only a partial description of the scene is
needed, and such descriptions can often be derived inexpensively and
reliably.”

3James Little, University of British Columbia

4Computer Science Dept, University of British Columbia
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Techniques that use observations will usually include assumptions, which result in
information being disposed of or ignored. Although errors will occur this approach has
led to a face location system that is demonstratable and testable with unusual inputs.

2.2 Importance of face location

From the early days of automatic face processing research it has been clear that a system
capable of locating faces and measure facial features is necessary. In 1972 Goldstein et al
designed a method to test the possibility of computerised face recognition. In their tests
34 features on 768 photographs were manually coded into a computer. Kaya and
Kobayashi (1972) also conducted an interesting study into the possibility of automatic
face recognition and manually measured face features for later statistical analysis.
Measuring many more than 1,000 faces is verging on the impractical and supports the
need for a system to automatically locate and measure faces.

Gallery et al (1992) also support the need for face location by emphasising that face
identification (recognition) naturally divides into ‘face location’ and ‘face classification’
stages. Examination of many reported face recognition systems reveals this division. In
Sutherland et al’s (1992) description of a system for face recognition using Vector
Quantisation (VQ) the first step of many involves locating the eyes, bridge of the nose,
nostrils, mouth, chin, hair and face. The system uses these locations as reference points
to compare similar features on different face images. In the description of one the earliest
attempts at automatic face recognition by Kanade (1977) the majority of the work
reported was concerned with face and feature location.

Many modern face recognition techniques do not use the geometry of the face but rather
the texture. These texture techniques are often enhancements to template matching.
Some claim that with these methods there is no need to locate the face. Principal
component analysis used by Turk and Pentland (1991) is such a technique. Another such
system that uses binary templates is called WISARD and was demonstrated by Stonham
(1986). In these systems no active effort is made by the machine to locate the faces but
closer examination reveals that the stimulus to the systems were usually faces of the same
size and position. This is in effect, as we noted in chapter 1, presenting the system with a
pre-located face. In cases where the small faces or poorly positioned faces were
presented the systems showed poor performance. Craw et al (September, 1992) and
Akamatsu et al (1992) have both presented more recent results on using texture to
perform recognition and have stressed the need to locate the face if performance is to be
increased.
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The importance of face location is supported by its many other applications as described
in section 1.4.

2.3 Face location methods

This section describes some of the techniques that are often used for face location and
face feature location. The face differs from many synthetic objects in that it does not
have sharp edges but consists of smooth intensity changes and contours. All faces consist
of the same basic components but their size and geometrical relationship to each other
cannot be exactly predicted.

The techniques fall into two areas, global and local locators (Craw et al, 1992, May
1992). Systems normally use global locators to estimate the location of a face or feature
within the whole image. Local locators refine an initial estimation often finding sub
features.

2.3.1 Deformable templates

To cope with changes in overall size and shape of faces and facial features, a technique
called deformable templates has often been used. A deformable template is a
mathematical model of a face feature and will have numerous parameters that can be
adjusted so that it can fit any instance of a particular face feature. Obvious parameters
are overall size, vertical to horizontal size ratio and angle of presentation. Techniques
often include non geometric parameters such as the colour, spatial frequency and
gradient direction. A core part of the deformable template technique is a method of
comparing the model with the image to produce a matching score. This score is used to
test whether new values for the parameters have improved the model. Suitable matching
techniques can involve template matching or checking edges on the image with lines
drawn on the model. New parameter values are usually tried and tested in an iterative
style until a comparatively good matching score is achieved. The parameter search
~ spaces often become large and therefore require the assistance of search techniques such
as gradient descent or genetic algorithms (Robertson and Sharman, 1990) to optimise
these parameters.

The global head outline locator described by Craw et al (May 1992) uses deformable
templates. Initially the locator predicts the outline of the head using a model based on the
mean shape of the heads in their face database. It then makes adjustments to the model
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by varying its aspect ratio, position and shape. The shape is described by a set of vectors

[V1,..., v4] with v; ereal vectors and v +..+ v, = 0.

The locator evaluates a matching score £, which indicates how well the shape fits the face

in the image. Where

S :fshape fedge

Sshape 18 calculated from the statistical distribution of face shapes from the face
database. To calculate fe jge, the edge score, the system measures the distance from each
point on the shape outline to an edge. The system then adds the distances together.

This method described by Craw et al creates new outlines by using simulated annealing
to vary the parameters until a ‘best match shape’ is attained. This technique, although
basically model based, clearly applies a statistical analysis of many faces to create shape
matching scores. This statistical analysis ensures that only ‘faces like shapes’ are
produced although it was limited by the fact that only male faces were analysed. To
create the edge score it uses the observation that there are edges between the head
outline and the image background. This observation has the limitation that it may not
hold if the head is of a similar intensity to the image background

Yuille et al (1988) described a local method of improving the eye location using
deformable templates. The method used the eye template model demonstrated in figure
l.

Figure 1. Eye template controlled by four parameters: a,b,c,r

The template consists of a circle for the iris and a parabola for each eyelid. The method
matches the union between the two regions (i.e. the iris) against dark regions of the
image. The remaining part of the parabola region is the white of the eye and the system
matches it against bright regions of the image. The procedure also matches appropriate

lines on the template to edges on the image and checks the area above the template for



Robertson, G.J.S, 1994 ' Chapter 2 - Background Page 14

dark regions caused by eyebrows. In matching the dark and bright areas the procedure
uses peak and trough fields produced with morphological operators (see chapter 3 on
peak and trough processors for more details). To optimise the parameters Yuille chose a
gradient descent algorithm.

Yuille’s local eye location method is based on the observation that the iris is dark and the
white of the eyes are bright. Although this observation is correct it led to a method that
was insufficient due to a lack of contrast between the whites of the eyes and the skin on
the face below the eye. Shackleton and Welsh (1991) noticed this and designed a white
enhancing algorithm that darkens the skin below the eyes and brightens the eye whites.
They also applied a smoothing operator that makes the edges, the peaks and troughs and
the whites effective over a greater area. Shackleton and Welsh apparently designed these
enhancements from a second set of observations taken from an examination of failures on

new image samples.

Yuille et al (1988) presented another local deformable template method for locating the
mouth. The template describes the top of the upper lip by two parabolas and the bottom
of the lower lip by one parabola. If the lips are closed then another parabola describes the
join between the lips. If the lips are open, the bottom of the top lip, and the top of the
bottom lip, are described by further parabola. Again a gradient descent method optimises
the system. Yuille et al’s mouth detector is typical of most in that it is limited to one or
two facial expressions. This is probably due to the inherent difficulty in modelling a
feature that has much variability caused by a number of facial muscles. |

2.3.2 Intensity variations and integral projection

Examining the intensity variations across a face image (see chapter 3) reveals distinct
characteristics at each facial feature. For example, the eyes show up as dark regions and
the nose as bright regions. Kanade (1977) pioneered much of the research into detecting
intensity variations on faces, although it is important to note that his methods were
constrained to photographs of subjects on plain bright backgrounds. Because of this
constraint Kanade made the observation that he could locate the top of the head by
scanning each raster line until there is a significant fall in intensity. To search for the eyes
a rectangular prediction area was derived from the position of the top of the head. Within
the rectangle the eyes were found by searching for ‘blobs’ of dark pixels. He then
expanded the blob to encompass neighbouring dark pixels (fusion) and then shrunk it
towards the dark centre of the blob which represented the centre of the eye. Kanade
located the nose, mouth and chin collectively using a technique called integral projection
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where the image is essentially transformed into a one-dimensional signal by averaging
portions of rows or columns in the image. When using horizontal integral projection, if
the system finds three intensity peaks then it assumes the top one is the nose, the middle
one the mouth and the lower one the chin.

Jia and Nixon (1992) described a face recognition system that was dependent on face
location. They used intensity variation and integral projection in a similar way to Kanade
to locate the head outline and predict some facial features. In this case Jia and Nixon
photographed faces on a black background. They used vertical integral projecting and
their algorithm marks the boundaries of the head on each side where the intensity starts
to rise. Their technique predicts an eye region as a trough between the highest peaks of a
horizontal integral projection.

2.3.3 Intensity variations and Gradient Direction Techniques

Gradient direction techniques differ from integral projection by being two dimensional.
Integral projection reduces data by converting to one dimension whereas gradient
direction techniques often reduce the data by quantising it (see chapter 4 for more
details).

Craw et al used gradient techniques to trace the outline of the mouth. The technique,
which is described further in section 4.1, is a local method that uses observations
regarding the gradient directions on the mouth to find the lips.

Nixon (1985) showed that local eye location could be performed as part of a Hough
transform. In this technique Nixon defines the iris with a circle and the sclera with an
exponential ellipse. Nixon’s adaptation of the hough transform makes effective use of the
gradient direction information to reduce the effect of noise in the image. In his method,
for each edge point on the eye image the hough accumulator array was only increased in
the direction of the edge.

2.3.4 Edge based techniques

Although edge based image processing techniques are found in many vision areas they
are less common in automatic face processing. This is largely due to the smooth changes
in intensity on the human face. Edges can be found around the eyes and mouth and side
of the face. However, these edges change unpredictably between subjects. One subject
with dark long hair may have strong edges on the side of the face and another with light
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hair may have no edges at all. Strong edges on dark hair are therefore only useful if
another method has already determined that the face has dark hair. In other words the
other method must have already located the hair. This reduces the usefulness in edges for
initial feature location but indicates that edges are often invaluable in refining facial
feature boundaries.

Many have used edge detectors to find the boundary of the chin after location of the
mouth. Nevertheless the type of edges found on the chin are subjective and highly
dependent of the lighting arrangement. Craw et al (May, 1992) denotes the chin as the
first strong edge crossing below the mouth. They proceeded to connect this point to
other points located on the jaw line. These other edge points are often found by sending
radials out from the centre of the mouth downwards in a 90 degree arc (e.g. as described
by Kanade, 1977). This ensures that all edges being searched for have the same direction
of maximum gradient. Robertson (1989) introduced a modified edge detector for
locating the chin that detects edges and ripple edges. A ripple edge as defined by
Robertson (1989) is where the intensity is rising (positive gradient), then intensity
continues rising but the rise slows down (decreased gradient), then the intensity starts to
rise faster again (increased gradient). A ripple edge is marked at the point where the
gradient is at its lowest.

Both Robertson (1989) and Craw et al (May 1992) have shown that a local method of
locating the edge of the face is by radiating edge detectors horizontally from the centre
of the face until the first strong edge is found. The edges of the face can then be
combined with the chin points to make a complete contour. As already mentioned, this
method will fail if the hair intensity is the same as the skin intensity.

2.4 Common threads

The techniques described in the previous section (2.3) show the diversity of approaches
that others have used in locating face features. Where papers quote results they are
usually specific to a particular application or to a particular set of test data (see section
2.6 for a further discussion on testing methodology) and there is no general agreement
that any one technique for location of any specific facial feature is best. However, most
global techniques are based on observational theory. Common observations are that the
eyes are darker that the rest of the face, the mouth produces a dark horizontal line, the
chin sometimes produces a curved edge and the nostrils are dark. From these
observations it is clear that integral projection is a suitable method for separating features
once the system knows the size and location of the face. The PRODIGY technique
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described in chapter 4 tackles this inadequacy by using statistics to extend the basic
observational approach and consequently improves stability over larger sets of test data.
Only Craw et al’s outline locator has used statistical measures previously to aid in the

location process.

2.5 Control Structure

In the context of face location a control structure is a system that connects the various
techniques for locating facial features into a single face location program. It is the
purpose of the control structure to force the located features to acquire face like spatial
separations. This assumes that the control structure knows how facial features are
related. In Tock’s (1992) control structure he used data from a spatial analysis of 1000
face images that had been manually located and measured. The results of the analysis are
demonstrated in figure 2.

Figure 2:  Statistical distribution of the facial features. This illustration is given by
kind permission of David Tock (1992). It shows the statistical distribution of
all the facial features in the Aberdeen face database. Each face was
spatially normalised about the eye points. The circles around all the other

points represent the relative sizes of the standard deviations.
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The results show how face features are spatially related.

Early control structures for face location used the serial approach (Kanade, 1977, Craw
et al, 1987 and Robertson, 1989). This approach locates each facial feature in sequence.
Craw et al first located the mouth and Robertson the nose. The serial method uses
knowledge of the location of the first feature to predict a region for searching for the
next feature. That is, it searches for the eyes near to the nose and directly above the
edges of the lips. The serial process continues searching for each feature in a set

sequence until all the features are located.

The serial process is flawed in that if one feature location section fails then all subsequent
ones will also fail. This leads to ‘catastrophic’ failure whenever a feature detector in the
early stage fails. Kanade (1977) reduced the effect of this problem by detecting some of
the failures and thereby causing the system to retrace its steps using different parameters.

This system 1s shown in figure 3.
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Figure 3: General flow of Kanade's face location technique

Although Kanade had some feedback in his system if any part of the sequence completely
failed then the remaining parts would also fail. The only way to prevent this kind of
failure is to design a perfect facial feature location algorithm. This, however, is infeasible.

To overcome the problem of total failure due to an error in one of the locators, it is
necessary to design separate feature location algorithms for each facial feature or at least
for each key feature (eyes, nose, mouth, head outline). These separate algorithms should
be capable of working independently. The control system would then run the locators,

influencing their search in various ways depending on the results of others.

Craw, Tock and Bennett named the independent feature location algorithms as global
techniques and the serial (dependent) algorithms as /ocal techniques. Each detector gives

a confidence as to the success of its work. They combined these detectors in an expert
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system to produce a face feature location algorithm. This system spawns off the feature
detectors in varying orders and biases the more successful locators when deciding on the
final position of the features.

Chapter 5 discusses the control structure for the face location system which was
developed for the present study. The system is constructed from face feature location
modules that pass information to each other in a multiple feedback loop. This enables
each feature locator to reject impossible features, which quickly reduces the number of
possible face features. The remaining features are connected by finding the most likely
combination of them. The technique has similarities to a springs and template method by
Fischler and Elschlarger (1973) described in chapter 5. Our technique increases flexibility
by using the springs method but reduces its computational complexity by using the
output of the multiple feedback loop.

2.6 Testing face location systems

The testing of a face location system is greatly subjective. A survey of face recognition
and face location techniques by Samal and Iyengar (1992) showed that each technique
had been tested or designed using a different set of data and the number of faces included
in the data sets vary from 6 to 1000. Further analysis of these techniques show that some
of them are designed only to function on a particular type of data and so the test sets
only contain that one type of data.

In Kanade's (1977) method the image is scanned raster line by raster line from the top
downwards and the first line that gives a significant response is the top of the head. This
technique actually locates the face in the first two steps. Further examination shows that
not only does Kanade’s technique require faces on a plain background but they must also
be of a fixed size. These requirements are reflected in his data which consists of 800
faces, 670 of which were successfully analysed.

Jia and Nixon (1992) on the other hand assume that the face is on a black background
and search for an increase in intensity to locate the head. Again the face is located in the
first step. It is therefore apparent that neither Kanade’s technique, which uses a white
background, nor Jia and Nixon’s technique, which uses a black background will function
on each others data. It is therefore understandable that both these techniques will fail on
all the images designed for this research, as shown in section 2.6.1, because they have
cluttered backgrounds.
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It is clear from the comments above that it is unreasonable to compare test results
directly. The techniques described in this thesis are designed to cope with a wider range
of presentations rather than improving the location rate for a particular set of data. An
ideal test set would be one that incorporates a large number of people in a wide range of
image conditions and face presentations. Some conditions and presentations that could

be included are:

e  Happy, sad, tired, laughing, frowning, etc.

e  Facing forwards, sideways, upwards, etc.

° Lit from the front, left, right, etc.

° Long haired, short haired, bald, bearded, etc.

e  Partially occluded.

e  Wearing glasses.

e  Deformed or blemished.

e  Dark skinned, light skinned or somewhere in-between.

. close to the camera, far away from the camera, etc.

2.6.1 Face bank used in the Thesis

As an ideal dataset was not available we designed a data set that encompassed some of
these presentations. The dataset, called the ‘face bank’, was chosen to allow the face
location technique to be designed with a structured range of faces and to enable some
basic quantitative analysis of the results. The face bank is, however, limited by the time
available to compile the data. The face bank includes eighteen structured pictures of
fourteen subjects. The structure of each set of faces is given in table 2 and demonstrated

in figure 4.
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No Distance Name of Description
from camera | presentation
(cm)
1 20 Full face Occupies the whole image
2 40 Large face Face occupies most of the image
3 60 Medium face Face and shoulders are visible
4 80 Small face Face is visible as well as much of the
background
5 140 Tiny face Face has the same prominence as the
background
220 Minute Very low resolution face
40 Profile Profile of the head
40 22 Profile Head rotated approx. 22 degrees from
the camera
9 40 45 Profile Head rotated approx. 45 degrees from
the camera
10 40 67 Profile Head rotated approx. 67 degrees from
the camera
11 140 22 Tiny Profile Tiny head rotated approx. 22 degrees
from the camera
12 140 45 Tiny Profile Tiny head rotated approx. 45 degrees
from the camera
13 140 67 Tiny Profile Tiny head rotated approx. 67 degrees
from the camera
14 40 Eyes closed Picture of the face with the eyes closed
15 40 Eyes side Picture of the face with eyes looking to
the side
16 40 Smile Picture of the face with a smile
17 40 Cheesy Grin Picture of the face with a cheesy grin
18 40 Glasses on Picture of the face with the glasses on

Table 2: The structure of presentations used to capture images of each subject

Page 21
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%

Figure 4:  Lighteen presentations of subject TRACY

2.6.2 Coding of faces in the bank

To train some of the statistical techniques and enable qualitative tests to be performed on
the faces it is necessary for the computer to know where the features are on the faces in
the bank. For this reason, each face in the bank was manually coded with 37 points as
shown in table 17. The choice of face points is somewhat arbitrary. Tock’s (1992) points
were chosen to enable facial measurements to be made to aid recognition. Forchheimer
and Fahlander (1983) chose points that best represent a face for reconstruction purposes.
The points chosen for the present study and shown in appendix 8.2 were chosen to
enable the development of algorithms to test the quality of facial feature location
techniques. They also reflect the requirements of the algorithms being designed and the
type of face data in the face bank. For example, because the face bank consists of mouths

of various expressions it was necessary to mark both the top and bottom of both lips.
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2.6.3 Analysis of the face bank

To allow quantitative tests to be performed the faces in the bank were measured and the
results are displayed in table 3. They show the average size in pixels of the various
measurements for the eighteen face presentations.

Image Width of head | Length of nose | Width of mouth | Width of eye
number

1 63.6 28.1 30.3 16.1
2 47.6 21.2 21.9 11.5
3 37.8 15.5 17.3 9.7
4 32.2 13.0 14.3 7.9
5 20.7 8.1 8.2 5.1
6 14.2 5.6 5.6 3.2
7 0.0 18.1 0 0

8 48.4 19.7 17.8 , 7.2
9 46.7 18.9 13.8 4.1
10 45.8 19.0 11.2 2.5
11 204 7.8 6.2 3.0
12 20.3 7.8 5.6 2.0
13 20.2 7.5 4.9 1.5
14 46.8 20.5 20.8 12.8
15 45.9 204 21.0 11.8
16 47.3 19.9 23.4 12.0
17 48.6 19.6 26.2 11.9
18 47.0 18.8 22.7 11.1

Table 3: The length of various face measurements in pixels

2.6.4 Other test data

It has already been noted that some techniques have only been designed for certain types
of data. The techniques that we have developed are designed to function on a wider
range of inputs. It is not appropriate to only test the technique on the training data. For
this reason, a second set of faces was acquired. The collection of faces was called the
‘test database’ of face. The images were downloaded from a larger database of faces in
the USA and 152 of the faces were selected at random. The faces have been
photographed at many locations and include people of different races. Many of the faces
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have beards or moustaches, many are smiling or grinning and many of the faces are not
pointing directly at the camera. As shown in section 5.5.2 the results on this test set are
much lower than the results on the face bank. However, the figures on the test set give a
more ‘honest’ picture of how face location techniques would perform in a general

situation.

2.7 Summary

This chapter has discussed the general approach to computer vision and has reasoned
that a statistical and observational approach would be an appropriate one for face
location. Several examples of face feature location have been analysed which
demonstrate the diversity of the techniques currently available. The following chapters
make use of some of the attributes of intensity techniques for predicting face feature
locations but without restricting them to particular types of image backgrounds as was
the case with (Kanade, 1977) and (Jia and Nixon, 1992). Face feature models that
encompass the range of face feature shapes are used to define feature boundaries and
gradient techniques combined with statistical analysis are used to find confidence levels
for the feature locations. Later in this chapter control structures were discussed. These
structures usually consist of feedback or statistical methods. These two methods of
control have been effectively combined in the control system introduced in chapter 5.
Finally it was shown that many types of test data have been used in the past to test face
location systems. We have designed a test set of data consisting of 252 pictures that have
enabled structured testing of the techniques developed in this thesis.



3. Peak and Trough Preprocessors

The peak and trough preprocessors introduced in this thesis are used to propose the
position of noses, mouth or eyes within an image scene. Intensity techniques have been
described in section 2.3.2, the preprocessors described in this chapter are based on
intensity observations and take an algorithmic approach to locating features from the

intensity data.

The preprocessors are designed to find local peaks or local troughs in intensity. Figure 5
shows image ‘SHEILA1’ with an eye level intensity graph superimposed. From the graph
in figure 5 the nose and eyes can be observed as peaks and troughs at the appropriate
spacial locations. The nose is the local peak in the middle of the graph and the pupils of
the eyes are local troughs to the left and right of this peak.

N\

Intensity

AN
7

Spacial Distance
Figure 5:  Intensity levels across the image at eye level. The nose and eyes can clearly

be seen in the graph.

Kanade (1977) noted that various parts of the face produce characteristic horizontal
intensities and designed a technique for scanning horizontal intensity graphs and
comparing them with the graphs of previously analysed faces. This technique differs from
general purpose object locators that make use of edge detectors to find object
boundaries. The approach is consistent with comments made in chapter 2 that faces are
usually oriented in one direction, have distinct surface characteristics and do not have

edges that are particularly consistent from one image to another.
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Yuille et al (1988) used peaks and troughs (or valleys) to preprocess images to produce
three fields.

e  Edge field
e  Peak field
e  Valley field

The peak and valley fields consist of a transformation of the whole image®. The
transformation is performed by a combination of morphological opening and closing
operators (Serra, 1982). Yuille et al uses the peak and valley fields for eye and mouth
location. The same method was subsequently used by Shackleton and Welsh (1991) and
Craw et al (1992). The preprocessing was used as part of the a deformable template
method (see section 2.3.3) and is mathematically intensive®. Yuille et al’s method also
requires an intial prediction of where the facial feature is in the image. If the initial
prediction is out by more than about 20 pixels the method is likely to fail. This makes
Yuille’s technique a local one where as the ones presented in this chapter are global
techniques. This also makes the two techniques complementary in that Yuille’s technique
can be used to refine the output from the preprocessor described in this chapter.

The technique for finding peak and troughs, presented in this chapter, is computationally
efficient’ and simple to implement. It does not provide as much information as the
morphological type (i.e. it does not give any indication of the intensity of the peaks or
troughs) but the preprocessors have been optimised around finding noses, eyes and
mouths and therefore only search for characteristics associated with these features. The
preprocessors also link information together to detect ridges in intensities in the likely
directions of the facial features. In the final parts of this chapter, methods are described
for optimising the technique to cope with changes in illumination.

5The image is mapped to another with the same size and spatial resolution. (i.c. a pixel in the

transformed image corresponds to a point on the original image)

6Yuille et al states that their process takes about 5 minutes on a Sun-4

"By nature much faster than the morphological method.
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3.1 Peak and trough preprocessors for feature detection

This section describes the peak and trough algorithms and explains how they can be used
to propose the location of eyes, noses and mouths.

3.1.1 Peak Preprocessor for nose location

The peak pre-processor proposes possible noses by finding a line of peaks in a vertical
direction. The algorithm is shown in figure 6

Filter the image in a horizontal direction;

Filter the image in a vertical direction;

Locate the local peaks along each horizontal raster line

for (each peak in the image from the top)

{
set the V-line = the location of the peak;

while (there is also peak on the image on the raster line below
the bottom of the V-line either on the same column or one pixel to
the left or right)

{

add the location of the new peak to the current V-line and
delete the peak from the image;

}

record the V-line in the list;

)

Figure 6:  Algorithm for proposing noses using the peak preprocessor

The filters in the algorithm are used to smooth out any spurious noise in the image or
blemishes on the face. Two filters are used, one in the horizontal direction and the other
in the vertical direction as shown in equations 2 and 3.

(H,-1)/2 (H,~2)/2
IfH iseven N, , = Y I ifH isoddN,,= >I ., )

t=—(H,—1)/2 t=—(H,)/2
where Hg = Horizontal smoothing factor

I; j = original image

Nj j = New filtered image

V-2 W.-2)12
IfV,isevenN,, = > I, ,ifV isoddN, = DI, (3)

t=—(¥,-1)/2 t=—(W,)I2
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where Vg = Horizontal smoothing factor
1j j = original image
Nj j = New filtered image
The choice of filter smoothing factors can affect the performance of the algorithm.

Section 3.2.1 gives a detailed analysis of the filters in view of choosing the best

parameters. Figure 7 shows the image after it has been filtered.

Figure 7. Graph of intensity after image has been filtered

The graph in figure 7 shows smoother curves than figure 5 and it is therefore easier to
locate the local peaks than with the original image assuming there is no interest in high

frequency peaks

The third step in the algorithm in figure 6 locates the local peaks on each horizontal

raster using the algorithm in figure 8.
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select one horizontal raster line;
set THRESHOLD variable;

if intensity is rising over the first few pixels of the raster set
FLAG='rising' or else set FLAG='falling';

set POINT to the first pixel in the raster;
scan each pixel on the raster from left to right ({
if FLAG = 'rising' {
if the intensity of current pixel > intensity of POINT then
set POINT to the current pixel;

if intensity of current pixel < intensity of (POINT) -
THRESHOLD mark the POINT as a peak and set FLAG = 'falling';

}
if FLAG = 'falling' {

if the intensity of current pixel < intensity of POINT then
set POINT to the current pixel;

if intensity of current pixel > intensity of (POINT) +
THRESHOLD mark the POINT as a trough and set FLAG = 'rising';

}

} until reached the end of the raster:;

Figure 8:  Algorithm for locating horizontal peaks and troughs

The purpose of this algorithm is to mark local peaks that protrude more than the value of
the variable THRESHOLD. If the intensity ripples slightly but does not change by more
than the THRESHOLD then no peak or trough will be marked. If the intensity rises,
plateaus and then drops, then a peak will be marked at the beginning of the plateau. If the
intensity rises, ripples and then falls, a peak will be marked at the pixel with the highest
intensity in the ripple.

Varying the value of the THRESHOLD will affect the performance of the algorithm.
Section 3.2.4 analyses the effect of various THRESHOLD values. Figure 9 shows the
peaks located using the algorithm in figure 8.
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Figure 9:  Results of peak processor on image 'Sheilal’

On figure 9 the nose can be clearly seen. The results in section 3.2.2 demonstrate the
robustness of the peak processor. This is because noses on preprocessed images are

usually as clear as seen on the face shown in figure 9.

The main section of the algorithm in figure 6 creates a table of all vertically connected
pixels® (V lines). Each entry in the table gives the location of the first pixel in the line, the
length and shape of the line.

There are many V lines in figure 9 many of which are short. To reduce the number of V
lines all the ones of length less than MAXV are deleted. The value of MAXYV affects the
size of the smallest nose that can be detected. Figure 10 shows all the V lines from figure
9 with length greater than MAXV=5.

Figure 10: V lines with length greater than 5

8A pixel is vertically connected to another if it is a peak pixel that has another peak pixel either directly

below it or one pixel to the left or right below it.
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Analysis has shown that the number of V-lines varies from image to image but is

generally in the region of 100-200.

3.1.2 Trough Preprocessor for mouth location
The trough preprocessor proposes mouths using the same algorithm as in figure 8 except
that it scans each vertical line of pixels in the image and locates horizontal H lines from

the troughs.

Figure 11 shows a typical output from the mouth preprocessor.

Figure 11: Horizontally connected troughs (H lines) for proposing mouth locations

3.2 Performance of the peak and trough preprocessors

For the peak and trough preprocessors to be of use they must fulfil one criterion:

The peak and trough preprocessors must propose a set of points P that could be the
desired feature. The desired feature must be present in the set P.

Therefore, the main indicator of the preprocessor performance is the proportion of
images for which the above criterion is met. More technically the criterion says that there

should be no ‘true rejects’.

Other indicators of performance are the percentage of the given feature that is found and
the amount the proposed location deviates from the actual location of the feature. Note
that the actual locations of the face features are known because they have been entered

manually (see appendix 8.3).
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In earlier sections of this chapter some parameters of the peak and trough algorithms
were given. These settings affect the performance of the preprocessors and are discussed

in the following sections relative to how well they meet criterion given above.

3.2.1 Performance of filters for the peak and trough preprocessors

The two filters used in the preprocessors are affected by smoothing factors Hg and V.
Tests have been carried out to find out how changing the smoothing factors affect the
performance of the peak and trough preprocessors. Figures 12 to 18 are graphs showing
the performance of the peak preprocessor for proposing nose locations. The graphs show

the performance with various smoothing factors.
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The formulae chosen for the performance value is

performance = (percentage of noses found?) x (percentage of V-line that covers the

nosel?)
From an examination of the graphs, changes in the value of H have the following effect:

Figure 12 shows that for large noses with Hg = 1 the filter gives a poor result but as the
smoothing factor increases so does the performance. Figure 14 shows that for medium
faces the performance of the filter is good irrespective of the smoothing factor. Figure 16
shows that for tiny faces a value of 1 gives good results but the performance drops as the
smoothing factor increases. Figure 17 shows that the filter is poor for low and high
values of H. The filter improves for values 3 and 4 because the peak preprocessor
begins to find the centre of the face rather than the centre of the nose. This is because the
whole face is merged into one blob as the filter size increases, but as it increases further

9This figure is the percentage of images where one of the V-lines fell on the real nose.

10Each V-line stretches down a portion of the nose. This figure is the average percentage that each V-

line covers for every image that is tested.
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the face is then merged into the background. Figure 18 shows figures 12 to 17 combined
into one graph. This graph shows that the best value for Hy is either 2 or 3 for the

database of faces on which the filter was tested.

Analysis of figures 12 to 18 also shows that a good compromise value for V§ is 6, which

gives reasonable performance for all face sizes.

3.2.1.1 Discussion

Observation of the intensity on the human nose shows that the top surface of the
nose is ‘flatish’. As a result the peaks on the noses can shift randomly by few pixels
on any raster line. The filters remove this movement in peaks. This observation is
consistent with the fact that for /arge noses higher filter parameters are better.
However a compromise needs to be reached as a large filter will remove the whole
nose on an image of a small face. For this reason the smoothing factors given above
are chosen. No value of filter size gives a reasonable result for faces smaller than 17
pixels wide. This puts obvious limits the smallest faces that can be located using this

system.

The values of the smoothing factors chosen for the peak preprocessor for locating noses
are not the optimum for the trough preprocessor for locating mouths. Figures 19 to 26
show the performance of the filters for proposing mouths.
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Figure 19: Filter performance for all full size mouths Figure 20: Filter performance for all large mouths
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Figure 23: Filter performance for all tiny mouths Figure 24: Filter performance for all minute mouths
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Note that figures 23 and 24 have a different scale than the rest of the graphs as the
performance of the trough algorithm for mouth location is poor for tiny and minute
mouths. As a result the #iny and minute mouths have a significant effect on figure 26. For
this reason figure 25 gives a better indication of the overall performance of the filter
where tiny and minute mouths are excluded. Making this exclusion show that faces
smaller than, approximately, 20 pixels wide will fail using trough technique for proposing

mouths.

From the graphs it can be seen that a good value for V is 2. It is harder to establish a
good value for Hy as the performance does not seem to vary so much. For this research a

value of 5 was chosen.
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3.2.1.2 Discussion

Examinations of the graphs 19-26 reveals that filter size used with the trough
preprocessor for mouth location has less effect that the peak preprocessor for nose
location. This shows that the mouth troughs are more consistent from one image
column to the next than for nose peaks that move slightly from row to row. It can be
concluded that the intensity drops sharply and then rises again quickly. The filter is
therefore used only to remove blemishes or noise in the image. However, too large a

filter will remove the trough in intensity making the mouth impossible to locate.

3.2.2 Performance of the peak preprocessor for nose location

This section gives details of tests carried out on the peak preprocessor using values of

H =3 and V=6 as chosen in the previous section.

The peak preprocessor has been tested using the filter settings noted above and it was
100% successful on all the faces in the bank except for the profiled images (i.e. at least
one of the noses proposed was the real nose) This success shows the robustness of the
peak preprocessor technique. The peak preprocessor generates a V-line down the centre
of the nose. Ideally the V-line will stretch from the bridge to the tip of the nose. The
closer the V-line is to this goal the more chance the PRODIGY algorithm has of locating
the nose zones correctly.

The graphs in this section are created from averages of all the images in the face bank,
(except profiled images), and show the performance of the peak preprocessor. The
graphs show the performance values against the size of the face in each image. This is
because it is important that the preprocessors work consistently for all sizes of face.

The first graph (figure 27) shows two variables.

1. The length of the V-line divided by the length of the nose.

2. The amount of V-line that fell on the nose divided by the length of the nose.

The distinction between these two values will become apparent later.
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Figure 27: V-lines as percentage of actual nose length

The reason why the top graph in figure 27 becomes greater that 100% is that as the nose
gets larger the V-line actually becomes larger than the nose. This is because the V-line
starts to extend up the forehead as the face gets larger as demonstrated in figure 28. This
will have an inevitable effect on any subsequent processing as its initial prediction of the
nose size will be too large. However, observing and noting this problem allows
adjustments to be made in the next processing stage.

Figure 28: Image of a large nose showing the V-line extending up between the eyes
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The second graph (figure 30) shows the number of V-lines that are found on the nose.
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Figure 29: Number of V-lines found on each nose

Figure 30 shows that as the size of the nose gets larger more V-lines are found on the
nose. The reason for this is that as the nose gets larger the V-line can jump more than
one pixel to the left or right causing a break in the V-line. This is demonstrated in figure
30.
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i

Figure 30: Image of full size face. V-line of nose is in sections

The algorithms designed for testing the performance of the peak processor ignore the
broken sections of the V-line. This means that the V-line does not cover the whole nose.
The fact that the V-line begins to be split into sections accounts for the drop in the
second value in figure 27, I.e. the percentage of V-line actually on the nose drops
slightly. It can be noted at this point that the peak and trough algorithms are designed to
be multiscale, the problem previous described indicates that an upper limit in scale is
likely to be reached. To further extend the range of these algorithms it would be

necessary to perform the algorithms several times at appropriate scales.

In summary, the peak processor produces a V-line that covers 70%-95% of the nose for
minute and tiny faces, and 90%-100% for small to full faces. The V-line begins to
extend up the forehead and split into sections as the face gets larger. Whether these
results show that the nose proposer is good or not depends on the requirement of the
subsequent processing stage. By examining the errors given in the PRODIGY results
(see section 4.5.1) it is concluded that a higher performance is desirable to improve the

zone location part of the technique.
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3.2.3 Performance of the trough preprocessor for mouth location

This section gives details of tests carried out on the trough preprocessor using values of
Hg=5 and V=2,

Tests have shown that the trough preprocessor was successful on 100% of faces tiny to
Jull (i.e. at least one of the mouths proposed was the real mouth), but only successful on
72% of minute faces. In a similar way to the peak preprocessor producing V-lines the

trough preprocessor gives an H-line across the centre of the mouth.

Unlike the peak processor the H-lines do not protrude out of the sides of the mouth onto
the cheeks. This is because the intensity rises at the edges of the mouth. Figure 31 shows
the amount of the mouth marked by H-lines.
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Figure 31: Percentage of mouth width containing H-lines

In a similar way to V-lines on the nose the H-lines can break into sections. This is more
common on mouths than on noses. For this reason the graph in figure 31 shows a
combination of all the sections. This observation was taken into account and catered for
in the zone location algorithm (the subsequent processing stage described in the next
chapter). The graph in figure 31 includes the smiling and cheesy grin images, which do
not significantly affect these performance figures.

Figure 32, shows the average number of H-lines found on mouths.
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Figure 32: Number of H-lines found on each mouth

Figure 32 shows than on average the mouth is split into two sections. The reason for this

high number of sections is demonstrated in figure 33.

Figure 33: Image showing mouth with three H-lines

The upper H-lines indicates the actual mouth. The lower H-line is a distraction just
below the lower lip. This ‘dimple’ occurs on many images and, as in this image, can
cause a break in the upper H-line. The break occurs when the part of the dimple below
the trough is of a much lower intensity, and so after the filter is applied the upper trough

is lost.
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Figure 34 shows that the trough preprocessor works with smiling faces (image type 16).

Figure 34: Smiling face subjected to the trough preprocessor

However, problems occur for images with cheesy grins (image type 17) as shown in

figure 35.
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Figure 35 Image of a cheesy grin subjected to the tough preprocessor

Although most of the width of the mouth on the cheesy grin face is marked, because the
image shows teeth, the H-line is split into numerous sections. This demonstrates some of
the limits of the trough preprocessor that occur because they were based on observations

of closed mouths.
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In summary, the trough preprocessor produces H-lines over most of the mouth. H-lines
are also produced below the lower lip which in some cases causes a break up of the real
mouth’s H-line. The trough preprocessor works on images with various expressions if
the mouth is kept closed. For open mouths the H-lines still exist but are broken up into

many sections.

3.2.4 Peak and trough threshold levels

Threshold variables were described in section 3.1.1. Threshold values between 1 and 7
have been tested on all the faces in the face bank. Tables 4 and 5 show the results of the
tests which measured the effect on the performance of locating noses and mouths using
the performance measures from section 3.2. The tables also show the number of false
features found.

Threshold value 1 2 3 4 5 6 i7
V-line on nose / nose length 96.2 [95.5 |94.8 [94.2 [939 |92.7 |915
V-line / nose length 108.7[107.1/105.7|103.8]102.7|100.398.6
number of sections found on nose 1.06 11.06 [1.05 [1.05 [1.05 |1.01 [1.03
number of false noses found on an image 133 [118 ([110 [103 [97 91 86

Table 4: Effect of various threshold values on the peak preprocessor

Threshold value 1 2 3 4 5 6 7t
percentage of the mouth marked by H-line  193.6 [93.4 |929 [91.7 |90.4 [88.2 |86.4
success rate of trough preprocessor 974 1974 [974 |96.8 [96.8 ]96.1 [95.5
number of sections found on mouth 190177 ST 17 |73 | 72 (B3
number of false noses found on an image 237 194 [172 |156 |[146 |[136 [129

Table 5: Effect of various threshold values on the trough preprocessor

These tables show that for both the peak and trough preprocessors lower threshold levels
increase the sensitivity of the preprocessors. This improves the performance but causes
the generation of many more false features and slightly more sections. These extra false
features are caused by local peaks of lower intensity. This means that it will take longer
to process the features and also gives a higher chance of the PRODIGY (see chapter 4)
finding a false feature.
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3.3 Peak and trough preprocessors with uneven lighting
conditions

The performance and robustness of the peak processor for nose location drop if the
subject is illuminated from the side. Most face location methods such as the one specified
by Kanade (1977) state that no attempt has been made to compensate for illumination
changes. Despite this, observing many images of typical scenes shows that subjects are
often unevenly lit. e.g. light coming through a window will illuminate one side of the
subject’s face. Although this type of image was not catered for in the research face bank,
some images were available. A typical image is shown in figure 36 complete with an

intensity graph of a raster line along the nose.

Figure 36: Image with face lit from the right

This image causes problems because the nose does not produce a clear peak.
Examination of figure 36 reveals that when scanning the image from left to right the
intensity rises fast on the left side of the nose but does not drop again on the right side. If
the image was illuminated from the left then scanning the image from left to right would
show flat intensity as the left side nose is approached followed by a sudden drop in

intensity as the right side is reached. In neither case is there a peak.

In summary an image that is illuminated from the side has an exaggerated change in
intensity on the opposite side of the nose to which it is illuminated because of a shadow.
The peak preprocessor was modified to take this into account and two further versions
of the peak processors were designed. One to propose noses on images illuminated from

the right and one to propose noses on images illuminated from the left.

Figure 37 shows the algorithm for images illuminated from the right.
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select one horizontal raster line;
set THRESHOLD variable;
if intensity is rising over the first few pixels of the raster then
FLAG='rising' or else FLAG='falling';
set POINT to the first pixel in the raster;
scan each pixel on the raster from left to right ({
if FLAG = 'rising' {
if the intensity of the current pixel > intensity of POINT
then set POINT to the current pixel;

else if the intensity of the current pixel = intensity of
POINT then set PLATPOINT = POINT and set FLAG = 'plateau';

else if the intensity of the current pixel < intensity of
POINT then mark the POINT as a peak and set FLAG = 'falling'

}

if FLAG = 'falling' ({
if the intensity of current pixel < intensity of POINT then
set POINT to the current pixel;

if intensity of current pixel > intensity of (POINT) +
THRESHOLD mark the POINT as a trough and set FLAG = 'rising';

}

if FLAG = 'plateau' {

if intensity of current pixel > intensity of POINT then set
POINT to the current pixel and set FLAG = 'kept rising';

if intensity of current pixel < intensity of POINT then mark
PLATPOINT as a peak and set FLAG = 'falling';

}

if FLAG = 'kept rising' ({
if intensity of current pixel > intensity of POINT then set
POINT to the current pixel;

if intensity of current pixel < intensity of (POINT) - 3 {

if the intensity of current pixel < intensity of
(PLATPOINT) - 3 then mark PLATPOINT as a peak;

else mark POINT as a peak;
set FLAG = 'falling';

}

} until reached the end of the raster;

Figure 37. Algorithm for finding peak and troughs with an image illuminated from the
right

The algorithm in figure 37 not only marks the peaks in intensity but the beginning of
plateaus as well. If a nose is illuminated from the right the intensity will rise as the nose is
approached from the left. At the top of the nose the intensity will plateau instead of
falling due to the light from the right. When the cheek is reached the intensity then rises
again. The algorithm is designed to compensate for these phenomena. The algorithm also
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ignores the THRESHOLD value when finding the peaks. This allows the left side of

small peaks to be marked.

3.3.1 Detecting the direction of illumination

The previous section explained how the peak preprocessor was adapted to cope with
illumination from the left or right. This implies that it is already known from which

direction the light is coming.

A simple method has been devised which gives the direction of illumination. This method

is based on observations and will only detect substantial changes in illumination.

set THRESHOLD value;

set U=0;

set D=0;

for (each pixel in a block of pixels in the centre of the image) ({

if the intensity of current pixel is > intensity of the pixel to
the right of the current pixel then set U=U+1l;

if the intensity of the current pixel is < intensity of the pixel
to the right of the current pixel then set D=D+1;

}
if U>(D+THRESHOLD) then the illumination is from the left;
else if D<(U+THRESHOLD) then the illumination is from the right;

else the illumination is neither significantly from the left or right;

Figure 38: Algorithm for detection the direction of illumination of an scene

The algorithm in figure 38 examines an area of the image to evaluate if the intensity
change from left to right is more often upwards than downwards. For an image
illuminated from the right the intensity rises tend to be sharper and faster whereas the
intensity falls tend to be slower and longer due to shadowing. This means that for most
points on an image illuminated from the right the intensity will be falling. The
THRESHOLD variable sets the sensitivity of the algorithm. As the peak preprocessor
only fails on images with significantly high off centre illumination then this variable can

be set relatively high.

3.4 Trough Preprocessor for eye location

Due to the 1ris being a circular shape it is not obvious how they can be located using the

methods described for locating the nose and mouth. It is not as simple as looking for a
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dark circle in an image because the circle could be of any size. However, examining
figures 11 and 39 shows that there are troughs in intensity in both the horizontal and

vertical direction.

Figure 39: Vertical troughs

If the image is rotated as shown in figure 40 then troughs still appear on the eyes.

Figure 40: Vertical and horizontal troughs on a rotated image

The eye produces troughs irrespective of the angle the image is scanned at because the
intensity of the image tends to rise in all directions from the pupil of the eye. The method
used to propose eyes locates points in an image where the intensity rises or stays flat at
all adjacent points. This is called the black hole method and the output of this technique

1s shown in figure 41.
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Figure 41: Black hole eye detector

There are many edges around the eyes. These edges are inconsistently positioned from
image to image but are always present near the eye. The number of false eyes can be
reduced by searching for edges around the proposed eyes. The method simply sends out
edge detectors in several directions from each proposed eye point. If there is a significant

edge in each direction then the proposed eye is kept, if not it is rejected.

This output of this method is shown in figure 42

%

Figure 42: Black hole eye detector followed by edge checking

The eyes in figure 42 have many proposed points on them. To reduce the number of
points on each eye and to move the point as close to the centre of the eye as possible an
iterative method was designed called the pupil finder. The pupil finder algorithm shown
in figure 43 attempts to find the darkest spot close to a proposed eye.
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for (each proposed eye) {
repeat (four times) {

for (each point around the eye within a radius of four
pixels) {

1 1

1
Convolve each point with the mask [1 6 1|;
IS
}

select the point which produced the lowest value as the new
proposed eye location;

}

Figure 43: Algorithm for finding the centre of the eye pupil

With each iteration, this algorithm moves the proposed eye closer towards the centre of
the pupil of the eye. This assumes the centre of the eye is actually the darkest point. The

output of this process is shown in figure 44.

Figure 44 Figure 42 after the pupil finding algorithm has been applied

The final output of the preprocessor for eye location is gives a single point in the iris, but
does not give any indication of the possible size of the eye. This will obviously put

constraints on performance of any subsequent processing.
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3.4.1 Performance of trough preprocessor for eye location

The preprocessor has been tested on the face database and it works on all the eyes with
images of type full to small. On tiny and minute faces the eye is very small and can
become a single pixel, which often causes errors. A medium size filter usually improves
the performance on tiny faces because it merges the eyebrow with the eye making the
dark spot bigger.

The eye preprocessor described in this section locates a point close to the centre of the
iris. Tests show that the point deviates from the hand coded centre of the eye by 0 to 8%
of the total width of the iris. This confidence level can be utilised by any subsequent

processing of the eyes.



4. Intensity Gradient Techniques

The output of the peak preprocessor from chapter 3 is a list of points that are possible
positions of the nose or mouth in a scene. Any subsequent processing must either
eliminate points that are definitely not desired feature or for each point give a figure
pertaining to the likelihood of a feature being at that point. To achieve this an intensity
gradient technique called PRODIGY!! was developed. The PRODIGY techmque
analyses the Gradient Directions around the nose or mouth.

This chapter describes what a Gradient Direction is and gives an example of some
previous work in this area. Section 4.1.1 justifies the choice of the Gradient Analysis
technique. The PRODIGY technique is then presented. This technique is designed from a
statistical analysis of the spread of gradient directions on all the faces in the face bank
and uses this information for locating facial features. The analysis is an extension to the
peak and trough techniques. It analyses the surfaces of the facial features proposed by
the preprocessors and checks if they fit a model built up from many sample features. The
method consists of two parts; a zone location algorithm and a likelihood function. The
zone location algorithm locates the edges of proposed features and partitions the feature
into zones that are known to have a bias of gradient directions of particular type. The
likelihood function compares a proposed feature with known versions of that feature and
false versions of that feature. Although the PRODIGY could be classed as a general
purpose object locator (Robertson 1992) it is used in this research as part of a face
location system. It is therefore is only described as applied to nose and mouth location.

4.1 Gradient Direction Analysis

Gradient Direction analysis entails using the direction of the maximum rise in intensity to

locate objects.

The use of the Sobel (Ballard et al, 1982, pp 6-81) operator is a common method for
determining the direction of intensity change on an image. The Sobel detector shown in
figure 45 finds the direction of maximum intensity rise at each point on the image.

1proportions of the Direction of Intensity Gradient
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3

3..3 3
= ZZXa,b11+u*2.j+b*2 Iyz] ZYabll +a—2,j+b—2
a=1 b=1 1 b=1
=108,
where X=(-2 0 2|and Y=
= | -1 -2
Then the magnitude (M ;) of each point on the image is
For all 1) \/ Iy, ¥
To calculate the direction (Di,j) an intermediate variable (Wi,j) 1s introduced

For all i,] W.; = tan‘[]x"” B ]
1]

Then the direction can be found for all 1,j :

If W., <tan™'(1/3) then D, =W,
,_,[ 7tan’ W, +6tanl¥  —

= tan - .

else If W, >tan'(1/3) then D -
—9tan" W, +22tanl, -1

Figure 45: The Sobel edge detector (Ballard et al, 1982, pp 6-81)

It is common to quantify the angle of maximum intensity rise into one of 8 gradient
directions (GDs) to simplify analysis. An intensity rise with an angle of 0-45 degrees
becomes a GD of 1, and an angle of 45-90 degrees becomes a GD of 2 and so forth as

shown in figure 46.




O O

Figure 46: The eight gradient directions (GDs)

Using these eight GD's a program has been developed to generate a false colour image.
Each pixel on the false colour image represents one pixel from the original image. One
such false colour image is shown in figure 47.

Figure 47: A false colour image of JOY1 showing all the GDs across the scene

A close examination of the image shows that the various facial features have definite GD

characteristics, i.e. the top lip is characterised by GDs of 2 and 3.
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Some parts of the image do not have a GD. Instead these are given a gradient direction
of 9. GDs of 9 can be seen on the false colour image as fuzzy coloured pixels.

Craw et al (1987) implemented gradient direction analysis to locate the lips on an image
of a face. The method they describe requires the faces to be presented in the centre of the
image with the face taking up most of the space. Their lip locator searched for the lips in
the lower middle section of the image. Figure 48 shows the algorithm that was described.

for (each row of pixels on the image) {
send out a line follower from the centre of the image to the left
{
if a line of consecutive pixels with GDs of {2, 3} is found
then send out a line follower from the centre of the image to
the right {
if a line of consecutive pixels with GDs of {2, 3} is
found then mark an upper lip

}

if a line of consecutive pixels with GDs of {6, 7} is found
then send out a line follower from the centre of the image to
the right {
if a line of consecutive pixels with GDs of {6, 7} is
found then mark an lower lip

}

if the upper and lower 1lip are marked and are not separated by
excessive distance and they fit in a long thin box then record a mouth

Figure 48: Craw et al's (1987) GD analysis lip finding algorithm

4.1.1 Justification
Gradient direction analysis is chosen because

e it reduces the data that is to be analysed (256 grey levels to 8 GD's).
L clusters of similar GD's are found on parts of the facial features.
e  the GDs are independent of the absolute lighting level.

Independence to absolute lighting can be proved as follows:

3 3

From figure 45, I, , = > > X, 1,0 s s

a=1 b=1
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If the overall intensity of the image is increased by the addition of a constant ¢ the new
value of Ix; ; which will be denoted as I'x; ; is

3 3

I X, = Z Z X, (Ii+a—2,j+b—2 + C)

a=1 b=1

3
=1I' xi,f = Z Z Xa,in+a-2,j+b-2 + Z Z cC. Xa,b

3
=>1'x,=I'x;+cy > X,,

3 3
As D > X,, =0 thenlx;;=I; j and similarly Iy; ;= I; ;

a=1 b=1

Therefore the intensity increase ‘c’ has no effect on the Gradient Directions.

4.2 The PRODIGY Algorithm

The PRODIGY algorithm developed for this research combines gradient direction
analysis with statistical techniques in order to locate objects. Before the PRODIGY can
be used a training set of objects is statistically analysed to effectively find the average and
standard deviation of the object (Statistical model). To then locate an object in a scene
the PRODIGY searches for a part of the image that falls within the boundaries of the
statistical model. The object characteristics statistically analysed are the gradient
directions.

The general PRODIGY algorithm is given in figure 49. The various parts of it will be
explained in the following sections.
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Locate a set of points on the image that could be the object
required!?;

Select a set of zones on the possible objects!3. Each zone should have
a small variation of Gradient Directions;

Calculate the percentage of each GD in each zone;

Find the likelihood that each set of zones is the desired objectl?;

Select the point which has the set of 2zones with the maximum
likelihood;

Figure 49: The general PRODIGY technique

4.3 The PRODIGY Algorithm for nose location

To apply the PRODIGY to locate noses a statistical model of the nose was first created.
This section describes the model that was designed and shows several ways of
implementing the PRODIGY technique.

4.3.1 Nose zones

Careful analysis of figure 47 reveals that the surface of the nose falls into several distinct
sections. For the purpose of this research five zones were chosen as shown in figure 50
and table 6.

121n the case of this research this usually means the peak and trough algorithm.
13Each point located by the peak and trough algorithm is a 'possible object'.

14Prior statistical knowledge of the 'object required' enabled construction of a likelihood function.
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Figure 50: Position of the five nose zones

ZONE AREA

A The left side of the nose

B The right side of the nose

G The nostril region of the nose

D Above the bridge of the nose to the left
E Above the bridge of the nose to the right

Table 6: Description of Nose Zone Areas

From figure 47 is can be seen that each zone has a bias of points in one or two GDs.

Table 7 shows the general bias observed from figure 47.

ZONE COMMON GDs

A Mostly 8 with some 1 and 7

B Mostly 5 with some 4 and 6

C A mixture of 2 and 3 with some 1 and 4
D Mostly 2 with some 1 and 3

E Mostly 3 with some 2 and 4

Table 7: Common Gradient Directions in each zone

The PRODIGY technique takes account of this information when locating objects in a
scene although the data in table 7 is not sufficiently accurate to enable the algorithm to
locate noses. To obtain a more accurate description of the zones it was necessary to
analyse all the noses in the whole image bank to determine the average and standard

deviation of each GD in each zone. Before doing this it was necessary to define the



Robertson, G.J.S, 1993  Chapter 4 - Intensity Gradient Techniques Page 58

boundaries of each zone more accurately so that the computer can predict zones
consistently for each image.

The zone predictor was based on the output of the peak preprocessor for proposing nose
locations. From section 3.1.1 it is known that the output of the peak preprocessor is a
line down the centre of the nose!l®. The zone predictor uses the knowledge of this line,
which effectively gives the separation between the A&B zones and follows on using the
algorithm in figure 51.

15The peak preprocessor produces many V-lines on an image. Each V-line would be down the centre of
the nose if one existed at that location. For the purpose of the statistical analysis the V-line on the real

nose was manually located.
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proc to locate the boundary between the AB zone and DE zone {
Mark an area around the top of the V-linel®;
Select the bottom horizontal line of pixels in the area;

while there are more points with GDs of (5, 6, 7, 8) than of GDs
of {2, 3} on the line {

select the next horizontal line above the last;
}

mark the boundary at the line;

proc to locate the boundary between the AB zone and C zone {
Mark and area around the bottom of the V-linel’;
Select the top horizontal line of pixels in the area;

while the number points on the line with GDs of {5, 6, 7, 8) +
half the number of points on the line with GDs of (1, 4} is
greater than the number of points on the line with GDs of {2, 3} {

select the next horizontal line below the last;

}

mark the boundary at the line;

proc to locate the right edge of the B zone {

Assume that the B side of the nose is 12 degrees from the
vertical;

Select a line of pixels 12 degrees from the V-line and the height
of the nose;

while the number of points on -the line with GDs {1, 8} is greater
than the number of points on the line with GDs {2, 3, 4, 5, 6, 7}
{

Select a line one pixel to the right of the last
}

mark the edge at the current line;

proc to locate the left edge of the A zone ({
Assume that the A side of the nose is -12 degrees from the
vertical;
Select a line of pixels -12 degrees from the V-line and the height
of the nose;
while the number of points on the line with GDs {4, 5} is greater
than the number of points on the line with GDs {1, 2, 3, 6, 7, 8}
{

16]f the top of the Vline is at location i,j with length 1 the area marked is the rectangle enclosed by
(G-1/2,i-1/2), (j+1/2, i-1/2), (j+1/2, i+1/2), (j-1/2, i+1/2)

17The area marked is the rectangle enclosed by (-I/2, i+1/2), (j+1/2, i+1/2), (j+1/2, i+31/2), (j-1/2, i+31/2)
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Select a line one pixel to the left of the last
}

mark the edge at the current line;

}

Figure 51: Algorithm for locating the nose zones from a given V-line

The algorithm in figure 51 is based on the following observation. From figure 47 it can
be seen that at the boundary of each zone there is a transition from certain types of GDs
to others. For example on the boundary between zones A and B there is a transition from
GDs {1, 8} to GDs of {4,5}. The transition is not abrupt but there is a point where there
is more of one GD than the other. The boundary is between the zones is marked at this
point.

4.3.2 Statistical Analysis of the real nose zones

Each zone was statistically analysed separately over all the real noses in the face bank
and the results in table 8 show the average percentage of each GD in each zone.

ZONE GRADIENT DIRECTION

1 2 3 4 5 6 7 8
A 256 |47 2.0 4.5 33 4.1 122  [43.6
B 4.7 1.8 2.7 20.8 [48.9 11.3 5.2 4.6
C 12.8 [29.8 26.2 10.6 6.1 2.8 3.3 8.4
D 12.0 [47.7 [23.3 3.5 4.0 2.9 3.1 3.5
E 3.4 154 {443 244 6.0 3.5 1.1 1.9

Table 8: Average percentage of GDs in each zone for real noses

The standard deviations of the values in table 8 were also calculated and are shown in
table 9.

ZONE GRADIENT DIRECTION

1 2 3 4 5 6 7 8
A 10.3 2.7 2.0 3.5 3.1 3.3 7.1 9.4
B 4.2 1.7 2.2 6.7 9.0 6.2 4.1 3.2
C 6.1 8.5 7.1 5.4 4.7 3.3 4.8 5.0
D 152 254  [20.1 6.8 10.6  [9.7 7.7 7.1
E 5.3 179  [26.3 24.1 15.9 129 |3.5 8.1

Table 9: Standard deviation of GDs in each zone, for real noses
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Examining table 8 confirms the observations in table 7. This with the fact that the figures
in table 9 are low (as compared to table 12) indicates that it is possible to use these
values for locating noses. This is because they show a consistency in GDs from nose to

nose.

The covariance matrix for each zone was also calculated and table 10 shows the

covariance matrix for zone A.

GD 1 2 3 4 5 6 7 8
1 106.7 [-2.2 -0.1 15.3 15.9 -7.0 -51.0 |-77.6
2 -2.2 7.0 0.2 -1.3 -0.3 3.0 -2.3 -4.1
3 -0.1 0.2 3.8 -0.8 0.01 0.1 -1.0 -2.2
4 15.3 -1.3 -0.8 12.0 2.1 -0.9 -143  [-12.1
5 15.9 -0.3 0.01 2.1 9.3 0.1 -12.1  |-15.1
6 -7.0 3.0 0.1 -0.9 0.1 10.8 02 -6.4
7 -51.0 |[-23 -1.0 -143  [-12.1 0.2 51.1 29.5
8 -77.6 |-4.1 -2.2 -12.1 [-15.1 |-64 29.5 88.0

Table 10: Covariance matrix for zone A of real noses

Table 10 shows the interrelationship between the various gradient directions of zone A.
The table shows that if GD 7 increases then it is likely that GD 8 will also increases. It
shows that if GD 8 increases it is likely that GD 1 will decrease. It also shows that GDs
like 2,3, and 6 are not related as much as GD's 1, 7 and 8.

4.3.3 Statistical Analysis of the false nose zones

So far the analysis has been constrained to ‘real’ noses. The statistical analysis of these
noses was performed on the faces from the bank. To perform the analysis the ‘real’ nose
was manually selected from the list of V-lines given by the peak preprocessor. Recall that
the algorithm for locating the zones depends on the GDs, which is exactly the same as is
being statistically analysed. Therefore V-lines that do not fall on ‘real’ noses (i.e. they fall
on ‘false’ noses) will also be statistically biased. If the bias for ‘false’ noses is the same as
for ‘real’ noses then it would be impossible to distinguish ‘real’ noses from ‘false’ noses.

To evaluate the bias for ‘false’ noses all the V-lines that are not ‘real’ noses were
statistically analysed in the same way as for ‘real’ noses. The results are shown in tables
11 and 12.
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ZONE |GRADIENT DIRECTION

1 2 3 4 5 6 7 8
A 27.8 5.5 3.8 7.7 10.5 7.2 15.3 222
B 13.1 4.7 5.7 16.8 25.6 13.6 9.2 11.3
C 17.8 11.6 13.5 14.6 14.5 8.0 8.4 11.6
D 18.8 14.4 12.5 8.1 11.0 9.4 11.1 14.7
E 14.6 12.4 17.2 11.7 13.4 9.6 9.8 11.3
Table 11: Average percentage of GDs in each zone for false noses
ZONE |{GRADIENT DIRECTION

1 2 3 4 5 6 7 8
A 22.1 8.5 8.9 13.4 13.2 11.3 18.4 17.9
B 17.0 8.3 9.7 17.6 21.1 18.2 14.4 13.4
C 18.9 13.6 16.2 17.2 17.3 13.4 14.6 13.8
D 27.4 24.0 21.9 18.4 22.8 20.8 23.0 24.8
E 24.2 22.2 28.3 22.8 24.9 21.1 22.0 21.7

Table 12: Standard deviation of GDs in each zone for false noses

The data in tables 11 and 12 show that although the bias for false noses is similar to real

noses it is not as great. The standard deviations in table 12 are much higher than in table

9. This means that many of the false noses must fall well outside the range of real noses

and are therefore distinguishable from real noses.

4.3.4 Likelihood Ratios

The output of the peak preprocessor is a few hundred V-lines. For faces in the bank only

one of these V-lines is the real nose and the rest are false. To find out which are true or

false each V-line is tested with the following hypotheses.

Hg : The V-line is a real nose

H;j : The V-line is a false nose

Likelihood ratios can give a figure that assists in the selection of the correct hypothesis.

Edwards (1972) defines the likelihood ratio and when applied to the hypothesis above is

given in equation 4.
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L= @

where R(x) and F(x) are the Probability Distribution Functions of real and false noses. x
is the value of a proposed nose.

4.3.5 Statistical Assumptions

It is assumed that the probability distributions of the GDs are normal distributions. As
the value for each GD is between 0%-100% and the definition of the normal distribution
is unbounded then the distribution cannot be normal. However, the distribution can be
approximated as ‘normal’ and incur only small errors if the average is not close to the
bounds of the function (and the standard deviation is appropriate). Some of the GDs
have very low averages (4-6). These are the GDs not expected to be found in a zone. As
the standard deviations are around (8-10) then approximating the function to a normal
distribution will clearly give significant errors. The errors caused by approximating the
PDFs as normal have not yet been analysed but would be appropriate to consider in
future research.

Section 4.3.7 introduces the use of a covariance matrix method, which is aimed at
reducing the dependence between each GD. The PDFs of the vectors used to create
these covariance matrices are approximated as multi-dimensional normal distributions.
This approximation can create even larger errors that outweigh the positive effects of
using covariance matrices. These errors can be reduced by removing the elements that
cause the distortion from the normal distributions as does the compromise method
described in section 4.3 .8.

4.3.6 Likelihood ratio from individual zones and GD's : standard method

The likelihood ratio in equation 4 cannot be found directly because a PDF does not exist.
However, the PDF's for each individual GD of each zone the likelihood ratio for a GD of
a zone can be found as shown in equation 5.

L(x,y)= %g—; )

where R(x,) and F(x,y are the PDFs of a particular GD, d, of zone z for real and false
noses respectively.
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Assuming the PDFs are normal then from the equation of the normal standard deviation
(Milton and Arnold, 1986)

— 1 _l xzd_/'lﬁd ’
R(xzd)—mo_fd exP|: 2( O-fd J:| (6)

where o is the standard deviation of real noses for a particular zone and gradient
direction. 4% is the average value of real noses for a particular zone and GD as found in
tables 8 and 9.

Similarly
Therefore

Equation 8 gives the likelihood for a specific GD of a specific zone. The PRODIGY
requires that the likelihood of the whole nose is found (eqn 4). If each of the ‘zone, GD’
likelihoods were independent then the nose likelihood ratio would be a product of all the
‘zone, GD’ likelihoods as shown in equation 9.

Lexy=T]T1LCx) ®

z=1 d=1

To simplify calculation the log of the likelihood was derived as shown in equation 10.

5 8 1T x _,U}; 2 xd—yR 2
log L(x)) = ¥, +— |:Zd—=_:| _[ z zd:I
Z,dz ‘2|l o o

|

(10)

£

where ¥, = log(

Q&
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Taking the log of the likelihood function does not change the relative!® values of the
likelihoods of various noses. Therefore, the log likelihood function is also a likelihood
function. Indeed as ‘¥, is a constant and the (1/2) is a constant multipliér they can also
be removed without affecting the relative values of the function and so the likelihood
function is simplified to equation 11.

L(x)= ZZ[%] _{x%] (1)

z=1 d=1

4.3.7 Likelihood Ratio using zone vectors : vector method

Section 4.3.5 states that both the following assumptions cause errors: (1) that the PDF's
are normal, (2) that the likelihoods of each zone are independent.

Assumption (2) can be overcome by calculating the likelihood of a whole zone (equation
12) by using a vector and covariance matrix.
R(x,)

L(x,) =m (12)

where x; is a the vector for zone z (all 8 GD for a zone in a vector).

R(x,) is the PDF of zone z. Again the assumption is made that the PDF is a normal
distribution. This multidimensional normal distribution is given in equation 13
(Krzanowski, 1988).

(13)

=—@
(27)°|28

where uf is the average vector for a given zone z for real noses and ¥ is the covariance

matrix for zone z.

18Note that a likelihood function has a higher result if the input is more 'likely’. Therefore for two values
a and b where a is more likely than b then L(a) > L(b) is true. This inequality still holds for (log(L(a))-
3)*2 > (log(L(b))-3)*2.
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The normal distribution for false noses is similar to equation 13. Therefore, the likelihood
of a zone derived from equations 12&13 is as given in equation 14.

EF lx—y"rZ”—l:r—,u"—x— TZRAx—
L) < ML bt o et Ht 2 o] ”
z

The log likelihood of the whole nose, assuming independence between zones, is the sum
of the each zone likelihood as given in equation 15.

L) = [ L(x,) = log(L(x)) =
. 1‘ (15)
S+ e ) (28) ) = ) (25)7 (=)

z=1

F
z

where ', = log| ~—
zR

k4

Equation 15 can be simplified in a similar way to equation 11 to give equation 16.

L)y =3 (e —pf ) () (e =) = (e = ) (25) (o = ) (16)

4.3.8 Likelihood Ratios using reduced zone vectors : compromise
method

From an examination of the covariance matrix used in the vector method although clearly
some GD’s are dependent (e.g. 7 & 8) others have virtually no dependence (3 & 5). This
causes the covariance matrix to be near singular and near singular matrices are difficult
to invert using the available numerical techniques.

This problem, together with the assumption of a normal distribution, causes a significant
amount of error. This is apparent from the results in section 4.5. To reduce the effect of
these errors a compromise method combining the standard method and the vector
method was designed. The eight GDs are split into two; 4 of them combined into a
vector (the compromise vector Cy), and the other 4 used separately (y,;, where z is the
zone and » is the GD of the new subset of the original eight GDs). The likelihood of the
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compromise vector is found using the vector method and the likelihood of the subset is
found by the standard method.

Figure 52 shows the relationship between the original zone and the compromise
variables.

Old zone = {xlsx2’x3ax4ax5’x6>x7sx8}

compromise vector C =

and new zone subset = {y,,y,,¥,),} wherey, =x,,y, =x,, ), = x,, 5, = X,

azbzcxdzexf~g+h

Figure 52: Relationship between compromise 'vector, zone value' and original zone

The values of {a,b,c,d,e,f,g,h} determine which GDs are included in the compromise
vector and the new zone subset. The GDs that are selected for the compromise vector in
each zone are the ones that have the highest correlation. For zone A4 this turns out to be
{a=1,b=5,c=7,d=8,e=2,£=3,g=4,h=6}.

From table 8 and 10 the compromise vector for zone 4 and its covariance matrix are

25.6 106.6 159 -51.0 -77.6

3.3 . . 15.9 93 -121 -151
C= , with covariance X =

12.2 -51.0 -12.1 511 295

43.6 -77.6 -151 295 88.3

The likelihood function for the whole zone is a combination of equation 11 and 16
giving equation 17

(Co- ) (5) (%~ )~ (2 = 2) (22) (¥, - aF)

L(Y)=Zs: [ [y -4 ] [y -y n a7
=1 + Z zn zn zn zn
o ot

n=1 zn zn
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The results of tests carried out on the compromise vector are given in section 4.5.

4.3.9 Summary of Likelihood Ratios

The previous three sections describe different ways of finding a likelihood function of a
possible nose all which make different assumptions. These methods are summarised in
equations 18, 19 and 20 below. These equations are more general solutions not
specifically for noses and therefore include extra variables denoting the number of zones.

° The standard method

LN 2 Ty = i 2
L(x)= I:_zd_zd] _[M:I (18)
where

x = a proposed object

p = number of zones on object

x,; = value for a particular zone and direction of the proposed object

4y = average value for a particular zone and direction of known object specimens
ok = standard deviation of 4,

45, = average value for a particular zone and direction of false object specimens
ol = standard deviation of 4,

. The vector method

20y = 3w, — ) (2) (=)~ (3, =) (22) (- ) (19)
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where

x = a proposed object

p = number of zones on object

x, = vector of a particular zone of the proposed object

uf = average vector for a particular zone of known object specimens
R .

X = Covariance of 1

4l = average vector for a particular zone of false object specimens

TF = Covariance of u

®  The compromise method

(Co=pf ) (25) (0 - 4s) - (- ) (25) (B - )

L(Y) B ; -I-(Z[yznojluzn ] |:yzno-Rﬂzn :|2) | (20)

n zn

where

Y = a proposed object

p = number of zones on object

C, = compromise vector of a particular zone of the proposed object

uF = average compromise vector for a particular zone of known object specimens
2R = Covariance of uff

4 = average compromise vector for a particular zone of false object specimens
TF = Covariance of z

y,, = value of element n of the zone subset z of the proposed object

Uy = average of element n of the zone subset z of known object specimens

of = standard deviation of u

ub = average of element n of the zone subset z of false object specimens

ol = standard deviation of 4,

zn

These three methods have been tested and are presented in section. 4.5, which gives the
relative merits of each technique.
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4.4 The PRODIGY Algorithm for mouth location
The general technique for locating the mouth using the PRODIGY technique is similar to

the one for locating the nose. The main difference is in the way in which the mouth zones

are located.

4.4.1 Mouth zones

Figure 47 reveals that the mouth, like the nose, falls into several sections. For the mouth

four zones were chosen as shown in figure 53 and described in table 13.

Figure 53: Position of the four mouth zones

ZONE AREA
A Above the mouth

B The upper lip

C The lower lip

D Below the mouth

Table 13: Description of the mouth zone areas

Observations from figure 47 shows that the bias of GDs displayed in table 14.
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A Mostly 6 and 7
B Mostly 2 and 3
C Mostly 6 and 7
D

Mostly 2 and 3 with some 1 and 4

Table 14: Common Gradient Directions in each mouth zone

The zone locator for mouths is more ad hoc and.complex than for the nose zone locator.
An outline of the mouth zone locator is given in figure 54.

Start with H-line

I
\
Find centre of Find right Find left most
i —  most edge of edge of
H-Line ) .
upper lip upper lip
Find the top of Find the top of Are lip edges no
the A section =~ the upper lip ~_ found - - Abort
Find bottom of Find bottom of o
lowerlp | | theC section Adjust lip edges

N
Does mouth
look real

no

Figure 54: Outline of the mouth zone locator

The edges of the lip are found by tracing the gradient directions {2, 3} or following the
H-line, or following a vertical transition between gradient directions {2, 3, 4, 5} and {5,
6,7, 8.

The A, B, C, D zones are located by the algorithm shown in figure 55. |
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proc to locate the boundary between the A and B zone and the top of
the A zone {

Mark and area above H-linel?;
Select the bottom line of pixels in the area, (line = 1);

while there are more points with GDs of {2, 3) than of GDs of {6,
7} on the line {

select the next line of pixels (line = line - 1);
}
mark the boundary between the A and B zone at the line;

while there are more points with GDs of {6, 7) than of GDs of {2,
3} on the line {

select the next line of pixels (line = line - 1);
}
mark the edge of the A zone at the line;

proc to locate the boundary between the B and C zone and the bottom of
the C zone {

Mark and area below H-1lineZ?0;
Select the top line of pixels in the area, (line = 1);

while there are more points with GDs of {6, 7) than of GDs of {2,
3} on the line {

select the next line of pixels (line = line + 1);
}
mark the boundary between the A and B zone at the line;

while there are more points with GDs of {2, 3) than of GDs of (6,
7} on the line {

select the next line of pixels (line = line +1 );
}
mark the edge of the C zone at the line;

Figure 55: Algorithm for locating the zone boundaries for the mouth

19If r and / are the x coordinates of the left and right edges and m, are the y coordinates of the H-line

extended to the lip edges. The area searched is the points m,,_; for all x; H(r-I)/2 <x <r-(r-D)/2, £0.

201f » and / are the x coordinates of the left and right edges and m,, are the y coordinates of the H-line

extended to the lip edges. The area search is the points m,. for all x; [+(r-1)/2 <x < r-(r-)/2, £>0.
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4.5 Performance of the PRODIGY algorithm

4.5.1 Zone location algorithms

The zone location algorithms were tested on subsets of faces from the face bank. The
nose zone locator showed a success rate of around 98% on the noses tested (Images of

size full to small) and figure 56 shows an example of a successful result.

Figure 56: The successful result of the nose zone location algorithm

The nose zone locator was tested on face images that were slightly rotated and was
found to work on many of these images as demonstrated in figures 57 and 58. The edges
of the zones A and B are in error by a few degrees because the algorithm assumes that

the angle of the edge of the nose is fixed.

2 2

Figure 57 & 58: Successful nose zone location of rotated faces

The nose zone location algorithm was also tested on many faces with glasses. The
algorithm still functions although the edges of zones A and B (left and right edges of the
nose) are sometimes closer together, falling on the edge of the glasses. Figure 59

demonstrates the algorithm being successful on a face with glasses.
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R

Figure 59: Successful nose zone location on a face with glasses

Some of the failures of the nose zone locator are shown in figures 60-62. These failures

come from the test database of faces.

&

Figure 60, 61 & 62: Some of the failures of the nose zone location algorithm

The pictures highlight two sources of failure.

L In figures 60 and 62 the assumptions made by one of the zone edge finders was
incorrect and the edge was missed. The failure in figure 62 may be because the face

is from a different race than those in the original face bank and the nose is wider.

o In figure 61 the forehead is very bright. Because of this the original V-line
extended right up the forehead. This confused the nose zone locator, which

believed the nose to be high up on the forehead.

The mouth zone locator had a success rate of about 95% on faces from the face bank but

only about 56% on the test database. This poor success rate on the test set is mainly due
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to moustaches and unconstrained expressions. Figure 63 shows an example of a

successful result.

Figure 63: A successful mouth zone location

Although the mouth zone locator was not designed to work with mouths showing

alternative expressions, in many cases it still succeeds (figure 64).

S
"::./';.?':"':" e

-
F

Figure 64: A successful mouth zone location on a face with a cheesy grin

There are many cases where the mouth zone locator fails and some of these are shown in
figures 65-69.
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=

Figure 65, 66, 67, 68 & 69: The types of failures that can occur with the mouth zone

locator

The failures seen in figures 65 and 67 are caused by a failure to locate one of the edges
on the mouth, in figure 67 this is mainly due to the moustache. In figure 66 there is an
excessively dark portion below the mouth and the algorithm has mistakenly assumed this
is the mouth. In figures 68 and 69 the faces have prominent smiles, which confused the

zone locator.

4.5.2 Likelihood Ratios

In this chapter three different ways of calculating likelihood were presented, the
standard, vector or compromise method. The three methods were implemented using all
the data from the face bank to establish the values of the variables (averages and

standard deviations).

The three methods were then tested on all the faces in the bank and on a set of false
faces. The purpose was to evaluate the difference between the likelihood for real noses

and false noses.

PDFs (Probability Density Function) for real and false noses were found and are shown
in figures 70, 71, 72.
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Figure 70: PDFs of likelihoods of real and false noses using standard method
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Figure 71: PDFs of likelihoods of real and false noses using vector method
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Figure 72: PDFss of likelihoods of real and false noses using compromise method
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Figure 70 and 72 show that the standard method and compromise method have a
reasonable separation between real noses and false noses. The two PDFs overlap which
means that the method will not always manage to resolve the difference between real and
false noses. Observations show that the real noses at the lower end of the PDF are

usually due to poor zone location.

Figure 71 shows that the vector method does not resolve the difference between real and
false noses. There is, however, a narrow band of values where it is more likely that noses

are real rather than false.

It 1s not sufficient to only test the likelihood ratios on the training data alone. Therefore
the small and compromise methods were tested on the independent test set of data and

the PDFs are shown in figures 73 and 74.

0.3 - :
i

02 t ,
P

01

54
Likelihood value

4 Real noses

---¥--- False noses

Independent PDF's of likelihoods of real and false noses using the standard

Figure 73:
method
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Figure 74: Independent PDF's of likelihoods of real and false noses using the

compromise method

These graphs show that there is a slightly larger overlap between real and false noses.
However, there is still a definite resolution between the PDFs. It is clear that all stages of
this technique require improvements. However, as shown in the next section, poor
results for one feature can be compensated for by good results for another feature (By

use of a control structure, see chapter 5).

The PDFs of the likelihoods for real and false mouths was also calculated. The PDFs of

the mouths in the face bank are shown in figures 75 and 76.
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Figure 75: PDFsy of likelihoods of real and false mouths using the standard method
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Figure 76: PDFs of likelihoods of real and false mouths using compromise method

The separation between real and false mouths is smaller than for real and false noses.
This is mainly due to the poor zone locator. Chapter 6 discusses improvements that
should be made to this technique in the future.

The mouth likelihood function was also tested with the independent face bank. The
results of these tests are shown in figures 77 and 78.
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Figure 77: Independent PDFs of likelihoods of real and false mouths using the
standard method
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Figure 78: Independent PDFs of likelihoods of real and false mouths using the
compromise method

Figures 77 and 78 have an even poorer separation between real and false mouths,
although the algorithm still provides useful information. The independent database of
faces consists of unconstrained faces, (i.e. there are many faces that have moustaches,

smiles, grins and many mouths that have teeth showing), hence the poor result.

4.5.3 PRODIGY Algorithm

A simple test was devised to examine the PRODIGY algorithm. An image is
preprocessed, scanned for possible features, a likelithood for each possible feature is
found, and the feature with the highest likelihood is selected.

The performance was measured by carrying out this test on the set of independent
images to find out in how many images the correct feature is found.

Tests show that, for the nose location algorithm using the standard method, 86% of

noses were successfully located and with the compromise method, 88%.

For the mouth location algorithm the standard method successfully located 35% of
mouths and the compromise method located 43% of the mouths.

These results cannot be compared realistically with other work because results have not
been quoted in respect to individual independent location routines. Tock (1992) does
however quote facial feature location results within the context of the complete system,
he quotes 76% for the nose and 59% for the mouth. This shows that the nose locator
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described in this thesis is an improvement, but it is not possible to tell whether the mouth
locator shows an improvement without putting it into Tock’s (1992) control system.
Both sets of results serve to confirm that locating the mouth is a more complex task than
locating the nose. This is undoubtedly due mainly to the placidity of the mouth.

These results need to be put in context as although the required features do not always
give the highest likelihood, they are often ranked in the top four or five. Further
processing on these features either by combining face features (see chapter 5) or using
further observations about the facial features such as colour will result in improved

performance.



5. Face Location System

This Chapter draws together the work described in previous chapters to present a
complete face location system. It combines the peak and trough preprocessors and the
PRODIGY techniques using further statistical methods similar to those used in the
PRODIGY. A simple face recognition system is then presented which compares cue

faces with people who have been previously photographed.

5.1 Control System

Several control systems were described in section 2.5. The discussion mentions two
types of control structures;, the serial approach, such as Kanade (1977), and the
independent feature location approach, such as Craw et al’s (1991) blackboard based

system.

The approach chosen uses the independent approach and is demonstrated in Figure 79.
This is a tightly defined approach like the serial approach, as compared to the blackboard
system, which is a loosely defined system and allows multiple execution paths.

Image = j

Eye Detector g

eyes

—l—" Face

Nose Detector | Pessible Locator =9 Face

noses

l ]
Mouth Detector | possbe

mouths

Figure 79: Block diagram of a system for locating faces

The system above shows several independent facial feature detectors that produce a list
of possible features along with a confidence value for each possible feature. The list is

not only passed onto the face locator but to other feature detectors, which enable the
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search to be directed to appropriate areas of the image. The nose and mouth detectors
that are used in the system are those described in the previous chapter, i.e. those using
the PRODIGY technique. The face location part combines the output of these detectors
using statistical methods similar to the PRODIGY and is described in section 5.4.

5.2 Feedback Loop

The actual implementation of the feedback loop in figure 79 is described by the
following:

The nose detector supplies the eye detector with information that it has found ‘x’
possible noses. The eye detector then checks its possible eyes to test if they are
close to the top of a nose. Each eye that is not close to the top of the nose is
removed. The eye detector then passes its possible eyes to the nose detector and
the nose detector then checks its possible noses for nearby eyes.

This process is repeated several times between the eye, nose and mouth. This feedback
reduces system failures and computation time. This is because the number of ‘false’ eyes,
noses and mouths are cut and hence the time taken to check each of the remaining
possible features, or combinations of them, is lower.

5.3 Face Model

The face location part of the system in figure 79 has similarities to Fischler and
Elschlarger's (1973) templates and springs method. In their method they designed a
model of the whole face as shown in figure 80. To locate a face, first a predicted location
of each facial feature is given. A cost is calculated as to how much each predicted
feature’s shape and texture deviates from the model features. Then another cost is
calculated which shows how much the relative locations of the predicted features deviate
from the model. The predicted facial feature locations are then adjusted until the cost is
minimised.
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Left Edge

Figure 80: Fischler and Elschlager's springs

The total cost of this model for a given location is shown by equation 21. The cost

function is minimised to find the face on an image.

> Template costs+ »_ Spring cost (21)

A template cost is a figure relating to the amount of mismatch of the template and any
part of the image. The spring cost is calculated by how much it deviates from the average
length springs. 1.e. it 1s a measure of the effort needed to stretch or compress the spring.

This method is not unlike the deformable templates proposed by Yuille et al (1988) in
that the model is deformed until it fits the shape of the actual face in the image.

The implementation of the ‘springs’ method used in this thesis differs somewhat. Fischler
and Elschlarger (1973) system was designed to refine the location of objects, whereas
the PRODIGY has already specified facial feature locations. We use the springs only to
check combinations of facial features to test if they are structurally compatible.

5.4 Implementation of the ‘spring’ control system.

The ‘spring’ method that was developed uses likelihood ratios in a similar manner to the
PRODIGY technique. This diverges from the Fischler and Elschlarger (1973) ‘springs
method’ which uses cost functions. To locate a face the likelihood function given in

equation 26 is maximised.

no of features
> ir(a,n,)+ Y spring likelihood ratios (22)

a=1
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Function /r(a,ng) is the likelihood ratio for n!" proposed facial feature of type a. The
likelihood ratio is found by the PRODIGY algorithm (or similar algorithm) for that

feature as described in section 5.4.1.

Type a=1 represents a nose, a=2 represents a mouth, a=3 represents the left eye, a=4

represents the right eye.

A spring likelihood ratio is calculated from the distance between each and every feature.
It is assumed that the distance between each ‘real’ and each ‘false’ feature has a normal

distribution and hence simplifies the calculation of the likelihood ratio function.

5.4.1 Feature likelihood ratio functions

The likelihood of the mouth and nose features are found by dividing each value from the
real PDF by the corresponding values of the false PDFs. The values of the PDFs are the
output of the PRODIGY functions and are called Nvalues for noses and Mvalues for
mouths. The PDFs from the compromise method were used as shown in figures 72 and
74. The graph in figure 81 shows the likelihoods of noses.

real/false
272.4 - - -

2043 | /} g
¥

136.2

68.1 |
0.0 0L 25, L % 5. P M
-91.0 -68.5 -46.0 - -1.0 Nvalue
—3¢— Likelihood ratios of N-values ~-Z-- Exponential approximation

Figure 81: Likelihood ratio of Nvalues between -91 and -1

The curve is exponential in shape, so an approximation to the exponential curve was

estimated. The approximation shown in figure 81 is given in equation 23.

L(Nvalue) = exp( Nvalue /8)*300 (23)
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Similarly the likelihood ratios of the Mvalues are shown in the graph in figure 82.
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Figure 82: Likelihood values of Mvalues between -82 and -1

and an exponential approximation was devised as shown in equation 24.

L(Mvalue) = exp( Mvalue / 13)*8 (24)

5.4.2 Spring likelihood ratio functions

The likelihood ratio function introduced in equation 4 (page 63) is used for calculating
the spring likelihood values. A simplified version derived from equation 8 (page 64) is
given in equation 25 and shows the normal distribution of real spring lengths divided by
the normal distribution of false spring lengths.

Lg)= exp(ax2 +bx+c) (25)

where x is the proposed spring length and

y

O'Z_O—~ 0'2_ O'2 20'2— 20'2 O
d= r j,b: /ur f /uf r - :uf r lur f+10g[—f)and

- 20252 o9 2 a7
0,0, 0,0, 0,0, 3

u, = average length of real spring
o, = standard deviation of real spring length
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4, = average length of false spring

o, = standard deviation of false spring length

Therefore, the likelihood ratio can easily be determined by finding the average and
standard deviation of real and false springs. To calculate the false spring averages a
random sample of false features was selected and the distances to other false features
were calculated. '

In practice the distance between the nose and the mouth is not an appropriate measure
because it varies with the scale of the image. To ensure scale independence relative
values were calculated using length ratios. The ratio chosen for the nose to mouth
distance was:

ratio = (nose length/distance between the nose and mouth)

The average and standard deviation of the ratio were found by analysing all the faces in
the face bank of type 1-4 (large to small). The average and standard deviation of the
ratio of false faces were found by analysing thousands of random false faces?!.

5.4.3 Face likelihood

A version of the likelihood ‘springs’ methods was constructed combining the nose
likelihood ratio, mouth likelihood ratio and the spring likelihood ratio. The eyes are not
included in this likelihood function as the eye preprocessor does not give a confidence
value. The likelihood function derived is given equation 26.

L(Nvalue, Mvalue, x) = exp( Nvalue / 8) * 300 * exp( Mvalue / 13) *8 * exp(ax""‘ +bx + c)
(26)

where Nvalue is the output of the nose PRODIGY, Mvalue is the output of the mouth
PRODIGY and x is the spring ratio.

Taking the log likelihood and removing constants gives equation 27.

21The analyses showed that 4, =0.57, o, = 0.10, U; =077, 0, =2.41. Therefore a = -47.5, b = 54.2

andc=-12.3
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L(Nvalue , Mvalue,x) = Nvalue | 8+ Mvalue / 13+ ax® +bx 27

Note that this equation includes weighted versions of the Nvalue and Mvalue. This is
because Nvalues and Mvalues were originally log likelihoods. The weights give
precedence to the relative reliability of the values produced by the PRODIGY algorithm.
In this case as the nose locator is more reliable it is given a higher weight.

5.5 Face location

The likelihood function in equation 27 can be used directly to locate a face on an image.
This is done by finding the value of the function for every combination of proposed
features. The combination with the maximum likelihood is chosen as the real face.

This involves little processing for the system proposed (with only two features). e.g. if
there are 40 proposed mouths and 40 proposed noses then the function is calculated
40x40 = 1600 times?2. If the system is expanded later by adding 40 proposed right eyes
and 40 proposed left eyes this would increase to 2.5million iterations, which would take
a significantly?? longer time. Therefore, an alternative method for testing all the
combinations would be necessary such as gradient descent, genetic algorithm (Robertson
and Sharman, 1990) or by implementing the process in parallel.

5.5.1 Shape free faces and position/scale free faces

Many have used face location as a preprocessor to face recognition (Gallery et al, 1992,
Craw et al, 1992, Jia and Nixon, 1992). Where face recognition has been tested on
unlocated faces the results have been poor. For example Turk and Pentland (1991) show
recognition of around 30% for unlocated faces.

22The likelihood function has 5 multiplications and 4 additions. Total for 1600 iterations = 8000
multiplications and 6400 additions. If a computer can do lmillion multiplications per second and
10million additions this would take 8 msec.

2315.36million multiplications and 10.24 million additions. Using the same assumptions as the previous
footnote this would take 16.384 sec.
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Applications, such as face recognition, that use ‘located faces’ usually require an
extracted face as and input (Gallery et al, 1992, Craw et al, 1992, Jia and Nixon, 1992).
This is easily done by geometrically transforming the image so that the face is moved to
the centre of the image and is scaled to a fixed size. This is called a position/scale free

(ps-normalised) image and the transformation is given in equation 28.
i',j'=fi,j) forall i, j e{C} (28)

where i, j are coordinates on the original image mapped to new coordinates on the
position/scale free image by function f. C represents all possible image coordinates.
Similar transformations have been used by Craw et al's (1992) (Shape free image) and
Shackleton and Welsh's (1991) (Geometrically normalised image).

The process for producing the position/scale free follows the stages given in figure 83.

Locate the face;
Centre the face in the image (translation);
Rotate the face so that the eyes are on a horizontal line (rotation);

Scale the image of the face vertically so that the mouth falls on a
fixed point (vertical scaling)?

Scale the image of the face horizontally so that the eyes fall on
fixed points (horizontal scaling);

Figure 83: Process for scaling and translating the face to fixed place on an image

This system has been implemented and the output of such a transformation is shown in

figures 84-87. Note that this transformation does not remove expression information,

lighting effects or horizontal turning of the face (face tilt).
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Figure 85: a) THOMAS3 b) PS-Normalised image of THOMAS3

Figure 87 shows a rotated face. The face location algorithm still works and the ps-

normaliser still places the eyes, nose and mouth in fixed positions.



Robertson, G.J.S, 1994 Chapter 5 - Face Location System Page 92

Note that the ps-normaliser is different from shape freeing faces in that the shape
information is still retained?*. The only shape information removed is the aspect ratio of
the face, which is fixed after the transformation.

5.5.2 Face location performance

A face location algorithm was implemented using the likelihood function presented in
section 5.4.3. The face location algorithm was tested on all the faces in the face bank and
on all the test faces.

Of the original face bank the program located 86% of the ‘non rotated’ faces correctly.
The system assumed no knowledge of the position of the face and the size of the face
could be between 20-60 pixels wide. Of the test set of independent images (which had
faces with glasses and beards among them) 58% of the faces were located correctly.

Kanade (1977) quoted a figure of 75% location (20 people); but this system also had
prior knowledge of the size of the face, orientation and possible location of the face - if
his system was tested on the face bank it would find none of the faces. Tock (1992)
quotes a figure of 86% on his set of faces which are all full face and of a reasonable size.
Tock’s program is a blackboard system and is expandable; for example by adding the
feature detectors presented in this thesis. His system will choose the most reliable feature
locators in its control structure. This compares with the likelihood equation for locating
faces that weights reliable locators, although the weights are not modified automatically.
Waite and Welsh (1990) achieved face location results of between 54-85% using a
snakes method for locating the boundary of the head. This method requires the head to
be on a white background because is searches for edges. None of these other systems
described were tested on images as diverse as those in the independent test set.

The results of the PRODIGY based system above show that there is more development
needed before the system is robust. However, as compared to the other systems cited
above the technique shows a gain in performance. The system does not require the input
faces to be in the middle of the image or on a plain background or of a fixed scale. The
results on the independent test database show that the system has flexibility and is not
constrained to certain types of face images.

24 A5 the shape information is retained it is not necessary to have a separate shape vector.
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5.6 Face recognition

As mentioned in the introduction and background to this thesis automatic face
recognition by machine is one common application of face research. To test the
usefulness of the face location techniques described in this thesis a simple face
recognition program was devised. This section describes the face recognition process.

5.6.1 Face recognition : a simple technique

To compare face images a simple correlation technique was designed. Rectangular
portions (R) of each face enclosing the eyes, nose cheeks and chin are correlated. As in
Craw et al’s (1992) method it was decided that the hair was too variable to be included.

If C(ij) is the cued image and I(7,j) is a face in the training set then the correlation
between the images is given in equation 29. This is derived from the standard correlation
methods such as found in Milton and Arnold (1986, p157).

nY Cl, I, j)+ . Cli, 7)Y 10, )

i,jeR i,jeR i,jeR (29)

- gew] [rgrer -]

The correlation between the cue image and all the images in the pool is found and the

image with the highest correlation is assumed to be a picture of the same person.

5.6.2 Face recognition performance

The face recognition program described above was tested by placing someone in front of
the camera, digitising the face, locating the face, and comparing it to a set of previously
located faces in a pool (candidates). The pool consists of several pictures of about eight
people. '

Tests showed that whenever the face was located correctly then the face was also
successfully recognised. It is expected that failures would occur if the set of possible
candidates is increased.
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The fact that ‘face recognition’ was demonstrated successfully, using a simple program,
adds weight to the theory in section 2.2 that face location is an essential preprocessor to

face recognition.



6. Observations and Conclusions

This Chapter examines the experimental results and draws together some conclusions
and inferences from the results. Facial vision engineering is a growing subject, core
methods and techniques are still emerging and difficulties in the unconstrained face
location problem require further research. This study has, however, made advances in the
field in reducing image constraints while retaining computational efficiency. In this
chapter an examination of each technique is made. Their properties, advantages and
disadvantages are discussed. Finally, future research on each technique is suggested.

6.1 Peak and Trough Preprocessor

The peak and trough preprocessors propose a number of locations on an image likely to
be a particular facial feature. This is done by examining intensities on an image to
produce V-lines, which are'vertically connected peaks in the image, and H-lines, which
are horizontally connected troughs in the image. The V-lines are proposed noses and the
H-lines are proposed mouths. Eyes are proposed at points where a trough in intensity is
found in all directions. This technique is based on observations that have been made on
numerous face images.

The implementation of the peak and trough preprocessors is computationally efficient.
They require approximately 11 instructions per pixel. For a 256x256 image this would
account for 720896 instructions per image. On an 10 MIP machine this would take 70
msecs per image. This compares with the morphological methods for finding peak and
trough fields as implemented by Yuille et al (1988), which are by nature less efficient.
These preprocessors are robust for face images between 20 and 64 pixels wide (see table

3, page 23). This is supported by the fact that there were no true rejects of noses, or
mouths on all face images of size large to small when the technique was tested on the
face bank.

The performance of the peak and trough algorithms is affected by the filters and the filter
parameters and the threshold value. Larger filter parameters increase the performance of
the V-line proposer, but too large a value merges the nose into the face. The size of the
filter parameter for proposing H-lines has a minimal effect on the performance of the
trough preprocessor. Lower threshold parameters increase the number of false features
that are found which decreases the likelihood of the PRODIGY locating the correct
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feature. Higher thresholds shorten the length of the H/V-lines, which increases the
probability of the PRODIGY failing to define nose or mouth zones.

Future work on the preprocessors would focus on developing a technique that maximises
the length of the H/V lines without increasing the number of false features. One method
is to start with a large threshold and then slowly allow the threshold to decrease without
allowing new proposed facial features to appear. Different types of filters, such as
matched filters, should be tried with the aim of enhancing the facial features that the
preprocessors are proposing.

6.2 The PRODIGY algorithm

The PRODIGY algorithm takes as its input the proposed features from the peak and
trough preprocessors and gives each a confidence value. This value is a likelihood of the
line being a real rather than a false feature. Producing the likelihood values involves first
locating zones around each V/H-line, then calculating the proportions of eight gradient
directions within each zone. The system then compares the proportions with the average
and standard deviations of real and false facial features, producing the likelihood value,
which are called N-values and M-values for noses and mouths respectively.

The PRODIGY technique is scale independent because the proportion of gradient
directions in each zone is found rather than the absolute number. Because gradient
directions are based on the direction of change in intensity, rather than magnitude, the
technique is independent of absolute image intensity. The use of statistics in the
PRODIGY technique performs two functions: first, they allow the removal of statistically
impossible proposed noses; and second, they provide confidence information about the
proposed facial features without introducing ‘true rejects’. This confidence information is
subsequently used in the face location control structure. ‘

The performance of the PRODIGY algorithm is affected mainly by the zone location
algorithm. Unlike other parts of the system, failure of the zone location section can cause
‘true rejects’. For the mouth zone locator it has been shown to cause up to 5% ‘true
rejects’ and hence causes a weak link in the chain (the nose locator causes up to 2% ‘true
rejects’). The zone location algorithms were based on observations but in this case these
observations proved inadequate. The choice of the statistical method affects the amount
of resolution between real and false facial features. Of the methods tested, the
compromise method proved to be the best (see section 4.3.9). This method is a
combination of a multi and single dimensional analysis. The results show that this
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combination approach, which uses cross correlation information, reduces the impact of
any assumptions that are made during the statistical analysis.

Future work on the PRODIGY must tackle the failures in the zone location algorithms.
Areas of research will examine the use of statistics to define zone boundaries, introduce
checks on the credibility of the zones found and generate multiple zone sets for each
proposed feature. Currently the zone locators generate one zone set for each facial
feature, which means that the algorithm must be able to cope with multiple expressions
and classes of feature. If a zone locator is made to produce several zone sets representing
different classes and expressions, then the definition of the boundaries on each zone can
be tightened. The likelihood technique performed on gradient directions can also be
applied to image grey levels, colour levels, edges, and other image operators. Future
research will analyse the use of these other indicators with the aim of increasing the
resolution between real and false likelihood values.

6.3 Face location control system

The face location control system first removes proposed facial features that cannot be
combined with any other proposed facial features to produce a structurally feasible
feature set. This is performed using a multiple feedback loop. The system uses a
likelihood function based on structural feasibility and the confidence of the proposed
facial features to find the most feasible combination of facial features. The proposed
features are generated by the peak and trough algorithms and the confidence values are
generated by the PRODIGY. A feature of the control system is that the real mouth and
nose do not have to be ranked first in the list of proposed features for the combination to
produce the most likely face. This supports the use of the statistical methods to govern a
face location control system.

Many face location techniques (see chapter 2) require the constrained face images to be
presented to the system. These constraints are listed in chapter 1. The face location
algorithm designed in this research reduces the level of constraints required. Individual
comments on each constraint category are given in table 15. These comments are based
on performance tests which were reported at the end of chapters 3-5.
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CATEGORY | SUB-CATEGORY j COMMENT
Translation scale Independent to scale for face images greater than 25 pixels
wide
position The face image can be in any position in the image
orientation The face must be approximately within 15 degrees of the
vertical
Pose occlusion The eyes, nose and mouth must not be occluded
rotation Head can rotate by a small amount®
face tilt Eyes should level with the camera
Lighting level Independent to absolute image intensity level
direction There is a small tolerance to lighting direction®®
Noise camera The technique has been tested successfully on many cameras
intensity resolution || The images should have 16 grey levels or more
clutter Independent to background clutter
Artefacts moustaches Not tolerant
beards Not tolerant
| glasses Tolerant
sex Independent
Expression Requires a straight, expressionless face

Table 15: Comments and tolerances on the categories of constraints applicable to

facial images

Table 15 shows that the face locator is independent of scale, position, some head

movement, absolute lighting level, camera, background clutter, digitising equipment,

gender and faces with glasses. This shows a significant improvement in independence to

constraints to the face location techniques used by Kanade (1977), Brunelli and Poggio
(1992) and Jia and Nixon (1992) which require fixed scale and plain background.

This method was tested successfully on 86% of the ‘non-rotated’ faces in the face bank
and 58% of the faces in the test database. As described in section 5.5.2 these results
compare favourably with other reported face location results. This suggests that the

25The amount of has not been quantatively determined

26The amount of has not been quantatively determined
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number of constraints required of face images has been reduced without resulting in

decreased peformance

The face location system has been tested on several computer systems. On a 386 20Mhz
PC the program takes about 1 minute. On a 486 33Mhz PC it takes about 15 seconds.
And on a SUN SparcStation LX it takes about 25 seconds. This is an improvement on
the deformable template eye locator reported by Yuille et al (1988) which takes about 5
minutes on a SUN4.

Future work on the face locator will be in improving the zone locators as previously
described and increasing the number of face features that are included in the control
structure. The eye proposers do not as yet provide a confidence value. For this reason
they are not included in the statistical part of the control structure. The face locator can
also be improved by adding extra feedback to reject output that is clearly not a face.
Work also needs to be carried out to reduce more of the image constraints, especially
pose, facial expressions, moustaches and beards. The face location system fails with faces
smaller than 20 pixels wide. This is because the features used to locate the face are too
small to be detected with the existing methods. A new technique needs to be developed
to find these small faces. This could be done by locating the body of a subject as well as
the face.

Specific enhancements of this face location technique can be made depending on the
application. If multiple images of a subject are available, as when video cameras are used,
the success rate can be improved by choosing the image that was located most
accurately. In a security entry application the lighting conditions can be controlled so as
to allow the program to be tuned within that limited environment.

6.4 Face recognition

A simple face recognition algorithm has been evaluated and found to work in a number
of tests. Although the face recognition results of various researchers cannot easily be
compared, the simple algorithm described has similar success rates to other reported
methods that do not use face location. Despite the fact that some of these algorithms use
neural networks, the template matching face recognition algorithm described produces
comparable results. It can be concluded from this and the evidence listed in chapter 2
that the face location algorithm is a necessary step in face recognition. Without knowing
exactly where all the features are on a face, knowing where the edges of the features are,
or knowing the shape of the features it is impossible to compare one face with another.
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6.5 Final remarks

This research has tackled many problems in designing a reliable unconstrained face
location system. The techniques that have been demonstrated reduce limits on the size,
scale and background clutter of the images containing faces to be located. A method for
locating the surfaces of objects has been proposed and successfully implemented,
especially for nose location. At the heart of the method are feature proposers looking for
local peaks and troughs in intensity on a grey scale image, and a statistical analyser,
called PRODIGY, that determines charactenistics of the reflective surfaces on human
facial features.

The basis of a robust face location system has been designed and demonstrated to
perform well on a random set of face images. The value of this system has been clearly
demonstrated in the development of a simple but effective face recognition system. The
research leaves open the path for many more research opportunities which will hopefully
succeed in fulfilling the long term goal of building an fully unconstrained face location
system.
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8. Appendix

8.1 Equipment Set Up

Vidi PC

Frame Grabber

Camera q

386 PC 25 Mhz PC

Borland C++ Compiler

Monitor

300 Megabyte

Hard Disk

8.1.1 Computing Equipment

The computer made available consisted of:

240 x 200 pixel display

e A 80386 based IBM PC compatible computer running at 20Mhz.
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o A 14 inch colour monitor capable of displaying images in 64 gray levels to a
resolution of 320x200 pixels.

e A 300 Megabyte hard disk.

As the PC can only display images up to a size of 320x200 pixels, which is a fairly low
resolution, it was decided that all the images used in this research would be 240x200
pixels?’. A 240x200 pixel picture, although an awkward size to process, gave a square
image on the screen. The architecture of the IBM PC and the compiler also limited the
image size because only arrays of up 64Kbytes were possible. A 240x200 pixel image
with 8 bits per pixel is 48000 bytes in size, which fits within these requirements. Because
the size of these images is small the computer could store many of them on the hard disk.

8.1.2 Imaging hardware
The imaging hardware available for this research consists of’

e Black and white camera with a composite video output, focus and aperture.
e  Green monitor to view the image from the camera.

L Vidi-PC frame grabber (Wilson, 1990). The frame grabber can grab images up to
1024x512 pixels with 16 grey levels.

The Vidi-PC frame grabber connected to the PC was simple one that only grabs
images in 16 grey levels, however, an algorithm scales the 1024x512 images to
240x200 images and simulates more grey levels by averaging pixel intensities?8. The
overall imaging hardware was of poor quality but suffices for much of the research.

Although the frame grabber can grab images at video rates the accompanying
software is slow and does not transfer the images to the computer at video rates.
The actual frame rate is about 2 frames per sec.

27The images consist of 256 grey levels (8 bits/pixel) even though the computer could only display 64

grey level.

28The image was first cropped to 960x400 pixels. Each block of four pixels was averaged to produce a

240x200 pixel image with 64 grey levels.
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8.2 Face bank created for the research

The face bank is a database of faces selected from the general public. The bank includes

a range of people as shown in table 16.

Name of face Sex Comment
Joy Female [ Poor quality
Morag Female | Poor contrast
Tracy Female

Alas Male

Musty Male

Jim Male

Deep Male Dark skinned
Kate Female

Thomas Male

Danny Male

Tony Male

Sheila Female

Steve Male

Andy Male

Table 16: List of faces in the facebank

There are eighteen pictures of each subject in the face bank. Each picture was stored
with a a name and number.

e.g. JOY1,JOY2,..., JOY18, MORAGI, etc.

On each face image 37 landmarks were located. Table 17 lists the chosen landmarks.
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1 nose: left of bridge

2 middle of bridge

3 right of bridge

4 bottom left

5 bottom middle

6 end of nose

7 bottom right

8 mouth; left

9 top lip, top middle
10 top lip, bottom middle
11 bottom lip, top middle
12 bottom lip, bottom middle
13 right

14 left eyebrow: left

15 top middle

16 bottom middle

17 right

18 left eye: left

19 left of iris

20 top of iris

21 middle of iris

22 bottom of iris

23 right of iris

24 right

25 right eyebrow: left

26 top middle

27 bottom middle

28 right

29 right eye: left

30 left of iris

31 top of iris

32 middle of iris

33 bottom of iris

34 right of irts

35 right

36 head: left at mouth level
37 right at mouth level

Table 17: The 37 points manually located for each image in the face bank

The 37 points were marked by hand with a mouse pointing device and the location

recorded in a file (See example in section 8.3). Where the landmarks were occluded due

to rotation or closed eyes, then they were approximated. For the TINY and MINUTE

images it is difficult to resolve all the landmarks around the eyes so they were just

positioned roughly.
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8.3 GFF image descriptor

To enable the exchange of images between various graphics platforms a graphics file
descriptor (GFF) was designed, which encompasses all the present graphics file formats
currently available. GFF primitives create a description file for each image in which is
stored the history of the image. The design of the GFF image loading and saving
primitives was such that they could determine the graphics format of the image file and
save or load in that format. The GFF primitives also updates the description file if any
changes are made to the image.

Initially all the images attached to the GFF descriptors were GIF files?®. The GIF
primitives compress the images while saving and loading. Although this compression
saved considerable space the code to perform this compression was slow. Therefore,
later on in the research, the face processing algorithms worked with RAW30 image files,
which despite taking up more space, load and save quickly3!!

The follow text is the sample contents of a GFF image file descriptor. A face data
descriptor is also attached to all the image files in the face database.

#%Date of creation of GFF file image descriptor

17/03/91

#Last modification to image - 8 character code

Original

#60 Characters of description ----> up to this bracket]
Joy 4

#One line description

29GIF stands for Graphics Interchange Format. The C software routines to handle these files are public
domain (Elber, 1989)(Compuserve, 1987).

30RAW image files contain only the image data with no header files. To read a RAW image file the
computer must know the size of the image. A 240x200 pixel image with 8 bit/pixel is exactly 48000

bytes in size.

31In about 0.25 secs as averse to 1.5 secs
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#Brief three line description
#Description of the image - maximum 6 lines
#History of the image after creation
#Comments about the image
@QREnd of GFF file image descriptor
{ facedata

nose: left of bridge

120 75

nose: middle of bridge

124 73

nose: right of bridge

127 74

nose: bottom left

117 92

nose: bottom middle

125 94

nose: end of nose

125 91

nose: bottom right

133 91

mouth: left

116 104

mouth: top lip, top middle
125 101

mouth: top lip, bottom middle
125 103

mouth: bottom lip, top middle
125 104

mouth: bottom lip, bottom middle
125 107

mouth: right

137 104

left eyebrow: left

102 69

left eyebrow: top middle

110 66

left eyebrow: bottom middle
110 69

left eyebrow: right

118 67

left eye: left

104 77

left eye: left of iris

108 75

left eye: top of iris

111 72

left eye: middle of iris

111 74

left eye: bottom of iris

111 76

left eye: right of iris
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113 74

left eye: right

117 74

right eyebrow: left

129 67

right eyebrow: top middle
135 65

right eyebrow: bottom middle
136 68

right eyebrow: right

145 67

right eye: left

131 74

right eye: left of iris
135 74

right eye: top of iris
137 72

right eye: middle of iris
138 74

right eye: bottom of iris
138 76

right eye: right of iris
140 74

right eye: right

145 175

head: left at mouth level
104 104

head: right at mouth level

152 103
}



8.4 Paper 1

This paper was presented at a Workshop called Neural Networks, Genetic Algorithms
and Simulated Annealing, Glasgow 1990.



