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A b s t r a c t

The oil tanker designs have suffered significant changes during the last few 

years. These forced modifications were a result of the introduction o f recent 

international (IMO, 1995) and domestic (OPA ’90) regulatory actions. 

Intensification in the research work was also noted during this last decade, 

giving special attention to the prediction of tanker environmental performance 

in collisions and groundings.

Agreeing that the probabilistic concept is the only rational tool that enables a 

true comparison of different tanker designs, the mathematical basis for the 

probabilistic concept is described with references to the most important authors 

and their contribution to the development of probabilistic based regulations.

A review on the development of international regulations for control of oil 

pollution from tankers is presented, with statistics of the most important 

accidents, in terms of oil spills.

A mathematical model was developed, integrating the latest IMO regulations, 

using a direct probabilistic methodology. This methodology incorporates 

distributions o f damage location and damage penetration as derived by several 

Classification Societies and compiled by IMO. The method was enhanced with 

the characteristic o f not assuming total width extent of damage in case of 

groundings, enabling this way the assessment of the influence of longitudinal 

subdivision in the cargo space and in the double-bottom.

Expected oil outflow calculations were performed for 107 different tankers, 

including Pre-MARPOL, MARPOL, Double-Hull and Mid-Deck designs. 

Initial oil losses following impact and oil retention in the double-hull space 

were taken into consideration, as well as tidal drop and dynamic effects.



A b s t r a c t

The work carried out include: parametric studies, varying double sides width, 

double-bottom heights, number and location of longitudinal bulkheads, number 

and location of transversal bulkheads and location of horizontal bulkheads; 

double-hulls comparison; different design types comparison and environmental 

performance ranking.

A discussion of the resulting probabilistic oil outflows is presented with 

comparisons of the environmental characteristics of the sample tankers. These 

sample tankers include both variations of internal subdivision within the same 

ship type and also among different design types.

From the analysis it was found that, in general, the mid-deck tanker designs 

have lower oil outflow rates, when compared with the other designs, including 

double-hulls. It was also concluded that the subdivision of the cargo block 

region has a determinant influence on the calculated expected oil outflows.

A short description of new design concepts is made, presenting the different 

characteristics of each and the advantages claimed by each author.
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C h a p t e r  1

I n t r o d u c t i o n



C h a p t e r  I  -  I n t r o d u c t i o n

CHAPTER 1 - I n t r o d u c t io n

For many years all interested parties in the maritime activity have addressed 

the importance of ship safety. However, to achieve this goal in the shipping 

business it is necessary to satisfy the client’s specification, the cost 

effectiveness and an acceptable level of safety at the same time.

This acceptable level of safety is not easily quantifiable, because it does not 

involve only engineering aspects, but also operational and management 

aspects.

Because shipping is a worldwide activity with many risks, it is understandable 

that in a time when safety and the environment are primary aspects of human 

concern, the different countries involved have tried, during the last decades, to 

reduce the threat from the transportation of goods by sea. This work has been 

undertaken through the IMO, an International Organisation that regulates and 

insures the safety of sea transportation in terms of human life and pollution.

It is certain that it is necessary to find a balance between modem existence and 

maintaining the environment. It is also accepted that tankers operate only 

because of the demand for oil. Thus, to have tankers operating in the seas, it is 

necessary to cope with the responsibility associated with this type of 

transportation. The oil must be transported as safely and efficiently as possible.

However, the essential question still remains: "Is it possible to design an oil 

tanker that meets complex demands fo r  economical operation, crew safety and 

is still environmentally friendly?" (NRC, 1991).

The answer to this question is neither direct nor easy, but there are three main 

methods to reduce accidental oil outflow: specification of a double hull, 

reduced tank size and use of outflow prevention measures inside a tank. The 

three methods will be discussed in detail later.
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C h a p t e r  1 -  I n t r o d u c t i o n

Until the XIX century the concern about the risks involving trade by sea were 

almost not existent when compared to the present day, the number o f ships was 

small as well as the amount o f goods transported.

However, with the industrial revolution this picture was completely changed. 

All sectors suffered major developments and the shipping activity increased 

exponentially with the explosion in number o f products to carry by sea. In 

addition to this increase in the amount of products carried, the characteristics of 

this merchandise became more dangerous, with a lot of chemical products 

travelling from one country to another; IMO considers that more than 50% of 

the cargo transported by sea is dangerous.

The constant effort by man to make the shipping activity as safe as possible, 

led to the development of a wide group of legislation covering different areas 

of the maritime activity.

However, one of the main drawbacks of the existing regulations towards safety 

aspects is the fact that a great majority of them were compulsively taken as a 

result of major accidents. Their implementation was so fast that some of the 

important aspects were forgotten and not taken into account.

Although the present work only investigates a specific type of ship: tankers, 

these represent a major threat to the environment that justifies all the research 

and studies that have been carried out, trying to solve the questions and 

problems involving this specific kind of vessel.

The explosion in the demand for oil transportation by sea occurred at the end of 

the 60's decade. As a consequence larger ships became a reality and the VLCC 

(Very Large Cmde Carriers) concept appeared. With them came the biggest 

pollution accidents in history, the Torrey Canyon accident in 1967 being the 

largest one (the largest oil spill of ship accidents history is still the Atlantic 

Empress collision in 1979 -  274,854 t).

3



C h a p t e r  1 -  I n t r o d u c t i o n

Ships that transport dangerous cargo are covered in first place, by regulations 

intended to protect the marine environment and, as other ship types, by 

regulations regarding damage stability. Unfortunately, these regulations are 

based on deterministic concepts. The flaws of the deterministic approach have 

been widely demonstrated by several authors. Thus, the use of regulations for 

the prevention of pollution based on the probabilistic approach is the solution 

for a better evaluation of the environmental safety of different ship designs.

The introduction of the probabilistic concept in the safety legislation has a 

history of approximately three decades. However, Resolution A.265 - 

probabilistic IMO equivalent passenger ship regulations (IMO, 1973), only 

came into force fifteen years after Wendel's first publication in 1960 (Wendel, 

1960). In comparison with the deterministic regulations of the time - the 

subdivision factor - this was a major progress towards safety improvement.

In 1982, Tagg (Tagg, 1982) published a paper were he assessed the 

survivability indices of a number of cargo ships including a tanker. Once again 

it took over eight years until the adoption of SOLAS'90 amendments, which 

introduced the probabilistic concept for the evaluation of damage survivability 

of cargo ships over 100m in length. They entered into force in 1992.

The second important safety aspect of hull division apart from survivability is 

pollution prevention. Abicht (Abicht, 1975, 1977) first proposed the 

minimisation of oil outflow from damaged tankers in 1975. However, the real 

research using this methodology on tankers only began after the Exxon Valdez 

disaster with the unilateral legislation introduced by the U.S - Oil Pollution Act 

1990 (OPA 90). Pressured by this move, IMO has developed guidelines for 

approving alternatives to new tanker construction to be compared with 

reference to double-hull tankers.

The research activities led to new solutions, which changed the design concepts 

and induced various new designs and engineering solutions. However, they had

4
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to be compared in their environmental impact. The regulatory bodies were then 

asked to evaluate and check these new concepts.

A reduction in the risk of oil pollution from tankers can be accomplished by a 

number of operational and design measures. Different tanker design 

configurations may therefore have different protection capabilities. The oil 

outflow from a specific damage scenario may be relatively straightforward to 

evaluate, but an overall objective measure o f merit to evaluate dissimilar 

configurations is not as easy to develop.

The main aim and objective of this work is the evaluation of the environmental 

performance of different tanker designs, through the use of the latest 

probabilistic regulations proposed by IMO. The resulting probabilistic oil 

outflow parameters should give a basis for a wide discussion over the 

environmental characteristics of the sample tankers and the methodology used 

for the assessment o f such measures. It is also a purpose to provide comments 

on the IMO Guidelines for approval of alternative designs referred to in 

Regulation 13F and 13G.

Another objective of this work is the investigation of the effect of subdivision, 

principal ship dimensions and ratios between these characteristics, on the 

measures of merit, both numerically and analytically. This would make 

possible the identification of appropriate designs, both for double-hull and mid­

deck tankers.

The probabilistic investigations, which are necessary to establish the outflow 

parameters of a tanker, are so extensive that they can only be done by computer 

simulation. Thus a computational model is developed and implemented 

incorporating the last IMO regulations on prevention of pollution from tankers.

This analysis is what is called a conceptual analysis, because it does not 

include a survivability check of the critical damage cases.

5
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CHAPTER 2 - Ship Subdivision

2.1 Introduction

An important purpose of the subdivision of ships is to preserve their floatability 

and stability, whenever a casualty occurs involving water ingress. The 

contingency effect is achieved by the limitation of the maximum amount of 

flooding associated with any hull penetration.

Collisions are common accidents among ships. They are random events and 

their consequences in terms of structural damage are also uncertain. The 

structural consequences of collisions can be described in terms o f the 

dimensions and locations of the hull penetrations that cause flooding, 

parameters that can also be modelled by random variables.

In view of the uncertainties about the occurrence of collisions and their 

consequences, any decision about the location of watertight bulkheads should 

be based on a probabilistic formulation.

Wendel and his associates introduced the probabilistic approach for the 

assessment of ship subdivision, (Wendel, 1968), making possible the 

calculation of a numeric value that could be related to the achieved level of 

safety and to the residual risk of ship loss associated with a specific 

subdivision. Their principal concern was the increase of ship safety.

IMO only adopted the probabilistic concept in 1973 in Resolution A.265 

(VIII), (IMO, 1974) -  IMO Passenger Ship Regulations. No international 

requirements for the damage stability of cargo ships existed until February 

1992, when an international, probabilistic damage standard for dry cargo ships 

was adopted by the International Maritime Organisation (IMO).

7
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The Dry Cargo Ship Regulations (IMO, 1992) then developed more than 

fifteen years later than the issue of the Passenger Ship Equivalent Regulations. 

Originally they were applied to cargo ships of 100m in length, or above. 

Recently, this lower limit was lowered to 80m.

For the evaluation o f tankers subdivision, it was only in 1995 that the 

International Maritime Organisation introduced guidelines, based on the 

probabilistic concept, for approving alternatives to the new tanker construction 

requirements (IMO, 1995b).

The probability of an oil spill event (Pe) can be expressed as the product of the 

probability of the casualty occurring (Pc) and the probability of a spill (Ps) in 

the event of a casualty:

Pe =Pe x P s (1)

The double-hull requirements of OP A ‘90 and MARPOL address the second 

factor in the equation, the probability of a spill in the event of a casualty. The 

structural and operational modifications to single-hull vessels are also directed 

toward the second factor, although some elements, such as bridge management 

training, and manoeuvring regulations focus on the first factor, i.e., reducing 

the probability of a casualty.

The methodology contained in the MARPOL guidelines is rigorous and allows 

the computation of the oil outflow in accidental groundings and collisions. It 

also provides the calculation of a “Pollution Prevention Index”, which enables 

the comparison between the new tanker and a series of “reference” double 

hulls. This index is composed of three measures of merit of the oil outflow 

performance of any tanker:

• probability of zero outflow;

• mean outflow;
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• and extreme outflow.

This methodology only addresses the calculations of the second factor of 

equation (1), Ps, the probability of a spill in the event of a casualty.

2.2 Damage Stability Regulations for Different Ship

Types

2.2.1 Background

The first international efforts to upgrade vessel safety focused mainly on 

passenger ships, due to the heavy loss of life attributable to the sinking or 

capsizing of such ships.

Due to the tragic loss of several Ro-Ro ferries in recent years, the damage 

stability of ships has received again a great deal of attention. As a consequence 

of these disasters IMO decided that there was a need to both derive rational 

procedures for assessing the damage stability characteristics of ships and to set 

up reasonable minimum requirements.

The British Marine Shipping Act in 1854 established the first regulations on 

ship subdivision and damage survivability. These regulations required 

transverse bulkheads at the peaks and engine room.

During the following years, the International Conferences on the Safety of Life 

at Sea (SOLAS) have been one of the primary initiators of international safety 

regulations, including subdivision standards.

Due to the tragic accident and loss of Titanic, in 1914, the SOLAS Conference 

(SOLAS ’14) established subdivision and lifesaving standards for passenger

9
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ships. However, because o f World War I the participating countries never 

officially adopted the conference.

The important Factorial Method and Criterion o f Service was introduced in the 

1929 SOLAS Conference (SOLAS ’29). For the first time a procedure for 

determining statutory minimum levels of subdivision was laid down. In effect 

it was the establishment of a minimum bulkhead spacing based on the ship 

length and the number of passengers, which are to be achieved by all sea-going 

passenger vessels. It also established a one-compartment standard of 

subdivision for passenger ships engaged in international service.

Once again, following the Mohawk and Morro Castle losses in the early 

1930’s, the United States adopted SOLAS 29 in 1936. Only one year later a 

U.S. Senate Report established more stringent criteria based on the SOLAS 

“Factor of Subdivision” format and established the one-compartment standard 

for U.S. cargo ships. In the 1948 SOLAS (SOLAS ’48) convention, regulations 

on flooded criteria were added to SOLAS 29.

During the early 1950’s it was becoming increasly recognised that combined 

fuel and ballast double-bottom tanks were becoming an operational problem, 

because they were often required to be ballasted following emptying of fuel to 

meet damage stability requirements. When these tanks were used according to 

the designer’s instructions, they were causing oil pollution of harbours. They 

also caused fuel contamination and tank cleaning problems. If these tanks were 

not used as designed, as was generally the case, the ships could often not meet 

damage stability criteria.

In 1954 a 32-nation conference convened on the Prevention of Pollution o f the 

Sea by Oil (OILPOL ‘54). This convention banned oil discharge within 50 

miles of land and called for the installation of oily-ballast receiving facilities at 

all ports.

1 0
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Following the Andrea Doria loss in 1956, the Inter-Governmental Maritime 

Consultative Organisation (IMCO) was established, and shortly thereafter the 

SOLAS 60 Conference was convened (SOLAS ’60). In recognition of the 

many inherent deficiencies in the SOLAS 48 regulations, a number of 

delegations proposed new approaches and substantial changes to the passenger 

ships rules. However, agreement could not be reached and the basic approach 

of SOLAS 48 was left unchanged. This SOLAS 60 Conference also made 

General Recommendations No. 6 and No. 8 for further study on the standards 

for watertight subdivision of passenger and cargo ships. In 1961, 

acknowledging the recommendations of SOLAS 60, IMCO established the 

Subcommittee on Subdivision and Stability. Among other issues the work of 

the committee was to consider the deficiencies in SOLAS 60, new trends in 

ship design, and the possible range of damage lengths.

In 1966, the International Conference on Load Lines (ICLL ‘66) proposed a 

one-compartment standard for tankers and also for other reduced freeboard (B- 

60 percent) cargo ships (IMO, 1966). Dry-cargo ships with minimum freeboard 

(B-100 percent) were required to meet a two-compartment standard, exclusive 

of the engine room. All damage requirements applied to the summer load line 

(SLL) draft only. Cargo ships with conventional freeboards were required only 

to have forepeak, aft peak, and engine room watertight bulkheads in addition to 

those normally required by the classification society.

During the mid 1960’s several technical changes in tanker design and operation 

were affecting their safety. Prior to the mid-60’s tankers had a high degree of 

safety in the loaded condition due to the high watertight integrity of their main 

decks, adequate compartimentation, and the low permeability of the loaded 

cargo spaces. Following the closing of the Suez Canal in 1967, the trend 

towards larger tankers gained momentum rapidly. Along with this increase in 

overall size, the increase in tank sizes, the imcorporation of segregated wing 

ballast tanks, and an increase in multiple-port operations with partial loadings,

11
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all tended to reduce tanker safety. In 1971, in the wake of the Torrey Canyon 

disaster and with these factors in mind, the U.S. Coast Guard imposed a two- 

compartment standard for tankers.

2.2.2 IMCO Equivalent Passenger Ship Rules

IMO members were favourably impressed by the argument put forward in a 

paper read in 1968 at SNAME -  ‘Subdivision of Ships’ -  presented by Prof. 

Kurt Wendel (Wendel, 1968). In this paper, Wendel outlined a procedure that 

intended to provide efficient subdivision for ships through the application of 

probabilistic principles.

This procedure made possible the quantification of the level of subdivision 

achieved in a particular ship design, having a fixed arrangement of main 

watertight bulkheads. Such quantification is achieved using a Subdivision 

Index, which is an estimate of the proportion of all possible damages that a 

ship is likely to survive, i. e. it will not sink or capsize.

In 1971, only one decade later and culminating many years of research, the 

IMCO Subcommittee on Subdivision and Stability submitted new passenger 

ship rules based on probability of damage principles. These rules were adopted 

in 1973 as an alternative to the provisions of SOLAS 60. This approach was 

incorporated in passenger ship regulations as “The Equivalent International 

Regulations on Subdivision and Stability of Passenger Ships”. Three basic 

factors were considered in subdivision and damage stability criteria:

1. Probability that a ship may be damaged;

2. If the ship is damaged, the probability of the location and extent of 

flooding;

3. Probability that the ship may survive such flooding.

12
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The probability of ship survival can be calculated as the sum of probability o f 

its survival after flooding each single compartment, each group of two, three or 

more adjacent compartments multiplied, respectively. In other words, the ship 

survival probability is calculated multiplying the probability of flooding each 

single compartment, and the probability of flooding each group of two adjacent 

compartments, and the probability of flooding each group of three and so on 

until all combinations are calculated.

The regulation requires that the ship’s attained subdivision index “A” must be 

equal or greater than its required subdivision index “R”. “A” is equal to the 

summation over the ship length of the expression ^  aps , where

• a accounts for the probability of damage as related to the position of 

damage along the ship’s length;

• p  evaluates the effect of the variation in longitudinal extent o f damage on

the probability that only the compartment or group of compartments under

consideration may be flooded;

• s evaluates the effect of freeboard, stability and heel in the final flooded

condition for the compartment or group of compartments under 

consideration.

Besides the general acceptance of these regulations by the leading authorities 

o f the maritime nations they have not been used largely because they are 

considered more stringent than deterministic rules.

One of the main drawbacks of these regulations was that they were only 

applicable to passenger ships. Among the aspects of this regulation regarded as 

unsuitable for cargo ship application, and in addition to the obvious need to 

reassess the survival criteria, were:

13
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• they do not consider the effect of the damage on vertical extent and 

location, i.e., vertical damage is assumed from the baseline upward without 

limit;

• and that most probability functions are linear functions, which may not be 

appropriate for cargo ships.

In order to extend the probabilistic principles of these regulations to other types 

of vessel, it is indispensable to determine more realistic distribution functions, 

work that has been carried out by several authors during the last few years.

2.2.3 IMO Dry Cargo Ship Damage Stability Regulations

The development of a probabilistic approach for cargo ships, similar to the one 

adopted previously for passenger ships, was the only solution to the one- 

compartment standard for damage survival of cargo ships. In 1983, the U.S. 

Cost Guard tried to introduce this standard, but the flaws inherent in this 

approach immediately raised wide opposition. The fact that it does not consider 

the effects of subdivision, does not reflect the true level of safety and penalises 

economically some ship designs was more than sufficient to stop this move 

from the U.S. authority.

Following the losses of two RO/RO passenger ferries in the 80’s -  the 

European Gateway and the Herald of Free Enterprise -  IMO intensified its 

efforts to complete the development and adoption of a damage standard for dry 

cargo ships.

As a consequence of this effort, in 1987, IMO issued a draft regulation on 

Subdivision and Damage Stability of Dry Cargo Ships including Roll-On/Roll- 

Off (RO/RO) Ships in IMO SLF 32/21 Annex 2 (IMO, 1991c). The new 

regulations were modelled after the IMCO equivalent passenger ship 

regulations, but with different survival criteria:

14
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• the relaxation o f the allowable heel angle to 25-30 deg;

• a modified treatment of cargo space permeability, standardised at 70 

percent;

• and the incorporation of a vertical extent of damage probability distribution 

function.

In addition to these differences, the number o f drafts considered was also 

reduced to two. In the absence o f a significant number of passengers, the 

required subdivision index “/?” also was modified to consider the ship length 

only. The attained subdivision index “A” is calculated as follows:

• A i is that part of the attained subdivision index for the ship obtained at the 

deepest subdivision load line;

• and Ap is that part of the attained subdivision index obtained at the partial 

load line.

In calculating Al and AP level trim shall be used, except when inconsistent 

with the ship’s operation.

For both AL and AP the following summation shall be used:

A -  0.5 Al + 0.5Ap (2)

where:

(3)

where:

i represents each compartment or group of compartments under 

consideration;
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Pi accounts for the probability that only the compartment or group

of compartments under consideration may be flooded;

Si accounts for the probability of survival after flooding the

compartment or group o f compartments under consideration;

v;- accounts for the probability that only the compartment(s) under

consideration are flooded within the assumed vertical extent of damage.

2.2.4 Tankers Pollution Prevention Regulations

The base for the current international regulations governing the damage 

stability and oil outflow for tankers is still the International Conference for the 

Prevention of Pollution from Ships, 1973 (MARPOL ’73) and the Protocol of 

1978 Relating to MARPOL ’73 (Protocol ’78).

In 1973 the International Conference on Marine Pollution (MARPOL 73) 

established:

• a two-compartment standard for most tankers;

• regulations regarding tank size and volume limitations;

• requirements for “hypothetical outflow of oil”, and for segregated ballast.

The IMCO Protocol of 1978 relating to SOLAS 74 provides additional 

requirements for crude oil washing and the protective location of segregated 

ballast spaces for tankers. No substantial changes were made to the MARPOL 

73 damage stability standards.

Current international regulations for oil tankers intended to minimise pollution 

from accidental side and bottom damage are one example of a prescriptive 

standard. While such standards are relatively straightforward in their
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application, new oil outflow calculation techniques have demonstrated (IMO, 

1995a) that these regulations need to be revised.

The major impulsive change in the regulations governing tankers came 

unfortunately following the tragic incident, on the 24th March 1989 with the 

Exxon Valdez, a 215000 tonnes deadweight tanker, that ran aground in Prince 

William Sound, Alaska, spilling 36000 tonnes o f crude oil (Moore, 1994). This 

vessel was only four years old and was built in accordance with the MARPOL 

'73/78 Convention.

There was now a wide understanding that the present deterministic regulations 

were prescriptive in nature (rather than goal setting) and that the environmental 

performance of existing tankers differed considerably. Therefore existing 

regulations did not produce consistent results.

In the beginning of this decade activities at IMO regarding tank ship regulation 

were primarily involved with the completion of the double hull regulations. 

Inspired by the grounding of Exxon Valdez, and as a reaction to the subsequent 

unilateral legislation (US Oil Pollution Act, OP A '90), these regulations were 

intended to speed implementation of an international standard applicable for 

new tanker construction. OPA '90 and the IMO regulations prescribe double­

hull "equivalent environmental protection" for all new constructions and intend 

to phase out the carriage of oil in single-hull tankers.

Computing oil outflow from a tanker that has been involved in a grounding or 

collision is based upon applying an assumed extent of damage and calculating 

the oil outflow based on physical hydrostatic and “quasi-hydrodynamic” 

principles.

During the first half of this decade a committee of IMO has been occupied in 

the development of guidelines for approving new tanker designs. This new 

methodology uses the concept o f a merit index (Pollution Prevention Index), 

that enables the comparison between the new design and a series of Double-

17
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Hull reference designs, through the calculation of three characteristics of the oil 

outflow performance o f a tanker, when involved in accidental groundings or 

collisions.

During the development o f these guidelines the importance of these parameters 

was realised; however, their relative importance was determined in an arbitrary 

manner. This was, in part, due to the fact that the variation in the 

environmental effects o f a “unit spill” as a function of spill size was not 

included in the formulation for the “pollution prevention index.”

Furthermore, the assumed extents of damage that are used in the guidelines are 

based upon actual data compiled from various collisions and grounding 

incidents (IMO, 1992), (DnV, 1993), all o f which were single hull tankers. 

This data was compiled by the classification societies at IMO’s request, from 

sources including LR, ABS, DnV, ClassNK, and RI. This data was derived 

from casualties to oil tankers, chemical tankers, OBOs, OROs of 30,000 tonnes 

deadweight and above, for the period 1980 to 1990.

2.3 The Environmental Threat

During the last 30 years the pollution of the world's oceans has become a 

matter of increasing international concern. Most of it comes from land-based 

sources and includes the by-products of industry, run-off from agricultural 

pesticides and herbicides and effluents discharged from urban areas.

Nevertheless, a significant amount of pollution is caused by shipping and 

maritime activities generally. In tonnage terms, the most important pollutant 

resulting from shipping operations is oil.

The best known cause of oil pollution, is that arising from tanker accidents. 

Although this may contribute a comparatively small percentage of the total oil

18



C h a p t e r  2  - I n t r o d u c t i o n

entering the sea in a year, the consequences o f an accident can be disastrous to 

the immediate area, particularly if the ship involved is a large one and the 

accident occurs close to the coast. The wrecks of the Torrey Canyon (1967), 

the Amoco Cadiz (1978) and the Exxon Valdez (1989) are examples.

Sources o f  Oil Pollution

. » ■ ; 

I n d u s t r i a l  w n i te  e tc .  6\%

O th e r  sh ip p in g  
14%

O ffsh o re  p ro d u c tio n  
2 %

T a n k e r  o p e ra tio n s
7 %

F igure 2.1. - Sources O il Pollu tion (source: IT O P F  1998).

F igure 2.2. - T orrey Canyon (source: Internet).
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F igure 2.3. - A m oco  C adiz (source: Internet).

F igure 2.4. - Exxon Valdez (source: Internet).

The most common pollution incidents occur during terminal operations when 

oil is being loaded or discharged - perhaps as many as 53% of oil spills, 

according to figures published by the International Tanker Owners' Pollution 

Federation.

A much greater quantity o f oil enters the sea as a result of normal tanker 

operations, usually associated with the cleaning of cargo residues (clingage), 

which takes place when the ship is returning from the port o f discharge to take 

on another cargo o f oil.
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Incidences o f  Spill by Cause

■ 20%

□  O perations 

■  A ccidents

□  O ther

F igu re 2.5. - In ciden ces o f  sp ill by  cau se - 1970 - 1997  (source: ITOPF).

Other causes o f oil pollution include tank cleaning in connection with dry 

docking; bilge and fuel oil (from dry cargo ships as well as tankers) and non­

tanker accidents.

Although most public concern about marine pollution has concentrated on 

problems associated with oil, many of the chemicals carried by sea are far more 

dangerous to the marine environment.

Fortunately, perhaps, the amount o f noxious substances carried at sea is only a 

fraction of the amount o f oil transported each year. Many are carried in bulk 

form in tankers especially designed for the purpose.

The ships themselves are generally much smaller in size than oil tankers, 

ranging from 500 grt to about 40,000 grt. They are, however, often extremely 

complex (and hence expensive) to build. Not only must the cargo be given 

maximum protection, but the ship may also carry many different substances at 

the same time - each one o f which may have particular properties and require 

different handling.
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Other chemical substances are carried in packaged form, such as in drums or 

portable tanks. Again, the environmental threat which some of these substances 

represent bears no relation to the size of the unit in which they are carried. As 

an example, polychlorinated biphenyls (PCBs) are potentially so harmful that 

IMO have recommended that their carriage in bulk form by ship should be 

banned.

Many of these substances are not only a pollution threat - they can also be 

extremely hazardous both to ships and equipment and, more importantly, to 

people.

The number of different chemicals and other goods of this type is growing all 

the time as the world becomes more industrialised and industry itself becomes 

more complex.

Garbage and sewage from ships have traditionally been dumped into the sea as 

a natural and usual procedure, and in relation to the amount of similar wastes 

poured into the sea each year from the land, the quantities were not considered 

excessive in the past.

Today, however, the situation is very different. One reason is the growing 

everyday use of substances such as plastics, which are non-biodegradable: once 

thrown into the sea they can stay there for many years.

In a number of countries, quantities of industrial and municipal waste (mainly 

sewage sludge) generated on shore are disposed of by dumping at sea. Most of 

these materials are such that the marine environment without harmful effects 

can assimilate them (although the sheer scale of dumping operations has 

caused concern in some areas). But other materials - such as radioactive wastes 

- are much more controversial.

Account must also be taken of the many harmful substances transported in 

packaged forms, which can have a polluting effect if released into the marine
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environment. The labelling and stowage of such packages should be such as to 

minimise hazards arising from shipment.

No matter what substance is involved, marine pollution is an international 

problem. The risk o f a major tanker accident is greater in some areas than in 

others but pollution can happen almost anywhere and can affect coastlines, 

which are often many miles away from the incident, which caused it.

2.3.1 Analysis of Oil Spills Statistics

2.3.1.1 Introduction

At the present moment about 100 million tonnes of crude and oil products are 

under transportation by ship over the oceans. Some of the International 

Organisations (ITOPF) claim that that most of it is being transported in safe 

ships, with skilled crew under competent management. However, there are still 

a few where the doubtful condition of these ships leads to the idea of not 

compliance with today’s standards of safety and thus imposing important 

threats to the lives of their crew and to the environment.

Although some of these situations are not solved yet, it is clear that a 

significant improvement has been reached over the past few decades. This was 

achieved mainly through international co-operation. The oil spill statistics over 

the past few decades indicate these positive trends.

2.3.1.2 Numbers of Oil Spills and Total Amount Spilt

The incidence of large spills is relatively low and detailed statistical analysis is 

rarely possible, and so emphasis is placed on identifying trends.
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The examination o f the statistical data from the ITOPF shows some interesting 

results. The accident statistics over the past twenty-five years show a 

significant reduction in the number o f large-scale spills. A clear drop can be 

seen from about 1980 for spills over 700 tonnes (see Figure 2.6). Through the 

last decades the average number o f major oil spills each year had dropped to 

one-third o f that witnessed in the previous decade. This drop can clearly be 

associated with the introduction o f MARPOL 73/78, but also with a drop in the 

total amount and volume o f transported crude.

The great majority o f spills are small, i.e. less than 7 tonnes. However, in most 

years it is probable that they make a relatively small contribution to the total 

quantity o f oil spilled into the marine environment.
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F igure 2.6. - M a jor a cc id en ta l o il sp ills  (sp ill > 700 tonnes) w orldw ide  fro m  tan kers, 
com bin ed  ca rr iers  an d  barges  - 1970 - 1997  (source: ITOPF, 1998)

Table 2.1 - N um bers o f  sp ills  o ver 7 tonnes an d to ta l qu an tity  o f  o il sp ilt - 1970 - 1997
(source: ITOPF, 1998).
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tonnes)
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1 1
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1981
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1983

44
52 1 1

1 1
3 8 4
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20
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79
67

It is notable that a few very large spills are responsible for a high percentage o f 

the oil spilt. For example, in the ten-year period 1988-1997 there were 360 

spills over 7 tonnes, totalling 1439 thousand tonnes, but 1003 thousand tonnes 

(70%) were spilt in just 10 incidents (less than 3%). The figures for a particular 

year may therefore be severely distorted by a single large incident. This is 

clearly illustrated by 1979 (Atlantic Empress - 287,000 tonnes), 1983 (Castillo 

de Bellver - 252,000 tonnes) and 1991 (ABT Summer - 260,000 tonnes).
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C a s t i l lo  d e  B e l lv e r  

(2 5 2  0 0 0  t)
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200

Y e a r

F igure 2.7. - Q uantities o f  o il sp ill  - 1970 - 1997 (source: ITOPF, 1998)

Major oil spill accidents may cause severe local impacts and contaminate 

hundreds of kilometres of shoreline, but one must not forget that the large 

number of small-scale spills also constitute serious environmental threats in
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many areas. If the spill size interval is extended to include also small-scale, so- 

called operational spills, the figures do not demonstrate a clear-cut decrease 

(see Figure 2.8). Even though many of the provisions o f MARPOL are aimed 

at reducing all operational discharges o f oil and contaminated water, illegal 

operational spills are still frequently reported.

A c c id e n ta l  O il P o llu tio n  F rom  T an k ers

O ver 700 to n n es Q uan tity  (103 tonnes)7-700 tonnes

L ast d e c a d e  1438 to n n e s  3 I ‘XP re v io u s  d e c a d e  2091 to n n e s

1997: 0 .0 0 0 2 %  o f  o il  
tra n sp o r te d  sp il t  
a c c id e n ta lly

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

200 O

F igure 2.8. - N um bers o f  sp ills /O il sp ille d  - 1970 - 1997  (source: ITOPF, 1998)

The following table gives a brief summary o f the 20 major oil spills. A number 

o f these incidents, despite their large size, caused little or no environmental 

damage, as the oil did not impact coastlines.
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T able 2 .2  - S e le c te d  m a jo r o il sp ills  - 1974 - 1 997  (source: ITOPF, 1998)

SHIPNAME Year Location Oil lost (tonnes)
Atlantic Empress ! 1979 O ff Tobago, West Indies 287,000

ABT Summer 1991 700 naut. Miles o ff Angola 260,000
Castillo de Bellver 1983 O ff Saldanha Bay, South Africa 252,000

Amoco Cadiz 1978 O ff Brittany, France 223,000
Haven 1991 Genoa, Italy 144,000

Odyssey 1988 700 naut. Miles o ff Nova Scotia, Canada 133,000
Torrey Canyon 1967 Scilly Isles, UK 119,000

Urquiola 1976 La Coruna, Spain 100,000
Hawaiian Patriot 1977 300 naut. Miles o ff Honolulu 95,000

Independenta 1979 Bosphorus, Turkey 95,000
Jakob Maersk 1975 Porto, Portugal 88,000

Braer 1993 Shetland Islands, UK 85,000
Khark 5 1989 120 naut. Miles o ff Atlantic coast o f 

Morocco
80,000

Aegean Sea 1992 La Coruna, Spain 74,000
Sea Empress 1996 Milford Haven, UK 72,000

Katina P. 1992 O ff Maputo, Mozambique 72,000
Assimi 1983 55 naut. Miles o ff Muscat, Oman 53,000
Metula 1974 Magellan Straits, Chile 50,000
VVafra 1971 O ff Cape Agulhas, South Africa 40,000

Exxon Valdez 1989 Prince William Sound, Alaska, USA 37,000

With the intention o f getting some explanations for the main causes o f spills, 

the following table explores the incidence o f spills o f different sizes in terms o f 

the primary event or operation in progress at the time o f the spill. A large 

majority o f the incidents are the result o f a combination of actions and 

circumstances, all o f which contribute in varying degrees to the final outcome. 

These "causes" were grouped into "Operations" and "Accidents".

It is possible to conclude from the table that:

• Most spills from tankers result from routine operations such as loading, 

discharging and bunkering, which normally occur in ports or at oil 

terminals;

• The majority o f these operational spills are small, with some 92% involving 

quantities of less than 7 tonnes;
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• Accidents involving collisions and groundings generally give rise to much 

larger spills, with a fifth involving quantities in excess o f 700 tonnes.

Table 2.3 - In cidence o f  sp ills  by  cau se - 1974 - 199 7 (source: ITO PF, 1998)

< 7 tonnes 7-700 tonnes > 700 tonnes Total
OPERATIONS |

Loading/Discharging 2757 288 15 3060
Bunkering 541 24 565

Other Operations 1162 47 0 1209
|

ACCIDENTS |
Collisions 144 225 85 454

Groundings 217 186 101 504
Hull Failures 547 67 39 653

Fire & Explosions 149 16 20 185

OTHER 2213 157 34 2404
|.......' " '

Total 7730 1010 294 9034

i in be r

T y p e  o f  In c id e n t

F igure 2.9. - N um ber o f  acciden ts by incident type - 1974 - 1997  (source: ITOPF,
1998)

From Figures 2.9 and 2.10 and Table 2.4 it is clear that groundings and 

collisions are generally the dominating causes o f tanker accidents with large oil 

spills. For small spills, the causes are most frequently attributed to cargo
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handling operations. Consequently, both large and small spills mostly occur 

near the ports or in coastal area with limited depth or/and dense traffic.

Accidental spills > 700 tonnes, 1974-1997

□  Load in g /D isch ar gin

I F ire  & E xplosion
7 %

□  H ull F a ilu re s
13%

□  O th e r

I C ollisions 
2 9 %

F igure 2.10. - A ccid en ta l sp ills  >  700 tonnes, 1 9 7 4 -1 9 9 7  - (source: ITOPF, 
In tern a tion a l Tanker O w ners Pollu tion  F ederation  Ltd., 1998)

2.4 D evelopm ent o f  R egu lations for Control o f  Oil 

Pollution

Oil pollution from ships was first recognised as a problem during World War I. 

However, it was only in 1954 that the first treaty to prevent oil pollution of the 

seas from ships took place. This conference dealt only with operational oil 

pollution from merchant ships, not taking into discussion any aspects regarding 

accidental pollution. Nevertheless, it was a first step towards the improvement 

o f ship environmental safety.

The introduction o f the first construction measures to reduce the amount o f oil 

released to the sea from tankers after an accident, was made in the 1954 

Convention o f the Pollution o f Sea by Oil (OILPOL).
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Figure 2.11. - Non-Segregated Ballast Tanker.

In this Convention a series of zones, where discharge of oily wastes was 

prohibited, has been established. There also introduced the requirement that 

ports should have facilities for the reception of waste oils from non-tankers. 

However, for tankers, which produce far greater quantities of oil, no provisions 

were established.

By the 1960s there was evidence that oil pollution from ships was becoming 

more of a threat: the amount of oil being moved by sea was increasing, as were 

the number and size of tankers. The appearance of VLCCs in the 60's gave rise 

to a growth in the concern about the risk of disastrous oil spills as a result of 

maritime accidents. This was even more accentuated when in 1967 the Torrey 

Canyon grounded spilling over 119000 tonnes of oil into the sea.

There was also growing evidence that the 1954 OILPOL Convention was not 

as effective as some had hoped. Studies by IMO showed that facilities for 

receiving waste oils in ports were inadequate and the very fact that reception 

facilities would have to be provided had deterred some countries from ratifying 

the Convention at all. It was also proving virtually impossible to prosecute 

those who discharged oil in zones where it was forbidden.

In 1962 IMO called a conference to amend the Convention. The amendments 

entered into force in May 1967, but by then international attitudes to oil
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pollution had changed forever by one dramatic event: the sinking of the tanker 

Torrey Canyon in March of the same year.

The grounding of the Torrey Canyon was the largest marine pollution disaster 

in history at the time and it was to have profound consequences. It was agreed, 

that something would have to be done - and it would have to be done at an 

international level. That meant it would have to be done through IMO.

In 1973 the Oil Pollution Convention was superseded by the International 

Convention for the Prevention of Pollution from Ships, (MARPOL '73). At this 

time, it was generally accepted that although vessel accidents receive 

sensational publicity and cause severe local pollution, the quantity of oil 

discharged annually from tankers was far greater than the amount of oil lost as 

a result of vessel casualties. As far as the prevention of oil pollution was 

concerned the main provision of MARPOL '73 required that every new tanker 

o f 70000 tonnes deadweight and above be provided with segregated ballast 

tanks (SBT). This measure was primarily a means of reducing operational oil 

pollution and discharge at sea of oil/water mixtures resulting from ballasting 

cargo tanks. The capacity of the segregated ballast tanks is determined so that 

the ship can operate safely on ballast voyages without having to recourse to the 

normal use of oil tanks for water ballast. The vessel must meet certain 

minimum drafts forward and aft, which enable normal, safe navigation.

In addition to the measures intended to minimise operational discharges, 

MARPOL '73 contained limited provisions for the minimisation of accidental 

discharges. These regulations essentially incorporated the amendments to 

OILPOL '54 in establishing requirements relating to cargo tank arrangements 

and limitation to tank size in oil tankers, and were based on specified damage 

assumptions and methods of calculation of the hypothetical oil outflow. 

Basically, cargo tanks of oil tankers must be of such size and arrangement that 

the calculated hypothetical oil outflow anywhere in the length of the ship does
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not exceed 30,000 m3 or 400.yDeadweight, whichever is greater, subject to a 

maximum of 40,000 m3.

To protect further the marine environment in the event of damage to oil 

tankers, provisions were adopted in the Convention specifying bottom and side 

damage assumptions which tankers in the fully or partially loaded condition 

must be capable of surviving.

Following a series of tanker accidents in U.S. waters during the winter of 

1976/77 growing public concern in the United States over the risk associated 

with the marine transportation of oil resulted in the announcement of a diverse 

but inter-related group of measures intended to reduce such risks. The United 

States Administration were requested to pursue their objectives internationally 

at the International Maritime Organisation, which led to the IMO Conference 

on Tanker Safety and Pollution Prevention in 1978 (TSPP 78).

Initially, the TSPP Conference considered a proposal made by the United 

States to require double-bottoms of a height at least B/15 or two metres, 

whichever is less, in all new tankers of 20,000 tonnes deadweight and over. 

This was seen as a mean to reduce oil outflow and the resulting pollution in the 

event of a grounding. It also considered a US proposal to require all new and 

existing tankers of 20,000 tonnes deadweight and over to have segregated 

ballast tanks as a means to reduce oil outflow and the resulting pollution in the 

event of collision.

As in the MARPOL 73 a majority of nations were strongly opposed to 

mandatory double-bottoms and a compromise solution was agreed that for new 

tankers the protective location (PL) of segregated ballast tanks was a viable 

alternative to the fitting of double-bottom tanks.
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Figure 2.12. - Protective Located Segregated Ballast Tanker.

Protective location is the requirement that SBT should be arranged in such 

locations so as to provide protection of cargo tanks against rupture in the event 

of a grounding or collision.

The new requirements for the protective location of segregated ballast tanks 

formed part of the 1978 Protocol modifying Annex I of MARPOL '73, which 

has subsequently become known as MARPOL '73/78.

The great majority of international and domestic regulations related to ship 

design are prescriptive in nature, performance standards would allow greater 

design flexibility.

Current international regulations for oil tankers, intended to minimize pollution 

from accidental side and bottom damage, are one example of a prescriptive 

standard. Although such standards are relatively straightforward in their 

application, new oil outflow calculation techniques have demonstrated (IMO, 

1995a) that these regulations need to be assessed and revised.

The computation of oil outflow from a tanker, that has suffered an accident, is 

based essentially upon applying an assumed extent of damage and calculating 

the oil outflow based on physical hydrostatic and “quasi-hydrodynamic” 

principles.
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The International Maritime Organisation has developed guidelines for 

approving alternatives to the new tanker construction requirements (IMO, 

1995b). These guidelines contain a rigorous methodology to compute the oil 

outflow in accidental groundings and collisions and provide for the 

development of a “Pollution Prevention Index” for comparison with a series of 

“reference” double hulls. This index includes three characteristics o f the oil 

outflow performance of any tanker:

• probability of zero outflow;

• mean outflow;

• and extreme outflow,

which will be discussed later in detail. The relative importance o f these 

parameters was determined in an arbitrary manner, although their importance 

was realised.

Despite the importance of this move, there is a problem with the statistical data 

used as basis for the probability density functions:

"The data compiled by the Classification Societies (LR, ABS, DnV, ClassNK, 

and RI) at IMO's request, is based upon data compiled from collision and 

grounding incidents including only single-hull tankers, o f 30,000 DW T and 

over, through the period between 1980 to 1990". (NRC, 1991)

2.4.1 Preventing Operational Oil Pollution

One of the problems involving operational oil pollution from tankers was the 

ballasting process, once oil was discharged from inside the tanks some of them 

had to be filled with water, to keep the ship's propeller properly immersed and 

to maintain sea-keeping and directional stability characteristics.
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In the early days o f oil tanker operations one o f the most important causes o f 

operational oil tanker pollution was the cleaning o f tanks with jets spraying 

seawater, resulting in a mixture o f oil and water, which was then pumped 

overboard.

During the 1960’s, technical advances improved some o f these procedures. One 

o f the most important innovations being load on top that was introduced in 

1969 as an amendment to OILPOL '54. This technique introduced two main 

benefits:

• the owner can recover this oil;

• it is not discharged to the environment as a mixture with water.

---------

mOil Oil

Sea Water

i .

Sea Water

j

F igure 2.13. - L oad-on -top  technique.

Recognising that oil was the major threat to the marine environment, in 1973, 

IMO adopted the International Convention for the Prevention o f Pollution from 

Ships, which covers pollution by chemicals, packed goods, sewage and 

garbage as well as oil. This Convention was modified by a protocol in 1978 

and is now usually known as MARPOL 73/78.

MARPOL '73 regulations are a comprehensive set of regulations dealing with: 

>  provisions requiring the use of dedicated segregated ballast tanks;

V* specific requirements for hypothetical oil outflow;
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>  limitations on the volumes and dimensions of cargo tanks.

The Protocol '78 regulations added requirements for a Protective Location of 

Segregated Ballast Tanks. It also limits or bans the amount o f oil that may be 

discharged into the sea during routine operations.

F igure 2.14. - P ollu tion  fro m  Tanker O pera tions (Source: U.S. N a tion a l A cadem y o f
Sciences, 1990).

2.4.2 Preventing A cc identa l  Pollution

The most important o f all conventions adopted by IMO is the International 

Convention for the Safety o f Life at Sea (SOLAS), 1974, which includes 

special requirements for tankers. Fire safety provisions, for example, are much 

more stringent for tankers than for ordinary dry cargo ships, since the danger o f 

fire on board ships carrying oil and refined products is much greater.

To provide a safe atmospheric environment inside tanks, the space in empty 

tanks or the space left above the oil must be filled with inert (non-explosive)
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gas from the ship's boiler exhausts. An inert gas system is required on all-new 

tankers and most existing tankers of 20 000 DWT and above.

IMO has introduced several measures over the years, which are designed to 

ensure that, in the event of mechanical failure, the ship can still be controlled:

• it is necessary that essential parts of the steering gear of tankers to be 

duplicated;

• the navigational equipment of tankers must also be duplicated;

• the possible duplication o f propulsion to provide power in the event of 

emergencies should be considered.

With the expectations of being able to eliminate sub-standard ships, since 1995 

all tankers and bulk carriers aged five years and over have been subjected to a 

specially enhanced inspection program. The main aim of this measure is to 

insure the detection of any deficiencies at an early stage (corrosion, wear and 

tear).

The International Regulations for the Prevention of Collisions at Sea, 1972 is 

another convention, which is particularly relevant to tanker safety. These 

regulations contain special provisions for tankers, which have a reduced ability 

to manoeuvre, by virtue of their draught, It also contains the International 

Convention on Standards of Training, Certification and Watchkeeping for 

Seafarers, 1978, several of whose requirements are designed specifically for 

those working on tankers.

This Convention was completely re-written in 1995 and the amendments 

became effective in 1996. For the first time it gave IMO the right to check on 

the administrative, training and certification procedures of Governments to 

ensure that the seafarers they produce meet IMO standards.
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An International Safety Management Code was adopted in 1994 and became 

mandatory for tankers in 1998. The delay was needed because the Code 

imposes very strict standards on shipping companies, which takes time to 

implement. Although there have been many huge oil spills resulting from 

tanker accidents, in the open ocean, oil generally disperses naturally, with 

relatively minor consequences for wildlife. The major disasters have happened 

when the spill has been near to land and IMO has developed procedures, which 

are designed to help Governments respond to emergencies as quickly and 

effectively as possible.

The Intervention Convention of 1969 was designed to enable Governments to 

take action when the threat occurs near their coastline but outside their 

territorial waters. Until the adoption of this Convention there were considerable 

legal difficulties involved in taking such action, since countries have always 

been prevented from acting against ships of other countries operating on the 

high seas. It was widely recognised by Governments, however, that it was 

essential to operate as soon as possible in the event of a major accident 

threatening pollution and the Convention was designed to enable them to do so.

Salvage operations at sea are normally arranged between the shipowner and a 

salvage company. Traditionally in the event of an accident the arrangement is 

based on a Lloyd's Open Form, meaning that the salvor will only receive 

payment based on the value of the ship and cargo if the operation is successful 

(a formula known as "no cure, no pay"). In practice this system did not prove 

suitable for salvage operations involving possible oil pollution since it does not 

take pollution into account. A salvor could avert a major pollution incident and, 

because the ship was not completely salvaged, receive no recompense.

In 1989 IMO adopted the International Convention on Salvage, which has 

entered into force on 14 July 1996. The Convention makes provision for 

"special compensation" to be paid to salvors when there is a threat to the 

environment.
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To help ensure that salvage operations are successful, since 1 January 1996 all 

new tankers of 20,000 dwt and above must be fitted with an emergency towing 

arrangement at either end of the ship. Similar arrangements must be fitted to 

existing ships at the first dry-docking scheduled after that date but not later 

than 1 January 1999.

2.4.3 Reducing the Consequences of Accidents

MARPOL 73/78 stipulates that new tankers must meet certain requirements 

regarding subdivision and stability, which are intended to ensure that, in any 

loading conditions, the ship can survive after being involved in a collision or 

stranding.

The 1978 MARPOL Protocol introduced a further element. This is the concept 

known as protective location of segregated ballast tanks. This way the 

amount of cargo spilled after such an accident will be greatly reduced. The 

1983 MARPOL amendments ban the carriage of oil in the forepeak tank - the 

ship's most vulnerable point in the event of a collision.

In 1992 MARPOL was amended to make it mandatory for tankers o f 5,000 dwt 

and more ordered after 6 July 1993 to be fitted with double hulls, or an 

alternative design approved by IMO.

Despite the measures introduced by IMO, tanker accidents continue to happen, 

as the Braer and Sea Empress incidents have shown. IMO is especially 

concerned about tanker safety because the world fleet of tankers is growing 

steadily older - and statistics show that there is a correlation between age and 

the accident rate. The bulk of the world's tankers were built in the 1970s at a 

time when it was anticipated that demand for oil would continue to rise. But 

instead dramatic increases in oil prices stopped this from happening. The
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industry was left with a surplus o f tanker tonnage, which has persisted ever 

since and has restricted the amount o f new tonnage ordered.

F igure 2.15. - B raer (source: Internet).

Apart from the fact that old ships tend to have more accidents than new ones, 

ships built in the 1970s do not have to comply with many o f the stricter 

standards that have been introduced since. The principle that existing ships 

should be exempt from new regulations that involve major structural changes 

could be justified at a time when ships were replaced with new tonnage at a 

comparatively young age. It was felt that owners who built and equipped their 

ships according to the standards existing at the time should not be forced to 

modify them every time new requirements were introduced.

But throughout the 1980s and 1990s the average age of ships including tankers 

lias risen steadily and the "safety gap" that has resulted has increased concern 

about safety and pollution and has resulted in a reversal o f the traditional 

attitude. As a result many o f the requirements introduced for new ships have 

now been extended to existing vessels.
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F igure 2.16. - Sea E m press (source: Internet).

The requirement for double hulls that applies to new tankers has been applied 

to existing ships under a program that began in 1995. All tankers built in the 

1970s will have to be converted when they reach the age o f 25. Within the next 

few years, therefore, the bulk o f the world's tanker tonnage will have to be 

fitted with double hulls - or scrapped. This measure is being phased in over a 

number of years because shipyard capacity is limited and it would not be 

possible to convert all single hulled tankers to double hulls without causing 

immense disruption to world trade and industry.

At present only a small amount of the world's 3,500 tankers have double hulls. 

Calls for single hulled ships to be banned are therefore scarcely practicable 

from an economic point of view - there are not enough double hulled tankers to 

carry more than a small fraction of today's world trade in oil and most o f those 

are already committed to fixed trading routes. In any case, it is generally felt 

that while double hulls can minimise oil spills in certain circumstances - such 

as a low-speed grounding - they would provide little protection in the event o f 

a high-speed impact or a collision with another ship.

A treaty designed to help Governments combat major oil pollution incidents 

became international law in May 1995. The treaty is the International
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Convention on Oil Pollution Preparedness, Response and Co-operation 

(OPRC), which was adopted in November 1990.

The Convention is designed to facilitate international co-operation and mutual 

assistance in preparing for and responding to a major oil pollution incident and 

to encourage States to develop and maintain an adequate capability to deal with 

oil pollution emergencies.

2.4.4 Providing Compensation for Pollution

The prevention of marine pollution is IMO's primary concern. However, this 

Organisation has also taken steps to ensure that adequate compensation is paid 

to those who suffer when pollution does occur.

The purpose of the 1969 Civil Liability Convention (CLC) is to put the onus of 

paying compensation on the shipowner. The 1971 Fund Convention extends 

additional liability to oil importers, who pay into a central fund an amount, 

which depends upon the amount of oil they import.

The two-tier system works in the following way:

• under the Civil Liability Convention, those affected by oil pollution are 

able to claim damages from the shipowner whose ship is judged to be 

responsible for the pollution. But the shipowner is able to limit the amount 

of compensation payable to about $US 14.6 million or $US 140 per ton of 

the tanker. This is so that he can obtain insurance cover, if there was no 

limit on the amount of compensation payable, the shipowner would not be 

able to insure himself, and a major claim could prove financially disastrous. 

In the event of the shipowner being forced into bankruptcy there would also 

be the possibility of claimants not receiving any compensation at all.
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But it was recognised that the $US 14.6 million limit could very well prove to 

be inadequate if the pollution incident were a major one. It was also felt that 

the oil importers should shoulder their share o f the burden. Thanks to the 

creation of the International Oil Pollution Compensation Fund, victims of oil 

pollution can claim additional compensation, beyond the $US 14.6 million 

payable under the Civil Liability Convention, providing total compensation of 

about $US 90 million. Oil importers pay contributions to the Fund.
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F igu re 2.17. - VLCC H is to rica l B ackgrou nd (source: A m erican  P etro leu m  In stitu te
Web P a g e  -  L ars Carlsson).

Since the two Conventions were adopted, inflation and other factors have made 

even these sums inadequate to pay compensation in the event o f a major 

disaster. In 1992 the liability limits in the two Conventions were increased by 

means of two Protocols. The maximum shipowners' liability limit was 

increased to $89 million for ships of 140,000 grt and above. When the damage 

exceeds the limit of the shipowner, the Fund Protocol will provide an 

additional source of compensation.
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The basic coverage (including the liability under the CLC Protocol) will rise to 

a maximum of $201 million and the procedure for increasing limitation 

amounts in future has been simplified.

These Protocols entered into force on 30 May 1996.

2.5 Changes in Marine Pollution Regulations Following 

OPA '90

U.S. legislators in the wake of Exxon Valdez disaster brought in the Oil 

Pollution Act 1990. It is one of the most important environmental legislation of 

recent years and affected owners and builders worldwide. It also has important 

implications for the salvage industry.

In November 1990, the United States submitted a proposal to the thirtieth 

session of the IMO Marine Environment Protection Committee to establish an 

international requirement for double-hull tankers. This proposal eventually 

resulted in the adoption of MARPOL 73/78 Regulations I/13F and I/13G 

(MARPOL 13F and 13G). These regulations, which became effective in July 

1993, apply to the vessels of all nations and are similar to the provisions of 

Section 4115 of OPA '90.
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T a rg e t O u tc o m es  o f  O PA '90 R u le m a k in g s

R ed u ce  th e  N u m b e r  o f 
C a su a ltie s

33%

I n c r e a s e  R e s p o n s e  

E f f e c t iv e n e s s

16%

F igure 2.18. -OPA '90 Rulem akings.

2.5.1 New Vessel R eq u ir e m en ts

MARPOL 13F specifies the hull configuration requirements for new oil tankers 

contracted after July 6, 1993, o f 600 deadweight ton (DWT) capacity or more. 

Oil tankers between 600 and 5,000 DWT must be fitted with double bottom or 

double sides, and the capacity o f each cargo tank is specifically restricted. 

Every oil tanker o f more than 5,000 DWT is required to have a double hull 

(double bottom and double sides), a mid-deck with double sides, or an 

alternative arrangement specifically approved by IMO as being equivalent to 

the double hull design. These requirements, along with those o f OPA 90, are 

shown in Table 2.4.

MARPOL 13F specifies that other designs may be accepted as alternatives to 

double hulls, provided that they give at least the same level o f protection 

against the release o f oil in the event o f collision or grounding and are 

approved, in principle, by IMO's Marine Environment Protection Committee.

R e d u c e  th e  N u m b e r  o f  O il  

S p i l ls

24%

R ed u ce  th e  Q u a n ti ty  o f  O il 
S p illed

27%
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IMO design guidelines employ a probabilistic outflow methodology for 

calculating oil outflow and a pollution prevention index to assess the 

equivalency of alternative designs.

Table 2.4 - Requirements o f  IMO regulation 13F and OPA '90 fo r  New Vessels 
(source: National Academy Press).

OPA 90 < 5,000 GT Double-hull or double­ Building contract placed
Section 4115 containment systems after June 30, 1990 

Delivered after January 1, 
1994

> 5,000 GT Double-hull Building contract placed 
after June 30, 1990 

Delivered after January 1, 
1994

IMO < 600 DWT Not applicable
Regulation 13F 600 -  5,000 Double bottom or double Building contract placed

DWT sides after July 6, 1993 
New constructions or 

major renovation begun 
on or after January 6, 

1994
Delivered after July 6, 

1994
> 5,000 DWT Double hull, mid-deck 

with double sides, or 
equivalent

Building contract placed 
after July 6, 1993 

New constructions or 
major renovation begun 

on or after January 6, 
1994

Delivered after July 6, 
1994

Section 4115 of OPA '90 and MARPOL 13F take different paths in addressing 

the change to double-hull construction. Section 4115 restricts oil trade to the 

United States by vessels without double-hulls according to a schedule based on 

vessel age. MARPOL 13F takes a proactive approach requiring all vessels 

constructed after a certain date to have double-hulls or an approved alternative. 

MARPOL 13G allows existing vessels to trade for a longer period than that 

allowed under section 4115 if they are of acceptable design. Table 2.4 shows 

that Section 4115 is more restrictive in controlling vessels in the international 

fleet able to serve the United States.
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2.5.2 Existing Vessel Requirements

MARPOL 13G, which pertains to single hull vessels, applies to crude oil 

tankers of 20,000 DWT or more, and to oil product carriers of 30,000 DWT or 

more. The regulation specifies a schedule for retrofitting (with double hulls or 

equivalent hull designs or operational measures) or retiring single-hull tank 

vessels 25 or 30 years after delivery. The differences between MARPOL 13G 

and OPA '90 are shown in Table 2.5.

Tankers not fitted with Segregated Ballast Tanks (SBTs), or fitted with SBTs 

not protectively located, must have designated protectively located double side 

or double-bottom tanks or spaces when they reach 25 years of age. In 

appropriate locations, SBT would be acceptable as protectively located spaces.

MARPOL 13G also allows Hydrostatically Balanced Loading (HBL) and other 

alternatives (operational or structural) to protectively located spaces. Tankers 

built in compliance with Regulation I (6) of MARPOL 73/78 have protectively 

located ballast spaces and require no modification until reaching 30 years of 

age. On reaching 30 years of age, all tankers in the oil trade must be converted 

to double hulls or an acceptable equivalent according to MARPOL 73/78, 

Regulation I/13F(5).

Table 2.5 - Requirements o f  MARPOL 13G and OPA '90 fo r  Existing Vessels (source:
National Academy Press).

OPA 90 < 5,000 GT Double-hull or double­ After January 1, 2015
Section 4115 containment systems

> 5,000 GT Double-hull Per schedule starting in
1995

Operational measures November 27, 1996
IMO Crude carriers Double-hull or equivalent 30 years after date of

Regulation 13F > 20,000 DWT delivery
and product

carriers
> 30,000 DWT

PL/DS or PL/DB or 25 years after date of
PL/SBT or HBL or delivery

equivalent
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The United States has reserved its position on the loading and structural 

provisions o f MARPOL 13G applicable to single-hull tankers. The recent rule 

promulgated by the USCG does not require structural modifications o f single­

hull vessels before they are phased out. MARPOL 13G also imposes a program 

of enhanced ship inspections during periodic, intermediate, and annual surveys. 

This same provision is included in the November 1996 USCG rule in 

operational measures (Federal Register, 1996).

The fact that the United States has reserved its position on the aforementioned 

provisions of 13G will have little effect on most vessels calling at U.S. ports 

and on the resulting protection o f U.S. waters. OPA '90 requires most vessels 

to retire by age 25, and 13G comes into effect only when vessels reach 25 years 

of age. Thus, most vessels 25 or older - whether in international or coastwise 

trade - will be excluded from U.S. waters by OPA '90, regardless o f the 

provision of 13G. There is one notable exception to this situation, namely, 

larger vessels operating to lightering areas and the deepwater port under the 

OPA '90 exemption.

□  o p a  -90 

■  MARPOL

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 201 1 2012 2013 2014 2015

F igure 2.19. - Effect o f  IM O  R egulations 1 IF  a n d  13G  and OPA '90 Section 4115  on 
e lig ib ility  o f  ex isting vesse ls  to  opera te  in U.S. w a ters (source: N ation a l A cadem y

Press).
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Tankers up to 30 years of age that are in compliance with 13G will be allowed 

to trade in international waters. These same vessels will be allowed to trade to 

the United States under OPA '90 exemption, regardless of the U.S. position on 

13G.

2.6 New Design Concepts

The Exxon Valdez disaster and the subsequent unilateral legislation by the U.S. 

(OPA ’90), led to a real surge of scientific investigation, engineering work and 

rule finding activities more or less worldwide. It is of common understanding 

that they will continue, for some years to come.

The creative unrest among shipbuilders, induced by the above events, yielded 

various new design and engineering concepts, which had to be proven and 

compared from an environmental point of view. Regulatory bodies 

consequently were asked to evaluate and check these concepts.

In February 1991 the Committee on Tank Vessel design on the United States 

judged, “The Committee did not identify any design superior to the double-hull 

for all accident scenarios”. Furthermore, “The nation deserves designs 

employing physical barriers, such as double-hulls, over those that continue to 

employ a single-hull, such as the design with intermediate oil-tight-deck with 

double sides”, i.e. the mid-deck tanker.

Following this judgement, which gave priority to the double-hull, every 

alternative design that came up had to be compared against this concept, but 

primarily the double-hull itself had to be optimised from an environmental 

point of view. In this situation the probabilistic method finally was recognised 

as the only rational and available tool to perform this considerable task. In 

Europe, e.g. by Det Norske Veritas (Kohler, 1991), and in the United States
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(HEC, 1992) design studies were published, in which the oil outflow for 

various subdivision modes was compared.

The first group o f studies published in 1991 served to demonstrate to the public 

and to shipbuilders the capability of probabilistic calculations in comparing the 

oil outflow o f various modes of subdivision including double-hulls. Hook 

(1991) stressed in his investigations, that no correlation exists at all between 

the ranking o f subdivisions which follow the deterministic formula for the 

protective location o f segregated ballast tanks as per MARPOL 73/78, Annex I, 

regulation 13E and the probabilistic ranking respectively. This refers as well to 

the probability as to the quantity of the expected outflow itself and means, that 

a subdivision which according to regulation 13E is optimal, in fact is not 

necessarily the best, or viceversa. Hence regulation 13E may be due for 

revision or even cancellation.

In the discussion to papers dealing with the probabilistic concept o f damage 

incidents (see discussions to Abicht, 1977 and Hook, 1991), there are some 

voices objecting to this approach. It is argued that people partly tend to have a 

psychological preference for determinism, whether this is adequate and rational 

or not. There seems to be a barrier against unconventional thinking. It may be 

that this is a cause of the reluctant acceptance of probability in ship safety and 

pollution prevention. Another reason could be the extensive computer 

calculation work, necessary in the early design stage, when the subdivision of a 

tanker is to be optimised by the probabilistic method.

A second stage o f detailed probabilistic investigations on subdivision of 

tankers began after the rejection of the mid-deck tanker concept by the U.S. 

Committee on Tank Vessel Design in 1991. The reasons for this rejection were 

based on the statement that this design and its implementation were unproven. 

At the same time the Marine Environment Protection Committee (MEPC) of 

IMO did a contradictory acceptance of the same concept by MARPOL

50



C h a p t e r  2  -  I n t r o d u c t i o n

regulation 13F in 1992 (IMO, 1992). This second set of investigations 

considered various sizes o f tankers.

Fortunately the same engineering company performed these investigations, 

carried out by orders o f U.S. Coast Guard and IMO respectively. Therefore, the 

tools applied for the calculations were identical. U.S. Coast Guard ordered 

comparative studies for double-hull tankers of 50 000, 150 000, and 270 00 

tdw together with four design alternatives for each; these were as follows:

• Mid-deck tanker;

• MARPOL SBT-tanker;

• COULOMBI EGG-tanker (patent);

• POLMIS tanker (proprietary).

The investigation covered various influences on the outflow from grounded 

tankers, i. e. approach speed, falling tide, current and waves. Furthermore, as 

applicable, variation of underpressure on top of the oil cargo and influence of 

rescue tanks were taken into account. The comprehensive results of this careful 

study, which are based on final flooding and damage stability calculations for 

all considered damage cases are given in the report of HEC (HEC, 1992).

It has been recognised by all parties for some time that double hulls were not 

the only answer to reducing pollution from crude carriers. However, the 

American legislature decided, in the wake of the Exxon Valdez accident, that it 

was the best solution to their particular problems.

IMO has already recognised that other designs can provide protection 

equivalent to that of double hulls.

It is now clear that there are two methods of minimising pollution in the event 

of an accident involving a crude carrier. The first is to prevent the cargo tanks
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being breached - as double skins are designed to - the second is to minimise the 

oil escaping from the tanks once the breach has occurred; this later almost 

invariably involves utilising hydrostatic balance, with or without refinements.

There are strong arguments both for and against double hulls. On the positive 

side:

• most collisions and groundings involving tankers are low energy accidents 

which are unlikely to penetrate the inner hull;

• the technology for building double hulls has been around for some time, 

albeit applied to rather small ships;

• it has, as a design, a proven track record.

The downside lies:

• increased maintenance;

• increased hazards from cargo and explosive gases leaking into the ballast 

spaces due to the increased boundary between ballast and cargo tanks;

• under certain circumstances, a pollution incident could actually be 

exacerbated by the double hull rather than reduced.

It is concern with these last points that has led builders and maritime 

authorities to look for other ways of tackling the problem. The fear before the 

publication of OPA - that if a particular hull design was prescribed it would 

strangle innovation - has proved to be unfounded. The door for innovation has 

been left open by IMO's comparative study on oil tanker design and the 

possibility that the OPA could be modified at a later date.

Given that double-hulls do not provide all the answers and that other designs 

may provide equivalent protection, the question arises about how this 

equivalence is to be judged. The IMO took equivalence to lie in a tanker’s
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“environmental performance (oil outflow in the event o f collision or 

grounding)” but has, however, recognised that there are problems in the 

application of this criterion to other, potential equivalent, designs. It has setup a 

sub-committee under the auspices of the Marine Environment Pollution 

Committee that led to IMO Interim Guidelines (IMO, 1995), applied here in 

this study.

A number o f alternative designs have already been proposed or presented to the 

maritime community and legislative bodies. The new design concepts found as 

proposals or already approved as equivalent to double-hulls, during this 

investigation, are listed below. In this list are also included retro-fitting to 

existing hulls.

• Mitsubishi Mid-Decker;

• Mid-Deck with rescue tanks (Intertanko);

• POLMIS.

• ECO-bulkhead;

• COULOMBI EGG;

• POLIS;

• SCOL;

The mid-deck tanker from Mitsubishi has been accepted by IMO as an 

equivalent to double-hulls. This design is characteristic of many of the 

proposals. It consists of wider side ballast spaces to increase protection against 

collision. The tank arrangement ensures also a preponderance of upward 

pressure at the bottom of the hull i.e. that, in the event of a grounding, which 

ruptures the bottom plating, water will flow in rather than oil flowing out.
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The mid-deck or tween-decker uses this principle, having a lower head o f 

cargo in the lower tanks than conventional tanker designs, which will, exert a 

lower pressure at the bottom of the plating than the upward pressure from the 

water outside. The position o f this horizontal deck is o f crucial importance to 

this design, as both too small and too large pressure differentials would 

influence performance under certain circumstances. Because there are no 

ballast tanks in the bottom, the side tanks are wider (6 m) as opposed to 

approximately 3m for a conventional VLCC.

F igure 2.20. - M itsubish i M id -D eck  D esign.

The current consensus o f opinion is that these are better than double-hulls in 

certain circumstances, particularly high-energy accidents. However, there are 

certain areas where double-hulls out-perform the Mitsubishi design:

• there will be, despite the negative hydrostatic balance o f the mid-decker, a 

small outflow o f oil in accidents that would not puncture the inside skin of 

a double bottomed tanker;

• there are also concerns about gas freeing the bottom tanks and the 

importance of using the correct loading sequence to avoid capsize.
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One criticism that has been levelled at both the double-hulled tanker and the 

tween-decker is that the oil will stay in the tank and could be subject to “tidal 

discharge”. This is what occurred on the Exxon Valdez disaster; after the initial 

oil outflow, the tide fell and more oil leaked from the damaged tanks. This 

criticism was answered by a new design that was promoted by Intertanko. 

Originally proposed by Phillipe Embiricos, this consists o f a mid-deck design 

with a piping network to evacuate the cargo, in the event o f an accident, to 

other, empty, cargo tanks, or to the ballast spaces if there is no room elsewhere. 

In order to satisfy the MARPOL requirement that the cargo tanks and the 

ballast spaces are not connected directly there are removable connections 

above the deck. The piping arrangement should also facilitate refloating in the 

event o f a grounding because it would ease retrimming o f a damaged ship.

F igure 2.21. - M id -D ecker D esign  with rescue tanks: p ro m o te d  by Intertanko.

There are other designs that also promote hydrostatic balance as the answer to 

reducing pollution. The POLMIS (Pollution Minimisation System) design 

(Figure 2.22), which has been developed by George Paraskevopoulos, uses Y- 

shaped divisions inside the main cargo space and features two large rescue 

tanks in the same Y-format (maintained in vacuum condition) between the 

cargo tanks. In an emergency, oil can be pumped into these tanks. The large 

central tank is located in a protected position and the wing tanks are so that 

they satisfy the criteria for maintaining hydrostatic balance. By maintaining the
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cargo levels in the wing tanks below that which would create hydrostatic 

balance, pollution would be minimised. The tanks are also designed to 

minimise the loss in cargo capacity.

The COULOMBI EGG Mid-Deck Tanker (Figure 2.23) is a proposal of 

Anders Bjorkman (Bjorkman, 1992). It also uses the principle of hydrostatic 

balance, but avoids the need for double sides. It has a mid-deck with upper 

wing tanks being used as ballast spaces.

E d
F dmi n

Figure 2.22. - Tank cross-section o f POLMIS Concept showing the void spaces at the 
top o f  the wings - the potential oil-leak volume is reduced to a minimum between lines

H q a n d  F d m i n -

In the event of collision or grounding, the oil in the damaged tanks would be 

transferred under hydrostatic pressure via trunk risers to the empty ballast 

tanks. Provided that the ship is sailing with the horizontal bulkhead below sea 

level, there should be minimal oil spillage. It is also claimed that the trim of the 

ship would not change substantially in the event of an accident.
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F igu re 2.23. - C O U LO M B I-E G G  M id-D eck  Tanker.

The ECO-bulkhead design is an innovative tanker swash bulkhead developed 

in the Netherlands. This new concept consists o f this modified swash bulkhead, 

having a closed watertight plate structure from deck to bottom except for 

relatively small holes near the bottom. The authors claim that this specific 

configuration prevents the outflow o f oil from an undamaged part of a tank, by 

limiting the replacement inflow to the level of the holes near the bottom (Lann, 

1995).

— *

_5Z_

Levtl above Hydrostatic balance 
Dynamic outflow effects 
Level openings in ECO-bulkhead

F igure 2.24. - E C O -bu lkhead sketch.
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The new designs are not only for completely new ship concepts, but also for 

the retrofitting to existing hulls. George Paskevopoulos, designer of the 

POLMIS configuration, has also developed a retrofit system called POLIS 

(Pollution Limitation System).

However the decision to retro-fit or not retro-fit led to a lot of discussion at 

IMO. They considered the age and configuration of the existing fleet; a large 

percentage, is more than 15 years old, which means that not only they are 

starting to reach the end of their originally estimated design life but also that 

they were built before MARPOL ’78. IMO therefore legislated for segregated 

ballast tanks for new buildings, but did not require their retro-fitting if the 

cheaper option of a crude oil washing system was fitted.

Various solutions to the pollution problem have been suggested. One of the 

suggestions that received more attention was one that involved the partial 

loading of existing tankers to a level where hydrostatic balance is achieved, 

between the cargo and the sea, coupled to the retro-fitting of a practical level of 

segregated ballast tanks. This would solve the problem of the remaining life of 

the vessels, reduce the pressure on the new building yards and avoid a demand- 

driven price rise.

However this was not the only suggestion. The Energy Transportation Group, 

of New York promoted THE SCOL system (System for Control of Oil 

Leakage) (Ship Repair and Conversion Technology, 4th Quarter 1991). It 

consists of simple mechanism of providing a VLCC with a network of sluice 

valves and pipe runs, which allow the transfer of oil from a damaged cargo 

tank to adjacent segregated ballast tanks to limit cargo discharge to the open 

sea. They claim that this tanker compares favourably with both double-hulls 

and mid-deck type, but only costs approximately 3% more than a conventional 

single-hull.
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CL

F igure 2 .25  - Typical Section S ide Tank SCOT.

(sec section 2.5, for a better understanding o f the changes required for existing 

vessels and new vessels, under the present regulations.)

59



C h a p t e r

Th e  P r o b a b i l i s t i c  A p p r o a c h  t o  S h i p

S u b d iv i s i o n

A
««««****•«



C h a p t e r  3  -  T h e  P r o b a b i l i s t i c  A p p r o a c h  t o  S h i p  S u b d i v i s i o n

CHAPTER 3 - T h e  PROBABILISTIC APPROACH TO SHIP 

S u b d iv is io n

3.1 Introduction

The major outcome of the discussion held at meetings o f the First Bulkhead 

Committee was the introduction of the Factorial Method, which lays down a 

procedure for determining statutory minimum levels of subdivision, which are 

to be achieved by all sea-going passenger vessels -  which meant, in essence, 

Trans-Atlantic liners.

For the last thirty to forty years IMO members have become increasingly aware 

o f the inherent flaws in the ‘Factorial’ method as a suitable means of assessing 

the ‘survivability’ of a passenger ship. The use of floodable or permissible 

length curves nowadays is quite rare, since designers appreciate that damage 

stability requirements invariably over-ride those arising from the subdivision 

part of SOLAS. Maintaining an adequate level of residual stability is much 

more important than establishing that there is residual buoyancy available.

The concept of a statutory maximum damage extent is linked with the 

regulatory minimum residual stability standard to be met. In effect, this implies 

a minimum length for any compartment before it can be considered as a ‘true’ 

compartment in a regulatory sense. Therefore, most present-day designs of 

passenger ships tend to have compartment lengths only marginally greater than 

this statutory distance -  0.03L + 3.0m -  particularly in the midships region. 

This preponderance of relatively-closely-spaced bulkheads clearly increases 

the possibility of a side damage opening up two, or even three, adjacent 

compartments. When this undesirable situation is linked, in addition, to a 

freeboard to the bulkhead deck which only achieves marginal compliance with
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the specified stability criteria, (as it often does), the overall result is a relatively 

poor standard subdivision.

A ship's subdivision serves primarily to limit flooding due to casualties causing 

water ingress and its purpose is to conserve floatability and stability. Collisions 

between ships are perhaps the most common marine accident. They are random 

events and can be described using the dimensions and locations of the 

penetrations causing flooding. Those dimensions and locations are random 

quantities. Whether such accidents can be survived depends on various states, 

quantities and characteristics whose specific values also occur randomly in the 

accidents. This whole situation results in the probabilistic concept being the 

most suitable manner to approach these phenomena.

At the beginning of 1960, Wendel and his associates (Wendel, 1960) 

introduced the probabilistic approach to evaluate a ship's subdivision, thus 

making it possible to calculate a numerical value of the attained safety, and 

also, which is even more important, that of the residual risk. Casualties do 

occur and they will continue to do so, regardless of the efforts made. 

Nevertheless, every ship should be able to avoid at least the most serious 

situations, like too rapid capsizing and foundering that do not allow time to 

save human lives.

This probabilistic concept has only gradually begun to enter into shipbuilding 

practice during recent years but at present it is valid only for collision damages 

of some types of ships. A lot of work remains to be done, to cover all the 

aspects of flooding, and all other types of floating vessels. The changes, 

spurred on by the tragic accidents suffered by some Ro-Ro passenger ships, in 

Resolution MSC 26(60) (IMO, 1992), were made by slight modifications of the 

well-known Resolution A. 265 (VIII) from 1973 (IMO, 1973).

Very frequent tragic incidents involving even the most modem ships show that 

they are, unfortunately, much too vulnerable. Contemporary methods of
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calculations show this convincingly enough to make it necessary to undertake 

measures to diminish the hazard.

The use of probabilistic concepts is a major change from the outdated 

deterministic methods of assessment of ship subdivision and damage stability 

specified by IMO regulations. This method was adopted at IMCO in 1973 in 

Resolution A. 265 (VIII) as an alternative to the existing subdivision and 

damage stability requirements for passenger ships based on the one, two or 

three compartment damage survivability standard. The Dry Cargo Ship 

Regulations were developed more than fifteen years later than the issue of the 

Passenger Ship Regulations. The application to dry cargo ships began on 1 

February 1992 (IMO, 1992a), and in IMO Resolution (IMO, 1992b) it is 

expected that the provisions of the Circular (IMO, 1991), to existing Ro-Ro 

passenger ships will be applied soon.

3.1.1 Mathematical Bases

To begin with, if there is transversal subdivision only, there are two random 

quantities, which would be sufficient to describe collision casualties resulting 

in flooding, the longitudinal location and the extent of damage.

They have a random nature and the same holds true for almost all other quantities 

and conditions on which survival depends. “Random quantities” or “random 

variables” represent such quantities. Usually some of their ranges of values are 

more frequent than others.

X  may have limiting values. For example, the damage length cannot stretch 

outside the ship and its value can vary only from zero to not more than the full 

length of the ship. This is expressed by assigning a unit value to the total 

probability of damage over the ship length. Outside the length of the ship the 

probability is zero (see Figure 3.26).
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Adopting the symbol p  for probability, then the probability of all the values 

from a range is determined by the area under the curve fix)  in that range. The 

v a lu e s ^ )  are such that the entire probability, Pm, equals unity:

pm(x \ < x < x2) = } / 0 )  dx = 1. (4)
•*i

ffx) f(x) dx

►
dxXl X

Figure 3.26. - Probability Function.

Although the smallest value, x]f and the largest, x2, can also appear, the 

symbols for equality have been left out of the parentheses ( x , < x < x 2) 

because of the discontinuity of these values.

In general, the probability of a range of values between *3 and X4 is smaller 

than unity:

*4
p(x 2 < x < x4)= j f  (x) dx < 1. (5)

*3

Here only one variable, x, was considered and this relates to the marginal or 

one-dimensional probability distribution.
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If a random event, like a casualty, has two qualities with characteristics of 

random variables then, there is usually a probabilistic link between those 

quantities also.

In this case it is also necessary to know this interrelation, which is defined by 

the two-dimensional joint probability density function. Denoting the second 

random variable as y, the probability density function is/(x,y).

Here the joint event is also called two-dimensional. Instead o f surfaces, the 

probability is now represented by the volume below the spatial surface o f the 

joint probability density function,/(x,y).

If the greatest possible rangs o f x and y  are from x/ to x?, and from y i  to y_?, then 

the values off (x ,y )  are normalised so that, like before:

Pm = p(x, < x < x2; y, < y  < y 2) =  f  f / ( x ,  y )d x d y  = 1 (6)

y

F igure 3.27. - P ro b a b ility  o f  the tw o-d im en sion a l event.
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The probability of x  and y  occurring in a partial range, from x3 to x4, and 

betweeny3 m d y 4, (see Figure 3.26) is:

p{xl < * < * 4;y3 < y < y j =  \ \ f { x , y ) d x d y <  1 (7)
X 3 >3

Ships are usually subdivided in all three directions, transversely, longitudinally 

and horizontally, so that water ingress into one or several adjacent compartments, 

for example side or wing tanks, involves the following five random variables. 

These variables are the longitudinal and vertical location of damage as well as 

its longitudinal, vertical and transversal extent. To calculate the probability that 

such five events will occur, it is necessary to know the interrelations between 

the random variables and their joint probability density functions.

If, finally, an occurrence is described by any number of random variables 

which can have the values x, y, z,..., and if the joint probability distribution/(x, 

y, z,...) is known as well as the interrelations among all quantities then, to 

calculate the probability of that event occurring it is necessary to know the 

interval D, of all variables that describe the event. The corresponding 

probability can then be described by the expression:

p - m -  . f ( x , y , z , . . . )  dx dy d z   (8)
D

Here also the probability of all the possible events has a unit value. Impossible 

events, whose probability have a zero value, would include any value outside 

its possible range.

Up to now only one simple event have been considered: the appearance of the 

casualty itself with collision and water ingress. But the interest was only 

whether such casualties could be survived. This leads to a joint event, the 

appearance of the collision with water ingress and its surviving or non­

surviving. Here it is necessary to know the interrelations between specific
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events and then to treat them using the already well-developed rules of 

statistical theory.

It is possible to conclude immediately that these two occurrences always 

happen at the same time, because flooding is dependent on an collision, 

similarly it is possible to conclude that non-survivability is dependent on 

flooding having occurred.

To find the probability of simultaneous events that do not exclude each other 

and are independent it is necessary to multiply their corresponding 

probabilities. Denoting the probability of flooding one single or several 

adjacent compartments by /?„ and the probability of surviving this casualty sz, 

then the probability p  of this joint event is:

It is necessary to include all the i possible events to determine the “entire 

probability”. It is easy to conclude that some of them cannot appear 

simultaneously. For these i interdependent events, that exclude each other, their 

probability are simply added:

After serious casualties causing water ingress into many adjacent 

compartments, the ship is usually lost by foundering or capsizing. Then, comes 

the non-survival term, so:

p  = p i.si. (9)

(10)
( = 1

5 , .  = 0 ( 11)

This leads to the conclusion that there is no point in including in (7) non­

surviving combinations of flooding, and therefore the entire probability of 

survival P never reaches the maximum value, i.e.:
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P<  1 (12)

Where this entire probability P, is “the probability of the ship surviving water 

ingress due to collision”, which is the subject here.

The approach has the meaning of so-called “conditional probability” because it 

pre-supposes the possibility of the casualty occurring, and then goes on to 

elaborate its characteristics as its first step. It can be described by the expression 

“... if such a casualty occurs”.

The probability of survival of the joint event, P, is : “the sum of the products 

for each compartment or group of compartments of the probability of the 

simple event, /?„ that a corresponding space is flooded, multiplied by the 

probability of simple event, that the ship will not capsize or sink with the 

considered space flooded”. It is expressed by the value of the “attained 

subdivision index”, A.

It has to be compared with the “required subdivision index”, R, which depends 

on the subdivision length of the ship, Ls and the following condition should be 

met:

A > R  (13)

R is based on results from a statistical analysis of data from three hundred ships 

(Dry Cargo and Passenger Ships). The value of R does not depend on the ship's 

type.

If a collision occurs the survival of the struck ship has a random nature 

therefore that probabilistic approach concerns this ship. The survivability of the 

striking ship is to a greater extent deterministic, since in the majority of cases 

the collision bulkhead is not penetrated. The regulations also include 

requirements concerning the surviving of the striking ships in this way that for 

all compartments forward of the collision bulkhead, the s-value is to be equal 

to 1, and the striking ship should be completely safe if it strikes with its bow.
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3.1.2 Improvements and Developments in The Probabilistic 

Concept Formulations

During the last two decades several authors have proposed several different 

approaches for improvements of ship subdivision probabilistic evaluation. 

Among them, the more active were Pawlowski (1980, 1993, 1996), whose 

approach for transversal subdivision is applied in IMO regulations for cargo 

ships, Abicht (1989, 1990) and Jakic (1989, 1991, 1992, 1993, 1994).

The work carried out by these authors was determinant for the correction of 

several imprecisions contained in the IMO regulations or even just to point 

them out.

A very good summary of the work carried out by these authors was done by 

Jakic (Jakic, 1996), comparing and describing the author’s three approaches, 

IMCO’s (IMCO, 1973), IMO’s (IMO, 1991, 1992), Pawlowski’s (Pawlowski, 

1993) and Abicht’s (Abicht, 1990) approaches.

However, these formulations were only developed for cargo ships then, using 

different statistical accidents databases from the ones used in this work, not 

being possible, this way, to use this formulations applied to tankers.

3.2 Mathematical Model

3.2.1 General

The numerical model developed and implemented for the work realised in this 

thesis, uses the probabilistic concept to assess the oil outflow from a tanker 

design. The application is capable of computing the probability and quantity oil
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outflow for all the possible unique damage groupings of adjacent 

compartments, given a specific internal tank arrangement.

The mathematical model developed is based upon the IMO "Interim Guidelines 

for the Approval of Alternative Methods of Design and Construction of Oil 

Tankers Under Regulation 13F(5) of Annex I of MARPOL 73/78” (IMO, 

1995b). These guidelines for evaluating alternatives to double-hull tankers 

were used to assess the relative oil outflow of different designs. Although 

intended for evaluating the outflow performance of alternative arrangements to 

the double-hull concept, these guidelines are also well suited for comparing the 

outflow performance of different tanker design types. The guidelines take a 

probabilistic approach based on historical data from collisions and groundings 

not including any other sources o f oil spillage, such as explosions and 

operational discharges.

This provides a probabilistic-based procedure for assessing the oil outflow 

performance o f an alternative tanker design. The alternative design is 

compared to a reference double hull design on the basis of a pollution 

prevention index. A fully probabilistic evaluation of a specific vessel on a 

specific route would require development of the following conditional 

probabilities:

• The probability that the ship will encounter damage;

• The probability of the damage location and extent;

• The expected consequences (i.e. quantity of outflow).

The IMO Guidelines do not specifically deal with the probability of whether 

the ship will encounter damage. Rather, it is acknowledged that the risk exists, 

and that in fact, the vessel is assumed to have been involved in a grounding or 

collision event significant enough to breach the outer hull. The following 

sections provide an overview of the calculation methodology.
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Each o f the designs has been evaluated using the conceptual analysis approach 

(without consideration of survivability) as defined in Interim Guidelines for 

Approval of Alternative Methods of Design and Construction of Oil Tankers 

under regulation 13F(5) of Annex I of MARPOL 73/78 (IMO, 1995). An 

overview of the methodology is described below.

The IMO guidelines account for such factors as varying wing tank widths and 

double-bottom heights, internal tank subdivision, and the effects of tide.

Casualty statistics collected by classification societies were used to develop the 

expected distribution of side and bottom damage. The damage distribution 

functions were derived from about 60 tanker casualties involving primarily 

single-hull vessels. These distribution functions provide information on the 

expected penetration and the extent and location of damage from collisions and 

groundings.

In the case o f a single-hull tanker, if the outer hull is penetrated adjacent to a 

cargo tank, the cargo tank will be breached and oil will flow out. For a double­

hull tanker, outflow will occur only if the extent of penetration is sufficient to 

extend beyond the protective double-bottom or wing tanks, there by piercing 

the inner hull and penetrating the cargo tank. In the case of mid-deck tankers, 

the outflow will only occur if the inner hull of the side tank is breached in case 

of side damage. In the case of bottom damage the oil outflow will occur until 

hydrostatic equilibrium is reached. The size of the spill is directly related to the 

number of cargo tanks breached and their size.

The dimension of the double-bottom and wing tanks therefore largely 

influences the likelihood that a double-hull tanker involved in a collision or 

grounding will spill oil, as well as the height of the horizontal subdivision in 

the case of mid-deck tankers. The amount of oil spillage is also impacted by 

the internal subdivision of the cargo tanks, which dictates tank sizes and the 

spacing of bulkheads forming tank boundaries. Naturally, larger cargo tanks
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will spill more oil. On the other hand, more closely spaced bulkheads increase 

the likelihood that more than one cargo tank will be damaged.

The quantitative results of the outflow analysis should be used with care 

because o f the limited size o f the casualty database, the nature o f the incidents 

included, and some simplifications in the calculation procedure. The committee 

recognises that the probabilistic outflow methodology should ideally reflect the 

response of specific structural configurations. However, the same damage 

distributions are currently applied to both single-hull and double-hull vessels. 

This approach is likely to give conservative results (i.e. overestimates o f 

outflow) when applied to double-hull designs, because recent studies have 

indicated that double-hull structures reduce the extent o f damage from a 

collision or grounding. In certain cases the inner bottom or longitudinal 

bulkhead can withstand considerable deformation before being penetrated.

F igure 3.28. - P D F  o f  L ongitudinal Location  o f  D am age fo r  C ollision  Incident

Nonetheless, the IMO methodology provides a rational basis for comparing 

tanker designs and, in the view of the committee, is currently the best readily 

available analytical approach.
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3.2.2 M ethodology  for E v a lu a t in g  Oil Outf low

3.2.2.1 Methodology

The calculation methodology here used is called a D IR E CT  method, as it 

involves direct application of the IMO probability density distribution 

functions to the subject design.

The calculation process is established by means of an iterative procedure. This 

iterative process goes through all the possible locations and extents o f damage 

over the ship length. The probability of the damage location and extent is then 

computed for each damage condition and if any cargo oil tank breached, the oil 

outflow from them is also computed.

After this point the uniqueness o f this damage is assessed to decide if the 

computed probability and oil outflow will be merged with an equal damage 

already computed or if a new damage case was found.

Figure 3.29. - PDF o f Longitudinal Extent o f  Damage fo r  Collision Incident
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This process is repeated until all possible combinations are tested. As result o f 

this calculation, at last we have all the possible unique combinations o f damage 

cases, with the correspondent damage probability and oil outflow.

There are four main steps involved when applying the IMO Guidelines:

3.2.2.2 Step 1: Assembling D am age Cases

The IMO Guidelines contain probability density functions (pdfs) describing the 

location, extent and penetration of side and bottom damage. These functions 

were derived from historical damage statistics for 52 collisions and 63 

groundings o f tankers 30,000 metric tons deadweight and above. Side damage 

pdfs are provided for the probability of the damage longitudinal location, 

longitudinal extent, transverse penetration, vertical location, and vertical extent 

(Figures 3.28-3.32).
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F igure 3.30. - P D F  o f  Transverse P en etra tion  o f  D am age f o r  C ollision  Incident
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Similarly, bottom damage includes evaluation o f the longitudinal location, 

longitudinal extent, transverse location, transverse extent, and vertical 

penetration (Figures 3.33 -3.37). The density scales are normalised by the ship 

length for longitudinal location and extent, by ship breadth for transverse 

location and extent, and by ship depth for vertical location and extent. The pdf 

variables are treated independently for the lack o f adequate data to define their 

dependency. The linear plots in Figures 3.28-3.37 represent IMO's piece-wise 

linear fit to the data o f histograms representing statistical data collected by the 

classification societies (IMO, 1992; DNV, 1993).

F igure 3.31. - P D F  o f  V ertical Extent o f  D am age f o r  C ollision  Incident

The application o f the probability density functions to the vessel's 

compartmentation provides the probability of occurrence for each damage 

incident. This is done through a stepwise evaluation at a sufficiently fine 

increment, or a Monte Carlo approach utilising a large number o f simulated 

damage incidents. To reduce computation time, incidents that damage identical 

sets of compartments are typically combined into groups. The cumulative

0 9 1 0
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probability o f  occurrence o f  all damage incidents (and similarly, all unique 
damage groups) is 1.0.

FigUre 3 3 1  ' P D F  o f  V ertlcal L ocation  o f  D am age f o r  C ollision  Incident

Figure 3.33. - PDF o f Longitudinal Extent o f  Damage fo r  Grounding Incident
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F igure 3.34. - P D F  o f  L ongitudinal L ocation  o f  D am age f o r  G roun din g  Incident

F igure 3.35. - P D F  o f  V ertical P enetration  o f  D am age f o r  G roun din g  Incident
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FigUre^ - P D F 0fTransversalExlen
ent o f Damage fo r Grounding Incident.
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3.2.2.3 Step 2: Calculation of O il Outflow

The next step is to compute the oil outflow associated with each unique side 

damage and bottom damage case.

For side damage incidents, 100 percent oil loss is assumed for each breached 

cargo tank. Therefore, if  a given damage incident damages only a ballast wing 

tank, zero outflow occurs. If a damage incident involves breaching of the 

ballast wing tank and the adjacent cargo oil tank, the full content of the cargo 

oil tank is assumed to be lost.

For bottom damage, outflow is determined by performing hydrostatic pressure 

balance calculations. A reduction in tide after the incident of 0.0 metres, 2.0 

metres, and 6.0 metres (or one-half the draft, whichever is less) is assumed. 

Other assumptions applicable to bottom damage calculations are:

• An inert gas pressure of 0.05 bar is applied to all cargo oil tanks. This is a 

positive pressure and augments the oil outflow; (see Figure 3.38)

• If a double-bottom ballast tank or void space is located immediately below 

a breached cargo tank, the flooded volume of the double-bottom tank is 

assumed to be 50:50 mixture of oil and seawater. The oil entrapped in the 

double-bottom is not included in the assumed spill volume; (see Figure 

3.39)

• For breached cargo tanks bounding the bottom shell, an oil outflow equal to 

1 percent of the tank volume is assumed as the minimum outflow. In these 

circumstances, the minimum outflow value accounts for oil losses due to 

initial impact and the effect of current and waves. For tanks, which are 

hydrostatically balanced in the intact condition, outflow analysis based on 

hydrostatic-balance principles will indicate zero outflow for grounding 

cases not subjected to tidal change.
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The IMO Guidelines present two procedures for evaluating the oil outflow. The 

“conceptual” method, applicable for conceptual design approval, assumes that 

the ship survives the damage. For bottom damage, the ship is assumed to rest 

on the ground at its initial intact drafts, with zero trim and heel. The 

“survivability” method, applicable to final designs, requires damage stability 

calculations. For damage cases that fail to satisfy the specified survivability 

criterion, it is assumed that the ship is lost and 100% of all cargo oil onboard 

outflows to the sea.

3.2.2.4 Step 3: Calculation of O il Outflow Parameters

The IMO Guidelines call for the calculation of three parameters: the 

probability o f  zero outflow, mean outflow, and extreme outflow. The 

calculation methodology assumes the vessel experiences a collision or 

grounding, and that the outer hull is breached. The assumed extent of 

penetration, and therefore the probability that the inner hull of a double-hull 

tanker will be pierced, are based on the application of probability density 

functions as described in the following paragraphs.

• The probability o f zero outflow, P0, represents the likelihood that no oil will 

be released into the environment, given a collision or grounding casualty which 

breaches the outer hull. Po equals the cumulative probability of all damage 

cases with no outflow. This parameter is an indicator of a design’s tendency 

towards avoiding oil spills.

• The mean outflow parameter, Om, is the non-dimensionalized mean or 

expected outflow. The mean outflow equals the sum of the products of each 

damage case probability and the associated outflow. O m  equals the mean 

outflow divided by the total quantity of oil onboard the vessel. The mean 

outflow is the weighted average of the cumulative oil outflow. This parameter
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provides an indication of a design’s effectiveness in mitigating the amount of 

oil loss due to collisions and groundings.

• The extreme outflow parameter, O e ,  is the non-dimensionalized extreme 

outflow. The extreme outflow is the weighted average of the upper 10% of all 

casualties (i.e. all damage cases within the cumulative probability range from 

0.9 to 1.0). This parameter provides an indication of a design’s effectiveness in 

reducing the number and size o f large spills.

The bottom damage outflow parameters for the 0, 2 and 6 meter tides are 

combined in the ratio of 0.4 : 0.5 : 0.1 respectively. Collision (side damage) 

and stranding (bottom damage) parameters are then combined in a ratio of 0.4 : 

0.6. In this way, overall values for Po, O m ,  and Oeare obtained.

3.2.2.5 Step 4: Computation the Pollution Prevention Index “/s”

Substituting the outflow parameters for the actual design and the IMO 

reference double-hull design into the following formula provided in the IMO 

Guidelines a pollution prevention index is developed. If the Index E is greater 

than or equal to 1.0, the alternative design is considered at least equivalent to 

the IMO reference design.

E 0.5P„ [ 0.4(0.01 + Om ) [ 0.1(0.025 + 0 , , )

P0R 0.01 + 0 M 0.025 + Oe

where

Po = probability of zero outflow for the alternative design

Om = mean oil outflow parameter for the alternative design = (mean 

outflow)/C
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Oe = extreme oil outflow parameter for the alternative design = 

(extreme outflow)/C

C = total cargo oil onboard

F or, O m r  and O e r  are the corresponding parameters for the reference

double-hull design of the same cargo oil capacity.

The IMO reference double hulls are shown in Figures 106 to 109 of Annex B. 

These reference designs do not represent the minimum subdivision acceptable 

under current MARPOL regulations. Rather, it was IMO’s intent to select

designs which “exhibit a favourable oil outflow performance.”

The IMO Guidelines specify that C, the cargo oil onboard, to be taken at 98 

percent of the total cargo tank volume.

All analysis have been carried out in strict conformance with the IMO 

guidelines, with the exceptions referred to in 3.4.

3.2.3 Principles of Oil Outflow

The following provides a brief description of the fundamental principles 

affecting oil outflow.

• Hydrostatic Balance. In the event of bottom damage, oil outflow will occur 

until, in the vicinity of the damage, the internal pressure exerted by the 

entrapped oil and flooded water within a tank, equals the external pressure 

exerted by the seawater. If the ullage space is under pressurised such that 

the pressure on the oil surface is less than the atmospheric pressure acting 

on the seawater, outflow will be reduced. Conversely, higher ullage 

pressures, as might be introduced by the inert gas system, will result in
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larger outflows. For groundings, the external pressure is reduced as the tide 

drops, and outflow will occur until equilibrium is once again attained.

For lightly loaded tanks, the initial pressure head from the cargo oil is less 

than the external seawater pressure. When bottom damage is sustained, 

seawater enters the bottom of the tank until equilibrium is achieved. 

Provided the damage does not extend up the side o f the tank and currents 

or vessel motions do not induce mixing o f seawater and oil in the vicinity 

o f the damage, no oil will be lost.

F igure 3.38. - H ydrosta tic  balance.

• O il Entrapm ent in Double-H ull Tankers. When a tanker experiences 

bottom damage through the double-bottom tanks and into the cargo tanks, a 

certain portion o f the oil outflow from the cargo tanks will be entrapped by 

the double-bottom tanks. This phenomenon was investigated through 

model testing at the David Taylor Research Centre (DTRC, 1992) and the 

Tsukuba Institute, Ship & Ocean Foundation (Tsukuba Institute, 1992), and 

through numerical analysis. These studies indicate that oil entrapment is 

influenced by many factors, including the size and location o f openings, the
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magnitude o f the pressure imbalance, and whether the double-bottom tank 

is flooded with water at the time the oil tank is ruptured. For conditions in 

which the double-bottom initially floods and the cargo tank is breached, a 

viscous je t is formed resulting in minimal retention o f  oil in the outer hull. 

The Marine Environment Protection Committee (MEPC) concluded that, 

“if  both outer and inner bottoms are breached simultaneously and the extent 

o f rupture at both bottoms is the same, it is probable that the amount o f sea 

water and oil flowing into the double-hull space would be the same. (IMO, 

1995b)” In its regulations, IMO assumes that the double bottoms below oil 

tanks retain 50:50 ratio o f oil to seawater. Where tidal changes introduce a 

slowly changing pressure differential, higher retention rates can be 

expected.

• D ynam ic O il Losses. Oil losses in excess o f those predicted by hydrostatic 

balance calculations may result due to the initial impact when a vessel runs 

aground, and subsequently, from the effects of current and ship motions.

Sea W ater

F igure 3.39. - O il Entrapm ent.
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These losses primarily influence single-hull vessels and alternative designs 

whose oil tanks contact with the outer hull.

Model tests at David Taylor Research Centre (1992) and the Tsukuba 

Institute (1992) were carried out to assess the influence o f initial impact 

and current on oil outflow. The speed o f the ship, the extent o f damage, the 

magnitude of the current, and the sea state influence dynamic losses. Under 

extreme weather conditions, losses up to 10 percent o f the tank volume can 

be encountered, although dynamic oil losses o f 1 percent to 2 percent are 

more typical. In its regulations, IMO assumes a minimum outflow o f 1 

percent of the volume for all breached cargo tanks, which bound the outer 

hull.

• Side Damage. The location and size o f the damage openings influence the 

amount of expected oil outflow from side collisions. If the lower edge o f 

the damage opening lies above the equilibrium waterline (Figure 3.41), the 

oil level in the tank will drop to the height of the opening and the vessel 

will heel away from the damage.

( T i>

J

OilOil
OilS _____ Oil

Sea Wattr

Figure 3.40. - Oil outflow when the damage opening is entirely below the waterline.
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When the damage extends below the waterline, outflow of oil will occur 

until hydrostatic balance is achieved (Figure 3.40). Over time, the denser 

seawater will replace all oil located below the level o f the upper edge o f the 

damage opening. In its regulations, IMO assumes that 100 percent o f the oil 

in breached side tanks is lost (Figure 3.42).

Oil
Oil

_v___
Oil Oil

F igu re 3.41. - O il ou tflow  when the dam age open in g  is en tire ly  above the w aterline.

Oil
Sea

[Water

Oil

Oil

F igure 3.42. - O il outflow  when the dam age open in g  is on the w aterline.

86



C h a p t e r  3  -  T h e  P r o b a b i l i s t i c  A p p r o a c h  t o  S h i p  S u b d i v i s i o n

3.3 Computational Method

There are several ways available for the assessment o f compartment groupings 

and respective probabilities, which result should be the same for all o f them. In 

this study, the compartment groupings and the use of the probability density 

functions is applied by a “step-wise” function evaluation method.

This method involves stepping through each damage location and extent at a 

sufficient fine increment. Then, through the application of an iterative process 

all different possible combinations of damage in length, width and height of the 

ship are performed. This is accomplished applying all different combination of 

values for the three damage variables, in case of collision incidents, and all 

different combinations of values for the five damage variables, in case of 

grounding incidents.

Since this method is numerical, all variables are discrete in opposition to the 

random variables defining the damages, which are continuous. Taking this into 

consideration, the evaluation is carried out dividing the range of each 

continuous random variable into defined numbers o f equal intervals. The 

representative value of each interval is taken as being its midpoint. This 

process enables the approximation of the discrete variable to the continuous 

variable.

Since the distribution functions are linear the approximation is exact and 

accurate, without introducing any deviations or errors that could be expected if 

they were not linear.
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F igure 3.43. - S ide D am age D efin ition  (source: 1996 L lo y d ’s R eg ister o f  S h ipp in g  an d  
In ternational M aritim e O rganisation).

WB2

88



C h a p t e r  3  -  T h e  P r o b a b i l i s t i c  A p p r o a c h  t o  S h i p  S u b d i v i s i o n

Com partm ent

ipartmcnts

Is this D am age
D am ag e  C ase

Create Output Piles

Save Compartmi

for a Given Damagi

Do W hile (Li La - Line / 2.0), Line

Sort Damage Gases in Ascending

Read Data from Ship Database 
Initialisation of Step 'Variables

Galculate Probability of

Compartment Groupings, Sum Probabilities 
and Oil Outflow for this Damage Gase

Do While (VI 0.3 * B s -  Vine / 2.0), Vine

Do While (XI 0.3 * L a -  Xinc / 2.0), Xinc

Figure 3.44. - Numerical Model Flowchart fo r  Side Damage Definition (see Appendix
E fo r  Bottom Damage Definition).
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The application of these step functions to a specific ship must be done with 

special attention, once is not sure that the step interval of the damage functions 

can easily coincide with the boundaries of all compartments. The problem 

arises when this constant increment produces damage extents that do fall short 

on the compartment boundaries, but the next value intersects one of the 

boundaries, giving rise to a different grouping of damage compartments.

Thus, if  this happens, we are not taking into account the complete probability 

of damaging only that specific group of compartments. This can lead, in case 

of cargo compartments, to an overestimation of the expected oil outflow 

parameters and, to a decrease in the probability o f zero outflow, if the 

boundary is the limit between a ballast and a cargo tank.

JC rro r

In itia l d am ag e

S tep  th a t  defines next d am ag e  b oundaries

Figure 3.45. - Step interval that introduces errors fo r  the grouping compartments
probabilities.

In order to avoid these situations, as much as possible, the mathematical model 

analyses the internal subdivision geometry, combining it with the maximum 

damage extents of each variable, suggesting the best value to minimise the 

errors. As it is possible to imagine, most of the times the step interval 

suggested is very small and, not suitable for a “reasonably fast” computation of 

the probabilities and expected oil outflows of the specific ship. Then, it 

becomes a task of the end user of the model, to find out other step intervals, 

which are a combination of acceptable time of computation and acceptable
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probability error. It is clear that the shorter the interval, the lower the error in 

the damage probability. For instance, taking the example shown in Figure 

3.43., and stepping through the functions for side damage:

>  longitudinal location = 100 steps;

>  longitudinal extent = 100 steps;

>  transverse penetration = 100 steps;

>  vertical location =100 steps;

> vertical extent =100 steps.

it will develop 109 damage incidents, which will be reduced to a few hundreds 

unique groupings of compartments, once some of them are redundant.

Then, it would be correct to reduce the computation time, decreasing the 

number of step intervals, so that we still have the same compartment groupings 

as result, respecting the boundaries of each compartment and, still get a sum of 

the probabilities equal to 1. The suggested values would be:

> longitudinal location = 10 steps, each step of L/10 = 0.1L;

> longitudinal extent = 3 steps, each step 0.3L/3 = 0.1L;

> transverse penetration = 6 steps, each step 0.3B/6 = 0.05B;

3.4 Assumptions and Limitations on this Study

It is important to recognise that, due to both technical and practical limitations, 

there are many simplifications inherent in the performed calculations. The 

quantities of oil outflow do not represent a quantitatively accurate estimate of
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oil outflow. Rather, these calculations provide a rational comparative measure 

of merit.

Some of the assumptions and simplifications in the development of damage 

case probabilities are:

• The IMO statistical database (Lloyd’s, 1991) used for developing the 

probability density functions is based on 50 to 60 incidents involving 

tankers above 30 000 DWT.

• The probability density functions are “marginal” distributions. Locations, 

extents and penetrations are treated independently. Although, some degree 

of correlation is expected, the correlated statistics are not currently 

available. It is believed that this approach is conservative in the sense that it 

tends to over-predict the amount of expected outflow.

• The historical casualty data primarily involve older, single-hull vessels. It is 

expected that extents of damage will be somewhat less for double-hull 

vessels.

Efforts were made to select representative vessels for the study carried out. 

However, there are some double-hull vessels built for specific trades, which 

have quite different characteristics as compared to these representative vessels.

A nominal cargo oil density of 0.855 t/m3 is assumed for all designs. The 

assumed summer load line draft for each baseline design corresponds to a 

condition with cargo tanks and slop tanks loaded to 98% capacity plus 50% 

consumables.

The other designs in a given size are extrapolated from the baseline design. The 

cargo block outer boundaries are assumed constant, and therefore the cargo 

volume remains unchanged. The beam and depth is reduced or increased as
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required to accommodate changes in double hull dimensions. The LBP is held 

constant. The block coefficient is adjusted to maintain constant draft.

The increased wing tank clearances tend to improve environmental 

performance, i.e. reduce mean outflow and increase the probability of zero 

outflow. Because these increased clearances are somewhat arbitrary and 

subject to a yard’s practice, outflow calculations in this study assume the 

nominal double bottom and wing tank clearances are exactly maintained 

throughout the cargo block. When calculating the probabilities of breaching the 

cargo tanks, a simplified prismatic hull shape was assumed (Figure 3.46).

ENGINE
RM
BHD

COLLISION
BHD

W B4
PC

W B2
P C

W B7
P C PC P CP C

FPAP
C04PSLOP TANK P ,■ C05P C03P C02P CO IPC07P C06P

SLOP TANKS C06P C05P C03P C02P CO IPC07P C04P

Figure 3.46. - Simplified Prismatic Hull Shape.

For comparison purposes it is assumed that for tanks which are hydrostatically 

balanced in the intact condition, outflow analysis based on hydrostatic 

principles will indicate zero outflow for grounding cases not subjected to tidal 

change. However in real cases some oil outflow is expected due to initial 

impact and the effect o f current and waves, (see 3.2.3)

The IMO Guidelines suggests that in bottom damage calculations it should be 

assumed that damage extend from port to starboard. In the implemented model 

this was not followed, once this assumption would make impossible the 

evaluation of the influence of longitudinal bulkheads on the oil outflow from
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bottom damage. It would also be a problem to quantify properly the entrapped 

oil when longitudinal subdivision o f bottom tanks exists.

In the present study, survivability is not taken into consideration. Thus, in the 

final result there is no verification if, for the specific damage calculations 

performed, there is the possibility that 100% o f the cargo is lost due to fail o f 

meeting damage stability requirements.

3.5 M odel A rch itecture and Interfaces

The program runs in a Windows environment, making use o f all capacities o f 

this operating system and having interfaces as shown in Figure 3.47.
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The description o f each tanker is stored on a database, being the model 

description as follows:

• geometric information comprising the description o f the tank arrangement;

• principal dimensions o f the ship;

• information concerning the type and characteristics o f the fluid cargo;

• analysis parameters describing the initial conditions o f the model:

♦ initial draught;

♦ initial and secondary outflow factors (oil losses, trapped oil);

• control o f the damage:

♦ maximum extents of damage;

♦ integration step.

Ship D ata Program Control

Program Control:

Line:

Xinc:

(9.500)

(i50O)

Yinc:

YYinc:
(a  825)

(2.750)

(0.415)

ZZinc:

(0. 000)

File: (“ DAT

E\Mestiado\PAT 00\Tankeis\DH\5000\DH 5000 6x2 1 1x1 SD.DAT

D am age Simulation

File Type: ^  W rite D am age File Jri Q°se

Figure 3.48. - Damage Control Window
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The calculation process is established by means of an iterative procedure, 

which goes through all possible locations and extents of damage over the ship 

length. The probability of the damage location and extent is then computed for 

each damage condition and if any cargo oil tank is breached, the oil outflow 

from it is also computed.

After this point the uniqueness of this damage is assessed to decide if the 

computed probability and oil outflow will be merged with an equal damage 

already computed or if a new damage case was found.

This process is repeated until all possible combinations are tested. As a result 

of this calculation, at last it possible to have all the possible unique 

combinations of damage cases, with the corresponding damage probability and 

oil outflow.

A group of tables is produced during this process:

• unique damage compartment groupings and their damage probability, 

ordered by occurrence in the calculation process (separately for collision, 

grounding and both incidents);

• unique damage compartment groupings, damage probability and oil 

outflow ordered in ascending order of oil outflow (separately for collision, 

grounding and both incidents);

• Summary of oil outflow parameters (separately for collision, grounding and 

both incidents).

All these results can be exported to Excel for further analysis. The application 

is also able of producing is own charts from the results produced as shown in 

Figures 3.49-3.51.

The chart representation is handled through the use o f a toolbar, where several 

options of different chart types are available.
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The data representation can also be edited during this process and both colours 

and patterns can be changed in a way to allow a better understanding o f the 

results.

The graphical outputs are also extendable, so that the user can adapt the chart 

to the available area o f the window. This representation can also be 

tridimensional or bidemensional.
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5/4/99 3 0957 PM

F igure 3.51. - R esults Chart R epresen ta tion  III.

The charts can also be saved, as CHF files and recovered later. The chart 

representation can be printed directly to a printer or they can be copied to the 

clipboard and used in another Windows application, e.g., Microsoft Word.

The software provides also a help feature, where the user can easily find an 

explanation and guidance on the use o f all the tools available in the application.
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Inside this “help” there is also a small introduction and explanation to the 

probabilistic concept, and how it was applied to implement this software 

application. The “help” is fulfilled with graphical representations o f all the 

steps involved when performing standard operations. This characteristic 

enables an easy understanding of how to use it and speeds up the process of 

getting first results.
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Figure 3.52. - PA TOO Help.

As graphically represented in Figure 3.53., the application architecture is 

structured in a way that it can be installed in a network, where several users can 

access the same databases. These databases are the pdf functions, described in 

IMO Interim Guidelines (IMO, 1995b), which can only be modified by an 

administrator of the system, and a ship database, which can be accessed and 

modified by all the users that have access to the software.
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This structure enables the possibility of any new user to the application to have 

access to an already created ship database. This allows the user to select a set 

o f ships to analyse, or to create new ones and update the existing ship database.

The idea of having a separate database for the pdf functions came from the 

future necessity of updating the functions describing the different probability 

distributions. This way, the main mathematical model is always valid being 

able to use any pdf functions.
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After OPA’90, designers and operators of double-hull tankers found 

themselves confronted with a new set o f issues to consider. Design, 

construction, and operational experience o f double-hull tankers was limited 

primarily to product and parcel tankers under 40,000 tons deadweight, and 

before this date, most crude oil carriers were built with single hulls. The 

differences between double-hull oil carriers and single-hull tankers and product 

carriers are considerable, in terms o f stability and strength, giving rise to a new 

set o f problems not yet analysed and solved.

In this study, one o f the areas in which double-hull tankers perform differently, 

compared to single-hull tankers, has been identified and investigated. This is 

environmental performance with regard to oil outflow from collisions and 

grounding.
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Figure 4.54. - Double-hull tanker fleet based on DWT and Age (N years).
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For comparative purposes, both single-hull and double-hull configurations 

have been investigated. Double-hull ships are selected to be representative o f 

the tankage arrangements and proportions typically built since 1990. In 

addition, mid-deck tankers were also introduced in to the comparison, to 

evaluate their environmental performance, when compared with the former 

ships.

4.1 Subdivision N om en c la tu re

The following terms are used to describe the ship’s subdivision:

• C argo block', the cargo block is the portion o f the ship extending from the 

forward boundary o f the forward-most cargo tank to the aft boundary o f the 

aft-most cargo tank. OPA ’90 as well as the 1992 Amendments to Annex I 

MARPOL 73/78 require that all oil tanks within this space be segregated 

from the side and bottom shell.

• C argo tanks', all tanks arranged for the carriage o f cargo oil. Unless noted 

otherwise, the term “cargo tanks” shall be assumed to include the slop 

tanks.

• Slop tanks', slop tanks are provided for storage o f dirty ballast residue and 

tank washings from the cargo tanks. Annex I o f MARPOL 73/78 requires 

that tankers be arranged with slop tanks.

Figure 4.55. - Longitudinal view o f  a tanker arrangement with double-bottom.
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• Cargo tank arrangements'. Figure 4.60 shows cross-sections of typical 

cargo tank arrangements for double-hull tankers. The “STA” or single- 

tank-across arrangement has a single centre cargo tank spanning between 

wing tanks. This design is frequently arranged with upper hopper tanks in 

way of the outboard wings, in order to reduce the free surface when the 

cargo tanks are nearly full. The two-tanks-across arrangement has 

centreline bulkhead and port and starboard cargo tanks. Vessels under 160 

000 DWT are typically arranged as single-tank-across, two-tanks-across, or 

a combination thereof (see Figure 4.60). The majority of larger tankers are 

arranged with three-tanks-across, as required to satisfy the MARPOL 

requirements for tank size and damage stability.

• Ballast tank arrangements

> “L” tanks are the most commonly used configuration. L tanks are usually 

aligned with the cargo tanks, although they will occasionally extend 

longitudinally over two cargo tanks.

> “U” tanks reduce asymmetrical flooding, and are generally used when L 

tank arrangements fail to meet damage stability requirements. U tanks 

extend over the full breadth of the ship, and have a significantly higher free 

surface as compared to a pair of L tanks.

> “S” or side tanks are located entirely in the wing tanks. S tanks improve the 

survivability characteristics of a vessel, as they normally will not be 

penetrated when bottom damage is incurred.

(see Figure 4.61)
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4.2 Single-Hull Tankers

The design problems with single-hull tankers are first and foremost their hull 

design. The single-hulls of MARPOL tankers are configured in such a way that 

oil (cargo) and seawater sit on either side of a common barrier. This barrier is 

typically a 35mm steel plate (part of the hull), but in newer tankers it can be as 

thin as 20mm. This configuration poses some serious problems if one thinks of 

a grounding that breaches its hull. There is only this single barrier keeping oil 

from spilling out into the ocean.
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Figure 4.56. - Single-Hull Pre-MARPOL Tanker.
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Figure 4.57. - Single-Hull MARPOL Tanker.
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4.3 Double-Hull Tankers

The basic concept of double hull tankers is as follows:

• By utilising a protective inner hull, the cargo carrying is separated from the 

outer hull by means of “U”, “S” or “L” shaped ballast wing and bottom 

tanks. This configuration not only satisfies the necessary segregated ballast 

capacity requirements, but also provides all-around protection against 

relatively low-energy impacts which in turn help to reduce the frequency of 

oil pollution incidents;

• In collisions and groundings which result in the breach of the outer shell 

plating only, no oil outflow will occur;

• In collisions and groundings, which result in the breach of both the outer 

and the inner shell plating, the quantity of oil outflow will depend on 

particular cargo tank arrangement and the amount of oil retention in the 

double ballast spaces.

4.3.1 Design of Double-Hull Tank Vessels

4.3.1.1 Design Standards

The regulations governing tanker design were developed primarily with single­

hull vessels in mind, although the stability and strength characteristics of 

double-hull vessels are quite different from those of the traditional single-hull 

tanker. Existing and proposed regulations pertaining to oil outflows, intact 

stability, and survivability of double-hull tankers are summarised in Table 4.6.
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Figure 4.58. - Double-Hull Tanker.

As demonstrated by the comparative study described here, present regulations 

do not ensure consistent high levels of environmental performance by double­

hull tankers. Where practical, IMO is committed to replacing the current 

deterministic regulations1 with probabilistic based regulations. Work is under 

way at IMO to develop a performance-based regulation for evaluating tanker 

outflow. IMO is also harmonising its damage stability criteria for all types of 

ships based on a probabilistic methodology that will eventually include tank 

vessels and chemical carriers.

Performance-based criteria establish a minimum level of performance but do 

not specify the means of attaining this minimum. Such criteria generally take a 

probabilistic approach, so that the influence of a given incident on overall 

design is proportional to its likelihood of occurrence and to its severity and 

repercussions.

1 An example of a deterministic criterion is the IMO ranking bottom damage regulations. This 
is a damage stability criterion that assumes extensive damage to the bottom shell while the 
double bottom remains intact. For tankers greater than 75 000 DWT, damage is assumed to 
begin at the bow and extend aft over 60 percent of the vessel’s length. This type of criterion 
encourages designers to place bulkheads immediately beyond the specified damage extent but 
does not necessarily lead to optimum designs.
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Table 4.6 - Existing and Proposed Regulations Relating to Oil Outflow, Intact 
Stability, and Survivability Performance of Double-Hull Tankers (source: National

Academy Press).

Oil outflow from collisions and groundings
MARPOL 13F Establishes minimum dimensions for wing 

and double-bottom tanks comprising outer 
hull.
Consistent with USCG requirements 
established in response to OPA ’90.

Regulations 22-24, Annex I  to MARPOL Define hypothetical outflow and tank length
73/78 requirements governing extent of cargo tank 

subdivisions.
Regulations 22-24 being revised in light of 
probabilistic methodology for oil outflow 
analysis.

Intact Stability o f  tankers
None at present Intact stability to meet criteria recommended 

by IMO (Resolution A.749(18), 3.1.2.10)2 
normally exceeded by double-hull tankers 
through design.
Two possible approaches: (1) through design 
only, and (2) through combination of design 
and operational procedures.
Maritime Safety Committee of IMO 
addressing issue of intact stability for double­
hull tankers. MARPOL Draft Regulation 
1725A calls for assurance of positive intact 
stability, both in port and at sea, through 
design only.

Survivability o f  tankers
Regulation 25, Annex I  to MARPOL 73/78 Specifies extent of damage tanker must be 

able to survive
MARPOL 13F Defines raking bottom damage criterion that 

supplements Regulation 25.
Damage stability criteria for all types of ships 
being harmonised by IMO based on 
probabilistic methodology.

For example, current regulations specify minimum wing tank and double­

bottom clearances. A performance-based criterion might establish a minimum 

value for “probability of zero outflow”. Rather than a uniform double-hull, a 

more effective design might have a deeper double-bottom located below the

2 IMO instruments cover IMO code on intact stability for all types of ships.
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forward cargo tank and narrower wing tanks located outboard o f the aft cargo 

tanks.

Performance-based criteria are more difficult to develop than the traditional 

deterministic criteria and are generally more complicated in their application. 

An assessment is required of both the relative probability of each possible 

event and the associated risks to the vessel’s safety and to the marine 

environment. Thus, the costs and benefits of ship safety and spill mitigation 

measures must be understood before effective performance-based criteria can 

be developed.

Nonetheless, properly developed performance-based criteria have many 

advantages. They give the designer the freedom to optimise a design for 

minimum construction costs while ensuring that safety and environmental 

performance standards are met. They are also more adaptable to new concepts. 

For instance, a performance-based probabilistic outflow criterion would have 

predicted the poor outflow performance of many of the single-tank-across 

double-hull tankers. The methodology used to develop performance-based 

criteria is independent of the required index of performance level, thereby 

allowing the required level of vessel performance to the readily revised in the 

light of experience or in response to changes in cost-benefit scenarios.

In the years after the promulgation of OP A ’90, co-ordinated research on the 

performance of double-hull tankers has been pursued at several centres in the 

United States, Japan, the Netherlands, Denmark, and Norway. Structural 

research is proving beneficial in providing improved design tools to 

incorporate fatigue and structural performance in accident scenarios into 

double-hull tanker design.
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4.3.1.2 Tank Arrangements

The performance of double-hull tankers with respect to such matters as 

structural integrity, safety, and prevention of oil spills in the event of accidents 

has been the subject of investigation for more than 20 years.

Because few large double-hull tankers had been built before 1990, the 

promulgation of OPA ’90 and MARPOL Regulations 13F and 13G confronted 

Naval Architects with new design issues. The existing national and 

international design regulations had been developed with single hull tankers in 

mind. This new challenge stimulated creativity in the design process, as 

illustrated by the varied hull arrangements of the double-hull tankers 

constructed since the passage of OPA ’90. Some of these designs however, do 

not provide the high levels of environmental protection that can be achieved 

with double-hull vessels.

The arrangement of tank vessel cargo tanks and ballast tanks has a major 

influence on a vessel’s effectiveness in reducing oil outflow after an accident 

as well as its damage and intact stability. In particular, the subdivision of cargo 

and ballast tanks by centreline bulkheads can have important implications for 

oil outflow in the event of a collision or grounding.

Figure 4.60 shows the three most common cargo tank arrangements in double­

hull design. Nearly, all double-hull tankers exceeding 200 000 deadweight tons 

(DWT) -  very large crude carriers (VLCCs) -  built to date have cargo tanks 

arranged three-tanks-across. The cargo tanks on double-hull tankers less than 

160 000 DWT are usually arranged in “single-tank-across” and “two-tanks- 

across” configurations. Approximately 60 percent of these vessels have single­
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tank-across cargo tanks in all or part of the cargo block3. All tankers exceeding 

120 000 DWT delivered in the last three years have oiltight longitudinal 

bulkheads subdividing the cargo tanks. This is partly because of concerns 

regarding the outflow and stability characteristics of single-tank-across tankers 

and partly because of economic considerations. Suezmax tankers (about 150 

000 DWT) that do not have oiltight centreline bulkheads require a large 

number of transverse bulkheads to satisfy MARPOL regulations for tank size 

and hypothetical outflow. As a result, construction costs for single-tank-across 

and two-tank-across double-hull tankers of approximately 150 000 DWT are 

comparable. In contrast, many Affamax and Panamax tankers continue to be 

built with single-tank-across cargo tank arrangements. For tankers of less than 

110 000 DWT, fev/er transverse bulkheads are required within the cargo block, 

and the cost savings realised with the single-tank-across arrangement are more 

significant.

Figure 4.61 shows typical ballast tank arrangements for double-hull tankers. 

The L tank is by far the most common configuration: it is found in 88 percent 

of double-hull tankers (see Figure 4.59). Ten percent of the tankers have a 

combination of U, L and S types, and 2 percent have a U design only.

Most oil tankers of modem design have similar features. The tankers developed 

for the comparison study presented here are arranged with a raised forecastle, 

and the accommodation, engine room and navigating bridge located aft and a 

transom stem. Main propulsion is provided by a slow speed diesel engine 

directly connected to a single fixed-pitch propeller; a single semi-balanced 

rudder provides steering. Fuel oil storage capacity is provided in tank and

3 Data on cargo and ballast tank arrangements are from a compilation by Exxon Company 
International (Exxon, 1997) of configurations for 327 double-hull tankers comprising more 
than 95 percent of the world double-hull tanker fleet greater than 5 000 GT (gross tons). The 
compilation was derived from the Oil Companies International Marine Forum ship information 
questionnaires provided by ship owners and from Exxon’s internal inspection records.
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engine room. Ballast is carried in the fore and aft peak tanks and segregated 

ballast tanks (SBT) in the double-hull in the way o f the cargo oil length. In all 

cases, ballast capacity is sufficient to meet MARPOL segregated ballast tank 

requirements.

□ 88%

□ 2%

F igure 4.59. - Typical b a lla st tank arrangem ents d istribu tion  f o r  dou ble-hu ll tankers  
(source: N ation al A cadem y Press).

The minimum dimensions o f the double hull tentatively have been agreed at 

the MEPC meeting July 1991 (3L l Session):

bos(meters) > min(0.5 + DWT / 20000 ; 2.0) (15)

hnB(meters) > min(B / 15 ; 2.0) (16)

where bDs is determined at a normal to the side shell and hDB is measured from 

the baseline.

The arrangements o f the cargo oil tanks are subject to limitations o f regulation 

24 o f MARPOL 73/78 Annex I. While regulation 13 gives the ballast capacity 

requirements, limitations on the location of the segregated ballast tanks are 

given in regulation 13E. However, because of the requirements o f the
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regulation 13F, tankers over 30000 DWT will have 100 percent protected area 

coverage. Crude oil tankers over 20000 DWT and under 30000 DWT with 

minimum double side dimensions will be required to have a moulded depth, 

which is at least 53 percent o f the moulded breadth.

The arrangements o f the double-hull SBT spaces have to be arranged to 

provide satisfactory intact and damage stability characteristics, inspection, 

maintenance and ventilation.

Two-Tanks-A<Single-Tank-Acr< Three-Tanks-A)

F igure 4.60. - C argo Tank A rrangem ents.

Several options are available to arrange the double-hull SBT tanks. These 

options employ a variety of transverse, longitudinal and horizontal subdivision. 

Some previous papers (NRC, 1991; ARCO marine, Inc., 1990; Peters, 1991) 

have investigated some o f these options. The types o f double-hull SBT tanks 

that may be employed are:

1 “U ” tanks, which extend between transverse bulkheads and do not have

longitudinal or transverse subdivision;

2 “L” tanks, which extend between transverse bulkheads and from a

longitudinal subdivision in the double-bottom to the main deck;

3 Double bottom-tanks, which may have longitudinal subdivision located 

solely in the double-bottom space,
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4 Side tanks, which may have horizontal subdivision in the double side

space;

5 Deck tanks, which may be used mostly on product tankers, located only 

between the main deck and the top of the cargo tanks.

U Tank i l l  L Tank S T a n k

F igure 4.61. - B allast Tank A rrangem ents.

These types o f SBT tanks in combination are used to subdivide the double-hull 

space. Examples o f these tank types are shown in the Figures 4.61 and 4.62 

illustrating typical double-hull sections.

- -

\ K 1 1...... /

DB Tank DS Tank

F igure 4.62. - B allast Tank Arrangem ents.
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4.4 Mid-Deck Tankers

272,000 MTons 
320.00 M 

5 8 0 0  M 
31 70 M 

20.7 M

CARGO DWT 
LBP 
BEAM 
DEPTH
DRAFT (FULL LOAD)

Figure 4.63. - Mid-Deck Tanker.

The basic concept of the mid-deck tanker is as follows:

• In order to satisfy segregated ballast tank capacity requirements and 

provide improved protection against collision penetration, the width of the 

wing tank spaces are increased in relation to the conventional double-hull 

configuration;

• The introduction of a mid-deck between the longitudinal oiltight bulkheads, 

which form the inner hull, effectively divides the cargo carrying section 

into upper and lower cargo tanks. The height of the mid-deck is determined 

by the characteristics and hydrostatic principles encapsulated by each mid­

deck design. In the event o f a grounding, causing the breach of the keel 

plating, the intended operational effect of the mid-deck is to reduce the 

pressure exerted by a column of oil in the lower tank to less than exerted by 

a column of seawater acting on the tanker’s keel, thereby minimising oil 

outflow.
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F igure 4.64. -  M id-D eck  Tanker A rrangem ents.

4.5 Evaluating Oil O u tflow

4.5.1 Introduction

Oil outflow evaluations have been carried out for 107 tankers. All calculations 

have been done using PATOO (Sergio Ferreira, 1998) software. The 

calculation methodology and assumptions are described in the previous 

chapter.

The International Maritime Organisation (IMO) guidelines (IMO, 1995b) for 

evaluation alternatives to double-hull tankers have been applied in this work 

for assessing oil outflow performance. Although originally intended for 

evaluating alternatives to the double-hull concept, these guidelines are also 

well suited for comparing the outflow performance of single-hull, double-hull
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tankers and other design types like the mid-deck tanker concept. The guidelines 

use a probabilistic approach based on historical statistical data, and provide a 

methodology for assessing both the likelihood of a spill and the expected 

outflow. The IMO guidelines account for factors such as varying wing tank 

widths and double-bottom heights, the influence of internal subdivision, the 

effects of tide, and the influence of dynamic effects on outflow.

4.5.2 Case Studies

The importance of the different outflow characteristics can be assessed if one 

thinks about a ship that does not have any internal subdivision. In this case 

only one of two situations can happen: no outflow occurs at all (Po) or one 

value of outflow will occur, the total volume of cargo (or effective outflow). If 

instead, we subdivide the cargo space into several tanks through transverse 

bulkheads, this would not affect the probability of zero outflow, but reduces 

significantly the extreme outflow (see Figure 4.82) as well the mean outflow 

(see Figure 4.75). The introduction of longitudinal bulkheads confirms the 

former relation, proving the importance of these outflow characteristics when 

evaluating the ability of the ship to resist oil spillage (see Figure 4.70).

The subdivision of tankers and the type of subdivision have significant effect 

on the prevention of accidental pollution. In order to assess the effect o f this on 

the different measures of merit, three different types of subdivision were 

investigated:

• Double-hull tankers (DH);

• Mid-deck tankers (MD);

• Single-hull tankers (SH).
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In addition, parametric studies were conducted within each type to evaluate the 

environmental performance of each ship when several parameters were 

changed, like the width of double sides, double bottom heights and height of 

horizontal bulkheads. In the case of double-hull tankers, the influence on the 

mitigation of oil outflow of different configurations of ballast tank 

arrangements was also investigated.

L

Lnda Lc In d f

U
r

U — |—

tc

Figure 4.65. - Nomenclature related to the parametric study conducted.

4.5.3 Structural Design Measures

Double sides have been effectively utilised in numerous ship designs. Under 

the new regulation guidance, double sides would be utilised for ballast and 

provide low energy collision protection. One aspect o f double sides’ design, 

which has presented some concern, is damage stability and survivability 

(Peters, 1991). In general, the opinion is that existing single-hull tankers can be 

properly designed with double sides to meet current damage stability 

regulations. Economic viability must be checked on a case-by-case basis, and 

therefore, will be a difficult issue to address in rulemaking.

In terms of double-bottom design, the most significant advantage is its ability 

to protect the cargo block from rupture during groundings. For all but high- 

energy groundings, a double bottom will resist penetration of the inner hull. 

The amount of protection offered is dependent upon the height, and structural
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design, of the double bottom, as well as the amount o f energy to be absorbed 

(Wierzbicki, 1990; DnV, 1990). Typically, if  a pre-MARPOL tanker is 

retrofitted with a double-bottom meeting the current height guidelines, and is to 

meet current MARPOL ballast requirements, additional tankage will be 

required. Consequently, a deeper double-bottom will be required. This 

additional tankage also can be located in double side tanks. However, the 

overall effect is the same; the centre of gravity of the cargo is raised with a 

corresponding increase in the hydrostatic head of the cargo oil. For certain 

damages these increase results in greater oil outflow. The specific 

configuration of the double bottom is the subject of continuing international 

debate.

Most oil tankers built after 1979 are required to have segregated ballast, to 

reduce operational oil pollution. However, it is estimated that roughly 65% of 

the existing world fleet over 10 000 DWT does not have segregated ballast 

tanks. SBT does have a negative impact resulting in an increase in oil outflow 

in certain accident scenarios, particularly if the ballast is placed in the double­

bottom. However, operational pollution accounts for approximately half the 

input of oil into the marine environment.

Protectively Located Ballast Tanks (PL/SB T) were first required by MARPOL 

regulations (MARPOL 73/78). To meet the MARPOL requirements, the 

PL/SBT must be arranged to cover between 30 to 45 percent of the total area of 

the bottom and side shells. The actual percentage is related to the size o f the 

ship. This allows the PL/SBT to provide a measure of protection against oil 

outflow in case of a grounding or collision. Each wing tank or double-bottom 

tank also must meet certain minimum width or depth requirements, 

respectively (generally two meters). The requirements for either SBT or 

PL/SBT have never been required for existing ships, even though the 1978 

conference for the MARPOL convention recommended that the IMO set a 

date.
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The Mid-Deck Tanker concept has been debated extensively in the recent 

years. Retrofitting a mid-deck concept to an existing tanker will require 

extensive modifications to the cargo piping systems, cargo ventilation system, 

cargo cleaning system, and inert gas system, if required.

Smaller Tanks would limit the potential oil outflow for a given type o f damage 

since there would be a smaller volume of cargo in each tank. From a damage 

stability point of view, smaller tanks are generally more acceptable by limiting 

the amount o f lost buoyancy after damage. However, from a cost standpoint, 

smaller tanks require additional capital cost to install, and additional cost 

associated with maintenance and inspection. Additional study is required to 

determine whether this measure will adversely affect cargo operations and 

profit revenue.

There are a number of patented designs currently in existence that implement 

the concept of Rescue tanks/Emergency Transfer Systems. This concept are 

technologically feasible, and therefore warrant consideration. For a system to 

be successful in time of need, it must be of passive type, i.e., it must be 

activated independent of crew intervention. However, it also must not place the 

tanker in a more dangerous situation, especially with rgards to stability. In 

addition, it must be designed to prohibit the transfer of oil products into ballast 

tanks during normal operations to comply with regulations.

4.5.4 Outflow Parameters

A vessel’s ability to resist oil spillage can usually be best described by the 

cumulative distribution of oil outflow. This oil outflow can be easily obtained. 

Once all possible damages have been evaluated, the damage cases are placed in 

ascending order as a function of the amount of oil outflow. A running sum of 

probabilities is computed, beginning at the minimum outflow damage case.
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This cumulative probability can be plotted against oil outflow as a step-wise 

function, as shown in Figures 4.66-4.67.
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F igure 4.66. - C u m ulative D istribu tion  Function o f  O il O utflow  from  Tankers -  S ide
D am age
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F igure 4.67. - C um ulative D istribution  Function o f  O il O utflow  fro m  a D ouble-H ull
Tanker -  Bottom  D am age
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The oil outflow plots provides a good picture of a vessel’s overall ability to 

resist oil spillage when damaged. It is particularly useful when there is a large 

number o f different values of outflow, which is not always the case.

Analysing the oil outflow plot from Figure 4.66 is possible to note the 

existence of comers and lines with slope. The vertical jumps between comers 

represent that several casualties are being calculated, without breaching 

anymore cargo oil compartments, i.e the cumulative probability is increasing 

but no oil outflow is added. The slope of lines represent that the consecutive 

damage casualties experienced by the ship are adding some oil outflow through 

out time. If the line is almost horizontal, this means that we breached another 

cargo oil tank, adding a large amount to the oil spilled value. It gives also the 

information that we were in the vicinity or boundary of two or more cargo oil 

tanks, damaging the bulkhead that was separating them.

On the sample plot, the oil outflow of a double-hull tanker (3,20x3,20) 

corresponding to a cumulative probability of 0.8 is 9,100 m3. This means that 

in 80% of all collisions, the oil outflow will not exceed 9,100 m3. It therefore 

follows that 20% of all collision incidents will have outflows in excess of 9,100 

m3.

The oil outflow graph contains a number of pieces of information, attributed to 

the concept of distribution function, which are useful when assessing the 

overall performance of a ship, including:

♦ probability of zero outflow;

♦ mean outflow;

♦ effective outflow;

♦ hypothetical outflow;

♦ median outflow;
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♦ significant outflow;

♦ and extreme outflow.

(see Annex A for a short description of such parameters).

Note that not all these parameters are used by the IMO Interim Guidelines to 

assess the overall performance of a specific ship design (see section 3.2.2.4), 

because as stated previously, the three ones choosen are the ones that better 

characterise the ship in terms of its ability to resist oil spillage.

4.5.4.1 Zero Outflow

Figures 4.68 to 4.72 show the Probability o f Zero Outflow values for a set of 

tankers evaluated in the study. It is important to note that Po is independent of 

the subdivision of cargo space of the ship, as shown by Figures 4.68 and 4.69. 

As a result of this, if different ships have the same cargo capacity, this 

characteristic will be only affected by the width of double sides, i. e., the 

spaces that do not carry cargo. Then, it is obvious that it would be appropriate 

to establish a minimum value for the Probability o f Zero Outflow, Po, instead 

of imposing dimensions regarding the double hull or the protective location of 

segregated ballast tanks. Hook (1991) showed the flaws in this type of 

prescriptive regulation.

This parametric study revealed some interesting characteristics as follows. 

There was a clear intention to evaluate a set of ship lengths with variation of 

breadth of double sides within each length:

♦ the effect of double sides on Po is significant. The data shows an obvious 

increase with ship length (Figure 4.70);
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for the same value o f Po, smaller ships have relatively wider double sides 

than larger ships;

the increase in P0 is much more significant between 0% and 5% breadth of 

double sides, (see Figures 4.69 and 4.70)
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Figure 4.71. and 4.72 show values for P 0 comparing different ship types. The 

calculations indicated that the probability of zero outflow is four to six times 

higher for double-hull than for single-hull tankers. In other words, the 

projected number o f spills for double-hull tankers is one-fourth to one-sixth the 

number o f spills projected for single-hull tankers. It is important to state that, 

this comparison between different ship was made selecting a set o f ships 

similar in cargo oil capacity and ballast cargo capacity, so that the results could 

be valid for an overall evaluation.

When considering bottom damage alone, double-hull tankers offer a significant 

improvement over the single bottom configurations. For a double-hull design
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with a 3.2m double-bottom, more than 75% of the bottom damages will result 

in no oil outflow and for a 2.5m height of double bottom more than 70%. The 

mid-deck tanker is by far the best design in terms o f bottom damage alone with 

almost a null probability o f oil spillage.

P robability o f  Zero O utflow , P „
|_ □  Combined Dam age ■  Side D am age □  Bottom D am age |

Double-Hull (2.5mx2.0m) Double-Hull (3.2mx3.2m) 

Sh ip  Types

F igure 4.71. - P ro b a b ility  o f  Z ero Outflow, Po, fo r  d ifferen t sh ip  types.

When considering side damage alone, the double-hull with 3.2m and the mid­

deck tanker designs offer a considerable improvement over the other 

configurations due to their wing tank arrangements.

Weighting o f side versus bottom damage indicates the overwhelming 

superiority of the mid-deck tankers and also double hulls to reduce the 

likelihood of an oil spill.

Summing up the obtained results it is possible to say that ballast tanks or other 

non-oil spaces protect all cargo oil tanks on a double-hull tanker built to OPA 

‘90 requirements. They have the same effect in the mid-deck tanker, with the 

advantage o f being wider wing tanks protecting the cargo. Thus, many 

scenarios that would culminate in oil spillage from single-hull tankers do not
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result in penetration o f the double-bottom and wing tank dimensions in the case 

o f double-hulls and mid-deck tankers. It is also evident that this measure is not 

affected by internal subdivision within the cargo tanks. In other words, 

centreline or other longitudinal bulkheads within the cargo spaces or ballast 

tanks have no influence on the probability o f zero outflow.

Note that the probability of zero outflow in bottom damage incidents with mid­

deck tankers, even hydrostatically balanced, the value is not really zero 

because there are always oil losses due to initial impact and due to dynamic oil 

losses. However, as stated before, for this specific parameter calculation and 

comparison purposes they have not been included when evaluating bottom 

damage incidents with mid-deck tankers. The main reason for this comes from 

the fact that mid-deck-tankers do not have any bottom internal protecting space 

between water and cargo oil spaces. Then, all possible damages breaching the 

hull, breach immediately a cargo oil tank giving origin to oil losses. If theses 

oil losses are taken into account, the probability of zero outflow would be zero 

in bottom damages for mid-deck tankers.

P ro b a b ility  o f  Z ero  O u tflo w , P  0

\ D Pre-M A R PO L BM ARPOL □ D ouble-H ull D D ouble-H ull ■D ouble-H ull aM ld -D eck  ]

40  000  DW T 80 000  DW T 150 000  DWT 272 000 DWT

S h ip  S izes

Figure 4.72. - Probability o f  Zero Outflow, P0, fo r different ship types and sizes.
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Then, even such a small amount o f  oil lost would give a wrong idea about the 

performance o f  this kind o f  tanker in terms o f  probability o f  zero outflow, 

when comparing them with other types that have double-bottom spaces.

4.5.4.2 Mean Outflow

As regards the mean outflow, it is again clear from the results that this 

characteristic value is the one that most naturally reflects the effect o f  

compartimentation on the mitigation o f  oil outflow. Thus, the ratio Om/Vc, the 

non-dimensional mean outflow parameter, shows directly this effect.

The parametric study revealed again some interesting results, from which is 

possible to highlight that:

•  the mean outflow (m3) is in proportion to the volume o f  cargo carried out 

by the ship. Then, the hazard to the environment increases with bigger 

ships. This means, that i f  the regulations were to impose a limit on the 

absolute value o f  the mean outflow, such a requirement would indirectly 

impose a restriction on the maximum size o f  tankers (Pawlowski, 1996); 

however, in relative terms the opposite is true, i.e. the mean outflow  

parameter, MO/C, where C is the cargo capacity in tonnes, is lower for 

larger ships;

• the idea o f  increasing the number o f  compartments to reduce oil outflow  

quantities revealed to be a very ineffective way o f  doing it; only until a 

certain level is possible to get better results(see Figures 4.73-4.75);

• i f  we talk in relative terms, smaller ships must have relatively wider double 

sides than bigger ships, for the same level o f  protection o f  the environment.

The mean outflow values for tankers evaluated in the comparative study are 

plotted in Figures 4.76 and 4.78. The mean outflow values for double-hull
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vessels are one-third to one-fourth the single-hull values, but mean outflow 

varies significantly even among double-hull tankers o f the same size. Once 

again mid-deck tankers represent the best design, offering the lowest mean 

outflow values in the comparison o f present designs.

M ea n  O u tflo w , M O
Collision 40% :G rounding 60%

0
0 80 0  2 0  4 0 6 I 2

♦ h >/ = 0.0% 
&h>I =  5.0%  

k  H i  = 7.5% 

X w l  = 10.0%

F igure 4.73. - Influence o f  In ternal Subdivision  o f  C argo  B lock (w 2)  an d  Width o f  
W ing Tanks ( w j  on M ean Outflow, MO.

M ean  O u tflo w  P a ra m eter , O  w
Side D am age

'

►
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m wl=5.0%  
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F igure 4.74. - Influence o f  In ternal Subdivision  o f  C argo B lock (w 2)  an d  Width o f  
Wing Tanks(w/) on M ean O utflow  Param eter, 0 Af.
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M itig a tio n  o f  O u tflo w  d u e  to  L o n g itu d in a l C o m p a r tim e n ta tio n

C o m b in e d  D a m a g e  S id e  D a m a g e  “ A “ B o tto m  D a m a g e
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N u m b e r  o f  L o n g itu d in a l C o m p a r tm e n ts

F igure 4.75. -  M ean Outflow, 0 M, vs. N um ber o f  T ran sverse C om partm ents.

M ean  O u tflo w  P a ra m eter , O  M

□  C om bined D am age  I S i d e  D am ag e  O B otlom  D am ag e  ]
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0  06 

0 05 

0 04 

0 03 

0 02 

0 01 

0
Pre-M ARPOL MARPOL Double-Hull (2 .5m x2.0m ) Double-Hull (3 .2m x3.2m ) Mid-Deck

S h ip  T ypes

F igure 4.76. - M ean Outflow, 0 M,f o r  d ifferent sh ip  types.

The double-hull dimensions as well as the extent o f external subdivision 

influence mean outflow. Wider wing tanks and deeper double bottoms tend to
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reduce the likelihood of a spill, thereby increasing the number o f collisions and 

groundings with no spillage. Hence, an increase in wing tank width and 

double-bottom depth reduces the mean spill value. Greater internal subdivision 

also tends to reduce the quantity of oil spilled, as demonstrated in Figure 4.75, 

but its effectiveness is only felt until a certain level.

The variability in mean outflow values for double-hull tankers is primarily a 

result o f differences in subdivision within the cargo block (see Figures 4.77 

and 4.78). Double-hull tankers without centreline bulkheads have 

approximately twice the expected outflow o f designs with oiltight centreline 

bulkheads in way o f all cargo tanks (see Figure 4.74). The same xyas' results 

werqTor single-hull tankers.

M ean  O u tflo w  P a ra m ete r , O M

j D S id e  D am ag e  ■  Bottom D am age □  C om bined  D am ag e  j
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0
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6x2 110x1  00 6x2 2 00x2 00 6x2 2 00x2 00 6x2 2 00x2 00 6x2 2 32x2 00 6x2 2 50x2 50 5x3 2 00x4 00 5x3 3 50x3 50 5x3 3 50x3 50

D o u b le  H u lls

F igure 4.77.  -  M ean Outflow, 0 M, f o r  a se t o f  D ouble-H ulls.
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M ea n  O u tflo w  P a ra m eter , O  M

□  Pre-M ARPOL IM A R P O l □  Double-Hull □  Double-Hull I  Double-H ull □  M id-Deck
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F igure 4.78.  -  M ean Outflow, O m, f o r  d ifferent Ship Types an d  Sizes.

Single-tank-across design performed less effectively when the vessel was 

subjected to side damage than when subjected to bottom damage. The closer 

spacing o f transverse bulkheads in these designs increase the probability that 

multiple cargo tanks will be breached. Once a single-tank-across tank is 

breached, oil located all across the cargo compartment will flow out through 

the damaged side. Oil outflow is no longer limited to the oil being carried on 

one side of the vessel (see Figure 4.79).
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Mean Outflow Parameter, O w 
Bottom D a m a g e  a n d  Side  D a m a g e

dSingle-Tank-A cross ■ Two-Tanks-Across
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©
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0 05 0 0 0  
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F igu re 4.79. - M ean O utflow, O m, f o r  S ingle-Tank-A cross a n d  Two-Tank A cross
designs.

When considering bottom damage alone, the hydrostatically balanced design 

Mid-Deck tanker offers the best overall performance. The MARPOL ship is the 

worst performer with mean outflows significantly higher than the double-hulls 

and virtually double the outflow from the Pre-MARPOL ship (see Figure 4.76).

When considering side damage alone, the double-hull and mid-deck designs 

offer the lowest mean outflow. Mean outflow for the mid-deck design is only 

slightly lower. The inferiority o f  the single hull ships in minimising mean 

outflow from side damage is readily apparent.

Weighting o f side versus bottom damage indicates a fairly equivalent 

performance for all o f the proposed improvements to the Pre-MARPOL and 

MARPOL ships. The conventional single-hull vessels yield the highest levels 

of mean oil outflow.

Bottom Damage
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4.5.4.3 Extreme outflow

Extreme outflow parameters are shown in Figures 4.80-4.84. There is 

considerable scatter in the data points, indicating that such characteristics as 

internal subdivision and drafl-to-depth ratio have a significant impact on 

extreme outflow. Although the comparative analysis indicated that double hulls 

are very effective in reducing both the number o f  spills and the mean outflow  

values, their effectiveness in preventing large spills is less pronounced.

Extreme Outflow Parameter, O E
Collision 40% :G rounding 60%

!
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i
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3  :  ♦  4 25
$  |  a
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Wwl=S.0% 
Awl=7.S%  
Xwl=IO.O%

Figure 4.80. - Influence o f Internal Subdivision o f  the Cargo Block (w2) and Width o f  
Wing Tank (w j  on Extreme Outflow Parameter, Oe.
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Extreme Outflow, EO
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Figure 4.81. - Influence o f Internal Subdivision o f  the Cargo Block (w2)  and Width o f  
Wing Tank (wt)  on Extreme Outflow, EO.

When considering bottom damage alone, the hydrostatically balanced design 

Mid-Deck tanker offer substantially superior performance regarding extreme 

oil spills. The MARPOL design is inferior to all other designs in this respect. 

The double-hull designs offer no improvement over the conventional Pre- 

MARPOL configuration (see Figure 4.83).

Extreme Outflow Parameter, O
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Figure 4.82. - Extreme Outflow Parameter, Og.for both side, bottom and combined 
damage vs. Number o f Longitudinal Compartments.
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When considering side damage alone, the MARPOL design once again is the 

worst performer. The mid-deck design results in the lowest extreme outflow.

Weighting o f side versus bottom damage indicates the superiority o f mid-deck 

design when subjected to extreme damage scenarios. The double-hull ships 

offer essentially equivalent performance to the existing Pre-MARPOL designs.

E xtrem e O utflow  Param eter, O E

| D C o m b in ed  D am ag e  H S id o  D am age  D B otlom  D am ag e  ]

P re-M A R PO L  M ARPOL D ouble Hull D ouble-H ull M id-D eck
(2 5mx2 0m ) (3 2m x3 2m )

S h ip  Type

F igure 4.83. - E xtrem e O utflow, 0 E, f o r  d ifferent sh ip  types.

When comparing different ship types in size categories, the same conclusions 

are extracted, with exception made to the Pre-MARPOL 40 000 DWT tanker. 

In this case, it is the worst performer, mainly due to its high number of 

longitudinal compartments, giving origin to a high probability o f damaging 

multiple cargo tanks, increasing this way the extreme oil outflow parameter.

137



C h a p t e r  4  -  E v a l u a t i o n  o f  Ta n k e r  D e s i g n s

E x tre m e  O u tflo w  P a ra m ete r , O  g

□  Pre-M A RPO L ■  MARPOL □ D ouble-H ull D D ouble-H ull ■ D ouble-H ull □  Mid-Deck |

40 000 DW T 80 000 DWT 150 0 00  DW T 272 000 DWT
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F igure 4.84. - E xtrem e Outflow, O e, f o r  differen t Ship Types and Sizes.

4.5 .4 .4  Pollution Prevention In d ex

The I MO Pollution Prevention Index E provides an overall picture o f outflow 

performance. The three outflow parameters for a given design are combined, 

using weight factors, and then compared to the outflow parameters for an IMO 

reference ship of similar size4. An index greater than or equal to 1.0 indicates 

equivalence to IMO’s reference designs.

4 Sketches o f the IMO ships are provided in Appendix B. These reference designs do not 
incorporate the minimum subdivision acceptable under current MARPOL regulations. They 
were selected because they exhibit a favourable oil outflow performance.
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Pollution Prevention Index, E
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Figure 4.85. - Influence o f  Internal Subdivision on IMO Pollution Prevention Index, E.

The study o f  the influence o f  different double side dimensions, number and 

location o f  longitudinal members in the Pollution Prevention Index is shown in 

Figure 4.85. For the ships evaluated, all the single-hull tankers, even with 

longitudinal bulkheads, perform poorly when compared with IMO double-hull 

tankers, with the best values slightly over 65%. When taking different internal 

configurations for double-hull tankers, the reduction o f  the centre cargo tank 

shows the best results, with values over 120% for a double-hull with two 

longitudinal bulkheads at a distance o f  30% breadth and a double side o f  10% 

breadth. Only one o f  the double-hulls with a central longitudinal bulkhead does 

not present a Pollution Prevention Index higher than the IMO Double-Hull 

reference designs, showing typical values between 0.98 an 1.22.

Figure 4.86 shows the Index E for single-hull, double-hull and mid-deck 

tankers evaluated in the comparative study. Single-hull tanker values generally 

fall between 0.3 and 0.4, whereas double-hull tanker values lie between 0.9 and 

1.1. Sixty nine percent o f  the double-hull designs evaluated in the study have 

indices greater than 1.0, indicating equivalency to IMO reference ships. In
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general, ships with longitudinal oiltight bulkheads in the cargo holds have 

highest indices (see Figures 4.85-4.89). Among these last, narrower centre 

tanks lead also to highest indices.

IM O  P o llu tio n  P re v en tio n  In d ex , E

'■y
0 8000
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Pre-M ARPOL MARPOL Double-Hull Double-Hull Mid-Deck
(2.5m x2 0m ) (3 2m x3 2m )

S h ip  Types

F igure 4.86. - IM O  Pollu tion  P revention  Index, E .f o r  d ifferent Ship Types.
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Figure 4.87. - IMO Pollution Prevention Index, E, fo r  a set o f  Double-Hulls - 1.
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M ean  O u tf lo w  P a ra m ete r , O M
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F igu re 4.91. - M ean O utflow  Param eter, 0M,f o r  a ran ge o f  differen t s izes  o f  D ouble-
H u ll Tankers.

4.5 .4 .6  L ongitudinal B u lkheads A rrangem ent

The arrangement o f longitudinal bulkheads is o f great importance because 

collision spills are o f greatest importance (see Figure 4.91).

A longitudinal bulkhead may be necessary for tankers over 60,000 DWT. At 

present there are Panamax, Aframax and Suezmax designs without centre 

bulkhead. Apart from stability problems during loading and unloading 

operations, the level o f mean outflow must be reduced using a longitudinal 

bulkhead in these types o f tankers.

A VLCC must be provided with two longitudinal bulkheads. The theoretical 

arrangement of longitudinal bulkheads has been analysed in the study and leads 

to some important conclusions:
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• the optimum position is almost independent o f  double side dimension (see 

Figure 4.74). The differences are minimum in Mean Oil outflow Parameter 

for different sizes o f  double sides in the Double-Hull tankers investigated 

(w 2 = 2.5%-10%);

•  i f  w e consider both collision and grounding outflows, the optimum position 

o f  the longitudinal bulkheads varies towards a narrower dimension o f  

centre cargo tank (also found in the study "Oil tanker concept-design 

against accidental pollution", DnV, 1992), However, it is important to note 

that the optimum value always varies between w 2=0.5 and w 2 = 0.7 (see 

Figure 4.92).

Mean Outflow, MO
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Figure 4.92. - Optimal Position fo r  Longitudinal Bulkheads -  Mean Outflow
Parameter.

4.5.4.7 Transverse Bulkheads Arrangement

Transverse bulkheads are also important when considering the distribution o f  

damage through the whole length o f  the ship. Also it is vary important i f  it is
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not possible to keep the same dimension o f  double hull due to hull forms. In 

som e cases this differences in protection may lead to a shortening o f  cargo 

dimensions or adjustment o f  longitudinal bulkheads to optimise the total result 

for a given number o f  longitudinal and transverse bulkheads. As a 

consequence, it is advisable to analyse the combined effect o f  longitudinal and 

transverse bulkhead arrangement, even i f  both effects may be analysed 

independently (Pawlowsky, 1996).

Usually the mean outflow produced by grounding is less than one half or one 

third o f  a collision outflow, but considering the effect o f  tides both outflows are 

similar. This is one o f  the reasons why it is a better solution to apply the same 

probabilistic method both for collision and for grounding, instead o f  applying 

the probabilistic method for the assessment o f oil outflow for collisions and the 

deterministic method for grounding incidents as some authors propose 

(Pawlowski, 1996).
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Figure 4.93. - Optimum position fo r  transverse bulkheads.
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The maximum number o f  transverse bulkheads is closely related to the extent 

o f  damage considered (Pawlowski, 1996). This means that the required damage 

length is contributing to determining the longitudinal compartment length o f  

the vessel. As well the maximum length accepted by MARPOL and the 

convenience o f  avoiding swash bulkheads or expensive antisloshing 

reinforcement, this defines the minimum transverse bulkheads. For these 

reasons there are not too many possibilities concerning the number o f  

transverse bulkheads, but it is possible to provide a shorter length in extreme 

tanks to reduce potential outflows in areas with a higher probability o f  damage 

and sloshing effects.

From the calculation performed, the optimum outflow corresponds 

approximately to a transverse bulkheads arrangement o f  1/L = 0.1 (see Figure 

4.93).

4.5.4.8 Ballast Tank Arrangements

The improvement o f  the arrangement o f  ballast tanks to act as cargo 

containment spaces in case o f  grounding is one o f  the important questions that 

came out from this study. Another important result is that the introduction o f  

double bottom longitudinal members and the improvement o f  their location can 

reduce the extent o f  damage in case o f  grounding. This is another feature that 

gives better protection to the ship.

The results also confirm that by moving ballast capacity from sides to bottom  

spaces, the probability o f  outflow and expected outflow will increase for 

collisions and reduce for groundings (see Figure 4.94).
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Probability  o f  Zero O u tflow , P  n
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F igu re 4.94. - O utflow  pa ra m eters  f o r  different arran gem en ts o f  b a lla s t tanks.

The results also seem to put in evidence that that by moving ballast capacity 

from sides to bottom spaces, the environmental performance o f double-hull 

tankers is improved in all size ranges (see Figures 4.95-4.97).

Probability o f  Zero O utflow , P „

D ouble-H ull 40 .0 0 0  DW T 
(2 0x2 4 v s 2 4x2 0)

ouble-H ull 150 .000  DWT 
(2 0x2 4 vs 2 4x2 0)

ouble-H ull 272 .000  DW T D ouble-H ull 4 5 0 .000  DWT 
(2 0x2  5 vs 2 5x2 0) (3 0x4 0 vs 3 5x3 5)

Sh ip  Types

F igure 4.95. - Influence on the P robab ility  o f  Z ero  O utflow  When M oving  B allast
C apacity  fro m  Side to  Bottom.
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Probability o f  Zero Outflow, P „

6 0 0 %

1 0 0 %

D ouble-H ull 4 0 .0 0 0  D W T D ouble-H ull 1 5 0 ,000  DW T Double-H ull 272 .000  DW T D ouble-H ull 4 5 0 .0 0 0  DW T 
(2 0x2 4 vs 2 4x2  0) (2 .0x2  4 vs. 2 4x2 0) (2 0x2 5 vs 2 5x2 0) (3 0x4 0 vs 3 5x3 5)

S h ip  Types

F igu re 4.96.  -  Im provem en t o f  E nvironm ental P erform an ce o f  Tankers, M ovin g  
B alla st C apacity  fro m  Side to Bottom  S paces .

Double-Hull 40.000 DWT Double-Hull 150.000 DWT Double-Hull 272.000 DWT Double-Hull 450.000 DWT
(2 0x2 4 vs 2 4x2 0) (2 0x2 4 vs 2 4x2 0) (2 0x2 5 vs 2 5x2 0) (3 0x4 0 vs 3 5x3 5)

Ship Types

F igure 4.97. - E n vironm ental P erform ance o f  Tankers, M oving B allast C a p a c ity  fro m  
S ide to Bottom  S paces -  M ean O il O utflow  Param eter.

However, this is only true if we are talking about the ability o f the ship to resist 

oil spillage. Comparing the same ships in terms of mean oil outflow and

M ean  O u t/lo w  P ara m eter , O M
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extreme oil outflow parameters, is possible to note that both values increase, 

when moving ballast capacity from sides to bottom. This can be explained 

mainly by the fact that, oil outflow from collision is always two to three times 

higher than for groundings. Then, reducing the barrier between oil and water, 

i.e, the width o f double sides, the probability o f breaching by collision the oil 

cargo tanks is increased as well as the amount o f oil spilled into the 

environment. This way is not possible to say that, in overall terms, which is the 

best solution. In low energy accidents, the solution o f increasing bottom ballast 

capacity is the best solution, but if we are talking about high energy accidents, 

with breaching o f internal subdivisions, the same is not true.

The Figures 4.98-4.102 show different cargo and ballast tank arrangements. 

From the analysis and evaluation o f different grounding situations, it is 

possible to decide about the best type of ballast tank arrangement, in terms o f 

environmental performance. Taking this into consideration and the possibility 

o f using ballast tanks as cargo containment spaces (IMO, 1995b) in case of 

grounding, the study o f the best solution is an important issue.

F igu re 4.98. - D ouble-H ull, S ingle-Tank-A cross A rrangem en t  v .v . U B a lla st Tanks an d
L B allast Tanks A rrangem ents.

In what respects Single-Tank-Across arrangements (Figure 4.98), two different 

situations can be expected with L and U shape ballast tank arrangements. In the
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first case, is clear that the U-shape is the best solution, once a larger volume is 

available as a containment space. In the second, case, where the longitudinal 

element is damaged, both solutions are equivalent.

If we take also damage stability considerations, is again the U-shape, the best 

solution, once the heel angle is substantially reduced, when compared with the 

L-shape, where a asymmetrical flooding takes place (Peters, 1991).

The same can be said for Two-Tanks-Across Arrangements (Figure 4.99), 

when analysed both with U-shape and L-shape ballast tanks configurations. 

The situation (a) has again advantage for the U-shape, for the same reasons 

stated above.

F igure 4.99. - D ouble-H ull, Two-Tanks-A cross A rrangem en t vs. U  B allast Tanks an d
L B allast Tanks A rrangem ents.

The analysis of Three-Tanks-Across arrangements (Figures 4.100-4.102) is not 

so direct and obvious as the previous ones. We have now U, L and J ballast 

tank configurations. For situation (a) the best solution is the U-shape, in terms 

o f environmental performance. The J-shape is the worst solution, once a a 

smaller volume is availabe as cointaiment space. From the damage stability 

point o f view, both L and J configurations produce asymmetrical flooding, 

being worst solutions again than the U-shape.
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s .

----------- l7“ r '

(a)

F igu re 4.100. - D ouble-H ull, Three-Tanks-A cross A rrangem en t vs. U B a lla s t Tanks, L 
B alla st Tanks an d  J  B allast Tanks A rrangem en ts - 1.

Situation (b) is a grounding situation where only the central cargo tank is 

breached, but no longitudinal element is damaged. The U-shape presents the 

largest amount o f oil entrapment and the J configuration the lowest amount, 

once only the bottom ballast tank is also damage, being limited in both 

extremes by longitudinal elements that limit the flooding and the oil-water 

mixture. From the damage stability point of view both U-shape and J-shape are 

the best solution, once the flooding is symetric, reducing this way the heeling 

angles that may be produced by situations like this.
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F igu re 4.101. - D ouble-H ull, Three-Tanks-A cross A rrangem ent  v s .  U  B a lla st Tanks, L 
B allast Tanks an d  J  B allast Tanks A rrangem ents - II.

F igu re 4.102. - D ouble-H ull, Three-Tanks-A cross A rrangem ent  v s .  U B allast Tanks, L 
B allast Tanks an d  J  B allast Tanks A rrangem ents - III.
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The situation (c), the central ballast tank is breached and the central 

longitudinal element is also damaged. In this case, both U and L-shape have 

equivalent containment spaces, being able o f containing equal amounts o f oil- 

water mixture. The J-shape presents the worst performance, only with the 

bottom ballast tank available as containment space. All the configurations 

present situations symmetrical flooding.

Situation (d) and (e) are the most dangerous ones in terms o f environmental 

threat, once two and three tanks across, respectively are breached 

simultaneously. The first situation gives again advantage to the U-shape, being 

the worst case the L-shape, with smallest volume available for entrapment o f 

oil. Both L and J shapes give origin to asymmetrical flooding. Situation (d) 

presents an equivalent situation for all arrangements, both in environmental 

and damage stability terms.

M ea n  O u tflo w  P a ra m e te r  vs. B a lla s t Tank A r ra n g e m e n t

0.0138

D o u b le - H u l l  - J  D o u b le - H u l l  - L  D o u b le - H u l l  -  U

B a lla s t Tank A rra n g e m en t

F igure 4.103. -  M ean O utflow  P a ra m eter  vs. B allast Tank A rrangem ent.

All these considerations are qualitatively and, taken in separate situations. 

When gathering this information and computing all possible damage situations,
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the results do not present such an enormous advantage for the U-shape, when 

compared with the L-shape, in terms o f environmental performance.

The reasons for such small differences between the two configurations may 

result mainly because the most dangerous situations, involving greater oil 

outflows have equivalent oil entrapment spaces available. In other cases, the 

space available is more than enough to accommodate the 50% mixture oil- 

water, predicted in the regulations.

E x tre m e  O u tf lo w  P a ra m e te r  vs. B a lla s t  Tank A r r a n g e m e n t

%

0 .1 2 8 0  

0 .1 2 6 0  

0 .1 2 4 0  

0 .1 2 20  

0 . 1 2 00  

0 .1 1 8 0  

0.1 160 

0 .1 1 4 0

Dou ble-Mull  - J  D oub le - H ull  - L D oub le- H ul l  -1)

B a lla s t T an k A rra n g e m en t

F igure 4.104. - E xtrem e O utflow  P aram eter  vs. B a llast Tank A rrangem en t

However, in global terms is not possible to say that the difference between the 

three arrangements is such that the decision for one or the other should be done 

only in terms of capacity o f oil entrapment. Other important characteristics 

such damage stability, structural issues, assess to the spaces and ventilation 

should also be taken into close attention.

In terms of damage stability when different ballast tank arrangements are 

compared, the study carried out by Peters (Peters, 1991) present a set of 

interesting conclusions:
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>  one o f  the best ways o f  improving double-hull tanker performance is to 

incorporate some “U ” tanks in way o f  some o f  the tanks. However, close  

attention has to be given to sinkage after damage and surface problems 

during charging and discharging;

>  large J tanks can reduce heel angle substantially in bottom raking damage;

>  combination o f  two or more tank types within the cargo length.

4.5.4.9 Collisions versus Groundings

Since damage statistics will continue to be collected, it is to be expected that 

the discussion on the distribution o f  collisions versus groundings will be on­

going.

Probability o f  Zero Outflow, P g

“ ♦ P r e - M A R P O L  “ ♦ -M A R P O L  “ ♦ 'D o u b le -H u ll  (2 .5m x2.0m ) “ **“ Double-Hull (3 .2m x3.2m ) “ ♦ M id - D e c k

1.2

0.8

0 6

0.4

0.2

0
100% Side Damage Bottom:Side Ratio 100% Bottom Damage

Figure 4.105. - Probability o f  Zero Outflow, P0,~ Influence o f  Bottom Damage/Side
Damage Ratio.
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Abicht (Abicht, 1977), opened the discussion in 1977 with the assumption o f  

76% collisions versus 24% groundings. This was in line with former IMCO 

statistics, which in those years were primarily oriented to passenger ships and 

dry-cargo vessels, but he pointed out, that the available data might be 

insufficient for ships longer than 200m. Collisions, no doubt, are more frequent 

for smaller vessels, whereas groundings are more relevant to larger ones. Small 

ships reach the port via shallow and deep-water approaches, whereas large 

ships more often meet approaches being relatively shallow for their deep 

draught.

In statistical data from the U.S.A. (NRC, 1991), these indicate 43% collisions 

versus 57% groundings. In data from Lloyd’s Register the percentage o f  

groundings and collisions are weighted by a sum o f  products multiplying the 

number o f  incidents by the pertinent average dead-weight o f  the vessels a mix 

o f  49% collisions and 51% groundings can be established (Table 4.7).

Table 4.7 - Probability o f  collisions and groundings (source: LR data base).

Incidents
tdw -m ean probability

tdw-class tdw -m ean groundings collisions total X of
o f tankers (103) (assum ed) sum o f incidents 

(M illions)
groundings

<50 27 500 172 244 416 11.44 0.413
50 -1 0 0 75 000 66 57 123 9.23 0.537

>100 200 000 81 70 151 30.20 0.536
Total 319 371 690 50.87 0.509

The comparative outflow analysis ordered by U.S. Coast Guard assumes 

weighting factors o f  50% for both side and bottom damages (HEC, 1994), 

whilst the investigation on behalf o f  IMO, (IMO, 1994), is based on 40% for 

side damages and 60% for bottom damages, when calculating the combined 

probability. In the discussions to (Hook, 1991), Noble has cited statistical data, 

o f  accidents in the Baltic, compiled by the Finish Board o f  Navigation over 25 

years. These display a 30%/70% distribution o f  side damages versus 

groundings, thus indicating once more that this important feature o f  damage
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statistics is strongly related to the draught restrictions or channel widths o f 

certain approaches and the frequency of vessels using them.

Weighting the aforementioned data, the assumption o f 40% side damages 

versus 60% groundings, as stipulated by the MEPC for the Draft Interim 

Guidelines to regulation 13F (IMO, 1994), is reasonable for the time being.

Since some of the competitive designs investigated (HEC, 1992) show a 

pronounced gradient of zero outflow probability versus side-bottom damage 

ratio, this question is of considerable concern. The zero outflow parameter 

influences the pollution prevention index substantially. Therefore a sound 

statistical support of the side damage/grounding-ratio is very important for 

correct evaluation of designs (see Figure 4.105).

4.5.5 Optimising the Double-Hull Tanker

It is stated in the author’s summing up of (Hook, 1991), that the double-hull in 

principle can outperform any other subdivision concept, but the question is 

raised whether double-hull tankers, which have such very low outflow 

parameters, are likely to be built. The strong relation between first costs and 

number of tanks is to be kept in mind. However some design measures can be 

taken, which will enhance the overall safety of the double-hull tanker.

In some literature consideration is given to the arrangement of U-shaped ballast 

tanks in the double-hull (Thorpe contribution in (Hook, 1991)). This should be 

done wherever it is possible with respect to stability and survivability. Any 

cargo gas, which due to a leakage from the inner hull may be spread in the 

ballast tanks and of course the inert gas, can be purged more easily from the 

tanks. This procedure is critical, especially for the huge L-type tanks of a 

VLCC. This is essential for the overall safety of double-hull tankers including 

the risk of explosion and fire.
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4.5.6 Summary of Main Results

Various types of subdivision differ significantly from the standpoint of 

protection of the environment. The most efficient in this respect are mid-deck 

tankers. Double-hull tankers can present more than 50% greater hazard to the 

environment, whilst single-hull tankers even more than 100%. Larger tankers 

are safer for the environment (in relative terms), due to smaller relative damage 

size. There is an optimum position for the longitudinal bulkheads and for the 

transverse bulkheads that minimises the mean oil outflow.

All cargo oil tanks on a double-hull tanker built to OP A 90 requirements are 

protectively located. Many of the damage cases that would result in oil spillage 

on single-hull tankers will not penetrate the cargo tanks of double-hull tankers. 

As a consequence of this, double-hull tankers will have fewer accidents 

involving oil spillage. The mean or expected oil outflow from a casualty will 

usually be less with a double-hull tanker as compared to a single-hull tanker of 

the same size.

The arrangements of double-hull tankers vary considerably. The vessels 

proportions, the wing tank and double-bottom dimensions, and the number and 

location of longitudinal and transverse bulkheads, all influence the outflow 

performance. As a consequence, the likelihood of oil spillage and the mean or 

expected oil outflow will vary significantly even among double-hull tankers of 

the same size.

The results also show that, as expected: by moving ballast capacity from sides 

to bottom spaces, the probability of outflow and expected outflow will increase 

for collisions and reduce for groundings.

Since the study is conducted based on the "conditional probability" approach, 

that is, there is an initial assumption that a casualty has occurred, the results for 

collisions and groundings should not be taken separately. This ratio of
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groundings to collisions, needs to be taken into account before an overall 

comparison of the different designs can be done.
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CHAPTER 5 - D isc u ssio n  o f  R e s u l t s

5.1 General

Even if tanker safety has improved significantly over the past few years, 

accident risks have not been eliminated continue to be improved. The 

authorities have adopted proactive principles and the tanker industry is 

committed to implementing the safety culture onboard and onshore. Also in the 

present situation with tough competition in the tanker market, safety and 

environmental aspects become increasingly important competitive factors, and 

the prospects are good that the sub-standard tanker tonnage will be pushed out 

of the market.

The safety process for the next generation of tankers starts at the design office 

and is complemented by a competent management. It involves a wide range of 

technical, environmental and operational aspects.

The goals should much higher than “designing our ship hull form only to 

achieve minimum power consumption and just to fulfil IMO’s regulations”. 

The keywords in mind when designing the tanker for next century should be: 

Safety, Economy and Environment.

5.2 Discussion of Results

The probability of zero outflow is a measure of a tanker’s ability to avoid oil 

spills. In this regard, double-hull tankers perform significantly better than 

single-hull tankers, as the protective double skin reduces the number of 

casualties with penetration into the cargo tanks. As shown in Figure 4.71,
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single-hull tankers involved in collision or grounding will be four to six times 

more likely to spill oil than a double hulled tanker.

The probability of zero outflow is a function of the double-bottom and wing 

tank dimensions, and is not affected by the internal subdivision within the 

cargo tanks. Therefore, centreline or other longitudinal bulkheads within the 

cargo spaces have no influence on the probability of zero outflow.

The mean outflow is a measure of the ability of a design to mitigate the amount 

of oil outflow. Again, double hulls perform significantly better than single-hull 

vessels, with double-hull mean outflow values averaging one-third to one- 

fourth of the single-hull vessels.

The double-side vessels perform reasonably well with respect to collisions, but 

have higher outflows for bottom damage. These vessels have single-tank- 

across arrangements for cargo tanks, which significantly increase outflow as 

compared to the more extensive cargo tank subdivision incorporated into the 

pre-MARPOL and MARPOL 78 designs.

The double-hull dimensions as well as the extent of internal subdivision within 

the cargo tanks influence mean outflow. There is little variation in the 

arrangement of VLCCs, with most single-hull and double-hull designs 

incorporating a 5x3-cargo tank arrangement. Wing tank and double-bottom 

dimensions for VLCCs typically fall between 3.0 and 3.5 metres. As a result, 

mean outflow values for VLCC are relatively consistent. In contrast, there is 

considerable scatter in the outflow values for tankers under 165 000 DWT. 

Figure 4.76 shows the side and bottom damage contributions to mean outflow 

for the 150 000 DWT tankers evaluated in this study.

The projected outflow is consistently lower for the designs, which have an 

oiltight centreline bulkhead over the length of the cargo block. Designs with all 

single-tank-across cargo tanks have the highest mean outflow. It is interesting 

to note that the bottom damage outflow are relatively consistent, but the single­
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tank-across designs perform less effectively when subjected to side damage. 

The closer spacing of transverse bulkheads on these designs increases the 

probability of breaching multiple cargo tanks. Once a cargo tank is breached, 

oil outflow is no longer limited to one side of the vessel.

Double-hull tankers without centreline bulkheads typically have twice the 

expected outflow of designs with oiltight longitudinal bulkheads in way of the 

cargo block.

Extreme outflow is a measure of a design’s propensity to spill large volumes of 

oil in the event of a very severe collision or grounding. The extreme outflow 

parameters are plotted in Figures 4.82-4.84. Whereas double-hulls were found 

to be 3 to 6 times more effective in avoiding spills and reducing mean outflow, 

double-hulls are somewhat less effective in controlling large spills. There is a 

considerable scatter in the data points, indicating that such parameters as 

internal subdivision and draft/depth ratio have a significant impact on extreme 

outflow. With regard to extreme outflow, the double-hull vessels with single- 

tank-across arrangements performed more poorly than both pre-MARPOL and 

MARPOL 78 vessels of comparable size.

The study clearly demonstrated that:

• mid-deck tankers are superior to other designs due to the much larger width 

o f double sides, for a given amount of transverse subdivision. This may not 

be the case if other aspects are taken into account such as the number of 

tanks, for example;

• the mean outflow is in proportion to the volume of cargo carried by the 

ship: the bigger the ship, greater the hazard to the environment;

• increasing the number of compartments above a certain value is a very 

ineffective means of improving outflow qualities of tankers.
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5.3 Comparison With Other Studies

The comparison between studies carried out by different people is not always 

an easy task. One of the main reasons for these difficulties is the difference in 

purpose of the work carried out. The aim of this work is to encourage the 

establishment of the guidelines based on assumptions and methods applied 

through out this study.

The studies by others always had some important differences when compared 

with the study described here. Some of these differences can be summarised as 

follows:

• the probability density functions used were not the same;

• different damage assumptions were taken into consideration;

• the set of ships analysed and the internal subdivision arrangements 

selected were not quite identical;

• the implemented computational method for the application of the 

probabilistic concept was different (simplified or direct).

The most important studies selected for this comparison were

> Hook, 1991;

>  Michel and Tagg, 1991;

> Hart, 1992;

> Michel & al, 1997;

> HEC, 1998.

164



C h a p t e r  5  -  D i s c u s s i o n  o f  R e s u l t s

However, since comparison is always useful, there was a clear intention of 

keeping similar aspects between this study and the ones selected for 

comparison.

Taking the work carried out by Michel and Tagg (Michel, 1991), the 

distribution functions used are completely different from the ones used here, as 

well the maximum extensions of damage. The methodology used in the 

calculation procedure is also different. However, the same damage 

survivability criterion is used. Qualitatively it is possible to compare the 

results, in terms of the environmental performance of the tankers evaluated. 

The two studies in agreement revealed:

• the superiority of double-hull design (when compared to single-hull design) 

to reduce the likelihood of an oil spill;

• the bad performance of single-hull designs in terms of environmental 

performance -  highest levels o f mean oil outflow, lowest levels of the 

probability of zero outflow and the MARPOL design presenting the highest 

value for the extreme outflow parameter;

• the hydrostatic balanced designs (Mid-Deck) offer the best environmental 

performance of all the designs in compared5.

When analysing the studies conducted by Hook (Hook, 1991), once again 

several differences can be identified. The pdf functions are different, using as 

Michel (Michel, 1991), the ones defined in the 1973 IMO Passenger 

Regulations. The calculation methodology differs also from the one used in this 

study. Hook developed joint probability density functions to perform the 

damage calculations. Nevertheless some conclusions agreed:

5 For a better understanding o f the results here mentioned see 4.5.4.

165



C h a p t e r  5  -  D i s c u s s i o n  o f  R e s u l t s

• by moving ballast from the sides to the bottom the probability of outflow 

and expected outflow will increase for collision and reduce for groundings;

• horizontal subdivision offers the greatest reduction in expected outflow for 

grounding situations;

• double-hulls with greater longitudinal subdivision o f the cargo tanks offers 

substantial reduction when compared with other designs in terms of 

expected oil outflow;

The closest study to the one carried out here is the one described in Michel et al

(Michel et al., 1997). Since both studies follow the IMO Interim Guidelines

(IMO, 1995), both initial assumptions and pdf functions are identical.

Comparing both studies the following conclusions were agreed:

• longitudinal subdivision has a significant influence on mean outflow, 

specially with the introduction of a central bulkhead;

• the addition of a second longitudinal bulkhead does not provide as much 

additional benefit as that achieved by the introduction of the first central 

bulkhead;

• the addition of transverse bulkheads decreases mean outflow, but the 

decrease in outflow diminishes as additional bulkheads are added, leading 

to the idea of an optimum number of transversal bulkheads;

• double-bottom and wing tank dimensions are determine the decrease of the 

probability of oil outflow and mean outflow.

The Herbert Engineering Corporation (HEC, 1998), carried out a study of “Oil

Outflow Analysis for a Series of Double Hull Tankers”, using the “Accidental

Oil Outflow” regulations, that will replace the requirements contained in

MARPOL Regulation 1/22-24. The outflow parameters for the similar designs
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evaluated are in close agreement to the values calculated here, presenting 

differences o f no more than 2%-5%.

Table 5.8 - Comparison o f results for the IMO Reference Double-Hulls.

Cargo DWT Cargo Tank WTxDB Mean Outflow Probability of
(t) Arrangement (m) Parameter Zero Outflow

Calculated 5000 6x2 1 .0 x  1.1 0 .015 0 .8 1 4
HEC 0.014 0.840
IMO Guidelines 0.017 0.810
Calculated 6 0000 6x2 2.0  x 2 .0 0 .015 0 .8 0 6
HEC 0.016 0.810
IMO Guidelines 0.014 0.810
Calculated 150000 6x2 2 . 0 x 2 . 3 2 0.016 0 .7 5 0
HEC 0.018 0.770
IMO Guidelines 0.016 0.790
Calculated 283000 5x3 4.0  x 2.0 0 .012 0 .7 3 2
HEC 0.012 0.750
IMO Guidelines 0.013 0.770
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C H A P T E R  6 - C o n c l u sio n s

The implementation o f the MARPOL regulations has had a major effect on the 

reduction of operational oil pollution, but the same cannot be said for 

accidental oil pollution. Although accidental oil spills have reduced 

significantly from the levels experienced in the 1970’s, not as a direct result o f 

MARPOL, they have now started rising again with the increase in activity over 

the last few years.

The MARPOL rules are minimum requirements for protection against oil spills 

and for minimising operational oil discharges. The rules do not consider in any 

depth factors like structural design, production, fabrication, corrosion 

protection, access, ventilation and general safety. In the end it is the tanker 

owner, who has to face these questions and the associated, operational 

difficulties.

As a result of recent highly publicised accidents, the US has legislated to 

require all vessels trading to its ports to have double hulls. The effectiveness of 

such arrangements is currently being widely debated. As a response to this the 

International Maritime Organisation (IMO) introduced guidelines (1995) for 

the evaluation of alternatives to double-hull tankers (MARPOL 13F, 13G).

A numerical model for the probabilistic estimation of oil spillage from a tanker 

involved in an accident was developed and implemented in a computer 

program. Both collision and damage incidents were taken into consideration, 

when developing the model.

The work carried out here shows that the probabilistic approach represents a 

superior method when compared to the deterministic approach in predicting 

effectiveness of various arrangements in mitigating accidental oil spills. This
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method allows a value to be put on the expected outflow in a similar manner to 

that used in calculating the "Subdivision Index".

At the suggestion of other authors, the positioning of bulkheads was 

investigated longitudinally, transversally and horizontally. The "ideal" number 

o f these subdivisions was also investigated in this study, revealing a interesting 

set of conclusions.

It has been shown that horizontal subdivision can be particularly effective in 

reducing expected outflow and the new concepts in development based on this 

design should be fully explored using the probabilistic approach.

The main argument over double bottoms has been that they may be 

counterproductive because of the loss in buoyancy following a grounding and 

subsequent break-up causing much greater pollution than may otherwise of 

occurred. With horizontal subdivision this argument does not apply because 

there is no loss in buoyancy and cargo could be easily transferred to another 

vessel from the upper tanks using the ship's own pumps. On the other hand 

double-bottoms provide an inner space where an oil/water mixture can be 

trapped, reducing the oil outflow in case of accident and breaching of the inner 

hull.

This work provides a detailed analysis of probabilistic regulations for tanker 

subdivision and discusses how they can be used in design. It is argued that 

these regulations are superior to the deterministic regulations, as they represent 

a rational framework that is design independent, goal setting and non- 

prescriptive in nature and is thus unlikely to date with the passage of years. 

These regulations are therefore capable of accommodating different design 

solutions as they emerge. They also can be easily updated from time to time if 

new relevant statistical data become available.

Parametric studies about the influence of different internal subdivision 

characteristics and dimensions ratios on the environmental performance of
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tankers were carried out. Calculations of the expected oil outflow for tankers 

with different design concepts were undertaken for a series of collision and 

grounding scenarios. Both studies included a sensitivity analysis of both initial 

oil losses following impact, and oil retention in the double-hull space.

From the preceding analysis, the calculated expected oil outflow from mid­

deck tanker designs in collision, grounding and at all likely combined ratios of 

collision and grounding was, in general, lower than that from corresponding 

double-hull designs.

In relative terms bigger ships are safer to the environment, but in global terms 

they present a major threat once they carry much more oil. For the same level 

of protection, smaller ships must have relatively wider double sides than larger 

ships. The mid-deck and double-hull tankers presented always an 

overwhelming superiority to reduce the likelihood of an oil spill.

Wider wing tanks and deeper double bottoms tend to reduce the likelihood o f a 

spill, thereby increasing the number of collisions and groundings with no 

spillage. The effect of increasing double sides dimension is then determinant in 

the improvement of environmental performance of tankers. This is much more 

significant between 0% and 5% breadth of double sides. Greater internal 

subdivision also tends to reduce the quantity of oil spilled, but its effectiveness 

is only felt until a certain level.

The effectiveness of double-hull in preventing large spills is less pronounced 

than expected or desirable, raising some questions about their overall safety in 

a major accident, involving high energy impacts. However, mid-deck tankers 

keep the same behaviour, presenting the lowest indices o f the compared ship 

types.

The comparison of the different types, sizes and arrangements of tankers, 

showed clearly that the mid-deck tankers, in general, present always better 

performances than the IMO Reference Double-Hull designs; ships with
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longitudinal bulkheads in the cargo holds have highest indices being improved 

with narrower centre tanks. Most of double-hull designs with these 

characteristics have a better performance than the IMO Double-Hull designs. 

All the single-hull tankers have lower indices when compared with the IMO 

designs, showing clearly that they have to be retrofitted so that they can 

comply with the new regulations.

The exchange of ballast capacity from sides to bottom spaces was not 

conclusive in overall terms about the best solution to choose. It is clear that the 

probability that no cargo oil will be released into the environment in case of 

accident is increased when bottom ballast capacity is increased and side 

capacity reduced. But when evaluating the worst case spill scenarios and the 

design’s effectiveness in mitigating the amount of oil loss due to collisions and 

groundings it seems better to move ballast capacity from bottom to sides. Since 

the gain and losses in the three parameters are much equivalent, a deeper study 

is necessary to assure the best solution, if  there is one.

Another important conclusion is the fact that usually the mean outflow 

produced by a collision is two to three times higher than by a grounding 

incident.

Since the analysis confirmed that the expected oil outflow is dependent on the 

specific cargo tank arrangement of each design, there would appear to be scope 

for optimising tanker designs with a view to minimising the expected oil 

outflow.

The calculation procedure did not take into consideration any mitigation 

factors, except for the retention of oil in the ballast spaces of the double-hull 

configuration. Clearly, vacuum effects, rescue tanks, cargo transfer and other 

aspects of tanker design and operation could influence the expected oil 

outflow.
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The study showed that tidal changes have a significant effect on oil outflow, 

and should be evaluated, especially, for vessels trading in waters subject to 

large tidal variations. This information would prove helpful when developing 

spill response plans for such areas.

While a number of approximations were made in the methodology to prevent it 

from becoming unnecessarily complicated, further refinement is possible to 

reflect additional studies and tests. However, the oil outflow calculation 

methodology in the guidelines is quite complex, in part because of the 

necessary rigor required for a careful comparison of alternative tanker designs. 

For the purpose of comparing alternative designs this method is acceptable. 

Indeed, due to its importance, IMO maintained review authority in the 

regulations for considering alternatives. However, for routine regulatory design 

applications (as opposed to relatively infrequent applications for evaluating 

regulatory alternatives), a simplified methodology is preferable.

Double-hull tankers and other new designs like the mid-deck tanker, display 

very low ecological risks in case of damage incidents, when compared with 

conventional SBT tankers. But there exists a bandwidth of new ships reaching 

from excellent to still satisfactory performance, all of them fulfilling the actual 

requirements of MARPOL.

The work carried out is somehow based on the studies carried out by others 

through the last few years. There was a clear intention of improving and 

develop what was already done and there are many outcomes confirming the 

exit of it.

The study is not only a confirmation of the results and solutions already 

recognised by others, but also puts in evidence some questions that were 

forgot, like the importance of ballast tank arrangements in the oil entrapment 

process and the introduction of longitudinal members in double-bottom spaces. 

This was not possible to evaluate in all the other studies that were compared,
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once there was an initial assumption that all groundings produced a rupture 

from port to starboard, what is not true most of the times.

The study is also more consistent, once a large number of different tankers, 

both in size and internal configurations, were studied giving origin to a large 

set o f results that supported all the established conclusions. Some of the studies 

compared presented just a small set of ships analised.

6.1 Recommendations for Further Studies

One of the problems faced during the oil outflow assessment, from different 

ship designs, was the very large amount of data to be processed and the time 

consuming nature of the process. For these reasons the range of tankers 

analysed is just a subset of the total number initially prepared for the purpose. 

However, it was selected in a way that all desirable conclusions and 

evaluations could be performed, including both the evaluation of collision and 

grounding incidents. As a result of this aspects it is desirable that a simplified 

method is used, instead of the direct application of the probabilistic concept. 

This method, however has the advantage of being able to accommodate any 

internal subdivision arrangement in its mathematical model, what is not true for 

the simplified one.

There are many simplifying assumptions inherent in the calculation procedure 

for the probabilistic analysis of oil outflow from groundings and collisions. 

Research is required to assess the sensitivity of these assumptions to the final 

results, and to refine the methodology were appropriate. The probability of 

experiencing a collision or grounding was applied equally for all designs, 

although some variation is expected among different services. For instance, a 

FPSO or a VLCC used for offshore lightering will have a different probability 

of grounding as compared to a coastal tanker.
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The improvement of the mathematical model developed is another area were 

some future studies can be involved. As stated above, one solution is the 

development of a simplified method avoiding this way the iteration process 

involved in the application of the direct method. If the direct method is the 

chosen solution, than the accuracy of potential oil outflow calculations should 

be improved in a way that the error introduced by the incompatibility of 

iteration steps and internal subdivision is avoided. This can be accomplished by 

varying the step interval whenever that is required by the presence of an 

internal subdivision.

In respect to the input data, the probability density functions (for the extents of 

damage) are applied independently. In reality, some correlation is expected. 

For instance, it is not realistic to assume that the maximum longitudinal extent 

of damage (generally caused by raking damage) will occur simultaneously with 

the maximum transverse penetration (generally caused by a "t-bone" collision). 

There should be provided joint pdfs to improve the calculation method.

The probability density functions were developed from historical data of 

collisions and groundings, which involved primarily single-hull tankers. The 

influence of double-hull construction on damage extents needs to be 

understood.

Another important question raised during the study and, since a large amount 

of ships was study, there was the possibility o f studying different ratio 

parameters, their variability and their influence in the three merit measures 

used and proposed by IMO:

• L/B;

• L/D;

• B/D;
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• T/D.

The collection of this type of information was started in this study, being 

possible to present some ranges of values typical for different type of ships 

(Appendix D) and sizes. However, the systematic calculations and results were 

not concluded in time so that they could be included in the work.
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N o m e n c l a t u r e  a n d  Gl o ssa r y

N om enclature

Pi probability of flooding a single or several adjacent

compartments 

Pm total probability of ship survival

vj volume of a single or several adjacent compartments

Si probability of surviving casualty i

i -  ith casualty

bs width of lateral cargo tank

bc width o f central cargo tank

bi width of wing tank

hi transversal location of first longitudinal bulkhead in reference to

ship side

bsws w, = —
D

W i  w. =  —

B

b 2w? w, = —
2 B

P0 Probability of Zero Outflow

Om Mean Outflow Parameter

O e Extreme Outflow Parameter

MO Mean Outflow (m3)

EO Extreme Outflow (m3)

dm moulded draft amidships (mathematical average of moulded

drafts at forward and aft perpendiculars) 

da draft at aft perpendicular
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df draft at forward perpendicular

LOA length overall

LBP length between perpendiculars

Ls Subdivision length

Lc Cargo block length

T draft

A displacement

B maximum breadth of vessel measured amidships to moulded

line of frame

D moulded depth measured vertically from top of keel plate to top

of forward deck beam at side amidships

Acronyms and Glossary

13F Regulation 13F of Annex I o f MARPOL 73/78

13G Regulation 13G of Annex I of MARPOL 73/78

ABS American Bureau of Shipping

CBT dedicated clean ballast tanks

COW  crude oil washing system

DB double bottom

DnV Det Norske Veritas

DOT U.S. Department of Transportation

DS double sides

DWT deadweight ton

DWT displacement at assigned summer load waterline less the

light ship displacement.
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GRT

GT

HBL

IACS

ICLL

IGS

IMCO

IMO

INTERTANKO

ISM

MARAD

MARIENV’95

MARPOL 73 

MARPOL 73/78 

MEPC

NRC

OBO

OPA ’90 

PL/SBT

gross registered tonnage 

gross tons

hydrostatically balanced loading

International Association of Classification Societies 

International Convention on Load Lines 

inert gas system

IMO was originally called the Inter-Governmental 

Maritime Consultative Organization (IMCO). The name 

was changed in 1982

International Maritime Organisation; the United Nations 

agency responsible for maritime safety and 

environmental protection of the seas.

International Association of Independent Tanker Owners 

International Safety Management (code)

U.S. Maritime Administration

International Conference on Technologies for Marine 

Environment Preservation, Tokyo, Japan, September 24- 

29,1995

International Convention for the Prevention of Pollution 

from Ships, adopted in 1973 and amended in 1978 

Marine Environment Protection Committee of the 

International Maritime Organisation

National Research Council (U.S.)

oil-bulk-ore - Vessel designated for alternative carriage 

of oil, bulk cargoes, or ore.

Oil Pollution Act of 1990 (P.L. 101-380)

protectively located segregated-ballast tanks
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SOLAS

SNAME

SBT segregated-ballast tank designated for ballast only 

Society of Naval Architects and Marine Engineers 

International Convention on Safety of Life At Sea

STCW Convention for Standards for Training, Certification, and 

Watchkeeping

USCG

ULCC ultra large crude carrier, refers to vessels o f more than 

400,000DWT.

U.S. Coast Guard

VLCC very large crude carrier, refers to vessels of abou 

150,000 and 300,000 DWT

Cargo block is the portion of the ship extending from the forward boundary o f 

the forward-most cargo tank to the aft boundary of the aft-most cargo tank. 

OPA ’90 as well as the 1992 Amendments to Annex I MARPOL 73/78 require 

that all oil tanks within this space be segregated from the side and bottom shell.

Cargo tanks are all tanks arranged for the carriage of cargo oil. Unless noted 

otherwise, the term “cargo tanks” shall be assumed to include the slop tanks.

Crude oil washing (COW) system is a tank cleaning procedure that utilises 

crude oil as the washing medium. Crude oil is discharged through fixed tank 

washing machines, positioned so that oil is sprayed on internal tank bulkheads 

and structures to remove the oil residue, which would normally remain after 

cargo discharge. In this regard, crude oil washing is conducted in the same 

manner as water washing or “butterworthing”, except crude oil is used rather 

than seawater. The spray action of the crude oil and the subsequent rundown, 

place the oil residue remaining on the tank surfaces back into suspension, so 

that the combination of remaining cargo and residue can be collected and 

discharged ashore through installed piping. Due to the solvent action of the 

crude oil, the amount of oil and sludge recovered and pumped ashore is
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increased significantly over that which is removed by other washing 

techniques.

Deadweight tonnage is a measure of the weight o f cargo (plus water, fuel, and 

stores) that a vessel can carry.

Dedicated clean ballast tanks (CBT) are cargo tanks that are dedicated solely 

to the carriage of clean ballast and which no longer carry cargo. The associated 

pumps and piping systems for CBT are allowed to be common with the cargo 

piping systems and, therefore, require flushing each time prior to the handling 

o f clean ballast.

Existing vessel is a vessel, which has not been designed and constructed in 

accordance with the new regulations.

Gross tonnage is a measure of a vessel’s volume determined according to 

international convention.

Hydrostatically balanced loading means whereby the level of cargo (e.g., 

crude oil) is limited to ensure that the hydrostatic pressure at the tank (and 

ship) bottom is lower than the external sea pressure. Thus, if the tank is 

breached, seawater will flow in rather oil flowing out.

Inert gas system (IGS) is a system that supplies to the cargo tanks a gas of 

mixture of gases, which are so deficient in oxygen content that combustion 

cannot take place within the cargo tanks. The inert gas is either treated flue gas 

from a tank vessel’s boiler or treated gas from an inert gas generator. This gas 

is pumped into the cargo tanks to displace the air in the tank that has a 

combustible oxygen content.

Length overall (Loa) is the distance between the extreme points forward and 

aft measured parallel to the summer (or design) waterline. Forward the point 

may be on the raked stem or on a bulbous bow.
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Light ship -  displacement of vessel without cargo, oil fuel, lubricating oil, 

ballast water, fresh water and feedwater in tanks, consumable stores and any 

persons and their effects

New vessel is a vessel, which must be designed and constructed in accordance 

with the new regulations.

Protectively located segregated-ballast tanks (PL/SBT) are segregated 

ballast tanks as described in the foregoing that are located within the cargo tank 

length of a tank vessel, outboard o f or below the cargo tanks.

Segregated-ballast tanks (SBT) are ballast tanks that are permanently 

alocated to the carriage o f ballast water and are completely separated from 

cargo oil and fuel oil systems.

Slop tanks are provided for storage of dirty ballast residue and tank washings 

from the cargo tanks. Annex I o f MARPOL 73/78 requires that tankers be 

arranged with slop tanks.
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A p p e n d i x A

A p p e n d ix  A  - O il  O u t fl o w  Pa r a m e t e r s  (a  sh o r t  

d e s c r ip t io n )

Probability o f  Zero Outflow (Po). This parameter represents the probability that 

no cargo oil will be released into the environment. Since even small spills 

which occurr in environmentally sensitivity areas can have serious 

consequences, the significance of this number is intuitively obvious.

p0 = Y .p *

Mean Outflow (Om)- The sum of products of each damage case probability and 

the computed outflow for that damage case yields the mean (expected value) of 

oil outflow. This weighted mean is a good indication of the overall 

effectiveness of a particular design in limiting the oil outflow.

°M = T jP r vi

Effective Outflow (Oef). This is a weighted average of oil outflow in all damage 

cases resulting in cargo outflows.

^  P -v o  A  p ‘

where the summations are taken over all cases of flooding with outflow o f oil.

Hypothetical Outflow (Oh). This is an average outflow calculated disregarding 

cases with flooding of the fore and aft parts of the ship where there is no cargo 

oil.

Ok =
X~ P n  ~ P f
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A p p e n d i x A

p a -  probability of flooding the aft part of the ship that has no cargo oil

Pf-  probability of flooding the forward part of the ship that has no cargo oil

Median Outflow. This is the oil outflow corresponding to a cumulative 

probability of 0.50. This means that in 50% of all cases o f outflow, the outflow 

will not exceed the above value.

Significant (1/3) Outflow. This is a weighted average o f the upper 1/3 o f all 

spill scenarios with the largest outflow and represents the significant value of 

outflow.

Extreme Outflow (Oe). This value represents the “worst case” spill scenario 

and is a weighted average of the upper 10% of all spill casualties. It provides a 

characteristic value describing the behaviour of a vessel subjected to extreme 

damage
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A p p e n d i x  B

A p p en d ix  B - IMO R e f e r e n c e  D o u b l e - H u l l  

D e s ig n s
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A p p e n d i x B

A. P. FF. P.

tyii'-r-Pri,

1
i 2.75 m w * * *

I
i

L  22.2m ^r<- — -  —> < r 11m ^ < 11m > < 1 1 m > < 11m > 6 .8801^ ,

T~

■"T».* . i. r.< V.— « « « {  *

P P 5 Ballast

L = 95.00 m
B = 16.50 m
D = 8.30 m
T = 6.20 m
h DB = 1.10 m
w - 1.00 m

w

oniyy in tanks marked with *

Cargo

Cargo oil capacity at 98 % tank filling: 6 0661 m3 
Cargo oil density: 0.8225 V m3

Figure 106. - IMO Reference Double-Hull Design N.° 1 -  5 000 DWT.
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Ballast

L = 203.50 m

B = 36.00 m

D = 18.00 m

T = 13.50 m

h DB = 2.00 m
W = 2.00 m

Cargo oil capacity at
Cargo oil density

Cargo

0.855 V m3

Figure 107. - IMO Reference Double-Hull Design N .°2 -  60 000 DWT.
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A. P. F. P.

F.< • 
* * (* >  *

7.5m 33m 33m 33m 33m 33m 33m
- w

1
13m

L  45.5m r
i

l< ----------------------
L

— H

ETRjfl

u

>.y - E g

B

ly»-.ui5r5E5
Ballast

L = 264.00 m
B = 48.00 m
D = 24.00 m
T = 16.80 m
hDB = 2.32 m
W = 2.00 m

Cargo

Cargo oil capacity at 98 % tank filling: 175 439 m3 
Cargo oil density: 0..855 t/m 3

Figure 108. - IMO Reference Double-Hull Design N .(> 3 -  150 000 DWT.
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A. P. F. P.

X r
z

1̂ 1 U.UIII
i

^ 50.5m ^ ^ < 50m ^ ^  50m ^ < -g g P  > < ..S0m.> 15m.----

§

m Ballast

L = 318.00 m
B = 57.00 m
D = 31.00 m
T = 22.00 m
^DB = 2.00 m
w = 4.00 m
b = 18.00 m

Cargo

C argo oil capacity at 9 8  % tank filling: 330  9 9 4  m 3 
C argo oil density: 0 .855  t/m 3

F ig u r e  1 0 9 .  -  I M O  R e fe r e n c e  D o u b le - H u l l  D e s ig n  N ."  4  -  2 8 3  0 0 0  D W T .
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A p p e n d i x  C

A p p e n d ix  C -  Sh ip  D e sig n s  Eva l u a te d

Parametric Studies

CDW (t) 150000
Cargo Tank Arrangement 6x2
Wing Tank Width (m) 2.00
Double Bottom Ht (m) 2.32

LBP (m) 264.00
Beam molded (m) 48.00
Depth molded (m) 24.00
Full Draft molded (m) 16.80

98% Cargo Capacity (m3) 175.439
Cargo Oil density (t/m3) 0.855

Baseline Vessel 2

Ls (m) 235.00
Breadth (m) 41.80
Depth (m) 19.80
Draught (m) 13.79

Cargo Oil density (t/m T) 0.855
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A p p e n d i x  C

Design Types Comparison

Pre-MARPOL MARPOL Double-Hull (2m Side Tanks) Double-Hull (3.2m Side Tanks) Mid-Deck
CDW(t) 2 72000 272000 272000 272000 272000
Cargo Tank Arrangement 8 x 3 6 x 3 6 x 3 6 x 3 6 x 2
Wing Tank Width (m) 0 0 0 0.00 2 .00 3 .20 6 .00
Double Bottom Ht (m) 0.00 0.00 2 .50 3 .20 0 .00
Long. Bulkhead Location 16.80 11.50 16.30 17.50 29.00
from ship side

LBP (m) 320.00 320.00 320.00 320 .00 320.00
Beam molded (m) 53.60 56.00 55.60 58.00 58.00
Depth molded (m) 27.30 31.00 31.00 31.70 31.70
Full Draft molded (m) 21.20 21.00 21.30 20.80 20.70

Double-Hull Designs - HEC

Baseline Design Particulars

CDW (t) 5000 40000 60000 95000 150000 2 2 0 0 0 0 283 0 0 0 350000 450000
Cargo Tank A rra ngem ent 6 x 2 6 x 2 6 x 2 6 x 2 6 x 2 6 x 2 5 x 3 5 x 3 5 x 3
W ing Tank W idth (m) 1 .0 0 2 .0 0 2 .0 0 2 .0 0 2 .0 0 2 .5 0 4 .0 0 3 .5 0 3 .5 0
D oub le  B o ttom  H t (m) 1 .1 0 2 .0 0 2 .0 0 2 .0 0 2 .3 2 2 .5 0 2 .0 0 3 .5 0 3 .5 0

LBP (m) 9 5 . 0 0 1 7 0 .2 5 2 0 3 .5 0 2 3 5 .2 0 2 6 4 . 0 0 2 9 5 . 5 0 3 1 8 . 0 0 3 4 2 .0 0 3 6 5 . 0 0
Beam m o lded  (m) 1 6 .5 0 3 0 . 9 6 3 6 .0 0 4 1 . 8 0 4 8 . 0 0 5 3 . 5 0 5 7 . 0 0 6 3 . 0 0 6 8 . 0 0
D epth m o ld ed  (m) 8 .3 0 1 7 .0 3 18 .00 1 9 .8 0 2 4 . 0 0 2 7 . 5 0 3 1 .0 0 3 2 . 5 0 3 5 . 0 0
F u ll D ra ft m o lded  (m) 6 .2 0 1 1 .7 2 12 .2 0 13 .79 1 6 .8 0 1 9 .6 6 2 2 . 0 0 2 3 .0 0 2 5 .5 0

98% Cargo C apacity (m3) 5 . 8 4 8 4 6 . 7 8 4 7 0 .1 7 5 1 11 .111 1 7 5 .4 3 9 2 5 7 . 3 1 0 3 3 0 . 9 9 4 4 0 9 . 3 5 7 5 2 6 . 3 1 6
Cargo O il de n s ity  (t/m3) 0 . 8 5 5 0 .8 5 5 0 .8 5 5 0 . 8 5 5 0 . 8 5 5 0 . 8 5 5 0 . 8 5 5 0 . 8 5 5 0 . 8 5 5

Sizes and Hull Types of Tank Vessel Evaluated
Single-Hull Double-Hull Mid-Deck

35000-50000 DWT tankers 2 3 1
80000-100000 DWT tankers 2 4 1
135000-160000 DWT tankers 3 5 1
265000-30000 DWT tankers 3 3 1

Total 10 15 4
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A p p e n d i x  C

Cargo Deadw eight at 98% Filling (T)
5000 40000 60000 100000 150000 220000 283000 350000 450000

Wwt x Hdb 1.0 x 1.1 2.0 x 2.0 2.0 x 2.0 2.0 x 2.0 2.0 x 2.32 2.5 x 2.5 4.0 x 2.0 3.0 x 3.0 3.0 x 3.0
1.25 x 1.25 2.25 x 2.25 2.25x2.25 2.5 x 2.5 2.5 x 2.5 3.0 x 3.0 3.0 x 3.0 3.5 x 3.5 3.5 x 3.5

1.5 x 1.5 2.5 x 2.5 2.5 x 2.5 3.0 x 3.0 3.0 x 3.0 3.5 x 3.5 3.5 x 3.5 4.0 x 4.0 4.0 x 4.0
Cargo Tank Arrangement 5 x 2 5 x 2 5 x 2 5 x 2 5 x 2 6 x 2 5 x 3 5 x 3 5 x 3

6 x 2 6 x 2 6 x 2 6 x 2 6 x 2 7 x 2 6 x 3 6 x 3 6 x 3
7 x 2 7 x 2 7 x 2 7 x 2 7 x 2

5 x 3
5 x 3
6 x 3

5 x 4
5 x 5

5 x 4
5 x 5

5 x 4
5 x 5

No. of designs 9 9 9 9 12 12 12 12 12
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A p p e n d ix  E -  C o m p u t e r  Pr o g r a m

Program Flowchart (Side Damage)
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Program Flowchart (Bottom Damage)

L i  -  L i n e  !  2 .0 ) ,  L i n eD o  W h i l e  ( L i

B s  -  Y f n c  /  2 .0 ) ,  Y in .D o  W h i l e  ( Y i

A l l  C o m p a r t m e n t s

Is  t h i s  D a m a g e
D a m a g e  C i

C 're H te  O u t p u t  F i l e s

f o r  a  ( r i v e n  D a m a g e

S o r t  D a m a g e  O a s e s  in  A s c e n d i n g

R e a d  D a t a  f r o m  S h i p  D a t a b a s e  
I n i t i a l i s a t i o n  o f  S t e p  V a r i a b l e s

C a l c u l a t e  P r o b a b i l i t y  o f

o m p u r t m e n t  G r o u p i n g s ,  S u m  P r o b a b i l i t i e s  
i n d  O i l  O u t f l o w  f o r  t h i s  D a m a g e  C a s e

D o  W h i l e  ( Z i 0 .3  * D s  -  Z i n c  /  2 .0 ) ,  Z i n c

D o  W h i l e  (X i 0 .8  * L s  -  X in c  /  2 .0 ) ,  X in c

D o  W h i l e  ( Y Y i B s  -  Y Y in c  /  2 .0 ) ,  Y Y in c
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Illustration

ZI

Z1

XI

Y1

Y2
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Definition of Variables

NC -  Number o f compartments

Li -  longitudinal location of damage

Line -  increment for Li

Lprob -  probability o f longitudinal location

Xi -  longitudinal extent of damage

XI -  aft longitudinal boundary of damage

X2 - forward longitudinal boundary of damage

Xinc -  increment o f Xi

Xprob -  probability of longitudinal extent

Yi -  transverse location of damage

Y 1 -  outer transverse boundary of damage

Y2 -  inner transverse boundary of damage

Yinc -  increment of Yi

Yprob -  probability of transverse location

YYi -  transverse extent of damage

YYinc -  increment of Yyi

Y Y prob -  probability  o f  transverse extent
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Zi -  vertical location of damage

Z1 -  upper boundary of damage

Z2 -  lower boundary of damage

Zinc -  increment of Zi

Zprob -  probability o f vertical location

ZZi -  vertical extent o f damage

ZZinc -  increment o f ZZi

ZZprob -  probability of vertical extent
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A p p e n d ix  F -  O il  Sp il l  Pr e v e n t io n  -  

Im p r o v e m e n t s , In t e r n a t io n a l  C o n v e n t io n s  A n d  

Tr e a t ie s

I n t e r n a t i o n a l  C o n v e n t i o n s  a n d  T r e a t i e s

The following list contains the IMO Conventions that have been entered into 

force over the years. Details of each of these can be found in the IMO web 

page at www.imo.org

Maritime safety

• International Convention for the Safety of Life at Sea (SOLAS), 1960 and 

1974

• International Convention on Load Lines (LL), 1966

• Special Trade Passenger Ships Agreement (STP), 1971

• International Regulations for Preventing Collisions at Sea (COLREG), 

1972

• International Convention for Safe Containers (CSC), 1972

• Convention on the International Maritime Satellite Organization 

(INMARSAT), 1976

• The Torremolinos International Convention for the Safety of Fishing 

Vessels (SFV), 1977

• International Convention on Standards of Training, Certification and 

Watchkeeping for Seafarers (STCW), 1978
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• International Convention on Maritime Search and Rescue (SAR), 1979

• International Convention on Standards of Training, Certification and 

Watchkeeping for Fishing Vessel Personnel (STCW-F), 1995

M arine pollution

• International Convention for the Prevention of Pollution of the Sea by Oil 

(OILPOL), 1954

• Convention on the Prevention of Marine Pollution by Dumping of Wastes 

and Other Matter (LDC), 1972

• International Convention for the Prevention of Pollution from Ships, 1973, 

as modified by the Protocol of 1978 relating thereto (MARPOL 73/78)

• International Convention Relating to Intervention on the High Seas in 

Cases of Oil Pollution Casualties (INTERVENTION), 1969

• International Convention on Oil Pollution Preparedness, Response and Co­

operation (OPRC), 1990

Liability and compensation

• International Convention on Civil Liability for Oil Pollution Damage 

(CLC), 1969

• International Convention on the Establishment of an International Fund for 

Compensation for Oil Pollution Damage (FUND), 1971

• Convention relating to Civil Liability in the Field of Maritime Carriage of 

Nuclear Materials (NUCLEAR), 1971

• Athens Convention relating to the Carriage of Passengers and their 

Luggage by Sea (PAL), 1974
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• Convention on Limitation of Liability for Maritime Claims (LLMC), 1976

• International Convention on Liability and Compensation for Damage in 

connection with the Carriage of Hazardous and Noxious Substances by Sea 

(HNS), 1996

O ther subjects

• Convention on Facilitation of International Maritime Traffic (FAL), 1965

• International Convention on Tonnage Measurement of Ships (TONNAGE), 

1969

• Convention for the Suppression of Unlawful Acts Against the Safety of 

Maritime Navigation (SUA), 1988

• Protocol for the Suppression of Unlawful Acts Against the Safety o f Fixed 

Platforms Located on the Continental Shelf (SUAPROT), 1988

• International Convention on Salvage (SALVAGE), 1989
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Table 14.9 - Grouping o f the core improvement by intended outcomes (source: API,
1998)

Intended Outcomes
Reduce the number o f vessel casualties

§ Core Areas of Improvement
Financial Responsibility 
License & Merchant Mariners’ 

Documents 
Industry Best Practices 
Industry Research Initiatives 
Operational Measures for Vessels 
Port State Control
Port State Control Information Exchange 

(SCG PSIX)
Tanker Inspections
Vessel Traffic Service systems_________

Reduce the number of oil spills Double Hulls 
Financial Responsibility 
Industry Best Practices 
Industry Research Initiatives 
License & Merchant Mariners’ 

Documents 
Operational Measures for Vessels 
Overfill Devices 
Port State Control
Port State Control information exchange 

(USCG PSIX)
Tanker Inspections
Vessel and Facility Response Plans
Vessel Traffic Service systems_________

Reduce the quantity of oil spilled Double Hulls 
Financial Responsibility 
License & Merchant Mariners’

Documents 
Industry Best Practices 
Industry Research Initiatives 
Operational Measures for Vessels 
Port State Control information exchange 

(USCG PSIX)
Spill Response Equipment and Personnel 

Requirements 
Tanker Inspections 
Vessel and Facility Response Plans 
Vessel Traffic Service systems_________

Increase response effectiveness Financial Responsibility 
Spill Response Equipment 
Vessel and Facility Response Plans 
Vessel Traffic Service systems 
Industry Research Initiatives______


