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ABSTRACT

The conveyance capacity of compound channels is investigated. Initially the case
of straight compound channels is examined and a novel approach to calculating
the lateral distribution of flow across channel widths is derived and verified
against a wide range of laboratory and field data. Secondly a similar exercise for
the case of meandering compound channels is carried out. A new procedure for
calculating the discharge capacity of meandering two stage channels is derived
and verified against the available data. Thus the work presented in this thesis is
specifically directed towards providing improved methods of estimating the
overall conveyance capacity of compound channels.

In the past a considerable amount of work has been carried out in to the
behaviour of compound channels. Much of this work has concentrated on
particular aspects of the hydraulics of compound channels. Recent work has
stressed the practical importance of compound channels to river engineers. The
general approach followed in deriving these new methods is as follows.

The mathematical formulation of river flows is examined. The 3-D turbulence
equations are depth integrated to obtain the shallow water equations. A novel
approach to the approximation to both bed friction and lateral shear stress terms
was followed. The relationship between the shallow water equation and the 1-D
St Venant equations is explored. This review of the mathematical aspects of river
and floodplain flows provides the physical and theoretical basis of much of the
following work on compound channels.

A literature search is presented into flow mechanisms in straight compound
channels. The important flow mechanisms are identified and possible techniques
of accounting for their effects on the conveyance capacity of straight compound
channels are identified. A simplification of the 2-D shallow water equations
results in the technique called the Lateral Distribution Method (LDM). A suitable
finite difference technique was applied to the basic differential equation and
combined with the most promising lateral eddy viscosity model, based on bed
shear stresses.

ote
The available laboratory and field data  used to investigate the performance of

the LDM and the range of non-dimensional eddy viscosities. The LDM is
compared with methods developed by other authors.
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A literature search into flow mechanisms in meandering compound channels is
presented. The important flow mechanisms are identified and strategies for
accounting for the effects on the conveyance capacities of meandering channels
are identified. A semi-empirical analysis of the best laboratory data available is
carried out and improved methods of discharge estimation for meandering
channels are derived. These new methods were verified against independent
laboratory and field data.

Strategies for future research are presented. These should concentrate on the
collection of reliable field data to confirm findings based on laboratory data and
the development of sophisticated numerical models, which may then be used to
extend the detailed understanding of the complex mechanisms present during
compound channel flows.

In summary the author has derived and developed an improved version of the
lateral distribution model for discharge estimation in straight compound channels.
This model is shown to be superior in many respects to existing models.
Laboratory and field datasce used to investigate the behaviour of possible lateral
viscosity models and the use of a single value of non-dimensional eddy viscosity
is found to be adequate in a wide range of situations. The author has also
derived two new models for discharge estimation in meandering compound
channels. These models are verified against the available laboratory and field
data and are shown to be superior to the existing methods.

For convenience this thesis is presented in two volumes. Volume 1 contains the

main text of the thesis and volume 2 contains the tables, figures and appendices
referred to in volume 1.
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NOTATION

constants

i,j/th elements of arbitrary tensors

3x3 matrix defined in chapter 3

cross-sectional area

unsubscripted, cross-sectional area of main channel
the inverse matrix ofA

the elevation of the channel bed

ratio of an arbitrary sloping area to its horizontal
projection

top width of main channel

coefficient in equation for zone 1 adjustment factor
constants

Chezy bed friction parameter

length coefficient for expansion and contraction losses,
zone 2

side slope coefficient for contraction loss, zone 2

side slope coefficient for expansion loss, zone 2
shape coefficient for expansion and contraction losses,
zone 2

the i,j/th element of the 2-D convection tensor

the 2 - D convection tensor

element of area with arbitrary orientation

the projection of ds onto a plane with normal

vector lying along the m coordinate direction

the i/th component of the force vector which acts

on an arbitrary sloping surface

the force vector which acts on an arbitrary sloping
surface

the local depth of flow

median size of bed material

the i,j/th component of the rate of strain tensor

the rate of strain tensor

Darcy-Weisbach friction factor due to bed friction only
Darcy-Weisbach friction factor due to channel bends
the i/th component of the body force vector

Total Darcy-Weisbach friction factor due to bed friction
and bends (f + f;)

ratio of flood plain and main channel Darcy-Weisbach
friction factors

parameter in Ranga Ragu’s resistance law

Froude number

factor for non-friction losses in zone 2 associated with
main channel geometry

factor for additional non-friction losses in zone 2
associated with main channel sinuosity

the body force vector

the gravitational acceleration
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the elevation of the free water surface

hydraulic depth of main channel, = A/B

head loss through a bend

the unit vector in the r/th coordinate direction

the unit vector in the x coordinate direction

the unit matrix

the unit vector in the y coordinate direction
Nikuradse’s roughness size

coefficient in equation for zone 1 adjustment factor
factor for expansion and contraction losses in zone 2
contraction coefficient

bend loss coefficient

the unit vector in the z coordinate direction

length of bend

length of bend required for fully developed secondary
currents

meander wavelength

length of straight cross over

coefficient in equation for zone 1 adjustment factor
the i/th component of a general stress vector which acts
on an arbitrary sloping surface

the general stress vector which acts on an arbitrary
sloping surface

the stress vector above defined for the channel bed and
the free water surface respectively

Manning’s friction parameter bed friction only
Manning’s friction parameter including bend losses
the unit vector

parameter related to free vortex flow

the mechanical pressure

the i/th component of the unit flow vector

the unit flow vector

discharge

zonal discharge

calculated discharge

measured discharge

main channel bankfull discharge

total discharge

adjustment factor for zone 1 discharge

mean radius of curvature

outer radius of curvature

inner radius of curvature

the 1,j/th element of the Reynolds’ stress tensor
hydraulic radius

Reynolds number

the Reynolds’ stress tensor

channel sinuosity

the slope of a general surface along the i/th
coordinate direction (S, ,S,)

flood plain gradient
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friction gradient

cotangent of main channel side slope

cotangent of flood plain side slope

gradient associated with transverse secondary currents
gradient associated with fully developed transverse
secondary currents

the time variable

temperature in degrees centigrade

the i,j/th element of the effective stress tensor

the effective stress tensor

the i/th component of the 3-D instantaneous velocity
vector (u, v, W)

the i/th component of the 3-D temporal mean velocity
vector (u, v, w)

the x component of the 3-D velocity vector

the i/th component of the 3-D fluctuating velocity vector
W’ v, w)

the i/th component of the 2-D depth averaged velocity
vector (U, V)

the x component of the 2-D depth averaged velocity
vector

the 2-D depth averaged velocity vector

the y component of the 3-D velocity vector
transverse velocity

transverse velocity at the water surface in the centre of
the channel

fully developed vrc

the y component of the 2-D depth averaged velocity
vector

flow velocity

shear velocity

the z component of the 3-D velocity vector

the i/th component of the 2-D wind velocityvector
width of zone 2

width of flood plain

the 2-D wind velocity vector

a set of right handed cartesian coordinate axes

a set of coordinate axes

flow depth

average flow depth at position along bend where
secondary currents become fully developed

flow depth on flood plain at main channel bank
dimensionless flow depth on flood plain, = y2/(A/B)
vertical distance

angle between cross over length of main channel and
flood plain centre line

the elevation of either the channel bed or the free
water surface
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Subscripts :

1,j

[y

bf
ave
calc
meas

an arbitrary angle

the,j/th velocity distribution factor

the kronecker delta

the local rate of expansion

an arbitrary angle

arbitrary functions describing the vertical variations of
components of the velocity vector over the flow depth
parameter related to bend angle

parameter in Ranga Ragu’s resistance law

von Karman constant

fluid density

kinematic viscosity

shear stress

shear stress due to channel curvature

shear stress due to friction only

the viscosity of a fluid

the kinematic viscosity of a fluid

the kinematic eddy viscosity

the 1,j/th element of the internal stress tensor

the internal stress tensor

the 1,j/th element of the deviatoric stress tensor

the i/th component of the shear stress vector acting on
the channel bed

the i/th component of the shear stress vector acting on
the free water surface

the deviatoric stress tensor

the shear stress vector acting on the channel bed

the shear stress vector acting on the free water surface

angle of bend required for fully developed secondary
currents

mean angle between flood plain centre line and main
channel centre line

the angle between the coordinate directions p and T
known as a direction cosine

dummy variables which can take the values 1,2 or
3 representing the x,y and z cartesian coordinate
directions respectively

zone 1

zone 2

bankfull

average

predicted value

measured value

measured value

predicted value
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Operators

the partial derivative operator with respect to x;.

The repeated index convention for tensor notation has
been used, see Appendix 1, section 2.
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CHAPTER 1
INTRODUCTION

River flooding and compound channels

The river engineer is faced with the problem of calculating discharge capacities, in
natural and man made channels, on a regular basis. These calculations are required
for a variety of purposes such as water supply, drainage, flood alleviation or pollution
monitoring schemes. In certain circumstances the traditional methods of discharge

estimation are known, or thought, to be inaccurate.

One such case is during overbank flow, when a river has flooded. Figure 1.1 shows
a typical simple or compact channel, and Figure 1.2 shows a compound channel.
Compound channels are very common, both in natural and man made rivers. During
normal periods the flow is restricted to the main channel and only affects the berms
or floodplains during unusually high flow conditions. The flood plains of rivers are
generally developed by man for residential, industrial or agricultural use. Indeed
many of the early civilizations in history were founded along river valleys subject to
periodic floods. The regular flooding of the fields enriched the land by depositing
minerals and sediments. This natural irrigation and fertilization of the land allowed
these societies to support large numbers of inhabitants and to develop sophisticated

societies.

While in a rural agricultural area such flooding may be generally beneficial there
comes a point where the size and duration of the flood is such that the good effects
such as irrigation and fertilization of fields are negated by the destruction of homes
and infrastructure and the loss of life. A modern day example is evident in
Bangladesh, where a largely rural population rely on the regular inundation of their
fields to provide the correct conditions for the rice crop but who are also at risk from

larger floods, which regularly kill thousands and destroy crops.

In more developed countries the floodplain is often developed for mainly residential

or industrial uses. In these situations the tolerance of flooding is much reduced



compared to agricultural situations, even a comparatively small flood can cause a

large economic loss to individuals and the general economy.

The river engineer is involved in predicting the effects of floods and in developing
strategies or schemes to mitigate the damage floods inflict on human activities. In
order to carry out these roles effectively the engineer requires techniques which allow

the conveyance capacity of compound channels to be accurately assessed.
Research strategy

The purpose of the work presented in this thesis is to investigate methods of
calculating conveyance, or discharge, capacity of compound channels. There is a
general body of opinion that traditional hydraulic techniques are in some way
deficient if applied to compound channels. Much of the early literature sets out to
prove this and directed later work into describing, measuring and understanding the

mechanisms which make this true.

The approaches which have been followed, to various aspects of this topic in this
thesis, reflect the perceived need for research, the available information and possible

solution techniques. In particular the following questions are addressed:

1) What is a compound channel?

2) Are there problems in assessing the conveyance capacity of compound
channels?

3) What research has been carried out into these problems?

4) Is there a clear consensus on which are the important mechanisms and

parameters, which control the conveyance capacity of compound channels?
5) Given the current state of knowledge of flow mechanisms is it possible to
develop or construct improved methods or models which the practising

engineer may use?

As a preliminary, to addressing these questions seriously, the following chapter
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reviews the formulation of the equations which govern the flow of fluid within the
river and floodplain environment. The starting point are the 3-D Navier Stokes
equations. These equations are generally simplified by following Reynolds’
approximations to deal with the small scale turbulent fluctuations. Applying the
Boussinesq eddy viscosity approximation and integrating the Reynolds’ equations
through depth results in the shallow water equations, which describe the flow of fluid
in a two dimensional domain with a free surface assuming that the discharges and
velocities are uniform in the vertical. Further simplifications are possible by
integrating the shallow water equations across a channel and result in the 1-D St

Venant equations.

A sound working knowledge of the various possible equations and associated levels
of complexity, which may be used to describe river and floodplain flows, is essential
to understand both the context and the technical details of research in to compound
channels. In general for straight compound channels most approaches are based on
providing some procedure for adjusting the discharges calculated by simple 1-D

$

theory. While in the case meandering channels 2 or 3 dimensional theory and

analysis is more appealing.

A review of the literature shows that the cases of straight and meandering compound
channels are different. There are contrasts in the strength and type of mechanisms
which affect the conveyance capacities in these two cases. Consequently this
investigation considers straight compound channels (chapters 3 and 4) before

progressing to the more difficult case of meandering channels (chapters 5 and 6).

Experimental and theoretical modelling of straight compound channel flows is
reviewed. The important mechanisms, which affect the discharge capacity of
compound channels, are distinguished and various procedures which account for these
mechanisms are identified. A new procedure, based on a simplification of the
shallow water equations and a simple turbulence model, which provides the lateral
distribution of flow across a channel is identified and developed. An investigation

of the behaviour of the LDM against the available laboratory and field data from



straight compound channels is carried out. A comparison between the new method

and existing techniques is carried out based on laboratory and field data.

Any study of flows in meandering compound channels is handicapped by the relative
sparseness of the available laboratory and field data. Before progressing to devising
some model or procedure for calculating the discharge capacity of a meandering
channel and floodplain it is necessary to review the data available and summarise the
main conclusions and findings from these studies. A secondary requirement is to
review the effect of channel meanders on the inbank conveyance capacity of a
channel, this is a logical precursor to the more complex situation of overbank flow
in meandering compound channels. The important mechanisms which affect the

discharge capacity of these channels are identified.

A further literature review is presented covering proposed methods of calculating
discharges in meandering compound channels. A promising method is then
developed on the basis of the SERC FCF Phase B data and data from the University
of Aberdeen. These methods are then tested and verified against laboratory and field
data.

The methods identified above are all based on relatively simple conceptual models
based on traditional engineering concepts for flows in straight channels. Flow in
compound meandering channels is very complex and the development of methods to
analyze it accurately will probably follow directions that are highly computational.
The development of suitable 3-D models including sophisticated turbulence models
is the ultimate goal of much research and the SERC FCF Phase B data is an
important data set to use in the validation of such models. A slightly simpler
approach would be to develop a 2-D depth integrated model with turbulence terms

and this approach is useful in the case of straight compound channels.

The initial intention was to develop a 2-D finite element model based on the shallow
water equations and continue the work of Samuels (1985). However the work

involved in developing such a complex numerical model was prohibitive and it was



felt that it would be useful to develop a simple hand calculation technique which

could provide the engineer with a method of obtaining a reasonable first estimate of
the discharge capacity of meandering compound channels. This form of analysis can
be seen as an intermediate step towards the development of more sophisticated
models.

It was felt that the methods should be developed to be design oriented and expressed
in terms of physical parameters which are meaningful in a design context. For
example, the dependence of channel capacity on design variables, such as cross-
section shape and size, should be fairly explicit and should not be expressed in
terms of variables which are easy to apply to simplistic laboratory channels but

difficult to apply to natural rivers.

To ensure a degree of generality in the design methods, it was decided to base them
on conceptual models of the physical processes involved in dissipating energy and
determining flow structure. The SERC datau“used to quantify these processes, in
terms of geometric and fluid state parameters. This involves theoretical and empirical
formulations. The relative importance of the individual processes varies with the
scale of the physical system, and possibly also with the flow condition. Separation
and individual treatment of the processes should account for the effects of these
variations on the required predictions (of stage-discharge relationships, for example)
better than if these were made in terms of the geometries and fluid state parameters
directly. The approach will also have the advantage of being able to include data
from different sources and obtained under different conditions, and will allow the
methods to be easily modified as new results and analyses become available in the

future.

The division of the channel in to four zones as proposed by Ervine and Ellis (1987)
was adopted as the most flexible approach. The stage-discharge relationship for a
compound meandering channel is predicted by dividing the cross-section into zones
and calculating the zonal discharges separately. The division is by a horizontal line

at bankfull level and a vertical line on either side of the meander belt.
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A comparison of the new methods and existing procedurés is carried out. The
methods are applied to predict the stage discharge values for a selection of the
laboratory data available. In some cases zonal discharges were also measured and
these provide a check on the predicted distribution of flows in addition to total

discharges.

To summarize, the nature of the work presented in this thesis falls into two main

areas:

1) The review of earlier experimental and conceptual modelling of flood plain
flows.

2) The development of useful models for the conveyance capacities of

compound channels.

Much of the work presented is based or verified against data from Phases A and B
of the SERC FCF work. The Author was not part of the official FCF programme,
however the work presented complements the official programme. The main original

contributions made are:

1) The derivation of the unit flow form of the shallow water equations, including

the B factor in the bed friction terms.

2) The use of the unit flow version of the lateral distribution equation to obtain
flow distributions in straight compound channels. This model is applied to

a much wider range of laboratory and field data than previously available.
3) The development of a new method for estimating conveyance capacity of

meandering compound channels and its verification against the widest

available range of laboratory and field data.
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CHAPTER 2
THE EQUATIONS OF RIVER AND FLOODPLAIN FLOW

21 Introduction

As mentioned in the previous chapter there were two main aims behind the work
presented in this thesis. The first intention was to develop an understanding of
the physical processes which affect the conveyance capacity of compound
channels. Following on from this understanding it should then be possible to
develop improved models which will accurately predict the important aspects of
over-bank flow. In order to fulfil these aims it is necessary to be familiar with
the basic physical equations of fluid flow. Our limited understanding of the
problems leads us to suppose that any such model wift be computer-based. The
development of a deterministic computer model which adequately describes a
physical phenomenon, such as fluid flow, can be categorised into at least four
distinct stages:

1)  Identification and application of the governing physical laws expressed in
appropriate symbolic form - The conceptual model.

2) The introduction of simplifications and assumptions to produce a
mathematical model which describes the system to the required degree of
complexity - The mathematical model.

3)  Application of the chosen algorithms (numerical techniques) to approximate
the solution to the mathematical model - The numerical model.

4)  Combining the numerical model with prototype data, (topographic, boundary
roughness, fluid properties etc.), followed by implementation on the chosen
computer system. - The computational model.

Each one of these stages involves the use of explicit or implicit assumptions and
simplifications. These will affect the models’ range of applicability; the accuracy
of the solution it produces, (if it actually does give a unique solution), and the
cost of using it to solve the original problem.

This chapter describes the first two of the above stages in an attempt to
understand the type of processes which may operate and as a first step in
developing a computational model of flow in a river channel floodplain
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environment. The following section describes the basic equations governing the
motion of fluids. Section two deals with integrating these 3-D equations over the
flow depth to produce the 2.0 equations. And the final section of this chapter is
concerned with approximating the boundary shear stress terms which arise from
this integration process.

22 The basic equations of fluid flow

221 Introduction

This section forms a preliminary to the following section in which the equations
outlined below shall be integrated over the flow depth to produce the so called
two dimensional depth integrated or shallow water equations. This approach to
the problem of free surface flow in areas which are two dimensional in plan is
not new. For example see Leendertse (1967), Kuipers and Vreugdenhil (1973),
Falconer (1977), Tong (1983) and Samuels (1985). The main attraction of basing
a model on the integrated equations is the reduction in complexity and cost of
using the computational model; while still providing a sufficiently detailed
description of the flow for many practical purposes.

There are two methods of deriving the 2-D depth integrated, or depth averaged,
equations:

1)  Integration of the equations of three dimensional fluid motion over the flow
depth, applying suitable boundary conditions at the channel bed and free
water surface.

2) The so called ’Engineering’ approach of isolating a free body, or control
volume. Identifying the forces acting and applying Newtons’ laws from
first principles. The engineering method is comparatively simple to
understand and apply. But some care is required in the resolution of the
forces acting on the control volume. The explicit integration approach,
although more difficult to carry out, has the advantage of being
mathematically more rigorous and is adopted here.

222 The 3-D flow equations

The basic equations describing the motion of "a continuous medium, such as a
fluid, are easily derived using Newtons’ laws of conservation of mass and
momentum (see Batchelor (1967) and Hunter (1983)). Expressed in terms of a
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right handed cartesian coordinate system they are as follows: Note : The
equations in this chapter are expressed in standard tensor notation wherever
possible - see Appendix A.

The continuity equation

op ooy
aw t o O | (1)

The dynamic equation

apy (4 W _8a _
at tY ox; et x; 0 (22)
Where:

£ the i/thcomponentof the body force vector E

t time variable

y; the i/thcomponentof the velocity vector u.

x; the i/thcoordinate direction in the cartesian system.
p the fluid density.

q; the i,j/thcomponentof the internal stress tensorg.

Subscripts :
ij dummy variables whichcantake the values 1.2or 3 representing the x,y andz
cartesian coordinate directions respectively.

Operators :
[ . Lo .
3, the partial derivative operator with respect to x;.

Note: The repeated index summation convention for tensor notation has been
used, see Appendix A, Section 2.

The following sections form a brief description of the body force vector, the
internal stress tensor and the effects of turbulence. This is felt to be necessary
because the following chapter will deal, in some detail, with the problems posed
by these terms during the integration process.

223 The body force vector

This term represents the effect of the environment on the bulk matter of the fluid.
Typical body forces include gravity and co riolis accelerations. If we consider a
cartesian coordinate system which has the z axis aligned vertically upwards, (We
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shall refer to this set of cartesian axes as the NATURAL coordinate system and
any other set of cartesian axes as a LOCAL coordinate system), then the body
force vector due to gravity is : E = (0,0, -g)

0ifi=12 -
-g ifi=3 (23)
Where

f; the i/thcomponentof the body force vector, E

g the gravitational acceleration.

224 The internal stress tensor

The internal stress tensor g represents the short range forces exerted on the
boundaries of a fluid element. The element g;of gis the i/th component of stress
exterted across a plane surface which is normal to the j coordinate direction,
(Batchelor p.10, Hunter chapter 4). It is possible to write gin the matrix notation
shown below:

f %o Gy G
g = { %, %, q,x I (2.4)
Y ay, azy’ a, *

The elements which lie on the leading diagonal, (o, i=j), are the normal stresses
acting within the fluid. All the other elements, (g;, i#j) are the tangential or shear
stresses. It is simple to show that g is symmetric, (g; . ¢; and has only six
independent components. When considering a moving fluid it is convenient to
regard gas the sum of an isotropic part, P.I, and a deviatoric part, z.

i = 05 ij 29)

P is the mechanical pressure definedas!/, of the raceof g

=15 0=1; (6+ ay + o)
the kronecker delta, the elements of the unit matrix : I

]

the deviatoric stress tensor, by definitionz; = 0. Its components, ;, are zero

1}

in a motionless fluid.

In stationary fluid P is the actual pressure, since only normal isotropic stresses can
exist. |
if i=j

1
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Substituting equation 2.5 into the dynamic equation, 2.2, gives Stokes’ equation:

g:’—q+u?‘%-pﬁ+ g—l:-i-a%i(-j = 0 @)

Equation 2.7 is quite general and is applicable to any type of fluid. The main
problem arises in estimating the stress terms. The pressure, P, is a function of
position within the fluid and, in general, is one of the unknowns which are to be
determined. The shear stresses are also unknown but are often assumed to be
related to the local rates of strain occurring in the fluid. These assumptions result
in the so called constitutive equations of the fluid. It is clear that the simplest
constitutive relationship possible is:

5 =0 (28)

Which reduces 2.7 to 2.9, Euler's equation of motion for an ideal fluid. ( An ideal
fluid is one in which only normal stresses can exist.)

g‘f—q-+ujg;’7q-pﬂ+g—5;=0 (29)
However in many fluids the shear stress terms are not known to be neglible in
advance and we must make use of a more general assumption. The simplest, non
trivial, relationship is applied to the so called Newtonian fluids; in which the
deviatoric, (shear), stress terms are assumed to depend on a linear combination of
the local velocity gradients thus:

= (6.3 486 (210)

Where :
e; . the i,j/thcomponentof the rate of strain tensor, E, given by:

1 . 3y ou. .
& =3l %, + ax; J (2n)

i the fluid viscosity
4  the local rate of expansion= ¢;

The introduction of 2.10 into Stokes’ equation results in the Navier - Stokes
equation of motion:

opY 9y Pk 3 ) —
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225 Incompressible fluid

In the case of a fluid with uniform, fixed density the continuity equation

simplifies to:
3—2 (213)

Equation 2.13 and the assumption of uniform density allow the convective terms

in the dynamic equations 2.2, 2.7, 2.9 and 2.12 to be written as:

apy ou;u.
L1 = —iJ
Yok P o, (214)

Similarly the local rate of expansion, 4, is zero in an incompressible fluid and s

is given by :
. oy, ou; .
Boe il sy e
or
. oy au. .
T o= v 5—)(—: +3—7€'i )] (2.16)

Where v is the kinematic viscosity of the fluid defined as: v = u/p. Hence the
Navier - Stokes equation of motion for a uniformly incompressible Newtonian
fluid can be written as:

oy, uu. 1 9P 3 . .oy u, ..
— —ii . f - - 2_ i — =0 2.17
ot x; i+ p 9X; x; wi ox; + ou; 3 @17

Equations 2.13 and 2.17 are the basic equations describing the motion of many
fluids of practical interest, including water. They are the basis of all the
following discussions relating to the mechanics of flow over a river
channel/floodplain environment. However they are non-linear and in practical
applications invariably give rise to the phenomenon known as turbulence. The
following section describes the basic characteristics of turbulence and its
consequences in fluid flow.

226 The effects of turbulence

Turbulence is characterised by high frequency, low amplitude fluctuations, in the
flow variables and although the above equations do describe turbulent flow, the
resolution of the turbulent fluctuations is prohibitive. The normal approach taken
is to derive equations describing the bulk (or temporal) mean motion of the fluid.
This is the statistical theory of turbulence due to Osborne Reynolds (1895) who
introduced the concept of first replacing an instantaneous value with a mean and
fluctuating component and then taking an average over time. The time period, of
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the averaging, is normally considered to be large in comparison with the periods
of the turbulent fluctuations but small relative to the changes taking place in the
mean flow.

For a detailed description of this process see Reynolds (1974), chapter 1, or Tong
(1985), Appendix A. For our purposes it is sufficient to note the resulting, (so
called Reynolds’), equations of incompressible turbulent flow for a fluid with
uniform density :

The continuity equation

ou;

xi 0 (218)

The dynamic equation

dy; Ju.u, 1P 9 . ou ou .. 9 . —, .

— g A f e — W=+ 7] — T uuw =0 (2.19)
ot ax; ! p oxX; ox; - vox; oy °° ox; * LI

Where :

u; the turbulent fluctuations in the instantaneous velocity vector
y;  the mean parts of the instantaneous velocity vector
And the overbar signifies a temporal mean value

It is obvious that 2.19 differs from 2.17 only by an extra deviatoric term.

Indeed the terms (oy-uy) are often said to be analogous to the viscous shear
stresses, and referred to as Reynolds’ stresses. The presence of these Reynolds’
stresses greatly complicates matters, because they give more unknown variables
than equations in the description of the flow. This is the classical closure
problem in modelling turbulent flow. In order to obtain a solution we must make
use of some kind of turbulence model, in general these fall into two categories :

1)  Make some assumption, either arbitrary or empirical, as to the distribution
of the Reynolds’ stresses in the flow. Mixing length and simple eddy
viscosity models are well known examples.

2)  Introduce extra equations, which describe the distribution of the Reynolds’
stresses in the flow field. Examples include the k-¢ model and the
algebraic stress model.
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The literature provides detailed descriptions of the above models. This chapter is
concerned more with giving a brief description of the basic equations of fluid
motion, rather than a full discussion of the practicalities of obtaining a solution.
It is sufficient to note that models falling in the second of the above categories
require large amounts of computer and operator time to set up and calibrate. The
resulting models are far more expensive than ones based on on simpler
semi-empirical assumptions. And in the case of open channel hydraulics can by
no means guarantee a better description of the mean flow. (eg. see Tong, 1983).
It is felt that one of the simpler methods will prove sufficient in our particular
case.

The Boussinesq eddy viscosity concept

Rather than approach the problem of the Reynolds’ stresses directly, it is possible
to make use of the eddy viscosity concept. Stated simply the Reynolds’ stresses
are assumed to be related to the mean flow in the same way as the viscous
stresses in a Newtonian fluid:

— . 3y, du; . :
Where :
T the i,j/thcomponentof the Reynolds stress tensorR

v, the kinematiceddyviscosity.

In practice it is possible to assume that v, is constant or, more realistically, that it
depends on the local flow and turbulence conditions. In which case the purpose
of the chosen turbulence model, whether it is simple or complex, is to evaluate
the distribution of the eddy viscosity rather than the Reynolds’ stresses. In many
flows of practical interest, including almost all open channel flows, the viscous
stresses are small compared to the Reynolds’ stresses and so are neglible. Hence
it is possible to express equation 2.19 as :

oy du,u; 1P 3 . 3y du ..
T TN - . i g = 2.21
at e htopak ok Ml tax ) =0 @2
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23 Derivation of the 2-D flow equations
23.1 Initial assumptions

The following assumptions are usually reasonable when considering flow in a
river channel and over its floodplain. (Samuels 1985, p17)

1)  The flow is turbulent. _

2)  The fluid is uniform and incompressible.

3)  The spatial variation of atmospheric pressure is neglible.
4)  The Coriolis accelerations are insignificant.

S5)  The river bed is fixed (ie. it does not change with time).

Of the above assumptions only 4 and 5 cause any loss of generality in the
resulting model. The Coriolis accelerations are produced by the rotation of the
earth. And can be regarded as a type of body force, which is present only in
accelerating frames of reference. In general it is likely that, in the case of
floodplain flow, these terms will be small compared to bed friction. However
where the rate of flow is low or the depth large, causing bed friction to be less
important overall, the Coriolis accelerations may need to be included.

The assumption of a fixed channel bed is widely applied in all areas of
hydraulics, even elementary sediment transport problems have been tackled in this
way. Of course, intuition and observation imply that it is not strictly true. But,
in view of some of the other assumptions and approximations we shall be forced
to introduce, it is reasonable to assume that the channel bed has a mean overall
shape. And that it will vary around this mean depending on the changing flow
characteristics.

Obviously assumptions 1 and 2 above give equations 2.18 and 2.21 as the starting
point in deriving the 2-D flow equations. Also required are the boundary
conditions on the free water surface and the channel bed. These are obtained by
applying the kinematic condition of no relative normal motion, (Batchelor,
p60-70), giving :

Z, L 2, 2

Where Z is the elevation of either the bed or the water surface. Alternatively by
assumption 3, equation 2.23, the zero slip law, could be taken as the boundary
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condition on the bed. It does not matter which is used since both expressions
result in the same final 2-D equations.

y=0 (i=1,2,3) (2)

Note: Equation 2.23 is only true for fluids with finite, non-zero, viscosity.

232 The 2-D continuity equation
Considering the Natural coordinate system, then the 2D continuity equation is
obtained by integration of equation 2.18 over the flow depth :

Moy
’Ib e dz=0 (224)

1
Where:

h the elevation of the free water surface.
b the elevation of the channel bed.

Application of Leibnitz's rule to equation 2.24 gives:
—Jrudz+a—fvdz-|u—+v—-W| =0 (225)
y J b
Defining the components, g;, of the unit flow vector g as :
l'h o
Judz=4 (i=1,2) (226)

And replacing the boundary terms in equation 2.25 with equation 2.22 gives :

sh s _ 2

T A x = 0 (i=1,2) (227)
Which simplifies to equation 2.28 under assumption 3:

oh aq;

= + 5-x: =0 (2.28)
233 The 2-D dynamic equations

The two horizontal depth integrated dynamic equations are obtained in the same
way as equation 2.28. Unfortunately this is not as straightforward as above, due
to the more complex nature of the dynamic equation 2.21. The initial difficulty
relates to the distribution of pressure with depth. And in order to resolve this
problem the z component of the dynamic equation is considered in isolation.
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The introduction of assumption 6, vertical accelerations small compared to the
effect of gravity, also allows the shear stresses, in this component of the dynamic
equation, to be neglected. Hence if gravity is the only body force present then
the dynamic equation in the z direction is given by :

1 aP
3 + g =0 (229)
Integration of 2.28, combined with the condition that P=P, at z=h, results in the
hydrostatic pressure distribution :

P=P,+pg-2) ( 2.30)

Where P, is the atmospheric pressure. The required assumption of small vertical
accelerations is a serious limitation in the following derivation. It limits
application of the model to situations in which no secondary currents exist.
Which is certainly not the case in a natural river channel, where structures such
as meander bends, weirs and steep banks can all generate secondary currents.
However, the adoption of assumption 6 is the only practical option and so we
shall proceed to make use of equation (2.30), bearing in mind the above
reservations. It is possible to include the effects of certain types of secondary
currents in the model. This can be achieved by systematically adjusting the
values of the velocity distribution factors, which are defined below. However,
further work is required to identify when it is necessary to introduce this
complication, to obtain an accurate picture of the overall flow pattern. If we now
consider the x component of the dynamic equation and integrate through depth
thus :

'fh ; du ou? + duv + duw + 1 8P

Jp * ot ax oy oz p X

1 _oar, ar o, . -

I Ty 4T = 3
> U + 3y + 5 i]dz=0 (231)

Applying Leibnitz's rule to the first four terms in 2.10, recognising that the
boundary terms reduce to zero by 2.22, results in the expressions below.
h h o

r 9 ' 5 i
Jbu dz+ = ’lbu dz +W J|buv dz (232)

Y
-~

If we follow Miles and Weare (1973) or Samuels (1985) and consider the vertical
variations in velocity to be given by expressions of the form :
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X (2.33)

where &, and &, are functions of z, (eg. the well known logarithmic distribution).
U and V are the x and y components of the depth averaged velocity vector U ,
defined by 2.34.

U=q;/D (i=12) ' (234)
Where D is the flow depth = (h-b). Note:In the general case the functions,&;(z),
vary in the two plan coordinate directions,x andy. It is simple to confirm that:

f#,dz=D (235)

Defining the components, C;,, of the 2-p convection tensor C:

ij?

h
f .
Cij = le = Jl ui Uj dz (1=1,2) (2.36)

b

And the velocity distribution factors, a;, as :

1. .
5 ] 29 dz j (237)
b

Then it is possible to write € in matrix notation as :

x> > Oy 0xGy

c= (G = | T 9
T 4y @4,
So, for example, from 2.37 and 2.38 the term C,, is given by :
h 2
Cy = J|' wdz = ZGC (2.39)

b D

Samuels (1985, p25) shows that if the velocity distributions are power laws then
the « factors are identical and lie in the range 1.021 to 1.008. However, he makes
use of a power law approximation to the logarithmic law with values of the
exponent which give good agreement, between the two, only for relatively smooth
channels. The presence of other factors, such as the lateral shear layers observed
at channel—floodplain interfaces or secondary currents in channel bends, will also
affect both the values and the distribution of « through the induced non
uniformity of the vertical flow profiles. These complications have generally been
ignored in practice and the « factors taken to be unity. This is certainly
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reasonable in situations such as flow in river estuaries or tidal currents in very
large scale marine environments, (see Miles and Weare, 1973). However it is, at
present, not at all clear whether the same is true in the case of floodplain flow,
and further research is required on this point.

Some authors consider the vertical variation of velocity as producing terms
analogous to the depth integrated Reynolds’ stresses (see for example Falconer,
1977 or Kuipers and Vreugdenhil, 1973. However Samuels, 1985 (p.37) shows
that in certain circumstances the resulting equations give spurious solutions, which
cannot exist in practice. Considering integration of the pressure term :

Jlr — dz (2.40)

— (h-z) dz (24)

By applying Leibnitz’s rule and evaluating the resulting integral and boundary
expressions it is easy to show that equation 2.41 becomes :

oh
g D T (242)

Term 2.42 shows that the net effect of the fluid weight, on its motion, can be
considered to operate through the water surface gradients. Turning attention to
the Reynolds’ stress terms in equation 2.31 and again applying Leibnitz's rule it is
possible to show that :

®

1 ¢ XX
- Px xy 2 3 dz =
pJ'bI‘aX + oy + oz !
1 .9 ch 0 ch
- - i{—=1iir, dz — [ ir,,dz 7 1 2.43
7 lax [ J+ayt,'bxy 1] (2439)
- 1 ir oh + T oh -T,, | (2.43v)
p - = X ¥y * ch '
1 . ab ab -
+; | Txx X + Iy W . ‘lb (2.43¢)

The boundary terms, 2.43b and 2.43c, are generally referred to as the wind and
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bed shear stresses, 7,, and 7, respectively. It can be shown that they are related
to the stresses which act on the sloping boundaries, (see the following chapter).

The integral expressions in 2.43a can be considered to be the elements , T, of the
effective stress tensor T, where :
r h .
Ti=Ti= | T dz (i=1,2) (244)

Equation 2.44 may be evaluated by replacing the Reynolds’ stresses with 2.15.
For example:

h h  3u
f s
T,, = r.,. dz = 2 v, — dz 2.45
xx }b xx P J'b tax ¢4)
h h ou v
r r . ~
Ty = Jbrxy dz = p JbUL Cay + o 1dz (2.46)

In order to evaluate equations 2.45 and 2.46 some knowledge of the vertical
distribution of the eddy viscosity is required. The simplest approach is to assume
that v, only varies in the horizontal directions (x, y) in which case equation 2.45
becomes:

. oh ab .
2py g—%‘ -2y |, x uba? ] (2.47)

Where the terms of the form

. oh b .

Py [uy o= - U ] (2.48)
represent boundary shear stresses which act on the vertical projection of the
sloping boundaries. Most authors neglect these stresses as small compared to
those acting on the horizontal projection and so simplify 2.45 and 2.46 to 2.49,
(see for example Tong, 1985).

T, [ 4 % 4

G = [ + ] i=1,2) 2.49
! Y %, 3, ( (249)

Attempts have been made to account for the vertical variation in v, by use of a
general mixing length model (eg. Falconer, 1977). However it is necessary to
assume that the velocity gradients in the vertical direction are much larger than
those in the two horizontal directions and that the mixing length is given by an
expression which is consistent with a logarithmic velocity profile and a linear
shear stress distribution. This approach is fundamentally flawed, since this
mixing length expression is only strictly applicable to stresses which lie on
horizontal planes. In any case the resulting expressions are extremely difficult to
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evaluate, the solutions given by Falconer (1979) being rather dubious
approximations. It is felt that expression 2.49, although based on the rather
arbitrary initial assumption of constant eddy viscosity with depth, will prove
accurate enough for most purposes. It is interesting to note the similarity between
249 and 2.16 and that the depth integrated effective stresses are directly
analogous to the Reynolds’ stresses in three dimensional flow.

Assembling the terms resulting from the above integration the x component of the
dynamic equation is:

q, ., 3 . ¢ . 3 . qQ. 3h
t tow g1t gy ley I+ gD
(2.50)
1 1 ot aT
R - - ] X XY 3 =
p (1wx- rbx) P L X + ay ] 0

By symmetry the 2-p dynamic equation can be written in tensor notation as

shown.
% + oG;; eh 1 ooy lomy
5 : +gD — (i - o) x 0 (2.51)

Where Cij andT;j; are defined by equations 2.38 and 2.39 respectively. For com-
pleteness the 2-D continuity equation is :

sh 3q; :
= + x = 0 (i=1,2) (252)
The following section considers the bed and wind stress terms and examines the
assumptions adopted by previous authors.

24 Modelling the boundary shear terms
24.1 The boundary stresses

It was demonstrated in the previous chapter that depth integration of the
Reynolds’ stresses produces two types of boundary shear terms in the 2.0 dynamic
equation. The terms which involve the eddy viscosity and the boundary
gradients, equation 2.46, are generally neglected, leaving the terms below in the
final equation.

Tox = | T oh + T sh "I, ] (253)
wX ¢ X ax Xy ay Xz “n
f,= | T a—b +T a—b -I,, | (2.54)
bx Lixx ax xy ay xz b
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Most authors simply assume that these expressions represent stresses acting on the
sloping surfaces. In order to show that this assumption is reasonable when the
boundaries have small slopes, and to provide a better approximation when they
are not, we must define the LOCAL coordinate system.

242 The local coordinate system
Consider a plane surface which passes through the origin, in the NATURAL
coordinate system this plane is defined by :

ax + by+cz =0 (2.553)
or

z =-(/c)x - (bjo)y (2.550)

Defining the slopes of the surfaceas:

0z .
S, = 3, =12 (2.56)

it is apparent that s, = -a/c ands, = -b/c so equation 2.55b becomes :
x y

z=S,x+ S,y (257)
From simple geometry it is possible to write the unit normal to the surface, n, as :

n =1/B (-S,,-S,,1) (2.58)
Where

B=(S2+S2+ 1) (2.59)

Our objective is to define a transformation which takes the @ NATURAL
coordinate system, Xx;, to a LOCAL system, X, in which the Za coordinate direction
lies along the normal to the surface defined by equation 2.57.

Such a transformation can be considered to consist first of a rotation about the y
axis, through an angle a, taking the x axis to the X (X) axis, which lies in the
plane of the surface. And secondly of another rotation about the X axis, through
an angle ¢, which takes the ¥ (y) axis to the § axis and Z to (see Figures 2.1 and
2.2). The first transformation , x - X, is defined by : »

{ = 1icosa - k sina (2.60)
{ =] (2.61)
kK = isine +k cose (262)
X = X cosa - zsina (263)
y =y (264)
Z = X sina + zcosa (2.65)
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and the second one, X - X,by :

i =1 (2.66)
I = { cose + K sine (267)
K = o sine + k cose (2.68)
X = X (2.69)
§ = ¥ cose+ Z sine (2.70)
Z = -ysine + Z cose _ 27)

Where the angles a and ¢ have the lower and upper limits -%/, and %/,
respectively. And the positive sense is given by the right hand rule. To obtain
the desired transformation (x - X) substitute 2.60 to 2.65 into 2.66 to 2.71:

1 = icosa - k sina @n)
] = isina sine 4+ j cose + k cosasine (27)
K = isina cose - j sine + k cosacose (274)
X = X Cosa - zsina (275)
¥ = X sina sine + y cose + zsine (2.76)
Z = X sina cose - y sine + zcCoOSe (2.717)

It is simple to verify that :

1

1=

—q

=

k =7k =0 (278)

and thus show that X is a true cartesian coordinate system. It is convenient to
express the above transformation in terms of the local surface slopes.
Remembering that the unit normal to the surface is given by equation 2.59 and
that k is by definition also the unit normal, then by comparing 2.74 and 2.59 we
obtain :

sina cose = -S,/B 719)
sine = S,/ (2:80)
CosacCose = 1/B (2.81)

by squaring and adding 2.79 and 2.8%, bearing in mind the limits on a and ¢, it is
possible to express cose in terms of the surface gradients :

Ccose =-é(1+ S, Hi2 (2.82)
substituting for cose in 2.79 and 2.81 gives the results shown :

sine = -S,/01 + S;)12 (2.83)
cose = 1/(1 + SHI? (2-84)
Substituting expressions 2.79 + 2.8 | for the terms involving the angles @ and ¢ in
equations 2.75 - 2.77 we obtain the transformation, x - g, in terms of the surface
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gradients. In matrix notation this is written, X = AX, thus :

l,i,l : yC , 0 ’S’/Ciix‘u
i v i = i -D/BC, C/B , Sy/BC! i y i (285)
Lz ! s, ,-Ss/B, yB ‘lz!
The reverse transformation, x = A’IX, is given by:
X : yC , -D/BC, -S,/B : I,'i' :
iy = | 0 ., CB,-sB 151 (26)
tz! L syc,syBC, yB !ly!
Where
B = 52 +S52+ H'”? (287)
C = 52+ DHr2 (2.88)
D = Sx§ (2:89)

It is simple to confirm that 2.85 and 2.86 are allowable cartesian transformations
by showing that A A™ =1 is true.

243 Approximating the boundary stresses

It is possible to use the tensor transformation laws to express the elements of the
Reynolds’ stress tensor in terms of the locally defined coordinate system. By
substituting into 2.53 and 2.54 it is also possible to express r, and 7, in terms of
stress components which are related to the boundary surface. However the
resulting expressions are complex and are no easier to evaluate than 2.53 and
2.54. The stress vector defined by A2-11 represents the stresses acting on a
sloping surface and it is much simpler to relate to the #'s. From the definition of
the plane boundary surfaces, 3.5, and the resulting coordinate transformation, 2.85,
the stresses vector defined by A2-11 has the components :

i/ B (Sx‘&x + Sy‘&y' axz) (2.90)
I/B (Sxaxy + Syayy- ay7) (2'91)

M,
M,

By comparing 2.53 and 2.54 with 2.90 and 2.91 it is clear then that the stresses r,
and 7, can be related to stresses acting on the sloping surfaces by the expressions :

Ty B My on the channel bed (29)
Ti B M,; on the water surface (2.93)

Where the surface slopes are small, (ie sz,Sy2 = 0), B has a value close to unity
and the 7 terms are a good approximation to the stresses on the sloping surfaces.
But when the surface gradients are not small the 7 terms are greater than the bed
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stresses by the factor B, which is considerably larger than unity. B can be
thought of as the ratio of the sloping surface area to its horizontal projection and
is always greater than one. Thus where the surface slopes are likely to be
significant the term :

/P (T, - %) (294)

should be replaced with :

-1/p (ByM,; - ByMy) (295)

in the dynamic equation. The stress vectors M, and M, can be approximated by
empirical expressions, (see below). The inclusion of the factor B in the stress
terms is new in the general context of 2-D flow modelling, although it has been
used in the comparatively simple case of flow in straight, uniform compound
channels, (see Shiono and Knight, 1988, or Keller and Rodi, 1988).

244 The wind stresses

The stresses B,M,,; are assumed to act on the water surface as the result of air
currents blowing across the flow domain. Assumption 6 effectively limits
epplication of the model to situations with small water surface gradients so B,
can be set to unity. M,, is usually related to the wind velocity vector, w, by
empirical expressions of the form :

M,; = const. |W| W, (2.96)

See Heaps (1969) or Connor and Brebbia (1976, chapter 7). Expressions of this
type assume that M, and w both act in the same direction. Samuels (1985) states
that, in the case of flood plain flow, significant wind stresses will occur only at
very high wind velocities and consequently the wind stresses can be neglected.
However in situations where the wind stresses are of the same order as the other
trms in the dynamic equation they should be included in the model. Examples
include modelling tides in coastal regions and circulation in shallow lakes or
hgoons, (in these cases the Coriolis accelerations will also be important).

245 The bed stresses

The correct representation of the bed stress M, is complex and depends on both
te unit flow vector and the small scale characteristics of the roughness elements
vhich make up the channel bed. Details of the shape, orientation and density of
tie bed roughness are unlikely to be available in practice. The usual approach is
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to assume that M, acts along the same direction as the unit flow vector, g, and that
its magnitude can be estimated by one of the well known friction laws, which
were developed for 1-D flow, resulting in expressions of the form :

f
My = 5%2 qG q! (2.98)

Where
f is the Darcy friction factor.

Hence g has components

f
=B 5 6.+ g (29%9)
and
f
% =B 5132 q, @*+ 9,97 (2.99b)

There are two types of expression commonly used for evaluating f :

1)  Empirical relationships derived from observation of flow in real river
channels. The two well known equations of this type are :

a) Chezy's law
f =8g/C? (2.100)

where C is Chezy’s coefficient and has units L12T-!
b) Manning’s equation
f =8g n2D1A (2.101)

where n is Mannings roughness coefficent with units L-13T

2)  Semi-empirical relationships derived from consideration of the turbulent
structure of the flow and the roughness condition of the channel bed.
It is possible to derive two basic equations:

a) The smooth turbulent law

f = Qlog,(f?/251Re))? ' (2102)
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Where Re is the Reynolds' number of the flow defined as

Re = 4D = 4191 (2.103)
14 v
b)  The rough turbulent law.

f = 2log,(148D/k;))? (2.104)

Where kg is the Nikuradse roughness size with unitsof length.

The smooth turbulence law is applicable at relatively low Reynolds’ numbers
where the friction factor depends only on the flow conditions and not on the
roughness of the channel. This type of flow only occurs in situations which are
said to be hydraulically smooth and is extremely rare in prototype river channels,
although it will occur in small scale models. Where low flow velocities and
unnaturally smooth boundaries give smooth turbulent flow.

Rough turbulence, in which the friction factor is determined by the roughness of
the channel boundary and not the flow conditions, is the normal type of flow
which occurs in prototype channels. Chezy's law and Manning’s equation are
also valid only in rough turbulent flow. Both types of flow regime can exist in
any particular channel as can intermediate flow conditions, for which the friction
factor is a function of both Reynolds’ number and bed roughness. None of the
above expressions give the friction factor for these intermediate conditions. This
problem was resolved by Colebrook and White. Who combined equations 2.102
and 2.104 in an empirical way to produce an expression, 2.105, which accurately
estimates the friction factor for nearly all flow conditions.

c¢)  The Colebrook-White equation

£ = (—Zlogm (14.lz:s 5 T R:.Sflm ))-2 (2.105)

The problem with equation 2.105 is that it is not an explicit expression and the
unknown, f, appears on both sides. This makes the finding a solution difficult
and iterative techniques must be used. Equation 2.106 is Barr’s approximation to
the Colebrook-White equation, it is fully explicit and is said to agree with

equation 2.105 to within 1% for Reynolds’ numbers in excess of 1053 See C.kaJ_u‘.ck
and. Morgett (1986)

= (2loge (ke + 23 109
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In general the Colebrook-White equation is best used when modelling flow in
model channels. Where the small length scales and relatively smooth boundaries
cause Reynolds’ numbers to be low and the flow to fall either in the smooth or
intermediate turbulent zones. For a fuller discussion of the above see Henderson
(1966), Webber (1971) or Chadwick and Morfett (1986).

The equations 2.100 to 2.106 are written for the case of a flow area of unit
width and depth D. They are more commonly written for 1-D channels in terms
of the hydraulic radius R, where D in the above equations is given by D = R.

246 Summary of 2-D equations

The governing equations of 2-p depth integrated flow have been derived. In the
absence of body forces, other than gravity, and wind stresses on the the free
surface they are :

Continuity equation

oh G .
s+ x 0 (1=12) (2.107)

Dynamic equation

aq; <y oh Bf
= + =V + gD— + —/q 14!
at ax; V% t et 'd
(2.108)
3 . . aq aq . . .
= iyi= + 11 =0 (i=12)
3x; b oax; ox;
where c;; is defined by:
1 %’ %Ay
c= [CG] = 5 | ! (2.109)
Ty dy, oy’

These equations should adequately describe flow in a river channel-floodplain
environment. The introduction of the factor B in the bed friction term is new and
should improve accuracy compared with existing models. However, this must be
balanced against the increased requirements for topographic data which must be
incorporated. This will undoubtedly increase both the computer storage and
execution time required.
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The assumption of constant eddy viscosity with depth has the advantages of
producing effective stress terms which are consistent with the use of unit flow as
one of the primary variables and which are simpler than those obtained using
more complicated turbulence models. The importance of the velocity distribution
factors, @, in modelling 2-D flow in a river channel and floodplain is unknown
and requires clarification.

25 Derivation of the St Venant equations

In the previous sections of this chapter it has been demonstrated that the 3-D
equations of fluid motion can be simplified to give a set of equations which
describe the motion of fluids with a free surface. = These equations are often
referred to as the shallow water equations. In many practical problems even
these equations are too complex and further simplifications are necessary to
obtain an economical solution. One such case is found when considering flows
in open channels. where the width of an open channel is small compared with
the length and the lateral discharges across the channel are small (or zero) then it
is acceptable to use the 1-D St Venant equations which describe the unsteady
motion of fluids in an open channel. The following sections describe the
derivation of the St Venant equations from the shallow water equation. The main
feature is that the flow is adequately described by sectional average values of the
variables, such as discharge.

25.1 Initial assumptions
In addition to the assumptions underling the Shallow water equations (section
2.3.1) the following two assumptions must also be made.

Consider a channel of arbitary cross-section, with area A and width B. Let the x
axis lie along the centre line of the channel with the y axis pointing across the
channel and the z axis being vertical. See Figure 2.3 for a definition of the
variables.

1)  There is no lateral flow within the channel.
ie. {qy=0. y:y=0andy=B] (2.110)

2) At the lateral edges of the channel the longitudinal flow is zero. This
follows from the no slip boundary condition.

ie. {qx=0. y: y=0,y=B] (2.111)
3)  The water surface is at a wn~\yer elevation at all points across the channel.
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This is equivalent to:
=0 (2112)

4)  The flow can be described by section averaged discharge and stage.

252 The 1-D continuity equation
Under these assumptions the shallow water continuity equation reduces to:
sh 3q, 3q, _
x t o t %y = 0 (2.113)

Integrating this equation from y = 0 to y =B gives:

Applying Leibnitz law to each term in this equation gives us

-:Tf:hdy + :71;8%4. [qy' + q, 3X] =0 (2.115)

applying the assumptions listed in sections 2.3.1 and 2.5.1 to equation 2.115 this
reduces to:

ah B
E’Et' + :-% + [qy]0 =0 (2.116)

This is usually expresed as:

oh 2Q
B 3w tTx =L@ (2.117)

where
Q is the discharge in the cross-section
q, is the nett lateral inflow per unit length of channel

253 The 1-D dynamic equation
Under these assumptions the x momentum equation of the shallow water
equations reduces to :

%, , 22q’ gh . Bf 2 %y =
x v o TPx tiph% v 52711 = 0 (@)

Integrating this equation across the channel width and applying Leibnitz’s law we
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obtain:

2 B 2 B 2 oh
fj;qxdy +5-x—.£]aqx dy +ga—fody

B Bf
+f0 o2 & %! dy (2119)
. 0y - oy 20y B _
+[vu.7.l+qxaT+aq, sl =0

The boundary terms are zero by the assumptions and boundary conditions applied
by the physics of the flow. The internal terms are dealt with as follows.

[lady = Q @120)

fOBa q dy = ffAu2 da =pQ2%/A (2.121)

B is the momentum correction factor defined over the whole cross-section. In
one dimensional flows the Coriolis factor or energy correction factor (a) is also
some times referred to and is defined by equation 2.122.

aQ’/ A =ff u da (2122)
where
foBD dy = A (2123)
B 2 | B
f (Bf / 8D%) q,1q,1 dy = f Br dy (2124)
0 0

This term expresses the effect of the bed friction acting between the channel bed
and the flow. As mentioned above, empirical equations are often used to
approximate this term. The concept of conveyance is useful in expressing this
term. In the case of steady uniform flow it is well known that the channel bed
shear stress is related to the square of the discharge:

raQ?=gAS (2.125)
and

Q =K§; 12 (2.126)
so the bed friction integral can be written as:

g8AS (2127)
Equation 2.126 defines the conveyance, K, of a channel. The hydraulic slope S;
is equal to the bed slope in uniform flow but in the more normally varies
relatively smoothly along a channel. In practice, when solving the St Venant
equations S, is often taken to be the slope of the water surface profile. The
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simple empirical equations which are commonly used to obtain K values are
described in Section 2.4.5 and include formulae by Manning, Chezy’s and
Colebrook White. Further discussion of methods used in calculating K is given
in later chapters.

Combining the various approximations to the integral terms we obtain the 1-D
dynamic equation 2.128.

3Q 3 (8Q\° ah _
5 +a—x(-x-)+gA(5-x-+Sf)-—0 (2.128)
254 Summary of the 1-D (St Venant) equations

We have shown that the full equations of 3-D flow can be simplified to give the
St Venant equation which describe the gross or overall behaviour of flow in an
open channel. The St Venant equations are listed below:

Continuity Equation

2h 2Q
Dynamic Equation
3Q 3 (BQ\? ah B
R () ea e s) o
26 Summary and Conclusions

The aims of this chapter were to review the theoretical background to flow in
river and flood plain environments. These aims were met by deriving various
sets of equations used to model river and flood plain flows. The basic equations
of 3-D fluid flow are the Navier-Stokes equations, 2.1 and 2.12. In the case of
incompressible turbulent flow the Navier-Stokes equations are converted into the
Reynolds’ equations, 2.18 and 2.19. The turbulent eddy viscosity concept was
introduced in section 2.2.6 and the dynamic Reynolds’ equation reduced to
equation2.21.
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The so called shallow water equations were derived from the 3-D Reynolds
equations, section 2.3. The shallow water equations describe the behaviour of
fluid flow with a free surface where the depth of flow is much smaller than the
horizontal dimensions of the flow domain. The equations are derived in terms of
the unit flows (q) rather than the more usual formulation given in the literature in
terms of the depth averaged velocity (U). A novel approach to the bed friction
vector in 2-D flow was followed, sections 2.4.1 to 2.4.3. A factor (B) was
derived to relate the stresses on a sloping surface to stresses in the horizontal
plane. Various empirical approaches to modelling the effects of bed friction were
reviewed, section 2.4.5. The shallow water equations are given by 2.107 and
2.108.

In the cases where the flow domain is much larger in the direction of the
predominant flow it would be impractical to consider either the 3-D or the 2-D
depth integrated behaviour. In these situations (eg. a river or canal) engineers
usually consider the flow to be one dimensional. The 1-D equations of flow with
a free surface are called the St Venant equations and are derived in section 2.5
and are given by 2.129 and 2.130.
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CHAPTER 3
FLOW MECHANISMS IN STRAIGHT COMPOUND CHANNELS
3.1 Introduction
The ability to assess or calculate - discharge and water levels is one of the foremost
needs of the river engineer. It is fundamental to many aspects of river management,
from flood forecasting and the design of protection schemes to the licensing of
abstractions and the control of water qualify. The material covered in this chapter

is intended to address the following questions:

1) What is a compound channel?

2) Are there problems in assessing the conveyance capacity of compound
channels?

3) What research has been carried out into these problems?

4) Is there a clear consensus on which are the important mechanisms and

parameters, which control the conveyance capacity of compound channels.

A review of the literature shows that the cases of straight and meandering compound
channels are different and most authors consider one or the other of these cases.
Consequently this chapter and the following chapter consider the case of straight
compound channels. Meandering compound channels are considered in chapters 5
and 6.

3.2 Compound channels and the important mechanisms

3.2.1 Definition of a compound channel

Traditional methods of calculating the discharge or conveyance capacity of channels
are based on the assumption that the velocity is uniform within the cross-section.
The bed shear stresses are also assumed to be uniform around the wetted perimeter.
These assumptions are reasonable in the case of simple channels, Figure 3.1. As
mentioned in chapter 2 various empirical formulae are used to relate the discharge,

Q, to the bed roughness. A widely used empirical formulae is Manning’s equation:

Q=1/nARPS"” 3.1
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where Q is the discharge, n is Manning’s roughness coefﬁéient, A is the channel
cross-sectional area, R is the hydraulic radius defined as P/A, where P is the wetted
perimeter and S is the hydraulic slope. Other commonly used empirical formulae are
discussed in section 2.4. The assumptions of uniform velocity and discharge within
the channel are reasonable for typical simple channels and the straightforward

application of the classical techniques gives results of acceptable accuracy.

A compound channel is usually defined as a simple main channel, which carries the
normal low flows, with either one or two floodplains or berms at higher elevations
on one or both sides of the main channel. The floodplains are usually dry and
convey discharge only during flood conditions. Figure 3.2 shows a typical compound

channel and defines some physical parameters.

The most obvious aspect of a compound channel is that the flow depths on the
floodplain are often significantly smaller than the depths in the main channel,
especially during small floods. The bed surface on the floodplains is often much
rougher than the bed in the main channel and so the distribution of velocities and bed
shear stresses are likely to be non-uniform. Various authors, (eg Myers and Brennan
(1990), Knight (1990) and Ackers (1991,1993), have demonstrated that the
application of normal simple channel techniques to compound channels is

inappropriate.

Applying simple channel methods to compound channels

Knight et al, 1989, analyzed stage discharge data from a river flow gauging site at
Montford on the River Severn. Figure 3.3 shows the variation of A, P and R with
stage. Below bankfull all three parameters vary smoothly but at bankfull both the
perimeter and hydraulic radius show large discontinuities. Applying normal uniform
flow calculations to the stage discharge data results in the Manning’s n and friction
factor distributions shown in Figure 3.4. The Manning’s n distribution shows the

classic gradual reduction for inbank stages which approaches a constant value at
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higher stages. At just overbank stages the discontinuities in P and R affect the back
calculated n values and reduce them to about half the bankfull value at low overbank
stages. At higher stages the n values increase. The effect on friction factor is to
gradually reduce the values until bankfull stage is reached at overbank stages the
moody diagram follows a loop, giving a non singular friction factor against Reynolds
number distribution. Myers and Brennan (1990) carried out similar calculations for
the SERC FCF Phase A data. They found that Manning’s n reduced to about 0.01
at bankfull and then reduced sharply to about half this value at just overbank levels,
although at larger floodplain depths the value approached the bankfull value. These
results are typical of compound channels. These general distributions can be obtained
for many examples. The exact geometry of the main channel and floodplains will

determine the exact distribution of roughness parameters with stage

These results demonstrate that the simple channel method is not appropriate for
computing discharge in compound channels. The variation in roughness values
demonstrated above does not reflect a true variation in the bed roughness
characteristics as the water level varies. The non-linear interaction of the various
geometric parameters in the calculation has produced these spurious results.
Engineers recognise that compound channels behave differently to simple channels.
The more usual approach followed in many text books is to divide the compound
channel into zones. The simple channel equations are then applied to each zone in
turn and the total discharge obtained by summing the zonal discharges. This
approach is a big improvement over the simple methods. The text book application
is usually to divide the floodplain areas from the main channel using vertical division
lines at the main channel edges. The division lines are usually not included in the
wetted perimeters of the various regions. This approach is usually justified on the
grounds that the velocities within each zone are uniform but differ between zones,
see Chow (1959), Henderson (1966) or Chadwick and Morfett (1989).

This divided channel approach is based on the assumption that the flows within the
individual regions are controlled by bed friction only and that there is no interaction

between zones which may affect the discharge capacity of the zones or channel as
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a whole. This is obviously a critical assumption which requirés further investigation.
Classical hydraulics tell us that when co-flowing streams of fluid with markedly
different velocities exist then there is usually a turbulent exchange of fluid and
momentum - between them. This situation is called a shear layer and is a
significant mechanism in many flow situations. In the case of compound channels

the questions to be answered are as follows:

1) Does a shear layer exist between the fast moving main channel flow and the

slow moving floodplain flow?

2) Is there any other potentially important source of interaction between the
flows?
3) Do the mechanisms of interaction have significant effects on the discharge

capacities of the main channel and floodplain zones?
4) What are the parameters which control the strength of the important
?

mechanisms!

Much research has been carried out into these topics in the last thirty years. The

following section reviews the important aspects of this research and its conclusions.
3.2.2 Research into flows in straight compound channels

Some of the earliest work in the field was carried out by Sellin (1964). He carried
out a laboratory investigation into the overall behaviour of straight compound
channels. Stage discharges and longitudinal point velocities were measured in
various channel and floodplain geometries. Sellin studied the surface flow patterns
using aluminium powder and a moving camera. These photographs revealed the
existence of a vortex structure in the region between the main channel and floodplain
flows. These vortices were found to have vertical axes and to rotate so that a
proportion of the fast moving main channel flow is carried on to the floodplain and
vice-versa. Figure 3.4a shows a typical pattern of surface stream lines derived by
Sellin from his photographs, The vortices are clear. This exchange of fluid between

zones causes a transfer of momentum between the fast and slow moving regions and
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represents a significant source of interference. The gross effect is to reduce the

velocities in the main channel and increase the velocities in the floodplains

Sellin investigated the importance of this effect by conducting tests with floodplains
and main channel separated by impermeable walls. For the geometry investigated the
channel with floodplains isolated from the main channel carried discharges between
3% and 4% larger than those in the equivalent compound channel. The channel
Sellin used was hydraulically smooth with main channel and floodplains having a
Manning’s n of 0.0088. Sellin also carried out some tests with roughened floodplains
(n 0.019) and the increase in discharge with separated floodplains was found to be
about 9% at just overbank stages and to reduce rapidly for deeper flows. Sellin
considered various simple divided channel methods and concluded that applying
vertical divisions at the main channel and floodplain boundary modelled the discharge
adequately for the conditions investigated. He showed that the relative roughness of
the floodplain has a strong effect on the degree of interaction between main channel
and floodplain flows. The study covered only a limited range of channel shapes and
roughness conditions and so further research was required to confirm these

conclusions.

Zhelezneyakov (1965) also used a photographic technique to observe the vertical
vortices at main channel and floodplain boundaries. He identified two regions of
behaviour: at low overbank stages the main channel velocity decreases and then after
a certain depth is reached the main channel velocity increases. He also found that
the main channel velocity was reduced more when the floodplain is rougher than the

main channel.

The distribution of boundary shear stresses and discharge were studied by Myers and
Elsawy (1975). They carried out 10 stage-discharge tests on a laboratory channel
about 8.5m long by 0.6m wide. They investigated to boundary shear stress
distributions across the wetted perimeter of an asymmetric compound channel, with
one floodplain on the right hand side of the main channel. The main channel was

101.6mm deep at bank full and the maximum depth investigated under over bank
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conditions was 169mm. They also measured shear stresses for the case where the
flow was restricted to the main channel by an impermeable barrier. The results
showed that the interaction between main channel and floodplain flows significantly
affects the bed shear stress distribution in the main channel. They found that at the
lowest overbank depth investigated the mean bed shear stress in the main channel
was 22% smaller than the value obtained for the isolated main channel. At higher
stages the percentage decrease in mean shcﬁr reduced considerably (to about 6% at
the deepest stage). In a later study Myers (1978) sought to quantify the mechanism
for momentum transfer in compound channels with one floodplain. Myers analyzed
his results in terms of a divided channel approach. In each channel element (main
channel and floodplain) he identified the following forces: the component of fluid
weight acting in the direction of flow and the shear stress acting on the channel bed.
In addition to these two forces Myers introduced the concept of apparent shear force,
which acts on the interface between the main channel and floodplain. These forces
act to retard the main channel flow and enhance the floodplain flow, Figure 3.5.
They can be considered to be a convenient method of parameterising the complex
interaction produced by the vortices at the main channel edge. For his data set Myers
found that the apparent shear force increases to a maximum at relative depths of
about 0.3 and then decreases. Apparent shear stress defined as the apparent shear

divided by the area of the vertical division was maximum at the lowest

overbank stages and decreased sharply with stage.

Baird and Ervine (1982) also followed the apparent shear stress approach in analyzing
results from a physical model study of flow in straight compound channels. In this
early paper they considered smooth channels and flood plains. They assumed that
the apparent shear stress is related to the velocity gradient at the interface and that
this could be expressed in terms of the difference between the mean velocities in the
main channel and floodplains. In the case of asymmetric compound channels they

found that the apparent shear stress is given by:

T, = 50 (AV)? (3.2)
and for symmetric cases this becomes:
T, = 25 (AV)? (3.3)
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In a later paper Baird and Ervine (1984) extended their analysis and suggested that:
T, o (AV)R2VEB (34)

where Bc is the main channel width and Bf is the floodplain width. They found that
1, varies with non-dimensional depth and produced the following relationship for

smooth asymmetric compound channels:
T,/ (p g Y,S) = (YJY,- B)° (Bc/h)*S (0.5 + 0.3 In (Byh) (3.5)

Where B’ is the value of relative depth (Y/Y,) where the apparent shear stress is

zero. B’ is given by the empirical equation:
B* = 1.0 + 1.5 (/B)'* (3.6)

Y, is the flow depth in the main channel, Y, is the flow depth on the floodplain and
h is the bankfull depth (Y, =Y, - h). They also introduced the concept of ® indices
to characterise the degree of interaction present.

where:

Vmc = chln Vmc’
V= @2V, 3.7

and the V values are the velocities in the regions during interaction and the V’ values
are the velocities calculated assuming no interaction occurs. It is possible to show
that the @ values for the main channel and floodplain are related to the apparent

shear stresses by:

d)mc =1- (Tan/ pgAmcS) (38)
and
D, = 1+ (Y, /pgAS) (3.9)
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®,.. and P, are related by the expression

Ape (1- @) = A (- 1) (3.10)

Ervine and Baird proposed that equations 3.5 and 3.6 could be used to evaluate T,
and that equations 3.8 and 3.9 should then be used to calculate the indices for the
main channel and floodplain flows. The final discharge in each region is then
obtained by applying the indices to the velocities or discharges calculated assuming

no interaction (equation 3.7).

Knight, Demetriou and Hamed (1983) also looked at the momentum transfer in terms
of apparent shear forces. The derived the equation below for smooth compound

channels based on laboratory data.

%ASF = 50 / ((a-1)(B+1) - 0.5 [100 - 48(a-0.8)%%* (2[3)”"
(1+1.028°° log,o(M)] (3.11)
where

n = 0.75¢"% (3.12)

%ASF is the apparent shear force acting on the vertical interface, expressed as a
percentage of the mean shear .%fn& acting over the floodplain segment. The other
parameters are based on non-dimesionalized characteristics of the channel:

o = (0.5B+B)/0.5B, B = Y/Y, and

Y = Manning’s n for floodplain / Manning’s n for main channel.

The experiments were carried out in laboratory channels which were hydraulically
smooth, in the main channel at least, so using Manning’s n in the analysis is unsound
from a theoretical view point. They concluded that the strength of the apparent shear
stress is a function of relative depth, main channel and floodplain geometry and
relative roughness of the floodplains. For their data they found that the apparent
shear force was approximately 10% of the mean flood plain shear force over a wide

range of conditions.
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In an investigation into the geometric parameters which affect floodplain flow, James
and Brown (1977) carried out a series of experiments in a large scale flume of
length 27m and width 1.5m. They investigated the effects of various floodplain
widths and roughnesses and present both stage-discharge curves and distributions of
depth averaged velocity. Unfortunately they do not supply any calibration data with
which to check the basic flanning’s n values they quote for the various cases. They
analyzed their stage discharge data in terms of the single channel method: ie they
applied Manning’s equation to the complete compound channel. They used the
laboratory data to derive the values of a correction factor (®) which can be applied

either to the Manning’s n value or the hydraulic radius to produce effective values:

® = (n/n) = (R,/R) (3.13)
and
Q=®d1/mARPS" (3.14)

Where n, is the value of Manning’s n at bankfull stage. They produced a chart
which shows @ to be a function of the channel aspect ratio (Total width of
floodplains/ width of main channel) and relative depth. It is rather surprising that @
was not found to be a function of the relative roughness of the floodplains, Figure
3.8. The functions they give are highly unlikely to be at all general, considering the
limited range of tests they carried out. This form of analysis is not to be

recommended.

Rajaratnam and Ahmadi (1979, 1981) have published the results of a detailed
investigation into the distributions of velocity and bed shear stress in straight
compound channels. They measured longitudinal velocities and bed shear stresses
in a smooth laboratory flume which was about 18m long by 1.22m wide by 0.92m
deep. The experiments were carried out with an asymmetric compound channel with
only one floodplain. The main channel was 0.711m wide and the bankfull depth was
97.5mm. Longitudinal velocities were measured using a pitot tube, which also
doubled as a preston tube during the bed shear stress measurements. The velocity

results were presented in two forms:
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Vertical distribution of velocity

In simple channels it is well known that the vertical distribution of point velocity is
logarithmic. Rajaratnum and Ahmadi found that the interaction between main
channel and floodplain flows disturbs the vertical distribution of velocity. In the
main channel close to the floodplain edge the velocities are logarithmic up to a level
approximately bankfull. Above this levei the velocities are closer to the flow
velocities on the flood plain, see figures 3.7 and 3.8. As one moves away from the
floodplain boundary the logarithmic profile takes up more of the channel depth and
if the channel is wide enough then a central region which is unaffected by the

interaction with the main channel exists.
Distribution of depth averaged velocity and bed shear stress

The measured point velocities and bed shear stresses also show the effect of the
interaction between main channel and floodplain. The profiles were non-
dimensionalized and empirical equations derived in terms of the free stream values,
Figures 3.9, 3.10. The effects of interaction are also obvious on these parameters and
Rajaratnum and Ahmadi derived expressions for the widths of the interaction zones
in the main channel and floodplains. They found that these shear layer widths are

functions of the channel bankfull depths:

b, = 597h
b,, = 437h
b, = 1.60 h (3.15)

Where b,, is the total shear layer width and b, and by, are the shear layer widths in
the main channel and floodplain respectively. The main conclusions drawn from this

work are:

1) There is aregion  where the effects of the interaction are felt. The strength
of the interaction and the widths of the region are dependent on the channel
depths.

2) The bed shear stress on the floodplains is increased by the interaction. In the
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main channel it is reduced.
3) The vertical distributions of velocity showed that the mixing behaviour
induced by the interaction is a complex phenomenon and that further research

1s needed.

‘ta—l—
Wormleaton" (1985) carried out experimental tests with various floodplain
division plane .
roughnesses. He assessed the apparent shear stresses on theland concluded that it is
strongly related to the velocity differential between main channel and floodplain flow.

He also found that it is a function of the width and depth ratios of the channel.

Prinos and Townsend (1984) present the results of model tests on an asymmetric
compound channel. Their flume was 12.2m long by 1.4m wide by 0.4m deep. The
symmetric compound channel had a bankfull depth of 102mm. They measured
velocities and bed shear stresses and found that the apparent shear stresses are
functions of relative depth, width and roughness of main channel and floodplain.

They produced an empirical relationship:
7, = 0.874 (Y-hy/ Y o AV (3.16)

Where « is the ratio of half the top width of the whole channel to half the bottom

width of the main channel.

Pasche and Rouve (1985) measured the velocity distribution across a compound
channel with heavily roughened floodplains. The laboratory experiments were carried
out in a flume 25m long by 1m wide by 1m deep. The asymmetric compound
channel had a bankfull depth of 124mm with a floodplain of width 500mm. In some
" tests the floodplain was roughened by placing vertical dowel rods in a regular pattern.
The rods were long enough to pierce the free surface. Theimeasured longitudinal

velocities with a laser doppler anemometer and drew the following conclusions:

1) The momentum exchange between main channel and floodplain must be taken

into account.
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2) In smooth channels the main channel side slope has a significant effect on the
strength of the interaction.
3) For channels with roughened floodplains the strength of the interaction is not

affected by the main channel side slope.

Knight and Lai (1985) investigated the flow structures present in compound channel
and duct flow. They conducted experiments with a 17m long flume. They varied
floodplain widths and roughnesses. They presented depth averaged velocity profiles
and bed shear stresses. The results show that the strength of the interaction

mechanisms vary with depth and floodplain roughness.

In a study of the velocity and discharge in compound channels Myers (1987) presents
both theoretical considerations and laboratory data collected in a small flume. He
concluded that the ratios of velocity and discharge (main channel / floodplain) in
smooth compound channels are independent of slope and dependant only on the

channel geometry and depth.

Dracos and Hardegger (1987) analyzed laboratory data from James and Brown (1977)
and other investigators. They produced a method of estimating the discharge in
smooth compound channels. The method is a development of the proposed
adjustment to bankfull Manning’s n given by James and Brown. The channel is
treated as a single .unit and a correction factor (®) is calculated. The definition of
® is given by equation 3.9. They found that the correction factor is a function of

depth and width ratios:

d = 1.65+0.976 a’®®* In (R/Y,) (3.17)
where o 1s given by:
o = (b, +bg) /[ (1+s)° (1+s)*° h + b] (3.18)

where b, and b, are the widths of the floodplains, b, is the bottom width of the main
channel, s, and s, are the slopes of the left and right banks of the main channel. In

the case of roughened floodplains Dracos and Hardegger suggest that the correction
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factor should be applied to an effective roughness value. Théy recommend that the
weighted average Manning’s n value calculated using the Horton method should be
used. The whole theoretical basis of this approach is seriously flawed. It is apparent
from the large amount of laboratory work that compound channels do not behave at
all like simple channels. Any method based on a single channel approach is very
unlikely to have a general range of applicability. The particular method developed
by the authors is based on a very small data set which further restricts the utility of

their procedure.

Holden and James (1988, 1989) have published the results of a physical model study
of compound channel flow. They carried out a series of experiments in a 16m long
by 0.92m wide by 0.2m deep flume. The main channel was 545mm wide and they
investigated the effect of varying the slope of the main channel. The asymmetric
compound channel had a bankfull depth of 106mm and was hydraulically smooth.
They measured stage-discharges and bed shear stress distributions. They confirmed
that the channel bank slopes have a significant effect on the interaction for smooth
compound channels, with the interaction getting stronger as the channel banks
become steeper. They used their own and published data to derive modified apparent
shear stress methods of calculating flow in compound channels. The main limitation
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