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ABSTRACT

The primary purpose of this research is to investigate non-—linear and chaotic
behaviour of water in a pipeline at the transition region from laminar to turbulent
flow. Turbulence was generated in the flow by the use of an orifice plate which
generated coherent vortices and subsequent break—down into turbulence,
downstream of the orifice. The flow regime was pulsatile. This was decided
specifically to obtain better control of the experimental apparatus, better control of
the frequency of vortices shedding from the orifice, and because of its wider range

of practical applications discussed in section 1.3.

The mechanism of vortex breakdown has been addressed many times over the
past century. The process by which vortices interact and degenerate is essentially
non— linear. New techniques from the field of non— linear dynamics have emerged
which can yield some quantitative information about the complexity of non— linear
phenomena. This thesis aims to test some of these techniques, together with more
traditional methods, on the experimental time series data obtained from

axisymmetric vortex breakdown of a pulsed flow at a pipe orifice.

An experimental rig was designed and constructed in the Civil Engineering
Department, at the University of Glasgow, to produce, accurately controllable,
pulsed flows within a pipe system at an orifice plate. The apparatus was designed
to allow a range of parameters to be varied over the course of the investigation.
Computer algorithms were written by the author to analyse the resulting data,
obtained from Laser Doppler Anemometry readings: Flow visualisation techniques

were also used to give a qualitative understanding of the system.

Evidence was found for the development of initially axisymmetric pulsed vortex
flows to a relatively low dimensional chaotic state prior to breaking down to a
more complex turbulent state. The flow complexity was probed by investigating the
dynamics of phase space attractors reconstructed from time series taken at various
spatial Jocations within the developing flow field. The two techniques used for this
were the Grassberger— Procaccia dimension and the Lyapunov exponent.
- Reconstruction of the attractors was performed using the minimum mutual

information function.
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The flow complexity was used in conjunction with Turbulent Intensitites within
the flow and the development of the flow velocity profile, to provide a
comprehensive picture of the flow field development for pulsed vortex flows. In
addition, the techniques from the field of non-—linear dynamics were thoroughly
tested in the experimental environment. The problem of noise, and its effect on

the results produced has been analysed in detail.
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IST B

The following list contains all the symbols used in this thesis. In some instances
a symbol may have more than one definition, which one is appropriate will be

apparent from its context within the text.

A = 1. Area
— 2. Constant
Ag — Cross Sectional Area of the Pipe Glass
Ao — Cross sectional Area of the Orifice Aperture
Ap — Cross Sectional Area of the Pipe
Apis — Cross Sectional Area of the Piston Chamber
Ay — Cross Sectional Area of the Water in the Pipe
Ca — Orifice Discharge Coefficient
Cs — Coecfficient of Thermal Expansion
C, = Correlation Integral
Ce — Correlation Function
D — Diameter
Do — Orifice Diameter
Dp — Pipe Diameter (Internal)
D¢ — Capacity Dimension
Dgp — Grassberger— Procaccia Dimension
D; — Information Dimension
Dy — Kaplan— Yorke Dimension )
Eg = Youngs Modulus for Glass
F() — Function
H — Head
Hy — Dynamic Head
He ~ Elevation Head
Hj — Head Loss
Hp — Net head loss
Hp — Pressure Head
I — Information }
Inx — Second Moment of Area About x— Axis
K — Pressure Loss Coefficient
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L — 1. Lyapunov Exponent

— 2. Length
Mom. — Momentum
N — Arbitrary Number
P ~ Pressure
P(x) — The Probability of the Occurence of 'x'
p* — Piezometric Pressure
Q — Flow Rate
R — Radius
Re — Reynolds Number
Recrit — Critical Reynolds Number
Rechao — Reynolds Number for Chaotic Motion
Re, — Orifice Reynolds Number
Re, — Pipe Reynolds Number
Rey, — Wake Reynolds Number
S — Strouhal Number
T — Temperature
T.L — Turbulence Intensity
Point— T.I. — Point Turbulence Intensity
H.G.—T.I. — Hagen— Poiseuille Turbulence Intensity
(See Text for Details)
U — Flow Velocity
U, — Average Orifice Flow Velocity
Up — Average Pipe Flow Velocity
U, — Axial Flow Velocity
U, — Radial Flow Velocity
Ug — Sedimentation Velocity
Uy — Tangential Flow Velocity (Swirl)
u' = Fluctuating Flow Component
Ugse — Oscillating Flow Component (Pulsatile Flows)
w — Mass per Unit Length
Ze — Entrance Length

Xvi



dt — Time Increment

dp  — Distance moved by particle (Flow Visualization)
e — Exponential Function
— Frequency
td — Doppler Frequency
fg — Forcing Frequency
fi — Inverter Frequency
f, — Natural Frequency
fg — Sampling Frequency
fsheq— Vortex Shedding Frequency
f, — Vortex Frequency
g — Gravitational Acceleration
h — Height
i — 1. Complex Number (—1)%,
2. Index ie. Xj
j — Index ie. Xj
k — Thermal Difussivity
1 — Prandtl Eddy Length
l, — Vortex Wavelength
n — Phase Space Embedding Dimension
r — Radial Distance
r.m.s. — Root Mean Squared Value
t — Time
te — Exposure Time
x — Cartesian Spatial Coordinate
y — Cartesian Spatial Coordinate
z ~— Cartesian Spatial Coordinate

— Circulation

— Summation Sign

Heaveside Function

— Probability Distribution Function
— Time Delay

— Angular Velocity
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1. Area Ratio

2. Strain

Diameter Ratio

Deflection

Feigenbaum Universal Number

1. Pipe Wall Roughness

2. Box Length (Dimension Calculations)

Separation at Time Zero

Separation at Time ‘¢’

Pipe Centreline Velocity Factor
(Schiller's Theory)

Angular Measurement

Pipe Friction Factor

Absolute Viscosity

Dynamic Viscosity

Delay

Pi = 3.141592654...

Fluid Density

Shear Stress

Instantaneous Shear Stress

Reynolds Stress

Vorticity Vector

Denotes the First Derivative

with respect to Time of 'x'
Denotes the Second Derivative
with respect to Time of 'x'
Denotes the Average Value of 'x'

Denotes the Fluctuating Component of 'x'

Disturbance, as used in Stability Theory
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1.1 BACKGROUND TO THE WORK

This work was sparked by the emergent science of non—linear dynamics and
chaos, which has captured the imagination of many scientists and a few Engineers,
over the last decade. In essence it is a new way or technique of investigating
physical phenomena, and may or may not have useful applications in the field of

Civil Engineering Hydraulics.

The work is therefore speculative in nature, with no certainty of a wuseful
outcome, and the only previous comparable British experience being work of Dr.
Tom Mullin at Oxford university who is currently investigating the transition to
turbulence of pipe flows in which turbulence is triggered by puffs of fluid injected
cyclically into the pipe. Dr. Mullin has also been prominent in investigating the
simpler case of the transition to turbulence of the annular flow of a fluid trapped

between two rotating cylinders, (Taylor— Couette flow).

It was decided to investigate a simple, common phenomenon in Hydraulic
Engineering, namely flow in a pipe, and to home—in on the transition between
laminar and turbulent flows, which was believed to exhibit non— linear and chaotic
behaviour at the breakdown into turbulence. The availability of accurate
measurement techniques of Laser Doppler Anemometry combined with analysis tools

such as Fast Fourier techniques also encouraged the study to proceed.

It should be noted that the breakdown into turbulence can be achieved in a
pipe by the use of an orifice plate in the flow. It was found at an early stage
that control of the experiment, as well as control of the vortex shedding
frequencies from the orifice is best achieved with pulsatile flows in the pipe. The
research therefore concentrates on pulsatile flows in a pipe. These are very
common within pipeline systems and may be caused by either:—

1 — mechanical vibration, both external and internal to the system, (i.e. pump or
turbine machinery), or

2 — flow related phenomena such as natural vortex shedding from obstructions
within the flow field, these include orifice plates, eccentric pipe connections,

partially closed valves etc.

The presence of flow pulsations in pipe flows affects many of the engineering



aspects of such flows. These include the pipe friction factor, the sediment transport
properties of the flows and the metering of such flows. Very little is known about
pulsatile flows as they interact with orifice plates, (or other obstacles), in pipes.

This work aims to shed some light on this flow interaction problem.

The primary objectives of this work therefore are twofold:
1 — To study the non—linear evolution and breakdown to turbulence of
axisymmetric vortices shed from a pipe orifice in pulsatile flow, using Flow
Visualisation and Laser Doppler Anemometry. Thereby shedding light upon the
mechanisms of flow breakdown and energy loss in such flows.
2 — To utilise, and report upon the applicability of, a selection of the emergent
analytical techniques from the field of non— linear dynamics. These techniques
include algorithms for the attractor construction, dimension, mutual information,
first return maps and Lyapunov exponents of the flow system. Such algorithms are
in use today to categorise a whole range of non—linear phenomena, from fluid and

structural dynamics to biological and chemical systems.

1.2 OUTLINE OF THE INVESTIGATION

A brief outline of the research work undertaken by the author, and reported
on within this thesis, is given as follows:
1 — Low Reynolds number flows are generated at a pipe orifice. The flow is
pulsed at the natural vortex shedding frequency to promote the formation of a
regular set of vortices at the orifice plate lip.
2 — The Reynolds number, forcing amplitude and orifice diameter are
systematically varied.
3 — Initially, flow visualisation studies are performed to elucidate, in a qualitative
manner, the structure of the flow field at the orifice. This included capturing the
flow phenomena on photographic and video film.
4 — L.D.A. readings are taken within the flow field, to obtain a velocity— time
series of the fluid at certain spatial positions within the flow downstream of the
orifice.
S — Data analysis is performed on the velocity time series to give quantitative
information about the flow at each spatial position.

6 — The results from the data analysis were used together with the information



gained from the flow visualisation to present a coherent picture of the route taken

by the vortex system to turbulent flow.

1.3 PRACTICAL APPLICATIONS OF THE WORK
The work has potential applications in the following areas:
1 — Flows past obstacles.

The pattern of flow breakdown past obstacles is an important topic of study.
Such obstacles may include orifice plates in a pipe, sediment build up in a sewer
or pipeline deposits in human arteries, to name but a few. The energy losses
incurred by such flows together with the effect of these flows on the obstacle is of
great importance in many engineering contexts. The work presented herein should
provide information on the breakdown of low Reynolds number flows past obstacles.
This information will provide a better understanding of such phenomena. By forcing
the flow at various frequencies, more control can be gained in the manipulation of

the phenomena.

2 — The Behaviour of Pulsatile Pipe Flows at a Constriction.

Pulsatile flows occur in many instances in both the engineering and natural
context. Pulsed flows may occur in pipelines due to pumps, or other machinery, or
they may occur naturally due to vortex shedding from obstacles within the flow
system. It is important, therefore, that the behaviour of such pulsatile flows at
obstacles and constrictions, is known. Such knowledge could lead to a better
understanding, and prediction, of the energy losses that occur in such

circumstances.

One naturally occurring pulsatile flow is that of blood. The phenomena of
blood flow is quite different from the flows studied in this thesis, i.e. it is a
non— Newtonian fluid, and, arteries and veins are not rigid conduits. However,
much work has been done in investigating the effect of flow constrictions on pulsed

blood flows, modelling the effect of partially blocked arteries. Furthermore, many of



these investigations have assumed Newtonian fluids and/or rigid conduits for the

sake of simplicity.

3 - Laminar— Turbulent flow phenomena,

The experiment reported in this thesis has an advantage over traditional pipe
flow transition experiments. That is, the transition point at which the flow breaks
down into a turbulent state occurs at a fixed spatial position. As opposed to the
laminar— turbulent transition of pipes without trigger mechanisms, whereby the flow
breaks down intermittently, and the flow field changes at any specific point within
the pipe, through time. Therefore, by using an orifice plate and essentially fixing

the breakdown position the phenomena is more amenable to study.

4 — Increased Sediment Transport Properties of Pulsed Flows

Recent work has shown that, by pulsing pipe flows, an increase in the sediment
transport properties of the flow may be obtained, [El Masry and E! Shobaky,
1989]. Pulsed pipe flows have a lower critical velocity required to transport
sediment, and in some circumstances require less energy to transport a specific
amount of sediment than the equivalent non— pulsed flow. This work will provide
qualitative and quantitative information on the flow field at an orifice plate for
pulsatile pipe flows. Such flow fields may represent an ideal case for a wide
variety of constrictions and obstacles that may occur in such pulsed pipe flow used

to carry solids.

5 — Practical Implications of Nonlinear Dynamical Theories

This work also aims to look for practical applications of the techniques that are
being developed in the field of non—linear dynamics. Much has appeared in the
literature on non—linear systems in general, most of this in a fluid dynamics -
context, and the author has attempted to asses the implications of the techniques

regarding their use in an engineering context.



Ruelle [1983b] states that the recent improvement of our understanding of the

nature of turbulence, and transitional flow phenomena, has three different routes.

These are,

1 — The injection of new mathematical ideas from the theory of dynamical
systems.

2 — The availability of powerful computers which permit, amongst other things,

experimental mathematics on dynamical systems and numerical simulation of
hydrodynamic equations.

3 — Improvement of experimental techniques such as laser Doppler anemometry
and numerical techniques such as Fourier analysis.

The work of this thesis concerns itself with items (1) and (3).

This investigation uses traditional fluid mechanical means of analysis together
with the more recent theories from non— linear dynamics. A comparison is made of

the relative attributes of the two areas of analysis.

1.4 RELATED WORK

Two additional pieces of work were undertaken during the course of the main
work outlined in this thesis. Both were in the field of non—linear dynamics, and
were in effect offshoots from the main work pursued by the author. These are

summarised as follows.

1 — An investigation was carried out into the applicability of certain numerical
. methods to find the solutions of a simple non-— linear system. Interesting facts came
to light regarding the sensitivity of the solution to various factors including - the
numerical scheme used as well as the initial conditions of the system. The results
of this investigation are summarised in Appendix 4, and published by the author,
see Addison et al, [1992].

2 — The Grassberger— Procaccia dimension algorithm, written by the author, was
used in work with Mr. R.D. Brown of Heriot— Watt University, who is currently
investigating the non— linear response of journal bearing systems. More details are
given in Appendix 5. This work was also published, see Brown, Addison and Chan,
[1992].



1.5 THESIS OUTLINE

An attempt has been made to make each chapter of this thesis self contained,
as far as is possible. Thus all the literature and theory is reviewed in Chapter 2.
All the information about the design and construction of the apparatus is presented
in Chapter 3, and so on. This modularisation of the thesis, it is hoped, will make
it more readable, and make it easier for the reader to access specific information

quickly. The remaining chapters contained within this thesis are outlined as follows.

CHAPTER 2: Contains a review of the relevant literature to give a background
knowledge of the subject area, together with the required theoretical knowledge for

the experimental and theoretical work.

CHAPTER 3: Presents detailed information about the design, construction and
running of the test apparatus. Including the motor control system, the L.D.A.

set— up, data acquisition, pipe and piston specifications, and so on.

CHAPTER 4: Deals with the calibration of the apparatus and computer algorithms
prior to taking the main results. Also contained within this chapter is a section on
derived relationships used in the work. Finally a comprehensive outline of the

experimental work is given.

CHAPTER 5: The results of the flow visualisation study is presented within this
chapter. Both photographic and video film is analysed.

CHAPTER 6: This chapter presents the results of the main L.D.A. readings.

CHAPTER 7: Within this chapter is contained the analysis of the main L.D.A.
results of chapter 6.

CHAPTER 8: This chapter deals with the conclusions reached from the results and

analysis of the work presented herein, and suggestions for future work.

APPENDICES: A comprehensive set of appendices are given at the end of the



thesis. They include information on the Navier Stokes equations, algorithm design

and listings, related work and the refractive properties of the pipe.
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2.1 INTRODUCTION

Historically, it was the Romans who first thought to obtain a relationship
between the dimensions of a pipe and the amount of flow it could carry. This was
to allow a tax on water usage to be levied, [Rouse and Ince, 1957]. However, it
was not until this century that the flows in pipes could be generally obtained for

any Newtonian fluid within a pipe of any diameter.

Pipes and pipe systems play an important role in Civil Engineering. They are
used mainly to convey fluids such as gas, oil and water, from one point to
another, in some cases they are used to transport suspended solids in fluids such as
sewage. In other cases they may be used for the transmission of hydraulic load.
Much of the early experimental and theoretical work done on pipe flow was
carried out by researchers with Civil Engineering backgrounds, such as Osborne
Reynolds and C.F. Colebrook.

Fluid flows may in general be laminar or turbulent. It was Reynolds [1883] who
demonstrated the essential nature of the two types of flow, using a flow
visualisation chemical within a glass pipe. The transition point between the two
types of flow is intermittent in nature, that is, patches of laminar and turbulent

flow may be observed in the pipe.

The special case of laminar pipe flow is one of the few exact solutions of the
governing equations of fluid flow, known as the Navier—Stokes equations,
(Appendix A). However, most fluid flow encountered in the Engineering situation is
turbulent, and as such is a very complex phenomenon. The problem of turbulence
occupies a vast field of knowledge, (and perhaps ignorance). At present, there is
no complete theory of turbulence, only fragments of the whole picture. Recent
work in non— linear dynamics has added one more piece to the picture, as will be
described in section 2.4.

Although this research spans diverse subject matter from pipe flows, orifice
‘behaviour, vortex structures, turbulence, flow visualisation and non— linear dynamics,
it was decided to concentrate mainly on non— linear dynamics, as the other subjects
are already well documented in text books and papers.

12



The chapter begins with basic definitions including laminar and turbulent flows
in open pipes but not at a very detailed level. This early section also deals with
orifice flow and pulsatile flow in pipes. The literature review touches briefly on
vortex flows before reviewing the relatively new field of non-—linear dynamics. This
includes a brief overview of dynamical systems, chaotic motion, strange attractors
and fractals.

The following section deals with the important subject of methods of analysis of
non— linear systems including fast Fourier transforms, construction of attractors from
experimental data, the Grassberger— Procaccia dimension and Lyapunov exponent.
The final section deals with experimental and theoretical work which has been
carried out by other investigators, and which is of relevance to the experimental
work of this thesis. The use of fractals to describe fluid phenomena is described.
Theoretical predictions and experimental evidence of chaotic behaviour in vortex
systems is reviewed. Transitional pipe flow studies, which have been analysed using

techniques from the field of non-— linear dynamics, are also described.

2.2 THE _FLOW OF FLUID IN A PIPE

2.2.1 Basic Definitions

The coordinate system wused in the study presented herein is shown in
figure 2—1. This cylindrical coordinate system is more suitable for the pipe

geometry and also for the axisymmetric nature of the flow conditions.

In most Engineering situations water may be assumed an incompressible fluid.
In such a case the continuity condition for incompressible flow applies, that is the
volume flow rate, (Q = U.A), has the same value at each cross section in the
pipe.

The most important flow parameter in the study of the transition to turbulence

in a pipe flow is the Reynolds number, which is a measure of the ratio of the

13




inertial to viscous forces in the flow. The Reynolds number was discovered by
Osborne Reynolds [1883], who found that initially laminar flows became unstable
and passed into a turbulent state for certain values of the non— dimensional flow

parameter, now named in his honour. The Reynolds number is defined thus,

Re - __L._B (2.1)

It is simply the product of the average pipe velocity, Up, and the pipe internal
diameter, Dy, divided by the liquid kinematic viscosity, ».

Reynolds found the critical value of this parameter, Regrit, to be around 2300
for pipe flows. Below Regrjt viscous forces dominate and the flow remains laminar,
and above which inertial forces tend to dominate the flow and a turbulent state

ensues.

2.2.2 Laminar Pipe Flows

At Reynolds numbers below Rec.j; where viscous forces dominate, viscous fluid
flow is laminar, At this stage, the flow streamlines are time independent, and any

disturbance in the flow quickly dampens out back to the laminar state.

Viscosity produces stresses within the fluid due to the shearing of faster moving
fluid layers over slower ones. The stress between two such layers is related to the
rate of shearing of the two layers over each other. In the case of water the
viscous stress, 7, is linearly related to the rate of fluid shear through the viscosity
and is known as a Newtonian fluid, [Rouse & Ince, 1957, p83].

Using the momentum equation, the velocity profile for laminar flow of a
Newtonian liquid in a pipe can shown to be parabolic. (The derivation can be
found in most introductory fluid mechanics texts.) In fact, the velocity profile being
symmetric about the pipe centre—line has the shape of a parabaloid. Referring to
figure 2—2, the velocity, U,, at a radial distance r from the central axis of the
pipe is given by

14



2
uz - Uz(max)' [ 1 - — ] (2.2)

where Uz(max) is the maximum velocity of the flow which occurs at the central

axis of the pipe, and is exactly twice the average flow velocity, i.e.

(=]

1
z = 2 uz(max) (2.3)

Once laminar flows reach a certain critical value of the Reynolds Number they
tend to become unstable and breakdown to a turbulent state, whereby the flow
contains, in addition to the average flow velocity, a fluctuating component.

Turbulent flows, with particular emphasis on pipe flows, will be dealt with in the
next section.

2.2.3 Turbulent Pipe Flow

Fluid turbulence is a common occurrence in nature, it appears in almost all
practical Engineering flow problems, (with the exception of very slow, or viscous
flows). Fluid turbulence is also a highly complex phenomenon covering an
enormous area of both theoretical and experimental research. At present, the
phenomenon of turbulence is still not fully understood. Cvitanovic [1984] has
described turbulence as ‘'the unsolved problem of physics', whereas Ruelle [198.;3\]
calls it ‘one of the great puzzles of theoretical physics'.

When the Reynolds number of a flow increases above Recyyy, the laminar
regime becomes unstable and breaks down into a turbulent state, whereby the flow
field becomes full of irregular eddying motions, [Prandtl, 1952]. Turbulent flow is
characterised by fluctuating velocity components, u’, superimposed on the mean

velocity components {J. In general, the flow velocity, U, at an instant in time may
be described thus,
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U - U + U (2.4a)

For the case of turbulent pipe flows where there is only one component of mean

velocity axially in the pipe, the velocities are therefore,

U = U + U , U =-UuU , U = U (2.4b)

The time series trace of the velocities becomes highly irregular and appears to
have no discernible pattern, as shown in fig 2—3a. This is true for both an

Eularian and Lagrangian frame of reference.

Turbulence may be described as homogeneous if the average properties of the
flow is independent of coordinate position within the fluid. Isotropic turbulence
exists when the average statistical properties of the flow, at each point in the flow
field are independent of direction, [Batchelor, 1960]. Fully developed turbulent flow
in pipes is neither homogenous nor isotropic. The time averaged properties of
turbulent pipe flow change at each radial position, however, they do possess

axisymmetry and are the same at each cross section along the pipe.

Due to the apparently random nature of turbulent flow, statistical methods are
employed in its analysis. One such method is to plot the probability distribution of
the fluctuating velocity component, see figure 2—3b. Often turbulent velocity
probability distributions approach that of a Gaussian distribution, as shown in the

figure.

Since the time average values of the fluctuating velocity components are
necessarily zero by definition, a convenient way to characterise the fluctuations is

to use the 'turbulence intensity' defined as

(2.5)
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whereby the root mean square of the turbulent fluctuation component, U'rms, is

divided by the average flow velocity.

The turbulent flow of fluid in a pipe assumes a flatter velocity profile than the
equivalent parabolic laminar profile, (figure 2—3c). From experiment it has been
shown that the turbulent profile may be approximated by a simple ‘'one seventh'
power law, (except for a region very close to the wall). This approximation holds
for pipe Reynolds numbers up to 100,000, above which the power law exponent
progressively reduces in value.

2.2.3.1 The Reynolds Stress and Prandtl Eddy Length

In turbulent flow, transfer of momentum between neighbouring layers of fluid
becomes important. This momentum exchange gives rise to additional stresses within
the fluid. Thus, for a given volume flow rate, Q, a greater pressure drop is
required to drive turbulent flow than would otherwise be required if the flow were

laminar. The time averages of these stresses are known as Reynolds stresses, Tgp

where,

TR = p.U,'(.U;, (2.6)

An obvious result is that the high values of turbulent shear stresses generally
found in real turbulent flows, requires that there exists a strong correlation in the
fluctuating velocity components. A completely independent, random variation in

both would result in the time average of the product of U; and U; being equal to
zero.

As stated above, turbulent flow is full of irregular eddying motions, these
‘motions are highly complex and extremely difficult to define. No one, precise
definition of an eddy exists. However, one early attempt to define turbulent flows
in terms of characteristic eddy lengths by Prandtl [1952], is known as the mixing
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length hypothesis, and will be described below.

Consider the two— dimensional velocity profile in figure 2—4. A turbulent
fluctuation Uy' at position 1 causes a discrete pulse of fluid to move from layer 1
to layer 2 a small distance, 1, (the mixing length). It may be seen that the

turbulent fluctuation in the direction of the flow, Uy', at position 2, is then

. du_
v, - 1. (2.7)
dy

Combining this expression with that of the Reynolds stress and absorbing the
constant of proportionality and the density directly into the value of 1, we arrive at
the expression,

2

| ::"] | (2.8)

The advantage of such a formula is that a plausible guess at the value of 1 may
be made for certain parts of a turbulent flow field.

2.2.3.2 Correlation and Intermittency

Turbulence is described by Robertson [Date Unknown] as ‘a random motion
which occurs in fluid flows', and further that this ‘randomness is of such a nature
that the velocity at one instant is still correlated that in the next and in decreasing
amounts at succeeding instants'. It is due to this random nature that the solution

to the problems of turbulent flows has been in terms of a statistical approach.

The scale of turbulence may be defined quantitatively by using correlation
coefficients. The autocorrelation function may be used on an experimental time

series -of turbulent flow and is defined as
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C, = - (2.9)

Where U; is the instantaneous velocity at time t, and T is the time delay between
related velocities, see figure 2— 5. A time delay, T, equal to zero leads to the

obvious result of the autocorrelation function being equal to unity.

One finds that a turbulent flow time signal is correlated over short time scales
indicating that coherent structures exist within the flow, the correlation decreases as
the value of time delay increases. Theoretically, the point at which Cy becomes
equal to zero defines the temporal scale of the largest eddies within the fluid.
However, it has been found that the correlation coefficient tends to decay
exponentially over its latter part making the value of Y, for which Cy equals zero,

rather vague.

Turbulent flow is composed of many eddies of various sizes. The frequency of
eddy fluctuations vary over a large spectral range, (figure 2—6). The larger eddies
contain most of the kinetic energy of the flow, these eddies are denoted 1, in the
figure. These large eddies dissipate little energy by viscous effects. Interaction of
the large scale eddies with each other generate smaller eddies, this is done by the
mechanism of vortex stretching, [Ward—Smith, 1980]. Energy is dissipated by
smaller eddies into heat by viscosity, these eddies are denoted L4 in the figure.
The smallest eddies found in a flow are known as Kolmogorov eddies, Ly. The
local Reynolds number of these eddies is unity. There is a continuous transfer of
energy from the large scale eddies to the smaller eddies, which dissipate this
energy in the form of heat. Large scale eddies are usually quite anisotropic, their
size and orientation depending on the method of their generation. However, as one
moves down the eddy length scale the smaller eddies become more isotropic,

except, of course, near to solid boundaries.
Pipe flows near to the critical Reynolds number may alternate between the

laminar and turbulent state, as shown in figures 2.7a and 2.7b. Such a vacillation

in the flow regime is known as intermittency. The temporal intermittency factor,
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M;, is defined as

Duration of Turbulent Flow

Duration of Laminar and Turbulent Flow

(2.10)

M; is equal to zero and unity for wholly laminar and wholly turbulent flows
respectively. Intermittency for pipe flow occurs for Reynolds numbers in the

approximate range of 2300 to 4000.

There is another type of intermittency associated with turbulent pipe flow which
occurs near to the wall, where the pseudo— laminar layer, (or viscous sub— layer,
[Davies, 1972]), and the main turbulent flow meet. As one would expect, knowing
the random, fluctuating nature of turbulent flow, there is not an abrupt change
between the two flow regimes, but rather a region in which turbulent fluctuations
penetrate the viscous sub layer from time to time. This results in a temporal
intermittency, M;j, with a spatial variation over a transitional region which is

depicted in figure 2—7c.

22,4 Head loss_and the Friction Factor

The head loss, H¢, per unit length of pipe is, given by Darcy's equation as

follows,

2
Hf - — % 4z (2.11)
R
Where the multiplying variable, \, is the pipe friction factor which depends on the
flow regime within the pipe.

In general the flow regimes in a pipe may be split into roughly four definable
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areas, these are as follows.

1 — Laminar flows for Reynolds numbers below Regrj, described in section 2.2.2.
2 — Intermittent flows, where the flow regime at sections of the pipe changes
between the laminar and turbulent state, as outlined in section 2.2.3.2. These occur
for flows between approximately 2300 (Recrip and 4000, (after which fully
turbulent flows exist).

3 — Smooth turbulence, whereby the pipe internal surface discontinuities are
masked by the still relatively thick, pseudo—laminar layer, and thus do not affect
the main turbulent flow.

4 — Rough turbulence, usually occurs at high Reynolds numbers, whereby the
pseudo— laminar layer has thinned sufficiently for the pipe surface roughness to

affect the main flow.

Each regime has associated with it a different pipe friction factor, X\, the value of
which may be obtained using a chart such as the Moody diagram, figure 2—8, or
from the Colebrook— White equation, [Colebrooke, 1939],

1 € 2.51
isom ot 2o, 5y B, * Al (2.12)

Where eIDp is the relative roughness of the pipe wall to the pipe diameter. Using
this expression the friction factor for both rough and smooth turbulence may be
obtained.

Due to the implicit nature of A\ in the above expression, much work has been
done to obtain an explicit approximation to it. There now exists many explicit
approximations to the Colebrook— White formula, see for example Barr [1975].
Chen and Ackland [1990] have gone further and formulated a continuous equation

for the pipe friction factor spanning all four flow regimes,

For undisturbed pipe flow below the critical Reynolds number, Rec.s, the flow
is always laminar, and the pipe friction factor is equal to 64/Re, (see appendix 1).
Such flows are shown by the preturbulent straight line on the Moody diagram.

However, it is to be noticed that the laminar line extends (shown dashed in the
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figure) past Recrje. The reason for this is that laminar flow in a pipe requires that
a finite disturbance be input into the flow for the transition to turbulence to take
place. Laminar flows above the critical Reynolds number are known as
super— laminar flows, and they are highly unstable. Such super—laminar flows have
been found experimentally for flows up to Reynolds numbers of 90,000. (Once such
super laminar flow has broken down to the turbulent state, the flow Reynolds
number must be reduced to below Reg.j: for the flow to relaminarise.) More will

be said on the stability of laminar pipe flow in the next section.

2.2.5 Stability Theory

Much effort has been made to derive theoretically the critical Reynolds number
for various flows including axisymmetric pipe flows. Such stability theories have
played an important role in the understanding of the transition processes in many
fluid situations, [Drazin & Reid, 1981]. It seems appropriate in the present text to
briefly outline the general method used in such an activity.

Stability theory has been used successfully to predict critical Reynolds numbers
for the case of a flat plate of zero incidence, [Schlichting, 1979, p469]. The case
of Hagen— Poiseuille pipe flow, however, has proved to be a much more complex
problem.

The general approach is to derive disturbance equations from the Navier Stokes
equations, (see equations Al.1— Al.4 in Appendix 1), the disturbances are then put
into wave form and the equations solved to hnd unstable values of the
disturbances. The method, as applied to axisymmetric, Newtonian pipe flow, is as
follows:

1 —  The first step is to assume flow conditions, which satisfy the boundary
conditions, which for the case of laminar pipe flow is a parabolic axial velocity
profile, with both the radius and centre—line velocity set equal to unity for
simplicity in the calculations.

2 — The Navier Stoke's equations are written for U;, U, U,y then small
disturbances, (¥, 8, and iig), are added to the velocities and the Navier Stokes

equations are rewritten for
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Uz + % U + G, U + Ty (2.13)

The disturbance equations are then subtracted from the orig|inal Navier Stokes
equations, leaving a set of disturbance equations.

3 — The disturbance equations are then linearized, by neglecting the products of
the disturbance velocity, and the disturbance is modelled by perturbations of the

form:

Tz, Ty, Gg, §) = (Vz(r),Ve(r),Vg(r) ,B(r)).elo(z-ct)

(2.14)

This assumes an axisymmetric disturbance which is periodic in the direction of
the flow, where temporal growth of the disturbances occurs for a real value of «
and complex ¢ and spatial growth occurs ‘for a real value of ‘¢ and complex a.
These disturbances are known as Tollmein— Schlichting waves, and have been
observed experimentally, [Schlichting, 1979, pp473— 493].

4 — The resulting equations derived in step (3) are then solved for a. This is an
eigenvalue problem, with homogeneous boundary conditions.

S — Once a value of o is obtained the values of ¢ and ¢, can be found.

7— The values of a and ¢ thus give the amplitude and speed of propagation and
also the type of instability, i.e. temporal or spatial.

For a more in—depth description of the steps involved in sfability analysis the
reader is referred to White [1974].

At the present time it is generally considered that fluid flow .in a pipe is stable
for infinitesimal disturbances. for all valués of Re, (i.e. smail finite amplitude
disturbances must be present in the flow for transition to occur), although this has
never been rigo irously proved, [Stuart, 1979].

Sexl [1927a and 1927b]- proceeded to solve the laminar pipe flow disturbance

equations for the inviscid solution, (i.e. zero viscosity or very large Reynolds

number). Corcos and Sellars [1959] have solved the stability equations for viscous
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flow in a pipe subject to axially symmetric disturbances. They found that a finite
number of eigenvalues exist for given wave numbers and Reynolds numbers.
They concluded that Poiseuille pipe flow damps infinitesimal axially symmetric
disturbances and that transition must be triggered by a finite amplitude disturbance

in the flow.

Keuthe [1967] noted from experimental studies of flows in pipes, that when
initial disturbances are small, their subsequent growth or decay follows linearized
theory. However, if the disturbances grow, then at some point in their evolution
the non—linear terms neglected in the analysis take over and ‘govern the transition
process'. Thus, the transition to turbulence becomes a non-—linear process. Leite
[1957] perturbed laminar air flow in a pipe using an oscillating sleeve surface
mounted on the pipe internal wall. This device allowed him to vary the frequency
of the disturbances within the flow. He found good agreement with the theoretical

results of Corcos and Sellars. Leite also found the following:

1 - The disturbances generated exhibited imperfect axial symmetry, the
non— symmetric part decayed more rapidly than the symmetric part.
2 — The theory of Corcos and Sellars [1959] predicted fairly accurately rates of
decay but not rates of propagation. ’
3 — The transition to turbulent flow occurs whenever the amplitude of the
disturbance exceeds a threshold value which decreases with increasing Reynolds

number.

A similar experimental study, outlined by Lessen et al [1964] and Fox et al
[1968), was conducted on water flows within pipes. The disturbances were generated
by an oscillating plate placed on the main diameter of the pipe. This work showed
up regions of instability for finite disturbances above a critical Reynolds Number,
Regrit, of 2150.

It is noted by White [1974] that the linearized stability theory, as outlined in
this section, only predicts the breakdown of laminar flows at finite Reynolds
numbers, subject to external disturbances. It does not predict the onset of
turbulence. Corcos and Sellars [1959] concluded from their theoretical work that
stability theory plays only a fragmentary role in the description of transition. Once

non-— linearities take over, an entirely different analysis seems to be required.
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(Echoing the point made by Keuthe, see also Reshotko [1981].) As the disturbances
grow, they reach a point at which linearization of the equations is inadmissible,
and even qualitative information about further development of the disturbances is
lost. The disturbances may grow, settle down to a finite amplitude or decay. If
they grow they may appear as turbulent spots which may or may not spread into
the flow. As the disturbances grow, and non— linear effects become dominant, they

tend to become more three— dimensional in nature, [Klebanoff et al, 1962].

Stability theory is a wide and complex topic and there is only room within this
thesis to give it brief coverage. For more detailed information of the subject area
the reader is referred to the comprehensive texts on the subject by Lin [1966] and
Drazin and Reid [1981).

2.2.6 Structures Present within Transitional
Pipe Flow : The Puff and the Slug

Whereas stability theory concerns itself with the initial process of transition,
many experiments have concentrated on the next stage in the process, whereby the
laminar flow breaks down intermittently to the turbulent state. (See also section
2.2.3.3.) Transition from the laminar state to an intermittently turbulent one is
believed to take place at the development region of the laminar flow profile at the
bipe inlet, [Smith, 1960]. It may also be caused by disturbances brought in with
the flow, [Moss, 1989]. The nature of the breakdown of laminar flow at an
arbitrary cross section of a pipe depends, according ,to Binnie and Fowler [1947],
upon the distance of the cross section downstream from the inlet. The phenomenon
of intermittency in pipes occurs between pipe Reynolds numbers of 2000 and 3000,
[Patel & Head, 1969], and is immediately obvious from the velocity time trace of
the pipe fluid, [Rotta, 1956]. Fukuda [1985] gives details of the variation of the

intermittency factor with the pipe Reynolds number, as shown in figure 2—9.

Wygnanski and Champagne [1973] describes the two types of intermittently
turbulent flows that may occur, these are,

1 — Puffs — these are generated by large scale disturbances at the inlet.

2 — Slugs — these are caused by the instability of the boundary layer to small
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disturbances in the entrance region of the pipe.

Figure 2—10 shows the occurrence of puffs and slugs and their dependence on
the pipe Reynolds number and level of disturbance.

Puffs occur within a Reynolds number range of 2000 to 2700. Wygnanski et al
[1975] have found that the behaviour of the turbulent puff, at large distances from
the initial propagating disturbance, is independent of the type of disturbance which
caused it. Thus, all puffs at the same value of Rep are of equal length. The
average velocity of a turbulent puff is approximately equal to the average pipe flow
velocity Up. Depending upon the value of the pipe Reynolds number, puffs either
grow or decay. At a certain value of Rep the puffs are stable, and these patches
of turbulence interspersed with laminar flow are observed to propagate indefinitely
while preserving their lengths. These stable puffs are known as equilibrium puffs
and they occur at a pipe Reynolds number of between 2200 [Wygnanski’&)1975] and
2250 [Bandyopadhyay, 1986).

According to Lindgren [1957] and [1969], turbulent slugs are formed when
initial small disturbances grow into turbulent spots within the pipe, these develop
into turbulence which soon fills the whole cross section of the pipe, and may then
grow only in the axial direction. Thus, slugs generally increase in length as they
proceed downstream. Downstream of the production area of the slugs there exists a
point where the slugs have grown in length and coalesced with each other to
produce fully turbulent pipe flow, this occurs for values of Rep in excess of 3000.
(This is the reason that intermittent flow is generally said to occur for values of
Rep between 2000 and 3000. Whereas, near to the cause of the turbulent patches,
within the inlet region, intermittency may be observed for much larger pipe
Reynolds numbers. This is due to the presence of slugs which have not yet grown,
to join preceding and succeeding ones, to produce a continuous fully turbulent
flow.) Slugs begin to occur at pipe Reynolds numbers in excess of 2700. They
have a well defined shape, with leading and trailing edges between the laminar
fluid outside the slug and the turbulent fluid within, see figure 2—11. The leading
front travelling at velocity greater than the average flow velocity, and the trailing
front travelling— at a velocity less than the average flow velocity. The difference
between the front velocities increases as the pipe Reynolds number increases, thus
for higher values of Rep the slugs grow more quickly. The bluntness of the
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velocity profile within a slug is attributed to the Reynolds stresses in the turbulent
flow within the slug. Teitgen [1979] has determined that the fluid flow within the
slug has the same characteristics as those of fully developed turbulent flow at the

same Reynolds number.

Rubin et al [1979] have found that a slug containing all the attributes of fully
developed turbulent pipe flow, is generated by the coalescence of puffs. Thus slugs
are in fact trains of puffs, and have a length which is an integer multiple of a
puff at the same Reynolds number. Lindgren [1969] went further to suggest that
the apparently fully developed turbulence in pipes, with Reynolds numbers up to
6000, were in fact composed of closely packed slugs.

2.2.7 Entrance Flow Development

The velocity profile of laminar flow, within the entrance region of a straight
pipe of constant cross section, must develop from entrance profile to the parabolic
velocity profile of fully developed Hagen— Poiseuille flow, (see figure 2—12). The
entrance flow development may be shown very clearly with the aid of flow

visualisation, [Japanese Society of Mechanical Engineers, 1988].

The flow profile at the pipe entrance is usually assumed to be of a constant
velocity for ease of theoretical manipulation. However, the presence of a smooth
entrance to the pipe has the effect of modifying the velocity profile, prior to the
fluid entering the pipe, and reducing the entrance length, z,.

There are many theories around to predict Z, in terms of the pipe Reynolds
number and the pipe internal diameter, see for example Boussinesq [1891 1
Schiller [1922), and Langhaar [1942]. Numerical integration of the basic
Navier— Stokes equations by Freidmann et al [1968] finds the entrance length to be

Z = 0.05600 D . R 2.15
e P ep ( )

This value by Friedmann is recommended by Ward— Smith [1980, pp195—226] in

his authoritative account of entrance length theories. This is the formula used to
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determine the entrance length required for the experimental investigation reported

herein.

The stability of developing laminar flows within the entrance region of pipes
has been investigated theoretically by Tatsumi [1952a & b}, using the methods of
stability theory outlined in section 2.2.5. He found a stability limit at a minimum
critical Reynolds number, Recri¢, of 9700, at a point 17 pipe diameters downstream
from the entrance.

2.2.8 Pulsatile Pipe Flow

Pulsatile flow may be defined as flow with periodic fluctuations of the bulk
mass— flow rate. [Oppenheim and Chilton, 1955]. Pulsatile pipe flow consists of a
mean velocity component U and an oscillating component, U:,, superimposed upon
it, thus

U - T + U . (2.16)

Unlike the fluctuating component of turbulent flow, U', the oscillating component is
usually a regular, controllable, periodic function. The simplest example of which is

a sinusoidal component,

Uo - Uamp' sin(owt) , (2.17)

where Uapmp is the amplitude of the fluctuating component.

The special case, where there is no mean flow component (i.e. g = 0), is
known as oscillatory flow, [Fishler & Brodkey, 1991], and such flows have been
described theoretically by Shlichting [1979, pp436— 438]. Oscillatory flows may
exhibit laminar to turbulent transition phenomena for large values of Uamp’
[Kurzweg, 1989].

Pulsatile flows can be found in many pipe flow systems. Such flows often occur
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at the inlet and exhaust ducts of reciprocating engines, or in pipe lines fed by
reciprocating, or rotary positive displacement pumps or compressors. Pulsating flow
may also originate from instabilities in flow systems under certain flow conditions
which favour self— excitation, an example of such a self exciting flow phenomena is
that of flow through a partially closed hydraulic valve. The phenomena of flow
induced vibrations of hydraulic valves is described in detail by Weaver et al [1978],
and D'Netto and Weaver [1987].

Fluctuating components may even be added purposely to the flow, as in the
case of transport of solids through pipelines. Such flows may exist as laminar of
turbulent flows, under certain conditions [Ramaprian & Tu, 1980], both flow
regimes may exist at certain parts of the pulsation cycle. The stability of laminar
pulsatile flows has been experimentally investigated and it has been found, by
Sarpkaya t1966], that the critical pipe Reynolds number required for tr;msition
is higher than the critical Reynolds number of stead'y Poiseuille flow. Friction
factors for fully turbulent pulsatile flows have been obtained experimentally by
Baird et al [1971] and Kirmse [1979]. It has been shown by Kirmse that the
average value of the friction factor, )\, for such a flow regime is less than the
friction factor for ‘a non— pulsating flow at the same Reynolds number. Iguchi
[1986] has found turbulent slugs, similar to those of normal intermittent pipe flows,

generated in pulsatile pipe flows.

Apn experimental study by EIl Masry andi'Shobaky [1989] has shown that the
transport of solids by fluid flows in pipes may be enhanced by the addition of a
pulsatile component to the mean flow velocity. One area of research which has
conducted much work on the subject of pulsatile flows is that of blood flow, (a
non— Newtonian fluid), where there is a relatively Alarge fluctuating flow éomponent
superimposed on the mean flow rate. Work has been conducted on the effect of
artery constriction (modelled by a constriction in a pipe) on the breakdown of
laminar pulsatile flows by Lieber and Giddens [1989]. While Martinez— Val et al
[1990] have looked at the flow regime, of such pulsatile flows, at replacement

heart valves.
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2.2.9 OQrifice Flow Phenomeng in Pipes

Orifices are the most popular form of flow measurement device used in Civil
and Mechanical Engineering, for measuring mass flux rates of incompressible flows.
The installation of an orifice plate in a pipeline results in a loss of pressus hed inthe

system at the orifice plate, part of which is recoverable, part irrecoverable.

As the flow passes through the orifice opening it is accelerated and the kinetic
energy of the flow increases, this results in a significant pressure drop,
(figure 2—13). Much of this kinetic energy is dissipated downstream of the orifice
in eddies and this is the mechanism by which the irrecoverable pressure drop
occurs. As the flow moves further downstream it decelerates and gradually returns
to the upstream velocity profile, this coincides with reduction in the kinetic energy
of the flow which in turn causes a recovery of the pressure within the fluid.
However, the pressure attains a value less than it would otherwise have been, had
the orifice plate been absent from the pipe. The reason for this is -that the
presence of the orifice plate causes an increase in mixing of the 'flow' dué to
eddies created at the orifice, these eddies then die out due to viscous diffusion,
which in turn looes;:&’kinetic energy from the flow to the surroundings in the form
of heat, [Bullock,‘)w‘io]. More will be said about the flow mechanisms at an
orifice in section 2.3.

The net head loss in the pipe due to the presence of the orifice plate is given
by '

2
U, :
AH - K — _ (2.18)
2.

o

where K is the pressure loss coefficient and is dependent on the orifice geometry
and the Réynolds number of the flow. Pressure loss coefficient charts are given by
Miller [1978] for various sharp edged orifice plates with various DOIDp ratios and
Reynolds numbers in the range 1 to 10,000, (figure 2—14). Charts for more

complicated orifice geometries are to be found in the paper by Rao and Sridharan—
[1972).
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At the orifice plate itself there is a large difference between the pressure at
the upstream and downstream faces, see figure 2—13. It is this difference which is
of particular value for the purpose of flow measurement. Just upstream there is a
slight increase in the pressure at the orifice plate. At the downstream face a large
drop occurs due to the modification of the velocity profile as the flow is squeezed
through the orifice plate and accelerated in the process. The relatively large
difference in head across the orifice facilitates the measurement of the flow through

the orifice using the standard flow equation:

Q = P (2.19)

where Cd is the orifice discharge coefficient, see Iversen [1956] and Peterson
[1947].

Hodgson [1929] gives a detailed insight into the laws of similarity for orifice
flows. A more up to date and comprehensive review of orifice plate theory is
outlined by Ward— Smith [1971] in his excellent book on pressure losses in ducted
flows.

There exists many designs of orifice plate for the measurement of liquid and
gas flows. Much effort has been expended in an attlempt to standardise the design
of such plates. The position of the pressure tappings, and the bore geometry are
the two main criteria which effect the value of the differential pressure observed at
the orifice plate. A detailed account of the various designs is not within the scope
of this text, for further information the reader is referred to BS1042:1984, and also
the following authors: Linford [1961], Sprenkle [1960], Bell and Bergelin [1962],
Ward— Smith [1971], West [1962]), Yoshitani et al [1985] and Buckingham [1956].
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2.2.9.1 Numerical Solution of Low Reynolds Number
rifice Fl

The phenomena of steady, incompressible, axisymmetric viscous flow through a
square edge orifice in a pipe was first solved numerically by Mills [1968]. To do
so, he used a finite difference scheme to solve the Navier Stokes equations for the
flow at an orifice. His analysis showed that as the pipe Reynolds number is
increased from rest, the downstream recirculation zone increased in size while the
upstream zone diminished in size. Figure 2—15a shows the streamlines and vorticity
lines obtained by Mills for Reynolds numbers of 0 and 5 respectively. Axial
pressure distributions are given in figure 2-—15b. Solutions for pipe Reynolds
numbers greater than 25 were not attempted due to the inability to distinguish
between the actual hydrodynamic instabilities arising in the flow and numerical
instabilities arising from the numerical integration method. Mills found good
qualitative agreement with the flow patterns he obtained numerically and the
experimental results of Johansen [1930].

Nigro et al [1978] have extended the work of Mills to allow for considerable
flexibility in the choice of orifice plate geometry. Whereas Mills scheme could only
cope with a square edged orifice plate, Nigro et al, claim to be able to solve for

slow viscous flows through any orifice plate geometry.

2.2.9.2 Flow Pulsations at an Orifice

Flow pulsations cause errors in the metering of flows at orifice plates in pipes.
Often there is no obvious indication of pulsations in the flow at the flowmeter.
The effect of many forms of flow pulsations, on orifice meters, has been
investigated by Oppenheim and Chilton [1955]. BS1042:1984, section 1.4, clause 14

gives guidelines for the practical use of orifice flow meters in pulsating flows.

Downing and Mottram [1977] have presented a theoretical analysis accounting
for the metering errors at orifices due to such pulsating flows, (see also Mottram
and Robati [1985]). They wused this analysis together with experimental results
obtained by themselves to define the metering error, Em, at an orifice plate due
to flow pulsations as,
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U;'ms
E = 1 - ° -1 (2.20)
m —

where U,')rms is the root mean square of the fluctuating component of velocity.

Jones and Bajura [1991] have numerically investigated pulsating flows at a pipe
orifice in the range, 0.8 < Rep < 64, and for Strouhal numbers in the range
0.00001 to 100. From the study they concluded the following:

1 — The reattachment length varies throughout the forcing cycle, as can be seen
in figure 2—16. In the figure,the odd number time steps, (each of one eighth of a
cycle), are shown and the change in reattachment length is clearly seen.

2 — The reattachment length, Z;, increases with the Strouhal number.

3 — The flow rate pulsation causes more energy to be dissipated across the orifice
plate.

23 VORTEX FLOWS

2.3.1 Introduction

'Vortices are ordered structures in fluid motion, which nature prefers over
chaos in certain situations', is how Lugt [1983] describes these commonly occurring
flow structures. Such structures exist in nature over many, if not all length scales,
from the astronomical scales of the giant vortical spiral galaxies, through the
geophysical scales of hurricanes, down to the sub atomic scales of the elementary
particles.

Vortex flows occur in all branches of Engineering. Vortex shedding from wing
tips are of interest to the Aeronautical Engineer. The Chemical Engineer requires
knowledge on the mixing properties of vortex flows. The Biomechanical Engineer
concerns him or herself with vortex flows in heart replacement valves. The Civil

Engineer is concerned with vortex shedding from structures and the effect from the
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resulting flow induced vibrations, and so on.
A vortex is defined as the rotating motion of a multitude of material particles

around a common centre, and vorticity as the angular velocity of matter at a point

in continuum space.

23.2 Vorticity

The vorticity vector, w , is defined for Carstesian coordinates as,

w = curl (U)-(wx.wy.wz) (2.21a)
_ auz ) 3Ul BUx i BUZ BUy ) QUx (2.21b)

and in cylindrical coordinates as,

w=curl (U) = (wp , wp , ;) (2.22a)
[ 1 au 3u au au
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r Y] oz oz or
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or -1
(2.22b)

Flows with zero vorticity are known as irrotational.
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The circulation of a flow is defined as the flow around a closed curve in a
fluid, (see for example the closed curve APB in figure 2—17), and is denoted by
the symbol I', and is given by the expression,

B
Fe - IA U dl (2.23)

where dl is the incremental length around the curve, and U is the velocity at the
point considered on the curve. The vorticity, w, is given by the circulation, T,
divided by the area enclosed by the curve. Thus, for a fluid rotated with a
constant angular velocity, {}, about a centre, the circulation around a closed radial

curve may be shown to be twice the angular velocity, [Massey, 1984].

For Laminar pipe flows, (section 2.2.2), there are no velocity fluctuations about
the mean, (U' = 0), and there are no mean radial or swirling flow components,

(U = Uy = 0). Thus thc\/oritcity vector, equation 2.22b, reduces to

dUz
W = - . (2.24)
dr
Substituting the parabolic Hagen— Poiseuille velocity profile, (eqn. 2.21), for

laminar pipe flows for U,, gives:

cl

2
d _ r 4
W - - — 2.U.1-—]]- .r  (2.25)
z R?

RZ

Thus, for such a flow the vorticity is linearly related to the distance from the
centre— line, attaining a maximum value at the pipe wall. It is interesting to note
that this flow is a very good example of a flow with vorticity but without vortical
motion, (i.e. there is no rotation of any of the fluid particles around a common

centre).
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The case where laminar pipe flow passes through an orifice plate within a pipe
gives rise to radial velocities within the flow as the streamlines converge to squeeze
the flow through the aperture, and also as they diverge downstream. As the flow
approaches the orifice it accelerates and the vorticity increases within the

accelerated region of the flow.

The maximum convergence of the flow at an orifice occurs just downstream of
the plate. The point at which the streamlines are parallel defines the smallest cross
sectional area of the jet of fluid emanating from the orifice, and is known as the
vena contracta. (This phrase is Latin meéning literally ‘contracted vein'). In the
case of creeping flows, i.e. flows with a Reynolds number approaching zero, the

vena contracta will occur at the orifice aperture.
As described in section 2.2.2 the rate of internal shearing of a Newtonian fluid

is directly proportional to the stresses between layers of fluid, related by the fluid

viscosity. The shear stress set up between two such layers in laminar pipe flow is

dU
z

r - - g (2.26)

dr

thus, the viscosity, u, acts to counter the vorticity. Viscosity causes shearing stresses
to be set up opposing the shearing of the fluid, defined by the shape of the
velocity profile. In effect, the viscosity acts to even out discontinuities in the
velocity profile. If viscosity bhad its way it would reduce the shearing (dUj/dr) to
zero. However, due to the no slip conditions at solid boundaries the only way to
have zero shearing is to have zero velocity at all points in the flow. Thus, if the
driving force of the fluid is removed, the fluid will eventually come to rest due to

the action of viscosity, coupled with the no slip boundary condition.’
The effect of viscosity ,u, to even out the velocity profile and reduce the

vorticity is known as diffusion. Viscosity, therefore, causes diffusion of momentum

within laminar flows.
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2.3.3 The Rankine Vortex and the Diffusion of Vorticity

In nature, real vortices tend to possess solid body rotation at their centre due
to viscous diffusion, while exhibiting irrotational vortex flow at their extremities. A
simple theoretical description of such a vortex is known as a Rankine vortex, which
consists of a central core of solid body rotation with the extremities of the vortex
consisting of irrotational fluid motion. The theoretical description of the Rankine
vortex has been left out of this text, and may be found in most basic Fluid

Mechanics texts.

The diffusion of vorticity from a vortex, in a viscous fluid, is a time dependent
phenomena. The tangential velocity at a radius, r, of a vortex, with initial

strength, Ty, is given by the expression, [Duncan et al, 1963],
r 2
u, - -2 [ 1 - (7 /4ve) ] (2.27)

Using the above expression Schaefer and Eskinazi [1959] presented an analytical
solution for the velocity field of a vortex street generated in a viscous fluid. They
found three basic regions of the vortex shedding, which are summarised in

figure 2— 18, these are:

1 — Formation: The initial development of the vortices in the near wake of the
bluff body. '
2 — Stable Region: A stable region of laminar, periodic flow was found after the

formation region.

3 — Unstable Region: The stable region eventually lost its stability and broke down
to a turbulent flow.

2.3.4 Flow Separation and Vortex Motion

Flow separation occurs in many Engineering flows and its effect may, or may
not, be beneficial to the system considered. When particles approach each other on

the surface streamline from opposite directions, they meet then depart from the
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boundary. This phenomenon is called flow separation, see figures 2—19a and
2—-19b. When the situation is reversed, and the flow moves towards the boundary
an attachment, or reattachment, point is obtained. Both separation and
reattachment points are known as stagnation points, shown as S and R,
respectively, in the figures. The streamline connecting the separation point with the
reattachment point is known as the separation, or limiting, streamliné. The
occurrence of flow separation is a prerequisite for the generation of discrete
vortices in the flow. In boundary layer flows, vorticity is produced at a body
surface and from there spreads into the fluid.

As the Reynolds number of a flow increases, convection dominates over
diffusion as the main means of transport and dispersal of vorticity, [Rosenhead,
1963). Convection carries vorticity. Vortices remain attached to the body on which
they are formed only for low Reynolds numbers. As the Reynolds number
increases, the flow becomes unstable and vortices are shed. The exact value of
Reynolds number at which vortices are shed, for a given fluid, is highly dependent
upon three factors: the shape of the body, its surface roughness and also the level
of background turbulence in the flow. It has been noted by Mair and Maul [1971]
that background turbulence may in fact either enhance or suppress the formation
and shedding of vortices at a bluff body depending on the relative intensity of the

background noise to that of the vortex shedding process.

The phenomenon of vortex separation is to be distinguished from that of flow
separation. Vortex separation is always a time dependent process in which vorticity
assumes extremal values inside the fluid. Once detac’hed from a body, the core of
a vortex rotates like a solid body due to the action of viscous diffusion, even for
extremely high Reynolds numbefs. In contrast with the theoretical behaviour of
inviscid vortex rings which move with constant velocity without decay, real vortex
rings lose speed. They decelerate not only tl;rough the loss of energy due to
friction, but also entrainment of fluid from the surroundings. Vortices with high

frequency decay faster than those with relatively smaller frequencies.

Vortices may be generated in a variety of flow situations. However, they exhibit
similar qualities. Once vortices have been generated, as for example at the tip of a
bluff body, (figure 2—20a), or the end of a splitter plate, (figure 2— 20b), they
roll up until they are large enough to be convected away by the main flow. The
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vortices increase in size as they proceed downstream due to two main effects,
vortex merging and entrainment of fluid from the main flow. Viscous diffusion does

not normally play a major role in vortex growth.

Vortices in shear layers may interact with each other either by a merging
process or a tearing process, {Hernan & Jimenez, 1982). In the merging process,
two eddies (in rare cases three eddies), come into close proximity with each other,
begin to rotate about a common centre and eventually become entangled to form a
single eddy, (figure 2—20b). The tearing process involves an eddy losing its stabilityaml
disintegrating, its vorticity being eventually absorbed by its neighbours.

The presence of vortices in the shear layer tends to make the recirculation
zone less well defined. The movement of the vortices on the boundary of the
recirculation zone tend to blur its edge, also the reattachment length, Z,, fluctuates

with the passage of the vortices.

Perry et al [1980], (see also Perry and Lim [1978]), have used flow
visualisation to elucidate the flow phenomena at a jet issuing from a tube at low
Reynolds numbers. The vortices generated by the jet are shown in figure 2—21,
The figure shows the streamlines as would be seen by an observer moving with the
mean velocity of the vortices. From the figure, one may discern many of the
salient features of the flow. The region of solid body rotation at the centre of
each vortex are called centres, labelled C. A saddle point, labelled S, may also be
seen in the figure. The complexity of viscous flows approaching obstacles is clearly
outlined by Perry and Fairlie [1974). Figure 2—22a ,shows the flow patterns in a
viscous flow approaching a cylindrical obstruction and figure 2—22b shows the
streamline separation pattern of a turbulent boundary layer approaching a building

with a causeway beneath it.

Vortices are generated by the amplification of small disturbances in shear flow.
One example of this amplification phenomena is that of two horizontal, parallel,
infinite streams of fluid flowing over each other with different velocities and
densities. The shearing action of the two fluid bodies causes initially very small
disturbances to be amplified. This phenomena 7is known as Kelvin— Helmholtz
instability, [Drazin and Reid, 1981, ppl4—22). As the instabilities grow they roll

up, due to the action of the two layers, into discrete vortices, see figure 2—23.
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One of the most comprehensibly studied vortex flows is the Karman vortex
street, whereby vortices shed in turn from either side of a circular cylinder in
laminar flow, (figure 2—24). These flows are of interest to the Engineer as they
can produce results which are directly applicable to the vortex— structure interaction
which occur, for example, with chimney stacks in cross winds. See Marris [1964)

for a discussion of such flows.

2.3.5 The Strouhal Number

The non— dimensional parameter used to describe periodic flows such as those
caused by vortex shedding is the Strouhal Number, S, where:

t.shed - L

§ = —F (2.28)

U

and where fgheq is the frequency of vortex shedding and {3 is the average velocity
of the flow. L is a suitable length scale of the object under investigation, such as
the diameter of a stationary cylinder or sphere in a cross flow, or for non
symmetrical objects such as steel sections of a bridge, it is usually defined as the
length perpendicular to the mean flow direction. For orifice flow, the typical length
scale, L, is taken as the diameter of the orifice aperture, D, It has been
demonstrated theoretically by Birkhoff (see Birkhoff and Zaran‘t?llo [1957],
Pp290—292) that the vortex shedding from a bluff body, such as a cylinder, is
directly proportional to the flow velocity, (by considering the near wake as an
oscillator). This relationship has been found by experimental evidence to be the
case for large ranges of Reynolds numbers.

Typically, the Strouhal number for vortex shedding at a cylinder is
approximately 0.20, where L is taken as the cylinder diameter. This value
remaining fairly constant over a Reynolds number range from 400 to 40,000, for
instance see West and Apelt [1990]. A flat plate placed in a uniform flow typically
has a Strouhal number around- 0.15, (see figure 2—25). For various steel sections,
as used in the construction industry, the Strouhal number may vary from

approximately 0.12 to 0.16 depending on the geometry involved, M ore detailed
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information on the Strouhal numbers for steel sections may be found in Blevins
[1977). Johansen [1930] found the average Strouhal number to be approximately
0.594 for vortex shedding at an orifice in a pipe with a Dy/Dp ratio of 0.50.
Where the length scale, L, was take as the orifice aperture diameter, Dg. This

value remained fairly constant for a range of Rep from 111 to 510.

Recently there has been an emergence of flow metering devices which rely on
the fact that the Strouhal number remains constant over wide ranges of Reynolds
numbers. These devices are known as vortex meters. According to Zanker and
Cousins [1977], (who give details of various designs), vortex meters consist of three

fundamental parts, these are:

1 — The hardware to produce the basic hydrodynamic instability,
2 — A method of detecting the resulting vortex shedding frequency, and,

3 — A signal processing unit to extract the required flow output.

Vortex meters for pipe flows are advocated by Casperen [1977] for measuring flow
rates as they are simple, rugged and may provide accurate measurement if the
correct choice is made. However, careful choice of the vortex meter should be
made, as shedding frequencies may cause vibration problems which may in turn

effect the measuring accuracy and cause mechanical damage.

2.3.6 Forced Vortex Flows

Vortices generated within the mixing layer of shear flows tend to form at a
dominant, or natural, frequency, f,. This frequency is, in general, randomly
distributed about a mean, as shown in the frequency spectrum of figure 2— 26a.
However, by forcing the flow, or the body itself, at, or near to the dominant
frequency, the vortex shedding can be made much more regular as indicated by a

single ‘'spike' in the frequency spectrum, (figure 2— 26b).

If the forcing frequency, ff, is moved away from the natural frequency, fp, it
causes the"shedding frequency, fy, to move with it, but only for small changes in
f from f;. This phenomena is known as frequency locking. Once the forcing

frequency moves far from the natural frequency, then either one finds that the
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shedding frequency will lock onto a forcing frequency which is a subharmonic of
itself, or one finds both frequencies competing with each other in the flow and a
beating pattern occurring in the flow pattern. The resulting flow pattern depends

very much upon the relative amplitudes of the natural and forcing frequencies.

Ho and Huang [1982] performed a forcing frequency experiment on a mixing
layer generated by two streams of fluid moving with different average velocities.
They altered the forcing frequency of the flow over a range from 1.26f, down to
0.17f;, and found that when ff was decreased below a certain limit the response
frequency of the vortex shedding, f,, switched discontinuously to a higher
frequency, in fact back towards f,,, (see figure 2—27). However, they noticed that
the effect of forcing the vortices at f/2, f/3 and f/4 was to produce increased
merging rates of the vortices and thus greatly increase the spreading rate of the
layer.

Vortices forced at fy, and f,/2 merged in pairs, the latter frequency causing
earlier merging of the vortices. Vortices forced at f/3 and f/4 merged in triples
and quadruples respectively, and the rate of mixing was greatly enhanced. Thus,
the resulting coherent structures obtained by this enhanced merging process, (known

as collective interaction), have a frequency equal to the forcing frequency.

The vortex shedding frequency is related to the forcing frequency by,

1
ff- M fv (2.29)

M being the mode index, (M = 1,2,3,4... etc.). According to Ho and Huang, the

first merging takes place at a distance Z, given as follows,

U
v
Z-N‘M.-—f;-N.M.l (2.30)

where N is an integer, and 1, is the vortex shedding wavelength. Thus, for a flow
forced at the natural frequency, (M = 1), the position of the first merging is an
integer multiple of the vortex shedding wavelength.
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Experimental investigations into the effect of forcing jets flows by Bradley and
Ng [1989] have elucidated some features of forced wakes. They used two different
frequencies to force the flow. It was found that by controlling the frequency,
amplitude and relative phases of the forcing, that one may induce various modes of
vortex development and merging in the downstream flow. Such modes include the
paring of similar sized vortices, pairing of vortices of different sizes, multiple
vortex merging, (similar to that observed by Ho and Huang), and vortex shredding.
Vortex shredding defines the process whereby one of the disturbances, generated at
a subharmonic of f, grows faster than the other disturbance, (not at a
subharmonic), and results in the faster growing vortices tearing apart, or

'shredding', the smaller vortices.

It has been suggested [Gharib and Williams— Stuber, 1989) that by forcing a
vortex flow, a better environment for examining the nature of the particular system
may be attained. They investigated the forced wake of an airfoil, which has a
structure essentially of a Karman vortex sheet, and found that the velocity profile
downstream adapts to accommodate the forcing of the flow. Nonlinear phenomena
such as beating and ‘lock—in' have been found in forced Karman vortex sheets by
Detemple— Laake and Ecklemann [1989].

2.3.7 Flow Behaviour in Pipes, at Orifice
Plates and Sudden Expansions

’

In pipelines it is often the case that the mean flow has a slight angular motion
associated with it. This may be caused by the inlet conditions. The presence of an
orifice plate in the pipe may accentuate the swirl as the streamlines contract to
pass through it. In some circumstances this may lead to cavitation of the flow due
to the associated radial pressure drop towards the axis of the pipe, Lugt{1962]. The
breakdown of these swirling flows has been examined by Faler and Leibovich
[1978]. However, in this text we are concerned with flows which do not have a

swirl component at a pipe orifice.

It is also worth mentioning, before we consider orifice flows, that vortex flows

may be generated at bluff bodies placed in a pipe. A study by Webb and

43



Harrington {1956] investigated the behaviour of vortex shedding at an obstacle
placed on the pipe wall. They found that, for each Reynolds number investigated,
the height of the obstacle determined whether the disturbances grew, or dissipated
out, in the flow, see figure 2—28. These obstacles were of the form of
non— axisymmetric bluff bodies. The effect of the orifice plate in such flows, which
is in effect an axisymmetric bluff body, will be discussed in the following.

Johansen [1929] visually investigated the flow field at an orifice in a pipe for
low Reynolds number flows. The glass pipe used in the study had a 27mm bore,
and the orifice to pipe diameter ratio was 0.5. A 2% solution of methylene blue
in water was used for the purpose. The main conclusions attained by Johansen for
the behaviour of the flow at the orifice, as the pipe Reynolds number was

increased from rest, are summarised in what follows. (See figure 2—29).

1 — Creeping Flow (Reg = 10) — For Reynolds numbers approaching zero, the
flow remains attached to the orifice lip as it flows over it, and the streamlines are
symmetric about the body. Johansen also noted that the velocity appears uniform

across the flow at the orifice aperture. (Figure 2—29a).

2 — Slow Flow (Reg = 30) — The flow begins to separate just behind the orifice
lip, and the recirculation zones begin to form. (Figure 2— 29b).

3 — Establishment of Recirculation Zones (Rey, = 100) — An increase in
Reynolds number causes the flow to detach from the orifice plate lip, reattaching
itself further downstream. A vena contracta is fgrmed just downstream of the
orifice lip and a recirculation zone is set up. Also, upstream, another smaller
recirculation zone is set up due to the detachment of the flow streamlines as they

converge prior to passing through the orifice plate aperture. (Figure 2—29c).

4 — Appearance of Shear Instabilities (Re, = 250) — Instabilities arise in the
region of high shear between the main flow and the recirculation zone,
(figure 2—29d). These appear as ripples in the flow streamlines and from this

point onwards, the streamlines become time dependent.

S — Appearance of Imperfect Vortex Rings (Re, = 600) — The instability ripples
roll up into incomplete vortex rings. (Figure 2— 29e).
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6 — Vortex Formation (Reg = 1000) — A further increase in the Rep leads to
the rolling up of the instability ripples into discrete vortices, (figure 2—29f). These

are convected away by the main flow streaming through the orifice aperture.

7 — Vortex Growth and Breakdown (Reg = 1600, and above) — At high
Reynolds numbers the vortices generated at the orifice plate grow rapidly as they
proceed downstream, interact with each other and breakdown to a ‘violently'
turbulent region. This region was seen to extend from one to five orifice diameters
downstream of the orifice itself. (Figure 2— 29g).

The phenomena, observed by Johansen and cited above, were also observed for
other diameter ratios, (these being 0.1, 0.25, 0.75) though not at the same
Reynolds numbers. In general the events described above occurred at increasingly

higher Reynolds numbers, as the diameter ratio was increased.

Johansen found that, for the case of vortex shedding at a pipe orifice, 'no
indication was observed of any tendency for the rings to be shed from the orifice
in the form of a spiral'. That is the shedding of one, continuous helical vortex
was 'not observed. The vortices shed from a pipe orifice are, therefore, discrete,

axisymmetric vortex rings.

The destabilisation of axisymmetric vortex rings is discussed by Baumann et al
[1992]). However, their work centred on single vortex rings of one fluid inside
another. and perhaps is not relevant in this context where the vortex rings at an

orifice are shed in a ‘train, rather like a Karman' vortex street, and may interact
with each other.

The literature on low Reynolds number, vortex flows at a pipe orifice is very
poor, consisting of only Johansen's [1929 & 1933] work. (Bullock et al [1990] have
investigated high Reynolds number, fully turbulent flows at a pipe orifice, where
Rep = 20,500.) It will be instructive, therefore, to look briefly at a similar type
of flow, that of flows at a sudden expansion within a pipe, (figure 2—30}.. This

type of flow is also known as a confined jet flow, [Mansoori, 1988].

Back and Roshke [1972] investigated sudden expansion pipe flow for upstream
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Reynolds numbers of between 20 and 4200. They found that the reattachment
length, Z;, of such jets had a variable behaviour depending on the flow regime.
The reattachment length versus the upstream pipe Reynolds number is shown

plotted in figure 2—31a.

At low Reynolds numbers, Z, moved downstream with increasing Reynolds
numbers. The variation was seen to be linear in this range as shown in
figure 2— 31b. At intermediate Reynolds numbers, instabilities in the jet boundary,
increased in magnitude and rolled up in to vortex structures. The reattachment
zone was determined when the lateral extent of this undulating motion extended to
the pipe wall. At higher Reynolds numbers the jet spread more rapidly due to
turbulent, random fluctuations and reattachment occurred rglatively close to the

discontinuity.

Khezzar et al [1986] followed up the work,Back and Roshke, using upstream
pipe Reynolds numbers in the range, 120 to 40,000. Their results for the
reattachment length versus upstream Reynolds number are shown in figure 2— 32,
They also investigated in detail the flow properties for an Upstream Reynolds
number of 40,000. They found that the centre—line flow velocity decreased
smoothly from the entrance value, U, to the final value in the large pipe of
approximately 0.32U,. They also presented the turbulence intensities for various
cross sections across the flow downstream of the outlet. In figure 2— 33, the author
has replotted the centre—line velocity results, together with the centre—line
turbulence intensities, from the paper of Khezzar et al. From this figure it may be
inferred that the turbulent fluctuations play a major part in the modification of the
jet centre—line velocity to that of the downstream pipe centre—line velocity.
(Compare with results in chapter 6.)

Sibulkin [1962] investigated the turbulent to laminar transition process within a
pipe. He generated the ‘artificially turbulent flow' using a sudden expansion flow in
the pipe. These sudden expansions, (or diffusers as Sibulkin calls them), were of
square edge and conical section, as shown in figure 2— 34a. The flow conditions
could be manipulated so that the flow in the downstream pipe was subcritical, i.e.

below Rep. Thus, the turbulence generated by the diffuser was dissipated
downstream.
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Figure 2— 34b shows the variation of downstream turbulence intensity at the
centre— line, and figure 2— 34c gives details of the axial turbulence intensity at
various radial positions across the pipe, for three positions downstream of the
diffuser, (x/d=8, 17 and 35 where d is the upstream diameter according to
Sibulkin). Sibulkin noted that the radial profiles of the turbulence decayed most
rapidly at the pipe wall and the centre—line, and least rapidly within the region
04 < /Ry £€0.6. |

Finally, it should be noted that Durst et al [1989] have used both L.D.A. and
flow visualisation techniques to investigate piston driven, sudden expansion flows.
They have studied both the laminar and transition regimes. The phenomena of
vortex roll— up into i'ings and interaction with solid surfaces were observed visually

and detailed L.D.A. measurements were taken, giving an insight into the processes

involved.

2.3.8 Flow Induced Vibrations

One practical aspect of the phenomena of vortex shedding is that it may give
rise to flow induced vibrations. Thus, it seems appropriate to comment briefly on
this effect. This type of flow— structure interaction commonly occurs where a flow
is impeded by a bluff body or restriction. It is an important factor in certain Civil
Engineering design situations, these include bridge deck design, tall buildings,
chimneys, partially closed hydraulic valves, bridge piers etc.

In fact, most structures or hydraulic devices may suffer from flow induced
vibrations, (caused by vortex shedding), under at least some of their expected
operating conditions. It is the role of the Engineer to establish whether these
conditions are acceptable to the operation of the structure, or device, in question.
The problem of flow induced vibrations may be easily dealt with in certain
circumstances by an appropriate change in the shape, and thus modification of the
fluid dynamical properties and response characteristics, of the body in question, see
for example Konishi et al [19M] and Hanko [1967). There is, however, not
sufficient room herein to go into this subject area in detail, the reader is therefore
referred to the many standard texts on the subject.
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2.4 N— LINEAR DYNAMICAL TE

24.1 Introduction

It is known that simple, low dimensional dynamical systems may be made to
display complicated solution patterns as the control parameter of the system is
increased above a critical value, [Lorenz, 1967]. These seemingly random, now
called chaotic states, have been found for the post— transient solutions of difference
equations and numerically integrated ordinary differential equations (O.D.E.'s). More
importantly, such chaotic flows have been found experimentally for all manner of
physical systems. These include; fluid flows such as the Taylor— Couette system and
Rayleigh— Benard convection, biological systems such as predator prey systems and

heart fibrillation patterns, chemical kinetics, electrical circuits and so on.

Chaotic flow is then a universal behaviour which may be realised in non— linear
dynamical systems. Most physical systems are non—linear and it is this fact which
accounts for the recent interest in the field of non—linear dynamics and further
underlines the importance of the work done in this area, [Kuramoto, 1984].

Within the last decade or so scientists and engineers have looked to the new
techniques emerging from the field of non—linear dynamics, to provide a
framework for explaining the twin phenomena of the transition of a fluid to the
turbulent state, and fluid turbulence itself, [Guckenheimer, 1986 and Ruelle, 1983a].
Turbulent flow is characterised by the apparently unpredictable motions of the fluid
system, which has, in theory, infinitely many degrees of freedom. However, recent
work has suggested that it is possible that turbulent flow could be governed by an
underlying mechanism, which has essentially only a few degrees of freedom, [Yorke
and Yorke, 1981].

The motion of fluids, governed by the Navier— Stokes equations, is a highly
non— linear phenomenon. Almost all natural flows encountered in the engineering
context are found to be turbulent. It is fair to say that turbulence was previously
regarded as a random process with stochastic analyses tools employed to understand
the phenomenon. Now, however, many workers in the field of turbulent flows

believe that, in some circumstances at least, turbulence may in fact be a complex
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chaotic motion. This belief has been substantiated by the observation of chaotic
motion in many real, experimental fluid systems, (see for example Abraham et al
[1984)).

For more details of an introductory nature of the subject of chaotic flows and
turbulence the reader is referred to Lesieur [1987, Ch.3] and to the articles by
Lanford [1981] and Cvitanovic [1984].

2,42 Dynamical Systems

Nonlinear dynamics can be applied to two mathematical topics previously
thought to be unrelated, these are:

1 — Ordinary Differential Equations, (continuous time),

i.e. Autonomous ax(t) = F(X) , (2.31a)
dt

and Non-Autonomous dX(t) = F(X,t) (2.31b)
dt

2 — Mappings, (discrete time intervals),

i.e. Autonomous Xjpq = f(xj) , (2.32a)

and Non-Autonomous Xjpy = f(xj,t) (2.32b)

where X,x,F and f are N-dimensional vectors. There are many examples of
mathematical non— linear dynamical systems, some of which will be mentioned in
this text. The reader will find a more detailed account of such systems in any

introductory text on non— linear dynamics, such as Sagdeev et al [1988].
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A well studied example of a non— autonomous differential equation is the
Duffing Oscillator, [see for example Asfar and Masoud, 1992, Dowell and Pezeshki,
1988, Gottwald et al, 1992, and Rahman and Burtdn, 1986]). It will be useful to
look at it in some detail, and use it to outline some of the basic phenomena of

non— linear dynamics.
The Duffing Oscillator has the following mathematical form:

X+ Kx + x° = B.cos(t) (2.33)

this is a forced non— linear oscillator, with a cubic elastic restoring force. K and B
are arbitrary control parameters. The superscripted dots denote the first and second
derivative of the displacement, x, with respect to time. Numerically integrating this
equation one finds regimes of periodic and nonperiodic solutions, for various values
of the control parameters. A suitable scheme for numerical integration such as
Runge— Kutta, [O'Neill, 1987], or Newmark method, [Reddy, 1986], could be used.
(The author has numerically investigated the effect of various numerical schemes on
a modified version of the Duffing oscillator, [Addison et al, 1992]. See also

appendix 4.)

For example a periodic solution can be found for the parameter values,
K = 0.08 and B = 0.20, and,’ nonperiodic solutions for K = 0.05 and
B = 7.50. (Figures 2—35a and 2—35b). The nonperiodic solution 1is very
interesting. It does not repeat itself and appears irregular and unpredictable.
However, it is not a random flow, since each time the oscillator is started from a
specific set of initial conditions, the resulting time series will be identical, (i.e. it is
deterministic). Whereas, a random series will follow a completely different and
unpredictable path each time. A slight change in the initial conditions of the
nonperiodic solution will rapidly produce an entirely different time series. This
phenomena is known as sensitive dependence on initial conditions and is the

hallmark of this type of nonperiodic motion, known as chaotic motion.
Figure 2— 35¢ shows the effect of starting the Duffing oscillator from two very

close initial conditions, (x = 3.0, x = 4.0 and x = 3.01, x = 4.0). As can be

seen in the figure the resulting time series traces rapidly decorrelate from each

50



other,

More complex oscillator models may be obtained by coupling together two or
more Duffing oscillators, [Yamada and Fujisaka, 1983], or by chaotically exciting
one oscillator by the next, [Burton and Anderson, 1989]. However, such systems

are outside the scope of this text.

2.4.3 Phase Space And Poincaré Sections

The most useful way to depict dynamical systems is by the use of a phase
space. The phase space is a ‘'mathematical space with orthogonal coordinate
directions representing each of the variables needed to specify the instantaneous
state of the system', [Suimey and Geuub, 193%1]. Thus, for the Duffing oscillator,
rather than plotting the time series, i.e. the x—t curve, we may plot the x—x
curve in a two dimensional phase space. In figures 2—36a and 2—36b. The phase
space trajectories are shown for the periodic and chaotic state of the Duffing
oscillator. The trajectories evolve and form a ‘'phase portrait' of the system in

phase space.

The chaotic trajectory of the Duffing oscillator fills up 2— dimensional phase
space. However, if the phase space is increased in dimension to 3, (i.e. x—%x—X
curves), we find that the trajectories do not cross each other, and the phase space
does not fill up. Thus, a three dimensional phase space is sufficient to describe the
properties of the chaotic solution of the oscillator. (This is because the chaotic
solution trajectories actually form an object called an attractor which has a
non— integer value of its dimension, between 2 and 3, this will be discussed in

more detail in later sections.)

One way to simplify phase diagrams is to use a device known as a Poincare
section. It is constructed by sampling the phase trajectories in a ‘'stroboscopic'
fashion. The trajectory is sampled‘ once every cycle of the forcing function.
Figure 2— 37 contains the Poincare sections of the periodic and chaotic solutions to
the Duffing oscillator.

For both the periodic and aperiodic solutions initial conditions far from the
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final solutions will produce trajectories which will, after the transients disappear, be
attracted to a bounded region in phase space. This region is known as an
attractor. For the case of the chaotic flow, where the trajectories never cross, the
resulting ‘'bundle’ of non— crossing trajectories form an object known as a strange

attractor.

2.4.4 Strange Attractors

Two main phenomena are present in strange attractors, (also known as chaotic
attractors), these are Stretching and Folding, as outlined by Roux et al [1983]. The
attractor stretches due to the exponential divergence of the trajectories as they
evolve, however, as the attractor lies in a bounded region of phase space, it also
must exhibit folding. This mechanism of stretching and folding mixes up trajectories
in phase space, making long term future predictions of the system impossible unless
the condition of the system is known exactly at any one point. (Which is not

realistic for real systems.)

If two trajectories are started from states that are arbitrarily close they will
diverge over a period of time, this divergence is exponential. This initial difference
may be thought of as measuring error, i.e. an uncertainty. Thus, as the system
evolves through time the error blows up exponentially and the state of the system
is essentially unknown after a very short period of time. This sensitive dependence
on initial conditions was first elucidated by Lorenz [1963], who used the concept to
show that long term future predictions of non—linear dynamical systems, such as

the weather, was essentially impossible.

In general, for more complex dynamical systems, the phase space representation
may contain many attractors. Which one of these attractors, the final solution
settles down to, depends very much on the initial conditions of the system. Each
attractor is associated with a region which, if it contains the trajectory at one
instant in time, will eventually lead to that trajectory settling on to that attractor.

This region is known as the basin of attraction of the attractor.

In systems with more than one strange attractor, the presence of noise may

cause the solution trajectory to hop between basins of attraction, this phenomena
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together with its associated frequency spectra is discussed by Arrechi [1987].
The reader is also referred to Soliman and Thompson [1991] who make use of

basins of attraction to define dynamic ship stability.

Another important feature of a strange attractor, associated with a dissipative
dynamical system, is that it contracts volumes in phase space. This is because,
even though the attractor exponentially diverges in one orthogonal direction, causing
sensitive dependence on initial conditions, on the whole, the attractor contracts in
phase space. Thus, any volume of initial conditions is eventually stretched into a
thin sheet of ever decreasing volume on the attractor. Thus the volume of a
strange attractor, in a phase space of suitable dimension to fully describe the
dynamical properties of the system, tends to zero. (See also the section on

Lyapunov exponents, section 2.5.6).

Another important property of attractors is their space filling properties. The
solution trajectories which form the strange attractor do not intersect each other,
when embedded in a suitable dimension of phase— space. However, the trajectories
do not fill up space evenly, rather, they fill up space as a fractal. The word

fractal is an abbreviation for ‘fractional dimension’.

To explain what a fractal structure is, it is helpful to look at a simple example
of a fractal, known as the Cantor set, (figure 2— 38a). The Cantor set is formed
by taking the middle third out of the unit line segment, as shown at the top of
the figure. Then the middle third is taken out of the remaining two line segments.
Then the middle third is taken from the remaining four line segments, and so on,
ad infinitum, until we are left with only a set of points, known as the Cantor set
or Cantor dust. This set of points fills the unit interval in a special way, and
although the length of the cantor set is zero, it can be shown that the dimension
of the set is 0.6309..., (see section 2.5.4). The interesting fact is that many

attractors, when sliced through, show a Cantor set like structure.

It may be difficult to grasp the idea of fractional dimensions when one is used
to the usual use_ of the zero, one, two and three— dimensional way of interpreting
the world, (i.e. a point, line, area and volume respectively, as depicted in
figure 2—38b). One way to think of the fractal structure of the Cantor set is to

recognise that the set cannot fit into a point, that is have zero dimension, as it is
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specified over the unit interval. However, it can neither have a dimension of one,
as it obviously has a length which tends to zero on the unit interval. It can be
shown by applying mathematical descriptions of dimension, (see section 2.5.4), that
the set does indeed have a fractional dimension of 0.6309..., i.e. it is a fractal. A
graphical account of fractals is given by Peitgen and Richter [1986]. For a more
comprehensive account of fractals and their role in natural phenomena the reader
is referred to Mandelbrot [1977].

Ruelle [1980] describes strange attractors as ‘relatively abstract mathematical
objects’, however, he goes on to say that computers may aid in their
understanding, by giving them ‘'some life' by drawing pictures of them. The
observation of strange attractors in real systems — hydrodynamic, chemical,
electrical, biological etc., (see for example Swinney [1983]) — has provided the
impetus for the development of non— linear dynamical systems theory. A few of the
more important systems, both mathematical and real, are outlined in the next two

sections.

2.4.5 Examples of Mathematical tems Exhibitin
Chaotic _Motion

As mentioned above, there are many examples of mathematical dynamical
systems which exhibit chaotic motion. An overview of many of these are given by
Holden and Muhamad [1986]. In addition, recent experimental work has also found
that real systems (i.e. systems in nature), can exhibit such motion. In this section,
and the next, a few of the very common systems that have appeared in the

literature are outlined.

1 — The logistic Map: This simple map, given by the difference equation

Xp+q3 = AXp(1 - Xy (2.34)

where A is the control parameter. The map has been shown to produce varied
behaviour for A in the range, 1 < A ¢ 4, see figure 2—39a. For values of the A

less than 3, the system evolves to a stable state, or fixed point. After this limiting

value, the system will oscillate between two values of X, when A is in the range
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3 ¢ A < 3.449. As A increases beyond 3.449, the solution oscillates between four
points, for the range 3.449 < A < 3.544. This process, known as period
doubling, continues as the control parameter, A is increased. The point at which
the solution changes from one period to the next is known as a bifurcation point.
If the first bifurcation occurs at A,, the second at A, and so on then as the

control parameter is increased a universal number, & w is formed:

A 7 Ak
5 = lim - 4.669 (2.35)

kv Apyym Ay

This number is universal for a large class of non—linear systems, [Feigenbaum,
1980], and is known as the Feigenbaum number. Figure 2—39b shows the
bifurcation diagram of the logistic equation, where the resulting values of X, that
the steady state oscillations occur on, is plotted against the control parameter A.
However, the period doubling increases to an infinite period for a finite value of
the control parameter, (A = 3.569944). This finite value of A is known as the

accumulation point, after which the system behaves chaotically.
There is not room in this text to cover the intricacies of such mappings, and
for more information the reader is referred to Infeld and Rowlands

[1982, Chapter 10] and Baker and Gollub [1990, Chapter 4].

2 — The Henon Map: Before moving on to non— linear systems described by

differential equations, it will be useful to briefly look at the Henon mapping, (see
Infeld and Rowlands [1990]), described as follows,

2
xn+1- 1 - a.Xn + b.Yn (2.36a)
Yn+1- Xn (2.36b)

The phase portrait obtained by plotting Y, against X,, is shown in figure 2—40a,
where a = 1.4 and b = 0.3, this is the Henon attractor. The initial values of X

and Y were 0.631 and 0.189 respectively. The strangeness of the attractor is
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revealed by enlarging a region of it, such as the small box in figure 2—40a. The
enlargement is shown in figure 2—40b. Once enlarged we see detail that was not
apparent at the previous level of magnification. Enlarging again, figure 2— 40c,
more detail may be observed. This process may be carried on ad infinitum. This
self similar, fractal nature of the attractor's structure is a common feature of

strange attractors.

3 — The lorenz Equations: In 1967 Lorenz published his now famous paper

entitled 'Deterministic, Nonperiodic Flow', in which he set out the basic underlying
principles of chaotic motion. To do so he numerically integrated a stripped down
version of the equations of motion for the atmosphere, now called the Lorenz

equations. They are defined thus,

X = -0 (X-Y) (2.37a)
Y = -XZ+rX-Y (2.37b)
Z =  XY-bz (2.37¢)

where X is the first time derivative of the displacement X.

The equations may be integrated with a suitable numerical scheme, with the
parameters o = 10.00, r = 28.00 and b = 2.67 giving chaotic motion. The
chaotic time series and resulting attractor is shown in figure 2—41. Since Lorenz's
article, much work has been done on these equations by many researchers. In
addition, many other equations have been devised, (and studied in detail), which
highlight the phenomena of chaotic motion. Some of which are discussed in the

following.
4 — The Rossler Equations: The Rossler equations, (see for instance Holden and

Muhamad [1986]), are again a highly truncated set of equations which in this case

model the quintessential dynamics of a chaotic chemical reaction. They are as
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follows,

X = -Y-2 (2.38a)
Y = X+ aY (2.38b)
Z = b+XZ-cZ (2.45¢)

Chaotic motion in this case can be obtained by setting the parameters a, b and ¢
to 0.20, 0.20 and 5.70 respectively. The strange attractor for these parameters is
shown in figure 2- 42,

S — The Rossler Hyperchaos Equations

Rather more interesting behaviour can be found in the hyperchaos equation of
Rossler [1979],

X = -Y-2 (2.39a)
Y = X+0.25Y+ W (2.39b)
Z = 3.00 + XZ (2.39¢)
W = -0.52+0.05W (2.39d)

The Z— variable serves as a check on the growth of the system, and in effect
Z is 'turned on' (i.e. has a non— zero value) only for certain values of X, Y and
W, as shown in figure 2— 43. This gives the attractor variable properties,
depending on whether the Z— variable is activated or not.
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6 — The Truncated Navier— Stokes Equations

Franceschini and Tebaldi [1979], and Boldrighini and Franceschini [1979],
presented a system of non— linear ordinary differential equations that are a stripped
down version of the Navier— Stokes equations of a two— dimensional incompressible
fluid. The authors claim that the model may exhibit many of the important

features of the equations.

The equations are,

X = -2.X + 4.X.X +4.X.X (2.40a)
1 1 2 3 4 1

X = -9.X + 3.X.X (2.40b)
2 2 1 3

X = =5X%X - 7.X.X + r (2.40¢)
3 3 1 2

X = -5X%X -  X.X (2.40d)
4 4 1 5

X = - X - 3.X.X (2.40e)
S s 1 4

In the above equations, r represents the Reynolds number. As the value of r is
increased the system passes from a fixed point attractor to a periodic attractor,
then, via period doubling bifurcations, to a strange attractor. A strange attractor
first appears at a value of r of approximately 28.7. The strange attractor for the
system, (computed by the author for r = 31), is plotted in figure 2— 44,

In addition to the examples outline above, chaotic behaviour has been found in
a very wide wvariety of systems, from models of Physiological control systems
[Mackey and Glass, 1977] to models of articulated offshore loading platforms, [Choi
and Lou, 1991]. (The chaotic output of the logistic equation has _even been used to
produce music!, [Pressing, 1988].) Thus, we see that a knowledge of this behaviour
is important for the investigator dealing with non— linear dynamical problems, and

their associated phenomena.
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The Rossler, Rossler Hyperchaos and the Lorenz systems were used by the
author to test the Grassberger— Procaccia dimension and Lyapunov algorithms, prior
to them being used in the analysis of the experimental results. (See Section 2.5
and Appendix 2.)

2.4.6 Real ms with Strange Attractor

The literature is now full of examples of chaotic motion found in nature.
These examples cover many areas of research involving dynamical systems, such as
fluid dynamics, chemical kinetics, electrical circuits and biological processes. The
phenomena is truly of a multi— disciplinary nature. A brief account of some of the
main experimental realisations of chaotic motion will be given in the following.

(Those found in fluid dynamics will be dealt with in more detail in section 2.6.)

2.4.6.1 — Fluid Dynamics

Chaotic fluid flow has now been observed in many fluid systems. Of these, two

of the most extensively studied are Rayleigh—Benard convection, and
Taylor— Couette flow.

Rayleigh— Benard convection may be generated by heating from below, a thin
layer of fluid between two horizontal plates. As the temperature gradient across the

o e
flow is increased, various phenomena occur, [Gigh&\ ,1981]. The control parameter

is this fluid situation is the Rayleigh number, Ra, which is defined thus:

3
Ra = [L};‘!;_d_ ]AT (2.41)

where g is gravitational acceleration, o is the coefficient of thermal expansion, d is
the distance between the plates, k is the thermal diffusivity, » is the kinematic

viscosity and AT is the temperature difference between the two plates.

Up to the critical Rayleigh number, Ra..s no motion exists, and the heat is
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transferred solely by conduction through the fluid. Just above Ragrjt convective rolls
appear in the fluid, (figure 2—45a). The critical Rayleigh number has been well
predicted by stability analysis. As the Rayleigh number increases above Ragp,
successive Dbifurcations occur as the fluid progresses to the turbulent, or chaotic,
state. (See Giglio et al [1982] and also Sano and Sawada [1985]). In fact, a wide
variety of behaviour has been found to exist for flows above Ragrjt, some of which

will be outlined in the next section.

The other well documented flow system which exhibits regular and chaotic flow
is the Taylor— Couette system. This system involves the flow of fluid in two
concentric, rotating cylinders which rotate at rates independent of each other,
(figure 2—45b). As the Reynolds number is increased the velocity field proceeds
from a regular to a weakly chaotic state, whereby a strange attractor may be

observed in phase space, [Mullin and Price, 1989)].

The interesting thing about both the Rayleigh— Benard and Taylor— Couette
systems is that they have, in principle, an infinite number of degrees of freedom.
However, it seems likely that, at the onset of chaos, only a few degrees of

freedom are excited, [Swinney, 1983].

Both the systems discussed above are closed fluid systems, however, work has
recently been done on open fluid systems, such as transitional flow in pipes, (see
for example Sreenivasan and Ramsl{ankar [1986] and, Huang and Huang [1989))
and the breakdown of vortex flows produced at an airfoil [Williams— Stuber and
Gharib, 1990]. These flows are more difficult to control precisely, as they tend to
have higher levels of background noise associated with them. This noise may tend
to mask, or alter, the dynamics under investigation, [Swinney and Gollub, 1981].

More will be said on these systems in section 2.6.

2.4.6.2 Other Areas

One system to feature prominently in the literature on experimental non— linear
dynamics is the Belousov— Zhabotinski chemical reaction, [Hudson et al, 1981],
whereby chemical reactants are continuously stirred in a chemical reactor. This

reaction has been found to exhibit both periodic and chaotic behaviour, [Swinney et
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al 1983], depending on the conditions present in the reacting vessel. The general
method of looking at the system is to measure the concentration of one of the
chemicals in the system, (usually the Bromide ion), and plot these against
time. A strange attractor has been found for such flows by Roux et al {1981]. (See
also Ruelle [1981]).) The Belousof— Zhabotinskii strange attractor is shown in
figure 2— 46.

The most prominent example of a biological chaotic flow is that of the
behaviour of electrically stimulated chick heart cells. Guevara et al [1981], forced
specially prepared aggregates of chick heart cells with pulses of electrical current.
Regular and irregular dynamics were exhibited by the system and a bifurcation
chart, similar in many ways to that of the logistic equation, was produced. This
work is especially important, as many researchers believe that certain types of heart
fibrillation may be a chaotic response of the dynamics of the heart itself, [Glass et
al, 1986]. Conrad [1986] gives an overview of the role of chaotic dynamics in
many biological settings. ’

Chaotic responses have also been found in many electrical circuits, [Tomita,
1986], from simple circuits containing only a resistor, inductor and diode, [Smith,
1992], to systems which involve the parallel pumping of ferromagnets, [Waldner et
al, 1985s].

In this section only a few brief examples have been given of the experimental
verification of chaotic flows, and other phenomena associated with non— linear
dynamical systems. Many more areas have not been touched upon, such as the
chaotic output of lasers, or the role of chaos in statistical and quantum mechanics,
[BaRer and Golub, 1990, pp133—144]. However, it is hoped that this section has

served to make the reader aware of the universal nature of this type of behaviour.

24.7 Mathematical Routes to Turbulence

~The work done on non—linear dynamical systems has shown that relatively
simple systems may, as the control parameter is increased, evolve from a steady
state via some route, to a chaotic (or turbulent) state. Much theoretical interest has

been centred on the routes taken by such systems, and whether these routes may
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be realised in the experimental situation.

There are currently four mathematical descriptions of the route taken from
laminar flow through transition to fully developed turbulence, [Miles, 1983]. All of
them begin with a Hopf bifurcation. A Hopf bifurcation occurs when a steady state
bifurcates into a periodic solution, which generates a limit cycle in phase space, as

shown in figure 2—47.
The four main theoretical routes to turbulence are as follows:

1 — Landau Model: Landau [1944] was the first to suggest a mathematical route to
turbulence, whereby, as the control parameter, the Reynolds number, Re, is
increased above a critical value, Recr¢ In this scenario, incommensurate
frequencies would appear via a succession of Hopf bifurcations, as the control
parameter was increased above the critical value. This would result in a
quasi— periodic motion of increasing complexity. The final fully developed

turbulence according to Landau is a quasi— periodic motion of great complexity.

2 — Feigenbaum Period Doubling Scenario: This consisted of a Hopf bifurcation of
the initial stable state and then successive period doublings of the initial disturbance
until an accumulation point is reached at a finite value of the control parameter.
This scenario has already been outlined for the case of the logistic map in section
2.4.5.

3 ~ Reulle— Takens Route to Turbulence: Reulle and Takens have conjectured that
a strange attractor will appear at the third bifurcation of the Landau sequence.

4 — Intermittent Scenario of Manneville and Pomeau: In this case the solution of

the system alternates between a singly periodic limit cycle and a strange attractor.
The Landau model is now not regarded as a realistic route to turbulence as it
has not been observed in any experiment to date. For a more complete description

of the routes to turbulence see Miles [1983].

The initial stages of the period doubling route to turbulence, (route 2), has
been observed in Taylor— Couette and Rayleigh— Benard flow, as well as the
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Belousof— Zhabotinskii reaction and other systems. Routes 2, 3 and 4 have all been
observed by Gollub and Benson [19%0] in the Rayleigh—Benard system.
Furthermore, they also found another route to turbulent flow, involving
quasi— periodic locking at incommensurate frequencies. They concluded that the
route taken by the system depends on the aspect ratio of the apparatus that they

used.

Arneodo et al [1983] have observed another route followed by the
Rayleigh— Benard system, which is a variation of the period doubling route. This
alternative route, and others, have been observed in numerical simulations of such
flows by Kida et al [1989]. These simulations have the advantage of being much
more flexible, for instance the viscosity parameter is easily varied and its effect
monitored, whereas, in the experimental situation this may be more difficult to do.
Kida et al found that as the viscosity was reduced more complex patterns appeared

in the flow.

Other deviations from the theoretical routes to chaos, (as described above),
have been found in the pumping of ferromagnets by Waldner et al [1985] and also
by Kaolin et al [1981] in an annular, free— surface fluid system, known as the
Faraday experiment. The results of Kaolin et al are particularly interesting because
instead of obtaining the wusual period doubling subharmonic sequence of
1,2,4,8,16,32..., they observed sequences of 1,2,4,12,14,16... and 1,2,3,4,6,12....
These anomalous results serve to remind us that perhaps a full theoretical picture
has not been yet been formulated.

Kaolin et al also observed hysteresis in some of their results. That is, the
routes followed by the system, as the control parameter was increased then
reduced, were not identical. On reduction of the control parameter, jumps
appeared in the sequence. The phenomena of hysteresis has also been found by
Mercader et al [1990] modelling the route to chaos of a mathematical model of
the Rayleigh— Benard system, providing another link between experiment and
theory.
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248 1lin n— lin Dynami

Before concluding this section, it is appropriate to mention two cases where
real non— linear dynamical systems have been found to produce non— linear
phenomena, including chaotic motion, and have been successfully modelled

numerically to produce qualitatively similar effects.

The Dripping Faucet

Robert Shaw [1984] investigated the behaviour of the dripping tap (faucet) with
varying flow rate. At low flow rates, the drips initially fell with a regular period.
As the flow rate was increased, period doubling ensued, which led finally to a
chaotic falling of the drops. The drips were detected by interrupting the light beam
that intersected with a photodetector, which in turn relays the signal to a computer
for data acquisition and analysis. Shaw decided to use a 'naive’ model to simulate
the experiment, whereby the dripping tap was simulated as a non-— linear oscillator,
(see Shaw [1984]). Without going into great detail, similar behaviour was obtained
between both the real system and the naive model, as is shown in the phase space
portraits of figure 2— 48.

Fluid Elastic Vibrations of a Flexible Pipe

The fluid elastic vibration dynamics of a flexible cantilevered pipe conveying
fluid were investigated, both theoretically and experimentally, by Paidoussis and
Moon [1988], figure 2—49. Once the pipe lost stability, bifurcations were observed
leading to a chaotic response in both the experimental and analytical models. As
with the dripping faucet model, remarkable qualitative agreement was found
between the experimental and theoretical results, despite the great simplicity of the
theoretical model.
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2.5 T TESTIN - AR DYNAMICAL TEM

2.5.1 Characterisation of Attractors

Many properties can be found for chaotic flows using various techniques, the
problem is to find one which can differentiate between purely random (or noisy)
flows and those which are chaotic. Fourier transforms, the autocorrelation function
and Poincare maps will give a general indication of the change from the periodic
to nonperiodic state, [Schuster, 1984], but these methods are unable to distinguish
between chaotic and random flows. (That is between the seemingly unpredictable
properties of chaotic flow and the actual unpredictable properties of noisy flow.)

Thus, other types of measure or characterisation are required.

The dimension, the spectrum of Lyapunov exponents and the Kolmogorov
entropy are all measures giving an indication of how chaotic a flow is, and they

can, in theory, distinguish between chaotic and random flows.

Before using a sophisticated technique to analyse a time series, one should first
visually inspect the series to see if any apparent features are present. Visual
inspection of a velocity time trace from a fluid -flow can distinguish whether a flow
is laminar or turbulent, (see sections 2.2.2 and 2.2.3). Other types of simple
motion may be identified from the velocity— time trace, such as periodic motion,
and also a qualitative feel may be obtained of the complexity of the flow.

2.5.2 The Fast Fourier Transform
The fast Fourier transform (F.F.T.) is a numerical algorithm by which the
discrete Fourier transform of a signal may be calculated with exceptional speed,

[Cooley et al, 1969]. The discrete Fourier transform, (D.F.T.), F(xj), of a variable
xj, (j=1,2,3,4,....N) is defined thus:

. o(-1(2.7.k.J/N))

~

e
Case
1
o
Cee

F(x,) = —— (2.42)
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here, 1 is the imaginary number (— 1)‘.‘.

The F.F.T. algorithm enables the number of calculations required to compute
the Fourier transform of a set of N data points to be reduced by a factor of
log,(N)/N, which is significant for large N, [Newland, 1975]. The algorithm
requires that the number of points in the signal is a power of 2, e.g. o'4
(=16384), which is the number of points typically sampled in the experimental

investigation outlined in this thesis.

From the resulting F.F.T. plot of a time signal, periodic, multiply periodic,
quasi— periodic and ‘turbulent' signals may be differentiated, [Berge, Pomeau and
Vidal, 1984, ppi11—123]. However, from the F.F.T. itself ‘turbulent' flow cannot
be differentiated into either a random or chaotic phenomena, as both give broad

band frequency spectra, see figure 2— S50a and b.

Typical power spectra for flows en route to a chaotic signal, via period
doubling, are outlined by Crutchfield et al [1980], whereby the period doubled
peaks broaden as the chaotic signal is approached. Huberman and Zisook [1981] go
on to describe this spectral broadening in detail. The peaks in the power spectrum
broaden at their base as the chaotic state is approached, as depicted in
figure 2—51. These broadened bases .of the peaks are referred to as skirts by
Farmer [1981]. The power spectrum of the chaotic state consists of instrumentally

narrow peaks surrounded by a broad band noise background.

2.5.3 Experimental Attractor Construction

Before we can estimate the dimension, Lyapunov exponent or other properties
to test for the presence of a chaotic flow, we must first construct an attractor.
This can be done for a single experimental time series by the method of time
delays, devised by Ruelle [Ruelle, 1989, pp28—32]. (See also Roux et al [1980],
who used the method to construct the attractor for the Belousof— Zhabotinskii
chemical reaction.) Such an experimental time series is depicted in figure 2— 52a

and consists of N sampled points, separated by a time interval, dt.

In the method, the ordinates of the attractor, X, are constructed for
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n— dimensional space from the original time series, x;, (i = 1,2,3.....N), as

follows,

X = {xl v Xik oo XEQE ceeeeeeen Xj+ (n— 1)2} (2.43)

where X is the n—dimensional attractor vector produced from the discretely
sampled time series, xj, and § is the delay. The time delay between reconstruction

variables is thus T = £.dt. The resulting attractor is shown in figure 2— 52b.

The choice of § is non—trivial as we want the dynamical properties of the
reconstructed attractor to resemble those of the actual attractor of the system under

observation. Three common methods for the choice of ¢ will now be outlined.

Method 1 — For low dimensional attractors occurring in a system with periodic
forcing, it is recommended, [Guckenheimer, 1986], that the most favourable value
of '§' is one quarter of the forcing period. (This has been demonstrated by the
author when constructing an attractor for a journal bearing model in a chaotic
mode, see Appendix 5.) This is a quick and easy method for such systems,
however, many fluid systems do not posses such a forcing function and so another
method to calculate the time delay is required.

Method 2 — The autocorrelation function, Cg, is a frequently used method for
finding a suitable time delay for attractor construction. Redefining the
autocorrelation function, (section 2.2.3.2) for any fluctuating component, xi', of a

variable x;, where,

X = % - X (2.44)

the superscripted bar above the variable denotes the time averaged value. The

correlation integral, for a discretely sampled time series, is then,
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' . x' )
c - Cxg ) .0 xq4¢ (2.45)

[ % 1

It is recommended, [Huang and Huang, 1989], that the time delay for the attractor
construction, §, should be taken as the value which first gives C¢z = 0.5.

Method 3 — The minimum mutual information criterion is another method by
which to determine a suitable time delay 'y*'. It is argued, [Fraser and Swinney,
1986 and Fraser, 1989], that, whereas the autocorrelation function measures a
linear dependence of two variables, the minimum mutual information measures the

general dependence of two variables.
The minimum mutual information of two variables x and y is defined as,

o Px,y(l-.l) ]

l(xoy) - } Px.y(i'J) 108 Px(ls Psz)
1,j -1

(2.46)

where Py(i) is the probability of a variable x(i) occurring, and Py y(j j) is the joint
probability of occurrence of variables x(i) and y(j). A suitable choice of time delay
requires I to be a minimum, when this is the case the attractor is as 'spread out'

as possible, see figure 2— 53.

When considering time delays we let x = x¢, and y = X¢4+¢. An obvious
result is that when I(xj,Xxj4+ ¢) is a minimum, this implies that I(xj4 z,Xj+2¢) is 2
minimum also, and so on. The value of the delay, §, to use in the attractor
construction is that which gives the first minimum in mutual information,

I(x;, x4 e)

Roux et al [1983] have actually used delays, £, obtained by visually inspecting
phase portrait plots of the reconstructed attractors at various values of §. The
value of time delay they subsequently chose to use, was the one that produced an

attractor which appeared to be most spread out. However, the minimum mutual

68



information in effect does this numerically. Therefore, it is this method which the
author recommends for time series which do not posses an obvious periodic
fluctuation, and it is this method that was used for all attractor construction in the

experimental investigation reported within this thesis in subsequent chapters.

2.5.4 The Dimension of an Attracting Set

Once a strange attractor has been obtained from an experimental time series
the next step is to characterise it. Of all the properties used to characterise strange
attractors in chaotic flows, the two most commonly used are the dimension and the
Lyapunov exponents of the system. Both these methods will be outlined in the
following sections. First we will deal with the dimension as a means by which to

characterise a dynamical system,

The dimension of an attracting set has been described by Farmer et al [1983)
as ‘the most basic property of an attractor', however, many definitions of
dimension exist. The dimension is basically a measure of the scaling properties
(fractalness) of a structure. The simplest and most easily understood definition is

the Capacity (or Kolmogorov) dimension 'Dg’, which is defined as :

1032 N(e)
Do = - lim (2.47)
€->0 log: (e)

where N(e€) is the number of n— dimensional boxes of side 'e' required to cover
the attractor.

Another frequently cited dimension is the information dimension ‘'Dj'. This
measure seeks to account for the differences in distribution density of the points

covering the attractor as follows,

I1(e)
Dj - - lim ——— (2.48)
>0 logz(c)
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N(e€)
where I1(e) = - } Py log2 Py (2.49)
i=1

I(¢) is known as Shannon's formula, [Shannon and Weaver, 1949]. A more
informative guide to the concepts of Information Theory and its role in statistical

mechanics can be found in the literature, see for example Renyi [1970].

It is easily seen that, for an attractor with an even distribution of points,
D, = Dj. However the calculation of either of these two interpretations of

dimension require a prohibitive amount of computing time.

The most widely used description of dimension used for experimental
investigation is based on the correlation dimension, as defined by Grassberger and
Procaccia [1983a and 1983c], and is denoted by Dgp~ The reason for its popularity
is its relative computational speed when implemented as an algorithm for dimension

estimation.

To define Dgp we firstly need to define the correlation integral,

N
- — 2 o (r- IX;-Xjl ) (2.50)
N 1, §=1
1%]

where © is the Heaviside function. r is the radius of an n— dimensional
hyper— sphere, centred on each of the points defining the attractor trajectory,

(figure 2— 54a). The correlation integral scales with the radius 'r' as,
c, ~ rPgp (2.51)

hence, Dgp can be found from the slope of the ‘'log(C;) — log(r)' plot,
(figure 2— 54b).
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Dgp forms a lower bound to the capacity dimension and asymptotically
approaches the value of D¢ as the attracting set becomes more uniformly

distributed in phase— space. In general,

D < Dgp < Dg. (2.52)

It is appropriate to mention here that there are many other definitions of
dimension such as the Hausdorff, Lyapunov and generalised Renyi dimensions to
name but a few, see for example Farmer [1982], Farmer et al [1983], Froehling et
al [1981] and Grassberger{1983].

There is still much that needs to be done on the dimension as a
characterisation of chaotic flows, [Mayer— Kress, 1987). Farmer [1982a) states that
many questions remain to be answered, such as — 'How quickly does the
dimension of a chaotic attractor change as the control parameter, (e.g. the
Reynolds number), of a system is varied?', 'How steady is this change?’, and, ‘Are
the attractors of an infinite— dimensional dynamical system qualitatively similar to
those of low dimensional systems?'. (A point which is extremely valid for the
endorsement of the use of such methods in real fluid systems, which possess in
theory an infinite number of degrees of freedom.) Subsequent investigations by
Farmer of an approximated infinite dimensional system, [Mackey and Glass, 1977,
led him to conclude that the transition to ‘turbulent’ behaviour begins with a
chaotic attractor, followed by attractors of increasingly higher dimension appearing

as the control parameter is increased.

According to Whitneys embedding theorem, (see Gershenfeld [1992]), it can be
guaranteed that an n—dimensional attractor may be embedded in a
(2n+ 1)— dimensional embedding space, (phase space). However, this is a maximum,
and in general an n—dimensional space, (or next nearest integer value of phase
space), should be sufficient. Gershenfeld has also shown that, under certain
circumstances it is possible to reliably measure the correlation dimension of

attractors with dimension greater than 10.
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2.5.5 h r rger— Pr ia Dimension Estima
and its Implementation,

When using the Grassberger— Procaccia technique to estimate the dimension of
an attractor, the investigator must be aware of scale, and other, effects and how
they relate to the results obtained. There are four main regions of behaviour of an
attractor [Smith, 1988], these are outlined in the next section, beginning with the
smallest length scales.

2.5.5.1 Regions of Behaviour on the Attractor

1 — At very small length scales the Grassberger— Procaccia dimension algorithm
tends to a dimension estimate of zero. This occurs when the algorithm is testing
the attractor at scales too small to pick up other points on the attractor, i.e. when
the radius of the n—dimensional hypersphere used in the Grassberger— Procaccia
algorithm is less than the inter— point distances on the attractor trajectories. See
figure 2— 55a.

2 — The next region depends very much on whether one is considering an
experimental, and hence noisy, attractor, or if the attractor is a mathematical

construction, (noise free), such as the Lorenz attractor or Rossler attractor.

If the attractor is noisy, then for length scales of the order of the characteristic
noise level, (see figure 2— 55b), Dgp will scale with the noise, (assuming white
noise, see Section 2.5.5.2). That is, it will increase with, and should be

approximately equal to, the value of the embedding dimension, [Ben— Mizrachi et
al, 1984].

However, if the attractor is noise free and the length scales being probed are
of the order of the distance between consecutive points on the trajectory, then for
limited data sets the algorithm will only detect points immediately nearby on the
trajectory. This region of the attractor will show up as essentially 'linear’, and the

value of Dgp will tend to one, see figure 2— 55c.

3 — Once the hyper— sphere radius overcomes the effects of small length scales
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of regions 1 and 2, values of Dgp will approach those of the actual fractal
dimension D,, assuming that a suitable time delay has been chosen.

(Figure 2— 55d).

4 — Once the length scales of the sphere are of the order of the attractor
radius, edge effects become dominant, where large parts of the hyper—sphere are
outside of the attractor and hence empty, thus reducing the value of Dgpv
(figure 2.55e¢). As the radius becomes very large, the attractor tends to a point
within the sphere and Dgp tends, once again, to zero. Edge effects are discussed
by Smith [1988] and a modification to the Grassberger— Procaccia dimension
algorithm is proposed by Dvorak and Klaschka [1990] based on Smith's results.
Whereby, they plot log(C,) against log(r(2—r)) instead of the usual 'log(C,)— log(r)’
plot, and suggest that the slope of this line gives the correct estimate of the
dimension. However, as far as the author can see, this method is only applicable
in the ideal case of an evenly distributed attractor in an n— dimensional

hypersphere of unit radius.

2.5.5.2 Attractors and Noise

Noise, as already mentioned, can have a detrimental effect on the value of the
apparent dimension of the attracting set, and in some cases may be severe enough
to render the estimation of dimension impossible. A novel method of reducing
noise in the reconstructed attractor has been proposed in a paper by Kostelich and
Yorke [1990], where they approximate the average dynamics of various regio‘ns of
the attractor. They do this by a method known as Eckman-— Ruelle linearization.
These average approximations to the dynamics are then used to reduce the noise in

individual trajectories as they pass through each region of the attractor.

A signal composed of purely white, (or Gaussian), noise will scale with the
value of the embedding dimension due to its phase— space filling behaviour.
However, stochastic systems with power—law frequency spectra have been shown,
[Higuchi, 1990, and, Osborne and Provenzale, 1989], to give finite correlation
dimensions. In this case, a finite value of Dgp will not necessarily indicate that the
dynamics of the system can be described by a few degrees of freedom. In such

cases, care must, therefore, be taken in the interpretation of dimension calculations
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in such cases. It is therefore recommended that the dimension estimate is
interpreted in conjunction with other analysis techniques, such as the frequency

spectrum, autocorrelation function and the Lyapunov exponent spectrum.

2.5.5.3 OQther Factors Affecting the Estimation
of Attractor Dimension

The lacunarity of the set has a bearing on the estimation of the dimension. If
the set has a high degree of lacunarity then the value of Dgp will fluctuate

markedly as various parts of the attractor are visited.

Sparse or limited data sets tend to produce errors in the calculations, which
increase as the embedding dimension is increased. According to Smith [1988] the
number of points required to estimate the correlation exponent of a nonlacunar set

to within 5% of its true value increases at least as fast as

N > 42 (2.53)

where 'M' is the greatest integer less than the actual dimension of the set.

However, results have been presented by Abraham et al [1986] which indicate
that acceptable results can be derived with data sets much smaller than those
required by the above condition. For example, they obtained - dimension
results for an attractor with a dimension just over 2 from a time series containing

3000 points. They claim that adequate dimension results may be obtained
for time series segments containing only 500 points. These results suggest that
chaotic attractors may be characterised by their dimension, using small data sets,
which do not then strain the data acquisition apparatus, nor the computer resources
for analysis.

2.5.6 The Lyapunov Exponent

We have seen in the previous section how the fractal dimension may be used
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to categorise chaotic attractors. Another measure commonly used to quantify such
motion is the Lyapunov exponent, [Wolf, 1986]. In section 2.6.3, it was shown that
one of the properties of a chaotic signal is the rapid divergence of close points on
the attractor. It is this stretching process, together with the folding at large scales
on the attractor, which causes the rapid decorrelation of the signal and apparently

random time series.

2.5.6.1 The Lyapunov Exponent as a Dynamical Measure

The Lyapunov exponent, denoted L, is a measure of the divergence of
extremely close poinis on the attractor. Referring to figure 2— 356, €, is the
separation of two close points on the attractor at time zero. After a time, t, the
separation of the points has evolved to €4 Assuming this divergence to be

exponential in time, we may write

€, = €. e (2.54)

€
L - %.m [——‘- ] (2.55)
However, it is usual to redefine L as
1 €
L = -t—.logz [ ] (2.56)

which is a measure of the information loss of the system in bits per second.

Chaotic flows have Lyapunov exponents which are finite, positive real numbers.
On the ‘other hand, a random flow, where no correlation exists between one point
on the trajectory and the next, has an infinite Lyapunov exponent. Stable flows

have negative Lyapunov exponents. Thus, the Lyapunov exponent is a measure of
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whether a flow is chaotic or not. If we calculate the Lyapunov exponent for
orthogonal directions of maximum divergence in phase space, we obtain a set of
Lyapunov exponents, (L,, L,, L,........L), where n is the embedding dimension
of phase space. This set of Lyapunov exponents is known as the Lyapunov

spectrum, [Sano and Sawada, 1985].

The Lyapunov spectrum is normally ordered from the largest positive exponent
down to the largest negative one. One of the exponents in the spectrum is
normally zero and corresponds to the direction in phase space aligned with the
trajectory, which neither expands nor contracts. Often it is enough to denote the
Lyapunov spectrum symbolically in terms of negative or positive exponents. Thus
(+,+,0,—) would denote a system with two positive, one zero and one negative
exponent. Lyapunov spectrums with as many as twenty positive exponents have
been found by Farmer [1982] for a high dimensional system of equations. In
practice, however, it is sufficient to check whether L, is positive, if it is, then this
signifies that the flow is chaotic.

The behaviour of the Lyapunov spectrum as a system becomes chaotic via a
period doubling route is outlined by Huberman and Rudnick [1980]. Lyapunov
exponents and dimension estimates are given for a model of Rayleigh— Benard
convection by Velarde and Antoranz [1981]. In their article they show the dramatic
change from negative to positive of the principle Lyapunov exponent as the system

evolves from a steady state to a chaotic attractor.
2.5.6.2 The Kaplan— Yorke Conjecture

It is conjectured, [Kaplan and Yorke, 1979], that the spectrum of Lyapunov
exponents may be used to find an estimate of the fractal dimension of an
attractor, denoted Dgy. This is done as follows,

Do = 4+ (2.57a)
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J J+
Z L, > 0 and Z L, < O (2.57b)
f=1 ! f=1 i

This conjecture has been shown to produce quite accurate estimates of dimension
for many mathematical dynamical systems by Wolf et al [1985], and also by Russel
et al [1980]. It therefore remains a tool for the analysis of chaotic phenomena.
The author notes that it has not yet been used in the analysis of the experimental
results, probably due to the difficulty of accurately calculating all the Lyapunov

exponents from an experimental time series.

2.5.7 Alternative Methods of Analysis

The experimental study presented in this thesis has concentrated on six main
areas to characterise the fluid flows under investigation. These are the frequency
spectra, autocorrelation function, minimum mutual information criterion, dimension
estimate and the Lyapunov exponent of the time series. In addition, return maps
and probability histograms have been used to elucidate time series and attractor
behaviour. However, other methods do exist for the analysis of time series, some

of which will be outlined in this section.

The Kolmogorov entropy, K, is another measure of chaotic signals. It may be

seen that,
J

K < L L (2.58)
{1y

where } is the index of the smallest positive Lyapunov exponent. In general, the
equality holds, in which case the Kolmogorov entropy is equal to the sum of the
positive Lyapunov exponents. Grassberger and Procaccia [1983] provide a method by
which an estimate of the Kolmogorov entropy may be obtained as a by— product of

the correlation plot required for their dimension algorithm. (That is the
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'log(C;)— log(r)' plot used to obtain the Grassberger— Procaccia dimension estimate,
section 2.5.4). This estimate is known as K, entropy. Due to the difficulties of
implementation, this measure was not used in the experimental study presented

herein.

Recently, there has been much in the literature about a new method of probing
fractal structures, known as the wavelet transform, [Arneodo et al, 1988]. The
method, which has been described as a mathematical microscope by Argoul et al
[1989], works by applying a variable transformation to the fractal object under
investigation. The method has been applied to elucidate --many fractal objects.
These include, the fractal nature of turbulent flow time series, [Argoul et al,
1989], the spatial structure of turbulent jets, [Everson et al, 1990] and many other
types of turbulence and Brownian motion [Everson and Sirovich [1989], even speech
and sound signals, [Grossmann et al, 1987, and, Kronland— Martinet, 1988]. The
reader requiring more information on the subject of wavelet transforms is referred

to the above references.

The author briefly looked at the wavelet transform method with a view to
employing it as a tool in the experimental investigation. However, after some
preliminary tests, it was decided that the method, which is still very much in its
infancy, would not reveal much in the way of useful additional information. Thus,

the method was not employed herein.

Many other methods have been introduced to analyse the features of complex
non— linear flows, such as the conditional probability distribution function gf
Packard : - [1980], or using bispectral analysis [Elgar et al, 1982].
However, all the methods presented in this section are outside the scope of the

work presented here.

2.6 NON-—-LINEAR DYNAMICS AND FLUIDS

2.6.1 Introduction

Fluid flows are non— linear dynamical systems governed by the Navier— Stokes

equations. Recent interest has centred on the application of techniques from the
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field of non— linear dynamics to the problem of fluid turbulence. This interest has
ranged from closed flow systems (i.e. Rayleigh— Benard and Taylor— Couette) to
open flows such as vortex shedding systems, pipe transition, ocean surface waves

and so on.

2.6.2 The Fractal Nature of Fluids

Brands'txJ{er et al [1983] have investigated the Taylor— Couette system using
Lyapunov exponent and dimension estimates to characterise the flow. They found
that both increased with increasing Reynolds numbers above that required to give
chaotic flow, R.pao- This showed that, although the fluid could contain a relatively
large number of degrees of freedom, only a few relevant degrees of freedom were
excited, certainly less than five in their case, this for a Reynolds number 30%
above Rghao. Figure 2—57 shows their findings for dimension versus the Reynolds
number normalised to the critical value at the onset of time dependency, Regrit

(Note, not Recphao.)

Dimension estimates have been used by Guckenheimer and Buzyna [1983] to
elucidate the turbulent transition process of a rotated, differentially heated annulus
of fluid. This being a laboratory model for the large scale, mid— latitude circulation
of the earths atmosphere. They found that the dimension increased from
approximately 1.6 to 11 as the rotation rate increased and the fluid became fully

turbulent.

Elgar and Mayer— Kress [1989] have estimated the dimension of ocean surface
waves. They concluded from their investigation that even though the geometrical
shape of these waves may be expressed as a fractal object with a dimension
between 2 and 3, the attractor generating the time series behaviour of the waves is
greater than 20. That is to say, the waves are not generated by a low dimensional

attractor.

Aref et al [1989] have analysed the fractal structure of turbulent jets. They
have found that the dimension of the jet boundary increases as the jet evolves,
and the laminar— turbulent interface breaks down. Figure 2—58a shows cross

sections of the jet at various evolution times, and figure 2— 58b plots the fractal
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dimension of the boundary versus the evolution time.

The fractal structure strange attractors, generated using time series obtained
from real fluid systems, has been very much under investigation in recent years.
However, many natural objects may be described as fractals. The branching of
trees [Grey and Kjems] to the surfaces of clouds [Voss, 1989] may be described in
such terms. Recently Sreenivasan [1991] has pointed out that time traces of highly
turbulent flows have self— similar scaling properties. In fact, such traces belong to a
special subset of fractal objects known as self affine fractals. Self affine fractals are
self- similar under a scaling which varies for each of the variables used to
construct the object, [Voss, 1989]. Sreenivasan describes a loose definition of a
fractal object as one 'whose parts relate to the whole in some way'. He goes on

to describe turbulence itself as a fractal object, i.e. it has self similar properties.

Goldburg et al [1989] have found experimental evidence to suggest that the
energy containing eddies in a turbulent flow occupy a fractal region, whose
dimension increases with the Reynolds number as it exceeds a threshold value. A
simple model by Bak and Chen [1989] has been used to shov) how a uniform input
of spatial energy may be dissipated on a fr.actal structure., This highly simplistic
model, known as the forest fire model, gives an important insight into how it
could be possible for energy to be dissipated on a fractal object in fully turbulent
flows, [ Bak and Chen, 1990].

Thus, we see that the concept of fractals is having an ever increasing role in

the understanding of fluid dynamic phenomena, especially that of turbulence.

2.6.3 Chaotic Behaviour of Vortex Systems

Recent interest in vortex flows has centred on interpreting them as non-— linear

systems. Theoretical and experimental work has been done within this context.

Numerical studies on the interaction of three inviscid point vortices above a flat
wall by Conlisk et al [1989] has shown that both regular, (periodic), and chaotic
motion of the vortices may occur. The type of motion depending upon the initial

conditions of the system. The chaotic motion in this case was detected when the
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largest Lyapunov Exponent became ‘markedly' positive. Novikov [1991] shows that
it is sufficient for certain geometries of flow body configurations to have only one

vortex to obtain chaotic motion.

Experimental work by Tabeling et al [1990] has demonstrated that a
closed— system, linear array of co—rotating vortices behaves as a chain of
non— linearly coupled oscillators. These vortices were generated in an electrolytic
solution by electromagnetic forces. At large values of the driving current, chaotic
motion was observed. The physical origin of the oscillations caused by the
co— rotating vortices is attributed to the shear instabilities which develop in the

region of high shearing of the fluid between each vortex.

In closed system flows, each particle of fluid remains in the system indefinitely
and retains a history of its location in the system over all cycles of motion,
examples of such include Taylor— Couette flow between rotating cylinders,
Rayleigh— Benard convection in heated fluids and cavity driven flows. Open system
flows, on the other hand, have a constant replenishment of fluid to the system and
are more likely to be met in reality, such flows include pipe flows, channel flows
and wake flows. In general, closed system flows contain significantly less

background noise than open systems.

Williams Stuber and Gharib [1990] reported on a forced open—system flow,
that of a forced wake of an airfoil, as shown in figure 2.59a, (see also Gharib and
Williams— Stuber [1989]). They perturbed the wake of an airfoil at various forcing
frequencies and found behaviour characteristic of non—linear systems, such as
quasi— periodic beating, frequency locking and chaotic motion. In their analysis they
used power spectra, Poincare sections and Lyapunov exponents. They found chaotic
responses caused by the interaction of three incommensurate frequencies in the
wake system. The phase space reconstruction for the natural wake, locked wake
and the chaotic wake are given in figure 2—59b. It is evident that the locked case
appears much less noisy than the natural wake, this is due to random noise being

suppressed by the forcing frequency.
William— Stuber and - Gharib calculated the Lyapunov exponents across the flow.

They found high values of Lyapunov exponent for the chaotic case. The locked

and quasi— periodic cases displayed much lower values of Lyapunov exponent, as
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shown in figure 2—60, (about one third of the chaotic case values). The authors
note that the locked and quasi— periodic exponents are much larger than the near
zero values expected. They suggest that the velocity dependent Lyapunovs of
Diessler and Kaneko [1987] may be better. However, this system requires the
Lyapunov exponents to be measured in a moving frame of reference, which is not

practicable in real experimental situations.

Ordered and chaotic shedding of vortices from a cylinder have been observed
by Elgar et al [1989]. Ordered vortex shedding was characterised by a power
spectrum dominated by a narrow primary peak together with subharmonics,
(figure 2—61a). On the other hand, chaotic vortex shedding was associated with
relatively broad peaks near the shedding frequency and at very low frequencies,
(figure 2— 61b). Rockwell et al [1991] have observed period doubling of the spatial
structure of vortices shed from a three dimensional cylinder. In this case, the
vortex shed repeated its form every cycle, every second cycle and then every

fourth cycle as the control parameter was turned up.

2.6.4 Pipe Flows at Transition

Huang and Huang [1989] have investigated the laminar— turbulent transitional
flow in pipes using techniques to estimate the dimension and K, entropy and also
plot the resulting frequency spectra. They found that for flows above Re..jt the
dimension increases with the Reynolds number, (figure 2— 62a). Compare this with
the intermittency factor plot of figure 2—62b. Note that for low values of
(Re— Regrit)/Recrit the dimension is one. This reflects the periodic behaviour of the
turbulent puffs which occur at flows just above Regri.

Huang and Huang also found evidence, (using frequency spectra plots), of a
period doubling route to full turbulence, taken by the puffs, as the Reynolds
number was increased above Re.rit. They also calculated the K, entropy of the
flow, for a dimension of 3.8. Figure 2—62c shows the calculated value of K, as
the embedding dimension, n, is increased. From the figure, it can be seen that the
K, entropy is levelling off to a finite positive value, which indicates that the

attractor has divergence properties, and the flow is indeed chaotic.
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The intermittent transition to turbulence in pipe flow has also been investigated,
in the context of the intermittent route to chaotic flow of a dynamical system, by
Sreenivasan and Ramsl{ankar [1986]). They found a Grassberger— Procaccia dimension
as high as 18 for the flow in the turbulent patches of the intermittent regime.
This dimension calculation was performed with only 3000 points, far fewer than
perhaps necessary. However, the authors state that this value was quite stable and

at least underlines the fact that the dimension is not small.

Sreenivasan and Ramsh%nkar go on to note that, as pipe flow is believed to be

A
stable for all Reynolds numbers, noise is required to initiate transition. It is not
clear to what extent the transition phenomena reflects the statistical properties of

the noise.

The transition region of fluid flow in a pipe flow is obvious by the discrete
patches of distinctly laminar and distinctly turbulent flow, separated by quite clearly
defined interfaces. It has been proposed by Pomeau [1986] that these transition
interfaces between laminar and turbulent flows may be modelled as sets of coupled
oscillators, jumping from regular to intermittent behaviour, as they are excited by

their neighbours.
27 UMMARY

In this chapter the basic concepts of fluid flow in a pipe have been set out.
Laminar flows, turbulent flows and transition flows have been outlined from a
traditional fluid dynamic viewpoint. This has included the role of stability theories
to predict transition, the use of experimentally derived empirical formulae used to
obtain the energy losses in pipes, (and at orifice plates), and also a brief
description of turbulence phenomena. In addition, the phenomena of vortex flows

and orifice flows have been dealt with.

In the latter sections of this chapter, the emergent analytical techniques from
the field of non— linear dynamics have been examined in detail. The role of such
techniques in fluid dynamics, as a possible way forward in the elucidation of

transitional and turbulent flows, has been outlined. Recent mathematical and
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experimental results in this area suggest that simple dynamical systems may produce
complex, irregular behaviour and conversely that complex flows may, at heart, be
controlled by rather simple dynamics. Methods to characterise such systems have
been described, and these methods will subsequently be used in the investigation
reported in this thesis.

It is hoped that the literature review presented above has served two purposes.
Firstly, to give a brief, but wide ranging description of the subject area being dealt
with in the thesis. Secondly, to explain some of the analysis techniques used
subsequently to investigate the properties of the breakdown of a forced vortex flow
at an orifice at a pipe, the subject of this thesis.
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Figure 2-2: Parabolic Velocity Profile of Laminar

Newtonian Pipe Flow
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Figure 2-3: Elements of Turbulent Flow
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Figure 2-4: Turbulent Mixing Length and Velocity Fluctuations
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Figure 2-5: The Autocorrelation Function
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Figure 2-6: Spectrum of Eddy Lengths Associated
with Turbulent Flow
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Figure 2-7: Intermittency
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Figure 2-8: The Moody Diagram
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Figure 2-9: Intermittency Factor Versus Pipe Reynolds Number
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Figure 2-10: The Occurrence of Puffs and Slugs in a Pipe
(After Wygnanski and Champagne)
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Figure 2-11: Leading and Trailing Edges of a Turbulent Slug
(After Wygnanski and Champagne)

Figure 2-12: The Development of the Velocity Profile

at a Pipe Entrance for Laminar Flow
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Figure 2-13; Pressure Drop in a Pipe Due to the

Presence of an Orifice Plate
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Fieure 2-14: Pressure Loss Coefficients for
Various Orifice Diameters

(After M ller)
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Figure 2-15: Numerical Solution of Low Reynolds
Number Orifice Flows

(After Mills)
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Figure 2-16; Flow Streamlines at an Orifice as a Function
of the Forcing Cycle
(After Jones and Bajura)
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Fieure 2-17:
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