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A bstract

This thesis is concerned with the design of AC motors to operate at constant shaft power 

over the widest possible speed range from an inverter of fixed volt-ampere rating. In 

particular, it examines and validates the reputation of the interior permanent magnet 

motor drive of having a wide speed range at constant power (field-weakening range). 

The design and construction of a 7.5kW axially-laminated interior permanent magnet 

motor showing a constant-power speed range exceeding 7.5:1 is described. This result 

cannot be matched by any other motor type.

Vector-controlled induction motor drives axe widely used for field-weakening appli­

cations. They offer a constant-power speed range of up to about 4:1. Higher values can 

be obtained only by oversizing the drive or by using a winding changeover technique. 

Combined with improvements in low-speed dynamic performance, the inherently wider 

constant-power speed range makes the interior permanent magnet motor drive a serious 

contender for applications such as machine tool main spindle drives and traction.

The thesis consists of two parts. The first part examines the theoretical and prac­

tical limitations to the field-weakening performance of the three types of brushless 

synchronous AC motor : the surface permanent magnet, the synchronous reluctance 

and the interior permanent magnet motor. It is shown that high-saliency interior 

permanent magnet motor drives should offer the best practical field-weakening per­

formance. The axially-laminated (as opposed to the conventional radially-laminated) 

construction offer the highest saliency ratios.

The second part describes the modelling and design of an axially-laminated interior 

permanent magnet motor drive for optimal field-weakening performance. The effect of 

varying the design parameters on the drive’s field-weakening performance is analysed. 

A 7.5kW axially-laminated synchronous reluctance and a 7.5kW axially-laminated in­

terior permanent magnet motor were built. The interior permanent magnet motor 

drive shows an extremely wide constant-power speed range which exceeds 7.5:1.
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N om enclature

a rotor insulation ratio : win,/(w ,n, +  w/am)

A C alternating current

a electrical pole-arc [deg or rad]

a parameter used in saturation model

B magnetic flux density [T]

B r permanent magnet remanence [T]

CPSR constant-power speed range : wp/wk

B  m ajor bolt major diameter M

B m in o r bolt minor diameter [m]

D C direct current

DQ direct and quadrature axis reference frame

E q magnet-induced back-emf voltage [V rms]

n efficiency

€ winding chording angle [deg or rad]

f frequency [Hz]

F force [N]

Fb force per bolt [N]

9 mechanical radial airgap [m]

9" effective radial airgap : kcg [m]

7 electrical slot pitch angle [deg or rad]

7 electrical current-angle between I  and q-axis [deg or rad]

l i internal (magnetising) current-angle [deg or rad]

7m maximum-torque-per-ampere current-angle [deg or rad]

7 mi internal maximum-torque-per-ampere current-angle [deg or rad]

maximum constant-power speed current-angle [deg or rad]
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H magnetic field strength [A/m]
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I current [A rms]

Ic rated stator current [A rms]

I f field current [A rms]

Im magnetising stator current [A rms]

Io base stator current [A rms]
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kdi fundamental distribution factor
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kwi fundamental winding factor

K inverter utilisation

KR inverter utilisation including R a
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I stack length [m]

h . length of bolt embedded in shaft [m]

I. edge length of square shaft [m]

L inductance per phase [H]

L i d-axis synchronous inductance : Ldm +  Li [H]

L dm magnetising d-axis synchronous inductance [H]

I>di intrinsic d-axis synchronous inductance [H]
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NOM ENCLATURE

L md stator endwinding inductance [H]

Li stator leakage inductance : Lend +  L ait [H]

Lm round-rotor machine magnetising inductance [H]

Lq q-axis synchronous inductance : Lqm + Li [H]

Lqm magnetising q-axis synchronous inductance [H]

La synchronous inductance (SPM) [H]

L sit stator slot-leakage inductance [H]

m  number of phases

M  mutual inductance [H]

Nb number of bolts per pole
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p pole-pairs

P  power [W]

Pa asymptotic high-speed power output [W]

P /e iron loss [W]

Pk rated output power [W]

P0 base output power [W]

Pa slot permeance ratio

PM  permanent magnet

<)> power-factor angle between V and I  [deg or rad]

<j>i internal power-factor angle between V and I  [deg or rad]

$  magnetic flux [Wb]

flux due to magnets [Wb]

flux-linkage [Vs rms]

flux-linkage due to magnets [Vs rms]

q number of slots per pole per phase



24 NOM ENCLATURE

r radius [m]

ri rotor radius [m]

P density [kgm-3]

Pi density of lamination material [kgm-3]

R resistance [0]
R , stator phase resistance [0]
R c effective core-loss resistance [fl]

Si number of stator slots

SPM surface permanent magnet motor

SYNCHREL synchronous reluctance motor

<T C arter’s coefficient

(?o Carter’s coefficient for open slots

(T»c Carter’s coefficient for semi-closed slots

a constant-power speed range

a mechanical stress [MPa]

(Tyb yield stress of bolt material [MPa]

(Tys yield stress of shaft material [MPa]

cr skew angle [deg or r

T torque [Nm]

Tk rated output torque [Nm]

$ mechanical rotor angle [deg or r

V voltage [V rms]
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w width M
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wiam thickness of magnetic rotor layers [m]

w* slot opening width [m]

wt tooth width [m]

lj angular speed [rad/s]

cjfc rated speed [rad/s]

u>0 base speed [rad/s]

ljp highest speed at which P > Pk [rad/s]

transition speed between Mode II and III [rad/s]

ljv speed at which the power-factor is maximum under the

optimal torque control strategy [rad/s]

ujx maximum voltage-limited operating speed [rad/s]

f  saliency ratio : L q/Ld

£,• intrinsic saliency ratio : Lm/Ldi =  ri/pg

fm magnetising saliency ratio . Lq^ / Ldm

intrinsic magnetising saliency ratio : Lm/Ldmi =  ari/(P9) 

( a saturated saliency ratio

(u unsaturated sediency ratio

(  minimum magnet operating point

Subscripts
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F field
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m  magnetising

m  maximum-torque-per-ampere

m, M  magnet 

m  mechanical

n normalised

o base quantity

p at the constant-power speed

q quadrature axis

r  rotor

r  radial

s synchronous

s saturated

s, S  stator

t at the transistion between Mode II and III

t tangential

T  total
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u unsaturated

v maximum power-factor
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C hapter 1

Introduction  to  Field-W eakening

Chapter One introduces the concept of field-weakening, compares the field-weakening 

performance of common motor drives, examines the requirements of applications re­

quiring a large field-weakening range and describes the structure of the remainder of 

the thesis. It includes references to previous work concerned with field-weakening and 

outlines the original content of the thesis.

27
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1.1 Background

Electric motors generate torque by the interaction of magnetic flux and electric current. 

In the simple example shown in Fig. 1.1 these quantities are controlled independently. 

The magnetic flux $  is produced by the field current Ip. The flux is proportional to 

the field current if magnetic saturation is neglected. The armature current I  a interacts 

with the flux to produce the torque T. This is proportional to the product of the flux 

and the armature current [1], that is :

T<x $ I a (1.1)

The induced voltage and hence the required terminal voltage V  is proportional to the 

product of the flux and the angular speed uj (neglecting resistance) :

V cxQlj (1 .2 )

Thus to a first approximation, if the flux is constant then the torque is dependent only 

on the armature current, and the required terminal voltage is dependent only on the 

speed.

A motor drive consists of a motor, a power electronic inverter and a controller

as shown in Fig. 1.2. This thesis is concerned with the steady-state field-weakening

▲

II T, u)

Figure 1 .1: Simple DC electric motor model.
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Controller

Electric
Motor

AC Supply
Power Electronic 

Inverter

Figure 1.2: A motor drive.

performance of motor drives. At a given speed this is limited by the supply/inverter 

capabilities or by thermal, electromagnetic (eg. saturation) or mechanical (eg. com­

m utator) motor limitations. To a first approximation, the maximum power can be 

calculated from a model of the motor by assuming a limited voltage and current are 

available from the inverter. This is a common approximation [2, 3, 4, 5] as it is simple 

but still allows useful comparisons between motor types.

Much of this thesis is concerned with determining the maximum speed range at 

constant power which is available from a motor drive within a given inverter voltage 

and current rating. It is inherently assumed that at any speed the drive is controlled in 

such a way to maximise the output torque. It is useful to examine first the operating 

limits of an ideal motor drive as shown in Fig. 1.3. Rated torque1 T* is the maximum 

torque which can be obtained with rated current I c. For the DC motor in Fig. 1 .1, 

(1.1) shows that maximum torque is obtained with maximum flux. For brushless 

synchronous AC motors such as the interior permanent magnet motor, the maximum 

torque is obtained by appropriately controlling the stator current phasor orientation.

1 Rated torque can be maintained up to the rated speed. The rated speed is also termed the 

knet-spttd, thus the subscript “k” in 7*.



30 CHAPTER 1. INTRODUCTION TO FIELD-W EAKENING

OUTPUT
TORQUE

MOTOR
FLUX

CONSTANT
TORQUE

CONSTANT
POWER

SPEED

SPEED

INPUT
VOLTAGE

SPEED

ARMATURE
CURRENT

SPEED

SPEEDRATED
SPEED

Figure 1.3: Ideal motor drive field-weakening characteristics.

This is described in more detail later.

The rated speed w* is defined as the speed at which the required terminal voltage 

equals the rated voltage Vc with rated current and rated torque. The last point is 

important as the rated speed will change if the input power-factor [6 , 7] or the motor 

efficiency is maximised instead of the output torque. Rated output torque can be 

maintained from zero speed up to rated speed. This is called the constant torque 

operating region. Note that the terminal voltage and the output power both rise linearly 

with increasing speed in this region.

At the rated speed, the motor delivers rated output power Pk. In order to operate 

above rated speed while still maintaining the rated terminal voltage, from (1.2) it 

is necessary to reduce the flux by reducing or weakening the field current inversely
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Figure 1.4: Definition of field-weakening parameters.

proportionally to the speed. If the armature current is kept at its rated value, then 

from (1.1) the output torque will fall inversely with speed. The output power is constant 

as it is equal to the product of the torque and speed (see Fig. 1.3). This is called the 

field-weakening or the constant-power operating region.

The field-weakening performance of a practical motor drive can be characterised by 

two parameters (see Fig. 1.4). The inverter utilisation k is the ratio of the rated output 

power to the ideal motor drive output power at rated speed. The constant-power speed 

range (CPSR) is the speed range over which the output power is greater or equal to 

the rated power. It is given by the ratio of the maximum constant-power speed u p to 

the rated speed. Fig. 1.3 shows that an ideal field-weakening drive has unity inverter 

utilisation and infinite constant-power speed range.

The majority of applications such as fans, pumps, compressors and servo drives 

do not require field-weakening operation and thus most motor drives only operate in 

the constant torque region. However certain types of loads such as washing machines, 

machine tool spindle drives and traction drives have the constant-power characteristic 

shown in Fig. 1.5. The required constant-power speed range varies from about 1.5:1 

for electric locomotives [8] up to 30:1 for domestic washing machines [9].
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0 Rated Max Constant

Speed Power Speed

Figure 1.5: A load requiring a wide constant-power speed range.

It is most cost-effective to match the drive’s capabilities to the load’s characteristics. 

For a constant-power load characteristic, using a drive only capable of constant torque 

operation would require it to be capable of delivering rated torque up to the maximum 

speed (see dashed line in Fig. 1.5). This is clearly a considerable over-specification 

of the required drive output power and would be prohibitively expensive. A better 

approach would be to use a drive capable of delivering rated torque at rated speed 

with the required constant-power speed range.

The concept of field-weakening was illustrated above for a simple motor which 

allowed independent control of the motor flux by the field current and the torque by 

the armature current. This is the case in the separately-excited DC commutator motor
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\ Current 
i P hasor

Figure 1.6: The A C  stator winding.

and it is from this that the term field-weakening originated. However field-weakening 

is now generally used to describe the operation of any type of motor above rated 

speed, despite the lack of any physical separation between the “field current” and the 

“armature current” in some of these motors.

A three-phase stator winding is generally used in brushless AC motors such as the 

induction motor, the surface permanent magnet motor and the synchronous reluctance 

motor. This consists of three coils whose magnetic axes are separated by 120° as shown 

in Fig. 1.6 . These are fed by three-phase currents which are 120° phase shifted with 

respect to one another in time. The physical phase shift between the coils and the time 

phase shift between the currents combine such that the resultant field generated by all 

three coils is of constant magnitude and rotates at a constant (synchronous) speed. 

This is equivalent to a current phasor Is  rotating at synchronous speed.

The stator current phasor can be effectively split into two orthogonal components : 

the field current or magnetising current Ip  which controls the airgap flux $  in the motor 

and the torque producing component I t which interacts with this flux (see Fig. 1.7). 

Operation above rated speed is obtained by reducing the airgap flux in the motor by 

appropriately controlling the amplitude and sign of the magnetising current I f - In the 

synchronous reluctance and the induction motors, the airgap flux is produced purely 

by the magnetising current and so this component is decreased above rated speed. 

In permanent magnet machines the flux is mainly produced by the magnets. The 

“magnetising” current generates a flux $p  which opposes the magnet flux and
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Synchronous
R eluctance

Motor

I f *M
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Perm anent 
Magnet Motor

Figure 1.7: Field-weakening of reluctance and permanent magnet motors.

hence reduces the total airgap flux $ t - In these motors the required demagnetising 

current increases with speed.

To describe general motor operation above rated speed, the term “flux-weakening” 

has been suggested [2] as being more accurate and descriptive than the traditional 

“field-weakening”. Both these terms will be used interchangeably in this thesis.
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1.2 Field-W eakening Characteristics

Figure 1.8 shows the development of the major motor classes over time [1 , 10, 11] and 

how they correspond to important developments in related areas. The history of motor 

science began with the discovery of electromagnetic induction by Michael Faraday in 

1831. The next half century saw the development of the three “classical” motors : the 

DC commutator motor, the synchronous motor and the induction motor. These were 

characterised by their ability to start and run without an electronic controller [12]. Of 

these, only the DC commutator motor was suitable for variable-speed drives.

Brushless variable-speed drives became possible with the development of modern 

“power” semiconductors, beginning with the introduction of the silicon-controlled recti­

fier (SCR) in 1957 [10]. They were also aided by the introduction of the microprocessor 

in 1971.

Permanent magnet motors became practical with the discovery of Alnico in the 

1930s. This was followed by the introduction of ferrites in the 1950s and rare-earth 

magnets in the 1970s.

Table 1.1 summarises the field-weakening characteristics of each of the main motor 

types [12, 13, 14]. The oldest motor is the wound-field DC commutator motor. When 

used in the separately-excited configuration it offers independent control of the flux 

and the torque with DC currents (see Fig. 1.1). This motor is im portant not only 

because of its “ideal” field-weakening characteristics (see Fig. 1.3) but also because 

it is the basis of DQ axis theory (vector control) for AC motors. Unfortunately the 

excellent theoretical field-weakening characteristics cannot be realised due to practical 

commutation limitations at high speeds. This usually limits the achievable constant- 

power speed range to less than 4:1 [14]. Presently it tends to be used mainly in high 

power drives (up to 10MW) but is gradually being replaced by induction motors in 

applications such as locomotive traction [15]. These offer faster dynamic response and 

a more rugged construction.

The AC commutator or universal motor is basically a wound-field DC commutator 

motor with the field winding in series with the armature winding. It can operate from
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Figure 1.8: The development of the major motor types over time.
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Table 1.1: Field-weakening characteristics of common motor types.

Motor Type Power

Range

CPSR Torque Ripple Power

Density

Eff.

Ideal Typ. Best Low

Speed

Field

Wkg

DC Wound Field lkW-lOMW oo 1.5-3 4 low low low med

AC Commutator lOW-lkW 1 1 1 high - high med

DC PM lW-lOkW 1 1 1 low - med high

Switched Rel. lOW-lOOkW 2-3 med high high high

Wound Field Synch. lkW-lOMW oo 5 low low med med

Brushless DC PM lW-lOkW 1-2 med high high high

Brushless AC PM 10W-50kW 1-2 low low high high

Synchronous Rel. lOOW-lOkW 5 1.5-3 low low med med

Interior PM lkW-30kW oo 2-4 >7.5 low low high high

Induction Motor 100W-10MW 2-3 4 low low med med

both AC and DC, has a high starting torque and a high power density [16]. The output 

power naturally reduces inversely with speed and so it has a limited constant-power 

speed range. Despite this, it is widely used in domestic appliances such as washing 

machines and electric drills.

The DC PM commutator motor behaves similarly to the wound-field motor with 

a fixed field current. It is perhaps the simplest motor to control and drive and is 

widely used for general purpose variable-speed servo drives up to the integral kW 

range. Due to the lack of the control over the excitation, this motor has a very limited 

field-weakening range.

The switched-reluctance motor is one of the earliest motor types (see Fig. 1.8) but it 

did not become practical until the development of suitable power electronic controllers 

in the 1960s and 70s as it cannot start or run from a pure AC or DC voltage source. Its 

main advantages are its high torque to volume ratio, high torque to inertia ratio, high 

speed capability and fault tolerance [12]. These characteristics give it some potential 

for use in domestic appliances and aerospace applications. It has a moderate degree of 

torque ripple below rated speed. With fixed firing angles and a fixed supply voltage,
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the switched-reluctance motor has an inverse power characteristic similar to that of the 

AC commutator motor [10]. A constant-power speed range of 2 to 3:1 can generally be 

achieved by phase advancing the firing angles at the cost of an increase in the torque 

ripple.

The brushless DC PM motor is basically a DC PM commutator motor turned 

inside out. It generates a trapezoidal back-emf waveform which allows it to produce a 

relatively smooth output torque when driven with rectangular currents. It offers a high 

power density and high efficiency. The use of rectangular currents eliminates the need 

for accurate shaft position sensing. This greatly simplifies the control and makes the 

motor ideal for low power, cost sensitive applications such as in computer peripherals 

and fans. A field-weakening range of about 2:1 can be obtained by phase advancing 

the firing angles in a similar way to the switched-reluctance motor. Note that this 

increases the output torque ripple [17, 18].

The wound-field synchronous motor is similar to an inside-out wound-field DC 

commutator motor except that the armature currents are sinusoidal instead of DC. 

It is generally used in large sizes (> lOOkW) for power-factor correction in industrial 

plants due to its ability to operate at a leading power-factor. Like the wound-field 

DC commutator motor, it has an ideal infinite field-weakening range. Its practical 

field-weakening range is somewhat greater than that of the DC commutator motor as 

it uses slip-rings instead of a commutator, but it is still brush limited.

The surface permanent magnet AC motor is similar to the brushless DC PM motor 

except it is designed to have a sinusoidal back-emf and is operated from sinusoidal 

currents. It offers a high output torque density, fast dynamic response, high efficiency, 

low torque ripple and a large overload capability. Rare-earth magnets are used to obtain 

the best performance, although these are expensive. The surface permanent magnet 

motor is widely used for industrial servo drives [19]. As with all true sinusoidally-driven 

AC motors, it has low torque ripple both below rated speed and in the field-weakening 

region. Its constant-power speed range is generally limited to below 2:1 for conventional 

designs. The reasons for this are explored in the next chapter.

The synchronous reluctance motor has a long history and in fact predates the
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induction motor [20]. Early versions were line-start motors and required a starting 

cage which compromised their synchronous performance. They were used in the 1950s 

and 1960s for applications such as fibre-spinning which required several motor drives 

running in synchronism from a single inverter [7], but have subsequently been replaced 

by vector-controlled surface permanent magnet motor drives.

The synchronous reluctance motor theoretically offers simple control, fast dynamic 

response, high efficiency and a wide field-weakening range. In the last few years there 

has been increasing interest in it as an alternative to the induction motor for high 

performance drives. In particular there has been considerable interest in the axially- 

laminated form of construction which has been shown to offer the best performance of 

all types of synchronous reluctance motor [21].

The interior permanent magnet motor was one of the first brushless permanent 

magnet motors to be developed. This was due to its ability to utilise the early, low- 

coercivity Alnico magnets [22]. Improved materials in later years led to the develop­

ment of integral kW machines using a squirrel-cage for line-starting and an interior 

permanent magnet geometry for efficient steady-state operation.

Variable-speed interior permanent magnet motor drives offer a wide field-weakening 

range, fast dynamic response and relatively simple control compared to the induction 

motor. They are well suited to field-weakening applications such as spindle drives. 

Despite the rapid acceptance of the surface permanent magnet motor drive for (constant 

torque) servo applications, the interior permanent magnet motor drive has been slow 

to establish itself. It is only recently that interior permanent magnet spindle drives 

have become commercially available [23]. These offer a constant-power speed range of 

4:1. It will be shown later than an axially-laminated interior permanent magnet motor 

can achieve a constant-power speed range exceeding 7.5:1.

Last but certainly not least is the squirrel-cage induction motor. It offers a simple 

and rugged construction, low cost when manufactured in sufficient volume, and good 

efficiency in large sizes. It is widely used in industry for fixed-speed applications such 

as fans and pumps. Variable-speed induction motor drives were the first AC variable- 

speed drives to be developed and are now widely used for high power drives up to
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Figure 1.9: Typical induction motor field-weakening characteristics [10].

10MW. Vector-control (field-orientation) allows separate control of the torque and flux 

in the motor in the same way as the separately-excited DC motor [10].

The constant-power speed range obtainable with an induction motor drive is ap­

proximately given by the ratio of the breakdown torque2 to the rated torque [24]. 

This is because under constant voltage operation the breakdown torque decreases as 

the square of the speed, while for constant-power operation the required torque de­

creases only inversely with the speed (see Fig. 1.9). They are equal at the limit of the 

constant-power speed range.

The breakdown torque and hence the constant-power speed range is primarily de­

termined by the motor leakage inductance. However the direct-on-line starting inrush 

current is also affected by the leakage inductance. Standard induction motors are de­

signed to have a limited starting current and consequently are restricted to constant- 

power speed ranges of 2 to 3:1 [24]. Special low-leakage motors designed for inverter 

operation can offer constant-power speed ranges of up to 4:1 [25]. Higher values can be

2This is the maximum output torque at any speed with a given supply voltage and frequency.
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obtained by oversizing the inverter or by using a winding changeover switch [26]. The 

latter technique involves switching the stator winding in a similar way to stax/delta 

starting to obtain a constant-power speed range of up to 12:1. An electromagnetic 

switch (relay) is used to perform the switching operation. These are simple and low 

cost however they take tens of milliseconds to switch-over and so restrict the drive’s 

dynamic performance. This could be avoided by using semiconductor switches but the 

cost would be prohibitive. This technique could also be applied to any motor type to 

extend the constant-power speed range.
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1.3 Field-W eakening A pplications

As mentioned earlier, the majority of variable-speed applications do not require field- 

weakening operation. However for applications such as traction and spindle drives 

which require a wide constant-power speed range, using a constant torque drive would 

be prohibitively expensive due to the oversizing required (see Fig. 1.5 on page 32).

Four common applications requiring a wide field-weakening range are traction, ma­

chine tool m ain spindle drives, rolling mills and washing machines. Typical specifica­

tions for these drives are given in Table 1.2 [5, 8 , 15]. Electric motors have been used 

in traction applications for over a century. These require a high torque at low speeds 

to overcome stiction and to allow inclines to be climbed at reasonable speeds, and low 

torque at high speeds to overcome friction and windage [15].

For trains, output powers in the MW region and constant-power speed ranges of 

between 1.5 and 3 are required. Wound-field DC commutator motors were used ex­

tensively in the past because of their simple control, but are slowly being replaced by 

the more rugged, lower-cost and lighter induction motors. Wound-field synchronous

Table 1.2: Typical field-weakening requirements.

Traction Main Rolling Washing

Car Train Spindle Mills Machines

Power Range 20-60kW 1-10MW 5-50kW 1-10MW lkW

Base Speed 25kmph 60kmph 1500rpm 250rpm 50rpm

CPSR 4 1.5-3 4-12 3-4 15-30

allowable torque ripple . . .  

low-speed med med low low high

high-8 peed high high low med high

motor types used . . .  

in the past 

presently 

the future? IM, SR, IPM

DC 

DC, IM 

IM

DC, IM 

IM 

IM, IPM

DC 

DC, Syn, IM 

IM

IM

universal

SR
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motors offer unity power-factor and higher efficiency than induction motors but still 

require brushes and have a less rugged rotor.

Electric cars represent an immense future market for the “right” electric drive. W ith 

legislation practically forcing their use in the future, there is considerable research being 

carried out to develop a suitable drive [27]. The main requirements are : a constant- 

power speed range of about 4:1, a high power/weight ratio, a high overload capacity 

(200%) and high efficiency [5]. The allowable torque ripple is relatively high. DC 

motors would be the simplest to control, but AC motors are smaller and lighter for the 

same output power. Possible contenders are the induction motor (IM), the switched- 

reluctance motor (SR) and the interior permanent magnet motor (IPM).

Main spindle drives are used in machine tools to rotate the workpiece during turn­

ing operations and also increasingly to hold the workpiece stationary in a particular 

position while drilling and tapping operations are performed by a separate tool spindle 

[23]. This is called c-axis operation. Machining processes are inherently constant-power 

operations, requiring high torque at low speeds and low torque at high speeds. Low 

torque ripple is critical, especially at low speeds in order to achieve good position­

ing performance. In the past, variable gear ratios were used to achieve the required 

constant-power speed range, however the trend is now to use a fixed gear ratio with 

a motor with the required field-weakening range. It is also desirable to eliminate the 

gearing completely and use a direct drive to improve the static and dynamic per­

formance. DC motors and fixed-speed induction motors were used in the past and 

presently vector-controlled induction motors are widely used. Recently interior per­

manent magnet spindle drives have become commercially available [23]. These offer 

similar constant-power speed ranges (about 4:1) and improved low-speed and position­

ing dynamics compared to the induction motor.

Rolling mills are used to roll metal ingots into strip or sheet [28]. Considerable 

torque is required on the slow initial passes but higher speeds and lower torque are 

used as the material becomes thinner. The process requires high power (MW) motors 

with a constant-power speed range of about 4:1. DC commutator motors have been 

used in the past. Synchronous and induction motors are however gradually taking over
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because they are available in larger sizes (reducing the number of motors which have 

to be paralleled to achieve the desired output), are more rugged, and have lower inertia 

and hence faster dynamic response. This gives better control over the quality of the 

finished sheet [29].

Washing machine main drive motors are required to operate with high torque at 

50rpm during the wash cycle in order to reverse the drum rotation every 5 to 15 secs, 

yet be capable of spinning the drum up to 1500rpm with sufficient torque to overcome 

friction and windage losses [9]. In the past, a 2/24 pole-changing induction motor was 

used in combination with a fixed gear, however this had a low maximum spin speed and 

little control over the acceleration. The latter point is necessary as it is important to 

allow the clothes time to distribute themselves evenly over the drum prior to reaching 

the maximum spin speed. Presently a universal motor is used and variable-speed 

control is obtained with a single, low-cost triac. Due to the cost-sensitive nature of 

the product, it is unlikely that more sophisticated drives would be used in the future 

except perhaps switched-reluctance drives.



1.4. THESIS STRU CTURE 45

1.4 Thesis Structure

Fig. 1.10 shows how this thesis is split into two major parts. The first part exam­

ines the theoretical and practical limitations to the field-weakening performance of the 

three main types of brushless synchronous AC motor : the surface permanent magnet 

motor, the synchronous reluctance motor and the interior permanent magnet motor. 

The results axe validated using a custom-built controller. Using a new interior perma­

nent magnet motor drive parameter plane approach, it is shown that a high-saliency 

interior permanent magnet motor drive should offer the best practical field-weakening 

performance. Note that the axially-laminated construction offers the highest saliency 

ratios [21].

The second part of this thesis examines the design, modelling and testing of a 

new axially-laminated interior permanent magnet motor drive in order to validate 

and extend the results of the first part. First the importance of the DQ inductance 

characteristics in determining the drive performance is shown and the calculation and 

measurement of these characteristics are discussed. Next the design of a 7.5kW axially- 

laminated synchronous reluctance and interior permanent magnet motor drive for op­

timal field-weakening performance is described. Experimental results are given show­

ing that the interior permanent magnet motor drive can achieve an extremely wide 

constant-power speed range which exceeds 7.5:1. This cannot be matched by any other 

type of motor and makes this drive a serious contender for applications such as machine 

tool main spindle drives and traction.

The original content of this thesis can be summarised as follows. Firstly the new 

concept of the interior permanent magnet parameter plane is introduced. It is used to 

show the optimal field-weakening performance limit and also how to design brushless 

synchronous AC motor drives to achieve it. Next an original analysis of the effect of 

copper loss, magnetic saturation and iron loss on the field-weakening performance is 

performed. This showed that saturation severely restricts the field-weakening perfor­

mance of synchronous reluctance drives. Then a complete design procedure for a new 

type of axially-laminated interior permanent magnet motor is described. The motor
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was built and comprehensive test results illustrating the extremely wide constant-power 

speed range are given. The achieved constant-power speed range exceeded all previ­

ously published test results3 known to the author for any motor type.

3When no special mechanical motor winding switching arrangements are used.
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C hapter 2

T heoretical Lim itations

Chapter Two examines the theoretical limitations to the field-weakening performance 

of the three types of brushless synchronous AC motor when driven from an inverter with 

a limited voltage and current capability. Using a lossless linear model it is shown that 

five classes of motor drive can be defined based on whether or not there is a theoretical 

maximum speed limitation due to the voltage and current-limit constraints. The circle 

diagram is used to show the similarities between the optimal field-weakening control 

strategies for the five drive classes.

The new concept of the interior permanent magnet motor drive parameter plane 

is introduced. This provides a convenient graphical means for visualising the effect of 

parameter changes on the field-weakening performance. It is also used to determine 

the optimal field-weakening performance and to show what parameters are required to 

achieve it. High-saliency synchronous reluctance and interior permanent magnet motor 

drives appear to be the most promising. The effects of practical factors such as copper 

loss, magnetic saturation and iron loss on these ideal characteristics are examined in 

the next chapter.

51
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2.1 In tro d u ctio n

Brushless synchronous AC motors operate with sinusoidal currents and use a standard 

quasi-sinusoidally distributed AC stator winding and inverter. The three main types 

are the surface permanent magnet motor (S P M ),  the interior permanent magnet motor 

( i p m ) and the synchronous reluctance motor (SY NCH RE L). Cross-sections of the three 

types are shown in Fig. 2.1, where the dotted areas represent steel and the solid areas 

represent permanent magnets. As the permeability of ferrite and rare-earth magnets 

is close to air, the surface permanent magnet motor is non-salient and operates purely 

on magnet alignment torque. The synchronous reluctance motor operates purely on 

reluctance torque. The interior permanent magnet motor is a hybrid of the surface per­

manent magnet and synchronous reluctance motors in terms of torque production [22]. 

The latter two motors can be considered to be special cases of the interior permanent 

magnet motor.

The torque versus speed characteristic of a lossless, constant parameter interior 

permanent magnet motor drive is determined by seven parameters : the number of 

phases m, the number of pole-pairs p, the rated voltage Vei the rated current / c, the 

d-axis inductance Ld, the q-axis inductance L q and the magnet flux-linkage ^ m. As 

will be shown later, only the latter four affect the shape of the normalised torque versus

I

SURFACE 
PERMANENT MAGNET 

MOTOR (SPM )

INTERIOR 
PERMANENT MAGNET 

MOTOR (IPM )

SYNCHRONOUS 
RELUCTANCE MOTOR 

(SYNCHREL)

Figure 2.1: Motor cross-sections.



2.1. INTRODUCTION 53

speed characteristic.

As the cost of the inverter is typically three to five times that of the motor [21], 

the ability of a motor drive to utilise a given inverter voltage and current capability is 

important.

The analysis in this chapter is based on three major assumptions which were dis­

cussed in Sec. 1.1. Firstly, a lossless, steady-state, constant parameter DQ model is 

used. This clearly neglects the effect of practical factors such as stator resistance, iron 

loss and magnetic saturation. Second, a limited inverter capacity is assumed with max­

imum voltage and current ratings and pure sinusoidal waveforms at any frequency and 

current-angle. Finally the motor drive is assumed to be operated to deliver maximum 

torque at any speed.

Five classes of brushless synchronous AC motor drive can 

whether there is a theoretical finite maximum speed limit due 

straints. These are :

1. the fin ite m axim um  speed SPM drive.

2. the infinite m axim um  speed SPM drive.

3. th e  infinite m axim um  speed SYNCHREL drive.

4. the finite m axim um  speed IPM drive.

5. the infinite m axim um  speed IPM drive.

All synchronous reluctance motor drives have no theoretical speed limitation as they 

lack any magnet flux, however the output power at high speed may be very low. Surface 

and interior permanent magnet motors by themselves cannot be classified as infinite or 

finite maximum speed as this depends on the inverter ratings. Only motor drives can 

be classified.

Early work concerning the field-weakening performance of interior permanent mag­

net motor drives dealt with the analysis and control of existing machines [2, 22, 30].

be defined based on 

to voltage-limit con-
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It is only recently tha t the selection and effect of the drive parameters on the field- 

weakening performance has started to be explored.

One of the first papers on this topic was by Sebastian and Slemon [3]. They 

showed that inset (interior) permanent magnet motor designs offered more torque and 

a better field-weakening range compared to conventional surface permanent magnet 

motor designs.

This was followed by a landmark paper by Schiferl and Lipo [4] which made the 

first serious attem pt at examining the effect on the field-weakening performance of 

varying the parameters. Unfortunately they were hampered by two factors. Firstly 

though they used a unity inverter kVA normalisation, they did not normalise the drive 

parameters for unity rated speed (see Sec. 2.2.1). This left them with three independent 

parameters instead of two. The effect of a single independent parameter is simple to 

demonstrate, the effect of two independent parameters is more difficult but can be 

coped with, however the effect of three independent parameters is extremely difficult to 

describe. Secondly, they did not understand the optimal control of infinite maximum 

speed drives and in particular the existence of a “Mode III” form of operation (see 

Sec. 2.2.4). Despite these problems, their work laid the foundation for later analysis and 

they were also the first to describe the main design criterion for optimal field-weakening 

performance. This is to make the magnet flux-linkage equal to the maximum d-axis 

stator flux-linkage :

* »  =  U  (2 -1)

The normalisation of the DQ equations to unity rated speed to reduce the number 

of independent drive parameters is described in [12, 31, 32]. It was applied by Adnanes 

[5, 33] to investigate the field-weakening performance of the finite maximum speed SPM 

drive. Betz [6] also used a normalised model to analyse the field-weakening performance 

of the synchronous reluctance motor drive. It should be noted that the normalised 

torque versus speed characteristics of the surface permanent magnet and synchronous 

reluctance motor drives can both be characterised by a single parameter.

The optimal control of infinite maximum speed IPM drives was later comprehen­
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sively analysed using the circle diagram (see Sec. 2.2.2) in a paper by Morimoto, Takeda, 

Hirasa and Taniguchi [34]. They showed that the infinite maximum speed SPM drive 

has a true constant-power characteristic in the high speed region and also investigated 

the effect of magnet operating point limitations.

This chapter has a similar aim to Schiferl and Lipo’s work. This is to explore the 

effect of varying the motor drive parameters on the field-weakening performance of 

interior permanent magnet motor drives. It achieves more useful results as it fully 

normalises the field-weakening characteristics and uses the optimal control strategies 

for infinite maximum speed drives.

The field-weakening performances of surface permanent magnet and synchronous 

reluctance motor drives are considered first. This is useful as these motor drives rep­

resent simpler cases of the interior permanent magnet motor drive and so give insight 

into its fundamental limitations. Next the interior permanent magnet motor drive is 

examined and the new concept of the IPM parameter plane is introduced as a means for 

graphically illustrating the effect of varying the parameters on the field-weakening per­

formance. The IPM parameter plane is used to to show that the optimal field-weakening 

performance gives maximum output power up to infinite speeds but is restricted to 

an inverter utilisation below about 0.7 at rated speed. This optimal field-weakening 

performance can be achieved by a large number of designs and practical factors will 

determine which is the most feasible.
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2.2 Surface Perm anent M agnet M otor Drives

The surface permanent magnet brushless AC motor (SPM) has a standard three-phase 

AC stator and a non-salient iron rotor with projecting magnets (see Fig. 2.1 on pg. 52). 

These magnets can either be glued in position or held in place by an enclosing can or 

binding. Its construction is similar to the brushless DC PM motor except that it 

operates with sinusoidal currents instead of rectangular currents.

The performance of the finite maximum speed SPM drive has been comprehensively 

analysed by Adnanes [5, 33]. The infinite maximum speed SPM drive has received little 

attention but the optimal control characteristics have been analysed by Morimoto et 

al. [34].

The surface permanent magnet motor drive is the easiest of the three brushless 

synchronous AC motors to analyse and its equivalent circuit and phasor diagram are 

shown in Fig. 2.2 [12]. The equivalent circuit consists of the synchronous inductance L a 

in series with the magnet-induced back-emf voltage E q which is given by the product of

T s
n 5 7 T \ W  L Is  q

q —ax is 

▲

• • • ►  

d - a x i sI

Figure 2.2: Surface permanent magnet motor phasor diagram.
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the magnet flux and the electrical speed w. The magnet flux lies along the positive 

d-axis and hence the back-emf phasor is along the positive q-axis. The current-angle 7  

is the angle by which the current leads the back-emf phasor and the input power-factor 

is cos <j> where the power-factor angle <j> is the angle between the terminal voltage and 

the phase current.

In the phasor diagram in Fig. 2.2, the current-angle is greater than zero. This 

produces a component of stator current Id along the negative d-axis which opposes the 

magnet flux, reduces the total airgap flux and hence reduces the terminal voltage. The 

further the current-angle is increased, the further the terminal voltage is reduced. This 

principle is used in flux-weakening the surface permanent magnet motor drive.

2.2.1 N orm alised Equations

The conventional per-phase steady-state DQ equations for the surface permanent mag­

net motor drive can be obtained from the equivalent circuit in Fig. 2.2 as :

Vd =  - u L §Iq

Vq = u L J d  +  

T  =  V mIq

wh.r. '  -  'P H I . S '•  (2.2)
y  -  ■ j v i + v  s r .

where Vd, Vq, Id and Iq are the d- and q-axis components of the stator voltage and 

current respectively, and Vc and I c are the rated inverter phase voltage and current. 

The torque expression is obtained from energy conservation, P  = Tw  =  Vdld +  VqI q.

Equation 2.2 defines the maximum torque versus speed characteristic of the surface 

permanent magnet motor drive. It has four parameters : Vc, 7C, L a and \Pm. In order 

to reduce the number of parameters the normalisation technique used by Schiferl and 

Lipo [4] is applied. This involves choosing the base phase voltage V0 and the base phase 

current I 0 to be equal to be equal to the rated values, that is Vc and I c. Note the use 

of the subscript “o” to indicate base quantities. The base power P0 is chosen to equal 

the output power with rated input voltage and current, and unity power-factor. This 

implies the following base quantities :

P, =  VJ„ =  2 > „  = \  V° = T L (2-3)LOnIn L
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In = J l L  +  Ilr, <  1
where V *  V L  ~  (2.5)

Vn =  y/V l + Vql  <  1

Following the m ethod used by Betz [6], the normalised quantities can be defined in 

terms of the actual quantities and the base values as :

T ,  V  T I  u  T L -  'ft . .

Vn — T7" In = =  I>n =  ~7~ n == (2*4)
V q  1 q  U 3 q  J J q  *  O

Using (2.3) and (2.4), (2.2) can be rewritten in normalised variables as :

Vdn ~  wnI>BnIqn 

Vqn ~  'UlnL'anld.n “I" ^n^mn 

Tn =  ^mnlqn

where the subscript “n” is used to indicate normalised quantities. Note that normali­

sation has reduced the original four parameters to two parameters : L an and

Using the procedure described by Adnanes [5], the two parameters can be reduced 

to one by choosing the base speed u 0 to be equal to the rated speed. This makes the 

normalised rated speed u>kn equal to unity. The rated speed was defined in Chapter 1 

as the speed at which the terminal voltage equals its rated value when delivering rated 

torque. The terms base speed and rated speed will now be used interchangeably in this 

thesis. Note from the torque expression in (2.2) that the maximum torque is obtained 

with I q =  I c and Id =  0, or in normalised variables, with Iqn =  1 and /<*„ =  0. By 

applying this operating point to the voltage equations in (2.5) and solving for Vn = 1 at 

(jjn =  1 it can be shown that the two normalised parameters ^ mn and Lan are dependent 

where :

L .n  = y / l  -  »*. (2.6)

Thus the shape of the normalised field-weakening characteristics of the surface 

permanent magnet motor drive can written in terms of one parameter. The choice of 

the parameter used is arbitrary, but it is convenient for the later analysis of the interior 

permanent magnet motor drive to use $ mn. Using (2.6), (2.5) can written solely in 

terms of tfmn as :

Vdn —

Vqn — W n y / l  “I"

2"n ^  ^  m n Iqn

where h  ^ +  ^  "  1 (2.7)

Vn =  sJ V l+ V [ n <  1
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The d- and q-axis current components can be written in terms of the current-angle 

7  and I n using the phasor diagram in Fig. 2.2 as :

Iqn =  /„ cos 7  Idn =  - I n sin 7  (2 .8)

This allows (2.7) to be written in terms of In and 7  as :

Vdn =  -W nyjl -  ^ 2mJ n COS 7

Vqn =  —Wn^jl -  y 2mnIn Sin 7  +  Wn^mn 

Tn =  ^ mn/ n cos7

/n <  1
where

K  =  y / K  + Vq\  <  1

(2.9)

2.2.2 SPM  M otor D rive Circle Diagram

The circle diagram is a well-known graphical technique to determine the optimal field- 

weakening control strategy for brushless synchronous AC motor drives [2 , 4, 5, 12 , 

22 , 34]. Brushless synchronous AC motors are usually current-controlled and so it is 

convenient to define their operating point in terms of I dn and Iqn or I n and 7 . Each 

operating point can be represented by its position in the (Idn, I qn) plane.

A given operating point is termed feasible if it does not exceed the inverter voltage or 

current limits. The circle diagram shows how these limits restrict the feasible operating 

region in the (I dn, I qn) plane. The current-limit constraint, -\-Iqn <  1 , forms a circle 

whose centre is at the origin with unity radius (see Fig. 2.3). Any operating point 

which lies on or within this circle will not exceed the inverter’s current rating.

The voltage-limit locus can be obtained by applying the voltage constraint V£n +  

V*n < 1 to (2.5) which yields [12] :

Idn +
2

+  /,2n < 7— 1 -w  (2-10)
(UnL an)L„

This is the equation for a circle with its centre at (—®mB/Im jO ) whose radius is 

inversely proportional to speed (see Fig. 2.3). This circle encloses all operating points 

where the terminal voltage does not exceed the rated voltage. All feasible operating 

points must lie on or within the intersection of the voltage and current-limit circles.
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Figure 2.3: Surface permanent magnet motor circle diagram.

From (2.2), the output torque is directly proportional to Iq. This means that the 

loci of constant torque form straight lines parallel to the d-axis. At any speed the 

maximum torque is obtained at the feasible operating point with the maximum Iq. At 

low speeds the voltage-limit circle is large and completely encloses the current-limit 

circle. Hence the drive is purely current-limited and the maximum torque is obtained 

by operating at the top of the current-limit circle. As the speed increases, the voltage- 

limit circle contracts and the operating point is forced to converge towards its centre. 

This point is termed the infinite speed operating point. It lies on the current-limit circle 

when :
^mn ^mn _  /o 11 \

that is, when ^ mn =  l / \ / 2 . This corresponds to the optimal field-weakening criterion 

in (2 .1).

There are two types of surface permanent magnet motor drive. These differ in 

the location of the infinite speed operating point. Finite maximum speed SPM drives
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Figure 2.4: Operating modes for finite and infinite maximum speed SPM  drives.

have an infinite speed operating point outside the current-limit circle ( $ mn > I / a/ 2 ) -  

For these drives there will exist a maximum possible operating speed at which point 

the voltage and current-limit circles are tangential. At higher speeds the voltage and 

current-limit circles do not intersect and there are no feasible operating points.

Infinite maximum speed SPM drives have the infinite speed operating point on or 

within the current-limit circle (tymn < l / \ /2 ) .  These drives have no theoretical maxi­

mum speed as at all speeds there are always feasible operating points. Note that infinite 

maximum speed drives do not necessarily have good field-weakening performance as 

the output power may be very low at high speeds.

Fig. 2.4 shows the current and voltage-limit loci for finite and infinite maximum 

speed SPM drives at low, medium and high speed. The infinite speed operating point 

is marked with a cross, the feasible operating region is shown shaded and the optimum 

operating point for maximum torque is shown by a The optimum trajectories and
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Figure 2.5: The optimal torque trajectory for a finite maximum speed SPM  drive. 

the three operating modes will now be discussed in detail.

2.2.3 F in ite  M axim um  Speed SPM  M otor Drives

Fig. 2.5 shows the optimum operating trajectory for maximum power output at any 

speed for a finite maximum speed SPM drive and the corresponding drive torque, power, 

voltage, current, current-angle and power-factor.

It was shown by Morimoto et al. [34] that in general, brushless synchronous AC 

motor drives have three operating modes or regions : Mode I, Mode II and Mode 

III. Mode I is the current-limited or constant torque region. This is the region from 

zero speed up to the rated speed where rated torque is obtained by operating with 

rated current at the maximum-torque-per-ampere current-angle 7m. Geometrically this 

corresponds to operating at the point where the constant torque loci are tangent to the 

current-limit circle. From Fig. 2.4a it is clear that the maximum torque is obtained by



2.2. SURFACE PERM ANEN T M AG NET M OTOR D RIVES 63

operating at the top of the current-limit circle, that is = 0°. This corresponds to 

point A in Fig. 2.5.

At the rated speed (wn =  1) the voltage-limit circle intersects point A. At higher 

speeds, the drive transitions to Mode II. This is the current-and-voltage-limited region. 

Here the motor is operated with rated voltage and current at the minimum feasible 

current-angle. This corresponds to the intersection of the voltage and current-limit loci 

as shown in Fig. 2.4b.

In Mode II the current-angle 7  increases monotonically as the speed increases and 

hence the voltage-limit circle shrinks. As the current-angle increases, Iq decreases, 

causing the torque to fall. Note that the dashed line in the torque graph in Fig. 2.5 

shows the characteristic produced by an ideal field-weakening drive. The fall in torque 

is initially offset by the increase in speed and so the output power initially rises. The 

normalised power-factor and output power during Mode II operation increase until 

they reach unity at point B which corresponds to a speed of u>wn. After this the power- 

factor and power decrease rapidly until they reach zero at the maximum operating 

speed Uxn (point D) where 7  =  90°. At this point the voltage and current-limit circles 

are tangential and operation at higher speeds is not possible without exceeding either 

constraint (see Fig. 2.4c). Mode III operation is not possible in finite maximum speed 

SPM drives. Note that due to the choice of normalisation and the use of a lossless model, 

the normalised output power equals the input power-factor during Mode II operation.

The surface permanent magnet motor drive has an interesting property regarding 

constant-power operation which was described by Morimoto et al. [35]. Consider a 

surface permanent magnet motor drive operated from a constant voltage source. From 

the circle diagram in Fig. 2.3 it can be seen that the operating speed is inversely 

proportional to the distance from its operating point to the infinite speed operating 

point. Now as torque is proportional to I q thus operation along any straight line passing 

though the infinite speed operating point with a constant terminal voltage, corresponds 

to operating with constant-power output. The greater the slope of the line, the higher 

the output power.

This result can be usefully applied to the circle diagram. Consider point B in
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Fig. 2.5. This lies on the line through the infinite speed operating point which is 

tangential to the current-limit circle. When operating with rated supply voltage and 

current, this point represents the maximum power output available from the motor 

drive at any speed as the line has the greatest possible slope and so the greatest output 

power.

The result can also be used to determine the constant-power speed range. At the 

rated speed with rated voltage and current the drive operates at point A and delivers 

rated output power. To maintain rated output power the operating point must move 

along a straight line from point A to the infinite speed operating point. The maximum 

operating speed at rated power is u pn (point C) where the rated power line intersects 

the current-limit circle again. The constant-power speed range is equal to the ratio of 

the lengths of the lines EA/EC.

2.2.4 Infinite M axim um  Speed SPM  M otor Drives

Infinite maximum speed SPM drives have received remarkably little attention in the 

literature and have only recently been analysed by Morimoto et. al. [34]. This is 

probably due to nearly all common surface permanent magnet motor drives being of 

the finite maximum speed variety. In order to produce an infinite maximum speed SPM 

drive it is generally necessary to add external inductance in series with the motor as 

suggested by Sebastian and Slemon [3].

Infinite maximum speed SPM drives have the infinite operating speed point within 

the current-limit circle. Operation in Mode I and the transition from Mode I to II is 

similar to that for the finite maximum speed drive (see Figs. 2.4 and 2.6). The main 

difference is that Mode III operation is now possible.

Mode III is a high speed, voltage-limited operating region where maximum torque 

is obtained by operating at the point where the constant torque locus is tangent to the 

voltage-limit locus. Note that the current is generally less than its rated value. For 

the surface permanent magnet motor drive, Mode III operation corresponds to the top 

of the voltage-limit circle (line BD in Fig. 2.6). The transition from Mode II to Mode
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Figure 2.6: The optimal torque trajectory for an infinite maximum speed SPM  drive.

I ll occurs at point B at u tn where the Mode III maximum-torque-with-limited-voltage 

trajectory intersects the current-limit circle.

Mode III operation for the surface permanent magnet motor drive corresponds to 

operating along a straight line passing through the infinite speed operating point. Thus 

the Mode III output power of the drive is exactly constant. In fact of all the five classes 

of brushless synchronous AC motor drive, the infinite maximum speed SPM drive is the 

only one with a perfectly flat high-speed output power versus speed characteristic 

(compare this with the finite maximum speed SPM drive in Fig. 2.5).

During Mode III operation the normalised current magnitude /„ asymptotes to 

^mn/Lgn while the power-factor increases towards unity. The two effects cancel and the 

output power remains precisely constant. The constant-power speed range is infinite 

as the output power increases monotonically with speed.
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2.2.5 C alcu lated  C haracteristics

The circle diagram approach allows the identification of the optimal field-weakening 

control strategy. This control strategy can be combined with the motor drive equations 

(2.9) to calculate the drive’s performance characteristics (see Table 2.1). The equations 

for the performance of finite maximum speed SPM drives axe obtained using the method 

described by Adnanes [5].

The Mode I performance is obtained by substituting Jn =  1 and 7  =  0° into (2.9). 

The Mode II performance is obtained by solving the voltage equations in (2.9) with 

Vn = 1 and I n — 1 giving an expression for sin7  in terms of u n (see Table 2.1). 

Substituting this into the torque expression in (2.9) gives an expression for torque in 

Mode II in terms of u>„ [5] :

Tn = %
\

1 -  |  1  ) (2 .12)

The constant-power speed range is obtained by solving for the speed at which the Mode 

II output power Tnwn equals the rated output power Pjtn. The Mode III performance 

can be obtained from (2.7) with Idn =  Vmn/Lan and Iqn =  l /(w nL an) from (2.10).

The equations in Table 2.1 were used to calculate the performance characteristics 

of the surface permanent magnet motor drive. Figs. 2.7 and 2.8 show the variation 

in the normalised output torque, output power, power-factor and current-angle as a 

function of speed for surface permanent magnet motor drives with different values of 

\Pmn. For comparison, the ideal motor drive characteristic is superimposed on the 

torque and power graphs in Fig. 2.7 and on the torque graph in Fig. 2.8. Note that 

the normalised magnet flux-linkage ^ mn is equal to the ratio of the magnet-induced 

back-emf at the rated speed to the rated terminal voltage. The phasor diagram in 

Fig. 2.2 on pg. 56 shows that \Pmn =  1 when the synchronous inductance is zero. Such 

a motor drive has unity power-factor during Mode I operation, but Fig. 2.7 shows it 

has no field-weakening capability whatsoever.

As the synchronous inductance is increased, the voltage drop across it increases 

and so \l/mn falls. This causes a small decrease in the Mode I power-factor but a large
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Table 2.1: Summary of the characteristics of the surface permanent magnet motor drive 

under maximum torque operation.

Parameter Mode I Mode II Mode III

Speed

* n ,  >  l / \ / 2  <  1

tfmn <  1 /V 2  Wn < 1 l < ^ n < V 1- 2̂
>

Current-Angle 

Voltage 

Current 

Torque 

Power 

PF 

CPSR 

«m» >  1/V 2

< 1/V2

7 =  0°

K  =  wn

/n = 1

Tn =  $mn

Pn =  Tnu n 

cos <f> = V mv

•d r1sin 7  = --------  ; i mi.

VB =  1

I n  =  1

tan 7  =  ^ mn« n

T n  ~

Pn = TnUn 

cos <j> =  Tnojn

CPSR =  

CPSR =  oo

II

r  — /  U/J^n+l■*n —

T  -■•fl “ wn\/l- ®mn

P n JiTII

cos 6 =
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Figure 2.7: Calculated SPM  torque and power characteristics.
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Figure 2.8: Calculated SPM  characteristics with V mn as a parameter.
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improvement in the field-weakening capability. The optimal field-weakening character­

istic is obtained when \Pmn =  l/y /2  at which point the drive can deliver full output 

power at infinite speed. Such a design is at the boundary between finite and infinite 

maximum speed drives. The price paid for this excellent field-weakening performance 

is an inverter utilisation of l/y /2 .

Increasing the inductance past the optimal point produces an infinite maximum 

speed motor drive with an exactly constant output power at high speed, however the 

lower \&mn is, the lower the high speed output power. This equals 'Itmn/yJ 1 —

Fig. 2.8c shows how the power-factor increases at the start of Mode II operation. 

Unity power-factor is reached at some speed u vn for finite maximum speed SPM drives 

and at infinite speed for infinite maximum speed SPM drives. This can be found by 

using (2.12) to solve Pn =  Tnwn =  1 for u vn giving :

( 2 ' 1 3 )

Note that this is the square root of the constant-power speed range. Thus the unity 

power-factor speed is the geometric mean of the rated speed and the maximum constant- 

power speed.

The current-angle versus speed characteristics in Fig. 2.8d show the monotonic 

increase in current-angle with speed. Note the abrupt change in slope at the transitions 

between the operating modes.

It should be noted that the normalisation method used does not give an intuitive 

picture of the effect of adding inductance to the motor drive. Adding extra inductance 

will not affect the rated torque but will cause the rated speed to fall. W ith the unity 

normalised rated speed method used here, this forces the normalised low-speed torque 

to drop instead. Thus it would be better to use a normalisation for unity rated torque. 

However the unity rated speed normalisation is best for the IPM parameter plane (see 

Sec. 2.5) and so it has been used for the surface permanent magnet motor drive for 

consistency.

The optimal field-weakening performance is obtained from a surface permanent 

magnet motor drive when ^ mn =  l/y /2 . It is clear that it is impossible for the surface
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permanent magnet motor drive to ever match the ideal motor drive field-weakening 

performance as it is unable to maintain unity power-factor over its entire speed range. 

Common drive designs typically have values of ^ mn between 0.85 and 0.95. This limits 

the constant-power speed range to below about 2:1. Wider field-weakening performance 

can be obtained by adding external inductance to the motor [3]. This is at the cost of 

extra iron and copper losses in these inductances.
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2.3 Synchronous R eluctance M otor Drives

The synchronous reluctance motor (SYNCHREL) does not contain magnets but instead 

relies on reluctance torque produced by the different inductances in the d- and q-axes. 

The ratio of these inductances is called the saliency ratio and is an important motor 

parameter.

A comprehensive analysis of the control of the synchronous reluctance motor drive 

has been performed by Betz [6]. He used a combined unity rated speed and unity rated 

torque normalisation. This type of normalisation is useful for normal control analysis, 

however for analysis of the field-weakening performance it is better to use the unity 

inverter kVA and unity rated speed normalisation. This shows more clearly how well 

the motor drive is utilising the inverter kVA rating. This type of normalisation was 

also used for the surface permanent magnet motor drive.

This section analyses the field-weakening characteristics of the synchronous reluc­

tance motor drive using a lossless, steady-state, constant parameter DQ model. The

q - a x i s

I

Id

V

q —ax is 

▲

d - a x i s

w L I

d - a x i s

wLdId

Figure 2.9: Synchronous reluctance motor phasor diagram.
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q-axis is chosen to be the most inductive axis (see Fig. 2.9). This is opposite to the 

usual synchronous reluctance motor convention [6] but is normal for interior permanent 

magnet motor analysis [4, 34].

A synchronous reluctance motor drive can be characterised by its d-axis inductance 

L d  and q-axis inductance L q . When the motor drive is normalised for unity rated 

speed the parameters become dependent and the shape of the torque versus speed 

characteristic can be described by a single parameter. The saliency ratio (  =  L q/ L d  is 
chosen as it influences much of the control characteristics of the synchronous reluctance 

motor drive [6].

2.3.1 N orm alised Equations

The conventional per-phase steady-state DQ equations for the synchronous reluctance 

motor drive can be obtained from the phasor diagram in Fig. 2.9 and the torque 

expression can be derived using energy conservation from P  =  Tw  =  Vdh  +  VqIq :

Vd =  —U )LqI q 

V q = w L d h  

T  =  — ( L q — L d ) I dIq

i  =  y j i m i  < ic
where v  __

v = JVi + V* < Vc
(2.14)

Using the same normalisation for base voltage, current and power that was used for 

the surface permanent magnet motor drive, and replacing L q with ( L d  yields :

Vdn — Wn£Ldn!qn

Vqn — WnLdnIdn 

Tn =  ~ ( f  — 1 )LdnhnIqn

where
In = J I l  + JJ, < 1 
Vn =  \ J V I T V T  < 1

(2.15)

By applying the normalisation for unity rated speed to the voltage equations in (2.15) 

it can be shown that the two normalised parameters Ldn and L qn are dependent. Thus 

like the surface permanent magnet motor drive, the field-weakening performance of 

the synchronous reluctance motor drive can be characterised by a single parameter. 

The saliency ratio is used in preference to either Ldn or L qn as it is unchanged by 

normalisation.
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Replacing I qn with I n cos 7  and Idn with —I n sin 7  in (2.15) yields :

Vin =  —UJ„̂ LdnIn COS 7

v;„  =  —wnL inI in sin 7   ̂ where

=  K f  _  I ) !* ,/*  sin 27 i K  =  +  Kn <  1

(2.16)

From this it is clear that maximum torque is obtained with In = 1 and 7  =  45°. 

Inserting this into the voltage equations in (2.16) and solving for Vn =  1 at wn =  1 

yields :

L d n  =  V2/(«J +  !) L , n = iL in (2.17)

Substituting (2.17) into (2.15) yields :

V dn = ~  V^+T^n/n COS 7

Hn =  -  y / z f e u nIn sin 7  

r n =  . / 7,1 /" s in  27v /2^ 2+1) » 1

where /„ <  1

Vn =  +  V* <  1

(2.18)

2.3.2 SY N C H R E L  M otor Drive Circle Diagram

The circle diagram can be applied to the synchronous reluctance motor drive to deter­

mine the optimal field-weakening strategy in the same way as for the surface permanent 

magnet motor drive. The current-limit locus is again a circle. The voltage-limit lo­

cus can be obtained by applying the voltage constraint V^n +  Vqn <  1 to the voltage 

equations in (2.15) which yields :

4 + «W (2.19)

This is the equation of an ellipse, centred on the origin whose ellipticity is equal to 

the saliency ratio (see Fig. 2.10). Note that the infinite speed operating point lies at 

the origin and hence that synchronous reluctance motor drives have no inherent speed 

limitation.

From the torque equation in (2.15), the constant torque loci form hyperbolas in the 

( I d m  I q n )  plane with the d- and q-axes as asymptotes.
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constant torque 
hyperbola qn current-lim it

circle

infinite 
^  speed 
W  operating 
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► Id

voltage-limit
ellipses

increasing
speed

Figure 2.10: The synchronous reluctance motor drive circle diagram.

2.3.3 Infinite M axim um  Speed SY NCH REL M otor Drives

Due to its infinite maximum speed capability, the synchronous reluctance motor drive 

shows operation in all three operating modes described in Sec. 2.2.3. This is illustrated 

in Figs. 2.11 and 2.12. Note that in Fig. 2.11 all feasible 2nd quadrant operating points 

are shown shaded.

In Mode I, the maximum-torque-per-ampere current-angle 7m corresponds to the 

point where the constant torque hyperbola is tangent to the current-limit circle. This 

occurs with 7  =  45° in Fig. 2.11a and corresponds to point A in Fig. 2.12.

Above the rated speed the drive enters Mode II operation and the operating point 

moves along the current-limit circle. This is shown in Fig. 2.11b where the maximum 

torque is clearly obtained by operating at the intersection of the voltage and current- 

limit loci. This continues until the torque hyperbola becomes tangent to the voltage- 

limit ellipse at point B in Fig. 2.12 at u>t. This is the transition speed to Mode III



76 CHAPTER 2. THEORETICAL LIM ITATIONS
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tI

Mode

Figure 2.11: SYNCHREL Mode I, I I  and III  operation.
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Figure 2.12: Maximum torque operation of the synchronous reluctance motor drive.

operation. From the operating equations it can be shown that the constant-power 

speed <jjp corresponds to the Mode III transition speed u t (see Fig. 2.12). Thus the 

constant-power speed range is equal to the the speed range in which the drive is in 

Mode II.

In Mode III, maximum output power is obtained by operating at a fixed current- 

angle 71 with the maximum current possible, restricted by the voltage-limit constraint. 

The output power in this region falls inversely with speed. Thus the output power at 

very high speeds is small.
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2.3.4 C alcu lated  C haracteristics

From the optimal torque trajectory derived above, the performance characteristics of 

the synchronous reluctance motor drive can be calculated using (2.18). The resulting 

equations are given in Table 2.2. From the Mode II power-factor expression it can be 

shown that the maximum power-factor is :

=  f e y  (2-2°)

which is achieved when 7  =  arctan \/T-

The equations in Table 2.2 are illustrated graphically in Figs. 2.13 and 2.14 which 

shows the normalised torque, power, power-factor and current-angle versus speed curves 

for synchronous reluctance motor drives with saliencies of 2, 4, 8 and 1000 (infinity). 

For comparison the saliency ratio of synchronous reluctance motors lie roughly in the 

range 2 to 4 for single-barrier designs and 6 to 20 for axially-laminated designs.

The performance of synchronous reluctance motor drives improve monotonically 

with increasing saliency. This is clearly shown from Fig. 2.13. For high values of f, 

the constant-power speed range is approximately equal to £ /2  [6]. For instance from 

Fig. 2.13 the constant-power speed range of a synchronous reluctance motor drive with 

a saliency ratio of 8 is ideally about 4. Clearly the best field-weakening performance 

is obtained with an infinite saliency ratio. Note that like all pure reluctance machines, 

the synchronous reluctance motor drive features a natural inverse power versus speed 

characteristic in Mode III operation with fixed current-angles (cf. switched-reluctance 

motor drives).

Using the equations in Tables 2.1 and 2.2 it can be shown that the optimal field- 

weakening surface permanent magnet motor drive characteristic (with Wmn =  l / \ / 2 ) 

and the optimal synchronous reluctance characteristic (with f  =  00) have exactly the 

same torque (and hence power) versus speed characteristic :
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Table 2 .2 : Summary of the characteristics of the synchronous reluctance motor drive 

under maximum torque operation.

Parameter Mode I Mode II Mode III

Speed Wn <  1

Current Angle 7  =  45e 45° <  7  <  arctan (  7  =  arctan f

cos 7 _ U*+l-2ul

Voltage Vn — u n Vn =  l Vn — 1

Current

Torque

/n =  l

{>+i

/n  =  l

r" = V ^ ^ 5 sin27

/_ =  l i i i in 2* u/n

r « =

Power ■̂n — TnU)n Pn = COS <l> p n =  r„u>„

PF cos<i =  7 j ^ T  cos^

CPSR CPSR =  ^
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Torque/Speed Power/Speed
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0.2
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Figure 2.13: SYNCHREL torque and power characteristics.
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SYNCHRONOUS RELUCTANCE M OTOR DRIVES
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Figure 2.14: Calculated synchronous reluctance motor drive characteristics.
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This is a rather surprising new result considering the completely different torque 

production mechanisms in the two motor drives. It illustrates an interesting duality 

between the surface permanent magnet motor drive and the synchronous reluctance 

motor drive which is reflected in the performance of the interior permanent magnet 

motor drive as will be seen later. It also gives some hint that this may be a fundamental 

limitation of interior permanent magnet motor drives and also perhaps of all brushless 

AC motor drives.
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2.4 Interior Perm anent M agnet M otor D rives

After examining the surface permanent magnet motor drive and the synchronous reluc­

tance motor drive we are now ready to analyse the interior permanent magnet motor 

drive. As was pointed out by Jahns [22], this is really a hybrid of a permanent mag­

net motor and a reluctance motor. The main difficulty in its analysis is that it has 

two independent parameters instead of the one for the surface permanent magnet and 

synchronous reluctance motor drive.

2.4.1 N orm alised Equations

The conventional per-phase steady-state voltage and torque DQ equations for the in­

terior permanent magnet motor drive can be obtained from the phasor diagram in 

Fig. 2.15. Note that the torque equation is simply a combination of the surface per­

q - a x i s

q - a x i s

d - a x is

I

E = V w q m

. . . .

d - a x is

Figure 2.15: The IPM  phasor diagram.
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manent magnet (2.2) and synchronous reluctance (2.14) equations :

Vd =  —wLqlq 

Vg =  wLdld +

T  — Vmlq ~  (Lq — Ld)ldlq

Using the definition of { =  L qjLd yields :

where
/  =  J iT + p , <  / .

y  =  z  v>
(2.22)

Vt =  - « >tLdI ,

V, =  w L ih  +  to®, I
i  =  y y f + l ?  <  / .

where v   _
V  =  y /v i  +  V? <

(2.23)

T  =  ®m7, - ( ( -  l)L dIdIq 

From the phasor diagram, Id =  —/ s i n 7  and I q =  /  cos7 . Thus :

Vd =  —w£LdI cos 7

Vq =  —w L dl sin 7  +  w ^ m

T  =  \Pm/  cos 7  +  |(£  “  1 )LdI2 sin 27

where
/  <  L

y  =  \!yi +v,2 ^ v>
(2.24)

Applying the base voltage, current and power normalisation described in Sec. 2 .2.1 to 

(2.23) and (2.24) yields :

7„ =  y / l l  + /»„ <  1
where v   _

v. =  y/yi  +  Kl <  1

(2.25)

► where
I n  <  1

V d n  —  W n £ L d n I q n  

Vqn — 1VnLdnIdn “I" ^n^mn

/n = ^ m n l q n  (£ 1) L d n l d n l q n

V d n  ~  ^n^ /'rfn /n  COS 7

Vqn = WnL dnIn SIR 1 -|- Wntymn

Tn =  ^mn/n COS 7  +  |( £  -  1 )£«/„/* sin 2 ĵ ^
(2.26)

These normalised equations have three parameters : $ mn, £ and Ldn- This can be

reduced to two independent parameters by normalising the rated speed to unity. In

order to do this it is necessary to calculate the maximum-torque-per-ampere current- 

angle. This is found by differentiating the torque equation in (2.26) with respect to 7
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giving :

sm 7„

- » « n  +  +  8«  "  W i n
4(f -  l)L in

c =  i
(2.27)

During Mode II operation, the speed u n as a function of 7  at rated voltage (Vn =  1) 

and rated current (7n =  1) is obtained from the voltage equations in (2.26) giving :

u>» =   --------------------- 1------------------------  (2.28)
y (f L d n  C O S 7 )2 +  ( - X d n s m 7  -I- t f m „ ) 2

From the torque equation in (2.26) this gives the output power in Mode II as :

^mn cos 7  +  ! ( (  -  1 )Ldn sin 27
P n  = TnWn = (2.29)

yJ(£Ldn cos 7 )2 +  ( - L dn sin 7  +  ^ m„)2

From the above normalisation, when 7  =  7m in (2.28) then wn = 1. This means (, ^ mn 

and Ldn must be dependent and thus there are only two independent parameters. The 

selection of the two interior permanent magnet motor drive parameters is important 

and is discussed in detail in Sec. 2.5.

2.4.2 IPM  M otor D rive Circle Diagram

The voltage-limit constraint is obtained by setting V£n +  Vfn <  1 in (2.25). This yields :

which is an ellipse centred at (—'̂ mn/^dnjO) whose size is inversely proportional to 

speed (see Fig. 2.16). This is a combination of the surface permanent magnet mo­

tor drive’s “offset” voltage-limit circle and the synchronous reluctance motor drive’s 

voltage-limit ellipse. Thus not only is the interior permanent magnet motor drive a 

hybrid of the surface permanent magnet and synchronous reluctance motor drives in 

terms of torque, but also in terms of the voltage-limit constraint.

The constant torque locus is obtained from the torque equation in (2.25) as :
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Figure 2.16: The IPM  circle diagram.

which is a hyperbola whose asymptotes are the lines Iqn =  0 and the line ldn =  

®m»/(f “  1 )£*»•

In a similar fashion to the surface permanent magnet motor drive, the finite max­

imum speed IP M  drive has an infinite speed operating point outside the current-limit 

circle while the infinite maximum speed IPM  drive has it within the current-limit circle.

2.4.3 F in ite  M axim um  Speed IPM  M otor Drives

The finite maximum speed IP M  drive has a similar optimal control strategy and per­

formance to the finite maximum speed SPM  drive as shown by Figs. 2.17 and 2.18. 

It shows operation in Modes I and II. In Mode I the maximum-torque-per-ampere 

current-angle lies between 0° and 45°. This is represented by point A in Fig. 2.18 and 

corresponds to the point where the torque hyperbola is tangent to the current-limit 

circle.
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Finite
Maximum

Speed

Infinite
Maximum

Speed

IPMSynchrelSPM

Figure 2.17: The optimal control strategies for the five drive classes.

It has been shown by Adnanes [5] that for a given maximum normalised operating 

speed Warn, the shape of the normalised finite maximum speed IPM drive torque versus 

speed characteristic is nearly identical to that of the corresponding finite maximum 

speed SPM drive.

2.4.4 Infinite M axim um  Speed IPM  M otor D rives

The hybrid nature of the interior permanent magnet motor drive is again clear from 

the optimal control strategy shown in Figs. 2.17 and 2.19. The control of the infinite 

maximum speed IPM drive is a cross between that of the infinite maximum speed SPM 

drive and the infinite maximum speed SYNCHREL drive. The main difference is that 

the Mode III trajectory is no longer a straight line in the circle diagram, but a curve 

representing the locus of the tangent between the constant torque hyperbola and the 

voltage-limit ellipse.

This yields similar torque versus speed characteristics to the infinite maximum speed
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Figure 2.18: The finite maximum speed IPM  operating trajectory.
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Figure 2.19: The infinite maximum speed IPM  operating trajectory.
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SPM  drive. The main differences are that the output power in Mode III is no longer 

constant at tymn/Ldn hut instead overshoots it during Mode I or II and then asymptotes 

towards it in Mode III. In general the constant-power speed u>p occurs during Mode 

III operation instead of during Mode II operation as for the finite maximum speed IPM  

drive.

The Mode III (voltage-limited) trajectory is found by substituting the voltage-limit 

constraint (V£n +  Vfn =  1) into the torque equation in (2.25) and differentiating and 

equating to zero [34]. This yields the following expressions :

l d n  —

Ign —

- A  Idn
Ldn

y/l/w *  -  (LdnAIdn)2 
£Ldn

> where A Idn —
-Wmn + \/( t* m n y  + S ( i - i y / w *  

4({ -  1 )L in

(2.32)
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2.5 IP M  Param eter P lane

This section describes the new concept of the IPM parameter plane which allows the 

effect of param eter changes on all five drive classes to be examined using a single 

diagram.

The shapes of the surface permanent magnet and synchronous reluctance motor 

drive torque versus speed characteristics were both defined by a single parameter. It 

was thus straightforward to show how the shape of the field-weakening characteristic 

was affected by this parameter. On the other hand, the shape of the interior permanent 

magnet motor drive torque versus speed characteristic is defined by two parameters. 

This makes it difficult both to illustrate and to obtain a clear understanding of how 

changes in these parameters affect the drive’s operating characteristic.

The IPM param eter plane is a new graphical technique which is based on contour 

plots. The two independent parameters are used as axes. The choice of these param­

eters is arbitrary but they should be as independent of each other and as physically 

meaningful as possible. One parameter should represent the interior permanent magnet 

motor drive’s permanent magnet nature and the other its reluctance nature. A good 

choice is the parameters used earlier to characterise the surface permanent magnet and 

the synchronous reluctance motor drive, that is the normalised magnet flux-linkage 

and the saliency ratio £. Note that the normalised magnet flux-linkage is equal 

to the ratio of the magnet-induced open-circuit back-emf voltage to the rated voltage 

at rated speed.

Fig. 2.20 shows the IPM parameter plane and the location of some common motor 

drive types. The dotted regions represent steel and the solid areas represent permanent 

magnets. All pure surface permanent magnet motor drive designs have £ =  1 and lie 

on the x-axis while pure synchronous reluctance motor drive designs have \Pmn =  0 and 

lie on the y-axis. Single-barrier designs generally have saliencies in the range 2 to 4 

while multiple-barrier designs (usually axially-laminated) have saliencies in the range 

6 to 20 .

The IPM parameter plane extends to infinite saliency ratios, however all the plots
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Figure 2.20: The IPM  parameter plane.

shown in this section only cover f  <  11 as most motor drive designs have saliencies in 

this range. A notable exception to this is a two-pole axially-laminated design described 

by Boldea [36] which had an saturated saliency ratio of about 14.

Fig. 2.20 also shows how adding permanent magnet material or improving its grade, 

increases the normalised magnet flux-linkage while not affecting the saliency ratio. As 

each point on the IPM parameter plane corresponds to a particular shape of torque 

versus speed characteristic, thus the performance of an interior permanent magnet 

motor drive can be “tailored” to some extent by adding or removing permanent magnet 

material.

Fig. 2.21 shows how the normalised torque and power versus speed characteris­

tics vary with the location of the design on the IPM parameter plane (the equations 

are derived later). The dashed line represents the ideal motor drive field-weakening 

characteristic. It shows how the performance of synchronous reluctance motor drives 

(y-axis) improves monotonically with saliency. It also shows the ideal constant-power
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characteristic of infinite maximum speed SPM drives (x-axis, \Pmn <  0.7).

Designs which have zero inductance have \Pmn =  1 and no field-weakening capabil­

ity. As the motor inductance is increased, \Pmn will decrease until it is zero for pure 

synchronous reluctance motor drives. $ mn also gives some idea of how much torque is 

produced by alignment (magnet) torque. In general, the further the design is to the 

right of the IPM parameter plane, the greater its permanent magnet nature while the 

closer it is to the left, the greater its reluctance nature.

Fig. 2.21 also shows that the boundary between finite and infinite maximum speed 

drives runs roughly diagonally from the top left to the bottom right of the IPM parame­

ter plane. Designs which lie on this boundary appear to have excellent field-weakening 

characteristics. In order to investigate this phenomenum more closely it is useful to 

use contour plots of important field-weakening performance parameters such as the 

constant-power speed range. The remainder of this section discusses the calculation of 

the IPM parameter plane plots and evaluates the results obtained.

2.5.1 C alculation  o f 1PM Param eter P lane P lo ts

In order to produce contour plots of the field-weakening performance characteristics 

of the interior permanent magnet motor drive it is necessaxy to calculate expressions 

for these in terms of the two independent parameters \Pmrv and {. The first step is to 

calculate the third IPM parameter Ldn as a function of { and ^ mn. This is obtained by 

substituting (2.27) into (2.28) and solving for unity normalised rated speed giving :

0 =  £*, [(4 - 1) (42 + 1)2 

+  XL [(34s +  € * - 4 f  +  2 ) n „ - 4 ( f - l ) K »  +  l)] (2-33)

+  [(3f -  1 )«J»  -  (74 - 5 ) » * .  +  4(£ -  1)]

This has two positive real roots and substitution back into the original equations is 

required to determine the correct one.

Once Ldn has been calculated, the maximum-torque-per-ampere current-angle can 

be determined from (2.27). The normalised rated output power P*n can be obtained
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Figure 2.21: Normalised torque and power versus speed characteristics.
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from (2.29) with 7  =  7 m :

P k n  =  tfmn COS 7m +  ~  l)^dn sin 27m (2.34)

The inverter utilisation k is the ratio of the rated output power to the inverter kVA 

rating (see Sec. 1.1). This is equal to the normalised rated output power P k n >

The normalised maximum operating speed U x n  for finite maximum speed IPM drives 

is obtained by substituting 7  =  90° into (2.28) :

Wxn =  — ITT— where tfmn >  Ldn (2.35)
* mn "dn

As the speed approaches infinity for an infinite maximum speed IPM drive, from (2.32) 

Idn approaches ~ ^ mn/Ldn and Iqn approaches l / ( f£dnwn). Substituting this into the 

torque equation in (2.25) yields the following expression for the normalised asymptotic 

output power at high speed Paa n

’

P a n  =  <
0  * ra„ >  L i n  (2  3g )

V m n / L d n  t f mn <  L dn

The constant-power speed range is calculated separately for finite and infinite max­

imum speed IPM drives. For finite maximum speed IPM drives, the constant-power 

speed ujp occurs in Mode II. It is obtained by solving Pn = Pkn with (2.29) and 

(2.34). This yields a quartic for sin7P, the sine of the current-angle corresponding to 

the constant-power speed u p :

0 =  sin4 7P [({ -  l ) 2L 2dn]

+ sin3 7P [2f m„(£ -  1)1 *,]

+  sin2 7 ,  [(1 -  e W L  +  "  1 ) ^ J  (2.37)

+ sin 7p [ — 2 9 m n h i n P l n  ~  2<Pmn(£ -  1 ) L d n  ~  2V m n L i n { P k n  +  ̂~ 1)]

+  l e P L L L  +  P L K n  ~  ®inl

This quartic can be rapidly solved numerically using eigenvalues [37] and generally 

yields only two real roots, one of which is sin7m and the other is sin7P.

For infinite maximum speed IPM drives, u p occurs in Mode III (see Fig. 2.19 on 

pg. 88). The constant-power speed range can be obtained by solving the power equation
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from (2.25) :

Pkn — T nWn =  [^mn/gn ~  (f “  l)^dn-fdn/gn]^n (2.38)

by substituting in the Mode III optimal torque trajectory equations (2.32). The resul­

tant equation can be rearranged to yield :

Ax
B  -I- VC D x  

E ~ )
21

(f  + V C  + D x)

where :

* =

A  =  (4 (L inPkn)2 

B  =  ~ { V mn 

c = (^mn)2 
D  =  8( £ - l )2 

E  =  4 ( f - l )

F  =  3 ( * m„

Rearranging (2.39) yields :

0 =  (Gx2 + I x  + K ) + VC +  D x(H x  +  J)

where :

G =  4 ( £ - l )2 

H  =  4 ( » „

/  =  -  l O ^ P 2,

J  = f * L / 2 ( « - l ) 2

*  =  - ( 4f 4mn /2«  - 1)2

Rearranging (2.40) yields :

0 =  x3[ (£ - l )< ]

+  *2K2(£ -  i)2( - s * L  -  8I i .P L ) )
+  * [ ^ ( 3 * i .  -  20L ln* tlnPZn +  16L*dnP}n)}

+  [ ? K n W L  ~  » i . ) / «  -  I )3]

(2.39)

(2.40)

(2.41)
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Figure 2.22: Maximum-torque-per-ampere current-angle contour plot.

This equation can be solved numerically as all the co-efficients are known. The correct 

root is found by substituting the roots back into the initial equations.

2.5.2 D iscussion  o f Contour P lots

Using the above equations it is possible to calculate and produce contour plots of 

the maximum-torque-per-ampere current-angle 7m, the inverter utilisation «, the nor­

malised maximum operating speed wxn, the asymptotic high speed output power Pan 

and the constant-power speed range CPSR.

The maximum-torque-per-ampere current-angle contour plot (Fig. 2.22) shows how 

7m increases from 0° for surface permanent magnet motor drives along the x-axis to 45° 

for synchronous reluctance motor drives along the y-axis. It illustrates the point made 

earlier that designs to the right of the IPM parameter plane have a strong permanent 

magnet nature, while designs to the left have a strong reluctance nature.

The inverter utilisation k contour plot is shown in Fig. 2.23. Since the motor drive is
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assumed lossless, this is equal to the power-factor at rated speed when delivering rated 

torque. The contour plot shows that the inverter utilisation improves monotonically 

with increasing saliency ratio and increasing magnet flux-linkage. Note that it was 

shown in Sec. 2.3.4 that a synchronous reluctance motor drive with an infinite saliency 

ratio has k = l / \ / 2*

The normalised maximum operating speed wxn contour plot (Fig. 2.24) shows that 

for a given saliency ratio, wxn increases as the magnet flux-linkage is decreased until it 

reaches infinity at the infinite maximum speed line. This corresponds to the boundary 

between finite and infinite maximum speed drives. This matches closely but not exactly 

to the k =  l /y /2  line in Fig. 2.23.

The maximum operating speed contour plot is important as it allows the division 

of the IPM parameter plane into the five drive classes as shown in Fig. 2.25. The ability 

of the IPM parameter plane to represent all five classes on a single diagram is critical 

to allowing comparisons to be made.

The normalised asymptotic high speed output power Pan contour plot (Fig. 2.26)
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Figure 2.23: Inverter utilisation (k)  contour plot.
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Figure 2.24: Normalised maximum operating speed (uxn) contour plot.
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Figure 2.26: Normalised asymptotic high speed output power (Pan)-

shows that finite maximum speed drives have zero output power at infinite speed. For 

infinite maximum speed drives Pan improves with increasing magnet flux-linkage up to 

the infinite maximum speed line, at which point it is unity.

The constant-power speed range (CPSR) contour plot in Fig. 2.27 is calculated using 

(2.37) and (2.41). For synchronous reluctance motor drives the constant-power speed 

range is approximately half the saliency ratio (see Sec. 2.3.4). For surface permanent 

magnet motor drives the constant-power speed range is unity with \Pmn =  1 and 

improves dramatically with decreasing \Pmn until it reaches infinity for \Pmn < 1/ y/2 

(see Sec. 2.2.5). Finite maximum speed IPM drives clearly have a finite constant- 

power speed range however not all infinite maximum speed IPM drives have an infinite 

constant-power speed range. The designs that do, lie in a band bounded by the infinite 

maximum speed line on the right, and on the left by the line where the normalised 

asymptotic high speed output power (see Fig. 2.26) is equal to the normalised rated 

power or inverter utilisation (see Fig. 2.23).

A comparison of Figs. 2.27 and 2.23 shows that in order to obtain an infinite
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Figure 2.27: Constant-power speed range (CPSR) contour plot.

constant-power speed range it is necessary to have an inverter utilisation below about 

0.7. The optimal field-weakening performance is obtained with designs on the infinite 

maximum speed line. This optimal performance corresponds to having unity nor­

malised output power at infinite speeds and an infinite constant-power speed range, 

but is associated with an inverter utilisation of about 0.7. The infinite maximum speed 

line corresponds to Schiferl and Lipo’s optimal design criterion (2.1) and will be now 

be referred to as the optimal IPM design line. Designs which lie on this line will be 

termed optimal field-weakening IPM designs.

The optimal surface permanent magnet and synchronous reluctance motor drive 

designs have identical field-weakening performance (see Sec. 2.3.4). Optimal interior 

permanent magnet motor drive designs have similar but not identical field-weakening 

performance. For instance the inverter utilisation of optimal surface permanent magnet 

and synchronous reluctance motor drives is 0.707. Optimal interior permanent magnet 

motor drives have inverter utilisations ranging from 0.707 to 0.721. The highest inverter 

utilisation is obtained with a saliency ratio of 2. For practical purposes the field-



2.5. IPM  PARAM ETER PLANE 101

weakening performance of all optimal designs is the same.

Demagnetisation withstand limits are critical for permanent magnet motor drives. 

Assuming zero airgap and no leakage for simplicity then the minimum magnet operating 

point (  with rated stator current occurs when I  — Ic and 7  =  90° :

C =  Ld" (2-42)*mn
where unity represents operation at remanence and zero corresponds to zero flux in 

the magnet (see Fig. 2.28). It should be noted that using the rated stator current 

with the worst possible orientation is a conservative estimate and that the optimal 

field-weakening strategy will generally not require the magnet operating point to be 

brought so low. The minimum magnet operating point is inversely related to the field- 

weakening range and in optimal field-weakening IPM designs is equal to zero. Thus for 

good field-weakening performance it is necessary to use magnets with at least a linear 

2nd quadrant demagnetisation curve [34]. In practice, stator leakage inductance will 

mean that not all the stator d-axis flux will pass through the magnet and this will 

increase the minimum magnet operating point.

2.5.3 U sing th e IPM  Param eter P lane

The aim of the IPM parameter plane is to allow the visualisation of the effect of pa­

rameter changes on the field-weakening performance. This is what is explored in this 

section.

The shape of the normalised torque versus speed characteristic of a constant param­

eter, lossless interior permanent magnet motor drive is affected by four parameters : 

/ 0, ^ m, L d  and L q . Varying I 0 or does not alter the saliency ratio and hence moves 

the design parallel to the \Pmn axis (see dotted lines in Fig. 2.29). Increasing I 0 or de­

creasing \Pm decreases \Pmn. Varying L q causes the design to move along the direction 

of the solid lines which roughly follow lines of constant u xn and Pan. This is because 

these parameters are mainly determined by and I0. Varying Ld causes the

design to move along the direction of the nearly vertical dashed lines. This is because 

for designs with a saliency above about two, L d  L q and so L d  has little effect on
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ure 2.28: Demagnetisation'withstand constraint contour plot.
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Figure 2.29: Effect o f varying Lq (solid), Ld (dashed), and I a (dotted).
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u 0 and hence on $ mn. The spacing between the solid lines and also that between the 

dashed lines correspond to equal increments in the actual magnet flux-linkage

Consider a motor drive design corresponding to point A in Fig. 2.29 which has the 

un-normalistd torque versus speed characteristic shown in Fig. 2.30 (also marked “A”). 

Note that it is a near optimal design showing excellent field-weakening performance.

Doubling L q doubles the saliency ratio and moves it along the solid line in Fig. 2.29 

to point B. Fig. 2.30 shows that this nearly doubles the low-speed torque and halves 

the rated speed but has little effect on the high speed performance and on the rated 

output power. As mentioned earlier, the high speed performance of designs with a 

significant permanent magnet nature is mainly determined by \Pm, Ld and I 0 and is 

relatively independent of L q. Thus saturation of L q will mainly affect the low-speed 

performance and has little effect on the field-weakening performance. This has been 

noted earlier by Chalmers [38].

Doubling \Pm moves the design along a line of constant saliency to point C in 

Fig. 2.29. The doubling of the magnet flux only results in about a 20% increase in 

rated torque as this design is mainly a reluctance machine (note that the back-emf at 

rated speed is only just over 30% of the terminal voltage). The high speed performance 

of this design (shown as a dashed line in Fig. 2.30) is poor as the magnet flux is much 

greater than £<*/<>.

Finally, doubling Ld halves the saliency ratio and returns the design to point A. The 

new design (A’) has exactly the same shaped torque versus speed characteristic as the 

original design, but has twice the rated torque and half the rated speed. This illustrates 

the concept of normalisation and shows that each point on the IPM parameter plane 

represents an infinite number of .drive designs, each with identically shaped (normalised) 

field-weakening characteristics.

The IPM parameter plane is also useful for illustrating the effect of starting off 

with a given synchronous reluctance motor drive design and investigating the effect of 

adding magnet flux on the torque versus speed characteristics.

Figs. 2.31 and 2.32 show the effect on the torque and power versus speed character-
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Figure 2.30: Effect o f parameter changes on the torque versus speed characteristic.
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istics of increasing the magnet flux in five equally-sized increments. “0” corresponds 

to a pure reluctance design, “2” corresponds to an optimal field-weakening design and 

“5” corresponds to a design with a strong permanent magnet nature. The drive in 

Fig. 2.31 has a saliency ratio of four and that in Fig. 2.32 has a saliency ratio of eight. 

Note that the optimal designs in Figs. 2.31 and 2.32 actually correspond to designs A 

and B respectively in Fig. 2.29.

Adding magnet flux improves the low-speed torque and decreases the rated speed. 

Initially the field-weakening performance improves with increasing magnet flux, how­

ever once the optimal design is reached further additions of magnet flux rapidly degrade 

the performance. For a high-saliency design the required optimal magnet flux is lower 

as Ld is lower and hence the increase in rated torque is smaller. Figs. 2.31 and 2.32 

also show that the sensitivity of the field-weakening performance to variations in the 

magnet flux is lower with increased saliency. Thus a high a saliency ratio as possible 

should be used.
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Figure 2.31: Effect o f adding magnet material to a SYNCHREL with (  =  4.
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2.6 T heoretical Optim al Field-W eakening D esigns

This chapter introduced the new concept of the IPM parameter plane. This represents 

a unified method for illustrating the effect of parameter changes on the field-weakening 

performance of the five drive classes. The analysis was based on obtaining the maximum 

torque from the motor drive within a given voltage and current rating. The IPM 

parameter plane has shown that the optimal field-weakening performance for brushless 

synchronous AC motor drives offers unity normalised output power up to infinite speeds 

but is limited to an inverter utilisation of about 0.7. There is an fundamental tradeoff 

between the field-weakening performance and the inverter utilisation. Unity inverter 

utilisation can only be achieved with drives with no field-weakening capability (\I/mn =

i).

The optimal field-weakening performance can be obtained from any drive design 

lying on the optimal field-weakening design line in the IPM parameter plane. These 

designs fall into three catagories :

•  synchronous reluctance motor drives with infinite saliency.

• interior permanent magnet motor drives where \Pm =  X j/C.

• surface permanent magnet motor drives with $ mn =  l / \ / 2 .

Note tha t all these optimal designs share a common characteristic : the effective 

d-axis flux-linkage is zero when rated current is applied to the d-axis of the motor. For 

instance with an infinite saliency ratio synchronous reluctance motor drive Ld =  0 and 

so aligning the current phasor with the d-axis yields zero flux. W ith permanent magnet 

motor drives the optimum field-weakening criterion (2 .1) means that the stator d-axis 

flux-linkage due to the finite saliency ratio is precisely cancelled by the permanent 

magnet flux. This results in a zero total d-axis flux-linkage which is equivalent to 

having Ld =  0. Thus the drive has effectively infinite saliency ratio and hence excellent 

field-weakening performance.

Clearly infinite saliency ratio synchronous reluctance motor drives axe impossible 

however high-saliency designs may offer a sufficiently wide field-weakening performance.
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The synchronous reluctance motor drive has the following advantages [7, 21] over per­

manent magnet motors :

•  no magnets. This reduces the cost and eliminates problems of magnetisation and 

demagnetisation withstand.

• no open-circuit back-emf voltage. This eliminates the problem of uncontrollable 

fault currents and means that no demagnetising current is required at high speed.

• a thermally rugged rotor, capable of operating to extreme temperatures.

• no tem perature sensitive parameters except the stator resistance.

• simpler control. Vector control of the synchronous reluctance motor drive is 

simpler than that for the induction motor due to its synchronous nature.

According to the idealised constant parameter analysis in Sec. 2.3.4, the constant- 

power speed range and inverter utilisation of synchronous reluctance motor drives is 

determined by the saliency ratio. A saliency ratio of 8 will ideally give a constant-power 

speed range of about 4:1 and an inverter utilisation of just over 0.6. If synchronous 

reluctance motor drives can achieve the required field-weakening performance then they 

will be preferred to permanent magnet motor drives, all other things being equal. If 

synchronous reluctance motor drives are unable to achieve the desired field-weakening 

performance then the next best option is to use a high-saliency optimal field-weakening 

IPM design. These offer the following advantages [7, 39] :

• low magnet requirements : and so low cost. The majority of the torque is gener­

ated from the reluctance nature of the motor.

• lower open-circuit voltages at high speeds : high magnet-induced open-circuit 

voltages can present a hazard if the controller was to trip out at high speed [11]. 

High-saliency optimal field-weakening IPM designs have a lower back-emf voltage 

(see Fig. 2.25). For instance with an optimal field-weakening SPM design the 

induced voltage at rated speed is approximately 70% of the rated voltage. Thus 

at five times rated speed, the open-circuit terminal voltage will be three and a
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half times the rated voltage. For an optimal field-weakening IPM design with a 

saliency ratio of 7, the back-emf is about 20% of rated voltage at rated speed. 

Thus at five times rated speed, the open-circuit voltage will be only equal to the 

rated motor voltage.

• reduced sensitivity to magnet flux variations. This was shown by Figs. 2.31 and 

2.32. This makes the performance less sensitive to changes in the magnet flux 

due to tem perature or production variations.

• reduced no-load iron losses due to the lower magnet flux. This should give higher 

efficiency under high-speed, light-load conditions compared to surface permanent 

magnet motor drive designs.

• reduced copper losses due to the reduction in the “defluxing” current require­

ments under light load, high speed conditions. Under no-load operation, the op­

timal field-weakening SPM design would only be able to operate up to 1/0.7 =  1.4 

times rated speed before the open-circuit terminal voltage reaches the rated volt­

age. To operate at higher speeds some “defluxing” current would be required 

to keep the terminal voltage below its rated value. However an optimal field- 

weakening IPM design with a saliency ratio of 7 could operate up to 1/0.2 =  5 

times rated speed before rated terminal voltage is reached.

The effect of practical factors on the field-weakening performance will be investi­

gated in the next chapter.



C hapter 3

P ractical L im itations

This chapter examines the effect of practical factors such as stator resistance, iron 

losses, magnetic saturation, DQ cross-coupling, minimum magnet operating point and 

mechanical constraints on how closely the ideal field-weakening performance predicted 

in the previous chapter can be achieved.

First the location of existing and proposed motor drive designs in the IPM parameter 

plane is shown. The effect of practical factors on the low speed torque, inverter utili­

sation and constant-power speed range are analysed. The results axe validated against 

experimental measurements for a surface permanent magnet and two synchronous re­

luctance motor drives. Finally conclusions are drawn about the best drive for field- 

weakening applications.

I l l
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3.1 A chievable IPM  Param eter P lane D esigns

If this entire thesis had to be summarised in a single diagram, then Fig. 3.1 would 

be that diagram. It shows the location of practical brushless synchronous AC motor 

designs on a contour plot of the constant-power speed range in the IPM parameter 

plane. These designs cam be grouped into five classes :

•  surface permanent magnet,

•  single-barrier synchronous reluctance,

• single-barrier interior permanent magnet,

• multiple-barrier synchronous reluctance,

• multiple-barrier interior permanent magnet.

Note that the more interesting designs are marked with the first four letters of their 

author’s name and that crosses are used to represent multiple-barrier designs and discs 

used to represent single-barrier, spoke-type or surface permanent magnet designs.

The optimal field-weakening performance is obtained from designs which lie on the 

optimal IPM design line (solid line in Fig. 3.1). An infinite constant-power speed range 

can be obtained by designs lying in the zone on the left of the optimal IPM design line, 

but these designs show a lower inverter utilisation at rated speed and lower output 

power at high speeds than optimal designs (see Fig. 2.23 on pg. 97).

Surface permanent magnet motor drives (bottom right of Fig. 3.1) use either ferrite 

or rare-earth magnets. The low permeability of these magnets mean that the motors 

have no saliency. From examining commercial designs [40, 41, 42] it was found that 

ferrite SPM designs generally have values of \Pmn in the range 0.83 to 0.92 while rare- 

earth designs have values in the range 0.90 to 0.96. Rare-earth permanent magnet 

motor drives have a higher ^ mn as the magnets generate more flux (see Fig. 2.29 on 

pg. 102). In general surface permanent magnet motor drives have constant-power speed 

ranges below 3:1 and it is usually below 2:1.
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Single-barrier synchronous reluctance motor drives achieve saliency ratios in the 

range 2 to 5 [21, 43, 44]. This type of motor was originally fitted with a cage to allow 

self-starting. It was popular for fibre-spinning applications in the late fifties and early 

sixties [7]. Note tha t the field-weakening range of these drives is small.

The simplest interior permanent magnet motors axe of the single-barrier or spoke- 

type construction. These designs are usually finite maximum speed IPM drives with 

constant-power speed ranges between 1.5:1 and 3:1 [2, 5, 30, 38, 45, 46]. The design 

described by Mecrow et al. [47] is an unusually highly-rated drive which theoretically 

has a wide field-weakening performance. It uses a high electric loading and can only be 

operated interm ittently or else requires substantial external forced cooling. The other 

single-barrier designs could also achieve comparable performance if they were similarly 

cooled. The main drawbacks of obtaining a wide field-weakening range with these 

motor drives is the requirement for external cooling, the high open-circuit back-emf 

voltage, the high magnet cost and the difficulty of ensuring sufficient demagnetisation 

withstand over the full temperature range.

Multiple-barrier or axially-laminated synchronous reluctance motor drives can achieve 

saturated saliency ratios in the range 5 to 14 [48, 49, 50, 51, 52, 53]. The highest 

saliency ratios are obtained with two-pole designs such as those built by Boldea et 

al. [48] which feature unsaturated saliencies of up to 20. These high saliency designs 

should theoretically offer a wide field-weakening range.

Adding permanent magnet material to these motors can produce drives with a 

potential for the optimum field-weakening performance [54]. The four designs marked 

“SOON” in the multiple-barrier IPM zone represent the calculated effect of adding ferrite 

and rare-earth magnets to two axially-laminated synchronous reluctance motor designs. 

Note that by adding a suitable quantity of magnet material it is possible to obtain an 

optimal field-weakening design. The design of these motor drives is discussed in detail 

in Part Two.

The design by F ratta et al. [54] (marked “FRAT” ) is a multiple-barrier (radially- 

laminated) motor using ferrite magnets and a fan-cooled stator. Two points are shown 

for this design. The one with the higher saliency corresponds to the unsaturated
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parameters, while the lower saliency point corresponds to the saturated parameters. 

Heavy saturation has caused a unusually high maximum-torque-per-ampere current- 

angle. This in turn causes the saturated design to appear to be a finite maximum speed 

IPM drive even though it is actually a infinite maximum speed IPM drive. This shows a 

significant limitation with the IPM parameter plane in that it assumes the drive operates 

at the constant parameter maximum-torque-per-ampere current-angle. The actual 

operating current-angle can be substantially different to this due to saturation. Thus 

the IPM parameter plane is mainly useful to give a rough idea of the field-weakening 

performance.
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3.2 P ractica l Factors

3.2.1 C opper Losses

Stator copper losses are present in all electrical machines. They are the sole source of 

loss at standstill for brushless AC synchronous motors and the ability of the motor to 

dissipate these losses generally determines the maximum continuous stator current and 

hence output torque. Stator resistance can be modelled by a resistance in series with 

the ideal motor as shown in Fig. 3.2. Note the definition of the internal power-factor 

cos <j>i, the magnetising voltage Vm and the magnetising current Im. In this case Im =  I.

Due to scaling effects, the per-unit copper loss R m (the copper loss expressed as a 

fraction of the rated input kVA) to a first approximation is inversely proportional to 

the motor diameter [12]. Thus the smaller the motor, the higher the per-unit copper 

loss. For motors in the range 1 to lOkW it is typically about 0.05pu or less, while a 

typical 120W induction motor had a 0.2pu stator copper loss.

The effect of stator resistance is to reduce the magnetising voltage. Adding stator 

resistance does not alter the maximum-torque-per-ampere current-angle and thus cos <j>i 

will be unaffected by it. From Fig. 3.2, if Vn =  1 and if Ran -C 1 then :

Vmn =  y /l +  (InRan COS fa)2 -  (InR sn)2 -  InR m COS ^  «  1 -  InR»n COS <j>i (3.1)

I

[cO!

R s

A/VV
Im

cos 0
m

r *I coicos 0 | LOSSLESS
LINEAR
MOTOR =>

Figure 3.2: Modelling stator resistance.



3.2. PRAC TIC AL FACTORS 117

The rated speed is proportional to Vm• Thus the rated speed w ^ new) taking into 

account stator resistance with respect to the original rated speed w^oid) can be obtained 

from (3.1) with In =  1 :

= vmn* l -  R .n cos h  (3.2)
U>k(old)

The inverter utilisation k is the ratio of the rated output power to the input kVA 

rating. For a lossless drive it is equal to the internal power-factor. As stator resistance 

has no effect on the rated output torque, thus the reduction in the inverter utilisation 

is proportional to the reduction in the rated speed. The inverter utilisation kr taking 

into account stator resistance can be obtained from (3.2) as :

Kr »  [1 — Ran COS <j>i] COS <j>i = [l — (3.3)

Equation (3.2) shows that the internal power-factor cos <j>i determines the “sensi­

tivity” of the motor drive to stator resistance. The internal power-factor of a sur­

face permanent magnet motor drive when delivering rated torque as a function of the

constant-power speed range <r (from Table 2.1) is given by :

cos <i>i = y 1 (3.4)

and that for a synchronous reluctance motor drive (from Table 2.2) is :

cos <j>i =  where (  =  a  +  y/a2 — 1 (3.5)
2 v£<r

These equations are illustrated in Fig. 3.3. Note that surface permanent magnet mo­

tor drives have a higher power-factor than synchronous reluctance motor drives for 

the same constant-power speed range. However as the constant-power speed range 

approaches infinity, the power-factor of both drives under rated torque operation ap­

proaches l/y /2 .

As mentioned above, the normalised copper loss is typically less than 0.05pu for 

motor drives in the range 1 to lOkW. Thus the reduction in the rated speed and in the 

inverter utilisation due to stator resistance is generally less than 5%.

It can be shown that to a first approximation, stator resistance has no effect on the 

constant-power speed range of brushless synchronous AC motor drives. Consider an
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Figure 3.3: Power-factor at rated torque as a function of CPSR.

ideal, lossless, constant parameter drive (ie. R , =  0) whose performance is shown by 

the solid line in Fig. 3.4. Note that the mechanical output power Pm is given by :

Pm = VmIm cos <l>i (3.6)

The mechanical output power is equal at the limits of the constant-power speed range. 

During field-weakening, as R , =  0 thus Vm =  V  =  1 and so Im cos fa at the rated speed 

u>ki must be equal to I m cos fa at the constant-power speed u pi .

When resistance is added to the ideal motor, the terminal voltage at rated speed 

decreases as shown by (3.1). Fig. 3.4 illustrates this for an extremely large value of R a 

(dashed line). During Mode II operation as the power-factor increases, the magnetising 

voltage decreases. As I m cos fa is equal at both ends of the constant-power speed range, 

thus from (3.1) Vm is also approximately equal at both ends. Thus as far as calculating 

the constant-power speed range is concerned, the motor drive is simply operating from 

a constant lower voltage. However as the constant-power speed range is independent of 

voltage, thus to a first approximation the constant-power speed range is independent 

of stator resistance for all drives.
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Figure 3.4: Effect o f stator resistance on the constant-power speed range.

Drives with the constant-power speed range entirely within Mode II also have I m — 

1 during this period. From (3.1), Vm is thus exactly the same at Wk and wp and 

hence the constant-power speed range is completely unaffected by stator resistance. 

This covers all drives classes except the infinite maximum speed IPM drive where the 

constant-power speed range is only unaffected to a first approximation. It is important 

to note that the above discussion assumes that the optimal field-weakening control 

strategy is unaffected by stator resistance. This is valid only for small values of R s.

A final point from Fig. 3.4 is that the stator resistance reduces the terminal voltage 

during Mode II operation and hence reduces the ratio of the peak output power to 

the rated output power. This makes the constant-power speed range more sensitive to 

losses which increase with speed.
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3.2.2 Saturation  and Cross-Coupling

Up to this point it has been assumed that the d- and q-axis inductances are constant. 

In general this is far from the case and the inductances are actually functions of the 

currents in both axes. Saturation describes the effect of a current in an axis on the 

inductance in that axis, for instance Id on Ld- It occurs to some extent in all well- 

designed reluctance machines.

Cross-coupling is used to describe the effect of a current in one axis on the in­

ductance in the other axis, say Iq on Ld. It can be substantial in single-barrier 

[30, 43, 55, 56] and spoke-magnet designs [47, 57]. This is because the low saliency 

means that the d-axis (low-inductance axis) flux is significant and can cause partial sat­

uration of the q-axis (high-inductance axis) flux paths and also that heavy saturation 

in the q-axis paths can also affect the d-axis inductance.

Cross-coupling can also be introduced in permanent magnet machines by the famil­

iar armature reaction effect as found in DC motors [14]. Large q-axis currents causes 

saturation which reduces the total magnet flux \Pm and effectively makes Ld appear to 

increase as is normally assumed constant [57]. This has the opposite effect to that 

produced by saturation of the d-axis flux paths by I q which causes Ld to decrease. The 

apparent change in Ld with Iq thus depends on which effect is predominant. This is 

determined by the actual motor design.

Multiple-barrier (axially-laminated) designs do not show significant cross-coupling 

as the high saliency ratio means that the d-axis flux is low and so does not saturate 

the q-axis flux paths. The d-axis flux path is also mainly air and so even heavy q-axis 

saturation will not cause much change in Ld. It was shown in the previous chapter 

that multiple-barrier designs are required to obtain the high saliency ratios required for 

good field-weakening performance and so the effect of cross-coupling can be neglected.

The effect of saturation however cannot be ignored. It is especially important in the 

high inductance q-axis. As the reluctance torque is proportional to L q — Ld, saturation 

of L q dramatically reduces the reluctance torque below that predicted by unsaturated 

parameters [38, 47]. The effect is similar to that shown in Fig. 2.30 on pg. 104. Halving
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L q in going from design B to design A nearly halves the output torque. Note that the 

high speed performance is relatively unaffected as it is mainly determined by Ld, 

and I c.

In high-saliency interior permanent magnet and “unity” saliency surface permanent 

magnet motor drives, the d-axis inductance is low and shows little saturation as its 

magnetic path is mainly through air or low-permeability magnets. However due to the 

sensitivity of the field-weakening performance to this parameter even small changes 

can have significant effects. For instance some surface permanent magnet motor drive 

designs show significant saturation due to the magnet flux alone. In these designs, the 

d-axis inductance will increase significantly with increasing demagnetising current as 

the steel comes out of saturation (see Sec. 3.4.1).

The effect of saturation on the inverter utilisation is small in surface permanent 

magnet motor drives due to the small inductances involved, however it is significant 

for synchronous reluctance motor drives. For these drives saturation has two effects : 

firstly it reduces the saliency ratio from the unsaturated value to the saturated 

value and secondly it increases the maximum-torque-per-ampere current-angle 7 m 

above the ideal 45°. This is shown in Fig. 3.5. The inverter utilisation is simply the 

power-factor which from Table 2.2 is given by :

a ~ 1 I sin 27m f v
* C°S v/2  y tan 7m d* cot 7m

This is illustrated as a contour plot in Fig. 3.6. Saturation causes the saliency ratio to 

decrease, which decreases the inverter utilisation. It however also increases 7m which 

initially increases the inverter utilisation but ultimately causes it to fall.

Fig. 3.6 is also useful for illustrating the effect of saturation on the constant-power 

speed range. Firstly note that the inverter utilisation during Mode II operation is equal 

to the normalised output power. Consider a constant parameter lossless synchronous 

reluctance motor drive with £ =  7. At the maximum-torque-per-ampere current-angle 

7m =  45°, the rated output power Pk is about 0 .6pu. During field-weakening the 

current-angle is increased. The output power rises and peaks at the maximum power- 

factor angle 7* =  arc tan \ / J  «  69°. It then falls and at the constant-power angle
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Figure 3.5: Effect o f saturation on the torque versus current-angle characteristic.

7P =  arctan (  «  82° the output power is again equal to P*. For a constant parameter 

synchronous reluctance motor drive this also corresponds to the Mode III transition 

current-angle 7 * (see Sec. 2.3.3).

Saturation critically affects the constant-power speed range of synchronous reluc­

tance motor drives. Perhaps surprisingly the effect of the increase in the maximum- 

torque-per-ampere current-angle is just as significant as the reduction in saliency ratio. 

During field-weakening operation the current-angle is normally increased from 7m =  45° 

to 71. Saturation causes ym to increase beyond 45°. There is thus effectively less room 

to field-weaken the motor drive and so the constant-power speed range is reduced.

In order to calculate the effect of saturation on the constant-power speed range it 

is necessary to make some assumptions about the variation of L q with I q. Fig. 3.7 

shows saturation characteristics for a range of axially-laminated motors. Design # 1  

is a 7.5kW interior permanent magnet design (see Chapter 5), design # 2  is a 120W



3.2. PRAC TIC AL FACTORS 123

o
H
<c4
>*U
2W

<
C/3
QWH<otf
DH<V)

Figure 3.6: Inverter utilisation as a function of current-angle and saturated saliency 

ratio.

0.9

W 0.7
U
*  0.6
H
<-> 0.5DQ
2  0.4

W 0.3V)
X 0.2
a.

0.1

0.1 0.2 0.50.3 0.7 0.8 0.90.4 0.6

P H A S E  C U R R E N T  [ P U ]

11

10
0.8

9

8

7

0.76

5

4
0.5

3
03

2

1*-
45 50 8555 65 75 9060 70 80

C U R R E N T  A N G L E  [ D E G ]

Figure 3.7: Typical saturation characteristics.



124 CHAPTER 3. PRACTICAL LIM ITATIONS

11

10

9

8

7

6
Vi

5 1.2

4
M O D E

3

2

45 50 55 65 75 80 8560 70 90

M A X  TO RQ P E R  A M P  C U R R E N T  A N G L E  [ D E G ]

Figure 3.8: Contour plot o f the CPSR using a constant saturation model.

synchronous reluctance design (see Sec. 3.4.1), design # 3  is a 2kW design described by 

P latt [50], design # 4  is a 7.5kW synchronous reluctance design (see Chapter 5), design 

# 5  is lkW  synchronous reluctance design (see Sec. 3.4.1), design # 6  is a two-pole 

1.5kW synchronous reluctance design described by Boldea et al. [48] and design # 7  is 

a 18kW interior permanent magnet design described by Fratta et al. [54].

The constant saturation model assumes that during field-weakening the inductances 

remain saturated. From 7 m and (3.7) can be used to calculate the constant-power 

speed range. The results are plotted in Fig. 3.8. Note that the unity constant-power 

speed range contour line corresponds to the maximum power-factor current-angle 

as the output power monotonically decreases beyond this point (assuming constant 

parameters).

It is however unrealistic to use a constant saturation model as it is clear that during 

field-weakening I q approaches zero and hence L q unsat urates. Better approximations 

to the actual saturation characteristics shown in Fig. 3.7 are the linear and quadratic 

saturation curves shown in Fig. 3.9. These can be defined in terms of a single parameter
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Table 3.1: The saturation models

Mode Type L q L d

constant

linear

quadratic

1 1/ 6 .

1 -<*/„ i / f„  

1 - a l *  1/U

a  as shown in Table 3.1. The saturation parameter a  and the unsaturated saliency 

ratio £u as functions of 7m and can be obtained for the general n-th order saturation 

characteristic 1 — a l"  by differentiating the torque expression and equating to zero :

a  =
cos’* 7m[{, -  1 -  (n { ,/2) tan -ym tan 2-ym] g.

1 — a  cosn 7m

Using (3.8) the constant-power speed range can be calculated numerically using the 

equations given in Sec. 3.3. The results are plotted in Fig. 3.10 for n equals 1 (linear 

saturation) and 2 (quadratic saturation). The models predict the same constant-power 

speed range for unsaturated motors, however their predictions diverge as 7m and hence 

the degree of saturation increases. The linear and quadratic models take into account
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Figure 3.10: Comparison of the CPSR predicted by the three saturation models.

the lessening of saturation during field-weakening and hence show a greater constant- 

power speed range. The quadratic models predicts a slightly lower constant-power 

speed range than the linear model as it saturates less due to the steepness of quadratic 

saturation curve with increasing current. All three models predict a dramatic drop 

in the constant-power speed range with increasing saturation. The small difference 

between the results of the linear and quadratic saturation models indicate that using 

more refined models axe unlikely to yield substantially different results. Note that 

typical designs show values of 7m in the range 50° to 65°. The constant-power speed 

range of practical designs is discussed further in Sec. 3.4.3.

3.2.3 Iron Losses

In a synchronous machine, the two main types of iron losses are stator iron losses and 

rotor iron losses. The stator iron losses are caused by the rotation of the main flux 

distribution in the machine at synchronous speed. The flux is due to the stator currents 

and/or rotor magnets. The rotor iron losses are ideally zero in the steady-state as the
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field distribution is stationary with respect to the rotor, however in practice pole-face 

losses and losses due to main flux variations can be significant.

Sources of Iron Loss

Iron losses can be split into two main components : eddy-current losses due to voltages 

induced in the laminations by the rate of change of flux and hysteresis losses due to 

flux reversals. To a first approximation the relationship between the total iron loss P /e, 

the peak magnetic flux density B  and the frequency /  is given by [14] :

P / .w  Zz&fl + (3 '9)

eddy-current hysteresis

where K e and Kh are the eddy-current and hysteresis proportionality constants which 

depend on the lamination material used.

Consider the stator losses in an ideal field-weakening motor drive working in the 

constant-power operating region. In order to maintain the terminal voltage constant,
A

the fundamental airgap flux must be inversely proportional to speed, that is B  oc I f f .  

From (3.9) the fundamental eddy-current losses would remain constant and the funda­

mental hysteresis losses would be approximately inversely proportional to frequency. 

The net result is that the fundamental iron losses will decrease with increasing speed.

Schiferl and Lipo [4] have shown that in permanent magnet machines, harmonic flux 

components can cause the harmonic iron losses to increase dramatically during field- 

weakening. In [56] they analysed a single-barrier interior permanent magnet motor 

drive and found that under low flux levels (ie. during field-weakening) the harmonic 

iron losses could be up to six times greater than the fundamental iron losses. The 

high harmonic iron losses were mainly caused by distortion of the airgap field due to 

the single-barrier construction. A multiple-barrier or axially-laminated construction 

should reduce the airgap flux distortion as well as require less magnet material and so 

reduce the harmonic flux levels.

Steady-state rotor iron losses in synchronous machines are due to pole-face losses 

and main flux variations. The pole-face losses are caused by rapid changes in the
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local gap reluctance due to the interaction of the stator slotting and the rotor lam­

inations. This loss occurs in all electrical machines but is especially im portant in 

axially-laminated motors. This is because the interleaved lamination and insulation 

layers cause the flux pulsations to spread through a substantial part of the rotor in­

stead of being confined to the surface as in conventional machines [58, 59]. Marongui 

[59] shows that this can cause the rotor iron losses to be several times greater than 

the stator iron losses. Various techniques to reduce these losses have been proposed 

including : restricting the flux pulsations to the rotor surface by making the rotor 

segment pitch equal to, or a multiple of the stator tooth pitch [39]; increasing the rotor 

lamination thickness to decrease the peak flux density [7] and cutting radial slits in the 

the rotor to decrease the eddy-current losses [48].

Main flux variations are fluctuations in the total flux per pole 4> in reluctance 

machines caused by : non-sinusoidal stator winding distributions, having a non-integral 

number of slots per pole or by harmonics in the stator current. The latter effect is 

significant when using relatively low PWM frequencies.

M odelling the Iron Loss

To a first approximation, from (3.9), the fundamental iron loss can be conservatively 

modelled as :

P f' OC B 2f  <x V 2 (3.10)

This can be represented simply in the equivalent circuit as an iron loss resistance R c 

as shown in Fig. 3.11.

Iron losses have two effects : they reduce the rated output power and increase 7m 

[49]. The iron loss current I c =  Vm/R c decreases Im but has little effect on Vm. If the 

iron losses are small, then from Fig. 3.11 the total inverter utilisation kt taking into 

account stator resistance and iron loss is :

kt ~  kr 1 _  KR
KRcn.

The reduction in I m will result in a small increase in the rated speed.

(3.11)
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Figure 3.11: Modelling the fundamental iron loss.

The increase in 7m with iron losses was investigated by Xu, Xu, Lipo and Novotny 

[49]. They showed that the increase is caused by a discrepancy between the exter­

nal current-angle (tan 7  =  —Id /Iq) and the internal (or magnetising) current-angle 

(tan 7 ,- =  —I  dm /  Iqm)' The internal maximum-torque-per-ampere current-angle 7  mi- is 

relatively unaffected by moderate levels of iron loss as it is mainly dependent on the 

saturation characteristics of the motor. In fact iron losses reduce the magnetising 

current I m which reduces saturation. This causes 7mi- to reduce slightly when iron 

losses are modelled and also the saturated saliency ratio to increase slightly. Despite 

the slight reduction in 7m< with iron losses, the external maximum-torque-per-ampere 

current-angle 7 m generally increases significantly due to I c. This is analysed in greater 

detail in Sec. 3.3.2.

Using a similar argument as that used for stator resistance it can be shown that 

fundamental iron losses do not have a first order effect on the constant-power speed 

range (see Sec. 3.2.1). This is because at least for drives with a constant-power speed 

range in Mode II, the values of I m and cos fa and thus Vm are the same at Wk and wp. 

Also, while iron loss increases 7m, it does not cause substantial changes to 7mi- and it is 

7mi which mainly determines the constant-power speed range (at least for synchronous 

reluctance motor drives).
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3.2.4 O ther Factors

Two other factors which limit the achievable field-weakening range are the minimum 

magnet operating point and mechanical limitations.

Morimoto et al. [34] has shown that restrictions on the minimum magnet operating 

point to prevent permanent demagnetisation can drastically reduce the high-speed per­

formance. Optimal field-weakening performance inherently requires that rated stator 

current in the d-axis be capable or reducing the effective d-axis flux-linkage to zero (see 

Sec. 2.1). Neglecting leakage, this means that the flux in the magnets must be reduced 

to zero (see Fig. 2.28). Magnet leakage flux and stator leakage inductance will how­

ever raise the minimum magnet operating point in practical designs. Demagnetisation 

withstand is thus an important consideration and some margin over the steady-state 

requirements is necessary to provide a measure of safety in coping with overload and 

transient conditions. This is examined using finite-element analysis in Sec. 5.3.3.

Finally mechanical strength limitations present the ultimate limitation to field- 

weakening performance. The design of high-speed switched-reluctance and induction 

motors [60] has been investigated, but that of synchronous reluctance motors is less 

well understood. A 24 OOOrpm, 1.3kW, salient-pole synchronous reluctance machine 

has been built by Chiba and Fukao [61], however the achieved saliency ratio of two to 

three is too low for good field-weakening performance. The mechanical limitations of 

axially-laminated designs is discussed in Sec. 5.2.2.
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3.3 Practical Field-W eakening Control

This section shows how the field-weakening performance of interior permanent magnet 

motor drives incorporating stator resistance, magnetic saturation and fundamental iron 

loss can be calculated. It assumes that the optimal field-weakening control strategies 

calculated in Chapter 2 remain the same. This is valid as long as the resistance, 

saturation and iron loss are not substantial.

3.3.1 Lossless Linear M odel

The control and performance of normalised lossless, linear interior permanent magnet 

motor drives was analysed in Sec. 2.4. This section uses the same models but derives 

equations in terms of un-normalised quantities. This is necessary to obtain the actual 

rather than the normalised torque versus speed curves.

A lossless linear interior permanent magnet motor drive can be characterised by 

seven parameters : the number of phases m, the number of pole-pairs p, the phase 

inductances L q and Ld, the magnet flux and the inverter voltage Vc and current 

I c ratings. Note that all the d- and q-axis voltages and currents are expressed as rms 

phase quantities. From (2.23) the DQ phase voltage equations are :

Vd =  - w i L dIq 

Vq =  wLdId +  wtyt
V S K  (3.12)
'  -  V ' F ' I  s  ’ •

where w is the electrical speed and { =  L q/L d. Defining 7  as the angle by which I  

leads the q-axis then Id =  —/ s i n 7  and Iq =  / cos7 . Thus :

Vd = — w£LdI  cosy 

Vq =  —wLdI  sin 7  +  u>\P,

. v  = JvfTv! < vc
where v ______

I  =  y / i f m  < Ic
(3.13)

The electrical speed corresponding to a given phase voltage V, phase current I  and 

current-angle 7  can be found from (3.13) as :

w =  V -----------------------  (3.14)
y/{(LdI  COS7 ) 2 +  (—L dI  sin 7  +  t f m ) 2



132 CHAPTER 3. PRACTICAL LIM ITATIONS

FYom (2.23) the output torque T  is given by :

T  =  * mIq -  «  -  1 )LdIqId

or in terms of 7 , the torque is given as :

1
T  =  \Fm/c o s 7  +  | ( £  -  1 )LdI 2 sin 27

The mechanical output torque Tm is given by :

Tm =  rnpT

The mechanical output speed u m is :

W m  =  —

The mechanical output power Pm is :

Pm — TmUm

The electrical input power Pe is :

Pe = m[VdId + VqIq\

The efficiency 77 is :
Pm

v = t :

The power-factor cos <f> is given by :

cos <f> =
m V I

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Mode I Operation

The maximum-torque-per-ampere current-angle 7m is calculated by differentiating (3.16) 

with respect to 7  with I  =  I c :

sm 7m =  -
0 ( - 1  

- * » + + 8«  - 1  y m
(3.23)

4(f -  \)L iIc € > 1
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The rated speed w* is obtained by substituting 7  =  7m, V  =  Vc and I  = Ic into (3.14) 

to give :

Uk =  - /  ■---------------------Vc------------------------  (3.24)
\J(£LdIcQos7m)2 +  ( - L dI csm ^m +  tfm)2

The rated torque Tk is obtained by substituting 7  =  7m and I  = h  into (3.16) to give :

Tk =  y mIc cos 7m +  i(£  -  1 )Ldl l  sin cl~jm (3.25)

M ode II Operation

As the speed is increased, rated current is maintained in the motor and the current- 

angle is increased from 7m to maintain rated voltage. For a given 7  the Mode II speed 

and torque are given by substituting V  =  Vc and I  =  I c into (3.14) and (3.16) giving :

u  =  . Vc (3.26)
\J (tL dI ccos 7 )2 +  (-X d /Csin7  +  tfm)2

T  =  ^ m/ ccos7  +  i ( f  -  T)Ldl l  sin 27  (3.27)

M ode III Operation

Here the drive is purely voltage-limited and hence is operated at the maximum-torque- 

per-volt operating point [34]. Consider the operating point given by A Id where :

U  =  - * m /L d -  A Id (3.28)

Substituting this into (3.12) with V  =  Vc gives :

£Ld
Section 2.2 showed that A Id = 0 for surface permanent magnet motor drives during 

Mode III. Otherwise the value of A I d which gives the maximum torque for a given 

voltage Vc and speed u  is obtained by substituting (3.28) and (3.29) into (3.15) and 

differentiating with respect to A I d [34]. This gives :

A7d =
0 f  =  1

(3.30)
- e * m + s j ^ y + m  -  i ) ( v » *

4(« -  1 )L t 4 *
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Thus for a given speed w, the optimal value of Id can be obtained from (3.28) 

and (3.30). The optimal I q is obtained from (3.29) and the corresponding torque 

from (3.15). This assumes that the optimal control strategies derived for the lossless, 

constant param eter motor drive in Chapter 2 can also be applied to Iqm and I  dm- This 

is clearly only a first approximation, but should give reasonable results for small values 

of non-idealities.

3.3.2 M odelling  N on-Idealities

Fig. 3.12 shows a steady-state equivalent circuit for a lossy interior permanent magnet 

motor drive. This is based on the equivalent circuit used by Betz [62]. The lossless 

equivalent circuit is shown to the right of the dashed line. Note that the d- and q- 

axis synchronous inductances have been split into a stator leakage inductance L\ and a 

magnetising inductance Lm. This allows the iron loss resistance Rc to appear across the 

airgap magnetising voltage Vm. The equivalent circuit shown allows different values 

of R c in the two axes though in practice R qc and Rdc are normally assumed to be 

equal [49, 62]. Due to the iron loss, the terminal current I  is no longer equal to the 

magnetising current 7m. The phasor diagram corresponding to the equivalent circuit 

is given in Fig. 3.13.

Stator Resistance

From Fig. 3.12, adding stator resistance R a to the linear lossless DQ voltage equations 

(3.12-3.13) yields :

Vd = R a i d  —  w(LdIq
q (3.31)

V, =  R ,I ,  + wLdh +

and in terms of 7  :

Vd =  R BId ~  w£LdI  cos 7
(3.32)

Vq =  R aIq — wLdI  sin 7  +  w^fm

In order to calculate the motor drive operating characteristics in Mode II and III it 

is necessary to calculate the speed u  corresponding to a given value of Id and I q when
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Figure 3.12: Steady-state equivalent circuit for a lossy IPM motor drive.

V  =  Vc. For simplicity it is convenient to rewrite (3.31) as

Vd = RJd ~~ wKd 
Vq =  R g l q  tjjKq

where K d  and K q are two constants, defined as :

K d =  Lqlq 

Kq =  Ldld +  V m

Applying V 2 -  V f  +  V 2 gives :

u  =
- B  ±  V B 2 -  4AC  

2 A

(3.33)

(3.34)
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Figure 3.13: Phasor diagram for a lossy interior permanent magnet motor drive. 

where :

A  

B

C

M agnetic Saturation

In general this can be taken into account by making Ld and L q arbitrary functions of 

Id and I q respectively. The Mode I and II trajectories are still well defined, but the 

Mode III trajectory (3.28-3.30) generally requires some iteration.

=  K] + K 2q 

=  2Ra( - K d h  + K qIq) 

=  R 2,( I j  + 12. )  -  Vc2
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Iron Losses

From inspection of the full equivalent circuit in Fig. 3.12 the following equations can 

be obtained :

T =  T +1 Q —  1 q m  i D 
■tCqc

I d  — I  d m  "I"
vdr
R d c

(3.35)

(3.36)
V q m  — -I- w L d m l d m

Vdm ~  WLqmIqm

where u  is the electrical speed. Rearranging (3.35-3.36) for Iqm and I  dm in terms of I q 

and Id gives :
j    R d e ( R q c I q  ^ ^ m  ^ L d m l d )

I  d m  —

R d c R q c  “f” t * } ^ L d m L qm  

R d c R q c I d  "f u L q m R q cI q W t y m L qrn (3.38)
R d c R q c  +  U 2 L d m  L qm

Due to saturation L d m  =  f i ( I d m )  and L q m  = f 2 ( I q m )  and so it is necessary to 

iteratively solve these equations. The initial estimate of L d m  and L q m  is obtained by 

assuming I dm =  Id and Iqm =  I q. Once Idm and I qm have been obtained, the output 

torque can be obtained from (3.15) as :

T  — m l q m  { .L q m  L d m ) l q m l d t (3.39)

(3.40)

The d- and q-axis voltage equations can be obtained from Fig. 3.12 as :

V q =  I q R $ +  w (\P m +  L l l d  +  L d m l d m )

V d  ~  I d R »  ^ { L l l q “1" L q m  I q m )

During Mode II and III, V  =  V c and (3.40) can be solved using (3.33-3.34) to give 

uj. The other performance parameters of the motor drive can then be found from 

(3.17-3.22).

The effect of iron loss on 7m and on the synchronous reluctance motor drive torque 

versus angle characteristic at rated current and speed will now be examined and quan­

tified. From (3.37-3.38), for a synchronous reluctance motor drive (\frm =  0) with
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Figure 3.14: Power and magnetising voltage versus current-angle for a synchronous 

reluctance motor drive operated at rated current and speed.

high saliency (Ldm ~  0), low iron loss, equal iron loss resistances (Rdc =  R qc = Rc), 

operating at rated current I e then :

Iqm «  Ic COS 7 (3.41)

ldm »  - I c  sin 7  +  cos 7  (3.42)

As the saliency ratio is high, Vqm Vdm and so :

Vm ~  Vdm ~  wLqmI c cos 7  (3.43)

As iron losses are proportional to V^, thus the losses will be largest at 7  =  0° and zero 

at 7  =  90°. This is shown in Fig. 3.14.

Iron losses cause the internal current-angle 7 to be less than the external current-

angle 7 . In fact when 7  =  0°, 7,- < 0° and so the torque is negative. Defining A 7  as
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the difference between the external and internal current-angles gives :

A7  =  7  -  7< (3.44)

then from (3.42) the zero torque point occurs when ldm =  0 and 7  =  A 7 0 :

A7o «  axe tan (3.45)

This is illustrated in Fig. 3.14. In order to determine R c it is sometimes convenient 

to measure the (negative) output power at 7  =  0°. W ith 7  =  0°, using Fig. 3.12 the

iron losses are P f e =  V £ /R e while the input electrical power is P e w Vqm Iqm. From

(3.43) it can be shown that Pe/Pfe ~  1 /im  where u  is the magnetising saliency ratio 

L qm/Ldm' Hence the mechanical output power Pm = Pe — P /e is given by :

Pm(7 =  0 ° ) « - P / e(7 =  0°)
1 fmj

(3.46)

Thus for moderate values of iron loss, the (negative) mechanical output power at 7  =  0° 

is equal to the iron loss if the saturated magnetising saliency ratio is high.

From Fig. 3.14, for an infinitely salient synchronous reluctance motor drive A 7  

is zero at 90° (I4» =  0) and approximately A70 at 0°. To a first approximation A7  

decreases linearly from 7  =  0° to 7  =  90°. Neglecting saturation the maximum-torque- 

per-ampere current-angle 7mi- =  45° and thus 7m will be shifted by about half of A7 0, 

that is 7m »  7mi 4* A7J 2 .
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3.4 V alidation o f R esults

This section validates the results of the earlier work in this chapter with experimen­

tal measurements. It consists of three parts. Firstly the torque versus current-angle 

characteristics of a surface permanent magnet and two synchronous reluctance motor 

drives are modelled. Next the calculated and measured field-weakening performance is 

compared. Finally the last section examines the constant-power speed range achieved 

by a selection of synchronous reluctance motor drive designs.

3.4.1 Torque versus Current-Angle Characteristics

This section models the performance of a 2kW surface permanent magnet motor drive 

and a 120W and a 2kW synchronous reluctance motor drive. The main parameters 

of the drives are given in Table 3.2. Note that the two 2kW motors were operated 

at about one quarter of rated voltage in order to keep the field-weakening characteris­

tics within the 4000rpm dynamometer maximum speed restriction. Theoretically this 

should increase the per-unit copper losses four times and decrease the per-unit iron

Table 3.2: Main parameters o f the motor drives tested.

Synchronous Reluctance 
120W 2kW

Surface PM 
2kW

nominal torque [Nm] 1 3 4
nominal rated speed [rpm] 1600 6000 6000
pole-pairs 2 2 2
rated voltage Vc [Vu rms] 110 380/v^ 380/\/2
rated current I c [A rms] 1.7 6 6

base voltage V0 [Vjj rms] 110 100/V2 100/V2
base current I 0 [A rms] 1.7 6 6
R s n  [pu] 0.21 0.15 0.153
R e n  [PU] 12.6 8.8 44
CPSR 2 1.3 2
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losses four times.

The 2kW surface permanent magnet motor drive is a commercial unit designed 

for servo applications and uses samarium-cobalt magnets. It shows little saturation, 

high copper losses, low iron losses and a constant-power speed range of about two. 

The 120W and 2kW synchronous reluctance motor drives are custom-built axially- 

laminated designs (see App. A). The 120W synchronous reluctance motor uses an 

induction motor stator and was operated at rated voltage. It shows moderate satu­

ration, high copper losses, moderate iron losses and a constant-power speed range of 

about two. The 2kW synchronous reluctance motor uses the same stator as the surface 

permanent magnet motor and was also operated at reduced voltage. It shows heavy 

saturation, high copper losses, moderate iron losses and a low constant-power speed 

range of about 1.3.

The surface permanent magnet motor and synchronous reluctance motor saturation 

characteristics were obtained from instantaneous flux-linkage tests (see Sec. 4.4.2). 

Care is required in measuring the d-axis surface permanent magnet motor inductance 

as the promagnetising characteristic is substantially different from the demagnetising 

characteristic due to the magnet flux causing saturation (see Sec. 3.2.2). The measured 

flux-linkage results for the 2kW surface permanent magnet motor drive design are 

shown in Fig. 3.15. Note that the q-axis characteristic is relatively symmetrical while 

the d-axis curve is “offset” due to the magnet flux producing a “DC flux bias”.

The torque versus current-angle characteristic is shown in Fig. 3.16 at rated current 

at 3000rpm. It compares the measured characteristic with the calculated characteristic 

using :

• a lossless constant unsaturated parameter model,

• a lossless saturating model,

• a saturating model taking into account iron losses.

It shows that for surface permanent magnet designs, saturation and iron losses have 

relatively little effect on the torque versus current-angle curve. However they need to
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Figure 3.15: Measured 2kW  SPM flux-linkage test results.
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Figure 3.19: Measured 2kW  SYNCHREL flux-linkage test results.

be taken into account to get the best match between theory and experiment. Note 

that iron losses cause the torque to become negative at 7  =  —90°.

Fig. 3.17 shows the measured flux-linkage versus current characteristics for the 

120W synchronous reluctance motor drive. The shape of the curves is typical of syn­

chronous reluctance motor drives, though perhaps showing somewhat less saturation 

than normal (see Fig. 3.7). The torque versus current-angle characteristics are shown in 

Fig. 3.18 at rated current at 1500rpm. A comparison of the calculated characteristics 

using constant unsaturated inductances against that taking into account saturation 

shows that saturation causes a substantial reduction in the maximum output torque 

and an increase in the maximum-torque-per-ampere current-angle beyond 45°. Adding 

iron losses further decreases the output torque and causes output power to become 

negative at 7  =  0°. These results were predicted in Sec. 3.2. The full model provides 

a good match with the measured results.

Fig. 3.19 shows the measured flux-linkage characteristics for the 2kW synchronous 

reluctance motor drive. This shows considerably more saturation than the 120W design
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due to the thin stator teeth and high electric loading in the surface permanent magnet 

motor stator used. In fact the excessive saturation causes the performance to be rather 

poor, however this is a useful characteristic when one is testing the accuracy of models 

as it turns second order effects into first order ones!

3.4.2 M odelling th e Field-W eakening C haracteristics

The field-weakening performance of the motors was measured using a custom-built 

7.5kW, 5kHz IGBT inverter with a hysteresis current controller. This is described in 

Appendix A. The current magnitude and angle were varied manually to determine 

the maximum torque at a given speed within the motor’s voltage and current-limit 

constraints. Table 3.3 shows a comparison between the measured, calculated and ap­

proximated performance of the two synchronous reluctance motor drive designs. The

measured results are shown in bold on the top row for each motor drive and are com­

pared against that predicted by the equivalent circuit model and that obtained from 

simple approximations. The inverter utilisation is estimated using (3.3) and (3.11). The 

constant-power speed range is estimated from the saliency and 7mt' using Fig. 3.10.

The first three rows represent three constant parameter models. The unsaturated 

(fm 7m =  45°) and saturated (f5,7m =  45°) lossless constant parameter models consid­

erably overestimate the output torque and constant-power speed range. Adding stator 

resistance and iron loss to the constant parameter saturated model (fa +  R a +  R c) 

shows that iron loss increases 7m and that it causes a difference between 7m and 7m,-. 

As predicted, 7 ™ and the constant-power speed range only change slightly when iron 

losses are taken into account. Thus iron loss and stator resistance have little effect on 

the constant-power speed range of synchronous reluctance motors.

Modelling the saturation characteristics (£) considerably alters 7m,- and dramatically 

decreases the constant-power speed range. The estimates produced by the three satura­

tion models (constant, linear and quadratic) give a fair estimate of the constant-power 

speed range. Note that as expected, the constant saturation model underestimates the 

calculated constant-power speed range obtained from the measured saturation charac-
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Table 3.3: Comparison of measured and calculated synchronous reluctance motor drive 

results. The arrows indicate the value at that location is the same as that pointed to.

Calculated From Equivalent Circuit Model Approximations

* 7m 7mi Tk to* K CPSR K CPSR CPSR CPSR

(sat) Nm rpm cons linear quad

120W SYNCHREL

measured 56.5° 1.067 1580 0.545 2.13

£u» 7m =  45° 7.35 - 45° 1.348 1388 0.605 3.74 «- - «-
6 ,7 m  =  45° 6.37 - 45° 1.141 1596 0.589 3.26 «- 4— 4—

6  +  R$ +  Re 6.37 48.3° 45.1° 1.048 1425 0.483 3.25 0.473 3.25 3.25 3.25

t 6.37 - 53.9° 1.088 1892 0.666 2.43 2.32 2.50 2.45

t  + R. 6.37 - 53.9° T 1604 0.564 T 0.564 T T T

£ +  R$ +  Rc 6.44 55.9° 53.1° 1.012 1624 0.531 2.52 0.526 2.42 2.59 2.54

2kW SYNCHREL

measured 64.8° 3.28 1180 0.551 1.26

6 ,7 m  — 45° 8.46 - 45° 7.72 563 0.619 4.29 «- i— <-

6 ,7 m  =  45° 5.26 - 45° 4.41 895 0.563 2.73 «- <— -

6  +  R» +  Re 5.26 50.0° 45.2° 3.89 858 0.476 2.70 0.458 2.71 2.71 2.71

S 5.26 - 62.9® 3.58 1324 0.676 1.59 1.25 1.56 1.51

t  + R. 5.26 - 62.9® T 1179 0.602 T 0.602 T T T

£ -f Rt +  Re 5.40 66.2° 62.0® 3.26 1199 0.557 1.66 0.541 1.34 1.64 1.58

teristic, while the linear and quadratic saturation models give better estimates. The 

closeness of the match between the shape of the actual saturation characteristic and 

that of the model used determines the accuracy. For the 120W motor the saturation 

characteristic is closer to the quadratic saturation model while for the lkW  the linear 

model is closer. These are reflected in the accuracy of the predictions.

Adding stator resistance (£ +  R a) and iron loss (£ +  R» + Rc) to the model shows 

again that iron loss affects 7 m. Note that 7mt- decreases slightly and the saturated 

saliency ratio increases slightly with iron loss due to the reduced magnetising current. 

This was not seen with the ({, +  R s +  R c) model as saturation was not modelled.

The full model (f +  R a -f Rc) produces a more accurate estimate of the constant-



3.4. VALIDATION OF RESULTS  147

Table 3.4: Comparison of measured and calculated S P M  results.

Calculated From Equivalent Circuit Model Approximations
£

(sat)
7m 7 m i T k

Nm
wk

rpm
K CPSR K

2kW s p m

measured 3.0° 4.13 1250 0.730 1.08
&m s a t 1.08 -♦ 2.6° 4.29 1435 0.876 1.87
t 1.02 -► 0.7° 4.28 1436 0.876 2.01
t  +  R . 1.02 —► 0.7° T 1236 0.754 2.01 0.758
Z +  R ,  +  R c 1.02 1.3° © oo o 4.21 1238 0.743 1.95 0.744

power speed range than the constant parameter models but still overestimates the 

actual constant-power speed range by about 20 to 30%. This is probably due to 

harmonic iron losses making the total iron loss increase more rapidly with speed than 

predicted by the fundamental equivalent circuit. This is exacerbated by the relatively 

low peak output power compared to the rated output power due to the high stator 

resistance (see Sec. 3.2.1).

W ith regard to the inverter utilisation /c, the full models show a good match with 

the measured characteristics. Note that k shows only small variations with the different 

models as changes in the rated output torque Tk are partially compensated by opposite 

changes in the rated speed cj*. The approximate formula (3.11) shows a reasonable 

match with the full model.

The surface permanent magnet motor drive characteristics in Table 3.4 show similar 

results. Using an unsaturated constant parameter, lossless model the constant-power 

speed range is underestimated as L& is underestimated (see Fig. 3.15). Once the full 

saturation characteristic is modelled ({) the constant-power speed range is closely pre­

dicted. As with synchronous reluctance motor drives, modelling iron losses increases 

7m while not significantly affecting 7mt-.

Unlike synchronous reluctance motor drives, the constant-power speed range of 

surface permanent magnet motor drives appears to be sensitive to iron losses. The 

constant-power speed range of the 2kW drive showed a small decrease (3%) with adding
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a small iron loss (Ren =  44pu). Using a more reasonable (full voltage) iron loss re­

sistance of R m =  15pu gave a significant 10% reduction in the constant-power speed 

range compared to that with no iron losses. Note that this is still a small reduction 

compared to what substantial drop caused by saturation in synchronous reluctance 

motor drives.

The torque and power versus speed test results for the 2kW surface permanent 

magnet and 120W synchronous reluctance motor drive are shown in Figs. 3.20 and 

3.21. Both drives showed operation in Mode I and II. The synchronous reluctance 

motor drive reached Mode III operation at about 4100rpm. The effect of using a fixed 

current-angle 7 m (ie. no field-weakening) was also measured.

The solid lines show the measured characteristics. W ith no field-weakening the 

output torque above rated speed falls sharply while with field-weakening a constant- 

power speed range of about two is achieved with both drives.

The dash-dot curves show the calculated characteristics with an unsaturated con­

stant param eter lossless model ({„, 7m =  45°). Comparing it with the measured surface 

permanent magnet characteristic shows the effect of stator resistance in reducing the 

magnetising voltage and hence the power in the field-weakening region. Saturation sub­

stantially alters both the low speed and field-weakening characteristics of synchronous 

reluctance motor drives, while in surface permanent magnet motor drives it tends to 

affect only the field-weakening characteristics.

The dotted curves are the calculated characteristics including saturation and stator 

resistance (f +  R a). These yield a better match to the measured characteristics.

Finally the dashed curves show the effect of including iron loss (( +  R , +  R c) into 

the previous model. Note the good correspondence between the calculated and the 

actual control characteristics. The small residual difference between the calculated 

and measured power characteristics could be due to the harmonic iron loss, d-q cross­

coupling or friction and windage losses.

A summary of the effects of the stator resistance, magnetic saturation and iron 

loss on field-weakening performance of the 2kW surface permanent magnet and 120W
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Figure 3.20: 2k W SPM performance with and without field-weakening. Measured results 

(solid line), lossless linear unsaturated model (dash-dot line), model including saturation and 

stator resistance (dotted line) and full model (dashed line)
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Figure 3.21: 120W s y n c h r e l  performance with and without field-weakening. Measured re­

sults (solid line), lossless linear unsaturated model (dash-dot line), model including saturation 

and stator resistance (dotted line) and full model (dashed line).
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Table 3.5: Summary of effects o f practical factors.

151

lkW SPM 120W Synchrel
Tk K CPSR Tk K C PSR

Copper Loss 
Saturation 
Iron Loss

0% -14% 0% 
-0.2% 0% +8% 
-1.6% -1.5% -3%

0% -15% 0% 
-20% +22% -35% 
-7% -6% +4%

synchronous reluctance motors is shown in Table 3.5. This clearly shows the sensitivity 

of synchronous reluctance designs to saturation.

3.4.3 Achievable C PSR  o f Synchronous R eluctance Drives

Section 3.2.2 discussed a technique for estimating the reduction in the constant-power 

speed range in synchronous reluctance motor drives due to 7mi- being greater than 45° 

due to saturation. This section examines how this affects practical designs.

Table 3.6 shows the measured or calculated constant-power speed range for seven 

synchronous reluctance motor designs. The first four were built in the department 

and consist of three axially-laminated designs and one single-barrier design. Design 

# 5  is calculated from the measured inductance characteristics of an axially-laminated 

interior permanent magnet motor drive (see Chapter 6). Designs # 6  and # 7  are from 

published experimental inductance characteristics for two axially-laminated designs 

[48, 50].

The designs are illustrated in Fig. 3.22. Note that most designs have constant-power 

speed ranges of 2 to 3:1.
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Figure 3.22: Location of practical SYNCHREL designs on CPSR contour plot.
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Table 3.6: Effect of saturation on the measured CPSR of SYNCHRELs. (* = calculated 

CPSR,).

No. Power Pole-Pairs & Kmi C PSR

1 120W 2 7.35 6.37 53.9° 2.1
2 lkW 2 8.46 5.26 62.9° 1.3
3 7.5kW 2 11.5 9.6 60° 2.5
4 7.5kW 2 6.5 4.8 59° 2
5 7.5kW 2 6.7 6.4 50.2° 2.75 (*)
6 1.5kW 1 21.1 14 63.8° 3-1 (*)
7 120W 2 10.5 8.5 55.6° 2.95 (*)



154 CHAPTER 3. PRACTICAL LIM ITATIONS

3.5 P ractical Optim al Field-W eakening D esigns

The effect of stator resistance, magnetic saturation and iron losses on the field-weakening 

performance of surface permanent magnet and synchronous reluctance motors was ex­

amined. The effects were analysed and the results obtained validated by experimental 

tests.

Stator resistance and iron losses do not have much effect on the constant-power 

speed range of surface permanent magnet and synchronous reluctance motor drives, 

however they do reduce the inverter utilisation. W ith moderate values of iron loss, 

the two synchronous reluctance motor drives showed no significant change in constant- 

power speed range while the surface permanent magnet motor drive showed a small 

(10%) reduction.

Saturation has little effect on the field-weakening performance of surface permanent 

magnet motor drives due to the low inductances involved. However it was found that 

the performance of synchronous reluctance motor drives was substantially affected. 

This is because the increase in the maximum-torque-per-ampere current-angle due to 

saturation reduces the field-weakening range dramatically. For instance a design with 

a unsaturated saliency ratio of 21 and a saturated saliency ratio of 14 has a theoretical 

constant-power speed range of about 7:1 but in practice it is only about 3:1. Examining 

a number of designs spanning 120W to 7.5kW showed that a constant-power speed 

range of 2 to 3:1 is typical. Careful optimisation may improve this somewhat but it 

would be difficult to improve this substantially.

In conclusion the field-weakening performance of synchronous reluctance motor 

drives is generally limited by saturation to a constant-power speed range of about two 

to three. Hence from the results of Sec. 2.6, high-saliency axially-laminated interior 

permanent magnet motor drives offer the best option for a wide field-weakening per­

formance. The design, modelling and testing of such motor drives are examined in the 

second part of this thesis.
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C hapter 4

M odelling A xially-L am inated  

M otors

In Chapter 3 it was concluded that the optimum practical field-weakening performance 

would be achieved by high-saliency axially-laminated interior permanent magnet motor 

designs. The remainder of this thesis examines the modelling, design, construction and 

testing of such motors.

This chapter examines the modelling of axially-laminated synchronous reluctance 

motors. This is because an optimal field-weakening, high-saliency interior permanent 

magnet motor drive generates the majority of its output torque from its reluctance 

nature. An understanding of the modelling of the reluctance nature is necessary before 

attem pting the optimisation of the motor geometry.

Firstly the history of the synchronous reluctance motor is reviewed and the impor­

tance of the d- and q-axis inductances shown. Their definition is discussed and the 

calculation of the inductances using analytical, finite-element and lumped-circuit anal­

ysis is examined. Means for measuring the inductances are described and the results 

are validated using experimental tests on a 120W axially-laminated motor.

The work in this chapter forms the basis for an axially-laminated design program 

(see App. D) and a general-purpose lumped-circuit solver (see App. E).
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4.1 Introduction

4.1.1 H istorical D evelopm ent

The three main classes of synchronous reluctance motor axe illustrated in Fig. 4.1. The 

earliest types were of a salient-pole construction [20]. These were line-staxt motors 

and used a starting cage (not shown). Salient-pole designs axe generally not used for 

inverter-driven variable-speed applications due to their low saliency. An exception to 

this is extremely high speed applications which require their mechanical robustness. 

Chiba and Fukao [61] have built a 24 000 rpm, 1.3kW salient-pole spindle motor and 

achieved saliency ratios in the range of 2 to 3.

The single-barrier construction uses an internal cut-out (flux-barrier) to produce 

the desired saliency. It was also used in line-staxt motors. A useful benefit is that it 

allows the optional insertion of magnets into the cut-outs to improve its performance 

[63]. Saturated saliency ratios in the range 2 to 5 are common [43, 44].

The multiple-barrier design uses multiple internal flux-baxriers to yield an improved 

saliency ratio. The optimum performance is obtained by using as many barriers as 

possible in order to most closely approximate the ideal magnetically anisotropic rotor 

[21]. However using many barriers makes the motor difficult to construct. Conventional

S a l ien t -P o le  Single-Barrier Multiple—Barrier
2 -3  2 -5  6 -2 0

Figure 4.1: Four-pole rotor designs with approximate saliency ratios.
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Radially
Laminated

Axially
Laminated

Figure 4.2: Radially-laminated and axially-laminated construction.

motors axe made by punching laminations with the rotor design and then stacking 

these on the shaft in a similar way to washers on a pipe. This radially-laminated form 

of construction is illustrated in Fig. 4.2. However with many internal barriers, the 

laminations begin to resemble paper doilies and are flimsy [63]. The axially-laminated 

construction is more complex but is more practical when there is a high numbers of 

barriers. It uses interleaved layers of lamination and non-magnetic material stacked 

parallel to the rotor axis as shown in Fig. 4.2 for a two-pole design. In a four-pole 

design the lamination and insulation layers are bent into trough shapes as shown in 

Fig. 4.1. In Sec. 3.1 it was shown that saliency ratios in the range 6 to 20 can be 

achieved with axially-laminated motors.

As well as being required for good field-weakening performance, the axially-laminated 

form of construction has been shown to be necessary to obtain the high output torque 

and saliency ratio required to make synchronous reluctance motors competitive with 

induction motors [7, 21, 64, 65].

4.1.2 D efinition  o f Inductances

Synchronous reluctance motors can be characterised by their d-axis (low inductance 

axis) inductance L d  and q-axis (high inductance axis) inductance L q. The torque per 

ampere is proportional to ( L q — L d )  while the saliency ratio (f =  L q/ L d )  determines 

many of the motor’s operating characteristics such as field-weakening range, power- 

factor and sensitivity to parameter variations (see Sec. 2.3.4).
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The interior permanent magnet motor drive equivalent circuit was shown in Fig. 3.12 

on pg. 135. The synchronous reluctance motor drive equivalent circuit is identical to 

this except the magnet flux-linkage is zero. The d- and q-axis synchronous induc­

tances are given by :

Ld =  Ldm +  Li

L ,  = L g m  "f" L \

(4.1)

where Li is the stator leakage inductance and Ldm and Lqm are the magnetising induc­

tances. The stator leakage inductance consists of the stator slot-leakage inductance L Bit 

and end-winding inductance Lend. Saturation is taken into account by making the mag­

netising inductances functions of the currents in their respective axes. Cross-coupling 

is neglected for the reasons described in Sec. 3.2.2.

A general assumption in the analysis of synchronous reluctance motors has been the 

use of sinusoidally-distributed windings [66]. This results in the following expressions 

for the phase self-inductance L and mutual inductance M  as a function of the rotor 

angle 6.
L — L\ -1- Lq "4* L 2 sin 20 

M  =  Mo +  M2s in ( 2 0 ± f )

Each inductance consists of a constant ‘magnetising’ term and a second harmonic 

component. W ith the sinusoidally-distributed winding assumption it can be shown 

that :

Mq =  —Lq/*! L2 — M2 ( ^ * ^ )

From this the d- and q-axis inductances can be shown [67] to be :

(4.2)

L q  =  \ { L q +  L 2 )  +  L i  

Ld — \{L q  — L 2 ) +  L\
(4.4)

Chiba and Fukao [68] showed that space harmonics mean that the relationships in (4.3) 

no longer hold. They showed that a more general definition of L d  and L q is :

L q =  (Lq — M o )  +  { L 2 / 2  +  M 2 )  +  L i  

L d  — (Lq — Mq) — [ L 2 / 2  +  M 2 )  +  L i

(4.5)

Note that this simplifies to (4.4) when (4.3) holds.
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Figure 4.3: Circuit for measurement and calculation of the phase inductances.

For axially-laminated motors the error in using the sinusoidally-distributed winding 

assumption is not as substantial as with the salient-pole motor analysed by Chiba and 

Fukao. Despite this it is still important in defining the inductances. In finite-element, 

lumped-circuit and experimental measurements it is convenient to calculate Ld and L q 

by aligning the rotor with the magnetic axis of phase A (see Fig. 4.3) and measuring 

or calculating the flux-linkage t/> as a function of current. Note that the voltage V  is 

equal to the product of the flux-linkage and the supply frequency w. Two different 

inductances can be calculated from the circuit. The actual phase inductance is defined 

from Va and I  a as :

^ 7 7  = ^  (4 -6 )

Note tha t this requires access to the star point1 if it is to be measured experimentally.

The weighted-average phase inductance is defined as 2/3 of the inductance calcu­

lated from the total motor flux-linkage (Vt  and I  a )-

_  2 $ r  _  2 Vt  «
*  ~  3 I  a 3 wIA

Using the definitions of Ld and L q given in (4.4) it can be shown that for a machine with

Synchronous reluctance motors are generally star-connected. A delta-connected motor can have 

large circulating third harmonic currents which increase the torque ripple and the iron and copper 

losses [7].
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sinusoidally-distributed windings, the actual and the weighted-average inductances are 

equal. However in real machines with non-sinusoidal inductances, the two techniques 

yield different values. The ‘real’ values of Ld and L q could be obtained by measuring L  

and M  as a function of 9  using the procedure described by Chiba and Fukao, calculating 

L q, Z/2, M q and M 2 and then applying (4.5). Note that it is difficult to take saturation 

into account with this technique.

In practice the weighted-average inductances were used as some of the motors tested 

did not give access to the star point. Although this was  found to give reasonable 

agreement with the measured results [69], further investigation is desirable.

4.1.3 O btaining th e  Inductances

Fig. 3.7 on pg. 123 showed the measured q-axis inductance characteristics of a number 

of axially-laminated motors. Note that all the motors show some degree of saturation 

in the q-axis. On the other hand, the d-axis inductance usually shows no significant 

saturation in axially-laminated designs as the d-axis flux path is mostly through air.

Fig. 4.4 shows the variety of methods available for determining the inductance 

characteristics of synchronous reluctance motors. The methods which are underlined 

are discussed in detail. Analytical techniques are described in Sec. 4.2, numerical 

techniques are described in Sec. 4.3, experimental techniques are discussed in Sec. 4.4 

and the results are validated in Sec. 4.5.



4.1. INTRODUCTION  163

Measure

Running

Standstill

No-Load Test 
Slip Test 

Zero PF Test 

PQ Circle Test 
Loaded Motor Test

AC Standstill Test 
Inst. Flux Linkage Test 

DC Bridge Test 
DC Torque Test

Calculate< Analytical

Numerical
Finite-Element

Lumped-Circuit

Figure 4.4: Obtaining the inductance characteristics.
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4.2 A nalytical Calculation

This can be used for predicting the unsaturated L q. It can also be used for estimating 

Ld but this is more difficult as a significant part of Ld is formed by leakage inductances. 

It is difficult to accurately take into account saturation analytically.

First analytical techniques for calculating the q-axis and d-axis inductance are 

reviewed. A novel technique for calculating Ld based on the inductance of an ideal non­

magnetic rotor is described. It is validated by experimental results from five axially- 

laminated designs.

The formulas described in this section are implemented in an axially-laminated 

motor design program (PC-AXL) which is described in App. D.

4.2.1 W inding Factors

The following equations on the winding factors are based on the analysis by Miller [12].

In order to calculate the inductances it is necessary to first calculate the effective

number of sine-distributed series turns per phase N t . This is given by :

N . =  - k mlNph (4.8)
7T

where N ph is the actual number of series turns per phase and kw\ is the conventional 

fundamental winding factor. The fundamental winding factor is given by :

kwi =  kd\kp\kg\ (^*9)

where kdi, kp\ and k9\ are respectively the fundamental distribution factor, chord factor 

and skew factor of the winding. The distribution factor takes into account the fact that 

the winding is distributed over a number of slots and not concentrated in a single one. 

For a winding with a slot-pitch of 7  electrical degrees and q slots per pole per phase, 

the fundamental distribution factor kdi is given by :

(4-10)?sm (7/2)
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The chording factor takes into account windings with a pitch less than the ideal 180° 

electrical. This causes a first order reduction in the stator resistance and hence copper 

losses. If the winding is short-pitched by e electrical degrees, then the fundamental 

chording factor kp\ is given by :

fcpi =  c o s |  (4.11)

Skew is often used to reduce torque ripple in motors. If a winding is skewed by 2or 

electrical radians, then the fundamental skew factor kai is given by :

sin <7 /, -«vk,i = ------  (4*12)
<r

4.2.2 Effective Airgap

The effective airgap gn of the motor is larger than the mechanical airgap g due to the 

rotor and stator slotting. The effective airgap is given by :

g" =  gkcrkc* (4.13)

where k„ and kct are the Carter’s coefficients taking into account rotor and stator 

slotting respectively. The Carter’s coefficient is given by [70] :

k =  w‘ +  w'   u  14)
e w, +  (l —<r)w. i J

where wt is the width of the tooth, w, is the width of the slot opening and a is a

function of w, and g. For open slots a  is [70] :

2
Go — — 7r

arctan  In [ 1 +
2g w, (D) (4.15)

For semi-closed slots this is modified to [70] :

( \  2 /3

g ) 4̂'16̂

These equations are illustrated in Fig. 4.5
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Figure 4.5: Carter’s coefficient for open and semi-closed slots.

4.2.3 Q -A xis Inductance

The q-axis magnetising inductance L qm is much greater than the stator leakage induc­

tance Li and hence :

Lq =  Lqm +  Ll W L qm (4*17)

The magnetising inductance L m of a round rotor machine is [12] :

I .  ,  , 4. , 8)
8 p g

where N a and g" are given by (4.8) and (4.13), I is the stack-length, r\ is the airgap 

radius and p is the number of pole-pairs.

If the pole-arc was 180° then L qm =  Z/m, however practical axially-laminated motors 

have a finite pole arc. The ratio of the q-axis magnetising inductance to L m for a motor 

with a pole arc of a  electrical radians is given by [71] :

ffc -Z w  sin2 m  a  +  sin a  . .
L m Jq sin2 0d9 it
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4.2.4 D -A xis Inductance and Saliency R atio

Various formulas have been proposed in the literature for estimating the d-axis mag­

netising inductance and saliency ratio. One technique is to use (4.18) with a large 

airgap. Miller et al. [63] roughly approximates the effective d-axis airgap for a four- 

pole machine as (ar\ +  g)> This gives a saliency ratio of :

{ =  — +  1 (4.20)
9

where the rotor insulation ratio a is given by :

a = ----------  (4.21)
Wj'na -j- W/om

where w/am is the thickness of the lamination material and wtna is the thickness of the 

non-magnetic insulation material.

Boldea and Nasar [64] approximate the airgap permeance as a function of angular 

position and Vagati et al. [72] perform a lumped-circuit analysis. They both show 

that :

f  oc £  (4.22)
P9

Platt [50] derives an approximate analytical solution as :

T - 3ir3(p -  V j H o N l l n  . .
dm 64p2ar, +8»V(P~ l)ff

A new technique is to consider the intrinsic d-axis inductance L a . This is the 

inductance of a cylindrical stator with a sine-distributed airgap winding and an ideal 

non-magnetic rotor. It is shown in [73] that the radial B r and tangential B$ magnetic 

field components inside such a stator at a position defined by (r, 0) is given by :

Be

fi0N ai  cos
\ri>

p0 (4.24)
2ri \ r i /  —sin 

Thus the magnitude of the flux density \B\ is given by :

|£ |  =  ^  (4.25)
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From this it can be shown that the inductance is :

La  =  (4.26)
8 p

which is independent of the rotor diameter. This is similar to Eqn. 4.23 as generally 

ari >  (p -  1 )g.

Now if a large number of thin laminations separated by layers of insulation are

placed in the inside the stator in such a way that the layers are always perpendicular

to the flux lines, then the field distribution would be unchanged [63]. It would however 

cause the inductance to increase inversely proportional to the rotor insulation ratio. 

This increased inductance is termed the intrinsic magnetising d-axis inductance Ldmi •

U u  -  ^  (4.2T)

The intrinsic saliency ratio, £,• is the maximum possible saliency ratio for a given 

motor geometry. It is the ratio of the inductance with a solid rotor to the inductance 

with no rotor. From (4.18) and (4.26) it is defined as :

6 s  ¥  = £  (4-28)Ldi pg

The intrinsic magnetising saliency ratio £mt- takes into account the iron content in the 

rotor. It is defined as :

U  = = (4-29)Ldmi pg
This is a similar result to that obtained by other authors as given in (4.20) and (4.22). 

It sets an upper limit to the saliency ratio achievable with a given motor geometry.

The actual magnetising saliency ratio =  L qm/Ldm is lower than (mi- due to the 

finite rotor pole arc, Carter’s coefficient and the distortion of the d-axis field distribution 

due to the rotor laminations (see Sec. 4.3.2). The unsaturated saliency ratio is lower 

than due to the swamping effect of the stator leakage inductance. This consists of 

the slot-leakage and end-winding inductances and can be estimated using the same 

techniques as for induction machines (see Secs. 4.2.5 and 4.2.6).

Table 4.1 compares the intrinsic magnetising saliency ratio with the measured 

saliency ratio for five axially-laminated synchronous reluctance motors. The first three
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Table 4.1: Dimensions and saliency ratio of five axially-laminated designs.

#1 #2 #3 #4 #5

P m  [kW] 0.12 1.0 7.5 0.55 1.5
P 2 2 2 1 1
I [mm] 32 76 202 60 80
2ri [mm] 57 59 127 60 80
g [mm] 0.26 0.21 0.50 0.25 0.30
wiam [mm] 0.30 0.30 0.50 0.50 0.50
win, [mm] 0.30 0.30 0.50 0.30 0.30

a 0.50 0.50 0.50 0.38 0.38
t i 55 70 64 120 133
£m i 27 35 32 45 50
(u 7.4 8.2 11.5 10.8 21
£u/ fmi 0.27 0.23 0.36 0.24 0.42

were built in the SPEED Laboratory (see App. A) and the other two were described 

by Boldea [48, 74]. Note that for the five designs the ratio lies between 0.2 and

0.4 with the ratio increasing with the size of the motor. This could be due to a re­

duction in the stator leakage inductance relative to the d-axis magnetising inductance. 

This relationship has not been described before and gives a simple means for roughly 

estimating the expected unsaturated saliency ratio from the motor dimensions. It is 

also useful in estimating the effects of changing the motor parameters (see Chapter 5).

4.2.5 Slot-Leakage Inductance

Stator slot-leakage inductance forms a significant proportion of the total d-axis induc­

tance of axially-laminated motors. The slot-leakage per phase L au is given by [75] :

(4.30)

where m  is the number of stator phases, Si is the number of stator slots and P3 is the 

total slot permeance ratio. This is the sum of the slot permeances for each of the three
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4— m
ii i2

Figure 4.6: Trapezoidal slot dimensions.

sections shown in Fig. 4.6. These can be calculated if the simplifying approximation 

that the flux in the slot is everywhere parallel to the bottom of the slot is used.

Neglecting fringing into the airgap, the permeance of the slot section closest to the 

airgap is :
P _ h

Wi
(4.31)

If /i wi then fringing into the airgap can be significant. An approximation can 

be obtained by assuming the flux lines outside the slot forms concentric semi-circles 

with their centre at the middle of the slot opening. The permeance is obtained by 

integrating over the face of the slot using the method described by Staton [76] :

p.i = — + - ] * -  Wi 7r r0

where r 0 is half the slot opening and rj, is the slot pitch minus r ffl.

The permeance ratio of the inside of the tang can be calculated as :

h

(4.32)

P .2  = ln ^ (4.33)
W2 — Wi Wi

The calculation of the permeance ratio of the main body of the slot takes into
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account the distributed nature of the slot conductors. For parallel-sided slots W2 =  W3 :

P.3 =  £  (4-34)

For trapezoidal slots P,3 can be approximated [77] as :

P.3  =  — 4 ^ - - ^ - 4 M - 3  0 = —  (4.35)
W3 4(1 — £ )  (1 — j}2) W3

Note tha t because of the distributed nature of the conductors, the slot permeance is 

particularly sensitive to the slot dimensions near the airgap and relatively insensitive 

to the shape of the bottom of the slot. Thus the error in approximating a trapezoidal 

slot by a parallel-sided slot of width W2 is small. It also means that the error in 

approximating round-bottom slots by trapezoidal ones is also small.

4.2.6 End-W inding Leakage Inductance

The end-winding inductance is the inductance of the coil end turns outside the rotor 

stack. It is extremely difficult to calculate analytically as it depends on the winding 

type and how the winding is wound [75]. The most accurate method for estimating 

this is to use 3-D finite-element techniques [78].
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4.3 F in ite-E lem ent and Lum ped-Circuit A nalysis

Finite-element modelling can be used to predict the q-axis saturation characteristic as 

well as to calculate the d-axis inductance. It involves partitioning the motor geometry 

into a large number (thousands) of triangular elements, applying the required currents 

and boundary conditions, then solving Maxwell’s equations to obtain the complete 

electromagnetic field solution [79]. This can then be processed to yield the desired 

flux-linkages and inductances. Two-dimensional finite-element analysis can be used to 

calculate the magnetising and slot-leakage inductances but cannot give the end-winding 

inductance. This requires three-dimensional analysis.

Lumped-circuit analysis can also be used to calculate the q-axis saturation char­

acteristic. Basically the geometry is partitioned into a small number (tens) of parts 

and an equivalent magnetic circuit is formed. This non-linear circuit can then solved 

numerically in the same way as electrical circuits. It is much faster than finite-element 

analysis as the number of elements is small. However it is sensitive to how well the 

system is partitioned and how the effective dimensions of each part is calculated.

4.3.1 B H  C haracteristics

The accuracy of finite-element and lumped-circuit analysis results depend critically on 

the accuracy of the magnetic (BH) characteristics used. These characteristics show the 

magnetic flux density B  obtained with a given magnetic field strength H , or vice versa. 

For lamination and magnet materials the BH characteristics can be obtained from the 

manufacturer’s curves or from test results.

Lamination materials show a substantial fall in the permeability at low flux levels. 

This is termed the “Rayleigh” region [79]. It is normally not modelled as : it generally 

has little effect on the motor performance; it makes the unsaturated inductance more 

difficult to determine; and because faster numerical convergence is obtained if the BH 

curve is monotonic.

Permanent magnet materials can be modelled by defining a BH characteristic where



4.3. FINITE-ELEM ENT AND LUMPED-CIRCUIT AN ALYSIS 173

the value of B is non-zero when H is zero. In the finite-element package used (Vector 

Field’s PE2D), it was only possible to model the first and second-quadrant magnet 

characteristic. This is normally all that is required.

A useful technique in order to introduce quasi three-dimensional effects into two- 

dimensional models is to “dilute” the BH characteristic [80]. For instance this can be 

used in order to represent regions which do not extend through the full cross-section of 

the motor. Thus the effect of bolt-holes through the rotor can be modelled by reducing 

the effective thickness of the rotor in this region by dividing the B values by a fixed 

factor.

Conventional motor steel lamination material is non-oriented and has the same 

magnetic properties in all transverse directions. Grain-oriented lamination materials 

show superior magnetic properties (see Sec. 6.1.2) along their preferred transverse axis 

but poor magnetic properties orthogonal to this. It can only be used in applications 

such as the rotors of axially-laminated motors where the flux passes in one transverse 

direction.

It is generally not possible to take into account the anisotropic nature of grain- 

oriented steel or permanent material in two-dimensional finite-element analysis. This 

does not present a problem when modelling grain-oriented axially-laminated rotors as 

the flux densities in the transverse direction are low and are limited by the non-magnetic 

insulation material and not by saturation in the rotor steel.

4.3.2 F in ite-E lem ent A nalysis

A two-dimensional motor model is generally used. For a four-pole motor it is normally 

only necessary to model one eighth of the cross-section in order to obtain the d- and 

q-axis inductances (see Fig. 4.7 on pg. 175). This assumes that the stator winding is 

symmetrical enough to allow this. For instance with a four-pole fractional slot-pitch 

winding it was necessary to model half the motor.

The motor geometry can be input interactively or via a “script” file. This is a 

program written in the modelling language used by the finite-element package. In
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the analysis of axially-laminated motors, extensive use was made of script files due 

to both the complexity of the rotor geometry and its simple, repetitive structure. In 

conjunction with Dr. Dave Staton, I wrote a general axially-laminated motor script file 

(a listing is given in App. C). This creates a finite-element model from the standard 

stator geometry parameters (number of slots, tooth angle, slot depth etc.) and the 

rotor parameters (number of layers, thickness of layers etc.). This greatly reduced the 

time and effort required to model new motor designs. This technique was used to

obtain all the finite-element models in this thesis.

Fig. 4.7 shows the finite-element model used for calculating the q-axis saturation 

characteristic of a 120W axially-laminated motor. This is design # 1  in Table 4.1 on 

pg. 169. Care is required in modelling axially-laminated rotors due to the extremely 

fine structure at the rotor surface. In fact the axially-laminated motor has one of the 

most magnetically complex rotor geometries of all the motor types. To calculate the 

unsaturated q-axis inductance accurately requires a large number of elements in the 

airgap to model the fringing around each lamination. All finite-element packages have 

a limit on the maximum number of elements which can be modelled. This may restrict 

the modelling of large motors with many laminations, or motors with unusual windings 

where symmetry cannot be used effectively. At high currents, saturation of the iron

paths mean that the modelling of the airgap region is less critical.

Figs. 4.9-4.12 show the q- and d-axis flux density distribution and airgap flux graphs 

for a 1A rms phase current (rated current =  1.7A). The airgap flux graphs shows the 

magnitude of the magnetic flux density in Tesla at the centre of the airgap as a function 

of the radial position. The airgap flux density is modulated by the stator slotting and 

also features a high frequency ripple due to the rotor laminations. The limited accuracy 

at which the field near the rotor surface can be modelled can be clearly seen from the 

irregularities in the high frequency ripple. This is despite using a large number of 

elements (approximately 6500) in the model. The package used (PE2D) is limited to 

a maximum of 10000 elements.

The d-axis flux distribution (Fig. 4.11) shows that the non-ideal lamination geom­

etry and the stator slotting lead to a distorted rotor flux distribution. This has been
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Figure 4.7: 120W motor geometry.

)

j

)

Figure 4.8: 120W q-axis lumped-circuit model.
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Figure 4.9: 120W q-axis flux distribution.

Figure 4.10: 120 W  q-axis airgap flux graph [T].
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explored by Staton, Miller and Wood [81]. The distorted flux distribution will cause 

the d-axis magnetising inductance to be greater than predicted by (4.27). Note that 

the airgap flux density in the d-axis case (Fig. 4.12) is much lower than in the q-axis 

case. Close inspection of Fig. 4.11 shows that there are flux reversals in the the radial 

airgap flux direction. This is not seen in the airgap flux plot as this shows only the 

magnitude.

4.3.3 Lum ped-Circuit A nalysis

The first step in performing a lumped-circuit analysis is to produce an equivalent 

magnetic circuit. Consider the q-axis case for the 120W motor shown in Fig. 4.9. This 

can be modelled using the simple three mesh circuit shown in Fig. 4.8 if the rotor is 

assumed to be infinitely permeable.

The airgap reluctances R q were calculated using the effective airgap g" (4.13) to 

take into account rotor and stator slotting. The tooth reluctances R j  were taken to be 

that of the straight section of the tooth. Finally the back-iron reluctances R b consisted 

of a width given by the minimum back-iron depth plus one third of the slot bottom fillet 

radius and a length equal to the slot pitch measured midway in the thinnest section of 

the back-iron. Note that the above choice of dimensions is somewhat arbitrary.

The next step is to apply the currents, calculate the resulting magneto-motive 

forces (MMFs) and solve for the three fluxes $ i ,  $2  and $ 3. In order to do this a 

general-purpose non-linear lumped-circuit solver was written using Matlab [37]. A 

full description of the solver is given in App. E. The lump-circuit solver solves the 

equivalent circuit with known MMF sources N I n for the flux in each of the n 

circuit meshes :
1 r

1<1

R u • •• R \  „
• •

1 a Rnl Tlnn

(4.36)

where the n 2 mesh reluctances %nn represent the reluctance between nodes. Each mesh
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Figure 4.11: 120W d-axis flux distribution.
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14

12

0.1

Figure 4.12: 120W d-axis airgap flux graph [T].
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reluctance consists of a linear combination of the circuit reluctances %T

1..........
HH

■

C m  * * C l l m

R ' l n C lnl • Cl nm

H« 
__

£

C211 • • C2lm

*^nn Cnn 1 ‘ Cnnm

R i

n2
(4.37)

where Cnnm is a connection factor representing the circuit geometry and can be —1, 0 

or +1. The value of each of the m  circuit reluctances R m is a function of the flux 

in the reluctance which in turn is a linear combination of the mesh fluxes $ n :

$ R 1

1--
---

---
-

& to 1

*ki

FT il

’I n

(4.38)

where T a& can be —1, 0 or +1.

The reluctance of each lumped circuit element Rm  is related to the flux $Rm in it 

by its physical dimensions and magnetic characteristics. Initially the linear values of 

reluctance are used. An interative numerical technique is used to solve the circuit for 

the loop fluxes. Once these are obtained, the inductances can be calculated from the 

winding distribution.
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4.4 M easurem ent o f Inductance

The d- and q-axis inductances of synchronous reluctance machines can be determined 

experimentally by a variety of tests. These can be divided into running and standstill 

tests (see Fig. 4.4 on pg. 163).

The running tests were mainly developed for testing line-start motors with a squirrel- 

cage. The tests are usually performed from a fixed-voltage fixed-frequency supply. The 

main types are described by Klingshirn [82]. These include the no-load test, the slip 

test, the zero power-factor test, the PQ circle diagram test and the loaded motor test. 

The no-load or light-running test can be used to obtain Lq as a function of current. 

The slip test involves driving the motor at a speed slightly different than synchronous 

speed. The stator current is then modulated by the slip frequency and the inductances 

can be calculated from the maximum and minimum current. The zero power-factor 

test calculates the inductances based on the terminal voltage and current with two 

current-angles where the input power-factor is zero. The PQ circle diagram test calcu­

lates the inductances based on the variation of the operating point in the real/reactive 

power plane on changing from motoring to generating. Finally the loaded motor test 

calculates Ld from the voltages, current and input power variations as the motor is 

loaded (knowing L q using the no-load test).

Standstill tests axe generally easier to perform than running tests on axially-laminated 

motors designed for inverter operation. Standstill tests also have the advantage that 

they can usually be applied to machines containing permanent magnets. The tests 

are similar to those used to measure the magnetisation characteristics of switched- 

reluctance motors [83, 84]. The four main types are the AC standstill test, the DC 

bridge test, the instantaneous flux-linkage test and the standstill torque test.

The AC standstill test is the standstill equivalent of the no-load test except that it 

can be used to obtain Ld as well as L q. It is simple, gives accurate results when the 

iron loss is low and is widely used [48, 50].

The DC bridge test calculates the inductance by measuring the change in flux- 

linkage when the stator current is increased from zero to a fixed value. It is described



4.4. M EASU REM ENT OF INDUCTANCE 181

by Miller [55]. The flux-linkage is measured by integrating the voltage across the stator 

winding with a ballistic galvanometer. The effect of stator resistance is eliminated by 

using a Wheatstone bridge configuration. The main advantage of this test is that it 

can be applied to motors with a squirrel-cage as it is unaffected by eddy-current s.

The instantaneous flux-linkage test is similar in principle to the DC bridge test. 

However instead of measuring the change in flux-linkage for a given change in current, 

it measures the instantaneous flux-linkage as the stator current is ramped from zero 

to its rated value. It allows simple, accurate compensation for stator resistance and 

produces the entire saturation curve in one test.

The DC standstill torque test is based on the same principles as the loaded motor 

test. It was developed for line-start synchronous reluctance motors to calculate Ld 

knowing L q from the no-load test. DC currents are applied to the motor and the 

resulting torque is measured. It calculates Ld based on the fact that the torque is 

proportional to L q — Ld>

Out of the above tests, the AC standstill test and the instantaneous flux-linkage test 

axe the easiest to perform and the most widely applicable to inverter-driven axially- 

laminated motors.

4.4.1 AC Standstill Test

This involves aligning the d- or q-axis of the rotor with the magnetic axis of phase A 

and applying a variable-voltage 50Hz supply across the motor terminals as shown in 

Fig. 4.3. The inductance can be obtained from the terminal voltage and current if the 

stator resistance is known. A more accurate method is to also measure the input power 

to allow the stator resistance to be calculated as well.

The AC standstill test gives accurate results if the inductances show little saturation 

and if there are low iron losses. The effect of saturation is underestimated due to the 

“averaging” nature of the test. Thus it is mainly useful for measuring the unsaturated 

inductances. The q-axis test gives unusually high iron losses as the rotor flux oscillates 

at 50Hz. Note that under normal steady-state operating conditions it would be constant
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due to the synchronous nature of the machine. Neglecting iron losses in the equivalent 

circuit causes the value of AC stator resistance to appear to be much higher than the 

DC value. The error produced by this was less than 1% with a 120W motor but was 

substantial with a 7.5kW motor. In fact with the 7.5kW motor the losses were so large 

that it was not possible to obtain useful results for L q even when modelling an iron 

loss resistance in the equivalent circuit as shown in Fig. 3.12.

4.4.2 Instantaneous Flux-Linkage Test

This involves measuring the instantaneous flux-linkage X(t) :

A(t) =  f  [v(<) -  dt (4.39)

as the current is ramped up from zero up to its rated value. The saturation character­

istic can then be obtained by dividing the flux-linkage by the instantaneous current. 

This allows the entire saturation curve can then be obtained from one test [85].

This method was found to give accurate results even in the case of a high degree of 

saturation and high iron losses. Saturation is calculated correctly as the instantaneous 

flux-linkage is used. This was particularly important in the case of the d-axis inductance 

of permanent magnet motors where the saturation characteristic is not symmetrical 

about the origin (see Fig. 3.15). An AC standstill test could not be used in this case.

The effect of iron losses is reduced compared to the AC standstill test as the flux- 

linkage is varied more slowly. In the AC standstill test the rotor flux reverses every half 

mains cycle (10ms). In the instantaneous flux-linkage test the current can be ramped 

up over a much longer period of time (say one second). This nearly eliminates the 

eddy-current losses as these are proportional to the square of the rate of change of flux 

(see Sec. 3.2.3). Note that the hysteresis loss per cycle is unaffected.

Equation (4.39) shows that the flux-linkage can be obtained from the stator terminal 

voltage if the stator resistance is known. Lovatt and Stephenson [83] found difficulties 

with this technique due to the variation of the stator resistance with temperature. A 

solution to this was described by Cossar and Miller [85]. This involves recording the
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Figure 4.13: Experimental results from A C  and flux-linkage tests.

stator voltage and current waveforms with a digital sampling oscilloscope as the current 

is ramped up to its rated value and then back down to zero. The correct value of stator 

resistance is obtained by finding the value which returns the flux-linkage to zero when 

the current is ramped back down to zero.

Hysteresis iron losses mean that the rising and falling flux-linkage (FL) curves form 

a “hysteresis” loop. This is shown in Fig. 4.13 along with the calculated inductance 

characteristics. The average inductance curve (AVG) is calculated by averaging the 

two flux-linkage curves. It corresponds well with the unsaturated inductance calculated 

with the AC standstill test (dotted line). Note the tendency mentioned earlier of the 

AC standstill test to overestimate the saturated inductance.

At low currents the inductance falls due to the low permeability of the stator and 

rotor iron at low flux levels. This is shown by the AC standstill test results in Fig. 4.13. 

The errors in the inductance calculated from the flux-linkage method are large at low 

currents and it is assumed for simplicity that the unsaturated inductance is a constant 

value. This has no significant effect on the predicted characteristics.
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4.5 E xperim ental Tests

A four-pole, 120W axially-laminated motor (design # 1  in Table 4.1) was modelled. 

This uses a standard 24 slot induction motor stator with a single-layer, equi-turn 

consequent pole, concentric winding. Only one eighth of the motor needed to be 

modelled in the finite-element and lumped-circuit analysis due to symmetry in the 

rotor and in the stator winding (see Fig. 4.7). Each rotor pole consists of 26 lamination 

and 25 insulation layers and is clamped to the square cross-section shaft by a brass 

pole-piece and three non-magnetic stainless-steel bolts. Grain-oriented material was 

used for the rotor laminations for its high saturation flux density and low iron losses 

(see Sec. 6.1.2).

4.5.1 Inductance C haracteristics

Finite-element results showing the effect of replacing the rotor or stator steel with 

infinitely permeable magnetic material are shown in Fig. 4.14. From the small change 

in the results when using real or ideal rotor steel it is clear that the majority of the 

saturation in the motor occurs in the stator. This is because of the use of grain-oriented 

steel in the rotor and also due to the greater iron cross-sectional area in the rotor per 

stator slot pitch compared to the stator tooth area. The latter point is partly offset by 

the area of the rotor laminations taken up by the bolts. This is discussed further in 

Sec. 5.2.3. Fig. 4.14 also shows the saturation curve predicted using the lumped-circuit 

model described in Sec. 4.3. Given the simplicity of the calculations, the results show 

a reasonable match with the finite-element results.

Table 4.2 compares the measured unsaturated inductances with that calculated 

using finite-element, analytical and lumped-circuit techniques. The unsaturated in­

ductances were measured using the AC standstill test.

Finite-element analysis using a smooth stator, a sine-distributed airgap winding and 

a non-magnetic rotor was used to obtain a value for La, This corresponded well with 

the analytical prediction given by (4.26). Next a slotted stator and the actual winding 

was modelled to introduce slot-leakage L 9u. The difference between these values and
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Figure 4.14: Effect o f using ideal stator and rotor steel.

that measured for the stator without a rotor is mainly due to end-winding inductance 

Lend which is relatively large in this motor due to the short stack length (see Table 4.1 

on pg. 169).

The measured d-axis inductance with the rotor inserted corresponds well with the 

value from finite-element analysis which has been corrected for the end-winding induc­

tance. According to (4.27), inserting the rotor should increase Ld by an amount equal 

to Ldi (4.8mH) if the lamination and insulation thicknesses are equal. However the 

measured results show that the actual increase (8.4mH) is nearly double this. This 

could be due to the rotor laminations distorting the ideal field distribution or else due 

to end-effects with the short stack length. Nevertheless the analytical prediction using 

(4.27) and corrected for end-winding inductance is only about 14% low compared to 

the measured result. This is reasonable considering its simplicity.

Table 4.2 and Fig. 4.15 compare the calculated and measured unsaturated q-axis in­

ductance and the saturation characteristics. The finite-element, analytical and lumped- 

circuit results are consistent and predict the general shape of the characteristic well
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Table 4.2: Comparison o f unsaturated inductances for 120W motor. The * indicates 

the values have been corrected for the endwinding inductance.

Inductance
mH

Measured Finite
Elment

Lumped
Circuit

Analytical

L d i — 4.82 — 4.85
L d i  +  L g l t — 9.2 — 9.8
L d i  +  L g l t  -|- L e n d 16.0 — — —
L en d , (from above) — 6.8 — 6.2
L d m i  +  L g l t — 17.5 — 14.7
L d  =  L d m i  "i" L g l t  4" L e n d 24.4 24.3* — 20.9*
L q (unsat) 181 200* 195* 197*

however they significantly overestimate the measured inductance (by about 10%). They 

also appear to underestimate the amount of saturation in the motor. The descrepancy 

with the unsaturated inductance could be due to the difficulty in measuring the small 

airgap (0.265mm) accurately. The descrepancy in the saturation may be due to ne­

glecting the effect of the bolt holes (see Sec. 5.2.3).

4.5.2 Com parison o f M easured Characteristics

Figs. 4.16-4.17 show comparisons between the calculated and measured steady-state 

operating characteristics for the 120W axially-laminated motor at rated speed (1500 

rpm) and rated phase current (1.7A). The calculated curves were obtained using the 

equations derived in Sec. 3.3. The two iron loss resistances were assumed to be equal 

and of constant value and the leakage inductance was combined into the magnetising 

inductances. The iron loss resistance was obtained from tests with 7  =  0°.

Figs. 4.16-4.17 show that the measured performance characteristics are accurately 

predicted by the calculated characteristics using the instantaneous flux-linkage test 

results. The calculated performance from the finite-element and lumped-circuit results 

show a reasonable match with the torque, voltage and saliency characteristics. Note 

that the power-factor and efficiency curves appear to be relatively insensitive to errors
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Figure 4.15: Calculated and measured 120W saturation results (corrected for endwind- 

ing inductance).

in the flux-linkage characteristics. The efficiency is low due to the relatively high copper 

losses in the small (120W) motor.

Table 4.3 compares the manufacturer’s catalogue ratings for the induction motor 

against the measured performance of the synchronous reluctance motor. The syn­

chronous reluctance motor shows a significant improvement in both the efficiency and 

power-factor over the induction motor. It should however be noted that induction mo­

tors are relatively inefficient in small sizes. Thus it would be fairer to compare two large 

motors (a comparison of a 7.5kW induction motor and synchronous reluctance motor 

is given in Chapter 6). Also the synchronous reluctance motor uses a slightly smaller 

airgap (13% less). To a first approximation the rated torque is proportional to L q 

which from (4.18) is inversely proportional to the airgap. The rated torque for the syn­

chronous reluctance motor at rated current is 27% greater than that for the induction 

motor. Thus it is clear that even for the same airgap that the synchronous reluctance 

motor would still generate significantly more torque than the induction motor for this
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Figure 4.16: Comparison between the 120W calculated and measured characteristics for  

the torque, voltage and power-factor versus current-angle.



4.5. EXPERIM ENTAL TESTS 189

M E A S U R E DZ
z F R O M  M E A S ’ D F L0.8

F I N I T E  E L E M E N Tu
do
as 0.6OH

L U M P E D  C I R C U I T

Z
D 0.4
Z
><
s “

1.60.2 0.6 0.8 

P H A S E  C U R R E N T  [ A r m s ]

1.2 1.40.4

10 

9 ■ 

8 

7 

6 

5 

4 

3 
2 

1 
0

C A L C ’ D F R O M  M E A S U R E D  F L  

F I N I T E  E L E M E N T  

L U M P E D  C I R C U I T

10 20 30 40 50 60 70

C U R R E N T  A N G L E  [ D E G ]

80 90

0.9

0.8

0.7

U 0.6
Ztu
§ 0,5 
£ 0A u

0.3

—  M E A S U R E D  

- -  F R O M  M E A S ’ D F L  

F I N I T E  E L E M E N T  

•• L U M P E D  C I R C U I T0.2

0.1

C U R R E N T  A N G L E  [ D E G ]

Figure 4.17: Comparison between the 120W calculated and measured characteristics 

for the torque versus current, saliency versus current-angle and power-factor versus 
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Table 4.3: Comparison between the 120W induction motor and SYNCHREL in the same 

stator.

Parameter IM Synchrel

Mean Airgap (mm) 0.305 0.265
Rated Line Voltage (Vrms) 110 110
Rated Phase Current (Arms) 1.7 1.7
Rated Speed (rpm) 1360 1580
Output Torque (Nm) 0.84 1.07
Power Output (W) 120 165
Efficiency (%) 61 66
Power Factor 0.62 0.82
Apparent Efficiency 0.38 0.54

frame size.
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4.6 Conclusions

This section examined the definition of the d- and q-axis inductances and discussed 

their calculation using analytical, finite-element and lumped-circuit techniques. The 

concept of the intrinsic magnetising saliency ratio (TOI- =  ar\jpg  was introduced. This 

is the maximum saliency ratio theoretically possible with a given motor geometry. 

Practical motors generally achieve unsaturated saliency ratios of between 20-40% of 

this.

Finite-element methods should provide the most accurate results however the com­

plex axially-laminated motor geometry pushes the software packages to their limits. 

Lumped-circuit models are faster to solve but generally require validation against finite- 

element models.

Means for measuring the inductance characteristics were discussed. The AC stand­

still test is the simplest to perform but the instantaneous flux-linkage test provides the 

most accurate results for the saturation characteristics.

Experimental validation was performed with a 120W motor. The performance 

characteristics predicted using the results of the instantaneous flux-linkage test showed 

an excellent correspondence with the measured motor performance. The finite-element 

and lumped-circuit results predicted the shape of the curves well, however slightly 

overestimated the output torque. This could be due to difficulties in measuring the 

airgap accurately and the effect of bolt holes in the rotor.
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C hapter 5 

D esign  o f A xially-Lam inated  

M otors

This chapter describes the design and optimisation of axially-laminated brushless syn­

chronous AC motor drives for a wide field-weakening range. A 7.5kW synchronous 

reluctance design and a 7.5kW interior permanent magnet design are examined. The 

effect of pole-number, mechanical constraints, pole-piece material, airgap size, rotor 

insulation ratio, magnet material and demagnetisation-withstand are considered. The 

construction and testing of the motor drives is described in the next chapter.
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5.1 Introduction

It is only recently that the design of brushless synchronous AC motor drives for a wide 

field-weakening range has been considered. The majority of the previous work has 

concentrated on examining the performance of existing designs [2, 33, 46]. There is 

also a surprising lack of published test results showing the constant-power speed range 

achieved.

Two commercial interior permanent magnet spindle drives are presently available. 

Mannesmann Rexroth offer motors in the 2 to lOkW range with constant-power speed 

ranges from 1.8:1 up to 3:1 [86]. GEC Alsthom offer motors in the 6 to 18kW range 

with a constant-power speed range of 4:1 [23, 87]. Little information is available about 

the design of these motors due to their proprietary nature. However from the constant- 

power speed range figures given it is likely that the Mannesman Rexroth design uses 

a single-barrier construction with ferrite magnets (see Fig. 3.1). The GEC Alsthom 

design with its better field-weakening performance probably uses several internal flux- 

baxriers. Both designs probably use a conventional radially-laminated geometry due 

to the low number of flux-barriers.

Jack, Mecrow and Mitcham [88] describe the design of a 20kW spoke-type per­

manent magnet machine for vehicle traction drives. It uses samarium-cobalt (SmCo) 

magnets and has a design constant-power speed range of 5:1. Such a design features 

high torque per volume and power per weight ratios. It uses a high stator current 

density and requires water-cooling for continuous operation. The high stator currents 

allow a wide field-weakening range despite the use of a single-barrier construction with 

rare-earth magnets (see Fig. 3.1). The design is more of a surface permanent magnet 

design as the high saturation nearly completely removes the saliency. This type of 

optimal field-weakening design has the disadvantage of having a high back-emf voltage 

(see Sec. 2.6).

The optimisation of the output torque and power-factor (via the saliency ratio) 

of the axially-laminated synchronous reluctance geometry has been investigated by 

Boldea [64, 74], Lipo [89] and Staton, Miller and Wood [21, 81]. This chapter seeks to
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optimise the field-weakening performance and particularly the constant-power speed 

range. It was shown in Sec. 3.2.2 that this is heavily dependent on the saturated 

saliency ratio and the maximum-torque-per-ampere current-angle. Extensive use is 

made of the analytical and finite-element modelling techniques described in Chapter 4.

The modelling and design of multiple-barrier interior permanent magnet motor 

drives was investigated by Fratta, Vagati, Villata and Marongiu. They found problems 

with high iron losses in axially-laminated designs due to rotor flux pulsations [59] (see 

Sec. 3.2.3). Due to this they concentrated on the radially-laminated geometry with a 

low number of barriers. They investigated the design and optimisation of this type of 

rotor in detail [72]. Their design analysis uses analytical and lumped-circuit models and 

does not take into account the effect of saturation. A prototype machine incorporating 

ferrite magnets was described [39] however no field-weakening results were presented.

Despite the reported high iron losses the axially-laminated geometry was chosen be­

cause it offers the potential for the highest saliency ratio and hence best field-weakening 

performance. An existing D132 frame size1 induction motor stator was used for the 

design. Though this will not be optimised for axially-laminated reluctance designs it 

should give a reasonable performance, is readily available and allows useful comparison 

with the induction motor performance.

Lipo [7] suggested that an axially-laminated interior permanent magnet motor could 

be constructed by sandwiching bar magnets between the laminations. The new design 

uses this idea with rubber-bonded magnet sheet. In axially-laminated motors the 

magnet requirement is low enough to allow the use of rubber-bonded ferrite magnets. 

This is a flexible, isotropic, low-cost material available in thin sheets (0.4 to 1mm) and is 

normally used in applications such as magnetic “L” plates for cars and refrigerator door 

seals. In the motor design, the flexibility is important as the magnets are sandwiched 

between magnetic laminations which have sharp bends in a four-pole motor. Compared 

even with sintered ferrite magnets, its magnetic properties are poor but prove to be all 

that it required for this application.

1This indicates that the centre of the shaft is 132mm above the mounting surface.
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Figure 5.1: Design procedure for axially-laminated motors.

Due to the tim e constraints it was necessary to finalise the design of the motors be­

fore all the analysis described in this section was completed. Thus though the prototype 

synchronous reluctance design gives reasonable performance, the analysis shows that 

the parameters chosen were not always optimum. This section investigates how the 

prototype machine could be optimised for future designs and how much improvement 

is possible.

Fig. 5.1 shows the design approach used in this chapter. Sec. 5.2 considers the design 

of a 7.5kW axially-laminated synchronous reluctance motor. It makes extensive use 

of finite-element modelling to investigate the effect of changing the design parameters 

on the field-weakening performance. Sec. 5.3 examines the tradeoffs in the reluctance 

performance involved in adding magnets into the rotor, the selection of the magnet 

material and the demagnetisation-withstand constraints.
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5.2 Optim al Synchronous R eluctance D esign

Axially-laminated interior permanent magnet motors designed for good field-weakening 

performance are predominantly reluctance machines. Thus firstly the optimisation 

of the performance of the axially-laminated synchronous reluctance motor drive is 

examined. The major design parameters are : pole number, mechanical design, pole- 

piece material, airgap size and lamination to barrier ratio. Each of these will now be 

examined in turn.

5.2.1 P ole N um ber

The intrinsic magnetising saliency ratio equation (4.29) showed that the unsaturated 

magnetising saliency ratio is inversely proportional to the number of poles. Most 

axially-laminated designs have four poles [49, 50, 71, 81, 90] although Boldea has built 

two-pole designs [48] and El-Antably et al. [91] and Rao [92] have built six-pole designs 

(see Fig. 5.2). The two-pole designs offer the highest saliency (21 has been achieved) 

and the simplest rotor design as no bending is required. The main drawback is that 

unlike the higher pole number designs, there is no room for a shaft to run through the 

rotor. In [48] this was overcome for two small motors (0.55kW and 1.5kW) by glueing 

endplates to the rotor stack. This is however impractical for larger motors.

TWO-POLE FOUR-POLE SIX-POLE

Figure 5.2: Two, four and six-pole rotors
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Six-pole designs can be built but are more complex and have a saliency ratio which 

is theoretically two thirds of that for the four-pole design. However it was shown in 

Fig. 3.22 that the improvement in the constant-power speed range due to increasing 

the saturated saliency ratio can be substantially offset by the associated increase in 

saturation (and hence the maximum-torque-per-ampere current-angle). Thus in large 

motors (say greater than 15kW), six or eight-pole designs may yield better performance 

because the shorter flux paths reduces the saturation. This decreases the maximum- 

torque-per-ampere current-angle which improves the constant-power speed range.

Using the approximation described in Sec. 4.2.4, a 7.5kW synchronous reluctance 

motor would have an unsaturated saliency ratio of approximately 0.4fm,\ From this a 

four-pole design using the same airgap as the equivalent induction motor would have 

a saliency ratio of about 13. A six-pole 7.5kW motor design would thus yield too low 

a saliency ratio (about 8) for good performance. Thus a four-pole 7.5kW design was 

used.

5.2.2 M echanical D esign

A commercial four-pole 7.5kW induction motor stator was used for the prototype. Its 

main dimensional information is listed in Table 5.1. An induction motor based on this 

stator is actually capable of llk W  at rated speed, but is derated to 7.5kW for a 10:1 

constant torque speed range with a shaft-mounted fan [93, 94]. This is due to the 

reduced cooling effect of the fan at low speeds restricting the torque in this region.

Fig. 5.3 shows the finite-element model of the rotor and stator of the 7.5kW motor. 

A comparison with the model of the 120W motor shown in Fig. 4.7 on pg. 175 shows the 

effects of scale on the relative proportions. The most striking effects are the decrease 

in the relative slot volume and the increase in the relative back-iron thickness in the 

larger motor.

The rotor consists of a square cross-section shaft to which the four rotor poles are 

bolted (see Figs. 5.4 and 5.5). Each pole consists of a stack of interleaved lamination 

and insulation layers. The laminations are bent and the insulation material scored
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Table 5.1: Four-pole 7.5kW stator information.
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Rated Output Power 7.5kW
Rated Voltage 415V// rms
Rated Current 15 A rms
Winding Connection star
Phase Resistance (hot) 0.75D
Poles 4
Slots 36
Stack Length 202.4mm
Stator Inner Diameter 127.08mm

prior to assembly. The poles are held in place by pole-pieces which are secured by

bolts which run through the pole and into the shaft. Note that non-magnetic bolts are

necessary to avoid magnetically short-circuiting the rotor.

The edge length I, of the square cross-section shaft is generally chosen so that the 

two lines formed by the bends in the laminations in each pole intersect roughly at the 

outside of the rotor (see Fig. 5.4). From geometry this occurs when :

2 tan 22.5° , .
I, = -— -— —— n  »  0.6r! 5.1)

1 +  tan 22.5° v '

This choice gives well-shaped pole-pieces, maximises the pole-arc and gives a reasonably

stiff shaft.

A reasonable amount of pole-piece material is desirable in order to give the pole- 

pieces sufficient strength. A pole-arc of 120° electrical was found acceptable.

There is a tradeoff on the size of the bolts. The axial length of the rotor lost due to 

the bolts is proportional to their diameter, while their strength is proportional to the 

square of the diameter. Thus for a given total bolt strength, the larger the bolts, the 

less rotor magnetic cross-section lost. However a reasonable number of bolts should be 

used in order to distribute the forces more evenly over the rotor length.

The bolts carry the centrifugal forces which attem pt to lift the poles from the 

shaft. In order to calculate the forces involved, the following conservative simplifying 

assumptions are used : the shaft is circular with a radius r9 equal to half its edge
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Figure 5.3: Cross-section o f 7.5kW  synchronous reluctance motor.

length; the density of the rotor is that of iron; and finally that only forces parallel to 

the bolt axis contribute to tensile forces in it. From these assumptions it can be shown 

that the force on each bolt, Ft, is given by :

Ft =  5 ^ ' w2(r 1 -  r*) (5-2)

where Nf, is the number of bolts per pole, pi is the density of the laminations and u  is 

the mechanical speed. The density of steel is approximately 7800kgm”3 [95].

The maximum force which each bolt can carry is determined by the minimum force 

required to cause it to fail. There are three failure mechanisms each with its own 

maximum allowable force [96] :

1. Tensile failure of bolt :

Fl =  (’r /4)fL n or^  (5-3)

2. Shear failure of bolt threads :

F2 ~  (tT/ A)Dm%norlt,a<Tyb (^*^)

3. Shear failure of shaft threads :

F3 — (?T jA)Dmajor h .°y . (5.5)
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Figure 5.4: 7.5kW axially-laminated rotor cross-sectional view.
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r  -  -  t- - - -t-----------   r  — -i- - - -  - —

Figure 5.5: 7.5kW axially-laminated rotor axial view.

where D m a j o r  is the bolt major diameter2, D m i n o r  is the bolt minor diameter3, ha is 

length of the bolt which is embedded in the shaft, <7y& is the yield stress of the bolt and 

<7ya is the yield stress of shaft. The yield stress of stainless steel is about 230MPa and 

of mild steel is about 300MPa [95].

The more bolts used in the design, the less iron cross-section is available to carry 

flux. For 10mm diameter non-magnetic stainless steel bolts the failure forces Fi, F2 

and F3 are 12kN, 19kN and 31kN respectively. Thus the bolts will clearly fail in 

tension first. Six bolts per pole gives a failure speed of 6000rpm for the 7.5kW design. 

Allowing a factor of four safety margin with respect to the bolt stress gives a maximum 

safe operating speed of 3000rpm.

In order for a wide field-weakening range to be useful, the rotor should be me­

chanically capable of operating up to a sufficiently high speed. The rated speed of 

the drive with rated voltage should be comparable to the induction motor, that is 

about 1500rpm. A 3000rpm maximum speed limitation will thus limit the drive to 

a constant-power speed range of about 2:1. In order to demonstrate the wide field-

2The major diameter is the diameter of the bolt measured at the top of the screw threads.

3The minor diameter is the diameter of the bolt measured at the bottom of the screw threads.
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Table 5.2: Effect of pole-pieces and bolts.

Property Magnetic 

Pole-Pieces

Prototype No Bolts

Pole-Pieces magnetic non-magnetic non-magnetic

Bolt Holes present present absent

Torque [Nm] 59.2 54.6 62.3

(u 10.7 12.3 12.2

6 9.2 10.7 10.8

CPSR 2.38 2.44 3.43

7m 61.2° 62.9° 56.6°

weakening range this can be overcome by simply operating the motor at a lower voltage 

in order to reduce the rated speed. However it is clear that for a commercial motor 

drive it will be necessary to examine alternative means for holding the rotor together.

The effect of the six bolt holes per pole is to locally reduce the effective rotor 

magnetic cross-section by 6 x 10mm =  60mm or 30%. This increases the saturation in 

the rotor.

5.2.3 P ole-P iece M aterial and B olt H oles

The next choice is the type of pole-pieces used. Either magnetic (steel) or non-magnetic 

(brass) pole-pieces can be used. Magnetic pole-pieces increase the effective pole-arc to 

180° electrical and hence increase the q-axis inductance (4.19) and thus the output 

torque. However they also increases the d-axis inductance which reduces the saliency 

ratio. The prototype used non-magnetic pole-pieces to obtain the highest saliency 

ratio. The d- and q-axis flux plots are shown in Fig. 5.6. Note the similarities with the 

120W flux plots shown in Figs. 4.9 and 4.11 in Sec. 4.3.2.

Fig. 5.7 and Table 5.2 show the finite-element results of the effect of using magnetic 

pole-pieces and also of removing the bolt holes, on the saturation characteristics and



CH APTER 5. DESIGN OF AXIALLY-LAM INATED M O TO RS

Figure 5.6: 7.5k W  SYNCHEEL d-axis (top) and q-axis (bottom,) flux plots.



5.2. OPTIM AL SYNCHRONO US REL UCTANCE DESIGN 205

140

U
U 100
z,
<
5  80
D
Q
55 60 P R O T O T Y P E

M A G N E T I C  P O L E  - P I E C E S  

NO B O L T S

P H A S E  C U R R E N T  [A r m s ]

Figure 5.7: Calculated inductance characteristics for the 7.5kW  SYNCHREL.

the field-weakening performance. The bolt holes are modelled using the pseudo 3-D 

technique described in Sec. 4.3.1. Magnetic pole-pieces increase the output torque by 

9%, decrease the saturated saliency ratio by 15% and reduce the constant-power speed 

range by 2.5%. The bolt holes reduce the output torque by 14% and the constant-power 

speed range (CPSR) by 40%. Note that Ld is unaffected by the bolt holes. Despite the 

lower saturation when the bolt holes are absent, the saturated saliency ratio is similar 

to that of the prototype due to the lower 7m. This highlights the sensitivity of the 

constant-power speed range to 7m.

The above results show that for this particular design that magnetic pole-pieces 

would have given more torque with no significant reduction in the constant-power 

speed range. This however cannot be generalised to all axially-laminated motors as 

it is dependent on the degree of saturation in the rotor. The results also show that 

removing the bolts and hence increasing the effective rotor cross-section yields substan­

tial performance improvements. This could be achieved by either increasing the length 

of the rotor beyond that of the stator or else by finding some means for reducing the
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Figure 5.8: Calculated flux-linkage characteristics with different airgaps. 

number of bolts without compromising the mechanical strength.

5.2.4 A irgap Size

The intrinsic magnetising saliency ratio equation (4.29) shows that the unsaturated 

magnetising saliency ratio is inversely proportional to the airgap size. In practice as 

the airgap is decreased, magnetic saturation will cause the saturated saliency ratio to 

be limited. Thus decreasing the airgap beyond a certain point will not significantly 

improve the field-weakening performance and may even make it worse.

Fig. 5.8 shows the calculated finite-element flux-linkage characteristics for the 7.5kW 

synchronous reluctance motor with a range of airgaps from 0.1mm to 2mm. Note that 

the induction motor uses an airgap of about 0.5mm. The unsaturated q-axis induc­

tance is not quite inversely proportional to the airgap due to Carter’s coefficient (see 

Sec. 4.2.2). For airgaps of 2mm and 1mm the inductance characteristics show little 

saturation. However as the airgap is decreased below 1mm, saturation occurs firstly
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Figure 5.9: Effect of airgap size on the calculated performance characteristics.

at high currents and then at progressively lower currents. For a given value of current, 

once the airgap is small enough to cause the inductance to saturate, then decreasing the 

airgap further has little effect. With regards to the d-axis inductance, decreasing the 

airgap produces slightly more leakage flux and hence produces a second-order increase 

in the d-axis inductance.

The operating characteristics of the designs were calculated from the inductance 

characteristics and the normalised results axe shown in Fig. 5.9 as a function of the in­

verse airgap (1 /g). The unsaturated saliency ratio (UNSAT) and the saturated saliency 

ratio (SAT) are normalised against the saturated saliency ratio at the nominal airgap 

(0.5mm). The torque and constant-power speed range are also normalised against their 

respective values at this value of airgap. The inverter utilisation k (KAPPA) is the ratio 

of the rated output power of the motor to the inverter VA rating (see Sec. 1.1).

All the characteristics except the constant-power speed range improve monoton- 

ically with increasing 1 jg. Note that as the airgap becomes very small, all the pa­

rameters except the unsaturated saliency ratio asymptote towards constant values.
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Thus decreasing the airgap below about 0.25mm will not yield a significant change 

in performance. W ith zero airgap the output torque is about 15% greater and the 

constant-power speed range about 15% less than what is obtained with a 0.5mm air- 

gap.

The constant-power speed range differs from the other characteristics in that it 

peaks at about g =  1mm. This is associated with the increase of both the saturated 

saliency ratio and the maximum-torque-per-ampere current-angle with decreasing air- 

gap size. The first effect causes the constant-power speed range to increase while the 

second causes it to decrease. It is not worthwhile using the maximum constant-power 

speed range airgap size as the peak constant-power speed range is only a few per­

cent larger than tha t obtained with a 0.5mm airgap and the torque falls rapidly with 

increasing airgap.

5.2*5 R otor Insulation  R atio

The intrinsic magnetising saliency ratio equation (4.29) shows that the unsaturated 

magnetising saliency ratio is proportional to the rotor insulation ratio a. This is the 

proportion of air in the rotor (4.21). Increasing the rotor insulation ratio increases the 

unsaturated saliency ratio but may decrease the output torque due to saturation. The 

prototype used equal lamination and insulation thicknesses (a =  0.5).

Boldea and Nasar [64], Lipo [89] and Staton, Miller and Wood [21] have investigated 

the effect of the rotor insulation ratio on the saliency ratio and the output torque. 

Boldea and Nasar recommend using values of a in the range 0.33 to 0.40 with the 

upper limit due to rotor saturation. Lipo suggests a value of about 1/3 in order to 

maximise the output torque and also to reduce rotor iron losses. Staton et al. found a 

value of 0.5 gave optimum results.

Finite-element analysis was used to calculate the saturation characteristics of the 

7.5kW motor with different values of rotor insulation ratio. The results are shown 

in Fig. 5.10. Consider first the d-axis inductance. This is composed of the leakage 

inductance Li which is relatively constant and the magnetising inductance Ldm which
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is ideally inversely proportional to a (4.27). Note that for small values of a, Ldm and 

hence Ld becomes large as there is little non-magnetic material in the rotor.

Decreasing a increases the unsaturated q-axis inductance due to the reduction in 

Carter’s coefficient (see Sec. 4.2.2). The amount of saturation decreases with decreasing 

a as the volume of iron in the rotor increases. Note that there is only a small change in 

the characteristic from going from a =  0.2 to a =  0.1 which indicates for these values 

of a there is little saturation in the rotor.

Prom (4.29) the saliency ratio should be proportional to o. This is true for low 

values of a, however for larger values, Carter’s coefficient reduces the unsaturated 

saliency ratio and heavy saturation brings down the saturated saliency ratio. This is 

reflected in the maximum-torque-per-ampere current-angle plot. The torque peaks at 

about a =  0.3 and the constant-power speed range (CPSR) peaks at about a =  0.4. 

Note that these results are sensitive to how much of the rotor cross-section is lost due 

to the bolt holes. The value of a =  0.5 used in the prototype is not optimal, but gives 

reasonable performance.
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5.3 O ptim al IPM  D esign

A major problem with synchronous reluctance motor drives with regard to field- 

weakening performance is the limited achievable constant-power speed range. The 

prototype 7.5kW design described in the previous section had a calculated saturated 

saliency ratio of about 11 (see Table 5.2). Ideally it would have a constant-power speed 

range of about half this, that is about 5:1, however due to saturation its calculated 

constant-power speed range is only about 2.4:1. This dramatic reduction is seen in all 

synchronous reluctance designs as shown in Fig. 3.22 on pg. 152. The previous section 

has shown that the prototype synchronous reluctance design is not optimally dimen­

sioned. However it was also shown that it would be difficult to achieve a constant-power 

speed range substantially above about 3:1, even with an optimally dimensioned design.

The limited field-weakening performance can be overcome by adding the correct 

amount of permanent magnet material to the motor. This produces an optimal field- 

weakening axially-laminated interior permanent magnet motor drive. The theoretical 

field-weakening performance of such drives was investigated in Chapter 2.

A larger airgap (0.92mm instead of 0.5mm) was used in the interior permanent 

magnet motor design. This reduced the output torque so that it was comparable to 

the synchronous reluctance motor drive and did not exceed the dynamometer capacity 

(see App. A). This also allowed the investigation of the effect of increasing the airgap 

on the inductance characteristics.

The design of the axially-laminated interior permanent magnet motor drive is based 

on the prototype synchronous reluctance motor. The main design decisions are : pole- 

piece material, magnet type and demagnetisation-withstand. Each of these will now 

be examined.

5.3.1 P o le-P iece M aterial

Finite-element analysis was used to investigate the effect of using magnetic and non­

magnetic pole-pieces on the motor back-emf waveform. Figs. 5.11 and 5.12 show
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Figure 5.11: IPM motor drive flux plot with magnetic pole-pieces.



Figure 5.12: IPM motor drive flux plot with non-magnetic pole-pieces.
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magnet flux plots for the two cases. Note that there is no stator current. The associated 

magnet airgap flux distribution is shown in Fig. 5.13. Note the distortion to the ideal 

sinusoidal distribution when using non-magnetic pole-pieces.

The line-to-line back-emf voltage can be calculated (see Fig. 5.13) using the pro­

cedure described by Miller et al. [97]. The flux in each stator tooth at a given rotor 

position can be calculated from the airgap flux distribution. This is repeated as the 

rotor is stepped through ten mechanical 1° steps. From this information the flux in 

each tooth at any integral degree rotor position can be calculated from symmetry. 

Based on this and a knowledge of the winding distribution, the back-emf voltage can 

be calculated.

Magnetic pole-pieces increase the fundamental back-emf voltage by 13% and result 

in a far more sinusoidal airgap flux density distribution and hence back-emf wave­

form. This is im portant in order to reduce harmonic iron losses, especially in the 

field-weakening region [4]. Thus magnetic pole-pieces were used despite the small loss 

in the saliency ratio shown in Sec. 5.2.3.

The calculated inductance characteristics are shown in Fig. 5.14. The unsaturated 

q-axis inductance is substantially lower than that for the synchronous reluctance design 

(see Fig. 5.7) due to the larger airgap. As predicted in Sec. 5.2.4 the flux-linkage 

characteristics show much less saturation.

5.3.2 M agnet Selection

Table 5.3 [12] shows the remanence of common magnet types. Ferrite magnets are 

low-cost and are widely used for general-purpose applications. For higher perfor­

mance, more expensive rare-earth magnets such as neodynium-iron-boron (NdFeB) and 

samarium-cobalt (SmCo) are used. Sintered magnets are the most common. These are 

moulded by heating the magnet powder to high temperatures. Rubber-bonded mag­

nets consist of a plastic binder and the magnet powder. These are flexible but have 

remanences of about half that of the sintered materials.

The 7.5kW axially-laminated interior permanent magnet motor design requires
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Figure 5.13: Calculated airgap flux distribution (top) and line-to-line back-emf wave­

forms at lOOOrpm (bottom) with magnetic (solid line) and non-magnetic (dashed line) 

pole-pieces.
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Figure 5.14: 7.5kW  axially-laminated IPM flux-linkage characteristics.

magnets with the following properties : available in thin sheets (<0.5mm), flexi­

ble enough to be bent through 45° in a radius of a few millimetres, high coercivity, 

high maximum operating temperature and low cost. The only flexible magnet sheet 

presently commercially available in quantity is rubber-bonded ferrite, though flexible 

neodymium-iron-boron (NdFeB) magnet sheet is under development. Typical proper­

ties of these two materials are summarised in Table 5.4.

The optimum field-weakening criteria \Pm =  Ldh  (2.1) gives the optimum value of 

magnet flux-linkage. Finite-element calculations corrected for end-winding inductance 

gives Ld =  11.5mH. Thus the optimum magnet flux-linkage \Pm is :

=  Ldh  =  11.5mH x 15Arms =  0.173Vs (5.6)

The finite-element flux plots in Fig. 5.11 were calculated with rubber-bonded ferrite 

magnets. From Fig. 5.13, flexible ferrite magnets give \Pm =  0.214Vs which is slightly 

more than the optimal magnet flux-density.

Figs. 5.15 and 5.16 show the effect on the calculated field-weakening characteristics 

of adding magnet material to the motor drive. The performance of a pure synchronous
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Table 5.3: Typical magnet properties.

Magnet Type Remanence

Rubber-bonded Ferrite 0.17 T
Sintered Ferrite 0.4 T
Rubber-bonded NdFeB 0.45 T
Sintered SmCo 1.0 T
Sintered NdFeB 1.1 T

Table 5.4: Typical flexible magnetic sheet properties. Courtesy of Anchor Magnets, 

Lucas AE C  and Cookson Technology.

Property Ferrite NdFeB

Remanent Flux Density Br [T] 0.165 0.4-0.5
Coercivity Hc [kA/m] 110
Intrinsic Coercivity Hd [kA/m] 180 700-1000
Recoil Permeability prec 1.10 1.06
Density p [kg/m3] 3600 5000
Max. Continuous Temp. [°C] 80 60-100
Max. Intermittent Temp. [°C] 110
Temp. Coeff. of Br [%/°C] -0.2 -0.1
Temp. Coeff. of Hd [%/°C] 0.4 -0.6
Magnet Thickness [mm] >0.4 >0.4

reluctance motor with a 0.92mm airgap (point A in the contour plot) is compared 

against that with the optimal magnet flux (point B), rubber-bonded ferrite magnets 

(point C) and rubber-bonded NdFeB magnets (point D). Note that point B should 

ideally lie exactly on the right-hand side of infinite constant-power speed range band 

as it is an optimal field-weakening design. It does not because the contour plot is 

calculated for a constant parameter model while the motor shows some saturation.

From Fig. 5.16 the synchronous reluctance motor drive shows a constant-power 

speed range of 3.2. Adding the optimal magnet flux increases the rated torque and 

produces a motor drive with the optimal field-weakening performance, that is, full 

output power up to infinite speeds. The motor drive using rubber-bonded ferrite mag-
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Figure 5.15: Location of the designs on the IPM parameter plane.

net sheet has a slight excess of flux. This gives it slightly more torque at low speed 

than the optimal design but reduces the constant-power speed range from infinity to 

13. Using NdFeB magnets substantially enhances the low speed torque at the price 

of a poor field-weakening performance. Note that this assumes that all the insulation 

layers are replaced with rubber-bonded NdFeB sheet. If only a fraction of the layers 

are replaced then the magnet flux can be reduced to the optimum amount. Alterna­

tively the proportion of magnet material in the rubber could be decreased in order to 

reduce the remanence. Both these techniques would give the benefit of the far better 

demagnetisation-withstand capability of NdFeB magnets.

Rubber-bonded ferrite magnet sheet was used in the prototype due to its ready 

availability.
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Figure 5.16: Calculated field-weakening performance curves for a purely synchronous 

reluctance design (SYN), an optimal design (OPT), a design using rubber-bonded ferrite 

magnets (Fe) and a design using rubber-bonded NdFeB magnets (NdFeB).
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Figure 5.17: Magnetic properties of rubber-bonded ferrite sheet. The solid line is the 

measured characteristic (courtesy of Lucas AEC) at 20PC and the dashed line is the 

calculated characteristic at 80° C.

5.3.3 D em agnetisation-W ithstand

An important design consideration is demagnetisation-withstand. This is because in 

an optimal field-weakening design the total effective flux in the magnet axis is reduced 

to zero by rated stator current in that axis. Note that does not actually require the 

flux in the magnets to be reduced to zero because a substantial proportion of Ld (about 

40% in the 7.5kW design) consists of slot-leakage and end-winding inductance which 

does not produce airgap flux. Nevertheless the magnet operating point is low under 

these conditions.

The measured demagnetisation curve of the flexible ferrite magnet sheet is shown 

in Fig. 5.17. Due to the “softness” of the characteristic, care is required to prevent 

irreversible demagnetisation of the magnets. Fig. 5.18 shows a finite-element flux plot 

of the worst case demagnetisation condition : rated current in the least inductive axis. 

It should be compared with Fig. 5.11 where there is no demagnetising current. Note
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Figure 5.18: Worst case demagnetisation flux plot.
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that a substantial proportion of the stator flux is forced into leakage paths. Under these 

conditions the magnetic field in the magnets decreases to about 0.04 to 0.08T. This 

will not cause irreversible demagnetisation as it is above the knee in the characteristic. 

Thus there is no danger of demagnetisation as long as the rated stator current is not 

exceeded.
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5.4 Sum m ary o f Designs

The prototype axially-laminated synchronous reluctance motor had four poles, non­

magnetic pole-pieces, a 0.5mm airgap and a rotor insulation ratio of 0.5. The calculated 

constant-power speed range was about 2.4. The analysis showed that using magnetic 

pole-pieces and a smaller value of rotor insulation ratio would yield a significantly 

higher output torque and a constant-power speed range of about three.

Adding permanent magnets to the motor drive improves its field-weakening perfor­

mance dramatically. The prototype interior permanent magnet motor used a 0.92mm 

airgap to give it a comparable output torque to the synchronous reluctance design 

and also to prevent it overloading the dynamometer. Magnetic pole-pieces were nec­

essary to produce a sinusoidal back-emf waveform and so reduce iron losses during 

field-weakening. Rubber-bonded ferrite magnets were used as they gave nearly the 

optimum magnet flux-linkage. They showed sufficient demagnetisation-withstand ca­

pability as long as the rated stator current was not exceeded.
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C hapter 6

C onstruction and Test o f 7.5kW  

M otors

This chapter examines the construction and testing of the 7.5kW axially-laminated 

synchronous reluctance and interior permanent magnet motors. A comprehensive set 

of test results are presented showing both the performance in the constant torque and 

in the field-weakening operating regions.

225
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6.1 C onstruction

6.1.1 M agnetisation  o f Ferrite M agnet Sheet

The rubber-bonded ferrite magnet sheet is normally supplied magnetised in a multi-pole 

fashion on one surface. Thus it was necessary to remagnetise it through the thickness. 

This was performed by passing it between the poles of a large electromagnet. The 

electromagnet used had 4 inch diameter flat circular pole-pieces with an adjustable 

airgap. It had provision for watercooling however this was not used. The magnetic 

flux density in the airgap as a function of the excitation current for two different 

airgaps is shown in Fig. 6.1. This was measured using a search coil and a ballistic 

galvanometer. In order to fully magnetise the ferrite magnet sheet a field of about five 

times the intrinsic coercivity is required [76]. From Fig. 5.17 this implies H=900kA/m 

or equivalently B=1.1T. This can easily be reached with the electromagnet used.

The magnet sheet was magnetised before assembly. The problem with this proce-
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Figure 6.1: Electromagnet characteristics with different airgaps.
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dure is that the operating point of the sheet magnet material in free air was so low 

that partial demagnetisation occurred immediately on withdrawal from the magnetis­

ing field. Tests on samples revealed a remanence of only about 0.14T instead of the 

0.165T obtained by Lucas (see Fig. 5.17) with a sample of a similar but not identical 

material. Thus the lower remanance may also be partly due to variations in the prop­

erties of the material. The 15% lower flux density obtained is allowable as Sec. 5.3.2 

showed that the ferrite magnet material produced about 20% excess flux. Thus the 

actual flux density achieved would now be closer to the optimal amount. An excessive 

magnet flux density could have been reduced by replacing some of the magnet m ate­

rial with normal insulation material, however this is no longer necessary. Note that 

the magnets could probably be magnetised in situ if desired due to the relatively low 

magnetising field requirement.

The maximum continuous operating temperature of both the ferrite and NdFeB 

flexible sheet magnets is limited by the binders used. Present materials are limited 

to 60-100° C. This is not however an intrinsic limit and if there is a sufficiently large 

market, alternative binders could be found.

6.1.2 C onstruction Process

The two 7.5kW axially-laminated rotors were built by the departmental mechanical 

workshop.

The design of the shaft is similar to that for the original induction motor except the 

centre section has a square cross-section (see Fig. 6.2). This is drilled and tapped to 

accept the six 10mm stainless steel bolts per pole. A balancing disk is fitted in order 

to correct for inevitable small asymmetries in the construction.

Each rotor pole consists of a stack of lamination and insulation layers. Grain- 

oriented lamination material (Unisil 50M7) was used as this has several times lower 

iron losses and has better magnetic properties compared to conventional non-oriented 

steel. Normally grain-oriented steel is only available in thickness of up to 0.35mm, 

however a 0.5mm variety has recently been introduced by Orb Electrical Steels and
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Figure 6.2: Top : 7.5kW rotor components before assembly. Bottom : Assembled 7.5kW  

axially-laminated rotor before turning and grinding operations.
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this was used in the prototypes. Each motor contains about two square metres of 

lamination material. The laminations are cut slightly oversize and are individually bent 

to give the correct shape. Nomex slot insulation material is used in the synchronous 

reluctance motor. This is a stiff, high temperature (Class F) pla-stic material available 

in thicknesses up to 0.5mm. It is scored prior to assembly. The rubber-magnet material 

is flexible enough such that it is not necessary to score it.

The pole-pieces are made of brass for the synchronous reluctance motor and mild 

steel for the interior permanent magnet motor. They are made slightly oversize and 

then are milled to fit snugly into the poles. The lamination and insulation layers are 

stacked together and the pole-pieces fitted on top. The entire pole is then clamped 

and drilled. Next the rotor is assembled by bolting the four poles onto the shaft 

(see Fig. 6.2). It is then turned roughly down to size. The final diameter required 

is obtained by grinding. This is calculated from the stator inside diameter and the 

required airgap. Care is required in measuring the stator inside diameter as it is often 

irregular and coated with a layer of varnish. A number of measurements should be 

taken at various positions and the results averaged. The finished rotor is shown in 

Fig. 6.3.
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Figure 6.3: Experimental 7.5kW axially-laminated rotor with 50W  prototype in fore­

ground. The scale in the front is 5cm long.
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6.2 Experim ental R esults

The 7.5kW axially-laminated interior permanent magnet and synchronous reluctance 

motor design parameters are summarised in Table 6.1.

6.2.1 Inductance C haracteristics

The inductance characteristics of the two motors (see Fig. 6.4) were measured using 

the instantaneous flux-linkage method described in Sec. 4.4. AC standstill tests were 

found to give poor results due to the large iron losses produced by the flux oscillations 

in the rotor. Note that under normal field-oriented control, the flux in the rotor is 

substantially constant and so these losses will not appear.

The measured inductance characteristics correspond well with the finite-element 

predictions. The interior permanent magnet motor shows much less saturation than 

the synchronous reluctance motor due to the larger airgap. This can be clearly seen 

from Table 6.2 where the interior permanent magnet motor’s unsaturated saliency ratio 

is 6.7 and the saturated value £, is 6.3. The use of iron pole-pieces causes the d- 

axis (low inductance axis) inductance of the interior permanent magnet motor to be 

significantly greater than that of the synchronous reluctance motor.

Table 6.1: Motor design parameters.

Parameter IM SYNCHREL IPM

Airgap [mm] 0.48 0.517 0.917
Stator Inner Dia. [mm] 127 127 127
Stack Length [mm] 202 202 202
Poles 4 4 4
Lamination Thick, [mm] 0.50 0.50
Ins./Magnet Thick, [mm] 0.50 0.50
Rotor Layers 62 62
Pole Arc [elec deg] 131 131
Pole Pieces brass iron



232 CH APTER 6. CONSTRUCTION AND TEST OF 7.5KW  M OTORS

140

120S
a S Y N

» 100 Uz
< 80 H U D
a  60 
z

IP M

W
Vi
<X
Cl, I P M

S Y N

C U R R E N T  [A R M S ]

Figure 6.4: Comparison of measured inductance characteristics (solid) and finite 

element results (dotted).

Table 6.2: Measured inductance characteristics.

Parameter SYNCHREL IPM

Ld [mH] 10.5 12.0
11.5 6.7 
9.6 6.3

6.2.2 B ack-E m f Voltage

A compaxison of the measured and calculated back-emf waveforms for the interior 

permanent magnet motor are given in Fig. 6.5. This shows that the waveform shape 

is accurately predicted. The measured magnet flux-linkage is 0.174Vs which is about 

20% lower than the calculated value. This is due to the difficulty in fully magnetising 

the magnets described in Sec. 6.1.1. The maximum stator d-axis flux-linkage is Ldlc =  

180mVs which is close to the magnet flux-linkage. Thus this design is a near optimum 

field-weakening design.
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Figure 6.5: Comparison of measured (solid) and calculated (dashed) line-to-line back- 

em f voltage at lOOOrpm.

6.2.3 C onstant Speed Tests

The constant speed tests were performed on a fully-instrumented 50Nm dynamometer 

using a vector-controlled induction motor as a load. A 7.5kW, 5kHz IGBT inverter and 

an analog hysteresis current controller was built to control the test motor. The current 

controller allows full control over the current magnitude and current-angle. App. A 

describes the dynamometer, inverter and controller in more detail.

The current is measured using a three-phase power analyser and the torque is 

obtained from an inline torque transducer. The fundamental phase voltage is obtained 

by filtering the line-to-line voltage waveforms with a second-order Butterworth filter 

(see App. A).

Fig. 6.6 shows the effect of varying the current-angle for operation at rated current 

at 500rpm. The finite-element inductance predictions (with the measured magnet 

flux-linkage) give a good approximation to the performance though the calculated
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Figure 6.6: Torque and fundamental voltage characteristics of the 7.5kW synchronous 

reluctance (SYN) and interior permanent magnet motor (IPM). The torque and voltage 

characteristics are measured at 500rpm and 15A. Measured results (solid), calculated 

from the measured inductance characteristics (dashed) and finite-element predictions 

(dotted).
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characteristics from the measured inductance results are generally better as would be 

expected. Note the reduction in the terminal voltage as the current-angle is increased 

towards 90°. This is the key to the field-weakening operation.

6.2.4 Field-W eakening Tests

A comparison between the calculated and measured field-weakening characteristics at 

rated current and one third of rated voltage are shown in Fig. 6.7. The reduced voltage 

was used to allow the field-weakening region to be characterised without overstressing 

the rotor mechanically (see Sec. 5.2.2). Note that to a first approximation, the constant- 

power speed range is independent of the supply voltage.

Ideally the induction motor drive has a constant-power speed range of about 2.5. 

This is the ratio of the breakdown torque to the rated torque (see Sec. 1.2). Note 

that this is a standard general-purpose induction motor and it is not designed for a 

wide constant-power speed range. Typical induction motor main spindle drives have 

constant-power speed ranges of 3 to 5:1.

The synchronous reluctance motor drive has a measured constant-power speed range 

of also about 2.5. As predicted by the model, the interior permanent magnet mo­

tor drive shows an excellent field-weakening characteristic. The rated speed is about 

420rpm at which the output power is about 2.4kW. The highest measured speed was 

3160rpm, constrained by mechanical limitations in the prototype motor. This corre­

sponds to a 7.5:1 constant-power speed range, and at the highest speed the output 

power was still over 2.8kW. Thus the actual constant-power speed range is probably 

greater than 10:1 and may even reach 15:1.

The calculated characteristics were based on the measured inductance and magnet 

flux-linkage and did not take into account iron losses or friction and windage losses. 

This causes the descrepancy between the measured and calculated power output curves.

The required control characteristics are predicted accurately as shown by the current- 

angle versus speed graph in Fig. 6.7. The synchronous reluctance motor drive enters 

the purely voltage-limited or inverse power region (Mode III) at about 1500rpm. Note
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Figure 6.7: Field-weakening characteristics at rated current and one third o f rated volt­

age. Measured results (solid lines) and calculated results (dashed lines). The calculated 

characteristic o f the induction motor drive is given for comparison.



6.2. EXPERIM ENTAL RESULTS 237

r 15A

W
oOS
OH

10A

5A

160 18060 80 100 120 140

R O T O R  A N G L E  [ E L E C  D E G ]

Figure 6.8: Measured torque-ripple for the 7.5kW axially-laminated (solid line) and 

single-barrier (dotted line) synchronous reluctance motor at three levels of current (7 =  

45°;.

that after this point the current-angle remains relatively constant and the current 

magnitude is decreased. The interior permanent magnet motor remains in the voltage- 

and-current-limited region (Mode II) throughout the field-weakening range. Note the 

sensitivity of the performance to the current-angle at high speeds. In an actual drive, 

voltage control rather than current control may be preferred due to the lower sensitivity 

to errors in the angle [7].

6.2.5 Torque R ipple Tests

A comparison of the measured torque-ripple performance of the 7.5kW axially-laminated 

synchronous reluctance motor drive against that of a 7.5kW single-barrier synchronous 

reluctance design [69] is given in Fig. 6.8. Note the axially-laminated design has ap­

proximately half the torque-ripple of the single-barrier design. The torque-ripple at full 

load is approximately 20%. The large torque-ripple even with the axially-laminated
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Table 6.3: Measured full-load test results. The induction motor power-factor is low 

as the motor is actually capable o f llk W , but is derated to 7.5kW for a 10:1 constant 

torque speed range with a shaft-mounted fan. The induction motor test results are 

courtesy of Brook Crompton.

Parameter IM SYNCHREL IPM

Rated Line Voltage Vc [V] 415 415 415

Rated Current Ic [A] 15 15 15

Magnet Flux [Vs rms] 0 0 0.174

7 m [deg] 64.1 48.1

Rated Speed Wk [rpm] 1460 1442 1396

Rated Torque T* [Nm] 50 49.6 53.1

Rated Output Power Pk [kW] 7.5 7.48 7.76

Efficiency r\ [%] 87.5 85.5 89.5

Power Factor cos <j> 0.72 0.813 0.804

Inverter Utilisation ac = 77 cos ̂ 0.63 0.696 0.720

CPSR 2.5 2.5 >  7.5

rotor construction is due to the lack of skew and the simple single-layer stator winding.

6.2.6 Full Load Tests

A comparison of the measured performance of the motor drives with rated voltage 

and current operating at rated torque and speed is shown in Table 6.3 (see Sec. 1.1 

for definitions of these terms). The output torque of the synchronous reluctance and 

induction motor drives are similar. Despite having almost double the airgap, the 

interior permanent magnet motor drive still produces slightly more torque than the 

other two motors. W ith the same airgap it would be expected to produce about 15 to 

20% more torque at the rated speed.

The synchronous reluctance motor drive shows a slightly lower efficiency than the 

induction motor drive but a much higher power-factor. The axially-laminated interior 

permanent magnet motor drive shows an improved efficiency and power-factor over the 

induction motor drive. The power-factor of the interior permanent magnet motor drive
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is lower than the synchronous reluctance motor drive due to the larger airgap.
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C hapter 7

C onclusions

This thesis examines and validates the reputation of the interior permanent magnet 

motor drive for having a wide constant-power speed range1 (or field-weakening range) 

when operated from an inverter with a given volt-ampere (VA) rating. It consists 

of two parts. In the first part the theoretical and practical limitations to the field- 

weakening performance are analysed and drive designs featuring the optimal field- 

weakening performance are identified. The second part examines the design, modelling 

and testing of an optimally designed field-weakening motor drive.

The vector-controlled induction motor drive is commonly used in applications re­

quiring a wide field-weakening range. It offers constant-power speed ranges of up to 

4:1. Higher values can only be obtained by oversizing the drive or by using a mechani­

cal winding changeover switch (see Sec. 1.2). Interior permanent magnet motor drives 

offer the following advantages over induction motor drives :

•  an inherently wider constant-power speed range. Induction motors only offer 

constant-power speed ranges up to about 4:1 [25, 26] and it would be difficult to 

improve this substantially.

• better utilisation of the inverter as oversizing is not needed to achieve a wide 

constant-power speed range.

1This is the speed range over which a drive can deliver rated output power. For a more precise 

definition see Sec. 1.1.
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• simpler control and faster low-speed dynamics due to the synchronous nature.

• higher efficiencies and lower losses due to the elimination of rotor copper losses 

(especially at low speeds).

•  simpler implementation of sensorless control [98].

It is only recently that commercial interior permanent magnet motor drives designed 

for field-weakening applications have become available. These offer constant-power 

speed ranges of up to 4:1. This thesis examines how much improvement is possible and 

what tradeoffs are involved.

Part One : Theoretical and Practical Limitations

This part examines the theoretical and practical limitations to the field-weakening 

performance of the three types of brushless synchronous AC motor drive : the surface 

permanent magnet, the synchronous reluctance and the interior permanent magnet 

motor drive.

The theoretical limitations are examined using a lossless, constant parameter model. 

The circle diagram is used to show the optimal field-weakening control strategies. 

The new concept of the interior permanent magnet parameter plane is introduced to 

graphically illustrate the effect of changes in the motor drive parameters on the field- 

weakening performance. It was used to show that brushless synchronous AC motor 

drives can have a theoretical infinite constant-power speed range but that the inverter 

utilisation cannot exceed about 0.7 for such drives. The optimal field-weakening per­

formance consists of an infinite constant-power speed range and an inverter utilisation 

of about 0.7.

The interior permanent magnet parameter plane also shows that theoretically three 

types of motor drives can achieve the optimal field-weakening performance described 

above :

• synchronous reluctance motors with an infinite saliency ratio.
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• interior permanent magnet motors where the fundamental flux along the magnet 

axis can be reduced to zero by rated stator current in that axis.

• surface permanent magnet motors with an unusually high value of synchronous 

inductance.

Synchronous reluctance motors are preferred as they do not contain magnets. This 

reduces the cost, eliminates demagnetisation-withstand problems, gives the rotor a 

wider operating temperature range and means that there is no problem of excessive 

back-emf voltages at high speeds.

It is clearly impossible to build an infinite saliency ratio synchronous reluctance 

motor drive; however high saliency designs may offer a sufficiently good performance. 

Synchronous reluctance motors are characterised by their saliency ratio {. The highest 

saliency ratios are achieved with axially-laminated designs for which saliencies in the 

range 6 to 20 are common. The ideal constant-power speed range is about half the 

saliency ratio. It is shown that this is not significantly affected by iron losses or stator 

resistance, but is dramatically reduced by saturation. Saturation reduces the saliency 

ratio but more significantly increases the maximum-torque-per-ampere current-angle. 

The effect of saturation on the constant-power speed range was analysed. It was found 

that most synchronous reluctance designs have constant-power speed ranges between 

2 to 3:1 and that it would be difficult to improve this substantially.

Due to this practical limitation to the field-weakening performance of synchronous 

reluctance motors, an optimal field-weakening interior permanent magnet motor drive 

design was developed. A high saliency ratio design is used as it :

•  reduces the magnet requirements and hence cost. Thus ferrite magnets can be 

used instead of expensive rare-earth magnets.

• reduces the induced voltage at high speed. For an optimal interior permanent 

magnet design with a saliency ratio of 7, the back-emf is about 20% of rated 

voltage at rated speed instead of 70% for an optimal surface permanent magnet 

design. For a 5:1 constant-power speed range the open-circuit back-emf will thus



244 CH APTER 7. CONCLUSIONS

only be equal to the rated voltage at the maximum speed instead of three and a 

half times it with the surface permanent magnet design.

• reduces the required demagnetising current under light load, high speed operat­

ing conditions and hence improves the efficiency. This is important for traction 

applications as the drive spends a large proportion of its time with this operating 

point.

Part Two : Design of an Optimal Field-Weakening Axially-Laminated In­

terior Permanent M agnet Motor Drive

The highest saliency ratios are obtained with an axially-laminated form of construction. 

Thus this part of the thesis examines the modelling, design and testing of an optimal 

field-weakening, axially-laminated interior permanent magnet motor drive.

A useful design equation for axially-laminated motors is the intrinsic magnetising 

saliency ratio =  ari/pg , where a is the proportion of the rotor which is insulation2, 

ri is the airgap radius, p  is the number of pole-pairs and g is the radial airgap. This 

is the maximum possible saliency ratio for a given motor geometry. The actual unsat­

urated saliency ratio is considerably lower than this due to practical factors such as 

Carter’s coefficient, the finite pole-arc and the stator leakage inductance. The measured 

unsaturated saliency ratio is typically in the range 0.2fmi* <  £ <  0.4£mi- with the larger 

values associated with larger motors. For example for a 7.5kW design with a 0.5mm 

airgap, f mt- =  32 and the measured unsaturated saliency ratio is £u =  11.5 =  0.36fmi.

The inductance saturation characteristics can be calculated or measured. It can 

be calculated using analytical, finite-element or lumped-circuit approaches. A design 

program PC-AXL, was written to estimate the unsaturated performance of axially- 

laminated motors using analytical formulas. A general-purpose lumped-circuit solver 

was also written. This allows the estimation of the motor’s saturation characteristics. 

The finite-element method gives the most accurate results though the complex rotor 

geometry requires a large number of elements in the airgap to model the fringing

2Unity means a non-magnetic rotor, zero means a solid iron rotor.
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accurately.

W ith regard to measurement (see Sec. 4.4) the instantaneous flux-linkage method 

gives the most accurate results. The AC standstill test is simpler to perform but can 

only be applied to motors which show low saturation and iron losses.

Axially-laminated interior permanent magnet motors designed for a wide field- 

weakening range axe predominantly reluctance machines as can be seen by the low 

back-emf voltage at rated speed (see Fig. 2.25). Thus the optimisation of axially- 

laminated synchronous reluctance machines are considered first. Finite-element analy­

sis was used to investigate the the effect of changing the number of poles, the pole-piece 

material type, the number of bolts, the airgap size and the rotor insulation ratio on 

the machine’s performance.

A 7.5kW axially-laminated synchronous reluctance motor was built and tested. It 

has four poles, non-magnetic pole-pieces and a rotor insulation ratio of 0.5. The motor 

has a comparable torque to the induction motor, an unsaturated saliency of 11.5, a 

saturated saliency ratio of 9.6, a maximum-torque-per-ampere current-angle of 60° and 

a constant-power speed range of 2.5.

The design of axially-laminated interior permanent magnet motors is similar except 

that magnetic pole-pieces should be used to obtain a smooth sinusoidal back-emf wave­

form and that care is required to ensure suitable demagnetisation limits on the magnet 

material. The saliency ratio of the interior permanent magnet motor was sufficiently 

high to allow the use of rubber-bonded ferrite magnet sheet. This is a flexible, low-cost 

material used in applications such as refrigerator door seals. It has a remanence of 

about 0.16T. Finite-element analysis was used to show that rated stator current would 

not demagnetise the motor. In the future rubber-bonded NdFeB magnets could be 

used for their superior demagnetisation-withstand capability.

A 7.5kW axially-laminated interior permanent magnet motor designed for optimum 

field-weakening performance was built. It was based on alternating layers of grain- 

oriented lamination material and flexible ferrite magnet sheet. It used a larger airgap 

(0.9mm compared with 0.5mm for the synchronous reluctance motor and the induction



246 CHAPTER 7. CONCLUSIONS

motor) in order not to exceed the torque capacity of the dynamometer and also to 

investigate the effect of using a larger airgap on the inductance characteristics.

The experimental results validated the theoretical predictions and showed that the 

motor has an extremely wide constant-power speed range which exceeds 7.5:1. This is 

in contrast to the measured constant-power speed range of 2.5:1 for the synchronous 

reluctance motor and the calculated value of 2.5:1 for the induction motor. Compared 

to the induction motor, the output torque was 6% greater, the efficiency was 2% higher 

(89.5% compared to 87.5%) and the power-factor was 0.80 compared to 0.72.

The exceptionally wide constant-power speed range combined with the fast low- 

speed dynamics makes the this new type of motor a serious contender for applications 

such as machine tool main spindle drives and traction.

General Conclusions

This thesis shows that brushless synchronous AC motor drives can have a theoreti­

cal infinite constant-power speed range but that the inverter utilisation cannot exceed 

about 0.7 for such drives. The optimal field-weakening performance consists of an infi­

nite constant-power speed range and an inverter utilisation of about 0.7. This optimal 

field-weakening performance could theoretically be obtained with a variety of motor 

designs; however it was shown that when practical factors are taken into account that 

the axially-laminated interior permanent magnet motor drive offers the most feasible 

solution. An optimally designed axially-laminated 7.5kW motor drive using rubber- 

bonded ferrite magnets was built and a constant-power speed range exceeding 7.5:1 

was demonstrated.

Future Work

This thesis has shown that a correctly designed, high-saliency interior PM motor drive 

offers an extremely wide field-weakening range. However considerably more work is re­

quired before such motor drives become commercially practical. Firstly the mechanical 

aspects of the design such as the maximum operating speed and construction need to
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be improved and secondly the dynamic performance and control needs to be analysed.

The 7.5kW interior permanent magnet motor rotor is mechanically limited to about 

3000rpm by the strength of the retaining bolts. W ith a rated speed of about 1500rpm 

this limits the constant-power speed range to about 2:1. This is despite the fact that it 

is “electrically” capable of a constant-power speed range exceeding 7.5:1. A desirable 

maximum mechanical speed is thus above lOOOOrpm and alternative rotor constructions 

need to be investigated in order to achieve this. One possibility is to use a carbon-fibre 

binding around the rotor.

The rotor complexity is a serious commercial drawback with the prototype motors. 

The axially-laminated construction gives the highest saliency ratios (about 11.5 for 

the 7.5kW design) however a conventional radially-laminated design with say 3 to 4 

barriers has been shown by Fratta et al. [54] to yield a reasonable unsaturated saliency 

ratio of about 8. Thus it would be worthwhile investigating the tradeoffs in the field- 

weakening performance in using fewer barriers in order to obtain a simpler mechanical 

construction.

The analysis in this thesis was only concerned with steady-state limitations and 

the next step would be to analyse the dynamic performance of the interior permanent 

magnet motor drive. This would show how closely the steady-state limitations could 

be approached in a reed system with practical control algorithms.

An aspect which requires further investigation is that the dynamic performance 

of the interior permanent magnet motor drive and in particular the rate of change of 

torque is slower than the corresponding synchronous reluctance motor drive. This is 

because the magnets mean that in order to reverse the output torque of the machine, 

it is necessary to reverse the current in the most inductive axis of the motor [64].

Finally the dynamic control of the interior permanent magnet motor drive in the 

field-weakening region needs to be analysed. This is complicated by the non-linearities 

produced by the transition between six-step and linear operation [46].
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A ppendix  A

E xperim ental Test Equipm ent

This appendix describes the dynamometers, inverter and controller used to obtain the 

steady-state test results described in the main text.

A .l  Introduction

The work described in this thesis forms one part of a comprehensive research program 

at the Scottish Power Electronics and Electric Drives (SPEED) Laboratory at Glasgow 

University into synchronous reluctance motor drives. Fig. A .l shows an overview of 

the group’s activities and how they relate to one another. The heart of the exper­

imental equipment is a set of three dynamometers (top right) with ratings of 2Nm, 

5Nm and 50Nm. These were designed by Dr. Dave Staton (a research assistant in the 

group) [99] and built by Mr. Jimmy Kelly of the department’s mechanical workshop. 

The dynamometers are fitted with four-quadrant vector-controlled load motors. Their 

capabilities are summarised in Table A.l. The torque rating of the dynamometers is 

usually limited by the rating of the inline torque transducer used, except in the case 

of the 5Nm dynamometer where it is limited by the rating of the load motor.

The three dynamometers allow a wide range of motors to be tested. To date 

a total of six axially-laminated rotors have been built. The majority of these have 

been designed for existing commercial induction motor stators. Dave first designed a

249
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Figure A .l: Overview of the SPEED Laboratory’s synchronous reluctance program. 

Table A.l: Summary of dynamometer capabilities.

Parameter Dynamometer

2Nm 5Nm 50Nm

Load Motor brushless PM induction

Controller four quadrant vector-controlled

Operating Modes torque or speed control

Rated Torque 2Nm 3.4Nm 50Nm

Peak Torque Capability 4Nm lONm lOONm

Dynamometer Power Rating 800W 1.5kW 7.5kW

Base Speed 4000rpm 1500rpm

Max. Speed at Constant Power 4000rpm 3000rpm

Maximum Operating Speed 4000rpm 6000rpm
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50W motor and later two 120W motors. He also carried out a comprehensive finite- 

element analysis on the design of multiple-barrier and axially-laminated motors [21]. 

Subsequently I designed the lkW  axially-laminated motor and two 7.5kW motors (see 

Chapter 5).

The motors were operated from a 7.5kW three-phase inverter which was designed 

and built by Mr. Peter Miller who is an electronics technician with the group. It is 

a general-purpose three-phase voltage-source inverter which accepts switching signals 

via three optical inputs. It is described in more detail in Sec. A.2.

The inverter can be controlled either by a digital signal processor (DSP) based 

system or by an analog current controller. The DSP system was built by a fellow PhD 

student, Mr. Rolf Lagerquist and is described in more detail in [100]. It is based on a 

33MHz Motorola 96002 digital signal processor. The philosophy was to create a fully 

digital controller which can easily be adapted to control any type of brushless motor 

with only software changes. In the early part of Rolf’s project he worked closely with 

Dr. Robert Betz, a visiting fellow from Newcastle University in Australia. Dr. Betz has 

made important contributions to the control of synchronous reluctance motor drives 

[6, 62].

The analog current controller was jointly built by Rolf and myself. This controller 

allows steady-state tests to be performed on brushless synchronous AC motors with 

full control over the current magnitude and angle. This is particularly important in 

measuring the field-weakening performance (see Chapter 2).
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A .2 7.5kW  Inverter

This section describes the 7.5kW three-phase general purpose inverter. A summary of 

its specifications is given in Table A.2 .

The output power of an inverter is by convention specified as the rated mechanical 

output power of the motor it is designed to drive. Thus an inverter designed to drive 

motors with an output rating Pk of 7.5kW requires a minimum output volt-ampere 

(VA) rating o f :

VA =  — (A. l )TJ COS <f>
where 77 and cos <j) are the full-load motor efficiency and power-factor respectively. Typ­

ically full-load values for a standard 7.5kW totally-enclosed fan-ventilated (TEFV) in­

duction motor are 77 =  0.87 and cos<  ̂ =  0.83 [94]. This implies a minimum inverter 

output rating of 10.4kVA which corresponds to a line current of 14.5Arms at 415V. 

Some allowance must be made for transient capability and typical commercial 7.5kW 

inverters have output ratings in the range ll-14kVA [93]. The rated peak output cur­

rent of the inverter is 14.5\/2 =  20 .5A. Toshiba MG50Q2YS91 insulated-gate bipolar 

transistor (IGBT) phase-legs rated at 1200V and 50A [101] were used to provide a 

substantial safety margin.

Table A.2 : 7.5kW general-purpose inverter specification.

Parameter

Motor Output Power 7.5 kW
Rated Inverter kVA llkV A
Rated Input Voltage 415 Vu
Rated Output Current 15 Arm,
Peak Phase Current 50 A
Maximum DC Link Voltage 770 V
Maximum Switching Frequency 5 kHz
Internal Regeneration Capacity

continuous 100 W
peak 5 kW
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Fig. A.2 gives a block diagram of the inverter. The nominal 415V three-phase 

supply is rectified and then filtered to form a nominal DC link voltage of [102] :

VDC =  415 VS/2 =  5907. (A.2)

The DC link voltage is smoothed by six electrolytic capacitors which are connected in a 

parallel and series combination. This forms a total DC bus capacitance of 2250/xF with 

a maximum voltage rating of 770V. The initial capacitor charging current is limited 

to a safe value by a ‘soft-start’ resistor which is later shorted out by a thyristor in 

parallel with it. An external three-phase auto-transformer can be used to alter the 

input voltage and so adjust the DC link voltage. This allows low-voltage motors to be 

driven.

The output section of the inverter consists of three phase-legs, each of which consists 

of two transistors and two freewheeling diodes. Each transistor is driven by a base drive 

module which has its own isolated power supply. The base drive modules are controlled 

by a commutation-and-inhibit-control card. This card accepts the three optical control 

signals from an external controller. A main control card implements DC link over­

voltage, motor over-current and DC link over-current protection. It also contains the 

logic to control soft-starting, emergency stops and fault-handling.

Four 50A, high-bandwidth, flux-nulling Hall-effect transducers are used to monitor 

the three output phase currents and the DC link current. The number of turns in the 

phase current transducers can be altered to allow the inverter to control motors from 

its rated 7.5kW down to 120W.

Optical fibre links were used for the inverter digital inputs and outputs to eliminate 

noise problems. These are shown by the dashed lines in Fig. A.2. The inverter accepts 

three digital signals which control the output voltage of each phase-leg, and an active 

high enable input. It generates an active low fault output to the controller. The 

inverter transmits the three output phase currents, the DC link voltage, the DC link 

current and the resistive neutral voltage as 5017 analog current-loops to the controller. 

This method provides the greatest noise immunity.
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Figure A.2: Block diagram of the 7.5kW inverter.
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A .3 Analog Current Controller

This is based on the design described by Pillay [19] and is basically a pulse-width- 

modulated (PWM) current controller. It allows the use of either current magnitude 

and current-angle references or d- and q-axis current components. The specifications 

are summarised in Table A.3. Two common types of current regulators used to drive 

synchronous motors [19] are :

H y ste res is  C o n tro l : this is based on the principle of comparing the error in output 

current with upper and lower trip points. The smaller the error or hysteresis band, 

the more closely the output currents follow the reference currents; however the 

higher the required switching frequency. The switching frequency is uncontrolled. 

Thus an appropriate size of the hysteresis band must be calculated or determined 

experimentally in order to not exceed the maximum switching frequency of the 

inverter. A variant of the hysteresis controller involves sampling the output of 

the comparator at a fixed frequency in order to limit the maximum switching 

frequency.

R a m p  C o m p ariso n  C on tro l : in this type of controller, the error between the ref­

erence and the actual current is compared to a sawtooth triangular wave and 

the resultant signal is used to switch the output transistors. This method gives a 

fixed switching frequency at the cost of introducing an average delay equal to half 

the switching frequency. This does not significantly affect the drive performance 

if the lag is less than one tenth of the machine’s stator time constant.

The controller consists of a power supply, four main circuit boards and a connection 

board mounted in a 3U high, 19” rack. A block diagram of the controller is shown in 

Fig. A.3 and full circuit diagrams are shown in Figs. A.4-A.7.

B o ard  I  : R eso lver In te rface  : This connects to the resolver and generates an l ib it  

digital output proportional to the mechanical angle of the shaft with respect to 

the A-phase motor magnetic axis. A function generator was used to generate the
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Table A.3: Analog current controller specifications.

• interfaces directly to 7.5kW inverter :

— gives access to all inverter analog outputs Ia, h i  h i Vd c , Idc , Vn.

— controls 2, 4, 6 and 8 pole synchronous motors.

• flexible angle control :

— digital offset for resolver for simple alignment.

— LED display of mechanical rotor angle.

— digital panel meter display of electrical current-angle.

•  performs | / | , 7  or h ,  Iq current control :

— 7  can be either analog or digital (11-bits), with a resolution of 0.3° 

for 4-pole motors.

— four-quadrant h  and Iq control.

— choice of front panel or external control.

•  hysteresis or ramp-comparison current control with :

— adjustable hysteresis bands.

— adjustable frequency limit for hysteresis control.

— adjustable frequency and amplitude of ramp comparison control

• uses a modular design for :

— ease of testing : each board can be tested independently.

— ease of future expansion : the main control signals are available on 

the system back-plane.
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Figure A.4: Resolver board circuit diagram.
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Figure A.6: Digital-to-analog board circuit diagram.
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10kHz sinusoidal drive for the two-pole resolver. The sine and cosine outputs of 

the resolver are decoded by an AD2S80 resolver-to-digital converter (RDC). The 

number of digital output bits can be selected from 10 to 16 but there is a tradeoff 

between the maximum tracking rate and the output resolution. An output of 11 

bits was used given a resolution of 0.35° (electrical) for a four-pole motor.

Three 4-bit adders are used to add an adjustable digital offset to the mechanical 

rotor angle. This allows the reference axis to be set to the magnetic axis of phase 

A without adjusting the position of the resolver. Light-emitting diodes (LEDs) 

axe used to indicate the actual rotor angle.

B o ard  2 : E P R O M  : This board digitally adds the required current-angle to the 

mechanical rotor angle produced by the resolver. The result is fed into a 

sine/cosine look-up table stored in an 1Mbit erasable-programmable-read-only- 

memory (EPROM). The output is two twelve bit words.

B o ard  3 : D ig ita l-to -A n alo g  C o n v erte r : Here the digital sine/cosine words are 

converted into a two-phase analog output /*, Ip by digital-to-analog converters 

(DACs). The required current magnitude |/ | ,  or Id and Iq, are used to modulate 

the output magnitude.

B o ard  4 : C u rre n t C o n tro l : The two-phase reference is converted into a three- 

phase reference and then compared against the actual currents. A hysteresis or 

ramp-comparison current controller can be used. A latch at the output of the 

current regulator allows the limiting of the switching frequency of the hysteresis 

controller. It is disabled in the ramp-comparison mode.
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A .4 System  Performance 

A .4.1 Troubleshooting

The inverter was only designed for 7.5kW motors however it was used for driving 

motors as small as 120W. For small motors the number of turns on the current sensors 

was increased in order to monitor and control the much smaller currents involved. 

However a serious limitation was found in driving high voltage (415V), low power 

(120W) motors. This was due to stray capacitances coupled with the high switching 

frequency producing a ripple current whose rms value was a third of the motor full- 

load current. A solution was to rewind to motor for a lower voltage (110V). The lower 

voltage reduced the capacitive currents and also increased the motor’s rated current.

Another problem was high-frequency current ringing on the DC bus between the 

main DC link capacitors and the output transistors. These oscillations induced sub­

stantial noise in the control circuitry. The ringing was solved by placing a ‘bus damper’ 

in the DC link. This consists of a small ferrite transformer whose output is loaded by a 

damper resistor. Transitions in the DC link current induce a voltage across the damper 

resistor which absorbs energy and prevents ringing. The optimal value of coupling 

between the windings and the value of the damping resistor were determined empir­

ically. This solution caused a moderate voltage overshoot of 190V across the output 

transistors under rated output conditions. This was not a problem in this circuit as 

the transistors were rated at 1200V.

The models in Chapters 2 and 3 are based on fundamental quantities only. Though 

the current waveform is a good approximation to the fundamental, the voltage wave­

form contains substantial harmonics. An analog filter was used to filter the voltage 

signal and allow accurate measurement of the fundamental voltage magnitude. The 

required specification was for less than 2% reduction in the fundamental output voltage 

at the maximum operating speed of 4000rpm, yet a hundred times reduction in the 

output ripple at the 5kHz switching frequency. A 2nd order Butterworth filter was 

chosen and this was designed using the standard procedure described in [103].



264 APPENDIX  A. EXPERIM ENTAL TEST EQUIPM ENT

A .4.2 C onclusions

This section described the design and construction of a flexible inverter and controller 

which was  used to test brushless synchronous AC motors varying in rating from 120W 

to 7.5kW. It allows the steady-state performance of motors to be tested both below 

the rated speed and in the field-weakening region. This controller could be extended 

to induction motors by simply generating the current-angle from a digital counter.
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Published Papers

This appendix contains preprints of four conference papers which summarise the major 

points in the thesis.
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B .l  T heoretical L im itations Paper

This paper entitled “Theoretical Limitations to the Field-Weakening Performance of 

the Five Classes of Brushless Synchronous AC Motor Drive” was presented at the 

Electrical Machines and Drives conference in Oxford in September 1993 (pages 127— 

132).

i
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TH EO RETICA L LIM ITATIONS TO TH E FIELD-W EAKENING PERFO R M A N C E 
OF TH E FIV E CLASSES OF BRUSHLESS SYNCHRONOUS AC M O TO R  D RIV E

W L Soong and T J E Miller

SPEED Laboratory, Glasgow University, United Kingdom

A B S T R A C T

A new "parameter plane” approach graphically illus­
trates the effect of the drive param eters on the shape 
of the optimal field-weakening characteristic of brushless 
synchronous AC motor drives with a limited inverter kVA 
rating. It unifies previous approaches to this problem 
and allows fundamental performance limitations of these 
drives to be identified.

Contour plots of im portant characteristics such as power 
a t base speed and constant power speed range are illus­
trated  in the param eter plane. These characteristics are 
calculated using a circle diagram approach to obtain the 
optimal torque control strategy for each of the five main 
classes of brushless synchronous AC motor drive.

1 : IN T R O D U C T IO N

Brushless synchronous AC motors are sinusoidal current 
driven machines which use a standard quasi-sinusoidally 
distributed AC stator winding and inverter. The three 
main types are shown in Fig. 1, where the dotted areas 
represent steel and the solid areas represent permanent 
magnets.

SURFACE 
PERMANENT MAGNET 

MOTOR (SPM)

INTERIOR 
PERMANENT MAGNET 

MOTOR (IPM)

SYNCHRONOUS 
RELUCTANCE MOTOR 

(SYNCHREL)

Figure 1: Motor cross-sections.
As the permeability of ferrite and rare-earth magnets is 
close to air, the  surface permanent magnet motor (SPM) 
is non-salient and operates on magnet alignment torque 
while the synchronous reluctance motor (SYNCHREL) op­
erates on reluctance torque. In term s of torque produc­
tion the interior perm anent magnet motor (IPM) is a hy­
brid of the SPM and SYNCHREL [1].

A motor drive consists of a motor and its in­
verter/controller. Rated torque is the maximum torque 
which can be obtained with rated current. The base 
speed u>0 is the speed at which the drive delivers rated 
torque with rated voltage and current. Above the base 
speed is the field-weakening region where a constant 
power characteristic is often desired. The maximum 
speed a t which constant power can be maintained is wp

and the constant power speed range (CPSR) equals wp/w0. 
A CPSR in the range 2-10 is required in applications such 
as traction and spindle drives [2,3].

The torque-speed characteristic of an IPM is ideally de­
termined by seven param eters : the number of phases m, 
the number of pole-pairs p, the inverter voltage rating 
Vo, the inverter current rating lo, the d-axis inductance Lj, the q-axis inductance Lq and the magnet flux-linkage 
'irm. Only the la tter four affect its shape. As the cost 
of the inverter is typically three to five times th a t of the 
motor [4], the ability of a motor drive to utilise a given 
inverter voltage and current rating is im portant.

Five main classes of brushless synchronous AC motor 
drive can be defined based on whether there is a theo­retical finite maximum speed limit due to voltage-limit 
constraints. These are :

1. the finite maximum speed SPM drive.
2. the infinite maximum speed SPM drive.
3. the infinite maximum speed SYNCHREL drive.
4. the finite maximum speed IPM drive.
5. the infinite maximum speed IPM drive.

Note th a t all SYNCHREL drives have no theoretical speed 
limitation.

1.1 : L ite ra tu re  R ev iew

Early work in the field-weakening of IPMs dealt with the 
analysis and control of existing machines [1,5,6]. It is 
only recently tha t the selection and effect of the drive 
parameters on the field-weakening performance of IPMs 
has started to be explored.

Sebastian [7] showed th a t inset perm anent magnet mo­
tor designs offered more torque, a be tte r field-weakening 
range but a lower base speed compared to conventional 
SPM designs.

Schiferl [8] used a per-unit system to reduce the seven 
IPM parameters to three independent ones. He also 
showed the motor drive design criterion for optimum 
field-weakening performance.

Morimoto [9] analysed the infinite maximum speed SPM 
and IPM using the circle diagram and described the opti­
mal torque control strategy for these drives. He showed 
tha t the infinite maximum speed SPM has a true con­
stant power characteristic in the high speed region and 
also investigated demagnetisation limitations.

Normalisation of the DQ equations to unity base speed 
further reduces the number of independent drive param ­
eters by one [10,11,12]. Adnanes [2,13] normalised the 
SPM and investigated the field-weakening performance of 
the finite maximum speed SPM drive. Betz [14] used a
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Figure 3: The circle diagram fo r  infinite maximum  
speed IPM s

Figure 2: Ideal field-weakening drive characteristics.

normalised model to analyse the field-weakening perfor­
mance of the SYNCHREL.

The above papers present a fragmented view of the effect 
of the drive param eters on the field-weakening perfor­
mance of the five drive classes. They each only analyse 
a few of the drive classes and have difficulty in showing 
general results as the normalised IPM has two indepen­
dent param eters ra ther the one param eter for the SPM 
and SYNCHREL.

This paper has two aims. Firstly to use the circle di­
agram to analyse the maximum torque operation of all 
five classes of brushless synchronous AC motor drive and 
hence show their similarities. Second, it describes a new 
graphical "parameter plane” approach which clearly il­
lustrates the influence of drive parameters on the shape 
of the optimal torque-speed characteristic.

2 : T H E  C IR C L E  D IA G R A M

2.1 : T h e  Id ea l F ie ld -W eak en in g  M o to r  D riv e

The inverter utilisation a t a given speed is the ratio of the 
motor output power to the inverter kVA capability. The 
ideal field-weakening m otor drive is lossless and has unity 
inverter utilisation from base speed to infinite speeds (see 
Fig. 2). Note the im portance of power-factor in determin­
ing inverter utilisation.

The nearest drive to this ideal is the separately-excited 
DC motor drive. This has direct control of the motor 
flux and it can therefore theoretically satisfy the power- 
factor requirements. Permanent magnet and reluctance 
machines have a fixed (or zero) excitation which will be 
shown to inherently limit their field-weakening capability.

It is useful to normalise the field-weakening performance 
of motor drives against the ideal characteristic. The in­
verter ratings are chosen for base voltage and base cur­
rent. Base power is chosen to correspond to motor op­
eration a t rated VA and unity power-factor [8]. Finally 
the definition of base speed given above is used.

2.2 : T h e  C irc le  D iag ram

The following analysis uses a normalised DQ model with 
the magnet flux in the d-axis and the q-axis being the 
most inductive axis. W ith the saliency ratio, £ =  Lq/Ld :

Vd n ~  —Wn£LdnIqn (1)
Van =  WnLdnldn "b mn (2)

f̂mnlqn (£ 1) Ldnldnlqn (3)
fqn
Tn =

Note the use of the subscript “n” to indicate normalised 
parameters. The current angle 7 , is defined as the angle 
by which the stator current (or MMF) leads the q-axis.

Vdn
Vqn

Tn

-W n$LdnInC08 7

-W nLdnln  sin 7 +  Wn'lfr

(4)
(5)

V m n l n  COS 7  +  | ( £  -  1 ) L d n I n  8 “  2 7  ( 6 )

The motors are normally current-controlled and so a 
given operating point can be represented by its location 
in the (Id,Iq) plane. The circle diagram is a graphi­
cal representation of the drive’s voltage and current-limit 
constraints in this plane. It provides a useful means for 
visualising how these constraints restrict the steady-state 
operating point (see Fig. 3) [11].

The current-limit constraint, In =  y/ldn +  — 1
defines a circle. Applying the voltage-limit constraint, Vn = y/Vfn +  V$n <  1 to Eqns. 1 and 2 yields :

(/-  + f e ) 1+^ < ( ^ ) J (T)
which is the equation of an ellipse centred at (—'imn/Ldn, 0), with an ellipticity of £ and whose size 
is inversely proportional to speed [6,11], The centre of 
the voltage-limit ellipse is termed the infinite speed oper­ating point as the operating point must converge towards 
this a t high speed.

Lines of constant torque are obtained from Eqn. 3 as 
hyperbolae whose asymptotes are the lines Iqn =  0 and Idn — 1®,mr»/(£ 1 )Ldn [l].
Brushless synchronous AC motor drives have three oper­
ating modes as illustrated in Figs. 3 and 4 for an infinite 
maximum speed IPM drive. Using the notation described 
by Morimoto [9] these are :
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MODE I : MOOE II : MODE III

OUTPUT
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OUTPUT
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INPUT
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INPUT
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Figure 4: N orm alised field-weakening characteristics 
showing the three operating modes.

• Mode I : current-limited region (constant torque). 
This is the region from zero speed to the base speed 
where maximum torque is obtained by operating at 
rated current with the optimal torque per ampere 
current angle 7m. This corresponds to the point 
at which the torque hyperbolae are tangent to the 
current-limit circle (point A in Fig. 3).

• Mode I I : current-and-voltage-limited region. Here 
the m otor is operated a t rated current with the 
minimum current angle required to give rated ter­
minal voltage. T ha t is, a t the intersection of the 
voltage and current-limit loci (line AB).

•  Mode III : voltage-limited region. Here the drive 
operates a t the point where the torque hyperbolae 
are tangent to the voltage-limit ellipse (line BC).

Fig. 5 shows the optim al control strategies for the five 
classes of brushless synchronous AC motor drive. The 
dot shows the maximum torque per ampere operating 
point (Mode I). Above base speed the operating point 
moves along the intersection of the voltage-limit ellipse 
and current-limit circle (Mode II). For finite maximum 
speed drives the infinite speed operating point (the “x”) 
lies outside the current-lim it circle. For infinite maximum 
speed drives it  lies within the current-limit circle and the 
operating point converges on this a t high speed in the 
voltage-limit region (Mode III). Note th a t the SPM and 
SYNCHREL are simply special cases of the IPM.

Normalisation means the shape of the torque versus speed 
characteristic of the SPM [2] and the SYNCHREL [14] can 
each be characterised by one parameter. The choice of 
the param eter used is arbitrary, but a useful choice is 
the normalised magnet flux-linkage 9 mn for the SPM and 
the saliency ratio £ for the SYNCHREL. Torque and power 
versus speed characteristics are shown in Fig. 6 for SPM 
and SYNCHREL drives.

A SPM with 'ifmn equal to unity has zero inductance [2] 
and hence has no field-weakening capability. As the in­
ductance increases and decreases, the output power 
at base speed decreases slightly but the field-weakening 
range improves considerably. Optimum field-weakening

FINITE
MAXIMUM

SPEED

INFINITE

SPEED

SYNCHREL IPMSPM

Figure 5: Optimal control characteristics for the five drive classes.
performance is obtained with ¥ mn =  l/y/2 in which 
case the output power approaches unity a t high speed 
[2]. Decreasing ¥ mn below this, decreases the high speed 
output power but introduces Mode III operation, which 
for the SPM is a true constant power region [9] with 
Pn =  yim n/y/1 f t n '
Fig. 6 shows th a t the performance of SYNCHRELs im­
proves monotonically with increasing saliency ratio. The 
CPSR is approximately given by £ /2  [14]. The opti­
mal field-weakening performance is achieved with a SYN­
CHREL with an infinite saliency ratio and is identical to 
th a t obtained with the SPM with =  1/V2 :

= (8) 

This shows a duality between the SPM and SYNCHREL.

3 : IP M  P A R A M E T E R  P L A N E

The basis of the IPM param eter plane is th a t the shape of 
the torque versus speed characteristic of an IPM is deter­
mined by two independent param eters. Due to the IPM’s 
“hybrid” construction, it is reasonable to select one pa­
rameter, Vmn to represent its SPM nature and the other, 
£ to represent its SYNCHREL nature.

Figs. 7 and 8 illustrate the IPM param eter plane, and 
show how it can represent all five drive classes. All pure 
SPM designs have £ =  1 and lie on the x-axis while pure 
SYNCHREL designs have ^ mn =  0 and lie on the y-axis. 
The parameter plane extends to infinite saliency ratios, 
however the plots only cover £ <  11 as most motor de­
signs have saliencies in this range.

The third IPM param eter Ldn is a function of £ and Vmn 
[2]. Ldn is obtained by solving a quadratic for L\n. The 
quadratic is the result of solving Vn = 1 using Eqns. 4 
and 5 with =  1 and /„  =  1 a t 7 =  7m- 7m is obtained 
by differentiating Eqn. 6 [9].

The normalised power at base speed Pbn can be ob­
tained from Eqn. 6 and the normalised maximum op­
erating speed is given by <jxn =  l / ( 4 f mn 1 * .) [a]. 
The normalised asymptotic output power at high speed Pan =  Vmn/Ldn when ^ mn <  Ldn and is zero otherwise.

The CPSR is calculated separately for finite and infi­
nite maximum speed drives. For finite maximum speed 
drives, the constant power speed wp occurs in Mode II.
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F igure 6 : Torque and power versus speed characteris­tics as a function of normalised magnet flux-linkage for the SPM and saliency ratio for the SYNCHREL.
It is obtained by solving a quartic for sin 7P, the sine of 
the current angle corresponding to wp. For infinite max­
imum speed drives wp occurs in Mode III (see Fig. 4). 
The optim al Mode III trajectory is described in [9] and 
from this the CPSR can be obtained by solving a quartic 
for l/*}n.
3.1 : D iscu ss io n

Figs. 9-12 show th a t finite maximum speed IPMs with 
the same maximum operating speed will have similarly shaped, but not identical, torque versus speed character­
istics [2]. Note th a t designs with Pan >  Ptm have an 
infinite CPSR.

The param eter plane shows there is a fundamental trade­
off between the power a t base speed and the field- 
weakening range. The boundary between finite and in­
finite maximum speed drives is the optimal IPM design line (see Figs. 8 and 10). Optimum IPM designs have 
unity ou tpu t power a t infinite speed (see Fig. 11) [8], 
and have similar, but not identical, characteristics to the 
optimal SPM and SYNCHREL designs. Figs. 6 and 9 show 
th a t all optimal designs have a normalised output power 
a t base speed of about 0.7pu. Thus, when a maximum

Figure 8 : The five drive classes.
torque strategy is used, it is impossible for any brushless 
synchronous AC motor drive, even with infinite saliency, 
to achieve the ideal field-weakening characteristic shown 
in Fig. 2.

Fig. 10 also shows the location of practical motor drive 
designs (as “x” s) on the param eter plane. SPM designs 
usually have values of ¥ mn in the range 0.85-0.95, though 
this can be decreased by adding external inductance in 
series with the motor [7]. Single-barrier SYNCHREL and 
IPM designs have saliendes in the range 2-5 while axially- 
laminated designs have saliency ratios in the range 7 - 
10 [15] and thus theoretically have a  reasonable field- 
weakening range (see Fig. 12).

The parameter plane is useful for visualising the effect of 
parameter changes on the field-weakening performance. 
The “shape” of the torque-speed characteristic of a linear, 
lossless IPM is affected by four param eters : I0, La 
and Lq. Varying I0 or does not alter the saliency 
ratio and hence moves the design parallel to the $ mn axis 
(see dotted lines in Fig. 13). Increasing I0 or decreasing 

decreases ¥  mn*
Varying Lq causes the design to move along the direction 
of the solid lines which roughly follow lines of constant 
bijn and Pan. Varying La causes the design to move 
along the direction of the (practically vertical) dashed 
lines. Note th a t for high saliency designs (ie. £ >  2), L<t <  Lq and so La has little  effect on w0 and hence on
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'ifmn- The spacing between the solid lines and also that 
between the dashed lines correspond to equal increments 
in the actual magnet flux-linkage ¥ m.

Consider a  m otor drive design corresponding to point A 
in Fig. 13 : doubling Lq moves it to point B, doubling 
¥ m moves it  to point C and doubling L* returns it to 
point A. T he new design has exactly the same torque- 
speed characteristic shape as the original one, bu t has 
twice the rated  torque and half the base speed.

3.2 : P ra c t ic a l  F a c to rs

The effect of sta to r resistance and q-axis saturation is 
usually small in the field-weakening region, however high 
iron losses can drastically reduce the field-weakening 
range [16]. DQ cross-coupling is significant in low- 
saliency single-barrier designs [5,17] but not in axially- 
laminated designs due to their high saliency.

Demagnetisation limits are critical for permanent mag­
net motors. Assuming zero airgap and no leakage for 
simplicity, then Fig. 14 shows the minimum magnet op­
erating point in the field-weakening region. Unity rep­
resents operation a t remanence and zero corresponds to 
zero flux in the magnet. The minimum magnet operating 
point is inversely related to the field-weakening range and 
in optimal IPM designs is equal to zero. Thus for good 
field-weakening performance it is necessary to use mag­
nets with a linear 2nd quadrant demagnetisation curve
[91-
All designs on the optimal IPM design line have excellent 
field-weakening characteristics. However, the axially- 
laminated IPM [15] has useful characteristics such as low 
magnet requirements (due to the high saliency) and also 
a lower back-emf a t high speeds. The la tter point is im­
portant as damage may occur to the inverter if it trips 
out when field-weakening [1].

4 : C O N C L U S IO N S

This paper analysed the field-weakening performance of 
the five main classes of brushless synchronous AC motor 
drive when operated with a limited inverter kVA rating. 
It used the circle diagram to illustrate the optimal con­
trol strategy to obtain maximum output power at any 
speed and showed th a t the surface permanent magnet 
and synchronous reluctance motors are special cases of 
the interior permanent magnet motor.

The new concept of the param eter plane was introduced 
as a means for visualising the effect of parameter changes 
on the drive’s field-weakening performance. It showed the 
fundamental tradeoff between the inverter utilisation at 
base speed and the field-weakening performance. Drives 
with the same maximum operating speed have similar 
torque-speed characteristics. Optimum field-weakening 
performance is obtained from designs at the boundary 
between finite and infinite theoretical maximum speed 
drives. These optimum designs all have an inverter 
utilisation of about 0.7 a t base speed and hence the 
ideal motor drive field-weakening characteristic cannot 
be achieved when using maximum torque control.
The practical application of the parameter plane for de­
signing brushless synchronous AC motor drives for a wide

field-weakening range will be discussed in a later paper. 
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B .2 Practical Lim itations Paper

This paper entitled “Practical Field-Weakening Performance of the Five Classes of 

Brushless Synchronous AC Motor Drive” was presented at the European Power Elec­

tronics conference in Brighton in September 1993 (volume 5, pages 303-310).
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W L Soong and T  J E Miller

SPEED Laboratory, Glasgow University, United Kingdom

Abstract. The effect of stator resistance, magnetic saturation and iron losses on the field- 
weakening performance of synchronous reluctance and surface perm anent magnet motors is 
examined. It is shown th a t the constant power speed range is relatively unaffected by sta­
to r resistance and iron losses but is strongly influenced by saturation. Methods for estim at­
ing the reduction in constant power speed range are described. The results are validated by 
comparisons with experimental measurements for a surface permanent magnet motor and two 
axially-laminated synchronous reluctance motors.

Keywords. Field-weakening, constant power speed range, synchronous motors, saturation, iron 
losses.

1 : IN TR O D U C TIO N

Brushless synchronous AC motors are sinusoidal current 
driven machines which use a standard quasi-sinusoidally 
distributed AC stato r winding and inverter. The three 
main types are the surface perm anent magnet motor 
(SPM), the synchronous reluctance motor (SYNCHREL) 
and the interior perm anent magnet motor (IPM).

□
SURFACE 

PERMANENT MAGNET 
MOTOR (SPM)

INTERIOR 
PERMANENT MAGNET 

MOTOR (IPM)

SYNCHRONOUS 
RELUCTANCE MOTOR 

(SYNCHREL)

Figure 1: Motor cross-sections.
A motor drive consists of a motor and an in­
verter /controller. It was shown in an earlier paper [1] 
tha t five classes of brushless synchronous AC motor drive 
can be defined based on whether there is a theoretical 
finite maximum speed limit due to voltage-limit con­
straints. These are :

1. the finite maximum speed SPM drive.

2. the infinite maximum speed SPM drive.

3. the infinite maximum speed SYNCHREL drive.

4. the finite maximum speed IPM drive.

5. the infinite maximum speed IPM drive.

Note th a t all SYNCHREL drives have no theoretical speed 
limitation.

The earlier paper followed previous workers [2,3,4,5,6] in 
using lossless linear models to examine the effect of the 
motor drive param eters on the field-weakening perfor­
mance. This was necessary in order to obtain general 
results and allow fundamental theoretical limitations to

be identified. However the field-weakening performance 
can be substantially affected by practical factors such 
as stator resistance, magnetic saturation, iron losses and 
DQ cross-coupling.

Sneyers, Novotny and Lipo [7], and Mecrow and Jack 
[8] showed that DQ cross-coupling is significant in low- 
saliency single-barrier and radial-spoke IPM designs.

Xu, Xu, Lipo and Novotny [9] investigated the effect 
of stator resistance, saturation and iron losses on SYN­
CHREL performance below the knee-speed. They showed 
that saturation and iron losses increase the maximum 
torque per ampere angle beyond the theoretical 45° and 
tha t iron losses mean tha t there is a difference between 
the external and internal current angles.

Betz, Jovanovic, Lagerquist and Miller [10] derive expres­
sions for the performance of the SYNCHREL including the 
effect of saturation and iron losses.

Chalmers [11] examined the effect of saturation on the 
field-weakening performance of IPMs. He showed the im­
portance of modelling saturation for calculating the low 
speed characteristics.

The above papers have not presented a clear view of 
the effect of practical factors on the field-weakening per­
formance. This paper aims to present general results 
showing the effect of stator resistance, saturation and 
iron losses on the field-weakening performance of SPM 
and SYNCHREL drives. It will describe simple techniques 
for calculating their effects and validate the results by 
comparisons with the measured performance. DQ cross­
coupling has been neglected as the effect is small for the 
drives considered.

Though IPM drives are not directly examined, the field- 
weakening performance of finite maximum speed IPMs is 
similar to th a t of SPMs, and th a t of infinite maximum 
speed IPMs is similar to th a t of SYNCHRELs [l].

1.1 : Definitions and Terms

This paper assumes the use of a maximum torque control 
strategy [1] within a limited inverter (or motor) voltage
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Figure 2: IP M  steady-state D Q  equivalent circuit. 

and current rating.

Brushless synchronous motors are generally current- 
controlled and hence their operating point can be defined 
by the d- and q-axis current components (/<<,/«). Alter­
natively it can be specified by the current magnitude I  
and the current angle 7 . This is the angle between the 
current phasor and the q-axis. The IPM  convention of 
having the q-axis being the most inductive axis and the 
magnet flux (if any) being in the d-axis is used.

At low speeds, the  drive is operated with rated current Io a t the maximum torque per ampere current angle ym 
giving rated torque 7*. This can be maintained until the knee-speed u i s  reached, a t which point the required ter­
minal voltage equals the drive’s voltage rating Va. This 
corresponds to rated mechanical output power Pi,. In the 
field-weakening region (ie. above «*) the drive can main­
tain rated output power up to the maximum constant power speed up.
In this paper, two parameters will be used to characterise 
the field-weakening performance of a motor drive. The inverter utilisation it is the ratio of the Pk to the inverter 
kVA capability [1] and the constant power speed range 
(C P S R =  a — Wp/u/fc) is the speed range over which the 
drive can m aintain rated output power.

An IPM  steady-state equivalent circuit incorporating leak­
age inductance Li, stator resistance R, and iron loss Rc is 
shown in Fig. 2 [9]. Saturation is modelled by making the 
magnetising inductances (Ldm and L qm) functions of the 
corresponding magnetising currents (Idm and Iqm). The 
magnetising saliency ratio is defined as £m =  L qm/Ldm  
and the saliency ratio is (  =  L q/L d  where Lq =  L qm +  Li 
and Ld =  Ldm +  Li.
1.2 : Circuit Equations

Solving for Idm and Iqm in terms of Id and Iq in Fig. 2 
yields :

, _  Rc{RcIq ~  ~ wLdmld)
q m ~  R \ + u 2LdmLqm

T R^Id "b w L qmRcIq — mL qm
R l +  V*LdmLqm { )

Due to saturation it is necessary to solve these equations 
iteratively.

The terminal voltage taking into account stator resis­
tance R t and leakage inductance Li is :

Vq — IqR,  +  wLJd "f UJ Ldm I  dm (3)
Vd — IdR* — U)L{Iq V) Lqm Iqm (4)

Finally the inverter voltage-limit V0 and current-limit I 0 
constraints must be applied to the term inal voltage V 
and current I  :

v? + vj 
i\+ n

V3
p < V3

< n (5)

It was shown in [1] th a t the maximum torque versus 
speed characteristic has three operating modes. Mode
1 is the current-limited or “constant torque” region be­
low the knee-speed where I =  I0 and V < V0. Mode II 
is the current-and-voltage-limited region where V = V0 
and I = I0. Mode III is the voltage-limited region where V =  V0 and I < I0.
2 : INVERTER UTILISATION

In a lossless linear brushless synchronous AC m otor drive, 
the inverter utilisation k equals the power-factor in Mode 
II. From the equivalent circuit shown in Fig. 2 it can be 
shown tha t for an SPM drive with a CPSR= cr :

l/<r

For a SYNCHREL drive :

=  — * where (  =  a +  v/<72 — 1 2V^ V

(6)

(7)

Fig. 3 illustrates these equations. Finite maximum speed 
IPMs have a similar characteristic to SPMs and infinite 
maximum speed IPM drives have a similar characteristic 
to SYNCHRELs [1],

In general SPM drives have a higher power-factor than 
SYNCHREL drives for the same CPSR however both  curves 
asymptote towards it — \fy/2 as the CPSR approaches 
infinity.

2.1 : Stator Resistance

Stator resistance effectively reduces the available voltage, 
the knee-speed and hence the inverter utilisation. The 
inverter utilisation taking into account sta to r resistance 
is h r .  It is a function of the power-factor cos <f> = n  and 
the normalised stator resistance R , n (see [1]) and can be 
obtained from the equivalent circuit shown in Fig. 5 :

k r  =  it yJ l  +  (R tnK)3 - R 3n - R . «  K [1 -

(8)
Note that SPM drives have a high power-factor at the 
knee-speed and hence are more sensitive to stator resis­
tance than a SYNCHREL drive with the same CPSR.
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Figure 5: Stator resistance decreases the knee-speed but does not alter the c p s r .

2.3 : Iron Losses

Iron losses reduce the inverter utilisation. If the iron loss 
is small, then from Fig. 5 the total inverter utilisation kt 
taking into account sta tor resistance and iron loss is :

" “ M 1- ;® ;]  (10)
where Rcn is the normalised iron loss resistance.

2.2 : M agnetic Saturation

Saturation is generally small in SPM  drive designs due to 
the large effective airgap and so has little effect on the in­
verter utilisation. It is however significant in SYNCHREL 
designs where it causes the saliency ratio (  to fall and the 
maximum torque per ampere current angle 7m to exceed 
45° [9].

For a SYNCHREL k as a function of the saturated saliency 
ratio and 7 for Mode II operation is given by [6] :

.1 £ “ 1 I »in27 fn\K = cos 4 = —= - * /  ------ — — —  (9)y/2 V tan  7 +  £* cot 7

This is illustrated as a contour plot in Fig. 4. Saturation 
causes the saliency ratio to decrease which decreases the 
inverter utilisation. It however also increases 7m which 
initially increases the inverter utilisation but ultimately 
also causes it to fall. In general, the higher the saliency 
ratio, the less sensitive is the inverter utilisation to satu­
ration. This is because as saturation decreases the output 
torque, it also increases the knee-speed.

3 : CONSTANT PO W ER  SPEED R A N G E

3.1 : Stator R esistance

The C PSR  of SPM  and SYNCHREL motor drives is un­
affected by stator resistance. This will be shown for a 
SYNCHREL drive using Fig. 5. Note tha t the mechanical 
output power Pm = VmImcos<j>i.
During the constant power speed range, rated voltage 
and current are applied to the motor (Mode II operation). 
Under these circumstances the normalised output power 
of a lossless linear motor (ie. R, =  0, Rc = 00) equals the internal power-factor cos^i. Thus the internal power- 
factor is equal a t the limits of the constant power speed 
range. This is shown by the solid line in Fig. 5 where 
the power-factor at the knee-speed Uki equals the power- 
factor at u>pi.

If R, ^  0 then the drive has the characteristics shown 
by the dashed line where u>*2 <  u>ki as the magnetis­
ing voltage Vm is reduced. The stator resistance means 
tha t Vm is determined by the internal power-factor. At 
some speed uP2 the internal power-factor will equal tha t 
a t the base speed Uki- Vm is thus the same and hence 
the output power must be the same. Thus u>*2 and uP2



B.2. PRAC TIC AL LIMITATIONS PAPER 277

correspond to the constant power speed range limits of a 
lossless linear drive with a reduced supply voltage (actu­
ally krVo/k) compared to V0. As the C PSR  of a lossless 
linear drive is unaffected by the rated voltage, thus the 
C PSR  is unaffected by stator resistance.

The same argument can also be applied to any drive in 
which the constant power speed range occurs entirely in 
Mode II. This includes finite maximum speed SPM  and 
IPM  drives.

3.2 : M agnetic Saturation

Though saturation is generally small in SPM  designs, the 
field-weakening characteristic is sensitive to Ld and so 
the saturated  values should be used.

For SY N CH RELs, saturation critically affects the CPSR  
obtained and so must be taken into account.

Fig. 4 shows the variation in output power of a SYN­
CHREL in Mode II. Consider a lossless linear motor with £ =  7. As the m otor is linear 7m =  45° and from Fig. 4 
the ou tpu t power P* a t the knee-speed is «  0.6pu. Dur­
ing field-weakening the current angle is increased. The 
output power rises and peaks a t the maximum power- factor angle ypj =  arctan y/£ [6]. It then falls and at 
the constant power angle yp the output power is equal 
again to  P*. For a linear motor this also corresponds to 
the Mode III transition angle yt =  arctan £ (for £ = 7, 
7i *  82°).
Saturation causes ym to exceed 45°. A constant satu­ration model assumes th a t the level of saturation is un­
changed throughout the field-weakening region. Fig. 4 
shows th a t ym >  45° will cause yp to reduce and hence 
the C P S R  will be reduced. In fact if ym > ypj the CPSR  
is unity (for a constant saturation model).

Using a constant saturation model, the reduced CPSR  
can be calculated from Fig. 4 and is shown as a contour 
plot in Fig. 6 . The dashed line corresponds to yt and 
operation to the right of this line corresponds to Mode 
III operation. Note th a t the Mode II output power shown 
in Fig. 4 for this region does not represent the maximum 
possible because Mode II operation does not give the 
maximum torque here (see [l]).
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Figure 8: Comparison o f the c p s r  predicted by the 
three saturation models fo r  SYNCHREL*.

I t is however unrealistic to use a constant saturar 
tion model. B etter approximations are the linear and 
quadratic saturation models shown in Fig. 7. Note th a t in 
these models the C PSR  is always greater than  unity as the 
7m constraint is not “artificially” imposed as it was in the 
constant saturation model. T hat is, the torque actually 
peaks at 7 =  7m in these models (unlike the  constant sat­
uration model) and so the rate of change of torque with 
current angle is zero a t this point. W hen field-weakening 
commences, and the speed rises, the torque remains mo­
mentarily constant and the output power must (a t least 
momentarily) rise.

Fig. 8 compares the C PSR  predicted by the constant, lin­
ear and quadratic saturation models. Note the  diver­
gence between the models as 7m increases. T he linear 
and quadratic models take into account the lessening 
of saturation during field-weakening and hence show a 
greater CPSR. The quadratic model predicts a slightly 
lower CPSR  than the linear model as it saturates less due 
to the steepness of the quadratic saturation curve with 
increasing current. The small difference between the re­
sults of the linear and quadratic saturation models indi­
cate tha t using more refined models are unlikely to yield 
substantially different results.

It should be noted th a t typical SY N CH RELs have maxi­
mum torque per ampere current angles in the range 55° 
to 65° and so the actual C PSR  can be considerably lower 
than tha t predicted with an ideal model (7m =  45°).
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3.3 : Iron Losses

The previous analysis neglected iron losses. These gen­
erally have more influence on the performance of SYN­
CHRELs than  SPM s and th is analysis will concentrate on 
SYNCHRELs.

Iron losses have two effects : they reduce the output 
power a t base speed and increase ym [9]. More precisely 
the increase in ym is caused by a discrepancy between the external current angle (tan  7 = —Id/Iq) and the internal 
(or magnetising) current angle (tan 7, =  —Idm/Iqm)-
While 7m can be significantly affected by iron losses, the internal maximum torque per ampere current angle ymi 
is relatively unaffected (for moderate levels of iron loss) as 
it is mainly dependent on the saturation characteristics 
of the motor. Iron losses reduce the magnetising current 
Jm which reduces saturation (see Fig. 5). This causes 
7mi to reduce slightly when iron losses are modelled and 
hence the saturated  saliency ratio to increase slightly.

It can be shown using the same argument as for stator 
resistance, th a t the reduction in inverter utilisation due 
to iron losses does not affect the C PSR . Also, while iron 
loss increases 7m, it does not cause substantial changes 
to 7mi and it  is 7 m i which mainly determines the C P S R  
Thus to a first approximation, the C PSR  of SYNCHRELs 
is unaffected by iron losses.

The effect of iron loss on 7m and on the torque versus 
angle characteristic a t rated current and speed is now 
examined and quantified.

From Eqns. 1 and 2, for a SYNCHREL with a high saliency 
and a low iron loss then :

Iqm RS Io COS 7 (11)

I dm «  -Io sin 7 +  ( wIf̂ nI° ̂  cos 7 (12)

Also from Fig. 2 :

Vm ~  V<Jm =  wLqmI0 COS 7 (13)

As iron losses are proportional to Vm, thus the losses will 
be largest a t 7 =  0° and zero a t 7 =  90°. This is shown 
in Fig. 9.

Iron losses cause y, to be less than 7 . In fact when 7 =  0°, 
7i < 0° and so the torque is negative. Defining Ay = 
7 — 7i then from Eqn. 12 the zero torque point occurs 
when I dm =  0 and 7 =  Ay0 :

Ay0 ss arctan Lqm\
Rc J (14)

This is illustrated in Fig. 9. In order to determine R e it is 
sometimes convenient to measure the (negative) output 
power a t 7 =  0°. W ith 7 =  0°, using Fig. 2 the iron 
losses are P /e =  Vm/Rc while the useful input electrical 
power is P« as From Eqn. 13 it can be shown
th a t Po/Pfe as l/€m  and hence the mechanical output 
power P m =  P e -  Pfo is given by :

Pm(7 =  0°) »  Pfe{y =  0°) l - £ (15)

Thus the (negative) mechanical output power at 7 =  
0° is equal to the iron loss if the saturated magnetising 
saliency ratio is high and for moderate values of iron loss.
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Figure 9: Power versus current angle for a s y n c h r e l  operated at rated current and speed.
From Fig. 9, for an infinitely salient SYNCHREL Ay is zero 
a t 90° (Vm — 0) and approximately Ay0 a t 0°. To a first 
approximation Ay decreases linearly from 7 =  0° to 7 =  
90°. Neglecting saturation 7ml- =  45°. ym will thus be 
shifted by about half of Ayot th a t is ym «  7mi + Ay0/2.
4 : VALIDATION OF RESULTS

A comparison was performed between the calculated and 
measured field-weakening characteristics of a SPM  motor 
drive and two SYNCHREL motor drives.

The 2kW SPM  motor was designed for servo applications 
and uses samarium-cobalt magnets. It has four poles 
and a rated speed of about 5000rpm. T he tests were 
performed a t approximately one quarter of rated  voltage 
in order to keep the field-weakening characteristics within 
the 4000rpm dynamometer speed restriction. This gave 
it high copper losses (R,n — 0.153pu) and low iron losses 
R cn =  44pu). It had a C PSR  of about 2.

The 120W and lkW  SYNCHRELs are custom-built four- 
pole axially-laminated designs [12]. The 120W motor 
uses an induction motor stator, was operated at rated 
voltage (V0 = llOVJi) and shows m oderate saturation, 
high copper losses (R , n =  0.21pu), m oderate iron losses 
(Ren = 12.6pu) and has a C PSR  of about 2. The lkW  
motor uses the same stator as the SPM  motor, was op­
erated at a reduced voltage, shows heavy saturation, 
high copper losses (R tn — 0.15pu), m oderate iron losses 
(Ren =  8.8pu) and a low C P S R  of about 1.3.

The SPM  and SYNCHREL saturation characteristics were 
obtained from flux-linkage tests [12]. Care is required 
in measuring the d-axis SPM  inductance as the pro- 
magnetising characteristic is substantially different from 
the de-magnetisation characteristic. The leakage induc­
tance was included into the magnetising inductances for 
simplicity. The test results for the 2kW SPM  design are 
shown in Fig. 10. Note th a t the q-axis characteristic is 
relatively symmetrical while the d-axis curve is “offset” 
due to the magnet flux producing a  “DC bias” .
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Table 1: Comparison o f  m ta su r ti and calculated s y n c h r e l  results. The arrows indicate the value at that 
location is the sam e as that pointed to. The approximated c p s r  fo r  the three saturation models is from  7 and 
the approximated k  is from  Eqns. 8  and 10.

Calculated From Equivalent Circuit Model Approximations
(

(sat)
7m 7mi Tk

Nm
Wk

rpm
K CPSR K C PSR

cons
C P S R
linear

C PSR
quad

120W SY N CH REL 
measured 
(untat, 7m “  45° 7.35

6 6 . 5 °

45°
1 . 0 6 7
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Figure 10: s p m  flux-linkage test results.

Iron loss resistance estimates were obtained from the 
measured torque versus current angle characteristic at 
constant current and speed using Eqn. 15.

The field-weakening testing of the motors was performed 
using a custom-built 7.5kW, 10kHz IGBT inverter con­
trolled by a hysteresis current controller. The current 
magnitude and angle were varied manually to determine 
the maximum torque a t a given speed within the motor’s 
voltage and current-lim it constraints.

4.1 : Field-W eakening Characteristics

Table 1 shows a comparison between the measured, cal­
culated and approximated performance of the two SYN­
CH REL designs.

The unsaturated ((untat,"fm =  45°) and saturated 
((tat,  7m =  45°) constant param eter models considerably

overestimate the output torque and C PSR . Adding stator 
resistance and iron loss to the constant param eter satu­
rated model ( ( ja t+ i2«+A e) shows th a t iron loss increases 
7 m . As predicted, 7 m i and the C PSR  are not significantly 
changed.

Modelling the saturation characteristics (() considerably 
alters 7 mi and dramatically decreases the C PSR . The es­
timates produced by the three saturation models (con­
stant, linear and quadratic) give a fair estim ate of the 
C PSR . Note tha t as expected, the constant saturation 
model underestimates the C PSR  obtained from the actual 
saturation characteristic, while the linear and quadratic 
saturation models give better estimates.

Adding stator resistance (( +  R t ) and iron loss (( +  R , + 
Rc) to the saturation characteristic model shows again 
tha t iron loss affects fm. As indicated earlier, 7m, ac­
tually decreases slightly and the saturated  saliency in­
creases slightly with iron loss as the magnetising current 
is reduced. This was not seen with the (£Jat +  R , + R c) 
model as saturation was not modelled.

The full model (£ +  R , + Rc) produces a more accurate 
estimate of the C PSR  than the constant param eter models 
but still overestimates the actual C PSR  by about 20-30%. 
This is probably due to the iron losses increasing more 
rapidly with speed than predicted by the  constant iron 
loss resistance R c model.

W ith regard to the inverter utilisation («), the full models 
show a good match with the measured characteristics. 
Note that k shows only small variations with the different 
models as changes in the output torque (7*) are partially 
compensated by changes in the knee-speed (ufc)* The 
approximate formula (Eqn. 10) shows a reasonable match 
with the full model.

The SPM  characteristics in Table 2 show similar results. 
Using an unsaturated constant param eter, lossless model 
the C PSR  is underestimated as Ld is underestim ated (see
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Table 2: Comparison o f measured and calculated s p m  
results.

2kW SPM * 1m 7m» K C PSR

measured 3.6° 0.736 1.98
(unjat, 1m = 45° 1.08 « - 2 .6° 0.876 1.87( 1.02 «- o o 0.876 2.01( +  Ri 1.02 «- o 0 0.754 2.01( +  Ri +  Rc 1.02 1.3° 0 .8° 0.743 1.95

Fig. 10). Once the full saturation characteristic is mod­
elled (() the C PSR  is closely predicted. As with SYN­
CH RELs, modelling iron losses increases fm while not sig­
nificantly affecting 7mi.

Unlike SY N CH RELs, the  C P S R  of SPM s appears to be sen­
sitive to iron losses. The C PSR  of the 2kW drive showed 
a significant change even with adding a small iron loss (* cn =  44pu). Using a more reasonable (full voltage) 
iron loss resistance of Rcn =  15pu gave a 10% reduction 
in the C PSR  compared to th a t with no iron losses. This 
effect will be investigated in a later paper. Note tha t 
this is still a small reduction compared to what satura­
tion does to the C P S R  of SYNCHRELs.

4.2 : Full Characteristics

The torque and power versus speed test results for the 
2kW SPM  and 120W SYNCHREL are shown in Figs. 11 
and 12. Both drives showed operation in Mode I and
II. The SYNCHREL reached Mode III operation at about 
4100rpm. The effect of using a fixed current angle (ie. no 
field-weakening) was also measured.

The solid line shows the measured characteristics. W ith 
no field-weakening the output torque above knee-speed 
falls sharply while with field-weakening a C PSR  of about 
2 is achieved with both drives.

The dash-dot curve shows the calculated characteristic 
with an unsaturated constant param eter lossless model 
((tniati 1m =  45°). Comparing it with the measured 
characteristic shows the effect of stator resistance in re­
ducing the voltage and hence power available in the field- 
weakening region. Note th a t in SYNCHRELs, saturation 
can substantially alter both the low speed and field- 
weakening characteristics, while in SPM s it tends to affect 
only the field-weakening characteristics.

The dotted curve is the calculated characteristic includ­
ing saturation and sta to r resistance (£ +  R,). This yields 
a better match to the measured characteristics.

Finally the dashed curve shows the effect of including iron 
loss ((  +  £« +  Rc) into the previous model. The small 
residual difference between this and the measured curve 
could be due to the iron loss increasing more rapidly with 
speed than predicted w ith the simple model, d-q cross­
coupling or else windage and friction losses.

5 : CONCLUSIONS

This paper examined the effect of stator resistance, mag­
netic saturation and iron losses on the field-weakening

performance of brushless synchronous AC motor drives. 
The field-weakening performance can be characterised by 
the rated output power and the constant power speed 
range (C PS R ).

Saturation dramatically reduces the C PSR  of synchronous 
reluctance motor drives by increasing the internal max­
imum torque per ampere current angle 7mi- For drives 
showing heavy saturation, this can reduce the C PSR  to 
half or even a third of tha t predicted using an unsatu­
rated model.

S tator resistance and iron losses do not have much effect 
on the C PSR  of surface perm anent magnet or synchronous 
reluctance motor drives, however they do reduce the me­
chanical output power. W ith m oderate values of iron 
loss, the two synchronous reluctance motor drives showed 
no significant change in C PSR  while the surface perma­
nent magnet motor drive showed a small (10%) reduction.

A full motor drive model incorporating saturation, stator 
resistance and iron loss was shown to predict accurately 
the measured field-weakening performance of a 2kW sur­
face permanent magnet motor drive and a 120W syn­
chronous reluctance motor drive.
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B .3 M odelling Paper

This paper entitled “Validation of Lumped-Circuit and Finite-Element Modelling of 

Axially-Laminated Brushless Motors” was presented at the Electrical Machines and 

Drives conference in Oxford in September 1993 (pages 85-90).
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VALIDATION OF LUM PED-CIRCUIT A N D  FINITE-ELEM ENT M ODELLING OF 
AXIALLY-LAM INATED BRUSHLESS MOTORS

W L Soong, D A Staton and T J E Miller 

SPEED Laboratory, Glasgow University, United Kingdom

A B S T R A C T

The aim of this paper is to examine and validate the 
use of finite-element, analytical and lum ped-dicuit mod­
elling for calculating the saturation curves and hence 
the operating characteristics of axially-laminated syn­
chronous reluctance motors. Methods for measuring the 
saturation curves are also discussed. Comparisons are 
given w ith experimental results for a 120W motor.

1 : IN T R O D U C T IO N

Recently synchronous reluctance motors have undergone 
serious consideration for inverter-driven variable-speed 
applications [1,2]. An axially-laminated form of construc­
tion has been shown to be necessary to obtain the high 
output torque and saliency ratio required to make syn­
chronous reluctance motors competitive with induction 
motors [1,2 ,3,4].
Synchronous reluctance motors can be characterised 
by their d-axis (unaligned) inductance Lj and q-axis 
(aligned) inductance Lql. The torque per ampere is 
proportional to (Lq — Ld) while the saliency ratio (( =  Lq/Ld) determines many of the m otor’s operating charac­
teristics such as field-weakening range, power-factor and 
sensitivity to param eter variations [5,6].

Finite-element, lumped-circuit and analytical methods 
have been used by earlier workers [1,7,8] to calculate 
the variation oi Ld and Lq with current and hence pre­
dict the motor performance. There has been however 
no serious attem pt to validate the accuracy of these 
techniques in predicting the actual saturation curves of 
axially-laminated motors and even less so to test their 
ability to predict the m otor’s steady-state characteristics 
accurately.

The d-axis magnetic path  in axially-laminated designs is 
mostly air and shows little saturation at normal current 
levels. However in well designed motors the q-axis path 
shows significant saturation, mostly in the stator teeth. Ld and Lq can be obtained by :

d irec t m e a s u re m e n t : This is clearly the most accu­
rate  method. For unsaturated inductances a sim­
ple AC reactance test can be used, however to 
obtain the saturation curve it is necessary to use 
a flux-linkage technique similar to th a t used for 
switched-reluctance motors [9].

P Q  c irc le  d ia g ra m  : This is used for synchronous re­
luctance motors driven from a constant voltage 
source such as in high speed spindle drives [10].

'T his is opposite to the usual convention for synchronous 
reluctance motors, but is consistent with that used for mod­
elling interior permanent magnet motors [5].

The inductances are calculated by observing how 
the real and reactive components of the input VA 
alter as the machine’s operating point is varied 
from motoring to generating [11]. It is not directly 
applicable to current-controlled inverters, 

f in ite -e lem en t m e th o d  : 3-D finite-element analysis 
should yield accurate results if accurate B-H char­
acteristics are used. 2-D finite-element analysis can 
be used, but the results will need to be corrected 
for end-winding leakage inductance. The finite- 
element method is however too time consuming for 
everyday design, 

a n a ly tic a l ap p ro x im a tio n s  : This can be used for 
predicting the unsaturated Lq. I t can also be used 
for estimating Ld bu t this is more difficult as a 
significant part of Ld is formed by leakage induc­
tances. It is also not possible to take into account 
saturation.

lu m p ed -c ircu it : this method can offer moderate ac­
curacy in predicting the saturated  characteristics 
with a fast calculation period. It is particularly 
useful for an interactive motor design package.

This paper investigates the accuracy of the parameters 
obtained using finite-element and lumped-circuit tech­
niques in predicting the operating characteristics of a 
120W axially-laminated synchronous reluctance motor. 
Comparisons are given for torque, voltage and power- 
factor characteristics.

1.1 : D efin itio n  o f  In d u c ta n c e

It is an inherent assumption in the use of the DQ equiv­
alent circuit th a t the machine inductances vary sinu­
soidally with rotor angle [10].

Fig. 1 shows the test circuit which was used in the finite- 
element and lumped-circuit calculations, and in the ex­
perimental tests. The actual phase inductance is defined 
from Va and I  a - The weighted average phase inductance 
is defined as 2/3 of the inductance calculated from the 
total motor flux-linkage (Vr and I  a ) -  Using the defini­
tions of Ld and Lq given in [12] it  can be shown tha t 
for a machine with sinusoidally varying inductances, the 
actual and the weighted average techniques both give 
the same result, and th a t this is the synchronous induc­
tance. In real machines with non-sinusoidal inductances, 
the two techniques yield different values and a compari­
son is given in [13]. In this paper the weighted average 
technique is used.

2 : T H E  E Q U IV A L E N T  C IR C U IT

Fig. 2 shows the steady-state equivalent circuit for a syn­
chronous reluctance motor.
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Figure 1: Test circuit fo r  measurement and calcula­
tion o f the synchronous phase inductance.

w Ldm ldm
lqm

'qm qc

q —a x i s

'qm

Vd vdm dc

d —a x i s

Figure 2: Steady-state equivalent circuit fo r  the syn­
chronous reluctance m otor [14].

The saliency ratio is given by £ =  Lq/Ld where Lq =  Lqm +  Li is the q-axis inductance and Ld =  Ldm +  Li is 
the d-axis inductance. Li is the stator leakage inductance 
and Ldm and Lqm are the magnetising inductances. Li 
consists of the stator slot-leakage and end-winding induc­
tances.

This of course assumes th a t there is no cross-coupling 
between the axes. Cross-coupling is im portant in mo­
tors with a  low saliency (ie. £ <  4) as shown by Sneyers 
[15] and Mecrow [16] for interior permanent magnet mo­
tors. However cross-coupling is generally not significant 
in axially-laminated designs due to the high saliency ra­
tios (6- 10) and hence wi]l be neglected in the remainder 
of this paper.

Rqc and Rdc represent the core loss resistances and are 
normally assumed to be equal [14].

3 : ANALYTICAL CALCULATIONS

3.1 : Q-Axis Inductance

In general Lqm >■ L\, hence Lq ss Lqm. The magnetising

inductance Lm of a round rotor machine is [17] : 

3xn0N]lr\Lm = 8 p>g" (1)

where N, is the number of equivalent sine-distributed 
turns, I is the stadc-length, n  is the airgap radius, p is 
the number of pole-pairs and g" is the mechanical airgap 
extended by C arter’s coefficient to take into account the 
rotor and stator slotting.
For a machine with a pole-arc of a electrical radians this 
gives [18] :

= (2) 

3.2 : D-Axis Inductance

Various formulas have been proposed in the literature for 
estimating the d-axis magnetising inductance.

One technique is to use Eqn. 1 with a large airgap. Miller 
[19] roughly approximates the effective airgap for a four- 
pole machine as (a ri +  g). This gives a saliency ratio :

£= — + 1 
9

(3)

where a is the ratio of insulation thickness Win, to the 
sum of the insulation and lamination thicknesses ( +
V)l am)*
Boldea [2] approximates the airgap permeance as a func­
tion of angular position and Vagati [21] performs a 
lumped-circuit analysis. They both show th a t :

{ oc — 
P9

(4)

P latt [8] derives an approximate analytical solution as :

_  3x3(p — l)(i0N*lri . .
dm 64p2a r i  +  8?r3pa(p — 1)^

The technique proposed here is to consider the induc­
tance of a cylindrical stator with a sine-distributed airgap 
winding and an ideal non-magnetic rotor. The magnetic 
field distribution for this situation is derived in [22]. From 
this it can be shown that the inductance is :

Ldmi —3rp0Ntl 
8 P

(6)

which is independent of the rotor diameter. This is sim­
ilar to Eqn. 5 as a ri >  (p — l ) j .

Now if a large number of thin laminations separated by 
layers of insulation are placed in the rotor in such a way 
tha t the layers are always perpendicular to the flux lines, 
then the field distribution would be unchanged [19]. This 
would cause the inductance to increase to :

Ldma —3ir p0N*l 
8 pa (7)

The intrinsic saliency ratio, & is the maximum possi­
ble saliency ratio for a given motor geometry and from 
Eqns. 1 and 6 is defined as :

e — ri_
P9

(8)
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# 1 # 2 # 3 # 4 # 5

Pout [kW] 0.12 1.0 7.5 0.55 1.5
Poles 4 4 4 2 2Lstack [mm] 32 76 202 60 80Drotor [mm] 57 59 127 60 80
Airgap [mm] 0.26 0.21 0.50 0.25 0.30
Wjam [mm] 0.30 0.30 0.50 0.50 0.50
Wini [mm] 0.30 0.30 0.50 0.30 0.30

a 0.50 0.50 0.50 0.38 0.38(i 55 70 64 120 133(mi 27 35 32 45 50(act 7.4 8.2 13* 8.5 21(act/(mi 0.27 0.23 0.41* 0.19 0.42

Reference built by authors 1 [20,24]

Table 1: Performance o f various axially-laminated 
designs. (* fin ite-elem ent calculation)

similarly the intrinsic magnetising saliency ratio („ 
defined as :

ari 
P9

c —{mi — 7— -L/dr (9)

This is a similar result to th a t obtained by other authors 
(Eqns. 3 and 4). It sets an upper limit to the saliency 
ratio achievable with a given motor geometry.

The actual magnetising saliency ratio, defined as ( m =  Lqm/L4m is lower than ( mi due to the finite rotor pole 
arc, the extension of the effective airgap due to rotor 
and sta to r slotting, and the distortion of the d-axis field 
distribution due to the rotor laminations.

The measured unsaturated saliency ratio (act, is lower 
again due to the swamping effect of the stator leakage 
inductance. This consists of the slot-leakage and end- 
winding inductances and can be estimated using the same 
techniques as for induction machines [23].

Table 1 shows the parameters of five axially-laminated 
synchronous reluctance motors. It shows tha t the mea­
sured unsaturated saliency ratio is generally in the range
0.2(mi <Z< 0.4(mi.

4 : FINITE-ELEMENT ANALYSIS

A four pole, 120W axially-laminated motor (design #1  in 
Table 1) was modelled. This uses a standard 24 slot in­
duction motor stator with a single-layer, equi-turn conse­
quent pole, concentric winding. Due to the symmetry in 
the m otor only an eighth of it was modelled (see Fig. 3). 
Each rotor pole consists of 26 laminations and 25 insu­
lation layers and is clamped to the square section shaft 
by a brass pole-piece and three non-magnetic stainless- 
steel bolts. Grain-oriented material was used for its good 
magnetic properties and low iron losses.

2-D finite-element analysis with a correction factor for 
end-winding inductance (see Table 2) was used. Care 
is required in modelling axially-laminated rotors due to 
the fine structure at the rotor surface. A large number

of nodes is required in this region in order to calculate 
accurately the unsaturated q-axis inductance. At high 
currents, saturation of the iron paths mean th a t the mod­
elling of the airgap region is less critical.

Finite-element results concerning the effect of replacing 
the rotor or stator steel with “ideal” m aterial are shown 
in Fig. 4. From the small change in the results when 
using real or ideal rotor steel it is clear th a t the majority 
of the saturation in the motor occurs in the stator. This 
is because of the use of grain-oriented steel in the rotor 
and also due to the greater iron cross-sectional area in 
the rotor compared to the stator teeth. T he la tte r point 
is partly offset by the area of the rotor lam inations taken 
up by the bolts.

5 : LUMPED-CIRCUIT ANALYSIS

A general purpose non-linear lumped-circuit solver was 
written using M atlab [25]. The q-axis case for the 120W 
motor was analysed using a simple three mesh circuit and 
assuming the rotor was infinitely permeable (see Fig. 3).

The airgap reluctances Ra were calculated using the ex­
tended airgap to take into account rotor and sta to r slot­
ting. The tooth reluctances Rt were taken to be only 
tha t of the straight section of the tooth. Finally the 
back-iron reluctances Rg consisted of a width given by 
the minimum back-iron depth plus one th ird  of the slot 
bottom fillet radius and a length equal to the slot pitch

2R .

*b
JnIi

0
["* 2

l B

I N I ,

Figure 3: 120W  rotor cross-section and lumped-
circuit model (q-axis case).



286 APPENDIX B. PUBLISHED PAPERS

200

XB
S 150
Z<HU
O 100
z

iu</><
X L U M P E D  C I R C U I T  R E S U L T S
CL.

1.40.4 0J
P H A S E  C U R R E N T  [A r m s ]

Figure 4: Effect of using ideal stator and rotor steel.

L PH F A L L200
X
e

AC T E S T

«  100
S

FL
F A L L

FL
R I S E

0.2 0.4 0.6 12 1.4

P H A S E  C U R R E N T  [A r m . )

Figure 5: Experimental results from AC and flux- linkage tests.
measured midway in the thinnest section of the back-iron.

Fig. 4 shows the curve calculated with cubic spline inter­
polated iron characteristics. Given the simplicity of the 
calculations, the results show a reasonable match with 
the finite-element results.

6 : MEASURED RESULTS AND DISCUSSION

6.1 : Measurement of Saturation Curves

The simplest method is to apply a variable-voltage 50Hz 
AC supply to the motor as shown in Fig. 1 and use an 
AC power analyser to measured the input reactance and 
hence inductance of the motor (see dotted line in Fig. 5). 
It gives accurate results for the unsaturated inductance 
but overestimates the saturated values due to its “av­
eraging” nature. The error due to iron loss under AC 
excitation (see Fig. 2) is usually less than 1%. If desired 
this can be corrected using the measured AC input resis­
tance which due to the iron losses will be substantially 
greater than the DC resistance.

The flux-linkage method is a more accurate means for

Inductance Act­ Fin. Lump Anal-
mH ual Elmt Cct. tical

Ldmi — 4.82 — 4.85Ldmi 4" L,lot — 9.2 — 9.8Ldmi ")■ Ltlot +  Lend 16.0 — — —Lend (from above) — 6.8 — 6.2Ld 24.4 24.3* — 20.9*Lq (unsat) 181 200* 195* 197*

Table 2: Comparison of unsaturated inductances.The * indicates the values have been corrected for the endwinding inductance.
obtaining the saturation characteristics as it gives the 
instantaneous flux-linkage versus current characteristic 
[9]. The test involves calculating the flux-linkage :

A(t) =  J [v(t) — i(t)R]dt (10)

as an applied square-wave voltage input ramps the cur­
rent up from zero to some maximum value and then 
ramps it down to zero again. The flux-linkage ver­
sus current characteristic and the calculated inductance L(t) = A (t)/i(t) obtained are shown in Fig. 5. Iron losses 
mean th a t the rising and falling flux-linkage curves form 
a “hysteresis” loop and it is necessary to average the 
two curves to obtain accurate results. The resultant in­
ductance characteristic (marked “AVG” in Fig. 5) corre­
sponds well with the unsaturated inductance calculated 
with the AC test.

At low currents the inductance falls due to the low per­
meability of the stator and rotor iron at low flux levels. 
This is shown by the AC test results. The errors in the 
inductance calculated from the flux-linkage method are 
large at low currents and hence these points are omitted 
from the curve used in the calculations shown in Fig. 6.

Table 2 compares the measured unsaturated inductances 
with tha t calculated using finite-element, analytical and 
lumped-circuit techniques. Finite-element analysis using 
a smooth stator and sine-distributed airgap winding was 
used to obtain a value for Ldmi- This corresponded well 
with the analytical prediction. Next a slotted stator and 
the actual winding was modelled to introduce slot-leakage L,iot- The difference between these values and th a t mea­
sured for the stator without a rotor is mainly due to end- 
winding inductance Lend which is relatively large in this 
motor due to the short stack length. The measured d- 
axis inductance with the rotor inserted corresponds well 
to the value from finite-element analysis which has been 
corrected for the end-winding inductance. The analytical 
prediction is about 14% low which is reasonable consid­
ering its simplicity.

Table 2 and Fig. 6 compare the calculated and mea­
sured Lq saturation curves. The finite-element, analyt­
ical and lumped-circuit results are consistent but they 
significantly overestimate the measured inductance (by 
about 10%).
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Figure 6 : Inductances versus current (corrected for endwinding inductance).
6.2 : Comparison of Predicted Characteristics

Figs. 7-9 shows comparisons between the calculated and 
measured characteristics for the 120W axially-laminated 
motor a t rated speed (1500 rpm) and rated phase current 
(1.7A).

The calculated curves were obtained by solving the equiv­
alent circuit shown in Fig. 2 taking into account the non­
linear saturation characteristics (see Fig. 6) with the ap­
proximations th a t the two iron loss resistances are equal 
and of constant value and with the leakage inductance 
combined into the magnetising inductances. The iron 
loss resistance was calculated at y =  0° from the experi­
mental measurements.

The measured flux-linkage curves accurately predict the 
motor’s torque, voltage, and power-factor characteristics. 
Note how iron losses reduce the output torque a t low 
current angles, but do not significantly affect the torque 
at high current angles.

The finite-element and lumped-circuit results overesti­
mate Lq and hence the torque and fundamental phase 
voltage. The power-factor appear to be relatively insen­
sitive to errors in Lq. The maximum efficiency for motors 
of this size is low due to the high stator copper losses.

Table 3 compares the manufacturer’s ratings for the in­
duction motor against the measured performance of the 
synchronous reluctance motor. It shows a significant im­
provement in performance. Though the synchronous re­
luctance motor does use a smaller airgap, finite-element 
analysis has shown th a t the performance is not substan­
tially affected with the larger airgap because at rated 
current most of the saturation occurs in the stator.

7 : CONCLUSIONS

The intrinsic magnetising saliency ratio ( mi =  ari/pg, is 
the maximum saliency ratio theoretically possible with a 
given motor geometry. Practical motors generally achieve 
unsaturated saliency ratios of between 20-40% of the 
this, depending on their design.

The performance of the 120W axially-laminated motor
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Figure 7: Torque versus current angle.
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Param eter IM Synchrel
Mean Airgap (mm) 0.305 0.265
Rated Line Voltage (Vrms) 110 110
Rated Phase Current (Arms) 1.7 1.7
Rated Speed (rpm) 1360 1580
O utput Torque (Nm) 0.84 1.07
Power O utput (W) 120 165
Efficiency (%) 61 66
Power Factor 0.62 0.82
Apparent Efficiency 0.38 0.54

Table 3: Comparison between the induction m otor 
and s y n c h r e l  in the same stator.

considered is limited by saturation in the stator. Hence 
simple lumped-circuit models which only model stator 
saturation allow rapid calculation of the machine’s satu­
ration characteristics with reasonable accuracy.

Analytical, lumped-circuit and finite-element methods 
gave consistent predictions of the motor’s saturation 
characteristics.

Experimental measurement of the saturation character­
istics can be obtained from AC reactance or flux-linkage 
tests. The la tte r gives a more accurate result. The mea­
sured saturation characteristics have been shown to pre­
dict the m otor’s performance accurately.

The 10% discrepancy between the calculated and mea­
sured saturation characteristics is significant but has not 
been explained. This will be investigated in a later paper.
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B .4 D esign  and Test Paper

This paper entitled “Design of a New Axially-Laminated Interior Permanent Magnet 

Motor” was presented at the IEEE Industry Applications Society Annual Meeting in 

Toronto in October 1993 (volume 1, pages 27-36). It won the Electrical Machines 

Committee first paper prize.
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D esign o f a N ew  A xially-Lam inated Interior Perm anent M agnet M otor

W L Soong, D A Staton and T J E Miller 

SPEED Laboratory, Glasgow University, United Kingdom

Abstract —  T he design o f an axially-laminated in­
terior permanent magnet m otor drive showing a con­
stant power speed range exceeding 7.5:1 is described. 
The rotor consists o f  alternating layers o f lam inations 
and rubber-bonded ferrite magnet sheet. A 7.5kW  
synchronous reluctance and a 7.5kW  interior perma­
nent magnet axially-lam inated motor were built and 
experim ental results are presented showing the en­
hanced field-weakening range.

I. In t r o d u c t io n

Applications such as machine tools and traction require mo­
tor drives with a wide constant power speed range (>4:1). 
Presently vector-controlled induction motors are widely used. 
This paper examines an alternative drive based on an axially- 
laminated interior permanent magnet motor. This offers a 
wider field-weakening range, better inverter utilisation, simpler 
control due to its synchronous nature and higher efficiency due 
to the elimination of rotor copper losses.

An earlier paper [1] investigated the field-weakening perfor­
mance of the three main types of brushless synchronous AC 
motor drive : the surface permanent magnet, the synchronous 
reluctance and the interior permanent magnet motor drive (see 
Fig. 1).

SURFACE 
PERMANENT MAGNET 

MOTOR (SPM )

INTERIOR 
PERMANENT MAGNET 

MOTOR (IPM )

SYNCHRONOUS 
RELUCTANCE MOTOR 

(SYNCHREL)

Figure 1: Motor croaa~aectioru.
This showed that for all three drives there is a fundamental 

tradeofF between the field-weakening and the low speed perfor­
mance. The “optimum” field-weakening characteristic cannot 
match that produced by an ideal motor drive but can approach 
it. This “optimal” characteristic can be achieved theoretically 
by :

• synchronous reluctance motors with an infinite saliency 
ratio,

• surface permanent magnet motors with an unusually high

value of synchronous inductance or . . .

• interior permanent magnet motors where the fundamental 
flux along the magnet axis can be reduced to zero by rated 
stator current in that axis.

Of the three options, the first is impossible, the second is 
possible but generally requires the addition of external induc­
tors [2], leaving only the latter option as being practical.

Sneyers, Maggetto and Van Edc [3] and Jahns [4] first recog­
nised the suitability of the interior permanent magnet motor 
for field-weakening applications.

Schiferl and Lipo [5] showed that the “optimal” field- 
weakening performance was achieved when the permanent 
magnet flux ¥ m, the least inductive axis inductance Ld and 
the rated current I0 were related by :

— Ldlo (1)
Fratta, Vagati and Villata [6] showed that improving the 

saliency ratio (  =  L9/Ld of an interior permanent magnet 
motor would reduce Ld and hence the required ¥ m. This 
would reduce the magnet requirements, the induced voltage 
at high speeds and the required demagnetising current under 
light loads at high speeds. They designed and built a multiple- 
barrier (radially-laminated) design based on ferrite magnets.

Lipo [7] suggested that an axially-laminated interior permar 
nent magnet motor could be constructed by sandwiching bar 
magnets between the laminations. The new design uses this 
idea with rubber-bonded magnet sheet.

The highest saliency ratio synchronous reluctance motors 
are obtained with axially-laminated designs [8] which can of­
fer practical saliency ratios in the range 6-20 [9]. In axially- 
laminated motors the magnet requirement is low enough to 
allow the use of rubber-bonded ferrite magnets. This is a flex­
ible, isotropic, low-cost material available in thin sheets (0.4- 
lmm) and is normally used in applications such as magnetic 
“L” plates for cars and refrigerator door seals. In the motor 
design, the flexibility is important as the magnets are sand­
wiched between magnetic laminations which have sharp bends 
in a four pole motor. Compared to sintered ferrite magnets (let 
alone rare-earth magnets) its magnetic properties are poor, but 
prove to be all that it required for this application.

Axially-laminated interior permanent magnet motors de­
signed for good field-weakening performance are predomi­
nantly reluctance machines. Thus this paper first examines 
the optimisation of the performance of the axially-laminated 
synchronous reluctance motor drive. The design of the in­
terior permanent magnet version is similar except some com­
promises in the reluctance performance are necessary to ensure 
good back-emf waveforms and suitable demagnetisation limits. 
A 7.5kW synchronous reluctance motor and a 7.5kW interior
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Figure 2: Cross-section of 7,5kW  synchronous reluctance and 
in terior perm anent magnet m otor

permanent magnet motor were built and experimental results 
are presented.

F igure 3: 7.5kW  rotor components before assembly.

II.  S y n c h r o n o u s  R e l u c t a n c e  M o t o r  D e s i g n

A commerical induction motor stator was used in this design 
to allow a direct comparison with the induction motor perfor­
mance. An induction motor based on this stator is actually 
capable of llk W  at rated speed, but is derated to 7.5kW for a 
10:1 constant torque speed range with a shaft-mounted fan.

A cross-section of the stator is shown in Fig. 2. Each pole 
consists of thin interleaved layers of insulation and lamination 
material, topped with a metal pole-piece. It is bolted onto the 
square cross-section shaft with six non-magnetic, stainless steel 
bolts (Fig. 3). The rotor is assembled (Fig. 4) and then turned 
and ground down to the required diameter. The finished rotor 
is shown in Fig. 5. The photographs show the synchronous 
reluctance rotor however the interior permanent magnet rotor 
is nearly identical.

The saliency ratio £ is an important performance parame­
ter of synchronous reluctance motors, with the performance 
improving monotonically with increasing saliency ratio. It 
has been shown by Betz [10], that this determines the ma­
chine’s power-factor, sensitivity to parameter variations and 
field-weakening performance. In particular, the ideal constant 
power speed range is approximately half the saliency ratio. 
Thus to achieve a 4:1 constant power speed range, a saliency 
ratio of about 8 is theoretically required.

A useful design equation for axially-laminated synchronous 
reluctance motors is that for the maximum possible saliency 
ratio (£mi) [9] for a given geometry :

f  -Cm* — ----
P9

(2)
where a is the ratio of the insulation thickness to the lamina­
tion plus insulation thickness, rj is the airgap radius, p is the 
number of pole-pairs and g is the radial airgap. For the 7.5kW 
induction motor stator with a 0.5mm airgap, £m, =  32.

Figure 4: Assembled 7.5kW  axially-lam inated rotor before
turning and grinding operations.

Figure 5: Experimental 7 .5kW  axially-lam inated m otor with 
50W  prototype version shown for comparison. The scale in 
front is 5cm long.
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The actual saliency ratio is considerably lower than this due 
to practical factors such as Carter’s coefficient, the finite pole- 
arc and stator leakage indnctance. The measured unsaturated 
saliency ratio (  is generally in the range 0.2(mi < Z < 0.4£m<
[9]. For the 7.5kW synchronous reluctance motor, this range 
corresponds to 6.4 < £ <  12.8 which matches well with the 
measured unsaturated saliency ratio of 11.5.

The actual constant power speed range is generally much 
lower than that predicted by £/2. This was investigated in 
depth in [11] and it was found that it is mostly due to magnetic 
saturation. To a first approximation it was found that iron 
losses and stator resistance have little effect on the constant 
power speed range, though they do reduce the output power 
capability.

Saturation has two effects : it reduces the saturated saliency 
ratio, and it increases the current angle at which maximum 
torque is obtained (7m) beyond the ideal value of 45°. In or­
der to calculate the effect of saturation, it is necessary to make 
some assumptions about the shape of the saturation charac­
teristic. Fig. 6 shows three simple saturation models.

Fig. 7 shows a contour plot of the constant power speed 
range against ym and the saturated saliency ratio for the three 
saturation models [11]. Practical designs generally have values 
of 7m in the range 55°-65° and hence saturation can dramat­
ically reduce the achievable constant power speed range. For 
the 7.5kW design, the saturated saliency ratio was 9.6 and the 
maximum torque per ampere angle was 60°. Thus the ideal 
constant power speed range was £/2 =  4.8, but the measured 
value was only 2.5. This corresponds well with that predicted 
by Fig. 7.

The major design decisions for an axially-laminated syn­
chronous reluctance motor are : pole number, pole-piece ma­
terial, airgap size and lamination to barrier ratio.

A. Pole Number
Most axially-laminated designs are four pole, though two pole 
[12] and six pole [13] designs have built. The two pole designs 
offer the highest saliency (21 has been achieved) and the sim­
plest rotor design (no bending required). The main drawback 
is that there is no room for a shaft to run through the ro­
tor. In [12] this was overcome for two small motors (0.55kW 
and 1.5kW) by glueing endplates to the rotor stack. This is

C O N S T A N T

L I N E A R
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C U R R E N T  A N G L E  [ D E G ]

Figure 7: Contour plot of the constant power speed range against the maximum torque per ampere current angle and the saturated saliency ratio for the three saturation models.
however impractical for larger motors.

A four pole design allows the shaft to run through the rotor 
and is commonly used [7, 8]. Six pole designs can be built but 
are more complex and have a poorer saliency ratio (horn (2), 
theoretically two thirds of that for the four pole design). How­
ever the incremental performance improvement with increasing 
saliency ratio diminishes rapidly once £ > 8 [10]. Thus in large 
motors, with correspondingly large values of £mt, six or eight 
pole designs may yield better performance because the shorter 
flux paths and reduced back-iron thickness reduces the saturar 
tion, offsetting the reduced saliency ratio.

As mentioned above, the four pole 7.5kW synchronous reluc­
tance design with a 0.5mm airgap had an unsaturated saliency 
of 11.5. A six pole 7.5kW motor design would thus yield too 
low a saliency ratio for good performance.

B. Pole-Piece Material and Bolts
The final design used non-magnetic pole-pieces and required 
six 10mm diameter bolts per pole to give it a maximum safe 
operating speed of 3000rpm. The bolt holes locally reduce the 
effective rotor magnetic cross-section by 30% and this degrades 
the saturation characteristic. Fig. 8 and Table 1 shows the 
effect of using magnetic pole-pieces and of removing the bolts.

Magnetic pole-pieces increase the output torque by 9%, de­
crease the saliency ratio by 15% and reduce the constant power 
speed range by 2.5%.

From the performance of the motor with no bolts, it can be 
seen that their use reduces the output torque by 14% and the 
constant power speed range (CPSR) by 40%. Note that Ld 
is unaffected and that the saturated saliency ratio is similar 
to the final design due to the lower ym. This highlights the 
sensitivity of the constant power speed range to ym.
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Figure 8: Calculated inductance characteristics for the 7.5kW synchronous reluctance motor. The final design (solid line), with magnetic pole-pieces (dashed line) and with no bolts (dot­ted line).
Table 1: Calculated performance of the final design compared with that obtained with magnetic pole-pieces and no bolts.

Property Final Design Mag. Polepieces No Bolts
Torque [Nm] 54.6 59.2 62.3
(  (unsat) 12.3 10.7 12.2
t  M ) 10.7 9.2 10.8
CPSR 2.44 2.38 3.43
'ym 62.9° 61.2° 56.6°

C. Airgap Size

Fig. 9 shows the calculated flux-linkage characteristics for the 
7.5kW synchronous reluctance motor with a range of airgaps. 
The operating characteristics of the designs were calculated 
from these and the normalised results are shown in Fig. 10 as a 
function of the inverse airgap (1 /g). The unsaturated saliency 
ratio ( u n s a t )  and the saturated saliency ratio ( s a t )  are nor­
malised against the saturated saliency ratio at the nominal 
airgap (0.5mm). The torque and constant power speed range 
are also normalised against their respective values at this value 
of airgap. The inverter utilisation n ( k a p p a )  is the ratio of the 
rated output power of the motor to the inverter VA rating [11].

Starting from 1/g =  0.5mm-1 , all the characteristics im­
prove with increasing 1/g. Note that as 1/g approaches infin­
ity, all the parameters except the unsaturated saliency ratio 
asymptote towards constant values. Thus, decreasing the air- 
gap past a certain point will not yield significant improvement 
in performance.

The constant power speed range differs from the other char­
acteristics in that it peaks between 0.5 < g < 2mm. This is
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Figure 9: Calculated flux-linkage characteristics for a 7.5kW synchronous reluctance motor with different airgaps.
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Figure 10: Effect of airgap size on the calculated performance characteristics for a 7.5k W synchronous reluctance motor.
associated with the increase of both the saturated saliency ra­
tio and the maximum torque per ampere current angle with 
decreasing airgap size.

D. Lamination to Barrier Ratio

This is measured by the parameter a, which is the ratio of the 
insulation thickness to the combined insulation and lamination 
thickness. We have generally used a =  0.5 in our designs how­
ever Boldea [14] recommends using values in the range 0.33-
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F igure 11 : Effect of the lamination to barrier ratio on the cal­culated performance characterittici of the 7.5kW synchronous reluctance motor. Top : flux-linkage characteristics. Bottom : calculated performance.
0.40, with the upper limit due to rotor saturation. Lipo [7] 
suggests a value of about 1/3 in order to reduce rotor iron loss.

To investigate this further, finite-element analysis was used 
to calculate the performance characteristics of the 7.5kW mo­
tor with different values of a. The results are shown in Fig. 11.

Rom (2) the saliency ratio should be proportional to a. This 
is true for low values of a, however for larger values, Carter’s 
coefficient reduces the unsaturated saliency ratio and heavy 
saturation brings down the saturated saliency ratio. This is 
reflected in the maximum torque per ampere current angle 
plot. The torque peaks at about a =  0.3 and the constant 
power speed range (CPSR) peaks at about a =  0.4. Note

that these results are sensitive to how much of the rotor cross- 
section is lost due to the bolt holes.

The value of a =  0.5 UBed in the final design is not optimal, 
but gives reasonable performance.

III. A x ia l l y -L a m in a t e d  IP M  D e s ig n

A major problem with synchronous reluctance motors with re­
gard to field-weakening performance is the limited achievable 
constant power speed range. The 7.5kW design achieved about 
2.5, and the previous section has shown that it would be diffi­
cult to improve this by more than about 50%.

However by adding just sufficient permanent magnet ma­
terial to the motor, an interior permanent magnet axially- 
laminated motor with an extremely wide constant power speed 
range can theoretically be obtained [5, 6, 7].

The theoretical field-weakening performance of such drives 
was investigated in an earlier paper [1]. The top graph in 
Fig. 12 uses a lossless linear model to show the effect on the 
constant power speed range of adding permanent magnets to 
the motor. Note that with no magnet flux, the constant power 
speed range is approximately half the saliency ratio. The nor­
malised magnet flux-linkage is the ratio of the magnet back- 
emf voltage to the supply voltage at rated speed (for a lossless 
linear motor).

Note that for a given saliency ratio, adding magnet material 
to a synchronous reluctance motor first improves the constant 
power speed range until it is infinitely wide, then causes it to 
decrease to unity. Optimum designs described by (1) lies on 
the right-hand side of the infinite constant power speed range 
zone as these offer the highest inverter utilisation [1]. The 
graph also illustrates the point made in the introduction that 
a high saliency ratio design reduces the magnet requirements 
and the back-emf at high speed.

In designing the interior permanent magnet motor only suf­
ficient magnet material should be added to yield optimum per­
formance.

A larger airgap (0.92mm) was used in the interior permanent 
magnet motor design to produce a comparable torque to the 
synchronous reluctance motor and not exceed the dynamome­
ter capacity. This also allowed the investigation of the effect 
of increasing the airgap on the inductance characteristics.

The main design decisions for an axially-laminated interior 
permanent magnet motor are : pole-piece material, magnet 
type and demagnetisation withstand. Each of these will now 
be examined.

A. Pole-Piece Material
Finite-element analysis was used to investigate the effect of 
using magnetic and non-magnetic pole-pieces on the motor 
back-emf shape and magnitude. Fig. 13 shows the calculated 
airgap flux-density distribution and the line-to-line voltage of 
the motor for the two cases, when using rubber-bonded ferrite 
magnets. Note the large distortion caused to the airgap flux 
distribution by using non-magnetic pole-pieces.

Magnetic pole-pieces increase the fundamental voltage by 
13% and result in a far more sinusoidal airgap flux density 
distribution and hence back-emf waveform. The latter point is
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Figure 12: Top : contour plot of the constant power speed range against the saliency ratio and the normalised magnet flux-linkage. Middle and bottom : calculated field-weakening performance curved for a purely synchronous reluctance design (SYN), an optimal design (OPT), a design using rubber-bonded ferrite magnets (Fe) and a design using rubber-bonded NdFeB magnets (NdFeB).
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Figure 13: Calculated airgap flux distribution (top) with mag­netic (solid line) and non-magnetic (dashed line) pole-pieces. Back-emf waveforms at lOOOrpm (bottom) : calculated with magnetic (dashed line) and non-magnetic (dotted line) pole- pieces and measured waveform with magnetic pole-pieces (solid line).
important in order to reduce harmonic iron losses, especially 
in the field-weakening region [5]. Thus magnetic pole-pieces 
were used despite the small loss in the saliency ratio predicted 
in the previous section.

Fig. 13 also shows the measured back-emf waveform. The 
shape of the waveform is predicted accurately and the discrep­
ancy in the amplitude is due to problems with fully magnetising 
the magnetic sheet (described later).
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Table 2: Typical flexible magnetic iheet properties. Courtesy of Anchor Magnets, Lucas AEC and Cookson Technology.
Property Ferrite NdFeB
Remanent Flux Density B r [T] 0.165 0.4-0.5
Coercivity H c [kA/m] 110
Intrinsic Coercivity H a  [kA/m] 180 700-1000
Recoil Permeability Ur*c 1.10 1.06
Density p [kg/m3] 3600 5000
Max. Continuous Temp. [°C] 80 60-100
Max. Intermittent Temp. [°C] 110
Temp. CoefF. of B r [%/°C] -0.2 -0.1
Temp. Coeff. of H d  [%/°C] 0.4 -0.6
Magnet Thickness [mm] > 0.4 > 0 .4

B. Magnet Selection

The anally-laminated interior permanent magnet motor design 
requires magnets with the following properties : available in 
thin sheets (<0.5mm), flexible enough to be bent through 45° 
in a radius of a few millimetres, high coercivity, high maximum 
operating temperature and low-cost.

The only flexible magnet sheet presently available commer­
cially in quantity is rubber-bonded ferrite, though flexible Nd­
FeB magnet sheet is under development. Typical properties of 
these two materials are summarised in Table 2.

The optimum field-weakening criteria (1) gives the optimum 
value of magnet flux-linkage. Finite-element calculations cor­
rected for end-winding inductance [9] gives Ld =  11.5mH (the 
measured value was 12.0mH). This gives the optimum magnet 
flux-linkage ¥  opt as :

'iopt — Ldlo — 11.5mH x 15Arms =  0.173V& (3)

From Fig. 13, flexible ferrite magnets give =  0.214Vs. 
Thus this material would give slightly more than the optimal 
flux-density. A problem with this material is its poor demag­
netisation characteristics.

Neglecting saturation, with NdFeB magnets of remanent 
flux density Br — 0.45T (see Table 2), the magnet flux would 
be =  0.584Vs. This is excessive and could be reduced to Vopt by replacing most of the magnet material with normal 
insulation material. This would also reduce the amount of the 
(expensive) magnet required. NdFeB magnets have excellent 
demagnetisation characteristics (see Table 2) which would be 
essential in a commerical motor.

Fig. 12 shows the effect on the calculated field-weakening 
characteristics of adding magnet material to the motor. The 
performance of a pure synchronous reluctance motor with a 
0.92mm airgap (point A in the contour plot) is compared 
against that with the optimal magnet flux (point B), rubber- 
bonded ferrite magnets (point C) and NdFeB magnets (point 
D). Note that point B should ideally lie exactly on the right- 
hand side of infinite constant power speed range band as it 
is an optimal field-weakening design. It does not because the 
model used to calculate the characteristics takes saturation 
into account while the contour plot is calculated for a constant 
parameter model.

The synchronous reluctance motor shows a constant power

speed range of 3.2. Adding the optimal magnet flux improves 
the output torque and produces a motor with the optimal field- 
weakening performance. That is, with constant power up to 
infinite speeds. The ferrite magnet motor has a slight excess 
of flux, this gives slightly more torque at low speed, but a 
reduction in the constant power speed range from infinity to 13. 
Using NdFeB magnets greatly enhances the low speed torque at 
the price of a poor field-weakening performance. Thus ferrite 
magnets offer the best performance and were used in the final 
design.

The rubber-bonded ferrite magnet sheet is normally supplied 
magnetised in a multi-pole fashion on one surface. Thus it was 
necessary to remagnetise them through the thickness. This 
was performed by passing it through a field of about 1.4T. 
Note that the magnets could probably be magnetised in situ if 
desired, though for the prototype the magnets were magnetised 
before assembly. A difficulty found with this technique was 
that low operating point of the sheet material in free air caused 
partial demagnetisation. This meant the actual magnet flux- 
linkage was lower than predicted (actually 0.174Vs) and was 
nearly exactly equal to the optimal value.

The maximum continuous operating temperature of both 
the ferrite and NdFeB flexible sheet magnets is limited by the 
binders used. Present materials are limited to 60-100°C. This 
not however an intrinsic limit and if there is a sufficiently large 
market, alternative binders could be found.

C. Demagnetisation Withstand

An important design consideration is demagnetisation with­
stand. This is because from (1), in an optimal field-weakening 
design the total effective flux in the magnet axis is reduced 
to zero by rated stator current in that axis. Note that does 
not actually require the flux in the magnets to be reduced to 
zero because a substantial proportion of Ld (about 40% in the 
7.5kW design) consists of slot-leakage and end-winding induc­
tance which does not produce airgap flux. Nevertheless the 
magnet operating point is low under these conditions.

The measured demagnetisation curve of the flexible ferrite 
magnet sheet is shown in Fig. 14. Due to the “softness” of 
the characteristic, care is required to prevent irreversible de­
magnetisation of the magnets. Finite-element analysis showed 
that with rated current in the least inductive axis (the worst 
case) that the magnetic field in the magnets was in range 0.04- 
0.08T. This will not cause irreversible demagnetisation as it is 
above the knee in the characteristic.

IV . E x p e r im e n t a l  R e su l t s

The 7.5kW axially-laminated interior permanent magnet and 
synchronous reluctance motors were built. Their design char­
acteristics are summarised in Table 3.

The inductance characteristics (see Fig. 15) were measured 
using the instantaneous flux-linkage method described in [9]. 
Conventional 50Hz AC impedance tests were found to give 
poor results due to the large iron losses produced by the flux 
oscillations in the rotor. Note that under normal field-oriented 
control, the flux in the rotor is substantially constant and so 
these losses will not appear.
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Figure 14: Magnetic properties of rubber-bonded ferrite sheet. The solid line is the measured characteristic (courtesy of Lucas AEC) at 20° C and the dashed line is the calculated character­istic at 80° C.
The measured inductance characteristics correspond well 

with the finite-element predictions. The interior permanent 
magnet motor shows much less saturation than the syn­
chronous reluctance motor due to the larger airgap. This can 
be clearly seen from Table 3 where the interior permanent mag­
net motor’s unsaturated saliency ratio is 6.7 and the saturated 
value is 6.3. The use of iron pole-pieces causes the d-axis in­
ductance of the interior permanent magnet motor to be slightly 
greater than that of the synchronous reluctance motor as pre­
dicted earlier.

Running tests were performed on a fully-instrumented 50Nm 
dynamometer using a vector-controlled induction motor as a 
load. A 7.5kW, 10kHz IGBT inverter and an analog hysteresis 
current loop was used to control the test motor.

Fig. 15 shows the effect of varying the current angle for op­
eration at rated current at 500rpm. The finite-element induc­
tance predictions (with the measured magnet flux-linkage) give 
a good approximation to the performance though the calcu­
lated characteristics from the measured inductance results are 
generally better as would be expected. Note the reduction in 
the terminal voltage as the current angle is increased towards 
90°. This is the key to the field-weakening operation.

A comparison between the calculated and measured field- 
weakening characteristics at rated current and one third of 
rated voltage is shown in Fig. 16. The reduced voltage was 
used to allow the field-weakening region to be characterised 
without overstressing the rotor mechanically. Note that to a 
first approximation, the constant power speed range is inde­
pendent of the supply voltage [1].

Ideally the induction motor has a constant power speed 
range of about 2.5. This is the ratio of the breakdown torque 
to the rated torque [15]. The synchronous reluctance motor
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Figure 15: Inductance, torque and fundamental voltage char­acteristics of the 7.SkW synchronous reluctance (SYN) and in­terior permanent magnet motor (IPM). The torque and volt­age characteristics are measured at SOOrpm and ISA. Measured (solid), calculated from the measured inductance characteristics (dashed) and finite-element predictions (dotted).
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Figure 16: Field-weakening characteristics at rated current and one third of rated voltage. Measured results (solid linesJ and calculated results (dashed lines). The calculated character­istic of the induction motor is given for comparison.

Table 3: Comparison of motors in same stator. The induction motor power-factor is low as the motor is actually capable of llkW, but it derated to 7.5kWfor a 10:1 constant torque speed range with a shaft-mounted fan.
Parameter IM SYNCHREL IPM
Airgap [mm] 0.48 0.517 0.917
Stator Inner Dia. [mm] 127 127 127
Stack Length [mm] 202 202 202
Poles 4 4 4
Lamination Thick, [mm] 0.50 0.50
Ins./Magnet Thick, [mm] 0.50 0.50
Rotor Layers 62 62
Pole Arc [elec deg] 131 131
Pole Pieces brass iron
Magnet Flux [Vs rms] 0 0 0.174
Unsat. t 11.5 6.7
Sat. 1 9.6 6.3
Rated Line Voltage V0 [V] 415 415 415
Rated Current I0 [A] 15 15 15
7m [deg] 64.1 48.1
Knee Speed tv* [rpm] 1460 1442 1396
Rated Torque X* [Nm] 50 49.6 53.1
Rated Output Power Pk [kW] 7.5 7.48 7.76
Efficiency r) [%] 87.5 85.5 89.5
Power Factor cos ̂ 0.72 0.813 0.804
Inverter Utilisation « =  rj cos ^ 0.63 0.696 0.720
CPSR 2.5 2.5 >  7.5

has a measured constant power speed range of also about 2.5. 
As predicted by the model, the interior permanent magnet 
motor drive shows an excellent field-weakening characteristic. 
The base speed is about 420rpm at which the output power 
is about 2.4kW. The highest measured speed was 3160rpm, 
constrained by mechanical limitations in the prototype motor. 
This corresponds to a 7.5:1 constant power speed range, and at 
the highest speed the output power was still over 2.8kW. Thus 
the actual constant power speed range is probably greater than 
10:1 and may even reach 15:1.

The calculated characteristics were based on the measured 
inductance and magnet flux-linkage and did not take into ac­
count iron losses and friction and windage. This causes the 
discrepancy between the measured and calculated power out­
put curves. Note that the interior permanent magnet motor 
appears to have lower iron losses than the synchronous reluc­
tance motor.

The required control characteristics are predicted accu­
rately as shown by the current angle versus speed graph in 
Fig. 16. The synchronous reluctance motor enters the purely 
voltage-limited or inverse power region (Mode III) [1] at about 
1500rpm. The interior permanent magnet motor remains in 
the voltage-and-current-limited region (Mode II) throughout 
the measured speed range.

A comparison of the measured torque ripple performance 
of the 7.5kW axially-laminated synchronous reluctance motor 
against that of a 7.5kW single-barrier synchronous reluctance 
design [16] is given in Fig. 17. Note the axially-laminated de­
sign has approximately half the torque ripple of the single­
barrier design. The torque ripple at full load is approximately
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Figure 17: Measured torque ripple for 7.5kW axially-laminated (solid line) and single-barrier (dotted line) synchronous reluc­tance motor at three levels of current (-f =  45°/.

20%. The large torque ripple even with the axially-laminated 
rotor construction is due to the simple single-layer stator wind­
ing.

A comparison of the measured performance of the motors 
at rated speed is shown in Table 3. Note the axially-laminated 
interior permanent magnet motor shows an improved efficiency 
and inverter utilisation compared to the induction motor.

V. C o n c l u s io n s

This paper described the design of an axially-laminated in­
terior permanent magnet motor drive optimised for its field- 
weakening performance. A 7.5kW motor was built based 
on low-cost, flexible rubber-bonded ferrite magnet sheet. It 
achieved an extremely wide constant power speed range of 
greater than 7.5:1, in contrast to the 2.5:1 obtained both with 
an axially-laminated synchronous reluctance motor and a stan­
dard induction motor. The excellent field-weakening perfor­
mance makes this type of motor a serious contender for appli­
cations such as machine tool main spindle drives and traction.
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A ppendix  C 

G eneral-Purpose FE Script File

This is a listing of the script file written by myself and Dr. Dave Staton for Vector 
Field’s 2D finite-element analysis program “Opera” . It creates a finite-element mesh 
for axially-laminated motors from the standard stator geometry parameters (number 
of slots, tooth angle, slot depth etc.) and the rotor parameters (number of layers, 
thickness of layers etc.).

301



302 APPENDIX C. GENERAL-PURPOSE FE SCRIPT FILE

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ 0P7_C_D3.C0MI /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ Brook Crompton : D132HKE from* size, 8 inch stack longth, 4 polo 
/ axially laminated rotor

Scomi modeBcont 
unit mm densBamm2

/♦♦** IIPUT BH DATA 
bhdata 4

load ../../I800
q
bhdata 5

load ../../M750
q
bhdata 7

load ../../H750 
Sdo ti 1 24 
r fi b*0.7 h*0.4*2/3 

land do
q
bhdata 6

load . ./../RUBH
q
/**•** SET ELEMEVT TYPE 
/sot elemBquad

/****• SET UP USEFUL COIVERSIOI FACTORS
Scons trad pi/180
Scons tdog 180/pi
Scons txmin 0 
Scons ixmax 200 
Scons tymin 0
Scons tymax 100

/***** SET UP SCALIIQ FOR OUTLIIE PLOT *****
roco xminBtxmin yminBfymin xmaxBtxmax ymaxB*ymax labolBno

/s s sssssss ssssss ssssss sssssssssssss ssssss sssssss ssssss ssssss sssssss ssssss ssss  
/SSSSSSSSSSSSSSSSSSSSSSSSSSS IMPORTAIT SETTIIQS sssssssssssssssssssssssssssss  
/s s s s sssss ssssss ssssss sssssss ssssssssssss sssssss ssssss ssssss sssssss ssssss ssss

/ caso B d-axis
/ non-lamination layors B insulation 
/ polopioco B non-magnotic 
/ shaft B magnotic

/***** Rotp Minimum Anglo By Which Rotor can bo Rotated 
/ io. Airgap Element Spacing in dogroos
/ needs to be comparable to lamination angular span at airgap 
/***** Rang ■ angle by which rotor is rotated in mechanical degrees
/***** Cang ■ angle by which current phasor leads rotor q-axis in
/***** electrical degrees
/***** curr B rms phase current in amperes
/***** turn ■ number of conductors per coil

/************ material types are : 0Bair, 5Brotor steel, Samagnet, 7»diluted 
/***** Fmat - material type number for first layer (closest to shaft)
/***** Smat - material type number for second layer
/****• Sma2 - material type number for steel near bolt hole
/***** Mpp - material type number for polepiece
/*«*** flgh - material type number for shaft



/***•* Hden measure of the density of nodes in rotor lamination 
/ in nodes per mm, adjust to give just under maximum number of
/ elements
/**•** AGap - radial airgap in mm
/**♦** muS - linear permeability of stator steel
/****♦ mul - linear permeability of first rotor material
/*•*** mu2 - linear permeability of second rotor material
/**•** muP - linear permeability of polepieces
/*♦*** muH - linear permeability of shaft

/*•*****•*♦•* set •qxsal if q-axis or 0 if d-axis case, do not change fRang 
/Icons iqxs 0
/******************** value of insulation to lamination ratio 
Icons taaaa 0.5

Icons tkotp 1/5 
Icons ICang 0 
Icons IRang 0 
Icons tcurr 1.0 
Icons tTurn 19 
Icons IFmat 0 
Icons tSmat 5 
Icons fSma2 7 
Icons *Mpp 0 
Icons Msh 5 
Icons fHden 1.5 
Icons tAQap 0.517 
Icons tmuS 1000000
Icons imul 1
Icons tmu2 1000000
Icons fmuP 1
Icons ImuH 1000000

/l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l  
/IIIIIIIIIIIIHIIIIIIIIIIIIIIII CREATE STATOR ||||||||||||||||||||||||||||||| 
/l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

/****♦ STATOR COISTAITS ***** from Brook Crompton DRW 8050Y36/23, 6/1/81 
/***** Vslt - lumber of slots in full motor
/***** Imod - lumber of HALF slots modelled
/***** Radi - Stator Inner Radius
/***** Rad2 - Stator Outer Radius, Diameter of Outer Frame/2 
/***** Thl - Half slot pitch (Radians)
/•**** Thld - Half slot pitch (Degrees)
/***** T« - Tooth Thickness, Assumes parallel sided teeth 
/***** Fill - Slot Bottom curve section radius, (fillet)
/***** Sd - Slot depth, top of tooth to bottom of slot
/♦**** So - Slot Opening 
/***** Sod - Slot Opening Depth
/***** Tang - angle of backside of tooth, 0 M hammerhead shape 
/***** Std - Slot Tang Depth (Fslot+Eslot)
/****• Sreg - lumber of regions in half a slot (10)
/***** ISrg - total number of stator regions including stator airgap layer

Icons tlslt 36
Icons flmod 9
Icons fRadl 127.0/2
Icons 8Rad2 203.9/2
Icons 8Thl pi/ilslt
Icons fThld pi/flslt*#deg
Icons 8Tv 6.35
Icons 8F111 7.30/2
Icons ISd 17.78+0.762
Icons fSo 2.92
Icons 8Sod 0.762
/***• APPROXIMATELY CALCULATE STD see Finite-Element I, pg 29 from Tang 
Icons tTang 20*8Rad
Icons fStd ( (tRadl+tSod) *tan(tThl) -#Ts/2-#So/2) *tan (tTang) +#Sod
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$cons tSrcg 10

Icons fSrl •Radi
Icons •Sr2 •Radi
Icons •Sr3 •Radi
Icons •Sr4 •Radl+*Std
Icons #Sr5 •Radl+(*Std+*Sd)/2
Icons tSrfl •Radl+*Sd
Icons #Sr7 •Rad2
Icons •Sr8 •Rad2
Icons *3x9 •Sr6-*Fill-*Fill*sin(«Thl)
Icons •SxlO *Sr5
Icons •Sxll •Radl+*Sod
Icons •Sxl2 •Sr4
Icons •3x13 •Sr5
Icons •3x14 •3x9
Icons •3x15 •Sr6

Icons •Stl •Thld
Icons •St2 asin(*So/(2**Radl))**dog
Icons •St3 0
Icons •St4 0
Icons •St 5 0
Icons *St6 0
Icons •St7 0
Icons •St8 •Thld
Icons •Sy9 •Sx9*tan(*Thl)
Icons •SylO •SxlO*tan(*Thl)
Icons •Syll •So/2
Icons •Syl2 •Sxl2*tan(*Thl)-(*Tw/2)/cos(*Thl)
Icons •Syl3 *Sxl3*tan(*Thl)-(*T«/2)/cos(«Thl)
Icons •Syl4 •Sxl4*tan(«Thl)-(«T«/2)/cos(iThl)
Icons •Syl5 *Syl4-*Fill/cos(iThl)

Icons •Snl l/SRotp
Icons •Sn2 2/3/«Rotp
Icons •Sn3 2
Icons •Sn4 2
Icons •Sn5 2
Icons *Sn8 4
Icons •8n7 1
Icons •Sn8 4
Icons •Sn9 1
Icons •SnlO 3
Icons •Snll 3
Icons •Snl2 3
Icons •Snl3 3
Icons •Snl4 3
Icons •SnlB 3
Icons •Snl8 3
Icons •Snl 7 1
Icons *Snl8 1
Icons •Snl9 2
Icons •Sn20 4
Icons *Sn21 1
Icons •Sn22 4
Icons •Sn23 3
Icons •Sn24 1

Icons •Bspl 0.3
Icons •Bsnl 0.7
Icons •Bsp2 0.3
Icons •Bsn2 0.7
Icons •Bsp3 0.15
Icons •Bsn3 0.85

/*** CREATE REQIOIS
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/region • 1
draw poly aate-4 pera-8auS 

pola 88r6 tSt6 
/**** This converts tho flat bottoa to round bottoa 
/ cart *8x15 8Syl5 n-8Sn21 . c-0.0 b-0.5 f-IO

pola «Sr8 fSt8 n»8Sn22 c-0.0 b-8Bsp3 f»I0
pola «Sr7 #St7 n»8Sn7 c»l/8Rad2 b-0.5 f-V
fini n-8Sn6 c-0.0 b-*Bsn3 f-IO

/rogion • 2
draw poly Bata-4 pera-8auS 

pola 88r8 *St8 
/ flat bottoa to round bottoa
/ cart 88x15 fSylB n-#Sn22 c-0.0 b-0.5

pola 8Sr8 88t8 n-8Sn22 c-0.0 b-8Bsn3
cart 88x14 8Syl4 n-8Sn20 c— 1/8F111 b-0.5
cart 88x9 8Sy9 n-8Sn23 c-0.0 b-0.5
fini n-88n8 c-0.0 b-8Bsp3

f-IO
f-IO

f-IO

/region 8 3
draw poly aata-4 para-8auS

cart 88x9 8Sy9 
cart 88x14 8Syl4 n-8Sn23 
cart 88x13 8Syl3 n-8Snl8 
cart 88x10 8SylO n-8Sn24 
fini n-8Sn9

q
/region 8 4
draw poly aate-4 pera-8auS

pola 8Srl 88tl 
cart 88x10 8SylO n-8SnlO 
cart 88x13 8Syl3 n-8Sn24 
cart 88x12 8Syl2 n-88nl8 
fini n-88nll

q
/region 8 5
draw poly aate-4 pera-8auS

pola 8Srl 
cart 88x12 
cart 88x11 
pola 8Sr2 
fini

8Stl
8Syl2
8Syll
8St2

n-fSnll
n-8Snl2
n-8Snl3
n-fSnl

c-0.0
c-0.0
c-0.0
c-0.0

c-0.0
c-0.0
c-0.0
c-0.0

c-0.0
c-0.0
c-0.0

b-0.5
b-0.5
b-0.5
b-0.5

f-IO

b-8Bspl
b-0.5
b-8Bsnl
b-8Bsp2

f-IO

b-8Bsnl
b-0.5
b-0.5

f-IO

c— l/8Radl b-0.5

/region 8 6
draw poly aate-0 pera-1 

pola 8Sr2 8St2
cart 88x11 8Syll
pola 8Sr4 8St4
pola 8Sr3 8St3
fini

q

n-8Snl3
n-88nl4
n-8Sn3
n-8Sn2

c-0.0
c-0.0
c-0.0

b-0.5
b-0.5
b-0.7

c— 1/iRadl b-0.7

f-IO

f-IO

/region 8 7
draw poly aate-0 pera-1

pola 8Sr4 8St4
cart 8Sxll 8Syll n-8Snl4 c-0.0 b-0.5
cart 8Sxl2 8Syl2 n-8Snl2 c-0.0 b-0.5
fini n-8Snl5 c-0.0 b-0.5

q
/region 8 8
draw poly aate-1 pera-1

pola 8Sr4 8St4
cart 88x12 8Syl2 n-8Snl5 c-0.0 b-0.5 f-IO
cart 88x13 8Syl3 n-8Snl6 c-0.0 b-8Bspl
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pola #Sr5 •St 5 n-«nl7 ca0.0 b-0.5
fini

q
n-tSn4 ca0.0 ba»Bsnl

/region • 9
draw poly mate-1 perm-1

pola *Sr5 •St5
cart *Sxl3 •Syl3 n-tSnl7 c-0.0 b-0.5
cart 83x14 •Syl4 n-tSnl8 ca0.0 b-0.5
fini

q
n-fSnl9 c-0.0 b-0.5

/region • 10
draw poly mate-1 perm-1

pola 8Sr5 »St5
cart •Sxl4 •Syl4 natSnl9 ca0.0 b-0.5

/ cart #3x15 iSylS natSn20 c-l/#Fill b-0.5
/ pola •Sr6 •St6 n-#Sn21 c-0.0 b-0.5

pola *Sr6 #St6 natSn20 c-l/#Fill b-0.5
fini n-*Sn5 c-0.0 b-0.5

q

/***«* COIVERT SOKE FOURSIDED POLYQOIS TO QUADRILATERALS TO REDUCE 
/«**** risk OF ERRORS II MESH OEVERATIOI
/eeeee if slot shape is changed fro* square to round, this noods to
/*•*** bo changed
conv regl-2 reg2-5 shap-q

/****• REFLECT HALF SLOT BY (SLOT PITCH / 4)
/****• tThl - Half slot pitch (Radians)
/ * * * * *  fThld - Half slot pitch (Degrees)
/ * * * * *  reg2 ■ tSreg
copy regl-1 reg2-10 t-tThld/2
eras regl-1 reg2-10
reco

/ * * * * *  HIRROR HALF SLOT TO CREATE FULL SLOT PITCH 
copy 1 10 t-*Thld

/****• CREATE EIGHTH HOTOR BY MULTIPLE ROTATIOIS 
/*•••• rog2 - 2*iSreg 
Ido li 1 3  1
copy 1 20 t-fi*«Thld*2 HIRR-no 
lend do

/above line creates regions 1 to 60, need to create last 
copy regl-71 reg2-80 t-40 nlrr-yes

/****e SET UP THE RELEV AIT CURREIT DEISITY LEVELS II THE SLOTS

/**♦** Rang - angle by which rotor is rotated in Mechanical degrees
/***** Cang - angle by which current phasor leads rotor q-axis in
/ * * * * *  electrical degrees
/* * * * +  Aoff - angle by which rotor d-axis is offset from stator +vo 
/****• x-axis in electrical degrees
/***** curr - nis phase current in aMperes
/****• turn - number of conductors per coil

Icons tAoff 0
Icons tAapA sqrt(2)*tcurr*cos(2*#Rang*#Rad+tCang*#Rad+tAoff*#Rad+0*tRad) 
Icons fAnpB sqrt(2)*fcurr*cos(2*#Rang*#Rad+#Cang*#Rad+tAoff*#Rad-240*#Rad) 
Icons tAmpC sqrt (2)*#curr*co«(2*#Rang*tRad+fCang*tRad+fAoff*fRad-120*#Rad)

/*•*•• SIIGLE LAYER HIIDIIO, EQUAL COICEITRIC 
/•**** regl ■ 8 + Count*iSreg (Count ■ 0 to tlslt-l)



/calculate total araa of half slot, not* that Must use son* operation 
/ using "area" in order to set its value 
modi regl*8 reg2B8 densBarea 
Icons ia8 area
■odi regl"9 reg2B9 dens-area 
Icons 8a9 area
■odi reglB10 reg2B10 densBarea 
Icons SalO area
Icons 8atot ta8+ta9+tal0

■odi regl«8 reg2B10 
■odi regl>18 reg2"20 
■odi regl»28 reg2»30 
■odi regl*38 reg2B40 
■odi reglB48 reg2B50 
■odi reglB58 reg2B60

■odi regl*68 reg2B70 
■odi regl>78 reg2»80 
■odi reglB88 reg2B90

densB-tTurn/2*tAapB/tatot 
densa-tTurn/2*#JUipB/fatot 
densB-tTurn/2*tAapB/tatot 
densB-tTurn/2 *tAapB/tat ot 
densB-tTurn/2*tAapB/tatot 
donsB-tTurn/2 *fAapB/tatot

densBtTurn/2*tABpA/tatot
dens»tTurn/2*tAapA/tatot
densBtTurn/2*tAapA/tatot

/**•** SET VP THE BOUIDAEY COEDITIOIS 01 THE STATOR

/***** On the x>0 axis Modify regions 2,3,4
/ • * * * *  On the x<0 axis Modify regions 2 + (I«od-l)*Sreg
/***♦* 3 + (iMod-l)eSreg
/eeeee 4 + (I»od-l)*Sreg

■odi reglB2 reg2B3 f4-V
■odi reglB4 reg2B4 flBV

■odi regl-81 reg2B81 f3BDV
■odi reglB88 reg2B86 f3-D?
■odi reglB88 reg2B86 f4BDV
■odi reglB90 reg2B90 f3BDV

/ l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l  
/IIIIIIIIIIIIIIIIIIIIIIIH CREATE STATOR AIRQAP lllllllllllllllllllllllllllll 
/ l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

/eeeee There are 4 layers in the gap.
/eeeee Sgr and Sgt define the polar coordinates of the 3 nodes on the 
/eeeee stator surface over the 1st half slot slot pitch 
/eeeee AQap airgap (radial) : set upstairs 
/eeeee Radi Stator Inner Radius (defined above)
/eeeee Rad3 Rotor Outer Radius 
/eeeee Rga Centre of Airgap Radius 
/eeeee Rgs Airgap Layer Closer to Stator 
/eeeee Rgr Airgap Layer Closer to Rotor

Icons 8Rad3 tRadl-fAQap 
Icons ILg *Radl-fRad3 
Icons SRgM tRad3+0.30etLg 
Icons IRgs iRad3+0.60*tLg 
Icons fRgr SRad3+0.15e#Lg

Icons tSgrl tRadl 
Icons 8Sgr2 tRadl 
Icons *Sgr3 tRadl 
Icons tSgr4 tRgs 
Icons tSgr6 tRgs

Icons tSgtl 0 
Icons tSgt2 tThld-tSt2 
Icons tSgt3 tThld 
Icons tSgt4 tThld
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Icon* tSgt6 0

Icons tSgnl fThld/tRotp/2-aoddThld/fRotp/2;l)

/a**** Dofins Stator Airgap Ragion (ragion nuabar is •■aodafSreg+1 ) 
draw poly aateaO pera-1 

pola ISgrl tSgtl
pola ISgr2 #Sgt2 na#Snl ca-l/fSgrl b-0.5 f-IO
pola ISgr3 SSgt3 na#Sn2 c— l/#Sgr2 b-0.3
pola tSgrd *Sgt4 n-l c-0.0 b-0.5
pola ISgrS tSgtS n-tSgnl c-l/tSgr5 b-0.5 
fini n-l c-0.0 b-0.5

/*•*** HIRROR HALF SLOT STATOR AIRQAP TO CREATE FULL SLOT PITCH
copy regl-Xint(fSregatIaod+1) reg2-%intdSrege#laod+l) t-tThld HIRR-yes

/aaaa* CREATE EIGHTH HOTOR STATOR AIRGAP BY HULTIPLE ROTATI01S 
/aaae* rag2 - 2*tSrag
Ido * 1 1 3  1
copy Xint(tIaodetSreg+l) Xint(tlaodatSreg+2) t"ti*tThld*2 MIRR-no 
land do

copy regl-Xint(tIaoda(tSreg+l)-l) reg2-Xint(tIaoda(tSreg+l)-l) t-40 airr-yes

/a**** sat up boundary conditions on stator airgap 
/ regl- tIaoda(tSreg+l) : no naad as this is tha dafault condition 
/ regl- tlaodetSreg+l
/ arasa regl-Xint(tIaoda(tSreg+l)) reg2-Xint(tIaoda(tSreg+l)) 
arasa regl-Xint(tlaodatSreg+l) reg2-Xint(tlaodatSreg+l)

draw poly aate-0 para*!
pola iSgrl tSgtl
pola tSgr2 #Sgt2 n-tSnl ca-l/iSgrl ba0.5 f-IO
pola *Sgr3 tSgt3 n-tSn2 c— !/#Sgr2 b-0.3
pola #Sgr4 #Sgt4 nal c-0.0 ba0.5
pola tSgrB tSgtS na#Sgnl cal/#Sgr5 b-0.6
fini nal ca0.0 b-0.5 f-Y

/ I l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l ll l l l l l l l l ll l l l l l l l l ll l l l l l l l l ll l l l l l l l l ll l l l  
/ I I I I I I I I I I I I I I I I I I I I I I I I I I I I H  CREATE ROTOR |||||||||||||||||||||||||||||||| 
/ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I H I I I I I I

/a**** Lshf - adga langth of square shaft 
/***** Tlaa - thickness of laaination 
/aaaaa Tins - thickness of insulation aatarial 
/a**** Hlay - nuabar of layers of aatarial
/aaaaa Icur - variable for currant rotor layer being calculated

/aaaaa Faat - aatarial type nuabar for first layer (defined in header)
/aaaaa Saat - aatarial type nuabar for second layer (defined in header)
/a**** Mpp - aatarial type nuabar for polepiece (defined in header)

Icons tLshf 40 
Icons fTlaa taaaa 
Icons tTins 1-taaaa 
Icons tllay 62 
Icons tlcur 1

/a**** DEFIIE ROTOR POIHTS



Ipara tRrl tLshf/2+((tIcur-l)/2)*(tTlan+tTins)
Ipara *Rr2 iRrl+tTlan 
Icons til tLshf/sqrt(2)
Icons tK2 tan(22.5*trad)
Ipara «Rx3 tIl+tI2*((tIcur-i)/2*(tTlaM+tTins)+tTlaM)
Ipara IRx4 tRx3-tK2*tTlan
Ipara tRr5 thad3
Ipara tRrt tRad3
Ipara tRr7 #Rad3
Ipara tRx8 tKl+tI2*(tIcur+l)/2*(tTlaM+tTins)
Ipara fRr9 tLshf/2+(tIcur+l)/2*(tTlan+fTins)
Ipara tRrlO tRgr 
Ipara tRrll tRgr 
Ipara 9Rrl2 tRgr

Ipara tRtl 45 
Ipara tRt2 45
Ipara tRy3 ((tIcur-l)/2)*(tTlan+tTins)+tTlaM 
Ipara tRy4 ((fIcur-l)/2)*(tTlan+#Tins)
Ipara tRt5 asin(tRy4/tRr5)*tdag 
Ipara tRtfl asin(tRy3/tRr6)*tdag 
Ipara #Ry8 (tIcur+l)/2*(tTlan+tTins)
Ipara tRt7 asin(tRy8/tRr7)*tdog 
Ipara *Rt9 45
Ipara tRtlO tRt5-tRotp/2+#Rotp-«od(tRt5+#Rotp/2 ;#Rotp) 
Ipara IRtll #Rt6-#Rotp/2+tRotp-«od(tRt6+tRotp/2;#Rotp) 
Ipara #Rtl2 fRt7-tRotp/2+fRotp-«od(tRt7+iRotp/2 ;tRotp)

/****« SET IUNBER OF I0DES
/*♦*** Hdsn nsasurs of ths donsity of nodss in rotor lanination 
/ in nodss par am (sot at hsad of fils)
/*•*** Rdsn dsnsity of nodss at outsids of rotor in nodss psr dsgrss
Icons IRdsn 1/tRotp

Ipara #Rxl 
Ipara tRyl

#Rrl*cos(tRtl*trad) 
tRr1*sin(tRt1strad)

Ipara tRx2 
Ipara tRy2

iRr2*cos(«Rt2*«rad)
«Rr2*sin(tRt2*trad)

Ipara tRx5 
Ipara tRyS

tRr5*cos(tRt5*trad) 
•Rr5*s in(tRt 5*9rad)

Ipara tRx6 
Ipara tRyfi

#Rr6*cos(tRtdsfrad) 
IRr6*sin(tRt6*frad)

Ipara tRx7 
Ipara 8Ry7

8Rr7*cos(tRt7*trad)
•Rr7*sin(#Rt7*trad)

Ipara *Rx9 
Ipara 9Ry9

«Rr9*cos(tRt9strad) 
tRr9*s in(tRt9*trad)

Ipara tRnl 
Ipara 8Rn2 
Ipara SRn3 
Ipara tRn4

1
sqrt ( (#Rx2-tRx3)**2+(tRy2-tRy3) **2) stHdon 
1
sqrt((tRxl-tRx4)**2+(tRyl-tRy4)**2)*tMd#n

/**• Fix Rn5 to alio* aors nodss on airgap 
/ para SRn5 sqrt((tRx4-iRxB)**2+(tRy4-tRy5)**2)*tHd#n 
Ipara tRn5 14
/ changs to 1 as rotor has 62 laysrs so no nssd to uss finsr subdivision 
/ for Motors with favor laysrs ths original function nay nssd to bs ussd 
/para «Rn6 <fRt6-«Rt5)*tRdan 
Ipara 8Rn6 taaaa*10
/•*• Fix Rn7 to alio* nor* nodss on airgap 
/ para tRn7 sqrt((tRx3-fRx6)**2+(tRy3-tRy6)**2)*»Mdan 
Ipara SRn7 14 
Ipara iRn8 1
Ipara #Rn9 sqrt ((tRx9-#Rx8)**2+ (tRy9-#Ry8)**2)*tNdsn
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/ *** Fix RnlO to alio* nor* nod** on airgap
/para «RnlO sqrt((tRx7-tRx8)**2+(tRy7-tRy8)**2)*tMd*n
Ipara fRnlO 14
/ not* for tRn6
/para tRnll (fRt7-iRt6)*#Rd*n
Ipara tRnll (l-taaaa)*10
Ipara tRnl2 i
Ipara 8Rnl3 #Rn4/2
Ipara »Rnl4 8Rn4/2
Ipara tRnl6 (tRad3-tRr2)*tMd*n/2
Ipara 8Rnl6 (45-tRt6)*tRd*n*2
Ipara 8Rnl7 1
Ipara 8Rnl8 2*(tRtll-tRtlO)/tRotp 
Ipara 8Rnl9 1
Ipara «Rn20 2*(8Rtl2-«Rtll)/*Rotp 
Ipara 8Rn21 1

/**•* »*t bias towards airgap 
Icon* tRbp O.OOOOOOl 
Icons iRbn 1-iRbp

/*** **t bias towards outsid*
Icons tRbpl 0.3 
Icons 8Rbnl 0.7

/.........n.n„.n.n.n.nn.n.n.n.nn
/ ***** DRAW rotor layers
/- - - - - - - - - - - - - -- --- --- -- q-Aiis
IIP iqxs IE 0

/ * ( 1>*
Ido tlcur 1 fllay 2
draw poly Mat*-tFaat phas-45-tRang p*ra-tnul

pola tRrl tRtl
pola tRr2 tRt 2 n-tRnl c-0 . 0 b-0.5 f-IO
cart tRx3 tRy3 n-tRn2 c-0 . 0 b-tRbnl
cart tRx4 tRy4 n-tRn3 c-0 . 0 b-0.5
fini n-tRn4 c-0 . 0 b-tRbpl

q
|*nd do

/*(2)* to s*t boundary conditions on first *l*n*nt 
Ido tlcur 1 1

poly ■at*-tFaat phas-90-tRang p*rw-taiul
cart tRx3 tRy3
pola #Rr6 tite n-tRn7 c-0 . 0 b-tRbn f-IO
pola tRrE tRt 5 n-tRn6 c-l/tRr5 b-0.5
cart tRx4 tRy4 n-tRn5 c-0 . 0 b-tRbp f-V
fini n-tRn3 c-0 . 0 b-0 . 6 f-IO

q
|*nd do

Ido tlcur 3 tilay 2
draw poly aato-tFaat phas-90-tRang p*ra-tnul

cart tRx3 tRy3
pola tRr6 •Rt6 n-tRn7 c-0 . 0 b-tRbn
pola tRrE tRt 5 n«tRn6 c-l/tRr5 b-0.5
cart tRx4 tRy4 n-tRn5 c-0 . 0 b-tRbp
fini n-tRn3 c-0 . 0 b-0 . 6

q
|*nd do

/*(3)*
Ido tlcur 1 1 
draw poly aat* - 0 p*ra-l 

pola tRrE tRt5
pola tRr6 tRt6 n»tRn6 c— l/tRr6 b-0.5 f-IO



pola tRrll tRt11 n-tRnl9 c-0 b-0.5
pola tRrlO tRt10 n-tRnl8 c-l/tRrlO b-0.5
fini n-tRnir c-0.0 b-0.5 F-V

q
land do

Ido tlcur 3 tilay 2 
draw poly aata- 0 p o m - 1

pola tRr6 
pola tRrl 
pola tRrll 
pola tRrlO 
fini

q
land do

tRt 5
tRtO n-tRn6 
tRt 11 n-tRnl9 
tRt10 n-tRnl8 

n-tRn!7

c— l/tRr6 
c«0
c-l/tRrlO
c-0 . 0

b-0 . 6
b-0.5
b-0 . 6
b-0.5

f-IO

/*(4)a
Ido tlcur 1 tllay-l 2
draw poly ■ata-tSaa2 phas-45-tRang pam-tau2

pola tRr2 tRt 2
pola tRr9 tRt 9 n-tRn8 c-0 . 0 b-0.5
cart tRx8 tRy8 n-tRn9 c-0 . 0 b-tRbnl
cart tRx3 tRy3 n-tRnl2 c-0 . 0 b-0.5
fini n-tRn2 c-0 . 0 b-tRbpl

q
land do

/*<5)a
Ido tlcur 1 tilay- 1 2
draw poly aata-tSaat phas-90-tRang pam-tau2

cart tRx8 tRy8
pola tRr7 •Rt7 n-tRnlO c-0 . 0 b-tRbn
pola tRr6 tRt6 n-tRnll c>l/tRr5 b-0.5
cart tRx3 tRy3 n-tRn7 c-0 . 0 b-tRbp
fini n-tRn!2 c-0 . 0 b-0.5

q
land do

/*(8)a
Ido tlcur 1 tllay-l 2
draw poly aata- 0 p a m -1  

pola tRr8 tRt6 
pola tRr7 tRt7 n-tRnll 
pola tRrl2 tRt12 n-tRn21 
pola tRrll tRt11 n-tRn20 
fini n-tRnl9

q
land do

c— l/tRr7 
c- 0
c-1/tRrll 
c-0 . 0

b-0 . 6
b-0.5
b-0.5
b-0 . 6

f-IO

/ -------
I also

D-AXIS

/ * ( 1)*
Ido tlcur 1 tllay 2 
draw poly aata-tFaat phaa-45-tRang pam-tnul

pola tRrl tRtl
pola tRr2 tRt 2 n-tRnl c-0 . 0
cart tRx3 tRy3 n-tRn2 c-0 . 0
cart tRx4 tRy4 n-tRn3 c-0 . 0
fini n-tRn4 c-0 . 0

q
land do

b-0.5 f> 
b-tRbnl f> 
b-0.5 
b-tRbp1

/ * ( 2 )*
Ido tlcur 1 tllay 2
draw poly aata-tFaat phas-90-tRang pam-tnul 

cart tRx3 tRy3
pola tRr6 #Rt6 n-tRn7 c-0.0 b-tRbn f-IO
pola tRrS tRt5 n-tRn6 c-l/tRr5 b-0.5
cart tRx4 tRy4 n-tRn5 c-0.0 b-tRbp
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fini n-tRn3 c-0 . 0
q
land do

/*(3)*
Ido tlcur 1 tllay 2 
draw poly aata- 0 para- 1

pola tRr5 
pola IEr6 
pola fErll 
pola tRrlO 
fini

tRt 5
•Rt6 n-tRn6 
tRt11 n-tRnl9 
tRt10 n-tAnl8 

n-tRnl7
q
land do

b-0.5

c— 1/tRrfi 
c- 0
c-l/tRrlO
c-0 . 0

b-0.5
b-0.5
b-0 . 6
b-0.5

f-IO

/* (4)*
Ido tlcur 1 tllay-l 2 
draw poly aata-tSaa2

pola tRr2 tRt2
pola tRr9 tRt9
cart tRxt tRy8
cart tRz3 tRy3
fini

q
land do 

/*<5)*
Ido tlcur 1 tllay-l 2 
draw poly aata-tSaat

cart tRx8 
pola tRr7 
pola tRr6 
cart tRx3 
fini

phaa-45-tRang para-tau2

n-tRn8
n-tRn9
n-tRnl2
n-tRn2

c-0 . 0
c-0 . 0
c-0 . 0
c-0 . 0

b-0 . 6 f-V 
b-tRbnl f-no 
b-0.5 
b-tRbpl

phaa-90-tRang para-tau2
tRy8
tRt7
tRtO
tRy3

n-tRnlO 
n-tRnll 
n-tRn7 
n-tRn!2

c-0 . 0
c*l/tRr5
c-0 . 0
c-0 . 0

b-tRbn
b-0.5
b-tRbp
b-0 . 6

f-IO

q
land do 

/*<8>*
Ido tlcur 1 tilay- 1 2 
draw poly aata- 0 para-: 

pola tRrO tRt6 
pola tRr7 tRt7 
pola tRrl2 tRt12 
pola tRrll tRtll 
fini

q
land do

n-tRnll
n-tRn21
n-tRn20
n-tRnl9

c— l/tRr7 
c- 0
c-l/tRrll
c-0 . 0

b-0.5
b-0.5
b-0 . 6
b-0.5

f-IO

I and if

/*•*«** COIVBRT FOUR SIDED POLTOOIS TO QUADRILATERALS 
/***• ragl- t!aod*(tSrag+l)+l ■ 199 
/♦*** rag2- tlaod*(tSrag+1)+(tllay*3)-384 
conv ragl-199 rag2-384 ahap-q

 -
/***♦* CREATE ROTOR SHAFT AID POLE PIECE

Ilf tqxa IE 0

/craata ahaft 
Ipara tlcur 1
draw poly aata-tHah para-tauH 

pola tRrl tRtl
cart tRx4 tRy4 n-tRn4 c-0.0 b-tRbnl f-no
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cart 0 
fini

n-tRnl3 c-0.0 
n-fRnl4 c-0.0

b-0.5
b-0.5

f-V
f-no

/craata polapiaca 
Ipara IIcur fllay+1 
draw poly aato-tNpp para-tauP 

pola «Rr6 tRt 5
cart IRx4 tRy4 n-tRn5
pola tRrl tRtl n-tRn4
pola tRad3 45 n-fRnl5
fini n-tRnl6

q

/croata polapiaco airgap 
draw poly aata- 0  para-1  

pola tRr6 IRtS
pola tRad3 45 n-tRnl6
pola tRgr 45 n-l
pola tRgr 
fini n-l

q

/---  d-axis
I alsa

/craata shaft 
Ipara tlcur 1
draw poly aata-tMsh para-fauH

pola tRrl tRtl
cart tRx4 #Ry4 n-#Rn4
cart 0 0 n-#Rnl3
fini n-«Rnl4

q

/craata polapiaca
Ipara tlcur tVlay+1
draw poly aata-tHpp para-tauP

c-0 . 0
c-0 . 0
c-0 . 0
c-l/tRad3

b-tRbp 
b-tRbp1 
b-0.5 
b-0.5

f-IO

c— l/tRad3 b-0.5 
c-0.0 b-0.5

f-IO

tRt10 n-2a(46-tRtlO)/tRotp c-l/tRgr b-0.6

pola tRr5 
cart tRx4 
pola tRrl 
pola tRadS 
fini

tRt 5 
tRy4 
tRtl 
45

c-0 . 0

c-0 . 0
c-0 . 0
c-0 . 0

n-tRn5
n-tRn4
n*tRnl6
n-tRn!6

b-0.5

b-tRbnl f-no 
b-0 .5 f-no 
b-0.5 f-V

c-0 . 0
c-0 . 0
c-0 . 0
c-l/tRad3

b-tRbp f-IO 
b-tRbp1 
b-0.6 f-V 
b-0 .5 f-no

/craata polapiaca airgap 
draw poly aata- 0 para-1  

pola tRr5 
pola tRad3 
pola tRgr 
pola tRgr 
fini

q

tRt 5
45 n-tRnl6 c— l/tRad3 b-0.6 f-IO
45 n-l c-0.0 b-0.5 f-V
tRt10 n>2s(45-tRtlO)/tRotp c-l/tRgr b-0.5 

n-l c-0.0 b-0.5
f-IO

I and if

/aaaaa COIVERT POLEPIECE AIRGAP TO QUADRILATERAL 
/aaaa ragl- tIaoda(tSrag+l)+(tIlaya3) + 3 -387

conr ragl-387 rag2-387 shap-q

/ i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i m i i i i i i i i i i i i i i i i i i i i i i  
/llllllllllllllllllllllll CREATE AIRGAP ELEHEITS llllllllllllllllllllllllllll 
/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

/'
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/ DEFIIE COORDINATES

Icons tQn3 Xint((tIaod*tThld-tRang)/(tThld/tSgnl)+0.6)
Icons IQn4 tlmod*t6gnl-t0n3

Icons tQrl tRga 
Icons *Qr2 tRgr 
Icons I0r3 IRgr 
Icons tQr4 tRga 
Icons t0r5 tRgs 
Icons tQrS tRgs 
Icons 90r7 fRga 
Icons tOrS tRgr 
Icons tflr9 fRga 
Icons tOrlO tRgs

Icons tdtl -fRang
Icons tflt 2 -tRang
Icons 9Qt3 0
Icons t0t4 0
Icons t a t 5 0
/Icons t0t6 46-tRang
Icons tQtS t0n3*tThld/#Sgnl
Icons t0t7 46-tRang
Icons t0t8 46-tRang
Icons t0t9 46
Icons tOt10 46

Icons tOnl tR&ng/tRotp 
Icons tOn2 (46-tRang)/tRotp
/ if 1/tRotp is odd, aust bo uso on intogrol nuabor of oloaonts por half slot 
/ this intogor is dsfinod in stator airgap as tSgnl

/ DRAW REQIOIS

lif tqxs IE 0

/*(6)* airgap rogion t 2 
dra* poly aato- 0 pora- 1  

pola t0r4 t0t4
pola t0r3 t0t3 n-l c-0.0 b-0.5 f-V
pola tOrS tOtt n-2*tQn2 ca-i/t0r3 b«0.5 f>10
pola t0r7 tOt7 n*l c«0 . 0 b*0 .5 f-Vo
fini n>t0n2 c-l/t0r4 b-0 . 6 f-IO

/o(6 )o airgap rogion t 3
dra® poly aato- 0 pora- 1

pola tOr6 tOt6
pola t0r4 t0t4 n-l c-0 . 0 b-0 . 6 f-V
pola t0r7 t0t7 n-t0n2 c— l/t0r7 b-0.6 f-IO
pola t0r6 t0t6 n-l c-0 . 0 b-0 . 6 f-IO
fini n-t0n3 c-l/tOrS b-0 . 6 f-IO

q

lo lso

/*(6)« airgap rogion t 2
dra* poly nato- 0 pora- 1

pola t0r4 tOt4
pola t0r3 tOt3 n-l c-0.0 b-0.6 f-IO
pola tOrS t0t8 n-2*t0n2 c— l/tOr3 b-0.6 f-IO
pola t0r7 t0t7 n-l c-0 . 0 b-0 . 6 f-V
fini n-t0n2 c-l/t0r4 b-0 . 6 f-IO

q

/*(6)o airgap rogion t 3 
dra® poly aato*0 pora*l 

pola tOr6 tOt6



pola #Qr4 
pola tQr7 
pola f0r6 
fini

q

I ond if

/***** ConTort Airgap to Quadrilateral*

/****• ragl" tlslt*(tSreg+l)+2*((fllay*3)+3) +1 
/***** rag2" regl+ nuabar of airgap regions -1  
conv regl-Xint(9Iaod*(tSreg+l)+((iIlay*3)+3)+l) I

rag2-Xint(tlaod*(tSreg+1)+((tllay*3)+3)+2) shap"q

/**•* flip rotor if d-axis 
$if fqxs EQ 0
Icons tstar Maod* (tSreg+1 )+l
Icons Ifin flaod*(tSreg+1)+(t!lay*3)+3+2
copy regl-Xiut(tstar) rag2-Xint(tfin) t"22.5 airr-yes
aras regl-Xiat(tstar) rag2"Xint(tfin)
land if

#Qt4 n"l c"0 . 0 b"0.5 f"no
i0t7 n-«Qn2 c— l/tQr7 b"0.5 f"I0
tate n-l c-0.0 b-0.5 f-V

n-t0n3 c-l/tQr6 b-0.5 f-10
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A ppendix  D  

PC -A X L  D esign Program

This is a prototype analysis program for axially-laminated motors. It is written in Mat- 
lab [37] and is based on the highly successful computer-aided-design (CAD) programs 
PC-SRD, PC-BDC and PC-DCM produced by the SPEED Laboratory [97].

It reads in a “design” file containing the dimensional information about the motor. 
An example of this is given in Sec. D.l. The design program consists of two parts. 
The program draw.m (see Sec. D.3) draws a radial and axial cross-section of the rotor. 
This is useful for sizing the relative proportions of the motor by eye. Examples of the 
graphics output are shown in Figs. 5.4 and 5.5.

The second program calc.m  (see Sec. D.4) calculates the unsaturated inductances 
and the performance of the motor. It is based on the analytical formulas given in 
Sec. 4.2. A sample output listing is given in Sec. D.2. Presently only a single-layer 
consequent pole winding is modelled, though other types could be added later. A 
glossary of the parameters used in the programs is given in Sec. D.5. This section also 
includes diagrams showing the definitions of the parameters.

A lumped-circuit solver which can interface to PC-AXL is given in App. E.

317
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D .l  E xam ple.m
clear
Title- ’llkH Axially-Laainated Synchrel’; 

inch- 25.4;

X Stator Dimensional Data : assumes round bottomed alota 
X with parallel sided teeth
■Phase- 3;
StatOD- 203.9; 
StatID- 127.0; 
■Slot- 36; 
StackL- 202.4; 
SlotOp- 2.92; 
TAng- 20; 
TangD- 0.762; 
SlotD- 18.54; 
ToothV- 6.35;

X mmber of phases 
X stator outer diaaieter [mm]
X stator inside diameter [am]
X number of stator slots 
X aotor stack length [mm]
X stator slot openings [mm]
X tang angle [deg]
X tang depth [mm]
X slot depth measured from airgap [mm] 
X width of parallel sided teeth [mm]

X Rotor Diaensional Data : axially-laminated construction
■PolePair- 2; 
Oap- 0.50; 
Shaft Sq- 40; 
■Layer- 62; 
TLaa- 0.5; 
Tins- 0.5;

MatFL- 0; 
HatPP- 0;

X number of polepairs 
X airgap in mm
X edge length of square shaft in 
X nuabar of layers 
X thickness of laaination in mm 
X thickness of insulation in mm 

X Material types 0-air 1-iron 
X first layer Material type 
X polepiece Material type

X Rotor Mechanical Data
■Bolt-6 ; X number of bolts per pole piece
BoltD- 10; X bolt diameter in am
BoltL- 53; X length of bolt in mm

BoltCl- 3; X radial clearance froa bolt head to airgap
BoltSp- 35; X spacing between bolts in mm

BoltTD- 1; X radial thread depth of bolt in aa
DLaa- 7800; X kilograms per cubic metre
BoltYS- 230; X yield stress of bolt in MPa of stainless steel
ShaftYS- 300; X yield stress of shaft in MPa of aild steel

X Winding Type : assumes simple equal turn concentric winding
WindingType- ’equal turn, concentric, single layer, integral SPP
Delta-1; X delta or star connected

X if star then delta- 1 else delta-3;
Skew- 0; X skew in slot pitches
■Coil- 18; X number of coils
TC- 19; X turns per coil
WDia- 0.850; X wire diaaeter in mm
ISH- 4; X number of strands per conductor
XLend- 0.5; X end-turn leakage adjustment factor

X Control Data
Io- 15; X rated current per phase [Anis]
IDisp- 10; X dissipation of stator [W/a2/degC]
WrpM- 1500; X rated speed [rpa]
0aaaa_deg-55; X MaxiMua-torque-per-aapere angle
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D .2 Sample O utput

PC-AXL : AXIALLY-LAHIIATED NOTOE DESIQI PEOQEAN 
31-Aug-93 : Title : llklf Axially-Laainated Synchrel

STATOE DINEISIOIS ----
luaPhasos 3
Stator ID 127.00 aa 
Slots 36
Tooth Vdth 6.35 m  

Slot Aroa 106.96 aa~2

PoloPair 2
Stator OD 203.90 M i 

Slot Opon 2.92 mi 
Tooth Anglo 20 aDeg 
Disp Aroa 0.1960 a“2

Stack Lon 202.4 m s  
Slot Dopth 18.54 s m  
Tang Dopth 0.76 m s

EOTOE DINEISIOIS ----------------------------------------------------------
Airgap 0.500 m s  1st Layor Ins Polo Pioco Ins
■Layors 62 Laa Thk 0.500 aa Ins Thk 0.500 aa
Shaft Edgo 40.00 aa Laa Aroa 1.969 ■*2 PoloArc 117.9 oDog

NECHAIICAL QUAITITIES —  
IBolts/pole 6 Bolt Dlaa. 10.0 aa Bolt Length 53.0 aa
Bolt Cloar 3.00 M i Bolt Sopn 35.00 aa Thread Dpth 1. 00 aa
Bolt Yiold 230 HPa Shaft Yiold 300 HPa Fo rho 7800 kg/i
Shft BoltL 13.00 m s ShftBltClr 2.00 aa NinBoltCl 2 .2 0 aa
F/Blt tons 11.561 kl F/Blt Bshr 18.787 kl F/Blt Sshr 30.631 kl
Fail Spood 5.93 krpa Inortia 0.039065 kga*2 Bolt Loss 0.296

WIIDIIQ IIFOENATIOI ---------------------------------------------
Winding Typo : oqual turn, concontric, singlo layor, integral SPP 
WindType star 
■ua Coils 18 
WDiaa 0.850 aa
NLT stack 404.80 aa 
Kdl : dist 0.960 
Kwl : total 0.960 
SlotAroa 106.96 aa*
XLend 0.500

Turn/Coil 19 Strd/Cond 4
Ska* 0 slots CS/Slot 1
NLT and 369.11 aa NLT total 763.91 aa
Eel : chord 1.000 Ksl : skov 1.000
■ph 114 turns Eph (20C) 0.661 oha
SlotFill 0.403

AIALYTICAL UISATUEATED IIDOCTAICES ----------------------------------
Ic stator 1.211 Ec rotor 1.083 Ec total 1.312
PsO 0.600 Psl 0.261 Ps2 0.093
Ps3 1.142 Ps total 2.096 Lslot 2.310 aH
Land 1.221 aH a 0.500 Lloak 3.531 aH
La 140.20 aH Laq 131.27 aH Lq 134.80 aH
Ldi 2.908 aH Lad 5.816 aH Ld 9.346 aH
Xi intr 63.50 Xi B a g  22.57 Xi act 14.42

COITEOL IIFOENATIOI —  
Io 15.000 Arms
Trisa 229.01 degC
Taoch 79.578 la
PF 0.770

PLoss 0.4465 kW
aaaaa 55.00 oDog
Paoch 12.5000 kW
officioncy 0.966

EDisp 10.00 W/a2/C
Vph 373.731 Vras
kVA in 16.8179 kVA
AppPF 0.743

EID OF OUTPUT
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D .3 D raw .m
X pc.axl file : draw3.a 
X last ravlsad :

if (exist (* out. M t  ’)--2)
!erase out.aet

end

X 1 : DEFIIE PARAMETERS -----------
X these must be read in before hand

X 2 : IIITIAL CALCULATIOIS ------------------------------------
PlotAspectRatlo-l.377; X aspect ratio of plots
rad" pi ./ 180; X conversion from degrees to radians
dog* 1 ./ rad; X conversion froa radians to degrees
krpa- l . / ( 2 . * p i )  .* 8 0 . /  1000; X rad/s -> krpa

Rr- StatID./2-Qap; X rotor outer radius in aa

X 3 : CALCULATE EOTOE P O U T S ------------------------------------
X this generates plotting arrays of points A, B, C and D vhich 
X define vertices of the laainations

X create an array of the indices of each laaination layers 
I- [ (2-HatFL) : 2 : ILayer ];

X calculate the nuaber of laaination and insulator layers belo* 
ILaaBelow- fix( (I+MatFL-1) ./2 ); X fix rounds to int towards zero 
■InsBelow- I - ILaaBelow -1;

X calculate bottoa left corner of laaination relative to top right 
X shaft edge
deltaY- TLaa .* ILaaBelow + Tins .* IlnsBelow;
deltaX- deltaY .* tan(22.5 .* rad); X arguaent aust be in radians

X calculate bottoa left corner in absolute coordinates 
Xa- ShaftSq./2 - deltaX;
Ya- ShaftSq./2 + deltaY;

X calculate top left corner position 
Xd- Xa - TLaa .* tan(22.5 .* rad);
Yd- Ya + TLaa;

X calculate coordinates of bottoa right corner
Xb- (1 ./ sqrt(2) ) .* ( sqrt(Er.‘2-deltaY.“2) - deltaY );
Yb- sqrt(Rr,“2-Xb.“2);

X calculate coordinates of top right corner 
deltaY- deltaY+TLaa;
Xc- (1 ./ sqrt(2) ) .* ( sqrt(Rr.*2-deltaY.“2) - deltaY );
Yc- sqrt(Er.“2-Xc.*'2);

X 4 : DEAV EOTOE ---------------------------------------------

X  generate appropriate axes
X use a square graph 
axis(’square*);
Yaax- Er .* 1.1 ; X aake it slightly bigger than rotor
Xaax- Yaax ; X the plot has an aspect ratio

axis([-Xaax Xaax -Yaax Yaax]);

X — —  draw square shaft 
sq> ShaftSq./2;
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X* [ -sq *q sq -sq -»q ];
y« [ -*q -*q sq sq -eq ];

plot(X,Y,’- ’);

X —  freeze screen
title(’Cross-Sectional View of Rotor’); 
hold on;

X  draw top quarter
Xtq- [ Xa ; Xb ; Xc ; Xd ; -Xd ; -Xc ; -Xb ; -Xa ; Xa ] ;
Ytq- [ Ya ; Yb ; Yc ; Yd ; Yd ; Yc ; Yb ; Ya ; Ya ] ;

p l o t ( X t q , Y t q , ;

X ----- draw bottoa quartar 
X- Xtq;
Y- -Ytq; X reverse Y

plot(X,Y,’- ’);

X -----  draw right quarter
X- Ytq;
Y- Xtq;

plot(X,Y,’-*);

X  draw loft quarter
X- -Ytq;
Y- Xtq; 
plot(X,Y,’- ’);

hold off;

X 6 : CALCULATE AID DRAW POLEPIECES ------------------------------------------

X calculate coordinates of pole piece 
■■ (Layer; X take topnost layor

X calculate the nunber of laaination and insulator layers 
X IICLUDIIO THIS LAYER
■LasAelow* fix( (I+MatFL)./2 ); X fix rounds to int towards zero 
IlnsBelow* I - ILaaBelow;

X calculate top left corner of layer relative to top right 
X shaft edge
deltaY" TLaa .* ILaaBelow + Tins .* IlnsBelow;
deltaX" deltaY .* tan(2 2.5 .* rad); X arguaont aust be in radians

X calculate top left corner in absolute coordinates 
Xe> ShaftSq./2 - deltaX;
Ye- ShaftSq./2 + deltaY;

X calculate coordinates of top right corner
Xf- (1 ./ sqrt(2) ) .• ( sqrt(Rr.“2-deltaY.“2) - deltaY );
Yf- sqrt(Rr.“2-Xf.*2);

X 6 : DRAW POLE-PIECES ----------------------------------

hold on;

X generate a saooth circular polepiece by interpolation 
X- linspace(Xf ,-Xf ,10); X interpolate between endpoints 
Y- sqrt(Rr."2-X.*2); X points lie on circuaference

X generate outline of top polepiece 
Xt- [ Xe X -Xe Xe];
Yt- [ Ye Y Ye Ye];
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X plot rectora 
plot(Xt,Yt,»-*);

X ----- draw bottoa quarter
X- Xt;
!■ -Yt;
plot(X,Y,’-*);

X ---- draw right quarter
X- Yt;
Y- Xt;
plot(X,Y,*-*>;

X  draw left quarter
X- -Yt;
Y- Xt;
plot(X,Y,»-»);

hold off; 
aeta out

pauae;
axia(*noraal*);

X T : DRAW LEIQTHWISE VIEW -------------------------------------

X — —  generate appropriate axea
Yaax* aax(Rr.StackL ,/2 ./PlotAapectRatio) .* 1.2; X fit into plot 
Xaax* Yaax .e PlotAapectRatio; X the plot haa an aapect ratio

axis([-Xaax Xaax -Yaax Yaax]);

X — —  draw rotor outline
x*StackL./2;
y*Rr;
X* [ -x x x -x -x ];

C -y -y y y -y 3;
plot(X,Y,»-»);

X — —  freeze acreen 
titleC’LengthWiae View of Rotor*); 
hold on;

X — —  draw ahaft outline 
x* StackL./2; 
y* ShaftSq./2;
X* [ -x x x -x -x ];

C -y -y y y -y ];
plot<X,Y,*--»>;

X ~-— ~ draw ahaft centreline 
X- [ -Xaax Xaax ];
Y- [ 0 0 ] ;
plot(X,Y,»-.»);

X — —  draw polepiece outline 
x*StackL./2;

X calculate coordinatea of pole piece 
ILaaBelow* fix( (VLayer+HatFL)./2 );
IlnaBelow* VLayor - ILaaBelow;
deltaY* TLaa .* ILaaBelow + Tina .* IlnaBelow;
y* ShaftSq./2 + deltaY;

X* [ -x x x -x -x ];
Y* [ -y -y y y -y ];
plot(X,Y ,* —  ’);

X — —  draw bolta
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X absolute position of rightmost bolt
FirstBolt* StackL./2 - (StackL-(IBolt-1).*BoltSp),/2;

X location of each bolt
Offset* linspace(-FirstBolt,FirstBolt,IBolt);

X local coordinates of one bolt
BoltMead* 2 .* BoltD; X size of head
Bolt Angle* 90 .* rad; X angle subtended by head
HeadLength* (BoltHead-BoltD)./ 2 .* tan(BoltAngle./2);
xl- BoltD./2;
x2* BoltRead ./2;
yl* Rr-BoltCl; X top of bolt
y2* Kr-BoltCl-HeadLength; X bottoa of head
y3* Rr-BoltCl-BoltL; X bottoa of bolt

X.* [ -xl xl xl x2 -x2 -xl -xl ] ;
Y_* [ y3 y3 y2 yl yl y2 y3 ];

X extend to all bolt using aatrix operations 
X* ( ones(Offset*) * X. )’;
Y* ( ones(Offset*) * Y_ )’;

Offset* ones(X_’) * Offset;

X- X+Offset;

plot(X,Y,»--»); 
plot(X,-Y,

X “— “  unfreeze screen 
hold off; 
aeta outl 
pause
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D .4 Calc.m
X pc.axl file : calcB.a 
X last revised : 7/2/93

X 1 : DEFIIE PARAMETERS ----------
X these aust be read in beforehand

X 2 : I1ITIAL CALCULATIONS -----------------------------------
rad* pi ./ 180; X conversion froa degrees to radians
deg* 1 ./ rad; X conversion froa radians to degrees
krpa* 1 ./ ( 2 .* pi ) .*60 ./ 1000; X rad/s -> krpa

Rl* StatID./2; X stator inner diaaeter in aa
Rr* Rl-Qap; X rotor outer radius in aa
aH* 1000; X conversion froa H to aH
kW* 0 .0 0 1; X conversion froa W to kW

CopperResistivity* 0.01724e-6; X ohas per aetre at 20C

X 3  : CALCULATE LAMIHATI01 AREA REQUIRED -----------------------
X calculate total surface area of laaination required

X create an array of the indices of each laaination layers 
I- [ (2-MatFL) : 2 : ILayer ];

X calculate the nuaber of laaination and insulator layers belos 
ILaaBelow* fix( (I+HatFL-1)./2 ); X fix rounds to int towards zero 
IlnsBelow* I - ILaaBelow -1;

X calculate bottoa left corner of laaination relative to top right 
X shaft edge
deltaY* TLaa .* ILaaBelow + Tins .* IlnsBelow;
deltaX* deltaY .* tan(22.5 .* rad); X argument aust be in radians

X calculate bottoa left corner in absolute coordinates 
Xa* ShaftSq./2 - deltaX;
Ya* ShaftSq./2 * deltaY;

X calculate coordinates of bottoa right corner
Xb* ( 1 ./ sqrt(2) ) .* ( sqrt(Rr.‘2-deltaY.~2) - deltaY );
Yb* sqrt(Rr.*2-Xb.~2);

X calculate length of laaination (bottoa edge)
LaaLength* 2 .* ( Xa ♦ sqrt( (Yb-Ya).*2 + (Xb-Xa).“2 ) );

X calculate total laaination area in aetres squared 
LaaArea* IPolePair .*2 .* s u b  (LaaLength) .* StackL ./ Ie6 ;

X 4 : CALCULATE BOLT STRESSES ----------------------------------

X ----- calculate aaxiaua allowable bolt forces

X length of bolt which is in shaft is 
BoltLS- ShaftSq./2-(Rr-BoltCl-BoltL);

X calculate ShfBltClear which is the clearance between the bolts 
X in the shaft
ShfBltClear* ShaftSq ./2 - BoltLS - BoltD ./2 ;

X calculate the ainiaua clearance between bolt head and airgap 
HinBoltCl* BoltCl - (Rr-sqrt(Rr.*2-BoltD.*,2));

X diaaeter definitions 
DMinor*BoltD-2*BoltTD;
DMajor*BoltD;

X tensile failure of bolt in lewtons
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FBoltl- (pi./4)*(DMinor“2)*BoltYS;

X shear failure of thread in bolt in levtons 
FBolt2- (pi./4)*(DHinor)*BoltLS*BoltYS;

X shear failure of thread in shaft in lewtons 
FBolt3- (pi./4)*(DMajor)*BoltLS*ShaftYS;

X locate minimum quantity
FBoltHax- min(FBoltl,min(FBolt2,FBolt3));

X — “—  calculate forces on pole piece

ForcePorOaegaSquarod- (StackL./1000) ./ IBolt * DLam ...
.* ((Rr./1000).*3-(ShaftSq./2000).‘3) .*2 ./ 3 ./ sqrt(2);

X corresponding maximum speed in krpm
UltiaateMaxSpeed- sqrt( FBoltHax ./ ForcePerOmegaSquared ) .* krpa;

X 5 : CALCULATE LOSS OF LAHIIATIOI AREA DUE TO BOLTS----------
X ratio of total laaination axial length loss due to bolt 
X holes

BoltAreaLoss- IBolt.*BoltD./StackL;

X « : CALCULATE WIIDIIO FACTORS ------------------------------

X calculate fundamental winding factors, assuae a single layer 
X coil with an integral number of slots per pole per phase 
X equal turn concentric winding

X fundamental distribution factor 
q- ISlot ./ ( 2 .* IPolePair) ./ IPhase;
SlotPAngH- 2 .* pi ./ ISlot;
SlotPAngE- SlotPAngM .* IPolePair;
Kdl- sin(SlotPAngE.*q./2)./q./sin(SlotPAngE./2);

X fundamental chording factor : for this siaple winding is unity 
Eel- 1;

X fundamental skew factor :
X Skew- skew in slot pitches 
ElecSkew- Skew .* SlotPAngE; 
if (Skew— 0)

Isl-1 ; 
else

Ksl- sin(ElecSkew)./ElecSkew;
end

X total fundamental winding factor 
Kwl- Kdl .* Icl .* Ksl;

X number of coil sides per slot 
CoilSidesPerSlot- ICoil .* 2 ./ ISlot;

X total nuaber of series connected turns 
Iph- ICoil .* TC ./ IPhase;

X effective nuaber of sine distributed turns 
Ise- (4 ./ pi) .* Kwl .* Iph;

X T : CALCULATE EFFECTIVE AIRQAP------------------------------
X take into account the stator and rotor slotting

X rotor Carter’s coefficient : "open" slots 
Kcr- carter(TLaa,Tins,Qap,’op’);
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X stator Carter’s coafflclant : for semi-closed slots 
SlotP* 2 .♦ pi .* R1 ./ ISlot;
Kcs* carter(SlotP-SlotOp,SlotOp,Qap,’sc’);

X effective airgap 
EffQap* flap .* Icr .* Kcs;

X 8 : CALCULATE ALIOIED HAQIETISIIQ IIDUCTAICE -----------------

X lndnctancs of Motor with 180 dogross polo pitch 
mu.o* 4 .* pi .♦ lo-7;
Lm* 3 .* pi .* mu.o .* Iso.*2 .* StackL .* (Rr+Qap./2) ./ ...

( 8 .* IPoloPair. “2 .* EffQap ) .* lo-3 ./ Dolta;

X actual pole-arc
ILam* fix( (ILayor+HatFL)./2 ); X number of laminations layors
■Ins* ILayer-ILam; X number of insulation layors
StackThickness* ILam .* TLam + Ilns .* Tins; 
if HatPP— 0

ElecPoleArc* 2 .* IPoloPair .* asin(StackThicknoss./Rr); 
olso X effectively round rotor 

ElecPoleArc* pi;
ond
X inductanco of motor with a limitod polo-arc 
Lmq* Lm .* (ElocPoloArc+sin(ElocPoloArc))./pi;

X 9 : CALCULATE UIALIGIED HAQIETISIIQ IIDUCTAICE---------------

X intrinsic unalignod inductanco
Ldi* 3 .* pi .* mu.o .* Iso.*2 .* StackL ./ ( 8 .* IPoloPair) ...

.* lo-3 ./ Dolta;

X add offoct of iron in rotor 
aB Tins ./ ( TLam + Tins);
Lmd- Ldi./a;

X 10 : CALCULATE SALIEICY RATIO ------------------------------

X intrinsic salioncy ratio
Xi.i- StatID ./ ( 2 .* IPoloPair .* Qap);

X actual salioncy ratio 
Xi_ma Lmq ./Lmd;

X 11 : SLOT DIHEISIOIS ----------------------------------------

X calculate tho length of the back section of the stator tooth 
TangDl* ( (Rl+TangD) .* tan(SlotPAngH./2) ...

- SlotOp./2 -ToothW./2 ) .* tan(TAng.*rad);

X calculate other slot dimensions 
1.1* TangD;
1.2* TangDl;
1.3- SlotD-l_l-l_2; 
w.l* SlotOp;
w.2* 2 .* (Rl+TangD+TangDl) .* tan(SlotPAngM./2) - ToothV; 
w_3* 2 .* (Ri+SlotD) .* tan(SlotPAngH./2) - ToothH;

X tho radial position of tho centre of tho slot bottom curvature 
X is
SlotControOfCurvature* (Rl+SlotD+ToothW./2),/(l+sin(SlotPAngH./2));

X tho radius of curvature of tho slot bottom is 
SlotCurv* Rl+SlotD-SlotCentreOfCurvature;

X calculate slot area
X w_4 is tho full slot width at tho centre of slot curvature
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w.4* 2 .* SlotCentreOfCurvature .* tan(SlotPAngH./2) - ToothW;
SlotArea* 0.50 .* (pi+SlotPAngH) .* SlotCurv.“2 + ...

(w_2+w_4).♦(l_3-SlotCurv),/2;

X 12 : SLOT LEAKAGE IIDUCTAICE --------------------------------

X calculate slot permeance components

X a: the slot opening 
K_a* SlotOp./2;
R_b* SlotP - R.a;
P_sO- (1 ./pi) .* log(R_b./R_a);

P-sl* 1.1 ./ w_l;

X b : the back of the tooth
P.s2- 1.2 ./ (s_2 - w_l) .* log (w.2 ./ w_l );

X c : the main part of the tooth 
Beta* w.2 ./ w.3;
P.s3* 1.3 ./ w_3 .* ( 4 .* Beta.“2 - Beta.“4 - 4 .* log(Bota) - 3)./ 

(4 .* (1-Beta) .* (1-Beta.“2).*2);

X sum up components 
P.s* P_s0+P.sl+P_s2+P_s3;

X the leakage inductance per phase is
Lslot* 4 .* Iph.“2 .e IPhase .* mu.o .* StackL .* P.s ./ ISlot ..

.* le-3 ./ Delta;

X 13 : STATOR RESISTAICE --------------------------------------

X the mean diameter of the endwindings is
Dend* IPhase .* q ./ ISlot .* pi .* 2 .* (Rl+SlotD./2);

X the mean length per turn is composed of the straight (useful)
X section in the stator (NLT.stack) and the useless section in 
X the endwinding (HLT.end)
HLT.end* pi .* Dend;
HLT.stack* 2 .* StackL;
HLT* HLT.end + HLT.stack;

X the total length of conductors is 
Leu- ICoil .* TC ./ IPhase .* HLT;

X the cross-sectional area of copper is 
CSA_cu- ISH .* pi .* WDia.~2 ./4;

X the phase resistance is
Rph* CopperResistivity . * (Leu .* le-3) ./ (CSA.cu . * le-6) ./ Delta

X 14 : SLOT FILL -------------------------------------

AreaCopperlnSlot* 2 .* ICoil ./ ISlot .* TC .* ISH ...
.* pi .* HDia.“2 ./4 ;

SlotFill* AreaCopperlnSlot ./ SlotArea;

X 15 : EID-IIIDIIO IIDUCTAICE ----------------------------------

X the radius of the wire is 
Rw- VDia ./2;

X the inductance of one turn of diameter D and wire radius Rw is 
L_0neTurn* mu.o .* (Dend.*le-3) ./ 2 ...

.* ( (1 + Rw.*2 ./ 2 ./ Dend.“2 ) .* log( 4 .*Dend./Rw ) .. 
+ (Rw./Dend).“2 . / 6  - 1.75);

X the number of turns per pole-pair per phase is
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I_end- ICoil .* TC ./ (IPhaso .* IPoloPair);

X tho total endsinding inductanco is
Lend- L.OnoTurn .* IPoloPair .0 I_end.“2 ./ Dolta .* XLond;

X 16 : THEMAL DISSIPATIOI------------------------------------

X assume tho total loss is simply tho coppor loss 
PLoss- IPhaso .* Io.“2 .* Rph;

X tho outsido surfaco aroa of tho motor in metre~2 is approximatoly 
ADisp- (pi .* StatOD .* StackL + pi .* StatOD.‘2 ./ 2) ./ I0 6;

X tho approximate tomporaturo riso is 
TRise- PLoss ./ ( KDisp .0 ADisp);

X 17 : CALCULATE TOTAL IIDUCTAICES --------------------

X calculate tho total inductances by adding tho leakage 
X inductances to tho magnetising inductances.

Lds Lmd + Lend + Lslot;
LqB Lmq + Lend + Lslot;
Xi« Lq ./ Ld;

X 18 : CHARACTERISTICS -----------------------------------------

X calculate tho required voltage to drive rated current into tho 
X machine at tho maximum torquo par ampere angle. leglecting 
X saturation this is 45 degrees

X set the current angle 
gamma.m* Qamma_deg .* rad;

X calculate the operating speed in rad/s electrical
He- Hrpm ./ 60 .*2 .* pi .* IPoloPair;

Vd- -He .* Lq .* Io .* cos(gamma_m) - Io .* Rph .* sin(gamma_m);
Vq- -He .* Ld .e Io .* sin(ga*ma_m) + Io .* Rph .* cos(gamma_m);

X the required phase voltage is 
Vph- sqrt(Vd.*2 ♦ Vq.*2);

X the output torque is 
Torque- IPhase .* IPoloPair ...

.* (0.5) .e (Lq-Ld) .* Io.*2 .e sin( 2 .* gamma_m);

X the output poser is
Pmech- Torque .* He ./ IPoloPair;

X the input poser is (only resistive losses considered)
Pin- Pmech + IPhase .* Io.“2 .* Rph;

X the input kVA is 
kVA- 3  .* Vph .* Io;

X the input poser factor is 
PoserFactor- Pin ./ kVA;

X the efficiency 
Efficiency- Pmech ./ Pin;

X the apparent poser factor is 
ApparentPoserFactor- PoserFactor .* Efficiency;

X 19 : ROTOR IIERTIA
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X the aoaent of inertia of tho rotor assuaing it to bo a unifora 
X cylinder of donoity oqual to tho iron in kga*2 is 
Jrotor" 0.5 .* pi .* StackL .* DL&a ,* lr.*4 .* le-15;

X 20 : DISPLAY RESULTS -----------------------------------------
clc
hoao

fprintf (’ ooooooooooooooooo*oooooooooooooooooooooo**o*o*o*o***ooo») 
fprintf(’ooooo*eoooo*oooooeoo\n *)
fprintf(’PC-AXL : AXIALLY-LAHIVATED HOTOR DESIQI PR0QRAH\n’)
fprintf(data)
fprintf(’ : Titlo : *)
fprintf(Titlo)
fprintf(’\n’)
fprintf(’\n’)
fprintf (»STATOR DIHEISIOVS------------------------------------- >)
fprintf (’--- -----— — -------\n’)
fprintf(’RuaPhasos XB.Of *,IPha»o)
fprintf(’PoloPair X5.0f\n*,IPoloPair)
fprintf(*Stator ID X6.2f aa ’.StatID)
fprintf(’Stator OD X6.2f aa *,StatOD)
fprintf(’Stack Lon X5.1f aa\n’.StackL)
fprintf(’Slots X5.0f »,ISlot)
fprintf(’Slot Opon X6.2f aa ’.SlotOp)
fprintf(’Slot Dopth X6.2f aa\n\SlotD) 
fprintf (’Tooth Wdth X6.2f aa > .ToothW)
fprintf(’Tooth Anglo XS.Of aDog *,TAng) 
fprintf(’Tang Dopth X6.2f aa\n*.TangD) 
fprintf(*Slot Aroa X6.2f aa“2 ’.SlotAroa)
fprintf(’Diop Aroa X6.4f a“2\n’.ADisp)

fprintf(*\n’)
fprintf (’ROTOR DIHEiSIOIS-------------------------------------- »)
fprintf (’ — — — — — — — — \n ’)
fprintf(’Airgap X5.3f aa ’.Q*p)
fprintf(*1st Layor ’);
if (MatFL— 0)

fprintf(’Ins ’);
also

fprintf(’Laa ’);
and
fprintf(’Polo Pioco '); 
if (HatPP— 0)

fprintf(’ Ins *);
also

fprintf(’Iron ’);
and
fprintf(’\n’)

fprintf(’ILayors XB.Of ’.ILayor)
fprintf (*Laa Thk X6.3f aa * ,TLaa)
fprintf(’Ins Thk X6.3f aa\n’.Tins) 
fprintf (’Shaft Edgo X6.2f r m ’.ShaftSq)
fprintf(’Laa Aroa Xd.3f a“2 ’.LaaAroa)
fprintf(*PoloArc XB.If oDog\n’,ElocPoloArc.*dog)

fprintf(*\n’)

fprintf(’HECHAIICAL QUAITITIES ---------------
fprintf (’--- — ----— ----- \n *)
fprintf(’IBolts/polo XB.Of ’.IBolt)
fprintf(*Bolt Diaa. XS.lf aa ’.BoltD)
fprintf(’Bolt Length XB.lf aa\n’,BoltD 
fprintf(’Bolt Clear XB.2f aa ’.BoltCl)
fprintf(’Bolt Sopn XB.2f aa ’.BoltSp)
fprintf (’Thread Dpth X4.2f aa\n’.BoltTD) 
fprintf(’Bolt Yield X4.0f MPa ’.BoltYS);
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fprintf ('Shaft Yi.ld X4.0f KPa ’.ShaftYS); 
fprintf(’Fa rho XB.Of kg/a~3 \n’,DLaa)
fprintf(>Shft BoltL X5.2f m i  \BoltLS)
fprintf(’ShftBltClr X6.2f m b  ’.ShfBltClaar)
fprintf(’HinBoltCl X6.2f wm\n»,NinBoltCl)
fprintf(*F/Blt tans X«.3f kl *.FBoltl./1000)
fprintf(»F/Blt Bshr X«.3f kl ’,FBolt2./1000)
fprintf(’F/Blt Sshr X«.3f kl\n>,FBolt3./1000) 
fprintf(’Fail Spaad XS.2f krpa *.UltiaataHaxSpaad) 
fprintf(’Inartia X8.0f kga~2 *,Jrotor) 
fprintf(’Bolt Lots X5.3f\n *,BoltAraaLosa)

paaaa

fprintf (’\n’)
fprintf(’HIIDIIQ IIFOBNATIOI ---------------------------
fprintf (* — ---------------— \n ’)
fprintf(’Winding Typa : *) 
fprintf(WindingTypa) 
fprintf(*\n*) 
if (Dalta—  1)
fprintf(’WindTypa star\n *,ICoil)
and
if (Dalta»3)
fprintf(’WindTypa dalta\n’,VCoil) 
and
if ((Dalta'-l) k (D*lta--3))
fprintf(’BAD WIIDIIQ TYPE : chack input fila! \n’.ICoil) 
and

• ’ )

fprintf(>Iub Coils XB.Of ’.ICoil)
fprintf(’Turn/Coil XB.Of ’,TC)
fprintf(> Strd/Cond X5.Of\n’,ISH) 
fprintf(’WDian X5.3f mm *,WDia)
fprintf(’Ska* XB.Of slots *,Ska«)
fprintf(’CS/Slot XB.Of \n’.CoilSidasParSlot)
fprintf(’HLT stack X7.2f mm >.HLT.stack)
fprintf(’HLT and X7.2f am ’.HLT.and)
fprintf(’HLT total X7.2f sai\n’,HLT) 
fprintf(*Kdl : dlst X6.3f *,Kdl)
fprintf(’Ici : chord XS.3f >,Kcl)
fprintf(’la1 : skav XB.3f\n»,Ksl) 
fprintf(’Kvl : total XB.3f ’,Kvl)
fprintf(’Iph XB.Of turns *,Iph)
fprintf(’Rph (20C) X7.3f oh«\n’,Rph) 
fprintf(’SlotAroa X6.2f s m *2 ’.SlotAroa)
fprintf(’SlotFill XB.3f\n».SlotFill)
fprintf(’XLand X6.3f\n’.XLand)

fprintf(’\n*)
fprintf(’A1ALTTICAL U1SATURATED IIDUCTAICES-------------------- ’)
fprintf (’--------------------\n’)

fprintf(’Ic stator X6.3f ’,Kcs)
fprintf(’Kc rotor X6.3f ’.Kcr)
fprintf(’Kc total X6.3f\n*,Kcs.*Kcr)

fprintf(’PaO XB.3f ’,P_sO)
fprintf(’Psi XB.3f »,P.»1)
fprintf(’Ps2 XB.3f\n’,P_s2)

fprintf(’Ps3 XB.3f ’,P_s3)
fprintf(’Pa total X6.3f ’.P.s)
fprintf(’Lslot X7.3f «H\n’,Lslot.*«H)
fprintf(’Land X7.3f aH ’.Land.aaH)
fprintf(’a X6.3f ’,a)
fprintf(’Llaak X6.3f *H\n’,(Land+Lalot).*«H)

fprintf(’La X6.2f aH ’.La.aaH)
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fprintf('Laq X6.2f aH ’.Laq.aaH)
fprintf('Lq X8.2f aH\n\Lq.*aH)

fprintf('Ldi X6.3f aH ’,Ldi.*aH)
fprintf('Lad X6.3f aH ’.Lad.aaH)
fprintf(’Ld X6.3f aH\n’,Ld.aaH)

fprintf('Xi intr X6.2f ’,Xl_i)
fprintf('Xi Bag X«.2f ’,Xi_a)
fprintf(’Xi act X0.2f\n’,Xi)

pans a

fprintf(’\n')
I/IAW1ATipXAnbl V VUIiAUb AlfUIUIAliUI

fprintf('------ ----------------\n>)
fprintf('Io X6.3f Araa ’,Io)
fprintf('PLosa X7.4f kV ’.PLoaa.akU)
fprintf('EDisp X5.2f H/a2/C\n’.KDiap)
fprintf(’Triaa X7.2f dagC >.TRisa)
fprintf(’Qaaaa X6.2f aDag ’,Qaaaa_dag)
fprintf(’Vph X7.3f Vraa\n> .Vph)
fprintf(’Taach X7.3f la ’,Torqua)
fprintf(’Paach X7.4f kW ’,Paach.*kH)
fprintf(*kVA in X7.4f kVA \n* .kVA.akH)
fprintf(»PF XB.3f ’.PovarFactor)
fprintf('afficiancy XS.3f ’,Efficiancy)
fprintf(’AppPF X6.3f\n*.ApparantPoaarFactor)

fprintf(’\n');
fprintf(’BID OF 0UTPUT\n*);

pausa
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D.5 G lossary o f Sym bols

a ratio of rotor which is insulation Win,/(w tn, + w/am)
ACu area of copper conductors used [m2]
ADisp area available for heat dissipation [m2]
ALam total area of rotor laminations required [m2]
ASlot total slot area [m2]

BoltCl bolt clearance, head to airgap [m]
BoltD bolt diameter [m]
BoltL bolt length [mj
BoltLS bolt length in shaft [m]
BoltLoss percentage of rotor length covered by bolts
BoltSp spacing between adjacent bolts [m]
BoltTD radial bolt thread depth [m]
BoltYS yield stress of bolt material [MPa]

DLam density of lamination material [kgm-3]

FBolt force on each bolt at rated speed [N]
FBoltMax strength of bolt [N]

Gap radial airgap [m]

Io rated stator current [Arms]

Jrot moment of inertia of rotor [kgm2]

KDisp thermal dissipation of motor frame [W /m2/°C]
Kcl fundamental chording factor
Kdl fundamental distribution winding factor
Ksl fundamental skew winding factor
Kwl total fundamental winding factor
Kcr rotor Carter’s coefficient
Kcs stator Carter’s coefficient
Kct total stator and rotor Carter’s coefficient

Lm phase inductance of smooth round rotor machine [H]
Lmd d-axis magnetising inductance [H]
Ld total d-axis inductance [H]
Ldi intrinsic d-axis magnetising inductance [H]
Lmq q-axis magnetising inductance [H]
Lq total q-axis inductance [H]
Lslot stator slot leakage inductance [H]
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Lend stator end winding leakage inductance [H]

MatFL material type of first layer, 0 =  air, 1 = iron
MatPP material type of pole piece, 0 = air, 1 = iron
MLT mean length of stator winding [m]

NBolt number of bolts per pole
NCoil number of coils in motor
NLayer number of rotor layers per pole
Nph number of series turns per stator phase
NPhase number of phases
NPolePair number of pole pairs
NSH number of strands in hand
NSlot number of stator slots

PoleArc rotor pole arc [edeg]

q number of slots per pole per phase

R1 Stator Inner Radius M
Rph phase resistance [ohms]
Rr Rotor Radius H

ShaftSq edge length of square shaft [m]
ShaftYS yield stress of shaft material [MPa]
SlotArea area of slot available for winding M
SlotD stator slot depth [m]
SlotOp stator slot opening [m]
SlotP slot pitch [m]
SlotPAngMslot pitch angle, mechanical [mdeg]
SlotPAngE! slot pitch angle, electrical [edeg]
SlotSp width of stator slot winding retainer [m]
StackL rotor and stator stack length [m]
StatID stator inside diameter M
StatOD stator outside diameter [m]

TangD depth of stator tooth tang M
TAng angle of stator tooth tang [mdeg]
TC turns per coil
Tins thickness of rotor insulation material [m]
TLam thickness of rotor lamination material [m]
ToothW width of stator tooth, parallel [m]
TRise estimated winding temperature rise [°C]

WDia bare copper, wire diameter M
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Wrpm mechanical speed [rpm]
We electrical speed [e rad/s]
Wm mechanical speed [m rad/s]

Xi saliency ratio : Lq/Ld
X ii intrinsic saliency ratio of machine
Xi_m magnetising saliency ratio : Lmq/Lmd
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Figure D.l: Slot dimensions.
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Appendix E 

Lumped-Circuit Analysis Program

This is a general-purpose lumped-circuit program for solving non-linear magnetic cir­
cuits. It is written in Matlab [37]. Its operation is described in Sec. 4.3. A brief 
description of the variables used and the analysis programs are given in Sec. E.l. This 
is followed by listings of all the Matlab subroutines.

It has been used in conjunction with the PC-AXL (described in App. D) to analyse 
the saturation characteristics of the 120W axially-laminated motor (see Chapter 4). 
More work is required in order to make the interface between PC-AXL and the lumped- 
circuit solver transparent to the user.

339
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E .l R ead.m e
mmnnsimmmnmi irons xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Sizes :

in d ic a te s  s iz e s  o f M atrice s  used in  problesi

Slzes(l)B number of materials used (B)
Sizes(2)a number of reluctances used (H)
Sizes(3)> number of independent circuits or fluxes (I)

SourceList

This is a n x 2 matrix of the form :
Looplumbor SourceValue 

where Looplumber indicates which mesh loop the source is in and 
SourceValue is its value. This is positive if the source is 
aiding current flow in that loop and negative if it is retarding 
it. The Looplumbers can be in any order and there can be more 
than source in each loop.

Material Types

This consists of a vector Ur with values 1..6 corresponding to 
linear materials. Materials 7, 8 and 9 are non linear materials 
which are strings storing function names whose input is H is A/m 
and which return the relevant value of B in T.

1 : air : Uri-1
2 : linear : Ur2-
3 : linear : Ur3»
4
5
6
7 : uses cubic spline interpolant stored in EotorSteel
8 : uses cubic spline interpolant stored in StatorSteel

KeluctList

is an ( M x 4 ) matrix describing each of the "M" lumped circuit 
reluctances. It is of the form

Bum LPath Area HatType

where
lum : is the reference number associated with the reluctance 

this must start from 1, 2 ... H 
PathL is length of path in [mm]
Area is area of path in [mm2]
HatType is material type code, integer from 1..B

ConnList :

is a linear list of elements each which consists of an equal 
length string of the form :
>m,n,a,b,c »
where m and n are the row and column number and a, b ,c etc are 
positive integers referring to elements of KeluctList. The 
matrix elements can be listed in any order. There must be at 
least one reluctance list element in each list.
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Only elements in the upper diagonal matrix should be listed, eg. 
m<"n. The lower diagonal will be created automatically.

mnmmmmm iitermediate variables xxxxxxxxxxxxxxxxxxxxx

Sources

This is a n x 1 matrix of sources, 

creator : OenSrc

RolElements

This is a m x 1 matrix of reluctances. In general these are non­
linear functions of the flux in each element. Thus their values 
must be successively refined.

creator : OenRel (first estimate)

ConnRel

is an (n~2) x m matrix which allows the creation of the 
reluctance matrix Rellfatrlx. It describes how each element of 
RelHatrix is a linear combination of elements in RelElements.
RelHatrix is formed by reshaping (and transposing) the product of 
ConnRel x RelElements.

creator : QenCnR

RelHatrix

is a n x n square matrix whose sixe is determined by InitFlux and 
whose elements contain the present estimates of the values of the 
reluctances.

creator : solver

ConnFlux

is rectangular matrix of elements of values 1,0,-1. It is used 
to calculate the flux in each reluctance by the equation 
Flux" ConnFlux * InitFlux 
It is generated externally from ConnLlst.

RolFlux

is the flux in each reluctance
Flux" ConnFlux • Flux

XXXXXXXXXXXXXXXXXXXXXXXXXX fuictiois xxxxxxxxxxxxxxxxxxxxxxxxxxxx

OenRel

input : RelList, Ur, StatorSteel, RotorSteel 
output : RelElements

This function returns the linear value of reluctances in the 
matrix RelElements. For non-linear values of reluctance it 
calculates the the value of reluctance at a fixed value of MHF 
chosen to be low enough such that the material sill be in its 
linear region.
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QenSrc

input : SourceList 
output : Sources

This roads in tho SourcoList and croatos tho output Matrix 
Sources.

errors :
1) chocks to Make sure at least one source is defined.

QenCnR

IIPUT : ConnLlst 
OUTPUT : ConnRel

This reads the ConnList and creates ConnRel.

METHOD :

1) initialises ConnRel as a sero Matrix of size (n“2) x m

2) reads in strings froM ConnList one at a tise, disassoMbles 
theM into sectors. Perfons error checking on vectors (see 
below). If OK sets appropriate eloMents in ConnList.

ERRORS :
1) checks that each (row,col) index is within the size bounds and

that the reluctance index nuMber exists.
2) checks that there is at least one reluctance reference in each

row of ConnList
3) checks that there are no references to reluctances in the

lower diagonal
4) checks that there are no duplicate references to the s s m o row

and colusui

QenCFlx

IIPUT : ConnList 
OUTPUT : ConnFlux

SUMMARY:

This reads ConnList and creates ConnFlux

It sssumos QenCnR has already been run and has picked up any of 
the above errors in ConnList.

METHOD :

1) initialise ConnFlux as a zero Matrix of size m x n

2) read row in one at a tine
assuMe row is M , n , a , b , c . . . z

3) for each reluctance i»a..z
if ConnFlux(i,M)»0

if "i"th row of ConnFlux are all zeros 
ConnFlux(i,M)»l

else
ConnFlux(i,m )"-1  

if ConnFlux (i,n)n O
if "i"th row of ConnFlux are all zeros
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ConnFlux(i,n)*l
• I s *

ConnFlux(i,n)■-1

4) repeat for all rows

5) check at end that bum of each row ie  e ith er  0 or 1
and that the s u m of the absolute value of each row is either 1 

or 2.

ERRORS :

1) it checks to Make sure each element in RelElements is referred 
to at least once

2) checks to Make sure that reluctances are not referenced by More 
than two loops.

Updatek

input : RelList, Ur, StatorSteel, RotorSteel, RelFlux, RelElsMents 
output : RelElsMents

This program updates the values of RelElsMents using RelFlux.

For each element in RelList it calculates the value of B in the 
element and the required H. Froa the old value of reluctance it 
then calculates the HHF across the eleMent in the last solution.
It then calculates the reluctance of the eleMent at this value of 
MHF and updates the reluctance.

Solver

input : Sixes, SourceList, Ur, Rotor8teel, StatorSteel,
ConnList, ReluctList 

output : Mesh fluxes

This program uses the preceeding programs to solve for the fluxes 
in the problem. It iterates until each element of the solution 
changes by less than 0.1% relative to itself in three iterations.
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E.2 E xam ple.m
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X SYSTEM DEFIIITIOI

k*120 X example PC-AXL dimension data input file
calc X PC-AXL calculation program

X--------------------------------------------------------------------------------------------------------------------
X SIZES OF MATRICES

X number o f Material typos
Sizes(l)* 2;

X number of reluctancos 
Sizes(2)B 9;

X number of fluxes or independent circuits 
SlzesO)* 3;

X-------------------------------------------------------------------
X SOURCELIST : define sources

TurnsPerCoil* 92;
RHSCurrent* 1.7 X current in amps 
Current* sqrt(2) .* RMSCurrent; 
II.Aphase* TurnsPerCoil .* Current; 
II_Bphase* II.Aphase ./ 2;

SourceList* ...
[ 1 II.Aphase ;
2 II.Bphase ;
3 II.Bphase ];

X--------------------------------------------------------------------------------------------------------
X MATERIAL TYPES

Ur(l)- i;
Ur(2)» 10000;

load new800.bh
ne*800hb* spline(ne«800(:,2),new800(:,1)); 
nes800bh* spline(nes800(:,1),ne*800(:,2));

RotorSteelHB* nes800hb;
StatorSteelHB* new800hb;
RotorSteelBH* ne*800bh;
StatorSteelBH* nev800bh;

X--------------------------------------------------------------------------------------------------------
XXXXXX Define Main Dimensions in [ailliaetres]
X The following parameters are defined/calculated in calc
X StatID : stator inside diameter [am]
X Qap : mechanical airgap [mm]
X SlotP : slot pitch at the stator inside D[mm]
X StackL : stack length [mm]
X ToothW : tooth width [mm]
X SlotD : total depth of slot [mm]
X SlotCurw : radius of curvature of slot bottom [aa]
X TangD : depth of tang [am]
X TangDl : depth of tang back angle [mm]

XXXXXX OEIERATE LIST OF RELUCTAICES 
X three columns : Length : area : Material Code 
X see diagram in notes for numbering 
X material 1 : air
X material 2 : steel, assume infinite permeability
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QapAraa" SlotP .* StackL;
StatorHatarial" 7;
ToothAraa" ToothV .* StackL;
ToothL" SlotD-SlotCurv-TangD-TangDl; X straight langth of tooth 
HinBacklron" StatOD./2-(Rl+SlotD);
BacklronL" 2 .* pi .* (StatOD-HinBacklron) ./ 2 ./ ISlot; 
BacklronAraa" (HinBacklron+SlotCurv. /3). * StackL;

X This factor takas cars of a finita polaarc for two slot par 
X par aotors with polaarcs batwssn 90 to 160 dagraas 
XPArc" (ElacPolaArc-pi./2)./(pi./3);

RaluctList" ...
[ 1 EffQap QapAraa.*XPArc 1 ;

2 ToothL ToothAraa StatorHatarial
3 BacklronL BacklronAraa StatorHatarial
4 EffQap QapAraa 1
6 ToothL ToothAraa StatorHatarial
6 BacklronL BacklronAraa StatorHatarial
7 EffQap QapAraa./2 1
8 ToothL ToothAraa./2 StatorHatarial
9 BacklronL BacklronAraa StatorHatarial

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X COIIECTIVITT LIST
X format" *row,coluMn, list of raluctancas’

ConnList •  ...
[ ’1,1, 1,2,3 ’;

' 1 . 2 , 1 , 2  ’ ;
’2 , 2 , 1 , 2 , 4 , 5 , 6 ’ ;
’2,3, 4,6 »;
»3,3, 4,6,7,8,9 »]

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
solrar

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X calculata inductancas
L_Aphasa* 8 .* TurnsParCoil .* lasFlux(l) ./ Currant 
L_Bphasa" 8 .* TurnsParCoil .* (Ia*Flux(2)+IasFlux(3)) ./ Currant 
L_At> (2 ./ 3) .* (L_Aphasa+L_Bphasa./2)
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E.3 Solver.m
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X 1 : IIITIALISATIOI

H" Sizes(2); X number of reluctances 
■■ Sixes(3); X number of loops

X croat#  s o u rc o lis t
Soarc#sa gensrc(Sixes,SourceList);

X croato connection matrix 
ConnRel" gencnr(Sizes,ConnList);

X croato  f lu x  m atrix
ConnFlux" gencflx(Sizes,ConnList);

X c a lc u la te  i n i t i a l  values f o r  re luctance
RelElements" genrel(Sixes,ReluctList, Ur .StatorSteel ,RotorSteel) ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X 2 :

X initialise solver 
OldFlux" ones(I,l); 
good"0;
HaxCount" 100; 
count"0;

while C('good)R(count<"HaxCount))

fprintf(’Solving Equations\n’)
X create reluctance matrix
RelHatrix" reshape(ConnReleRelElements,I ,1) i

X create upper diagonal part
RelHatrix" RelHatrix ♦ RelHatrix’.*(l-oye(length(RelHatrix)));

X solve for new fluxes 
■ewFlux" inv(RelHatrix) e Sources;

X solve for flux in each reluctance 
RelFlux" ConnFluxeievFlux;

X update reluctances
IovRelElements"updatoR(RelElements,RelFlux,ReluctList, ...

Ur,StatorSteel,RotorStoel);
RelElements" EewRelElements;

X calculate error 
Error" EewFlux-OldFlux;
RelError" Error./EewFlux 
Tolerance" le-3;

good" all(abs(RelError)<Tolerance); 
OldFlux" levFlux; 
count" count+1;

end

i
■ewFlux
fprintf(’Finished.\n’)
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E.4 G ensrc.m
function Sourcos"gensrc(Sizes.SourcoList)
X luMped circuit operation filo : gensrc.n 
X roads SourcoList and croatos Sourcos 
X so# road.■#
X last revised 4/12/92

fprintf(’Creating Sourco Vector ...\n’)

X initialise Sources 
Sources" zeros(Slxos(3),1);

X size o f sourcelist 
Index" SourcoList(:,1);
Value" SourcoList(:,2);

X set values, this must be done sequentially as Index May contain 
X identical values 
for i"l:length(Index)
Sources(Index(i))" Sources(Index(i))+Valuo(i); 
end

X check at least one non-zero source has been set 
result" sun(abs(Sources));

if (result<eps)
fprintf(» VAKIIIQ : QenSrc : no sources have been set\n’)

end
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E.5 G encnr.m
function Connkol-gencnr(Size,ConnList)
% 1unpod circuit oporntion filo : gencnr.m 
X croatos connection matrix for reluctances 
X see read.ne 
X lest revised 4/12/92

fprintf(’Forming Connection Matrix ..A n ’)

X initialise matrix
H- Size(2); X number of reluctances used 
I* Size(3); X number of independent circuit loops 
ConnRel* zeroed.“2,M) ;

X find size of list
[listsize cols]* size(ConnList);

X operate on each ro* sequentially

for i*l:listsize

X extract information from string into a vector 
op* [’list ■ [’.ConnList(i, 
oval(op);

X extract the ros and column number and then delete them from list
rov.no* list(l);
col.no* list(2);
list(l)* □;
list(l)* □;

X check ros for correctness
good- (length(list)>0)ft(all(list<*N))ft(all(list)>*0) ... 

ft(rov_no>0)ft(rov_no<*I)ft(col.no>0)ft(col_no<*I);

X list is now an array of reluctance indices which make up the 
X lumped circuit reluctance under consideration, add them together

if (good)

ConnRelRow* (rov_no-l).eR4xol.no;

X check that row has not already been referred to 
if (sum(abs(Connhel(Connhelhov,:)))'*0)

fprintf(’ WARIIRQ : QenCnr : multiple reference in’) 
fprintf(’ ConnList row X3.0f \n*,i)

end

X if along main diagonal they should be positive else negative 
if (rov.no**col.no)

ConnRel(ConnRelRow,list)* ones(list); 
else

ConnRel(ConnRelRov,list)* -ones(list);
end

X check that no references in list were repeated 
X if this is the case, the number of non-zero elements in 
X the row in ConnRel sill be less than the length of list 
repeat* (sum(abs(ConnRel(ConnRelRow,:)))'-length(list)); 
if repeat

fprintf(’ WARIIIO : OenCnr : repeated references in row*)
fprintf(’ ConnList row X3.0f \n*,i)

end

X check reference is not in loser diagonal 
if (row_no>col.no)

fprintf(’ WARIIIO : OenCnr : loser diagonal references in’)
fprintf(’ ConnList row X3.0f \n’,i)
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end

•ls« % if bad
fprintfC’ WARVIIO : OenCnk : syntax error in ConnList’) 
fprintf(’ ros %3.0f \n’,i) 

end

end X of for each row of ConnList

X check that each reluctance element is  referred to at least once 
Unlefkel* 'all(sum(abs(Conn&el))>0); 
if Unkefkel

fprintf(’ WAMIIQ : OenCnr : Unreferenced reluctances found, 
indices ■ f ind(sum(abs(Connkel))— 0)

end
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E.6 G encflx.m
function ConnFlux*gencflx(Sizes,ConnList)
X lunped circuit operation file : gencflx 
X roads SourcoList and croatos Sources 
X see road.no 
X last revised 4/12/92

fprintf(’Creating Flux Matrix ...\n’)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X This progran takes the connectivity list ConnList and 
X generates the flux connectivity nutria ConnFlux which allows 
X sinple calculation of the flux in each reluctance knowing the 
X flux in each circuit loop.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X SET UP

X disassenble sizes
■unMaterials ■ Sises(l);
■unkeluctances ■ Sixes(2); 
lunFluxes ■ Sizes(3);

X initialise ConnFlux natrix
ConnFlux* zeros(lunReluctances,lunFluxes);

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X WORK THROUGH COIIECTIOI LIST SETTIIQ APPROPRIATE ELEMEITS II 
X RELHATRIX

[listsize cols]* size(ConnList);

for 1*1:listsize

X extract infomation fron string into a vector 
op* [’list* [’. C o n n L i s t ( i , ; 
oval(op);

X e x tra c t the  row and colunn nunbor and then d e le te  then fro n  l i s t
row.no* list(l);
col.no* list(2);
list(l)- □;
list(l)* □;

X list : is now an array of reluctance indices which nake up the 
X lunped circuit reluctance under consideration.
X col.no : describes which flux loop is under consideration 
X check if elenent is already non-zero, if so do nothing 
X else if zero, check if any other elenents in row have been set 
X if yes, set elenent to -1, else set to 1

X set corresponding elenent in ConnFlux to 1 
for 1*1:length(list)

row* list(i);

if (ConnFlux(row,row.no)**0) 
if any(ConnFlux(row,:)“*0)

ConnFlux(row,row_no)*-l; 
else

ConnFlux(row,row.no)*1;
end

end

if (ConnFlux(row,col.no)**0) 
if any(ConnFlux(row,:)"*0)

ConnFlux(row,col_no)*-l; 
else



E . 6. G E N C F L X . M

ConnFlux(row,col.no)a1;
•nd

•nd

•nd

•nd X of for «nch row of ConnList

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X ERROR CHECKIN)

X chock that «ach roluctanc* has b««n r«f«rr«d to «ith«r one* or 
X twic* but not aor«

Ch«ckla sun(ConnFlux*);
Ch«ck2a sua(abs(ConnFlux’)>;

•rrora (Ch«ckl<0)I(Ch«ckl>l)I(Ch«ck2<l)I(Ch«ck2>2); 
if anr(«rror>aO)

fprintf(* WARIIIQ : OanCFlx : «rror in raluctanc* r«f«r«nc«An’) 
indic«sa find(«rror'aO)

•nd
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E.7 G enrel.m
function RelElenentsagenrel(Sizes,RolList,Ur,StatorStool,RotorStool) 
X lunped circuit operation filo : genrel.n 
X croat•• initial valuos for roluctancoa 
X fit road.no 
X last revised 4/12/92

fprintf(’Calculating Linoar Valuos for Roluctancos ...\n*)

X initialise Sources 
RolElonontsa soros(Sisos(2),1)»

X dissect RolList 
Indoxa RolList(:,1);
Patha RolList(:,2)./lo3; X convert to notros 
Aroaa RolList(:,3)./lo6; X convert to notros squarod 
Material » RolList(: ,4);

X define Vo
Uoa 4 * pi * io-7;

X aaf at which roluctanco of non-linear natorials is calculate 
deltaHa 60;

X fo r  each elenent 
fo r  i a l: le n g th ( In d e x )  

i f  ( H a te r ia l ( l ) < a6)
X naterial is linear with relative perneability Ur 
RelElenents(i)aPath(i)./(Area(i).*Uo.*Ur(Material(i)));

•nd

if ( M a t e r i a K D W )
Uappval(RotorSteel,deltaH)./deltaH;
RelElenents(i)aPath(i)./(Area(i).*U);

•nd

if (MateriaKDnS)
UBppvaKStatorSteel, deltaH). /deltaH;
RelElenents(i)aPath(i)./(Area(i),*U);

•nd

•nd X o f fo r
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E.8 U pdater.m

353

function RelEleaents" updatoR(RelEloaents,RolFlux,RolList, ...
Ur,StatorStasl,RotorSteel)
X luapod circuit oporution filo : updateR.a 
X rovisos estiaato for RolEleaonts basod on fluxos 
X road.as
X last rovisod 4/12/92

X dissoct RolList 
Index" RolList(:,1);
Path" RolList(:,2)./lo3; X convort to aotros 
Aroa" RalList(:,3)./lo6; X convort to aotros squarod 
Hatorial " RolList(:,4);

X find tho aaf across oach roluctanco 
anf" abs(RolEloaonts .* RelFlux);

X convort aaf to a H 
H" aaf ./ Path;
Uo" 4 .* pi .* lo-T;

X calculate B for oach H
B"xeros(H);
for i"l:longth(H)

if (Hatorial(i)<"6)
B(i)» Uo .* Ur(Hatorial(i)) .* H(i);

and

if (Hatorlal(i)~7)
B(i)"ppval(8tatorStool,M(l));

ond

if (Hatorial(i)""8)
B(i)"ppval(RotorStool,H(i>); 

ond

if (('(Hatorial(i)<"6))A(~(Hatorial(i)""7))A(~(Hatorial(i)""8))) 
fprintf('Unknown Hatorial Typo ...\n') 

ond

ond

X calculate roluctanco 
Flux" B .♦ Aroa; 
RolEloaonts" aaf ./ Flux;
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