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PGK phosphoglycerate kinase

PNS peripheral nervous system

PVDF polyvinylidene flouride membrane

RAP receptor-associated protein

ROD relative optical density

S.E.M standard error of the mean

SDS sodium dodecyl sulphate

TBARS thiobarbituric-reactive oxygen species

TBS Tris buffered saline

TLE temporal lobe epilepsy

VLDL very low-density lipoprotein
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Summary

Apolipoprotein E {APOE: gene, apoE: protein) is a lipid transport protein which has 

a well-characterised role in response to peripheral nerve injury. It has been 

demonstrated that the APOE s4 allele of the gene is a major risk factor for 

Alzheimer’s disease and is associated with a poor outcome after brain injury. The 

mechanisms underlying this are unclear but may involve a role for apoE in neuronal 

repair processes. This thesis investigated the role of apoE in repair processes after 

brain injury and determined whether this effect was APOE genotype dependent. In 

order to address this, models of synaptic plasticity {in vitro and in vivo) were 

validated. Using these models the role of apoE could be defined. The influence of 

APOE genotype was determined using two different lines (human promoter and 

GFAP promoter) of genetically modified mice {APOE knockout, human e3 and e4 

alleles). The main studies and results are as follows:

(1) Investigation of ApoE in Relation to Degeneration/ Regeneration Using a 

Mouse Model of Entorhinal Cortex Lesion

An in vivo model of hippocampal plasticity was characterised in C57BL/6J mice (the 

background strain of genetically modified mice used in this thesis). A lesion of the 

entorhinal cortex (ECL) was induced by stereotactic injection of ibotenic acid. 

Specific markers (synaptophysin, GAP-43 and MAP-2) were used to define the 

temporal profile of degeneration and regeneration post-ECL. In the molecular layers 

of the dentate gyrus, synaptic decline and fibre degeneration occurred up to 28 days 

post-ECL, but at 90 days post-ECL, synaptogenesis and fibre sprouting were 

observed. Alterations in apoE paralleled degeneration and regeneration post-ECL. 

ApoE was upregulated within the neuropil and reactive astrocytes at day 7 post-ECL, 

with a further increase in the neuropil of the outer molecular layer at day 90 post- 

ECL. This pattern of upregulation was similar to alterations observed for apoJ. There 

were minimal alterations in LRP (apoE receptor) with an increase in LRP 

immunoreactivity on reactive astrocytes at day 7 post-ECL. Degeneration products 

identified by silver staining were maximal 3 days post-ECL and absent by day 90 

post-ECL. This study demonstrated the utility of the entorhinal cortex lesion as a 

reproducible model of hippocampal plasticity. The results also supported a role for 

apoE in neuronal repair processes after brain injury.
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(2) Analysis of APOE Genotype Influence on CNS Plasticity in Transgenic Mice 

Expressing Human APOE s3 and s4 Alleles (under a human promoter 

sequence) Following Entorhinal Cortex Lesion

The entorhinal cortex was lesioned in APOE transgenic mice, which express human 

APOE alleles (s3, e4) in astrocytes and neurons. This study assessed APOE genotype 

influence on the long-term response to brain injury. Specific markers (synaptophysin, 

GAP-43 and MAP-2) were used to define the temporal profile of degeneration and 

regeneration post-ECL. Initially APOEs3 mice exhibited more extensive 

degeneration than s4 mice. However, with longer recovery the APOEsA mice 

demonstrated an impaired reparative capacity. There were no significant differences 

in the extent of apoE, apoJ and LRP immunoreactivity between APOEs3 and e4 

mice. There was also no significant difference in the deposition and clearance of 

degeneration products between APOEs3 and s4 mice. APOEsA mice displayed a 

deficit in MAP-2 immunoreactivity compared to APOEs3 mice that paralleled the 

deficit in reparative capacity. The dendrites in the molecular layer of APOEsA mice 

were disorganised and disarrayed. This study indicated that the s4 allele was 

associated with impaired neuronal repair. The underlying mechanism may involve 

apoE isoform differences in interactions with cytoskeletal proteins.

(3) Analysis of APOE Genotype Influence on CNS Plasticity in APOE Knockouts 

and Transgenic Mice Expressing Human APOEe3 and s4 Alleles (GFAP 

Promoter) Following Entorhinal Cortex Lesion

The entorhinal cortex was lesioned in APOE knockout, e3 and e4 transgenic mice 

(expressing human APOE in astrocytes) and the influence of APOE genotype on the 

long-term response to brain injury was assessed. In this study it was shown that mice 

expressing the APOEsA allele displayed impaired neuronal sprouting capabilities 

compared to APOE knockout and e3 mice, however there was no difference in 

synaptic density between APOE knockout, s3 and s4 mice at any time-point. 

Alterations in apoE and apoJ paralleled regeneration but there was no significant 

difference between APOEs3 and sA mice. Similarly, there were no significant 

differences in alterations in LRP, MAPs or extent of degeneration product clearance. 

This study indicated that neuronal repair mechanisms were impaired in APOEsA

XXIV



mice compared to APOE knockout and s3 mice. There were no significant 

differences in dendritic structure unlike that shown in the previous transgenic line 

and this suggests that the underlying mechanisms may not be directly related to 

cytoskeletal interactions in this particular line of transgenic (astrocytic expression).

(4) APOE Genotype Influence in the CNS of Aged APOE Knockout, e3 and e4 

Transgenic Mice (GFAP Promoter)

The ageing process is now thought of as a form of chronic brain injury and APOE 

genotype may influence age-related neurodegeneration. APOE genotype effect on 

ageing was analysed using specific markers (synaptophysin, GAP-43 and MAP-2) to 

define the temporal profile of synapse and fibre density in APOE knockout, s3 and 

e4, young (3 months) and aged (1 year) transgenic mice. There was no statistically 

significant difference in synaptic density between APOE knockout, s3 and s4 mice at 

any age. Fibre density was found to be significantly less in APOEs4 mice compared 

to APOE knockout and e3 transgenic mice at 3 months, but was not significantly 

different at 1 year of age. This was paralleled by a reduction in IML width in APOE 

e4 mice by 1 year, compared to APOE knockout and s3 transgenic mice. ApoE 

immunoreactivity was similar between the genotypes at 3 months of age. At 1 year, 

apoE neuropil immunoreactivity was increased, but to a greater extent in APOE s4 

mice. There were no significant differences in MAP-2 and apoJ immunoreactivity 

between the genotypes at any time. This study has shown that APOE genotype has no 

demonstrable influence on ageing in the brain of these transgenic mice.

(5) An In Vitro Organotypic Hippocampal Slice Model to Study APOE Genotype 

Influence on Neuronal Plasticity and Analysis of Herpes Simplex Virus as a 

Vector for APOE Delivery

(a) Characterisation of plasticity responses in hippocampal slices derived from 

C57BL/6J mice

An in vitro organotypic hippocampal slice culture method was characterised in 

C57BL/6J slices. The slices were cultured for a period of 7 or 18 days and the 

synaptic and sprouting response was assessed using specific markers (synaptophysin 

and GAP-43). At day 18 in vitro, synaptophysin and GAP-43 immunoreactivity 

increased within the molecular layers of the dentate gyrus compared with
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immunoreactivity in 7 day slices. ApoE immunoreactivity was increased within the 

neuropil of the hippocampal molecular layers at day 7 in vitro, but was reduced by 

day 18 in vitro. This study validated the use of in vitro hippocampal mouse slices to 

study apoE and APOE genotype in neuronal plasticity.

(b) Influence of APOE genotype on neuronal plasticity in vitro

Hippocampal slices were cultured from male APOE knockout, s3 and e4 transgenic 

mice and maintained in culture for a period of 7 or 18 days. The synaptic and 

sprouting response was assessed using specific markers (synaptophysin and GAP- 

43). Synaptophysin and GAP-43 immunoreactivity was similar in all slices cultured 

for 7 days. At day 18 in vitro, sprouting and reactive synaptogenesis had occurred in 

all slices, marked by an increase in GAP-43 and synaptophysin immunoreactivity. 

However, the sprouting response was significantly poorer in APOEs4 slices 

compared to APOE knockout and s3 slices. No apoE immunoreactivity was present 

in APOE knockout slices. ApoE immunoreactivity was elevated in APOEs3 and e4 

slices within the neuropil and reactive astrocytes at day 7. However, there was 

significantly greater apoE immunoreactivity in APOEs 3 slices. ApoE 

immunoreactivity was reduced at day 18 in vitro but there was no difference between 

genotypes. This study supported the previous in vivo study and indicated the s4 allele 

is associated with impaired neuronal repair mechanisms.

(c) Herpes simplex virus as a vector for gene delivery

The previous studies in this thesis indicate that APOE genotype influences repair 

processes, the e4 allele being associated with a poor capacity for repair. The next aim 

was to determine whether, the poor response associated with the e4 allele could be 

ameliorated by increasing the levels of apoE or changing the genotype present. This 

study examined the uptake and expression of a modified Herpes Simplex viral vector 

in the organotypic hippocampal slice preparation. The Herpes Simplex virus mutant 

employed in this study is non-virulent due to lack of the ICP34.5 protein. The virus 

was applied directly to the slice as a single dose on day 1 in vitro at a concentration 

of 105 or 106 virus particles with a Green Fluorescent Protein (GFP) reporter gene. 

The virus, was found to be expressed within the molecular layer of the dentate gyrus 

and was cellular in nature. Expression was sustained until day 18 in vitro. Data from
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this study suggest that this Herpes Simplex virus may be useful as a vector for APOE 

gene delivery in this in vitro model. This is an area for future development.

(6) APOE Genotype Influence on Apolipoprotein E Interaction with 

Microtubules

Although previous studies indicated that there were apoE isoform differences in 

neuronal repair i.e. differences in MAP-2 immunoreactivity, the mechanisms 

underlying this were unclear. In this study, the influence of apoE E3 and E4 on 

microtubules was assessed. Tubulin immunohistochemistry was performed on 

sections from 0 day control and 90 day survival mice, in the two different lines of 

APOE transgenic mice (human and GFAP promoter). There was a deficit in tubulin 

immunoreactivity in the molecular layers of APOEs4 mice in both lines of mice, 

indicative of an effect on microtubule proteins. The next aim was to determine the 

effect of binding of apoE E3 and E4 to microtubules and their effect on microtubule 

structure. ApoE E3 and E4 protein was isolated from the HDL fraction of human 

plasma, donated by s3 and s4 homozygotes and used to assess isoform binding to 

microtubules. At apoE concentrations of 5pg/ml and 20pg/ml it was found that the 

apoE E4 isoform was more greatly associated with microtubules compared with 

apoE E3 protein. Additionally, microtubules incubated with apoE E4 protein were 

irregularly shaped compared to those incubated with apoE E3 protein. These data 

suggests that although apoE E4 was more greatly associated with microtubules, it did 

have a detrimental effect on microtubule structure.

These studies illustrate the utility of animal models to study apoE and APOE 

genotype influence in long-term outcome after brain injury. Together, the results of 

these studies indicate that the APOE s4 allele is associated with impaired neuronal 

repair processes and that differences in cytoskeletal interactions may underlie this.
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Chapter I 

Introduction
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1.1 Brain Repair

The capacity of the human brain to repair itself is truly remarkable. The degree of 

plasticity within the human brain following brain injury has been shown to be 

extensive where neuronal cells are capable of sprouting in an attempt at repair. 

Exploitation of this endogenous capability of the brain to repair itself could have 

significant implications for recovery from neurodegenerative disease and brain injury. 

In recent years much speculation has been made on the usefulness of growth factors 

and other such compounds in the treatment of neurodegenerative disorders such as 

Alzheimer’s disease (AD). However the ability of each individual brain to repair may 

be genetically linked and may depend on several factors. One such factor, 

apolipoprotein E, is discussed in this thesis and its function in brain plasticity 

elucidated.

1.2 Apolipoproteins

Apolipoproteins were first identified in the 1970’s as constituents of lipid complexes 

in plasma including apoAI, apoAII, apoAIV, apoCI, apoCII, apoCIII, apoB, apoD, 

apoE and apoJ (Boyles et al, 1985). These proteins are produced by the liver and 

secreted into the bloodstream. In more recent years novel members of this family have 

been identified but are present at very low concentrations within plasma (Beffert et al,

1998). All members of this protein family have been found to be associated with most 

classes of lipid, including very low density lipoprotein (VLDL), low density 

lipoprotein (LDL), high density lipoprotein (HDL) and cholesterol. This led to the 

discovery that the primary function of these proteins within plasma was to direct lipid 

metabolism (Mahley et al, 1988). In the central nervous system (CNS), the presence 

of apolipoproteins has now been identified within many cell types in the brain and also 

within cerebrospinal fluid (CSF).
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1.2.1 Apolipoprotein E

A subset o f apolipoproteins are expressed in the CNS and apolipoprotein E (apoE) is 

the most abundantly expressed apolipoprotein. ApoE was first identified in 1973 as a 

plasma constituent and it was here that its function in lipid metabolism and cholesterol 

homeostasis was first determined (Mahley et al, 1988). ApoE also performs lipid 

metabolism duties within the CNS and in recent years analysis o f the function o f apoE 

(apoE denotes protein, APOE denotes gene) within the nervous system, has revealed 

that this protein may be involved in more complex functions within the CNS. ApoE is 

present in human plasma and CSF as an integral component o f lipoproteins (VLDL 

and HDL)(Danik and Poirier et al, 1998). Lipoprotein particles consist o f  a neutral 

lipid core mainly composed o f triglycerides and cholesterol surrounded by polar 

molecules that stabilise the complex. The polar outer coat is composed o f 

phospholipids and apolipoproteins. The apolipoproteins protrude from the surface

(Figure 1.1) and direct transport and binding. CNS apoE is structurally different to

peripheral apoE in that it is differentially sialylated. ApoE is capable o f interacting 

with a host o f other brain proteins including amyloid protein and several microtubule 

associated proteins (Strittmatter et al, 1994) and it also interacts with a number of 

receptors, mainly o f the endocytic class (Beflfert et al, 1998). In human brain, it is 

widely accepted that apoE is synthesised within most subtypes o f glial cell including 

astrocytes, microglia and oligodendrocytes (Boyles et al, 1985; Mahley et al, 1987, 

Stone et al, 1995). Endogenous synthesis o f apoE within neurons has been shown 

using in situ hybridisation (Xu et al, 1999). In the peripheral nervous system apoE is 

localised mainly to Schwann cells.

C P ApoE

Cholesterol

Q  Phospholipid

components o f a lipoprotein particleFigure 1.1 Diagram illustrating the basic
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1.2.2 ApoE structure and genetic polymorphisms

Human apoE exists as a single glycosylated 34 kDa polypeptide containing 299 amino 

acids and is encoded by a four exon gene on the long arm o f  chromosome 19 (Poirier 

et al, 1995). Biochemical studies have revealed apoE contains two folded structural 

domains, an amino terminal and a carboxyl terminal. The protein contains five a  

helices where four o f  these are arranged into a four helix bundle (Weisgraber and 

Dong, 1996) (Figure 1.2). The amino terminal contains the regions that mediate 

receptor binding and the carboxyl terminal is involved in ligand binding.

Figure 1.2 Diagram 

illustrating the structure 

o f  apoE. ApoE is 

composed o f  5 helices, 

four o f  which are 

arranged into a bundle 

(Weisgraber et al, 1997)

Three major alleles o f  APOE exist within the human population at varying 

frequencies, e2(8%) e3(77%) and s4(15% ), as a result o f multiple alleles at a single 

genetic locus and differ by a single amino acid substitution at positions 112 and 158 

within the protein. The E2 isoform o f  the protein contains two cysteine residues at 

positions 112 and 158 o f  the amino acid sequence. The E3 isoform contains cysteine 

at position 112 and arginine at position 158, whereas the E4 isoform contains arginine 

residues at both positions (Weisgraber et al, 1981). The E2 and E3 iso forms o f  the 

protein exist as dimers under normal physiological conditions, whereas E4 exists in a 

monomeric state. This genetic polymorphism gives rise to three common homozygous 

phenotypes (e2/2, s3/3 and s4/4) and three heterozygous phenotypes (s2/3, s3/4 and 

c2/4), (Roses et al, 1997) which arise at varying frequencies within the general 

population. (Table 1)

D o m ain
I n te ra c t io n

NH2-te rm irta l D o m a in  C 0 2H -term in a l D o m a in
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Genotype % within the General 

Population

&3/s3 60

s3/s4 21

&3/e2 11

e2/s4 5

82/b2 <0.5

84/s4 2

Table 1. Table illustrating the % o f the general population expressing each o f the six 

APOE genotypes (Western hemisphere).

Molecular analysis o f the gene highlighted that the s2 and e3 genotypes arose from 

the ancestral e4 allele and that the e3 allele increased in frequency (Fullerton et al, 

2000). This divergence o f genotypes occurred within the last 200,000 years. 

Statistically significant differences in allele frequency across populations o f the world 

have been identified (Davignon et al, 1988). A vast array o f population based studies 

have been carried out and the prevalence o f each APOE genotype established for each 

population. In general, the s3 allele is the most common studied to date in all 

populations ranging in frequency from 0.536 to 0.911 (Kamboh et al, 1995). The s2 

allele is the least common. The s4 allele frequency ranges from 0.052 in Sardinians to 

0.407 in Pygmies (Zekraoui et al, 1997) within the world’s populations and is 

negatively correlated with e3 allele frequencies in African and European populations 

(Corbo and Scacchi, 1999). The APOEE3 allele is now increasing in frequency within 

Europe with a relative decline in s4 allele frequency. Allelic heterogeneity is absent in 

all other animal species studied to date with the exception o f  primates.
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1.2.3 Apolipoprotein J

Another member of the apolipoprotein family, apoJ, is present within the CNS. This 

apolipoprotein is thought to perform similar plasticity promoting effects in the CNS to 

apoE and its expression after injury is also considered in this thesis. Apolipoprotein J 

(apoJ) is a 499 amino acid, 70kDa protein associated with high density lipoporteins 

(HDL) (Pasinetti et al 1994; Shanmugaratnam et al, 1997; Calero et al, 1999). 

Structurally apoJ is comprised of two disulfide-linked subunits, apoJa and p, and is 

also known by a range of other names including clusterin and sulphated glycoprotein- 

2 (De Silva et al, 1990; Stuart et al, 1992). The gene for apoJ is located on 

chromosome 8 in the human genome and the sequence has been highly conserved 

throughout evolution (Jordan-Starck et al, 1992). ApoJ has a common two allele 

polymorphism designated APOJ*l and APOJ*2 with frequencies of 0.76 and 0.24 

respectively, however these polymorphisms are only present in Black African and 

Black American populations and is monomorphic in all other populations (Kamboh et 

al, 1991). The gene for this protein was first identified in reproductive organs as a 

gene involved with apoptosis (Michel et al, 1992). More recently the role of apoJ 

within the CNS has been investigated. ApoJ synthesis is similar to apoE in the CNS, 

in that it is expressed in most classes of glial cell and neuronal cells (Danik et al, 1993; 

Pasinetti et al, 1994). Under normal conditions apoJ is widely distributed throughout 

the human brain and plays a role in lipid transport and neurotransmitter secretion. 

ApoJ also protects membrane integrity by closely associating with the membrane 

surface and is believed to perform extracellularly what heat-shock protein performs 

intracellularly in protecting membrane proteins from protease attack while folding 

occurs (Jordan-Starck et al 1992). ApoJ has been found to bind amyloid avidly in 

vivo and in vitro (Strittmatter et al, 1993; Zlokovic et al, 1994) and is believed to aid 

in cross blood-brain barrier transport of soluble amyloid.
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1.3 Apolipoprotein Receptors in the CNS

1.3.1 Receptor classification

ApoE has a wide and diverse set of functions within the CNS, however, equally 

important are the receptors which mediate its effects including the entry of lipid bound 

apolipoproteins into cells requiring the material they are chaperoning. There is a 

whole family of receptors for apolipoproteins in the peripheral system yet only a 

subset are expressed within the brain. In addition to the low density receptor related 

protein (LRP), the main receptor for apoE in the brain, several other receptors 

including the low density lipoprotein receptor (LDL), the very low density lipoprotein 

receptor (VLDL), gp330/megalin receptor (main apoJ receptor) and the 

apolipoprotein E receptor 2 are also expressed (Beffert et al, 1998). These receptors 

all share structural homology and their functional behaviour is similar in that they are 

all receptors of an endocytic class (Brown et al, 1986; Stockinger et al, 1998). 

Receptors of the LDL receptor family can be divided according to their extracellular 

domains. The LDL and VLDL are low molecular weight receptors. In contrast, the 

high molecular weight receptors such as LRP and gp330 are composed of a cluster of 

ligand binding repeats, followed by homology domains. The extracellular parts of 

these receptors appear as multiple copies of the LDL receptor. The high molecular 

weight receptors are thought to be older in evolutionary terms (Willnow et al, 1999).

1.3.2 Low density lipoprotein receptor-related protein (LRP)

In the brain LRP is expressed in neurons (dendro somatic localisation) and reactive 

astrocytes, with the most dense staining noted on neurons of the hippocampus 

(Rebeck et al, 1993, Bu et al, 1994). The VLDL receptor is localised to microglia and 

neurons as identified in AD brain and control autopsy tissue (Christie et al, 1997) and 

the LDLr has a diffuse neuropil stain (mainly present on astrocyte bodies and 

processes)(Lopes et al, 1994; Page et al, 1998; Beffert et al, 1998) with a particularly 

dense labelling of white matter (Pitas et al, 1987; Rebeck et al, 1993). There is a vast 

array of data on each receptor type and its functions, however in recent years the 

association between apoE and the LRP receptor suggest the receptor itself may be 

implicated in Alzheimer’s disease (AD). The LRP receptor is the largest endocytic
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endocytic receptor identified to date at approximately 600 kDa, with a 515kDa 

extracellular domain and an 85kDa membrane anchor (Willnow et al, 1999).

1.3.2.1 Ligand binding o f  the lipoprotein receptor related protein (LRP)

On binding with the apoE-lipid complex, the LRP receptor is internalised in coated 

pits and transported to lysosomes, where the ligand is dissociated from the receptor 

(Herz et al, 1990; Rebeck et al, 1993; Stockinger et al, 1998; Cooper and Howell,

1999). In this way the receptor and indeed apoE may be recycled to the cell surface 

for reutilisation, whilst successfully delivering lipid and cholesterol to the cell. The 

destiny of apoE once internalised, is the subject of some debate and will be discussed 

later in connection with endocytosis. This receptor is particularly remarkable because 

of its ability to bind multiple ligands including amyloid, amyloid precursor protein 

(APP) and several viruses (25 ligands in total to date) (Strickland et al, 1995; 

Kuonnas et al, 1995). Therefore, it has been found to be involved in a plethora of 

processes, which include direction of lipid metabolism within the CNS, developmental 

processes and recycling of lipid and cholesterol for the construction of cellular 

elements in neurite outgrowth.

1.3.2.2 Heparin sulphate proteoglycan

The LRP receptor is generally closely associated with a protein called heparin 

sulphate proteoglycan (HSPG). Combined the LRP and HSPG mediate the effects of 

apoE in the CNS due to their astrocytic and neuronal localisation. The HSPG 

functions in the intial capture of lipid particles from the environment, however it is 

also heavily involved in the uptake process (Mahley and Ji, 1999). The HSPG is 

capable of functioning as a receptor by itself and can bind a similar range of ligands to 

the LRP itself (Ji et al, 1998). Also associated with this receptor is the aptly named, 

Receptor Associated Protein (RAP) which interacts closely with the binding domain 

of the receptor to regulate binding ligands (Willnow et al, 1996; Umans et al, 1999). 

In several cases, this protein has been shown to competitively inhibit the binding of 

many ligands (Williams et al, 1997). RAP controls the folding of the LRP protein 

soon after it is manufactured by the endoplasmic reticulum. It associates with the 

newly synthesized protein to prevent premature ligand association (Willnow, 1998).
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1.3.3 Receptors for apoJ in the brain

ApoJ uptake is mediated primarily by a 600 kDa protein (megalin). This was first 

identified in Heymann nephritis which is a rat model of glomerulonephritis (Zheng et 

al, 1994; Kuonnas et al, 1996). This receptor was found to be concentrated within 

coated pits and therefore it also functions via endocytosis. The gp330 receptor has 

multiple ligands including lipoproteins, blood clotting factors and plasminogen, among 

others, and like the LRP receptor, gp330 associates with RAP protein intracellularly 

(Zheng et al, 1994; Panckhurst et al, 1998; Niemeier et al, 1999). Very few studies 

have focused on this receptor past basic localisation studies (Kuonnas et al, 1994) and 

little is known at present of its endogenous function. However, its function in early 

development is evidently crucial as gp330 knockout mice die perinatally and exhibit 

defective forebrain development (Willnow et al, 1996). Gp330 is expressed in 

abundance in renal tissues, retina, thyroid, inner ear and also within the ependymal 

cells and choroid plexus of the brain (Beffert et al, 1998). No study has clearly 

oulined which cell types in the brain actually express the gp330 receptor and a study 

by Page et al (1998) failed to detect mRNA for this receptor anywhere within the 

rodent brain.

9



1.4 Alzheimer’s Disease

1.4.1 History and statistics

Alzheimer’s disease (AD) was first discovered in 1906 by Bavarian neurologist Alois 

Alzheimer who described the symptoms in a female patient known as Auguste D. He 

observed that the patient exhibited many of the standard features of senile dementia 

but that there were some unusual developments. He witnessed that the disease usually 

manifested itself in the seventh or eighth decade of life, however it also very often 

appeared earlier in life. Patients suffered from cognitive decline, altered behaviour and 

memory impairments in the early stages but later they also displayed motor deficits 

that were similar to those observed in Parkinson’s disease. No further progress was 

made in the field until the 1960s when Michael Kidd and Robert Terry described the 

structural neuronal changes associated with senile plaque formation and 

neurofibrillary tangles. In the 1970s it was discovered that a certain population of 

neurons within the brain were selectively vulnerable to degeneration in this disease 

and were the cholinergic neurons of forebrain nuclei. Now it is realised that 

cholinergic neurons are not solely affected and that there is widespread cell death 

throughout the brain regardless of neurotransmitter expression in AD. Only in the last 

20 years, Glenners group was able to clone and sequence the protein present within 

senile plaques and this protein is now known as p-amyloid. Extensive work has since 

been carried out on this protein and its various isoforms and its function in the normal 

and diseased state established. Production and deposition of p-amyloid is believed to 

be central to the pathogenesis of AD. P-amyloid protein (and associated processing 

proteins i.e. presenilins) is now a target for drug development in therapies for AD. 

Senile plaques in the brains of AD sufferers are composed of p-amyloid, a protein 

cleaved from the amyloid precursor protein.

AD is the most common neurodegenerative disorder, affecting approximately 10% of 

individuals under the age of 65 and a total of up to 40% of individuals under the age 

of 80 years (Gelman et a/,1989). As a whole it affects 2.5% of the worlds population. 

Approximately 20% of patients in psychiatric institutions are suffering from AD and
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this combined with the care of elderly individuals diagnosed with the disease, is an 

important economic concern for governments around the world.

AD is classified into two clinical categories, familial and sporadic late-onset disease. 

Familial AD is inherited through the parent lineage (Selkoe, 2001) and sporadic arises 

randomly within the human population, although it has now become clear that this 

form may too have a genetic component (Saunders et al, 1993). Early AD dementia 

manifests itself clinically as small, momentary lapses in memory. This progresses to 

large voids in memory where sentences become difficult to complete because the 

original reason for the sentence being constructed is lost. In the final stages of the 

disease the individual is unable to perform simple everyday tasks and autonomic 

regulation fails (Soininen and Reikkinen, 1996). Cognitive abilties in AD patients are 

now tracked clinically worldwide using mental score testing of various forms. 

Definitive diagnosis of this disease can only be made microscopically on postmortem 

analysis.

1.4.2 Neuropathology of Alzheimer’s disease

The neuropathological features of AD are well characterised and consist of essentially 

three major components: brain atrophy (neurodegeneration), amyloid plaque 

formation and neurofibrillary tangles.

1,4,2.1 Brain atrophy

Alzheimer’s disease pathology displays a characteristic extensive synaptic decline and 

neuronal cell death in defined regions of the cortex (entorhinal cortex) and limbic 

system (hippocampus) which can strikingly lead to a loss of up to 50% of the brains 

total mass (Hyman et al, 1986; Braak and Braak, 1991; Masliah et al, 1993). Cellular 

loss ultimately leads to atrophy within defined regions of the brain, notably the cortex 

and limbic structures. Associated with this is an increase in ventricular volume with a 

parallel increase in cerebrospinal fluid (CSF) volume (Graham and Hume, 1990). Sulci 

become more exaggerated due to loss of tissue mass of the cortical gyri. Recent 

studies have shown that AD neurodegeneration changes originate in layer II of the 

entorhinal cortex spreading to the hippocampus via the perforant pathway (Braak and 

Braak, 1991; Masliah et al, 1994; Gomez-Isla et al, 1996). This then leads to
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complete disconnection of the perforant pathway and continued degeneration of intra 

and extra-hippocampal pathways eventually leads to the isolation of the hippocampus 

from the rest of the brain. This explains the associated loss of cognitive functions 

(Hyman et al, 1986). In the present day, non-invasive imaging technology such as 

MRI (magnetic resonance imaging) and CT scanning (computerised tomography) are 

used to measure brain atrophy and ventricular enlargement, and magnetic resonance 

imaging now has the resolution to detect single senile plaques in any region of the 

brain. Neurodegeneration combined with the accumulation of intra and extracellular 

amyloid plaque deposits, formation of neurofibrillary tangles (Terry and Wisniewski, 

1970; Arriagada et al, 1992; Yamaguchi et al, 1988) and a decrease in specific 

transmitters (Perry et al, 1977) creates a profound effect on the brain manifesting 

itself classically, as chronic memory loss and progressive cognitive decline (Hyman et 

a l  1986).

1.4.2.2 Amyloid plaques

Amyloid plaques are located extracellulary within most regions of the AD brain but 

are greater in density within the limbic system and association cortex (Weisgraber et 

a l  1994; Selkoe, 2001). Little was known about senile plaques beyond the original 

identification histologically, almost one hundred years ago, until the 1980’s. Glenner 

(1984) dissected out plaques from vascular tissue, cloned and sequenced the protein. 

This then led to the cloning of amyloid precursor protein (APP). Senile plaques are 

composed of amyloid protein. Amyloid p protein (Ap) exists in varying amino acid 

lengths (Ap 1-40/ Ap 1-42/43) (Borchelt et al, 1996). Amyloid p protein is a 

cleavage product of the larger amyloid precursor protein (APP). This protein is an 

axonally transported, transmembrane cell surface glycoprotein that performs a 

putative role in maintaining axon terminals and is synthesised by most cell types 

(Mattson et al, 1993; Mucke et al, 1994). Under normal physiological conditions APP 

is cleaved to produce soluble forms of p amyloid protein intracellularly which are then 

released extracellularly. Insoluble isoforms of the amyloid protein aggregate into 

plaques that cannot be degraded or released extracellularly. The processing of APP 

into Ap protein occurs in the brain under normal physiological conditions. At present 

it is unclear how senile plaques are formed in AD although common hypotheses at
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present are that plaques are due to overproduction of Ap or reduced metabolism and 

clearance from neurons.

1,4,2,3 Neurofibrillary tangles

Neuronal structure is supported by the cytoskeleton comprised of a network of 

microtubules, neurofilaments and intermediate filaments. Under normal physiological 

conditions these elements maintain cellular structure and aid in vital cellular 

mechanisms such as axonal transport. Neurofibrillary tangles are a common pathology 

found in AD and are present within the neuronal cytoplasm within brain regions 

typically affected by AD i.e. limbic system and entorhinal cortex. How tangles are 

formed is the subject of much debate, however the present prevailing hypothesis is 

that they are formed by the hyperphosphorylation of the microtubule associated 

protein tau by protein kinases. Tau is a protein involved in microtubule assembly and 

stabilization. Hyperphosphorylation of this protein results in tau protein adopting a 

paired helical filament (PHF) formation intracellularly (Terry and Wisnieski, 1970; 

Masliah et al, 1989; Arriagada et al, 1992).
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1.4.3 Genes and Alzheimer’s Disease

It became apparent that AD could be passed on genetically through the parent lineage 

and several groups became heavily involved in scanning the human genome in search 

of genes involved in the development of AD. A host of gene sites were found to be 

associated with AD including genes on chromosome 14, 1 and 21 (Selkoe, 2001). 

With the advancement of sequencing and cloning technology, these sites were found 

to encode presenilin 1, presenilin 2 and amyloid precursor protein. Mutations on 

chromosome 21 encoding APP can result in abnormal cleavage sites in the APP 

structure (Clarke and Goate, 1993). This ultimately leads to the formation of a form 

of amyloid (Ap 1-42/43) which forms aggregates more readily than the form produced 

in normal brain. Amyloid protein 1 -42/43 is toxic to neurons and is likely to aid in the 

generation of free radicals and aggregation finally leads to upsets in ionic homeostasis 

(Shoji et al, 1992; Games et al, 1995). Many APP mutations can lower the age of 

onset to approximately 30 years of age (Roses et al, 1997). Subsequently, mutations 

in genes encoding presenilin 1 and 2 were identified. These mutations, similar to the 

mutations in APP are causative for AD. There is now evidence to indicate that 

mutations in presenilins are associated with increased production of Ap 1-42/43. 

Although it had been identified that mutations in genes encoding APP, presenilin land 

2 were causative for familial AD, this still did not account for a considerable number 

of familial AD cases and indicated that other genes may be involved. This led to the 

linkage to chromosome 19, and a gene encoding APOE.
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1.4.4 APOE Genotype and Alzheimer’s Disease

1.4.4.1 APOE genotype and risk o f  AD

A study of autopsy tissue from patients suffering from sporadic late-onset AD 

highlighted an over-representation of the APOEsA allele in these subjects (Saunders et 

al, 1993), where subjects possessing an s4 allele were not only more likely to develop 

AD but had an earlier age of onset. An increasing body of evidence has highlighted 

the APOEsA allele as a major risk factor for sporadic and familial late-onset AD, 

associated with a marked over-representation of the APOEsA allele in the AD 

population (0.52) compared with a control population (0.14) (Roses et al, 1995). 

Approximately 64% of sporadic and 80% of familial late-onset AD possess the s4 

genotype compared with 30% of controls (Corder et al, 1993; Roses et al, 1996). 

This allele not only increases the susceptibility but also lowers the age of onset by 6-8 

years per inherited allele, in an allele dose dependent manner. Multiple population- 

based studies have confirmed these findings.

1.4.4.2 APOE genotype and amyloid

Amyloid plaques and neurofibrillary tangles are the classic neuropathological 

hallmarks of AD. The interaction of apoE with amyloid and microtubule associated 

proteins may be central to the development of these phenomenon and may occur in an 

isoform specific manner. In normal individuals, the binding of apoE to amyloid is 

thought to aid its proteolytic degradation and improve its solubility, however in AD a 

breakdown in this process is thought to occur (Russo et al, 1998). Ap 1-42/43 levels 

are increased in the brain in AD in an isoform specific manner such that levels are 

greatest in individuals within an APOEsA genotype (Masliah et al, 1998). Increased 

plaque density has been shown to occur in the cortex and hippocampus of subjects 

with AD carrying one or two copies of the c4 allele compared to s3 (Schmechel et al, 

1993; Rebeck et al, 1993; Hyman et al, 1995; Beffert et al, 1996). Amyloid plaques 

are strongly apoE immunoreactive (Kida et al, 1995; Sheng et al, 1996). In vitro data 

has shown that apoE E4 (delipidated) binds amyloid protein more readily, whereas 

apoE E3/E2 interacts less avidly and forms a less stable complex (Strittmatter et al, 

1993). Other groups dispute this finding (Aleshkov et al, 1997). In the presence of 

apoE E4 protein, amyloid formed complex networks that had the classical appearance
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of amyloid plaques. In the presence of apoE E3, the networks are less complex (Ma et 

al, 1994; Sanan et al, 1996). It has been suggested that these dense networks formed 

with apoE E4 are not easily broken down and removed in the clearance process and 

thus could explain the greater plaque load in APOEzA carriers. Under conditions of 

lipidation however the biochemical properties of apoE alter to the extent that apoE 

E4 binds less avidly to amyloid compared to apoE E3 (LaDu et al, 1994; Hardy et al, 

1998). ApoE can be attached along the length of amyloid fibrils or incorporated into 

the structure (Ma et al, 1994). It has also been shown that binding of amyloid to apoE 

can alter the interactions of apoE with its main receptors (Guillaume et al, 1996). 

ApoE is complexed to HDL under normal physiological conditions and HDL is also 

capable of forming an association with, and inhibits, the formation of amyloid fibrils 

(Oleson and Dago, 2000).

1.4.4.3 APOE genotype and neurofibrillary tangles

In AD, apoE immunoreactive neurons also contain neurofibrillary tangles. These 

tangles most often occur within the neuronal cytoplasm and are composed of 

hyperphosphorylated tau (Weisgraber et al, 1994). In vitro studies have shown that 

apoE E3 binds avidly to the microtubule associated protein tau whereas apoE E4 does 

not (Strittmatter et al, 1994). It is suggested that the binding of apoE to tau protects 

this protein from hyperphosphorylation and therefore defends its structure and 

prevents the formation of neurofibrillary tangles and dystrophic neurites (Weisgraber 

et al, 1994). AD patients with the e4 genotype have been shown to have a greater 

number of neurofibrillary tangles compared to e3 patients (Schmechel et al, 1993). 

Other groups dispute an APOE genotype influence on tangle density (Olichney et al, 

1996; Gomez-Isla et al, 1996).

1.4.4.4 APOE genotype and neurodegeneration in AD

Several MRI studies have highlighted a significantly greater reduction in the volume 

of specific brain regions including the hippocampus and entorhinal cortex of 

heterozygous e4 AD patients compared with controls (30% loss compared with 25% 

in controls)(Lehtovirta et al, 1995). Atrophy of these regions is more significant in s4
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homozygous AD patients (40%). In a similar study of non-demented c4 individuals 

hippocampal atrophy was also significantly greater when compared with control 

groups (Crook et al, 1986; Bigler et al, 2000). A few studies have focused on white 

matter changes in relation to APOE genotype and reported more severe deep white 

matter lesions in e4 carriers (Bronge et al, 1998), whilst other groups dispute this 

(Schmidt et al, 1996; Czech et al, 1994). A multitude of studies have shown that e4 

AD patients perform poorly in cognitive tests compared to controls. More 

interestingly, middle-aged, non-demented APOEsA individuals also display a deficit in 

cognitive capabiltites compared to non c4 control subjects (Flory et al, 2000). 

Positron emission tomography (PET) images show a state of hypometabolism in the 

brains of clinically diagnosed AD patients (Mielke et al, 1998). Progeny of AD 

patients also display altered glucose metabolism (Small et al, 1996). Non-demented 

e3/e4 heterozygotes of approximately 50 years of age display glucose 

hypometabolism when compared to s3/e3 siblings (Reiman et al, 1996). The PET 

images from e3/e4 and s4/s4 non-aged individuals resembled that observed in AD 

sufferers (Roses, 1997). The authors suggested that this measure could act as a 

predictor of AD since it was approximately 20 years before onset that these metabolic 

abnormalities manifested.

1.4.4.5 APOE genotype and brain levels o f  apoE

Cholinergic dysfunction in AD patients is shown to be directly related to APOEsA 

genotype where reduction in choline acetyl transferase (chAT) activity was 

proportional to the e4 allele copy number (Poirier et al, 1994; Soininen et al, 1995). 

Associated with this is a parallel decrease (40-50%) in choline levels (Nitsch et al, 

1992). These alterations in neurotransmitter may be related to apoE levels in the 

brain. The level of apoE in the brain has been the subject of much debate. The levels 

of apoE in the CSF of AD patients, is significantly lower (3.4mg/L) compared to 

control subjects (4.5mg/L) (Hesse et al, 2000). Total apoE content of brain 

homogenate has also been shown to be lower in the post-mortem tissue of AD 

patients (lOOng/mg protein) compared with control tissue (150ng/mg protein) 

(Bertrand et al, 1995). Some studies dispute this and suggest apoE levels are actually 

elevated or unaffected in the AD brain and that levels only appear to be reduced
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because of a dilution effect, due to an equivalent increase in CSF volume (Terrisse et 

al, 1998). Reduced levels of apoE results in deficient phospholipid delivery to cells 

(Wurtman et al, 1992). This data has significant implications for therapy development 

where the APOEsA genotype of patients undergoing drug therapy has to be taken into 

account. This led to the observation that APOE e4 AD sufferers responded poorly 

when treated with cholinomimetic drugs such as tacrine (Poirier et al, 1995; Farlow et 

al, 1998; Poirier and Sevigny, 1998).

1.4.4.6 LRP receptor and Alzheimer*s disease

Initial interest in this receptor in AD came about with the initial observation, that 

apoE and LRP are co-localized in senile plaques (Rebeck et al, 1993; Poirier et al, 

1995; Hyman et al, 2000) and acts as a receptor for APP (Trommsdorff et al, 1998; 

Van Uden et al, 2000). LRP binds amyloid protein efficiently and internalizes it for 

degradation intracellularly and inhibition of this pathway with the addition of the 

39kDa RAP manifests as an aggregation of p amyloid protein extracellularly (van 

Uden et al, 2000; Hyman et al, 2000; Rebeck et al, 2001). Furthermore, recent 

reports have shown a genetic linkage between LRP and AD (Kang et al, 1997; 

Lendon et al, 1997). Several mutations of the LRP receptor have been studied to 

determine if deficient expression or function of the LRP receptor is central to AD 

pathology. Most recently, studies have demonstrated a linkage of late-onset AD to the 

LRP-1 gene on chromosome 12 and to date approximately 48 polymorphisms of this 

gene have been identified (Zuliani and Hobbs, 1994). Where functional defects in the 

LDL receptor would manifest themselves as familial lipid traits such as 

hypercholesterolaemia, the LRP gene is so large that point mutations may not 

manifest themselves clinically (van Leuven et al, 1998). Several groups have 

examined the 5’ region of the LRP gene where a tetranucleotide repeat polymorphism 

occurs. Recently, two studies identified a polymorphism of a silent mutation in exon 3 

of the LRP receptor (C766T) which was found to be weakly associated with late- 

onset AD (Hollenbach et al, 1998; Beffert et al, 1999). As of yet, no clear association 

has been established between any of the polymorphisms and AD (Chung et al, 1996; 

Clatworthy et al, 1997). However, a site nearby the locus of the LRP gene on 

chromosome 12 is currently under scrutiny, a site which is believed to code for a2-
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macroglobulin. a2- macroglobulin is a ligand for the LRP receptor, is a proteinase 

inhibitor and in a recent study was genetically linked to AD (Moestrup et al, 1994). 

The study of the mechanics of this receptor and its role in disease and injury is made 

especially difficult as LRP knockout animals cannot be engineered. The LRP gene is 

crucial for foetal development and knockout animals die shortly after birth (Herz et al,

1992). Recently a colony of mice have been engineered with exogenous Lox P sites 

inserted into their genome that allows conditional inactivation after birth. (Mahley and 

Ji, 1999). The engineering of LDL and VLDL receptor knockout mice has been much 

more successful and has outlined other signalling functions which they may be 

involved in (Ishibashi et al, 1994; Trommsdorf et a\, 1999; Umans et al, 1999). Mice 

lacking the RAP protein have also revealed that absence of this protein has significant 

effects on LRP localisation within the brain (Umans et al, 1999).

1.4.4.7 Apolipoprotein J  and Alzheimer*s disease

Many studies have suggested a role for apoJ in AD pathology. ApoJ is expressed at 

high levels in many pathological conditions and acts as an inducer of apoptosis. For 

that reason it is normally expressed in conditions involving transformation of cells 

such as gliomas and Scrapie (Beffert et al, 1998). However, it is also associated with 

AD and functions in a neuroprotectant capacity (Giannakopoulos et al, 1998). 

Probing of post-mortem AD hippocampal tissue revealed increased apoJ mRNA 

expression (May et al, 1990). ApoJ immunoreactivity has been observed in senile 

plaques in the cortex and hippocampus of Alzheimer brain tissue and is also 

upregulated in neurons and reactive astrocytes (Kida et al, 1995; Harr et al, 1996; 

Lidstrom et al, 1997). In human AD postmortem tissue, s4 subjects show low brain 

levels of apoE where apoE levels decrease with increasing number of APOEsA alleles. 

In contrast, hippocampal apoJ protein levels increase with increasing APOEsA allele 

number (60% compared to non-demented control subjects) suggesting a 

compensatory role of apoJ in tissue with low apoE levels (Bertrand et al, 1998).
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1.5 Human Brain Injury
1.5.1 Etiology and statistics

Head injury is the most frequent cause of mortality in individuals aged up to 45 years 

of age. Approximately 1 in 300 families in the UK have a member permanently 

disabled by a head injury as the result of violence (5%), fall (35%), or road traffic 

accident (53%) (Graham and Gennarelli, 1997). 400 patients per 100,000 of the 

population are admitted to hospital every year with a head injury. A survey of 1,000 

patients admitted to hospital following a head injury found 31% died within 6 months, 

30% recovered, 20% were moderately disabled, 16% were severely disabled and 3% 

were vegetative. Regardless of the initial injury, it is evident that recovery of physical 

and cognitive abilities, varies from individual to individual. Some of this may be due 

to environmental factors, such as standard of post-injury rehabilitation. However, it is 

becoming more evident that some individuals may be genetically predisposed to a 

poor recovery following brain injury and the mechanisms involved may be closely 

related to mechanisms previously studied in AD.

1.5.2 Neuropathology of acute human brain injury

Acute brain injury can be divided into categories such as: ischaemic injury as the result 

of cerebrovascular incident or cardiac arrest and traumatic brain injury, the result o f a 

missile and non-missile head injury (Graham et al, 2000). Each year thousands of 

humans suffer from one of these injury types and, although differing in their origin, 

these injuries follow common pathways in secondary damage after the event and in 

subsequent recovery over long periods of time. Ischaemic injury occurs when cerebral 

blood flow is severely reduced as the result of a stroke, or cardiac arrest that in turn 

reduces oxygen supply to the brain. This leads to ischaemic cell death where cells are 

classically pyknotic in appearance and intensely eosinophilic. Macroscopically, brain 

swelling and atrophy are visible where the ventricles become enlarged and midline 

shift, due to raised intracranial pressure, is evident (Forbes et al, 1993). The 

neuropathology of traumatic brain injury is less well defined and consists o f many 

components (Graham et al, 1995; Samatovicz 2000). Brain pathology after head 

injury may be classified in two ways: (1) focal, with injury categorised as skull 

fractures, intracranial haemorrhage and contusions and (2) diffuse, where injury is
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categorised into ischaemic brain injury, diffuse axonal injury and brain swelling 

(Gentleman et al, 1995, Graham et al, 1995) (Tables 2 and 3).

Focal Diffuse

Skull fracture 

Contusions

Intracranial haemorrhage 

Raised ICP

Diffuse axonal injury 

Ischaemic brain injury 

Brain swelling 

Infection

Table 2 Categories o f brain injury.

Primary Secondary

Lesions

Fracture

Diffuse axonal injury

Haemorrhage 

Ischaemic brain damage

Brain Swelling 

Raised ICP 

Infection

Table 3 Classification o f brain pathology.

Focal injury is most likely to be sustained by physical contact as the result o f a fall 

while diffuse injury is associated with acceleration/deceleration, the type o f injury 

sustained from a road traffic accident (Gennarelli et al, 1982). Within these categories 

primary and secondary pathology has been identified, the primary events being diffuse 

axonal injury and skull fracture (Polvishock and Christman, 1995). The secondary 

events being processes that do not manifest themselves clinically, until a period o f 

time after the initial injury. These include ischaemia, brain swelling and raised 

intracranial pressure. Secondary damage evolves over a period o f  hours, days and 

even a few weeks following the initial injury.
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The secondary damage associated with primary events in common with diffuse and 

focal injury are very often neurochemically driven, caused by fluctuations in ion 

homeostasis (Ca2+ most importantly), cerebral metabolism and breakdown in the 

blood-brain barrier (Graham and Gennarelli, 1997; Maxwell et al, 1997). This 

inevitably leads to breakdown in cytoskeletal elements, primarily microtubules. 

However, of emerging importance are the events that occur months and years 

following the initial injury. Regardless of the original brain injury source, individuals 

who are not dead or vegetative generally follow a process of recovery that can include 

regaining speech skills, learning how to walk again, or even recovering lost cognitive 

capabilities. Recovering these skills requires alterations in the brain to allow the 

formation of new connections and the repair of injured processes, but to achieve this 

certain proteins within the brain must be activated to aid this process.

1.5.3 APOE genotype and acute brain injury: outcome and recovery

1.5,3,1 Traumatic brain injury

The relationship between AD and head injury was made by initial observations in the 

brain tissue of boxers who suffered from being ‘punch drunk’ or dementia pugilistica 

(Corsellis et al, 1973; Roberts et al, 1990). The brains of these individuals displayed 

some of the common neuropathological features associated with AD, including 

neurofibrillary tangles and Ap-containing plaques. Subsequent epidemiological 

studies revealed a significant association between head trauma and a risk of 

developing AD neurodegenerative-like symptoms. Further investigation showed the 

presence of Ap deposits in a large proportion of head trauma victims on postmortem 

examination following short survival periods after the initial injury (Roberts et al, 

1990; 1994). With the association between head injury with AD pathology it was 

examined whether brain pathology after injury was influenced by susceptibility factors 

for AD such APOE genotype. It was found that a history of previous head injury in 

APOEzA survival patients conferred a ten times greater chance of developing AD later 

in life (Mortimer et al, 1991; Mayeux et al, 1993). It was determined that APOEzA 

individuals who died following a head injury were significantly more likely to display 

Ap aggregation (odds ratio of 0.78) than non s4 individuals (odds ratio of 0.15) 

(Nicoll et al, 1995; Horsburgh et al, 2000). This indicated for the first time that
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genotype could modulate the brain’s response to injury. Amyloid deposition has been 

shown as early as 4 hours after injury and these deposits are strongly apoE 

immunoreactive. It was suggested that the amyloid deposits pre-dated the head injury 

because the mean age of the s4+ group was 52 years, whilst it was 28 years for the 84- 

group. However, the criteria for inclusion into the study required death within 30 days 

after the initial injury. This lends to the possibility that the older victims in the non-e4 

group did not die so rapidly after the injury (within 30 days) or alternatively, the 

plaques could develop at an earlier age in individuals possessing an e4 genotype (Roses 

et al, 1997). The issue of whether amyloid deposits were present in head injury victims 

before the injury in that study remains largely unresolved.

Genetic possession of the APOE s4 allele has now been shown to have great 

implications for outcome after traumatic brain injury and further studies have outlined 

an association between the s4 allele and poor recovery from closed head injury 

(Plassman et al, 2000). A higher proportion of APOEzA individuals were found not to 

recover consciousness compared with individuals not possessing an s4 allele. 

Furthermore, 57% of patients with an APOEzA allele had a poor outcome according 

to the Glasgow Outcome Scale, scored as either dead, vegetative, or severely disabled 

compared with 27% in non e4 carriers (Teasdale et al, 1997). Similar studies also 

highlighted a poor outcome in individuals carrying an s4 allele following traumatic 

brain injury and was associated with a greater incidence of prolonged unconsciousness 

(Friedman et al, 1999), a higher incidence of death (Roses et al, 1995) and poorer 

response to rehabilitation (Lichtman et al, 2000). More recently, the presence of 

neurofibrillary tangles has been elucidated in young individuals following repetitive 

head injury (Geddes et al, 1999). The relationship between repetitive head injury and 

APOE genotype was explored in professional boxers and it was shown that those 

possessing an APOEzA genotype displayed greater scores in a clinical scale of chronic 

traumatic brain injury (Jordan et al, 1997). To the present date, no study has defined 

the events that occur at longer survival periods following traumatic brain injury or 

looked at APOE genotype influence on long-term recovery.
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1.5.3,2 Intracerebral haemorrhage, stroke and cardiopulmonary bypass

APOE genotype has been linked to CNS disorders such as cerebrovascular disease 

and stroke. The possession of an APOEzA allele has long been associated with 

atherosclerosis (Hixson et al, 1991) and elevated cholesterol levels (Davignon et al, 

1988). This, combined with the presence of amyloid laden cerebral blood vessels, 

warranted the investigation of APOE genotype in cerebrovascular disease (Namba et 

al, 1991). Work by Schmechel (1993) and others revealed that the APOEzA allele was 

linked to vascular amyloid deposition in a population of AD subjects in a dose 

dependent manner (Greenberg et al, 1995). Subsequent studies have revealed that the 

E4 isoform modulates the severity of cerebral amyloid angiopathy (CAA) by 

promoting the aggregation of A04O around cerebral blood vessels (Alonzo et al, 

1998). Rather unexpectedly, it was found that inheritance of the APOEzl allele posed 

greater risk for blood vessel rupture, this allele had previously been thought of as 

neuroprotective in its role in AD (Nicoll et al, 1997).

The APOEzA allele association with a poor outcome following spontaneous 

intracerebral haemorrhage (Alberts et al, 1995; McCarron et al, 1998; 1999) was then 

identified, an effect which could not be solely explained by larger hematoma volumes 

and more severe oedema in APOEzA individuals (Sorbi et al, 1995). Although there is 

no clear association between APOE genotype and the occurrence of intracranial 

haemorrhage, an apparent link was established between recovery and APOE 

genotype. In a prospective series of patients with nonaneurysmal intracerebral 

haemorrhage, mortality rate was significantly greater for individuals genotypically s4 

and patients without an APOEzA displayed more improved physical and cognitive 

abilities when compared with control groups (McCarron et al, 1998). The APOEz2 

allele has been shown to be beneficial in intracerebral haemorrhage (more favourable 

outcome) (Nicoll et al, 1996, 1997). To date no clear association of the APOEzA 

allele with risk of ischaemic stroke has been determined, however, patients with an 

APOEzA allele are significantly more likely to be functionally and cognitively impaired 

(McCarron et al, 2000). Several groups have actually determined a more favourable 

outcome from ischaemic stroke in APOEzA individuals (McCarron et al, 1998). 

Additionally APOE genotype is also implicated in acute brain injury associated with
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with cardiopulmonary bypass (Newman et al, 1995). Individuals with an APOEzA 

genotype displayed impaired cognitive capabilities compared with a non-s4 control 

group following surgery (Tardiff et al, 1997). These studies all suggest that the 

influence of apoE on recovery from head trauma may depend on the type of insult 

incurred. Neuronal apoE immunoreactivity is increased in the human brain following 

episodes of global ischaemia due to cardiac arrest, where apoE immunoreactivity was 

associated with ischaemic neurons in the vulnerable pyramidal layers of the 

hippocampus (Horsburgh et al, 1999). Upregulation of apoE immunoreactivity also 

occurs in the brains of individuals suffering from hypoglycemia and epilepsy.
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1.6 Animal Models of Brain Injury

1.6.1 Animal models that mimic some of the neuropathological events of human 

brain injury

Several different animal models have been developed which mimic some of the 

neuropathological events that occur in human brain injury. These models include the 

fluid percussion model (Lindgren and Rinder, 1966), the cortical impact model (Dixon 

et al, 1991), closed head injury (CHI) (Chen et al, 1997), stretch models of axonal 

injury (i.e. optic stretch) (Gennarelli et al, 1989), glutamate/excitotoxicity, subdural 

haematoma, focal ischaemia (Tamura et al, 1981; Longa et al, 1989; Macrae et al,

1993) and global ischaemia (Horsburgh et al, 1997; Li et al, 1998). These models 

have been employed primarily in rodents (although higher species have been used) to 

study various components contributing to human brain injury. Using these models, the 

acute (immediate) and chronic (long-term) responses to injury may be assessed. By 

modulating animal survival, the long-term response of the brain to injury may be 

studied and one of the main events, which occur weeks or months after injury, is brain 

plasticity. The contents of this thesis describe the entorhinal cortex lesion model of 

brain injury, which is perhaps, the best characterised model in terms of stimulation of 

plasticity mechanisms. Removal of afferent input into the hippocampus stimulates a 

dramatic plasticity response that is unparalleled in any other region of the brain.

1.6.2 Hippocampal structure and pathways

The hippocampal formation consists of the hippocampus, dentate gyrus and the 

parahippocampal gyrus. In synergy these structures perform valuable functions in 

learning and memory. The formation of new memories requires dendritic remodelling 

and the formation of new synapses to take place within defined regions of the 

hippocampus. This process is termed plasticity and many studies employ the 

hippocampus as a model of CNS plasticity, because of this natural ability to remodel. 

The hippocampus is comprised of highly intricate but well organised circuits, which 

have been relatively well preserved throughout evolution and therefore basic 

hippocampal circuitry is structurally homologous in humans and other mammalian 

species (Barr and Kieman, 1993). The human hippocampus is proportionally smaller
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to the size of the entire brain compared with rodent brain, however the entorhinal 

cortex is geographically closer. The hippocampal formation has four main sources of 

afferent fibres originating in the cortex; the septal nuclei, the contralateral 

hippocampus and the reticular formation and is supplied with blood from the anterior 

choroidal artery. The largest afferent input into the hippocampus is from the 

entorhinal cortex where 80-90% o f the fibres from layers II and III of this region 

project to the molecular layers of the dentate gyrus. Fibres from the entorhinal cortex 

project through the underlying white matter and terminate within the outer two thirds 

of the dentate molecular layer. A proportion of these fibres also project to the stratum 

lacunosum moleculare (Figure 1.5).

The hippocampus proper is composed primarily o f 3 layers. The pyramidal cell layer 

(subdivided into the CA1, CA2, CA3 and CA4), the molecular layers (subdivided into 

inner, middle and outer) and the polymorphic cell layer. The molecular layers of the 

dentate gyrus are composed of the dendritic processes of granule cells. The granule 

cells are the dominant cells of the dentate gyrus, giving it the characteristic ‘V’ shape 

(Figures 1.3 and 1.4)
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Figure 1.3 Diagram derived from The Human Nervous System by Barr and Keirnan, 

1993. The diagram illustrates the structure o f the human hippocampus and highlights 

the intrinsic and extrinsic circuits o f the hippocampus.
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Figure 1.4 Illustrative example o f basic hippocampal structure in a synaptophysin 

immunostained coronal section o f a mouse brain. CA1, 2, 3, 4 are the pyramidal cell 

layers and within the dentate gyrus are the molecular cell layers labelled inner, middle 

and outer. The molecular layers are the main regions o f interest in this thesis.
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Figure 1.5 Diagram illustrating the perforant pathway route from the entorhinal cortex 

to the dentate gyrus.

Intrahippocampal circuitry connections are also shown in the diagram below and 

highlight the feedback nature of these pathways (Figure 1.6). With the development of 

electrophysiological techniques and the use of rodent brain, our knowledge of 

hippocampal circuitry has undoubtedly increased, something that could not be 

achieved using human subjects.

entate Gyrus Mossy fibresPerforant pathway

Entorhinal Cortex CA3

Schaeffer Collaterals

presubiculum,
parasubiculum,
subiculum

CA1

Figure 1.6 Intrahippocampal pathways

The entorhinal cortex receives input from the neocortex of the temporal lobe and 

communicates with sensory areas of the cortex in association with this. In this way the 

hippocampus is kept informed of all sensations and higher brain activities. In this 

capacity it is believed to function in the storage of short-term memories.
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1.6.3 Entorhinal cortex lesion as a model of brain plasticity

The process of neurodegeneration occurs in many human diseases, after brain injury 

and also as an integral part of the ageing process. However, there is some suggestion 

that the human brain is capable of repair and regeneration to a limited extent. This has 

been shown in studies of AD where aberrant sprouting and reactive synaptogenesis 

has been identified within the hippocampus at chronic stages of the disease (Masliah et 

al, 1991, 1992). These phenomena have also been shown following head injury 

(Grady et al, 1989). The entorhinal cortex lesion (ECL) is well characterised and 

allows the study of plasticity within the mature CNS. This model is believed to mimic 

neurodegenerative events characteristic of AD and human head injury (Poirier, 1994; 

Poirier et al, 1995; Danik and Poirier, 1997; Masliah et al, 1996).

Many protocols have been employed to lesion the entorhinal cortex including 

chemical (Cho and Jaffard, 1995) and physical disconnection of the cortical region 

(Masliah et al, 1995) which projects to the hippocampus (see Hippocampal 

Pathways). The mode of lesioning used determines the extent to which 

neurodegeneration occurs within the hippocampus. The most common method used at 

present is aspiration, where the entorhinal region is removed by suction and many 

studies have shown that this leads to degeneration within the outer molecular layer of 

the dentate gyrus (Masliah et al, 1991). The chemical method (achieved by 

administering toxic agent) (Cho and Jaffard, 1995; Scharfinan et al, 1998), 

electrolytic lesion (achieved by injecting small pulses of electricity) (Poirier et al, 

1990; Hardman et al, 1997; Anderson et al, 1998; Terrisse et al, 1999) and cutting 

(using a fine blade) (Ramirez et al, 1996; Haas et al, 1997) all lead to extensive 

neurodegeneration within the middle and outer molecular layers of the dentate gyrus. 

These layers are composed of the dendritic branches from the granule cells (Figure 

1.7). Loss of afferent input onto these cells, results in the breakdown of these 

branches with an associated loss of synapses. This animal model was first 

characterised in the 1960s where tract tracing methods were used to identify the 

projections of the neurons in the entorhinal cortex of the rat and were further mapped 

to define precise projection patterns into the hippocampus (Steward, 1976). To 

confirm these findings the investigators damaged these cells, which resulted in loss of 

fibre definition (60%) in the dentate molecular layers in a time-dependent manner
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(over a period of 14 days) (Cotman et al, 1976; Steward and Vinsant, 1983). 

Evidence for post-lesion sprouting and reactive synaptogensis was initially obtained 

from electron microscopy studies focusing on synapse replacement on denervated 

neurons in the septal nuclei (Raisman et al, 1969). This led to the analysis of 

sprouting in the hippocampus following ECL. Light microscope studies revealed 

proliferation of presynaptic processes from other neighbouring afferent fibre systems. 

The creation of new synaptic contacts was termed reactive synaptogenesis (Cotier and 

Nadler, 1978; Steward et al, 1988) and the proliferation of fibres called sprouting 

(Steward and Vinsant, 1983). Steward and Vinsant (1976) were the first investigators 

to identify the origin of the cells producing the proliferation response and describe a 

time-course for the reinnervation process. Since that discovery, a host of studies have 

employed the ECL to assess CNS plasticity and cellular response to lesions o f this 

kind. Masliah et al (1991) validated an entorhinal cortex lesion model in rat and 

identified specific markers of neurodegeneration and reinnervation, using 

immunohistochemical markers such as synaptophysin and GAP-43. Synaptophysin is a 

synaptic vesicle marker that allows the analysis of synaptic loss and gain. GAP-43 on 

the other hand is the marker of a presynaptic membrane protein involved in 

neurotransmission (Van Lookeren Campagne et al, 1990; Lin et al, 1992; Stroemer et 

al, 1993). This protein is predominately found in the membrane of growth cones and 

therefore this antibody is valuable in identifying not only fibre degeneration but also 

sprouting. Masliahs group noted a significant decrease in both markers by day 7 post

lesion, however GAP-43 and synaptophysin levels returned towards control levels by 

day 30 post-lesion. To substantiate this finding, several studies have shown that, 

following ECL rats display deficits in memory and learning, which is reduced 

following a suitable period of survival to allow fibre sprouting to occur (Ramirez et 

al, 1996; Hardman et al, 1997; Anderson et al, 1998).
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Figure 1.7 Lesioning the entorhinal cortex. The perforant pathway connecting 

the cortex to the hippocampus can be disconnected via different means i.e 

electrolytically, chemically or aspiratively. Lesioning in the studies included in 

this thesis are achieved chemically. This results in degeneration within the 

molecular layers o f the dentate gyrus (shown on the diagram). The molecular 

layers are comprised of the dendritic branches o f the granule cell layers.

On loss of afferent input to the hippocampus, several other extra and intra 

hippocampal fibre systems have been shown to sprout to compensate (Frotscher et al,

1997). These fibre systems have mainly been identified in animal lesion models, 

primarily the entorhinal cortex lesion (Steward and Vinsant, 1983; Steward etal, 

1988; Masliah et al, 1991). Sprouting has been identified from three main fibre 

pathways (Deller et al, 1996; Frotscher et al, 1997). These are cholinergic fibres from 

the septal nuclei (Deller et al, 1999), crossed temperodentate projections from the 

contralateral hippocampus (Steward and Vinsant, 1983; Deller and Frotscher, 1997) 

and commissural-associational fibre projections from the pyramidal layers of the 

ipsilateral hippocampus (Deller et al, 1996; Deller and Frotscher, 1997). Although 

some groups would argue there is no change in cholinergic markers following 

entorhinal cortex lesion (Aubert et al, 1994; Henderson et al, 1998), compensatory
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sprouting from each of these pathways has been demonstrated in animal models of injury. 

Only projections from the septal nuclei have been clearly shown in human brain. In 

animal models, projections from the commissural-associational fibres have been shown to 

extend up to 10’s of pm into the molecular layers of the dentate gyrus (Steward and 

Vinsant, 1983; Steward et al, 1988) and can be assessed by measuring increases in the 

width of the inner molecular layer (Anderson et al, 1998).

1.6.4 Organotypic hippocampal slice culture: an in vitro model of hippocampal 

plasticity

The ability to maintain a brain slice is an important tool for studying whole brain circuits, 

which is more physiologically relevant than single cells in culture (Gahwiler, 1983, 

1984). In recent years brain slices and in particular hippocampal slices have become 

attractive to electrophysiologists, pharmacologists and biologists because the method 

allows manipulation of the system (drug addition to culture medium) and easy access for 

analysis of current physiological state (electrophysiology). To culture CNS tissue from 

any region successfully, all that is required is sufficient oxygen supply, balanced culture 

medium, and a stable environmental temperature of 36-37°C. Conditions being exact, the 

explant will maintain tissue organisation and cellular connections that resemble the 

original in situ conditions (Stoppini et al, 1991; Gahwiler et al, 1997). In the case of 

hippocampal slices, there are essentially two methods that can be used to maintain 

survival for a period of days, up to months. The tissue is normally sectioned at 100- 

400pm whilst being maintained in a balanced salt solution sufficiently supplied with 

oxygen. The tissue then has to be attached to a substrate that will allow maintenance for 

long periods. In the roller-tube method, slices are embedded in a collagen matrix and 

exposed to continuous changing of the liquid to gas interface. In the membrane culture 

method (interface method), slices are placed on a semi-permeable membrane balanced 

over the culture medium. This allows diffusion of nutrients across the membrane without 

complete submersion in the culture medium. Oxygen is received from above the slice and 

kept completely stationary throughout the entire culture period. Tissue for culturing is 

normally obtained from postnatal animals (<10 days old), as adult tissue generally does 

not survive well due to impaired plasticity capabilities (Stoppini et al, 1991). Many of the 

mechanisms involved in plasticity (GAP-43 expression) may be common to both neonatal 

tissue and adult tissue and is therefore still relevant in these types of studies.
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To allow culturing of hippocampal slices, they require to be dissected from the 

surrounding tissue. This results in removal of the cortical input into the hippocampus 

in a similar manner to that observed in the previously described entorhinal cortex 

lesion (Heimrich and Frotscher, 1990), causing degeneration within the dentate gyrus 

of the hippocampus. Sprouting in hippocampal slices occurs mainly from unlesioned 

intrahippocampal fibre systems (Stoppini et al, 1997; Stoppini et al, 1993). Co- 

culturing the slices with pieces of entorhinal cortex tissue can eliminate this sprouting 

response. In hippocampal slices, survival of neuronal and glial cells is extremely high 

and the morphological appearance of these cells is virtually as found in situ, including 

dendritic structure. Immediately following culture the synaptic density decreases due 

to the deafferentation, however, as found in vivo, reactive synaptogenesis occurs 

(Frotscher and Gahwiler, 1988). Synaptic density tends to remain low in distal 

dendrites due to the lack of extrahippocampal fibre pathways. Therefore, it is evident 

that slices retain a certain capacity for short and long-term plasticity alterations.

The uses for organotypic hippocampal slice culture are wide and varied. 

Electrophysiologists have long been interested in this application as means of 

recording from established neuronal circuitry and this has been particularly useful in 

the study of long-term potentiation (LTP) and in the study of epilepsy. However, this 

culture system is especially relevant for investigations which require the long-term 

survival of the tissue for studies involving chronic administration of drugs (Teter et al,

1999), analysis of synaptogenesis and sprouting (Stoppini et al, 1993), gene 

expression and the long-term influences of ischaemia or hypoxia (Lake et al, 1999). 

This technology combined with the protein analysis systems such as 

immunohistochemistry and Western blotting allows the analysis of behaviour of cells 

and networks in a more physiologically relevant environment.
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1.7 Assessment of ApoE Function and Genotype Influence in Animal

Models of Brain Injury

1.7.1 Human studies versus animal studies

The initial studies linking APOE genotype to AD and head injury were pioneering 

studies and catalysed a vast field of research, which resulted in APOE genotype being 

linked to many other human disorders. However, the majority of these studies were 

human neuropathological or clinical studies. The use of animal models has allowed 

investigators to answer basic fundamental questions, such as cellular localisation of 

apoE before and after brain injury (Poirier et al, 1998). It was not only enough to 

investigate this in normal rodent brain, as they express an apoE isoform structurally 

similar to the human E4 isoform, but systems had to be developed which allowed the 

behaviour of human apoE and its isoforms to be assessed under conditions of brain 

injury. Subsequently, several populations of transgenic mice were engineered which 

expressed the human apoE isoforms. APOE knockout mice were developed which 

addressed the most fundamental question of the primary role of apoE in the CNS.

1.7.2 Genetic engineering of transgenic mice

Transgenic animals are manufactured by a generally common method, using 

embryonic stem cell technology in which the endogenous mouse target gene is deleted 

and the human DNA encoding the appropriate gene sequence inserted by micro

injection (Gordon et al, 1980; Xu et al, 1996). Human genomic DNA fragments are 

isolated and purified (from homozygous carriers for the APOEz2, s3 and c4 alleles), 

digested, cloned into a vector and transfected into a cell line. Following this, the cell 

lines are screened for presence of the target DNA. Initially, the endogenous gene 

(APOE) is disrupted by gene targeting in the host mouse (Piedrahita et al, 1992). 

Following restriction digestion the purified DNA is micro-injected into the pronucleus 

of single cell embryos, where one parent is a knockout transgenic (Figure 1.8). This 

produces transgenic offspring possessing the target DNA human sequences (Figure 

1.9). The animals can then be backbred with knockout animals, to produce 

heterozygotes, or can be further bred to homozygosity. The presence, integrity and 

copy number of the inserted gene is analysed using polymerase chain reaction (PCR)
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and Southern blotting. Protein expression levels can then be checked using enzyme 

linked immunosorbent assay (ELISA) or Western blotting.

Female Male

SpermEggs

Microinjection 
of gene o f  interest 
into pronuclei of 
single cell embryo

Pronuclei

Southern Blotting confirm 
presence o f  the transgene. Two 
o f the offspring in this case cam  
the gene.

f

Offspring

Figure 1.8 Diagram illustrating the standard procedure for generating transgenic mice 

regardless o f the gene o f interest.
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Figure 1.9 To produce knock-out and transgenic animals before transgene 

introduction the gene is replaced with a gene for neomycin resistance.
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1.7.3 APOE  knockout mice advanced the understanding of basic apoE function 

in the central nervous system

The development of APOE knockout or deficient mice has allowed understanding of 

the basic function of apoE. Several groups have produced APOE knockout mice of 

which some, but not all, display functional or anatomical deficits. The initial findings 

in APOE knockout mice were of abnormalities in the lipid distribution vascularly. 

APOE knockout mice exhibit an hypercholesterolaemic phenotype where cholesterol 

levels are six times higher (577-900mg/dl) compared to wild-type mice (80- 

114mg/dl)(Zhang et al, 1992; Hayek et al, 1998), and arterial lesions develop within 

the proximal aortas by 3 months of age (Reddick et al, 1994). Under normal 

physiological conditions, some ^POZs-deficient mice also display peripheral nerve 

structural defects where the myelin of myelinated axons appears electron dense and 

disordered when compared to the peripheral nerves of wild type animals using 

electron microscopy (Fullerton et al, 1998). In parallel with this, slight motor deficits 

have been detected in these mice (Chen et al, 1997). Within the brain of APOE 

deficient mice, alterations in phospholipid metabolism have been identified where 

levels of membrane phophatidylcholine are significantly lower than in littermate 

controls (Mato et al, 1999; Lomnitski et al, 1999). A similar study also highlighted a 

derangement in the transbilayer distribution of cholesterol in brain synaptic plasma 

membranes (Veinbergs et al, 1999; Igbavboa et al, 1999). In specific brain regions 

synaptic densities of cholinergic, noradrenergic and serotonergic projections are 

significantly lower than control animals. Dopaminergic neuron density is relatively 

unaffected in these animals (Chapman and Michaelson, 1998). In some studies of 

APOE knockouts a reduction in forebrain cholinergic neurons is associated with 

spatial learning deficits when tested in the Morris water-maze (Gordon et al, 1995; 

Krzywkoski et al, 1997; Masliah et al, 1997). Some groups however, have found 

there is no cholinergic deficit in APOE deficient mice (Anderson et al, 1998; 

Bronfman et al, 2000). Aged APOE deficient mice display even greater spatial 

learning problems that are associated with a breakdown in dendritic structure (Masliah 

et al, 1995). In addition to this APOE deficient mice were also shown to have 

abnormal presynaptic terminals, with reduced numbers of synaptic vesicles. The 

microtubule protecting effects of apoE are also highlighted, as in the brains of APOE 

deficient mice the microtubule associated protein tau is hyperphosphorylated, which
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contributes to the abnormal dendritic structural changes (Genis et al, 1995; 1999). 

Immune responses are also altered in APOE knockout mice, suggesting a putative 

role of apoE in cell mediated immunity (Laskowitz et al, 2000). The behavioural 

alterations observed in knockout mice could also be linked to hormonal dysfunction 

due to the disruptions in the hypothalamic-pituitary system. This may also lead to 

metabolic abnormalities (Raber et al, 2000).

1.7.4 APOE transgenic mouse populations and different promoter systems

1.7,4.1 Expression o f  human APOE alleles under the endogenous human 

promoter sequence

There are several populations of APOE transgenic mice that have been engineered. 

The first strain to discuss are the human APOEel and s4 transgenic mice 

manufactured by Xu et al (1996) and developed by Glaxo Research and 

Development. Deletion of the gene was achieved in this case, by removing the APOE 

genes exon and intron 3 and replacing them with the neomycin resistance gene. 

Following homologous recombination, the normal and the modified alleles are 

inherited. The knockout males from this stage are used to fertilise cells from C57BL/6 

female mice. The human APOE genomic DNA (28-30kb) was selected from a 

restriction digest and then injected into the pronucleus of a fertilised embryo. The 

founder mice are then backbred to APOE knockout animals to create animals 

heterozygous for the human APOE genes. Control animals for studies employing 

these transgenics, include littermate APOE knockout controls and wildtype C57BL/6J 

mice. The APOE DNA sequence is inserted in its entirety into the genome including 

the downstream promoter sequences in the creation of these transgenics. This has 

vital implications for the cellular localisation of apoE. APOE expression in these 

transgenic lines has been shown in glial cells throughout the brain, but neuronal apoE 

has also been identified. This corresponds with the endogenous pattern of expression 

in human brain, while rodent APOE expression is strictly glial in nature. This has been 

shown by Xu et al (1998) using high stringency in situ hybridisation that indicated 

neuronal synthesis of apoE. At the present time, these transgenics reflect most 

accurately APOE expression and levels in human brain. Similar study in humans also
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suggests neuronal synthesis of apoE under normal physiological conditions (Han et al, 

1994, Xu et al, 1999).

1.7.4.2 Expression o f  human APOE alleles under a GFAP promoter

A similar set of transgenic mice engineered by Holtzman et al (Sun et al, 1998) at the 

University of Washington, express the human apoE isoforms. However, their 

promoter sequence is an exogenous astrocyte-specific glial fibrillary acid protein 

(GFAP) promoter which, dictates that apoE expression is strictly astrocytic (Sun et 

al, 1998; Holtzman et al, 1999). Following the production of GFAP s3 and s4 mice, 

they were bred with APOE knockout mice and back-crossed onto a C57BL/6J 

background. These animals were heterozygous for the APOEz3 or s4 transgenes and 

expression was determined to be present in astrocytes and neuropil throughout the 

brain.. This pattern o f expression is similar to that found in transgenics produced by a 

group at Duke University in which the APOE gene is under the control of the 

endogenous mouse promoter. The levels of apoE in these line of mice are comparable 

to that in human brain.

1.7.4.3 Expression o f  APOE alleles under a neuronal promoter system

The third population of transgenic mice were generated by Tesseur et al (2000) at the 

Flemish Institute for Biotechnology, Belgium. These mice were manufactured 

originally to investigate axonal degeneration and over-express the APOEzA allele. 

Downstream of the gene, a number of regulatory sequences including the Thyl, 

platelet derived growth factor (PDGF), glial fibrillary acid protein (GFAP) or the 

phosphoglycerate kinase (PGK) promoters were inserted so apoE was expressed 

neuronally in Thyl, PDGF and PGK mice and astrocytically under the GFAP 

promoter. These mice were aged and the brain and spinal cord examined then 

compared in neuron and astrocyte expressing animals. Mice expressing neuronal apoE 

developed severe axonal degeneration and axonal transport was impaired with a 

suggestion of hyperphosphorylation of tau. Levels of apoE in these mice are high 

compared to human brain levels. Another colony of neuronally expressing mice was 

generated by the Gladstone Institute, where the APOE gene is under a neuron specific
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enolase (NSE) promoter (Buttini et al, 1999), however, these mice express similar 

apoE levels to those in human brain.

1.7.5 ApoE and the brains response to injury

7. 7.5.7 ApoE response to acute brain injury in normal rodent brain

The data from the clinical studies indicated APOE alleles had a major role in head 

injury and AD, but very little was known of what apoE was doing in the brain. 

Initially, the response of apoE to brain injury was assessed in rodents following global 

ischaemia. ApoE in rodent brain is localised to glia, not neurons and therefore is 

different to humans. However, the initial studies in rats were undertaken to determine 

cellular localisation and alterations after injury. A global ischaemic insult in rodents 

results in widespread ischaemic cell death within regions such as the caudate and 

specific layers of the hippocampus. In rats, exposed to 15 mins occlusion, apoE 

immunoreactivity was increased at 24 hrs reperfusion within astrocytes and neuropil 

and by 72 hours neuronal cell bodies are intensely stained within the CA1 layer of the 

hippocampus (Kida et al, 1995, Horsburgh et al, 1996). In contrast, at 72 hours apoE 

immunoreactivity in astrocytes had decreased. The results indicated apoE is 

transported to neurons from astrocytes in response to injury. Similar increases in apoE 

have been shown in gerbil brain using in situ hybridisation techniques following global 

ischaemia (Hall et al, 1995; Ah et al, 1996) Intraneuronal accumulation of apoE was 

found to occur within 30 mins in a rat model of subdural haematoma (Horsburgh et 

al, 1997).

7.7.5.2 ApoE response to entorhinal cortex lesion

Before the production of this thesis, a few authors described the response of apoE to 

lesioning in the rat. Poirier et al (1991) first characterised the apoE response in rat 

brain following entorhinal cortex lesion using in situ hybridisation. APOE mRNA was 

increased 7 fold within the hippocampus and expression peaked by day 6 post-ECL. 

ApoE immunoreactivity was largely restricted to cells expressing GFAP mRNA and 

immunoreactivity decreased towards baseline levels by day 30 post-ECL. This study 

however did not include markers of sprouting, although the authors did suggest the 

study displayed a similar time scale to apoE expression following sciatic nerve 

transection and linked this event to remodelling events within the hippocampus.
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Subsequent studies have also shown increased apoE expression (Zarow et al, 1998; 

Anderson et al, 1998). ApoJ immunoreactivity has also been shown to increase within 

the neuropil and glial cells of the dentate molecular layers (Johnson et al, 1996). Prior 

to the production of this thesis, no other studies have investigated the influence of 

APOE genotype on long-term neuronal plasticity.

1.7.5.3 APOE deficient mice and acute brain injury

The primary function of apoE in the brain could be elucidated using APOE deficient 

mice to establish the brain response to injury in the absence of apoE. Exposure of 

APOE deficient mice to a period of global ischaemia, produced significantly greater 

ischaemic neuronal damage when compared to wild type littermate controls 

(Horsburgh et al, 1999; Sheng et al, 1999). This difference is not attributable to 

cerebral blood flow, as blood flow measurements are comparable in APOE knockout 

mice and wild-type mice (Bart etal, 1998). One study highlighted the protective 

effects of apoE in brain injury, by infusing apoE intraventricularly following a period 

of global ischaemia (Horsburgh etal, 2000). Infusion of the exogenous apoE 

significantly reduced the amount of ischaemic neuronal damage in APOE knockout 

and wild-type mice. ApoE deficient mice also display an increased susceptibility to 

focal cerebral ischaemia. Knockout mice sustain larger infarcts compared to wild-type 

mice, with a mortality rate in APOE deficient mice of 40%, compared with 0% in 

wild-type mice following a period of focal ischaemia (Laskowitz et al, 1997). 

Exposure to closed head injury results in widespread neuronal cell death bilaterally 

which is accentuated in APOE deficient mice (Genis et al, 2000). In conjunction with 

this, these mice also display marked motor deficits, cognitive deficits (Chen et al,

1997) and decreased antioxidant activity (Lomnitski et al, 1997) following closed 

head injury, which are significantly more severe than that found in control animals. 

Even milder traumatic brain injury, such as concussive-like injury, renders widespread 

hippocampal damage in APOE deficient mice (Han et al, 2000).
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1.7.5,4 APOE genotype and acute brain injury in transgenic animal models

Studies in APOE knockout mice illustrated that apoE was neuroprotective. The next 

step was to determine APOE genotype influence on human disease. This could be 

addressed, as transgenic animals had been developed expressing human isoforms of 

apoE. It has shown that following a period of global ischaemia, APOEzA mice exhibit 

significantly greater hippocampal neuronal cell damage when compared to APOEzA 

mice exposed to the same episode (Horsburgh et al, 1999). The same is true of 

transgenic mice of the same line exposed to focal cerebral ischaemia (Sheng et al,

1998). After 24 hours of recovery, infarct volume was found to be significantly larger 

in the APOEzA group compared to the APOEzA group. Lesion associated paralysis 

was also less severe in APOEz3 mice, probably as a result of the reduced infarct 

volume. Following exposure to closed injury, APOEzA mice displayed a mortality rate 

of 50% following the injury, where only 25% died in the APOEz3 group. On 

examination 1 hour after the injury all mouse groups (s4, s3, knockout and littermate 

controls) displayed similar severity of injury. Following 11 days of survival, the 

APOEzS mice had significantly smaller lesion sizes and they also exhibited 

significantly smaller neurological scores, compared with the other three groups who 

all displayed similar scores (Sabo et al, 2000). Altogether, these studies showed that 

the APOEzA allele was associated with a poor response to acute brain injury.
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1.8 The Role of ApoE and Influence of APOE genotype on Plasticity

1.8.1 Mechanism of lipid redistribution in CNS plasticity

Neurons have a unique structure, in which the axon terminals may be at a distance of 

a metre or more from the cell soma and therefore not only the anterograde transport 

of lipids is important, but also other means of delivery (Vance et al, 2000). Cells do 

not need to acquire all their lipid material from the cell body, as lipid and cholesterol 

may be taken up from the environment (Fazio et al, 2000) via endocytic receptor 

pathways. Endocytic receptors such as the LRP receptor have been shown to be 

localised dendrosomatically and axonally (Beffert et al, 1998; Page et al, 1998). 

Electron microscopy revealed dense LRP receptor localisation in regions of high 

synaptic density. Many studies highlight a role of apoE (and possibly apoJ) in lipid 

mobilisation for the growth and repair of neurons following injury (Ignatius et al, 

1987; Poirier et al, 1998; Beffert et al, 1998).

The human, and rodent brain retain an amazing ability to maintain neuronal integrity 

under normal physiological conditions, but are also capable of repair and 

compensation under conditions of severe stress (Masliah et al, 1991; Lie et al, 1999; 

Steward and Vinsant, 1976; Arendt et al, 1997). Loss of neuronal input into discrete 

regions of the brain is one of the classic hallmarks of many neurodegenerative 

disorders, such as AD and these neurodegenerative events are also common to head 

injury (Grady et al, 1989). The major constituents of the neuronal structure are lipid, 

cholesterol and water. Combined, these elements form the membranous compartments 

of the nuclear envelope, mitochondria, endoplasmic reticulum, Golgi apparatus and 

the lipid bilayer, which encase the cellular elements. The axon also requires lipid for 

the maintenance of myelin structure and function. As neurodegeneration occurs, the 

cellular structure is degraded releasing vast amounts of lipid and cholesterol debris 

into the extracellular environment (Poirier et al, 1993; Posse de Chaves et al, 1997). 

This material is recyclable and may be scavenged for reutilisation in the construction 

of new cellular components (Fazio et al, 2000), primarily cell membrane. It is in this 

role as a lipid scavenger in which apoE (and possibly apoJ) are thought to excel 

(Poirier et al, 1993). Although the peripheral nervous system (PNS) has been shown 

to be capable of regeneration to a limited extent, the CNS is not capable of
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regeneration per se but rather a process of compensatory sprouting in response to 

denervation. This manifests as dendritic proliferation and sprouting of unlesioned fibre 

pathways (Steward and Vinsant, 1967; Deller and Frotscher, 1997). Growth of a 

neurite occurs at the tip of the fibre at a region called the growth cone (Vance et al,

2000). The progression of a growth cone can occur at a rate of up to 1 mm/day and 

therefore extension of the plasma membrane demands an assiduous supply of 

membrane materials. Electron microscopy studies have shown that lipid is supplied to 

membranes by vesicles, which fiise with the membranes and deliver the lipid encased 

for incorporation into the structure (Posse de Chaves et al, 1997). The source of the 

lipids for this purpose may come from essentially two places. The cell body, axon and 

dendrites of neuronal cells, all contain the apparatus to manufacture proteins that are 

then transported throughout the cell via fast and slow anterograde and retrograde 

transport (Alvarez et al, 2000). Of more importance is the exogenous lipid sources, 

which are transported from other neighbouring cells and from the extracellular 

environment. Mahley et al (1987) first suggested that when a nerve degenerated, lipid 

debris from the membranes is scavenged from the environment, assembled into 

lipoprotein packages and delivered to other cells, which are active in the process of 

sprouting (Vance et al, 2000), and that apoE is heavily involved in this process. 

Evidence confirming this has shown that axonal degeneration products are not cleared 

in APOE knockout mice following injury (Fagan et al, 1998).

1.8.2 ApoE and lipid scavenging

The main hypothesis and one which has prevailed for some time is that on injury, 

apoE protein levels are increased as cells such as astrocytes, microglia and Schwann 

cells upregulate the production and secretion of apoE (Boyles et al, 1985; Stone et al, 

1997; Ignatius et al, 1987). Once trafficked through the extracellular matrix, the 

apoE-lipid complex binds to receptors of the LDL receptor family, which are present 

throughout the nervous system and most importantly are present on neurons (and at 

the tips of growth cones) (Ignatius et al, 1987; Fagan et al, 1996; Narita et al, 1997). 

The complex is then internalised via clathrin-coated pits and the lipid and lipoproteins 

cleaved (Poirier et al, 1993). Lipid is then freely available for incorporation into 

cellular elements (Figure 1.10). The internalised receptor is then thought to be 

recycled to the cell surface. The destiny of apoE following this process is the subject
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of some debate. Under normal physiological conditions, the interaction o f apoE with 

the microtubule-associated proteins is believed to promote cytoskeletal stabilization 

(Roses et al, 1996). However, under conditions o f injury when the process o f neurite 

outgrowth is required, the interaction o f apoE with microtubules is essential for 

extension o f neurite processes (Johnson and Jope, 1992; Pitas et al, 1998). This 

requires escape o f apoE from endosomes and this process will be discussed in the final 

conclusions (DeM attos et al, 1999). A similar process o f lipid scavenging is believed 

to be performed by apoJ because o f its upregulation following brain injury (Tomqvist 

et al, 1996), axonal injury (Tao et al, 1999) and in AD (Bertrand et al, 1995). 

However, the pathways and mechanisms involved have not been clearly demonstrated 

and are confounded by reports that the apoJ receptor, gp330, is very poorly expressed 

or indeed even absent from the human and rat brain (Page et al, 1998, Han et al,

2001 ).
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1.8.3 A role for apoE in regeneration was established initially within the 

peripheral nervous system

It is widely accepted, that nerve fibres of the peripheral nervous system (PNS) display 

an amazing ability to regenerate following injury. After peripheral nerve injury, lipid 

and cholesterol materials are released from degenerating axons. ApoE is believed to 

bind to the debris in the extracellular space and transport it to macrophages and 

Schwann cells. Cholesterol from the breakdown of the material can be stored as 

cholesteryl ester for future utilisation (Poirier et al, 1993). The lipid material can also 

be sequestered and used in the reconstruction of various axonal components. ApoE is 

secreted from the macrophage, complexed to an endogenous lipid source and 

transported primarily to the growth cone of the axon engaged in regeneration 

(Ignatius et al, 1987). At the cell surface, the apoE-lipid-complex is internalised via 

receptors of the LDL family. Axons express the LDL receptor along their length and 

increased expression coincides with axonal regeneration and remyelination (Boyles et 

al, 1989).

Initial studies looking at peripheral nerve regeneration, revealed that apoE was 

increased by approximately 200% following optic nerve and sciatic nerve crush and that 

this event paralleled extension and reconnection of the nerve endings (Figure 1.11). 

Increases were so marked, that after 3 weeks the apoE protein levels account for 5% of 

the total protein concentrations in the nerves (from 0.2%) (Ignatius et al, 1986). Much 

of the secreted apoE was associated with lipid and these complexes were internalised 

by receptor mediated endocytosis. Subsequent studies have shown dense expression of 

the LDL receptor on the tips of regenerating nerve fibres. The delivery of lipids and 

cholesterol aid in axonal elongation and may even be involved in the remyelination 

process (Vance et al, 2000). Regeneration was also investigated in dorsal root ganglion 

cells in culture, incubated with lipidated (pVLDL) apoE, and was found to increase 

neurite outgrowth and branching (Handelmann et al, 1992, Nathan et al, 1994). Lipid 

free apoE reduced neurite branching, but neurite extension directed away from the cell 

body was increased. This was thought to occur because apoE reduces the adhesiveness 

of neurites to the extracellular matrix. In the case of PNS injury macrophages enter the 

wound site and synthesise huge quantities of apoE.
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This event parallels myelin reabsorption by Schwann cells as axons death progresses 

(Ignatius et al, 1987). 14-21 days after the injury, the process of remyelination begins 

to occur and apoE and apoAI are present within the extracellular matrix and found to 

be associated with large quantities of lipid and cholesterol-like lipids (Boyles et al, 

1989). Ignatius et al (1987) used the injured rat sciatic nerve model to determine if 

neurites are capable of internalising apoE from the environment. They used 

pheochromocytoma (PC 12) cells, which may be stimulated to produce growth cones. 

ApoE labelled with fluorescent dye is endocytosed by the growth cones in a rapid 

manner, suggesting the internalisation was via lipoprotein receptors and not by axonal 

transport. ApoJ too, is upregulated within astrocytes in axotomised processes, 

however its link with regeneration is less well defined and many researchers believe it 

may actually be more involved in the cell death process (Tomqvist et al, 1996; Tao et 

al, 1999).

Work by Bellosta et al (1995) highlighted that the regeneration promoting effects of 

apoE are genotype specific. They demonstrated, that in the presence of very low 

density lipoproteins, apoE E3 and E4 have differential effects on the ability to 

promote neurite outgrowth. When added to the culture medium of dorsal root 

ganglion cells, apoE3, combined with P-VLDL, decreased branching but stimulated 

neurite extension. Cells treated with apoE E4 displayed limited neurite outgrowth. 

Interestingly, apoE added alone to the culture medium had no effect on outgrowth. 

These results suggested that the apoE E4 isoform conferred a poor ability for PNS 

regeneration.

1.8.4 In vitro evidence for a role of apoE in CNS plasticity

Data from studies in the PNS suggesting a detrimental effect of the apoE E4 isoform 

on plasticity lead to interest in the role of apoE in CNS plasticity and whether there 

was an APOE genotype effect. The preliminary studies investigating this were carried 

out in vitro using cell lines derived from the CNS, as opposed to the peripheral nature 

of the dorsal root ganglia (DRG) in the initial studies. Pitas et al (1997) cultured cells 

from a murine neuroblastoma cell line (Neuro-2a) transfected to secrete apoE E3 or 

E4 and, when an exogenous lipid source was added to the culture medium, the apoE
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E3 expressing cells produced neurite outgrowth whilst outgrowth was inhibited in 

apoE E4 expressing cells. It was also found, that this effect could be attenuated using 

blocking agents of the LRP receptor mediated uptake. In contrast, DeMattos (1998) 

suggested that addition of exogenous lipid sources inhibited the inherent outgrowth 

promoting effects of apoE E3 from transfected cells and that apoE E3 and VLDL 

could work independently. In a similar study using untransfected Neuro-2a cells (cells 

do not produce apoE endogenously) it was found that addition of exogenous apoE 

E3, combined with PVLDL, promoted neurite outgrowth whereas addition of apoE 

E4 inhibited it (Fagan et al, 1995; Holtzman et al, 1995). When examined more 

closely it was found that cells incubated with apoE E4 possessed microtubular 

abnormalities, which may contribute to the observed difference in sprouting. 

Hippocampal neurons harvested from C57BL/6J mice were also shown to produce 

extensive neurite outgrowth when grown on a monolayer of astrocytes, cultured from 

transgenic mice expressing APOEs3 under a GFAP promoter sequence (Sun et al,

1998). Outgrowth was inhibited in neurons grown in the presence of apoE E4 

secreting astrocytes. Questions have arisen as to whether the PVLDL lipid source 

employed in the majority of these studies is physiologically relevant, as apoE is found 

endogenously attached to high density-like (HDL) lipoproteins within the CNS. For 

this reason Fagan et al (1996) carried out a study in which apoE E3 and apoE E4 

enriched HDL was incubated with a neuronal cell line (GT1-1 trk9) and again it was 

found that apoE E3 enhanced neurite outgrowth where apoE E4 did not. This effect 

was blocked by an LRP-receptor blocker, indicating that it was a receptor-mediated 

event.

L 8.4.1 LRP receptor function in neurite outgrowth

The LRP receptor mediates apoE-dependent neurite outgrowth, a phenomenon which 

has been identified in a host of in vitro studies (Narita et al, 1997). ApoE E3 

promotes neurite extension in a population of nervous system-derived neuronal cell 

line, an effect which is abolished by the addition of RAP, LRP antibody or lactoferrin 

to the culture medium (Fagan et al, 1996; Williams et al, 1998). It is completely 

feasible that the isoform-specific effect differences are due to differential interactions 

of each apoE isoform at the receptor interface. The single amino acid changes in apoE
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structure for each isoform, is in the LDL/LRP receptor-binding domain and therefore 

it is possible that this would confer binding differences (Mahley et al, 1988). 

However, biochemical studies have revealed that iodinated apoE E3 and E4 have 

similar binding affinities, with apoE E2 displaying the greatest affinity (Weisgraber et 

al, 1993). Ji et al (1998) analysed uptake of 125I-VLDL enriched apoE E2, E3 and E4 

and discovered a 2-3 fold greater accumulation of apoE E3 (and E2 although to a 

lesser extent) than E4 in Neuro-2A cells following 2 hours of incubation, a response 

which was not mediated by either the LDL or LRP receptor since the response 

persisted in cells deficient in both these receptors. The differential accumulation was 

enforced by heparan sulphate proteoglycan (HSPG), a protein closely associated with 

LRP at the membrane surface and responsible for the sequestration of apoE-enriched 

lipoproteins before internalisation by the HSPG-LRP pathway (Mahley et al, 1994). 

On treatment with heparinase, differential accumulation is abolished and thus it is 

evident that the intracellular levels of apoE rely heavily on the presence of the 

receptor associated HSPG (Bellosta et al, 1995). Indeed, some studies have shown 

that HSPG is capable of apoE-complex internalisation in the absence of either the 

LDL or LRP receptors (Mahley et al, 1995). Following the publication of these 

studies, there has been very little literature focussing on the biochemistry of the 

HSPG-LRP pathway. Such work may hold the key to APOE genotype influence on 

cell function.

1.8.5 APOE genotype may influence plasticity in Alzheimer’s disease

In the last 10 years interest in brain plasticity has increased, with the initial realisation 

that long-term potentiation was a basic synaptic plastic mechanism that was primarily 

involved in the acquisition of memory (Gomez-Femandez, 2000). Neurogenesis does 

not occur in the adult mature brain, however, processes of compensatory growth and 

repair are initiated in an endogenous attempt to reduce functional deficit. 

Neuroplasticity is a natural ability of the nervous system to reorganise and alter its 

function in response to environmental changes. Sprouting in the brains of patients 

with temporal lobe epilepsy (TLE) are the best documented cases of plasticity in the 

adult brain. Using a range of markers such as Growth Associated Protein-43 (GAP- 

43) and 5’ nucleotidase, which is a marker of spontaneous synaptic turnover, 

plasticity has been shown in the dentate molecular layers of the hippocampus (Pollard
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et al, 1994; Lie et al, 1999). Neurodegeneration is extensive in AD, resulting in the loss 

of cortical input into the molecular layers of the hippocampus. Several intrahippocampal 

fibre systems are capable of reinnervating the denervated molecular layers, including 

those from the contralateral hippocampus, commissural-associational fibres from the 

CA3 pyramidal layer/hilus region and cholinergic fibres from the septum, as identified in 

rat models. In AD postmortem tissue, mechanisms of compensatory growth have been 

shown especially within the hippocampus, using antibodies such as GAP-43 (Masliah et 

al, 1991 and 1992; Bogdanovic et al, 2000). The sprouting observed in these AD cases 

tends to be aberrant with respect to their localisation and neurotransmitter composition, 

however the intensity of dendritic changes is apoE genotype dependent. The brains of 

Down’s syndrome patients with marked dementia related neuronal loss, also exhibit 

neuronal sprouting (Ohara et al, 1999). Data from a study by Arendt et al (1997) 

suggested that plastic remodelling is severely impaired in APOE s4 carriers. The s4 allele 

dose was also shown to have significant effects on the severity of the initial degeneration, 

degeneration which was not restricted to cholinergic neurons, suggesting a more 

widespread effect of apoE.

1.8.6 APOE genotype and brain plasticity after head injury

Cortical plasticity in humans after brain injury has been documented (Robertson and 

Murre, 1999). Following unilateral perinatal brain injury, the brain switches its 

functions to the healthy cortex, this results in ipsilateral motor control using ipsilateral 

corticospinal projections and the contralateral cerebellum. Patients with this disorder 

produce mirror limb movements (Nirkko et al, 1997). The hippocampus of patients 

who have undergone uncal herniation due to raised intracranial pressure, display 

sprouting within the termination field of the entorhinal cortex (Grady et al, 1989). 

Reorganisation of the CNS is crucial if lost modalities such as speech and motor 

functions are to be returned after injury. Several studies have shown synaptic change, 

tracked electrophysiolgically, could contribute to functional recovery after traumatic 

brain injury and stroke (Lee and van Donkelaar, 1995; Ivanco and Greenough, 2000; 

Kempermann et al, 2000). The first study suggesting APOE genotype may modulate 

long-term plasticity after traumatic brain injury was carried out by studying clinical 

outcome, 6 months after traumatic brain injury. APOEz3 and s4 head injured
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individuals over a range of ages were recruited and assessed over a period of 6 

months following a traumatic brain injury. Initially, it appeared there was no genotype 

effect on outcome, however when the groups were broken down into age categories, 

it was found that the APOEz3 <15 years group exhibited significantly better clinical 

outcome compared to APOEzA carriers when controlled for severity of initial injury 

(Teasdale et al, 2000). This would suggest that the differences in outcome may be 

more related to genotype effects on plasticity and not age related effects, such as 

amyloid deposition.

1.8.7 A role for apoE in plasticity mechanisms in other human diseases

The vital role of apoE in the transport of lipids and cholesterol and the isoform 

specific differences in this role has implications for many other human diseases and 

disorders, particularly those which are primarily neurodegenerative disorders. 

Although a topic of some debate, it appears that multiple sclerosis (MS) may have a 

significant genetic component. Studies in the past have failed to detect any APOE 

genotype influence, until recently, with the advancement of MRI technology 

(Weatherby et al, 2000). A recent study of 83 MS patients revealed subjects with an 

e3/s4 genotype showed a greater T2-LL than patients with the e2/e3 genotype, 

supporting speculation on an APOE genotype influence on MS severity (Fazekas et 

al, 2000). The authors suggest this may be attributed to more extensive destruction or 

less efficient repair. It has also been shown that the frequency of the APOEzA allele is 

significantly higher in MS patients compared with a control group (P<0.05) and the 

rate of progression was significantly greater in APOEzA individuals (Hogh et al,

2000). Conversely, a study by Carlin et al (2000) highlighted that remyelination was 

defective in patients genotypically APOEz2. ApoE immunoreactivity was increased 

within demyelinated regions localised to macrophages and astrocytes. More severe 

white matter degeneration has been shown in AD associated with the APOEzA allele 

(Bronge et al, 1999). In subsequent studies the APOEzA genotype has been linked to 

several other neurodegenerative conditions, such as AIDS related neuropathy, 

diabetic neuropathy and motor neuron disease (MND) (Bedlack et al, 2000). 

Possession of an APOEzA allele in patients with MND results in rapid deterioration 

and a significantly lower age of onset. Average survival, from the onset of the disease
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to death, was not found to be statistically different in c4 individuals however, in 

clinical, terms this equates to a mean survival time of 36 months compared to 49 

months. The data concerning Huntington’s disease is less well defined but highlights, 

in contrast, a more rapid progression of the disease in APOEzl carriers and this was 

particularly noted in females (Kehoe et al, 1999). The reason for this adverse effect of 

s2 is unknown although may be related to estrogen levels. Parkinson’s disease (PD) is 

one of the most common neurodegenerative disorders manifesting itself in 1% of 

Western populations and therefore is a major economic burden. Several authors have 

investigated whether the APOEzA allele is associated with PD and Parkinson’s related 

dementia, considering that PD dementia possesses many of the neuropathological 

features of AD. PD patients show a trend for greater s4 allele frequency than control 

subjects, however dementia was not significantly greater in those individuals 

(Inzelberg et al, 1998; Oliveri et al, 1999). More recently it has been suggested that 

individuals have an increased susceptibility to sporadic PD when an APOEzA 

genotype is combined with a polymorphism of allele 1 of the alpha-synuclein promoter 

(Kruger et al, 1999). The APOEzA allele has also been shown to predispose patients 

to a greater degree of dopaminergic drug induced hallucinations (Inzelberg et al, 

2000).
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Aims of Thesis

The APOEzA allele confers an increased risk for the development of AD and more 

exaggerated neuropathology (plaque load and tangle density), when compared with 

individuals not in possession of an APOE e4 allele. The APOE s4 allele has also been 

shown to be associated with a poor outcome following brain injury. The introduction 

of this thesis, has highlighted a role for apoE in the modulation of the brains response 

to acute injury. However, there is evidence that apoE may play a role in long-term 

recovery and repair processes.

The aims of this thesis are to:

1. Establish a model of entorhinal cortex lesion using C57BL/6J wild-type mice and 

characterise the acute and chronic cellular and protein alterations following the 

injury (Chapter III).

2. Analyse APOE genotype influence on CNS plasticity, in a line of APOE transgenic 

mice, expressing human APOEzl or c4 alleles under the endogenous human 

promoter sequence following entorhinal cortex lesion (Chapter IV).

3. Analyse APOE genotype influence on CNS plasticity, in a line of APOE knockout 

and transgenic mice, expressing human APOEzl or s4 alleles under a GFAP 

promoter sequence following entorhinal cortex lesion (Chapter V).

4. Analyse APOE genotype influence on ageing in the brains, of a line of APOE 

knockout and transgenic mice expressing human APOEzl or s4 alleles under a 

GFAP promoter sequence (Chapter VI).

5. Establish an organotypic hippocampal slice culturing model and use this to 

characterise the sprouting response in hippocampal slices derived from C57BL/6J 

and APOE transgenic mice and analyse Herpes Simplex Virus as a potential vector 

for apoE gene delivery (Chapter VII).

6. Analyse microtubular binding of apoE E3 and apoE E4 protein and determine if 

there is an isoform specific difference (Chapter VIII).
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Chapter II 

Materials and Methods



2.1 Mice

2.1.1 Wild type C57 BL/6J mice

Male C57BL/6J mice were obtained from Harlan Olac and maintained in an animal 

unit at the University of Glasgow.

2.1.2 APOE transgenic mice on a human promoter

APOE e3 and s4 heterozygous transgenic mice were generated as previously 

described (Xu et al, 1996). Briefly, the coding and promoter sequences of human 

APOE were inserted into the genome of apoE knockout mice. The mice were 

backcrossed at least six times to C57BL/6J mice in the USA, before transportation to 

the UK and further backcrossing at Glaxo Wellcome. In the present study, APOE s3- 

437 and APOE e4-81 lines were used which carry two copies of the appropriate gene. 

These lines were selected as they were best matched for apoE levels. The mice were 

obtained from Glaxo Wellcome and maintained in an animal facility at the University of 

Glasgow.

2.1.3 APOE transgenic mice on a GFAP Promoter.

APOEzA and s4 heterozygous transgenic mice were generated as previously described 

(Sun et al, 1998). Briefly, the coding sequences of human APOE were inserted into 

the genome of B6/CBA mice. An exogenous glial promoter sequence was attached to 

the APOE DNA sequences, so expression is driven astrocytically. Integration of the 

transgene was determined by PCR and Southern blotting analysis. The mice were 

imported from Dr D. Holtzman, maintained and bred in an animal unit at the 

University of Glasgow. These mice were also employed in the in vitro studies used as 

7 day neonates.
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2.2 APOE Genotyping

2.2.1 Restriction Digest of Mouse Tissue

The genotype of transgenic animals was confirmed by PCR analysis (Nicoll et al, 

1995). Tail tip samples (carried out by Dr K. Horsburgh) were collected from each 

transgenic mouse aseptically and placed in DNA/RNA free tubes filled with sterile 

ethanol. The genotypes were then analysed at the Southern General Hospital (by 

Janice Stewart). DNA was isolated in an enzyme digest mix containing proteinase K 

overnight at 56°C. The samples were then incubated at 95°C for 10 mins to inactivate 

the proteinase K. 0.8pi of the target DNA was then added to 14.2pl master mix 

(containing deoxynucleotide bases, primers L3 and R3+ and Amplitaq Gold 

polymerase) (see appendix) and transferred to a thermal cycler (Techne GENIUS). 

Briefly the cycler progressed through a series of temperatures, 35°C (to denature the 

target DNA), 95°C (to anneal the primers) and 65°C (for new DNA synthesis). To the 

final PCR product, restriction enzyme was added (Hhal) and incubated overnight at 

37°C. This restriction enzyme cleaves at ‘GCGC’ sites on the DNA sequence (i.e. 

arginine residues) and therefore at positions 112 and 158 where the residue 

substitutions occur that are responsible for apoE isoform structural differences.

2.2.2 PCR Gel Electrophoresis

To 15pi of PCR product, 4pl of loading gel was added before loading the samples 

onto a gel for electrophoretic separation. A Hinf 1 marker was also loaded onto the 

gel as a DNA ladder. The gel was run at 200 volts for 40 mins. The electrode 

assembly was removed from the tank and carefully prised from between the glass 

plates. The gels were then incubated in ethidium bromide solution (lOmg/ml) for 4 

mins, the bands visualised on a ultra violet light box and photographic images 

collected (Figure 2.1).
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Figure 2.1 PCR analysis o f  APOE genotype from human brain tissue

2.3 Entorhinal Cortex Lesion

2.3.1 Surgery

All animals employed in these studies were approximately 12 weeks o f  age at the time 

o f  procedure and weighed approximately 25-30g in weight. Animals were fed on the 

same diet and housed under identical conditions. Anaesthesia was induced by a 

combination o f  3% halothane in 70% N20 /  30% 0 2. The animals were fixed in a 

K opf stereotaxic frame, with anaesthesia maintained at the above levels. Each animal 

was ventilated mechanically throughout the entire procedure. Body temperature was 

monitored by a rectal probe and regulated by a heat lamp to 37°C.

All surgical procedures were carried out under sterile conditions. A rostrocaudal 

incision was made above the right eye extending to the ear, revealing the cranium. 

The skull overlying lambda was drilled away, with the aid o f an operating microscope, 

to expose the occipital lobe and the dura removed. Ibotenic acid (8)(a-amino-3- 

hydroxy-5-isoazoleacetic acid (Sigma)) (lOmg/ml in phosphate buffered saline (PBS)) 

was injected using a Hamilton syringe. Co-ordinates for the injection site were 

determined from Bregma (AP 4.72mm; L 4.75mm; A 17° from vertical). The needle 

was lowered vertically 1.5mm through the cortex to the entorhinal region. A total 

volume o f  0.5pi o f  ibotenic acid was injected at a rate o f  0.1 pi/ min. The needle was 

left in place for a further 5 mins to allow diffusion through the tissue. Following the 

procedure the wound was sutured and 0.5ml o f  saline administered subcutaneously, to
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keep the animal hydrated throughout the recovery period. The animals recovered from 

anaesthesia in an incubator for 2 hours, and returned to the animal unit. Control 

animals (0 days) underwent an identical procedure but were terminated immediately 

after the surgery.

2.3.2 Processing of Tissue

Following the appropriate survival period, the animals were perfused transcardially 

under halothane anaesthesia with heparinised saline (lOmls), followed by buffered 4% 

paraformaldehyde (20mls). The brains were post-fixed in the skull for 24 hours, to 

prevent artefacts due to mechanical damage, removed and post-fixed for a further 2 

hours and processed for paraffin embedding. The brain was cut into two 3mm coronal 

blocks containing the occipital cortex for lesion assessment and the other, at the level 

of the lateral habenula, for visualisation of the hippocampus. The blocks were placed 

into plastic cassettes, dehydrated through a graded series of alcohols and cleared in 

xylene. This processing had been optimised previously. Following submersion of the 

cassettes in liquid paraffin for 24 hours at 60°C, the blocks were embedded in paraffin 

and left to harden at 4°C. 6pm coronal sections were cut on a microtome and 

collected onto polylysine coated slides.

2.3.3 Assessment of Lesion

2.3.3.1 Haematoxylin and Eosin Staining

Sections from the occipital cortex containing the entorhinal region were stained with 

haematoxylin and eosin to confirm correct needle placement and the presence of the 

lesion. Briefly, sections were dewaxed in histoclear, dehydrated in absolute alcohol 

and rinsed in water, before submersion in haematoxylin for a period of between 1-10 

mins. The sections were then rinsed in water and differentiated in acidic methylated 

alcohol (1% HC1). Following another rinse in water the sections were placed in Scot’s 

tap water substitute (STWS) for 1 min, rinsed again and placed in eosin (aqueous) 

for 3 mins. After a final wash in water the sections were dehydrated through a graded 

series of alcohols, cleared in histoclear and coverslips mounted with histomount.
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2.3.4 Immunohistochemistry

2.3.4.1 Single Labelling Immunohistochemistry

Paraffin sections were placed in an oven at 60°C for 15 mins, dewaxed in histoclear 

for 30 mins and dehydrated in absolute alcohol (2x10 mins). Endogenous peroxidase 

was eliminated by incubating the sections with 3% H2 O2  in methanol for 30 mins. 

Sections were washed in PBS (phosphate buffered saline), non-specific binding 

reduced using blocking agent (10% normal serum/ 2% bovine serum albumin (BSA) 

in PBS) for 1 hour and primary antibody was applied overnight at 4°C. 

Concentrations of antibodies applied are shown in Table 4. Sections were then 

incubated in biotinylated secondary antibody (1:100) for 1 hour and processed with a 

Vectastain ABC (avidin biotin complex) standard kit. Diaminobenzadine 

(DAB)(Vector) was employed as the chromagen in the visualisation step (Figure 2.2). 

The reaction was allowed to proceed for exactly 3 mins and the reaction stopped by 

submerging the sections in distilled water. The sections were then thoroughly washed 

in water before being dehydrated through a graded series of alcohols, cleared in 

histoclear and coverslipped. Negative controls were generated by omission of primary 

antibody (Figure 2.3). Optimal working dilutions were determined for each antibody.

2.3.4.2 Double Labelling Immunohistochemistry

The same basic method as above was applied. Following the DAB stage from the first 

antibody, blocking solution is then applied and the next primary antibody applied. The 

procedure continues by addition of the appropriate secondary antibody for the second 

primary antibody and ABC application for 1 hour. SG was employed as the second 

chromagen and the sections were incubated in this for exactly 3 mins. SG appears 

grey in colour microscopically.
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A  Primary antibody

Secondary antibody

Biotin 

Avidin 

☆  Peroxidase

Antigenic
Epitope

Add substrate for 
peroxidase i.e. DAB 
or SG

1. Primary antibody binds to antigen
2. Secondary antibody with biotin attached 

binds to the primary antibody
3. Biotinylated enzyme peroxidase and av idin 

form a complex (ABC)
4. ABC binds biotin on secondary antibody
5. Chromagen ie DAB used for visualisation

Figure 2.2 Diagram illustrating the chemical interactions involved in 

immunohistochemistry.
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Antibody

Cone'1 used for 

Immunohistochemistry

1. Primary antibody

2. Blocking serum

3. Secondary antibody

Source of primary 

antibody

Synaptophysin 1:200 1. Mouse monoclonal

2. Normal horse serum

3. Anti-mouse (horse)

Sigma

GAP-43 1:500 1. Mouse monoclonal

2. Normal horse serum

3. Anti-mouse (horse)

Sigma

MAP-2 1:750 1. Mouse monoclonal

2. Normal horse serum

3. Anti-mouse (horse)

Sigma

ApoE 1:5000 1. Goat polyclonal 

2 Normal horse serum 

3. Anti- goat (horse)

Chcmicon

ApoJ 1:50 1 Goat polyclonal

2. Normal horse serum

3. Anti- goat (horse)

Chemicon

GFAP 1:1000 1. Mouse monoclonal

2. Normal horse serum

3. Anti-mouse (horse)

Sigma

LRP

(Lipoprotein

receptor-related

protein)

1:1000 1 Rabbit polyclonal

2. Normal goat serum

3. Anti-rabbit (goat)

Gift:Dr D 

Strickland

LRP 1:1000 1 Rabbit polyclonal

2. Normal goat serum

3. Anti-rabbit (goat)

Gift : Dr J Herz

Tubulin 1:500 1. Mouse monoclonal

2. Normal horse serum

3. Anti-mouse (horse)

Sigma

mrf-1

(microglial 

response factor)

1:20 1. Rabbit polyclonal

2. Normal goat serum

3. Anti-rabbit (goat)

Gift : Dr S. Tanaka

Table 4 Data table illustrating information on the antibodies used in all studies.
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Figure 2.3 Illustrative example of a negative control for immunohistochemical 

staining. This was achieved by omission of the primary antibody acting as a control 

for non-specific staining.

2.3.4.3 Quantification o f  Immunohistochemistry

Multiple controls were carried out to ensure consistency of optical density 

measurement. Immunohistochemistry for each antibody was carried out on all sections 

in a series batch simultaneously to eliminate differences in the immunohistochemistry 

process. Relative optical density (ROD) values for immunostaining were measured 

using an M4 image analysis system (MCID) connected to a microscope. All 

measurements for a single antibody series were rigorously recorded in the dark, on the 

same day and at the same microscope light intensity, to eliminate light variation 

effects. Optical density readings were taken from the inner, middle and outer 

molecular layers (IML, MML, OML) of the dentate gyrus of both the ipsilateral and 

contralateral hippocampus using a 1cm2 sampling box. The box was placed randomly, 

six times within each layer (IML, MML and OML) and an average taken for each 

layer. The averages from each subject entered into a statistical program (Graphpad 

Prism) for analysis.

Density measurements were also taken from subcortical white matter regions to act as 

a control for intensity of immunohistochemical staining. ANOVA was also carried out 

on contralateral readings to ensure that staining was of an identical intensity in every 

section of a series.

64



2.3.5 Statistical Analysis

2.3.5.1 C57BL/6J mice
One way ANOVA was carried out on the contralateral hippocampal readings and the 

ipsilateral and contralateral readings were compared using a Student’s paired /-test. 

All data is represented graphically as the mean +/- standard error of the mean 

(S.E.M.).

2.3.5.2 APOE transgenic mice (human promoter)

One way ANOVA was carried out on the contralateral optical density readings and 

the percentage difference between the ipsilateral and contralateral readings was 

compared using a Student’s unpaired /-test. Bonferroni correction for multiple 

comparisons was carried out where necessary and is specified in the legend to specific 

graphs. All data is represented graphically as the mean +/- S.E.M.

2.3.5.3 APOE transgenic mice (GFAPpromoter)

ANOVAR was carried out on the groups and the genotypes compared using a 

posthoc Student’s unpaired /-test with Bonferroni correction for multiple 

comparisons. All data is represented graphically as the mean +/- S.E.M

2.3.5.4 Ageing study

ANOVAR was carried out on the data at 3 months of age and then at 1 year. The 

genotypes in each group were then compared using a Student’s unpaired /-test with 

Bonferroni correction for multiple comparison. All data is represented graphically as 

the mean +/- S.E.M.

2.3.6 Quantification of IML Width

The width of the inner molecular layer was measured in GAP-43 immunostained 

sections to give an indication of the sprouting index. Expansion of this layer is 

indicative of sprouting from the commissural-associational fibre pathway, an 

important source for reinnervation of the molecular layers (Anderson et al, 1998). 

The MCID analyser was calibrated to measure distance in millimetres using a stage 

graticule and measurements were taken from the ipsilateral and contralateral IML of 0 

day control animals and 90 day survival animals. ANOVAR was carried out on the
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contralateral readings to ensure no significant variance in width. In C57BL/6J mice 

the ipsilateral and contralateral IML width at day 90 post-ECL was compared using a 

Student’s unpaired /-test. The width of the IML in knockout and APOE s3 and c4 

transgenic mice was compared using a Student’s unpaired /-test with Bonferroni 

correction for multiple comparisons.

2.3.7 Western Blotting

2.3.7.1 Tissue Collection

The entorhinal cortex was lesioned in male C57BL/6J mice and the animals allowed to 

survive for periods of 0, 7 and 28 days (n= 5 per timepoint). The animals were culled 

by anaesthetic overdose and the brains removed. The ipsilateral and contralateral 

hippocampus was dissected out from each brain and rapidly frozen in liquid nitrogen.

2.3.7.2 Tissue Homogenisation and Protein Assay

The hippocampal tissue was weighed and a 5X volume of homogenisation buffer 

added to the eppendorf. Hippocampal homogenates were produced by 

homogenisation of the tissue with a polytron in a buffer (2.5mM Tris-HCl: pH6/ 3mM 

MgCL/ lOOmM NaCl). The samples were centrifuged for 15 mins (10,000 rpm) in a 

bench top centrifuge and the supernatant removed for protein assay. The protein 

content was determined using Bio-Rad protein assay reagent. Briefly, light absorbancy 

measurements from bovine serum albumin standards were determined in a 

spectrophotometer at a wavelength of 595nm (Table 5). The homogenate samples 

were then loaded into the spectrophotometer and absorbancy readings taken from 

these. Using linear regression analysis, the protein concentrations of each sample were 

determined (Figure 2.4). Appropriate volumes of H20  and Laemelli buffer were then 

added to the correct volume of homogenate to gain the appropriate protein 

concentration (lOpg/ml).

2.3.7.3 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

All gel apparatus was washed and cleaned in ethanol before construction. Spacers 

were placed between the glass plates and a tight seal was ensured before
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commencement. Resolving gel (10%) was poured gently between the glass plates and 

a thin layer o f 0.1 % SDS added on top before setting. After leaving to set for 1 hour, 

the SDS was poured off and the stacking gel poured between the plates. The combs 

were carefully added making sure no air bubbles formed between the teeth and gel. 

The stacker was allowed to set for 1V2 hours, the combs were removed and the wells 

rinsed with running buffer. Finally the reservoir was connected and filled with running 

buffer. The samples were boiled for 5mins and immediately placed on ice. 1 Opig of 

protein was then loaded into the wells using a Hamilton syringe and separated 

overnight at 12mA. A prestained molecular weight marker was included onto each gel 

for identification o f protein bands. Cross gel controls were introduced due to multiple 

gel running.

Table 5 Standard Curve Generation from BSA Samples

Volume BSA (pi) Volume Water (pi)

0 800

1 799

2 798

5 795

10 790

15 785

1.00-1
EcIO
o> 0.75-  io
2kO
c  0.50-coJQi_O
jg 0.25-  
<

0.00
150 5 10

Bovine Serum Albumin Content 
us/ml

Figure 2 .4 Standard curve for determining protein content o f  unknown samples.

2.3.7.4 Protein Transfer

Following electrophoresis, the gels were removed from between the plates and the 

stacking gel discarded. The gels were floated in transfer buffer (see appendix for
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recipe) and the polyvinylidene flouride membrane (PVDF) (Amersham Pharmacia) 

placed in methanol, whilst transfer apparatus was assembled. The membrane was 

finally equilibriated in water and sandwiched in the apparatus (Mesh, Sponge, Card, 

Gel, PVDF membrane, Card, Sponge, Mesh). The apparatus was submerged into the 

buffer filled transfer tank ensuring the gel was nearest the negative electrode. Proteins 

were then transferred for 3 hours at 75volts.

2.3.7.5 Immiinoblotting

Following transfer, the blots were placed overnight in blocking solution consisting o f 

Tris-buflfered saline containing 3% non-fat dried milk to reduce non-specific binding 

before incubation in primary antibody for 1 hour at 4°C (Table 6). The blots were then 

rinsed in T-TBS (6x5mins) (0.2% tween/ TBS) before incubation in secondary 

antibody (horseradish peroxidase conjugated anti-mouse (Promega) and anti-goat 

(SAPU) 1:1000 in 3% non-fat dried milk/TBS) for 1 hour on a shaker. After vigorous 

washing in TBS (6x5mins), the blots were then developed using ECL 

chemiluminescence detection and exposed to Fuji-RX film.

Antibody Concentration Used Purchased

Synaptophysin 1:100,000 Sigma

GAP-43 1:5000 Sigma

ApoE 1:1000 Chemicon

Tubulin 1:1000 Sigma

Table 6 Illustrating information on the antibody concentrations for immunoblotting.

2.3.7.6 Semi-Quantification o f  Protein Levels and Statistical Analysis 

Protein bands were assessed as relative optical density values using an M4 image 

analysis system (MCID). ANOVAR was carried out on the readings from the 

contralateral hippocampus. The ipsilateral and contralateral density readings were 

then compared using a Student’s paired t-test. In determining apoE protein 

expression, the protein bands were compared in APOEz3 and s4 transgenic mice 

using a Student’s unpaired /-test.
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2.3.7.7 Reprobing o f  Western Blots

Following immunohistochemistry for a single antibody the membranes were stripped 

using stripping agent (lOOmM mercaptoethanol/ 2% SDS/ 625mM Tris-HCl pH6.7 in 

water). The membranes were agitated in this solution for 30 mins at 50°C, following 

which they were placed in blocker to begin the immunoblotting steps again for a 

different antibody.

2.3.8 Silver Staining

2.3.8.1 Fink-Heimer Silver Staining o f  Degenerating Terminals

Fink-Heimer (Fink and Heimer, 1967) silver staining was employed to determine the 

degeneration product clearance within the lesioned hippocampus. This stain allows 

specific labelling of degenerating axon terminals. Paraffin sections awere initially 

dewaxed and dehydrated before pretreatment with 0.1% potassium permangate 

(KMnC>4 ) to produce a distinctive brown hue, following which they were incubated in 

decolourizing solution (1% hydroquinone/ 1% oxalic acid) until colourless in 

appearance. The tissue was then processed through a series of silver impregnation steps 

(0.5% uranyl nitrate (U0 2 (N0 3 )2 / 2.5% AgNCb) in which silver particles were 

deposited onto the tissue. Following a third impregnation step in ammonical silver 

nitrate, reducing agent (10% formalin/ 1% citric acid/ 95% alcohol) was then used to 

develop these silver particles. The sections were then dehydrated through a graded 

series of alcohols, cleared in histoclear and coverslips mounted.

2.3.8.2 Semi-Quantification o f  Silver Staining

Levels of silver labelled degeneration products within the hippocampus were assessed 

semi-quantitatively using a scoring method (0= no staining, 1= minimal, 2= moderate 

and 3= extensive) and differences between APOEzi and s4 mice compared using a 

Mann-Whitney test for comparing non-parametric data. The data is represented 

graphically using the median +/- standard deviation (S.D.)
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2.4 Organotypic Hippocampal Slice Culture

2.4.1 Preparation of Hippocampal Slices

2.4.1.1 Preparation o f  Cell Wells

All procedures are carried out under aseptic conditions, in a culture cabinet, unless 

otherwise stated. Cell culture dishes were prepared approximately an hour before 

culturing the hippocampal slices to allow the medium to attain the correct 

temperature. Briefly, membrane inserts (0.4pm pore size, Becton Dickinson) were 

inserted into the culture dish wells using only four wells per plate to avoid 

contamination. 1ml of culture medium consisting of 96% minimum essential medium 

with balanced salt solution (GIBCO), 6.5mg/ml glucose, penicillin/streptomycin (50 

U/ml), glutamax (0.5%) and the serum substitute TCM (final concentration 2%; ICN 

Biomedicals) was added to each cell well between the insert and culture well (derived 

from that of Teter et al, 1999). This interface method was derived from that of 

Stoppini et al (1991), in which the slice is not bathed in medium but forms an 

interface with the membrane insert which being in contact with the culture medium 

allows diffusion of nutrients. The prepared plates were then transferred to an 

incubator to equilibriate to the desired temperature before culturing commenced (5% 

CO 2 / 37°C).

2.4.1.2 Tissue Harvesting

Mice were derived from a breeding colony of C57BL/6J or GFAP transgenic mice 

(knockout v e3 v s4) maintained in an animal unit in the University of Glasgow. Male, 

7 day old neonatal mouse pups were anaesthetised by intra-peritoneal injection of 

euthatal and their brains removed rapidly using curved forceps. Tail tips were 

collected from the pups for APOE genotyping. The cerebellum and forebrain were 

removed and the brain adhered, forebrain down, onto a vibratome stage and fixed into 

a vibraslicer. The tissue was then submerged in ice cold Geys balanced salt solution 

(Life Technologies) for slides and oxygenated using a pipe connected to an oxygen 

cylinder. The reduced temperature and oxygenation kept the slices living until fully 

cultured. 300pm hippocampal slices were collected into a petri dish on ice, containing 

ice cold, oxygenated Geys solution. Approximately 8 slices were collected from each 

brain.
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2.4.1.3 Culturing o f  Hippocampal Slices

The excised hippocampi were then transported to the clean hood and placed onto a 

black surface in the petri dish for visualisation. A sterile spatula was then used to 

retrieve a slice from the petri dish and placed into a cell well by washing it off with a 

drop of Geys salt solution using a Pasteur pipette. The slice was then orientated 

within the cell well and the excess Geys medium surrounding the slice removed using 

a pipette. Two slices were placed in each cell well. The plates were then returned to 

the incubator. The medium was changed every 3 DIV (days in vitro) for the desired 

culture period. Cultures were maintained for 7 or 18 DIV in C57BL/6J studies 

(n=5/timepoint) and in transgenic studies (n=8/timepoint).

Following the desired culture period, the medium was removed and the slices 

submersion fixed in 4% paraformaldehyde for 2 hours, at which point the slices float 

from their membrane. The fixative was then removed, phosphate buffer added and the 

tissue stored at 4°C.

2.4.2 Hippocampal Slice Immunohistochemistry

2.4.2.1 Immunohistochemistry

The slices were transferred into a 24 welled culture dish (1 slice/ well) and 

permeabilised by submersion in PBS containing 0.2% Triton X-100 for 1 hour. Non

specific binding was eliminated by applying blocking solution (10% normal serum/ 2% 

BSA in PBS) and the tissue was incubated overnight in primary antibody (made in 

blocking serum) (Table 7). Following 3X5 min rinses in PBS, biotinylated secondary 

antibody was applied for 1 hour and processed with a Vectastain ABC standard kit. 

Diaminobenzadine was employed as the chromagen in the visualisation step. The 

slices were then dehydrated through a graded series of alcohols (30 mins in each of 

70%, 90%, 100% X2), cleared in histoclear for 10 mins, mounted onto slides and 

coverslipped.
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Antibody Concentration Used 1. Primary antibody

2. Blocking serum

3. Secondary antibody

Primary

antibody

supplied

Synaptophysin 1:2000 1. Mouse monoclonal

2. Normal horse serum

3. Anti-mouse

Sigma

GAP-43 1:2000 1 Mouse monoclonal

2. Normal horse serum

3. Anti-mouse

Sigma

MAP-2 1:5000 1. Mouse monoclonal

2. Normal horse serum

3. Anti-mouse

Sigma

ApoE 1:1000 1 Goat polyclonal

2. Normal horse serum

3. Anti-goat

Chemicon

ApoJ 1:1000 1. Goat polyclonal

2. Normal horse serum

3. Anti-goat

Chemicon

Table 7 Table showing concentration o f antibodies used in hippocampal s ices

2.4.2.2 Quantification o f Immunohistochemistry and Statistical Analysis 

Relative optical density (ROD) values for immunostaining were measured using an 

image analyser (MCID) connected to a microscope. All controls were applied as for 

immunohistochemistry on sections. Optical density readings were collected from the 

dentate molecular layers and from CA1 pyramidal cell layer to ensure consistency of 

immunostaining. Ten readings were collected randomly across the expanse o f  the 

molecular layer using a 1cm2 sampling box, and an average o f  the ten readings taken. 

In C57BL6 derived tissue, optical density readings were compared in the 7 and 18 day 

slices using a Student’s unpaired t-test. In the tissue derived from the transgenic 

mouse lines, optical density measurements were compared in APOE s3, e4 and 

knock-out animals also using ANOVAR with a posthoc Student’s unpaired /-test with 

Bonferroni correction for multiple comparisons.
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2.4.3 Herpes Simplex Virus 1716 as a Viral Vector

2.4.3.1 Production o f  Genetically Modified Herpes Simplex Virus 1716

The genetically modified virus employed in this study was produced in the laboratory 

of Prof Moira Brown (Southern General Hospital). Briefly the virus was made by 

targeting the ICP34.5 protein which is a specific determinant of virulence. ICP34.5 

null mutants are avirulent unlike the wildtype virus and may only replicate in cells 

actively undergoing proliferation/ differentiation. The virus employed in this study 

possesses a green fluorescent protein (GFP) reporter gene that results in the 

expression of GFP if the virus is replicated within the cell. Other reporter genes have 

also been used, including luciferase and p-galactosidase, although not employed in 

this study.

2.4.3.2 Addition o f Herpes Simplex Virus 1716 to Hippocampal Slice Preparations 

Hippocampal slices were prepared from C57BL/6J wild-type mice and APOEz$ 

transgenic mice as previously described and transported to the Neurovirology Unit at 

the Southern General Hospital. All virus handling was carried out within a category 2 

culture hood. Following virus use, all instruments were submerged in detergent and 

the culture hood exposed to U. V. radiation for at least half an hour to exterminate any 

stray virus particles. 106 and 105 virus particles were diluted in culture medium and 

added directly onto the slices as a single dose of lOpl of the mixture pipetted directly 

onto the surface of the slices. The slices were then returned to an incubator and 

maintained for a period of 3, 7, 12 or 18 DIV with changing of the medium every 3 

DIV. Control cases received no infection by HSV1716 virus. GFP labelled wild-type 

virus was also employed.

2.4.3.3 Fluorescence Microscopy

Following the appropriate survival period, the slices were submersion fixed in 4% 

paraformaldehyde for 2 hours. The slices were mounted onto glass slides and 

coverslipped, submerged in hardening medium or the slices were removed unfixed, 

attached to the membrane and visualised without the addition of a coverslip. A 

fluorescence microscope was used to visualise the GFP and the image captured using 

a camera attached to the microscope.
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2.5 Microtubule Binding

2.5.1 Preparation of Lipidated ApoE

Human plasma samples were obtained from human APOE s3/3 and s4/4 donors, 

pooled and processed to isolate high density lipoprotein (HDL) with the appropriate 

apoE isoform attached (in collaboration with Dr Muriel Caslake, Dept of Pathological 

Biochemistry, Glasgow Royal Infirmary). To obtain HDL bound apoE, the plasma 

samples were cushioned with potassium bromide (KBr) solution (density 1.063g/ml) 

and centrifuged overnight at 39,000 rpm at 15°C. The intermediate and low-density 

lipoprotein component (IDL, LDL) were discarded (1.006-1.063g/ml) KBr added 

again and centrifuged for a further 36 hours to give HDL at a density of 1.063- 

1.21g/ml. All samples were then dialysed and concentrated. The apoE concentration 

of each of these samples was confirmed using an ELISA and the HDL and cholesterol 

concentrations.

2.5.2 Microtubule Associated Protein Assay

2.5.2.1 Microtubule Assembly

Tubulin protein is reconstituted in 210pl of tubulin dilution buffer containing GTP 

solution (5mg/ml), divided into lOpl aliquots and stored at -70°C for future use. An 

aliquot of this tubulin was thawed out and transferred to ice adding 2.5pl of 

microtubule cushion buffer and incubated at 35°C for exactly 20 mins. 180jul of 

tubulin dilution buffer and 40pM of taxol (stabilises microtubules) were mixed 

together and incubated at 35°C. 180pl of this solution was then added to the 

polymerised tubulin and mixed thoroughly but gently. The microtubules were now at 

a concentration of lx l0 12/ml and 5-10pm in length.

2.5.2.2 Microtubule Binding Activity

A preliminary experiment to determine if a protein of interest shows microtubule 

binding activity is described (Table 8).
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Eppendorf Protein Microtubules (pi) TDB/taxol solution 

(ftO

1 MAP-2 (4pl) 20 26

2 BSA (1 5pl) 20 28.5

3 0 20 30

4 MAP-2 (4pl) 0 46

5 BSA (1.5pl) 0 48.5

6 Test Protein

(ApoE):5pg/ml/20pg/

ml

20 50pl final volume

Table 8 Initial test for microtubule binding activity

These reactions were then left at room temperature for 20 mins to attain equilibrium. 

1 OOpl o f cushion buffer was placed in eight ultracentrifuge tubes at room temperature 

and 20pM  taxol added to each tube. The reaction product was carefully pipetted on 

top o f the corresponding cushion. This mixture was then centrifuged at 48,000 rpm 

(100,000 xg) at room temperature for 20 mins.

The supernatant was removed and a volume o f  50pl removed, equal to the original 

reaction volume. To this, an equal volume o f 2xSDS gel loading buffer was added 

(lOOmM Tris pH 6.8, 5% SDS, 10% beta-mercaptoethanol, 20% glycerol, 0.2% 

bromophenol blue). The pellet fraction can then simply be resuspended in lxSDS 

sample buffer. The supernatant and pellet fractions were then separated on an SDS- 

PAGE gel (see Western Blotting protocol), transferred and visualised using a 

polyclonal antibody to apoE (1:1000) (with goat HRP secondary 1:1000) and 

detected using an enhanced chemiluminescence detection system (ECL). The presence 

o f microtubules in the pellet fraction and absence in the supernatant was confirmed 

using tubulin immunohistochemistry (1:1000).

75



2.5.2.3 Analysis o f  Microtubular Binding

Multiple microtubule preparations containing either apoE E3/HDL or apoE E4/HDL 

at concentrations of 5pg/ml and 20pg/ml were then run on a gel as described and 

apoE immunohistochemistry performed. For analysis purposes it was initially 

determined whether apoE was present in the supernatant or pellet fraction. Any 

protein that is microtubule bound should be present within the pellet fraction. Any 

unbound protein remains within the supernatant fraction. Protein bands were then 

analysed as relative optical density values using a 1cm2 sampling box. Optical density 

values from the pellet fraction were then compared between apoE E3 and apoE E4 

containing samples using a Student’s unpaired t-test.

2.5.3 Fluorescent Microtubule Binding

2.5.3.1 Preparation ofTaxol Stabilized Fluorescent Microtubules 

The correct fluorescence intensity of the microtubule assemblies should be determined 

before beginning this experiment. All components of this kit were stored at -70°C. To 

obtain fluorescent microtubules with a final labelling stoichiometry of 0.33 labels per 

tubulin heterodimer, one aliquot of rhodamine labelled tubulin (2pi) was thawed and 

placed on ice and was diluted in 4pl of unlabelled tubulin. This solution was divided 

into 2pl aliquots and frozen for future use. 20pl of microtubule cushion buffer and 

40pl of general tubulin buffer were then added together to produce a solution called 

polymerisation buffer and this solution was placed on ice. 2pl of the polymerisation 

buffer was then added to the 0.33 tubulin and incubated at 35°C for 20 mins. While 

the tubulin was polymerising 500pl of general tubulin buffer was placed at 35°C and 

after 15 mins at this temperature 5pi of taxol was added (20pM). This solution was 

stored at room temperature and labelled taxol/microtubule buffer. The polymerised 

tubulin was removed from the incubator and immediately had lOOpl of 

taxol/microtubule buffer added mixing thoroughly but gently, using a Pasteur pipette. 

This preparation should now contain a population of taxol stabilized microtubules that 

average 6.5pm in length at a concentration of 7xl010/ml. The microtubules can then 

be visualised microscopically by diluting lp l of the microtubule preparation in lOpl of 

taxol/microtubule buffer containing 20pl of antifade solution. This preparation is then 

smeared onto a slide, coverslipped and visualised using fluorescence microscopy.
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2.5.3.2 Addition o f  Lipidated Human ApoE E3 and E4 to Microtubule Preparations 

After preparing a population of stabilised microtubules, the solution was split so the 

apoE isoforms were being tested in a homogenous population of microtubules. This 

solution was incubated with HDL lipidated apoE E3 or E4 derived from human CSF 

samples at a concentration of 5pg/ml or 30jug/ml for 20 mins at room temperature to 

allow binding to occur.

2.5.3.3 Immunohistochemistry on Microtubule Preparations

An apoE polyclonal antibody was added to the mixture at a concentration of 1:100 

and incubated for 30 mins and the goat secondary antibody applied for 30 mins 

proceeding this (1:100). Avidin D fluorescein was then added to the preparation for 

30 mins at a concentration of 1:100. To visualise microscopically lp l of this final 

solution was dissolved in lOpl of taxol/microtubule buffer and lOpl of antifade and 

smeared onto a microscopy slide. The microtubules appear red (rhodamine) and the 

bound apoE appears green (fluorescein).

2.5.3.4 Confocal Image Analysis

Microtubules with bound apoE were analysed qualitatively using confocal 

microscopy.
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Chapter III

Investigation of ApoE in Relation to Degeneration/ Regeneration Using a 

Mouse Model of Entorhinal Cortex Lesion
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3.1 Introduction
ApoE has been shown to play a role in acute brain injury in humans and in animal 

models of brain injury (Horsburgh et al, 1996, 1999). However, the role of this 

protein in chronic brain injury is less well understood. At the outset of this thesis, no 

models of chronic brain injury had been established. However, in rats, the entorhinal 

cortex lesion model was well characterised as a model of degeneration and 

regeneration (Cotman et al, 1975, 1976; Steward and Vinsant, 1983). It was realised 

that following a suitable recovery period, certain fibre systems were capable of 

sprouting to compensate for the primary deafferentation (Steward and Vinsant et al, 

1976, 1983). The hypothesis in this study was that apoE would be upregulated post- 

ECL and be associated with the plasticity response at long-term survival periods.

3.2 Aims
(1) to establish a model of hippocampal degeneration and regeneration by entorhinal 

cortex lesion (ECL)

(2) to define temporal alterations in apoE and related proteins after ECL

3.3 Materials and Methods
3.3.1 Entorhinal cortex lesion

The entorhinal cortex was lesioned using male C57BL/6J mice (12 weeks old, 

weighing approximately 30g) (as described in chapter II). The mice were allowed to 

survive of 1, 3, 7, 28 or 90 days (n=8 per timepoint). Control animals underwent an 

identical procedure but were terminated immediately after the procedure. Sections 

from the entorhinal cortex were histologically stained using haematoxylin and eosin to 

confirm lesion placement. Immunohistochemistry for synaptophysin, GAP-43, apoE, 

apoJ, LRP, MAP-2, GFAP and mrf-1 was performed on hippocampal sections. 

Double labelling was also performed to determine cellular localisation of apoE and 

apoJ. Fink Heimer silver staining was carried out to assess terminal degeneration 

products and to determine a time-course for clearance. I ML width was measured in 

GAP-43 sections and analysed as outlined in chapter II.
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In a separate group, mice underwent ECL to generate tissue for Western blotting 

(n=5/ timepoint). Following the appropriate survival periods of 0, 7 and 28 days the 

ipsilateral and contralateral hippocampus were harvested and frozen in liquid 

nitrogen. 1 Opg of protein was separated by gel electrophoresis and immunoblotting 

for synaptophysin, GAP-43 and apoE was carried out.

3.3.2 Quantification of immunohistochemistry and statistical analysis

Relative optical density values for immunostaining were collected from the inner, 

middle and outer molecular layers from both the ipsilateral and contralateral 

hippocampus using an M4 image analysis system connected to a microscope. Six 

optical density readings were collected from each layer using a 1cm2 sampling box 

and an average taken. One way analysis of variance (ANOVA) was carried out on the 

contralateral hippocampal readings and the ipsilateral and contralateral readings 

compared using a Student’s paired Mest. Readings were taken from a reference area 

to ensure consistency of staining. Western blots were also analysed by collecting 

optical density measurements. Data is represented graphically using the mean 

+/- S.E.M. (standard error of the mean).
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3.4 Results

3.4.1 Characterisation of a mouse model of entorhinal cortex lesion

3.4.1.1 Setting up the model: technical considerations

The C57BL/6J mouse strain was chosen because it is the background strain of the 

transgenic lines to be employed in the following studies. Primarily, the method to 

lesion the cortex was considered. In rats, a number of methods were available 

including aspiration and electrolysis. Pilot studies were initially carried out to 

determine the stereotaxic placement of the injection. Precise stereotaxic co-ordinates 

were determined from the mouse brain atlas and transposed onto the surface of the 

skull. The final location for the injection was chosen on the basis that it was a site 

which would not incorporate the hippocampus itself when the lesion was fully 

developed and the entorhinal cortex is at its largest in size in a coronal view. The 

concentration of ibotenic acid employed was determined from a study by Cho and 

Jaffard (1995). Differing amounts of ibotenic acid were injected into the brain (0.5pi 

and 1 pi) to produce the optimal lesion.

Concentration curves were generated for all antibodies employed in this study and the 

dilution chosen which optimally displayed the protein alterations. Synaptophysin (a 

synaptic vesicle marker) and GAP-43 (presynaptic membrane protein also found on 

growth cones) were chosen to assess the temporal profile of degeneration and 

regeneration because they would most accurately highlight not only synaptic loss and 

fibre degeneration respectively, but also synaptogenesis and fibre sprouting. These 

antibodies had been employed and validated in previous rat studies of CNS plasticity. 

When the pilot tissue was stained with these antibodies they accurately reflected 

degeneration and reinnervation within the molecular layers of the dentate gyrus. The 

MAP-2 antibody was chosen to highlight cytoskeletal changes and was included 

because it would be relevant in the future studies of apoE genotype and mictrotubule 

interaction.
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3.4.1.2 Lesion assessment

Haematoxylin and eosin staining was used to assess lesion placement within the 

entorhinal cortex. The lesion appeared as an area o f pallor, engulfing the entire 

entorhinal region in which all cell types were pyknotic in appearance (Figure 3.1).

Lesion

Injection
ite

• s•>

Figure 3.1 Entorhinal cortex lesion

Illustrative example o f the entorhinal cortex lesion as shown in haematoxylin and 

eosin histologically stained sections. The lesion was induced by intracortical injection 

o f ibotenic acid at specific stereotactic co-ordinates. This produces excitotoxic cell 

death and a change in pallor within the cortex. This pattern o f staining is typical o f 

that produced throughout the studies regardless o f genotype.

More sections were taken rostral to the injection site and histologically stained to 

ensure the lesion did not directly involve the hippocampus. If  no visible lesion was 

apparent, the animal was excluded from the study although this was extremely rare.
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3.4.2 Temporal Profile of Degeneration and Reinnervation

3.4.2.1 Alterations in synaptophysin immunoreactivity

Synaptophysin immunoreactivity displayed a time-dependent loss and increases in 

synapse density within the hippocampus following injury. Synaptophysin 

immunoreactivity in unlesioned animals displayed a regular dense pattern of staining 

throughout all regions of the hippocampus. The molecular layers take on a trilaminar 

pattern with the inner staining most intensely. After ECL, synaptic alterations were 

most apparent within the MML and OML with very few alterations within the I ML. 

Synaptophysin immunoreactivity in the MML decreased gradually and at day 7 the 

ipsilateral MML showed a significant decrease in staining when compared to the 

contralateral hippocampus (p<0.0001). Maximal synaptic loss was achieved by day 28 

post-ECL (p<0.0001) where levels were approximately 40% of control levels (Figure

3.2 and 3.4). At day 90 synaptophysin immunoreactivity in the ipsilateral MML had 

returned towards baseline levels and was not significantly different to the contralateral 

hippocampus. The optical density was approximately 80% of control levels at this 

time. Synaptic decline within the OML was not observed until day 28, when the 

ipsilateral hippocampus displayed a slight decrease compared to the contralateral side 

(p<0.05). At 90 days post-ECL the ipsilateral hippocampus staining had increased and 

was not significantly different to that in the contralateral hippocampus. Analysis of 

variance on the contralateral hippocampal density measurements revealed no 

statistically significant variance and therefore all significant changes observed in the 

paired r-tests were attributed to alterations in the ipsilateral hippocampus.

Western blotting data revealed that synaptophysin levels were similar in the ipsilateral 

and contralateral hippocampus. At day 7 synaptophysin levels had decreased by 25% 

in the ipsilateral hippocampus (p<0.01) (Figure 3.5). By day 28 synaptophysin 

immunoreactivity had increased within the ipsilateral hippocampus and was 

approximately 25% greater than baseline control values. These data did not accurately 

reflect alterations within the small discrete regions of the molecular layers. These data 

highlights the inability Western blotting to analyse small localised alterations of 

proteins.
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3.4.2.2 Alterations in growth associated protein-43 (GAP-43) immunoreactivity

GAP-43 immunoreactivity displayed a time-dependent loss and gain of synapses 

within the hippocampus. In unlesioned control animals, GAP-43 labelled the 

hippocampus intensely compared to other brain regions. The I ML was most intensely 

stained, with the outer two thirds stained equally. The most significant alterations 

occurred within the outer two thirds of the molecular layer. Within the MML fibre 

density progressively decreased and maximal fibre loss was achieved at day 7 post- 

ECL, where GAP-43 levels were found to be approximately 25% of control levels and 

40% of contralateral levels (p<0.01) (Figure 3.3 and 3.4). At day 90 post-ECL, GAP- 

43 immunoreactivity increased towards baseline levels and there was no significant 

difference between the ipsilateral and contralateral hippocampus. GAP-43 levels at 

this time were approximately 70% of control values. The OML exhibited a similar 

pattern of alterations to the MML but were delayed in comparison. At day 90 post- 

ECL ipsilateral hippocampal GAP-43 staining had increased and was not significantly 

different to that in the contralateral hippocampus. The IML did not exhibit any loss of 

fibre density, but at day 90 post-ECL fibre density increased and was significantly 

greater than that of the contralateral hippocampus (p<0.05). Analysis of variance on 

the contralateral hippocampal density measurements revealed no statistically 

significant variance and therefore all significant changes observed in the paired /-tests 

were attributed to alterations in the ipsilateral hippocampus.

Western blotting data revealed GAP-43 levels were similar in the ipsilateral and 

contralateral hippocampus. At day 7, GAP-43 levels had decreased by 40% in the 

ipsilateral hippocampus compared to the contralateral hippocampus (p<0.01) (Figure 

3.5). At day 28, GAP-43 immunoreactivity had increased within the ipsilateral 

hippocampus and was approximately 25% greater than baseline control values. These 

data did not accurately reflect alterations within the small discrete regions of the 

molecular layers and are more a representation of GAP-43 behaviour within the entire 

hippocampus.
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Figure 3.2 Quantification of synaptophysin immunoreactivity within the inner, middle 
and outer molecular layers (IML, MML, OML) of the hippocampal dentate gyrus at 
0, 1, 3, 7, 28 and 90 days post-lesion measured as relative optical density values. The 
ipsilateral and contralateral optical density measurements were compared using a 
Student’s paired /-test. ***p<0.0001 and *p<0.05
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Figure 3.3 Quantification of GAP-43 immunoreactivity within the inner, middle and 
outer molecular layers (IML, MML, OML) of the hippocampal dentate gyrus at 0, 1, 
3, 7, 28 and 90 days post-lesion measured as relative optical density values. The 
ipsilateral and contralateral optical density measurements were compared using a 
Student’s paired t-test. **p<0.01 and *p<0.05
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Synaptophysin GAP-43

90 day 90 day

Figure 3 4 Degeneration and regeneration post-ECL

Illustrative examples o f  ipsilateral synaptophysin and GAP-43 immunoreactivity at 0, 

7 and 90 days post-ECL within the hippocampal dentate gyrus. Contralateral 

immunoreactivity (not shown) remained relatively unchanged post-ECL and is similar 

to that shown in the 0 day control illustrations. The arrows indicate the regions 

affected by the lesion. x50 magnification
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3.4.2.3 IML width alterations post-ECL

The IML width was measured at days 0 and 90 post-ECL in GAP-43 immunostained 

sections to determine if sprouting from the commissural-associational fibres had 

occurred. In 0 day control animals the width of the IML was similar in the ipsilateral 

and contralateral hippocampus (55pm). At day 90 post-ECL the width of the 

ipsilateral IML had expanded by approximately 30% compared to the contralateral 

IML (90pm) (p<0.0001) (Figure 3.6).

100

H H I Ipsilateral 

I I Contralateral

0 90

Survival Time (days)

Figure 3.6 Quantification of the width of the inner molecular layer (IML) of the 

dentate gyrus as assessed in GAP-43 immunostained section. Expansion of this layer 

gives an indication of the sprouting index from the commissural-associational fibre 

pathway. The ipsilateral and contralateral IML width was compared using a Student’s 

paired t-test. ***p<0.0001
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3.4.3 Apolipoprotein Response to Injury

3.4.3.1 Apolipoprotein E

Cellular immunoreactivity

In unlesioned control animals only faint neuropil staining was present and was similar 

within both the ipsilateral and contralateral hippocampus. No neuronal cell body 

staining was present at any time. At day 7 post-ECL, intense cellular apoE 

immunoreactivity was noted which was exclusively confined to cells that had the 

morphological appearance of glia (Figure 3.9). At day 28 post-ECL, very little cellular 

apoE immunoreactivity was evident. No cellular immunostaining was present by day 

90 post-ECL. The contralateral hippocampus exhibited no increase in glial 

immunoreactivity. Labelling with GFAP (astrocytes) and mrf-1 (microglia), indicated 

a marked astrocytic and microglial proliferation response within the injured 

hippocampus. Double labelling of adjacent sections at day 7 post-ECL with GFAP 

and apoE confirmed that apoE was localised to some GFAP-positive astrocytes. 

Double labelling with apoE and mrf-1 indicated localisation of apoE in microglia 

(Figure 3.10).

Neuropil immunoreactivity

Alterations in neuropil apoE immunoreactivity were measured within the molecular 

layers as relative optical density values. By day 1 post-ECL, apoE immunoreactivity 

increased within the MML and OML of the ipsilateral hippocampus by approximately 

20% (p<0.05 and p<0.01 respectively) compared to the contralateral hippocampus 

(Figure 3.7 and 3.9). Levels remained relatively elevated within these layers compared 

to control values, however the contralateral hippocampal apoE levels increased also 

so there was no statistically significant difference between the ipsilateral and 

contralateral hippocampus. At day 28, apoE immunoreactivity had declined to below 

baseline levels in all layers. At day 90 post-ECL, only within the OML neuropil, apoE 

had increased to the highest levels observed at any time-point. At that time apoE 

immunoreactivity had increased to approximately 40% above baseline levels. This was 

significantly different to the immunoreactivity in the contralateral hippocampus 

(p<0.0001). ApoE increased within the IML at day 7 post-ECL to approximately
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20% above baseline levels and then declined to below baseline levels by day 28. 

ANOVA revealed variance in both hemispheres. Contralateral apoE may be elevated 

slightly because a small percentage of entorhinal fibres project contralaterally.

Western blotting data revealed apoE levels were similar in the ipsilateral and 

contralateral hippocampus. At day 7 GAP-43 levels had increased 4 fold in the 

ipsilateral hippocampus and was significantly greater than that of the contralateral 

hippocampus (p<0.01) (Figure 3.5). At day 28 apoE levels still remained elevated. 

These data did not accurately reflect alterations within the small discrete regions of 

the molecular layers and are more a representation of apoE behaviour within the 

entire hippocampus. This data also highlights how inefficient Western blotting 

performs in the analysis of small localised alterations.

3.4.3.2 Apolipoprotein J

Cellular immunoreactivity

In unlesioned control animals, neuropil immunoreactivity was faint and did not 

significantly differ from that observed in the contralateral hippocampus. Light apoJ 

neuronal immunoreactivity was evident, but was similar in the ipsilateral and 

contralateral hippocampus. At day 7 post-ECL, the MML and OML were densely 

populated with apoJ-immunopositive cells with the morphological appearance of glia 

(Figure 3.9). At day 28 post-ECL, these cells remained intensely immunolabelled, 

however by day 90 no glial cell immunoreactivity was evident. Double labelling of 

sections from 7 day survival subjects with apoJ and GFAP confirmed apoJ was 

localised predominantly to GFAP-positive astrocytes. There were no additional cells, 

which displayed apoJ immunoreactivity and double labelling of sections with apoJ and 

mrf-1 indicated that very few microglia were apoJ immunopositive (Figure 3.10).

Neuropil immunoreactivity

Neuropil alterations were also evident for apoJ. Immunostaining within the MML and 

OML increased by approximately 20% at day 3 post-ECL, in the ipsilateral 

hippocampus compared to the contralateral hippocampus (p<0.05) (Figure 3.8 and 

3.9). Immunoreactivity declined thereafter, towards or below baseline levels at day 90 

post-ECL except within the OML, in which at day 90, apoJ immunoreactivity was
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dramatically increased to 40% above control levels within the ipsilateral hippocampus 

and this was significantly greater than that of the contralateral hippocampus 

(p<0.0001). ApoJ immunoreactivity did not significantly alter except that at day 90 

post-ECL, intensity declined and was approximately 50% of control levels. Analysis 

of variance revealed no significant variance in the hippocampal immunoreactivity.
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Figure 3.7 Quantification of neuropil apoE immunoreactivity in the inner, middle and 
outer (IML, MML, OML) molecular layers of the hippocampal dentate gyrus at 0, 1, 
3, 7, 28 and 90 days post-lesion measured as relative optical density values. ApoE 
immunoreactivity in the ipsilateral and contralateral hippocampus was compared using 
a Student’s paired t-test. ***p<0.0001, **p<0.01 and *p<0.05
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Figure 3.8 Quantification of neuropil apoJ immunoreactivity in the inner, middle and 
outer (IML, MML, OML) molecular layers of the hippocampal dentate gyrus at 0, 1, 
3, 7, 28 and 90 days post-lesion measured as relative optical density values. ApoJ 
immunoreactivity in the ipsilateral and contralateral hippocampus was compared using 
a Student’s paired (-test. ***p<0.0001 and *p<0.05
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Figure 3 9 Increased apolipoprotein E and apolipoprotein J  post-ECL

Illustrative examples o f apoE and apoJ immunoreactivity in the ipsilateral 

hippocampus at day 0, 7 and 90 post-ECL. Increased glial and neuropil 

immunoreactivity is evident at day 7 post-ECL. In contrast, at day 90 post-ECL only 

intense neuropil immunoreactivity is evident. xlOO magnification
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Figure 3 10 Cellular localisation of apoE and apoJ

(1) Illustrative examples o f astrocyte (GFAP) and microglial (mrf-1) proliferation 

post-ECL in the contralateral (a,c) and ipsilateral (b,d) respectively. x25 magnification 

(microglia black arrows and astrocytes red arrows)

9 6



3.4.4 Cytoskeletal Alterations Post-Lesion

3.4.4.1 Alterations in MAP-2 immunoreactivity

In unlesioned control animals, MAP-2 characteristically labelled the soma of neurons 

and the associated dendritic networks most intensely. This resulted in the molecular 

layers of the dentate gyrus being heavily labelled but of a similar intensity across all 

molecular layers. Over days 1 and 3 post-ECL, MAP-2 immunoreactivity increased in 

a stepwise fashion in increments of 10% within all layers. This was also observed 

contralaterally. At days 7 and 28 post-ECL, MAP-2 immunoreactivity decreased 

within the ipsilateral MML and was significantly different to the contralateral 

immunoreactivity (p<0.0001). At day 90 post-ECL, MAP-2 immunoreactivity 

increased greatly within both the ipsilateral and contralateral hippocampus where 

immunoreactivity was approximately 20% greater than baseline levels. Similarly to the 

MML, MAP-2 immunoreactivity increased within the OML at day 90 post-ECL, but 

was not significantly different to the contralateral side (Figure 3.11 and 3.12). 

Analysis of variance on the contralateral hippocampal optical density values revealed 

statistically significant variance in these readings, suggesting both the ipsilateral and 

contralateral hemisphere contribute to the statistically significant difference found.
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Figure 3.11 Quantification of MAP-2 immunoreactivity within the inner, middle and 
outer molecular layers (IML, MML, OML) of the hippocampal dentate gyrus at 0, 1, 
3, 7, 28 and 90 days post-lesion measured as relative optical density values. The 
ipsilateral and contralateral optical density measurements were compared using a 
Student’s paired Mest. ***p<0.0001, **p<0.01 and *p<0.05
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Figure 3.12 MAP-2 immunoreactivity post-ECL

Illustrative examples o f MAP-2 immunoreactivity in the ipsilateral hippocampus at 

day 0, 7 and 90 post-ECL. MAP-2 immunoreactivity decreases at day 7 post-ECL 

and is increased at day 90 post-ECL. Contralateral MAP-2 immunoreactivity did not 

significantly alter post-ECL. The arrows indicate the region o f the hippocampus 

affected post-ECL. Ocassionally increased staining was seen in pyramidal layers with 

injury and this has been noted in other models o f injury x50 magnification
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3.4.5 Clearance of Degeneration Products Post-Lesion
This method of labelling degeneration products specifically highlighted the time 

course of deposition and clearance of lipid and cholesterol (lipid laden lysosomes) 

materials from terminals. The stain appeared as a rich brown background with the 

degenerating processes labelled with an intense black deposit. In 0 day control animals 

and at day 1 post-ECL there were no silver deposits indicating there were no 

degeneration products. In contrast, at day 3 post-ECL, an intense black punctate 

deposit was present throughout all regions of the molecular layer in the ipsilateral 

hippocampus (n=8/8) (Figure 3.13). Deposition was also evident in the ipsilateral 

stratum lacunosum moleculare. At day 7 post-ECL only a thin band of degeneration 

material staining remained, localised specifically within the MML of the ipsilateral 

hippocampus (n=7/8). This band was still present at day 28 however at day 90 post- 

ECL, no silver labelled degeneration products were present.
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Figure 3 13 Degeneration product deposition and clearance

Fink-Heimer silver staining o f lipid laden degeneration products at day 0, 3, 7, 28 and 

90 post-ECL. The contralateral hippocampus displayed no degeneration products.
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3.4.6 LRP Receptor Expression Post-Lesion

Cellular immunoreactivity

In 0 day control mice no astrocytic LRP immunoreactivity was evident. At day 7 post- 

ECL the MML and OML were densely populated by LRP immunoreactive astrocytes 

(Figure 3.15). At day 28 post-ECL, the number of immunoreactive astrocytes 

declined until, at day 90, no glial immunoreactivity was evident. Neuronal 

immunoreactivity did not significantly alter with the injury.

Neuropil immunoreactivity

In unlesioned control animals, LRP immunoreactivity was evident on neuronal cell 

bodies and in the neuropil but was similar in the ipsilateral and contralateral 

hippocampus. LRP neuropil immunoreactivity did not alter within the molecular layers 

of the dentate gyrus post-ECL (Figure 3.14). Analysis of variance on the contralateral 

hippocampal optical density values revealed no statistically significant variance in 

optical density values.
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Figure 3.14 Quantification of LRP receptor immunoreactivity in the inner, middle and 
outer molecular layers (IML, MML, OML) of the hippocampal dentate gyrus at 0, 1, 
3, 7, 28 and 90 days post-lesion measured as relative optical density values. LRP 
immunoreactivity was compared in the ipsilateral and contralateral hippocampus using 
a Student’s paired t-test. *p<0.05
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Figure 3 15 Increased astrocytic LRP receptor immunoreactivity at day 7 post- 

ECL

Illustrative example o f LRP immunoreactivity in the ipsilateral hippocampal molecular 

layer at day 7 post-ECL. No astrocytic staining is evident at day 0 or 90 post-ECL. 

x200 magnification
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3.5 Discussion
This study demonstrated that upregulation of apoE and apoJ occurs in the 

hippocampus after ECL and this parallels the immediate response and long-term 

recovery to injury. The data supports the hypothesis that both apolipoproteins E and J 

may be involved in the clearance and redistribution of lipid and cholesterol material 

from the site of injury, for reutilization in the reconstruction of neuronal cell elements, 

such as membrane in the regeneration process (Holtzman and Fagan, 1998). This 

function may be crucial in long-term plasticity alterations following brain injury.

3.5.1 Experimental deafferentation: an animal model for studying CNS 

plasticity

Mechanical lesioning of the entorhinal cortex has been employed in a number of 

studies to illustrate the role of apolipoproteins in relation to plasticity within the adult 

CNS after injury (Masliah et al, 1991; Poirier et al, 1991; Anderson et al, 1998). In 

the present study, chemical lesioning of the mouse entorhinal cortex results in 

degeneration of the perforant pathway to the hippocampus that causes time- 

dependent structural alterations within specific layers of the hippocampus. The 

C57BL/6J mouse strain is the background strain of the transgenic mice to be 

employed in the proceeding studies and therefore, it was essential to characterise 

plasticity in these mice in response to injury. Synaptic decline, as assessed using 

synaptophysin immunoreactivity, became apparent 7 days post-ECL and maximal loss 

was achieved at day 28 post-ECL where immunoreactivity was approximately 40% of 

that of the unlesioned side and control mice. However, at day 90 post-ECL, 

synaptophysin immunoreactivity had increased within the ipsilateral hippocampus and 

was similar to that observed in the contralateral hippocampus, indicating 

compensatory reactive synaptogenesis had occurred. Other groups have reported 

increases in synaptophysin levels reaching 80% recovery within the ML by day 30 

(Masliah et al, 1991; Poirier et al, 1990, 1991). Synaptic loss is accompanied by fibre 

and terminal degeneration within the same region as determined using GAP-43 

immunohistochemistry (Lin et al, 1999) (MAP-2 data also reflects fibre loss via 

cytoskeletal breakdown). GAP-43 immunoreactivity decreased within the MML and 

OML and fibre density loss was maximal at day 7 post-ECL. At day 28 post-ECL
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immunoreactivity had begun to increase, suggesting terminal proliferation and 

collateral sprouting and at day 90 post-ECL, immunoreactivity had increased to 70% 

of control levels. These findings contrast with other groups, who witnessed partial 

recovery as early as day 7 post-ECL and fiill recovery to pre-lesion levels at day 28 

(Anderson et al, 1998). The differences in neuropathology may reflect the inherent 

differences in the method applied to induce the lesion. Chemical lesioning of the EC 

ablates afferent input into the hippocampus via extensive cellular death rostrocaudally, 

whereas mechanical methods render only partial severance of the pathway (Cho and 

Jaffard, 1995). This allows compensation by the entorhinal cortex itself, which occurs 

over a shorter time course consequently in these less severe models, compensatory 

plasticity alterations may occur earlier post-ECL. In addition, there are innate 

differences in the behaviour of each layer within the molecular layers. The most 

striking differences were found, in our hands, to occur within the MML, a finding that 

agrees with the results of Anderson et al using the electrolytic lesion model in mice. 

Others analyze the MML and OML as a single entity. In the present study, the results 

accentuate the innate divide in behaviour in the two layers and a need for separate 

analysis. Several intra and extrahippocampal fibre systems are capable of reinnervating 

the denervated granule cells and this study has shown this from the commissural- 

associational fibre system by expansion of the IML. Other fibre systems, such as 

cholinergic fibres from the septum and crossed temperodentate fibres, may also 

participate in this response and have been identified in rat models (Steward and 

Vinsant, 1983; Fagan and Gage, 1994; Deller et al, 1996; Deller and Frotshcer,

1997).

There is information, albeit limited, to suggest that analogous sprouting processes 

may occur in the human brain. Grady et al (1989) reported evidence of reinnervation 

in the hippocampus of two patients who had died following an intracerebral 

haemorrhage which had caused uncal herniation with subsequent damage to the 

entorhinal cortex. The study mentioned only presented two cases, however our group 

is presently assessing hippocampal sprouting in a larger cohort of patients who have 

experienced a similar injury. Aberrant sprouting witnessed in AD postmortem brains 

also suggests that the human CNS is capable of reinnervation (Masliah et al, 1991; 

Arendt et al, 1998; Danik and Poirier, 1998).
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3.5.2 Apolipoprotein E is upregulated in the neuropil and glia following injury

Upregulation of apoE in the brain in experimental animal models of injury has been 

well documented (Horsburgh etal, 1996; Poirier etal, 1991) as in human brain injury 

(Horsburgh et al, 1999). In the present study apoE was markedly increased within the 

neuropil when synaptic loss was first detected and later apoE was increased and 

localised to glial cells. Most surprisingly, a dramatic increase in apoE occurred by day 

90 post-ECL specifically within the OML neuropil. In rodent brain apoE is localised 

exclusively to glia (Boyles et al, 1985). ApoE protein and mRNA increases have been 

identified in astrocytes associated with GFAP mRNA following ECL (Poirier et al, 

1990; Zarow et al, 1998). Glial staining within the present study peaked at day 7 

post-ECL within the molecular layers of the dentate gyrus in the present study. It is 

possible this cellular staining has resulted from the reuptake of apoE from the local 

environment (Poirier et al, 1993; Ji et al, 1998), or indeed it could represent a 

secondary upregulation for functioning in the progressive plasticity changes which 

occur over a period of months following injury (Masliah et al, 1991; Danik and 

Poirier, 1998; Holtzman et al, 1998). This is substantiated by the occurrence of 

elevated apoE levels within the OML even by day 90 post-ECL. Levels were higher 

than at any other survival point post-ECL. This supports a role for its involvement in 

long-term repair.

Although no increase in neuronal cell body staining was evident in this study, it is 

possible apoE is endocytosed into neurons, but via receptor interactions on terminals 

and dendrites (Mahley et al, 1988). Neuronal cell bodies, dendrites, and proximal 

axons express the endogenous apoE receptor; LRP (Rebeck et al, 1993). Several 

groups have shown dendrosomatic localisation of the receptor and suggest it is likely 

to be expressed in regions of high synaptic density (Page et al, 1998; Stockinger et al,

1998), where uptake would be required for the reconstruction of cellular elements in 

membrane maintenance and repair following injury. Since it is not required by the cell 

body in this type of injury it may be trafficked to the region of most need. It has been 

shown in this study that the LRP receptor displays a dense neuropil localisation in 

conjunction with expression on astrocytes and neurons.
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In this study, the majority of apoE-positive cells were not GFAP-positive but 

appeared to be localised to microglia. In situ hybridisation studies have also indicated 

localisation of apoE to microglia (Stone et al, 1997). We have used the antibody mrf- 

1, which is a well characterised antibody raised against a microglial gene (Tanaka et 

al, 1998) (this antibody is the only microglial marker for paraffin tissue at present). 

The main aim of this study was to determine if apolipoproteins played a role in long

term repair processes following injury when sprouting and synaptogenesis are 

occurring.

3.5.3 Apolipoprotein J is upregulated in the neuropil and glia following injury

Under normal physiological conditions apoJ is expressed at low levels within neurons, 

glia and the neuropil (Rebeck et al, 1993) and indeed faint neuronal staining was 

evident in control tissue. Neuronal cell body immunoreactivity did not alter with the 

injury. Upregulated expression of apoJ occurs when the CNS is stressed (Michel et al, 

1997). Lampert-Etchells et al (1991), who first determined increases in apoJ 

following ECL, employed the protien as a marker of neurodegeneration. In the 

present study, apo J immunoreactivity increasd within the neuropil and also within glial 

cells of dentate molecular layer, a finding in agreement with others (Johnson et al, 

1996). This suggests that, like apoE, apoJ is present within the extracellular space 

around terminals with subsequent increases in reactive glia (Danik et al, 1995) either 

via uptake or de novo synthesis. All apoJ-positive cells were astrocytes (GFAP- 

positive) in contrast to apoE. At day 28 post-ECL, apoJ cellular immunoreactivity 

remained intense, a time when apoE immunoreactivity had declined to below baseline 

levels. Similarly, apoJ immunoreactivity significantly increased within the OML at day 

90 post-ECL (p<0.0001). It is thought that apoJ functions predominantly in lipid 

transport, but also that it performs similar functions in maintenance and repair to apoE 

and thus warranted its investigation in this thesis (Jordan-Starck et al, 1992). This is 

especially important in the later chapters when APOE knockout mice will be 

investigated (Bertrand et al, 1995). ApoJ uptake is mediated mainly via the gp330 

receptor (Beffert et al, 1998; Page et al, 1998; Niemeier et al, 1999), however the 

presence and functionality of this receptor in the brain has not been fully elucidated 

(De Silva et al, 1990).
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3.5.4 Alterations in apoE and apoJ parallel clearance of cellular debris from the 

environment

Both apolipoproteins E and J are involved in the transportation and redistribution of 

lipids and cholesterol. Poirier (1993) suggested apoE was mobilised to clear cellular 

breakdown products from the site of injury. In the present study was illustrated a 

time-course for the deposition of degeneration products using silver staining. 

Deposition was maximal at day 3 post-ECL. Clearance of material coincided with the 

increased expression of both apoE and apoJ, thus at day 7 post-ECL only a thin band 

of degeneration material remained within the MML. At day 90 post-ECL, no 

degeneration products were evident within the dentate molecular layers. This 

temporal profile of alterations in apolipoproteins in redistribution suggests that both 

apoE and apoJ may be involved in the ongoing, long-term plasticity changes post- 

ECL (Holtzman and Fagan, 1998). In this study we have also identified a range of 

markers, which accurately reflect degeneration and reinnervation in this mouse model. 

Using wild-type mice we have studied endogenous mouse apoE and apoJ function in 

the clearance of cellular debris.
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Chapter IV

Analysis of APOE Genotype Influence on CNS Plasticity in Transgenic 

Mice Expressing Human APOE s3 and s4 Alleles (Under a Human 

Promoter Sequence) Following Entorhinal Cortex Lesion
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4.1 Introduction
Animal models are an essential tool for the study of human disease and injury (Roses 

et al, 1997). However, alone they do not allow the study of genetic components of 

human disease and injury. Rat models of global ischaemia were initially used for 

determining the role of apoE in acute brain injury, where it was determined that apoE 

was upregulated primarily in astrocytes and then translocated to neurons following 72 

hours of survival (Horsburgh et al, 1996). However, rodents do not have the APOE 

allelic heterogeneity which humans express. Transgenic animals were produced which 

had the endogenous mouse APOE gene deleted but human APOE gene sequences 

inserted which encode the s2, s3 or e4 human alleles.

The transgenics that will be discussed in this chapter, have human e3 and e4 inserts 

that are driven by the human promoter sequence (Xu et al, 1996). This gives these 

mice an apoE expression pattern similar to that observed in human brain tissue, in that 

apoE is expressed in astrocytes, microglia and oligodendrocytes (Boyles et al, 1985). 

The influence of APOE genotype has been investigated using animal models of acute 

brain injury, where it has been found that the E4 isoform confers a poor outcome and 

accentuated brain damage (Sheng et al, 1998; Horsburgh et al, 1999; Sabo et al, 

2000). However it is now evident that apoE may modulate the progression of chronic 

brain injury possibly through a process affecting CNS plasticity and that this process 

may be influenced by APOE genotype. The next step was to use the entorhinal cortex 

lesion model to study APOE genotype influence on long-term plasticity post-ECL.

4.2 Aims

To test the hypothesis that the possession of an APOEzA genotype is associated with 

an impaired long-term reparative response post-ECL.
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4.3 Materials and Methods

4.3.1 APOE transgenic mice on a human promoter

APOE&3 and e4 heterozygous mice were generated as previously described (Xu etal, 

1996). The mice were transported to Glasgow according to Home Office Regulations, 

acclimatised and maintained in an animal unit at the University of Glasgow. The 

genotype of the transgenic mice was confirmed using PCR analysis.

4.3.2 Entorhinal cortex lesion

The entorhinal cortex was lesioned in male transgenic mice (12 weeks old) which 

were allowed to survive for periods of 7, 28 or 90 days (n=l 1/time-point). 0 day 

control animals received ibotenic acid injection but were terminated immediately after 

the procedure. Sections from the entorhinal cortex were histologically stained using 

haematoxylin and eosin to confirm lesion placement. Immunohistochemistry for 

synaptophysin, GAP-43, apoE, apoJ, LRP and MAP-2 was performed on 

hippocampal sections (see chapter II). IML width was measured in GAP-43 

immunostained sections. Separate tissue was dissected out from nai've animals for 

Western blotting to check expression levels of apoE between the two genotypes.

4.3.3 Quantification of immunohistochemistry and statistical analysis

Relative optical density values were collected from the inner, middle and outer 

molecular layers from both the ipsilateral and contralateral hippocampus using an 

MCID image analysis system connected to a microscope. For each antibody, six 

optical density readings were collected from the expanse of each layer using a 1cm2 

sampling box and an average taken. Readings were taken from a reference area to 

ensure consistency of staining. Two way ANOVA was carried out on the contralateral 

hippocampal readings to allow changes in immuno staining to be attributed to the 

ipsilateral hemisphere. Percentage difference between the ipsilateral and contralateral 

hippocampus was compared in APOEe3 and s4 mice using a Student’s one-tailed 

unpaired /-test. Bonferroni correction for multiple comparisons was applied where 

appropriate. All data is represented graphically using the mean +/- S.E.M.
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4.3.4 Silver staining

Fink Heimer silver staining was carried out to assess terminal degeneration products 

and to determine a time-course for clearance (see Chapter II). Deposition of silver 

labelled degeneration products within the ipsilateral hippocampus was semi-quantified 

using a scoring method (0= no staining, 1= minimal, 2= moderate and 3= extensive). 

Differences between APOEe3 and APOEeA mice were compared using a Mann 

Whitney U statistical test for non-parametric data.
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4.4 Results

4.4,1 APOE levels

The brains o f 12 week old APOEz3 and 84 mice were harvested, the hippocampus 

dissected and frozen in liquid nitrogen. Tissue homogenates were produced and 1 Opig 

o f protein separated by SDS-PAGE gel electrophoresis. Immunoblotting for apoE 

was then carried out as previously described (see Chapter II). Protein bands were 

assessed as relative optical density values using an image analyser (MCID). The 

average optical density value for the apoE protein bands was 0.6405 in APOEz3 mice 

and 0.7762 \n APOEzA mice. The protein levels m APOEzA mice being approximately 

19% greater than that o f APOEz3 mice (Figure 4.1). This is similar to the difference 

observed in baseline optical density values obtained from immunostained sections.

36kDa  ►
34kDa  >>

8 3  8 4

Figure 4.1 Western blotting showing the levels o f apoE in the 83 and 84 transgenic 

lines. The apoE band appears as a doublet because in the CNS it exists in the 34 kDa 

form and a differently sialyated form at 36kDa.

4.4.2 Statistical design

Taking the percentage difference between the ipsilateral and contralateral 

hippocampal optical densities allowed for correction o f differences which may be due 

to the variance in baseline levels o f apoE between APOEz3 and APOEzA animals. A 

one-tailed /-test was employed, as the hypothesis was that APOEzA mice would 

display a long-term impaired recovery to injury.
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4.4.3 Lesion Assessment

Lesion placement was assessed histologically and appeared as an area of pallor in 

which cells were pyknotic in appearance. The lesions were restricted to the entorhinal 

cortex with no involvement of adjacent structures. Control animals displayed no 

excitotoxic damage to the entorhinal region, only the site of the needle placement was 

visible. No observable difference was evident between the lesion volumes of APOEz3 

and z4 mice.

4.4.4 Temporal Profile of Degeneration and Regeneration Post- 

Lesion

4.4.4.1 Alterations in synaptophysin immunoreactivity

Synaptic alterations during degenerative and reinnervative events within the 

hippocampal dentate gyrus were assessed using synaptophysin immunohistochemistry. 

Percentage difference between the ipsilateral and contralateral hippocampus was 

compared for APOEz3 and c4 mice. Synaptophysin immunoreactivity in 0 day control 

animals displayed a regular dense pattern of staining throughout the dentate gyrus and 

did not differ between the APOEzA and e4 mice. Synaptic alterations occurred within 

the outer two thirds of the molecular layer with little or no change within the IML. 

Synaptic density declined progressively and maximal synaptic loss was evident at day 

28 post-ECL within the MML and OML (Figure 4.2 and 4.3). Ipsilateral hippocampal 

synaptophysin levels were approximately 60% of contralateral at this time-point. 

Synaptic loss was similar within the MML of both APOEzA and s4 mice but was 

significantly greater within the OML o f APOEz3 mice compared to s4 mice (p<0.05). 

At day 90 post-ECL, synaptophysin immunoreactivity had returned almost to pre

lesion levels in APOEz3 mice. In contrast, in APOEzA mice, synaptophysin 

immunostaining levels remained well below pre-lesion levels and this was significantly 

different to the APOEz3 mice (p<0.05). No significant difference in synaptic density 

was observed between the APOEz3 and c4 mice within the OML, although a similar 

trend was observed. Two way ANOVA on the contralateral hippocampal optical 

density values revealed no statistically significant difference.

115



4.4.4.2 Alterations in growth-associated protein immunoreactivity

In 0 day control animals, GAP-43 immunoreactivity exhibited a regular punctate stain 

within the outer two thirds of the molecular layer and denser labelling within the IML, 

however baseline GAP-43 immunoreactivity was significantly greater in APOEz3 

mice compared to APOEzA mice (p<0.05). The percentage differences between the 

ipsilateral and contralateral hippocampal optical density readings were taken to 

correct for this. Within the MML, GAP-43 immunoreactivity declined and maximal 

degeneration was observed at day 7 post-ECL where levels were approximately 40% 

below control levels (Figure 4.4 and 4.5). At day 90 post-ECL, the reduction in GAP- 

43 immunoreactivity had increased towards pre-lesion levels in APOEzA mice. In 

contrast, fibre density remained below pre-lesion levels in APOEzA mice, and this was 

significantly different to that of APOEz3 mice (p<0.05). A similar progressive 

reduction in GAP-43 immunoreactivity occurred within the OML and at day 28 post- 

ECL, reduction in fibre density was maximal at approximately 40% of contralateral 

levels. At day 90 post-ECL, GAP-43 immunoreactivity in the OML of APOEzA mice 

had returned to, or was greater than, pre-lesion levels and this was significantly 

different to that observed in the OML of APOEzA mice. Two way ANOVA revealed 

no statistically significant variance in the contralateral readings from each genotype.
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Figure 4.2 Quantification o f synaptophysin immunoreactivity within the inner, middle 
and outer molecular layers (IML, MML, OML) o f  the hippocampal dentate gyrus at 
0, 7, 28 and 90 days post-lesion measured as relative optical density values. 
Percentage difference between the ipsilateral and contralateral hippocampus 
immunoreactivity was compared in APOEzA and APOEzA mice using a Student’s 
unpaired Mest. *p<0.05
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Figure 4.3 Impaired synaptic recovery in APOEzA mice post-ECL

Illustrative examples o f synaptophysin immunoreactivity in transgenic mice expressing 

human APOEz3 and 84 alleles at day 0, 7 and 90 post-ECL. The contralateral 

hippocampus displays no significant synaptic alterations. The arrows delineate the 

region o f  the hippocampal dentate gyrus which experiences synaptic change post- 

ECL. x50 magnification
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Figure 4.4 Quantification o f  GAP-43 immunoreactivity within the inner, middle and 
outer molecular layers (IML, MML, OML) o f  the hippocampal dentate gyrus at 0, 7, 
28 and 90 days post-lesion measured as relative optical density values. Percentage 
difference between the ipsilateral and contralateral hippocampus immunoreactivity 
was compared \nAPOEz3 and APOEzA mice compared using a Student’s unpaired t- 
test. *p<0.05
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Figure 4 5 Impaired sprouting response in APOEzA transgenic mice post-ECL

Illustrative examples o f GAP-43 immunoreactivity in transgenic mice expressing 

human APOEz3 and s4 alleles at day 0, 7 and 90 post-ECL. The contralateral 

hippocampus displays no significant fibre density alterations. The arrows delineate the 

region o f the hippocampal dentate gyrus that experiences fibre density changes ppost- 

ECL. x50 magnification
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4.4.4.3 IML width alterations post-lesion

The width o f  the IML in GAP-43 immunostained sections was measured in each 

animal to reflect the degree o f  sprouting from the commissural-associational fibres. In 

0 day control animals, the width o f  the IML did not significantly differ between 

APOEzA and c4 mice. At day 90 post-ECL, statistical analysis revealed the ipsilateral 

IML width increased significantly compared to that observed in the contralateral IML 

and this was noted for both genotypes (p<0.0001) (Figure 4.6). Comparison o f  the 

ipsilateral IML width o f  the APOEzA and 84 mice revealed the width was significantly 

greater in APOEz3 mice compared to that for APOEzA mice (p<0.0001). The width 

in APOEzA animals expanded by approximately 45% (to 100pm) whereas it increased 

by only 20% (to 75 pm) in zA mice.
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Figure 4.6 Quantification o f the width o f  the inner molecular layer (IML) o f the 
dentate gyrus as assessed in GAP-43 immunostained section. Expansion o f this layer 
gives an indication o f  the sprouting index from the commissural-associational fibre 
pathway. The ipsilateral and contralateral hippocampus was compared using a 
Student’s paired /-test. Sprouting in APOEzA and APOEzA mice was compared using 
a Student’s unpaired /-test. ***p<0.0001
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4.4.5 Apolipoprotein Response to Injury: APOE Genotype

Differences

4.4.5.1 Apolipoprotein E

(a) ApoE levels in APOE transgenic mice

ApoE levels in these mice APOEz3 and c4 transgenic lines were not exactly matched. 

In control animals, assessment of immunohistochemistry indicated significantly 

greater levels of apoE in the APOEzA line compared to the s3 line (ROD- s3: 0.1265 

vs zA: 0.1562: * p<0.05). Data has been published illustrating apoE levels in these 

lines (Xu et al, 1996, Horsburgh et al, 2000). The increased apoE levels in s4 mice 

was found to be correlated with the increased GAP-43 immunoreactivity in control 

animals (MML: p<0.01 and OML: p<0.05) but no correlation existed between apoE 

and synaptophysin levels (Figure 4.7).
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Figure 4.7 Graphical representation of data correlating GAP-43 and synaptophysin 
immunoreactivity to apoE immunoreactivity in APOEE3 and APOEzA, 0 day control 
animals. ApoE immunoreactivity was correlated with GAP-43 immunoreactivity in 
APOEzA mice but not in APOEz3 mice. Synaptophysin and apoE immunoreactivity 
were not correlated in either APOEzi or APOEzA mice. R-squared values and p 
values are represented on the graphs. **p<0.01 and *p<0.05
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(b) Alterations in cellular immunoreactivity

Intense apoE immuno-positive glial cells were evident within the molecular layers of 

the dentate gyrus by day 7 post-ECL and was similar in both APOEs3 and s4 mice 

(Figure 4.9). No glial staining was evident in the contralateral hippocampus. Faint 

neuronal staining was present in all animals but did not alter with the injury.

(c) Alterations in neuropil immunoreactivity

The percentage difference between the ipsilateral and contralateral hippocampus was 

taken to determine any difference between the APOEzl and s4 mice. In 0 day control 

animals immunostaining was faint and was similar in pattern in both the ipsilateral and 

contralateral hippocampus. Ipsilateral neuropil apoE immunoreactivity increased 

within the IML and MML at day 7 post-ECL similarly in both APOEz3 and s4 mice 

(increases of 50% and 25% respectively) (Figure 4.8 and 4.9). ApoE 

immunoreactivity then declined towards pre-lesion levels at day 90 post-ECL. OML 

apoE immunoreactivity followed a similar pattern where apoE immunostaining 

increased and was maximal at day 7 post-ECL although levels were significantly 

greater in APOEzA mice (p<0.05) (increase of 35% approximately). ApoE 

immunoreactivity declined thereafter towards pre-lesion levels at day 90 post-ECL. 

Two way ANOVA revealed no statistically significant variance in contralateral ROD 

values for each genotype.
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Figure 4.8 Quantification o f  apoE neuropil immunoreactivity within the inner, middle 
and outer molecular layers (IML, MML, OML) o f  the hippocampal dentate gyrus at 
0, 7, 28 and 90 days post-lesion measured as relative optical density values. 
Percentage difference between the ipsilateral and contralateral hippocampus 
immunoreactivity was compared in APOEz3 and APOEzA mice using a Student's 
unpaired t-test. *p<0.05
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Figure 4.9 ApoE is increased at day 7 within the dentate molecular layers post- 

ECL

Illustrative examples o f apoE immunoreactivity in transgenic mice expressing 

APOEz3 and s4 at day 0, 7 and 90 post-ECL. ApoE was increased within the 

neuropil and within some astrocytes. The contralateral hippocampus displayed no 

change in apoE immunoreactivity. The arrows highlight the region where apoE is 

upregulated. x50 magnification
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4.4.5 Apolipoprotein J

(a) Cellular immunoreactivity

At day 7 post-ECL, apoJ immunoreactive glial cells were evident within the molecular 

layers of the dentate gyrus, but the extent was similar in APOEzi and s4 mice (Figure 

4.11).

Neuropil immunoreactivity

In 0 day control animals apoJ immunoreactivity was punctate and stained the 

molecular layers in a pattern similar to that observed for apoE. Pre-lesion apoJ optical 

density measurements were similar in APOEC3 and APOEz.4 mice. Percentage 

difference between the ipsilateral and contralateral hippocampus was taken. ApoJ 

immunoreactivity increased within the molecular layers and was maximal at day 7 and 

28 post-ECL, but was not statistically different between APOEe3 and e4 mice (Figure 

4.10 and 4.11). ApoJ immunoreactivity then declined towards pre-lesion levels at day 

90 post-ECL and was not statistically different in APOEC3 and e4 mice. Two way 

ANOVA on the contralateral hippocampal readings revealed no statistically significant 

variance.
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Figure 4.10 Quantification of apoJ neuropil immunoreactivity in the inner, middle and 
outer molecular layers (IML, MML, OML) of the hippocampal dentate gyrus at 0, 7, 
28 and 90 days post-lesion measured as relative optical density values. Percentage 
difference between the ipsilateral and contralateral hippocampus immunoreactivity 
was compared in APOEe3 and APOEe4 mice using a Student’s unpaired Mest. 
*p<0.05
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Figure 4 11 ApoJ immunoreactivity is increased in astrocytes and the neuropil 

and is similar in both AP()Ez3 and s4 mice

Illustrative examples o f apoJ immunoreactivity in the ipsilateral hippocampus at day 0, 

7 and 90 post-ECL in APOEz3 and 84 mice. ApoJ immunoreactivity is increased in 

astrocytes and the neuropil by day 7 post-ECL. At day 90 post-ECL apoJ 

immunoreactivity has declined within astrocytes however it remains elevated within 

the neuropil o f the OML. There is no significant difference in apoJ immunoreactivity 

between e3 and s4 mice. x50 magnification
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4.4.6 Cytoskeletal Alterations Post-Lesion

4.4.6.1 Alterations in MAP-2 immunoreactivity

One mechanism by which apoE isoforms may affect their differences in plasticity is by 

differential interaction with cytoskeletal components. It was hypothesised that there 

would be differences in the degree of MAP-2 immunoreactivity post-ECL. In 0 day 

control animals, MAP-2 characteristically labels the soma of neurons and the 

associated dendritic networks most intensely. Baseline MAP-2 immunohistochemistry 

was not significantly different between APOEs3 and s4 mice. Little or no alteration in 

MAP-2 was observed in the IML until day 90 post-ECL where the density of MAP-2 

immunohistochemistry was increased within the ipsilateral hippocampus of APOEz3 

mice compared to e4, however this was not a significant difference. Within the MML 

and OML, MAP-2 immunoreactivity declined slightly until day 28, however this was 

similar in both APOEz3 and s4 mice. MAP-2 staining then increased towards pre

lesion levels by day 90 post-ECL (Figure 4.12). At this time-point MAP-2 

immunoreactivity was greater than contralateral levels in APOEE3 mice however, in 

contrast, MAP-2 immunoreactivity remained below baseline levels in APOEzA mice 

(p<0.05). A similar pattern was observed within the OML, but at day 7 APOEz3 mice 

displayed greater loss of MAP-2 immunohistochemistry compared to e4 mice. At day 

90 post-ECL MAP-2 levels had increased in APOEz.3 mice to above baseline levels 

and was significantly greater than that in APOEz4 mice (p<0.05). Two way ANOVA 

revealed there was no statistically significant variance in the contralateral hippocampal 

immunostaining.

4.4.6.2 Alterations in microtubule organisation

These sections were also analysed using high power light microscopy to assess 

dendritic structure following the insult. It was found that in 0 day control animals, 

dendritic structure was uniform and similar in both APOEz3 and e4 mice. Fine fibrils 

run in parallel through the molecular layers in an well-organised fashion. At day 90 

post-ECL, the dendritic networks in APOEz3 mice recovered and were similar to that 

observed in 0 day control animals. In contrast, the dendritic networks in the molecular 

layers of APOEzA mice are very disarrayed. The MAP-2 labelled fibrils are 

fragmented and the fine fibrils normally observed are ill defined (Figure 4.14).
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Figure 4.12 Quantification of MAP-2 immunoreactivity within the inner, middle and 
outer molecular layers (IML, MML, OML) of the hippocampal dentate gyrus at 0, 7, 
28 and 90 days post-lesion measured as relative optical density values. Percentage 
difference between the ipsilateral and contralateral hippocampus immunoreactivity 
was compared in APOEz3 and APOEzA mice using a Student’s unpaired Mest. 
*p<0.05
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0 day 0 day

Figure 4.13 Dendritic disorganisation in s4  mice at day 90 post-ECL

Illustrative examples o f MAP-2 immunoreactivity in the ipsilateral hippocampus at 

day 0 and 90 post-ECL in APOEe3 and s4 mice. By day 90 post-ECL the dendritic 

networks in e3 mice are well-organised and fine fibrils can be seen passing through the 

molecular layers. In contrast, in s4 mice, the dendritic networks are very disorganised, 

as highlighted by the arrows. x200 magnification (Inset x400 magnification)
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4.4.7 Clearance of Degeneration Products Post-Lesion

It was hypothesised that differences in plasticity between APOEz3> and s4 mice may 

be dependent on the ability of the different isoforms to clear neuronal degeneration 

products. Sections from each subject were scored microscopically for degeneration 

product deposition. No degeneration products were present in 0 day control animals. 

No degeneration products were evident within the contralateral hippocampus, except 

for a thin band within the stratum lacunosum moleculare and thus only ipsilateral 

scores are represented graphically. From the studies in Chapter III it was shown that 

maximal degeneration product staining was achieved at day 3 post-ECL. For this 

reason two 3 day survival animals for each genotype were included in the study. 

Maximal accumulation of degeneration products was achieved by day 3 post-ECL. By 

day 7 post-ECL, degeneration products were cleared to leave only a thin band of 

material within the MML (Figure 4.14 and 4.15). This state persisted until day 28 

post-ECL and thereafter degeneration products were cleared, until by day 90 post- 

ECL only minimal or no degeneration products were present within the dentate gyrus. 

No statistically significant difference in clearance was determined between APOEz3 

and e4 mice at any time.

njumm  □□3 ”i

vuo
£
-woS’O
2&.
Co

Q

2 -

1-

8 3 

8 4

rnrnw C E O **- tlXM M *

-B - - m - ■m~Bi
28 90

Survival Time (days)

Fig 4.14 Quantification of Fink Heimer silver staining used to label degeneration 
products from axon terminals. Staining was scored on a scale of 0-3. 0- no 
degeneration products, 1-minimal, 2-moderate and 3-maximal. Scores from APOEz.3 
and s4 mice were compared using Mann-Whitney U test. No significant difference in 
clearance of degeneration products was detected. Bar indicates the median in each 
group +/- standard deviation.
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0 day 0 day

28 day

90 day

Figure 4.15 Equal rate of clearance of degeneration products in AP()Ez3 and s4 

mice post-ECL

Illustrative examples o f Fink-Heimer silver staining o f degeneration products in 

human APOEe3 and e4 mice at day 0, 7, 28 and 90 post-ECL. The contralateral 

hippocampus displayed no degeneration products at any time. The arrows mark 

regions where degeneration products are present. x50 magnification

90 day
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4.4.8 LRP Receptor Expression Post-Lesion

Cellular immunoreactivity

In 0 day control animals only minimal astrocytic LRP immunoreactivity was observed. 

At day 7 post-ECL (Figure 4.17), LRP immunoreactivity increased on reactive 

astrocytes within the dentate molecular layers, but was not present at day 28 post- 

ECL and astrocytic immunoreactivity was similar in both APOEs3 and s4 mice.

Neuropil immunoreactivity

In 0 day control animals LRP receptor immunoreactivity was evident on neuronal cell 

bodies and in the neuropil but was similar in APOEE3 and e4 animals. In general, 

there were no significant alterations in neuropil LRP immunoreactivity and certainly 

no statistical difference in staining between APOEC3 and e4 mice (Figure 4.16). Two 

way ANOVA revealed no significant variance in the contralateral hippocampal 

readings.
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Figure 4.16 Quantification of LRP receptor neuropil immunoreactivity in the inner, 
middle and outer molecular layers (IML, MML, OML) of the hippocampal dentate 
gyrus at 0, 7, 28 and 90 days post-lesion measured as relative optical density values. 
LRP immunoreactivity in APOEe3 and c4 mice was compared using a Student’s 
unpaired f-test.
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Figure 4.17 Increased LRP receptor immunoreactivity in astrocytes by day 7 

post-ECL but similar in APOEz3 and c4 mice

Illustrative examples o f LRP immunoreactivity at day 7 post-ECL in APOEz3 and s4 

mice. 0 day LRP immunoreactivity is similar in 83 and e4 mice. By day 7 post-ECL, 

LRP immunoreactivity is increased in reactive astrocytes within the molecular layers 

but is similar in e3 and 84 mice (x200). At day 7 and 90 no astrocytic LRP 

immunoreactivity was evident.
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4.5 Discussion

The e4 allele of the APOE gene is associated with sporadic and late-onset AD 

(Corder et al, 1993; Saunders et al, 1993; Hyman et al, 1996; Roses et al, 1996; 

Roses et al, 1997) and a poor recovery after head injury in humans (Jang et al, 1996; 

Teasdale et al, 1997; Horsburgh et al, 2000). The present study indicates that long

term neuronal repair mechanisms are impaired in transgenic mice possessing human 

APOEzA alleles compared to APOEz3 after denervative injury (Xu et al, 1996, 1998,

1999).

4.5.1 APOE  genotype influence in the acute response to brain injury

In this study we hypothesised that APOEzA mice would have a poorer reparative 

capacity than APOEz3 mice after ECL. This was primarily based on previous studies 

of these mice that highlighted an adverse influence of the s4 allele to acute brain injury 

types. One of these studies which was carried out by our group, showed that APOEzA 

mice incurred a greater level of neuronal cell injury following a period of global 

ischaemia (Horsburgh et al, 2000). However contrary to this, the data indicated that 

in the acute phase after ECL, the APOEz3 mice had a greater degenerative response 

than APOEzA mice, the s3 mice experiencing greater fibre and synapse loss in the 

acute phase of the injury (28 days). One potential explanation for this is that the levels 

o f apoE present may be crucial in the acute stage after injury. The APOEzA mice in 

this transgenic line express approximately 20% more apoE than the s3 line and 

therefore this may cause an inherent difference in the initial response to injury. This is 

reflected in studies using APOE deficient mice, which show a markedly poorer 

response to an episode of global ischaemia compared to wild-type littermate controls 

(Horsburgh et al, 1999). However, increasing the levels of apoE by intraventricular 

infusion, greatly ameliorates this response in apoE deficient mice (Horsburgh et al,

2000). It has also been suggested that low levels of apoE, found in APOEzA 

individuals (Bertrand et al, 1995), underlie their susceptibility for the development of 

AD and potentially to the effects of trauma. Another possibility is that it could be a 

detrimental effect of the s3 isoform in the acute response to ECL. However, there is 

no data to indicate that apoE E3 has a detrimental effect on neuronal integrity. 

Despite this initial poor response, APOEz3 mice were able to compensate and

137



promote sprouting, unlike the APOEzA mice which demonstrated a poorer ability to 

recover post-ECL.

4.5.2 APOE genotype and its influence in the long-term response to brain injury

Most recently it has been determined by our group that, following a head trauma, 

individuals with an s4 genotype have a significantly impaired recovery. This results in 

a greater number of these individuals being severely disabled or scoring lower on 

cognitive assessments compared to s3 individuals on a 6 month outcome analysis. 

These findings were particularly important considering the individuals in question 

were under the age of 15 years and therefore, ruled out any of the amyloid depositon 

theories to isoform differences which had previously reigned (Teasdale et al, 2000). 

Inefficient plastic remodelling in AD patients possessing s4 alleles of the APOE gene 

(Arendt et al, 1997) has also been shown. We found that plastic neuronal remodelling 

was impaired in APOEzA mice. In this study we analysed sprouting from the 

commissural-associational neurons by measuring the width of the IML as previously 

described (Anderson et al, 1998). At day 90 post-ECL, the IML of APOEzA mice had 

expanded by almost 45% compared to only 20% in c4 mice. This is consistent with 

the poor recovery of the MML and OML shown in s4 mice.

The present study substantiates other studies, which have indicated a role for apoE in 

the response of the brain to trauma (Poirier et al, 1993; Posse de Chaves et al, 1997). 

ApoE is produced and secreted by astrocytes, microglia (Boyles et al, 1985; Stone et 

al, 1997) and neurons (Han et al, 1994; Roses et al, 1997; Xu et al, 1998, 1999), and 

it functions primarily in the transport of lipids and cholesterol to cells requiring the 

material for remodelling (Holden, 1998; Holtzman and Fagan, 1998; Pitas et al, 

1998). Lipid is essential for the long-term remodelling events after injury. This 

includes reconstruction of cellular elements (i.e. membrane) (Poirier et al, 1993; 

Poirier et al, 1995), if neurite outgrowth and dendritic field reorganisation is to occur. 

Further support for the involvement of apoE in long-term plasticity comes from 

studies employing APOE-dtficient mice, in which entorhinal cortex lesioning is 

associated with severe neurodegenerative changes and compromised compensatory 

sprouting (Masliah et al, 1995; Anderson et al, 1998).
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4.5.3 Alterations in apoE expression in transgenic mice post-ECL

In this study, apoE increased within the neuropil post-ECL equally for both APOEzA 

and s4 mice and at day 90 post-ECL, apoE immunoreactivity had returned to baseline 

levels. Glial apoE within the dentate gyrus was also evident after the injury (Poirier et 

al, 1991; Boyles et al, 1995). This pattern of apoE expression has been identified 

within human AD brains (Kida et al, 1995; Harr et al, 1996; Hesse et al, 1999) and 

also in previous animal studies (Masliah et al, 1996; Terrisse et al, 1999). The 

transient increase in apoE immunoreactivity corresponded with the time period during 

which sprouting and synaptogenesis began to occur.

It has been suggested that the effects of APOE genotype on plasticity may be 

mediated by differences in the levels of apoE in the brain, rather than differences in the 

isoform of the protein. Support for this idea has come from the suggestion that brain 

levels are lower among AD patients possessing the APOEzA allele (Bertrand et al, 

1995). This seems unlikely to explain the findings of this study, because baseline apoE 

levels were initially greater in APOEzA mice compared to s3 yet they recovered 

poorly from the insult. Therefore the data would seem to suggest an isoform effect 

rather than a level effect in the chronic response to injury. This isoform hypothesis is 

supported in a study by Buttini et al (2000), which shows that APOEzA homozygotes 

recover poorly from excitotoxic injury compared to APOEzVzA heterozygotes. In the 

present study, the greater baseline levels of apoE in s4 mice was found to correlate 

with increased GAP-43 immunoreactivity in control mice. This raises the possibility 

that fibre density in humans may be influenced by APOE genotype and this would 

suggest greater fibre density under normal physiological conditions however this does 

not have any implications for its behaviour in injury. In the present study, neither 

APOE genotype nor apoE levels had an influence on baseline synaptic density. 

Genotype influences on baseline fibre density have not been identified in humans as of 

yet.

4.5.4 Alterations in apoJ expression in transgenic mice post-ECL

It is hypothesised that apoJ may perform a similar function in lipid transportation and 

neuronal repair as apoE (Poirier et al, 1995). Recent studies in humans have shown
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that apoJ is increased in senile plaques in the brains of AD sufferers (Kida et al, 

1995), and that apoJ levels in the brain are associated with APOE genotype (Bertrand 

et al, 1995). The authors stipulated that apoE protein levels decreased with increasing 

number of inherited e4 alleles, but apoJ protein levels increased. This suggests that 

apoJ increased perhaps as a function of apoE levels in the brain and not purely 

because of genotype. This is consistent with the finding that in this study, APOEz3 

mice displayed higher levels of apoJ immunoreactivity compared to that in c4 mice but 

they also expressed lower levels of apoE. ApoJ increased similarly for both genotypes 

by day 7 and 28 post-ECL. However, at day 90 post-ECL apoJ immunoreactivity was 

significantly decreased in APOEz3 mice compared to e4. This would seem plausible, 

considering the e4 mice are in an uphill struggle to repair.

4.5.5 ApoE isoform influence on factors which may modulate CNS plasticity

4.5.5.1 Lipid clearance post-ECL

The clearance of debris from the site of an injury is essential if the lipid materials are 

to be recycled for incorporation into cellular elements such as membrane. In apoE 

knockout mice, lipid clearance is deficient mainly due to the absence of apoE (Fagan 

et al, 1998) and thus these mice display deficient regenerative capabilities. Isoform- 

effects on this mechanism have not been addressed. However, in this study APOEzi 

and e4 mice exhibited similar rates of clearance of degeneration products and by day 

90 post-ECL, all debris had been cleared from the dentate gyrus in both lines. 

Therefore, this suggests both isoforms efficiently clear lipid and another mechanism 

may underlie the adverse effects of the apoE E4 protein (Jolivalt et al, 2000).

4.5.5.2 Actions on the LRP receptor

The neurotrophic effects of apoE have been directly demonstrated in vitro. Addition 

of lipidated apoE to a population of cultured neuronal cells enhances neurite 

outgrowth (Fagan et al, 1998, Pitas et al, 1998). The outgrowth promoting effects of 

apoE have been determined to be isoform specific such that neurite outgrowth in 

cultured cells was stimulated by apoE E3, but attenuated by apoE E4 (Nathan et al, 

1994; Bellosta et al, 1995; DeMattos et al, 1998). This has been shown to be 

modulated via apoE interaction with the LRP receptor, an effect that may be
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attenuated by administration of an LRP blocker. In this study there were no major 

alterations in LRP receptor neuropil immunoreactivity after the injury and staining 

was similar in APOEe3 and s4 mice. However, astrocytic LRP expression was 

increased at day 7 post-ECL but the levels were similar in APOEeA and e3 mice. This 

type of analysis does not allow the functioning and binding of apoE to be determined 

however other groups have endeavoured to analyse this and will be discussed in 

chapter IX. Recent data has suggested that interaction of apoE with the LRP receptor 

modulates intracellular signalling pathways which may, in turn modulate intracellular 

proteins i.e. those affecting cytoskeletal structural alterations (Herz, 2001). These 

mechanisms will be elaborated upon in the final discussion.

4.5.5.3 Actions on the cytoskeleton

It is thought that the action of apoE on the neuronal cytoskeleton may play a large 

role in the plasticity response. In this study it was found that MAP-2 protein was 

reduced following the injury but increased towards baseline levels mAPOEeS mice. In 

contrast, MAP-2 protein remained severely reduced in APOEe4 mice. More 

importantly, it was found that dendritic structure was severely disrupted in APOEeA 

mice compared to APOEe3 mice. ApoE plays a major role in maintaining the integrity 

of the microtubular system (Roses et al, 1996; Scott et al, 1998) and this relationship 

may be iso form-dependent (Sun et al, 1998). This adverse influence of apoE E4 on 

neurite outgrowth has been attributed to its function in microtubule depolymerisation 

and destabilization (Nathan et al, 1995; Pitas et al, 1998), an effect not favourable 

during neuronal remodelling and outgrowth. Although reorganisation of the 

cytoskeleton is important in the remodelling process the E4 isoform appears to cause 

significant depolymerisation without polymerisation and may not protect the 

microtubule from phosphorylative enzymes.

In summary, this data shows that long-term neuronal remodelling is impaired in 

APOEeA transgenic mice (on a human promoter) after injury and supports a role for 

apoE isoform influence on plasticity.

141



Chapter V
Analysis of APOE Genotype Influence on CNS Plasticity in APOE 

Knockout and Transgenic Mice Expressing Human APOE s3  and s4 
Alleles (GFAP Promoter) Following Entorhinal Cortex Lesion
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5.1 Introduction

In the previous study it was demonstrated that APOEzA mice display poor neuronal 

repair capabilities following injury. The transgenic mice discussed in the previous 

chapter had the entire human APOE gene inserted, including promoter sequence, into 

their genome that resulted in expression of apoE similar to that found in human brain, 

that is they expressed apoE in neurons and glia. However, the contribution of 

endogenous neuronal apoE to plasticity was unclear. A different line of transgenics 

became available which possess an exogenous GFAP promoter sequence downstream 

of the gene, which drives astrocytic apoE expression (Sun et al, 1998). The 

investigation of these transgenic mice allows other questions to be addressed in terms 

of apoE expression and function after injury. This study was undertaken to determine 

if the APOEzA allele exerted its adverse effects on plasticity when it is expressed 

endogenously in astrocytes only. The hypothesis was that possession of the APOEzA 

genotype in these transgenic mice would result in impaired repair processes after 

injury.

5.2 Aims
To analyse APOE genotype on CNS plasticity in a line of APOE knockout mice and 

transgenic mice expressing human APOEz3 and zA under an exogenous GFAP 

promoter sequence following entorhinal cortex lesion.
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5.3 Materials and Methods

5.3.1 APOE transgenic mice on a GFAP promoter

APOEzA and s4 heterozygous transgenic mice were generated as previously described 

(Holtzman et al, 1998). The coding sequences of the human APOE gene were 

inserted into the genome of B6/CBA mice. Mice were obtained from Dr Holtzman 

and transported to the UK according to Home Office Regulations and bred in an 

animal unit at the University of Glasgow. Knockout littermates are also produced in 

the breeding of these animals. The genotypes of all animals bred were checked using 

PCR analysis (see Chapter II).

5.3.2 Entorhinal cortex lesion

The entorhinal cortex was lesioned in male knockout, transgenic APOEz3 and s4 

mice. The mice were then allowed to survive for periods of 90 days (KO/n=12, 

c3/n=8, e4/n=7). 0 day control animals underwent an identical procedure but were 

terminated immediately after the procedure (KO/n=ll, s3/n=8, s4/n=8). Tissue was 

also harvested from naive mice and homogenised for separation by gel 

electrophoresis. Sections from the entorhinal cortex were histologically stained using 

haematoxylin and eosin to confirm correct lesion placement. Immunohistochemistry 

for synaptophysin, GAP-43, apoE, apoJ, LRP and MAP-2 was performed on 

hippocampal sections. The IML width, in GAP-43 immuno stained sections, was 

measured and analysed as outlined in chapter II.

5.3.3 Quantification of immunohistochemistry and statistical analysis

Relative optical density values were collected from the inner, middle and outer 

molecular layers of both the ipsilateral and contralateral hippocampus using an MCID 

image analysis system connected to a microscope. Six optical density readings were 

collected from the expanse of each layer using a 1cm2 sampling box and an average 

taken. The percentage difference between the ipsilateral and contralateral 

hippocampus was taken for comparison between the genotypes. The groups were 

compared using ANOVAR and the genotypes compared using a post-hoc Student’s
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unpaired /-test with Bonferroni correction for multiple comparisons. All data is 

represented graphically using the mean +/- S.E.M.

5.3.4 Silver Staining

Fink Heimer silver staining was carried out to assess terminal degeneration products 

and to determine a time-course for clearance (see chapter II). Deposition of silver 

labelled degeneration products within the ipsilateral hippocampus was semi-quantified 

using a scoring method (0= no staining, 1= minimal, 2= moderate and 3= extensive). 

Scores were tested for variance using a Kruskal Wallis test and the genotypes 

compared using a Mann Whitney U statistical test for non-parametric data.
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5.4 Results

5AA APOE  levels

The brains o f 12 week old APOEz3 and s4 mice were harvested, the hippocampus 

dissected and rapidly frozen in liquid nitrogen. Tissue homogenates were produced 

and 10p.g o f protein separated by SDS-PAGE gel electrophoresis. Immunoblotting for 

apoE was performed as previously described (chapter II). Protein bands were 

assessed as relative optical density values using an image analyser (MCID). ApoE 

levels were found to be comparable in the e3 and 84 mice (Figure 5.1).

s3 s4

Figure 5.1 Western blotting bands showing apoE levels in APOEe3 and s4 transgenic 

mice Levels are comparable in e3 and z4 mice.

5.4.2 Lesion assessment

Lesion placement was assessed histologically and appeared as an area o f  pallor in 

which cells were pyknotic in appearance. The lesions were restricted to the entorhinal 

cortex, with no involvement o f  the adjacent structures. Control animals displayed no 

excitotoxic damage to the entorhinal region, only the site o f  the needle placement was 

visible. No observable difference was evident between the lesion volumes o f 

knockout, APOEzA or e4 mice.

5.4.3 Temporal Profile of Degeneration and Regeneration Post- 

Lesion

5.4.3.1 Alterations in synaptophysin immunoreactivity

Synaptic alterations during degenerative and reinnervative events within the 

hippocampal dentate gyrus were assessed using synaptophysin immunohistochemistry. 

Percentage difference between the ipsilateral and contralateral hippocampus was 

compared in knockout, APOEz3 and APOEzA mice. Synaptophysin immunoreactivity 

in 0 day control mice displayed a regular dense pattern o f staining throughout the
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dentate gyrus and did not differ significantly between the genotypes. At day 90 post- 

ECL, ipsilateral synaptophysin immunoreactivity was significantly reduced in all layers 

(20-30%). There was no statistically significant difference between APOE knockout, 

s3 and s4 mice (Figure 5.2 and 5.4).

5.4.3.2 Alterations in growth-associated protein immunoreactivity

In 0 day control mice, GAP-43 immunoreactivity exhibited a regular dense, punctate, 

stain within the outer two thirds of the molecular layer and denser labelling within the 

IML and there was no statistically significant difference in GAP-43 levels between the 

genotypes. At day 90 post-ECL, GAP-43 immunoreactivity was not significantly 

altered in the ipsilateral hemisphere in APOE knockout and s3 mice in the IML, but 

e4 mice displayed a deficit. In the MML and OML, APOE knockout, s3 and s4 mice 

displayed a deficit in GAP-43 immunoreactivity in the ipsilateral hemisphere 

compared to the contralateral at 90 days. This deficit was most marked in the e4 mice 

(p<0.05) (Figure 5.3 and 5.5).

147



lO-i

a> 0 -yc<L>

ta  -10

- 20 -

-30-

IML
Knockout
c3

I I s4

0 90
Survival Time (days)

MML
lO - i

« °' uaa»u
la -io-

- 2 0 -

-30-

10n

« °-
a<uu
IS -10' 
.©

- 20 -

-30-

0 90

Survival Time (days) 

OML

0 90

Survival T im e (days)

Figure 5.2 Quantification of synaptophysin immunoreactivity in the inner, middle and 
outer molecular layers (IML, MML and OML) of the hippocampal dentate gyrus 
measured as relative optical density values at 0 and 90 days post-lesion. Percentage 
difference between the ipsilateral and contralateral hippocampus immunoreactivity 
was compared in APOE knockout, s3 and s4 transgenic mice using a Student’s 
unpaired r-test with Bonferroni correction for multiple comparisons.
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Figure 5.3 Quantification of GAP-43 immunoreactivity in the inner, middle and outer 
molecular layers (IML, MML and OML) of the hippocampal dentate gyrus, measured 
as relative optical density values at 0 and 90 days post-lesion. Percentage difference 
between the ipsilateral and contralateral hippocampus immunoreactivity was 
compared in APOE knockout, e3 and s4 transgenic mice using a Student’s unpaired t- 
test with Bonferroni correction for multiple comparisons. *p<0.05
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Figure 5 4 Synaptophysin immunoreactivity in APOE knockout (K O ), s3 and s4  

mice post-ECL

Illustrative examples o f synaptophysin immunoreactivity in the ipsilateral 

hippocampus at day 0 and 90 post-ECL in APOE knockout, 83 and s4 transgenic 

mice. Contralateral synaptophysin immunoreactivity does not alter post-ECL. x50 

magnification
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Figure 5 5 Impaired sprouting in APOEz4 mice at day 90 post-ECL

Illustrative examples o f GAP-43 immunoreactivity in the ipsilateral hippocampus at 

day 0 and 90 post-ECL in APOE knockout, s3 and s4 mice. GAP-43 

immunoreactivity in the contralateral hippocampus did not alter post-ECL. The 

arrows delineate the region o f the hippocampus affected by the lesion. x50 

magnification
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5.4.3.3 IML width alterations post-lesion

The width of the IML in GAP-43 immunostained sections was measured in each 

animal to give an indication of the degree of sprouting from the commissural- 

associational fibres. In 0 day control animals there was no statistically significant 

difference in IML width between the genotypes. At day 90 post-ECL, IML width 

increased in mice of all genotypes, but more so in APOEe3 mice (30%) and knockout 

mice (25%) compared to APOEe4 mice (20%). Comparison of the IML widths at day 

90 revealed IML width was significantly greater in APOEe3 mice compared to 

APOEe4 but was not significantly different to that of knockout mice (p<0.05) (Figure 

5.6).

* * *

Knockout

0 90

Survival Time (days)

Figure 5.6 Quantification of hippocampal IML width in GAP-43 immunostained 

sections from APOE knockout and APOEe3 and e4 transgenic mice at 0 and 90 days 

post-lesion. The width was compared between the genotypes using a Student’s 

unpaired /-test with Bonferroni correction for multiple comparisons. ***p<0.0001, 

**p<0.01 and *p<0.05
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5.4.4 Apolipoprotein Response to Injury

5.4.4.1 Apolipoprotein E

(a) Alterations in cellular immunoreactivity

No apoE immunoreactivity was evident in APOE knockout mice. 0 day control APOE 

transgenics displayed astrocytic immunostaining throughout the entire brain. At day 

90 post-ECL astrocytic apoE was increased slightly but was similar in APOEe3 and 

e4 mice.

(b) Neuropil immunoreactivity

The percentage difference between the ipsilateral and contralateral hippocampal apoE 

immunoreactivity was taken. APOE knockout mice displayed no immunoreactivity. In 

0 day control APOEe3 and c4 mice apoE immunoreactivity was faint and similar in 

both APOEe3 and e4 mice. At day 90 post-ECL, apoE immunoreactivity was 

increased within the MML and OML of both APOEe3 and e4 mice. At this time s4 

mice displayed slightly greater apoE immunoreactivity compared to s3 mice, however 

this was not statistically significant (Figure 5.7 and 5.8).

5.4.4.2 Apolipoprotein J

(a) Cellular immunoreactivity

In 0 day control mice, neuronal apoJ immunoreactivity was present within mice of all 

genotypes. No astrocytic immuno staining was present. By day 90 post-ECL minimal 

astrocytic immunoreactivity was evident.

(b) Neuropil immunoreactivity

In 0 day control animals, apoJ neuropil immunoreactivity was punctate and stained the 

molecular layers in a dense pattern of staining which was similar across all genotypes. 

Percentage difference between the ipsilateral and contralateral hippocampus was 

taken. At day 90 post-ECL, apoJ immunoreactivity was no different in the IML and 

MML compared to 0 day control mice. In contrast, apoJ immunoreactivity was 

intense within the OML but did not differ significantly between genotypes (Figure

5.9).
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Figure 5.7 Quantification of apoE neuropil immunoreactivity in the inner, middle and 
outer molecular layers (IML, MML and OML) of the hippocampal dentate gyrus 
measured as relative optical density values at 0 and 90 days post-lesion. Percentage 
difference between the ipsilateral and contralateral hippocampus immunoreactivity 
was compared in s3 and e4 transgenic mice using a Student’s unpaired t-test with 
Bonferroni correction for multiple comparisons.
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Figure 5 8 ApoE is elevated at day 90 post-ECL

Illustrative examples o f apoE immunoreactivity in the ipsilateral hippocampus at day 0 

and 90 post-ECL in s3 and z4 transgenic mice. Knockout mice do not display any 

apoE immunoreactivity at any time. In 0 day control mice, apoE immunoreactivity is 

light within the neuropil and immunoreactive astrocytes are evident throughout the 

entire brain. ApoE immunoreactivity is increased in s3 and s4 mice at day 90 post- 

ECL but is sightly more elevated in c4 mice, x 50 magnification
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Figure 5.9 Quantification of apoJ neuropil immunoreactivity in the inner, middle and 
outer molecular layers (IML, MML and OML) of the hippocampal dentate gyrus 
measured as relative optical density values at 0 and 90 days post-lesion. Percentage 
difference between the ipsilateral and contralateral hippocampus immunoreactivity 
was compared in APOE knockout, s3 and s4 transgenic mice using a Student’s 
unpaired Mest with Bonferroni correction for multiple comparisons.

156



5.4.5 Cytoskeletal Alterations Post-Lesion

5.4.5.1 Alterations in MAP-2 immunoreactivity

In 0 day control mice MAP-2 immunoreactivity displayed a regular pattern of 

staining, with dendritic processes being visible throughout the entire molecular layer. 

At day 90 post-ECL MAP-2 immunoreactivity was reduced in all layers compared to 

0 day, however this deficit was similar in APOEzS, s4 and knockout mice (Figure

5.10).

5.4.5.2 Alterations in microtubule organisation

Sections were analysed using high power light microscopy to assess dendritic 

structure following the insult. In 0 day control animals of all genotypes, microtubule 

organisation was well-organised and fine fibrils were evident running through the 

entire molecular layer. At day 90 post-ECL, although there was a clear reduction in 

MAP-2 immunoreactivity, dendritic structure did not differ significantly between 

APOE knockout, s3 and e4 mice (Figure 5.11).

5.4.6 Clearance of Degeneration Products

Silver stained sections from each subject were scored microscopically for the presence 

of degeneration product deposition. No silver labelled degeneration products were 

present at day 0 or day 90 post-ECL in any APOE knockout, s3 or s4 mice (Figure 

5.12). Silver labelled degeneration products were present within a 3 day control 

mouse brain used as a positive control.
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Figure 5.10 Quantification of MAP-2 immunoreactivity in the inner, middle and outer 
molecular layers (IML, MML and OML) of the hippocampal dentate gyrus measured 
as relative optical density values at 0 and 90 days post-lesion. Percentage difference 
between the ipsilateral and contralateral hippocampus immunoreactivity was 
compared in APOE knockout, s3 and c4 transgenic mice using a Student’s unpaired t- 
test with Bonferroni correction for multiple comparisons.
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Figure 5.11 High power MAP-2 immunoreactivity

There is no difference in MAP-2 immunoreactivity between APOE knockout, 83 and 

c4 transgenic mice at day 90 post-ECL. x400 magnification
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Figure 5 12 Silver labelled degeneration products

Illustrative examples o f degeneration products silver staining in the ipsilateral 

hippocampus at day 0 and 90 post-ECL in APOE knockout (KO), s3 and 84 

transgenic mice. No injury related degeneration products were present at any time in 

either APOE knockout, s3 or s4 mice.
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5.4.7 LRP Receptor Expression Post-Lesion

(a) Cellular immunoreactivity

In 0 day control mice, LRP immunoreactivity was evident on neurons with minimal 

astrocytic immunoreactivity and this pattern was similar in APOE knockout, e3 and e4 

mice. No astrocytic immunoreactivity was present by day 90 post-ECL. Neuronal cell 

body LRP immunreactivity did not alter with the injury.

(b) Neuropil immunoreactivity

In 0 day control mice, LRP immunoreactivity optical density values were found to be 

comparable in APOE knockout, s3 and s4 mice. At day 90 post-ECL, LRP 

immunoreactivity was slightly elevated within all layers but was statistically similar 

between APOE knockout, s3 and b4 mice (Figure 5.13).
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Figure 5.13 Quantification of LRP neuropil immunoreactivity in the inner, middle and 
outer molecular layers (IML, MML and OML) of the hippocampal dentate gyrus 
measured as relative optical density values at 0 and 90 days post-lesion. Percentage 
difference between the ipsilateral and contralateral hippocampus immunoreactivity 
was compared in APOE knockout, b3 and s4 transgenic mice using a Student’s 
unpaired t-test with Bonferroni correction for multiple comparisons.
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5.5 Discussion
ApoE is involved in the long-term plasticity changes that occur in the weeks to 

months following brain injury. In the previous chapters, a role for apoE in neuronal 

cell maintenance was established. Using a line of transgenic mice, with both neuronal 

and glial cell apoE expression, it was shown that the human APOEzA allele was 

associated with impaired neuronal cell plasticity following injury (White et al, 2001). 

In this study we have employed the same animal model but have assessed recovery 

from chronic brain injury in APOE knockout and transgenic mice possessing human 

APOEz3 and s4 alleles under an astrocytic promoter. This dictates that apoE 

expression is strictly astrocytic in nature. The present study suggests that there may be 

an impairment of long-term neuronal repair mechanisms in transgenic mice possessing 

the human APOEzA genotype compared to APOEz3 transgenic mice. However, the 

extent of this impairment is more pronounced than that observed in the transgenic 

mice expressing apoE protein neuronally.

5.5.1 APOE genotype and the acute response to brain injury

It is becoming increasingly clear that the localisation of apoE within the brain may be 

crucial to the way in which it influences recovery. In contrast to the mice employed in 

the previous study, this line of transgenic mice express apoE astrocytically and this 

could have vital implications for recovery from brain injury. If apoE is not expressed 

neuronally can it modulate neuronal plasticity? The acute response to injury was not 

the focus of this study. Following the injury, apoE was increased within the neuropil 

and also within glia in the dentate molecular layer. A study by Horsburgh et al (2001) 

found that following a period of global ischaemia, there was no statistically significant 

difference in the extent of ischaemic cell death between APOEz3 and s4 mice. In this 

study, a marked increase in apoE levels was determined after ischaemia. There is little 

data on acute brain injury in these transgenic mice, other than the study mentioned, 

however the results from that would suggest that at least in the acute phase, APOE 

genotype does not influence outcome. Traditionally it has been thought, that to 

function in neuronal repair mechanisms, apoE would be required to enter the neuronal 

cell, or at the very least interact with its receptors on the neuron cell surface. 

Although no neuronal cell body staining was evident at any time, it would seem
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unlikely that the dramatic increase in neuropil staining observed in the dentate 

molecular layers would be due solely to the presence of apoE in astrocyte processes. 

It would seem possible that at least some of the protein was present within neuronal 

cell processes, or in the extracellular space, ready for utilisation in membrane 

biosynthesis. This issue would need to be resolved using electron microscopy.

5.5.2 APOE genotype and the chronic response to brain injury

The present study is the first to use this transgenic mouse line in the study of chronic 

brain injury. We have found that APOEzA mice recover poorly from the injury 

compared to APOEz3 and APOE knockout mice. At 90 days post-ECL, APOEzA 

mice display significant deficits in GAP-43 immunoreactivity compared to APOE 

knockout and z3 mice. No genotype effect on synaptic density was evident. As 

previously described the width of the IML serves as an efficient indicator of the 

sprouting response from the commissural-associational neurons. The IML width 

increased by approximately 25-30% in APOEz3 and knockout mice but only increased 

by 15-20% in APOEzA mice. ApoE immunoreactivity was elevated at 90 days post- 

ECL within all layers but to a greater extent in APOEzA mice compared to s3. This 

increase in apoE at 90 days post-ECL is a similar finding to that observed in the 

C57BL/6J mice (see chapter III). In contrast, the transgenic mice expressing apoE in 

neurons do not experience this late increase post-ECL. Wild-type mice express apoE 

in glial cells but not neurons similar to the mice in this chapter and therefore the late 

expression of apoE post-injury could be dependent on the initial localisation of 

expression. It must also be noted that although the mice in this study display a certain 

ability to repair, even at 90 days there remains a significant deficit in fibre and synapse 

density (20-30%) compared with 0 day control levels in each genotype. This is in 

contrast to the previous neuronally expressing mice where all mice displayed a 

complete recovery by day 90 post-ECL. This could indicate the importance o f the 

presence of neuronal apoE in brain injury.
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5.5.3 Uptake of the apoE/Iipid complex by the LRP receptor

The entrance of apoE into neuronal cells is primarily mediated by the LRP receptor. 

This receptor is expressed on neuronal cell bodies and also on neurite processes, 

especially in regions of high synaptic density (Herz et al, 1990, Rebeck et al, 1993, 

Bu et al, 1994). The most common hypothesis, based on its basic function, is that, in 

response to stress, apoE is released by astrocytes into the extracellular space to 

scavenge lipid material from degenerating neurons (Poirier et al, 1993). ApoE may 

only bind efficiently to its receptor when lipid bound. Once taken up, the lipid is 

cleaved from the particle (for membrane integration) and apoE may be recycled to the 

cell surface or interact with cytoskeletal proteins (Roses et al, 1996). This process is 

particularly important in the model described in this chapter, since it is the only means 

by which apoE could possibly enter the cell. It would therefore take longer for apoE 

to reach the neuron than if synthesised endogenously. This also has implications for 

the pathway by which the apoE travels. In a study by DeMattos et al (1999) it was 

shown that apoE fails to escape the endocytic/lysosomal pathway intracellularly as 

previously thought and suggests that direct expression of apoE in the cytosol is toxic. 

The authors suggest that the signalling events at the cell surface are the crucial factors 

in the function of apoE in plasticity. This is corroborated by studies released recently 

by Herz et al, (2001) which have shown the activation of extensive signalling 

pathways on binding of apoE to the LRP receptor. These pathways are detailed in 

chapter IX.

5.5.4 Brain injury in APOE knockout mice

Several studies have shown the poor outcome of APOE knockout mice after acute 

brain injury. This has been demonstrated following closed head injury (Chen et al, 

1997; Genis et al, 2000), focal cerebral ischaemia (Laskowitz et al, 1997) and global 

ischaemia (Horsburgh et al, 1999; Sheng et al, 1999) when compared to wild-type 

C57BL/6J mice. Studies of chronic brain injury have also been carried out using 

APOE knockout mice. Anderson et al (1998) used the entorhinal cortex lesion model 

to assess plasticity in APOE knockout mice and wild-type C57BL/6J mice. The 

authors found that following 140 days of survival post-injury, both APOE knockout 

and wild-type groups showed immunohistochemical evidence of reactive 

synaptogenesis although the APOE knockout group initially displayed greater synaptic
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loss. In the present study we also found that APOE knockout mice displayed a 

significant degree of plasticity which was more substantial in some layers than that 

observed in APOEzA. The finding that APOE knockout mice are capable of plasticity 

suggests that another protein may compensate for the absence of apoE. Could this be 

the function of apo J in the brain?

5.5.5 Alterations in apoJ expression in transgenic mice post-ECL

It is hypothesised that apoJ may perform a similar function in lipid transportation and 

neuronal repair, to apoE (Poirier et al, 1995). In conditions where apoE is absent or 

reduced, apoJ is thought to compensate (Anderson et a\, 1998). Bertrand et al (1995) 

showed that apoE levels in human brain were reduced with the increasing e4 allele 

number and apoJ levels were found to increase. In the present study we have found 

that apoJ is slightly greater in 0 day control, APOE knockout mice, although not 

significantly so when compared to APOEz3 and s4 mice. By day 90 post-ECL, apoJ 

immunoreactivity was comparable in the IML and MML to control levels but was 

elevated within the OML. Again no significant difference in immunoreactivity could 

be detected between the genotypes. The fact that APOE knockout mice display 

slightly greater baseline apoJ levels may suggest that it is elevated to compensate for 

the lack of apoE. However, apoJ levels are comparable between the genotypes post- 

ECL may suggest that levels expressed post-injury are not dependent on the presence 

or absence of apoE.

5.5.6 ApoE isoform influence on factors that may influence CNS plasticity

5.5.6.1 Clearance o f degeneration products

There are several factors that may account for the isoform differences observed in this 

study. Initially it was important to determine if E3 and E4 both cleared degeneration 

material from the site of the injury efficiently. In the present study it was found that at 

day 90 post-ECL, there was no evidence of lesion induced degeneration products in 

APOEz3 or e4 mice. Most surprisingly, it was also found that degeneration products 

were efficiently cleared in APOE knockout mice. The only study which found 

impaired degeneration product clearance is that by Fagan et al (1998) who found that 

knockout mice displayed impaired clearance of degeneration products but only when
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aged. The clearance of degeneration material post-injury has not previously been 

analysed in these mice before the carrying out of this study.

5.5.6.2 LRP receptor expression

The outgrowth promoting effects of apoE from this line of transgenic mice have been 

shown in vitro. It was noted that hippocampal neurons grown on a monolayer of 

astrocytes, derived from these astrocyte-expressing mice, produced long neurites 

when the astrocytes were derived from APOEz3 expressing mice. Outgrowth was 

inhibited when hippocampal neurons were grown on APOEzA expressing astrocytes 

(Holtzman et al, 1995; Sun et al, 1998). In addition it was found that by blocking the 

LRP receptor, the outgrowth promoting effects of apoE E3 could be attenuated 

(Holtzman et al, 1995). APOE knockout mice express the LRP receptor throughout 

the brain even in the absence of apoE expression (Ishibashi et al, 1994). However, the 

LRP receptor has a host of ligands and functions in a number of other processes. No 

significant difference in LRP expression between the genotypes was noted at any time 

in this study, however, this does not reflect functional variations of the isoforms at the 

receptor. Although LRP was increased on reactive astrocytes, generally endocytic 

receptors are shown not to increase expression significantly under stress but increase 

turnover, therefore it is not surprising that increased neuropil expression was not 

witnessed.

5.5.6.3 Cytoskeletal structure

In the neuronally expressing transgenic mice it was found that dendritic structure, as 

labelled with the MAP-2 antibody, was disrupted and disorganised in APOEzA mice 

post-ECL compared to e3 mice. This was not the case in this study. No genotype 

effect on MAP-2 immunoreactivity density was observed. Additionally, there was no 

observable difference in dendritic structure in APOE knockout, e3 or zA mice post- 

ECL. This could reflect the role of intraneuronal apoE interaction with the 

cytoskeleton. If E3 and E4 behave differently when they enter the neuron i.e. E3 

escapes the endosomal pathway but E4 does not, this could mean that E3 is able to 

interact with microtubules to promote polymerisation and extension. In neuronally 

expressing mice the apoE is readily available intraneuronally for immediate
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interactions with the cytoskeleton, without the added complication of cell entry 

primarily. This could reflect why the neuronally expressing mice repair so efficiently 

and the astrocytically expressing mice do not.
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Chapter VI

APOE Genotype Influence in the CNS of Aged APOE Knockout, s3 and 

s4 Transgenic Mice (GFAP Promoter).
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6.1 Introduction
At birth the normal human brain is composed of 1012 cells, approximately 20,000 cells 

for every 1mm3 of brain mass (Principles of Behavioural Neuroscience, 1995). This 

population of cells is composed predominately of neurons and glial cells of various 

types. Glial cells of the brain are capable of dividing however, neurons are unique, in 

that, unlike cells of other major organs, they are not capable of division. New 

neuronal cells cannot be manufactured in the CNS, a process call neurogenesis. Thus, 

we are bom with a full complement of brain cells. In the process of ageing, brain cells 

are lost and this combined with the associated loss of synaptic contacts can have a 

devastating effect on function, an exaggerated example of this being Alzheimer’s 

disease (AD). The brain is capable of compensating for this to a certain extent 

through a process of synaptic plasticity. Existing fibres produce outgrowth in an 

attempt to form new contacts. Isoform specific effects on brain ageing have not been 

clearly elucidated and in this chapter the APOE genotype influence on the ageing 

process, will be assessed in APOE knockout, e3 and s4 transgenic mice. The 

hypothesis of this study is that APOEe4 mice will display impaired hippocampal 

plasticity with increasing age.

6.2 Aims
This study will assess APOE genotype influence on CNS plasticity with ageing in 

APOE knockout, human APOEe3 and s4 transgenic mice (GFAP promoter).
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6.3 Materials and Methods

6.3.1 APOE transgenic mice on a GFAP promoter

APOEel and s4 heterozygous transgenic mice were generated as previously described 

(Sun et al, 1998). Homozygous knockout littermates are also produced in the 

breeding of these animals. The APOE genotypes of all animals bred were checked 

using PCR analysis (see Chapter II).

6.3.2 Tissue

APOE knockout, c3 and s4 transgenic mice were bred and maintained in an animal 

house until the age of either 3 months (knockout: n=5, e3: n=5, s4: n=5) or 1 year 

(knockout: n=12, c3: n=6, s4: n=7). The mice were halothane anaesthetised and 

perfused transcardially with heparinised saline followed by buffered 4% 

paraformaldehyde. The brains were processed and paraffin embedded and 6pm 

coronal sections were cut on a microtome. Immunohistochemistry for GAP-43, 

synaptophysin, apoE, apoJ and MAP-2 was performed on tissue sections from each 

subject. IML width was measured in GAP-43 immunostained sections and analysed as 

outlined in chapter II.

6.3.3 Quantification of immunohistochemistry and statistical analysis

Relative optical values for immunostaining were collected from the inner, middle and 

outer molecular layers of the dentate gyrus from both the ipsilateral and contralateral 

hippocampus of each subject using an MCID image analysis system. Six optical 

density readings were taken from each layer using a 1cm2 sampling box and averaged 

to give a representative reading from the layer. The measurements from the ipsilateral 

and contralateral hippocampus were averaged for each subject. ANOVAR was carried 

out on the measurements taken from each antibody of both the 3 month and 1 year 

old mice. The genotypes were then compared using a post-hoc Student’s unpaired t- 

test with Bonferroni correction for multiple comparisons. Histograms are presented as 

the mean +/- S.E.M.
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6.4 Results

6.4.1 Temporal Profile of Degeneration

6.4.1.1 APOE genotype and synaptic loss in ageing

Synaptophysin immunoreactivity displayed a regular, dense, trilaminar pattern of 

staining with the IML most intensely stained. In 3 month old mice, there was no 

statistically significant difference in synaptophysin immunoreactivity. Genotype 

differences in synaptophysin immunoreactivity were compared between APOE 

knockout, e3 and s4 mice. In 1 year old mice, synaptophysin immunoreactivity was 

not significantly altered compared to those at 3 months of age. There was a trend for 

greater synaptophysin immunoreactivity in 1 year old, APOEz3 transgenic mice 

compared to the other genotypes although this did not achieve statistical significance 

(Figure 6.1).

6.4.1.2 APOE genotype and fibre degeneration in ageing

GAP-43 immunoreactivity displayed a regular punctate staining with the IML being 

most densely immunoreactive. In 3 month old mice, a statistically significant 

difference in GAP-43 immunostaining was observed within the IML where GAP-43 

immunoreactivity was found to be significantly reduced in APOEzA mice compared to 

APOE knockout and s3 mice (p<0.05). GAP-43 immunoreactivity decreased within 

all layers of APOE knockout and APOEz3 mice at 1 year compared to 3 months. 

However, the levels of GAP-43 immunoreactivity were not different in APOEz4 mice 

at 1 year compared to 3 months. There was no statistical difference in the levels of 

GAP-43 between APOE knockout, s3 and s4 mice at 1 year (Figure 6.2).
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Figure 6.1 Quantification of synaptophysin immunoreactivity within the inner, middle 
and outer molecular layers (IML, MML and OML) of the hippocampal dentate gyms 
of 3 month adult mice and 1 year old aged APOE knockout, e3 and s4 transgenic 
measured as relative optical density values. ANOVAR was carried out on the groups 
and the genotypes compared using a Student’s unpaired /-test with Bonferroni 
correction for multiple comparisons.
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Figure 6.2 Quantification of GAP-43 immunoreactivity within the inner, middle and 
outer molecular layers (IML, MML and OML) of the hippocampal dentate gyrus of 3 
month old adult mice and 1 year aged APOE knockout, s3 and e4 transgenic mice 
measured as relative optical density values. ANOVAR was carried out on the groups 
and the genotypes compared using a Student’s unpaired /-test with Bonferroni 
correction for multiple comparisons. *p<0.05
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6.4.1.3 IML width alterations in ageing

IML width acts as an indication of the degree of sprouting from the commissural 

associational neurons. This fibre system has been shown to sprout in conditions of 

chronic injury (see chapter IV and V). Statistically significant variance in the baseline 

optical density readings of GAP-43 immunostained sections was detected in 3 month 

old mice. This suggested that there may be baseline differences in sprouting between 

the genotypes which may be detected by measurement of IML width.

The IML at 3months of age was similar in APOE knockout and s3 mice. However, 

IML width was significantly narrower in APOEz4 mice compared to APOE knockout 

and s3 mice (p<0.05). At 1 year, IML width is still significantly narrower in APOEzA 

mice compared to APOE knockout (p<0.05) and s3 mice (p<0.01). This is because 

IML width increases in s3 mice between 3 months and 1 year of age but does not 

increase m APOEzA mice (Figure 6.3).

150—, IML Width *
77 8SS3SI Knockout
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Figure 6.3 Quantification of hippocampal IML width in GAP-43 immunostained 

sections from 3 month old adult and 1 year old aged APOE knockout, b3 and e4 

transgenic mice. ANOVAR was carried out on the groups and the genotypes 

compared using a Student’s unpaired /-test with Bonferroni correction for multiple 

comparisons. **p<0.01 and *p<0.05
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6.4.2 Apolipoprotein Response to Ageing

6.4.2.1 Apolipoprotein £

(a) Astrocytic immunoreactivity

Apolipoprotein E immunoreactivity was pale within the neuropil. Astrocytic staining 

was present throughout the hippocampus and throughout the whole brain. This 

staining was similar in both c3 and e4 mice. The degree of astrocytic staining did not 

alter with age. APOE knockout mice displayed no apoE immunoreactivity.

(b) Neuropil immunoreactivity

Optical density readings were collected from the neuropil of APOEz3 and e4 mice at 

3 months and 1 year of age. ANOVAR revealed no statistically significant variance in 

apoE neuropil immunostaining in the 3 month old APOEzl and e4 mice. ApoE 

immunoreactivity was similar in 1 year old APOEz3 mice compared to levels at 3 

months of age (Figure 6.4 and 6.5). ApoE immunoreactivity was significantly greater 

in APOEzA mice compared to e3 mice at 1 year old (p<0.05).

0.4.2.2 Apolipoprotein J

ApoJ immunoreactivity was present within the neuropil and also lightly stained 

neurons. The degree of staining was similar in APOE knockout, APOEz3 and s4 

transgenic mice. ANOVAR revealed no statistically significant variance in apoJ 

staining intensity in 3 month old mice in any layer. ApoJ immunoreactivity did not 

alter significantly between 3 months and 1 year of age in APOEz3 mice (Figure 6.6). 

There was trend for greater apoJ immunoreactivity in APOE knockout and 84 mice 

compared to APOEzA mice within all layers.
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Figure 6.4 Quantification of apoE immunoreactivity within the inner, middle and outer 
molecular layers (IML, MML and OML) of the hippocampal dentate gyrus of 3 
month old adult and 1 year old aged APOEz3 and s4 transgenic mice measured as 
relative optical density values. ANOVAR was carried out on each group and the 
genotypes compared using a Student’s unpaired /-test with Bonferroni correction for 
multiple comparisons. *p<0.05

177



s3

3 months 1 year

c4

3 months 1 year

Figure 6 5 Increased apoE immunoreactivity at 1 year of age

Illustrative examples of apoE immunoreactivity in AP()Ez3 and 84 transgenic mice at 

age 3 months and 1 year. Neuropil apoE immunoreactivity is increased at 1 year o f 

age throughout most regions of the brain including the hippocampus. x50 

magnification
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Figure 6.6 Quantification of apoJ immunoreactivity within the inner, middle and outer 
molecular layers (IML, MML and OML) of the hippocampal dentate gyrus of 3 
month old adult and 1 year old aged APOE knockout, e3 and e4 transgenic mice 
measured as relative optical density values. ANOVAR was carried out on the groups 
and the genotypes compared using a Student’s unpaired /-test with Bonferroni 
correction for multiple comparisons.
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6.4.3 Cytoskeletal Alterations in Ageing

6.4.3.1 Alterations in MAP-2 immunoreactivity

MAP-2 characteristically labelled the soma of neurons and associated dendritic 

networks most intensely. At 3 months of age, APOEzl mice and APOE knockout 

mice displayed a trend for slightly greater MAP-2 immuno staining compared to 

APOEzA mice but this did not reach statistical significance (Figure 6.7). At 1 year of 

age MAP-2 immuno staining was reduced in APOE knockout and s3 transgenic mice 

compared to 3 month old animals. MAP-2 immunoreactivity remained similar in 

APOEz4 mice between the age of 3 months and year. There was no significant 

difference in MAP-2 immunoreactivity between APOE knockout, e3 and e4 mice at 

this timepoint although s3 mice did show a trend for slightly greater MAP-2 

immunoreactivity compared to e4 mice. No difference in dendritic structure was 

evident at 3 months or 1 year of age in APOE knockout, c3 or e4 mice (Figure 6.8).
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Figure 6.7 Quantification of MAP-2 immunoreactivity within the inner, middle and 
outer (IML, MML and OML) of the hippocampal dentate gyrus of 3 month old 
adult and 1 year old aged APOE knockout, e3 and s4 mice measured as relative 
optical density values. ANOVAR was carried out on the groups and the genotypes 
compared using a Student’s unpaired /-test with Bonferroni correction for multiple 
comparisons.
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83

84

Figure 6.8 MAP-2 immunoreactivity in the dentate molecular layer o f aged APOE 
knockout, s3 and s4 transgenic mice. Dendritic structure is similar in all mice 
although less dendritic processes are visible in some knockout mice. x400 
magnification
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6.5 Discussion
6.5.1 Ageing and the human brain

In the last hundred years, with the improvement of medical care around the world, 

humans are living longer with the number of individuals who are octogenarians or 

above increasing sharply. Care of the elderly is an economical burden around the 

world and in association with this, much investment has been made in the 

investigation of age related diseases such as AD and factors involved in the ageing 

process. Ageing is a form of chronic brain injury. The characteristic loss of cells and 

synapses in the aged brain is well defined and ultimately leads to memory impairment, 

dementia and cognitive deficits. One of the regions of the brain most vulnerable to cell 

loss is the entorhinal cortex. The death of cells in this region triggers a cascade of 

degenerative events within the hippocampus. APOE genotype may affect the process 

of brain ageing as it does the progression of AD and outcome after head injury. The 

results of this study indicated that APOE genotype does not influence hippocampal 

plasticity in response to ageing.

6.5.2 APOE genotype influence on effects of ageing in APOE knockout, c3 and 

c4 mice

In the present study, using markers for synaptic, fibre and dendritic alterations, there 

was no evidence that APOE genotype influenced alterations in these markers at 1 year 

of age compared to 3 months. There was also no indication that deficiency of apoE 

produced synaptic, fibre and dendritic alterations at 1 year compared to 3 months. 

However, there was some subtle evidence, using width of IML as a measure of 

sprouting, that the e4 allele was associated with reduced sprouting in both 3 month 

and 1 year old APOEzA mice compared to knockout and s3 mice. There was also 

some evidence in 3 month old mice that the s4 allele was associated with reduced 

GAP-43 immunoreactivity indicative of reduced fibre density compared to APOE 

knockout and c3 mice. This may suggest that there are underlying structural 

differences although no gross dendritic abnormalities were immediately apparent using 

MAP-2 immunoreactivity.
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Several studies have investigated the effects of ageing in APOE knockout mice. 

Masliah et al (1995) found that APOE knockout mice displayed an age-dependent 15- 

40% loss of synaptophysin and MAP-2 immunoreactivity in the neocortex and 

hippocampus at 20 months of age (changes could result from extreme ageing) 

compared to wild-type C57BL/6J controls. The authors highlighted that dendritic 

changes were evident as early as 4 months of age, suggestive of a role for apoE in the 

modulation of cytoskeletal structure. In association with this, APOE knockout mice 

also displayed an age-dependent decline in cognitive capabilities (Masliah et al, 1997; 

Veinbergs et al, 1999). The studies by Masliah et al conflict with the findings of other 

groups. Studies of other APOE knockout mice have indicated that there is no 

evidence of exaggerated synaptic degeneration with age (Anderson et al, 1998; 

Cambon et al, 2000). Similarly, the present study indicated there was no evidence of 

synaptic, fibre or dendritic alterations. Although controversial, studies by Masliah et 

al have shown that the ageing effects in knockout mice may be ameliorated by 

administration of apoE protein. Intraventricular infusion of recombinant apoE E3 and 

E4 has been found to improve performance in learning tasks and this was correlated 

with the restoration of neuronal integrity in APOE knockout mice.

Ageing studies in transgenic mice expressing apoE neuronally have shown that 

neuronal integrity is not dramatically altered in APOEzZ and knockout mice with age 

but APOEzA mice display a significant age-dependent loss in synapses and MAP-2- 

positive dendrites (Buttini et al, 1999, 2000). The effect o f APOE genotype on ageing 

was assessed in another study which compared axonal structure in astrocytically and 

neuronally-expressing transgenic mice. Prominent axonopathy was found in mice 

expressing APOEzA neuronally however astrocytically expressing APOEzA mice 

remained relatively normal throughout life (Tesseur et al, 2000). These results parallel 

the findings of the present study, which also found no genotype difference in 

pathology between astrocyte expressing s3 and s4 mice. The contrast in the findings 

of the present study (also Tesseur et al) and the study by Buttinis group could reflect 

a detrimental effect of endogenous neuronal apoE expression in ageing. Behavioural 

phenotyping studies in the line of transgenic mice employed in the present study has 

revealed that APOEzA mice express profound working memory impairments with age,
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even in the absence of Alzheimer’s-like pathology (Hartman et al, 2001). The authors 

also highlight that there was no significant difference in the level o f synaptic, neuronal 

or glial markers between the genotypes, also a similar finding to that of the present 

study. Ultrastructural studies of aged transgenic mice have shown that in APOEzA 

mice, the synapse per neuron is greatly reduced compared to APOEz2 and knockout 

mice (Cambon et al, 2000). This is also associated with an increase in synapse zone 

area in APOEzA mice. These findings could explain the unaltered synaptophysin 

immunoreactivity with age, in APOEzA mice, in our study.

The neuropathological changes that occur with age are very subtle and are certainly 

not of the magnitude observed in the lesioning studies. The techniques employed in 

this study may not be appropriate to detect these very small changes and techniques 

such as electrophysiology may be more sensitive for detecting loss of cell connections. 

The end survival point may also be a crucial factor. In the present study, the oldest 

mice were all approximately 1 year old and are classed as aged in mouse lifespan 

terms. In other studies, some investigators have allowed survival terms of up to 20 

months and this may allow manifestation of more exaggerated neuropathological 

abnormalities. Perhaps extending survival time in future studies may allow 

visualisation of more exaggerated changes with age. In previous chapters, it has been 

shown that the APOEzA allele is detrimental to the plasticity response following 

injury. Therefore, APOE genotype effects may only manifest themselves when the 

system is stressed in some way leading to greater changes in pathology. It will be 

interesting in the future to study plasticity in aged transgenic mice.

6.5.3 Evidence for an APOE genotype influence on ageing in the human brain

ApoE performs an important role in the maintenance of neuronal integrity under 

normal physiological conditions. Aside from the multitude of investigations 

highlighting that the APOEzA allele is associated with AD in humans, it is now 

apparent that APOE genotype may modulate the brains response to the normal ageing 

process. Studies in middle-aged humans have shown that individuals with an APOEzA 

genotype perform poorly in memory and learning tasks compared to individuals not 

possessing an zA genotype suggesting some vital synaptic connections may already be
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lost (Flory et al, 2000). In a study of non-demented individuals, hippocampal atrophy 

was found to be significantly greater in individuals carrying an s4 allele compared with 

control groups (Crook et al, 1986; Bigler et al, 2000). In addition, the hippocampal 

and entorhinal cortex volume of s4 AD patients is significantly reduced compared to 

control groups (Lehtovirta et al, 1995). A cohort of 563 elderly patients without AD 

were analysed over a period of 7 years for cognitive and visuospatial skills. The 

APOEs4 allele was found to be associated with a more rapid decline in memory with 

time compared with control individuals (Mayeux et al, 2001). With the use of 

transgenic animal models the role of apoE in ageing can now be more fully addressed 

in mice expressing human APOE alleles.
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Chapter VII

An In Vitro Organotypic Hippocampal Slice Model to Study APOE 

Genotype Influence on Synaptic Plasticity and Analysis of Herpes 

Simplex Virus as a Vector for APOE Delivery
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7.1 Introduction
Organotypic hippocampal slices possess a network of connections and cells, which 

allow the tissue to function in a more physiologically similar manner, to that of the 

whole animal. The tissue, which is most commonly used for organotypic culture is 

derived from neonatal animals and therefore will display a certain degree of natural 

plasticity due to ongoing developmental changes (Bolz et al, 1990).

The hippocampus is dissected from the surrounding cortical tissue before culturing 

and this results in removal of the perforant pathway to the dentate gyrus of the 

hippocampus (Heimrich and Frotscher, 1990). This is somewhat analogous to the 

hippocampal denervation by entorhinal cortex lesion discussed in previous chapters. 

The in vitro slice method results in a period of degeneration and reinnervation at 

longer culture periods. The process of sprouting within the hippocampus has been 

identified in previous studies and is a well-characterised response to removal of 

cortical inputs (Frotscher and Gahwiler, 1988; Stoppini et al, 1993, 1997). In the 

study discussed within this chapter the plasticity response of hippocampal slices is 

assessed in wild type mice and APOE knockout, e3 and e4 transgenic mice. This 

method was established to allow more dynamic alterations to be studied. In vivo, 

regenerative alterations do not occur until about 90 days post-lesion whereas in vitro 

this occurs much earlier. This study tested the hypothesis that the plasticity response 

in APOEzA slices would be impaired. The Herpes Simplex virus as a vector for gene 

delivery o f APOE is also assessed.

7.2 Aims
(1) To validate an organotypic hippocampal slice culturing model and use this model 

to characterise plasticity in hippocampal slices derived from C57BL/6 mice, APOE 

knockout, s3 and c4 transgenic mice.

(2) To determine Herpes Simplex virus (HSV) expression in slices after exogenous 

administration.
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7.3 Materials and Methods
7.3.1 Mice

7.3.1.1 C57BL/6

Breeding pairs of male and female mice were obtained from Harlan Olac and bred in 

an animal unit at the University of Glasgow. Only male pups were employed in the 

study and were used at approximately 7 days old.

7.3.1.2 Human APOE transgenic mice on a GFAP promoter

APOE transgenic mice were generated as previously described in chapter II.

7.3.2 Organotypic Hippocampal Slice Culture

7.3.2.1 Tissue harvest and culturing periods

Slices were derived from male neonatal mouse pups and cultured as explained in detail 

in Chapter II. Tail tips were collected from the transgenic mice for PCR analysis to 

determine APOE genotype. Slices were cultured as previously described (see Chapter 

II). Cultures were maintained for a period of 7 or 18 DIV (days in vitro) (n=5/6 

C57BL/6J and n=8 transgenic per time-point). Following the desired culture period 

the medium was removed and the slices submersion fixed in 4% paraformaldehyde for 

2 hours. The fixative was then removed, phosphate buffer added and the tissue stored 

at 4°C. Immunohistochemistry for apoE, synaptophysin, GAP-43, apoJ and MAP-2 

was carried out as outlined in chapter II.

7.3.2.2 Quantification of immunohistochemistry and statistical analysis

Relative optical density values (ROD) for immuno staining were measured using an 

image analyser connected to a microscope. Optical density readings were collected 

from the dentate molecular layers and from the CA1 pyramidal layer to ensure 

consistency of immunostaining. Ten optical density readings were collected across the 

expanse of the molecular layers. Five from the IML/MML and five from the 

MML/OML using a 1cm2 sampling box and an average of the ten readings taken. In 

C57BL/6J mice optical density readings were compared in the 7 day and 18 day slices 

using a Student’s unpaired /-test. In the tissue derived from the transgenic mouse 

lines, ANOVAR was carried out on the optical density readings and the genotypes
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compared using a Student’s unpaired t-test with Bonferroni correction for multiple 

comparisons. Readings were also collected from a region not directly affected by the 

culturing process as a reference area to ensure consistency of staining between slices.

7.3.3 Herpes Simplex Virus as a Vector for Gene Therapy

7.3.3.1 Addition of Herpes Simplex virus 1716 to hippocampal slice preparations

The virus employed in this study was produced by Prof Moira Brown and this work 

was carried out in collaboration with her laboratory. Briefly, the gene endocing 

ICP34.5 protein in HSV was deleted producing ICP34.5 null mutant virus that is 

avirulent. The virus contains a green fluorescent protein (GFP) reporter gene and 

therefore when replicated in cells fluorescence green allowing detection. Hippocampal 

slices were prepared from C57BL/6J wildtype mice and APOEz3 transgenic mice as 

previously described and transported to the Neurovirology Unit at the Southern 

General Hospital. All virus handling was carried out within a category 2 culture hood. 

Following virus use all instruments were submerged in detergent and the culture hood 

exposed to U.V. radiation for at least half an hour to exterminate any stray virus 

particles. 106 and 105 virus particles were diluted in culture medium and added directly 

onto the slices as a single dose of lOpl of the mixture pipetted directly onto the 

surface of the slices. The slices were then returned to an incubator and maintained for 

a period of 3, 7, 12 or 18 DIV with changing of the medium every 3 DIV. Control 

cases received no infection by HSV1716 virus. GFP labelled wild type virus was also 

employed.

7.3.3.2 Fluorescence microscopy

Following the appropriate survival period the slices were submersion fixed in 4% 

paraformaldehye for 2 hours. The slices were mounted onto glass slides and 

coverslipped, sumberged in hardening medium or the slices were removed unfixed, 

attached to the membrane and visualised without the addition of a coverslip.
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7.4 Results

7.4.1 Setting up the model and technical considerations

Initially mouse hippocampal slices were cultured using the method learned using rat 

tissue including the culture medium which consisted of 70.5% basal medium, 24% 

normal horse serum, 4% glucose, 0.5% glutamax and 1% streptomycin/penicillin (a 

method employed by Dr B Morris, University of Glasgow). However, the slices 

would only survive for short periods of time. The method therefore had to be adapted 

for long-term survival of the slices. Advice given to us by Dr Bruce Teter (UCLA) 

about culture medium consistency allowed adaptation of the system for long-term 

survival. Using this culture medium, slices could be maintained for over 20 days. The 

slices were taken at 300pm to maximise the number of slices that could be obtained 

from each brain, but also so that they remained structurally robust.

Immunohistochemistry was optimised for the antibodies used employing standard 

procedures. Analysis of immunohistochemistry was slightly different to that previously 

employed. Due to the thickness of the slices the trilaminar pattern was not as obvious 

as in the microtome sections. Therefore measurements were taken from approximate 

combined regions IML/MML and MML/OML and averaged to give a representative 

measurement of the entire molecular layer. Readings were also taken from the 

pyramidal layer, which remains relatively unaffected by dissection of the hippocampus 

to ensure consistency of staining between slices.

7.4.2 Slice viability

Cell viability of the slice was assessed by analysis of neuronal morphology in MAP-2 

immunostained slices. Neuronal morphology within the pyramidal layer and dendritic 

network structure is assessed. Healthy cells have a normal round morphology and are 

strongly MAP-2 immunoreactive (Figure 7.1).
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Figure 7 1 MAP-2 immunoreactivity in hippocampal slice cultures

Illustrative examples o f MAP-2 immunoreactivity post-ECL in hippocampal slices 

cultured for 18 days. Healthy slices display clear defined neuronal cell bodies with 

dendritic processes evident (a). Although the slices are very thick, the CA1 pyramidal 

layer can always be seen clearly in healthy slices. When slices are non-viable, neuronal 

cell bodies are no longer evident in the pyramidal layer and often stain very poorly 

with MAP-2. The illustration (b) shows the grainy appearance o f MAP-2 staining in a 

dead slice.
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7.4.3 Analysis of Plasticity in Hippocampal Slices Derived from 

C57BL/6J Mice

7.4.3.1 Alterations in synaptophysin immunoreactivity

Synaptophysin immunoreactivity within the molecular layers of the dentate gyrus of 

cultured slices is regular, punctate and similar to that observed in the paraffin 

embedded sections from in vivo studies. The granular layer and pyramidal cell layers 

are stained only lightly. Optical density readings were collected from the molecular 

layers of the dentate gyrus of slices cultured for 7 or 18 days. At day 7 in vitro 

synaptic loss occurs in the dentate molecular layers degenerate due to removal of the 

cortical input. At day 18 in vitro, synaptophysin immunoreactivity increased within 

the molecular layers and was significantly different to that of the 7 day slices when 

compared using a Student’s unpaired t-test (p<0.05) (Figure 7.2 and 7.3).

7.4.3.2 Alterations in GAP-43 immunoreactivity

GAP-43 immunoreactivity within the molecular layers of the dentate gyrus in cultured 

slices is regular, with the inner molecular layer being slightly more darkly stained 

compared to the middle and outer layers. Optical density readings were collected from 

the molecular layers of the dentate gyrus of slices cultured for 7 or 18 days. At day 7 

in culture, fibre loss occurs within the dentate gyrus due to removal of the cortical 

input. At day 18 in vitro, GAP-43 immunoreactivity increased within the molecular 

layers and was significantly different to that of the 7 day slices when compared using a 

Student’s unpaired /-test (p<0.05) (Figure 7.2 and 7.4).

7.4.4 Apolipoprotein Alterations in C57BL/6J Derived Hippocampal 

Slices

Neuropil apolipoprotein E immunoreactivity within the hippocampus was present as a 

uniform punctate stain with no evidence of neuronal staining. In 7 day slices, apoE 

immunoreactivity within the neuropil was darker within the molecular layers of the 

dentate gyrus than in any other region. Some astrocytic apoE immunoreactivity was 

also evident at this time-point. At day 18 in vitro, apoE immunoreactivity was 

reduced within the molecular layers and this was significantly different to 

immunoreactivity in the 7 day slices when compared using a Student’s unpaired Mest
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(p<0.01). Only minimal astrocytic immunoreactivity was evident at this timepoint 

(Figure 7.2 and 7.5).
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7 day

\  /

18 day

Figure 7.3 Increased synaptophysin immunoreactivity by day 18 in vitro

Illustrative examples of synaptophysin immunoreactivity in the dentate molecular 

layers o f the hippocampus of hippocampal slices derived from C57BL/6 mice cultured 

for 7 and 18 days in vitro. The arrows highlight the molecular layers, x 400 

magnification. As can be seen from the illustrations the stratum lacunosum moleculare 

(slm) also alters post-culture.
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Figure 7.4 Increased GAP-43 immunoreactivity by day 18 in vitro

Illustrative examples o f GAP-43 immunoreactivity in the dentate molecular layers o f 

the hippocampus in hippocampal slices derived from C57BL/6 mice cultured for 7 and 

18 days in vitro. The arrows highlight the molecular layers, x 400 magnification. As 

can be seen from the illustrations, the stratum lacunosum moleculare (slm) also alters 

post-culture and immunoreactivity is increased there also by day 18 in vitro.
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18 day

Figure 7.5 Increased apoE immunoreactivity by day 7 post-ECL

Illustrative example o f  apoE immunoreactivity in the hippocampal molecular layers in 

hippocampal slices derived from C57BL/6 mice and cultured for 7 or 18 days. ApoE 

immunoreactivity is increased within the neuropil and within astrocytes by day 7 in 

vitro. By day 18 apoE immunoreactivity has declined. The arrows highlight the 

molecular layers, x 400 magnification. The red arrows indicate astrocytic 

immunoreactivity.
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7.4.5 Analysis of Plasticity in Hippocampal Slices Derived from 

APOE Knockout, s3 and s4 Transgenic Mice

7.4.5.1 Alterations in synaptophysin immunoreactivity

Synaptophysin immunoreactivity in slices derived from transgenic mice displayed a 

similar pattern as previously outlined for C57BL/6J mice and was similar in pattern 

between APOE knockout, s3 and s4 slices. In 7 day slices, synaptophysin 

immunoreactivity was compared in knockout, APOEs3 and c4 derived hippocampal 

slices. Synaptophysin immunoreactivity was significantly greater in e4 slices compared 

to s3 and knockout slices (p<0.01). Synaptophysin immunoreactivity in e3 slices was 

not significantly different to that in knockout slices. By day 18 in vitro, synaptophysin 

immunoreactivity increased within the dentate molecular layers of e3 derived slices 

and APOE knockout slices however in contrast immunoreactivity in s4 slices was not 

significantly different between 7 DIV and 18 DIV. Synaptophysin immunoreactivity 

was significantly greater in APOEz3 mice at 18 DIV compared to APOEs4 slices 

(p<0.05) and APOE knockout slices (p<0.01) (Figure 7.6 and 7.8).

7.4.5.2 Alterations in GAP-43 immunoreactivity

GAP-43 immunoreactivity in APOE transgenic derived slices displayed a similar 

pattern of staining as observed in slices derived from C57BL/6J mice and was grossly 

similar in pattern between APOE knockout, e3 and c4 slices. GAP-43 

immunoreactivity was compared in day 7 slices and it was found that there was no 

statistically significant difference in intensity of immunostaining between APOE 

knockout, s3 and c4 slices. By day 18 in vitro, GAP-43 immunoreactivity was 

increased within the molecular layers of the dentate gyrus in all genotypes. However, 

GAP-43 immunoreactivity is greatly increased in APOEsl slices and was significantly 

greater compared to APOE knockout (p<0.01) and APOEzA slices (p<0.01) at this 

time-point (Figure 7.7 and 7.9).
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Figure 7 8 Synaptophysin immunoreactivity in hippocampal slices from 

transgenic mice

Illustrative examples o f synaptophysin immunoreactivity in the molecular layers o f 

hippocampal slices, derived from APOE knockout (KO), s3 and s4 transgenic mice. 

The arrows highlight the molecular layer region, x 400 magnification
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Figure 7.9 GAP-43 immunoreactivity in hippocampal slices from APOE 

transgenic mice Illustrative examples o f GAP-43 immunoreactivity in the molecular 

layers o f hippocampal slices derived from APOE knockout (KO), 83 and £4 transgenic 

mice. The arrows highlight the molecular layer region. The stratum lacunosum 

moleculare GAP-43 immunoreactivity also increases by day 18 in vitro, x 400 

magnification
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7.4.6 Apolipoprotein Alterations in APOE  Transgenic Derived 

Hippocampal Slices

7.4.6.1 Apolipoprotein E

Baseline apoE levels in this line of transgenic mice have been assessed and APOEE3 

and e4 mice display comparatively similar levels of apoE (see Chapter V). APOE 

knockout slices do not display any apoE immunoreactivity at any time. Neuropil apoE 

immunoreactivity was measured using relative optical density measurements and 

compared between APOEz3 and e4 slices using a Student’s unpaired /-test. In 7 day 

slices, apoE immunoreactivity was significantly greater in APOEE3 slices compared to 

s4 slices (p<0.0001). The entire hippocampus displayed dense astrocytic apoE 

immunoreactivity and was particularly dense in the dentate molecular layers, but was 

similar in both APOEz3 and e4 slices. In day 18 slices, apoE neuropil apoE 

immunoreactivity declined in both APOEE3 and e4 slices and was similar in each 

genotype. Astrocytic apoE immunoreactivity also declined within the molecular layers 

at this timepoint (Figure 7.10 and 7.12).

7.4.6.2 Apolipoprotein J

ApoJ immunoreactivity was present within the neuropil and labelled some neurons 

lightly. In day 7 slices, apoJ immunoreactivity was also evident within the dentate 

molecular layers. At this time-point there was no statistically significant difference in 

apoJ immunoreactivity between the three genotypes. In 18 day cultures, apoJ 

immunoreactivity declined in all slices but was not significantly different between the 

three genotypes (Figure 7.11). No astrocytic apoJ immunoreactivity was evident at 

this time. (ApoJ immunoreactivity not illustrated)
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Figure 7 12 ApoE immunoreactivity is increased by day 7 in vitro in s3  and s4 

mice.

Illustrative examples o f apoE immunoreactivity in the molecular layers o f 

hippocampal slices from APOEz3 and s4 transgenic mice cultured for 7 or 18 days. 

ApoE is increased in the neuropil and also within astrocytes within the molecular 

layers (see inlay) by day 7 in vitro. APOE knockout slices do not display any apoE 

immunoreactivity. X200 magnification
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7.4.7 Uptake and Replication of Herpes Simplex Virus 1716 in 

Hippocampal Slices

7.4.7.1 Expression of HSV 1716 in C57BL/6J derived hippocampal slices

Slices were allowed to survive for periods of 3, 7, 12 and 18 DIV. Following this they 

were fixed and mounted for viewing by fluorescence microscopy. Control slices 

displayed no GFP expression at any timepoint. GFP expression was present in all 

slices at every timepoint studied. The expression was localised to the dentate gyrus 

and was cellular in nature (Figure 7.13). Some staining was also evident within the 

granule cell layer. The occasional GFP expressing cell could be visualised within the 

CA1 pyramidal cell layer. Expression was least intense in 3 day slices and was 

increased in day 7, 12 and 18 slices however expression levels were similar at these 

time-points.

1A.1.2 Expression of HSV 1716 in APOEeS transgenic mice derived 

hippocampal slices

Slices were allowed to survive for periods of 3, 7, 12 and 18 DIV. APOEe3 

transgenic mice were chosen for these preliminary expression studies to eliminate any 

unforseen adverse effects which may be associated with being s4 i.e. viral uptake. 

Control slices displayed no GFP expression at any timepoint. Slices from transgenic 

mice displayed similar expression to that observed in C57BL/6J wildtype mice. The 

expression was localised to the dentate gyrus and was cellular in nature (Figure 7.14). 

Dense expression was present within the molecular layers of the dentate gyrus 

although some staining was also evident within the granule cell layer. The occasional 

GFP expressing cell could be visualised within the CA1 pyramidal cell layer. At day 7, 

12 and 18 slices expression levels were similar in all slices. Astrocytic proliferation 

occurs post-culture and this would suggest that the virus expression is located there 

(Appendix A3.3).
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Figure 7.13 Expression of HSV 1716 GFP in hippocampal slice cultures from a 

C57BL/6J mouse

Illustrative example o f HSV 1716 expression in the molecular layers o f the dentate 

gyrus after 7 days (a, b) and 18 day (c, d) in vitro, (a, c) x50 (b, d) x400

magnification



Figure 7.14 Expression of HSV 1716 in hippocampal slices from an AP()Ez3 

transgenic mouse

Illustrative example o f HSV 1716 expression in a hippocampal slice cultured for 18 

days in vitro. Expression is still intense within the hippocampal dentate molecular 

layers at this timepoint. (a) xlOO magnification and (b) x 400 magnification
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7.5 Discussion
In this study, a model of organotypic hippocampal slice culture was developed in the 

laboratory at the Wellcome Surgical Institute. This model was developed because it 

allows simple manipulation of environmental conditions. Exogenous compounds and 

treatments may be applied with relative simplicity compared to trials in vivo. In this 

study, the model was validated in C57BL/6J slices and at 18 days sprouting was 

detected. This model was then used to examine APOE genotype differences in 

sprouting and it was determined that neuronal repair was impaired in hippocampal 

slices derived from APOEzA mice. Lastly, the model was used to examine the utility 

o f HSV as a delivery vector for apoE. Expression of HSV was found up to 18 days in 

vitro.

7.5.1 Plasticity in hippocampal slices derived from C57BL/6J mice

As previously mentioned, the process of culturing slices causes a cascade of events 

within the hippocampus, which mimic the events that occur after entorhinal cortex 

lesion. This entails a period of degeneration and with longer survival periods, 

subsequent reinnervation (Stoppini et al, 1991; Gahwilwer et al, 1997). It was 

necessary to determine if we could detect these events in slices derived from 

C57BL/6J wild-type mice using the markers previously employed in the in vivo 

studies. Using the time periods suggested to us by Dr Teter it was determined that by 

day 18 in vitro slices displayed sprouting and reactive synaptogenesis. This study is in 

accordance with what other investigators have determined in slices derived from 

rodents (Frotscher and Gahwiler, 1988; Stoppini et al, 1993, 1997). Additional to 

this, it was also found that apoE was increased within the neuropil by day 7 in vitro, 

where levels were approximately 30 % greater than at 18 days in vitro (Teter et al, 

1999). This model was chosen on the basis that it provided a more physiologically 

relevant system to study apoE, rather than the commonly chosen single cell 

preparations. Tissue culturing of this kind allows the ease of manipulation that single 

cell cultures afford. However, cells within organotypic cultures exist within an 

environment of networked cells that more closely mimic the environment in the whole 

animal.
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7.5.2 APOE genotype influence on plasticity in slices derived from transgenic 

mice

The data from the in vivo studies in this thesis indicate that APOE genotype influences 

plasticity mechanisms. Several in vitro studies, using single cell culture, have shown a 

role for apoE in neurite outgrowth and have highlighted also the impaired capacity of 

apoE E4 in producing this neurite outgrowth. Using more advanced culture 

techniques such as hippocampal slice culture it is possible to assess APOE genotype 

influence on plasticity in a more physiologically relevant system. Hippocampal slices 

derived from human APOEz4 transgenics with the human promoter sequences, have 

been shown to display impaired sprouting capabilities (Teter et al, 1999). In that 

study by Teter et al it was determined that slices from APOE knockout mice did not 

exhibit any Timm’s-stained sprouting in the dorsal hippocampus. The ability of the 

APOEz?> and s4 allele to rescue sprouting was analysed and it was found that 

expression of the e3 allele fully restored dorsal hippocampal sprouting. The e4 allele 

also increased sprouting but to only 58% of that caused by APOEz3. The medium 

from APOEz3 transgenic mice was collected and administered to slices derived from 

APOE knockout mice. Sprouting was increased by 20% in these knockout slices 

highlighting the plasticity promoting effects. In the present study, evidence of 

sprouting and reactive synaptogenesis was found in APOE knockout, s3 and s4 slices. 

Plasticity was impaired in APOEzA slices where synaptophysin and GAP-43 

immunoreactivity was significantly lower at day 18 in vitro compared to that in APOE 

knockout and APOEz3 derived slices. APOEz3 mice displayed the greatest capacity 

for plasticity. However, interestingly in 7 day cultured slices, apoE increased within 

the neuropil but to a greater extent in APOEz3 slices than in APOEs4 slices. At day 

18 in vitro, apoE levels were not significantly different between the genotypes. This 

greater increase in c3 slices may indicate why there is such a degree of plasticity 

within the APOEz? slices. The slices derived from APOE knockout mice also display 

repair processes at day 18 in vitro, a finding paralleled in the in vivo study (see 

Chapter V). The plasticity observed in APOE knockout mice may be due to some 

other contributory factor, such as apoJ. At day 7 in vitro, apoJ immunoreactivity is 

increased within the neuropil in all slices and to a greater extent in APOE knockout 

slices although not significantly so. At day 18, apoJ immunoreactivity had decreased
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and was similar in APOE knockout, e3 and e4 slices. The present study indicated the 

utility of organotypic hippocampal slice culture as a system to study the role of apoE 

and APOE genotype differences in neuronal repair.

7.5.3 Adenoviral vector therapy in the treatment of atherosclerosis

The studies presented in this thesis build on clinical work to strongly indicate the 

APOEz4 allele is associated with a poor recovery after injury via a poor reparative 

capacity. It would therefore be beneficial to be able to increase the levels of ‘good’ 

forms of apoE (E2, E3) in an attempt to ameliorate effects of the APOE e4 allele. 

There is evidence to suggest that increasing exogenous levels of apoE may improve 

outcome after brain injury or improve the effects of ageing (Masliah et al, 1997, 

Horsburgh et al, 1999). However these studies are limited because o f acute short

term administration and problems with the crossing of the blood-brain barrier 

(Laskowitz et al, 2000). Obviously intraventricular infusion of apoE is not a valid 

option in therapy for humans. This has lead to the search for more effective 

techniques of treatment such as gene therapy. This is not a new advance in the field of 

apoE research. For a number of years several groups have been investigating the 

merits of using adenoviral vector delivery of apoE to APOE knockouts to reduce 

atherosclerosis (Kashyap et al, 1995; Stevenson et al, 1995; Cioffi et al, 1999, Hasty 

et al, 1999; Desurmont et al, 2000). The outcome of these animal studies proved that 

using adenoviral vectors to deliver apoE, the atherosclerotic plaque formations, which 

occurred in the arterial walls of APOE knockout mice, could be completely regressed. 

This therapy also reversed the hypercholesterolaemic phenotype evident in these mice. 

However, a finding that has hampered the development of any adenoviral treatment 

into human therapies is that adenovirus actually causes massive complications in the 

brain. Investigators in the States, researching adenovirus mediated therapy in humans, 

found that there was a high mortality rate. They did not report these findings and 

unfortunately several other patients died in the process. All adenovirus therapies have 

now been withdrawn from clinical trials. In this study our aim was to carry out a pilot 

study assessing viral vector expression in hippocampal slices, but using a Herpes 

Simplex Virus.
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7.5.4 Herpes Simplex virus as a vector for gene delivery

The herpes simplex virus (HSV) exists naturally within the human body and exists in 

many forms. The most common form being that which travels in the trigeminal nerve 

and causes the common cold sore. Under normal conditions the virus may invade and 

replicate within any cell in body. The virus employed in this study was engineered in 

the laboratories of Prof Moira Brown, University of Glasgow. The herpes simplex 

virus (HSV) protein ICP34.5 is a specific determinant of virulence. When this protein 

is removed (null mutant), the virus is avirulent and may only replicate in replication 

competent cells (Dolan et al, 1972). In this capacity the virus has already been 

developed into a therapy for the treatment of malignant melanoma. The virus was first 

tested, in vitro, for its ability to replicate in cells derived from human glioblastomas 

cells (Brown et al, 1994) and then in a rodent model of intracranial murine melanoma. 

Stereotaxic injection of the HSV 1716 mutant resulted in complete tumour regression 

and a significantly increased survival time of each animal (McLean et al, 1991; 

Randazzo et al, 1995). Histopathological analysis of the brains of mice administered 

the virus display mild meningoencephalitis at early timepoints, which is associated 

with virus antigen expression. At day 28 post-injection, no virus antigen could be 

detected and therefore proved to be self-limiting in terms of expression. No other 

adverse neuropathological alterations were noted (McKie et al, 1998, Howard et al, 

1998). The success of this work allowed the virus to be approved for Phase 1 toxicity 

trials and a group of patients, with recurrent glioblastoma, have already received 

direct intratumoural injection of the ICP34.5 null mutant 1716 in patients (Rampling 

et al, 1998). The patients treated thus far have not shown any adverse side effects 

even though they are immunosuppressed. Although these were merely toxicity tests, it 

is worth mentioning that these patients showed tumour regression and prolonged 

survival (unpublished data). Although lacking the ICP34.5 gene, the HSV 1716 may 

establish cell latency in vivo (Robertson et al, 1992) and may therefore act as an 

efficient delivery system for genes into the CNS. It is with this in mind that we 

embarked on the pilot studies of HSV treatment in hippocampal slices. The aim is to 

develop a gene based apoE therapy where perhaps an individuals’ APOE genotype 

may be manipulated by administration of a beneficial APOE genotype mediated by 

HSV delivery. Therapies such as this would not only be beneficial following head
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injury and in AD but also a host of other human diseases, with which the APOEe4 

genotype is adversely associated. We found that the HSV 1716 mutant was taken up 

and expressed by hippocampal slices following direct application to its surface. 

Expression was evident by day 3 post-culture and persisted until the longest culture 

period of 18 days. As yet it is unclear what cell types were expressing the virus 

however, much of the GFP expression was confined to the hippocampal dentate 

gyrus. It is likely that the majority of the expression is astrocytic, because astrocyte 

proliferation occurs within the molecular layers post-culture. However, cells o f the 

dentate granule layer also appeared to express GFP. Whether these are neurons is 

unclear, however, this virus strain can establish cell latency in vivo as previously 

stated. It may also be possible that these cells are neuronal progenitors as 

neurogenesis has been witnessed in the hippocampus. This study is by no means a 

complete work as the virus is now being tested for expression and toxicity after 

intracerebral injection in vivo. APOE gene sequences and promoter sequences must 

also be attached to the virus, a process that will obviously take a considerable length 

of time. Nevertheless, we are one step closer in the engineering of an efficient gene- 

based therapy.

215



Chapter VIII

APOE Genotype Influence on Apolipoprotein E Interaction with

Microtubules
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8.1 Introduction
Eukaryotic cells have an internal structural support system called the cyto skeleton 

which not only functions in cell structure maintenance but also intracellular transport 

and neurite outgrowth (Alvarez et al, 2000). The cytoskeleton is composed of three 

classes of filaments: microfilaments, intermediate filaments and microtubules (Barr 

and Keiman, 1993). Microtubules will be the main focus of this chapter. Microtubules 

are hollow cylindrical structures composed of two 55 kDa subunit proteins, a  and p 

tubulin and are approximately 25nm in diameter (Figure 8.1).

Protofilaments

Tubulin /  “  subunit
Heterodimer 1  (Jsububit

25 nm

Figure 8.1 Diagram illustrating microtubule structure.

It was suggested, at the outset of this thesis, that apoE binding to microtubules 

defended the structure from phosphorylative enzymes and the process also aided in 

neuronal sprouting after injury (Roses et al, 1995). However, studies in this thesis and 

other studies have shown that neuronal plasticity is severely impaired in humans and 

mice carrying APOEg4 alleles. In Chapter IV of this thesis it was shown that 

dendritic structure (by MAP-2 immunostaining) is severely disrupted in APOEg4 mice 

after injury. This chapter tested the hypothesis that different apoE isoforms interact 

differently with microtubules and this may underlie the observed difference in 

plasticity after injury.

8.2 Aims Microtubular binding of apoE E3 and E4 protein was analysed and apoE 

isoform specific differences were determined.
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8.3 Materials and Methods
8.3.1 Immunohistochemistry on paraffin sections

The microtubules to be used in this study are composed of pure tubulin. Thus tubulin 

immunohistochemistry was carried out on the tissue sections obtained from transgenic 

mice (both human and GFAP promoter) to determine firstly, whether there were 

APOE genotype differences in alterations in tubulin after entorhinal cortex lesion. 

Sections from 0 day control and 90 day survival mice were used. Relative optical 

density values of immunohistochemistry were collected using an MCID analysis 

system. Six readings were collected from each molecular layer using a 1cm2 sampling 

box and the readings averaged. The percentage difference between the ipsilateral and 

contralateral hippocampal values was taken and the APOEs3 and s4 genotypes 

compared using a Student’s unpaired Mest. The data is represented graphically as the 

mean +/- S.E.M.

8.3.2 Microtubule Associated Spin-Down Assay

8.3.2.1 Microtubule assembly

Tubulin protein was diluted in 2.5pl of microtubule cushion buffer and incubated at 

35°C for exactly 20 minutes. Simultaneously, 180pl of tubulin dilution buffer and 

40pM of taxol were mixed together and incubated at 35°C. 180pl of this solution was 

then added to the polymerised tubulin. The solution now contains a population of 

microtubules at a concentration of lxlO12 microtubules/ml and 5-10pm in length.

8.3.2.2 Microtubule binding activity

A preliminary experiment to determine if apolipoprotein E shows microtubule binding 

activity was carried out as outlined in Chapter II. Microtubule preparations were 

incubated with apoE E3 or E4 (derived from human plasma)(8 

reactions/genotype/concentration) at a concentration of 5 jug/ml or 20pg/ml and 

centrifuged at 48,000 rpm. The supernatant and pellet fractions were then separated 

by electrophoresis, transferred and immunoblotted for apoE (see chapter II). The 

membranes were stripped and reprobed with the tubulin antibody to check for the 

presence of microtubule protein in the pellet fraction. A molecular weight marker was 

run simultaneously.
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8.3.2.3 Quantification o f  microtubular binding and statistical analysis

For analysis purposes it was initially determined, on gross examination of blots, 

whether apoE was present in the supernatant or pellet fraction. Any protein that is 

microtubule bound should be present within the pellet fraction. Any unbound protein 

remains within the supernatant fraction. Protein bands were analysed as relative 

optical density values using a 1cm2 sampling box. Optical density values from the 

pellet and supernatant fractions were then compared between apoE E3 and apoE E4 

containing microtubule preparations using a Student’s unpaired /-test. Data is 

represented graphically as the mean values +/- S.E.M

8.3.3 ApoE Binding in Fluorescent Microtubule Preparations

8.3.3.1 Microtubule assembly

It was determined from an initial study that the final labelling stoichiometry of the 

microtubules should be 0.33 labels per tubulin heterodimer. Microtubules were 

assembled as outlined in Chapter II. This solution contains a population of taxol 

stabilised microtubules at a concentration of 7xl0,o/ml. The micro tubules can be 

visualised microscopically at this stage by diluting 1 pi of the microtubule preparation 

in lOpl of taxo 1/microtubule buffer containing 20pl of antifade solution. This solution 

is then smeared onto a slide, coverslipped and visualised using fluorescence 

microscopy.

8.3.3.2 Addition oflipidated human apoE E3 and E4 to microtubule preparations 

Microtubule populations were split so the apoE isoforms were being tested in a 

homogenous population of microtubules. The microtubules were incubated with apoE 

E3 and E4 bound to HDL, at a concentration of 5pg/ml or 20pg/ml for 20 mins at 

room temperature to allow binding to occur. An apoE polyclonal antibody 

(Chemicon) was added to the microtubule/HDL/apoE mixture at a concentration of 

1:100 and incubated for 30 mins. Goat secondary antibody was then applied for 30 

mins (1:100) and the signal amplified using fluorescein avidin D (30 mins). lp l of this 

final mixture was dissolved in lOpl of taxol/microtubule and lOpl of antifade and
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smeared onto a microscope slide. The microtubules appear red (rhodamine) and the 

apoE appears green (fluorescein).

8.3.3.3 Confocal imaging o f fluorescent microtubules

Images were visualised using confocal microscopy and the binding of apoE described 

qualitatively. Z-stack projections were collected from representative microtubules for 

illustrative purposes.
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8.4 Results

8.4.1 Cytoskeletal Alterations Post-Lesion

8.4.1.1 Alterations in (3-tubulin following ECL in APOEz3 and s4 transgenic 

mice (human promoter)

p-tubulin immunostaining was punctate and intense throughout the entire molecular 

layer. In 0 day control mice p-tubulin immunoreactivity was similar in the ipsilateral 

and contralateral hippocampus and was similar in both APOEz3 and z4 mice. At day 

90 post-ECL, tubulin immunoreactivity was greater in APOEzi mice compared to e4 

mice, where immunoreactivity was up to 10% below levels in 0 day controls. This did 

not reach statistical significance (Figure 8.2).

8.4.1.2 Alterations in p-tubulin following ECL in APOEz3 and s4 transgenic 

mice (GFAP promoter)

In 0 day control, mice tubulin immunoreactivity was punctate and densely stained the 

molecular layers of the dentate gyrus, but was similar in APOEz3 and s4 mice. At day 

90 post-ECL, APOEz3 mice displayed a trend for greater recovery of tubulin 

immunoreactivity at this time-point compared to APOEzA mice, however this did not 

reach statistical significance (Figure 8.3).
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Figure 8.2 APOE  expressing mice driven by the human promoter
Quantification of p-tubulin immunoreactivity in the inner, middle and outer molecular 
layers (IML, MML and OML) of the hippocampal dentate gyrus measured as relative 
optical density values at 0 and 90 days post-lesion. Percentage difference between the 
ipsilateral and contralateral hippocampus immunoreactivity was compared in s3 and 
s4 transgenic mice using a Student’s unpaired 7-test.
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Figure 8.3 APOE  expressing mice driven by a GFAP promoter
Quantification of (3-tubulin immunoreactivity in the inner, middle and outer molecular 
layers (IML, MML and OML) of the hippocampal dentate gyrus measured as relative 
optical density values at 0 and 90 days post-lesion. Percentage difference between the 
ipsilateral and contralateral hippocampus immunoreactivity was compared in s3 and 
e4 transgenic mice using a Student’s unpaired t-test.
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8.4.2 ApoE Derived from Human Plasma

8.4.2.1 Enzyme iinked-immunosorbent assay (ELISA) determination of apoE 

concentration

An ELISA was carried out on the human plasma samples to determine the 

concentration of apoE in each sample. The stock solutions were then diluted to a 

concentration of 5pg/ml and checked by ELISA to ensure that the apoE concentration 

was identical for each isoform. This was also checked by dot blotting (Figure 8.4). 

These concentrations were chosen because apoE is at a concentration o f 5p.g/ml 

within the CSF ApoE is increased within the brain following injury and therefore a 

higher concentration (20pg/ml) o f apoE was chosen to see if this altered the manner 

in which each isoform bound to the microtubules.

e3 s4

Figure 8.4 Dot blot showing similar apoE levels in a defined quantity o f HDL isolated 

from human plasma

8.4.3 APOE Genotype Influence on Microtubule Binding 

(microtubule spin-down assay)

8.4.3.1 Microtubule binding of apoE isoforms at a concentration of 5pg/ml

Any protein that is microtubule bound segregates into the pellet fraction and any 

unbound protein remains within the supernatant fraction. Tubulin protein was 

identical in E3 and E4 reactions and was only present within the pellet fraction 

(Appendix A3.4). No tubulin protein was present within the supernatant fraction. At 

5pg/ml, significantly greater amounts o f apoE E4 were present within the pellet 

fraction compared to apoE E3 (p<0 0001). In the supernatant fraction however, apoE 

E3 was found to significantly greater compared to apoE E4 (p<0.01). Combining 

protein band levels showed there was no statistically significant difference in protein 

levels between apoE E3 and E4 reactions (Figure 8.5) (also see appendix A3.5).
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8.4.3.2 Microtubule binding of apoE isoforms at a concentration of 20pg/ml

At an apoE concentration of 20pg/ml, significantly greater amounts of apoE E4 were 

present within the pellet fraction compared to apoE E3 (p<0.05). In the supernatant 

fraction however, apoE3 was found to be significantly greater compared to apoE E4 

(p<0.05). Combining protein band levels showed there was no statistically significant 

difference in protein levels between apoE E3 and E4 reactions (Figure 8.6) (also see 

appendix A3.5).
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8.4.4 Fluorescent microtubule assay

8.4.4.1 Characterisation of microtubule structure

Micro tubules under normal conditions appear almost ‘star-like’ in shape where the 

tubulin, once polymerised, forms an organising centre with processes radiating from 

the centre point and are all approximately 5-7pm in diameter. Microtubule structure 

was then assessed following addition of apoE E3 and E4 protein. Microtubules 

exposed to apoE E3 protein were found to have a regular shape with an identifiable 

organising centre with many processes radiating from the centre. There was also a 

tendancy for microtubules exposed to apoE E3 to form aggregates where multiple 

microtubule structures formed clusters (Figure 8.7 and 8.8). Microtubules exposed to 

apoE E4 were very irregularly shaped. These microtubules tended to be long and 

‘spindle’ shaped with fewer processes radiating from the organising centre. 

Microtubules treated with apoE E4 were also less often found in aggregates and on 

the occasion they did form clusters, these too were irregularly shaped.

8.4.4.2 Microtubule binding of apoE isoforms

The microtubules were examined initially to determine localisation of binding. There 

were no gross differences in the location to which each isoform bound. ApoE E3 and 

E4 were both found to bind along the full length of the microtubule processes (Figure 

8.9). At both apoE concentrations, it appeared that there was significantly greater 

apoE immunoreactivity on microtubules incubated with apoE E4 compared to those 

incubated with apoE E3, although this was most apparent at the 20pg/ml 

concentration (Figure 8.7 and 8.8).
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apoE E3 apoE E4

Figure 8 7 Confocal images of microtubule bound apoE

ApoE E3 and E4 binding to microtubules at an apoE concentration o f 5pg/ml. The 

illustrations show (a, d) microtubules (red), (b, e) apoE protein (green) and (c, f) a 

combined image.
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apoE E3 apoE E4

Figure 8.8 ApoE E3 and E4 binding to microtubules at an apoE concentration o f 

20[ig/ml. The illustration show (a, d) microtubules (red), (b, e) apoE protein (green) 

and (c, f) a combined image.
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2 p m

Figure 8.9 High power magnification o f microtubule processes with (a) apoE E3 

and (b) apoE E4 bound.
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8.5 Discussion
Microtubules play a key role in a cell’s ability to alter shape and how efficiently they 

perform this task may depend upon how several other proteins interact. In previous 

chapters of this thesis, it has been shown that neuronal repair mechanisms are 

impaired in transgenic mice expressing human APOEzA alleles. These studies parallel 

human studies which have shown impaired repair responses after head injury 

(Teasdale et al, 1997) and in AD (Arendt et al, 1999) in individuals possessing 

APOEzA alleles. One mechanism of how apoE may modulate plasticity is via 

differential interactions with the neuronal cytoskeleton. In this chapter, microtubule 

binding of apoE E3 and E4 isoforms was analysed. The present study is the first to 

study direct apoE interactions with the major microtubule protein, tubulin. It was 

found that not only did apoE E4 bind to microtubules to a greater extent than apoE 

E3, but that microtubules incubated with apoE E4 displayed an irregular structure. 

The data suggests that apoE E4 may have a detrimental effect on microtubule 

metabolism.

8.5.1 The role of the microtubule in plasticity

Microtubules are important in determining the shape of cells. Microtubules are present 

in the cytoplasm of cells and can also be found at the poles of mitotic spindles. 

Microtubules radiate from centrosomes. These centrosomes are the sites of initiation 

of microtubule growth and are called microtubule organising centres (MTOC). 

Microtubules have an intrinsic polarity where one end is called the plus end and the 

other, the minus end. Both ends are capable of assembly and disassembly but the plus 

end extends more rapidly. The minus end is nearest the MTOC. Microtubules extend 

under conditions where a cell requires them to polymerise for cell membrane 

extesnsion (Caroni et al, 1997; Alvarez et al, 2000) This process occurs most 

prominently in the growth cone of extending neurites, in an attempt to extend and 

support the new cell process. The microtubules in the present study are stabilised with 

taxol and this compound promotes polymerization of tubulin monomers into 

microtubules.
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8.5.2 Abnormalities in dendritic process structure in APOEz4 transgenic mice

ApoE is believed to play a role in modulation of the neuronal cytoskeleton. APOE 

genotype may influence the behaviour of the neuronal cytoskeleton. In Chapter IV, it 

was shown that there was impaired dendritic reorganisation post-ECL where at day 

90, APOE e4 mice (human promoter) displayed a deficit in MAP-2 immunoreactivity 

compared with APOE e3 mice. In addition, there was also a marked difference in 

dendritic structure between APOE s3 and s4 mice. The dendritic networks in 

APOEzA mice were highly disorganised and irregular compared to s3. This structural 

abnormality may arise as a result of differential interaction of each apoE isoform with 

certain cytoskeletal proteins. In the transgenic mice expressing human APOE alleles 

under the GFAP promoter (Chapter V), no such isoform effect on dendritic structure 

was detected. The findings could reflect the fact that apoE is only expressed in 

astrocytes in these mice. When expressed endogenously in neurons, apoE does not 

have to overcome the problems of escaping the endocytic pathway to interact with 

intracellular elements. At present, it is unclear whether apoE which enters a neuron 

via receptor mediated mechanisms is even capable of escaping endosomes. This could 

have vital implications as to how apoE interacts with the cytoskeleton, if at all. These 

isoform specific differences on the cytoskeleton may only arise when apoE is free to 

interact i.e. when present endogenously within the neurons. Tubulin staining in both 

transgenic lines suggests there is also a deficit in tubulin immunoreactivity at day 90 

post-ECL in APOEzA mice, where an impairment in the reparative capacity is evident.

8.5.3 In vitro evidence for a role of apoE in microtubule metabolism

Using cell culture techniques, the outgrowth promoting effects of apoE have been 

demonstrated. Initially, it was shown that apoE promoted neurite extension in the 

presence of an exogenous lipid source (VLDL) in dorsal root ganglia (Handelmann et 

al, 1992). Further studies revealed that this outgrowth promoting effect was APOE 

genotype dependent. ApoE E3/ VLDL complex promoted neurite extension in dorsal 

root ganglia, whereas apoE E4 did not (Nathan et al, 1994). The type of lipoprotein 

bound to apoE may also be important in the promotion of plasticity. In the CNS, 

apoE is mainly associated with HDL and this is the most physiologically relevant to 

employ in studies of this sort. Neuro-2A cells incubated with apoE E3/HDL complex
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display extensive outgrowth, but when incubated with apoE E4 outgrowth is 

attenuated (Bellosta et al, 1995). This effect is also evident when neuro-2A cells are 

grown on a monolayer of astrocytes secreting either apoE E3 or E4 (Fagan et al, 

1996). These differential effects on outgrowth may be due to the way in which the 

cytoskeleton behaves in response to apoE E3 and E4.

Analysis of cytoskeletal structure in cells incubated with apoE E3 and E4 has shown 

that cells treated with apoE E4 display depolymerisation of microtubules (Nathan et 

al, 1995). Another study showed that apoE E3 and E4 accelerated microtubule 

assembly equally, however that study did not allow analysis of microtubule structure 

(Scott et al, 1996). In the present study, it was found that microtubules incubated 

with apoE E3 are regularly shaped, with many processes radiating from the organising 

centre. In contrast, microtubules incubated with apoE E4 are highly irregular. They 

appear extremely spindle-like in morphology with a reduced number of processes 

radiating from the organising centre. Those incubated with apoE E3 also tended to 

form networks and regularly existed as clusters. This was not true of those incubated 

with apoE E4 and when these did form networks they were highly irregular in shape. 

Although the apoE protein was added to the microtubules after the majority of 

assembly had taken place, they are bathed in taxol buffer, which means the 

microtubules continue to polymerise because there is always some monomeric tubulin 

available. Therefore when the apoE was added, it became involved in the assembly 

process. This allowed insights into apoE isoform effect on microtubule structure. In 

future experiments of this type, it would be interesting to have the apoE isoforms 

present from the beginning of the polymerisation process. In general, it would seem 

that the apoE E4 isoform has a detrimental effect on microtubule structure.

8.5.4 ApoE isoforms and binding to cytoskeletal proteins

One mechanism of how apoE may modulate microtubule structure, is by the manner 

in which it binds to microtubules and microtubule-associated proteins. The binding of 

apoE iso forms to microtubule-associated proteins has previously been investigated 

(Huang et al, 1996). ApoE E3 has been shown to bind with high-avidity to the 

microtubule-associated protein tau. ApoE E4 does not bind as avidly. The fact that 

apoE E3 binds efficiently means it can protect microtubule structure from
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hyperphosphorylation. Hyperphosphorylation of tau results in the protein binding to 

itself, which causes the formation of neurofibrillary tangles. Higher avidity binding of 

apoE E3 has also been shown in association with the MAP-2c protein. In this chapter 

the binding of apoE to the major microtubule protein, tubulin was studied. Using non

denaturing polyacrylamide gel electrophoresis, it was found that at both apoE 

concentrations, apoE E4 protein was present predominantly within the pellet fraction 

(microtubule bound) whereas greater levels of apoE E3 were present within the 

supernatant fraction (unbound). This suggested that more apoE E4 was bound to 

microtubules than apoE E3. Images of microtubules with apoE bound, analysed by 

confocal microscopy revealed similar results, where it appeared that greater apoE 

immunoreactivity was present on the microtubules treated with apoE E4 than those 

treated with apoE E3. This type of study would further benefit from a time course 

study to analyse interaction and dissociation with time. In this study, apoE E4 protein 

was found to bind microtubules to a greater extent than apoE E3 protein. A previous 

study looking at binding of apoE isoforms to various cytoskeletal proteins found that 

there was no difference in the binding avidity of apoE E3 and apoE E4 at an apoE 

concentration of 5pg/ml (Fleming et al, 1996). This study did not examine apoE at 

higher concentrations and it also failed to combine the apoE with a lipoprotein source. 

In the present study the apoE was isolated from plasma but it was associated with the 

endogenous HDL lipoprotein. This makes this assay more physiologically relevant as 

apoE is always lipoprotein bound within the CNS. The presence of lipoprotein may 

have vital implications to the way in which an apolipoprotein interacts with 

cytoskeletal components.

8.5.5 Technical considerations and concluding remarks

This study was the first step to understand the interactions of apoE with microtubules. 

Ideally, this experiment would have benefited from using apoE/HDL isolated from 

CSF. However, at the time of these studies it was impossible to concentrate apoE- 

HDL from CSF. Furthermore a large volume of CSF would be required and this was 

not available. The use of apoE from plasma provided the best physiologically relevant 

information. This study also benefited from the fact that apoE is combined with the 

endogenous lipoprotein source. In the CNS, apoE is bound to HDL and although
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slightly different between the CNS and plasma, it again was more physiologically 

relevant than using recombinant apoE and a false lipoprotein source.

The concentrations of apoE were chosen on the basis that apoE in the CNS exists at a 

concentration of approximately 5pg/ml. A higher concentration was also chosen on 

the basis that apoE is increased after injury and it was important to establish the effect 

of elevated apoE on microtubule interactions. In these studies it was found that 

greater levels of apoE E4 were bound to microtubules. This result was surprising in 

view of other studies that indicate apoE E3 binds with greater avidity to MAP and 

tau. The explanation as to why apoE E4 should bind tubulin to a greater extent is 

unclear. However, it may be that apoE E4 binds more strongly and once associated 

with microtubules is not easily dissociated whereas apoE E3 binds, transports and 

dissociates readily and would be available for further interaction. If for instance, the 

apoE E4 cannot become dissociated, it is not free for subsequent interactions. This 

has not yet been studied and further investigation may be required to confirm this. 

This study also highlighted that microtubule structure was highly irregular when 

incubated with apoE E4 and may explain the dendritic abnormalities observed in the 

in vivo studies.
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Chapter IX General Discussion
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9.1 Evidence for a role of apoE in regeneration

Studies in the PNS and in populations of neurons in culture have shown that apoE is 

involved in regeneration. ApoE is upregulated in transected peripheral nerves and this 

increase has been shown to coincide with regeneration (Ignatius et al, 1987). Similarly 

apoE promotes neurite outgrowth from Neuro-2A cells incubated with apoE (Pitas et al, 
1998). A model of entorhinal cortex lesion and an in vitro organotypic hippocampal 

slice culture method was established in this thesis to assess apoE function in 

compensatory sprouting in the hippocampus post-injury. The brain maintains an 

incredible capacity to repair itself. This manifests itself as an ability to compensate for 

loss of function but also the ability to compensate at the cellular level. ApoE is believed 

to play an important role in this regeneration process by providing lipid and cholesterol 

material for the reconstruction of cellular elements. Data in this thesis supports this 

contention with the finding that apoE is upregulated following injury at periods which 

parallel regeneration and clearance of lipid material from the local environment post- 

ECL. The actions of apoE on other cellular elements may also contribute to its ability to 

stimulate sprouting mechanisms and these will be discussed later.

9.2 Overwhelming evidence for an adverse effect of the APOEzA allele 

on long-term neuronal plasticity: impaired clinical recovery

Numerous human studies have highlighted an adverse effect of the APOEzA allele on the 

brains response to disease and trauma, primarily mediated by its effects on brain 

plasticity. This includes impaired neuronal remodelling in s4 individuals suffering from 

AD, attenuated recovery from stroke, cardiopulmonary bypass and intracerebral 

haemorrhage and adverse effects on the progression and severity of neurodegenerative 

disorders such as Multiple Sclerosis, Parkinsons disease and Motor Neuron disease. This 

is only to mention a few instances with which the APOEzA allele is adversely associated. 

The e4 allele has also been shown to associated with a poor outcome following 

traumatic brain injury. The most compelling evidence supporting this hypothesis, was 

the recent finding by Teasdale et al (2000) showing a poorer long-term outcome 

following head injury in APOEzA individuals, compared to non-s4 individuals. This is 

particularly significant considering the subjects were under the age of 15 years. This 

reinforces the fact that the adverse effect is not due primarily to age-related mechanisms
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(i.e. increased amyloid deposition), but a mechanism mediating brain plasticity. In 

addition, animal studies have confirmed there is a genotype effect not only in acute brain 

injury but that there is also a pronounced effect on the brains long-term response to 

injury (Buttini et al, 2000; White et al, 2001). Studies in this thesis have shown for the 

first time that APOE genotype modulates the long-term recovery of the brain following 

injury and have provided strong evidence for an adverse effect of the APOEzA allele in 

brain plasticity. This thesis has also attempted to establish some o f the mechanisms that 

underlie the genotype specific effects on brain plasticity after injury, some of which are 

discussed in the following sections.

9.3 Influence of the localisation of apoE within the brain on recovery 

after injury

9.3.1 Neuronal apoE expression versus glial apoE expression

Human neurons and glia express apoE endogenously. This thesis has shown that the 

compartmentalisation of apoE within the nervous system could have vital implications 

for how it modulates neuronal plasticity. The transgenics studied in Chapter IV, express 

apoE within neurons and glia, due to expression being regulated by the endogenous 

human promoter sequence. Transgenic mice such as these, are believed to have a pattern 

of apoE expression similar to that in the human brain. The transgenic mice employed in 

Chapter V express apoE within astrocytes only, because expression is regulated by a 

GFAP promoter sequence. In both studies, the APOEzA mice exhibited a poor recovery 

from the injury, when compared with APOEz3 and knockout mice. However, comparing 

the degree of recovery within the two different transgenic lines it is evident that, in 

general, the line that expresses neuronal apoE display a greater capacity for 

regeneration, by day 90 post-ECL. Synaptophysin and GAP-43 immunoreactivity 

recovers close to, or above baseline levels in this line and although transgenics 

expressing glial apoE display some ability to recover from the injury, there remains a 

significant deficit in synaptophysin and GAP-43 levels at day 90 post-ECL. This 

difference between the different lines may indicate the importance of endogenous
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Figure 9.1 Diagram illustrating apoE trafficking. Neuronally expressing transgenics express 

apoE endogenously in neurons and therefore it is immediately available for the response to 

injury/ stress. These transgenic mice also express astrocytic apoE and this is readily 

available to scavenge lipid from the environment. In contrast, ‘GFAP’ mice only benefit 

from astrocytic expression. The processes o f lipid clearance may remain intact but the lack 

o f endogenous neuronal expression could have profound effects on the response to injury 

and the interaction with the cytoskeleton.
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neuronal expression to repair in response to injury. It could also reflect a delayed 

response in the mice expressing astrocytic apoE. ApoE (and its lipid components) is 

transported from distant sites i.e. astrocytes to neuropil/neurons in response to injury and 

thus the effectiveness of apoE to promote neuronal repair is slower than in endogenously 

neuronal expressing transgenic mice (see Figure 9.1). The function of apoE may be seen 

as twofold. These are (1) scavenging of lipid from the environment and (2) intracellular 

effects. Astrocytic apoE has been shown to be involved in the lipid scavenging process. 

In this respect it is likely that the two types of transgenic mouse do not differ 

significantly as they both express apoE astrocytically and it is shown in this thesis that 

lipid degeneration products are cleared efficiently post-injury in both mouse lines.

In the human transgenics, neurons also endogenously express apoE and it is therefore 

readily available for emergency use intracellularly after injury (to interact with cellular 

elements), something which is not possible for the GFAP transgenics or indeed wild- 

type mice. In addition, neurons are capable of synthesising cholesterol and phospholipid 

and therefore all the tools required for membrane biosynthesis are immediately available 

without having to be transported from great distances away and then being endocytosed. 

There is also evidence to suggest that endocytosed apoE may not be capable of 

interacting with the cytoskeleton because it does not escape from the endocytic 

trafficking pathway (DeMattos et al, 2000). This could also have important implications 

for recovery in GFAP transgenic mice. In this study, it is also evident that localisation of 

expression of apoE, influences the pattern of apoE and apoJ expression post-ECL. In 

wild-type C57BL/6J and GFAP transgenic mice, there is increased expression at day 7 

post-ECL, but also at day 90 there is increased expression within the OML. This late 

expression is absent from the response in the human transgenic mice. This could reflect 

a last ‘ditch’ attempt by the ‘GFAP’ expressors to compensate for the deficit in synapse 

and fibre density with a late surge of astrocytic apoE release. This is consistent with the 

demonstration that upregulation of apoE occurs in a region of the molecular layer, which 

has sustained the most severe damage.

The location of apoE in the brain appears also to be crucial in its response to the ageing 

process. In previous studies it has been shown that when expressed neuronally, apoE4 

has an adverse effect on neurodegeneration in the ageing CNS (Buttini et al, 1999;
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Tesseur et al, 1999) and when expressed astrocytically it is not detrimental. This is in 

agreement with the ageing study in this thesis, which did not observe any genotype 

effects on ageing in ‘GFAP’ transgenic mice. The response in the brain to injury and 

ageing appears to be almost the complete opposite in terms o f outcome, where neuronal 

apoE expression may be more beneficial in recovery from brain injury, and astrocytic 

apoE more beneficial in ageing. This also highlights that how apoE functions in ageing 

and after injury may be two completely different mechanisms.
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9.4 Mechanisms of Isoform Effect on Plasticity

There are several mechanisms by which apoE iso forms may differentially influence 

plasticity and these will be discussed in the following sections.

9.4.1 Isoform-specific differences in receptor interactions

Although no fundamental differences in LRP receptor expression between the genotypes 

could be detected in this thesis, this obviously does not account for functional 

differences in the way each isoform interacts with the receptor. In the brain, the LRP 

receptor is expressed on neurons and astrocytes, where it is located on cell bodies and 

also on processes (Stockinger et al, 1998). The presence of LRP on processes is 

especially important in the models employed in this thesis. This is because apoE is 

upregulated in regions where there are no neuronal cell bodies, only dendritic processes, 

where its lipid uptake mediating effects are most required for repair. Several studies 

have indicated that apoE E3 promotes neurite extension in cultured cells but apoE E4 

does not, an effect that is mediated by the LRP receptor (Holtzman et al, 1995; Poirier et 

al, 1995; Bellosta et al, 1995; Pitas et al, 1997). The outgrowth promoting effects of 

apoE E3, may be abolished by blocking the receptor (Holtzman et al, 1995; Fagan et al, 

1996). The single amino acid change in the protein, which results in the E4 isoform, is in 

the receptor-binding domain (Mahley et al, 1988; Rebeck et al, 1993). However, binding 

studies have revealed that E3 and E4 do not differ greatly in their affinity for the LRP 

receptor (Weisgraber et al, 1982), whereas E2 shows a reduced capacity for binding 

(Beffert et al, 1998). However, it is not the receptor itself that is responsible for a 

genotype effect but an associated protein. Heparin sulphate proteoglycan (HSPG) is 

closely associated with the receptor and functions in the initial capture of lipid from the 

environment (Mahley and Ji, 1999). Treatment of cells with heparinase abolishes uptake 

of apoE and attenuates the outgrowth promoting effects of apoE E3 (Bellosta et al, 1995; 

Ji et al, 1998). HSPG sequesters apoE-enriched lipoprotein particles before being 

endocytosed via the LRP receptor (Mahley et al, 1994). Incubation of Neuro-2A cells 

with apoE E3 and E4-VLDL resulted in a similar increase in the cholesterol content of 

the cells, suggesting a similar ability to internalise lipoprotein particles (Nathan et al, 

1995). In contrast, cells were found to contain a greater accumulation of apoE E3 than
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E4. The authors suggested that this may be due to an isoform difference in accumulation 

or retention but the effect is primarily mediated by the HSPG (Ji et al, 1998). This 

differential effect at the receptor surface may also have implications on how the apoE is 

trafficked throughout the rest of the cell.

9.4.2 Endocytosis and intracellular trafficking

The differential accumulation and retention of apoE3 and E4 in cells may be due to a 

variation in storage once inside the cell. One hypothesis is, that apoE3 is directed to an 

intracellular pool (Ji et al, 1998). It is also believed that once endocytosed, apoE4 is 

unable to escape the endosomal packaging and is rapidly trafficked through the cell 

without interacting with intracellular elements (i.e. membrane) and may even be rapidly 

resecreted (Rensen et al, 2000). Experiments by Lovestone et al (1996), have shown that 

apoE3 is retained throughout cells and is present within the cytoplasm however, apoE4 

was present within vesicles, presumably of the endocytic class. A study by Demattos et 

al (1999) showed that when apoE was bound to a nuclear localisation signal (NLS), 

apoE was able to enter the nucleus when it reached the cytosol. In contrast, when an 

exogenous apoE source (+NLS) was endocytosed into cells, it failed to escape the 

endocytic pathway. In addition, direct expression of apoE within the cytosol was found 

to be extremely toxic to the cell however this effect was possibly due to free apoE.

Proteins such as Rab-4, Rab-5A and rabaptin have recently been identified as proteins 

involved in endocytosis (Neve et al, 1998). Rab-4 is a marker of endosome recycling, 

whereas Rab-5A and rabaptin are proteins, which function in membrane fusion in the 

endocytosis process. Studies using Rab-5a in particular, have shown that apoE is 

endocytosed but that there may be an isoform difference in the way the isoforms are 

trafficked following this. After 1 hour of uptake, it was found that apoE3 no longer co

localised with vesicle-associated proteins, whereas apoE4 was found to be 87% co

localised. This was even apparent using a marker of late-endosomes (Cathepsin D) 

(DeKroon et al, 2001). It is also important to note that Cathepsin D also has secretase 

activity, which could have implications for amyloid deposition in AD. Endocytic 

pathway abnormalities have been found to be associated with sporadic AD. In one study, 

it was found that endocytic pathway abnormalities occur, before amyloid deposition is 

apparent, and the authors suggest that this is the earliest upstream event in the
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pathogenesis of AD (Cataldo et al, 2001). Specifically, early endosomes have been 

found to be enlarged in the brains of AD patients (Cataldo et al, 1997). Further to this, 

studies in fetuses and children with Down’s syndrome, have shown that these endosomal 

abnormalities are even evident at this early stage, long before any other pathological 

hallmarks of AD have been identified. The APOEzA allele was found to promote early 

enlargement of endosomes, when compared with individuals not possessing an APOEzA 

genotype. Endosomes appeared as normal when tissue from familial AD cases as a result 

presenilin mutations.

9.4.3 Evidence for an APOE genotype influence on cytoskeletal interactions

Once inside the cell, the lipid from the complex may be cleaved and reutilised in a 

number of ways. Little is known however, of what becomes of apoE. ApoE may remain 

within the endocytic system and pass straight through the cell. One hypothesis is that 

apoE is able to interact with cytoskeletal proteins inside the cell and it is via this 

mechanism that apoE functions in neuronal process extension. Microtubules have been 

shown to function in several important processes within neurons, including neurite 

extension and retraction (Mitchison et al, 1988). Analysis o f the ability of apoE E3 and 

E4 to promote neurite extension was assessed in Neuro-2A cells and it was found that 

cells incubated with apoE E3, produced long neurites but those incubated with apoE E4 

did not. The authors hypothesised that this may be due in part, to microtubule status 

within the cells. It was found that, in the apoE E4 treated cells, microtubules were poorly 

formed and there was a greater amount of monomeric tubulin as opposed to polymeric 

tubulin, compared with that of apoE E3 treated cells (Nathan et al, 1995). Firther 

analysis revealed that apoE E3 bound to the cellular microtubules with a greater affinity 

than apoE E4. In similar studies, it has been shown that apoE E3 binds more readry to 

the microtubule associated proteins tau and MAP-2 (Strittmatter et al, 1994; Huang et al, 

1994). Conflicting evidence comes from Scott et al, (1998), who have shown that 

microtubule polymerisation is equally stimulated in the presence of apoE E3 and E4. 

The interaction of apoE with the cytoskeleton may not only be crucial for neirite 

extension but also stabilization. It is suggested that apoE may bind to the microtutule- 

binding domain of tau and MAP-2c and protect their structure from 

hyperphosphorylation (Roses et al, 1996). The hyperphosphorylation of tau results ii the

245



formation of paired helical filaments (neurofibrillary tangles). Lovestone et al (1996) 

have shown that the cellular distribution of apoE is dependent on the presence of tau, 

although it was also noted that neither apoE3 nor E4 altered the phosphorylation state, a 

finding confirmed in a subsequent study (Flaherty et al, 1999). In contrast, expression of 

apoE4 in neurons of transgenic mice results in hyperphosphorylation of tau (Tesseur et 

al, 2000). In this thesis it is suggested that cytoskeletal structure alterations after injury 

are APOE genotype dependent when apoE is expressed in neurons but not when 

expressed in astrocytes alone (as assessed in MAP-2 immunstained sections). This not 

only suggests that apoE is capable of modifying cytoskeletal proteins and that it is 

isoform dependent, but also highlights how the primary localisation of expression may 

be crucial to this process. This does not exclude the possibility that there may be 

ultrastructural differences in cytoskeletal structure in GFAP transgenics that could not be 

detected using the techniques employed. It has been shown that cells incubated with the 

apoE E4 isoform display a significantly greater degree of microtubule polymerisation 

(Nathan et al, 1995) when compared with apoE E3. ApoE promotes microtubule 

assembly and the rate of assembly has been found to be similar when incubated with 

apoE E3 and E4. However, one mechanism of how apoE may modulate the behaviour of 

cytoskeletal proteins is by differential binding to various cytoskeletal proteins. The 

binding of apoE isoforms to cytoskeletal proteins has previously been examined. These 

studies have found that, in general, the apoE E3 iso form binds with higher avidity to 

MAPs and tau when compared with apoE E4 (Huang et al, 1994; Flaherty et al, 1999). 

In Chapter VIII it was shown that apoE E4 protein was more greatly associated with 

microtubules than apoE E3. This finding differs from a previous study that found apoE 

E3 and E4 bound tubulin equally well (Fleming et al, 1996). However the apoE used in 

that study lacked an endogenous lipid source. In the present study, apoE was bound to 

HDL, which is more physiologically relevant considering apoE is always HDL bound in 

the CNS. The presence and type of lipoprotein to which the apolipoprotein is bound may 

have severe implications for the way in which the apolipoprotein interacts with the 

cytoskeleton and other proteins. This has been shown previously where the lipidation 

state of apoE affects the avidity with which it binds amyloid. In chapter VIII it was also 

shown that microtubules incubated with apoE E4 displayed an irregular structure. 

Processes were long and spindle-like and the number of processes radiating from the 

organising centre was reduced compared with microtubules incubated with apoE E3.
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This suggests that apoE E4 has a detrimental effect on microtubule structure in vitro, and 

supports the finding of disarrayed dendritic processes in vivo.

9.4.4 Intracellular signalling pathways -  from receptor to cytoskeleton

From the most recent data, it has become apparent that apoE binding to the LRP receptor 

may modulate plasticity via a cascade of intracellular signalling events (Herz et al, 

2001). On binding to the NPxY cytoplasmic domain of the LRP receptor (Trommsdorf 

et al, 1998), FE65 and DAB1 (scaffold proteins) cause the assembly of a protein called 

Mena. Mena is a member of a family called Ena-Vasp proteins, which are enabled- 

vasodilator stimulated phosphoproteins. These proteins interact directly with the actin 

cytoskeleton but may also interact with other components such as tubulin and 

microtubule associated proteins. This process is thought to occur in the generation of 

neuritic processes. It has not been established as o f yet however, whether there is an 

apoE isoform effect on the ability to stimulate this process. If  for instance, apoE4 

interacts differently at the receptor surface, this could result in differing intracellular 

signalling events. As can be seen from the diagram (Figure 9.2), the binding of apoE 

also influences the processing of APP through this pathway although the significance of 

this is unclear. However, FE65 binding to cytoplasmic tails does result in attenuation of 

the endocytosis signal, thus leaving APP extracellularly for a-secretase cleavage (Herz 

et al, 2000). Another pathway that has been implicated in reorganisation of the 

cytoskeleton is that mediated by the ApoER2 receptor. Via the reelin signalling pathway 

and other members of the scaffold family o f proteins, apoE may cause cytoskeletal 

reorganisation, primarily through modifications of tau by MAP kinases. This has been 

shown to cause hyperphosphorylation of tau which leads to the production of 

neurofibrillary tangles in AD (Herz, 2001). Little is known at present of the precise 

function of apoER2 in the brain.

The LRP receptor has multiple ligands (up to 30 known) and each of these effect 

different actions intracellularly. One of these, a2  macroglobulin, binds to neuronal LRP 

receptors and induces calcium ion influx via NMDA receptors. The link between the 

LRP and NMDA receptor occurs via another scaffold protein, PSD-95. Entry of calcium 

due to LRP mediated activation of NMDA receptor channels may alter downstream 

signalling events and may modulate local synaptic plasticity alterations (Herz and
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Strickland, 2001). O f interest in this thesis is also the finding that the LRP receptor binds 

an array o f  viruses and toxins. On binding, viruses may be internalised via the LRP 

receptor and thus this may be how HSV enters cells in the hippocampal slices in this 

thesis.

ApoE
LRP

APP

Extracellular domain

Intracellular domain
E65

NPxY motifs

Mena

Reorganisation of 
the cytoskeleton

Figure 9.2 Intracellular signalling. The diagram illustrates the interactions o f receptor 

neuronal adaptor proteins and cytoplasmic structural proteins. When apoE binds to the 

LRP receptor a cascade o f intracellular events occur. The binding o f DAB1 and FE65 

molecules to the cytoplasmic tail o f the receptor (NPxY) promotes the assembly o f  

Mena and other proteins in the Ena-Vasp family. This in turn may act on the 

reorganization o f the cytoskeleton (Derived from Herz et al, 2000).
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9.4.5 APOE genotype, estrogen and sprouting

Estrogen has long since been known to be a strong influence on brain plasticity. Studies 

by Woolley and McEwan have shown that synaptic density increases in certain brain 

regions of the rat at stages of the estrus cycle when estrogen is most elevated. It was first 

discovered by Stone et al (1997), that in stages of the eostrus cycle, when estrogen was 

high, the brains of female rats expressed significantly greater levels of apoE mRNA 

within astrocytes and microglia. This was the first indication that estrogen may be 

neuroprotective, an effect that was mediated by increased apoE expression, due to 

actions via the a  estrogen receptor pathway (Srivastiva et al, 1997). At present these 

pathways remain largely ambiguous. Estrogen has been shown to enhance compensatory 

sprouting, in response to entorhinal cortex lesion (Geddes et al, 1985) and that apoE is 

increased in the response (Stone et al, 2000). Using animal models, it has been 

confirmed that estrogen replacement in wild-type mice following ovariectomy, restores 

the sprouting response. In addition, estrogen replacement does not promote sprouting in 

APOE knockout mice (Stone et al, 1998; Teter et al, 1999). It remains undetermined if 

APOE isoforms can differentially modulate sprouting via estrogen mediated mechanisms 

and this is currently under investigation in our laboratory although there is some data 

from human studies suggesting that APOE genotype may influence this to a certain 

extent. It is suggested that estrogen is protective against AD and this is supported by 

statistics showing that AD is more prevalent in the human male population. Several 

papers have been published outlining the beneficial effects of hormone replacement 

therapy in human females in reducing the risk of developing AD (Tang et al, 1996; 

Yaffe et al, 1998; Slooter et al, 1999) and that the efficacy of these drugs may be 

genotype dependent. Cognitive decline is reduced in non-e4 females with estrogen 

therapy but is not reduced in e4 females.
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9.5 C o n c lu d in g  re m a rk s

This thesis has sought to establish an in vivo and in vitro animal model to assess brain 

plasticity and, using these models, the influence of APOE genotype on long-term 

plasticity changes following injury has been elucidated. It is evident, not only from the 

data contained in this thesis, but also a wide range o f sources that the c4 allele of the 

APOE gene is generally deleterious to brain plasticity. This does not only have 

implications for AD and head injury but also a great number of human diseases, with 

which APOE genotype influence has been linked. This thesis has also attempted to 

assess at least some of the mechanisms by which APOE isoforms may mediate their 

differential effects on plasticity. These mechanisms and others are represented 

schematically (Figure 9.3). This thesis is by no means a complete work but it has 

provided a basis for the direction of future studies. Now the important role of apoE in 

plasticity has been established it is important to investigate all pathways with which it 

may mediate its effects. This includes further analysis of cytoskeletal interactions (via 

various mechanisms) and elucidation of the role of estrogen in plasticity. Regardless of 

the mechanism by which the APOEzA allele imposes its deleterious effects, it is hoped in 

the future that an efficient therapy may be developed. Presently, the greatest hope for an 

apoE therapy in the treatment of CNS disease and injury lies with gene therapy. A study 

in this thesis has begun to evaluate the merits of gene therapy and it is hoped this work 

will be further developed in the future.
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Figure 9.3 Schematic diagram illustrating pathways by which APOE genotype may 

influence the brains response to injury and disease.
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Appendix 1 Staining protocols and perfusion

A l.l Haematoxylin and Eosin histological staining on paraffin sections

1. Dewax in histoclear (lOmins)

2. Absolute alcohol (2mins)

3. Methylated spirit (lmin)

4. Wash in water (couple of mins)

5. Hematoxylin (l-10mins depending on section thickness and desired staining 

intensity)

6 . Differentiate in methanol containing 1% HC1

7. Wash in water

8 . Scot’s tap water substitute (lmin)

9. Wash in water

10. Aqueous eosin (3mins)

11. Wash sections thoroughly in water (10-20mins)

12. Dehydrate through a graded series of alcohols (70%, 90% 100%x2)

13. Clear in histoclear (5mins)

14. Mount coverslips with histomount

A1.2 Fink Heimer Silver staining

A. Potassium permanganate (KMNO4 ):- 0.1% in dH20

B. Decolourizing s o lu t io n Mix equal volumes of 1% hydroquinone and 1% oxalic 

acid. This solution should be prepared immediately before use. This compound is 

quite unstable.

C. Uranyl n i t r a te U0 2 (N0 3 ) 2  H2 O 0.5% in dH2 < 3

D. Silver n i t r a te AgNC>3 2.5% in dH2 0

E. Sodium h yd ro x id eNaOH 2.5% in cffi^O

F. Ammonical silver nitrate s o lu t io n 20ml silver nitrate solution, 1ml concentrated 

ammonia (28%), 1 .8 ml sodium hydroxide

G. Nauta-Gygax r e d u c e r 27ml 10% formalin, 27ml 1% citric acid, 90ml 90% 

alcohol, 910ml H2 O

H. Fixing s o lu t io n sodium thiosulphate (Na2 S2 0 3 .5 H2 0 ) 0.5% in dH2 0
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Staining protocol (Staining Procedures Fourth Edition, Williams and Wilkins)

1. Rinse sections in water

2. Solution A (5-1 Omins)

3. Rinse in water

4. Decolourize in solution B

5. Rinse thoroughly

6 . Solution C(10ml), Solution D(10ml), H2O(30ml) for 30-60mins

7. SolutionC(15ml), Solution D(35ml) for 30-40mins

8 . Rinse thoroughly in water

9. Solution F (l-5mins)

10. Directly to reducer (Solution G) change after 30 secs, total period of l-2mins

11. Solution H 1 min

12. Rinse, dehydrate, clear and coverslip.

Background can be of variable tones of orange/yellow depending on the degree of 

fixation however the degeneration products always appear strikingly as black 

punctate neuropil staining.

A1.3 Transcardiac Perfusion of Mouse

Mice were halothane anaesthetised and fixed into a face mask and anaesthesia 

maintained throughout the procedure. The chest cavity was exposed by 2 incisions 

into the chest wall and the diaphragm removed to completely expose the heart. A 

perfusion needle was inserted into the left ventricle and clamped into place. 

Heparinised saline (10ml) was then administered using a constant infusion pump 

(3.33ml/min) and the right atria immediately snipped using scissors. 20mls of 4% 

paraformaldehyde was then delivered using the constant infusion pump. The head 

was then removed and placed in fixative overnight.
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Appendix II Solutions and Sources

ABC Vector

Anti-mouse IgG HRP Promega

Anti-goat/sheep HRP Scottish health board

Ammonium persulphate Promega

Bovine serum albumin (fracion V) Sigma

DAB Vector

ECL Amersham

Geys balanced salt solution GIBCO

Glutamax I GIBCO

Hydrogen peroxide Sigma

Hydroquinone Sigma

Ibotenic acid Sigma

Kaleidoscope molecular weight marker Bio-Rad

Membrane inserts (0.4 pm pore size) Becton Dickinson

Microtubule associated protein spin-down assay Cytoskeleton Inc

Microtubule fluorescence motility kit Cytoskeleton Inc

Minimal essential medium GIBCO

Normal horse/goat serum Vector

Oxalic acid Sigma

PBS Oxoid

Protogel National Diagnostics

PVDF membrane Amersham

SDS Sigma

SG Vector

Silver nitrate Sigma

Streptomycin/ penicillin GIBCO

TCM serum replacement ICN Biomedicals

TEMED Amersham

Tris Sigma

Uranyl nitrate TAAB
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A1.4 4% Paraformaldehyde

2 litres:- 1. Heat 1800ml o f 50mM PB to 65°C

2. Add 80g of paraformaldehyde to the heated PB in fumehood

3. Make up to 2L with 200ml o f PB

4. Filter

5. Store in fridge (use for upto 2 weeks)

A 1.5 Ibotenic acid

Purchased from Sigma in lmg powder form. This should be diluted at lOmg/ml in 

PBS (lOOpl), aliquoted and stored at 4°C. This compound precipitates once defrosted 

and therefore should be thawed immediately before commencement of surgery.

A1.6 PCR Analysis

Proteinase K digest mix:- 178pi water, 20pl buffer (Amplitaq Gold PCR 15mM 

MgCl), 2pl proteinase K (lOmg/ml) (final proteinase K concentration 1 OOpg/ml) 

Master Mix

Analar water 

Amplitaq buffer 

dNTPs(2mM) 

Primer L3(10mm) 

Primer R3+( 10mm)

9.025pl 

1.5pl 

1.5pl 

0.3pl 

0.3 pi

DMSO (Di Methyl Sulphoxide)1.5pl 

Amplitaq Gold polymerase 0.075pl

Total 14.2pl

To this master mix 0.8 pi of target DNA must be added.
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A1.7 Immunohistochemistry

5OmMPhosphate buffer{PB) To make 2L: 95ml (A) Sodium dihydrogen ortho

posphate (NaH2 P0 4 2 H2 0 )(2 4 g/L)

405ml (B)Disodium hydrogen orthophosphate 

(Na2HP04)(28.5g/L)

To make phosphate buffered add 9g NaCl/L to the above mixture

PBS: 50ml o f liquid PBS to 1L of distilled water

Bovine Serum Albumin (BSA) 10% BSA Fraction V (Sigma) in PBS

ABC complex: 1 drop of reagent A + 1 drop of reagent B in 5mls PBS

DAB: 2 drops buffer solution + 4 drops of DAB solution + 2 drops of hydrogen

peroxide solution in 5mis distilled water

A1.8 Western Blotting

1. Homogenisation B u f fe r 25mM Tris-HCl (pH6 ), 3mM MgCb, lOOmM NaCl

3.0275g + 0.6099g + 5.844g

Made up in 1L of distilled water

2. Samples', each tissue sample was weighed and the weight matched in volume of 

homogenisation buffer. Homogenates were then produced using a hand held 

homogeniser. The samples were then centrifuged for 15mins and the supernatant 

removed. Following protein content determination defined amounts of supernatant 

were diluted in water (X5 volume) and Laemmli buffer added to the final samples 

such that 40pl of sample contained lOjug of protein.

3. S D S 10%: Dissolve lOg of sodium dodecyl sulphate in 100ml of water. Solution 

should be coulourless. If necessary heat to dissolve.

Ammonium persulphate 10%: Dissolve O.lg APS in 1ml water immediately before 

to use.
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Buffer 1: 18.15g Tris (1.5M), pH8 . 8  with HC1, 4ml 10% SDS, 100ml total volume 

with water

Buffer 2 : 6 g Tris (0.5M), pH6 . 8  with HC1, 4ml 10% SDS, 100ml total volume with 

water.

Running Buffer. 72g glycine, 15g Tris, 50ml 10% SDS (made up to 5L with 

distilled water and precooled to 4°C.

Blotting Buffer: 72g glycine, 15g Tris, 1L methanol (made up to 5L with water) 

2XTBS: 116.9g NaCl, 40ml 2M Tris (9.68g Tris in 40ml)/HCl pH7.5 made up to 

2L with distilled water.

TTBS: 1XTBS + 250pl Tween 20

Laemlli Buffer: 0.1M Tris HC1 pH 8 , 0.1% bromophenol blue, 5M urea, 5%DDT, 

5%SDS. Separate into aliquots and store at -20°C.

Table 10 Gel Preparations

Resolving Gel 12.5% X2 10% X2

h 2o 8 .6 ml 17.2ml 13.2ml 26.4ml

Buffer 1 1 2 ml 24ml 1 2 ml 24ml

Protogel 23ml 26ml 18.4ml 36.8ml

Glycerol 50% 4ml 8 ml 4ml 8 ml

APS 10% 320pl 640pl 320pl 640pl

Temed 50pl lOOpl 50pl lOOpl

Stacking Gel XI X2

h 2o 8.55ml 17.1ml

Buffer 2 3.75ml 7.5ml

Protogel 2.7ml 5.4ml

APS 10% 150pl 300pl

Temed 2 0 pl 40pl

Temed should be added to the mixture last as this stimulates polymerisation.
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A1.9 Organotypic Hippocampal Slice Culture

M e d iu m 96% essential medium (containing Hanks salt solution)

0.5% glutamax I supplement 

50U/ml streptomycin/penicillin 

1 % glucose

2% TCM (serum replacement)

Medium should be prepared under sterile conditions in a culture hood. The medium 

should be stored at 4°C and should be heated to 37°C before addition to cultures. 

Prepared medium should not be used after 7 days.

Geys balanced salt solution (for slides):- This should be chilled before used but 

stored at 4°C.
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Appendix III

Synaptophysin (38kDa)

GAP-43 (43kDa)

0  day

7 day

28 day

ApoE (34kDa)

i c i c i c i c

1 c i c i c i c
1 * %

0  day

7 day

i111 28 day

Figure A3.1 Western blotting bands from the hippocampus o f C57 BL/6J mice at day 0, 7 

and 28 post-ECL. The blots were incubated with antibodies to synaptophysin, GAP-43 

and apoE. i- ipsilateral, c- contralateral
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Figure A3 2 Silver staining in a 3 day control section

Illustrative example o f  the presence o f silver labelled degeneration products in the 

molecular layers o f the dentate gyrus. This section was run in parallel with sections 

from chapter VI to ensure the accuracy o f staining since no 3 day timepoint was 

included in that study.
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Granule cell layer

F igure A3.3 Astrocyte proliferation in the molecular layers of the hippocampal 

dentate gyrus post-culture

Illustrative example o f astrocyte proliferation post-culture in hippocampal slices. The 

molecular layers are densely populated with reactive astrocytes by day 7 in vitro. 

x200 magnification
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Figure A3.4 Graph illustrating tubulin levels in each reaction
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5[ig/ml 
Pellet fraction (89 kDa)

3 4 4  3 3 4 4  3 3 3  4 3 4  3 4 4

Supernatant fraction (34kDa)

3 4 4  3 3 4 4 3 3 3 4 3 4 3 4 4

20|ig/ml 
Pellet fraction (89 kDa)

3 4 4  3 3 4 4  3 3  3 4 3 4  3 4 4

Supernatant fraction (34kDa)

3 4 4  3 3 4 4  3 3  3 4 3 4  3 4 4

Figure A3.5 Microtubule binding of apoE E3 and E4 at apoE 

concentrations of 5pg/ml and 20 pg/ml

Illustrative examples o f apoE immunoblotting. At both concentrations apoE E4 

was found to be greater in the pellet fraction. In the pellet fraction the apoE is 

microtubule bound and is present in a band at approximately 89kDa (apoE 

34kDa + tubulin 55kDa). In the pellet fraction apoE E3 was found to greater 

compared to apoE E4.
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