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Summary

Many types of tumour cells are more sensitive to elevated temperatures than 

normal cells. This observation and the accessibility of the prostate gland to an 

external heat source has led to the development of thermotherapy as a treatment 

for prostate disease. One possible problem with this type of therapy is the 

development of thermotolerance. Thermotolerance is the acquisition of a 

resistance to a thermokilling temperature by pre-exposure of the cell to a 

sublethal dose of heat and is due to an increased level of a group of proteins 

known as heat shock proteins (hsp). One of the members of the hsp family is 

hsp90. Hsp90 is associated with steroid receptors and forms part of the 

unactivated 8 S receptor.

Work described in this thesis has shown that thermotolerance in three prostate 

cancer cell lines (LNCaP, DU145 and PC3) is a transient property which can be 

established by pre-exposing the cells to 39°C for 2 hours. This temperature has 

been shown to induce hsp90 synthesis in prostate cell lines, shown using 

immunop'-ccipitation of hsp90 after incorporation of S^metjionine and Western
A

blotting.

The androgen sensitive prostate cell line LNCaP is not normallygrowth 

inhibited by the antiandrogen HO-Flut.. However if the cells are treated with 

hyperthermia therapy (2 hours at 39°C and 42°C) before exposure to HO-Flut 

the cells exhibit an increased cell kill. This increased sensitivity to cell kill was 

shown to be maximised 12 hours after heat shock and had fallen by 72 hours to 

control levels. Re-establishment of both thermotolerance and the increased cell 

kill in conjunction with antiandrogens can be achieved by a further heat shock 

administration. Thus, induction of thermotolerance in the prostate cancer cells 

may not be too serious for patients or clinicians because these cells may now be 

more sensitive to cell kill by antiandrogens.

vii



Androgen receptor ligand binding assays were used to study the effect of heat 

shock on the binding affinity of androgen receptors in LNCaP and DU 145 

cells. A gradual increase (0.232± 0.050 - 0.513 ± 0.019) in the disassociation 

constant (Kd) of the type I binding site was seen during the first 12 hours 

following heat shock. To answer the question of whether this change in Kd 

reflects some underlying change in the composition of the androgen receptor 

following heat shock sucrose density gradient analysis was used to investigate 

the possible changes in the androgen receptor complex composition and the 

ratio of 8S:4S receptor types. After heat shock a temporal shift in favour of the 

8 S receptor complex was seen, the time course for this mimics that of the 

acquisition and loss of thermotolerance as shown by cell survival to exposure to 

normally lethal temperatures. An additional peak around 1 IS can be seen 

between 10-12 hours after heat shock. A model is presented to provide a 

molecular basis for these observations.
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1:1 Introduction

In 1992 prostate cancer killed 693 men in Scotland alone, its incidence is 

second only to lung cancer (Scottish Health Statistics 1993). It is becoming the 

most commonly diagnosed cancer in men in the western world [Silverberg et. 

a l, 1990]. It is therefore easy to see why it is a major medical problem and why
1 1  ^  a

research new methods of diagnosis and treatment is important.

The highest incidences appear to be in the black population of the USA, which 

is more than double that of the white population [WHO, 1992]. Oriental males 

have the lowest mortality rate [Griffiths et. al., 1993]. 67% of all prostate 

tumors originate in the peripheral zone (see figure 1). Only 15% of patient with 

stage A prostatic cancer (where the tumour is confined to the prostate and hasn't 

penitrated the capule surounding the prostate) go on to develop progressive 

disease [Zang, 1992].

1:2 The prostate gland

The prostate gland surrounds the neck of the bladder and the proximal end of 

the urethra in males and is attached to the rectum by dense fibrous tissue. It is 

to produce and secre te a lubr Icating fluid which helps nourish the 

spermatozoa. The prostate can be divided into 4 zones; the anterior,the central, 

the transitional and the peripheral lobes [McNeal, 1981], see figure 1 for 

details.

Androgens are essential for normal prostate development and maintenance 

[Davies & Eaton, 1991]. However androgens are not the sole factors involved. 

Several growth factors have been shown to be important including epidermal 

growth factor (EGF), fibroblast growth factor (FGF) and transforming growth
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factor (TGF)-j3. EGF and FGF have mitogenic effects on prostate cell growth 

which are balanced by TGF-fVs inhibitory effect [Davies & Eaton, 1991].

1:3 Prostatic diseases 

Benign prostatic hyperplasia

Major diseases of the prostate include benign prostatic hyperplasia (BPH) and 

prostate cancer. At the present time more than half the male population over 

sixty five suffers from some degree of BPH [Carter & Coffey, 1990]. BPH is 

characterised by nonmalignant nodular transformation of the transition zone of 

the prostate (see figure 1) [Algaba, 1992]. Although it is not normally a fatal 

condition, it causes obstruction of the urethra which often requires surgery and 

creates a great deal of distress to the patient. BPH was originally believed to be 

a premalignant condition but it is now believed that BPH and prostate carj^r
cx

have sepr rate etiologies and originate in different regions of the prostate 

[Griffiths et al., 1991]. I t  is important to remember that 20% of

prostate cancers do occur in the same zone as BPH, the transitional zone.

Prostatic intraepithelial neoplasia and atypical adenomatous 

hyperplasia

Prostatic intraepithelial neoplasia (PIN) is a putative precancerous state which 

occurs most commonly in the peripheral zone of the prostate. Increasing 

severity of PIN is associated with progressive disruption of the basal cell layer 

and basement membrane [Bostwick, 1992]. PIN is found in 82% of patients 

with prostate cancer. It has been suggested that high-grade PIN and invasive 

carcinoma represent different stages of the same process [Nagle et al., 1991]. 

Another premalignant lesion atypical adenomatous hyperplasia (AAH) which is 

found in the central transition zones of the prostate is believed to be a precursor 

of central carcimonas [Kovi, 1988].
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Figure 1. Lobular divisions of the prostate.

Taken from Algaba, 1992.

The prostate contains four different zones: the anterior zone (dark blue/purple 

area), the central zone (green area), the transitional zone (lighter blue area) and 

the peripheral zone (red area). These zones are not isolated from each other but 

do have subtle histological differences.
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Prostate cancer

It has been suggested that an imbalance of androgens and growth factors may 

lead to both BPH and prostate cancer. Increased levels of FGF have been 

shown to cause prostatic hyperplasia in transgenic mice [Muller et. a l,  1990] 

and increased levels of FGF have been found in patients with BPH [Mori et. 

al., 1990]. Transforming growth factor-a (TGFa) is expressed in both BPH 

and prostate carcinoma [LLoyder al., 1992; Yang et al., 1993]. Prostate cancer 

cells unlike normal prostate cells, do not require the presence of both EGF and 

FGF but rather the presence of either is sufficient for maximum growth 

[McKeehanef. al., 1987].

Little is known about the premalignant changes which occur in prostate cancer 

or why up to 30 % of prostate tumours remain latent and the patient 

asymptomatic [Griffiths et. al., 1993], but two factors, age and the presence of 

testes have been shown to be important. Neither 3VH-1 nor prostate cancer 

develops if the testes have been removed before puberty [Griffiths et. al.,

1992], and both diseases increase in prevalence after the age of 50 [Griffiths et. 

al., 1993].

1:4 Treatment of prostate cancer

The treatment of prostate cancer varies according to size of the tumour, local 

spread, and the possiblity of metastatic deposits. It is therefore important to 

stage prostate cancers accurately (see table 1).

1:4:1 Surgery

Surgery is the first line of therapy for stage T iA and T2B (table 1) tumours, 

where the tumour is confined to the prostate and there is no evidence for 

metastasis [Brendler, 1992]. Surgery usually involves radical prostatectomy
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TiaiAl <5%:3 foci

Tj: A
Confined

Tib: A2
Non-Pal pable

>5%: Multifocal

to the
Prostate T2 a: B1 Low vol:< 1.5cm

T2:B T2 b: B2
Palpable

High vol:> 1.5cm

T3:C

Capsule

T3 Tumour extension beyond the capsule

Penetration
T4 Tumour fixed to adjoining tissues or

T4: D invading neighbouring structures

Table 1:- Classification of the stages of prostate 
cancer (from Griffiths et. al., 1993)
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which removes the whole prostate and its capsule thus eliminating the tumour. 

If, however, the tumour is at a more advanced stage and capsule penetration has 

occurred surgery may not eradicate the tumour but surgical intervention such as 

a transuretheral resection of the prostate will relieve some of the symptoms until 

systemic therapies begin to have an effect.

1:4:2 Androgen therapy

For tumours which have advanced beyond the T3C stage (table 1) some form of 

systemic therapy is commonly used either alone or in conjunction with surgery. 

It has been known for some time that androgen ablation is an effective method 

of treatment [Huggins & Hodges, 1944]. Early androgen ablation involved 

bilateral orchidectomy (castration). Diethylstilbestrol (DES) was one of the first 

drugs designed to lower serum testosterone by suppression of hypothalmic 

LHRH production [Eaton & Grffiths, 1990 ]. It was effective but has serious 

side effects including cardiovascular toxicity [Khoury, 1992]. Medical 

castration is better achieved by administering lutenizing hormone releasing 

hormone (LHRH) agonists. LHRH agonists often caused a 'tumour flare' due 

to a transient rise in testosterone levels [Kahan & Delriu, 1984]. This 

physiological surge of testosterone can be countered by the administration of an 

anti androgen given 1 week prior to LHRH agonist and continued for the first 

month of therapy [Khoury, 1992].

Antiandrogens were originaly described as "any compound, independent of 

feedback mechanisms, that binds to target cell androgen receptors preventing 

the stimulation by exogenous or endogenous androgens" [Dorfman, 1970]. 

Several antiandrogens are used clinically in the treatment of prostate cancer and 

these can be divided into two groups: steroidal and nonsteroidal antiandrogens. 

Cyproterone acetate and megestrol acetate are both synthetic steroids which 

compete with androgens for receptor binding. However the main metastatic

7



suppressive action of these drugs is thought to be exerted through their 

progestational activities which lowers serum testosterone levels by LH 

inhibition [Kirby, 1993; McLeod, 1993], There have been some reports of 

megestrol acetate and cyproterone acetate activating rather than inhibiting 

androgenic activity in vitro [Poyet & Labrie, 1985].This may reflect differing 

mechanisms of action in vitro and in vivo.
<X

Pure antiandrogens have no effect on hypothalmic pituitary activity [Kirby,
A

1993; McLeod, 1993]. Three nonsteroidal antiandrogens Hutamide® ( a - a -  

a  -trifluro-2-methyl-4'-nitrom-propionotoluidine), Nilutamide® (RU23908) 

and Casodex® (I Cl 176,334) are available at present.

Up to 70% of all prostate tumours are androgen sensitive at the time of 

diagnosis [Whitmore, 1973; Lepor etal., 1982]. The main problem with 

antiandrogen therapy is the eventual acquisition of androgen insensitivity by the 

tumour. The reasons tumours become hormone independent are not clear but 

two main theories exist. Firstly the tumour cells could adapt to the androgen- 

deple tted envircjment leading to progressive loss of androgen dependence. 

Growth of a preexisting androgen insensitive clone within the tumour as the 

androgen sensitive cells are inhibited would lead to the tumour containing more 

and more androgen insensitive cells [Gormley, 1992].

5a- reductase within the prostate cells converts testosterone to 5a- 

dihydrotestosterone (DHT) which is the intracellular mediator of androgen 

action. Therefore 5a- reductase is a target for treatment of prostatic cancer. It has 

been suggested that 5a- reductase inhibitors can produce anti tumour effects if 

the tissue level of DHT is reduced although this may be harder to achieve in 

tumours than in normal tissue [Isaacs, 1992], Finasteride is one of the 5a- 

reductase inhibitors under investigation. It has been shown to reduce prostate 

size and suppression of serum and intraprostatic DHT to castrate levels 

[Gormley, 1992].
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1:4:3 Radiotherapy

An alternative to surgery for low-stage prostate cancer (T iA and T2B) is 

radiotherapy. The results obtained by the two treatments are comparable in 

terms of patient survival [Eklov et. al., 1992a]. Surgeons and radiation
s

oncologists treat two different subjets of patients, the patients treated by 

radiotherapy tend to be older, less healthy, and often have more advanced 

disease [Hanks, 1988].

1:4:4 Chemotherapy

Advanced prostatic cancer is often treated by chemotherapeutic agents such as 

Estracyt® (a nomitrogen mustard attached as a carbonate to the C-3 atom of 

oesff&diol) which accumulates in the prostate and arrests prostatic cancer cell 

growth and inhibits clonogenic cell survival [Harley-Asp et. al., 1982 ; Eklov 

et. al., 1992b]. The advantage of this drug lies in the fact that few male tissues 

have estrogen receptors and therefore it is specific to the prostate but it has been 

suggested that the liver cleaves the nomitrogen mustard side chain off the 

estrogen before it has time to enter the prostate.

1:4:5 Thermotherapy

Many types of tumour cells are more sensitive to elevated temperatures than 

normal cells [Crile, 1963; Giovanella et. al., 1976]. This observation and the 

accessibility of the prostate gland to an external heat source has led to the
At

developme s t  of thermotherapy as a treatment for prostate cancer and BPH 

[Mendecki et. al., 1980; Servadio et. al., 1987]. Thermotherapy has been used 

in conjunction with antiandrogen therapy [Linder et. al., 1990] and radiotherapy 

[Abe & Hiraoka, 1990]. The combination of hyperthermia and chemotherapy 

produces differing results depending on the type of chemotherapy used. 

Hyperthermia combined with doxorubicin increases resistance to the drug, 

which does not involve any known multidrug resistance systems but is

9



correlated to hsp70 and hsp 27 levels [Ciocca et. al., 1992]. The combination of 

hyperthermia and lonidamide appears to enhance hyperthermic toxicity [Bloch 

et. al., 1994]. Lonidamine was originally developed as an antispermatogenic 

drug and it has been shown to inhibits the mitrochondrial enery metabolism of 

neoplastic cells without significant inhibition of normal cells [Bloch et. al., 

1994].

Hyperthermia, thermotherapy and the development o f  

thermo tolerance

The observed thermosensitivity of cancer cells and the potential of 

thermotherapy as an anti-cancer therapy has been known for some time 

[Cavaliereet. al., 1967; Suit & Schwayder, 1974]. The sequence of events 

leading to cell death is not well understood and several of the intracellular events 

that occur after hyperthermia, including cytoskeletal collapse, increasing nuclear 

protein levels and the decreases in respiration, oxidative phosphorylation and 

mRNA synthesis could either be due to the elevated temperature itself or a result 

of impending cell death [Weber, 1992].

Treatment of prostate cancer with local hyperthermia involves heating the gland 

to between 41 °C and 44°C either once or twice a week [Engin et. al., 1993]. 

This is achieved by several methods including the use of microwaves 

[Mendecki et. al., 1980]. Temperatures above 42.5°C may result in damage to 

normal tissue [Lieb et. al., 1986] and therefore have limited use in clinical 

practice [Lloyd et. al., 1992b]. It has been shown that prostate cells which are 

subjected to hyperthermia in vitro and survive become thermotolerant and then 

are able to withstand further thermotherapy even at normally lethal temperatures 

[Lloyd et. al., 1992b].

Thermotolerance has been described as an acquisition of a transient resistance to 

a thermokilling by pre-exposure of the cells to a sublethal dose of heat or other 

types of cell stress [Gemer & Schneider, 1975]. The mechanism behind the
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acquisition of thermotolerance is unclear at this time although the involvement 

of a family of proteins, the heat shock proteins, is well documented and will be 

discussed in section 3:6.

1:5 Androgen synthesis and transport

All steroid hormones have a similar structure and share common synthesis 

pathways. Minor chemical changes can lead to the striking diversities in the 

biochemical activity of those steroids e.g. the difference between estrogen and 

testosterone is that estrogen has one less carbon atom.

There are two types of androgens, adrenal androgens (e.g. androestenedione) 

and testicular androgens (testosterone).The biosynthesis of testosterone is 

summarised in figure 2 .

Testosterone is produced by the Leydig cells in the testes, after stimulation by 

luteinizing hormone (LH) [Milgrom, 1990]. Like other steroids, testosterone is 

derived from cholesterol, a 27-carbon atoms molecule. During steroidogenesis, 

the number of carbon atoms progressively reduces from cholesterol to the 

various steroid hormones (glucocorticoids,mineralocorticoids and progestins all 

have 21 carbons, androgens have 19 and estrogens have 18).

The first stage in the synthesis of steroids conversion of cholesterol to 

pregnenolone by the cholesterol side chain cleavage enzyme in the 

mitochondria Pregnenolone is then converted into progesterone by two 

enzymes, 3 p-hydroxy steroid oxidoreductase and the A^-oxosteroid isomerase 

which transform the 3-hydroxyl group to a ketone group and transfer the double 

bond from the 5-6 to the 4-5 position, in the microsomes hydroxylation of 

progesterone (involving cytochrome P450) at C17 yeilds 17a- 

hydroxyprogesterone, which is in turn converted to androstenedione by C17-

11



20-desmolase. The final step is the formation of testosterone from 

androstenedione by 17p-hydroxy-steroid oxidoreductase.

Testosterone is secreted from the Leydig cells and binds to sex hormone- 

binding globulin (SHBG) which appears to act as a transport protein but also 

serves to limit the metabolic clearance of steroids [Hammond, 1993]. It is 

believed that an equilibrium exists between steroid bound to SHBG and free 

steroids and that only free steroid is biologically active [Hammond, 1993]. 

SHBG binds to receptors on the surface of the prostate cells and may play 

some role in entry of steroids into some cells [Khan, 1990].

Once inside the cell testosterone is converted to DHT by the enzyme 50- 

reductase. DHT has a substantially higher affinity for the androgen receptor 

than does testosterone.
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Figure 2:- The synthesis of testosterone from cholesterol 
in the testes.
Adapted from Milgrom,1990.

13



2. The mechanism of action of steroids

2:1 Type I and type II steroid receptors

Two classes of binding sites for steroid receptors have been identified by 

Scatchard analysis of ligand binding assays [Eriksson, 1978; Markaverich & 

Clark, 1979; Castagnetta etal., 1992]. Type I sites bind ligand with high 

affinity (KdclnM) and low capacity, the type II receptors bind ligand with a 

lower affinity but higher capacity [Clark & Peck, 1979;Castagnetta etal.,

1992]. The type I receptor is the classical steroid receptor, in that steroid 

binding to type I receptor causes activation of the receptor, followed by DNA 

binding and gene activation [Leake & Habib, 1987; Castagnetta et al., 1992]. 

Little is known about the biological significance of type II receptors 

[Castagnetta et al., 1992]. It is the type I receptor which will be discussed in the 

following sections.

2:2 Steroid receptors: a common structure

The ability of a cell and therefore a tissue to respond to a particular steroid 

hormone has been attributed to the presence of specific hormone receptors 

within that cell [Strahle, 1989 ]. Steroids diffuse across the plasma membrane 

and bind to their receptor. Unligated receptors (see below) are found as part of a 

larger oligomer which includes several heat shock proteins (see4:1).

Unoccupied steroid receptors are normally located within the nuclear envelope, 

except for the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) 

which in most target cells appear to be predominantly cytoplasmic.
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All steroid receptors belong to a superfamily of ligand-modulated transcription 

factors, which also includes thyroid hormone receptor (T3R), retinoic acid 

receptor (RAR) and the oncoprotein v-erb A (see Figure 3).

The cDNAs for all major steroid hormone receptors have been cloned [Evans, 

1988] and show a high level of homology (see Fig. 3). It is thought that steroid 

receptors have evolved from a common prototype that contained a ligand 

binding domain and a DNA binding domain with two non-identical zinc fingers 

[Amero, 1992].

Amino acid sequence comparisons of the steroid receptor proteins revealed six 

domains, A-F [Forman, 1990] (Figure 4). Each domain has one or more 

functional sub-domains The domain A/B, located at the N-terminal region, is 

the least conserved, varies greatly in length and contains one of the two 

transcriptional activation functions (TAFs), TAF-1, which is ligand- 

independent [Gronemeyer, 1993].

The C (DNA binding) domain, is highly conserved. Two non-identical zinc 

finger motifs are involved in the binding of receptor to specific nucleotide 

sequences in the DNA.These zinc fingers are formed by twenty highly 

conserved amino acids. The receptor superfamily members can be classified by 

the amino acids present at three positions at the base of the first zinc-finger (N- 

terminal finger). The GR, AR, MR and PR all contain Gly, Ser, and Val at the 

discriminatory positions. The second group is characterised by Glu, Gly, and 

Gly at these positions and includes many of the orphan receptors as well as the 

T3 R, RAR, and Vit DR [Forman, 1990]. The ER has Glu and Gly at the first 

and second discriminatory positions but it contains an Ala in the third position. 

Nevertheless, it recognises the group two DNA binding sequence [Forman,

1990]. The C domain also contains one of the two dimerization sequences and 

an hsp90 binding region (the association of SR with hsp is discussed in part 

4:1).
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The ligand-independent nuclear localization signal spans the border of the C and 

D domains. The D domain is also known as the hinge domain .

The E domain has a highly conserved sequence and contains the ligand binding 

activity (it is often referred to as the ligand binding domain), a hsp90 

bindingregion, the second dimerization region, the ligand-dependent nuclear 

localization signal and the second TAF, TAF-2, which is ligand-dependent and 

cell- and promoter-specific [Gronemeyer, 1993].

Not all receptors have an F domain. The PR lacks this domain and its function 

in the other receptors is as yet unknown.

2:3 Receptor modification

Steroid receptors display a discrepancy between the molecular weight obtained 

by SDS-PAGE and that calculated from the amino acid sequence, indicating 

possible post-translational modification such as phosphorylation, glycosylation 

and acylation. Phosphoamino acid analysis and proteolysis studies 

demonstrated serine phosphorylation of SRs, mainly in the N-terminal domain. 

Phosphorylation on tyrosine residues have been reported in the cases of ER 

[Auricchio, 1989]. Receptors appear to be phosphorylated in the absence of 

hormone but become hyperphosphorylated when hormone or other agonists are 

present [Orti, 1992; Kuiper & Brinkmann, 1994]. In general terms, 

phosphorylation can increase the negative charge and acidity of a protein and 

thus have an effect on it s interaction with other proteins or with DNA, but it s 

specific role in the case of SR's is not clear at this time [Kuiper & Brinkmann, 

1994].
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Region A/B C D

Receptor
Type

py//A 7Zv 77/

4 ///A
GR

94 62 65 MR

91 69 53 AR

79 66 59 PR

57 36 26 ER

46 33 15 RAR

44 29 18 T3R

41 33 15 VitDR

Figure 3:- The steroid receptor superfamily.

Comparison of amino acid sequences, the boxes represent regions of 
homology within the DNA-binding and steroid binding domains, the figures 
within show the % homology with the GR sequence. Adapted from 
O'Malley, 1990.
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Region A/B D : e

K;X;X;XjX;

K-X-X-X-X'

Ligand Binding

DNA Binding

Transcriptional 
Activation —

Nuclear Localization

Dimerization

hsp90 Binding

Figure 4. Schematic illustration of structure/function of steroid receptor.

The functions attributed to steroid receptors are listed, the lines indicate the 
regions of the receptor which are involved in each function.
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2:4 Two forms of the steroid receptor exist

Steroid receptors can be found in two states within the cell, either with

(transformed receptor) or without (unliganded receptor) ligand bound. The

transformed receptor has a sedimentation coefficient of 4S. The unliganded

receptor is associated with several other proteins to form a large oligomeric

structure with a sedimentation coefficient of 7-10S [Sherman, 1983] which is

referred to as the 8 S receptor. Purification of the 8S PR receptor [Renoir,

1984] led to the discovery of a 90kDa protein associated with the receptors

[Joab, 1984 ]. This protein was identified as hsp90 [Catelli, 1985 ]. It was

noted that the 8 S receptor does not bind to DNA [Beato, 1987 ]. Hsp90 is

believed to mask the DNA binding region of the receptor and thus prevent the

unligated receptor from binding to DNA [Baulieu, 1987]. Other proteins,

including hsp27, hsp56, hsp60, and hsp70 have been shown to be associated
h

with steroid receptors and pro ably form part of the 8 S complex 

The 8 S receptor complex is stabilized by group 6 A transition metal oxyanions 

molybdate, vanadate and tungstate [Dahmer, 1984]. Stabilization of the receptor 

always coincides with the inability of the receptor to bind DNA [Pratt, 1989 ].

2:5 Receptor transformation

Steroid hormones bind to the oligomeric 8 S receptor causing the dissociation of 
f

the conjlex to generate the 4S form of the receptor which has the ability to bind
A

DNA [Baulieu, 1987; Beato, 1987; Pratt, 1992].

Transformation of the receptor also occurs at high salt concentration, in the 

presence of high levels of ATP or after dilution, even if no receptor is bound by 

ligand [Willman, 1986]. DNA binding and transcriptional activation by 

unliganded, transformed receptor is a matter of controversy. It is clear that
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dissociation of the 8 S receptor complex is necessary for DNA binding but is it 

sufficient? The subsequent transcriptional activation might require ligand- 

receptor interaction. In vivo , hormone is required for gene activation by steroid 

receptors and this has been reproduced in vitro [Meshinchi, 1990; Bagchi, 

1992] but in vitro studies have suggested that hormone independent activation 

does occur [ Bailly, 1986; Willman & Beato, 1986; Elliston, 1990]. Whether 

hormone binding has effects other than dissociation of the receptor remains 

unclear. The unliganded transformed receptors which had transcriptional 

activities may have undergone some, as yet unidentified, structural alteration 

and activation by the various in vitro techniques used to purify the receptors. In 

vivo the receptor may not undergo such conformational change prior to ligand 

binding and therefore ligand would be necessary for receptor activation.

A two step model for receptor activation has been described [Bagchi, 1992; 

McDonnel,1991] in which the ligand first causes dissociation of the oligomeric 

8 S receptor to reveal the 4S receptor (Fig. 5). The ligand then converts the 

receptor into a transcriptionally active form (Fig. 5). A 5S form of the receptor 

has been isolated and it was suggested that this 5S form is the active form of the 

receptor [Muller et al., 1983]. In the case of ER this 5S form has been identifed 

as a dimer of two steroid binding subunits [Miller et al., 1985].

2:6 Steroid receptor dimerization and DNA binding

Dimerization of steroid receptors is required for stable binding of the receptor to 

DNA and may take place when the receptor is bound to DNA [Kumar, 1988] or 

prior to DNA binding [DeMarzo, 1991].

Steroid receptor dimers bind to regions of DNA known as hormone response 

elements (HREs) [Luisi, 1991] within the promoter region of hormone- 

responsive genes. HREs have an imperfect palindromic structure with a three-
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nucleotide non-conserved spacer between the two halves. They can be classified 

into two main groups according to the consensus sequence within the 

palindrome. The first group recognise the glucocorticoid response element 

(GRE) which contains the consensus sequence GGTACAnnnTGYTYCY 

(where Y= T or C ). Members of this group include GR, PR, AR and MR. The 

second group recognises the estrogen response element (ERE) which has the 

consensus sequence GGTCAnnnTGACC. Members of this group include ER, 

T3R, Vit D3 and RAR [Beato, 1989]. The region within the receptor 

responsible for recognising the consensus sequences is known as the P-box and 

is located in the first zinc finger (N-terminal finger) [Umesono, 1989]. The P- 

box amino acid consensus sequence for the GRE and ERE groups of receptors 

are GSCKV and EGCKA, respectively.

Only after binding to its HRE can a steroid receptor transcriptionally activate the 

genes under its control.

2:7 Transcriptional activation by steroid receptors

Two sub-regions of steroid receptors have been identified as transcriptional 

activation functions and are located within the N-terminal region (TAF-1) and 

the hormone-binding region (TAF-2) of PR, GR, ER [Gronemeyer, 1993 ] 

and AR [Jenster, 1992]. Other regions, such as the DNA binding region have 

been implicated in transcriptional activation [Gronemeyer, 1993a]. Work carried 

out by several different groups studying transcriptional activation by steroid 

receptor hormones have been unable to reach agreement as to the roles of each 

TAF [Tora, 1989; Meyer, 1990; Berry, 1990]. Each group used a different 

cell-free system which has led to the theory that transcriptional
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Ligand
Binding

Dissociation of 
the 8S receptor

Conformational 
change within 
the receptor

8S
Receptor
Complex,
Inactive

hsp90

hsp70

hsp56

4S
Receptor
Complex,
Inactive

4S
Receptor
Complex,
Active

Inactive receptor 

p27

□
Steroid hormone

Active receptor

Receptor dimerization and DNA binding

Hormone Response Element

Figure 5:- Schematic model for steroid receptor activation.

Steroid-free receptor exists as part of an 8S receptor complex. 
Hormone binding causes a two step change to this complex.First the 
associated proteins dissociate and then a conformational change occurs 
within the receptor which enables the receptor both to bind to DNA 
and todim erise [Bagchi, 1992; McDonnel,1991],
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activation by a particular TAF is dependent on cell type and promoter context. 

This may explain the inconsistency of results obtained so fa r .

The receptor regulates gene transcription presumably by interaction with other 

transcription factors. The transcription factor TFIIB has been shown to 

associate with PR and ER [Ing, 1992] probably via TAF-1 or TAF-2. It has 

been postulated that TFIIB mediates an interaction between the receptor-DNA 

complex and the TFIID-DNA complex at the TATA box creating a DNA loop. 

The subsequent binding of RNA polymerase II together with TFIIF, E, H and 

J leads to the formation of an active pre-initiation complex [Ing, 1992].This is 

supported by observations made on other DNA binding proteins such as API 

which binds to an enhancer sequence similar to but distinct from HRE as a 

dimer consisting of either oncogenes Jun and Fos or a dimer of Jun [Gutman & 

Wasylyk, 1991].

2:8 Repression of transcription by steroid receptors

Several examples of repression of gene expression by steroid hormones have 

been found. For example glucocorticoids repress the pro-opiomelanocortin 

(POMC) gene [Drouin, 1989]. In this case repression requires GR binding to a 

GR-binding site within the POMC promoter region but there are other examples 

were receptor mediated repression does not require DNA binding of a receptor 

[Drouin, 1993]. Repression may be due to squelching, tethering, quenching, 

interference, competition for overlapping binding sites, the existence of null 

binding sites or direct repressor elements [Drouin, 1993]. More work needs to 

be done before a true understanding of repression by steroid receptors is 

obtained.
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2:9 Steroid receptor localisation

Originally steroid receptors were believed to be cytoplasmic but in the early 

1980's enucleation experiments showed that they were in fact located in the 

nucleus [Martin &Sheridon, 1982; Welshon et al., 1984]. In the absence of 

steroid the loose association of receptor with the nuclear elements causes the 

receptor to partition into the cytosol when the cell is disrupted in a large volume 

of buffer [Martin &Sheridon, 1982].

In the absence of hormone the AR, PR, and ER are located in the nucleus 

[King, 1984 ; Husmann, 1990], but the unliganded GR and probably the MR, 

are found in the cytoplasm [Wikstrom, 1987; Agarwal, 1994] and translocate to 

the nucleus after hormone binding.

The question of how steroid receptors are transported into the nucleus is still 

under investigation. Small molecules can diffuse through the nuclear pores but 

molecules larger than 20-40 kDa must be actively transported through the 

nuclear pore complex [Feldherr, 1984]. Protein which do not randomly diffuse 

to the nucleus may have a nuclear localisation signal (NLS), such as that of the 

SV40 large T antigen which has a sequence PKKKPKV [Kalderon, 1984]. A 

general NLS sequence consisting of two basic regions has been identified 

[Dingwall, 1991]. The first region contains two basic amino acid residues and 

is separated from the second by ten random amino acids. The second basic 

region is a cluster in which three out of five amino acids must be basic 

[Robbins, 1991]. Steroid receptors contain this sequence located at the 

boundary of the second zinc finger and the hinge region [Dingwall, 1991; 

[Guiochon-Mantel et al., 1994]. Mutation analysis of these regions, before the 

NLS was known, had shown these regions to be important in nuclear 

localisation [Gronmeyer, 1993b].
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How the NLS sequences are involved in nuclear localization is not understood. 

They may interact directly with the nuclear pore structure or additional proteins 

may be involved.

2:10 Steroid receptor trafficking

It has been suggested that cytosolic steroid receptors are transported along the 

cytoskeletal system as part of a transportosome [Pratt, 1992], which contains 

several proteins such as hsp90, hsp56, p50, p23 and pl4. In the case of AR, 

PR and ER, this transportosome enters the nucleus and the receptors remain 

associated with at least hsp90 in a docking complex until hormone binding.

The docking complex is associated with the nuclear skeletal system. The 

docking complexes of the GR and MR which contain hsp90 are found in the 

cytoplasm where they are associated with the cytoskeleton [Pratt, 1990]. Hsp 

90 can bind actin [Koyasu, 1986] and tubulin [Sanchez, 1988]. The possible 

role of either of these proteins in receptor transportation or docking has not been 

established.

There is some evidence which contradicts a possible role of the cytoskeleton in 

receptor transport. Drugs which disrupt the cytoskeletal systems such as 

demecolcine (which acts on microtubules and intermediate filaments) and 

cytochalasin B (which acts on actin-containing filaments) do not prevent 

nuclear transport of the PR [Perrot-Applanat, 1992; Guiochon-Mantel etal., 

1994].

When the mechanism of translocation and docking is fully understood, it may 

reveal novel ways to prevent receptor-induced transcription by blocking the 

transport of receptors.

25



2:11 The androgen receptor

As discussed earlier (1:2), androgens (testosterone (T) and DHT) are essential 

for the development and normal function of the prostate. Androgens exert their 

effects through binding to the AR.

The human AR gene has been mapped to the X-chromosome, contains eight 

exons and spans 54 kilobasepairs of DNA [Marcelli, 1990]. The human AR 

gene is transcribed from two initiation sites, neither of whose promoters contain 

canonical TATA or CCA AT boxes [Faber, 1993].

Genes which are regulated by androgens include the prostate specific antigen 

(PSA) gene. The androgen response element (ARE) for this gene has been 

identified [Riegman, 1992]. The AREs identified so far are similar to the GRE 

consensus sequence [Roche, 1992] .

The AR, like all steroid receptors, is a phosphoprotein, phosphorylation 

occurring within the N-terminal domain, the hormone binding domain and the 

hinge region [Orti, 1992]. In the absence of hormone, the AR is phosphorylated 

but becomes hyperphosphorylated on hormone binding [van Laar, 1991].

The 8 S AR contains hsp90, hsp70 and hsp56 [Veldscholte, 1992]. Other 

proteins may well be involved. The first step of receptor transformation after 

hormone binding may be the dissociation of the hsp90 and hsp56 proteins 

leaving an intermediate 6 S form which contains receptor and hsp70 

[Veldscholte, 1992].

It is believed that intermolecular disu/ ide bonds help stabilise the 8 S AR 

complex. Androgen may cause reduction of these bonds which would result in 

transformation of the receptor [Wilson, 1986].

Dimerisation of the AR requires androgen binding. Only AR dimers bind to 

DNA [Wong, 1993].
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2:12 Antagonist action on receptor mediated gene transcription

Antagonists are compounds which bind to, but prevent transcriptional 

activation by the steroid receptor. The molecular mechanism of antagonist action 

is not well understood, but interference may occur at a number of different 

stages of receptor activation. Antagonists may inhibit the dissociation of the 8 S 

receptor complex. Alternatively, the 8 S complex may dissociate to produce an 

antagonist-4S receptor complex which is unable to bind to its HRE possibly by 

inhibition of dimerisation (if this is necessary for DNA binding). Finally the 

antagonist-4S receptor may bind to the HRE but be unable to activate the 

transcriptional machinery [Baulieu, 1987]. Different antagonists may act in 

different ways. In some cases, antagonists can act as partial agonists under 

certain conditions [Allen, 1992; Berry, 1990; Meyer, 1990 ]. The group of 

antagonists which possess agonist activities includes the antiestrogen tamoxifen 

and the anti progestin/anti glucocorticoid RU486. These are probably the best 

understood antagonists. They do not appear to interfere with DNA binding 

[Brown, 1990; Meyer, 1990] so must alter the transactivation properties of the 

receptors . Weak agonists like estriol have a lower affinity for ER and therefor 

compete with estrogens when they are present but in the absense of estrogen, 

estriol acts as a weak agonist.

It has been proposed [Berry, 1990; Meyer, 1990] that the two TAFs present in 

the receptors play a role in the agonistic action of various antagonists. TAF-1, 

the hormone independent TAF, would be active in the presence of either agonist 

or antagonist (when antagonist causes dissociation of the 8 S complex). When 

TAF-1 and TAF-2 act independently, the ligand would act as an antagonist if 

TAF-2 alone was active on a gene promoter, but if TAF-1 alone was active the 

ligand would be an agonist and if both were active it would act as a mixed 

agonist/antagonist.
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One antagonist I Cl 182780, has been called a pure antagonist because no 

steroid agonist action has been associated with it. However recent work 

[Gronemeyer, 1993] has suggested that ICI182 has a similar mode of action to 

tamoxifen and RU486 and may be a partial agonist.

A group of pure antagonists has been found which appear to inhibit DNA 

binding of the receptor. One example ZK98299 may prevent the formation of 

receptor dimers due to an abnormal conformational change on ZK98299 

binding to the receptor [Klein-Hitpass, 1991].
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3 . Heat Shock Proteins

3:1 The Heat Shock Response and The Heat Shock Proteins

The cellular response to stress is universal. Part of this response involves the 

synthesis of a small group of proteins, the heat shock proteins which are also 

known as stress proteins. Hsps have been defined by two criteria. Firstly, their 

synthesis is strongly stimulated by stress and, secondly, their genes contain a 

conserved sequence of 14bp in the 5' noncoding region, the Pelham box 

[Schlesinger etal., 1986], also known as the heat shock element (HSE). 

Induction of hsp synthesis in response to elevated temperatures has been 

demonstrated in organisms as diverse as E.coli [I^emeaux etal., 1978], 

Drosophila [Lindquist, 1980], chickens [Kelley etal., 1978] and humans 

[Maytin et. al., 1990]. Indeed, it is now understood that cells from all known 

organisms respond to stress conditions such as heat by producing hsps 

[Lindquist, 1986].

The DNA sequences of the hsp genes have been extensively conserved 

throughout evolution [Lindquist, 1986]. The conserved regions include both the 

protein coding and regulatory sequences. Hsps have been shown to be 

constitutively expressed in all cell types studied and they appear to have many 

roles within non-stressed cells, including that of molecular chaperones [Welch,

1991].

The response of cells to stress was first identified by exposing Drosophila to 

elevated temperatures but several other supraphysiological conditions have the 

same effect on cells [Lindquist, 1986]. Ethanol, zinc, copper, mercury, 

sulfhydryl reagents, sodium arsenite and amino acid analogues have all been 

shown to induce the response.

Heat shock induces a rapid change in transcriptional behaviour of the heat 

shock genes. This occurs on binding of the heat shock factor (see below) to the
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HSE. Under stressed conditions, selective translation of hsp mRNAs occurs via 

increased mRNA stability (due to sequence elements in the 3' untranslated 

regions) and increased translational efficiency (due to sequence elements within 

the 5' untranslated regions) [Schlesinger, 1990].

3:2 The heat shock factor

In E. coli, stress induces an alternative a-factor, a32, which binds to the RNA 

core polymerase, thus enabling the holoenzyme to recognize the heat shock 

promoters [Grossman et al., 1984].

As mentioned above, in eukaryotes, a heat shock factor (HSF) binds to the 

HSE and causes transcriptional activation of the hsp genes. Interactions 

between the HSF and HSE differ among organisms. In yeast, the HSF is 

bound to the HSE even in the absence of stress and is transcriptionally activated 

by stress, but in higher eukaryotes the HSF binds the HSE only under stressed 

conditions [Sorger etal., 1987]. HSFs form large homocomplexes and it is 

believed that they bind to the HSE as a trimer. The HSE consist of differently 

orientated NGAAN repeated sequences [Schlesinger, 1990]. HSF trimerization 

may explain the ability of the HSF to bind to differently orientated sequences 

but would require a great deal of flexibility in the trimer structure [Sorger,

1991].

HSFs from several different organisms have been isolated and cloned. Despite 

the homology between HSEs, there is little sequence similarity between the 

different HSFs. It has been suggested that what similarity exists occurs in the 

DNA binding and trimerisation domains [Sorger, 1991],

What regulates the HSFs is unclear. Several different models have been 

proposed. It has been suggested that a negative regulatory protein may interact 

with the HSF and that this interaction is disrupted by stress conditions [Clos et 

al., 1990]. One possibility is that the negative regulatory protein is an hsp in
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which case autoregulation of hsps would occur. HSF has been shown to 

associate with hsp90 [Nadeau etal., 1993]. Dissociation of the proposed HSF- 

hsp complex might occur when competition for hsp binding from damaged 

proteins becomes great enough leading to HSF-DNA binding and 

transcriptional activation of the hsp genes. When the hsp level increases 

sufficiently due to de novo synthesis the HSF-hsp complex reassociates and the 

HSF is once again repressed [Sorger, 1991]. Another possibility is that HSF 

may undergo transition to an oligomeric state from an inactive monomer. This is 

supported by the observations that antibodies to HSF monomers can induce 

DNA binding in non-stressed cells and that monomers of HSF bind DNA with 

significantly lower efficiency than do tetramers [Zimarino^a/., 1990]. A third 

possibility is that HSF is held in an inactive form by conformational restraint 

and that stress causes a conformational change within the HSF leading to its 

activation.

Which of these possible mechanisms is responsible for the regulation of HSF 

and therefore the heat shock response is not clear at this time, nor is the 

mechanism by which the HSF regulates transcription.

3:3 Prokaryotic heat shock proteins

Treatment of E.coli with elevated temperatures results in transient acceleration 

of the expression rate of the heat shock genes. This is due to the activation of an 

alternative a-factor which forms cj32RNA polymerase holoenzyme, which 

specifically recognizes the heat shock promoters [Grossman etal., 1984]. 

Consensus sequences for o32RNA polymerase initiation have been identified at 

positions -35 and -10 within the promoter region of hsp genes [Lindquist,

1986].
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Several E.coli hsps have been identified and cloned. These are dnaK, dnaJ, 

grpE, groES, and groEL. dnaK is homologous to eukaryotic hsp 70 [Bardwell 

& Craig, 1984]. It has roles in phage X replication and protein translocation and 

appears to protect cells from denaturing conditions, as well as having ATPase 

activity [Ang etal., 1990]. dnaJ and grpE also have roles in DNA replication 

and are required for the ATPase activity of dna K [Ang etal., 1990]. The groEL 

protein is homologous to the mitrochondrial hsp60 protein and binds to nascent 

polypeptides whose release may require ATP hydrolysis and, in some cases, 

groES activity [Ang etal., 1990].

3:4 Eukaryotic heat shock proteins

Eukaryotic hsps are expressed under stressed conditions and often at high levels 

in non-stressed conditions. The role of the constitutively expressed hsps is 

varied and in many cases is just becoming clear. Eukaryotic hsps can be divided 

into four classes according to their molecular weight, namely hsp90, hsp70 

(this group includes hsp56 & 60), the small hsps (hspl5-30) and ubiquitin. 

Current understanding of the function of each of the four groups will be 

discussed below.

3:4:1 Ubiquitin

Ubiquitin is one of the smallest hsps discovered to date. It is approximately 7-8 

kDa in size and has a role in protein degradation. Ubiquitin-mediated 

proteolysis is a major pathway for selective protein degradation in eukaryotic 

cells [Jentsch, 1992]. This multistep ATP-dependent process involves other 

proteins which are known as E l, E2 and E3. In the first step a thioester is 

formed between an internal cysteine residue of E l and the C-terminus of 

ubiquitin. This activated ubiquitin is then passed to E2, again via a specific 

cysteine residue in the enzyme. There are several different E2 enzymes which
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are also known as ubiquitin-conjugating enzymes. Ubiquitin then comes into 

contact with the protein to be degraded. The target proteins are recognised either 

by the E2 or by E3 which is a substrate recognition protein and is also known 

as ubiquitin ligase. An isopeptide bond between the C-terminus of ubiquitin and 

a specific internal lysine residue of the target protein forms which results in a 

branched conjugate. This ubiquitin-substrate conjugate may undergo further 

ubiquitinations to create multiubiquitin chains or trees depending on which 

lysine residue in the ubiquitin molecule is used for ubiquitination. For protein 

degradation to occur only a single ubiquitin molecule needs to be attached but 

there are usually multiubiquitin complexes involved [Jentsch, 1992].

The ubiquitin-substrate conjugates are believed to be degraded by a proteasome, 

which is a multisubunit complex, containing at least twelve different subunits. 

This 20-26 S complex is arranged in four stacked rings and has at least three 

distinct endopeptidase activities [Craig etal., 1993].

Ubiquitin-mediated proteolysis is believed to be regulated at the level of protein 

substrate recognition by E2 and E3 and it is therefore easy to see why there are 

so many different ubiquitin conjugating-enzymes. There is a high level of 

primary sequence homology between enzymes from different animals [Jentsch,

1992]. It is not known how the enzymes select which protein needs to be 

degraded.

Under stressed conditions it has been suggested that ubiquitin would remove 

damaged or denatured protein and complement the other hsps roles in 

preventing protein aggregates from forming within the stressed cell [Lindquist,

1986] .

3:4:2 The small hsps

All organisms encode for small hsps with a molecular mass of between 15-30 

kDa. The sequences of the small hsps of different organisms are less highly 

conserved than those of the larger hsps, but they can be considered homologous
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on the basis of their limited sequence similarities and the similarities in the 

predicted protein structure [Lindquist, 1986]. Another common feature is that 

they are found in high molecular weight complexes.

Less is known about the small hsps than the other hsps. The role of some small 

hsps as molecular chaperones has been suggested by in vitro studies. For 

example murine hsp25, human hsp27 and bovine oc-B-crystallin all refold 

citrate synthetase and a-glucosidase after urea denaturation [Jakob etal., 1993]. 

Actin depolymerization was prevented and cytochalasin D cytotoxicity was 

reduced by hsp27 in Chinese hamster ovary cells [Lovoie etal., 1993]. Human 

hsp27 has been implicated in the resistance of human breast cancer cells to 

Doxorubicin [Oesterreich etal., 1993]. Hsp27 may be involved in a regulatory 

loop in estrogen dependent cells. Estrogen induces transcription of hsp27 

mRNA and hsp27 interacts with the ER [Mendelsohn., 1991].

In most systems studied to date, phosphorylation of hsp27 occurs rapidly after 

heat shock [Mendelsohn etal., 1991] and this is believed to play a role in 

thermotolerance, as is the stimulation of hsp27 synthesis and the translocation 

of hsp27 to intra- or peri-nuclear sites [Lovoie etal., 1993].

Phosphorylation of hsp27 occurs on serine residues and it may have 

phosphorylation-activated functions which could effect signal transduction and 

thereby protect cells from heat-induced damage [Landry etal., 1992]. 

Phosphorylation of murine hsp25 and human hsp27 occurs at homologous sites 

[Stokoe etal., 1992]. In vitro studies have shown that hsp27 is phosphorylated 

by several different kinases, including mitogen-activated protein kinase 

activated protein kinase-2 (MAPKAP kinase 2) [Stokoe eta l, 1992], protein 

kinase C (PKC) [Faucher etal., 1993] and a novel protein kinase which has 

been called hsp27 kinase [Guesdon eta l, 1993; Zhou, 1993]. Whether all of 

these enzymes play a role in in vivo phosphorylation of hsp27 is not clear.
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Expression of hsp27 is low in normal breast tissue but is often found at high 

levels in human breast tumor cells [Thor, 1991]. Hsp27 staining appears to 

correlate with different biological features in early and advanced breast cancer. 

High hsp27 staining is linked with a short disease-free survival in node­

negative patients but with prolonged survival from first recurrence [Love etal., 

1994].

3:4:3 Hsp56, a novel hsp

Until recently very little was known about hsp56, which is also known as p56, 

p59 FK506-binding protein, FKBP59 and FKBP52 [Tai eta l., 1993; Renoir et 

al., 1990; Sanchez eta l., 1990a; Peattie etal., 1992]. It has been isolated in 

association with the 8 S SR, though it does not bind directly to the receptor. 

Hsp56 is bound to hsp90 which forms a complex with SR [Renoir eta l.,

1990]. It has been suggested by cross-linking studies that hsp56 and the SR 

may lie in close proximity to each other in the larger heterocomplex [Alexis et 

al., 1992]. Rabbit and human hsp56 have significant sequence homology 

suggesting that the protein is evolutionarily conserved [Sanchez, 1990a].

Hsp56 is found mainly in the nucleus [Gasc et al., 1990]. It does not have a 

consensus nuclear localisation signal, but consensus sequences for 

phosphorylation sites, an ATP-binding site and a calmodulin binding site have 

been identified, although it is not clear if they are functional [Lebeau e ta l.,

1992], 55% amino acid homology exists between hsp 56 and peptidyl-prolyl 

isomerase and it has been suggested that hsp56 has rotamase activity. A 

possible role of hsp56 is the regulation of hsp90.

Hsp56 is an immunophilin of the FK506 class [Hutchison e ta l ., 1993]. 

Immunophilins are proteins which bind immunosuppressive agents like 

cyclosporin A, FK506 and rampamycin. The binding of these specific agents 

(in the case of hsp56, FK506) inhibits the peptidylproplyl isomerase activity 

(rotamase activity) of the immunophilin [Schreiber, 1991]. FK506 does not
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affect GR function, transcriptional activation or assembly of the 8 S complex. 

This suggests that the rotamase activity of hsp56 is not required for the 8 S 

complex formation or subsequent receptor function [Hutchison e ta l ., 1993]. 

One group has recently suggested that hsp56 plays a role in nuclear localisation 

of the receptor [Pratt etal., 1993]. It is possible that hsp56 forms a core 

structure with hsp70 and 90 which may be involved in the recognition, folding, 

assembly and disassembly of regulatory proteins such as SRs [Tai etal., 1993].

3:4:4 The hsp60 family

The study of how proteins fold after synthesis led to the discovery of molecular 

chaperones. The hsp60 family is involved in protein folding in all organisms so 

far investigated and family members are known as chaperonins or Cpn60s. 

Chaperonins are highly conserved and form a two stacked ring structure, each 

ring containing seven homologous subunits [Craig etal., 1993]. The E.coli 

groEL protein is a member of this family. It binds to denatured peptides and is 

involved in protein folding and phage head assembly [Ang etal., 1990 ; Welch,

1991]. A protein homologous to groEL has been isolated from mitochondria 

and chloroplasts. In yeast, the mitochondrial hsp60 protein is encoded by the 

nuclear genome. The nascent protein is targe ted to the mitochondia and requires 

folding once inside the mitochondria, which appears to involve functional pre­

formed hsp60 [Craig e ta l, 1993]. Mitochondrial hsp60 function is similar to 

that of groEL in that it is responsible for protein folding and assembly in an 

ATP-dependent manner [Craig et al., 1993], as is chloroplast hsp60 which was 

identified by its role in Rubisco complex formation [Welch, 1991].

TCP1 is the cytosolic equivalent of mitochondrial and chloroplastic hsp60. It is 

believed that they evolved from a common prototype although there is only 

limited sequence similarity [Craig eta l, 1993]. The action of TCP1 is only now
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being investigated but there is some evidence to suggest that it functions in a 

similar way to hsp60 [Craig et al., 1993].

3:4:5 The hsp70 family

The hsp70 family is one of the most highly conserved group of proteins with 

between 50 and 98% homology between different eukaryotic hsp70 molecules. 

The E. coli protein Dna K has 50% homology with all eukaryotic hsp70s [Craig 

etal., 1993]. Members of the hsp 70 family have been found in all 

compartments of the eukaryotic cell and have been shown to be essential for 

normal growth and development [Gething & Sambrook, 1992].

Mitochondrial hsp70, Ssclp, is a nuclear encoded protein which plays a major 

role in the translocation of proteins across the mitochondrial membrane and their 

correct folding in the mitochondria [Pfanner & Neupert, 1990, Kang eta l., 

1990]. Endoplasmic reticulum hsp70, known as BiP, is required for 

transmembrane transport into the endoplasmic reticulum [Vogel et al., 1990]. 

BiP is also involved in the assembly of multimeric protein complexes [Pfanner 

& Neupert, 1990]. In the cytoplasm of eukaryotes there are two groups of 

hsp70s, a stress inducible form, hsp72, and a constitutively expressed form, 

hsp73, also known as hsc70 [Gething & Sambrook, 1992]. Both cytosolic 

forms translocate to the nucleus under stressed conditions, where they associate 

with partially assembled pre-ribosomes [Hightower, 1991]. They also bind 

partially denatured proteins that would otherwise form insoluble aggregates at 

elevated temperatures.

All hsp 70s identified to date have the ability to bind ATP [Lindquist, 1986]. 

They contain two domains, a N-terminal ATP-binding domain and a C-terminal 

peptide-binding domain. The secondary structure of the C-terminal domain is 

thought to be similar to the major histocompatibility complex class 1 antigen- 

presenting molecule which is known to bind to peptides which are in an 

extendedconformation [Rippmann etal., 1991 ].
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A three-stage cycle involving hsp70 for the folding of partially unfolded and 

denatured proteins has been proposed [Palleros etal., 1991]. Hsp70 has an 

ADP molecule bound when it associates with an unfolded protein. Replacement 

of the ADP molecule by an ATP molecule causes the folding of the protein. The 

correctly folded protein can only dissociate from the complex after the 

hydrolysis of ATP, thus leaving an hsp70-ADP complex which is able to bind 

to another unfolded protein. However another possible mechanism has been 

proposed which suggests that ATP hydrolysis causes conformational changes 

within the hsp70 molecule which are then passed on to the protein and it is this 

that causes protein folding [Pelham, 1986 ]. A third possible mechanism 

suggests that hsp70 may hold the unfolded protein in a semifolded state and that 

ATP hydrolysis provides a timing mechanism for the release of the protein 

which can then continue folding [Rothman, 1989]. Which of the three proposed 

mechanisms is correct is the subject of much debate.

3:4:6 Hsp 90

Hsp 90 is an abundant, mainly cytoplasmic, protein in unstressed cells and may 

account for as much as 1-2 % of the total cellular protein content [Lindquist et 

al., ; 1986; Lai etal., 1984]. The amino acid sequence is highly conserved 

through evolution [Yonezawa etal, 1988; Lindquist & Craig, 1988] which 

suggests that it plays an important role in cell function. The functions attributed 

to hsp 90 will be described below.

Two forms of hsp 90 have been identified, hsp90a and hsp90p [Simon eta l.,

1987]. Multiple sequences have been identified on the human genome which 

could encode these proteins but only one structural gene has been characterized 

for each. These genes possess HSEs in their promoter regions [Hickeyetal ., 

1989; Rebbe etal., 1989]. One of the features which distinguishes these 

structural genes from pseudogenes is the lack of introns in the pseudogenes 

[Durkinetal., 1993]. The genes encoding hsp90a and hsp90p are
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differentially regulated [Simon etal., 1987; Yamazaki etal., 1990], the 

significance of which is unclear. Neither is it clear whether both genes are 

expressed at the same level under different cell conditions or if both hsp90s are 

absolutely required.

The amino acid sequences for hsp90a and hsp90p are identical in 630 out of 

724 possible residue matches: hsp90 a  is 8 residues longer than hsp 90p [Lees- 

Miller & Anderson, 1989a], Two serine phosphorylation sites have been 

identified in both proteins. In hsp90 a , the sites lie 32 amino acids apart, while 

in hsp90p they lie 28 amino acids apart, at serines 231/263 and serines 

227/255, respectively [Lees-Miller & Anderson, 1989b]. These sites are 

phosphorylated by casein kinase II in vitro [Lees-Miller & Anderson, 1989b]. 

Casein kinase II has been copurified with hsp90, which suggests a role for 

casein kinase II in the phosphorylation of hsp90 in vivo [Miyata & Yahara,

1992], athough an alternative role for hsp90's association with casein kinase II 

will be discussed below. Hsp90a has two threonine residues in its N-terminal 

region which are not present in hsp90p. These are phosphorylated by human 

double-stranded DNA-activated protein kinase [Lees-Miller & Anderson,

1989a]. The existence of unique phosphorylation sites within hsp90a suggests 

that hsp90a and 90p could be independently regulated and may even serve 

different functions.

Hsp90 possesses a nucleotide binding site and is able to undergo 

autophosphorylation but only when specific residues are already 

phosphorylated [Nadeau etal., 1993; Csermely & Kahn 1991]. The overall 

extent of autophosphorylation is small but only a small subpopulation of hsp90 

may undergo autophosphorylation at any one time and thus may be significant. 

ATP induces an "open-closed" conformational change in hsp90 which has been 

attributed to an increase of p-pleated sheet and also an increase in the 

hydrophobic character of hsp90. Similar conformational changes were seen on 

molybdate and heat treatment [Csermely et al .,1993]
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3:5 The possible functions of hsp90

The role of hsp90 as a molecular chaperone does not require nucleotide 

triphosphates and may involve hsp90 stimulation of protein folding by 

preventing non-native proteins from participating in unproductive intermolecular 

interactions [Wiech etal., 1992], Hsp90 associates with the glucocorticoid 

receptor at or near the end of receptor translation. This may aid the correct 

folding of the receptor as well as the well-documented role of receptor 

inactivation [Dalmane/a/., 1989]. The ability of hsp90 to aid protein folding 

does not have a role in transport of proteins into the endoplasmic reticulum 

suggesting that the different chaperone proteins have differing functional 

specificity, although most chaperones have the general feature of preventing 

protein aggregation [Wiech eta l, 1993 ]. A proportion of the cytosolic hsp90 

has been found in association with several other proteins including hsp70
v-'

[Perdew & Whitelaw, 1991] and p59, which, as previcjsly mentioned, is a 

peptidyl prolyl isomerase [Lebeau etal., 1992; Nadeau et al., 1993] and 

cycophilin A [Nadeau et al., 1993]. The different proteins in this heterologous 

complex may all interact in their functions as chaperones.

Hsp90 is an actin-binding protein and can cross link actin filaments in a Ca2+- 

calmodulin-regulatedmanner [Koyasuetal., 1986; Nishida etal., 1986]. 

Calmodulin binds to hsp90 in the presence of Ca2+ and inhibits the binding of 

hsp90 to actin filaments [Nishida eta l, 1986]. Hsp90 has also been shown to 

be associated with tubulin in intact cells [Sanchez etal., 1988]. The ability of 

hsp90 to bind to actin and tubulin structures within the cell is consistent with the 

model that hsp90 is involved in the anchoring of proteins such as the 

glucocorticoid receptor to the cytoskeletal structures [Miyata & Yahara 1992]. It 

can be envisaged that both the cytoskeleton and hsp90 play a role in the 

intracellular transport of proteins. Hsp90 is mainly located in the cytoplasm but
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after heat shock nuclear translocation occurs but not along any of the three main 

cytoskeletal networks [Akner etal., 1992]

In addition to being a substrate for kinase action hsp90 also regulates several 

kinases. One of the earliest examples studied was hsp90's association with the 

transforming tyrosine kinase pp60v_src. The association is believed to result in 

pp60v_src being enzymatically inactive and its transport to the inner side of the 

plasma membrane where it dissociates from the hsp90 molecules and regains its 

kinase activity [Brugge, 1981, 1986; Schuh, 1985],

Hsp90 has been implicated in the regulation of protein synthesis through its 

interaction with the heme-sensitive kinase that is responsible for the 

phosphorylation of the eukaryotic peptide initiation factor 2 (eIF-2 a  ) [Rose et 

aL., 1989]. Increased phophorylation of eIF-2 a  leads to inhibition of protein 

synthesis due to the failure of guanine nucleotide exchange on the initiation 

factor [Farrell etal., 1977; Rose etal., 1989]. Hsp90 increases the enzymic 

activity of heme-sensitive eIF-2 a  kinase only when hsp90 is phosphorylated. 

Dephosphorylation of hsp90 results in loss of the kinase activty which can be 

restored by addition of casein kinase II (CKII) [Rose etal., 1989]. A 

conformational change in hsp90 is induced by either ATP or increased 

temperature [Csermely e ta l., 1993]. This heat-induced conformational change 

of hsp90 may be a mechanism to control the redirection of translational 

machinery following stress (see discussion section). Phosphorylation of eIF-2 

a  occurs during heat shock resulting in reduced translation [De Benedetti & 

Baglioni, 1986].

CKII phosphorylates hsp90 in vitro [Lees-Miller & Anderson, 1989b]. Hsp90 

dissociates agg^gates of CKII and also increases the activity of CKII which 

plays a role in the signal transduction involved in cell cycle and growth 

regulation [Miyata & Yahara, 1992]. Relatively high concentrations of hsp90 

are required for optimal CKII activity. An increase in hsp90 expression occurs

41



after stress and this may result in increased activity of CKII [Miyata &Yahara, 

1992].

3:6 The role of heat shock proteins in thermotolerance

Thermotolerance could involve either increased resistance to heat-induced 

damage or an enhanced capacity to repair heat induced lesions (see figure 6) 

[Laszlo, 1992; Kampinga, 1993]. The role of heat shock proteins in 

thermotolerance has been suggested for some time. The idea is supported by 

kinetic studies of the synthesis and decay of hsps which showed the pattern to 

be the same as that for thermotolerance gain and loss [McAllister & Finkelstein, 

1980; Li & Werb, 1982]. This of course is not direct evidence of a link and 

other groups have shown that hsp synthesis is not exclusively required for 

thermotolerance development [Przybytkowski etal., 1986; Widelitz etal.,

1984]. There may be more than one mechanism involved in thermotolerance 

and there is some evidence for the idea that synthesis of hsps is only required at 

extreme temperatures [Lee & Dewey, 1988]. Perhaps at less extreme 

temperatures the hsps which exist in normal cells are sufficient to mediate 

thermotolerance [Weber, 1992].

The role of each group of hsps in stressed cells is only now begining to be 

discovered. Hsp70 has been shown to play a critical role in thermotolerance. 

Although the biological processes protected are still unknown it seems likely 

that its function in protein folding and transport are involved [Parsell & 

Lindquist, 1993]. In yeast cells the requirement for hsp 90 is increased 

dramatically at elevated temperatures and its role in helping cells cope with 

stress is well observed [Parsell & Lindquist, 1993]. The small hsps have been 

implicated in microfilament protection [Lavoie et al., 1993].

The level of nuclear-associated protein increases in hyperthermia treated cells 

and has been correlated with cell killing but the level of nuclear-associated
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proteins is reduced if thermotolerance is established [Borrelli etal., 1993]. The 

nuclear translocation of several hsps has been reported, including hsp90 

(Chalmers submitted for publication), hsp70 [Velazquez & Lindquist, 1984]. 

The role of these proteins within the nucleus could be either to prevent the 

formation of or break up the nuclear-associated proteins.

4:1 Heat shock protein and steroid receptor interaction

Isolation of the steroid receptors led to the discovery of two forms of the 

receptors, an 8S form isolated from hormone free cells and a 4S form isolated 

from hormone treated cells [Sherman, 1984; Renoir etal., 1984]. The 

discovery that molybdate stabilised the 8S receptor enabled the 8S form to be 

affinity purified [Dahmer etal., 1984]. It was then revealed that the 8S form 

was, in fact, a combination of receptor plus a 90kDa protein dimer [Puri etal., 

1982; Renoir etal., 1984]. The use of antibodies against this 90 kDa protein led 

to its identification as a common subunit in all 8S steroid receptors [Gasc eta l., 

1984; Joab etal.., 1984 ] and its characterization as hsp90 [Schuh etal., 1985; 

Catelli etal., 1985; Sanchez eta l, 1987]. The 8S steroid receptor complex does 

not consist of the receptor and hsp90 alone but rather it is a large heteromeric 

complex of several different proteins [Pratt, 1990]. The different protein 

components of the 8S receptor will be discussed in the following section.

43



NATIVE PROTEINS

heat shock ^

No
hsps h s p s  >

(X
<
Cl,W
iX

DENATURED PROTEINS

No
hsps > h s p s  ^

(X
»— i

<
(X
w
cx

PROTEIN AGGREGATES

Figure 6:- Possible roles of hsps in thermotolerance 
(from Kampinga, 1993)

44



4:2 Receptor-associated proteins

H sp90

The discovery that the receptor in the 4S complex (the transformed receptor), 

which does not contain hsp90, can bind DNA while the receptor in the 8S 

complex cannot, led to the hypothesis that hsp90 is responsible for the 

inhibition of DNA binding by the 8S receptor [Baulieu, 1987]. Hsp90 interacts 

with the hormone-binding domain of the GR [Denis & Gustafsson, 1989; 

Dalmaneta l, 1991], PR [Carson-Jurica eta l, 1989] ER [Chambraud eta l.,

1990], and AR [Marivoet etal., 1992], In the ER, a region within the DNA- 

binding domain was found to be necessary for hsp90 binding [Chambraud et

d ., 1990]. It has been suggested, that as a general rule, the attachment of hsp90 

to the ligand binding domain is critical for the favqrable positioning and 

interaction of hsp90 with the DNA binding domain of the receptor [Baulieu,

1991]. An acidic region (amino acids 232-266) of hsp90 is involved in the 

interaction [Tbarkaetal .,1993]. The C-terminal half has also been implicated 

[Sullivan & Toft, 1993]. An endogenous metal ion M2+ is believed to play a 

critical role in the interaction between steroid receptors and hsp90 [Sabbah et 

d., 1987]. Molybdate may stabilize the untransformed receptor by interaction 

with the binding site for this metal ion [Meshinchi etal., 1988].

A cell-free system was used to show that hsp90-PR complexes are in a steady
I V .

state equilibr m (ti/2 , 5 min) and that ligand binding prevents assembly rather 

than causes dissociation of hsp90 [Smith, 1993]. This assembly/ disassembly 

was an hsp70 mediated event.

Hsp90 binding occurs at or near the termination of receptor translation which 

suggests a dual role for hsp90 as both a chaperone and regulator of steroid 

hormone action [Dalman et al., 1989]. It has been shown in vivo that low 

levels of hsp90 reduce the level of hormone reponsiveness [Picard etal., 1990], 

supporting the idea that hsp90's association with hormone-free receptors is
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required to maintain them in a form with high affinity for steroid. In vitro 

hsp90 is required for the high-affinity steroid-binding of the GR and MR 

[Nemotoe ta l., 1993; Bresnick^<2/., 1989], although this does not seem to be 

the case for the AR [Nemoto etal., 1992; Ohara-Nemoto etal., 1991].

H sp 7 0

Several reports have identified hsp70 as part of the untransformed receptor 

complex [K ostya/., 1989; Smith etal., 1990; Sanchez et al., 1990]. In other 

cases no such association was found [Bresnick, 1990; Sanchez etal., 1990; 

Alexis e ta l., 1992]. It remains unclear why hsp70 is associated with steroid 

receptors in some instances and not others and it was even thought that hsp70 

might be a contaminant of the immunopurification procedure [Rexin et al. ,

1988]. In one case mouse GR overexpressed in Chinese hamster ovary cells 

associated with hsp70 and was found in the nucleus whereas the endogenous 

GR in L cells (fibroblast) was not associated with hsp70 nor present in the 

nucleus [Sanchez et al., 1990]. There is obviously some difference in the GR in 

the two cell types. The authors suggested that the overexpressed GR in the 

Chinese hamster ovary cells acts like PR in that it is found in a loosely-bound 

docking complex in the nucleus and that hsp70 binding is a result of its nuclear 

localization. Hsp70 may play a role in maintaining steroid receptors in an 

unfolded state for passage across the nuclear membrane. The role of hsp70 in 

the translocation of proteins across membranes is well documented [Rothman,

1989]. It has also been suggested that recovery of receptors with hsp70 is 

related to their cellular location. Cytosolic GR seems to be hsp70 free whereas 

nuclear GR is found associated with hsp70 [Pratt, 1993c].

Hsp70 has been found associated with both the 8S and the 4S forms of the 

receptor [Rexin e ta l., 1988; Onate etal., 1991]. Hsp70 was not found to be 

involved in PR binding to DNA, either directly or indirectly but hsp70 may 

influence the DNA-binding of GR in an in vitro system [Srinivasan eta l.,
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1994]. ATP mediated dissociation of hsp70 was demonstrated in either receptor 

form and this was taken to suggest that hsp70's role in the receptor complex 

may be an early event in receptor folding and recycling [Onate etal., 1991]. 

Cell-free experiments using reticulocyte lysate have shown that assembly of 

hsp90-free PR into the complete 8S complex containing both hsp90 and hsp70 

is temperature- and ATP dependent, and requires the PR to be in a hormone 

free state. The presence of hsp70 was paramount [Smith e ta l ., 1990, 1992]. 

These observations have led to a model for the assembly of steroid receptor 

complexes which will be discussed in section 4:4.

H sp56

Hsp56 was first isolated in association with the 8S steroid receptor when 

antibodies to the 8S form of PR were developed and subsequently it was found 

to be a component of the PR, ER, AR and GR 8S receptor complex [Tai etal 

1986; Sanchez etal., 1990a].

Hsp56 does not bind directly to the steroid receptor but rather it interacts with 

hsp90 [Renoire ta l,  1990]. A cytosolic complex comprising of hsp90, hsp70, 

hsp56 and several other proteins has been isolated [Perdew & Whitelaw,

1991]. This complex may have a general chaperone function or perhaps the 

proteins are arranged in a specific orientation to enable specific tasks to be 

carried out [Tmetal .,1993].

Other receptor-associated proteins

p23 is a phosphoprotein that has been isolated both with hsp90 and the 8S PR 

and GR [Johnson etal., 1994]. The function of this protein is unknown but it is 

thought that p23-associated hsp90 may define a subpopulation of hsp90 with a 

specific role to play, perhaps in steroid receptor folding [Johnson etal., 1994]. 

An hsp27 has been immunopurified with ER [Mendelsohn etal, 1991]. This 

protein could be identical to p23 .
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The association of pp60v-src with hsp90 and a 50 kDa protein, p50, has been 

extensively demonstrated [Brugge & Erikson, 1981; Brugge, 1986]. The same 

50 kDa protein has been identified in a heterocomplex with hsp90 [Perdew & 

Whitelaw, 1991; Whitelaw, 1991]. At present, it is unclear whether this p50 

protein is the same as that isolated with the chick PR complex [Smith eta l.,

1990].

4:3 Stoichiom etry

Most groups investigating the stoichiometry of the 8S steroid receptors have 

found a hsp90:SR ratio of 2:1 [Renoir et al., 1984; Mendel & Orti, 1988; Denis 

etal., 1987; Radanyi etal., 1989]. These figures were obtained using either GR 

or PR. The only work of this type carried out on the ER suggested a ratio of 2:2 

in that a dimer of ER bound to a dimer of hsp90 [Redeuilh et al., 1987]. If the 

8S ER does exist as a dimer, prior to hormone binding and hsp90 dissociation,
K)

as suggested [Sabbah eta l., 1989] , it is difficult to explain how a problem of 

steric hindrance is overcome since it has been shown that both dimerization and 

hsp90 binding occur within the hormone binding domain. Sequence analysis 

has shown that the dimerization and hsp90 binding regions do not overlap but 

they could still be too close together to allow both activities at once [Schlatter et 

al., 1992]. Another possible argument against the ER stoichiometry of 2:2 

suggested by Redeuilh is the evolutionary conservation of the steroid receptor 

family [Evans, 1988], which would suggest that if they bind the same protein 

they should do so using similar protein-protein interactions.

The other proteins in the complex are believed to be in monomeric form [Smith 

eta l, 1990a]. This arrangement of one molecule of receptor, two of hsp90 and 

one each of hsp70, hsp56, p50 and p23 would mean the 8S receptor complex 

has a molecular weight of 400-450 kDa, which is larger than the 320-350 kDa 

originally suggested [Sherman & Stevens, 1984]. The association of several of
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the proteins may only be a transient event. One solution is that a common 

heterocomplex core unit may exist with a basic stoichiometry of one steroid- 

binding protein , two hsp90 and one hsp56.

4:4 Assembly of the heterocomplex

Models for the assembly of receptors into heterocomplex structures have been 

postulated by two groups [Smith etal., 1992; Smith, 1993; Pratt, 1993b]. The 

basic ideas of the two models are principally the same and have been combined 

in this section and figure 7. The model is supported by evidence described in 

the previous sections.

Sjhge 1 involves either the newly synthesised receptor molecule or the ligand
i\

free 4S receptor becoming associated with the preformed hsp90-hsp70-hsp56- 

p27 complex [Perdew, 1991]. This event requires hsp70 and ATP and may 

involve the partial unfolding of the receptor by hsp70 [Onate etal., 1991; Smith 

etal., 1990, 1992]. The complex is now able to bind ligand but is unable to 

bind DNA.

It is not clear whether hsp70 now dissociates from the complex as is indicated

by the absence of hsp 70 from some purified complexes (4:1, hsp70).

Sjage 2 is stimulated by hormone binding. A conformational change occurs

within the complex and the hsp90 dimer and its associated proteins dissociate

from the hormone-bound receptor, to reveal the DNA binding domain. Prior to

DNA binding receptor dimerization occurs [DeMarzo et al., 1991].
*

Sjage 3 occurs after transcriptional activation has occured. The ligand dissociates 

from the 4S receptor and is unable to reassociate. The receptor may then diffuse 

out of the nucleus and can re-enter the cycle at stage 1.
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If the assembly/disassembly concept [Smith, 1993] proves to be correct it 

would most likely occur at the end of stage 1 due to the availability of the 

reassembly apparatus

Between stage 1 and stage 2 nuclear translocation occurs in the case of ER, AR, 

and PR [King & Greene, 1984; Husmann etal., 1990] but nuclear translocation 

does not happen until after stage 2 in the case of GR and MR [Wikstrom et al., 

1987; Agarwal, 1994].

4:5 Role of heat shock proteins in translocation and docking

The first indications that hsps play a role in steroid receptor trafficking came 

from observations that hsp90 binds to pp60v src (a member of the SR 

superfamily) at the site of its synthesis and remains bound while it moves to the 

cell membrane [Brugge, 1986]. It is believed that hsp90 plays a role in the 

formation of a transportosome which transports the receptor along the 

cytoskeletal system [Pratt, 1992, 1993b]. It has long been known that hsp90 

associates with actin and tubulin structures and it has been suggested that this 

interaction plays a role in the docking of the receptor complex to the cytoskeletal 

complex [Miyata & Yahara 1992]. Recently hsp90 has been suggested to play a 

role in the nuclear-cytoplasmic shuttling of steroid receptors [Kang etal.,

1994]. Hsp56 has been isolated with the motor protein dynein and therefore 

could play a role in movement towards the nucleus 

The different cellular locations of receptors may only reflect the end of the 

transportation highway at which they dock [Pratt, 1990]. For example at the 

cytosol end in the case of GR in L cells and at the nuclear end in the case of 

overexpressed GR [Sanchez, 1990b]. The signals which decide where each 

receptor complex is docked are not known nor is the mechanism for docking 

and transportation of receptors fully understood.
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5 . Aims of this thesis

The administration of sub-lethal temperatures to cells in culture envokes a 

condition known as thermotolerance, where the cells are able to withstand 

normally lethal temperatures due to this pre-exposure to an elevated but 

sublethal temperature. The cells responds to this increased temperature by 

synthesing a group of proteins known as the heat shock proteins, one of which 

is hsp90. In unstressed cells hsp90 plays an important role in several cell 

processes, including the regulation of steroid receptors.

Administration of heat shock in conjunction with anti-androgen therapy results 

in a more effective cell kill than either therapy alone [Lloyd et al., 1992]. What 

is the mechanism behind this phenomenon ? The aims of this thesis was to look 

at the molecular effect of heat on androgen receptor function and on anti­

androgen action.
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Chapter 2

MATERIALS
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Suppliers

Fine Chemicals

Chemicals were of 'AnalaR' grade or equivalent and were obtained from 

Fisons apart from the following:

bovine serum albumin (fraction V), cyanogen bromide-activated Sepharose 4B, 

Dextran, diphenylamine, dithiothreitol, a-monothioglycerol, sodium 

molybdate, TEMED, triethanolamine, Tween-20 and urea which were 

purchased from Sigma Chemical Co. Ltd

Hormones and antiandrogens

1 -dehydrotestosterone 

hy droxy fl utamide 

mibolerone 

testosterone 

triamcinolone acetonide

Sigma Chemical Co. Ld 

Schering-Plough 

NEN DUPONT 

Sigma Chemical Co. Ltd 

Sigma Chemical Co. Ltd

Antibodies

Anti-hsp90 (IgG) AC88

Anti-hsp90 (IgM) 3G3

Anti-AR (IgG) AN1-15

Goat anti-mouse IgG 

Anti-sheep/goat (IgG) peroxidase-linked

Anti-mouse Ig peroxidase-linked 

Anti-rat Ig peroxidase-linked

Stress Gen Biotechnologies 

Affinity Bioreagents 

Affinity Bioreagents 

Pierce

Scottish Antibody 

Production Unit 

Amersham 

Amersham
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Cell culture

All cell culture media and supplements were obtained from Gibco with the 

exception of phenol red-free medium and methionine-free medium which were 

both obtained from Sigma.

All plasticware used in cell culture was purchased from Nunc except for LNCaP 

culture flasks which were obtained from Bibby

Radiochemicals

Albumin (bovine serum), [methyl- 14C] 

Globulins, [methyl-14C]

Lactoglobulin A, [methyl- 14C]

L- [35S] methionine 

Mibolerone, [17a-methyl-3H]

NEN DUPONT 

NEN DUPONT 

NEN DUPONT 

Amersham 

NEN DUPONT

Miscellaneous Materials

Calibration proteins for SDS-PAGE

DNA (calf thymus) type XV

ECL (western blotting detection kit)

Hoechst no 33258

Prestained SDS-PAGE standards

Protein assay dye reagent concentrate

RibonucleaseA

Scintillation fluid (Ultima-Flo)

Boehringer Mannheim 

Sigma Chemical Co. Ltd 

Amersham

Sigma Chemical Co. Ltd

Bio-Rad

Bio-Rad

Sigma Chemical Co. Ltd 

Packard

Suppliers for any other specific materials or apparatus are indicated throughout 

the text.
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1. Buffers and Solutions

1.1 BUFFERS

1.1.1. Phosphate Buffered Saline (PBS) pH 7.2 

170 mM NaCl; 1 mM Na2HP04; 2 mM KH2P04.

1.1.2. ETN Buffer pH 7.0

10 mM EDTA; 10 mM Tris-HCl; 100 mM NaCl.

1.1.3. HE Buffer pH 7.4

20 mM HEPES; 1.5 mM EDTA; 10% Glycerol (v/v).

1.1.4. HED Buffer pH 7.4

HE Buffer plus 0.25 mM Dithiothreitol (DTT)

Make fresh daily.

1.1.5. Low Salt Homogenate Buffer pH 7.4

10 mM Na2HP04; 1.5 mM EDTA;.12 mM a-Thioglycerol; 

20 mM Na2 M04; 0.25 mM Leupeptin; 10% Glycerol (v/v).

1.1.6. High Salt Homogenate Buffer pH 7.4

40 mM Tris-HCl; 1.5 mM EDTA; 0.5 M NaCl; 10 mM DTT; 

0.25 mM Leupeptin; 10% Glycerol (v/v).

1.1.7. Gradient Buffer pH 7.4

10 mM Na2HP04; 1.5 mM EDTA; 12 mM a-Thioglycerol; 

10% Glycerol (v/v).
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1.1.8. Extraction Buffer pH 8.5

As High Salt Homogenate Buffer, except pH 8.5

1.1.9. Hank's Modified Buffer pH 1.2-1 A

1.3 mM CaCl2 ; 5.4 mM KC1; 0.5 mM MgCl2 ; 0.5 mM MgSC>4 ;

137 mM NaCl; 4 mM NaHCOy, 0.4 mM NaH2P0 4 2 H20 .

1.1.10. HEPES Buffered Saline pH 7.4 (HBS) 

lOmM HEPES, 150mM NaCl

1.2. CELL CULTURE SOLUTIONS.

1.2.1. Routine Sub-Culture Medium.

RPMI 1640 medium with L-Glutamine; 10% (v/v) Fetal Calf Serum

(FCS); 60 mg/ml Tylocine; 100 units/ml Penicillin; 50 mg/ml 

Streptomycin.

1.2.2 Dextran Coated Charcoal (DCC)

0.5% sieved, prewashed charcoal (w/v); 0.005% Dextran (w/v); 

suspended in HE buffer (see 1.1.3), stirred continuously for 30 

minutes at room temperature.

1.2.3. Dialysed Heat-1nactivated Dextran-Coated Charcoal Stripped

Serum (DHIDCCFCS).

100ml of FCS were dialysed against 1L Hank's modified buffer for 48 

hours at 4°C, changing buffer 4 times. Heat inactivation was carried 

out by incubating dialysed FCS for 45 minutes at 56°C. A pellet of 

dextran-coated charcoal (derived from 12.5ml of DCC) was added and
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the mixture was stirred for 30 minutes at 4°C then centrifuged at 10 

000# for 30 minutes at 4°C. Finally the supernatant was filter- 

sterilised through 0.2 micron filters. This was tested ensure that it 

contained less than 10_12M of androgen, estrogen and progesterone.

1.2.4. Steroid-Free Medium

RPMI 1640 with L-Glutamate, without Phenol Red and Sodium 

Bicarbonate; 5% (v/v) DHICCFCS; 60 mg/ml Tylocine;

100 units/ml Penicillin; 50 mg/ml Streptomycin.

1.2.5. Methionine-Free Medium

RPMI without L-Glutamine, L-Leucine, L-Lysine, L-Methionine and 

Sodium Bicarbonate; 0.3 g/1 L-Glutamine; 0.05 g/1 L-Leucine;

0.04 g/1 L-Lysine.HCl; 60 mg/ml Tylocine; 100 units/ml Penicillin; 50 

mg/ml Streptomycin.

1.2.6 Cell Culture Freezing Medium

RPMI 1640 medium with L-Glutamine; 10% FCS (v/v);

10% Dimethyl Sulphoxide (v/v).

1.2.7 Versene

125 mM NaCl; 2.7 mM KC1; 6.3 mM Na2HP04 3.2mM KH2H P04; 

0.5mMEDTA

1.3 SDS PAGE SOLUTIONS

1.3.1. 30% Acrylamide Stock

29.2% Acrylamide (w/v); 0.8% Bis-Acrylamide (w/v).
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1.3.2. Sample Buffer

62 mM Tris-HCl (pH 6.8); 10% Sucrose (w/v); 5% 2-mercaptoethanol 

(v/v); 2% SDS (w/v); 3 M Urea; 0.02% Bromophenol Blue (w/v).

1.3.3

1.3.4.

1.3.5.

1.3.6.

1.3.7.

1.4.

1.4.1.

1.4.2.

1.4.3.

Stacking Buffer 

0.125 M Tris-HCl (pH6.8); 0.4% SDS (w/v).

Resolving Buffer 

0.375 M Tris-HCl (pH8.8); 0.4% SDS (w/v).

Electrophoresis Tank buffer 

25 mM Tris-HCl; 192 mM Glycine; 0.01% SDS (w/v).

Tris buffered saline with tween (TBST)

10 mM Tris-HCl (pH8.2); 150 mM NaCl; 0.05% Tween20 (v/v).

Transblot Buffer pH 8.2 

25 mM Tris-HCl; 192 mM Glycine; 20% methanol (v/v)

SILVER STAINING SOLUTIONS

Solution 1

50% Methanol (v/v); 10% Acetic acid (v/v).

Solution 2 

5% Methanol (v/v); 7% Acetic acid (v/v).

Solution 3 

10% Glutcpaldehyde (v/v).
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1.4.4. Solution 4

5 /<g/ml DTT.

1.4.5. Solution 5 

0.1% Ag2N0 3  (w/v).

1.4.6. Solution 6

3% (w/v) Na2CC>3 ; 0.0185% Formaldehyde (v/v).

1.4.7 Solution 7

2.3 M Citric acid.

1.5 COOMASSIE BLUE STAINING SOLUTIONS

1.5.1. Coomassie stain

0.1% (v/v) Coomassie brilliant blue R250; 50% (v/v) Methanol; 

10% (v/v) Acetic acid.

1.5.2. Coomassie destain

10% Methanol (v/v); 10% (v/v) Acetic acid.

1.6. CNBr-SEPHAROSE IMMUNOPRECIPITATION

SOLUTIONS

1.6.1. Coupling Buffer

0.1 M NaHCOs; 0.5 M NaCl.

1.6.2. HENG Buffer
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25 mM HEPES; 1 mM EDTA; 0.02% NaN3 ; 10% Glycerol (v/v).

1.6.3.

1.6.4.

DMP Solution

20 mM Dimethyl pimelimidate dihydrochloride (DMP) dissolved in 

0.2 M Triethanolamine.

Acetate Buffer pH 4.0 

0 .1M NaAc; 0.5M NaCl
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2. CELL CULTURE METHODS

2 . 1 .  CELL LINES

Three prostate carcinoma cell lines were used: LNCaP, DU 145 and PC3.

The LNCap and DU145 cell lines were a gift from Dr. C. Eaton, Tenovus 

Institute for Cancer Research, University of Wales College of Medicine, 

Cardiff. The PC3 cell line was purchased from the European Collection of 

Animal Cell Cultures, Porton Down, Salisbury, England.

LNCaP cells

LNCaP was isolated and established from a metastatic lesion of human prostatic 

adenocarcinoma [Horoszwicz etal, 1983]. Prostate-specific acid phosphatase is 

present in these cells, as is prostatic antigen (PSA), supporting the theory that 

LNCap cells originated from prostate tissue [Horoszwicz et al., 1983].

LNCap contains androgen receptors and shows hormone-responsive growth. 

Not only androgens but also progesterone and estradiol stimulate LNCaP cell 

growth. The estradiol-induced increase in LNCaP cell proliferation has been 

ascribed to the presence of a point-mutated form of the androgen receptor, 

which possessed an increased affinity for estrogen [Veldscholte et al., 1990]. 

However recent work using radioligand binding assay, reverse transcriptase- 

PCR and immunocytochemical studies has shown the presence of normal 

estrogen receptors in this cell line [Carruba, 1994].

Epidermal growth factor (EGF) receptor is upregulated in androgen-stimulated 

LNCap cells which results in the cells having greater sensitivity to EGF 

[Schuurmans etal, 1988b].

LNCap cells form monolayers which are only loosely attached to the surface of 

plastic culture dishes and so great care is required when handling this line as the 

cells are very easily dislodged by tapping, shaking or pipetting. It is not
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uncommon to lose 10-20% of cells during media changes if care is not taken. 

LNCap cells which have been trypsinized tend to form aggregates which are 

difficult to dissociate and prolonged trypsinization lowers the anchoring 

potential of the cells [Horoszwicz et al., 1983 and personal observation].

DU 145 cells

The DU 145 cell line was derived from a brain lesion of metastatic prostatic 

carcinoma [Stone etal., 1978]. DU145 cells are not growth stimulated by 

androgens (see results figure 9), although Scatchard plot analysis of ligand 

binding has indicated that significant levels of androgen receptors are present 

within these cells and it has been suggested that these cells do show a metabolic 

response to androgens [Carruba 1994]. The prostate-specific acid phosphatase 

has been detected in DU 145 cells, albeit at low levels [Stone etal., 1978].

PC3 cell line

This cell line was established from a bone metastasis of a human prostatic 

carcinoma and has the characteristics of a poorly-differentiated adenocarcinoma 

[Kaighn, 1979]. Prostate-specific phosphatase levels in these cells are similar to 

those obtained from normal prostatic epithelial cultures [Kaighn, 1979]. This 

cell line is hormone insensitive (see results figure 9). Scatchard plot analysis of 

ligand binding has shown no or only minimal levels of androgen receptor 

present in PC 3 cells [Carruba, 1994].
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2 . 2 . 1 . ROUTINE GROWTH AND SUBCULTURE.

All cell lines were routinely grown at 37°C in atmospheric air enriched with 5% 

CO2 . All manipulations were carried out in a laminar air flow cabinet using 

aseptic techniques. 180 cm2 plastic cell culture flasks were used for routine 

growth. These required approximately 30ml of medium per flask. The size of 

flasks or plates used for experimental work depended on the number of cells 

required. These included 75 cm2 flasks requiring 15 ml of medium, 180 cm2 

flasks requiring 30 ml of medium, 6 well tissue culture plates (each well has a 

surface area of 12.5 cm2) requiring 2 ml/well. All routine and experimental 

media were changed every 48-72 hours.

2.2.2. SUBCULTURE TECHNIQUE.

Cells were passaged when cultures occupied 80-90% of the surface area of the 

culture dish. The medium was removed and the cells washed twice with 20 ml 

PBS at 37°C. 0.05% trypsin/versene solution (pre-warmed to 37°C) was added 

to the culture flasks; 0.5 ml per well of a 6 well plate, 4 ml per 75 cm2 flask and 

8ml per 180 cm2 flask. The cells were incubated at 37°C in the trypsin solution 

for either 4 minutes for DU145 and PC3 cells or 2 minutes for LNCaP cells. 

The trypsinization reaction was stopped by adding 2 volumes of fresh medium 

(37°C) followed by rapid pipetting to ensure an even cell suspension. The cell 

suspension was then dispensed into 3-5 sterile culture flasks to which growth 

medium had been added before a final rapid pipetting ensured even distribution 

of the cells.

Seeding of experimental plates and flasks was carried out using the technique 

described above with the following differences. After the trypsinization was 

stopped, the cell number per ml was counted using a hemocytometer and the
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suspension was diluted to the required concentration. Routine medium was 

used at this stage as LNCaP cells do not seed in serum-free medium 

[Schuurmans eta l, 1988b] or in DHIDCCFCS supplemented medium (S. 

Thomas, personal comunication). After 24-48 hours the routine medium was 

removed and the cells washed twice with pre-warmed PBS before the 

experimental medium was added (see individual experiments for details of 

experimental media and supplements added).

2 . 2 . 3 .  CRYOPRESERVATION OF CELL LINES

To ensure that all experiments could be carried out on cells of a similar passage 

number and to protect against loss of a cell line due to contamination, frozen 

stocks of cells were prepared. One 180 cm2 flask of cells which were 60-70% 

confluent was trypsinized as in section 2.2.2. and the reaction was stopped by 

adding 10 ml of routine medium. The cell suspension was transferred to a 

sterile universal container. The cells were pelleted by centifugation at 1000# for 

2 minutes at 4°C and the supernatant removed. The cells were resuspended in 

4ml of freezing medium and 1ml volumes were transferred to sterile Biofreeze 

vials prior to being frozen at -70°C. They were stored under liquid nitrogen . 

To grow cells from frozen stocks the vials were thawed by placing in a 37°C 

waterbath for 5-10 minutes. The vials were removed from the waterbath before 

all the ice had melted, and the cell suspension was transferred to a universal 

container to which 10 ml of routine medium (37°C) had been added. This was 

then centifuged for 2 minutes at 1000# before discarding the supernatant and 

resuspending the cells in medium at 37°C. The cell suspension was placed in a 

75 cm2 flask and incubated at 37°C, as described in section 2.2.1.
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2.2.4. CELL LYSIS

The cell membrane must be ruptured before many of the assays and procedures 

could be carried out. This was achieved in two different ways depending on the 

procedure for which the sample was required

SDS lysis

In the first method the cells were trypsinised as in section 2.2.2. and 10ml of 

routine medium was added. The cell suspension was transferred to a sterile
9
U

universal container. This was then centrifuged for 2 minutes at 1000# before
A

discarding the supernatant and resuspending the pellet in 0.2% SDS in ETN 

buffer (section 1.1.2.) followed by incubation at 37°C for 30 minutes. This 

technique solubilises the DNA and denatures proteins, as well as solubilising 

the membranes.

Freeze/thaw lysis

If the proteins were required in the native form or the use of SDS is 

contraindicated in the procedure to be applied, a method involving 

freeze/thawing of the cells was applied to lyse the membranes. The pelleted cells 

were resuspended in 1ml of either PBS, HED or low salt homogenate buffer 

depending on the procedure to be carried out. The cell suspension was then 

transferred to an Eppendorf tube which was closed and sealed with a strip of 

Nescofilm and then floated in a bath of liquid nitrogen for 10 minutes. The 

tubes were then carefully removed and placed at 37°C for 10 minutes or until 

the samples were totally thawed. This freeze/thawing procedure was repeated 3 

times and a sample was examined under the microscope to ensure cell lysis had 

occurred.
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2 . 3 .  MYCOPLASMA TESTING OF CELL LINES

Mycoplasmas are a common and serious contamination of cell culture which 

cannot be detected with the naked eye [Russel, 1975 ]. They cause changes in 

metabolism, growth and viability which lead to variability of results. Routine 

mycoplasma testing is therefore important to ensure early detection and 

treatment of any infection. An immunoassay mycoplasma detection kit 

(Boehringer Mannheim) was used for detection. The cells were incubated in 

antibiotic- and anti-PPLO-free medium for 72 hours prior to the immunoassay 

being carried out to increase the sensitivity of the assay. Firstly, microtiter 

plates were coated with antibodies to one of the four commonest mycoplasma 

strains {Mycoplasma arginini, M.hyorhinis, A.laidawii, M.orale) by incubating 

plates for 2 hours at 37°C in coating solution. Nonspecific binding sites were 

blocked and the plates washed before cell samples and controls were added and 

incubated overnight at 4°C. Detection was carried out by incubating plates for 2 

hours at 37°C with biotin-conjugated antibodies against the mycoplasma strains 

mentioned above, followed by a 1 hour incubation with streptavidin-AP and a 

final 1 hour incubation with 4-nitro-phenylphosphate. Evaluation was carried 

out visually, a mycoplasma positive plate being yellow in colour whereas a 

mycoplasma negative plate is colourless.

This procedure was carried out simultaneously on all the cell lines used in the 

laboratory every three months. If any cell lines were infected all the growing 

cells were destroyed as was any opened medium, supplement, buffer or plastic 

ware. The cell culture unit and incubators were cleaned with Decon and 70% 

ethanol prior to fresh frozen stocks (frozen down prior to the last totally 

negative mycoplasma testing) being defrosted and seeded down.

To help prevent mycoplasma infection, all medium was supplemented with anti 

PPLO
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3 . HOECHST DNA ASSAY

3.1. DNA STANDARDS

DNA standards were prepared from a 100/^g/ml solution of calf thymus DNA 

dissolved in ETN buffer. The standards used were 0, 10, 20, 30, 40, 50 and 

60/<g/ml DNA. The concentrations of these solution were verified by measuring 

their absorbances at 260nm as 1 unit of absorbance at this wavelength 

corresponds to 50/*g/ml DNA. The standards were stored for up to a month at 

-20°C.

3.2. ASSAY PROTOCOL

The assay methodology was modified from that of Leake and Habib [Leake & 

Habib, 1987] and involves the intercalation of Hoechst 33258 with solubilised 

DNA resulting in a complex which fluoresces with a maximum emission at 

450nm.

Cell culture monolayers were harvested and the DNA was solubilised using 

0.2% SDS in ETN buffer as described in section 2.2.4.

100/d aliquots of each standard and sample (and 1:10 and 1:100 dilutions of 

samples) were transferred to RT-30 tubes and 3ml of ETN buffer containing 

Hoechst 33258 (lOOng/ml) and RNase (5.0//g/ml) were added. After vortexing 

the tubes were incubated in the dark for 30 minutes at room temperature. The 

fluorescence enhancement at 450nm was measured using an Hitachi Perkin- 

Elmer MPF-2A fluorescent spectrophotometer with an excitation wavelength of 

360nm and both slit widths at 5mm.
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The fluorescence enhancement of each standard was then plotted against the 

DNA concentrations of the standards to create a calibration curve. The 

concentrations of DNA present in the samples were extrapolated from the 

calibration curve.

4. BRADFORD PROTEIN ASSAY 

4.1. Protein standards

Bovine serum albumin (BSA) was used to create protein standard solutions 

ranging from 0-500/<g/ml. This was achieved by diluting a stock of lmg/ml 

BSA with PBS or the same buffer as the samples to create standards of 0, 10, 

20, 50, 100, 200 and 500/^g/ml protein content. The standards were stored at 

4°C for up to two weeks.

4.2. ASSAY PROTOCOL

This assay is based on the principle that that there is a shift in maximum 

absorbance from 465nm to 595 nm when protein binds to a solution of 

Coomassie Brilliant Blue G-250 [Bradford, 1976]. Cells were lysed using the 

freeze thaw method (section 2.2.4.) as the detergent SDS is incompatable with 

this assay. Dilutions of the samples were made (1:10 and 1:100). Biorad 

Bradford reagent was prepared by diluting 1:6 and filtering though Whatman 

filter paper No. 1. The assay was carried out by placing 0.8ml of each sample 

and standard into RT-30 tubes in duplicate and adding 0.2ml of Bradford 

reagent. These were mixed gently and incubated at room temperature for 30 

minutes before the absorbance was read at 595nm using a spectrophotometer 

(LKB ultrospec 4050). The absorbance of each standard was then plotted 

against the protein concentration of the standards to create a calibration curve, 

which was used to calculate the protein content of each of the samples.
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5. STEROID RECEPTOR LIGAND BINDING ASSAY

These assays can determine the total specific steroid receptors present in a 

variety of tissues and cells [Leake, 1981]. The principle used is based on the 

calculations of Scatchard [Scatchard, 1949].

5 . 1 .  Preparation of radioactive steroid solutions for androgen 

receptor assay

The concentration range of radiolabeled steroid ([17a-methyl-3H] mibolerone) 

used was from 0. l-5nM, This enables the detection of type I and type II 

binding sites [Eriksson, 1978; Markaverich & Clark, 1979; Castagnetta etal.,

1992]. Determination of nonspecific binding was achieved by adding 100-fold 

excess of unlabeled mibolerone to duplicates of the three highest radiolabeled 

concentrations. Unlabelled steroid must be added first to these vials and the 

solvent evaporated using compressed nitrogen. To hamper the mibolerone 

binding to glucocorticoid receptor triamcinolone acetate ( 1x10_7M) was added to 

all the vials and the solvent evaporated using compressed nitrogen. The 

appropriate volume of ethanol containing [17a-methyl-3H] mibolerone was 

then added to each vial before equalising the alcohol content by adding ethanol 

alone. HED buffer was added in order to bring the final volume of all solutions 

to 2.5ml. These were stored at 4°C for up to two months.

5 . 2 .  Assay protocol

Approximately 20xl06 cells were allowed to "plate down" for 24hr in routine 

conditions to provide a 50% confluent monolayer in a 175cm2 plastic tissue 

culture flask .The cells were then harvested by trypsinisation as described in 

section 2.2.2. The cells were resuspended in 4ml of HED buffer (section

1.1.4.). Cell lysis was carried out by the freeze/thaw method described in 

section 2.2.4. and the cell extracts were centrifuged at 800# for 5 minutes at
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4°C to separate the cytosol (supernatant) from the nuclear pellet fraction. The 

supernatant was further centrifuged at 2000# for 15 minutes at 4°C to pellet the 

cell debris. The nuclear pellet was washed three times in ice-cold HBS and 

resuspended in 4 ml of ice cold HBS. 50 ]i\ of each of the radiolabeled steroid 

standards was added to 150 /d of each cell fraction and these were incubated for 

18 hours at 4°C. Free ligand was removed from the soluble fraction by 

incubation with 200 ]A DCC (final concentration 0.25% (w/v)) for 15 minutes 

on ice with occassional mixing, before centrifuging at 1000# for 5 minutes at 

4°C. 200/d of each supernatant was then transferred to scintillation vials and 4 

ml of scintillation fluid added.

To remove free ligand from the nuclear fraction 100 ]A was added to 5 ml of 

ice-cold HBS immediately prior to pouring onto a prewetted Whatman GF/C 

filter held in a Millipore filter apparatus under vacuum. The tube which had 

contained the saline plus nuclear suspension was then washed out with 5 ml of 

ice-cold HBS which was poured onto the filter. The chimney apparatus was 

washed with a further three volumes ice-cold HBS prior to removal and the 

edges of the filter were also washed before the filters were placed in scintillation 

vials and 4 ml scintillation fluid added.

50 ]a\ of each standard was also added to a set of scintillation vials and 4 ml 

scintillation fluid (Ultima-Flo) added, to establish total cpm added to samples. 

All the vials were counted for tritium using a scintillation counter (LKB 1209 

Rackbeta counter).and analysed as described below.

5.3. Analysis of receptor data

The ligand concentrations used (0. l-5nfl) allow definition of an experimental 

window which covers both type I (high affinity, low number/ cell) and type II 

(lower affinity, greater number/ cell) [Clark & Peck, 1979; Leake et al., 1981; 

Castagnetta et al., 1989].
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Receptor assay data was processed using Scatchard analysis and a modification 

of a regression analysis best fit routine (Rosenthal-Feldman method for the 

resolution of curved Scatchard plots [Rosenthal, 1967]) [Leake et al., 1987] 

(Oncolog2.2®), run on an IBM-PC, yielding both dissociation constant (Kd) 

and concentration values (fmol/ml homogenate) for each class of binding site. 

Receptor concentration was expressed as fmol/mg DNA. Data was analysed 

using a model for two binding sites to assess wheither there was one or two 

ligand binding sites (Carruba, 1994).

6. APPLICATION OF HEAT SHOCK TO CELL MONOLAYERS

Cell were subcultured as in section 2.2.2. allowed to "plate down" for 24hr in 

routine conditions (section 2 .2 .1 .) so that a 2 0 % confluent monolayer was 

formed. The number of cells and the type of flask used varied depending on the 

experimental conditions. The medium was changed either to experimental or 

routine medium depending on the experiment.

Heat shock was achieved in the early experiments using a thermostatically 

controlled water bath [Lloyd et al., 1992]. Tissue culture flasks were placed 

within a glass trough containing a layer of glycerol 1mm deep which was 

floated in the water bath; multi-well plates were sealed water tight (using 

Nescofilm) and allowed to float on the surface of the water. The efficiency of 

heat transfer from the water to the cells was assessed by measuring the 

temperature inside vessels containing only culture medium.

After optimum heat shock temperatures were established, an humid incubator 

with atmospheric air enriched with 5% CO2 (LEEC) was used. Again the 

transfer of heat to the cells was measured and a direct comparison was made 

between the two methods to ensure that there was similar heat transfer and 

effect.
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7. SUCROSE DENSITY GRADIENT CENTRIFUGATION

Sucrose density gradient analysis (SDGA) was originally used as a method for 

determining the molecular nature of proteins [Martin & Ames, 1961]. 

Sedimentation of a protein through a gradient depends on the size and shape of 

that protein or complex. Sedimentation coefficients are usually expressed in 

Svedberg units (S). IS is equal to 10' 13 seconds.

7.1. Radioactive sedimentation markers

The sedimentation coefficients of several proteins are well documented [Fazekas 

& Mac Farlane, 1980] and these were used as standards to enable the 

calculation of unknown coefficients. [14C]-labelled BSA , 4.6S and [14C]- 

labelled human- y-globulins, 7. IS were used as standards in SDGA .

7.2. Sedimentation pattern of steroid receptors in low salt buffers

Cells were sub-cultured as in section 2.2.2. and allowed to plate down in a 

75cm2 tissue culture flask for 24hr in routine conditions so that a 50% confluent 

monolayer was formed. The routine medium was removed and the cells washed 

twice with PBS and 30ml of steroid-free medium was added. The cells were 

grown in this medium for 48hr. The cells were then harvested by trypsinisation 

as described in section 2.2.2. The cells were resuspended in 2ml of low salt 

homogenate buffer and cell lysis was carried out by the freeze/ thaw method 

described in section 2.2.4.. The cell lysate was then centrifuged at 105000# for 

30 minutes at 4°C to pellet the nucleus and cell debris, a protein assay was 

carried out to ensure that the total protein content of the supernatant was 

between 5-10 mg/ml. 1 ml aliquots of the supernatant were then incubated for 1 

hour at 4°C with either 3H-mibolerone with a final concentration of 5 x 10-9 M 

alone or 3H-mibolerone at a final concentration of 5 x 10-9 M plus a cold
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competitor of mibolerone (not radiolabled) at a final concentration of 5 x 10 7 

M.

Unbound mibolerone was removed by incubating the samples with DCC at a 

final concentration of 0.5% w/v for 15 minutes at 4°C, mixing every 5 minutes. 

The DCC-bound mibolerone was then pelleted by centrifugation at 2000# at4°C 

for 15 minutes. 200 /d of supernatant was then gently layered on top of a 5- 

20% (5ml) sucrose gradient.

Sucrose density gradients were made by mixing 5% sucrose, in gradient buffer 

and 2 0 % sucrose in gradient buffer in a two chamber gradient forming device. 

The gradient was formed in 5ml cellulose nitrate tubes at 4°C and allowed to 

settle for at least 4 hours before use. The formation of the sucrose gradient was 

checked periodically using a refractometer.

After layering the cytosol on top of the gradient the tubes were centrifuged at

50,000 rev/min (250000#) for 20 hours at 4°C using a Beckman SW 55Ti rotor 

in a Beckman L2-65B ultracentrifuge. Each sample contained 14C-labelled 

BSA, 4.6S and 14C-lablled human- y-globulins, 7.1 S as internal markers.

After centrifugation, the bottom of the tube was punctured with an 21 gauge 

needle and two-drop fractions were collected in Eppendorf tubes (28-33 

fractionsfrom each SDG). 10/d of each sample was then placed in scintillation 

vials and 3ml of scintillation fluid was added. The amounts of 3H and 14C in 

each vial were counted in a scintillation counter (LKB 1209 Rackbeta).

Spectrum plots of both 14C and 3H showed that an overlap exists between the 

two radioactive emission profiles. The counterwindows were changed to 

eliminate the3H counts from the 14C spectrum. It would be impossible to 

eliminate the 14C counts from the 3H spectrum but these were minimised and 

the % overlap was calculated and the 3H counts adjusted accordingly.

Graphs were plotted showing the number of counts as a function of the fraction 

number and arrows used to indicate the position of the sedimentation markers. 

The positions of the 4S and 8 S [3H] peaks were determined by comparison
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with the migration of the [14C]- labelled standard proteins. The relative areas 

under the sedimentation peaks were calculated and the ratio of 4S/8S peaks 

obtained.

8. [35S]-METHIONINE l a b e l l i n g  o f  p r o t e i n s

Cells were sub-cultured as in section 2.2.2. and allowed to plate down in 6 -well 

tissue culture plates for 24hr in routine conditions so that a 50% confluent 

monolayer was formed. 45 minutes prior to labelling, the medium was removed 

and the cells washed twice with PBS and once with methionine-free medium. 

The cells were incubated for 40 minutes with a further volume of methionine- 

free medium supplemented with 2% DHIDCCFCS. The cells were then washed 

with methionine-free medium and incubated for 3 hr with methionine-free 

medium supplemented with 2% DHIDCCFCS and 5piCi/ml [3 5S]-methionine. 

The medium was removed and the cells washed twice with low salt 

homogenate buffer. The cells were removed from the wells using a small cell 

scraper in 0.5ml of low salt homogenate buffer. The samples were placed in an 

Eppendorf tube and stored at -70°C. Cell lysis was achieved by freeze/thawing 

the samples (section 2.2.4.).

The polypeptides were resolved by SDS/PAGE (section 10.) and Western 

blotting carried out (section 11.). The blots were air-dried and exposed for one 

week to X-ray film (Amersham hyper film MP) with intensifying screens at 

-70°C.The X-ray film was developed using an automated machine (Kodak X- 

Omat Processor Model ME3).

9. IMMUNOPRECIPITATION OF HSP90

The method was adapted from that of Perdew and Whitelaw [Perdew & 

Whitelaw, 1991] and uses a mouse monoclonal anti-hsp90 antibody of the IgM 

class (3G3) obtained from Affinity Bioreagents. A goat anti-mouse (GAM) IgM 

antibody was used to link the 3G3 antibody with Sepharose gel as follows
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9 . 1 .  Preparation of GAM-sepharose complex

0.3g of CNBr-Sepharose (1ml final gel volume) was resuspended in ImM HC1 

and incubated for 15 minutes at room temperature. The CNBr-Sepharose gel 

was then washed for 15 minutes on a sintered glass filter with a further 60ml of 

ImM HC1 ( a tight-fitting piece of glass filter paper (Whatman glass microfibre 

filter GF/C) was used to prevent loss of gel volume). The gel was then placed 

in a glass bijou bottle.

The GAM-IgM was diluted in coupling buffer to a final concentration of 

0.5mg/ml and 2ml of this was added to 1 ml of washed CNBr-Sepharose. The 

GAM and CNBr-sepherose were incubated, rotating at 4°C overnight. The 

GAM linked CNBr-Sepharose (GAM-Seph) was then pelleted by centrifugation 

for 2 minutes at 1000# at 4°C and the supernatant discarded. The GAM-Seph 

was washed twice with coupling buffer and pelleted as before. The remaining 

active sites on the CNBr-Sepharose were blocked by incubating the GAM-Seph 

with 1M ethanolamine pH 8.0 for 2 hours at 4°C. This was followed by one 

wash with coupling buffer and one wash with acetate buffer and a final wash 

with coupling buffer.

To ensure that GAM was bound to the CNBr-Sepharose prior to 3G3 binding, 

a small amount of the GAM-Seph was incubated, rotating for 1 hour at room 

temperature with a horseradish peroxidase linked anti-goat antibody (5mg/ml). 

The GAM-Seph/ anti goat conjugate was washed twice with 1 ml of coupling 

buffer followed by a 1 minute incubation with ECL reagent (section 11.2.). 

Aliquots of this mixture were spotted onto nitrocellulose paper and this was 

then exposed to X-ray film (Amersham hyper film MP) for 15 seconds in the 

dark. The X-ray film was developed using an automated machine (Kodak X- 

Omat Processor Model ME3). The intensity of the spots indicated the level of 

GAM bound to the CNBr-Sepharose.
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9 . 2 .  Binding of 3G3 antibody with GAM-Sepharose complex

The 3G3 antibody ( lOOpig) was dissolved in 200 ]A HENG buffer and 

incubated with 100/d GAM-Seph (actual volume of GAM-Seph, the coupling 

buffer having been removed) for 1 hour, shaking on ice. The GAM-Seph-3G3 

was pelleted by centrifugation for 2 minutes at 1000# at 4°C and the 

supernatant discarded. The GAM-Seph-3G3 was washed with HENG buffer 

and once with 0.2 M triethanolamine (pH 9.0) before the GAM and the 3G3 

antibodies were crosslinked. Crosslinking was achieved by incubating the 

GAM-Seph-3G3 with 20 mM DMP for 45 minutes, rotating at room 

temperature, followed by washing with one volume of 0.2 M ethanolamine pH 

8.0 then incubating with a further volume of 0.2 M ethanolamine at room 

temperature, rotating, for two hours. The GAM-Seph-3G3 was finally washed 

twice with HENG buffer and stored in HENG buffer at 4°C.

9 . 3 .  Purification of hsp90 usingGAM -Seph-3G3

Cells were harvested, as appropriate for the experiment (see results chap ter 5), 

and suspended in HENG buffer, lysed by freeze/ thawing and centrifuged for 

30 minutes at 18000 rpm at 4°C to pellet the membranes and nuclei. this

separation method all soluble proteins in the nucleus will be found in the cytosol 

fraction (cell extract). The supernatant (cell extract) was removed and a protein 

assay carried out ( section 4.2.). The cell extract was diluted with HENG buffer 

to a protein concentration of 400/^g/ml. 1 ml of diluted cell extract was added to 

100 /d GAM-Seph-3G3 and incubated for 90 minutes in ice, on an orbital 

shaker (Luckman R100). The GAM-Seph-3G3-hsp90 was pelleted by 

centrifugation for 2 minutes at 1000# at 4°C and the supernatant stored at -70 

°C. The pellet was washed twice with HENG, once with 50mM NaCl and once 

with 20/d HENG buffer. 20 /d sample buffer was added and the sample boiled 

for 5 minutes before SDS/PAGE (section 10.) followed by Western blotting 

(section 1 1 .).
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10 SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS 

(SDS-PAGE)

10.1 Preparation of discontinuous SDS-PAGE gels

The methodology for discontinuous SDS-PAGE is based on that of Laemmli

[Laemmli, 1970]. Discontinuous gels consist of a resolving (lower) gel and a

stacking (upper) gel, resulting in better band resolution than a continuous gel

which has no stacking section [Laemmli, 1970].

The gel apparatus used was a Mini-protean® II dual slab cell (BIORAD).

Assembly of the kits was carried out as per manufacturer's instructions, using

1mm spacers and comb. Before the resolving gel was poured between the

plates, the comb was inserted and the plate marked 1 cm below the teeth of the

comb. This is the level to which the resolving gel is poured. Preparation of

7.5% resolving gel monomer solution was as follows: 5ml resolving buffer,

10ml 30% acrylamide buffer, 22ml distilled water and 3ml 1% ammonium 
c'1'

persu^ ate were added together and immediately before pouring 300 ]A TEMED 

was added. After the resolving gel was poured it was immediately overlaid 

with isopropanol to ensure an even surface on the top of the resolving gel. After 

the gel had polymerized, the isopropanol was rinsed off thoroughly with 

distilled water and the area above the resolving gel was dried with filter paper 

before the stacking gel was poured. The stacking gel was made by mixing 5 ml

stacking buffer, 2.5 ml 30% acrylamide buffer, 11 ml distilled water and 1.5 ml
Pv-,

1.0% ammonium persul ate and, immediately before pouring, 300 ja\ TEMED. 

The stacking gel monomer was poured on top of the resolving gel and 

immediately the comb was inserted. Care was taken to prevent air bubbles 

forming within the wells. The gel was allowed to polymerise at room 

temperature. The upper buffer chamber was assembled as per manufacturer's 

instruction and was filled with electrophoresis tank buffer. The combs were
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removed by pulling straight up slowly and gently. Before sample loading the 

wells were washed with electrophoresis tank buffer to ensure removal of any 

monomer polyacrylamide solution. The lower buffer chamber was filled with 

electrophoresis tank buffer so that at least 1 cm of the gel was covered and any 

air bubbles removed from the bottom of the gel so that good electrical contact 

was achieved.

10 . 2  Loading and electrophoresis of samples and standard 

proteins

Samples and protein standards (unless Biorad pre-stained SDS-PAGE markers 

were used) were mixed 1:1 with sample buffer and boiled for 5 minutes, then 

centrifuged for 20 seconds at 1000# before being loaded. The samples were 

loaded into the wells under the electrode buffer with a Hamilton syringe placed 

about 1.5mm from the well bottom. Care was taken to prevent overspill into 

neighbouring wells.

The unit was then connected to a power supply (Biorad constant voltage power 

supply). A constant voltage of 200 volts was applied. Electrophoresis was 

carried out until the bromophenol blue tracker dye was at the bottom of the gel. 

The gels were then removed from the apparatus as per the manufacturer's 

instruction and either stained for total protein content (section 1 2 ) or western 

blotting (section 11) carried out.

10.3  Determination of protein size by SDS-PAGE

To assess the molecular weight of observed proteins, one lane of each well 

contained calibration standards (kit obtained from Boehringer Mannheim 

Biochemica), which had been dissolved in sample buffer. A linear calibration 

curve was obtained by plotting the logarithm of the molecular weight of the 

calibration protein against the distance which that protein had migrated into the 

gel. The standards used were (X2 -macroglobulin (Mr 170,000 in reduced state),
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p-galactosidase (Mr 116,353), fmctose-6 -phosphate kinase (Mr 85,204), 

glutamate dehydrogenase (Mr 55,562) and triose phosphate isomerase (Mr 

26,626).

11. WESTERN BLOTTING OF SDS-PAGE SAMPLES

11.1 Transfer of proteins unto nitrocellulose paper

The use of an electrical current to transfer proteins from polyacrylamide gels 

onto a nitrocellulose membrane was first described by Towbin [Towbin, 1979]. 

The apparatus used was a Mini trans-blot® electrophoretic transfer cell 

(Biorad). Proteins were separated by SDS-PAGE as described in section 10. 

The gel and the nitrocellulose membrane (Amersham ECL) were equilibrated in 

transblot buffer for 20 minutes. The assembly of the transblot sandwich was 

carried out as described in the manufacturer's instruction manual ensuring 

correct orientation of the gel and nitrocellulose paper (anode-fiberpad-filter 

paper-nitrocellulose-gel-filter paper-fiber pad-cathode). The transblot sandwich 

and the cooling unit were placed in the buffer chamber which was filled with 

transblot buffer. Electrophoretic transfer was carried out at 100 volts for 1 hour 

using a Biorad constant voltage power supply. Once transfer was complete the 

nitrocellulose was cut to the size of the gel and rinsed in TBST. The remaining 

active sites on the nitrocellulose were blocked by incubating the blot in 5% non­

fat milk in TBST at 4°C for 48hr. The blot was then washed five times with 

TBST over a period of 1 hour at room temperature. Exposure to the primary 

antibody (Ab) was achieved by incubating the blot in 10^g/ml Ab in 5% non-fat 

milk/TBST for either 2 hours at room temperature or overnight at 4°C. The blot 

was again washed five times with TBST over a period of 1 hour at room 

temperature.
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11 . 2  Detection of protein using enhanced chemiluminescence

(ECL)

SDS-PAGE and western blotting were carried out as in sections 10 and 11.1..

A horseradish peroxidase-labelled secondary Ab is used to detect the primary 

Ab on the western blot.

The secondary antibody was diluted 1:1000 in TBST . The blot was then 

incubated in 10ml of the diluted second antibody for 1 hr at room temperature. 

The blot was washed five times with TBST over a period of 1 hour at room 

temperature before being transferred to the dark room. The ECL developer 

solutions (Amersham) were mixed 1:1 and 4 ml of the mixture was gently 

poured on top of the blot. After 1 minute the developer mixture was removed 

and the blot wrapped in Saran wrap (Dow). Care was taken to ensure that no air 

bubbles or wrinkles were formed before the blot was exposed to X-ray film 

(Amersham hyper film MP) for 15 seconds in the dark. The X-ray film was 

developed using an automated machine (Kodak X-OMat Processor Model 

ME3). The intensity of the resultant bands could be varied by altering the film 

exposure time.

12 . STAINING AND PRESERVING OF SDS-PAGE GELS

12.1. Silver staining of SDS-PAGE gels

Gels were silver stained according to the method of Morrissey [Morrissey, 

1981]. Gels were prefixed in solution 1 for 30, minutes followed by a further 

30 minutes in solution 2. They were then placed in solution 3 for 30 minutes, 

after which time they were rinsed in distilled water and left in a large volume of 

distilled water for at least 2 hours. The gels were soaked in solution 4 for 30 

minutes, which was then replaced with solution 5 for a further 30 minutes 

before rinsing first with distilled water and then solution 6 . The gels were 

allowed to sit in solution 6  until the desired level of staining was achieved. The
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reaction was stopped by adding 12 ml of solution 7 before the gels were stored 

in distilled water.

1 2 . 2 .  Coomassie blue staining of SDS-PAGE gels

Gels were stained by incubating in Coomassie staining solution for 1 hour at 

room temperature. Destaining of the gel was then achieved by soaking in five 

washes of destaining solution over a period of about 5 hours.

13. Statistical analysis

All statistical analyses was carried out using GraphPad Instat Mac® version 2.0 

(GraphPad Software). The means and standard deviations of repeated 

experiments were also calculated using GraphPad Instat Mac®. The 

experimental and control means were compared using an unpaired, two-tailed 

student t test unless otherwise stated.

Instat reports exact P values and states the "significance" of the results using the 

following arbitary scheme.

P> 0.10 "not significant"

P<0.10 "not quite significant"

P<0.05 "significant"

P<0.01 "very significant"

P<0.001 "extremely significant'

The t test asumes that the data populations are scattered according to a gaussian 

distribution, and that the standard deviatioi£of the two populations are equal. 

Instat tests this assumption of equal variances with an F test and unless stated 

the standard deviations were found to have equal variances.
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14. Computer software

This thesis was written using Microsoft® Word version 5.1, all graphs and 

tables were created using CA-Cricket Graph III® (Computer Associates 

Limited) and diagrams were created using Clarisworks® (Claris Corporation). 

Bibliographic references (citations) were organised and managed using 

EndNote Plus® (Niles & Associates Inc.). All these programs were run on an 

Apple Macintosh computer.

Scatchard analysis of steroid receptors was carried out using Oncolog® which 

runs on an IBM computer.
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Chapter 3

The effect of hyperthermia on prostate 
cancer cell lines
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3.1 Correlation of Cell number with DNA content 

Introduction

Throughout this thesis DNA synthesis is used as a means of assessing cell
<L

survival and growth. Theijfore, it is important to ensure that the level of DNA 

will reflect cell number. An initial experiment was carried out to show the 

correlation between DNA content and cell number.

Methods

The three cell lines were subcultured as in section 2.2.2. of the methods chapter 

so that a 2 0 % monolayer was formed within 2 x 6 -well tissue culture plates per 

cell line. The cells were then allowed to "plate down" for 24 hours before the 

medium was renewed. Every 24 hours, the culture medium was removed from 

2 wells and the cell monolayers were washed twice with PBS. The cells were 

harvested by trypsinisation, a sample of the harvested cells was removed and 

the number of cells counted using a haemocytometer. The remaining cells were 

lysed and a DNA assay carried out as described as in section 3.of the methods 

chapter.

R esults

The relevance of using DNA concentration as a measure of cell number or cell 

proliferation can be validated by the production of linear correlation when cell 

number is plotted against DNA concentration. Linear correlation between the 

two is seen in figure 8  (r= 1 .0 0 ).

C onclusions

Figure 8  shows that there is good correlation between the concentration of DNA 

in a sample and the number of cells in the same sample.
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Figure 8. Correlation of DNA concentration with cell number.

This graph is an example of correlation between cell number and DNA 

concentration. Each plot represents one sample, half of which was counted 

using a haemocytometer, the remaining half was assayed for DNA using the 

Hoechst method as described in methods section 3..
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3.2. Androgen sensitivity of prostate cancer cell lines

Introduction

Androgens are essential for normal prostate development and maintenance 

[Davies & Eaton, 1991]. Therefore, it was important to characterise the growth 

response of the three prostate cancer cell lines used (LNCaP, DU 145, PC3) to 

androgens under normal growth conditions. The ligand used was 5a- 

dihydrotestosterone (DHT) which is the normal intracellular mediator of 

androgen action.

Methods

The three cell lines were subcultured as in section 2.2.2. of the methods chapter 

so that a 2 0 % monolayer was formed within 2 x 6 -well tissue culture plates per 

cell line. The cells were then allowed to "plate down" for 24 hours before the 

routine medium was removed and the cells washed twice with PBS. Steroid 

free medium containing different concentrations of DHT (concentration range 

lxlO^M- lxlO_12M) was added to each well. The DHT was dissolved in 

absolute alcohol to form a stock solution of lxlO_3M which could then be 

diluted into culture medium to produce working concentrations with negligible 

alcohol content. Duplicate wells were used for each experimental and control 

concentration. Control cells were incubated in steroid free medium with no 

hormone additive but with the same final absolute alcohol concentration as the 

experimental medium.

The cells were incubated at 37°C for 72 hours. The culture medium was 

removed and the cell monolayers were washed twice with PBS. The cells were 

harvested by trypsinisation, a sample of the harvested cells was removed and 

the number of cells counted using a haemocytometer. The remaining cells were 

lysed and a DNA assay carried out as described as in section 3.of the methods 

chapter.
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R esults

The results of the androgen sensitivity studies are expressed in the form of dose 

response curves. Figure 9 illustrates the dose response to all three cell lines, 

these are shown as means of 3 independent experiments each done in duplicate 

and the standard deviations are indicated by the error bars.

C onclusions

Figure 9 shows that LNCaP cell growth responds positively to the influence of 

DHT with maximum stimulation at 10-9 M DHT. This result supports previous 

reports that LNCaP is an androgen responsive cell line [Horoszwicz et al., 1983; 

Lloyd, 1992]. Neither DU 145 nor PC3 cell growth responds to DHT. Again 

this corresponds to earlier results obtained by this group and others [Stone et 

d ., 1978; Lloyd, 1992; Carruba 1994].

Although DU145 cells are not growth stimulated by androgens, they do have 

androgen receptors present as shown by Scatchard analyses and it has been 

suggested that these cells do show a metabolic response to androgens [Carruba 

1994].
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Figure 9. Dose response curve for DHT in all three prostate cancer cell lines. 

All three cell lines (LNCap, DU145 & PC3) were exposed to DHT over a range 

of concentrations from lxlO^M to 1x10' 1 1m for 72 hours.

The dotted line at 34/<g/ml DNA represents the LNCaP control (no DHT) DNA 

level at 72 hrs, the DU145 control level was 35g/ml and the PC3's level was 

40/<g/ml.

Data points represent means of means of 3 independent experiments each done 

in duplicate and the standard deviations are indicated by the error bars.

Where no error bars are visible, the standard error is too small to 
be shown.
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3.3. The effects of heat on prostate cancer cell lines

Introduction

The thermosensitivity of different cell types varies, depending on the normal 

range of environmental exposure to heat [Lindquist, 1986]. Therefore, it was 

important to characterise the normal range of thermal tolerance of prostate cell 

lines and to define the temperatures required to establish thermotolerance in 

these cells.

The experiment was designed so that the cells would receive a measured dose of 

sub lethal heat to shock the cells. The experimental conditions were altered to 

establish the optimal heat shock temperature which would induce 

thermotolerance.

Methods

The cells were subcultured as described in method section 2.2.2., so that a 

2 0 % confluent monolayer was formed within 6 -well plastic tissue culture 

plates. The cells were allowed to "plate down" for 24 hours and the culture 

medium was changed prior to commencing "heat shock". Heat shock was 

achieved using a thermostatically controlled water bath [Lloyd et al., 1992].

The plates were sealed water tight (using Nescofilm) and allowed to float on the 

surface of the water. The efficiency of heat transfer from the water to the cells 

was assessed by measuring the temperature inside vessels containing only 

culture medium. The ability of a particular temperature to induce 

thermotolerance on a cell line was determined by incubating the cells at that 

temperature (38°C, 39°C and 40°C) for two hours followed by a 12 hour 

recovery period (37°C). The cells were then incubated at a normally lethal 

temperature (42°C and 43°C) for 2 hours. The incubation period of two hours 

was used as earlier experiments had shown this time to be sufficient to achieve 

maximal thermotolerance (data not shown). To determine whether or not the
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heat shock treatment had positively changed cell growth potential, cells were left 

to recover for 24 hr after the second heat shock treatment, then one sample was 

taken. Remaining wells were allowed to grow for a further 24 hours and then 

sampled. DNA assays were carried out as described in the methods section 3. to 

asses wether the cells continued to grow between 24 and 48hrs post heat shock. 

Thermotolerance is defined as the ability to continue growth between 24 and 48 

hours post 2 nd heat shock.

R esults

The conditions required to induce maximum thermotolerance were investigated 

using LNCaP cells. Figure 10 shows the effect of altering the 1st sub-lethal 

temperature on the induction of thermotolerance as a % of DNA synthesis at 

constant 37°C. Figure 11 shows the experimental time course for maximal 

thermotolerance induction.

Figures 12,13 and 14 demonstrate the acquisition of thermotolerance by 

LNCaP, DU 145, and PC3 cells.

Control experiments are as follows: one set of cells were grown at 37°C 

throughout the experiment to show normal cell growth; another set of cells were 

kept at 37°C until exposure to the normally lethal temperatures (42°C and 43°C) 

to show the effects of hyperthermia on cells; and a third set of cells were 

incubated at the sub lethal temperature but not the lethal temperature to show the 

effects of the sub lethal temperature alone.

Each experimental point is the mean of triplicate experiments ± standard 

deviation.
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Figure 10. The induction of thermotolerance in LNCaP cells.

The cells were incubated with different elevated temperatures (38°C, 39°C 

and 40°C) to establish the temperature required to induce thermotolerance.

The induction of thermotolerance was assessed by incubating the cells at a 

normally lethal temperature (42°C and 43°C) 12 hours after the initial heat 

shock.

The ability of the different temperatures to induce thermotolerance was assessec 

by measuring the DNA synthesis between 24 and 48 hours. j

Each column represents the mean of 3 independent experiments each done in |

duplicate and the standard deviations are indicated by the error bars j
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Figure 11. Graphical representation of timing and temperature required to j
1

establish thermotolerance. j
)

The cells were incubated at 39°C for 2 hrs then returned to 37°C for a 12hr j

recovery period before exposure to 42 °C for 2 hrs. Cell samples were taken 24

and 48 hrs after the end of the second heat shock.
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Figure 12. The induction of thermotolerance in LNCaP cells.

The cells were exposed to the first temperature for 2 hours followed by 

a 12 hour recovery period at 37°C before being exposed to the second 

temperature.The effects of the different heat shock treatments on the cell 

growth were assessed by measuring the amounts of DNA present 24 and 

48 hours after the secend heat shock treatment.

Each column represents the mean of triplicate experiments, the error 

bars are the standard deviations .

Where no error bars are visible, the standard error is too small to 
be shown.
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Figure 13. The induction of thermotolerance in DU145 cells.

The cells were exposed to the first temperature for 2 hours followed by 

a 12 hour recovery period at 37°C before being exposed to the second 

temperature.The effects of the different heat shock treatments on the cell 

growth were assessed by measuring the amounts of DNA present 24 and 

48 hours after the second heat shock treatment.

Each column represents the mean of triplicate experiments, the error 

bars are the standard deviations .
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Ôi CO CO CO

Heat Shock Temperatures in oC

[x] 24 hr sample 

g ]  48 hr sample

101



Figure 14. The induction of thermotolerance in PC3 cells.

The cells were exposed to the first temperature for 2 hours followed by 

a 12 hour recovery period at 37°C before being exposed to the second 

temperature.The effects of the different heat shock treatments on the cell 

growth were assessed by measuring the amounts of DNA present 24 and 

48 hours after the second heat shock treatment.

Each column represents the mean of triplicate experiments, the error 

bars are the standard deviations .

Where no error bars are visible, the standard error is too small to
be shown.

102



DN
A 

|_ig 
i1 m

l
PC3 Cell Therm otolerance

50

40  -

30  -

20  -

:
: .XV"-
X $• \  \

10  -

co co co ro

Heat Shock Temperatures in oC

[x] 24 hr sample 

[\] 48 hr sample

103



C onclusions

A temperature of 42°C is high enough to induce cell kill in LNCaP cells. This is 

seen in figure 10 columns 37/42 and 37/43. This is prevented if the cells are 

first exposed to 39°C (figure 10 column 39/42 and 39/43). 38°C does not 

appear to induce thermotolerance which suggests that there is a threshold 

temperature under which the cells will not implement the stress response. 40°C 

is not a lethal temperature (figure 10 column 40/37) nor does it induce 

thermotolerance (figure10 40/42 and 40/43). It may be that the cells are so 

damaged by the initial 40°C exposure that they are unable to induce the stress 

response or survive the lethal temperatures.

Prior exposure to 39°C enable cells to survive exposure to 42°C and still 

continue to grow. Cells pre-treated at 39°C are still not capable of surviving and 

growing after a second exposure to43°C, at least not in so far as the test for 

overall cell growth indicates between 24 and 48 hours after the 2nd heat shock 

treatment. Therefore it was decided to use a combination of 39°C followed by 

42°C to establish thermotolerance in LNCaP cells (figure 12). Having 

established these conditions for the induction of thermotolerance in LNCaP 

cells, it was important to show that these temperatures would also induce 

thermotolerance in DU 145 and PC3 cells.

The results demonstrated in figures 13 and 14 show that DU 145 and PC3 cell 

lines are able to establish thermotolerance under this regimen.

Comparing 37/37 with 37/42 in figures 12,13 and 14, all three cell lines 

showed a significant decrease in DNA present at 48 hours after heat shock at 

42°C alone (LNCaP p=0.0087; DU145 p=0.0465; PC3 p=0.0026) compared 

with 37°C controls. In the case of LNCaP and DU 145 cells there was also a 

further decrease in the amount of DNA present after 48 hours compared with 24 

hours and this may be due to cell kill at 42°C (LNCaP cells are not well attached 

to the surface of the culture plates and therefore quickly detach once dead). The
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decrease in DNA synthesis after exposure to 42°C is prevented if the cells are 

first exposed to the elevated but sub lethal temperature of 39°C. Comparing the 

level of DNA synthesis (the increase in DNA content between 24 and 48 hours) 

in columns 37/37 and 39/42 shows that the relative increase in DNA is the same 

in the control (37/37) as in the experimental 39/42 for both LNCaP (see figure 

13) and DU145 cells (see figure 13). This can not be said for PC3 cells (see 

figure 14) the level of DNA synthesis in the control cells (37/37) is far greater 

than in the experimental 39/42 cells althought growth does occur in the 39/42 

cells.
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3.4. The effect of time on thermotolerance

Introduction

Treatment of prostate cancer with local hyperthermia involves heating the gland 

either once or twice a week [Engin et. al., 1993]. Thermotolerance in some 

cases is a short lived phenomenon, lasting only 2 to 3 days [Nielsen & 

Overgaard, 1982]. Therefore it is important to see if the thermotolerance in 

prostate cancer cells will vary with time.

Little is known about the mechanism of thermotolerance, but it is clear that it 

depends on a pre-exposure to an elevated but sub-lethal temperature [Gemer & 

Schneider, 1975], The persistence of thermotolerance and whether 

thermotolerance is an all or nothing event is also poorly understood.Therefore it 

was decided to investigate the minimum time required to establish 

thermotoierance (the time between the sub-lethal and the lethal dose) and 

whether it is an all or nothing event or if there are degrees of thermotoierance.

Methods

The cells (LNCaP's, DU 145's, PC3's) were subcultured as described in 

methodology section 2 .2 .2 ., so that a 2 0 % confluent monolayer was formed 

within 6 -well plastic tissue culture plates. The cells were allowed to "plate 

down" for 24 hours and the culture medium was changed prior to commencing 

"heat shock". Heat shock was achieved by placing the tissue culture plates in an 

humid incubator with atmospheric air enriched with 5% CO2 (LEEC) which had 

been preset to either 39°C or 42°C. The efficiency of heat transfer was assessed 

by measuring the temperature inside vessels containing only culture medium. 

Incubation at the sub lethal temperature of 39°C was administered for 2 hours 

as was the normally lethal temperature of 42°C. The period of time between the
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two heat shock temperatures was varied from 0-72 hours. The culture medium 

was changed every 48 hours. Cell samples were taken at 24 and 48 hours after 

the second heat shock incubation. Cell lysis and DNA assays were carried out 

as described in the methods section 3.. The level of thermotolerance was 

measured as a percentage of cell proliferation between the two samples.

R esults

Figure 15 shows the time couse of acquisition of thermotolerance over time for 

all three cell lines. Figurel6  show the loss of thermotolerance over time. In both 

graphs each point is the mean of three separate experiments + standard 

deviation.

As in earlier experiments the level of DNA synthesis between 24 and 48 hours 

post heat shock is taken to reflect the level of thermotolerance. The increase in 

amount of DNA detected between 24 and 48 hours after the second heat shock 

is given as pig/ml.
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§I

Figure 15. The time required to establish thermotolerance in all 3 cell lines. The 

cells were incubated at the sublethal temperature of 39°C followed by a 

recovery period at 37°C which was varied from 0-14 hours. Finally the cells J

were exposed to 42°C for 2 hours. Cell samples were taken at 24 and 48 hours j

after the second heat treatment and the level of DNA synthesis calculated. j'•1
Each point represents the mean of three separate experiments ± standard J

i
deviation. I

Where no error bars are visible, the standard error is too small to 
be shown.
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Figure 16. The loss of thermotolerance over time in all 3 cell lines.

The cells were incubated at the sublethal temperature of 39°C followed by a 

recovery period which was varied from 12-72 hours. Finally the cells were 

exposed to 42°C for 2 hours. Cell samples were taken at 24 and 48 hours 

after the second heat treatment and the level of DNA synthesis calculated. 

Each point represents the mean of three separate experiments ± standard 

deviation.

W here no error bars are visible, the standard error is too small to 
be show n.
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C onclusions

Figure 15 demonstrates the time required to induce thermotolerance in the 3 

prostate cancer cell lines (LNCaP, DU145 & PC3). Thermotolerance does not 

occur immediately the cell are exposed to 39°C but rather takes up to 8  hours 

before it becomes significant (comparing DNA levels at Ohr & 8 hr, DU 145 

p= 0.0017; PC3 p=0.0023; LNCap p= 0.0036). LNCaP cells appear to be 

more sensitive to 39°C as their DNA synthesis is nearly stopped by the 

exposure to the sub lethal temperature. They also take longer to recover than the 

other two lines which show some degree of thermotolerance after 6  hours 

whereas it is 8  hours before the LNCaP cells show any significant 

thermotolerance. LNCap cells also have a longer doubling time and so their 

level of DNA synthesis never reaches that of PC3 or DU 145 in this experiment. 

Thermotolerance is not an all or nothing reponse. Figure 15 shows that the first 

significant level of thermotolerance is seen after 6  hours (post second heat 

shock treatment) but it is 12  hours before the maximum levels of 

thermotolerance is achieved.

Thermotolerance is lost over time as seen in figure 16. Maximal

thermotolerance, measured as an increase in DNA synthesis observed between

24 and 48 hours after the 2nd heat shock treatment, was obtained with a gap of

12 hours between the first and second heat shock treatment. The loss of

thermotolerance when this gap was increased beyond 1 2  hours (figure 16) was
c.

exponential, as expected and returned to control lev Is when a 96 hour gap was 

used. It occurs more rapidly in the DU 145 and PC 3 cell lines initially but the 

rate of loss of thermotolerance levels out for all three cell lines 

Comparison figures 15 and 16 indicates that the loss of thermotolerance is 

slower than its acquisition. It takes only 12 hours for all three cell lines to 

express maximal thermotolerance but as much as 96 hours for the levels of 

thermotolerance to fall to control levels again.
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These results show that thermotolerance takes time to be established, reaches a 

peak about 12  hours after the initial insult, and once established it is slowly lost
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3.5. The re-establishment of thermotolerance

Introduction

Thermotolerance can be gained and lost over a period of 4 days as seen in 

figures 15 and 16. This would suggest that thermotolerance will not alter the 

effect of treatment of prostate cancer with local hyperthermia, if the doses of 

heat were given at least 4 days apart, if thermotolerance has an advantage in 

sensitising cells to anti-androgen, then this feature may also be lost. This leave S 

the question: would thermotolerance be as quickly re-es ;tablished once lost by a 

further sub-lethal heat shock ?

Methods

LNCap cells were subcultured as described in methodology section 2.2.2., so 

that a 2 0 % confluent monolayer was formed within 6 -well plastic tissue culture 

plates. The cells were allowed to "plate down" for 24 hours before the first heat 

shock treatment was applied. In this experiment the sublethal temperature was 

39°C and the normally lethal temperature was 42°C. Further heat shock 

treatments were applied at 74 and 8 8  hours. The different conditions for the 

various experiments are summarised in figure 17. All heat shock treatments 

were carried out for 2  hours

Heat shock was achieved by placing the tissue culture plates in an humid 

incubator (LEEC) with atmospheric air enriched with 5% CO2 which had been 

preset to either 39°C or 42°C. Routine culture medium was used and it was 

changed ever 48 hours during the experiment.

Cells were harvested at 24 and 48 hours after the final heat shock treatment (8 8 - 

90 hrs), then lysed and DNA assays carried out as described in methods section 

3.. The amount of DNA synthesis between 24 and 48 hrs was calculated and 

the difference was used as a measure of thermotolerance.
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R esults

Figure 18 shows the level of thermotolerance gained, after the heat shock 

combinations, as piglmX DNA synthesis between 24 and 48 hrs. Although the 

graph shows the results for LNCaP only, the data obtained for DU 145 and 

PC3 cells followed the same pattern. They have not been shown to simplify 

interpretation.

Each column represents the mean of three separate experiments + standard 

deviation.

The statistical significance of the increase in thermotolerance is calculated using 

a two tailed student t test comparing each column with the control 37131137142 

column.
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Figure 17. Time course of heat shock therapies in re-establishment experiment!

The heat shock timing shown in figure 11 was altered to allow the loss of 

thermotolerance and possible regain of thermotolerance, the incubation times 

refei^d to were 0-2 hr/14-16 hr/74-76 hr/88-90 hr.

37/37/37/42:- 37°C from 0-88 hrs then 2 hrs at 42°C

37/37/39/42:- 72 hrs at 37°C then 12 hrs between 39°C and 42°C incubations

37/39/37/42:- 72 hrs between 39°C (14-16 hrs) and 42°C (88-90hrs) 
incubations

39/42/37/42:- 12 hrs between 39°C (0-2hrs) and 42°C (14-16hrs) followed by 
another 42°C (88-90hrs) 72 hrs after the 1st 42°C

39/37/39/42:- 39°C incubation at 0 hrs which was repeated at 74 hrs

followed by a final 42°C incubation 12 hrs later (84hrs)

39/37/42/42:- 72 hrs between 39°C and the fk5 42°C, a second 42°C

incubation was given 12  hrs after the first
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Figure 18. The re-establishment of thermotolerance in LNCaP cells.

The cells were exposed to different combination of nonlethal or lethal 

temperatures at Ohrs, 12hrs, 72 hrs and 84 hrs as indicated on the graph. 

Cell samples were taken at 24 and 48 hours after the final heat treatment 

(84hrs and the level of DNA synthesis calculated.

Each column represents the mean of three separate experiments ± standard 

deviation.
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C onclusions

Figure 18 shows the re-establishment of thermotolerance in LNCaP cells. In the 

first column (37/37/37/42) there is no thermotolerance as the cells were not 

exposed to a sublethal temperature to induce thermotolerance. This is used as a 

control column to which all other columns in the graph are compared. A low 

level of DNA synthesis was observed in the control cells.

Column 2 (37/37/39/42) shows the maximal levels of thermotolerance as there 

is a 1 2  hour period between the sub-lethal and lethal heat shocks (see figure 

15).

DNA synthesis in column 3 (37/39/37/42) is greatly reduced. This is because 

the incubation period between the sub-lethal and lethal heat shocks was 72 

hours, which has been shown in figure 16 to greatly reduce the levels of 

thermotolerance in these cells.

In column 4 (39/42/37/42), the cells were exposed to sub-lethal and lethal 

temperatures with 12  hours between the two and this was followed by a final 

lethal incubation 72 hours after the first. Again there is a little thermotolerance (a 

p value of 0.0600 suggests that the level of DNA synthesis is not significantly 

higher than column 1).

Column 5 (39/37/39/42) shows that thermotolerance can be re-established in 

these cells by a further incubation at the sublethal temperature. The level of 

DNA synthesis is significantly greater than in column 1 ( p=0.0001 extremly 

significant difference), the levels of DNA synthesis in column 2 and 5 are 

comparible (p= 0.7147, no significant difference between the two groups).

The final column (39/37/42/42) shows that thermotolerance can not be re­

established by an exposure to a lethal temperature if the sublethal dose occurred 

72 hours before the 1st lethal dose. The level of DNA synthesis is comparible 

with level in column 3 where there is a 72 hour period between the sub-lethal 

and the lethal temperatures (p=0.1893, no significant difference between 

column 3 and 6 ).
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This experiment was carried out on all three cell lines. All three lines showed 

the same patterns of establishing and re-establishing thermotolerance. Only the 

results for the LNCaP cells are shown, to simplify the graph and the 

interpretation of the results. The statistical significance of each column 

compared to column 1 was similar in all three cell lines.

These results give direct evidence for the ability of these cell lines to re-establish 

thermotolerance once it has been lost.
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3.6. The combined effect of anti-androgen and hyperthermia

therapy on prostate cancer cells.

Introduction

Figure 9 demonstrates that LNCap cells respond positively to DHT. They are 

also positively stimulated by the anti-androgen hydroxyflutamide (OH-Hut) 

[Lloyd et al., 1992; Veldscholte et al., 1992], This stimulation of LNCaP cells 

by OH-Flut conflicts with the antiandrogenic effect of this drug in vivo [Poyet 

& Labrie, 1985] and may reflect differing mechanisms of action in vitro and in 

vivo. .

Both DU145 and PC3 cells are not growth stimulated by DHT as seen in figure 

9, nor are they affected by OH-Hut [Lloyd et al., 1992; G.Carruba personal 

communication].

Hyperthermia has been used in conjunction with endocrine therapy as a 

treatment for prostate cancer. It has even been reported that their combined use 

in vivo results in a more effective treatment compared with the individual use of 

either method [Servadio et al., 1987; Linder etal., 1990].The in vitro studies 

combining hyperthermia and endocrine therapies seem to support this in vivo 

effect [Lloyd et al., 1992].

It was decided to investigate the role of thermotolerance in the combined effect 

of OH-Hut and hyperthermia on all three cell lines. It was also decided to 

investigate the effect of the timing of each treatmenjjto determine whether it is 

more effective to start the anti-androgen therapy prior to or after the heat shock 

dose.

Methods

The cells were subcultured as described in method section 2.2.2., so that a 20% 

confluent monolayer was formed within 6 -well plastic tissue culture plates (8  

plates per cell line) and the cells were allowed to "plate down" for 24 hours.
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This experiment was carried out in two parts (summarised in figure 19) which 

were run simultaneously. In part A the anti-androgen OH-Hut was given 48 

hours prior to the first heat shock treatment. In part B the heat shock treatment 

was given first, followed by the OH-Hut 12 hours after the normally lethal 

temperature.

Prior to adding the OH-Hut, the culture medium was removed from the wells 

and the cells washed twice with prewarmed PBS. The medium was replaced 

with steroid-free medium supplemented with OH-Hut (final concentration 1x10- 

9M). The steroid free medium ± OH-Hut was replaced every 48 hours.

The heat shock treatment was designed to induce maximal thermotolerance as 

seen in figure 10. An initial incubation for 2 hours at the sublethal temperature 

of 39°C was followed by a 12 hour recovery period before the administration of 

the normally lethal dose of 42°C for a final 2 hours. Heat shock was again 

achieved by placing the tissue culture plates in an humid incubator (LEEC) with 

atmospheric air enriched with 5% CO2 which had been preset to either 39°C or 

42°C.

Cells were harvested at 24 and 48 hours after the second heat shock treatment in 

the case of the first part of the experiment and 48 and 72 hours after the addition 

of OH-Hut in the second part.. Cell lysis and DNA assays were carried out as 

in section 3. of the methods chapter and a comparison made between the levels 

of DNA synthesis.
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R esults

Figures 20 and 21 show the effect of combining anti androgen therapy and heat 

shock on the survival of all three cell lines. DNA synthesis between 24 and 48 

hours (post heat shock) or 48 and 72 hours (after OH-Flut addition) is used as 

a measurement of cell survival.

Each column represents the mean of triplicate experiments ± standard errors 

Figure 20 represents the first part of this experiment in that the cells are 

incubated in OH-Flut for 48 hours prior to the heat shock treatment.

Figure 21 represents the second part of this experiment in that the cells have 

been heat shocked prior to the administration of OH-Flut
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Figure 19. Time course of experiments to see the combined effects of 

antiandrogen and hyperthermic treatment on prostate cells.

In part A. cells were given l x l0 9M OH-Flut 48 hrs before they were heat 

shocked. Cell samples were taken 24 and 48 hours after the 2nd heat shock. 

In part B. cells were heat shocked first and lx l 0 9M OH-Flut was added 12 

hours after the 2nd heat shock. Cell samples were taken 48 and 72 hours after 

the addition of 1x10-9M OH-Flut.
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Figure 20. The effect of antiandrogens on thermolerance of all three 

prostate cell lines.

The cells were exposed to lxlO'^M HO-Flut for 48 hours prior to heat 

shock, which was achieved by incubating the cell at 39°C for 2 hours 

followed by a 12 hour recovery period before a final heat shock of 42°C.. 

Cell samples were taken at 24 and 48 hours after the second heat shock 

treatment and the DNA synthesis between 24 and 48 hours is expressed as a 

% of maximum for each cell line.

Each column represents the mean of three separate experiments ± 

standard deviation.

Where no error bars are visible, the standard error is too small to 
be shown.
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Figure 21. The effect of heat shocking all three cell lines prior to 

treatment with antiandrogens.

Thermotolerance was induced in the cells prior to incubation with 

lxlO_9M OH-Flut. Thermotolerance was achieved by incubating the cell 

at39°C for 2 hours followed by a 12 hour recovery period before a final 

heat shock of 42°C.Cell samples were taken at 48 hours and 72 hours after 

commencing lxlO_9M OH-Flut and the DNA synthesis between these 

points was expressed as a % of maximum for each cell line.

Each column represents the mean of three separate experiments ± standard 

deviation.
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C onclusions

Figure 20 shows all three cell lines' responses to heat shock after prior 

exposure to the antiandrogen OH-Flut, assessed in terms of cell growth 

between 24 and 48 hours after the 2nd heat shock. There is no significant 

difference between the first two columns (p=0.2158 for LNCaPs, p=0.5072 

for PC3s and p=0.530 for DU145s) which suggests that in this instance none 

of the cell lines respond to OH-Hut in contrast to earlier work done in this lab. 

In the third column the cells were exposed to heat shock without prior exposure 

to OH-Hut. In this instance the cell survival is reduced as would be expected 

from previous results. When the cells are exposed to OH-Hut for 48 hours 

prior to the heat shock treatment (see column 4) both PC3 and DU 145 cells 

show the same survival as if heat shock was given alone. This is not suprising 

considering both cell lines are unresponsive to hormone and antiandrogens. 

There is reduced cell survival in the LNCaP cells on exposure to OH-Hut prior 

to heat shock but due to the large standard deviation seen in column 4 LNCap it 

is of limited value (p=0.0618, not quite significant).

Figure 21 shows the different cells response to OH-Hut after prior heat shock 

treatment. As in part 1 (figure 17) OH-Hut treatment alone has no effect on the 

three cell lines and the heat shock treatment alone reduces cell survival 

(comparing column 1 and 2 p=0.008 for LNCaPs, p=0.015 for PC3s and 

p=0,006 for DU 145s). Exposure to heat shock which would induce 

thermotolerance prior to treatment with OH-Hut does have a significant effect 

on cell survival for LNCaP cells only compared to either treatment alone (heat 

shock alone compared to heat shock and OH-Hut p=0.0233 and the 

combination of heat shock and OH-Fut compared to OH-Hut alone has a p 

value of p=0.004).
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These results suggest that the combination of heat shock and anti-androgen 

represents a synergistic partnership capable of suppressing prostate cell growth, 

but this phenomenon is confined to the androgen/"antiandrogen"-responsive cell 

line LNCaP and is more evident if thermotolerance induction precedes OH-Flut 

exposure.
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3.7. Long term effects of combining antiandrogen therapy and 

heat shocf( on LNCaP cell. 

Introduction

In the last section it was found that combining antiandrogen and heat shock 

therapies led to a more effective cell kill of LNCaP cells than either treatment 

alone and that this synergistic effect could be due to the establishment of 

thermotolerance in these cells.

Thermotolerance is achieved by exposing the cells to an elevated but sublethal 

temperature, which is 39°C in the case of the prostate cell lines LNCaP, DU145 

and PC3. Once the cells have acquired thermotolerance it does not become 

inherent in these cells but is rather slowly lost (see figure 15.) but can be 

regained by a further exposure to 39°C (see figure 16).

If the combined effect of antiandrogen and heat shock is due to the existence of 

thermotolerance within the cells it would be logical to assume that as 

thermotolerance is lost so would the synergistic effect of the combination. The 

experi. ent described below was designed to test this.

Methods

The cells were subcultured as described in methods section 2.2.2., so that a 

20% confluent monolayer was formed in 24 25cm2 plastic tissue culture flasks 

and the cells were allowed to "plate down" for 24 hours. Just before the start of 

the experiment, the culture medium was removed from the flasks and the cells 

washed twice with prewarmed PBS. The medium was replaced with steroid- 

free medium supplemented with OH-Flut (final concentration 1x10-9M). The 

steroid free medium supplemented with OH-Flut was replaced every 48 hours. 

The cells were then either heat shocked once or twice as shown in figure 22. 

(control cells were cultured in OH-Flut but not heat shocked). The first group of
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cells were incubated at 39°C for 2 hours at time 0, the second group were 

exposed to 39°C for 2 hours at time 0 and again for 2 hours at 72 hours. Heat 

shock was achieved by placing the tissue culture plates in an humid incubator 

(LEEC) with atmospheric air enriched with 5% CO2 which had been preset to 

either 39°C.

Cell samples were taken every 24 hours. Cell lysis and DNA assays were 

carried out as described in the methods chapter section 3..

R esults

Figure 23 shows the long term effects of combining antiandrogen therapy with 

heat shock therapy. DNA synthesis is taken to be a measure of cell survival and 

is given as a percentage of DNA present at the beginning of each 24 hour period 

(e.g. DNA at 0 hrs =20 /<g/ml, DNA at 24 hrs=28.5 pig/ml therefor % growth 

is 8.5 -  20 x 100 = 42.5%).

Each experiment was carried out in triplicate and the means and standard 

deviations calculated.
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Figure 22. Graph showing heat shock treatment, timing and temperature.

All cells (LNCaP) were incubated in steroid-free medium supplemented with 

l x l 0 9M OH-Flut throughout. The control cells were not heat shocked. One 

group of experimental cells were heat shocked once for 2 hours at time 0. The 

other group was heat shocked twice once at time 0, and again at 72 hours. DN. 

samples were taken every 24 hours through0  ̂
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Figure 23. The effects of time on the combined therapies of heat shock and anti­

androgen.

All cells (LNCaP) were incubated in steroid-free medium supplemented with

' w n -n u t throughout. The experimental cells were subjected to heat shock by 

incubating them at 39 °C for 2 hours either once (A) at time 0 or twice, at time Q 

and again at 74 hours (X), see figure 22 for graphical representation. DNA |

samples were taken every 24 hours and DNA synthesis is given as a percentagej
!

of the DNA level at the beginning of each 24 hour period. j
i

Each point represents the mean of triplicate experiments ± the standard j

deviation.

W here no error bars are visible, the standard error is too sm all to 
be show n.
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Conclusions

The long term effects of combining antiandrogen and heat shock treatments are 

seen in figure 23. The effects of a single heat shock treatment on antiandrogen

action can be seen to decrease with time until after 7 days they are at control
to

levels. At 24 hours there is statistical significant difference between the heat 

shocked samples and the control (p=<0.0001), but by 168 hrs (7 days) there is
& ..V

no statistical significant difference between the cells which rec^.ved one heat 

shock and the control cells (p=0.5185).

A second heat shock treatment 72 hours after the first reintroduces the 

synergistic effect. There is no statistica^significant difference between the level 

of DNA synthesis after the first and second heat shock (p=0.7415) but 

comparing the two heat shock samples at 96 hours there is a statistically 

significant reduction in DNA synthesis between the cells that have been heat 

shocked once and twice (p=<0 .0 0 0 1 ).

The time course of the loss of the combined effect is similar to that of the loss of 

thermotolerance (see figure 16) and the ablility of a second heat shock to re­

establish the combined effect is similar to the re-establishment of 

thermotolerance (see figure 17). This supports the idea that thermotolerance 

(and therefore the heat shock response and hsps) is responsible for the 

increased effectiveness of OH-Flut.
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Chapter 4.

The effect of hyperthermia on the androgen
receptor



4.1. The effect of heat shock on the binding affinity of the

androgen receptor in prostate cancer cell lines.

The results in the previous chapter suggest that the combination of heat shock 

and anti-androgen therapies has a synergistic effect on prostate cell growth, but 

that this phenomenon is confined to the androgen/anti-androgen-responsive cell 

line, LNCaP. Therefore it would seem logical to assume that the androgen 

receptor played a role in this synergistic effect and to investigate the effect of 

heat treatment on the binding affinity and overall structure of the androgen 

receptor in both cell lines which possess androgen receptors ( LNCaP and 

DU145 cells).

Two classes of binding sites for steroid receptors have been identified by

Scatchard analysis of ligand binding assays [Eriksson, 1978; Markaverich &

Clark, 1979; Castagnetta etaL, 1992]. Type I sites bind ligand with high

affinity (K<f>ln(n) and low capacity, while type II sites bind ligand with a lower

affinity but higher capacity [Castagnetta et al., 1992]. The type I sites are
e .

assumed to reflect the molecular mediators of steroid responses whejjhs the 

typell sites are perhaps storage or transport proteins. The experiment described 

below was designed to look at both classes of binding sites.

Methods

The cells were subcultured as described in methods section 2.2.2., so that a 

20% confluent monolayer was formed in 175cm2 plastic tissue culture flasks 

and the cells were allowed to "plate down" for 24 hours. The culture medium 

was changed prior to commencing heat shock. Heat shock was achieved by 

placing the tissue culture plates in an humid incubator with atmospheric air 

enriched with 5% CO2 at 39°C. The cells were incubated for two hours at this 

temperature followed by a recovery period of between 0-72 hours at 37°C. The 

cells were harvested after the recovery period and the sep^ation of nuclear and
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cytosol fractions carried out as described in method section 5. Androgen 

receptor ligand binding assays carried out as described in the method section 5.. 

The concentration range of radiolabeled steroid ([17a-methyl-3H] mibolerone) 

used was from 0. l-5nM. This enables the detection of type I and type II 

binding sites [Eriksson, 1978; Markaverich & Clark, 1979; Castagnetta etal., 

1992].

Receptor assay data was processed using Scatchard analysis and a modification 

of a leasljfit routine [Leake etal., 1987] (Oncolog2.2®), run on an IBM-PC, 

yielding both dissociation constant (Kd) and concentration values (fmol/ml 

homogenate). Receptor concentration was expressed as fmol/mg DNA. Data 

was analysed using a model for two binding sites to assess whether there was 

one or two ligand binding sites [Carruba, 1994].

R esults

Figures 24 and 26 show typical Scatchard plots of nuclear and cytosol androgen 

binding obtained from ligand binding assays for AR in non-heat shocked 

LNCaP (figure 24) and DU145 (figure 26) cells and give the Kd and 

concentrations of the AR within those cells.

Tables 2 and 3 show the Kd and concentrations of type I and type II receptors 

in the cytosol (table 2) and nuclear (table 3) fractions of LNCaP cells at 

increasing time after heat shock. Tables 4 and 5 give the cytosol (table 4) and 

nuclear (table 5) concentrations of type I and type II receptors and their Kds for 

DU145 cells at increasing time after heat shock.

Figures 25 (LNCaP) and 27 (DU 145) show the changes to the Kd of type I AR 

after the cells have been heat shocked and allowed to recover for increasing 

periods of time (0-72 hours).

One-way analysis of variance (ANOVA) test was carried out to determine if the 

differences in the means of the Kds and receptor concentrations at different time 

points were due to chance or if the values were significantly different from each
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other. In the cases where the ANOVA test showed a significant difference 

(px0.05) unpaired £ tests comparing each experimental point with the control 

w carried out.
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Figure 24. Ligand binding assay of androgen receptor in LNCaP cells.

A typical Scatchard plot of cytosol and nuclear androgen binding is shown. 

The concentration range of radiolabeled steroid ([17a-methyl-3H] mibolerone) 

used was from 0. l-5nM. The presence of two androgen binding sites was 

determined according to a significantly better fit for the two-sites model.

Kd ^dissociation constant 

BpM= bound pi comolar
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Table 2. Dissociation constants and concentrations of androgen receptors in heal 

shocked LNCaP cell cytosol fraction.

Table 2 shows the dissociation constants (Kd) of the type I and type II 

androgen receptor in the cytosol fraction of LNCaP cells. The receptor 

concentration is expressed as fmol/ mg DNA.

The dissociation constants were obtained by carrying out steroid receptor ligand 

binding assays on cells which had been heat shocked and allowed to recover for 

increasing lengths of time. Scatchard analysis was then carried out using 

Oncolog2.2® and the existence of one or two binding sites established 

Each experiment was carried out in triplicate and the results shown are the 

means obtained ± the standard deviations (S.D.)
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Sample taken Type I Kd Type I (fmol/ Type II Kd Type II(fmol/

X hours after (nM) mg DNA) (nM) mg DNA)

Heat Shock (mean ± S.D) (mean ± S.D) (mean ± S.D) (mean ± S.D)

Non H/S 0.232 278 4.67 1331

± 0.050 ± 3 8 ±0.886 ± 2 0 7

0 0.248 304 4.32 1377

± 0.037 ± 2 6 ± 0.789 ± 2 7 0

2 0.258 354 4.81 1708

± 0.041 ± 3 4 ± 0.851 ± 2 4 4

4 0.248 391 3.56 1450

± 0.032 ± 2 4 ± 0.473 ± 9 9

6 0.309 249 4.01 1100

± 0.035 ± 15 ± 0 .3 4 4 ± 7 8

8 0.391 327 3.87 1169

±0.047 ± 10 ± 0.055 ± 6 2

10 0.512 367 5.10 1270

± 0 .019 ± 14 ± 0 .4 1 5 ± 114

12 0.523 360 3.33 1027

± 0.035 ± 8 ± 0.076 ± 2 9

24 0.403 343 3.40 1112

± 0.023 ± 5 ± 0 .2 1 9 ± 109

48 0.339 288 3.44 1143

± 0.024 ± 16 ± 0.370 ± 7 6

72 0.252 371 3.77 1299

0.027 ± 2 2 ± 0.280 ± 143
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Table 3. Dissociation constants and concentrations of androgen receptors in heal 

shocked LNCaP cell nuclear fraction.

Table 3 shows the dissociation constants (Kd) of the type I and type II 

androgen receptor in the nuclear fraction of LNCaP cells. The receptor 

concentration isexpressed as fmol/ mg DNA.

The dissociation constants were obtained by carrying out steroid receptor ligand 

binding assays on cell which had been heat shocked and allowed to recover for 

increasing lengths of time. Scatchard analysis was then carried out using 

Oncolog2.2® and the existence of one or two binding sites established 

Each experiment was carried out in triplicate and the results shown are the 

means obtained ± the standard devitaions (S.D.)
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Sample taken Type I Kd Type I (fmol/ Type II Kd TypeII(fmol/

X hours after (nM) mg DNA) (nM) mg DNA)

Heat Shock (mean ± S.D) (mean ± S.D) (mean ± S.D) (mean ± S.D)

Non H/S 0.139 63.3 6.46 355

± 0 .1 2 ±24.8 ±0.901 ± 144

0 0.143 72.3 6.40 322

± 0 .1 2 ±22.3 ±2.9 ± 2 0 2

2 0.140 66.5 6.29 334

± 0 .0 2 ±9.2 ±2.03 ±77

4 0.13 59.o 6.38 316

±0.14 ± 18.3 ±0.57 ±96

6 0.13 56.1 6 .6 335

± 0.098 ± 6 .1 ± 0 .6 ± 153

8 0.143 62.3 6.38 365

±0.098 ± 2 .8 ±0.47 ± 134

10 0.127 55.5 6.08 376

±0.176 ±7.1 ± 1 .8 ± 140

12 0.133 60.5 5.83 337

± 0.007 ± 1 .2 ± 1 .0 ± 1 0 2

24 0.132 61.5 5.95 452

±0.03 ± 1.5 ± 0.636 ±50

48 0.128 64.5 5.55 349

±0.19 ± 2 .1 ±0.49 ± 126

72 0.125 56.0 6 .6 384

± 0.014 ±9.9 ± 0.283 ± 140
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Figure 25. The effect of hyperthermia on the type I AR Kd in LNCaP cytosol 

fraction over time.

The cells were heat shocked and allowed to recover for increasing lengths of 

time (0-72 hours). Androgen receptor ligand binding assays were carried out 

and Scatchard analysis was used to calculate the Kds of the receptors.

The dotted line at 0.232nM represents the mean Kd of non heat shocked cells. 

Each point is the mean of three separate experiments ± the standard deviation. 

Student t tests comparing the Kd at each time point with the control was carried 

out. (j) beside a point represents a statistical difference between that point and the 

control (no heat shock). J
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Figure 26. Ligand binding assay of androgen receptor in DU145 cells.

A typical Scatchard plot of cytosol and nuclear androgen binding is shown. 

The concentration range of radiolabeled steroid ([17a-methyl-3H] mibolerone) 

used was from 0. l-5nM. The presence of two androgen binding sites was 

determined according to a significantly better fit for the two-sites model 

(Oncolog2.2®).

Kd =dissociation constant 

BpM= bound picomolar
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Table 4. Dissociation constants and concentrations of androgen receptors in hea 

shocked DU 145 cytosol fraction.

Table 4 shows the dissociation constants (Kd) of the type I and type II 

androgen receptor in the cytosol fraction of DU 145 cells. The receptor 

concentration is given as fmol/ mg DNA.

The dissociation constants were obtained by carrying out steroid receptor ligand 

binding assays on cells which had been heat shocked and allowed to recover foi 

increasing lengths of time. Scatchard analysis was then carried out using 

Oncolog2.2® and the existence of one or two binding sites established 

Each experiment was carried out in triplicate and the results shown are the 

means obtained ± the standard devitaions (S.D.)
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Sample taken Type I Kd Type I (fmol/ Type II Kd Type II (fmol/

X hours after (nM) mg DNA) (nM) mg DNA)

Heat Shock (mean ± S.D) (mean ± S.D) (mean ± S.D) (mean ± S.D)

Non H/S 0.163 334.5 9.7 2936

±0.19 ±20.5 ±0.9 ±419

0 0.155 328 7.6 2459

± 0.056 ±26 ± 1.7 ±233

2 0.154 303 8.7 2432

±0.049 ± 1 0 ±0.4 ±62

4 0.140 278 8 .6 2343

± 0.049 ±3 ± 0 .6 ± 126

6 0.207 349 8 .2 2472

± 0.084 ±54 ± 1.1 ±412

8 0.332 399 7.7 1785

± 0.035 ±33 ±0.9 ± 169

1 0 0.470 389 7.5 1893

± 0.035 ± 12 ± 1.4 ± 79

12 0.575 393 7.3 1972

± 0.049 ± 5 ±0.7 ±420

24 0.363 406 8 .0 2067

± 0.098 ± 6 ±0.9 ±339

48 0.376 378 6 .1 1859

± 0.026 ±27 ±0.7 ± 1 2 2

72 0.141 321 9.1 2271

± 0.034 ± 5 ±0.3 ±558
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Table 5. Dissociation constants and concentrations of androgen receptors in hea 

shocked DU145 nuclear fraction.

Table 5 shows the dissociation constants (Kd) of the type I and type II 

androgen receptor in the nuclear fraction of DU 145 cells. The receptor 

concentration is expressed as fmol/ mg DNA.

The dissociation constants were obtained by carqng out steroid receptor ligand 

binding assays on cells which had been heat shocked and allowed to recover foi 

increasing lengths of time. Scatchard analysis was then carried out using 

Oncolog2.2® and the existence of one or two binding sites established 

Each experiment was carried out in triplicate and the results shown are the 

means obtained + the standard devitaions (S.D.).



Sample taken Type I Kd Type I (fmol/ Type II Kd TypeII(fmol/

X hours after (nM) mg DNA) (nM) mg DNA)

Heat Shock (mean ± S.D) (mean ± S.D) (mean ± S.D) (mean ± S.D)

Non H/S 0.251 73.3 4.85 377

±0.19 ±31.7 ±0.33 ±33.2

0 0.247 8 6 5.07 369

±0.13 ± 6 .8 ±0.15 ± 17.7

2 0.219 60 4.94 348

± 0 .1 ± 18.3 ± 0 .2 1 ±15.5

4 0.213 6 6 4.73 349

±0.18 ±3.2 ±0.70 ±31.8

6 0.24 80 5.1 387

±0.05 ±7.2 ± 1.40 ±41.7

8 0.226 69 5.18 356

±0.05 ±3.5 ±0.36 ±54.4

10 0.230 73 5.76 383

±0.70 ± 15.6 ± 0 .2 0 ± 1 0 .6

12 0 .2 0 0 80 5.56 383

±0.19 ±29.7 ± 1 .2 0 ±72.1

24 0.260 76 5.32 344

±0.09 ±5.5 ±0.50 ± 62.9

48 0.270 71 4.92 364

±0.03 ±5.4 ±0.47 ±68.5

72 0.240 78 5.71 378

±0.17 ±5.2 ±0.28 ±30.4
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Figure 27. The effect of hyperthermia on the type I AR Kd in DU 145 cytosol 

fractions over time.

The cells were heat shocked and allowed to recover for increasing lengths of 

time (0-72 hours). Androgen receptor ligand binding assays were carried out 

and Scatchard analysis was used to calculate the Kds of the receptors.

The dotted line at 0.163nM represents the mean Kd of type I AR in non heat 

shocked cells.

Each point is the mean of three separate experiments ± the standard deviation. 

Student t tests comparing the Kd at each time point with the control was carried 

out. <j) beside a point represents a statistical difference between that point and the 

control (no heat shock).
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C onclusions

The two classes of binding sites for the androgen receptor in LNCaP and 

DU 145 cells appear to react differently to heat shock.

In LNCaP cells the cytosol type I receptor (high affinity, low capacity) under 

non-stressed conditions has a Kd of 0.232 ± 0.05nM but 12 hours after the 

cells were heat shocked (2hrs at 39°C) the Kd had risen to 0.523 ± 0.035 nM. 

By 72 hour post heat shock, the Kd had fallen again to 0.252 ± 0.027 nM (see 

table 2 and figure 25). An ANOVA test showed that the variation was 

significantly greater that would be expected by chance (p=<0 .0 0 0 1 ) and so 

Student t tests comparing the Kd at each time point with the control (non heat 

shocked cells) was carried out. There was no statistically significant difference 

between the control Kd and those in the first 4 hours after heat shock 

(p=>0.01). In figure 25, the increase in Kd seen between 6  and 12 hours post 

heat shock is statistically significantly different from the control group 

(p=<0.001). The Kd decreases to control levels by 72 hours post heat shock. 

Figure 27 and table 4 show that the type I binding sites in DU145 also displays 

an increase in the Kd values after heat shock. In non-heat shocked cells the Kd 

is 0.163 ± 0.19 nM. Twelve hours after heat shock, the type I Kd is 0.575 ±

0.049 nM, which is significantly higher than in non-heat shocked cells 

(p=0.0082). By 72 hours post heat shock the Kd had fallen again to the non­

heat shocked level.

The Kd of the type II receptor in the cytosols of both LNCaP and DU 145 did 

not vary significantly after heat shock (see tables 2 and 4). An ANOVA test 

showed that there was no statistically significant variation between the mean Kd 

means (p=0.5642 for LNCaP; p=0.1105 for DU145) for each group of 

experiments.

Neither the type I nor type II Kds varied in the nuclear fractions of either cell 

line as shown in table 3 (LNCaP) and table 5 (DU145). ANOVA tests 

confirmed that there was no significant variation in the mean Kd of each
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experimental group (LNCaP type I p=0.5170, type II p=0.9981; DU 145 type I 

p=0.4327, type II p=0.3393).

ANOVA tests were carried out to see if the differences in the concentration of 

receptor present at each time point after heat shock were statistically significant. 

There does not appear to be any statistically significant variations in the 

concentration of receptors in DU 145 cells as all the ANOVA p values were 

greater than 0.05. In LNCaP cells the receptor concentrations in the nuclear 

fraction showed no significant variation ( p>0.05).

The LNCaP cytosol type II receptor concentrations also did not vary 

significantly (p=0.5642). The type I AR concentrations in heat shocked LNCaP 

cells were different from those in non-heat shocked LNCaP cells (p<0.0001). 

The receptor concentration increases for the first 4 hours after heat shock and 

falls sharply between 4 and 6  hours post heat shock but rises again until 24 

hours, then there is a second dip followed by a return to the highest level by 72 

hours (see table2). The biological significance of this variation in receptor 

concentration is unclear.

The type I receptor is the classical steroid receptor, in that steroid binding to 

type I receptor causes activation of the receptor DNA binding and gene 

activation [Leake & Habib, 1987; Castagnetta et al., 1992; Gronmeyer,

1993b] .The increase in the Kd reflects a decrease in the affinity of the type I 

binding site for the ligand and therefore the affinity of the AR for its ligand.
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4.2.The effect of hyperthermia on the size of the AR complex in

LNCaP and DU145 cells

Introduction

The change in the affinity of the AR after heat shock could reflect a change in 

the untransformed 8 S steroid receptor complex. It is well understood that cells 

from all known organisms respond to stress conditions such as heat by 

producing hsps [Lindquist, 1986]. One of these hsps, hsp90 is a component of 

the untransformed 8 S steroid receptor complex in non-stressed conditions [Puri 

etal., 1982; Renoir etal., 1984]. Several other hsps have been implicated in the 

structure or synthesis of the 8 S complex. It is possible that the association of 

one or more of the hsps with the 8 S complex is altered under stressed 

conditions and that this leads to the observed increase in receptor Kd.

Any change in 8 S receptor composition may be reflected in a change in the size 

of the steroid receptor complex or the ratio of 8 S to 4S receptors. Therefore, it 

was decided to investigate the size of the receptor complexes in the cytosol 

fraction of LNCaP and DU 145 cells after heat shock.

The cell fraction that is known as the cytosol fraction is more accurately the low 

salt extracted fraction and contains proteins that are normally loosely associated 

with cell structures as well as purely cytosolic proteins. In the absence of 

hormone the AR is located in the nucleus [Husmann, 1990] possibly loosely 

associated with the cytoskeleton [Pratt, 1992]. The process of cell lysis and 

separation of the nuclear from the cytosol fraction normally means that most of 

the steroid receptor is recovered in the cytosol fraction . The steroid receptor 

which remains in the nuclear fraction is tightly bound to the nuclear framework 

and requires high salt to separate it.

It is the AR that is found in the cytosol/ low salt extracted fraction that shows a 

change in Kd after heat shock. Therefore, it is this low salt extracted fraction 

that was used to investigate the effects of heat on AR size and ratio.
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Method

The cells were subcultured as described in method section 2.2.2., so that a 20% 

confluent monolayer was formed in 175cm2 plastic tissue culture flasks and the 

cells were allowed to "plate down" for 24 hours. The routine medium was 

removed and the cells washed twice with PBS and 30ml of steroid-free medium 

was added. The cells were grown in this medium for 48 hours prior to heat 

shocking the cells. Heat shock was achieved by placing the tissue culture plates 

in an humid incubator with atmospheric air enriched with 5% CO2 (LEEC) 

which had been preset to 39°C. The cells were heat shocked for two hours at 

this temperature followed by a recovery period (varied between 0-72 hours) at 

37°C. The cells were harvested and the AR analysed using SDGA as described 

in method section 7. 5 x 10-9 M [3H]-mibolerone was used to radioactively 

label the ARs as this gave maximum binding to type I sites with only a small 

amount of binding to type II sites [Carruba, 1994]. Non specific binding was 

identified by incubating the cell extracts with 5 x lO-9 M pH]-mibolerone plus 

unlabelled mibolerone (not radiolabled) at a final concentration of 5 x lO' 7 M. 

Graphs were plotted showing the number of counts as a function of the fraction 

number and arrows used to indicate the position of the sedimentation markers. 

The positions of the 4S and 8 S pH] peaks were determined by comparison 

with the migration of the [14C]- labelled standard proteins. The relative areas 

under the pH] peaks were calculated and the ratio of 4S : 8 S peaks obtained.

R esults

Figures 28 and 29 show typical sucrose density profiles of the cytosol fraction 

of LNCaP cells before heat shock, and 12 and 72 hours post heat shock. The 

profiles of DU 145 cell cytosol extracts show a similar pattern and are not 

shown here.
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Table 6  gives the ratio of 4S to 8 S AR concentrations in cells which were heat 

shocked for 2 hours at 39°C and then returned to 37°C for increasing periods of 

time (0-72 hours).

Figure 30 shows the effect of heat shock on the ratio of 4S to 8 S AR 

concentrations in the cytosol fractions of both LNCaP and DU 145 cells.

The 8 S peak is the large oligomeric complex which comprises the androgen 

receptor and hsp90 as well as other hsps. To aid interpretation the 8 S peak is 

taken to be any specific pH] peak which is larger than the 7.2S [14C] marker 

protein.

Non-specific binding was determined by incubating the cell extracts with 

5 x lO-9 M pH]-mibolerone plus a cold competitor ( unlabelled mibolerone at a 

final concentration of 5 x 10-7 M). In figures 28 and 29 non-specific binding is 

shown. In both table 6  and figure 30 the non-specific counts were subtracted 

from the total counts to give the specific pH]-ligand binding.

Each separate experiment was repeated three times and the results shown are the 

means ± standard deviations.
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Figure 28. Typical sucrose density gradient profiles of cytosol AR from control 

and heat shocked LNCaP cells.

Cells were either incubated at 37°C throughout the experiment or heat shocked 

for 2 hours at 39°C and then allowed to recover for 12 hours. The cytosol 

fraction was then incubated with either 5 x 10"9  M [3H]-mibolerone alone or 

with 5 x 10-7 m nonradiolabled mibolerone for 1 hour at4°C before the 

unbound ligand was removed and the cytosol layered on top of a 5-20% 

sucrose gradient. The gradients were centrifuged at 250,000xg for 20 hours at 

4°C. Each sample contained 14C-labelled BSA, 4.6S and 14C-labelled human- 

y-globulins, 7.1 S as internal markers. After centrifugation, the bottom of the 

tube was punctured and two-drop fractions were collected . The amounts of 3H 

and 14C in 10 jA of each fraction were assessed by scintillation counting and the 

3H cpm per 10 jA was then plotted against the fraction number and the R e ­

labelled marker protein positions shown as arrows.
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Figure 29. Comparison of typical sucrose density gradient profiles of cytosol 

AR heat shocked LNCaP cells allowed to recover for 12 and 72 hours.

Cells were heat shocked for 2 hours at 39°C and then allowed to recover for 12 

or 72 hours. The cytosol fraction was then incubated with either 5 x 10-9 M 

3H-mibolerone alone or with 5 x lO 7 M nonradiolabled mibolerone for 1 hour 

at 4°C before the unbound ligand was removed and the cytosol layered on top 

of a 5-20% sucrose gradient. The gradients were then centrifuged at 50,000 

rev/min (250000#) for 20 hours at 4°C. Each sample contained 14C-labelled 

BSA, 4.6S and 14C-labelled human-y-globulins, 7.1 S as internal markers. 

After centrifugation, the bottom of the tube was punctured and two-drop 

fractions were collected . The amounts of 3H and 14C in 10 ja\ of each fraction 

was assessed and the 3H cpm per 10 pi\ was then plotted against the fraction 

number and the 14C-labelled marker protein positions shown as arrows.
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Table 6 .The changes in AR 4S and 8 S ratios in heat shocked LNCaP and 

DU 145 cells. j

The cells were heat shocked for 2 hours at 39°C and then allowed to recover for 

increasing periods of time (0-72 hours) before SDGA was carried out as 

described in method section 7. The cytosol fraction was then incubated with 

either 5 x 10-9 M [3 H]-mibolerone alone or with 5 x 10'7 M nonradiolabled 

mibolerone for 1 hour at 4°C before the unbound ligand was removed and the 

cytosol layered on top of a 5-20% sucrose gradient. The gradients were 

centrifuged at 250000g for 20 hours at 4°C. Each sample contained R e ­

labelled BSA, 4.6S and 14C-labelled human- y-globulins, 7.1 S as internal 

markers. After centrifugation, the bottom of the tube was punctured and two- 

drop fractions were collected . The amounts of 3H and 14C in 10 ]A of each 

fraction collected was assessed by scintillation counting and the 3H cpm per 10 

]a\ was then plotted against the fraction number. The levels of both 4S and 8 S 

receptors was determined by calculating the areas under the appropriate peak 

and the ratio of 4S to 8 S calculated.The 8 S peak represents the large oligomeric 

receptor complex and includes the larger peak seen in the 12  hour sample (see
!

conclusions for details).

Each experiment was carried out in triplicate and the results shown are the I
IJ

means obtained ± the standard devitaions (S.D.). |
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Hours post LNCaP cells DU145 cells

heat shock RATIO 4S :8S  AR RATIO 4S :8S  AR

mean ± S. D. mean ± S. D.

Non 1 : 0.26 1 : 0.42

Shocked ±0.19 ± 0 .0 1

0 1 : 0.51 1 : 0.49

±0.37 ±0.07

2 1 : 0.60 1 : 0.49

±0.15 ±0.09

4 1 : 1.03 1 : 1.08

± 0 .2 0 ±0.13

6 1 : 1.70 1 : 1.37

±0.43 ±0.25

8 1 : 4.10 1 : 1.83

±0.28 ± 0 .1 1

10 1 : 3.74 1 : 2.43

±0.62 ±0.29

12 1 : 7.45 1 : 4.68

±2.33 ±0.50

24 1 : 3.85 1 : 3.33

±0.49 ±0.57

48 1: 1.45 1 : 1 .1 1

±0.15 ±0.39

72 1 : 0.53 1 : 0 .8 6

± 0 .1 0 ±0.15
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Figure 30. Comparison of the change in 4S to 8 S AR after heat shock after heat 

shock in LNCaP and DU 145 cells.

The cells were heat shocked for 2 hours at 39°C and then allowed to recover for 

between 0-72 hours before SDGA was carried out as described in methods 

section 7.

The levels of both 4S and 8 S receptors was determined by calculating the areas 

under the appropriate peak and the ratio of4S to 8 S calculated (see table6 ).

The 8 S peak represents the large oligomeric receptor complex and includes the 

larger peak seen in the 12  hour sample (see conclusions for details).

This experiment was carried out in triplicate and the results shown are the 

means ± the standard deviations.

Where no error bars are visible, the standard error is too small to j 
be shown.
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C onclusions

Comparison of the sucrose density gradient profiles of the cytosol fraction AR 

shown in figures 28 and 29 suggests that there is a change in the amount of 

active 4S receptor after heat shock. There also appears to be an increase in the 

amounts of untransformed 8 S receptor. 12 hours after heat shock a larger ligand 

binding complex with the approximate size of 10S is visible. This is also seen 

in the DU145 cells 12 hours after heat shock.

Table 6  gives the 4S : 8 S ratios following heat shock in both LNCaP and 

DU 145 cell cytosols. The 8 S receptor numbers include the larger complex seen 

after 12 hours (figures 28 and 29) as this is taken to represent the androgen 

receptor oligomer with possibly extra hsps associated with it (see discussion 

section). Figure 30 clearly shows the increase in the amount of 8 S receptor 

present in the cell after heat shock. This increase coincides with a decrease in 

the active 4S receptor level within the cell cytosol. Total receptor levels remain 

the same.

This alteration in the ratio of 4S : 8 S AR does not apear to be permanent but 

rather it slowly reverts and by 72 hours post heat shock the ratio is similar to 

that of the control.

The time course for this alteration of 4S:8S receptor is similar to the time course 

for the alteration in Kd of the type I receptor and for gain and loss of 

thermotolerance as shown in figures 15 and 16.
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Chapter 5.

The induction of hsp90 in prostate cancer
cells.
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5.1. Induction of hsp90 by heat in DU145 cells

Introducion

Hsp90 belongs to a group of proteins (the hsps) whose synthesis is strongly 

stimulated by cellular stresses such as hyperthermia [Lindquist, 1986]. The 

temperature at which induction of the hsps occurs varies from organism to 

organism and reflects stress conditions for that organism [Parsell & Lindquist, 

1993]. Thermotolerance is induced in human prostate cell lines by pre-exposure 

to the sublethal temperature 39°C (see chapter 3). This temperature also induces 

an increase in the proportion of AR in the 8 S form. This raises the question as 

to whether the 39°C temperature induces hsp synthesis ?

Due to the association of hsp90 with the 8 S steroid receptor in unstressed cells, 

it was decided to assess whether the levels of hsp90 synthesis were altered by 

exposure to 39°C. This was achieved using [35S]-methionine to label proteins 

as they were being synthesised for different periods during and after heat 

shock. Immunopurification of hsp90, followed by autoradiography was then 

used to assess the levels of hsp90 synthesis under different conditions.

Method

DU 145 cells were subcultured as in section 2.2.2. of the methods chapter so 

that a 50% monolayer was formed within 6 -well tissue culture plates. The cells 

were then allowed to "plate down" for 24 hours before the routine medium was 

removed and the cells washed twice with PBS and once with methionine-free 

medium. The cells were incubated for 45 minutes in methionine-free medium 

with 2% DHIDCCFCS before being incubated for 3 hours with methionine-free 

medium supplemented with 2% DHIDCCFCS and 5/*Ci/ ml [35S]-methionine. 

The cells were heat shocked in the normal way and sets of tissue culture wells 

were incubated with [35S]-methionine for 3 hour periods either during heat
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shock or for appropriate periods throughout the first 1 2  hours after heat shock. 

Immediately after the incubation with [3 5S]-methionine the cells were harvested 

and immunoprecipitation of hsp90 carried out as described in methods section 

9.. The immunopurified material was analysed by SDS/PAGE (methods 

section 10.). Two identical gels were run. One was stained with Coomassie 

blue (methods section 12.) and the other was used in Western blotting (methods 

section 11.) The blots were probed with an anti-hsp90 monoclonal antibody 

(AC8 8 ). ECL (methods section 11.2) was used to visualise the bands. The 

blots were then washed in TBST to remove ECL reagent and were air-dried, 

then exposed for one week to X-ray film (Amersham hyper film MP) with 

intensifying screens at -70°C. The X-ray film was developed using an 

automated machine (Kodak X-Omat Processor Model ME3).

Results

The results of this experiment are shown in the following figures.

Figure 31 shows the total protein content, (detected by Comassie blue staining) 

of cells which were heat shocked and cells allowed to recover for between 0  and 

12 hours. There appears to be little change in the total protein concentration or 

pattern observed by this method. Detection of [35S]-methionine incorporation, 

by Western blotting and autoradiography, produced no clear bands (not 

shown). All the lanes were very faint which probably suggests that the amount 

of protein loaded onto the gel was insufficient to allow detection of newly 

synthesised proteins by p 5S]-methionine incorporation.

Figure 32 shows the products of immunoprecipitation of hsp90 using GAM- 

Seph-3G3. The Coomassie blue stain of total protein immunoprecipitated is not 

shown as the protein levels were too low to be detected by this method.

Both parts of figure 32 are derived from the same western blot. Part A was 

visualised using the antiboby AC8 8  followed by ECL detection. Part B is an
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autoradiograph which indicates the [35S]-methionine incorporation into newly 

synthesised proteins.
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Figure 31 The effects of heat on the total protein concentrations of DU 145 !
i

cells. |

Cells were incubated at 39°C for 2 hours, and allowed to recover for between 0 

and 12 hours before SDS/PAGE of whole cell lysate was carried out.

Coomassie blue staining of the 7.5% gel was carried out to visualize the 

protein. Molecular weight size markers (194, 000; 116,000; 85,000 &49,00) 

were used to calculate the sizes of proteins stained.

The 8  lanes represent different timing of p 5S]-methionine incubation as follows 

from right to left:

1. [35S]-methionine incubation for the 3 hours prior to heat shock

2. [35S]-methionine incubation during heat shock (2 hour at 39°C)

3. [35S]-methionine incubation 0-3 hours after heat shock

4. [35S]-methionine incubation 3-6 hours after heat shock

5. [35S]-methionine incubation 6-9 hours after heat shock j
j

6 . [35S]-methionine incubation 9-12 hours after heat shock ]

7. No p 5S]-methionine incubation, no heat shock

8 . Immunoprecipitation procedure carried out substituting PBS for cell

extract
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Figure 32 The effects of hyperthermia on hsp90 synthesis in DU 145 cells. 

Cells were incubated at 39°C for 2 hours, and allowed to recover for between 0. 

and 12 hours. The cells were incubated in [35S]-methionine for 3 hours at 

different periods throughout heat shock and recovery time. Cells were harvestec 

immediately after the p 5S]-methionine incubation was stopped.

Hsp90 was immunopurified as described in methods section 9. SDS/PAGE of 

the immunopurification products were then carried out followed by Western 

blotting.

The 8  lanes represent different timing of [35S]-methionine incubation as follows 

from right to left:

1. [35S]-methionine incubation for the 3 hours prior to heat shock

2. [35S]-methionine incubation during heat shock (2 hour at 39°C)

3. [35S]-methionine incubation 0-3 hours after heat shock

4. p 5S]-methionine incubation 3-6 hours after heat shock

5. p 5S]-methionine incubation 6-9 hours after heat shock

6 . p 5S]-methionine incubation 9-12 hours after heat shock

7. No p 5S]-methionine incubation, no heat shock

8 . Immunoprecipitation procedure carried substituting PBS for cell 

extract

A. The western blot was probed with the anti-hsp90 antibody AC8 8 , and the 

bands visualised by ECL. This shows the total amount of hsp90 

immunoprecipitated.

B. The blot was exposed to X-ray film for one week at -70°C. This allows the 

detection of the hsp90 synthesised during the p 5S]-methionine incubation |
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Figure 33. Quantification of hsp90 synthesis following heat shock.

This histogram shows the relative amounts of hsp synthesised during DU 145 

cell recovery' from heat shock.

The intensity of bands visualised in figure 32 part B were assessed using a 

densitometer and the arbit^ry t , values shown here.

182



Ar
bi

tra
ry

 
/*■

)

Effect of heat on hsp90 synthesis

Timing of S35 exposure

183



C onclusions

In figure 32 part A a 90 Kd band is clearly visible in lanes 1-7 and this is taken 

to be hsp90 visualised by ECL of the AC8 8  antibody.The other bands which 

are present in all of the lanes including the negative control (lane 8 ; no cell 

extract) are due to the detection of the mouse Ig components of GAM-Seph- 

3G3 by the ECL goat anti-mouse antibody.

The intensity of the 90 kD band was assessed using a densitometer (BioRad 

Imaging Densitometer model GS 670). The total level of hsp90 

immunoprecipitated gradually increased in the 12  hours after heat shock, figure 

32A lanes 2 to 6  (from lto 8.1, arbitrary O.D.values). This increase in hsp90 

concentrations reflects an increase in synthesis of hsp90 after heat shock as 

shown in figure 32 part B.

The level of hsp90 synthesis in non-stressed cells was too low to be detected, 

(see lane 1 figure 32 part B), but a band is visible in lane 2 which suggests that 

the synthesis of hsp90 is increased during heat shock. In the first 3 hours 

following heat shock there is a noticeble increase in synthesis of hsp90 

(arbitrary O.D. values obtained using a densitometer, lane 3= 5.6 compared with 

0 in lane 1). Between 3-9 hours post heat shock (lanes 4 and 5) the levels of 

synthesis seem to fall slightly (arbitrary O.D.values 3.6 and 4.3).

Hsp90 synthesis appears to be at greatest in the period between 9-12 hours post 

heat shock (arbitrary O.D.value 8 . l)(lane 6 ).

Figure 32 part B and figure 33 shows that the heat shock conditions (39°C for 2 

hours) used in this thesis does induce hsp90 synthesis in the prostate cell line 

DU 145.
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Chapter 6 

Discussion
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Many types of tumour cells are more sensitive to elevated temperatures than 

normal cells [Crile, 1963; Giovanella et. al., 1976]. This observation led to the 

development of thermotherapy as a form of cancer treatment. Prostate cancer, 

due to its accessibility, is a prime candidate for thermotherapy [Mendecki etal., 

1980; Servadio et.al., 1987].

Treatment of prostate cancer with local hyperthermia involves heating the gland 

to between 41°C and 44°C either once or twice a week [Engin et.al., 1993], 

Temperatures above 42.5°C may result in damage to normal tissue [Lieb et al.,

1986] and therefore have limited use in clinical practice [Lloyd et.al., 1992].

It has been shown that prostate cells which are subjected to hyperthermia in 

vitro and survive become thermotolerant and then are able to withstand further 

thermotherapy even at normally lethal temperatures [Lloyd et.al., 1992].

The role of heat shock proteins in thermotolerance has been suggested for some 

time. The synthesis and decay of hsps shows shows a similar pattern to 

thermotolerance [McAllister & Finkelstein, 1980; Li & Werb, 1982].

It has been shown that, the acquisition of thermotolerance in breast cancer cells 

(MCF-7s) was accompanied by the abolition of the oestrogen binding capacity 

in those cells [Chalmers, 1991]. This fact, taken together with the association of 

hsp90 with steroid receptors in normal conditions, has led to the idea that heat 

shock may alter the relationship between the steroid receptor and hsp90 and that 

this complex has an altered ligand binding pattern.

The implication that there could be an interaction between thermal and endocrine 

effects on prostate cancer cells in vitro and in vivo remains uninvestigated, yet it 

is of potentially great importance due to the combination of antiandrogen and 

thermal-therapies being developed for the treatment of prostate disease.

The experiments described in this thesis used in vitro techniques to investigate 

the effects of heat and antiandrogen therapies on prostatic cells and studied at 

the effects of heat on the AR in these cells.

186



6.1. The response of prostate cell lines to androgens and 

antiandrogens.

In order to understand the response of prostate cells to combined endocrine and 

thermotherapies, it is important to identify the growth effect of androgens on all 

three cell lines.

In this study, LNCaP cells show growth stimulation by exogenous androgen 

(DHT) in a dose dependent manner (figure 9.). Maximal growth occured when 

a final concentration of lxlO_9M DHT was used. This result is similar to results 

obtained for the same cell line by other groups [Schuurmans et al., 1988a; 

Wilding etal., 1989]. LNCaP cells do not appear to respond to OH-Flut (figure 

20). This result supports the work of others who have shown that OH-Flut is 

not inhibitory to LNCaP cells in vitro although in some cases they have shown 

OH-Flut actually growth stimulates LNCaP cells growth [Wilding etal., 1989; 

Oleaetal., 1990; Chalmers, 1991; Veldscholte eJ a/., 1992]. Flutamide (OH- 

Flut is the activated derivitive of flutamide) acts as a non-steroidal antiandrogen 

in vivo.

The different effects of OH-Flut in vivo and in vitro suggests differing 

mechanisms of action in the two cases.

Some other authors have shown partial agonistic effect of OH-Flut in LNCaP 

cells [Chalmers, 1991; Veldscholte et al., 1992]. This could be a similar effect 

to that seen with tamoxifen-ER complexes [Baulieu, 1987 ; Ham & Parker, 

1989; Dauvois & Parker, 1993]. This partial agonist action of OH-Flut could be 

due to the mutated AR in LNCaP cells [Veldscholte, 1992] or it could be an 

intrinsic property of the compound. If it is an intrinsic property, OH-Flut would 

act as a antiandrogen in vivo if there were endogenous androgens present, but 

in cases where there is little or no androgen present (due to androgen ablation or 

castration), OH-Flut would act as an agonist. This type of action has already
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been described for tamoxifen (an anti estrogen used in the treatment of hormone 

sensitive breast cancer) [Dauvois & Parker, 1993].

It has been also been su^jbsted that the androgenic action of OH-Flut, is 

mediated through binding of OH-Flut to androcolyne (an extra cellular 

inhibitory factor), relieving androclyone-inhibition of LNCaP cell proliferation 

[Sonnenschein et al., 1989; Olea et al., 1990], This extra-cellular steroid 

binding inhibitory factor has still to be identified.

DU 145 and PC3 cells were not growth stimulated by either DHT or OH-Flut. 

However our DU 145 cells do contain ARs. Scatchard plot analysis of ligand 

binding has indicated that significant levels of androgen receptors are present 

within these cells . DU 145 cells show a metabolic response to androgens 

[Carruba 1994].

6.2. Thermotolerance in cultured prostatic cells.

Thermotolerance is a general term used to refer to the transient, non-heritable 

state of resistance to normally lethal temperatures by the pre-exposure to non- 

lethal heat treatment. The degree of resistance and the temperatures which 

induce thermotolerance vary greatly from organism to organism [Carper, 1987] 

It was important to characterise the normal range of thermal tolerance of prostate 

cell lines and to define the temperatures required to establish thermotolerance in 

these cells before any studies of the underlying mechanisms could be carried 

out.

All three prostate cell lines investigated (LNCaP, DU145, PC3) showed marked 

thermosensitivity to42°C as shown in figures 12,13and 14. The observed 

thermosensitivity can be prevented by pre-exposing the cells to 39°C for 2 

hours as seen in figures 12,13 and 14. This survival of prostate cells to
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normally lethal temperatures following pre-exposure to a sublethal temperature 

fits the original description of thermotolerance [Gemer & Schneider, 1975]. 

Thermotolerance is a transient phenomenon, little work has been done on the 

time course of thermotolerance. It was decided to use the establishment of 

thermotolerance in prostate cell lines to investigate the transient aspects of this 

phenomenon.

In this study, the prostate cell lines did not become thermotolerant immediately 

after exposure to the sublethal temperature but rather it takes up to 8  hours 

before significant levels of thermotolerance are seen and 12  hours before 

maximal thermotolerance is reached. Thermotolerance has also been induced in 

mammalian fibroblasts in monolayer cell culture using a 1 2  hour recovery 

period between the two doses [Welch & Suhan, 1986]. This time lapse could be 

due to the time required to up-regulate the synthesis of hsps and for them to 

translocate to their site of action, where they can exert there effect.

It has been shown that a nuclear translocation of hsp90 occurs following heat 

shock [Chalmers, 1991]. This nuclear translocation is time-dependent and 

reaches a plateau in human fibroblasts after 15 to 20 hours [Akner et al., 1992]. 

Once established, thermotolerance is slowly lost over time (see figure 16). 72 

hours after the sublethal dose the level of thermotolerance is almost completely 

lost in all three prostate cell lines.

This loss of thermotolerance could be due to two cellular events. Firstly when 

cells divide there is a dilution factor as the hsps are split between the daughter 

cells. If the cells are not in stressed conditions their hsp synthesis may have 

fallen to nonstressed levels. Secondly the heat shock proteins may be 

undergoing normal protein degradation which would lead to a gradual decrease 

in cellular levels of hsps if their synthesis had returned to nonstressed levels.

In all three prostate cell lines, thermotolerance can be easily re-established once 

lost, by re-exposing the cells to the sublethal temperature. The level of 

thermotolerance achieved by re-exposure is similar to the original level of
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thermotolerance (figure 18). This would suggest that the same process is 

involved in both cases. The earlier heat shock does not prime the cell to react 

quicker to the second heat shock which would mean that the transcriptional and 

translational changes within the cell are short lived.

6.3. The combined effects of hyperthermia and endocrine therapy 

on prostate cell growth.

Hyperthermia has been used in conjunction with endocrine therapy as a 

treatment for prostate cancer. It has been reported that their combined use in 

vivo results in a more effective treatment compared with the individual use of 

either method [Servadio etal., 1987; Linder etal., 1990]. This phenomenon is 

also seen when LNCaP cells are treated twith the combination of lx l0  9M OH- 

Flut and heat shock (see figures 20 and 21).

The response of the LNCaP cells to the combination therapies was more 

obvious when heat shock was administered prior to OH-Flut (figure 21).

Heat shock alters the response to OH-Flut seen in earlier experiments using 

LNCaP cells. This would suggest that the partial agonistic effect, reported by 

others, of OH-Flut is unlikely to be due to the mutated androgen receptor and 

more likely to be an inherent property of the compound.

The mechanism behind the conversion of OH-Flut activity from that of an 

androgen to that of an antiandrogen could be due to several possibilities.

The antiandrogen could sensitise the androgen responsive cell to heat shock. 

This could occur due to the OH-Flut-AR complex retaining its hsp90 dimer and 

therefore the amount of nuclear hsp90 would be reduced which may in turn lead 

to the cells increased susceptibility to heat. Although hsp90 a common protein it 

is a mainly cytoplasmic with only trace amounts being found in the nucleus 

[Lindquist etal., 1986] but after heat shock hsp90 levels in the nucleus increase 

dramatically [Chalmers, 1991].
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If the increased effect is due to the decrease in free nuclear hsp90 the timing of 

heat shock would be important. As shown in this thesis the effect is greatest if 

heat shock is given first. This would mean that nuclear hsp90 levels would be 

much higher than in non stressed cells. Any reduction in free hsp90 caused by 

the OH-Flut-AR complex retaining its hsp90 dimer would be masked by the 

large influx of hsp90 into the nucleus.

Another possibility is that heat shock enhances the response of the cells to OH- 

Flut. On hormone binding the hsp90 dimer dissociates from the hormone- 

receptor complex revealing the DNA binding domain of the receptor [Baulieu,

1987]. One possible action of antiandrogens could be to prevent the dissociation 

of the hsp90 dimer from the complex thereby preventing DNA binding 

[Baulieu, 1987]. After heat shock there is an increase in the level of nuclear 

hsp90. Consequently the increased hsp90 levels may reduce or prevent the 

dissociation of the receptor complex even in the presence of androgen. It may 

prevent the agonistic effect of OH-Flut by preventing the OH-Flut-AR complex 

from releasing its hsp90 dimer preventing OH-Flut-AR binding to DNA. Of 

coarse as the '.is now a positive effect of OH-Flut-AR complex in inhibiting 

growth some of this complex, possibly modified by additional hsps, must 

interact with the genes involved in cell growth

6.3.1. The long term effects of combined hyperthermia and 

endocrine therapy on prostate cell growth.

The effect of combining heat shock and antiandrogens is clearly seen (figures 

20 and 21). The temperatures used have been shown to induce thermotolerance 

in LNCaP cells (figure 12) and the synergistic effect is greater if the cells are 

heat shocked prior to OH-Flut administration. This supports the idea that 

several of the events involved in the development of thermotolerance are 

responsible for the enhanced antiandrogen effect of OH-Flut. If this were the
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case the synergistic effect would be lost with time in a similar way to the loss of 

thermotolerance seen in figure 16.

Figure 23 shows that the repression of cell growth by the combination of heat 

shock and OH-Flut is slowly lost with time but can be re-established by a 

further heat shock treatment.

These results supports the idea that thermotolerance (and therefore the heat 

shock response and hsps) is responsible for the increased effectiveness of OH- 

Flut.

The synergistic effect appears to be lost more slowly than thermotolerance (sse 

figures 17 and 23). This could be due to the decrease in cell division slowing 

down the hsp90 dilu^on effect (discussed above).

6.4. Induction of hsp90 by heat in DU145 cells

Hsp90 has been shown previously to be a inducible protein [Catelli etal., 1985] 

and its gene promoter is known to contain the appropriate heat shock response 

element that confers heat inducibility on hsp90 transcription [Rebbe etal.,

1989].

The results shown in chapter 5 show that in DU145 cells the synthesis of hsp90 

is strongly stimulated by exposure to 39°C for 2 hours. This induction has an 

initially fast rate which tails off between 3 and 9 hours post heat shock.

Maximal hsp90 synthesis appears to be between 9-12 hours post heat shock. 

The reason for this is unclear. Perhaps the initial burst of synthesis utilizes the 

hsp90 mRNA which is already available and the latter burst involves newly 

synthesised hsp90 m RNA. Little is known about the stability or half life of 

hsp90 mRNA. The two periods of increased hsp90 synthesis could also reflect 

synthesis of both hsp90 forms (hsp90 a  and (3) or alternatively each could 

represent synthesis of only one of the forms. The genes encoding hsp90a and 

hsp90p are differentially regulated [Simon etal., 1987; Yamazaki etal., 1990]
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but it is unclear whether both genes are expressed at the same level under 

different cell conditions or if both hsp90s are absolutely required.

One study on the effects of heat on hsp mRNA synthesis suggests that there is a 

delay in the induction of hsp mRNA synthesis after sublethal heat shock and 

that if the temperature is increased the synthesis of hsp mRNA is halted and that 

this prevents the establishment of thermotolerance [Van Wijk etal., 1994]. If 

this is the case then it could explain the decrease in synthesis between 3-9 hours 

post heat shock seen in figure 32, if the endogenous hsp90 mRNA has a short 

half-life it could well be degraded before the heat shock stimulated mRNA 

becomes availible for translation.

This delay in hsp induction following heat shock could also help explain the 

time taken to establish thermotolerance.

6.5. The effect of heat shock on the binding affinity of the 

androgen receptor in prostate cancer cell lines.

The synergistic effect of combining heat shock and OH-Flut administration is 

confined to the androgen/ antiandrogen-responsive cell line LNCaP. The 

androgen receptor must play a role in the effect.

Two classes of binding sites for steroid receptors have been identified by 

Scatchard analysis of ligand binding assays [Eriksson, 1978; Markaverich & 

Clark, 1979; CastagnettaeJa/., 1992]. Type I sites binds to its ligand with high 

affinity (K^clnM) and low capacity; Type II receptors bind ligand with a lower 

affinity but higher capacity [Castagnettae/a/., 1992]. Type I receptors are the 

classic steroid receptors but the role of type II receptors are unknown [Carruba, 

1994]. Ligand concentrations ranging from O.lnM to 5nM allows the 

identification of both type I and type II receptors [Clark & Peck, 1979; Carruba, 

1994], enabling proper studies into the effects of heat shock on both receptor 

types.
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Many studies of steroid receptors have used a ligand concentration from 1 to 

25nM and as such will result in the identification of principally type II receptors 

with only a small amount of the type I receptor being detected [Horoszwicz et 

al., 1983; Sonnenschein etal., 1989; Olea etal, 1990 ]. This will alter the Kd 

value obtained and lead to a higher receptor concentration if assessed as a single 

type of binding site[Carruba, 1994].

The two types of androgen receptor in the soluble and chromosome-bound 

fractions of LNCaP and DU145 cells appear to react differently to heat shock. 

There is a decrease in the affinity of cytosol type I receptor (the "classic AR") 

for its ligand in the soluble fraction of heat shocked cells. This is shown by an 

increase in the Kd of type I binding, as determined by Scatchard analysis (see 

tables 2 and 4). The type I receptors which are tightly associated with the 

nuclear framework do not alter their binding affinity as a result of heat shock 

(see tables 3 and 5) nor does the type II receptor in either the nuclear or cytosol 

fractions. It can be concluded that only the high affinity cytosolic receptor alters 

as a result of heat shock.

This decrease in binding affinity could be due to a subtle change in the 

conformation of the steroid receptor (possibly within the ligand binding 

domain). Another possibility is the association of extra hsps after heat shock, 

leading to the alteration in the binding affinity. Perhaps the influx of hsp90 into 

the nucleus after heat shock results in the hsp90 dimer associating more tightly 

to the receptor and this may lead to the change in binding affinity.

The levels of type I androgen receptors fluctuate after heat shock. Receptor 

concentration increases for the first 4 hours after heat shock and fall sharply 

between 4 and 6  hours post heat shock but rises slowly until 24 hours, then 

drops again and rises until 72 hours post heat shock. The scientific significance 

of this variation in receptor concentration is unclear.

Previous studies on the oestrogen binding capacity of breast cancer cells (MCF- 

7) cells following heat shock showed an almost total abolition of estrogen-
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binding capacity over a period of 24 hours [Wolffe et al., 1984; Chalmers, 

1991]. In the latter case an immunoassay method was used to detect ER and it is 

possible that additional hsps associating with the ER masked the epitope 

The only study to date on the composition of steroid receptors after heat shock 

was carried out using the progesterone receptor [Edwards et al., 1992] ; there 

was a partial reduction in cellular levels of PR but the binding affinity of the PR 

remained unchanged. They also suggest that heat shock treatment did not effect 

PR-hsp90-hsp70 complexes that pre-existed under normal cellular conditions 

but that newly formed complexes did alter. Samples were taken one hour post 

heat shock, which may have been too soon to allow any changes to become 

visible. In LNCaP cells it takes up to 8  hours before a significant change in the 

binding affinity if seen. There is also a time lapse between heat shock and 

thermotolerance establishment which suggests that there would be a delay 

before the effects of heat shock are seen.

The different effects of heat shock described may be due to differences in cell 

lines, species, or possibly the different steroid receptors studied.

6.6. The change in size of the "empty" AR complex following 

heat shock in LNCaP and DU145 cells.

In normal cells two forms of the type I steroid receptor can be identified. The 

transformed receptor which has a sedimentation coefficient of 4S and the 

untranformed oligomeric complex with a sedimentation coefficient of 7- 10S 

[Sherman, 1983] which is referred to as the 8 S receptor. In unstressed LNCaP 

and DU145 cells most of the receptor is found in the 4S form (see figure 28 and 

table 6 ).

After heat shock of LNCaP cells, there is a gradual shift in the ratio of receptor 

forms until after 12 hours very little 4S receptor remains and the amount of 8 S 

receptor has greatly increased. This apparent shift in receptor size from 4S to 8 S
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is also seen in heat shocked DU 145 cells. It is not a sudden change but rather it 

happens gradually during the first 12 hours after heat shock. The ratio does not 

return to pre-shocked levels until 72 hours after the heat shock treatment.

The timing of this shift from the 4S to the 8 S receptor is similar to that seen in 

the change in the Kd of the receptor. It also follows a similar time course as the 

induction and loss of thermotolerance.

The nuclear translocation of hsp90 has reached significant levels by 12 hours

post heat shock [Chalmers, 1991]. This increase in nuclear hsp90 could affect

the ratio of 4S to 8 S receptors. Hsp90 may account for as much as 1-2 % of the

total cellular protein content [Lindquists al., 1986; Lai etal., 1984] which is in

vast excess of the total amounts of steroid receptors. It seems unlikely that the

changes in hsp90 levels would alter the ratio of 4S to 8 S complexes. However

one important point needs to be considered*Hsp90 is predominantly a

cytoplasmic protein whereas the steroid receptors are found in the nucleus. The

level of hsp90 in the nuclei of unstressed cells is minute compared to the level

found in the cytosol (Chalmers submitted for publication) and so it is possible

that the levels of hsp90 in the nucleus could affect the ratio of 4S to 8 S

receptors. This could explain the increase in the levels of the large 8 S complex

seen following heat shock, 
u,

A 1 1 S shcjlder was observed after 1 0 -1 2  hours and this was included in the 

overall 8 S complex as time did not allow further investigation.

6.7. Possible mechanisms for antihormone action and the effect of 

heat on those mechanism.

This supposition is based on the work of Etienne-Emile Baulieu, who has 

produced a model for antisteroid action [Baulieu, 1987].
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There is a wide variation in the ability of hormone antagonists to inhibit 

different physiological responses in vivo [Dauvois & Parker, 1993] and 

therefore several different mechanisms for their action may exist

1) Antihormones may stabilize the receptor-hsp90 hetero-oligomer, preventing 

the release of the active receptor. RU 486 (an antiglucocorticoid) has been 

shown to stabilize the 8 S form of the GR [Baulieu, 1987] although not totally 

as RU486 has partial agonist activity [Dauvois & Parker, 1993].

This stabilisation effect may be increased after heat shock when more hsp90 is 

translocated to the nucleus and the level of 4S receptor is reduced.This could 

explain the synergistic effect of heat shock on antiandrogen action described in 

this thesis.

2) The binding of antihormones may be followed by the release of antihormone- 

4S receptor which may possess reduced affinity for the HRE, as compared to 

agonist-receptor complexes. This model could explain the promotion of DNA 

binding of the ER and PR by tamoxifen and RU486, respectively [Berry etal., 

1990; Meyer etal., 1990].

3) A steroid receptor dimer is required for stable binding of the receptor to DNA 

[Kumar etal, 1988; DeMarzo e ta l,  1991] and the pure antiestrogen I Cl 

164384 may sterically interfere with dimerisation [Fawell etal., 1990].

4) The antihormone-4S receptor complex interacts with the HRE in an identical 

manner to agonist-4S receptor but these may be unable to promote gene 

transcription. Cells may contain specific proteins or co-activators that determine 

the transcriptional activity of hormone responsive genes and the antihormone- 

4S complex may not be able to activate them. This could explain the variety of 

results obtained for the effect of tamoxifen on different cells from different 

animals [Dauvois & Parker, 1993].TAF-1 is hormone-independent and may 

still be active in the antihormone-4S receptor, leading to stimulation of 

promoters were TAF-1 contributes most activity but were TAF-2 is
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predominant the antihormone-4S receptor will act as an inhibitor of transcription 

[Berry etal., 1990; Meyer etal., 1990].

In reality the mechanism of action of any given antihormone may combine any 

of the mechanisms mentioned and their mechanism of action may alter from 

tissue to tissue in different animals.

Heat shock and the induction of thermotolerance could enhance several of these 

mechanisms of action in vitro and in vivo. Most likely as mentioned above the 

increased nuclear hsp90 could help to stabilise the antihormone-8 S-receptor 

complex. Any increase in the efficiency of this stabilisation process would mean 

that less antihormone-4S receptor would be present and the other mechanisms 

would have a less significant role.

In the longer term it is hoped that the results of this in vitro work may help to 

guide the combination of hyperthermia and OH-Flut in repeated therapies in 

patients with prostate cancer.

6.8. Future work

The results in this thesis have increased the understanding of thermotolerance 

and of the synergistic effect of combining heat shock and antiandrogen therapies 

on prostate cells.

Analysis of the 8 S receptor seen in the low salt fractions of heat shocked cells 

would reveal if this receptor complex was identical to the nonstressed 8 S 

complex. It would also give some insight into the composition of the larger 1 IS 

steroid binding complex visible 12  hours after heat shock.

A number of questions regarding the role of hsp90 remain unanswered:

1) which of the 2 forms of hps90 is associated with the steroid receptor;
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2) whether this alters after heat shock (it may help to explain the change in Kd 

of the heat shocked receptor);

3) is one hsp90 molecule prodominantly expressed in nonstressed cells and the 

other induced by stress;

4) does nuclear translocation involve both hsp90 forms.

These will be dificult questions to answer because the amino acid sequences for 

hsp90a and hsp90p are identical in 630 out of 724 possible residue matches 

and therefore antibodies would need to be very specific. The trypsin digestion 

patterns of hsp90a and hsp90|3 differs and this may be used as a method of 

descriminating between the two forms.

It would also be interesting to see the fate of the proteins whose synthesis is 

stimulated by stress.

Much more work meeds to be carried out before the mechanisms of 

antiandrogen action and thermotolerance is fully understood.
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