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Abstract
Gastric carcinoma is the second most common cause of cancer death world-wide but its 

molecular biology is not well understood. My aims were to catalogue the genes expressed 

in gastric carcinoma and normal stomach and to identify differentially expressed and 

gastric-specific transcripts. Serial analysis of gene expression (SAGE) produces 

comprehensive, quantitative and reproducible expression profiles. The method of SAGE 

was established in this laboratory then used to study normal gastric antral mucosa and two 

gastric adenocarcinomas of distal, intestinal type. The libraries were compared on-line 

with other glandular epithelial tissues. Selected genes were validated in a panel of 19 

normal and tumour gastro-intestinal tissues and cell lines by Northern blotting and 

immunohistochemistry.

29,480 transcripts, derived from 10,866 genes, were identified. The validation 

studies corroborated the SAGE profiles although tumour heterogeneity was noted. 1% of 

genes were differentially expressed (by over five-fold and with a p-value below 0.01) 

between the pooled gastric carcinomas and normal stomach. The most abundant 

transcripts included ribosomal and mitochondrial proteins, of which most were up- 

regulated in the tumours, as were other widely expressed genes including transcription 

factors (Idl), signalling molecules (fibroblast growth factor receptor and serine/threonine 

protein kinases), coatomer and proteasome components, thymosin beta 10 and collagenase 

I. In contrast, cytoskeletal proteins (alpha actinin and profilin) were down-regulated in the 

tumours.

Many genes which were more highly expressed in normal stomach are important in 

normal gastric function, including gastrin, immunoglobulin alpha, lysozyme, mucin 

(MUC5), trefoil peptides (pS2 and spasmolytic polypeptide) and pepsinogens, which were 

amongst 55 gastric-specific transcripts. Some transcripts had previously been 

characterised only minimally (prostate stem cell antigen) or not at all (aquaporin 5) in the 

stomach. Some genes (intestinal trefoil factor) which were up-regulated in gastric 

carcinoma reflect the intestinal-type histology. Some genes abundant in normal gastric 

antrum had previously been regarded as markers of pancreatic carcinoma. Many 

differentially expressed species, some tumour-associated, were novel and await 

investigation.

One new gene which was identified was highly expressed in normal stomach but 

absent from gastric carcinomas. This new gene was selected for further investigation. The 

SAGE expression profile was confirmed by Northern blotting and in situ hybridisation by 

which the mRNA was located in the superficial/foveolar (pit) epithelium of the gastric



mucosa, so the gene was termed foveolin. The transcript was expressed outwith the 

stomach only in metaplastic gastric epithelium, in Barrett’s oesophagus or the ulcer- 

associated cell lineage in the gut, and outwith the gut only in ovarian mucinous tumours. 

The mRNA was present in the stomach of mouse, rat and cow in the same location as in 

humans.

The 5’ and 3’ ends of the mRNA were characterised by Rapid Amplification of 

cDNA Ends (RACE). Homologous mouse and cow mRNAs were identified, characterised 

and compared. The full-length genomic sequences for the human and mouse were 

obtained using on-line databases, characterised and compared. A partial human genomic 

clone was obtained from a PAC library, and used to map the gene by fluorescent in situ 

hybridisation (FISH) to human chromosome 2. The predicted protein product, like the 

mRNA and DNA sequences, is highly conserved between the human, mouse and cow 

species. The protein shows no homology to any known protein sequences or motifs, but 

bears an initial signal peptide and is therefore predicted to have an extracellular location, 

being either retained on the outer cell surface or secreted into the gastric lumen, much like 

gastric mucin (MUC5) and the trefoil peptide pS2 (TFF1), with which foveolin shares a 

similar location in the superficial and foveolar gastric epithelium.

These are the first global profiles of gene expression in the stomach. The molecular 

anatomy correlated with the morphology. The gastric carcinoma profiles resembled other 

tumours, which supports the existence of common cancer-associated molecular targets. 

The normal gastric profile differed from other normal glandular tissues but agreed with 

existing literature. Many new transcripts were identified, of which one has been further 

characterised here in its first detailed description. These data increase our knowledge 

about the genes involved in normal gastric function and in malignant change in the 

stomach, and provide a catalogue of candidates from which to develop markers for better 

diagnosis and therapy of gastric carcinoma.
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Policy on references
This research described in this thesis investigates the entire spectrum of genes expressed in 

normal stomach and in gastric carcinoma. The number of potentially relevant published 

papers is therefore vast, and those included have been carefully selected.

In the materials and methods, results and discussion sections, almost all of the cited 

literature is primary. However, in the introduction, there is a large amount of relevant 

work, much of which is well-established, and some of which has changed little for decades; 

for this background material, most of the references are to review papers and books. 

Obviously, where the research described is either recent or fundamental to the thesis, 

however, the primary paper is cited.



1

1 Introduction
In this introduction, I first describe the traditional histopathological assessment of cancer, 

its role in patient management, and the potential contribution of new molecular pathology 

techniques. The normal structure and function of the stomach are then descibed. These 

explain its susceptibility to disease states, such as Helicobacter pylori-associated chronic 

gastritis, which are briefly discussed; conditions which are regarded as pre-malignant are 

highlighted. This leads naturally on to gastric carcinoma, for which the epidemiology, 

aetiology and pathogenesis, pathology, clinical investigation and treatment are described in 

detail.

The focus then moves to the molecular biology of cancer. Traditional candidate gene 

approaches to the identification of cancer-associated genes are explained. The tumour 

suppressor genes and oncogenes identified as playing a role in the development of gastric 

carcinoma are discussed. Examples are given of the clinical use of such cancer-associated 

genes. The rationale behind large-scale molecular analysis of genes and their expression is 

then presented; the different methods available are discussed, including the technique 

chosen for this study, serial analysis of gene expression (SAGE). Exciting findings from 

recent expression profiling studies, and their possible clinical applications, are explored.

Lastly, the aims of this research project are presented: SAGE was established locally 

and used to profile the genes expressed in gastric carcinoma, of distal type, and in normal 

stomach, then a selection of candidate genes was validated in a wider panel of gastro­

intestinal tumours, and one highly expressed novel gene was investigated in detail, at 

mRNA and DNA levels, in human and model species.

1.1 Cancer pathology
1.1.1 Traditional histopathology o f  cancer

Cancers are so-called because the appearance of these invasive, and thus malignant, 

tumours resembles the claws of a crab: the latter is the literal meaning of the word cancer 

in Greek (Cotran et a l 1994). Thus the original description of cancer was based on 

appearance, or morphology, which remains the main method of assessment today.

However, while all cancers are tumours, not all tumours are cancers (reviewed in 

(Wyllie 1992; Cotran et al. 1994)). A century ago, the pathologist Rupert Willis described 

a tumour as, “an abnormal mass of tissue, the growth of which exceeds and is 

uncoordinated with that of the normal tissues and persists in the same excessive manner 

after cessation of the stimuli which evoked the change," and this definition holds good 

today. Tumours are usually classified according to two features: their biological
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behaviour; and the cells from which the tumour has arisen. In terms of biological 

behaviour, the fundamental distinction is between: benign tumours, which remain localised 

at their site of origin; and malignant tumours, or cancers, which spread beyond their normal 

tissue confines and to distant sites. In general, benign tumours rarely lead to the patient’s 

death whereas malignant ones often do.

Tumours have traditionally been assessed by histopathology in order to predict their 

clinical behaviour (reviewed in (Wyllie 1992; Cotran et a l 1994)). Gross (naked-eye) and 

microscopic examination are used to confirm the diagnosis and then to predict prognosis 

and guide therapy. The diagnosis of cancer is made according to structural, or 

morphological, abnormalities at the levels of the overall tissue architecture and the 

individual component cells and their nuclei. The presence of tumour invasion beyond its 

normal limiting tissue boundaries identifies the tumour as malignant, that is, as a cancer, 

rather than benign. The tumour must then be classified according to the normal tissue from 

which the tumour originates. For example, the commonest human cancers arise from 

epithelial cells and are named carcinomas: this group includes gastric adenocarcinoma, 

which is the tumour under study here.

Prediction of the likely outcome (prognosis) for the patient is made according to the 

grade and stage of the cancer, which may also be used to guide therapy. The grade 

describes how closely the tumour resembles its tissue of origin (differentiation): low-grade 

tumours are well differentiated, and closely resemble their normal tissue counterparts, 

whereas high-grade tumours are poorly differentiated and may be difficult to classify. In 

contrast, tumour stage describes how far the cancer has spread, both locally at its site of 

origin and beyond, to draining lymph nodes and distant organs, for example the liver.

This classical anatomical and histological approach to the prediction of the 

behaviour of tumours has been developed and used successfully over the past 150 years or 

so. However, it has limitations: for any single patient, the prognosis given can only be 

fairly broad, since some tumours may appear similar yet behave very differently in 

different patients. The hope is that new assays based on the molecular changes underlying 

cancer may yield clinically useful information beyond that which can be provided by 

traditional histopathology, for, for example, better prediction of the outcome and response 

to therapy in individual patients.

1.1.2 Molecular pathology o f  cancer

The definition of a tumour provided in the previous section was based on its form and 

function, in other words, on classical morphology and physiology. An alternative
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definition could be: A tumour is formed by excessive proliferation of cells as a result of an 

irreversible genetic change which is passed from one tumour cell to its progeny.

The study of the molecules on which cell and tissue structure and function is based 

lies at the other end of the technological spectrum from classical histopathology. Analysis 

of the many molecular changes underlying the development of cancer, discussed in detail 

later in this chapter in Section 1.5, has become a viable option only relatively recently. For 

the past three decades or so, it has been possible to study individual genes in tumour 

tissues. Over the past few years, new methods have become available which enable the 

expression patterns of thousands of genes to be investigated simultaneously (Carulli et al. 

1998). The application of such technologies to clinical samples is providing us with 

molecular profiles of normal tissues and of their corresponding tumours. These novel 

molecular portraits must first be correlated with existing histopathological and clinical 

data, in order to establish base-line information, akin to a traditional atlas of histology and 

histopathology. Thereafter, it is to be hoped that molecular analysis will go on to provide 

entirely new information, for example on tumour sub-classification, mechanisms of 

carcinogenesis, and the identification of novel diagnostic and therapeutic targets. These 

developments have been reviewed widely in the recent scientific literature (Emmert-Buck 

et al. 2000; Liotta et al. 2000) and are discussed in detail in Section 1.7.2.

Such large-scale molecular profiling of gene expression at the mRNA level has 

already been applied to a number of the common cancers, including carcinomas of the 

breast, colon, lung, ovary and prostate which have been identified as being of special 

concern by the Cancer Genome Anatomy Project of the National Cancer Institute in the US 

(Strausberg et al. 2001). Carcinoma of the stomach, however, has been less well-studied, 

yet it is the fourth most common cancer worldwide and carries a grave prognosis (Parkin 

2001). This important tumour is therefore the subject of this study.

1.2 The normal human stomach
This study aims to profile gene expression in normal stomach and in gastric carcinoma. 

Many of the genes which are expressed in the stomach relate to its normal form and 

function, so an understanding of this is important. Furthermore, normal gastric anatomy 

and physiology explain much of this organ’s susceptibility to disease, including cancer.

1.2.1 Anatomy and physiology o f  the human stomach

The stomach is located in the abdominal cavity and forms part of the gastro-intestinal tract. 

Food enters the body via the mouth where is undergoes only preliminary mechanical
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breakdown via the teeth. Early digestion of carbohydrate starch is started by the action of 

salivary amylase. Food is transmitted to the stomach via the oesophagus, which provides 

mainly a means of channelling food through the thoracic cavity, without significant further 

digestive activity.

The stomach acts as a reservoir for the food while it is broken down by mechanical 

churning and by the chemical action of gastric secretions. It is worth remembering the 

functions of the stomach (reviewed in (Owen 1986; Tortora et al. 2000)). It acts as a 

reservoir for food and mechanically chums and mixes it with gastric juice containing: 

hydrochloric acid which is a sterilising agent, denatures proteins and activates digestive 

enzymes; the protease pepsin; intrinsic factor; and gastric lipase. The stomach is not a 

major absorptive site, but water, ions, short chain fatty acids and alcohol are absorbed. The 

stomach must also protect its mucosal lining from proteolytic and acid attack, through the 

production of mucus and associated proteins. The muscular and secretory activities of the 

stomach must be co-ordinated with the rest of the gut through neuro-hormonal 

mechanisms. From the stomach, food passes to the duodenum where the secretions of the 

small intestine and pancreas, and bile, neutralise the acidity of the gastric output and add 

further enzymes and detergents.

In the stomach, as elsewhere in the gastro-intestinal tract, the wall is made up of 

four layers: mucosa, submucosa, muscularis and adventitia (reviewed in (Lewin et al. 

1996; Tortora et al. 2000)). The mucosa is innermost: it lines and secretes into the lumen. 

The submucosa conducts blood vessels, lymphatic channels and nerves to the mucosa and 

is mainly composed of fat which provides support and acts as a shock-absorber. The 

muscle coat (named the muscularis propria) comprises two layers in most areas of the gut: 

an inner circular and outer longitudinal coat. The stomach contains an additional third 

muscle layer, which is orientated obliquely. The muscle propels the food along the gastro­

intestinal tract by peristalsis; in the stomach, with the help of the third muscle layer, the 

muscle provides the back-and-forth churning action which mechanically breaks down the 

food. In addition, specialised adaptations of the muscle coat, where it is thickened and 

specially orientated, called sphincters, provide valves throughout the gastro-intestinal tract 

which control the passage of food. The distal valve in the stomach separates it from the 

duodenum and is called the pylorus. At its proximal end, between the stomach and the 

oesophagus, a valve exists but is less well-defined and comprises a slight thickening of the 

muscular coat combined with surrounding slips (loops) of muscle from the adjacent 

diaphragm. The outermost layer of the gut wall, the adventitia, transmits blood vessels, 

lymphatics and nerves to the inner layers and comprises mainly thin, loose connective 

tissue. For most of the stomach (as opposed to, say, the oesophagus), the adventitia



5

actually forms part of the peritoneal lining of the abdominal cavity and hence is called 

serosa.

Broadly speaking, the submucosa, muscle coat and adventitia are similar 

throughout the gut. What varies between the different organs in the gastro-intestinal tract 

is the mucosa, which comprises the epithelium lining the lumen, the supporting lamina 

propria and the underlying muscularis mucosae. The muscularis mucosae is a very thin 

muscle layer which helps to propel mucosal secretions into the lumen; it is not the same as 

the previously described muscularis propria. The lamina propria transmits blood vessels 

and lymphatic channels from the submucosa to the epithelium, and is the main location of 

the inflammation in gastritis (see Section 1.3.1). The mucosa and its epithelial lining in the 

different areas of the stomach are described in detail in the next section.

7.2.2 Histology o f  the human stomach

The stomach is divided anatomically and by its mucosa into three distinct areas (Figure

1.1), all lined by simple glandular epithelium (reviewed in (Lewin et a l 1996; Tortora et 

al 2000)). The cardia is proximal and comprises the first 1-2 cm of the stomach around 

the entrance to the oesophagus. Its mucosa is predominantly mucus-secreting, and is 

thinner and less complex than those elsewhere in the stomach.

The bulk of the stomach is lined by mucosa of gastric body type which comprises 

long, tubular glands lined by a variety of epithelial cells (Figure 1.2). Within each gland, 

the upper quarter is lined by mucous (mucus-secreting) cells of surface / (glandular) neck 

type. The next cells form the stem cell (proliferative) compartment. The next quarter of 

the gland crypt contains parietal cells. These are the gastric acid-secreting cells, which 

secrete hydrogen and chloride ions into the gastric lumen. Because of the high ionic 

gradients which they must achieve across their cell membranes, parietal cells have a very 

high energy requirement and therefore contain large numbers of mitochondria, which yield 

a dense pink granularity to their microscopic appearance on routine histological staining 

with haematoxylin and eosin (H&E). In the lowermost quarter of the gland are the gastric 

chief, or peptic, cells which secrete the main gastric enzyme, pepsin, in its precursor form, 

pepsinogen. Since their main role is to produce a protein for secretion in abundance, these 

cells contain large quantities of rough endoplasmic reticulum and hence stain dark purple 

with H&E staining. The basal part of the glands also contains endocrine cells, which here 

in the gastric body are termed enterochromaffin-like cells.

The distal part of the stomach is called the antrum. Within the antrum itself, its 

distal portion is termed the pylorus and acts as a sphincter. Gastric antral mucosa is
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simpler than that in the body, being composed mainly of mucus-secreting glands (Figure

1.2). In addition, there are endocrine cells: the most numerous here in the antrum of the 

stomach secrete gastrin and hence are termed G-cells.

1.2.3 Neuro-hormonal control o f  the human stomach

Gastric digestion occurs in three overlapping phases: cephalic, gastric and intestinal 

(Tortora et a l 2000). The cephalic phase consists of reflexes initiated by the sight, smell, 

taste or thought of food, which activate the vagus (tenth cranial) nerve. Via submucosal 

parasympathetic fibres, secretions from parietal, chief, mucous and G-cells are stimulated, 

as is gastric motility.

When food enters the acid environment of the stomach, the luminal pH rises from its 

normal of around pH 1 and the stomach physically expands. Chemoreceptors and stretch 

receptors further stimulate gastric secretions and motility in what is called the gastric phase 

and also cause the G-cells in the gastric antrum to secrete the hormone gastrin into the 

bloodstream. Gastrin and vagal impulses further promote secretion of gastric acid and 

pepsin(ogen), strengthen contraction of the proximal sphincter at the oesophago-gastric 

junction (OGJ) and relax the distal, pyloric sphincter.

As the food is mechanically and biochemically broken down to so-called chyme and 

gradually passes through the pylorus into the duodenum and beyond, digestion enters the 

intestinal phase. Receptors in the small intestine provoke the local release of two more 

hormones, secretin and cholecystokinin, which inhibit gastric secretions and emptying, 

preventing overloading of the duodenum with chyme. In addition, as the stomach empties 

and its low pH is restored, further negative feedback loops operate to inhibit vagal signals 

and gastrin release.

1.3 Gastric disease including gastric pre-neoplasia
Disease may be defined as any deviation from normal structure or function. Within the 

stomach, most disease relates to the harsh luminal environment containing acid, proteases 

and foreign material, combined with occasionally inadequate mucosal protection. Because 

the subject of this project is gastric carcinoma of distal type (see Section 1.4) and 

corresponding normal mucosa of the distal stomach (antrum, and, to a lesser extent, body), 

the main focus is on gastritis; proximal disease, of the gastro-oesophageal junction, is 

discussed only briefly.
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1.3.1 Distal stomach: gastritis and Helicobacter pylori infection

Within the main portions of the stomach, the gastric body and antrum, the most common 

disease process is gastritis. Gastritis literally means inflammation of the stomach and 

inflammation may be simply defined as the body’s response to injury (Cotran et al. 1994).

Classically, the list of injurious agents causing gastritis has included unusually 

harsh foodstuffs such as alcohol and excessively spiced, salted or smoked foods, and drugs 

especially the non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin (Cotran et 

al. 1994; Calam et al. 2001). Whilst these have previously been considered to be toxic 

mainly through direct, local mechanisms, it is now thought that, for aspirin at least, its 

systemic effects on, for example, mucosal cyclooxygenase enzymes may also play a role. 

Reflux from the small intestine of alkaline secretions, including bile, is also directly toxic 

and can cause gastritis: this is common after gastric surgery resulting in anatomically 

abnormal links with the small intestine (i.e. a gastro-enterostomy) which effectively 

removes the one-way valve effect of the pylorus.

Other traditional causes of gastritis involve mechanisms whereby the gastric 

mucosa is less able to protect itself (Cotran et al. 1994). These include stress, especially 

during illness or after surgery, steroid therapy and smoking, which may alter the gastric 

vasculature. In addition, having Blood Group O confers different antigenic properties on 

the mucins (Lewis antigens) expressed by gastric epithelium and thus alters their 

susceptibility to attachment and invasion by infectious agents, and hence predisposes to 

gastritis.

The list of causes of gastritis given above is similar to that given in a book entitled 

“Gastric and Duodenal Ulcer” published in 1929 (Hurst et al. 1929), but the most exciting 

development in our understanding of gastro-intestinal disease for decades has been the 

identification of Helicobacter pylori and its recognition as by far the major cause of 

gastritis worldwide and thence, through gastric atrophy, of distal gastric carcinoma.

Helicobacter pylori is a gram-negative bacterium, with a spiral (helical) shape and 

an ecological niche limited to the stomach, hence the name. H. pylori was first described 

in 1984 (Marshall et al. 1984). Recent reviews of H. pylori infection cover its 

epidemiology (Logan et al. 2001), pathophysiology (Calam et al. 2001) and clinical 

management (Harris et al. 2001). It is the most common chronic bacterial infection in the 

world, infecting around 50% of the population. Its prevalence is linked to social 

deprivation, being highest in the third world and South-East Asia. In the Western world, it 

is most common in people of lower socio-economic status. Transmission is mainly in 

childhood and is thought to be faecal-oral. Most people infected with H. pylori are



asymptomatic, but a substantial minority complain of dyspeptic symptoms, including 

abdominal pain, bloating and nausea. The long-term course of H. pylori infection over 

years also varies. In some people, the infection is eradicated early, either spontaneously or 

through the use of antibiotics, often for an unrelated indication. In most, the infection 

persists for many years.

Long-standing gastritis due to H. pylori infection varies between individuals in the 

area of the stomach principally affected, the relative degree of inflammation, the functional 

results and the associated symptoms (Blaser 1998; Calam et al. 2001). Over 70% of 

individuals infected with H. pylori are asymptomatic. Most patients have a gastritis which 

is histologically most marked in the antral mucosa and which is predominantly chronic, 

that is, containing chronic inflammatory cells, especially lymphocytes and plasma cells. 

Most individuals with an antral-predominant gastritis have normal gastric acid levels and 

are asymptomatic. Others, however, have raised gastric acid; these patients are more prone 

to be symptomatic and, in particular, to the development of duodenal ulcers (Calam et al. 

2001). These are caused by excess acid entering the duodenum and damaging its mucosa, 

which is not, unlike the gastric mucosa, acid-adapted, hence the alternative name of peptic 

ulcer.

In contrast, a minority of infected individuals have a body-predominant gastritis 

(El-Omar et al. 1997). Since the gastric body is the site of acid secretion, their gastric acid 

levels are usually low (and thus the gastric luminal pH is high, approaching neutral), 

especially if the gastritis is accompanied by atrophy, as discussed in the next paragraph 

(El-Omar et al. 1997). These individuals are usually asymptomatic but appear to be more 

likely to develop gastric ulcers, which are also related to other causative factors such as 

NSAIDs. More importantly, these are the H. pylori-infected patients who are especially 

prone to developing gastric carcinoma (El-Omar et al. 2000).

Long-standing gastritis, whether in the body or antrum, often leads to further 

changes in the gastric mucosa: intestinal metaplasia (IM) and glandular atrophy (Figure

1.2) (Lewin et al. 1996). Metaplasia can be defined as the change of one differentiated cell 

type into another differentiated cell type. Native gastric mucosa has a characteristic 

appearance, as described in Section 1.2.2: the surface and foveolar (pit) epithelium is 

similar throughout and is mucus-secreting; the glands in the antrum are also produce 

mucus, whereas those in the body contain acid-secreting parietal cells and pepsinogen- 

producing chief cells. Intestinal metaplasia results in a change to part or all of the gastric 

glandular thickness: the surface epithelium then comprises intestinal absorptive cells with a 

surface microvillous brush border, interspersed with goblet cells, and the glands contain a 

proliferative compartment with basal anti-bacterial Paneth cells and endocrine cells (Figure
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1.2). The metaplastic intestinal epithelium provides a rather hostile environment, which 

does not secrete acid nor support the growth of H. pylori.

Gastric glandular atrophy often accompanies intestinal metaplasia and can be 

defined as a reduction in the number and size of the gastric glands (Figure 1.2), due to 

chronic inflammation and scarring (Lewin et a l 1996). Intestinal metaplasia and mild 

degrees of atrophy in the gastric antrum are common with chronic H. pylori infection but 

alone are usually of little functional significance. Intestinal metaplasia and any degree of 

atrophy in the gastric body are usually a consequence of body-predominant gastritis, and 

like that condition, are associated with low acid secretion, which is obviously of 

considerable functional importance (El-Omar et a l 1997). Gastric atrophy, or atrophic 

gastritis, in the body mucosa is usually the end-result of H. pylori infection but another 

cause is auto-immune gastritis, also known as pernicious anaemia. Both intestinal 

metaplasia and atrophy are regarded as pre-malignant conditions for gastric carcinoma (of 

distal location and intestinal histological type), to which they may progress, sometimes via 

the intermediary step of epithelial dysplasia (Correa 1988; Correa 1992; Uemura et a l 

2001) (see Section 1.4.6).

1.3.2 Proximal stomach: acid reflux and Barrettfs oesophagus

The discussion above has concentrated on gastritis of the body and antrum and the 

sometimes associated duodenal ulceration, which until recent years were by far the most 

prevalent type of upper gastro-intestinal non-neoplastic diseases. However, over the past 

two decades, disease of the gastro-oesophageal junction has become as common and 

important. Problems at this site relate to reflux of gastric, and possibly duodenal, contents 

into the oesophagus, which causes oesophagitis (inflammation of the distal oesophagus), 

ulceration (loss of the surface epithelium) and repair in the form of yet another metaplastic 

epithelium named Barrett’s oesophagus (Lewin et a l 1996).

In Barrett’s metaplasia, the normal squamous epithelium lining the oesophagus is 

replaced by glandular epithelium of both intestinal and gastric (cardiac and sometimes 

body) types. The injury is thought to be caused mainly by the acid within the refluxing 

fluid, although bile and other duodenal contents may also contribute, and so its treatment 

involves agents which lower gastric acid secretion, such as proton pump inhibitors e.g. 

omeprazole. As is the case in the distal stomach and elsewhere in the body, such as in the 

bronchial tree and female cervix, this metaplastic epithelium is at greater risk than the 

native mucosa of undergoing dysplastic and eventually malignant change, developing into 

a Barrett’s-associated adenocarcinoma (Lewin et a l 1996).
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1.4 Gastric carcinoma
Now that the normal structure and function of the stomach, and its associated non­

neoplastic diseases have been described, we can move to a discussion of gastric carcinoma, 

about which recent reviews and texts include (Campaign 1995; Fuchs et al. 1995; Lewin et 

al 1996; Blok et al. 1997; McAleer 2001).

1.4.1 The most common cancer o f  the stomach is adenocarcinoma

Over 90% of cancers in the stomach are carcinomas (more specifically, adenocarcinomas), 

that is, they are malignant tumours derived from surface epithelium (carcinomas), and the 

prefix “adeno-” is applied because the epithelium is of glandular type. These are the topic 

of this research but other gastric cancers exist: most are either lymphomas or stromal 

(connective tissue) tumours (Lewin et al. 1996).

Gastric lymphomas tend to be of MALT (mucosal-associated lymphoid tissue) 

type. Like distal adenocarcinomas, they are associated with H. pylori infection; the 

lymphoma develops from a monoclonal B-lymphocyte population arising within the 

chronic inflammatory infiltrate of gastritis (Lewin et al. 1996). Many gastric MALT 

lymphomas are low-grade and can be cured simply by eradication of H. pylori with triple 

therapy using antibiotics and acid suppression (Blaser 1998).

Our understanding of gastro-intestinal stromal tumours (GISTs) has advanced 

considerably over recent years. Previously stromal tumours were thought to be derived 

mainly from either smooth muscle or peripheral nerves, that is, they were either 

leiomyosarcomas or schwannomas (Lewin et al. 1996). It is now known that most GISTs 

arise from the interstitial cells of Cajal, which are cells of the myenteric plexus, involved in 

neuro-hormonal control of gastric function. GISTs specifically over-express the oncogene 

c-kit (also known as CD 117) because of an activating mutation, c-kit can now be 

successfully targeted with the small molecule inhibitor STI571: this is one of the recent 

success stories of molecular genetic therapy (Mauro et al. 2002) and is further described in 

Section 1.5.6.

1.4.2 Gastric carcinoma may be o f  distal or proximal location

Until recent years, throughout the world, almost all oesophageal carcinomas were of 

squamous type, and most gastric adenocarcinomas were located in the gastric antrum or 

body (regarded as distal) (Lewin et al. 1996). In contrast, proximal adenocarcinomas of 

the oesophago-gastric junction (OGJ) were a rarity. However, proximal tumours have
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greatly increased in incidence over the past two decades, such that they are now as 

common as distal gastric carcinomas, and more common than oesophageal squamous 

carcinomas (Fuchs et al. 1995; Blok et al. 1997). OGJ adenocarcinomas are usually taken 

to include both proximal gastric tumours located in the cardia and lower oesophageal 

adenocarcinomas, often arising in a background of Barrett’s oesophagus; even here, there 

is some evidence that the cardiac and oesophageal tumours should be considered 

separately, but their accurate sub-division is often difficult at both operation and 

pathological examination.

Gastric adenocarcinomas therefore must be considered in (at least) two groups 

according to their anatomical location: distal and proximal. The following discussion of 

gastric adenocarcinoma covers epidemiology, pathology, clinical presentation, outcome 

and treatment, and the molecular biology will be described later in Section 1.5.4. In most 

cases, the discussion is similar for the two tumour sites but where differences exist, the 

focus will be on the distal tumours which are the subject of this research.

1.4.3 Epidemiology

Gastric carcinoma as a whole is a common tumour with a high mortality (Fuchs et al. 

1995; Blok et al. 1997). In 2000, stomach cancer was the fourth most frequent cancer 

worldwide, with 876 000 new cases (8.7% of the total) and 647 000 deaths (10.4% of 

cancer deaths) (Parkin 2001). It was surpassed by cancers of the lung, breast and colon. 

Almost two-thirds of these cases occurred in less developed countries. Age-standardised 

incidence rates are highest in Japan (69.2 per 100 000 in men, 28.6 per 100 000 in women) 

(Parkin 2001). High rates are also present elsewhere in eastern Asia and in Central and 

South America and eastern Europe.

In the UK, there are still around 11,000 new cases annually and stomach cancer was 

the fifth most common cause of cancer death in 1999 (Campaign 2001), with similar 

rankings in the rest of Europe and in the US. The five-year survival in the UK is around 

10%. This figure is comparable to carcinoma of the oesophagus, much better than that for 

pancreatic carcinoma (2%), and much worse than those for colorectum (40%) and breast 

(74%) (Campaign 2001). Throughout the world, gastric carcinoma as a whole is more 

common in older age groups, increasing markedly after the sixth decade, as is the case with 

most adenocarcinomas, in keeping with a usually sporadic origin due to accumulated 

genetic events (see Section 1.5). The disease is more common in men than women with a 

ratio of around 3:2. In the Western world, the tumour is more common in lower



12

socioeconomic groups (Fuchs et a l 1995; Blok et a l 1997). The epidemiology of gastric 

carcinoma thus parallels exactly the pattern of H. pylori infection.

As stated in the previous section, the incidence of gastric carcinoma has declined 

worldwide over recent decades: in 1980, it was the second most common cause of cancer 

death, and it was the leading cause until 50 years ago (Fuchs et a l 1995; Blok et a l 1997). 

This is due to fewer tumours of the distal stomach, which are the most common in areas of 

high incidence. The decrease has occurred in the absence of any major changes in 

diagnosis or therapy, and likely causes are discussed in Section 1.4.6. In contrast, proximal 

gastro-oesophageal adenocarcinoma is becoming more common in developed countries, 

including the UK and USA. Its rise has been precipitous and is of a similar gradient to that 

of malignant melanoma in the 1980’s (Fuchs et a l 1995; Blok et a l 1997). The reasons 

are unclear but possible causes are again debated in Section 1.4.6.

1.4.4 Gross pathology

Since gastric carcinomas are derived from epithelium, they arise in the mucosa from where 

they invade longitudinally, circumferentially and deeply, into the submucosa and 

underlying muscle wall (reviewed in (Cotran et a l 1994; Lewin et a l 1996; McAleer

2001)). From there, the tumour may directly invade adjacent organs such as the pancreas 

posteriorly and transverse colon anteriorly. By gross (naked-eye) examination, most 

gastric carcinomas are either ulcerating lesions, often with raised rolled edges, or nodular 

polypoid tumours (the latter is illustrated in Figure 1.3). Some carcinomas, however, are 

mainly submucosal where they infiltrate diffusely causing a markedly thickened stomach 

wall with a reduced capacity, described as linitis plastica, literally meaning leather-bottle 

stomach. Of the true gastric tumours, half arise in the pyloric region with most of the 

remainder along the lesser curvature (gastric anatomy is described in Section 1.2.1).

Tumour spread within lymphatics is common because the stomach and oesophagus, 

unlike the colon, for example, contain abundant mucosal and submucosal lymphatic 

channels (Lewin et a l 1996). This explains the frequency of early lymphatic spread in 

gastro-oesophageal carcinoma and also explains why it is unfortunately common to find 

microscopic deposits of tumour at the resection margins followng surgery. Lymphatic 

spread is first to local draining lymph nodes in the lesser and greater omentum (see Figure 

1.3) and thence to regional lymph nodes in the coeliac plexus.

Spread in a transcoelomic (across body cavities) manner gives rise to peritoneal 

deposits which may be very large: clinically this is described as “omental cake”. The same 

mechanism may also result in the well-recognised clinical phenomenon of the Krukenberg
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tumour, comprising bilateral metastatic deposits in the ovaries in young women. 

Haematogenous spread may occur through drainage via the portal circulation from the gut 

to the liver or via the systemic circulation to the usual sites of lung, brain and bone.

The tumour stage describes the extent of local and distal tumour spread, and the 

current TNM ((local) Tumour, (lymph) Node, Metastasis) staging system for gastric 

carcinoma is described in Table 1.1 (Klein Kranenbarg et a l 2001). The concept of 

“early” cancer is peculiar to the stomach and constitutes tumour confined to the mucosa or 

submucosa, regardless of the presence or absence of lymph node spread (Lewin et a l 

1996). This has a much better prognosis than tumour which has spread into the muscle 

coat or beyond. This implies that for gastric adenocarcinoma at least, transcoelomic or 

haematogenous metastases carry a worse prognosis than spread to local lymph nodes.

1.4,5 Histopathology

The subdivision of gastric adenocarcinomas is not only by anatomical location (Fuchs et 

al 1995; Lewin et a l 1996; Blok et a l 1997). In addition, there are different histological 

tumour subtypes, with the most common classification separating tumours into intestinal 

and diffuse cancers (Lauren 1965). Not surprisingly, some are of mixed type (Lauren 

1965) and those arising at the oesophago-gastric junction may show some squamoid 

features. As previously described, the tumours then undergo histological grading in terms 

of how closely the tumour resembles its tissue of origin (differentiation).

“Intestinal” tumours comprise cohesive cells forming glandular structures, as 

illustrated in Figure 1.3, and arise mainly distally in an elderly population. Since the 

glands of “intestinal” carcinomas recapitulate the normal gastric mucosal architecture, 

these tumours tend to be well or moderately differentiated. As a gross generalisation, the 

epidemiology of intestinal gastric adenocarcinoma broadly parallels that of distal tumours: 

in high incidence areas, intestinal gastric carcinomas predominate and their reduction is 

considered to be responsible for the recent decline in gastric cancer rate.

“Diffuse” cancers contain individual, infiltrating malignant cells, as seen in Figure 

1.3; they may develop at any site in the stomach but especially in the cardia, and carry a 

worse prognosis. The individually infiltrating cells of “diffuse” cancers bear almost no 

resemblance to normal stomach and therefore they are usually regarded as poorly 

differentiated ab initio. Diffuse cancers have a greater propensity for serosal spread. Their 

incidence, in contrast to that of intestinal cancers, is similar and apparently static 

worldwide (Campaign 1995; Fuchs et a l 1995).
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It is worth noting that some authors have suggested that the pathological evaluation 

of gastric carcinoma, and possibly the disease itself, may vary between Japan and Western 

countries (Schlemper et a l 1997). In Japan, cancers of distal, intestinal type predominate. 

The criteria used to define cancer differ: in the West, pathologists need to see invasion, but 

in Japan, abnormal cellular morphology is sufficient. This diagnostic dispute matters only 

for early stage disease: what would in the West be called severe dysplasia would be called 

intramucosal carcinoma in Japan. However, for cancers involving submucosa and beyond, 

the diagnostic criteria are similar worldwide and therefore comparable.

Overall, then, gastric carcinoma, whether categorised by anatomical site or by 

histological type, can be regarded as two (or more) diseases which differ 

epidemiologically, clinically and morphologically, as well as in their pathogenesis and 

molecular biology, as discussed next and later in Section 1.5.4.

1.4.6 A etiology an d path ogen esis

The marked variation in worldwide incidence, together with migrant studies, suggest the 

importance of environmental factors in the development of distal gastric carcinoma of 

intestinal type (reviewed in (Campaign 1995; Blok et a l 1997; McAleer 2001)). 

Recognised dietary risk factors include a high intake of smoked and salted foods and 

nitrate, and low consumption of fresh fruits and vitamin C. Distal gastric tumours are also 

associated with low socio-economic status. The same is true of low acid states, including 

pernicious anaemia (autoimmune gastritis) and after gastric surgery such as partial 

gastrectomy or gastroenterostomy, which lead to chronic reflux of bile salts into the 

stomach, and hence gastritis, as well as to lower levels of secretion of antral-derived gastrin 

which normally stimulates acid secretion. Blood group A is also linked to gastric cancer; 

like blood group O’s association with peptic ulcer, the effect probably relates to the 

resulting variant mucin antigens expressed by the gastric epithelium and hence altered 

susceptibility to bacterial attachment and infection.

The likely pathway for distal gastric carcinogenesis was originally proposed by 

Pelayo Correa and leads from chronic gastritis, via intestinal metaplasia and gastric 

atrophy, eventually progressing, possibly via dysplasia, to cancer (Correa 1988; Correa 

1992). Each of these stages is histologically identifiable, but the changes, although 

distinct, are usually multifocal and usually multiple stages are present simultaneously.

Within the past decade, Helicobacter pylori infection, described previously in 

Section 1.3.1, has been causally implicated in at least the early stages (Group 1993; Solcia 

et a l 1996; Uemura et a l 2001). While almost all patients who develop distal gastric
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carcinoma of intestinal type have had H. pylori infection, the tumour occurs in less than 

1% of H. pylori-infected individuals. The risk of cancer is associated mainly with gastritis 

which is body-predominant and accompanied by atrophy (El-Omar et al. 2000; Uemura et 

al. 2001). Despite the eventual reduction in the number of glands, gastritis per se is 

associated with increased proliferation of the mucosal epithelial cells and hence greater 

susceptibility to mutational events (Blaser 1998; Calam et al. 2001), as discussed later in 

Section 1.5.1. The inflammatory infiltrate is also rich in reactive oxygen species which are 

also potentially DNA-damaging. The atrophy results in low gastric acid levels, which 

permit the stomach to be colonised by anaerobic non-H. pylori bacteria (Correa 1992). 

While H. pylori is usually necessary for distal gastric carcinogenesis, it is not sufficient. 

Rates of colonization by H.pylori are similar in Japan and the UK, yet the incidence of 

gastric carcinoma is lower here than in the Far East: other factors, especially dietary, are 

thus implicated.

In low acid states, the abnormal colonising bacteria are able to convert excessive 

dietary nitrates, nitrites and secondary amines to carcinogenic nitrosamines (Correa 1988; 

Correa 1992). Such N-nitroso compounds have been shown to cause gastric tumours in 

animals. Their chemical conversion is promoted when the diet is low in anti-oxidants such 

as Vitamin C. Nitrates and nitrites were previously used to preserve meat, fish and 

vegetables. During this century, however, the nitrate and nitrite content of food in the 

Western world has declined by 75%, associated with increased use of refrigeration and 

other improved methods for preserving food. Other dietary and luminal factors include 

excessive salt intake and biliary reflux, which cause gastric mucosal damage and atrophy, 

and smoked foods which contain further carcinogens, such as benzpyrenes (Correa 1988; 

Correa 1992).

Intestinal metaplasia (IM) has been described above and previously in simple terms 

as a single entity (Section 1.3.1), but in fact there is more than one type, associated with 

different cancer risks (Lewin et al. 1996). Type I IM resembles normal small intestinal 

mucosa, with epithelium composed entirely of small intestinal absorptive cells with 

intervening goblet cells (Figure 1.2). Type II IM is different and comprises intestinal-type 

goblet cells interspersed with gastric-type mucous cells (Lewin et al. 1996). Type II IM in 

turn has been subdivided accoding to its mucin content, with Type Ha containing small 

intestinal and gastric type mucins whereas Type Hb (also, confusingly, called Type III) IM 

contains colonic type sulphomucins (Lewin et al. 1996); these differences can be 

demonstrated by special staining for mucins. Type lib IM in particular is associated with 

an increased risk of developing distal gastric adenocarcinoma. Unfortunately although the 

association is strong, Type lib IM is also relatively common, so its positive predictive
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value, at least in Western populations, is low and it therefore cannot be used effectively to 

screen for gastric cancer or to determine endoscopic follow-up (Lewin et a l 1996).

The next step on from IM in Correa’s pathway is dysplasia, in which the epithelial 

cells start to develop cytological features of malignancy, such as increased nuclear size and 

altered nuclear shape, but remain confined within the epithelial basement membrane. 

Dysplasia is commonly found immediately adjacent to invasive tumours in resection 

specimens (Lewin et a l 1996). However, dysplasia in the distal stomach in the absence of 

carcinoma, as a true precursor lesion, is very rare in Western populations, so cannot be 

used as a screening tool. In areas of high gastric cancer incidence, however, such as Japan, 

dysplasia as a precursor is much more common and often occurs in the form of adenomas. 

Adenomas are polypoid growths (grossly resembling small cauliflowers) of the gastric 

mucosa, with dysplastic epithelium. By definition adenomas are benign since the 

epithelium is not invasive, but they do have malignant potential, much like colonic 

adenomas (Fearon et a l 1990).

Overall, then, the distal, intestinal type of gastric cancer is related largely to 

environmental factors prevalent early in life. Exposure to H. pylori infection and a diet 

deficient in fruit and vegetables and rich in highly salted or poorly preserved foods may 

lead to gastritis and atrophy. Further mucosal injury by intraluminal bacteria, bacterial 

activation of procarcinogens, or consumption of other carcinogens may lead to the 

development of intestinal metaplasia, dysplasia and ultimately carcinoma. Consequently, 

the worldwide decline in this type of gastric cancer may be the result of the diminishing 

prevalence of these environmental factors brought about through improved socio-economic 

conditions with better food storage and reduced transmission of H. pylori.

For gastric carcinoma of diffuse type, the risk factors are largely unrecognised, 

except for E-cadherin mutations (see Section 1.5.5 later); its incidence is similar worldwide 

and has remained largely static over the past decades (Fuchs et a l 1995; Blok et a l 1997).

For proximal adenocarcinomas, those arising in the lower oesophagus are clearly 

associated with Barrett’s oesophagus, where the normal lower oesophageal squamous 

epithelium is replaced by metaplastic columnar mucosa, and in which dysplasia and 

carcinoma may supervene (Lewin et a l 1996). The rising incidence of proximal gastro- 

oesophageal tumours appears to be strongly correlated with a concomitant increase in 

Barrett’s metaplasia (Fuchs et a l 1995; Blok et a l 1997). The cause of the latter is unclear 

although the rise in Barrett’s oesophagus and associated adenocarcinoma exactly opposes 

the fall in distal gastric cancer and H. pylori infection (Blaser 1998), with the increase most 

marked in white males of high socio-economic class. On average, H. pylori infection in a 

population tends overall to lower gastric acid levels, although obviously certain individuals
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have acid excess. Its eradication has led to increases in average gastric acid levels; within 

fluid refluxing into the oesophagus, this could increase mucosal damage. Bile within the 

refluxate and excessive dietary fat, and possibly other carcinogens, may also play a role. 

This recent phenomenon is as yet poorly understood but much studied.

1.4.7 Clinical presentation, diagnosis, prognosis and treatment

Most patients with gastric carcinoma in the Western world develop symptoms and present 

to their doctor when local disease is advanced, often with metastases (reviewed in (Fuchs 

et a l 1995; Blok et al. 1997; Roukos 2000; McAleer 2001)). This insidious presentation 

occurs because the stomach is hugely distensible, through its normal role as a food 

reservoir, and can maintain some degree of function even when it contains a large tumour. 

The minimal gastro-intestinal symptoms may include nausea, vomiting, anorexia and 

weight loss, epigastric discomfort or bloating. Chronic blood loss may cause anaemia. 

Distal tumours may cause gastric outlet obstruction. In contrast, proximal tumours at the 

OGJ may cause oesophageal obstruction; oddly enough, despite the relatively narrow 

oesophageal lumen, these tumours still tend to present at a late stage. The clinical signs 

may include a palpable epigastric mass, and, rarely but classically, lymphatic spread may 

cause enlargement of the lymph nodes in the left supraclavicular fossa (Troisier’s sign).

Given such upper gastro-intestinal symptoms, the clinical investigation of choice is 

endoscopy. This enables visualisation of the oesophagus, stomach and duodenum, with 

biopsy of any suspicious lesions allowing an initial diagnosis of gastric carcinoma. 

Thereafter, the definitive treatment, and currently the only hope for cure, is surgery.

Before radical resection is undertaken, and in the absence of clinically overt 

metastatic disease, further investigation is required to exclude the presence of occult 

metastases (M staging), in the liver, peritoneal cavity or para-aortic lymph nodes. This 

usually includes CT (computerised tomogram) scanning of the abdomen and chest, plus 

laparoscopy with peritoneal cytology (Tschmelitsch et al. 2000). The extent of disease 

locally in the stomach and in regional lymph nodes (T and N staging) is assessed 

simultaneously, and in some centres endoscopic ultrasound is also used.

For surgery with curative intent, partial or total gastrectomy is needed, depending 

on the site and size of the tumour. In Japan, where gastric carcinoma is much more 

common and where it is often detected at an earlier stage, the surgery is more rigorous and 

certainly involves more extensive lymph node dissection (Roukos 2000). Stage-for-stage, 

the resulting survival rates are significantly better than those reported in patients from 

Europe or the USA, as shown in Table 1.2 (Fuchs et a l 1995). For palliation (that is,
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where cure is not possible), especially where luminal obstruction has occurred, the less 

radical surgical procedures of partial gastrectomy or bypass gastroenterostomy may be 

useful in alleviating local symptoms. In patients unfit for surgery, endoscopic procedures 

such as laser ablation or oesophageal stenting may relieve oesophageal or gastric outlet 

obstruction.

Currently the only curative treatment for gastric carcinoma is surgery, since 

effective adjuvant therapies are not yet well-established (Roukos 2000). However, gastric 

resection intending to cure succeeds in less than 40%. Unfortunately, 40-65% of patients 

suffer loco-regional recurrence: in the gastric or tumour bed; at the anastomosis; or in 

regional lymph nodes. The frequency of such relapse makes regional radiation an 

attractive possibility for adjuvant therapy, but gastric carcinoma is relatively radio­

resistant, requiring doses that exceed the tolerance of surrounding structures such as the 

bowel and spinal cord, if adequate control of the primary tumour is the aim. Thus for 

patients with locally recurrent or metastatic diseae, moderate doses of extemal-beam 

irradiation are currently used only to palliate local symptoms, such as dysphagia, 

haemorrhage or pain, and not to improve survival (Fuchs et al. 1995), but clinical trials 

continue.

For patients with surgically resectable gastric carcinoma, it was thought until 

recently that post-operative (adjuvant) chemotherapy or chemo-radiotherapy offered no 

survival advantage. However, studies over the past decade have suggested the opposite 

(Shimada et al. 1999; Macdonald et al. 2001; Valle 2001). The use of adjuvant therapy has 

now been advocated for patients who are either lymph-node positive or who have locally 

advanced disease (tumour stage T2 or over, i.e. not early gastric cancer), but the optimum 

regimen, possible neo-adjuvant use, and role of newer agents are still to be determined 

(Valle 2001), within the setting of clinical trials.

In advanced gastric cancer, the most effective single agent chemotherapy is 5- 

fluorouracil, which has been used in various combinations with doxorubicin, cisplatin, 

epirubicin and methotrexate: these show response rates of around 50% and prolong 

survival by comparison with best supportive care. In the UK, the standard combination is 

ECF, containing epirubicin, cisplatin and 5-fluorouracil, but different regimens are used 

elsewhere (Shimada et al. 1999).

The overall 5-year survival for gastric carcinoma in Scotland is only around 12%, 

which compares poorly with 44% for colonic carcinoma (Harris et al. 1998). The UK- 

wide outlook is similarly poor at around 10% (Campaign 2001), because most patients (at 

least 80%) with gastric carcinoma in the Western world are diagnosed late, when curative 

surgical resection is no longer a prospect. Furthermore, the increasingly common proximal



19

gastric carcinomas have an even poorer prognosis than distal tumours (Fuchs et al. 1995). 

Much better 5-year survival figures of over 80% can be achieved, however, when the 

tumour is identified and treated at an earlier clinical stage (Roukos 2000). As the Cancer 

Research Campaign’s Factsheet on UK Stomach Cancer commented, “The challenge is to 

increase the number of patients in this (early diagnosis) category”. But how is this to be 

achieved?

In Japan, where the disease incidence is approximately five-fold higher, earlier 

diagnosis and corresponding improved survival have been achieved by widespread 

endoscopic screening and aggressive surgical management (Roukos 2000). As previously 

discussed, some authors have suggested that the pathological evaluation of gastric 

carcinoma, and possibly the disease itself, may differ between Japan and Western countries 

(Schlemper et a l 1997). Regardless, the lower UK rates of gastric cancer make similar 

mass population screening unjustified on cost-benefit grounds (Campaign 1995). More 

worthwhile strategies against gastric cancer in this country would include: earlier diagnosis 

by identification and monitoring of high risk groups; improved surgery and adjuvant 

therapy; and, finally and ideally, prevention by intervention where risk factors, such as 

Helicobacter pylori infection (see Section 1.4.6), are known (Campaign 1995). Clinical 

trials of more radical surgery, chemoradiotherapy, and population-based H. pylori 

eradication are already underway in the UK, but effective markers for early diagnosis are 

still awaited.

1.4.8 Historical note on our knowledge o f  the stomach and its associated 

cancer

It is salutary to note that the contents of most of the above text on the normal anatomy and 

functions of the stomach, and on the epidemiology, pathology, aetiology, pathogenesis and 

treatment of gastric cancer would have been very similar twenty or even fifty years ago. 

Perhaps the only major advance in these themes has been the identification of H. pylori as 

a major cause of gastro-duodenal disease and of gastric cancer in particular. Its eradication 

would almost certainly be a major contribution to the prevention of distal gastric carcinoma 

worldwide: such large studies are already underway. (Whether this might then lead to an 

increase in the incidence of Barrett’s oesophagus and its associated proximal gastro- 

oesophageal adenocarcinoma is a different question (Blaser 1998).) This is very different 

from the situation for malignant lymphoma, or for breast or colonic carcinoma, in which 

better appreciation of the mechanisms and molecules involved in their development has led
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to earlier diagnosis and screening, novel therapies, and significantly improved 5-year 

survival figures over the past two decades.

Why is the outcome so much worse for gastric carcinoma compared to, say, the other 

common gastro-intestinal tumour, colonic carcinoma? Three potential reasons come to 

mind. First, carcinoma of the stomach tends to present at a later stage (Fuchs et al. 1995). 

Second, effective adjuvant or neo-adjuvant therapies are lacking. Third, since the stage- 

for-stage survival is much lower in gastric carcinoma, it is likely that there is something 

intrinsically different about its tumour biology. Part of this may relate to the anatomy of 

the stomach, which has more abundant lymphatic vessels than the colon, especially in the 

submucosa (Lewin et al. 1996), which may predispose to the major problem of loco- 

regional recurrence (Roukos 2000). For elucidating further aspects of the tumour biology, 

other means are required; and over the next decades, it is to be hoped that greater 

understanding of the molecular and cellular biology of cancers in general, and, for our 

purposes, of gastric carcinoma in particular, will lead to advances in earlier diagnosis and 

therapy akin to those already seen with other tumour types.

1.5 Classical candidate gene approaches to the molecular and 

cellular biology of cancer
Histopathogical assessment of cancer has a history stretching back over 150 years but 

analysis of the many molecular changes occurring in cancers and during their development 

has become a viable option only relatively recently, although it has long been recognised 

that cancer is a genetic disease.

This research project uses relatively new large-scale profiling technologies to study 

the genes expressed in normal stomach and gastric carcinoma. Before moving to a 

discussion of such methods, however, it is important to review our current understanding 

of the molecular events underlying cancer. Their description could and does take up entire 

textbooks rather than an introductory chapter, but a brief summary follows (reviewed in 

(Strachan et al. 1999; Hanahan et al. 2000)). It has really been only in relatively recent 

years that this knowledge has begun to translate to the clinic and impact on the diagnosis 

(reviewed in (Sidransky 1997)) and treatment of cancer, but these advances are 

highlighted.

The central dogma of molecular biology is that the genomic DNA is transcribed to 

RNA which in turn is translated to protein which then acts again on DNA. Except for 

lymphocytes, normal somatic cells in any one individual have identical DNA, which in 

humans is now estimated to contain around 30,000-40,000 (protein-coding) genes (Lander
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et a l 2001), of which only a minority are active in any cell at one time. Active genes are 

expressed as messenger RNA (mRNA) transcripts, which are then translated to produce 

proteins, which in general perform the function of the gene. Cells from different tissues 

are therefore characterised by their different patterns of gene activity and hence by 

differential expression of mRNA and protein. Genes may therefore be studied at any of 

these three levels: DNA, RNA or protein. First, DNA will be considered: its study has 

formed the basis for most of the classical work on cancer and cancer-associated genes, as 

described in the next sections.

1.5.1 Cancer at the level o f  the genome

Organisms which show hereditary variability evolve by natural selection, and DNA 

genotypes which confer a reproductive advantage will be selected and will come to 

dominate the population. Within an organism the same is true of cells: those which derive 

enhanced proliferative capacity from somatic mutation will become dominant, in the form 

of a cancer. Protective mechanisms exist to prevent this occurring within organisms, at 

least until reproduction has taken place, so that when somatic mutations occur they are 

either repaired or they induce the cell to die.

However, no single DNA mutation is sufficient to transform a normal cell into a 

cancerous cell. It has been calculated that on average six independent mutations are 

required, which under normal circumstances would be exceedingly rare: this has been 

described as the multistep evolution of cancer.

There are two general mechanisms which may make the development, and 

persistence, of successive mutations more likely. First, some mutations promote cell 

proliferation and create an expanded target population of cells in which the next mutations 

can occur: the genes affected are the oncogenes, discussed in Section 1.5.4, which have 

have been described as “gatekeepers”. Obviously, diseases such as chronic gastritis, which 

promote increased epithelial proliferation and repair (Correa 1992), exert a similar effect, 

explaining their role in the carcinogenic pathway. Second, some mutations alter the 

stability of the whole genome, at either the overall chromosomal or individual nucleotide 

levels, thus increasing the overall mutation rate: the genes affected have been described as 

“caretakers”. Their effects are discussed in Sections 1.5.3 and 1.5.4. Accumulating these 

successive mutations still takes time so it is no surprise that most common cancers, if 

sporadic, including gastric carcinoma, are diseases of post-reproductive life.
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1.5.2 Classical cancer-associated genes

Although normal somatic cells in an individual contain identical DNA, cells which are 

either already malignant or are undergoing carcinogenesis contain abnormal DNA, with 

changes which may be either large-scale, at a chromosomal level, or smaller-scale, at the 

level of DNA mutations (Strachan et al. 1999; Hanahan et al. 2000). In cancer, these 

alterations tend to target certain classical cancer-associated genes, which fall into two main 

groups, the oncogenes and the tumour suppressor genes. Other important genes include 

those involved in cell adhesion (e.g. E-cadherin), telomere maintenance (e.g. telomerase), 

invasion and metastasis, and other processes involved in carcinogenesis.

Oncogenes are genes which tend to promote cell proliferation. The non-mutated 

form of the oncogene present in normal cells is called the proto-oncogene. Oncogenes can 

be thought of in five broad classes: secreted growth factors; cell surface receptors e.g. c- 

erbB2; signal transducers e.g. ras and abl; nuclear DNA-binding proteins e.g. jun; and cell 

cycle regulators e.g. cyclins. Cellular proto-oncogenes may become activated to function 

as pro-carcinogenic oncogenes through either quantitative or qualitative mechanisms. For 

example, c-erbB2 is activated in breast cancer by gene amplification which results in the 

presence of numerous copies of the gene at DNA levels and therefore increased amounts of 

functional protein (Eisenhauer 2001). On the other hand, abl is activated in chronic 

myeloid leukaemia (CML) by a translocation which joins abl on chromosome 9 to a gene 

called BCR (breakpoint cluster region) on chromosome 22. The resulting cytogenetic 

abnormality is characteristic of CML and is called the Philadelphia chromosome. The 

resulting chimaeric BCR/ABL gene produces a tyrosine kinase signal transduction protein 

which is abnormally truncated, being constitutionally active rather than regulated and 

hence having a pro-carcinogenic effect (Mauro et al. 2002). Both c-erbB2 and BCR/ABL 

represent ideal therapeutic targets (see later Section 1.5.6). The ras oncogene is similarly 

activated through a qualitative change, but in this case it is through smaller-scale mutations 

resulting in amino acid substitutions, usually at codons 12, 13 and 61. Activation of an 

oncogene is usually a genetically dominant event in that a single mutant allele causing so- 

called gain of function may alter the phenotype of the cell.

Oncogenes have classically been identified in two ways (Strachan et al. 1999). The 

first was through animal tumour viruses. Various animal cancers were known to be caused 

by viruses. Investigation of these viruses showed that certain retroviruses contained genes 

additional to the normal retroviral genome. The extra genes in the retroviruses were found 

to be responsible for their cancer-causing properties and were thus termed oncogenes. The 

second method of identifying oncogenes involved cell transformation assays. Mortal



23

animal cells grown in vitro can be induced by carcinogenic agents and genetic changes to 

acquire a different, so-called transformed, phenotype, with invasive behaviour and 

unrestrained growth potential. NIH3T3 cells in particular readily undergo transformation 

in vitro, usually requiring only one further genetic event. Transfection of these cells with 

fragments of DNA from cancer cells results in transformation. The transformant cells can 

be selected and the transforming DNA analysed. Such assays pinpointed essentially the 

same set of oncogenes as were discovered through viral studies. Soon it was recognised 

that oncogenes had counterparts in normal animal cells, and these were called the proto­

oncogenes, as described previously, with important roles in the regulation of cellular 

growth and proliferation.

In contrast to the oncogenes, tumour suppressor genes normally tend to inhibit 

events leading towards cancer (Strachan et al. 1999). In cancer cells, the mutant tumour 

suppressors have lost their function. The protein products of tumour suppressor genes have 

a variety of normal functions: many are involved in the cellular response to DNA damage, 

by preventing cell cycle progression or provoking apoptosis; others maintain genome 

stability and inhibit the acquisition and perpetuation of mutations. Loss of function of a 

tumour suppressor gene in cancers is a genetically recessive event in that both alleles must 

be inactivated to alter the phenotype of the cell.

Tumour suppressor genes have classically been identified in two ways (Strachan et 

al. 1999). The first is through positional cloning of genes causing rare familial cancers. Of 

this one of the best examples is retinoblastoma, which is a rare childhood tumour of the 

retina. In 40% of cases the tumour is familial and often occurs bilaterally. The standard 

approach to finding candidate cancer-associated genes involves narrowing the physical size 

of the candidate intervals using techniques such as meiotic recombination or marker 

disequilibrium in affected families. The trait was thus mapped to chromosome 13ql4, at a 

locus designated RBI. In these families, somatic cells were heterozygous for markers 

around 13ql4, but the tumours were homozygous: they carried a germ-line mutation in one 

allele at 13ql4 and the corresponding normal allele was then lost in the tumours, fulfilling 

an earlier hypothesis termed the “two-hit” theory of tumour suppressor genes which was 

proposed by Knudsen. A more recent adjunct approach is to use expression patterns to 

narrow the region, i.e. to prioritise for analysis the subset of genes that map to the minimal 

search interval and are expressed in the involved tissue (Brent 2000).

The second classical method of discovery of tumour suppressor genes is through 

defining chromosomal locations commonly deleted in tumour cells, by cytogenetic 

methods such as chromosome banding or comparative genomic hybridisation (CGH) or by 

the molecular genetic method of analysis of loss of heterozygosity (LOH) (Strachan et al.
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1999). LOH involves screening paired blood and tumour samples by polymerase chain 

reaction (PCR) for markers spaced fairly closely across the genome. Candidate locations 

for tumour suppressor genes are identified on the basis of loss or significantly decreased 

intensity of a PCR product band on a gel in the tumour sample compared with the normal. 

Because most tumours show significant genomic instability, there is a relatively high 

background of non-specific changes so many tumours must be screened to identify the 

desired specific changes. The technique of CGH was developed to survey DNA copy- 

number variations across a whole genome, and it enables the identification of large 

chromosomal segments of deletion in tumours compared to normal DNA. Obviously, 

areas of amplification, usually associated with oncogenes, can also be identified. The 

mapping resolution of conventional CGH is limited to around 20 Mb, which has been 

increased with newer array-based techniques (see Section 1.6.2). CGH results can be 

confirmed using the technique of fluorescence in situ hybridisation (FISH), which has a 

higher resolution (see Section 5.1.2.2).

Thus, the classical molecular alterations associated with cancer include large-scale 

chromosomal alterations and small-scale, but multiple, mutations in individual tumour 

suppressor genes and oncogenes. Not surprisingly, gastric adenocarcinomas show most of 

these changes, as described the next Sections 1.5.3 and 1.5.4, and some differ according to 

the histological subtype.

1.5.3 Chromosomal alterations in gastric carcinoma

There is strong evidence for a genetic predisposition to gastric carcinoma, both from 

epidemiological studies and from case reports of gastric cancer families. Napoleon 

Bonaparte is perhaps the best-known example of the latter: he, his father, his grandfather, 

four sisters and a brother all died of gastric cancer, some at an early age (Bevan et al. 1999) 

(although sadly the histological type is not reported!). Overall, around 10% of gastric 

cancer cases show familial clustering.

First, chromosomal abnormalities will be considered. Their occurrence in gastric 

carcinoma has been reviewed in (Peddanna et al. 1995; Menke-Pluymers et al. 1996; 

Tahara et al. 1996; Blok et al. 1997; Bevan et al. 1999). Chromosomal instability (Cl) at a 

large-scale level is common generally in adenocarcinomas: it involves many losses, gains 

and rearrangements of chromosomes and usually results in polyploidy or aneuploidy. 

Accordingly, complex karyotypes, studied by classical cytogenetics and flow cytometry, 

are common in gastric adenocarcinomas, especially in tumours of advanced stage, although 

the reported percentage of aneuploid cells varies widely from 9% to 68% (Peddanna et al.
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1995). Similarly, at a smaller-scale level, cells from typical advanced adenocarcinomas of 

breast or colon show LOH at around one quarter of all loci. Most of these changes are 

simply a reflection of general chromosomal instability, and only a few appear to be 

causally connected with the cancer.

However, certain numerical and structural changes at the large-scale chromosomal 

level are apparently non-random. In gastric carcinoma, these include: trisomy of 8, 9, 12, 

19; loss of the Y chromosome; gain of an X chromosome; chromosome 3 translocations; 

and further non-random abnormalities of chromosomes 1, 2, 3, 6, 7, 19 and 20. Allelic loss 

(LOH) has been described for chromosomes lp, lq, 3p, 3q, 5q , 7p, l ip,  l lq ,  12p, 12q, 

13q, 17p and 18q (Peddanna et al. 1995; Menke-Pluymers et al. 1996; Tahara et al. 1996; 

Blok et al. 1997; Bevan et al. 1999). In some cases, likely targets of the chromosomal 

aberrations are obvious. For example, 17p contains the tumour suppressor gene p53 while 

5q harbours the tumour suppressors APC (adenomatous polyposis coli), MCC (mutated in 

colon cancer) and DCC (deleted in colon cancer) (see the next Section, 1.5.4). More 

particularly for carcinoma of the stomach, LOH at chromosome 7q at the locus D7S95 has 

been associated with a worse prognosis and high incidence of peritoneal dissemination: 

this site may therefore contain a candidate tumour suppressor gene for gastric cancer 

(Tahara et al. 1996).

In most cases, however, the diagnostic and therapeutic implications of these 

chromosomal changes remain unclear. Such aberrations are, however, likely to be of 

clinical relevance in the future, as is now becoming clear for colon carcinoma (see Section 

1.7.2.2). In future research efforts, the selection of candidate disease genes may be 

facilitated by integrating knowledge of the chromosomal regions implicated in gastric 

carcinogenesis with gene expression profiles and transcript map locations (Brent 2000; 

Emmert-Buck et al. 2000). Candidate genes which have already been implicated in gastric 

carcinoma are discussed next.

1.5.4 Classical cancer-associated genes in gastric carcinoma

At the level of individual genes, most of the classic cancer-associated molecular alterations 

have been found in gastric carcinomas. There have been a number of recent reviews, many 

authored by Eiichi Tahara (Tahara et al. 1994; Peddanna et al. 1995; Tahara et al. 1996; 

Blok et al. 1997; Chan et al. 1999; Yasui et al. 1999). A summary is presented in Table 

1.3. In general, genetic instability, inactivation of tumour suppressors, alteration of cell 

cycle control and apoptosis genes and telomerase activation are implicated in early gastric 

carcinogenesis, while over-expression or other activation of oncogenes is linked with
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cancer progression (Tahara et a l 1996). These carcinogenic mechanisms will now be 

considered individually.

As described above, many gastric carcinomas show large-scale chromosomal 

abnormalities, known as chromosomal instability (Cl), which often cause aneuploidy. 

Some tumours, however, have a normal, diploid chromosome complement by karyotypic 

analysis, but exhibit smaller-scale genetic changes because their DNA repair apparatus is 

faulty and allows errors to develop during DNA replication. When such base-pair 

mismatches are introduced, the length of marker DNA segments, called microsatellites, 

changes, which can be used as an assay. These tumours are therefore described as showing 

“microsatellite instability” (MI) or as being “replication error” positive (RER+). This is 

characteristic of tumours arising in patients with Hereditary Non-Polyposis Colorectal 

Cancer (HNPCC or Lynch syndrome) (Peddanna et a l 1995). While HNPCC is associated 

primarily with an increased rick of colonic carcinoma, it also predisposes to carcinomas of 

the stomach, pancreas and ovary.

The genes altered by MI are different from those targeted in the Cl group (which 

include classical tumour suppressors, see last Section, 1.5.3). Common targets in MI 

instead include, for example, the receptor for transforming growth factor beta (TGF-P), 

which is discussed later. Not surprisingly, the germ-line mutations responsible for MI 

involve genes responsible for DNA mismatch repair, such as MLH1 and MSH2. As shown 

in Table 1.3, MI is more common in gastric carcinomas of intestinal rather than diffuse 

type. In addition, MI is an early event in the multi-step process of carcinogenesis, since it 

is also present in dysplasia (i.e. in adenomas) and in intestinal metaplasia (Tahara et a l

1996), both of which are implicated in the pathway leading to intestinal type carcinomas 

(Correa 1992).

Mutation and allelic loss (LOH) of the tumour suppressor genes p53 and APC are 

also common in gastric carcinomas of intestinal type, and in their precursors, IM and 

dysplasia (Tahara et a l 1996). p53 protein is responsible for the cell cycle arrest of cells 

with damaged DNA. In normal cells, p53 is expressed at very low levels and is rapidly 

degraded, but it is activated by stresses such as irradiation or heat. Amongst its many 

functions, p53 then activates a number of genes including the cyclin-dependent kinase 

(CDK) inhibitor p21(WAF1/CIP1), which binds to and inhibits G1 cyclin-CDK complexes. This 

causes cell cycle arrest in G1 phase, preventing progression to S phase, until the damaged 

DNA is repaired. p53 can also provoke apoptosis. Given these important functions (such 

that p53 has been called the “guardian of the genome”), it is not surprising that mutations 

in p53 are the most common of all genetic changes in human cancers, with inactivation 

being caused mainly by mutations in the highly conserved region spanning exons 5-8.
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Around 70% of gastric carcinomas harbour p53 mutations, although the spectrum of p53 

mutations differs between gastric carcinoma and oesophageal tumours, as well as between 

intestinal and diffuse gastric carcinomas, implying different underlying carcinogenic 

mechanisms (Peddanna et al. 1995; Blok et a l 1997).

Unlike p53, the tumour suppressor gene adenomatous polyposis coli (APC) is 

altered only in intestinal-type gastric carcinoma and its precursor conditions. Amongst 

various functions, normal APC inhibits the ability of the Wnt protein to activate expression 

of the c-myc gene. In the absence of normal APC, c-myc is inappropriately activated and 

induces transcription of many genes needed for cell cycle progression from G1 to S phase, 

and therefore enhances cell proliferation. APC also normally regulates the cytoplasmic 

protein P-catenin by binding to it. Mutated APC lacks this function, allowing p-catenin to 

accumulate and enter the nucleus where it again affects gene transcription. APC’s name 

indicates its importance in colorectal cancer, which may explain its frequent alteration in 

intestinal, but not diffuse, gastric carcinomas.

Instead, at least 50% of diffuse gastric carcinomas lack the function of another gene 

which functions as a tumour suppressor. E-cadherin is a calcium-dependent 

transmembrane adhesion molecule responsible for cell-cell connections in epithelial cells. 

It is important in establishing cell polarity and maintaining normal tissue morphology and 

differentiation. Normally, inside the cell, cadherins are linked by the previously mentioned 

catenin molecules to the actin cytoskeleton: p-catenin thus provides a link with APC. 

Inactivation of E-cadherin or p-catenin is an early event in the development of diffuse 

gastric cancer, and may in fact occur as a germ-line mutation, as discussed in the next 

Section, 1.5.5. In addition to APC, the E-cadherin/p-catenin complex is functionally 

linked with proto-oncogene tyrosine kinase receptors including c-erbB2/neu and c-met 

(Tahara et al. 1996).

And indeed, gastric carcinomas exhibit alterations in the structure and function of 

proto-oncogenes. The aforementioned c-met encodes a transmembrane tyrosine kinase 

which is the receptor for hepatocyte growth factor/scatter factor (HGF). HGF is a growth 

factor with mitogenic and motogenic properties as well as the ability to induce epithelial 

cell invasion in collagen matrices in vitro, and a likely role in tumour metastasis in vivo 

(Blok et al. 1997). c-met activation can be due to: gene amplification with subsequent 

protein over-expression; defective post-translational processing of the precursor protein; or 

oncogenic rearrangement between two genetic loci, met and tpr, leading to a novel 5.0 kb 

mRNA transcript encoding a 65 kDa fusion protein (Blok et al. 1997). c-met is
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overexpressed in up to 40% of gastric carcinomas, more commonly in but not limited to 

those of diffuse type (Tahara et al. 1996).

A further interesting aspect of c-met/HGF and associated adhesion molecules is 

their role in cancer-stromal interactions, which may contribute to the morphogenesis of the 

two different histological subtypes of gastric cancer (Tahara et a l 1996). Stromal cells 

around tumours secrete HGF when activated by growth factors or interleukins. When 

gastric carcinoma cells express E-cadherin and catenin, HGF promotes the formation of 

glandular structures and hence an intestinal phenotype. Conversely, where cell adhesion 

molecules are lost, then HGF tends to cause scattering of tumour cells and thus a tumour of 

diffuse morphology (Tahara et a l 1996).

Other proto-oncogene transmembrane tyrosine kinase receptors are also implicated 

in gastric carcinogenesis, again with molecular differences echoing the histology, k-sam 

encodes the receptor for keratinocyte growth factor and is amplified only in diffuse cancers 

(Tahara et a l 1996). Amplification of c-erbB2, however, is detected only in gastric 

carcinomas of intestinal type (Tahara et a l 1996), and likewise is common in colonic 

carcinomas. Therapeutic advances involving c-erbB2 in breast cancer in particular are 

discussed later in Section 1.5.6.

As well as their receptors, growth factors (GF) themselves play a role in cancer of 

the stomach. Epidermal growth factor (EGF) and related peptides, including transforming 

growth factor alpha (TGFa) and cripto (reviewed in (Yarden 2001)) are common 

positively-acting growth factors for both types of gastric carcinoma, in which they are 

often over-expressed in the absence of underlying gene amplification. Some GFs, such as 

cripto, are also over-expressed in the precursor condition of IM.

TGFp, platelet-derived growth factor (PDGF) and basic fibroblast growth factor 

(bFGF) are all commonly over-expressed in diffuse gastric cancers (Tahara et a l 1996). 

TGFp is a potent growth inhibitor, with tumour-suppressing activity. Cancers in general 

often fail to respond to this growth inhibition either because of genetic loss of 

TGFp signaling components (such as occurs in MI tumours, described earlier) or, more 

commonly, because of disturbances of the signaling pathway downstream, for example 

through ras activation. Carcinomas often secrete excess TGFp but respond to it 

abnormally by enhanced invasion and metastasis. Therapeutic approaches should thus aim 

to inhibit the TGFp-induced invasive phenotype, but simultaneously to retain its growth- 

inhibitory and apoptosis-inducing effects (Akhurst et a l 2001).

The ras proto-oncogene family, mentioned above, includes the homologous H-, K- 

and N-ras genes, which code for closely related 21 kDa proteins (p21RAS). The ras genes
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are activated by point mutation, especially at codons 12, 13 and 61. K-ras mutations are 

frequent in both colonic and pancreatic adenocarcinomas, but its role in gastric carcinoma 

appears to be less important where, not surprisingly, mutations are limited to tumours of 

intestinal type but occur in only around 9-18% (Tahara et al. 1996; Blok et al. 1997).

Cyclins, cyclin-dependent kinases (CDK) and their inhibitors regulate the cell cycle 

and hence cell growth, survival and death (Tahara et al. 1996). As with the tyrosine kinase 

receptors, it seems that different cyclins and related molecules play a role in different 

cancers: over-expression of cyclin D1 is common in oesophageal squamous carcinoma but 

not in gastric and colorectal carcinomas, which instead exhibit amplification of cyclin E, 

which may be associated with an increased risk of lymph node metastasis. p21(WAF1/api) 

inhibits cyclin/cdk2 kinase and is, as previously discussed, induced by wild-type p53. 

p27(KJP1) also inhibits cyclin/CDK complexes, and both act as negative regulators of cell 

cycle progression. Overexpression of the bcl-2 molecule inhibits apoptosis and is more 

common in intestinal tumours.

Telomerase activation is also important in the development of gastric carcinoma. 

The telomeres are structures which lie at and protect the ends of chromosomes. In normal 

somatic cells, the telomeres shorten progressively at each cell division, a process which 

eventually leads to cell senescence. Telomerase stabilises the telomeres and confers 

immortality (Tahara et al. 1996). Telomerase has two components: the RNA component 

forms a template on which the other, protein, component acts, as a reverse transcriptase. 

Telomerase activity is absent from most normal somatic cells but is restored in most 

tumours. Both the protein and RNA components of telomerase are present in gastric 

carcinomas, of both types, as well as in the precursor IM. As with many of these molecular 

changes, telomerase activation has been found to parallel morphological abnormalities 

during cancer progression. The nuclei of the dysplastic epithelial cells in gastric adenomas 

differ according to whether telomerase activity is strong, weak or absent. Strong 

telomerase activity is associated with large irregular nuclei, with a round or oval rather 

than (close to normal) spindle shape, and with coarse chromatin and prominent nucleoli: 

these nuclear features indicate progression towards malignancy (Yasui et al. 1999).

Moving then to genes involved in metastasis, CD44 is, like E-cadherin, important 

in cell-to-cell adhesion. Variant CD44 proteins due to alternative splicing of exons 6-14, 

containing the extracellular domain, are expressed in many cancers. Abnormal CD44 

transcripts can be detected in most gastric carcinomas but their types differ between 

intestinal and diffuse cancers (Tahara et al. 1996). CD44 variants containing the intron 9 

sequence are expressed prefentially in both gastric and colorectal carcinomas suggesting a 

common role in gastro-intestinal carcinogenesis (Tahara et al. 1996). nm23 is a candidate
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metastasis suppressor gene which encodes a nucleotide diphosphate kinase and 

transcription factor for c-myc (Tahara et a l 1996). LOH at the nm23 locus is found in 8% 

of primary gastric tumours, but is not surprisingly more common in metastatic disease. 

The latter is also associated with increased levels of urokinase-type plasminogen activator 

and plasminogen activator inhibitor in tumour tissue (Tahara et al. 1996).

Gastric carcinomas thus contain multiple genetic abnormalities. Some are common 

events in both histological subtypes, including: genetic instability, loss of function of p53, 

telomerase activation, amplification of c-met and cyclin E, and variant CD44 transcripts. 

Other molecular changes differ according to the tumour morphology, providing further 

evidence for the existence of different underlying carcinogenic mechanisms. Diffuse 

cancers show reduced expression of cell adhesion molecules, such as E-cadherin, and 

amplification of K-sam. These aberrations are not found in gastric carcinomas of intestinal 

type which instead show loss of function of APC, amplification of c-erbB2 and mutations 

of K-ras, changes which are also seen in the precursor conditions of intestinal metaplasia 

and dysplasia (Tahara et a l 1994; Tahara et a l 1996), lending further support to Correa’s 

proposed pathway for the development of distal gastric carcinoma. Furthermore, the 

molecular changes seen in gastric carcinomas of intestinal type resemble those in colonic 

carcinomas, in which there is clear evidence for an adenoma-carcinoma sequence with 

associated genetic changes (Fearon et a l 1990). In fact, a similar “Vogelstein-o-gram” of 

the molecular changes accompanying the histological steps in Correa’s pathway has been 

proposed for distal gastric carcinogenesis, but is not yet generally accepted. The 

similarities between gastric and colonic adenocarcinomas suggest that they may share 

some pathogenetic factors.

While these molecular investigations have greatly elucidated the biology of gastric 

carcinoma, and many of these genetic changes correlate with tumour behaviour, none as 

yet has translated to the clinic for use as an independent diagnostic, prognostic or 

therpeutic marker, with the notable exception of E-cadherin, as discussed in the next 

section. Gastric carcinoma is thus a heterogeneous disease with varying epidemiology, risk 

factors, pathogenesis and molecular pathology depending on its site and histology. 

Perhaps partly because of this complexity, stomach cancer has been studied in less detail 

than colorectal and other carcinomas, but merits further research due to its clinical 

importance and our emerging understanding of its causes.
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1.5.5 Recent advances in the molecular genetics o f  gastric carcinoma

Our expanding knowledge of the molecular events underlying cancer has only recently 

begun to translate to the clinic and to make an impact on the diagnosis and treatment of 

cancer. Advances have as yet been limited in gastric carcinoma, but one success story 

involving a classical cancer-associated gene is that of E-cadherin. As described in the 

previous section, E-cadherin is a calcium-dependent adhesion molecule responsible for 

cell-cell connections in epithelial cells. Mutations in E-cadherin are the first to have been 

found in familial gastric cancer (Guilford et a l 1998). Germ-line truncating mutations in 

the E-cadherin gene have been found in families with hereditary diffuse gastric cancer, 

which has an autosomal dominant pattern of inheritance and occurs mainly in young 

persons. This was first identified in kindreds from New Zealand but has since been 

confirmed elsewhere in the world.

In a recent study, five carriers of mutations, who were between 22 and 40 years old, 

underwent total gastrectomy prophylactically (that is, they were then asymptomatic but 

were expected to have sub-clinical disease or to develop disease later). In each case, the 

mucosa of the stomach was extensively sampled for histopathology and in each case 

superficial infiltrates of the malignant signet-ring cells of diffuse gastric carcinoma were 

identified. Since the tumours were superficial and thus at an early stage, the prognosis was 

good. For families with a strong history of diffuse gastric carcinoma, therefore, genetic 

counselling, E-cadherin genetic analysis and consideration for prophylactic gastrectomy in 

mutation carriers are now recommended (Huntsman et a l 2001). Not surprisingly, somatic 

inactivation of E-cadherin through mutation (of which over 70% are complete or partial 

deletions of exons) and LOH is important in the pathogenesis of sporadic diffuse gastric 

carcinomas, as well as in lobular carcinoma of the breast. Loss of E-cadherin function 

could enable cells to escape from cell-to-cell growth-control signals. Alternatively it could 

increase the availability of free cytoplasmic p-catenin, in a manner akin to that of that other 

tumour suppressor gene APC.

One of the first genetic factors, except for blood group A, identified as predisposing 

to gastric adenocarcinoma of intestinal type, is polymorphisms in the interleukin-1 gene. 

Interleukin-1 is secreted by lymphocytes as part of the immune response in the gastric 

mucosa to H. pylori infection. Certain allelic variations, or mutations, in the interleukin-1 

gene predispose to the development of body-predominant gastritis, atrophy and 

hypochlorhydria, and gastric carcinoma, in response to infection with H. pylori in 

susceptible individuals (El-Omar et a l 2000). These interleukin-1 polymorphisms lack 

any known effect in the absence of gastric H. pylori infection. This discovery emphasises
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the fact that therapy to eradicate H. pylori is definitely to be recommended in families with 

a high incidence of (intestinal, distal) gastric carcinoma.

1.5.6 The impact o f  classical cancer-associated genes on clinical practice

While molecular medicine is only now beginning to make an impact in the management of 

gastric carcinoma, in other tumour types there have already been major successes in cancer 

prognostics and therapeutics.

One of the oldest molecular tests with clinical significance is the assessment of n- 

myc amplification in neuroblastoma, which is an aggressive tumour of childhood. N-myc 

is amplified in a third of primary tumours; these patients have a worse prognosis than those 

without the gene amplification. Their survival has been improved by treating them more 

intensively from their initial diagnosis (Brodeur et a l 1993).

Further examples of molecular pathology directing therapy are provided in breast 

cancer. It has long been known that breast carcinomas are hormonally sensitive: indeed, it 

was George Beatson, who founded the laboratories in which this research was performed, 

who first used oophorectomy (surgical removal of the ovaries) for its treatment. The major 

source of this hormone sensitivity is the oestrogen receptor, a nuclear DNA-binding 

protein, which is expressed by some but not all breast cancers. The presence of oestrogen 

receptors used to be assayed biochemically in protein extracts of the tumour tissue. It is 

now routinely demonstrated by immunohistochemical staining of paraffin-embedded 

sections of breast carcinoma, which are then assessed microscopically by a 

histopathologist. The presence of oestrogen receptors in the tumour indicates that it is 

likely to respond to hormonal therapy, and in particular, to tamoxifen (Osborne 1998). 

Tamoxifen is now one of the most widely used and effective anti-cancer drugs, yet because 

it is not a general anti-proliferative agent but instead is directed against a target rather 

specific to the cancer type, it is relatively non-toxic.

Breast cancer treatment has also benefited from a novel agent more recently 

developed. The cell surface receptor and proto-oncogene c-erbB2 (HER2/neu) has been 

described previously. Like n-myc, c-erbB2 is activated by gene amplification which 

results in increased amounts of functional protein (Eisenhauer 2001). The subset of breast 

cancers (25-30%) which over-expresses c-erbB2 tends to lack oestrogen receptors and 

therefore does not usually respond to tamoxifen. Because oestrogen receptor positivity is 

associated with cellular differentiation, the tumours with excess c-erbB2 also tend to be 

more poorly differentiated and to have a worse prognosis (Eisenhauer 2001). A humanised 

monoclonal antibody directed against erbB2 has been developed. The antibody binds to
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the extracellular domain of c-erbB2 and abolishes its signal transduction activity, probably 

by preventing receptor dimerisation. It is marketed under the name Trastzumab or 

Herceptin. About 15% of patients with metastatic breast carcinoma who have previously 

not responded to conventional therapies show an objective response with Herceptin 

(Eisenhauer 2001).

More recently still, the drug GLIVEC or STI571 has become available (Blume- 

Jensen et a l 2001; Mauro et a l 2002). It is a small molecule inhibitor of the tyrosine 

kinase receptor proto-oncogenes, which are over-expressed in a number of cancers, in 

particular chronic myelogeneous leukaemia (CML), gastro-intestinal stromal tumours 

(GISTs) and possibly malignant melanoma. The disease-causing genetic aberration in 

CML is the Philadephia chromosome, which results in a chimaeric BCR-ABL protein (see 

Section 1.5.2). Compared with wild-type c-abl, the chimaera has increased tyrosine kinase 

activity, which is essential for its transforming effect. A tyrosine kinase inhibitor should 

thus be an effective and selective agent for CML; STI571, which blocks the ATP binding 

essential to kinase function, is the successful proof-of-principle, and is effective in both 

chronic phase CML and blast crisis. Amongst other tumours, the activation by mutation of 

c-kit is likely to be a critical event in the pathogenesis of GISTs, which previously were 

refractory to therapy but in which STI571 is effective in metastatic disease (Mauro et a l

2002). Its potential for use against the aggressive and unpredictable malignant melanoma 

is also exciting.

Thus, although the lead time is long, improved understanding of the molecular 

events underlying tumorigenesis can bring about worthwhile developments in terms of 

better cancer prognostication and treatment, and presumably also prevention and early 

diagnosis. Identification and investigation of further candidate genes are therefore likely to 

yield only more improvements in cancer care.

1.6 Large-scale profiling of cancer molecular genetics
The research on classical cancer-associated genes as described above has usually involved 

identification of the individual gene at the DNA level. Investigations of the expression of 

these genes at the levels of mRNA and protein were usually secondary to, and dictated by, 

the initial DNA studies; and all of these usually focussed on a single gene. Using these 

traditional DNA-based methods, perhaps one to two hundred classical cancer-associated 

genes have been identified.

The human genome, however, contains many more genes than this. Current 

estimates based on the genome sequence and on Expressed Sequence Tags (ESTs, see
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Section 1.6.1.2) suggest that there are around 30,000-40,000 protein-coding genes (Ewing 

et a l 2000; Lander et al. 2001; Venter et a l 2001). While single gene studies remain 

valuable and necessary, new technologies have emerged over the past decade which enable 

these thousands of genes to be studied simultaneously ((Brent 2000) provides an excellent 

review of genomic biology). As stated previously, the central dogma of molecular biology 

is that genomic DNA is transcribed to RNA which in turn is translated to protein which 

then acts again on DNA. Cells from different tissues are characterised by their different 

patterns of gene activity and hence by differential expression of mRNA and protein. Of 

the total of 30,000-40,000 genes, only around 5,000-10,000 genes are expressed in a given 

cell type (Adams et a l 1995; Bains 1996; Zhang, L. et a l 1997). It is likely that many of 

these genes will also play a role in the development and progression of cancers, yet their 

importance is currently not recognised. Their study on a large-scale basis could 

theoretically be at the levels of DNA, RNA or protein.

Obviously in cancers, there are DNA changes in genes. The high-throughput study 

of individual genes on a genome-wide scale is made difficult, though not impossible, by 

the fact that only about 1.5% of the human genome consists of coding sequence (Lander et 

al 2001). As will be discussed later in Section 1.6.2, methods addressing this problem 

have emerged over the past year or two, but initially the other molecules could be more 

easily studied.

The active coding DNA in any cell is reflected in its RNA expression pattern. Like 

DNA, RNA is made up of only four nucleotides (Strachan et a l 1999). In this respect, 

RNA may be more easily studied than the resulting proteins, which are built up from 20 

amino acids and which are also subject to significant post-translational modification such 

as phosphorylation and glycosylation. Again, as will be discussed later in Section 1.6.2, 

methods exist to address this problem, but for now RNA will be our focus.

1.6.1 Gene expression profiling at the mRNA level

Genome-wide surveys of cellular mRNA are now possible through the use of the complete 

Human Genome sequence and the availability of methods for large-scale expression 

profiling. But why should this be a worthwhile and popular aim? A recent review article 

clearly presented the reasons (Brown et a l 1999). First, the function of a gene is tightly 

linked to its expression pattern. Each gene is expressed in the specific cells and under the 

specific conditions in which its product makes a contribution to the fitness of the cell and 

organism. Just as natural selection has tuned the biochemical nature of the protein product, 

so it has tuned the regulatory properties that govern when, where and in what amounts the
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product is made. Second, promoters function as transducers, responding to data about the 

external environment and internal state of a cell by changing the transcription of specific 

genes, so that, through gene expression patterns, the functions of each promoter can be 

elucidated. Third, the set of genes expressed in a cell determine what the cell is made of 

and what it can and cannot do. Such expression patterns and knowledge of what the 

individual genes do provide a biochemical picture of the living cell which is the molecular 

counterpart of traditional morphology. And lastly, the technologies now available make 

such experiments feasible (Brown et a l 1999).

For cancer research in particular, it has long been recognised that describing unique 

gene transcription patterns in cancers would provide an alternative approach to single gene 

studies for the development of rational approaches to early detection and better 

prognostication and treatment. This is the central tenet of the Cancer Genome Anatomy 

Project (Kuska 1996; Strausberg et al. 2001) which is described in more detail in Section 

1.7.

Over the past decade various techniques have been developed to enable and 

improve the large-scale assessment and comparison of gene expression at RNA level 

(reviewed in (Carulli et a l 1998)). Many of these methods depend on RNA’s biochemical 

characteristics, as follows. Of the total RNA in a cell, only around 1-5% codes for protein 

(Strachan et a l 1999). This is termed messenger RNA (mRNA). It bears a 3’ poly(A) tail, 

consisting of a 200-250 bp length of adenine (A) nucleotides. Such polyadenylation is 

signalled by the sequence AAUAAA 10-35 nucleotides upstream of the start of the poly(A) 

tail. In animal cells, all mRNAs bear poly(A) tails except those for histones. The 

remaining 95-99% of total RNA does not code for protein: the RNAs are thus termed 

ncRNAs (non-coding) (Eddy 1999). These include the abundant ribosomal, transfer, and 

small nuclear and nucleolar RNAs, as well as the telomerase RNA component and other 

species. The poly(A) tail of mRNA provides a convenient method for its separation from 

the other RNA species, through the use of specific base-pair hybridisation to oligo(dT), in 

the form of a coating on cellulose, beads or inside tubes.

Oligo(dT) selection is used in all of the methods for studying RNA described in the 

following sections, except for the first, and original: the Northern blot. After its 

description, there follow discussions of: expressed sequence tags; reverse-transcription 

polymerase chain reaction (RT-PCR); subtractive hybridisation and differential display; 

DNA microarrays; and finally serial analysis of gene expression (SAGE), which was used 

in this research.
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1.6.1.1 Northern blotting

The traditional method of studying RNA is the Northern blot (see Section 2.2A.2). 

Purified RNA samples are first size-fractionated by gel electrophoresis, transferred to a 

membrane then hybridised to a labelled gene or cDNA probe. This permits the assessment 

of the presence of an RNA species, estimation of its size, approximate determination of its 

abundance relative to a control transcript and investigation of splice variants. Northern 

blotting allows simultaneous analysis of many RNA samples (up to around 20 per blot) but 

with only a limited number of probes (usually one per blot). In some respects, the 

Northern blot remains the gold standard although RT-PCR, which takes less time and is 

technically easier, is now often used in its place (see Section 2.2.4.1). However, Northern 

blotting remains in essence a single gene approach.

1.6.1.2 cDNA libraries and EST sequencing

Expressed sequence tags (ESTs) have been invaluable tools for gene discovery and also for 

assessing differential gene expression (Adams et al. 1991; Adams et al. 1995). ESTs are 

uncharacterised cDNAs (sequences of DNA complementary to mRNA) created through 

traditional cDNA library technology (see Section 2.2.3.1.2). A cDNA library is created by 

preparing RNA from a cell or tissue population then reverse transcribing it, usually using 

an oligo(dT) oligonucleotide primer which binds to and therefore selects the poly(A) tail of 

the mRNA. These cDNA fragments are then ligated into plasmid vectors and transformed 

into bacteria. Clones are picked randomly from these libraries and then a single 

sequencing reaction (“single pass”) is performed from a large number of clones. Each 

sequence provides a unique sequence tag for a particular transcript. In the early 1990’s, 

when this technology began, each sequencing reaction generated around 300 bp or so, but 

now over 700 bp is more common (Wheeler et al. 2001).

Large-scale EST sequencing is labour-intensive and expensive so it is not a 

technology which can easily be performed in smaller centres. However, large EST 

databases (dbEST) are available on-line via the web-site o f the National Centre for 

Biotechnology Information (NCBI), along with powerful tools for their analysis and 

comparison (Wheeler et al. 2001). The EST databases now contain over 4 million 

sequences within hundreds of cDNA libraries from many distinct organs and tissues. 

These have been mined intensively during this research (see Section 2.2.3.2 amongst 

many).
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1.6.1.3 Reverse-transcription polymerase chain reaction (RT-PCR)

For an RT-PCR experiment, RNA from a given cell or tissue sample is reverse transcribed 

to cDNA. Then specific oligonucleotide primers are used to amplify the transcript of 

interest by the polymerase chain reaction (PCR) (see Section 2.2.4.1). The PCR product 

will be of a certain predictable length and can be visualised by gel electrophoresis as a 

band. This permits the assessment of the presence of an RNA species. Approximate 

determination of its abundance relative to a control transcript can be undertaken: such 

quantitation is made easier by newer techniques using fluorescent probes and automated 

machines. However, RT-PCR, like Northern blotting, is essentially a single gene 

approach, although it is faster, much more sensitive, and technically rather simpler.

1.6.1.4 Subtractive hybridisation methods and differential display

These methods were described in the early 1990’s and are based on RT-PCR technology. 

They allow the identification of differentially expressed genes, particularly those showing a 

relatively high abundance or large expression difference. Because these techniques are 

comparative, the data produced are not for a single sample, but represent differences 

between two specimens.

Subtractive hybridisation and cloning methods (SH) have been used for many years 

but their adaptation for PCR made the method much faster and easier with the ability to use 

less starting material. In SH, two cDNA samples are compared: a normal “test” cDNA and 

a deleted “driver” cDNA. The test cDNA is mixed with a large excess of driver cDNA, 

denatured and re-annealed. By various means, double-stranded cDNAs are selected in 

which both strands are composed of test cDNA. These preferentially represent sequences 

in the test cDNA that are absent from the driver cDNA, that is, differentially expressed 

transcripts (Lee et a l 1991). Reverse-transcriptase representational difference analysis 

(RT-RDA) uses broadly similar methods to enrich for and identify sequences present in the 

test but not in the driver sample (Hubank et al 1994).

mRNA differential display (DD) is also a PCR-based method which can study the 

expression of many genes simultaneously, through the use of partically degenerate primers 

(Liang et a l 1992). It uses a modified oligo(dT) primer which has a different single 

nucleotide or dinucleotide at the 3’ end causing it to bind to the poly(A) tail of a subset of 

mRNAs. For example, if the oligonucleotide TTTTTTTTTTTTTGA is used as a primer, it 

will preferentially prime cDNA synthesis from those mRNAs where the dinucleotide TC 

precedes the poly(A) tail. The second primer which is used is usually an arbitrary short 

sequence. This is often ten nucleotides long, but, because of mismatching, especially at the 

5’ end, it can bind to many more sites than would be theoretically expected for a decamer.
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PCR amplification results in a complex ladder of multiple product bands which are 

resolved by size-fractionation by polyacrylamide gel electrophoresis (PAGE, see Section

2.2.2.7). DD is useful in the large-scale comparison of mRNA populations between 

different samples and in the cloning of differentially expressed genes. For the latter, 

specific PCR bands which are present in one source but absent from another are isolated 

from the gel, amplified further by PCR and sequenced for further analysis.

These techniques are powerful but often technically difficult. There are also other 

limitations. Because the methods are comparative, the data produced are not 

comprehensive for a single sample, but represent differences between two specimens. 

False-positive results may also be a problem, and large differences may be needed for the 

genes to be identified as differentially expressed.

1.6.1.5 Oligonucleotide or cDNA expression arrays

Although the previously described techniques have proven extremely useful, a more 

systematic and comprehensive method would be preferable for large-scale expression 

analyses. One way of achieving this has been through DNA microarrays (Schena et al 

1995; Schena et a l 1996), which have been reviewed extensively (Brown et a l 1999; 

Lockhart et a l 2000).

In essence, microarrays act as reverse Northern dot blots, with probes fixed to a 

solid surface, to which the test RNA is added. There are two main methods. cDNA arrays 

are made by spotting cDNAs onto glass slides or another solid support (Brown et a l 1999). 

Oligonucleotide arrays (e.g. Affymetrix) can be made by direct synthesis of 

oligonucleotides on chips using photolithographic masking techniques from the 

semiconductor industry. Both forms of microarray can bear thousands of different 

sequences, and are used similarly. To compare the relative abundance of genes expressed 

in two tissues, RNA is isolated then the two samples are labelled with different fluorescent 

dyes, say one red and one green. The labelled samples are then mixed and hybridised onto 

the arrayed DNA spots. After hybridisation, the DNA spots are illuminated 

microscopically and their fluorescence assayed. The measurements are used to determine 

the ratio, and in turn the relative abundance, of the amount of each gene in the two 

samples. To compare many samples, multiple pair-wise experiments are performed, each 

with one sample in common as a control, say from pooled cell lines. Lower-density arrays 

of cDNA have also been created on more traditional membranes.

Microarrays have mostly been used as yet to monitor RNA expression levels, of 

which some exciting applications are discussed in Section 1.7.2.2, but measurement of 

variation at the DNA level is also possible with microarrays, as described in Sections 1.6.2
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and 1.7.2.2. This technology is hugely powerful and widely applicable but until recently 

the general academic community, especially outwith the US, has had limited access. Partly 

for this reason, this project instead used the alternative technology of SAGE.

1.6.1.6 Serial analysis of gene expression (SAGE) in brief

Serial analysis of gene expression (SAGE) is a method with the ability to monitor the 

expression patterns of thousands of genes simultaneously. It was first described in 1995 

(Velculescu et al. 1995; Zhang, L et al. 1997)).

SAGE is a patented large-scale mRNA profiling technology which produces 

comprehensive, quantitative and reproducible gene expression profiles. Unlike the 

alternative technologies of differential display and subtractive hybridisation, SAGE 

produces a full catalogue of all transcripts, not only (a subset of) differentially expressed 

genes; and unlike smaller arrays, SAGE needs no assumptions about the genes which are 

likely to be expressed, thus allowing the identification of novel genes ((Madden et al. 

2000; Velculescu et al. 2000; Polyak et a l 2001) are amongst many excellent reviews).

SAGE is based on generating clones of concatenated (linked) short sequence tags 

derived from mRNA from the target cells or tissue. Each tag is 9 or 10 bp long and 

represents one mRNA; and each clone insert contains up to 40 tags joined serially. 

Sequencing of multiple concatenates therefore describes the pattern and abundance of 

mRNA, with an improvement in efficiency of up to 40-fold compared with conventional 

analysis of expressed sequence tags (ESTs). The mRNA transcript corresponding to the 

short SAGE tag is identified from genetic databases using appropriate software. Because 

SAGE is labour-intensive and hence limited to small numbers of specimens, the resulting 

candidate genes are usually validated in a larger set of samples (Velculescu et al. 1995; 

Zhang, L. et al. 1997; Velculescu et al. 2000). With SAGE, thousands of transcripts can 

be analysed simultaneously, such that evaluation of most or all of the estimated 10,000 

genes expressed in a given cell population is a realistic goal; and SAGE also facilitates the 

detection and identification of novel genes, often difficult with earlier technologies. An 

on-line public SAGE database, SAGEmap, has now been made available through CGAP 

and NCBI (Wheeler et al. 2001). SAGEmap now contains over 4 million tags, a figure 

similar to the number of ESTs in dbEST. A more detailed description of the SAGE 

method and its advantages and challanges is presented in Chapter 3.

All of these methods for expression profiling are useful in their appropriate context. 

They vary in the amount of input mRNA required, in the specimen throughput possible and 

in their sequencing and bioinformatics requirements (reviewed in (Carulli et al. 1998)).
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The choice of technique is thus dictated by the experimental question(s) being addressed, 

the technical capability of the laboratory and the biological samples available.

1.6.2 Large-scale profiling: RNA, DNA, protein or all three?

These large-scale profiling technologies for investigating gene expression at the levels of 

mRNA are hugely powerful, and it is remarkable to note that none were described more 

than a decade ago. The pattern and levels of mRNAs reflect transcriptional activity, splice 

variants and mRNA stability and degradation. mRNA levels are immensely informative 

about cell state and activity of genes, and for most genes, changes in mRNA abundance are 

related to changes in protein abundance (Gygi et al. 1999; Pradet-Balade et al. 2001). Yet 

mRNA is not the whole story.

If we first stay with gene expression, obviously proteins are the final downstream 

product of the mRNA intermediate. The new methods of proteomics enable their study in 

a large-scale manner (Pandey et al. 2000). Proteomics means the large-scale analysis of 

proteins. The proteome is the protein complement of a cell. The word is traditionally 

associated with two-dimensional gel polyacrylamide electrophoresis of protein extracts 

from different samples. This yields a display of a large number of proteins. Such gels 

have been used since the 1970’s but reproducible electrophoresis and image analysis for 

their study and comparison have become available only more recently. However, the most 

significant breakthrough in proteomics has been the mass spectrophotometric identification 

of gel-separated proteins. The gel spots of interest are cut out, the protein extracted, and 

subjected to sequencing. This relies on the digestion of gel-separated proteins into 

peptides by a sequence-specific protease such as trypsin. The pattern and levels of proteins 

reflects translational activity, post-translational modifications such as phosphorylation and 

glycosylation, and protein stability and degradation. However, protein-based approaches 

are not without problems. They are generally more difficult, less sensitive and have a 

lower throughput than mRNA methods. Even the best two-dimensional gels can routinely 

resolve no more than 1,000 proteins and abundant proteins in samples, especially serum, 

can overshadow the rest. Nevertheless it is a powerful method, as seen from the clinical 

example given later in Section 1.7.2.2.

Moving back to DNA, large-scale array profiling methods have been developed for 

the analysis of DNA changes at both chromosomal and nucleotide levels. The 

identification of genomic imbalances (either gains or losses in copy number) by 

comparative genomic hybridisation (CGH) (see previous Section 1.5.1) can now be 

performed on a high-density array, using either large genomic clones (Pinkel et al. 1998) or
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cDNA sequences from over 30,000 radiation-hybrid mapped human genes (Pollack et al. 

1999). At the nucleotide level, genome-wide profiling is becoming possible through the 

use of single nucleotide polymorphisms (SNPs), which are single nucleotide positions in 

the genome sequence for which two or more alternative alleles are present at appreciable 

frequencies, traditionally at least 1%, in the human population (Strachan et a l 1999). SNP 

chips enable the study of LOH and allelic imbalance between normal and tumour samples, 

as seen from the clinical example given later in Section 1.7.2.2. SNP chips will also 

facilitate genome-wide linkage disequilibrium mapping of human disease genes (Wang et 

al. 1998; L anders al. 2001).

Continuing at the DNA level, rather than scanning the genome, it is possible instead 

to focus in on certain genes. For example, the previously discussed tumour suppressor 

gene p53 is the most frequently mutated gene in human cancer. 30-70% of tumours bear a 

point mutation in one of the two p53 gene copies and have lost the other allele, and these 

changes are usually associated with a worse prognosis clinically. The gold-standard 

method for their detection is direct sequencing but this is laborious and time-consuming. 

Arrays bearing all of the mutations identified in p53 can now be substituted (Ahrendt et al. 

1999).

Ideally, methods for studying DNA, mRNA and protein would be used in parallel, 

because each provides different but complementary, and sometimes overlapping, 

information. None of DNA, mRNA or protein is intrinsically more suited to study, and the 

choice relates instead to the topic under study and the research question being addressed.

1.7 Applications of large-scale profiling of cancer molecular 

genetics
1.7.1 Cancer Genome Anatomy Project (CGAP)

At the start of this section, it was suggested that describing unique gene transcription 

patterns in cancers should lead to the development of rational approaches to early 

diagnosis, prognostication and therapy as well as shedding light on cancer biology. 

Thereafter, the methods available for large-scale molecular genetic profiling were 

described. Before stating the aims of this project on gene expression in normal stomach 

and gastric carcinomas, it would be worth discussing what has already been achieved using 

these technologies. First, a large governmental project, CGAP, is described. Thereafter 

the focus is on recent exciting and clinically significant research.

One of the early, and still one of the major, efforts in this area is the Cancer 

Genome Anatomy Project (CGAP) of the National Cancer Institute in the US (Kuska 1996;
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Strausberg et a l 2001). Its overall aim is to achieve a comprehensive molecular 

characterisation of normal, precancerous and malignant cells. As its publicity has stated, 

“To peer into a single cell and read its molecular signature will enable us to identify 

precisely what is different between a normal cell and a cancer cell and to follow the genetic 

changes that take a cell from normality to cancer. It will uncover specific and sensitive 

molecular markers for cancer detection and will identify molecular differences between 

tumours, even those that appear to be identical by histological analysis. It will allow us to 

determine, at the earliest possible stage of cancer development, those tumours that will 

respond to therapy, which therapies they will respond to and whether a particular cancer 

will grow quickly or slowly and whether it will metastasise or not.” This could be the 

mission statement of much of the recent research described in the next section, and also of 

this project.

CGAP’s specific objectives included the production and sequencing of cDNA 

libraries from what it regarded as five of the most important human cancers from the 

prostate, ovary, breast, lung and colon. (Note that gastric carcinoma is omitted from this 

“big five” although it is the fourth most common cause of cancer death worldwide.) This 

then allowed the development of a publicly available human UniGene set of most, if not 

all, genes that are expressed in tumours (Schuler 1997), and other on-line analysis tools 

that facilitate the in silico analysis of the large CGAP datasets (Wheeler et a l 2001). 

CGAP has been hugely successful in its goal of creating a free interface between genomics 

and cancer research, and has been heavily used in this project (Strausberg et a l 2001).

1.7.2 Recent discoveries made using large-scale expression profiling

Most of the work described here has used either SAGE or cDNA or oligonucleotide 

microarrays, and all of it has been published within the past few years (mostly this year or 

last), after this project was started. Genomics and gene expression experiments are 

sometimes criticised as being “fishing expeditions,” rather than hypothesis-driven. This is 

not a problem if you are searching for fish, such as new genes which are involved in a 

given metabolic pathway, or which may be used in a diagnostic or predictive fashion, or as 

drug targets, as the following selected examples demonstrate. These large-scale 

experiments can be said, instead, to be hypothesis-generating, after which the researchers 

must return to single-gene methods for further investigation and functional characterisation 

of the candidates.
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1.7.2.1 Cancer biology and pathogenesis

Large-scale profiling technologies have been used successfully for the identification of 

target genes which are involved in a given metabolic pathway or biological process. For 

example, the tumor suppressor gene adenomatous polyposis coli (APC) is inactivated in 

most colorectal cancers and in gastric carcinomas of distal, intestinal type (see previous 

Section 1.5.4). APC mutations cause the aberrant accumulation of beta-catenin, which 

then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of genes 

downstream. Global gene expression profiles of colorectal cancer cells were generated by 

SAGE and used to identify two important genes as targets of this signalling pathway: the c- 

myc proto-oncogene (He et al. 1998) and PPARdelta (peroxisomal proliferator activator 

receptor delta) (He et a l 1999). The promoters of both genes were found to contain beta- 

catenin/Tcf-4-responsive elements. The ability of PPARdelta to bind to its eicosanoid 

recognition sequences is disrupted by non-steroidal anti-inflammatory drugs (NSAIDs), 

which are well-known to suppress colorectal (and gastric) carcinogenesis in both animal 

models and humans. Thus NSAIDs such as aspirin may inhibit tumorigenesis through 

inhibition of PPARdelta, the gene for which is normally regulated by APC.

1.7.2.2 Cancer class prediction and discovery

Large-scale profiling technologies have also been used successfully for cancer 

classification. In some cases, the results simply correlate with and reinforce existing 

diagnostic categories; this has been termed class prediction. In others, the results go 

beyond existing knowledge and provide new criteria for improved cancer diagnosis, 

prognostication and therapy; this has been termed class discovery.

In terms of class prediction, artificial neural networks (ANNs) have been trained to 

classify the gene expression profiles of the so-called small round blue-cell tumours of 

childhood, which often cause diagnostic difficulties in clinical practice (Khan et al. 2001). 

Four distinct diagnostic categories were used (which is an over-simplification!). Large- 

scale gene expression profiles contain a huge amount of data and ANNs represent one way 

of approaching this bioinformatics problem. After initial training, the ANN correctly 

classified all samples, including additional blinded samples, and identified the genes most 

relevant to the classification, which represent new candidate targets for therapy.

Large-scale profiles of gene expression may also reveal similarities and differences 

between tumours which are not evident by classical morphology. In some cases the results 

shed light on the underlying tumour biology. For example, small cell lung carcinoma is 

common, malignant, and generally regarded as being of neuroendocrine origin, as are 

carcinoid tumours of the lung, which tend to behave in a benign fashion. The two tumour
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types and normal bronchial epithelial cells were studied using cDNA arrays (Anbazhagan 

et a l 1999). The expression profiles of small cell carcinoma and normal bronchial 

epithelium were similar but differed from those of the carcinoid tumours, which instead 

resembled astrocytic brain tumours (high-grade astrocytoma). Small cell lung carcinomas 

are thus related to, and may originate from, bronchial epithelial cells, whereas carcinoids 

have more in common with neural crest-derived brain tumors, which would tend to 

contradict current opinion.

A number of extremely exciting recent studies have investigated groups of tumours 

which by traditional criteria are homogeneous but which have a variable clinical outome. 

They have been able to identify previously undetected and undetectable molecular 

heterogeneity and to characterise gene clusters of prognostic importance. Diffuse large B- 

cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma but is 

clinically disparate: 40% of patients respond well to current therapy and survive, whereas 

the remainder die of their disease. Using DNA microarrays, two distinct forms of DLBCL 

were identified, with gene expression patterns indicative of different stages of B-cell 

differentiation (Alizadeh et al. 2000). One type expressed genes characteristic of germinal 

centre B cells; the second type expressed genes normally induced during in vitro activation 

of peripheral blood B cells. The differentially expressed genes reflected variations in the 

proliferation rate and differentiation state of the tumours, and in the host response. Patients 

with activated B-like DLBCL had a significantly worse overall survival and presumably 

should be treated more aggressively ab initio. Interestingly, some of the genes 

characteristic of germinal center B-cells had already been implicated in lymphoma 

pathogenesis, including bcl-6 and CD 10. Follow-up studies have shown that when these 

genes are studied by immunohistochemistry as individual markers (as with oestrogen 

receptor in breast cancer), rather than as part of a large profile, they continue to provide 

prognostic information, enabling the separation of patients into sub-groups with good and 

bad outcomes and therefore guiding management (Barrans et al. 2002).

A similar study focussed on young patients with breast cancer but without lymph 

node spread at presentation. These women have a poorer prognosis than older patients of 

similar stage, because they more commonly develop distant metastases, but this event 

cannot be predicted using traditional clinico-pathological criteria. The risk of metastases is 

reduced by one-third by chemotherapy, but up to 70% of patients would have survived 

anyway without it. DNA microarray analysis of the primary tumours of patients who did 

or did not develop metastatic disease identified an expression signature of 70 genes which 

predicted subsequent distant spread (van't Veer et a l 2002). This time, well-established 

individual markers such as oestrogen receptor and c-erbB2 were absent from the list, which
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instead included genes involved in: cell cycle control; invasion e.g. metalloproteinases; 

angiogenesis; and signal transduction. Clinical use of such a gene expression profile 

would enable the direction of chemotherapy to those likely to benefit, avoiding 

unnecessary toxicity in the remaining patients and saving money.

Such stratification of patients with early stage disease which is homogeneous by 

traditional staging methods but which has a variable outcome is also possible using DNA 

technology. For example, imbalances of chromosome 8p and 18q in early-stage colorectal 

cancers, lacking lymph node or distant metastases, were sought by applying digital SNP to 

DNA prepared from 180 paraffin-embedded tumours (Zhou et a l 2002). The 5-year 

survival was 100% for patients with tumours without allelic imbalance, but fell to 58% for 

those with allelic imbalance on both chromosomes. This predictive effect was independent 

of other variables, such that Duke's stage A tumours (up to tumour stage T2) with allelic 

imbalance were much more likely to recur than the higher stage Duke's stage B tumours 

(T3 and over) without allelic imbalance. In colorectal cancer patients without metastasis, 

therefore, allelic imbalance appears to be a better predictor of prognosis than 

histopathological stage. To my knowledge, this is the first time that molecular markers 

have surpassed traditional clinico-pathological staging in a solid tumour.

The study of proteins can also make a significant clinical contribution. Like gastric 

carcinoma, ovarian cancer presents at a late clinical stage in more than 80% of patients, in 

whom the five-year survival averages 35% (which is obviously better than gastric 

carcinoma’s 10%). In contrast, the five-year survival of patients with early (stage I) 

ovarian cancer exceeds 90% and most patients can be cured by surgery alone. Simply 

increasing the proportion of women diagnosed with early disease would therefore 

significantly reduce mortality. Such a screening strategy would be essentially the same as 

that already used for breast cancer and cervical pre-cancer, but the latter are easier to view 

and sample since the tissues are more accessible. Proteomic technology using mass 

spectroscopy spectra has been able to identify a proteomic pattern that discriminates 

patients with ovarian cancer, including stage I disease, from those without (Petricoin et al 

2002), with 100% sensitivity and 95% specificity. Proteomics thus offer the extremely 

exciting prospect of a screening tool for ovarian cancer. Other carcinomas, including 

gastric and pancreatic, should be equally amenable to a proteomic approach for 

screening/early diagnosis.

Molecular classification of tumours on the basis of large-scale genetic profiling, at 

the DNA, RNA and protein levels, can thus identify previously undetected and clinically 

significant subtypes of cancer. This molecular classification is likely to supplement 

traditional microscopic diagnosis and to alter clinical practice.
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1.8 Large-scale expression profiling of normal stomach and 

gastric carcinoma by SAGE
By this stage, I hope that you are convinced that the stomach and gastric carcinoma are 

worthwhile subjects for study. Gastric carcinoma is a major cause of cancer death world­

wide. Recent diagnostic and therapeutic advances have been few but these should be 

expedited by improved understanding of its biology, as has been the case with, for 

example, breast and colorectal cancer.

The classical molecular studies of gastric carcinoma have been extremely fruitful, 

for example in the identification of the importance of E-cadherin in diffuse cancers, but 

have of necessity focussed on abnormalities in single or small numbers of genes. Changes 

in the global pattern of gene transcription may be equally or more significant functionally 

and clinically, and technological advances now permit their investigation. Since this 

project was started, gastric carcinoma has been studied by differential display (DD) (Ebert 

et a l 2000; Jung et al. 2000; Yoshikawa et al. 2000; Wang et al. 2001) and Clontech 

cDNA membrane arrays (El-Rifai et a l 2001). These studies are discussed alongside the 

results of this research in Chapter 4.

However, my chosen method was serial analysis of gene expression (SAGE), which 

produces comprehensive, quantitative and reproducible gene expression profiles. When I 

started this project, only two papers had been published on SAGE, both from the Johns 

Hopkins group: the original description (Velculescu et a l 1995); and its first major 

application, which was profiling and comparing genes expressed in colorectal and 

pancreatic carcinomas and their respective normal tissues (Zhang, L. et a l 1997). Since 

then, the applications of SAGE have been many and varied. SAGE has provided an 

encyclopaedic description of mRNA transcripts in yeast (Velculescu et a l 1997), enabling 

direct comparison with the yeast genome. It has also been used to investigate 

carcinogenesis at more basic levels, such as p53 function and p53-induced apoptosis 

(Madden et a l 1997; Polyak et a l 1997), as well as targets of APC (He et a l 1998; He et 

al 1999) (see Section 1.7.2.1). Within the field of clinical cancer research, and since the 

start of this project, SAGE has been applied to other common adenocarcinomas as well as 

colon and pancreas: breast (Nacht et a l 1999), ovary (Hough et a l 2000), prostate 

(Waghray et a l 2001), lung (Nacht et a l 2001), and pancreas again (Argani et al 2001; 

Ryu et a l 2001), as well as to squamous lung carcinoma (Hibi et a l 1998) and other 

cancers (Lai et a l 1999; Nacht et a l 1999; Velculescu et a l 1999). However, to my 

knowledge, no SAGE data have yet been published, outwith the web, for carcinoma of the
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stomach. Because SAGE is labour-intensive and hence limited to small numbers of

specimens, resulting candidate genes are usually validated in a larger set of samples

(Velculescu et a l 1995; Zhang, L. et a l 1997; Velculescu et a l 2000).

1.8.1 Aim

My aim was therefore to identify and compare genes expressed in gastric adenocarcinoma

and in normal stomach using SAGE

1.8.2 Objectives

My specific objectives were:

1. To establish the method of SAGE in this laboratory.

2. To examine gastric carcinoma and normal stomach using SAGE. Since the 

most common subtype of gastric carcinoma is distal and intestinal (Fuchs et a l 

1995), two such tumours were studied using SAGE, along with one sample of 

normal corresponding normal distal, antral, mucosa.

3. To obtain and analyse the gastric gene expression profiles. Around 10,000 tags 

were obtained for each sample. Catalogues of the genes expressed were assembled.

4. To compare the gastric carcinomas with each other, with normal stomach and, 

on-line, with other adenocarcinomas and glandular mucosae. Transcripts were 

identified which were: abundant; differentially expressed between normal and 

tumour stomach; or gastric-specific by comparison with the on-line libraries.

5. To validate the SAGE profiles by further study of candidate genes. Selected 

genes were then validated in a panel of 19 gastro-intestinal normal and tumour 

tissues and cell lines by Northern blotting and immunohistochemistry.

6. To study in more detail genes identified as showing differential expression, 

particularly where these are novel or little characterised sequences. One gene 

was new and highly expressed in the stomach, and I went on to characterise it in 

detail at the mRNA and DNA levels in human and model organisms.
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Figure 1.1: Gross anatomy of stomach

This figure shows the normal stomach and oesophagus. The oesophagus is the tube-like 

structure at the top. It is lined by stratified squamous epithelium and so appears white. In 

contrast, the stomach is lined by simple columnar epithelium organised in glands within a 

mucosa and is pale pink/brown in colour. Although by gross examination normal gastric 

mucosa appears rather uniform, microscopically it can be divided into three types, which 

correspond to different locations in the stomach. The cardia comprises the first 1-2 cm of 

the stomach beyond the oesophago-gastric junction. The bulk of the stomach then 

comprises body mucosa which secretes acid and proteases (see Section 1.2.2). The distal 

stomach is made up of the antrum and pylorus, which have a similar mucosa. Thereafter 

the stomach joins the duodenum. The concave border of the stomach on the left is termed 

the lesser curvature, and this is the site of most gastric carcinomas (see Sections 1.4.4 and

1.4.7). The longer, convex, border of the stomach on the right is the greater curvature.
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Figure 1.2: Histology of normal gastric antral and body mucosa and of intestinal 

metaplasia and atrophy

The stomach is divided anatomically and by its mucosa into three distinct areas, all lined 

by simple glandular epithelium (see Section 1.2.2). The picture at the top shows normal 

gastric body mucosa. This lines most of the stomach and comprises long, tubular glands 

lined by a variety of epithelial cells. Within each gland, the upper quarter is lined by 

mucous (mucus-secreting) cells of surface / (glandular) neck type. The next cells form the 

stem cell (proliferative) compartment. The next quarter of the gland crypt contains acid- 

producing parietal cells, which secrete hydrogen and chloride ions into the gastric lumen. 

Parietal cells have a very high energy requirement and therefore contain large numbers of 

mitochondria, which yield a pink granularity to their microscopic appearance on routine 

histological staining with haematoxylin and eosin (H&E). In the lowermost quarter of the 

gland are the gastric chief, or peptic, cells which secrete the main gastric enzyme, pepsin, 

in its precursor form, pepsinogen. Since their main role is to produce a protein for 

secretion in abundance, these cells contain large quantities of rough endoplasmic reticulum 

and hence stain dark purple with H&E staining, as seen in the picture.

The picture in the middle shows normal gastric antral mucosa, which lines the 

distal part of the stomach. Gastric antral mucosa is simpler than that in the body, being 

composed mainly of mucus-secreting glands. There are also endocrine cells: the most 

numerous in the antrum secrete gastrin and hence are termed G-cells, but these are not 

clearly seen with routine H&E staining, instead being better demonstrated by 

immunohistochemistry (see Section 4.1.2.2).

The picture at the bottom shows gastric mucosa with intestinal metaplasia and 

atrophy. The mucosa is rather thinner than normal (atrophy literally means lack of 

growth). There is also a mild chronic gastritis, composed of a scattered infiltrate of 

lymphocytes, which are the small cells staining dark blue clustered around one of the 

glands in the middle of the picture. There are two areas of complete (Type I) intestinal 

metaplasia (IM) (see Section 1.3.1), one each on the left and right of the picture. The 

superficial and foveolar (pit) regions of the gastric glands are normally covered with 

mucous-secreting columnar cells with clear cytoplasm. In IM, this is replaced by pink- 

staining absorptive columnar cells with a microvillous brush border and interspersed goblet 

cells, characteristic of normal small intestinal epithelium. EM and atrophy predispose to 

the development of distal gastric carcinoma of intestinal histological type (see Section 

1.4.6).



mi t V !
' '  v i  •? ‘ ; '  v ' *Vfc *

. ' <  »,. \  •' '''•••<*•'; 
) . v  • , fU*’ •'•



52

Figure 1.3: Gross pathology of gastric carcinoma and histology of the intestinal and 

diffuse subtypes

The top picture shows a gastrectomy specimen from a surgical resction for gastric 

carcinoma. The tumour lies in the mid stomach (predominantly body) and involves much 

of its circumference. As is usual, the cancer has grown to a large size before coming to 

clinical attention. Staging of the tumour involves assessing: the extent of its spread locally 

through the wall of the stomach; and tumour invasion of lymph nodes, mainly in the fatty 

lesser omentum along the lesser curve towards the upper left of the specimen, and in the 

greater omentum, on the opposite side of the stomach (see Sections 1.4.4 and 1.4.7). 

Obviously, staging also involves the identification or exclusion of metastatic spread.

The middle picture shows a gastric carcinoma of intestinal type, which is the focus 

of this project (see Section 1.4.5). The normal mucosa is replaced by infiltrating tumour in 

the form of cohesive glandular structures, which recapitulate the normal mucosal 

architecture: these tumours thus tend to be well or moderately differentiated. In this case, 

within the tumour tubules, pink material is seen: this is apoptotic debris. Both the 

glandular appearance and presence of prominent cell death is reminiscent of colonic 

carcinoma.

The bottom picture shows a gastric carcinoma of diffuse type (see Section 1.4.5). 

The mucosa is diffusely infiltrated by individual, non-cohesive malignant cells which are 

often described as having a signet-ring appearance: the cells contain a mucin vacuole 

which is clear on routine H&E staining and which pushes the nucleus to one side. The 

malignant cells bear almost no resemblance to normal stomach and therefore these tumours 

are usually regarded as poorly differentiated ab initio. The superficial and foveolar regions 

of the gastric mucosa appear relatively normal, without gastritis or intestinal metaplasia.
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Table 1.1: Current TNM staging system for gastric carcinoma

This table describes the current TNM (Tumour, Node and Metastasis) staging system for 

gastric adenocarcinoma (Klein Kranenbarg et a l 2001). The nodal stage is currently 

defined according to the number of lymph nodes involved: previously the stage related also 

to their distance from the primary tumour.



55

TNM classification of staging of gastric carcinoma

Primary tumour

TX primary tumour cannot be assessed

Tis carcinoma in situ

T1 tumour invades lamina propria or submucosa

T2 tumour invades muscularis propria (muscle coat) or subserosa

tumour penetrates the serosa (i.e. involves the lining of the peritoneal 
T3 cavity); no invasion of adjacent structures

T4 tumour invades adjacent structures (e.g. pancreas, colon)

Regional lymph node metastases

NX nodes cannot be assessed

NO no nodal metastases

N1 1-6 involved nodes

N2 7-15 involved nodes

N3 16 or more involved nodes

Distant metastases

MX distant metastases cannot be assessed

MO no distant metastases

Ml distant metastases

Overall tumour stage

0 Tis NO MO

I T1 NO-1 MO

T2 NO MO

II T1 N2 MO

T2 N1 MO

T3 NO MO

III T2 N2 MO

T3 Nl-2 MO
14 NO-1 MO

IV T4 N2 MO

Any T Any N M l
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Table 1.2: Survival after resection of gastric carcinoma in US and Japanese patients

This table describes patients who underwent resection for gastric carcinoma in the US and 

Japan (Fuchs et a l 1995). The relative proportions at each tumour stage and the 5-year 

survival is compared.

The US cases are based on data on 11,087 patients from 700 US hospitals. The 

age-adjusted survival is based on the 10,237 patients who underwent gastric resection. The 

Japanese cases are based on data on 3,176 patients who underwent gastric resection at the 

National Cancer Centre Hospital, Tokyo, Japan.

Stage I tumours are more common in Japan. This may relate partly to differences 

in diagnostic criteria in pathological evaluation: lesions that in the West would be called 

high-grade dysplasia would be called carcinoma in situ in Japan and hence would increase 

the relative proportion of early tumours (Schlemper et a l 1997). In addition, endoscopic 

screening programs in Japan make the pick-up and treatment of early tumours more likely.

However, the relative proportions of tumours of Stage II, III and IV are similar in 

both populations: the ratio is essentially 1:2:2. Stage-for-stage, patients in the West have a 

much poorer prognosis in terms of comparable 5-year survivals. Possible explanations 

include: surgery which is technically less good and less extensive in the West; biological 

differences in disease and/or patient population; and relative under-staging in the West, 

such that patients who are thought to be, say, Stage II, are actually Stage III (for example, 

with a T2 primary tumour and lymph node metastases which were present, but not 

identified because of inadequate dissection).

It is worth remembering that, in the West, most patients with gastric carcinoma do 

not undergo resection because their tumours at presentation are too far advanced, thus they 

would not be included in this surgical datatset.
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Tumour United States (1982-1987) Japan (1971-1985)

stage No. of cases (%) 5-year survival (%) No. of cases (%) 5-year survival (%)

I

II

III

IV

2004(18.1%) 

1796(16.2%) 

3945 (35.6%) 

3342 (30.1%)

50%

29%

13%

3%

1453 (45.7%) 

377(11.9%) 

693 (21.8%) 

653 (20.6%)

90.7%

71.7%

44.3%

9%
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Table 1.3: Molecular genetic changes in gastric carcinoma

This table summarises the molecular events so far identified in gastric adenocarcinoma 

(reviewed in (Tahara et a l 1996; Younes et a l 1997)). The genes involved are listed and 

sub-divided by type. The carcinogenic change is described. For the tumours, the data are 

separated by the two histological subtypes of gastric adenocarcinoma: intestinal and 

diffuse. The figures are percentages, and where results have varied, a range is given.

The premalignant conditions described relate to tumours of intestinal type only. 

Intestinal metaplasia (IM) has been described previously in Section 1.3.1: it is a 

consequence of chronic gastritis and is often accompanied by gastric atrophy. Adenomas 

represent a stage further down the carcinogenic pathway (Correa 1992); by definition, their 

epithelium shows dysplasia. Clearly defined adenomas are very rare in areas of low 

incidence of gastric adenocarcinoma, such as the West, but are more common in the Far 

East and South America. However, even in the West, areas of dysplastic epithelium are 

common in resection specimens adjacent to the main tumours.

The abbreviated names are: RER+, replication error positive; MI, microsatellite 

instability; APC, adenomatous polyposis coli; MCC, mutated in colon cancer; DCC, 

deleted in colon cancer; EGF, epidermal growth factor; EGFR, epidermal growth factor 

receptor; and TGFalpha, transforming growth factor alpha. LOH is loss of heterozygosity 

and IM is intestinal metaplasia.

It is obvious that some alterations are common to both tumour types, and 

sometimes to the pre-malignant conditions, for example, microsatellite instability, loss of 

normally functioning p53 and activation of telomerase. Other changes, such as APC and 

K-ras mutations, are restricted to tumours of intestinal type and their precursors. In 

contrast, E-cadherin and K-sam mutations are limited to diffuse carcinomas. This provides 

further evidence for different carcinogenic mechanisms for the two tumour types, as well 

as supporting the pathway proposed by Correa leading to intestinal tumours via IM (and 

dyplasia).
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Intestinal Diffuse Premalignant conditions 
Gene Alteration tumours tumours (for intestinal tumours)

Microsatellite instability

RER+, MI acquisition of 
phenotype 17-40% 18-64%

Tumour suppressor genes
p53 LOH, mutation 60-70% 75-76%
APC LOH, mutation 40-80% 0%
MCC LOH up to 100% 0%

DCC LOH 40-60% 0%
E-cadherin LOH, mutation 0% 50%

42% adenomas, 33% IM

22-30% adenomas, 14-40% IM 

42% adenomas, 6% IM

Oncogenes
K-ras point mutation 9-18% 0%
c-erbB2 amplification 20% 0%
EGF over-expression 25-40% 20%
EGFR over-expression 15-50% 25%

TGFa over-expression 60% 55%

K-sam amplification 0% 33%
c-met amplification 19% 39%

yes, including IM

yes

Cyclins, cyclin-dependent kinases (CDKs), their inhibitors and related molecules
cyclin E over-expression 57% 63%
cyclin E amplification 33% 7%
p21 over-expression 77% 76%
pl6 loss 12% 31%
p27KnM loss 46-60% 69%
bcl-2 over-expression 88% 7%

10% adenomas

Metastasis-associated gene
CD44 aberrant transcript 100% 100%

Telomerase
telomerase activation 100% 90% 50% adenomas, over 23% IM
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2 Materials and Methods

2.1 Materials
2.1.1 Equipment

Equipment which is standard in most laboratories and which was used in this work is not 

separately listed by supplier below, but included: wet and dry ice; water baths; 37°C 

incubators; vortex mixer; refrigerators; -20°C and -70°C freezers; microwave oven; sterile 

and non-sterile glass pipettes, bottles, flasks and beakers; plastic bottles, beakers, 

measuring cylinders and boxes; aluminium foil, cling film and plastic wrapping; platform 

shaker; magnetic stirrer and hotplate; metalware including forceps and spatulas; and 

facilities for culture of mammalian cells, for microbiological culture, for working with 

radioactive isotopes and for the development of X-ray film.

Anachem Ltd (Luton, UK)

Gilson PIPETMAN® pipettes (up to 10, 20, 200 and 1000 pi, with different sets for RNase- 

free, pre-PCR and general use)

Applied Biosystems Ltd (Warrington, UK)

ABI Prism Automated Sequencer (Models 373 and 377)

B Braun (Melsungen, Germany)

Mikrodismembrator II plus and bead mill (for powdering of frozen tissue)

Beckman (RIIC) Ltd (High Wycombe, UK)

Centrifuge tubes

Micro fuge® R centrifuge (refrigerated microcentrifuge)

GS-6R centrifuge (low-speed refrigerated centrifuge)

Avanti™ J-25 centrifuge (high-speed refrigerated centrifuge)

BioRad Laboratories Ltd (Hemel Hempstead, UK)

Power supply (pack)

Sub-Cell® GT apparatus for agarose gel electrophoresis (for Northern blotting)

Gel Doc 1000 gel documentation system
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Charles Austin Pumps Ltd (Byfleet, UK)

Capex L2C vacuum pump (for use with QIAvac 6S)

Genetic Research Instrumentation (Braintree, UK)

Atto Maxi Slab for vertical PAGE: gel tank and pouring apparatus with 160 x 160 mm 

glass gel plates, 1.5 mm spacers and 12 and 20 well combs

Millipore (Watford, UK)

Milli-Q plus PF water purification system

MJ Research Inc (Watertown, MA, USA)

PTC-100™ Programmable Thermal Controller (for sequencing PCRs)

Pharmacia Biotech Ltd (St Albans, UK)

GeneQuant RNA/DNA Calculator (spectrophotometer)

Qiagen Ltd (Crawley, UK)

QIAvac 6S (for large-scale DNA purification with QIAquick 8 PCR Purification Kit)

Stratagene Ltd (Cambridge, UK)

UV Stratalinker 2400 (for UV cross-linking)

Thermo Hybaid (Ashford, UK)

Cell Shock Electroporator and electroporation cuvettes

Electro-4 system (for standard and large-scale agarose gel electrophoresis)

Glass roller bottles (for membrane hybridisation)

Hybridisation oven with rotisserie

PCR Thermal Cyclers: Touchdown and Omnigene machines with hot-lids 

Omnislide Thermal Cycler (for in situ hybridisation)

Treff Lab (Degersheim, Switzerland)

Adjustable multichannel pipettes (for large-scale DNA purification and gel electrophoresis)

X-ray Accessories Ltd (Bushey, UK)

X-ray film cassettes
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2.1.2 Gen eral plasticware 

ABgene (Epsom, UK)

OmniTube PCR plates with 96 x 0.3 ml tubes, plus caps

Becton Dickinson UK Ltd (Oxford, UK)

Falcon conical tubes (15 and 50 ml)

Falcon snap-cap round-bottomed tubes (14 ml)

Needles (21 gauge, “green”)

Plastic pipettes (5, 10 and 25 ml)

Syringes (between 2 and 10 ml)

Bibby-Sterilin Ltd (Stone, UK)

Bijou tubes (5 ml)

Petri dishes (90 and 140 mm diameter)

Universal tubes (25 ml)

Corning Costar UK (High Wycombe, UK)

Costar® cell scrapers

Spin-X filter microcentrifuge tubes

Elkay Laboratory Products (UK) Ltd (Basingstoke, UK)

Microcentrifuge tubes (0.2, 0.5, 1.5 and 2.0 ml) (both flip-cap and screw-cap) 

Standard pipette tips

Greiner Labortechnik Ltd (Stonehouse, UK)

Aerosol-resistant pipette tips (10, 20 200 and 1000 pi) (for RNA and pre-PCR work)

Invitrogen Life Technologies Ltd (Paisley, UK)

Nunclon™ tissue culture flasks (12.5, 25 and 75 ml)

Swann-Morton (Sheffield, UK)

Sterile disposable scalpels
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2.1.3 Chemicals

Stock solutions were made up with dH20. For RNA work, the dH20  used was treated with 

diethylpyrocarbonate (DEPC) (Section 2.2.2.1).

Braun Medical Ltd (Sheffield, UK)

Water for Injections BP

Fisher Scientific UK Ltd (Loughborough, UK)

Acetic acid, glacial

Ammonium acetate (10 M stock solution)

Ammonium persulfate (APS) (10% stock solution)

Ammonium sulphate ((NH4)2S 04) (1 M stock solution)

Chloroform

Diaminoethanetetra-acetic acid disodium salt (EDTA) (0.5 M stock solutions at pH 7.5 and 

pH 8.0)

Glycerol

Hydrochloric acid 

Isopropanol (isopropyl alcohol)

Magnesium chloride (MgCl2) (1 M stock solution)

Methanol

Propan-2-ol (isopropanol)

Sodium chloride (5 M stock solution)

Sodium dodecyl sulphate (SDS) (10% stock solution)

Sodium hydroxide (0.5 M stock solution)

Trichloroacetic acid (100% w/v stock solution)

Tris HC1 

Tris base 

Xylene

Hayman Ltd (Janies Borrough) (Witham, UK)

Absolute alcohol (ethanol) (analytical reagent grade) (100% and 70% stock solutions)

Invitrogen Life Technologies Ltd (Paisley, UK)

Tris base (1 M stock solutions at pH 7.5 and 8.8)
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Sigma (Dorset, UK)

Ampicillin 

p-mercaptoethanol 

Bromophenol Blue 

Calcium chloride 

Copper sulphate 

3,3-Diaminobenzidine (DAB)

Diethylpyrocarbonate (DEPC)

N,N -Dimethylformamide (DMF)

Ethidium bromide (10 mg/ml stock solution)

Hydrogen peroxide 

Mineral oil

N,N,N* ,N* -Tetramethylethylenediamine (TEMED)

Xylene Cyanol

2.1.4 Buffers and other solutions

Buffers and other solutions were made up with dH20. For RNA work, the dH20  used was 

treated with diethylpyrocarbonate (DEPC) (Section 2.2.2.1).

LoTE

3 mM Tris-HCl (pH 7.5), 0.2 mM EDTA (pH 7.5)

TE

10 mM Tris-HCl (pH 7.5), 1 mM EDTA (pH 7.5)

2X Binding and Washing (B+W) buffer (for use with Dynal magnetic beads)

2 M NaCl, 10 mM Tris-HCl (pH 7.5), 1 mM EDTA (pH 7.5)

IX B+W buffer

1 M NaCl, 5 mM Tris-HCl (pH 7.5), 0.5 mM EDTA (pH 7.5)

50X Tris-Acetate-EDTA (TAE) buffer

242 g Tris base, 57.1 ml glacial acetic acid and 100 ml 0.5 M EDTA (pH 8.0) made up to 1 

litre with dH20
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Buffers in a Box, Invitrogen Life Technologies Ltd (Paisley, UK)

10X Tris-Borate-EDTA (TBE) buffer

1 M Tris, 0.9 M Boric Acid, 0.01 M EDTA

20X Salt and Sodium Citrate (SSC) buffer

3 M NaCl, 0.3 M Sodium Citrate

Phosphate Buffered Saline (PBS)

2.1.5 Tissue, cell and RNA samples

2.1.5.1 Primary tissues for SAGE, Northern blotting and immunohistochemistry

The primary tumours and normal mucosa used for SAGE and its validation by Northern 

blotting and immunohistochemistry (Chapter 4) were collected from oesophagus, stomach 

and colon, as described in Section 2.2.1. The gastric adenocarcinomas are detailed in 

Table 2.1. The other specimens comprised: normal gastric mucosa from the cardia, body 

and antrum; normal squamous oesophageal mucosa; oesophageal squamous carcinoma; 

normal colonic mucosa; and colonic adenocarcinoma.

2.1.5.2 Primary tissues for in situ hybridisation

The tissues described above and the cultured cells described below were used for in situ 

hybridisation for the new gastric gene identified via SAGE. Two other sets of tissues were 

also tested, as described in Section 2.2.1 and discussed in Chapter 5.

The first was a range of further normal and diseased upper gastro-intestinal tissues. 

Gastric samples included: normal mucosa; gastritis; intestinal metaplasia and atrophy; 

gastric ulceration; and gastric carcinoma. Oesophageal samples included: normal mucosa; 

Barrett’s oesophagus; and oesophageal squamous carcinoma and adenocarcinoma. 

Duodenal samples included: normal mucosa; gastric metaplasia; and duodenal ulceration. 

For each condition, between two and five different blocks were examined.

The second set was a wide range of gynaecological, glandular, solid epithelial and 

other tissues, both normal and tumorous. Gynaecological samples included: normal cervix; 

cervical squamous carcinoma and adenocarcinoma; normal uterus including endometrium; 

endometrial adenocarcinoma; fallopian tube; normal ovary; ovarian serous and mucinous 

cystadenoma and adenocarcinoma; placenta and peritoneum. Glandular and solid 

epithelial tissues included: salivary gland; normal tissue and adenocarcinoma from bile 

duct, pancreas, colon, breast and prostate; appendix; normal lung; squamous carcinoma,
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adenocarcinoma and small cell carcinoma of lung; normal thyroid and follicular 

carcinoma; kidney; normal testis and teratoma; and skin including adnexal glands. Other 

tissues included: heart; thymus; lymph node; tonsil; brain; cerebellum; malignant 

melanoma; skeletal muscle and bone. For the gynaecological and glandular tissues, 

between two and five different tissue blocks were examined; for the others, one or two 

blocks were used.

2.1.5.3 Cultured cells

For the cultured cells listed below, cells described as adherent are derived from 

adenocarcinomas of intestinal type whereas those described as spherical originate from 

diffuse tumours.

Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, 

Germany)

MKN-45

Derived from a poorly differentiated gastric adenocarcinoma in a female aged 62. Mainly 

spherical cells.

European Collection of Cell Cultures (Wiltshire, UK)

AGS

Derived from a gastric adenocarcinoma in a Caucasian female aged 54. Adherent cells. 

KATO-III

Derived from a metastasis of a gastric carcinoma in a male aged 55. Spherical cells.

OE19

Derived from a moderately differentiated adenocarcinoma of gastric cardia/oesophago- 

gastric junction (proximal) in a male aged 72. Adherent cells.

Invitrogen Life Technologies Ltd (Paisley, UK)

L-Glutamine

Nutrient Mixture F-12 (Ham)

Penicillin/Streptomycin Solution 

RPMI 1640 Medium 

Trypsin
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Autogen Bioclear UK Ltd (Caine, UK)

Foetal Bovine Serum (FBS)

2.1.5.4 Purchased RNA

BD Clontech UK (Basingstoke, UK)

Human Stomach Poly(A) RNA (5 fig pooled from whole, normal, stomach of four 

Caucasian males and females with sudden deaths)

2.1.5.5 Purchased Northern blots 

Invitrogen Life Technologies Ltd (Paisley, UK)

Northern Territory™ Human Normal Tissue Blot III, bearing total RNA from Tonsil, 

Thymus, Appendix, Lymph Node, Gallbladder, Prostate, Testis and Ovary, loaded 

at 20 pg per lane

OriGene Technologies, Inc (Rockville, MD, USA)

Multiple Choice™ Northern Blot, bearing total RNA from Spleen, Liver, Colon, Stomach, 

Testis and Placenta, loaded at 20 pg per lane

2.1.6 RNA and DNA purification, cDNA synthesis and magnetic beads 

Ambion (Houston, TX, USA)

DNAZap® (PCR DNA Degradation Solution)

Poly(A)Pure™ Kit

Phenol/chloroform/isoamyl alcohol (25:24:1, v/v/v) (hereafter called phenol/chloroform 

(P/C))

RNaseZap® (RNase Decontamination Solution)

Dynal UK Ltd (Bromborough, UK)

Dynabeads® mRNA DIRECT kit containing Dynabeads® 01igo(dT)25 (oligo(dT)-coated 

magnetic beads)

Dynabeads® M-280 Streptavidin (streptavidin-coated magnetic beads)

Dynal sample mixer

Magnetic Particle Concentrator (magnetic stand to immobilise beads)

Invitrogen Life Technologies Ltd (Paisley, UK)
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cDNA Synthesis System (now superceded by the SU PER SCR IPT™  Choice System for 

cDNA Synthesis)

TRIzol® Reagent

Miltenyi Biotec Ltd (Bisley, UK)

mRNA Isolation Kit, plus mini MACS (magnetic cell sorting) separator

Promega UK Ltd (Southampton, UK)

Promega MagneSphere® Magnetic Separation Products

Qiagen Ltd (Crawley, UK)

QIAquick® Nucleotide Removal Kit 

QIAquick® PCR Purification Kit 

QIAquick® 8 PCR Purification Kit 

RNeasy® Midi Kit

Roche Diagnostics Ltd (Lewes, UK)

Glycogen, molecular biology grade (20 mg/ml)

2.1.7 Restriction and modifying enzymes 

New England Biolabs (UK) Ltd (Hitchin, UK)

Nla III (10 U/pl), supplied with NEBuffer 4 & 100X bovine serum albumin (BSA) 

BsmFl(2\JI\A)

Sph I (5 U/pl), supplied with NEBuffer 2 & 100X BSA 

T4 Polynucleotide Kinase (lOU/pl)

T4 DNA Ligase (4 U/pl and 20 U/pl)

T4 DNA Polymerase (3 U/pl)

DNA Polymerase I Large Fragment (Klenow) (5 U/pl)

Clontech Laboratories (Palo Alto, CA, USA)

Calf Intestinal Alkaline Phosphatase (2.7 U/pl)

Stratagene (CB Amsterdam Zuidoost, The Netherlands)

Pfu DNA Polymerase from Stratagene PCR Polishing Kit



69

2.1.8 Oligonucleotides

2.1.8.1 Oligonucleotides for SAGE

Oswel Research Products Ltd (Southampton, UK)

The biotinylated oligonucleotides and the linkers were obtained gel-purified from the 

manufacturers. The working concentration of all SAGE primers was 350 ng/pl.

Biotinylated oligo dT 

5’ [biotin] T18

SAGE Linker 1A

5’ TTT GGA TTT GCT GGT GCA GTA CAA CTA GGC TTA ATA GGG ACA TG 3' 

SAGE Linker IB

5' TCC CTA TTA AGC CTA GTT GTA CTG CAC CAG CAA ATC C [amino mod. Cl] 3' 

SAGE Linker 2A

5' TTT CTG CTC GAA TTC AAG CTT CTA ACG ATG TAC GGG GAC ATG 3'

SAGE Linker 2B

5’ TCC CCG TAC ATC GTT AGA AGC TTG AAT TCG AGC AG [amino mod. C7] 3' 

SAGE Primer 1

5’ GGA TTT GCT GGT GCA GTA CA 3'

Biotinylated SAGE Primer 1

5’ [biotin] GGA TTT GCT GGT GCA GTA CA 3’

SAGE Primer 2

5' CTG CTC GAA TTC AAG CTT CT 3’

Biotinylated SAGE Primer 2

5' [biotin] CTG CTC GAA TTC AAG CTT CT 3'

Invitrogen Life Technologies Ltd (Paisley, UK)

M l3 Forward Primer

5’ GTA AAA CGA CGG CCA GT 3’
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M l3 Reverse Primer

5' GGA AAC AGC TAT GAC CAT G 3’

2.1.8.2 Oligonucleotides for SAGE validation and investigation of new gastric gene

Table 2.2 lists the oligonucleotide primers used to validate, by RT-PCR, selected candidate 

genes which were identified by SAGE. Primers used for the investigation of the new 

gastric gene, foveolin, are listed in Table 2.3.

2.1.9 Polymerase chain reaction (PCR)

2.1.9.1 Own PCR protocol 

Qiagen Ltd (Crawley, UK)

HotStarTaq™ DNA Polymerase Kit 

Taq PCR core kit

2.1.9.2 Johns Hopkins’ PCR protocol 

Invitrogen Life Technologies Ltd (Paisley, UK)

P l a t i n u m ® Taq DNA Polymerase (5 U / p l )

lOmM dNTP mix (10 mM each dATP, dGTP, dCTP and dTTP at neutral pH)

10X Johns Hopkins PCR buffer

166 mM (NH4)2S04, 670 mM Tris (pH 8.8), 67 mM MgCl2, 100 mM p-mercaptoethanol

Sigma (Dorset, UK)

Dimethyl sulphoxide

2.1.10Agarose and polyacrylamide gel electrophoresis 

Invitrogen Life Technologies Ltd (Paisley, UK)

Agarose, electrophoresis grade 

10 and 100 bp DNA ladders 

0.24-9.5 kb RNA Ladder

Gel loading buffer

30% glycerol, 70% dH20  and 0.25% (a pinch) of Bromophenol Blue and Xylene Cyanol
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Roche Diagnostics Ltd (Lewes, UK)

DNA Molecular Weight Marker V (8-587 bp)

DNA Molecular Weight Marker VIII (19-1114 bp)

Molecular Probes Europe BV (Leiden, The Netherlands)

SYBR® Green I nucleic acid gel stain

Severn Biochem Ltd (Kidderminster, UK)

40% Polyacrylamide (37.5:1 acrylamide:bis)

40% Polyacrylamide (19:1 acrylamide:bis)

2.1.11 Cloning o f  SAGE concatemers 

Invitrogen Life Technologies Ltd (Paisley, UK)

Zero Background™ Cloning Kit 

E l e c t r o M A X ™  DH10P™ Cells 

S.O.C. Medium

Isopropylthio-p-D-galactoside (IPTG) (2 M stock solution)

X-gal (5-bromo-4-chloro-3-indolyl-b-D-galactoside) (100 mg/ml stock solution in N,N- 

dimethylformamide)

Low salt LB (Luria-Bertani) agar plates

1% Tryptone, 0.5% Yeast Extract, 0.5% NaCl, 1.5% Agar, pH 7.5, with 50 pg/ml Zeocin™ 

and 1 mM IPTG, prepared according to instructions in Zero Background™ Cloning 

Kit

LB agar plates

1% Tryptone, 0.5% Yeast Extract, 1% NaCl, 1.5% Agar, pH 7.0 (prepared by Beatson 

Labs Central Services) with 50 pg/ml ampicillin, 1 mM IPTG and 40 pg/ml X-gal

Difco Becton Dickinson (Oxford, UK)

Bacto™ Agar 

Tryptone peptone 

Yeast extract
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2.1.12Sequen cing

PerkinElmer from Applied Biosystems, Warrington, UK

BigDye Primer Kit

2.1.13 Bioinformatics

2.1.13.1 Web-sites

SAGE web-site at Johns Hopkins University (Baltimore, MD, USA)

http://www.sagenet.org/sage protocol.htm

This is the web-site of the scientists who developed SAGE. The SAGE software was 

down-loaded from the web-site after registration.

SAGE software version 3.04 beta

SAGE95, the original software, and SAGE2000, the most recent update, also used.

The SAGE software was down-loaded from the web-site after registration and installed 

using a .exe file received separately as an email attachment.

SAGE detailed protocol

Versions lb, November 1995; lc, September 1997; Id, November 1999 

The detailed SAGE protocols were received as email attachments.

National Centre for Biotechnology Information (NCBI) (Bethesda, MD, USA)

NCBI is an international resource for molecular biology information. 

httn://www.ncbi.nlm.nih.gov/

NCBI’s GenBank® databases: but actually down-loaded from HGMP-RC UK mirror site 

(see below)

http://www.ncbi.nlm.nih.gov/SAGE/

NCBI’s SAGE databases for down-loading and SAGEmap tools for on-line analysis 

http://www.ncbi.nlm.nih.gov/UniGene/index.html/

NCBI’s UniGene databases and tools for on-line analysis (the “unique gene” database 

clusters all transcripts corresponding to one gene under one name)

http://www.sagenet.org/sage
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/SAGE/
http://www.ncbi.nlm.nih.gov/UniGene/index.html/
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http://www.ncbi.nlm.nih.gov/BLAST/

NCBI’s BLAST® (Basic Local Alignment Search Tool) set of programs for searching for 

DNA or protein similarity through all of the available sequence databases, plus 

alignment programs

http ://www.ncbi .nlm.nih. gov/PubMed/

The National Library of Medicine’s PubMed database, providing access to over 11 million 

MEDLINE citations back to the mid-1960's, used here for all literature searches

UK Human Genome Mapping Project Resource Centre (Cambridge, UK)

http://www.hgmp.mrc.ac.uk/About/SEQNET/

UK mirror site of NCBI from where GenBank® databases downloaded

Celera Genomics (Rockville, MD, USA)

http://www.celera.com

USA site of Celera corporation from where the human genomic sequence for foveolin was 

obtained.

Ensembl (a joint project between EMBL - EBI and the Sanger Institute)

http://www.ensembl.org/

Ensembl is a software system which produces and maintains automatic annotation on 

eukaryotic genomes. Whole Genome Shotgun sequencing reads generated by the 

Mouse Sequencing Consortium are available via the Trace Archive at Ensembl, so 

this is the site from where the mouse genomic sequences were downloaded.

EMBL-European Bioinformatics Institute (EMBL-EBI) (Cambridge, UK)

http://www.ebi.ac.uk

MultAlign multiple sequence alignment (nucleotide)

ClustalW multiple sequence alignment (amino acid)

These programs were used to align and compare sequences of the new gastric gene. The 

EBI site was used but these programs are widely available.

Mitelman Database of Recurrent Chromosome Aberrations in Cancer

http://cgap.nci.nih.gov/Chromosomes/Mitelman

Pole Bio-Informatique Lyonnais

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi
http://www.hgmp.mrc.ac.uk/About/SEQNET/
http://www.celera.com
http://www.ensembl.org/
http://www.ebi.ac.uk
http://cgap.nci.nih.gov/Chromosomes/Mitelman
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http://npsa-pbil.ibcp.fr/NPSA

The Network Protein Sequence Analysis programs at the PBIL provide: primary structure 

analysis, including physico-chemical profiles; and secondary structure prediction.

PSORT WWW Server

http://psort.nibb.ac.ip/

PSORT is a computer program for the prediction of protein localization sites in cells. 

Amino acid sequences are analysed by applying general rules for various sequence 

features of known protein sorting signals. The program then reports the likelihood 

for the input protein to be localized at each candidate site (Nakai et al. 1992).

Ambion Inc (Houston, TX, USA)

http://www.ambion.com/

Ambion company web-site with excellent advice on working with RNA

Qiagen Ltd (Crawley, UK)

http://www.qiagen.com/

Qiagen company web-site with excellent advice on molecular biology in general

2.1.13.2 Software 

Microsoft® (Reading, UK)

Microsoft® Access database and Excel spreadsheet programs

Informax Inc (Oxford, UK)

Vector NTI Suite

DNASTAR Inc (Madison, WI, USA)

Lasergene suite containing EditSeq and SeqMan programs

BioRad Laboratories Ltd (Hemel Hempstead, UK)

Molecular Analyst Software

2.1.13.3 SAGEmap libraries used for comparisons with gastric samples

http ://www.ncbi .nlm.nih. gov/S AGE/

SAGE libraries from normal glandular epithelial and mesothelial tissues

Breast Br N

http://npsa-pbil.ibcp.fr/NPSA
http://psort.nibb.ac.ip/
http://www.ambion.com/
http://www.qiagen.com/
http://www.ncbi
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Colon NCI 

Ovary HO S E4  

Pancreas HX & 126 

Peritoneum PERITO-13 

Prostate Chen_normal_prostate

SAGE libraries from adenocarcinomas and mesothelioma

Breast tumor 95-259 

Colon tumor TUI02 

Mesothelioma MESO-12 

Ovary tumor OVT7 

Pancreas tumor 96-6252 

Prostate tumor Chen_Tumor_Pr

2.1.14 Cloning o f  candidate genes 

Invitrogen Life Technologies Ltd (Paisley, UK)

TOPO TA Cloning® Kit with pCR®II-TOPO®

Qiagen Ltd (Crawley, UK)

Qiagen Plasmid Maxi/Midi Kit

2.1.15 Northern blotting and probing o f  blots 

Ambion Inc (Austin, TX, USA)

NorthemMax™ Kit

Strip-EZ™ PCR StripAble™ PCR Probe Synthesis and Removal Kit 

BrightStar-Plus Positively Charged Nylon Transfer Membrane

Human Internal Standard Screening Kit, containing a beta-actin template cloned in 

pTRIPLEscript vector, plus other internal standards and primers

Amersham Pharmacia Biotech UK Ltd (Little Chalfont, UK)

[alpha-32P] dATP (3,000 Ci/mmol, 10 mCi/ml)

[alpha-32P] dCTP (3,000 Ci/mmol, 10 mCi/ml)

Kodak X-OMAT AR-5 Scientific Imaging (X-ray) Film 

Rediprime™ II random prime labelling system
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Whatman International (Maidstone, UK)

3MM filter paper

2.1.16Immunohistochemistry

2.1.16.1 Primary antibodies 

Dako Ltd (Cambridge, UK)

Gastrin (rabbit anti-human monoclonal antibody)

Lysozyme (rabbit anti-human polyclonal antibody)

Cytokeratin 8 (mouse anti-human monoclonal antibody)

Lab Vision (UK) Ltd (Neomarkers antibodies) (Newmarket, UK)

pS2 (mouse anti-human monoclonal antibody)

MUC5AC (mouse anti-human monoclonal antibody)

Novocastra Laboratories Ltd (Newcastle upon Tyne, UK)

Human spasmolytic polypeptide (mouse anti-human monoclonal antibody)

2.1.16.2 Secondary staining

Vector Laboratories Ltd (Peterborough, UK)

VECTASTAIN Universal Elite ABC-Peroxidase Kit

2.1.17Non-isotopic in situ hybridisation 

Amersham Pharmacia Biotech UK Ltd (Little Chalfont, UK)

Dextran sulphate

Fluka BioChemika (Buchs, Germany)

Formamide

New England Biolabs (UK) Ltd (Hitchin, UK)

K pnl 

Not I
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Roche Diagnostics Ltd (Lewes, UK)

Anti-Digoxigenin-Alkaline Phosphatase 

DIG RNA Labeling Kit (Sp6/T7)

NBT/BCIP stock solution (nitrobluetetrazolium/bromochloroindolylphosphate)

Sigma (Dorset, UK)

Alcian blue 

Denhardt’s solution 

Glycergel (glycerol gelatin)

Haematoxylin 

Levimasole 

Proteinase K 

Salmon sperm DNA 

Triton X-100™

ISH pre-hybridisation buffer

Make up 100 ml using: 10 ml 20X SSC, 50 ml 100% Formamide and 40 ml DEPC-treated 

dH20

ISH hybridisation buffer

Make up 20 ml using: 40 pi 5 M Tris (pH 7.5), 2.5 ml 100X Denhardts, 1.3 ml 20X SSC, 

500 pi 20% SDS, 10 ml 100 % Formamide, 4 ml 50% Dextran Sulphate, 500 pi 

salmon sperm DNA (10 mg/ml) and 11.6 ml DEPC-treated dH20

Dig (1) buffer

100 mM Tris base, 100 mM Tris HC1 and 150 mM NaCl (solution pH 7.6)

Dig (3) buffer

100 mM Tris base (pH 9.5), 100 mM NaCl and 50mM Magnesium Chloride

2.1.18Fluorescent in situ hybridisation (FISH)

Qbiogene (Appligene Oncor) (Middlesex, UK)

Chromosome 2 paint

Roche Diagnostics Ltd (Lewes* UK)
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4',6-diamidino-2-phenylindole (DAPI)

Sigma (Dorset, UK)

NP-40 (Tergitol, anon-ionic surfactant)

Pepsin

Propidium iodide (PI)

RNase (ribonuclease)

Streck Laboratories Inc (La Vista, NE, USA)

Streck Tissue Fixative

Vector Laboratories Ltd (Peterborough, UK)

VECTASHIELD® Mounting Medium

Vysis Inc (Downers Grove, IL, USA)

Nick Translation Kit with SpectrumGreen dUTP

2.1.19Probing o f  genomic library

UK Human Genome Mapping Project Resource Centre (Cambridge, UK)

Human Genomic PAC Library RPCI1 supplied as high density gridded filters for screening 

by hybridisation 

Human Genomic PAC Library RPCI1, Clone 291-N4
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2.2 Methods

2.2.1 Collection and preparation o f tissue and cell samples

2.2.1.1 Primary tissues for SAGE, Northern blotting and immunohistochemistry

Resection specimens of oesophagus, stomach, duodenum and colon were collected from 

the operating theatre immediately after surgery and taken to the Pathology Department, 

North Glasgow Hospitals University NHS Trust. There, I (a pathologist) examined and 

dissected the specimens. Diagnostic tissue samples were taken for routine histopathology 

from the tumors, resection margins, normal mucosa and lymph nodes. These diagnostic 

tissue blocks were fixed in formalin, processed through to paraffin wax, sectioned and 

stained with Haematoxylin and Eosin, and, where necessary, mucin stains (here, Alcian 

Blue). This was performed by pathology technical staff, according to standard operating 

procedures. I then examined the microscopic slides and reported the cases.

For this research project, tissue samples were taken from immediately adjacent to 

the blocks selected for diagnosis, diced into 5mm3 pieces, flash-frozen in liquid nitrogen 

and stored at -70°C. Tissue collection was in accordance with contemporary ethical 

practice. A range of primary tumours and normal mucosal tissues was collected. The 

gastric adenocarcinomas are detailed in Table 2.1 (Section 2.1.5.1), of which Tumours 1 

and 2 were used for SAGE, as was a sample of normal (non-neoplastic) gastric antral 

mucosa taken from a Whipple’s resection from a patient with pancreatic (but not gastric) 

adenocarcinoma. The non-neoplastic mucosa showed a chronic gastritis without dysplasia.

For SAGE, RT-PCR and Northern blotting, RNA was prepared from the frozen 

samples. For immunohistochemistry and in situ hybridisation, the formalin-fixed, paraffin- 

embedded tissue was used.

2.2.1.2 Culture of cell lines

Cells were cultured, subcultured and stored according to the suppliers’ instructions. AGS 

cells (Barranco et a l 1983) were cultured in Ham’s F I2 medium supplemented with 10% 

(v/v) Foetal Bovine Serum (FBS). KATO-III cells (Sekiguchi et a l 1978) and MKN-45 

cells (Naito et a l 1984) were cultured in RPMI 1640 medium supplemented with 20% 

FBS. OE19 cells (Rockett et al 1997) were cultured in RPMI 1640 medium supplemented 

with 10% FBS. All media were also supplemented with 2mM L-Glutamine, 500 units/ml 

Penicillin and 500 pg/ml Streptomycin. All cell lines were maintained in a humid 37°C / 

5% C 02 incubator.
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For Northern blotting, RNA was prepared directly from the cells as described in 

Section 2 .222 . For immunohistochemistry and in situ hybridisation, the cells were 

harvested according to the suppliers’ instructions, fixed in formalin, then pelleted in agar 

by brief centrifugation. The agar pellet of cells was then processed through to paraffin wax 

as for the tissue samples.

2.2.1.3 Archival tissues for profiling of the new gastric gene

Archival blocks were selected from the files in the Pathology Department. The human 

tissues examined included a wide range of normal tissues and their corresponding tumours, 

principally adenocarcinomas and their originating glandular epithelia (see Sections 2.1.5.1 

and 2.1.5.2). The tissues were fixed in formalin, processed routinely, embedded in paraffin 

and sectioned in the conventional manner. Tissue samples of mouse and rat stomach and 

of bovine abomasum (the fourth stomach, anatomically closest to the human) were also 

examined.

2.2.2 General molecular biological manipulation o f  RNA and DNA

2.2.2.1 Maintenance of RNase-free working environment

Many methods described in this thesis use RNA as their starting material, so that my 

experimental results depended on the quality and quantity of input RNA (see Section

3.1.2.1). However, RNA is highly labile and subject to degradation by ribonucleases 

(RNases). The main source of RNase contamination is endogenous RNases which must be 

quickly inactivated during cell lysis, usually with protein denaturants such as phenol, 

chloroform and chaotropic salts, which are contained in T R I z o l ® Reagent (Section

2.2.2.2). Exogenous RNases may also cause problems but were avoided through various 

measures. Disposable gloves were worn and separate pipettes were used for RNA. Water 

for solutions was treated by adding diethylpyrocarbonate (DEPC) to a final concentration 

of 0.1% (v/v), then the solution was mixed, left overnight in a fume hood and autoclaved. 

Where possible, RNase-free sterile plasticware was used. Glassware was baked at 150°C 

for 4 h or rinsed with 0.5 M NaOH. Other equipment, including pipettes, mortar and 

pestle, metalware and electrophoresis equipment, and bench surfaces were treated with 

Ambion’s RNaseZap™ (RNase Decontamination Solution).

2.2.2.2 Purification of total RNA

TRIzol® Reagent was used to isolate total RNA from frozen tissues and cultured cells, 

according to manufacturer’s instructions.
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For frozen tissue samples, 2 ml TRIzol® was used per 100 mg of tissue. For 

SAGE, 500-1,000 mg of tissue was used (with a 50 ml conical tube). For Northern blotting 

and other verification procedures, 100 mg of tissue was used (with two 1.5 ml 

microcentrifuge tubes). The tissue pieces were not allowed to thaw during manipulation 

but were weighed, then crushed into small fragments in liquid nitrogen using a mortar and 

pestle, and finally powdered using a bead mill in the Mikrodismembrator. TRIzol® was 

poured on the frozen tissue powder and mixed in during gradual defrosting. For adherent 

cell lines, 1 ml TRIzol® was used per 10 cm2 of the area of the culture flask (with a 50 ml 

conical tube). For spherical (in suspension) cell lines, the cells were pelleted by 

centrifugation then 1 ml TRIzol® was used per 5-10 x 106 cells. The TRIzol® was poured 

onto the cells and the lysate passed several times through a pipette. With the larger 

volumes of tissue or cell lysate, a glass-Teflon® homogeniser was used. All samples were 

further homogenised by passing through a needle and syringe.

Homogenised samples were then incubated for 5 min at RT. 0.2 ml chloroform 

was added per 1 ml of T R I z o l ®. The tubes were shaken for 15 s, incubated at RT for 3 

min then centrifuged. 50 ml conical tubes were spun in the Beckman centrifuge at 4,000 

rpm at 4°C for 30 min. Microcentrifuge tubes were spun at full speed at 4°C for 15 min. 

The colourless upper aqueous phase was transferred to a new tube. 0.5 ml isopropanol was 

added per 1 ml of T R I z o l ® used initially. The samples were incubated at RT for 10 min 

then centrifuged again, causing the RNA precipitate to pellet. The supernatant was 

removed and the pellet washed with 70% ethanol then air-dried for 5 min and resuspended 

in dH20.

The yield of total RNA was quantitated using a spectrophotometer (Section 2.2.2.9) 

and its quality assessed by electrophoresis on a 1% (w/v) agarose gel (Section 2.2.2.6). 

Two strong, distinct bands of ribosomal RNA should be visible at 4718 and 1847 

nucleotides, representing the 28S and 18S subunits, but significant smearing indicates 

RNA degradation. The RNA samples were then stored at -70°C.

2.2.2.3 Phenol/chloroform extraction of DNA

Phenol extraction is used to remove protein from solutions of nucleic acids. An equal 

volume of phenol/chloroform/isoamyl alcohol (25:24:1, v/v/v) (P/C) was added to the 

sample, mixed well by vortexing and spun in a microcentrifuge at full speed at RT for 5 

min, to separate the phases. Nucleic acids partition into the aqueous (top) phase, which 

was transferred to a fresh microcentrifuge tube, without disturbing the lower layer or 

interface.



82

2.2.2.4 Ethanol precipitation of DNA or RNA

Ethanol precipitation is used to purify and reduce the volume of solutions of nucleic acids. 

A one-third volume of 10 M ammonium acetate and 3 volumes of 100% ethanol were 

added to the sample. In SAGE, 3 pi glycogen was also added, as a carrier to enhance 

precipitation. The sample was mixed well by vortexing and allowed to precipitate on dry 

ice (or at -20°C) for at least 15 min, then centrifuged at full speed, preferably at 4°C, for 15 

min. The pellet was washed with 70% ethanol, re-spun then dried and resuspended in 

dH20  or LoTE.

2.2.2.5 Purification of DNA using QIAquick columns

DNA purification by P/C extraction and ethanol precipitation has been described above but 

Qiagen’s QIAquick® Spin Columns provide an alternative which at some stages save time 

and possibly provide purer DNA samples. The purification columns of the QIAquick® 

PCR Kit may be either spun at full speed in a microcentrifuge or extracted with a vacuum 

manifold (for large-scale work using the QIAquick® 8 Kit and QIAvac 6S). The DNA 

sample was mixed with five volumes of Buffer PB and loaded onto the QIAquick column. 

The column was then spun (or subjected to vacuum). The column was washed with 0.7 ml 

Buffer PE and spun. A further spin or vacuum was applied to dry the column. To elute the 

DNA, 30-100 pi Buffer EB was placed on the membrane and a final spin or vacuum 

applied.

2.2.2.6 Agarose gel electrophoresis

DNA produced by PCR and RNA were analysed using non-denaturing agarose gel 

electrophoresis which separates nucleic acids according to size. Electrophoresis grade 

agarose at between 0.8% and 2% (w/v) was added to 0.5X TBE buffer and heated in a 

microwave oven to dissolve the agarose. The molten gel was allowed to cool to 

approximately 60°C then poured into a casting tray and left to set. The gel was run in a gel 

tank in 0.5X TBE buffer at 100-200 V. For loading, the samples were mixed with a one- 

fifth volume of gel loading buffer. DNA molecular weight standards, usually 100 bp 

ladder and ^Hindlll, were run alongside the samples. To visualise the nucleic acids, 

ethidium bromide (0.5 pg/ml) was added to the molten gel, then after electrophoresis the 

gel was examined under UV transillumination, using the BioRad Gel Doc 1000 gel 

documentation system and Molecular Analyst software. This system also enables gel 

photography.
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2.2.2.7 Polyacrylamide gel electrophoresis (PAGE)

During SAGE, the PCR products and ditags were isolated by 12% PAGE and the ligated 

concatemers were separated by 8% PAGE. 12% PAGE used 14 ml of 40% polyacrylamide 

(19:1 acrylamide:bis) and 31.3 ml dH20. 8% PAGE required 9.3 ml of 40%

Polyacrylamide (37.5:1 acrylamide:bis) and 36 ml dH20. To either mix, 930 pi 50X Tris 

Acetate Buffer, 470 pi 10% APS and 30 pi TEMED were added. The mixture was poured 

into the vertical gel apparatus and left to polymerise for 30 min. The gel was run in IX 

TAE Buffer at 130-160 V for 2-3 hr, as described in the text. After electrophoresis, the gel 

was stained with SYBR® Green I, in 150 ml of a 1:10,000 dilution of the stock solution in a 

light-resistant container at RT for 30 min. The gel was visualized with UV 

transillumination, using the BioRad Gel Doc 1000 gel documentation system and 

Molecular Analyst software.

2.2.2.8 Polymerase chain reaction

Except where otherwise specified, most PCR amplifications were performed using 

Qiagen’s Taq PCR core kit as follows. Each 100 pi reaction volume contained: 60.5 pi 

dH20 , 10 pi 10X Qiagen PCR buffer, 5 pi 25 mM MgCl2, 20 pi 5X Q-Solution, 2 pi 

lOmM dNTPs, 0.5 pi of each of two oligonucleotide primers, 0.5 pi Taq DNA Polymerase 

and 1 pi input DNA. Where necessary, the volumes were scaled downwards. PCR was 

performed using a hot-lid or with a drop of oil covering the surface of the reaction mix. 

The most commonly used PCR machines were Hybaid’s Touchdown and Omnigene 

Thermal Cyclers with hot-lids. The cycling parameters were: 94.5°C for 1.5 min; 30 

cycles of 94.5°C for 30 s, 52°C for 1 min and 72°C for 1 min; then 72°C for 5 min. 

Occasional changes to the annealing temperature or concentration of magnesium ions were 

required for optimal results. Where problems arose in getting the PCR to work initially or 

in obtaining specificity, Qiagen’s HotStarTaq™ DNA Polymerase Kit was used. Stategies 

used to prevent cross-contamination included treatment of PCR equipment with Ambion’s 

DNAZap™ PCR DNA Degradation Solution, or with UV light in the UV Stratalinker 

2400; and treatment of PCR solution components with UV light.

For SAGE, the oligonucleotide primers used were as described in the Johns 

Hopkins’ protocol (Section 2.1.8.1). For RT-PCR, the primers were designed personally 

using the down-loaded cDNA/mRNA sequences of the candidate genes and Vector NTI or 

PrimerDesign in DNAStar software (Section 2.1.8.2).
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2.2.2.9 Quantitation of RNA or DNA concentration

DNA was quantified by spectrophotometric determination of its UV light absorbency. An 

aliquot of the sample, or a dilution of it in dH20 , was placed in a capillary tube and its 

absorption measured at the ultraviolet light wavelengths of 260 nm and 280 nm in a quartz 

cuvette, using dH20  as a blank. The concentration of nucleic acid in pg/ml was therefore 

calculated by multiplying the A260 x dilution factor x 40 (for RNA) or 50 (for DNA). 

Nucleic acid purity was assessed using the ratio of A260/A280 readings which should fall 

between 1.8 and 2.0. The GeneQuant RNA/DNA Calculator Spectrophotometer which 

was used in fact directly displayed the DNA and RNA absorbances and concentrations plus 

the A260/A280 ratios.

2.2.2.10 Sequencing

The DNA to be sequenced was made up to a volume of 5 pi (30-90 ng PCR product DNA, 

300-600 ng BAC DNA) and mixed with 1 pi sequencing primer (approximately 3.2 

pmoles) and 4 pi reaction pre-mix from the ABI PRISM® BigDye™ Terminator Cycle 

Sequencing Ready Reaction Kit.. PCR was performed on the PTC-100™ Programmable 

Thermal Controller. The cycling parameters were: preheat to 96°C; 25 cycles of 96°C for 

10 s, 50°C for 5 s and 60°C for 4 min; then hold at 4°C. The samples were then ethanol 

precipitated, basically according to the previous protocol, but with precipitation and 

centrifugation at RT, to minimise precipitation of labelled free nucleotides which impair 

the sequencing gel electrophoresis.

The remainder of the sequencing was kindly performed by the local Beatson 

Laboratories sequencing service staff, headed by Robert McFarlane. The samples were 

resuspended in loading buffer, heated and quickly chilled, loaded onto the gel and run 

overnight on an ABI Prism Automated Sequencer (Models 373 and 377).

2.2.3 Serial Analysis o f  Gene Expression (SAGE)

2.2.3.1 SAGE laboratory procedures

The SAGE method described is based on the protocols from Johns Hopkins University, 

versions lb, November 1995, and lc, September 1997. My own modifications are 

described as such in the text.

2.2.3.1.1 Preparation o f mRNA from cells or tissues

Total RNA was prepared using TRIzol® Reagent (Section 2.2.2.2). Polyadenylated 

(poly(A), messenger) RNA was purified from total RNA using Ambion’s Poly(A)Pure™
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Kit, according to manufacturer’s instructions. The Johns Hopkins protocol stipulated the 

need for 5 pg mRNA which is broadly equivalent to 500 pg total RNA, 500 mg tissue or 5 

x 107 cultured cells (technical notes, web-sites of Ambion and Qiagen). I used 500-1,000 

mg of tissue as starting material.

Total RNA was mixed with 0.1 volumes of 5 M NaCl and transferred to a 15 ml 

conical tube. Binding Buffer was added to raise the volume to 4 ml. The RNA was heated 

at 65°C for 5 min then quickly chilled on ice for 1 min. One vial of Oligo(dT) Cellulose 

was added and mixed then incubated at RT for 60 min with gentle rocking to enable the 

poly(A) mRNA to bind. The cellulose was pelleted by centrifugation at 4,000 rpm in the 

table-top Beckman GS-6R centrifuge at RT for 3 min. The supernatant was discarded. 

Through serial incubations and centrifugations, the Oligo(dT) Cellulose was washed three 

times with 10 ml Binding Buffer and three times with Wash Buffer. The Oligo(dT) 

Cellulose was transferred to a filter spin column in a 2 ml tube where it was washed three 

times with 0.5 ml Wash Buffer with intervening spins in a microcentrifuge at 4,000 rpm. 

The mRNA was eluted with two aliquots of 200 pi Elution Buffer, pre-warmed to 70°C. 

The 400 pi flow-through, containing the mRN A, was ethanol precipitated and resuspended 

in 10 pi LoTE.

During the initial set up of SAGE, many alternative strategies for preparing mRNA 

were tested (Section 3.1.2.1) but the method described was preferred.

2.2.3.1.2 cDNA synthesis

Double-stranded cDNA was prepared using Invitrogen’s cDNA Synthesis System, 

according to manufacturer’s instructions. For first strand synthesis, the 10 pi of mRNA 

was mixed with 10 pi 5X First Strand Buffer, 2.5 pi 10 mM dNTP mix, 5 pi 0.1 M 

dithiothreitol (DTT), 7.5 pi (2.5 pg) of the separately purchased biotinylated oligo dT 

(instead of that supplied with the kit), 12.5 pi dH20  and 2.5 pi Moloney Murine 

Leukaemia Virus (M-MLV) reverse transcriptase then incubated at 37°C for 1 h.

For second strand synthesis, 289.5 pi dH20 , 7.5 pi 10 mM dNTP mix, 40 pi 10X 

Second Strand Buffer, 10 pi E. coli DNA Polymerase I, 1.75 pi E. coli RNase H and 1.25 

pi E. coli DNA Ligase were added directly to the first strand reaction and incubated at 

16°C for 2 h. The DNA was phenol/chloroform (P/C) extracted, ethanol precipitated and 

resuspended in 20 pi LoTE.

In initial experiments, a radioactive 32P tracer was used in aliquots of the first and 

second strand reaction mixes to determine the yield of cDNA by precipitation with 

trichloroacetic acid (TCA), then scintillation counting, according to manufacturer’s 

instructions. Since the yields were appropriate, this tracer step was discontinued.
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2.2.3.1.3 Cleavage o f biotinylated cDNA with anchoring enzyme N la lll to create CATG 

sticky-end

10 pi (half) of the biotinylated cDNA was mixed with 74 pi LoTE, 10 j l i I  10X NEBuffer 4, 

1 jul 100X BSA and 5 j l i I  Nla III and incubated at 37°C for 1 h, then P/C extracted, ethanol 

precipitated and resuspended in 20 pi LoTE.

2.2.3.1.4 Binding o f biotinylated cDNA to magnetic beads

100 pi Streptavidin Dynabead slurry was added to each of two 1.5 ml microcentrifuge 

tubes. The beads were immobilised with the Dynal magnet and the supernatant removed. 

The beads were washed with 200 pi IX B+W buffer. 100 pi 2X B+W buffer, 90 pi dH20  

and 10 pi cleaved biotinylated cDNA were added to both tubes which were incubated with 

gentle mixing at RT for 15 min. The beads were then washed three times with 200 pi IX 

B+W buffer and once with 200 pi LoTE.

2.2.3.1.5 Ligating CATG sticky-ended linkers (kinased and annealed in advance) to 

bound cDNA

The linker oligonucleotides were enzymatically kinased and annealed in advance. Two 

tubes were set up, one each for linker pairs 1 and 2. 9 pi of Linker B (either IB or 2B) was 

mixed with 8 pi LoTE, 2 pi 10X Ligase Buffer (which contains ATP and in which the 

Kinase enzyme has 100% activity) and 1 pi T4 Polynucleotide Kinase. The reactions were 

incubated at 37°C for 30 min then heat inactivated at 65°C for 10 min. 9 pi Linker 1A was 

added to kinased Linker IB, and similarly for Linkers 2. The linkers were annealed by 

heating to 95°C for 2 min, then allowing to cool to RT over 15 min.

One of the two tubes containing washed magnetic beads was used for linker 1 and 

the other for linker 2. The beads were immobilised and the LoTE removed. 29 pi LoTE, 5 

pi annealed linker 1 or 2, and 4 pi 10X Ligase Buffer were added to each tube, mixed, 

heated at 50°C for 2 min then allowed to cool to RT over 15 min. 2 pi T4 DNA Ligase 

was added and the reaction incubated at 16°C for 2 h with intermittent gentle mixing. 

After ligation, the beads were washed four times with 200 pi IX B+W buffer, and twice 

with 200 pi IX NEBuffer 4.

2.2.3.1.6 Creation o f cDNA tags and their release from magnetic beads using tagging 

enzyme BsmF I

The buffer was removed from the beads. 87 pi LoTE, 10 pi 10X NEBuffer 4 and 1 pi 

100X BSA were added. The tubes; were pre-incubated at 65°C for 2 min then 2 pi BsmF I
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was added and incubated at 65°C for 1 h with intermittent gentle mixing. The beads were 

immobilised and, this time, the supernatants were collected and transferred to two new 

tubes. The beads were washed with 100 pi IX NEBuffer 4 which was then added to the 

previous supernatants. The beads were discarded. The supernatants were P/C extracted, 

ethanol precipitated and resuspended in 10 pi LoTE.

2.2.3.1.7 Blunt-ending BsmF I-created sticky-ends o f  released cDNA tags

To each of the two tubes (from Linkers 1 and 2) containing released cDNA tags, 31 pi 

dH20 , 5 pi 10X EcoPol Buffer, 0.5 pi 100X BSA, 2.5 pi 10 mM dNTPs and 1 pi DNA 

Polymerase I Large Fragment (Klenow) were added. The reactions were incubated at 37°C 

for 30 min, then pooled in one tube, P/C extracted, ethanol precipitated and resuspended in 

12 pi LoTE.

2.2.3.1.8 Ligating blunt-ended tags to form 102 bp ditags

Two 0.2 ml tubes were set up, of which one was for the ditag ligation reaction. The other 

was a negative ligation control and was set up first with the purpose of excluding or 

identifying cross-contamination at the next, PCR, step. To both tubes, 4 pi blunt-ended 

tags, 0.8 pi dH20  and 0.6 pi 10X Ligase Buffer were added. 0.6 pi dH20  was added to the 

negative control tube. Then 0.6 pi T4 DNA Ligase was added to the ditag reaction. The 

reaction mixes were covered with a drop of mineral oil to prevent evaporation of the small 

reaction volume and incubated at 16°C overnight.

2.2.3.1.9 PCR amplification o f 102 bp ditags

This PCR step aims to produce sufficient 102 bp ditag DNA for subsequent isolation and 

concatemerisation of 26 bp ditags, but itself was often problematic.

After overnight incubation, 14 pi LoTE was added to the ligation reaction and 

mixed. 1 pi of this mixture was removed and diluted 100-fold with LoTE. 1 pi of this 

dilution was then used in a 50 or 100 pi PCR reaction with SAGE Primers 1 and 2. To 

prevent PCR cross-contamination, the two negative control reactions (no template and no 

ligase) were set up first.

The original Johns Hopkins protocol described 50 pi PCR reactions containing:

30.5 pi dH20 , 5 pi 10X SAGE PCR buffer, 3 pi DMSO, 7.5 pi lOmM dNTPs, 1 pi of each 

of SAGE Primers 1 and 2, and 1 pi P l a t i n u m ® Taq DNA Polymerase. The cycling 

parameters, optimized for a Hybaid thermal cycler, were: 94°C for 1 min; 26-30 cycles of 

94°C for 30 s, 55°C for 1 min and 70°C for 1 min; then 70°C for 5 min. The PCR



reactions required to be optimised with different template dilutions (1/50, 1/100 or 1/200 

per reaction).

I found that the Johns Hopkins PCR conditions were not robust (Section 3.1.2.2). 

My own modification used Qiagen’s HotStarTaq™ DNA Polymerase Kit, according to 

manufacturer’s instructions, which routinely worked well with 1 pi, or often less, of the 

1/100 dilution with no need for further adjustment of template dilution. Each 100 pi 

reaction contained: 60.5 pi dH20 , 10 pi 1 OX Qiagen PCR buffer, 5 pi 25 mM MgCl2, 20 pi 

5X Q-Solution, 2 pi lOmM dNTPs, 0.5 pi of each of SAGE Primers 1 and 2, and 0.5 pi 

HotStarTaq™ DNA Polymerase. The cycling parameters were: 94.5°C for 15 min; 26-30 

cycles of 94.5°C for 30 s, 56°C for 1 min and 72°C for 1 min; then 72°C for 5 min.

The Johns Hopkins protocol recommended optimisation of the cycle numbers, 

between 26 and 30. I found that 29 cycles usually produced good results. More than 30 

cycles resulted in high molecular weight smearing with less of the desired product, as 

found previously (Bell et al. 1991).

After PCR, 10 pi of each reaction was loaded on a 12% polyacrylamide gel with a 

DNA ladder (Life Technology’s 10 bp ladder or Roche’s DNA Molecular Weight Markers 

V and VIII). The gel was run at 160 V for 2.5 hr then stained and examined (Section 

2.1.10). The amplified ditags should produce a 102 bp band. Background bands are 

common: the brightest runs at 80 bp and contains amplified ligated linkers without tags. 

The negative controls should contain no product.

After optimisation, large-scale PCR was performed by preparing then distributing a 

master-mix into three 96-well PCR plates with 100 pi per well. After PCR, the reactions 

were pooled into 50 ml conical tubes, then P/C extracted, ethanol precipitated and 

resuspended in a total of 250 pi LoTE.

2.2.3.1.10Isolation o f  102 bp ditags by gel-purification

The pooled PCR products were loaded on three 12% polyacrylamide gels which were run 

and stained as before. The 102 bp band of amplified ditags was cut out. The pieces of gel 

were fragmented using 0.5 ml microcentrifuge tubes which were pierced through their base 

with a needle then inserted into a 2.0 ml tube. Three tubes were used per gel. The excised 

gel bands were placed in the 0.5 ml tubes and spun at full speed for 2 min. The DNA was 

eluted from the gel fragments by adding 250 pi LoTE and 50 pi 10 M ammonium acetate 

to each 2.0 ml tube. The tubes were vortexed then incubated at 65°C for 2 h. The contents 

of each tube was transferred to two Spin-X filter microcentrifuge tubes which were spun at 

full speed for 5 min. The eluted 102 bp ditag DNA was pooled, ethanol precipitated and 

resuspended in a total of 100 pi LoTE.
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2.2.3.1.11 Isolation o f 26 bp ditags by N la lll digestion and gel-purification

To the pooled PCR products, 58 pi LoTE, 20 pi 10X NEBuffer 4, 2 pi 100X BSA and 20 

pi Nla III were added. The reaction was incubated at 37°C for 1 h, then P/C extracted, 

ethanol precipitated and resuspended in 15 pi LoTE. The DNA was loaded on two lanes of 

a 12% polyacrylamide gel which was run at 130 V for 2.5 hr then stained. The ditag band 

running at 22-26 bp was excised and eluted as before, this time incubating at 37°C not 

65°C. The 26 bp ditag DNA was ethanol precipitated and resuspended in 6.4 pi LoTE.

2.2.3.1.12 Ligation o f sticky-ended 26 bp ditags to form concatemers then gel- 

purification o f concatemers

To the purified ditags, 0.8 pi 10X Ligase buffer and 0.8 pi T4 DNA Ligase were added and 

incubated at 16°C overnight. Loading buffer was added directly to the ligation reaction 

which was loaded in one lane of an 8% polyacrylamide gel with a 100 bp ladder. The gel 

was run at 130 V for 3 hr then stained. The DNA smear over 500 bp in size was cut out 

and eluted as before, this time incubating at 65°C. The concatemer DNA was ethanol 

precipitated and resuspended in 6 pi LoTE.

During the initial set up of SAGE, different conditions for the ligation reaction and 

alternative strategies for isolating the longer concatemers were tested but the (original 

Johns Hopkins) method described proved to be as good as any others.

2.2.3.1.13 Cloning concatemers

The concatemers were cloned using the Zero Background™ Cloning Kit. The pZErO®-l 

vector in this kit contains a lethal gene which is disrupted by DNA insertion, so that only 

positive recombinants should grow (this is the theory, but in practice some colonies did 

lack inserts). To linearise the vector, 1 pi pZErO®-l (1 pg/pl) was mixed with 7 pi dH20 ,

1 pi NEBuffer 2 and 1 pi Sph I. The restriction enzyme digest was incubated at 37°C for 

30 min. The vector DNA was P/C extracted and ethanol precipitated then resuspended in 

30 pi LoTE. 1 pi Sph I-linearised pZErO® was mixed with the 6 pi of purified 

concatemers, 1 pi 1 OX Ligase buffer and 1 pi T4 DNA Ligase, then incubated at 16°C for

2 hr. Two control reactions were also set up: a no insert control, omitting concatemers; and 

a no ligase control, omitting both concatemers and ligase. The reactions were P/C 

extracted, ethanol precipitated and resuspended in 3 pi LoTE.

Before transformation, Low Salt LB agar plates containing 50 pg/ml Zeocin and 1 

mM IPTG were prepared, according to manufacturer’s instructions. Usually 1.5 litres of 

medium were made up and poured into around 30 plates of 140 mm diameter. 1 pi of the
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three ligation and control reactions was placed in 0.5 ml microcentrifuges tube and chilled 

on wet ice, along with the electroporation cuvettes. One vial of E l e c t r o M A X ™  

DH10B™ E. coli Cells was thawed on wet ice, then mixed by tapping gently. Taking one 

sample at a time, 20 pi of cells was added to the chilled 1 pi reaction, mixed gently, then 

transferred to a chilled electroporation cuvette. The cuvette was placed in the chamber of 

the Cell Shock Electroporator and the electrical pulse discharged. The cuvette was 

removed and 1 ml SOC medium at RT was immediately added and the mixture transferred 

to a 14 ml Falcon snap-cap round-bottomed tube. This procedure was repeated for all 

ligation or control reactions. The tubes were incubated with shaking at 225 rpm at 37°C 

for 60 min.

The cultures were then diluted with 2 ml SOC medium. The transformation mix 

was spread onto the Low Salt LB-Zeocin plates at 100 pi per plate. All of the test sample 

was plated but only one plate was used for each of the control reactions. The liquid was 

left to absorb then the plates were inverted and incubated at 37°C overnight. The plates 

were then removed from the incubator and examined. Zeocin-resistant transformants were 

picked for further analysis. All plates were stored at 4°C, until the inserts had been 

checked, for later use in large-scale sequencing.

With the Zero Background™ Cloning Kit, although in theory only positive 

recombinant colonies should grow, in practice many experiments resulted in either all or a 

majority of colonies lacking inserts. I therefore used similar methods to those desribed 

above with an alternative vector, pGEMR-3Zf(+) from ABI PRISM® BigDye™ Terminator 

Cycle Sequencing Ready Reaction Kit. This vector uses ampicillin-resistance and 

IPTG/X-Gal blue-white selection but the results overall were similar (see Section 

3.1.2.4.3).

2.2.3.1.14 Screening o f transformants by PCR to identify long concatemer inserts 

The Zeocin-resistant transformants were then used in a PCR reaction with vector-specific 

primers to determine the size of the DNA insert size in each bacterial colony. Initially 0.5 

ml tubes were used but, for later large-scale screening, 96-well PCR plates were more 

efficient. The initial 25 pi reaction volume was later reduced to 16 pi.

The original Johns Hopkins protocol described 25 pi PCR reactions containing: 2.5 

pi 10X SAGE PCR buffer; 1.25 pi DMSO; 1.25 pi lOmM dNTPs; 0.5 pi of each of M13 

Forward and Reverse Primers; 19 pi dH20 ; and 0.2 pi P l a t i n u m ® Taq DNA Polymerase. 

The cycling parameters were: 95°C for 2 min; 25 cycles of 95°C for 30 s, 56°C for 1 min 

and 70°C for 30 s; then 70°C for 5 min.
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However, I found that the Johns Hopkins PCR conditions were not robust and 

instead used Qiagen’s Taq PCR core kit. Each 100 pi reaction volume contained: 61.5 pi 

dH20 , 10 pi 10X Qiagen PCR buffer, 5 pi 25 mM MgCl2, 20 pi 5X Q-Solution, 2 pi 

lOmM dNTPs, 0.5 pi of each of Ml 3 Forward and Reverse Primers, and 0.5 pi Taq DNA 

Polymerase. In fact, the reaction volume was usually 16 pi. The cycling parameters were: 

94.5°C for 1.5 min; 30 cycles of 94.5°C for 30 s, 52°C for 1 min and 72°C for 1 min; then 

72°C for 5 min.

Each colony was touched with a new pipette tip which was then dipped into the 

reaction mix and shaken. This was repeated as necessary then PCR performed. 5 pi of 

each reaction was run on a 2% agarose gel with a 100 bp ladder.

2.2.3.1.15 Sequencing o f SAGE concatemer inserts

PCR products of 500 bp in size or over were selected for sequencing, since these should 

contain at least 15 tags (226 bp of flanking pZErO®-l vector plus 12-13 bp per tag). 

Before sequencing, the PCR product was purified, partly to remove the primers, since M l3 

Forward was used again in the sequencing PCR reaction. Individual P/C extraction and 

ethanol (or isopropanol) precipitation was one option and indeed was used in the original 

Johns Hopkins protocol. However, Qiagen’s QIAquick® PCR Purification Kits were more 

efficient for large-scale work, for which I used the QIAquick® 8 PCR Purification Kit 

along with the QIAvac 6S (Section 2.2.2.5).

The PCR products were then sequenced using the BigDye Kit and M l3 Forward 

Primer with one-half to one-tenth of the purified PCR product per sequencing reaction, as 

previously described (Section 2.2.2.10).

2.2.3.2 SAGE bioinformatics

2.2.3.2.1 Analysis o f SAGE sequence files

Within the concatemer sequences, the linked ditags of approximately 26 bp are separated 

by CATG, which is the recognition site of Nla III. The Johns Hopkins’ SAGE software 

uses the CATG sequence to identify and extract the ditags which are then halved into 

individual tags. The software then quantifies the number of times the tag occurs within a 

given population of clone inserts and creates a report of the abundance of each tag. The 

report can be linked to gene databases for identification of the gene(s) corresponding to the 

tags and can also be used to compare different SAGE libraries.

The Johns Hopkins’ SAGE software was down-loaded, installed and used 

according to the instructions provided, in combination with NCBI’s Genbank® databases, 

and Microsoft® Access and Excel. Within the SAGE software, a new SAGE project was
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first created which assembled the database files necessary to keep track of SAGE project 

data and which recorded information such as the Anchoring Enzyme and tag length. 

Before allowing the computer to analyze the SAGE data, a few sequences were checked by 

eye to ensure that they gave the expected intermittent CATG pattern. The sequence data of 

clones containing concatenated SAGE DiTags was then entered. The SAGE software 

extracted tag data from the sequence files and added them to the opened project. After 

checking for duplicate DiTags, individual tags were identified, assigned a Tag Number, 

and recorded. Then, using the Report command, a list of tags sorted by their frequencies 

could be generated. Certain tags, such as those derived from the oligonucleotide linkers, 

were usually excluded from this analysis (see Section 3.1.3 for further details).

The SAGE report is usually saved, as well as in text file format, as an MS Access 

database file, which allows more complex analysis and searching of the SAGE data.

Potential matching transcripts are identified by linking the report to a SAGE Gene 

Database. The Genbank genetic databases were downloaded by anonymous File Transfer 

Protocol (FTP) from SEQNET (the UK academic communities SEQuence NET work 

computer for molecular biologists, at HGMP Resource Centre, Cambridge). Since the 

Genbank databases are updated every two months, they were downloaded at these intervals 

and used to build new databases each time. They were then converted to the appropriate 

format on a local unix drive and entered into SAGE program gene databases (see Section

3.1.3 for further details). In addition, the National Center for Biotechnology Information 

(NCBI)’s on-line bioinformatics tools, SAGEmap and Unigene were extremely useful for 

further analysis of transcripts (Lai et al. 1999; Wheeler et al. 2001).

2.2.3.2.2 Comparison o f  SA GE libraries

Other functions within the SAGE program enable the comparison of multiple SAGE 

projects and generates an incidence sorted list of the tags present in currently opened 

projects. Statistical analysis is possible, with Significance Calculation which calculates the 

relative likelihood that a difference would be seen by chance. Performing similar analysis 

on an entire project the expected differences can be modelled and used to convert relative 

likelihoods to approximate absolute likelihoods.

To identify genes differentially expressed between gastric carcinoma and normal 

stomach, the libraries were therefore compared using SAGE software and Microsoft™ 

Access and Excel programs. Differential expression has been defined in previous SAGE 

studies by various criteria, including: three-fold, five-fold or ten-fold differences in tag 

ratio; p-values below 0.05, 0.01 or 0.001; and combinations thereof (Velculescu et al. 

1995; Zhang, L. et al. 1997; Hibi et al. 1998; Lai et al. 1999; Nacht et al. 1999; Velculescu
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et al. 1999; Hough et al. 2000; Waghray et al. 2001). The definition used here was a 

difference of five-fold or more combined with a p-value of 0.01 or less.

Genes expressed specifically in the stomach were identified by digital comparison 

with other glandular epithelial and mesothelial tissues. One normal and one tumor SAGE 

library from each of breast, colon, ovary, pancreas, prostate and mesothelium were down­

loaded from the SAGEmap web-site (see Section 2.1.13.3) (Lai et al. 1999). Normal 

stomach was compared pair-wise with the normal libraries, and the pooled gastric 

carcinomas were compared with the tumors. The criteria for significance were those 

defined in the last paragraph. Genes which appeared to be expressed specifically in the 

stomach on the basis of these six comparisons were then checked on-line against the many 

other normal and tumor libraries in SAGEmap (Lai et a l 1999; Wheeler et a l 2001).

2.2.4 Validation o f  gastric SA GE results

To validate and expand the SAGE profiles, selected transcripts were studied in a wider 

panel of 19 gastro-intestinal tumour and normal tissues and cell lines. Where the genes had 

been minimally characterised in the stomach, the method of choice was Northern blotting 

for mRNA. Prior to Northern hybridisation, reverse-transcription polymerase chain 

reaction (RT-PCR) was performed, to confirm the initial SAGE tag-to-gene transcript 

match and to provide a probe template for radio-labelling by PCR.

2.2.4.1 Reverse-transcription polymerase chain reaction (RT-PCR)

For RT-PCR, first strand cDNA synthesis was performed using Invitrogen’s Superscript II 

Reverse Transcriptase, plus components supplied with this enzyme. 1 pg total RNA was 

added to 1 pi oligo(dT)12_]8 (500 pg/ml) and dH20  to a total volume of 12 pi. The mixture 

was heated to 70°C for 10 min then quickly chilled on ice. 4 pi 5X first strand buffer, 2 pi 

0.1M DTT and 1 pi 10 mM dNTPs were added to the tube and incubated at 42°C for 2 

min. 1 pi (200 U) Superscript II RNase H' Reverse Transcriptase was then added and 

incubated at 42°C for 50 min. The reaction was stopped by heating at 70°C for 15 min. In 

order to remove RNA complementary to the cDNA, 1 pi (2 U) E coli RNase H' was added 

and incubated at 37°C for 20 min.

The cDNA was then diluted to a total volume of 100 pi and used as a template for 

amplification in PCR, as described in section 2.2.2.8. The starting volume for PCR was 

1% of this first strand reaction, but up to 10% was used where amplification proved more 

difficult to attain. As before, complementary single-stranded oligonucleotide primers were 

designed using appropriate software (see Section 2.2.2.8 and Table 2.2). The presence and
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size of the expected PCR product was confirmed by agarose gel electrophoresis (see 

Section 2.2.2.6). If the DNA fragment appeared appropriate, it was then purified using a 

Qiagen column (Section 2.2.2.5) and sequenced using the original PCR primers 

individually (Section 2.2.2.10), to confirm the identity of the sequence. Thereafter the 

fragments could be used as templates for probes for Northern hybridisation (Section

2.2.4.2.2) or for cloning (Section 2.2.5.2).

2.2.4.2 Northern blotting

2.2.4.2.1 Preparation o f own Northern blot

Northern blotting is a technique which identifies mRNA species that have been size- 

fractionated by gel electrophoresis. Northern blotting was performed using Ambion’s 

NorthemMax™ Kit, according to manufacturer’s instructions. A 1% denaturing agarose 

gel was prepared with the formaldehyde-containing Denaturing Gel Buffer and poured in a 

15x15 cm casting tray to a thickness of 6 mm. 30 pg total RNA, in a 10 pi volume, was 

mixed with 3 volumes Formaldehyde Load Dye containing 10 pg/ml ethidium bromide.

The samples were from 19 gastro-intestinal tumour and normal tissues and cell 

lines, including the three SAGE samples (Sections 2.1.5.1 and 2.1.5.3, and Table 4.3). The 

total RNA was incubated at 65°C for 15 min, chilled quickly on ice and loaded on the gel, 

along with an RNA molecular weight marker. The gel was run in IX MOPS Gel Running 

Buffer at 130V until the bromophenol blue dye front was close to the bottom of the gel. 

The gel was wrapped in plastic wrap, examined with UV light and photographed. The 

blotting stack of paper towels and 3MM blotting paper was overlaid with a wet BrightStar- 

Plus Membrane. The gel was positioned on top of the membrane then covered with a filter 

paper bridge extending into the Transfer Buffer reservoir and with the weighted gel casting 

tray. Downward transfer was for 90 min. The membrane was exposed to UV light to 

crosslink the RNA.

2.2.4.2.2 Preparation o f DNA probe

DNA probes for the Northern blot were generated by linear amplification of the appropriate 

PCR product using Ambion’s Strip-EZ™ PCR Probe Synthesis and Removal Kit. 

Ambion’s Strip-EZ technology involves synthesizing a Strip Able™ probe that is stable 

under the conditions used for hybridization and washing, but which is cleaved by a reagent 

in the Probe Degradation Buffer supplied with the kit. Degradation is specific to the probe, 

because cleavage occurs at a modified nucleotide that is incorporated during probe 

synthesis. The use of harsh stripping protocols is thus avoided and thus (in theory) the 

lifespan and consistency of the precious blots is increased.
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The reaction components (all from the kit) were assembled on ice. 2 pi of each of 

the 10X PCR buffer, 10X dNTP solution and the antisense primer (10 pM stock) were 

mixed with 10 ng of the spin-column-purified PCR product. The volume was made up 

with dH20  to 17 pi. Then 2 pi [a32P]dATP and 1 U of Taq DNA Polymerase were added. 

The StripAble™ Probe was labelled by linear PCR amplification using a Thermo Hybaid 

Thermal Cycler. The cycling parameters were: preheated to 94.5°C; 30 cycles of 94.5°C 

for 30 s, 50°C for 1 min and 72°C for 1 min; then 4°C.

Probes were generated and used for: gastrin; the new gene CA11 (foveolin); 

prostate stem cell antigen (PSCA); lipocalin 2 (neutrophil gelatinase-associated lipocalin); 

intestinal trefoil factor (TFF3); prothymosin alpha; thymosin beta 10; and Idl (inhibitor of 

differentiation 1). As a loading control, actin was used, generated from a purchased 

template.

2.2.4.2.3 Hybridisation o f probe an d visualisation

The ULTRAhyb™ prehybridisation/hybridization solution was preheated to 68°C. 10 ml 

ULTRAhyb was used per 100 cm2 of membrane (25 ml for one 15x15 cm BrightStar Plus 

membrane). The Northern blot was prehybridized in a hybridisation tube in a roller oven at 

42°C for at least 30 min. All of the radiolabelled probe was mixed with 1 ml of preheated 

ULTRAhyb™ then transferred immediately to the container with the prehybridized blot 

and mixed well. Hybridisation was performed overnight. After the incubation, the 

radioactive ULTRAhyb was disposed of appropriately.

The blot was then washed, using 20 ml wash solution per 100 cm2 membrane for all 

washing steps, with agitation. The first two washes were with Low Stringency Wash 

Solution #1 (2X SSC, 0.1% SDS), each at RT for 5 min. The next two washes were with 

High Stringency Wash Solution #2 (0.1X SSC, 0.1% SDS), each at 42°C for 15 min. The 

blot was wrapped in plastic film to prevent drying. The blot was then visualized directly 

using a phosphoimager with the BioRad Gel Doc 1000 gel documentation system and 

Molecular Analyst software.

2.2.4.2.4 Stripping probe from the blot

For probes labeled using Ambion’s Strip-EZ™ PCR Probe Synthesis kit, stripping was 

performed according to manufacturer’s instructions. The blot was washed in IX Probe 

Degradation Buffer at RT for 2 min then at 68°C for 10 min. The blot was then washed in 

IX Blot Reconstitution Buffer at 68°C for 10 min. The blot was checked for residual 

probe by monitoring with a Geiger counter then stored wrapped in plastic film at -20°C.
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2.2.4.3 Immunohistochemistry (IHC)

Immunohistochemistry was kindly performed by Iain Downie in the University 

Department of Pathology using the standard avidin-biotin complex technique. The 

formalin-fixed and paraffin-embedded tissue or cell sections were dewaxed in xylene and 

rehydrated through intermediate alcohols. The samples used were the same as for the 

Northern blot (see Section 2.1.5.1). Endogenous peroxidase was removed by immersing in 

0.3% hydrogen peroxide for 10 min, then the slides were washed in water for 5 min. 

Endogenous biotin was blocked using avidin and biotin from the VECTASTAIN Universal 

Elite ABC-Peroxidase Kit kit.

The primary antibodies used were gastrin, lysozyme, MUC5AC, pS2, human 

spasmolytic polypeptide and cytokeratin 8. Where the supplier recommended antigen 

retrieval, this was performed with either: 0.1% trypsin / 0.1% calcium chloride at 37°C for 

10 min; or pressure cooker microwaving in 1 mM EDTA pH 8.0, for 5 min at full pressure 

followed by 20 min cooling down. The sections were incubated in normal horse serum 

blocker for 15 min, followed by incubation with the primary antibody for 30 min at RT. 

Detection was by a universal rabbit/mouse biotinylated secondary and then by the avidin- 

biotin complex (VECTASTAIN Kit), according to instructions. Visualisation with 3,3- 

diaminobenzidine was enhanced in 0.5% copper sulphate. Negative controls were treated 

as per test sections but with normal horse serum instead of primary antibody.

2.2.5 Further investigation o f new gastric gene

The new gastric gene, called CA11 or foveolin, was further characterised at the mRNA and 

DNA levels in human, mouse and other species. First in silico investigation on-line and 

using local software identified likely transcripts. At the mRNA level, the expression 

profile of the gene was evaluated in a range of tissues by Northern blotting and in situ 

hybridisation, using the cloned full-length cDNA fragment as a probe. The mRNA 

transcript in the human and mouse was structurally investigated by rapid amplification of 

cDNA ends (RACE). A human genomic clone was identified and used to map the gene to 

human chromosome 2. The genomic sequence for both the human and mouse was then 

obtained on-line. The DNA, mRNA and predicted proteins for the different species were 

analysed on-line and compared using local software.

2.2.5.1 Analysis of EST and mRNA/cDNA sequences for the new gastric gene

Sequences corresponding to the new gastric gene, foveolin, in the human, as well as in the 

mouse, rat and cow, were investigated in depth. Local analysis was performed using either
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the DNASTAR suite of programs, especially EditSeq and SeqMan, or Vector NTI 

software. On-line analysis involved mainly the NCBI websites, especially SAGEmap, 

UniGene and BLAST, plus the EBI websites (Section 2.1.13). The bioinformatics 

websites, procedures and programs used to investigate the new gastric gene are described 

in great detail in Chapter 5.1, in the context of the questions being addressed at each stage.

2.2.5.2 Cloning of RT-PCR product for use as a probe

TOPO TA Cloning® was kindly performed by Sharon Bums of 02. A 750 bp fragment 

corresponding to the full-length foveolin cDNA was ligated into the expression vector 

pCR®II-TOPO® vector using the TOPO TA Cloning® Kit, which provides a highly 

efficient, 5-min, one-step cloning strategy for the direct insertion of Taq polymerase- 

amplified PCR products into a plasmid vector. For chemically competent E. coli, 4 pi 

fresh PCR product was mixed with 1 pi salt solution and 1 pi pCR®II-TOPO® vector. The 

reaction was incubated at RT for 5 min then placed on ice. 2 pi of the cloning reaction was 

then used for bacterial transformation, according to manufacturer’s instmctions.

2.2.5.3 Plasmid DNA preparation

Plasmid DNA preparation was kindly performed by Sharon Bums of 02. The Qiagen 

plasmid midi/maxi kit and protocol were used. A single colony was picked from a plate 

and used to inoculate a starter culture of 2-5 ml LB medium containing selective antibiotic. 

The starter culture was incubated with shaking at 37°C for around 8 h. The starter culture 

was diluted into 500 ml selective LB medium and incubated with shaking at 37°C 

overnight. The bacterial cells were harvested by centrifuging at 6,000 rpm for 15 min at 

4°C. The bacterial pellet was resuspended in 10 ml of Buffer PI. 10 ml of Buffer P2 was 

added, mixed by inversion, and incubated at RT for 5 min. 10 ml of chilled Buffer P3 was 

added, mixed by inversion, and incubated on ice for 15 min. The mixture was centrifuged 

at 20,000 g for 30 min at 4°C. The supernatant, which contains the plasmid DNA, was 

removed and re-centrifuged. The supernatant was again removed.

A QIAGEN-tip 500 column was prepared by applying 10 ml Buffer QBT then 

allowing the column to empty by gravity flow. The supernatant was applied to the 

QIAGEN-tip column and left to enter the resin by gravity flow. The column was washed 

with 2 x 30 ml Buffer QC. The plasmid DNA was eluted with 15 ml Buffer QF then 

precipitated by adding 10.5 ml room-temperature isopropanol, mixing and centrifuging 

immediately at 20,000 x g for 30 min at 4°C. The supernatant was discarded. The DNA 

pellet was washed with 5 ml room-temperature 70% ethanol and centrifuged at 20,000 x g
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for 10 min. The supernatant was again discarded. The DNA pellet was air-dried for 10 

min then resuspended in TE buffer.

Thereafter the DNA plasmid preparation was restriction-enzyme digested with 

either Kpn I (antisense) or Not I (sense) to linearize the cDNA template and to avoid 

transcription of undesirable sequences. The template was then used to generate probes for 

Northern blotting, as before (Section 2.2.4.2.2), and for in situ hybridisation, as below 

(Section 2.2.5.4.1).

2.2.5.4 In situ hybridisation (ISH)

2.2.5.4.1 Preparation o f riboprobe

Two types of digoxigenin-labelled riboprobe (RNA probe) were generated for use in in situ 

hybridisation (ISH). The first, the antisense riboprobe, is complementary to the target 

foveolin mRNA and therefore hybridises to it; this serves as the positive control and test. 

The second, the sense probe, is identical to the target foveolin mRNA and therefore should 

not hybridise; this serves as a negative control.

A full-length foveolin cDNA template was generated within the expression vector 

pCRII-TOPO and linearised as described above (Section 2.2.5.3). Antisense or sense 

digoxigenin-UTP-labelled riboprobes were then generated by reverse-transcribing the 

cDNA fragment using either T7 (antisense) or Sp6 (sense) RNA polymerase. Reverse- 

transcription was performed using the Roche DIG RNA Labeling Kit according to 

manufacturer’s instructions. Briefly, 1 pi linearized template cDNA was mixed with 2 pi 

DIG/NTP mix containing RNA nucleotides and digoxigenin-11-uridine-5’-triphosphate 

(DIG-11-UTP), 2 pi 1 OX Transcription Buffer, 12 pi dH20 , 1 pi RNase inhibitor and 2 pi 

RNA polymerase, and incubated at 37°C for 4 h.

2.2.5.4.2 Hybridisation o f riboprobe and visualisation

In situ hybridisation was kindly performed by Rod Ferrier and Shariene Butler in the 

University Department of Pathology.

A wide range of normal human tissues and their corresponding tumours, principally 

adenocarcinomas and their originating glandular epithelia, were examined as detailed 

previously in Sections 2.1.5.1, 2.1.5.2 and 2.2.1.3. Animal stomach was also examined 

(Section 2.2.1.3). Formalin-fixed and paraffin-embedded tissue or cell sections were 

dewaxed in xylene and rehydrated through alcohols to phosphate buffered saline (PBS). 

The slides were immersed in 0.2 N HC1 then 0.3% Triton X 100 at RT for 15 min each on 

a shaker; after each step the slides were rinsed in PBS. The slides were incubated with
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Proteinase K solution (100 pg/ml) in a moist box at 37°C for 30 min then rinsed in PBS. 

The slides were incubated with pre-hybridisation solution at 37°C for 1 hr, then the excess 

was poured off. 20-40 pi hybridisation buffer containing labelled antisense probe, at a 

1:400 dilution, was dotted on coverslips and mounted on all slides except the negative 

control. The slides were placed in an Omnislide thermal cycler and allowed to hybridise 

overnight at 42°C.

On the second day, the slides were washed in 0.1X SSC at RT for 10 min, 0.1X 

SSC at 45°C for 30 min and 0.1X SSC at RT for 10 min. They were then rinsed in Dig. (1) 

Buffer at RT for 5 min. Anti-Digoxigenin-Alkaline Phosphatase conjugate in 1:2000 Dig. 

(1) Buffer and 10% Normal Swine Serum was applied to each section and incubated at RT 

for 2 h in a moist chamber. Excess antibody was washed off in Dig. (1) Buffer at RT for 

10 min then rinsed in Dig. (3) Buffer at RT for 5 min. Slides were immersed in NBT/BCIP 

solution, with levamisole added at 2mM, overnight in a dark cupboard at RT.

On the third day, slides were washed in water and counterstained lightly with 

haematoxylin. The alternative counterstain, Alcian Blue, was used in a few cases to 

visualise acidic mucins in goblet cells in true or metaplastic intestinal epithelium. 

Coverslips were mounted on slides with melted glycergel and allowed to harden.

Normal stomach was used for both positive (antisense riboprobe) and negative 

controls. A positive reaction is indicated by blue-black staining (see Figure 5.5). During 

the initial validation of the new foveolin probe for ISH, three types of negative controls 

were used: hybridisation with sense (negative) foveolin riboprobe; hybridisation with 

antisense (positive) probes for renin and albumin, which are not normally expressed in the 

stomach; and simple omission of probe, with hybridisation buffer alone. In the main study, 

each run included positive and negative controls to confirm that any positive signal was 

indeed that of target foveolin mRNA.

2.2.5.5 Rapid amplification of cDNA ends (RACE)

Rapid amplification of cDNA ends (RACE) is a common method used to analyse, 

separately, the 5’- and 3’-ends of mRNAs. The SMART™ RACE cDNA Amplification 

Kit was used to generate the 3’ and 5’ ends of the foveolin mRNA, according to the 

manufacturer’s instructions. The oligonucleotide primers were designed using Vector NTI 

in accordance with advice given in the kit, and are shown in Table 2.3.

For synthesis of first-strand cDNA for RACE, two 0.5 ml microcentifuge tubes 

were set up, one for the 5’ reaction and one for the 3’ reaction. To both tubes, 1 pg (3 pi) 

total RNA was added. To the 5* tube was added 1 pi 5'-CDS primer and 1 pi SMART IIA



100

oligo. To the 3’ tube was added 1 jxl 3'-CDS primer A and 1 pi dH20 . The reactions were 

incubated at 70°C for 2 min and cooled on ice for 2 min. The following was added to each 

reaction tube: 2 pi 5X First-Strand buffer, 1 pi DTT (20 mM), 1 pi dNTP Mix (10 mM) 

and 1 pi PowerScript Reverse Transcriptase. The contents were mixed and incubated at 

42°C for 1.5 hr. The first-strand reaction product was diluted with 100 pi Tricine-EDTA 

Buffer and heated at 72°C for 7 min.

For the Rapid Amplification of cDNA Ends (RACE) reaction, a PCR Master Mix 

was prepared containing the following reagents per 50 pi reaction: 34.5 pi dH20 , 5 pi 10X 

Advantage 2 PCR Buffer, 1 pi dNTP Mix (10 mM) and 1 pi 50X Advantage 2 Polymerase 

Mix, to give a total volume of 41.5 pi. This was mixed and distributed into the different 

PCR reaction tubes. To the 5'-RACE reaction was then added 2.5 pi of the 5'-RACE- 

Ready cDNA, 5 pi Universal Primer Mix (UPM) (10X) and 1 pi Gene Specific Primer 1 

(GSP1) (10 pM). To the 3'-RACE reaction was then added 2.5 pi of the 3'-RACE-Ready 

cDNA, 5 pi Universal Primer Mix (UPM) (10X) and 1 pi Gene Specific Primer 2 (GSP2) 

(10 pM). The protocol recommended a number of control RACE reactions: negative 

controls included the use of the Universal Primer Mix without Gene Specific Primers, and 

of the “wrong” Gene Specific Primer, while positive controls included the use of both 

Gene Specific Primers in one reaction and of supplied primers specific for the ubiquitously 

expressed TFR (transferrin receptor). Each PCR reaction was overlaid with 2 drops of 

mineral oil then cycled with Touchdown PCR, as follows: 5 cycles of 94°C for 30 s and 

72°C for 3 min; 5 cycles of 94°C for 30 s, 70°C for 30 s and 72°C for 3 min; and 25 cycles 

of 94°C for 30 s, 68°C for 30 s and 72°C for 3 min.

Both 5’- and 3’-RACE reactions should produce a single clear product band. The 

PCR products were then purified using Qiagen columns (Section 2.2.2.5) and TOPO TA® 

cloned (Section 2.2.5.2), again by Sharon Bums. Five different colonies were selected, 

plasmid DNA prepared (Section 2.2.5.3) and sequencing performed (Section 2.2.2.10). 

The sequence files were analysed and assembled using SeqMan.

2.2.5.6 Probing of genomic library

Identification of a clone containing the human genomic sequence for the new gastric gene 

was performed using the human PAC library RPCI1. This is a genomic library within 

PACs (plasmid artificial chromosomes) was obtained spotted on seven high-density 

gridded filters on 22 x 22 cm nylon membranes. The source was a normal male blood 

donor, and the insert size is about 110 kb. Each clone has been spotted twice to give 

36,864 (18,432 x 2) spots on each membrane, with 7 filters covering the whole library.
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The previously described radiolabelled full-length human cDNA probe (Section

2.2.42.2) was used to probe the PAC libraries. The membranes were placed in rotisserie 

bottles, with two or three membranes, separated by nylon mesh, per bottle. 

Prehybridisation, hybridisation and washing were performed using ULTRAhyb™ solution 

as for the previous Northern blots (Section 2.2.4.2.3) except that where heat was used, the 

temperature applied was not 42°C but instead 65°C. After washing, the filters were 

wrapped in plastic wrap, placed in film cassettes and exposed to X-ray film for between 2 

to 72 hours (usually overnight was best) at -70°C. The position of the positive clones was 

interpreted following the protocol and orientation guide supplied.

A single positive clone was found and identified as number 291-N4. This clone 

was obtained and a DNA plasmid preparation was performed, according to supplier’s 

instructions, but basically using similar methods as before (Section 2.2.5.3). The cloned 

PAC DNA was then used as a probe for fluorescent in situ hybridisation (FISH) and was 

also used for genomic sequencing.

2.2.5.7 Fluorescent in situ hybridisation (FISH)

Fluorescent in situ hybridisation (FISH) for the new gastric gene, foveolin, was kindly 

performed by Sharon Bums in 02 group. The foveolin probe for FISH was labelled using 

the Vysis Nick Translation Kit and SpectrumGreen dUTP. 1 pg of plasmid DNA (Section 

2.2.5.6) was mixed with dH20  to a total volume of 17.5 pi. To this was added: 2.5 pi 0.2 

mM SpectrumGreen dUTP; 5 pi 0.1 mM dTTP; 3 pi of each of 0.3 mM dATP, dCTP and 

dGTP; 5 pi 10X Nick Translation Buffer; and 10 pi Nick Translation Enzyme. The 

reaction was incubated overnight at 16°C, then stopped by heating at 70°C for 10 min and 

chilled on ice. The labelled probe was ethanol precipitated and resuspended in 6 pi 50% 

formamide hybridisation mix (2X SSC, 500 pg/ml salmon sperm DNA, 10% dextran 

sulphate and 50% formamide).

On the seond day, the chromosome preparation was dropped on to a glass slide 

from a height then fixed for 1 h in methanol / acetic acid (3:1) at RT and air-dried. The 

slide was incubated for 1 h in 100 pg/ml RNase in 2X SSC at 37°C, then rinsed in 2X 

SSC. The chromosome preparation was then digested in pepsin (0.01% in 10 mM HC1) 

solution for 10 min at 37°C and rinsed in water. The slide was fixed for 10 min in Streck 

Tissue Fixative at RT. The slide was then dehydrated in 2 x 2 min 70% ethanol, 2 x 2  min 

100% ethanol, and air-dried. 30 pi 70% formamide in 2X SSC was added to the slide 

which was then covered with a cover slip and denatured at 80°C for 2 min on the 

Omnislide Thermal Cycler. At the same time, the labelled probe and the chromosome 2
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paint (6 pi of each) were also denatured, at 75°C for 5 min. The slide was again 

dehydrated. The denatured probe and paint were applied to the slide, covered with a 

coverslip, sealed with cow gum, and hybridised at 37°C overnight.

On the third day, the cow gum and coverslip was removed by soaking in 2X SSC. 

The chromosome preparations were washed in 0.4X SSC / 0.3% NP-40 at 75°C, with 

agitation for 2 s then standing for 2 min. The slides were then washed in 2X SSC / 0.1% 

NP-40 at RT, with agitation for 2 s, then standing for 1 min. The slides were dehydrated in 

2 x 2  min 70% ethanol, 2 x 2  min 100% ethanol, and air-dried. The slides were mounted in 

Vectashield with 0.3 pg/ml propidium iodide (PI) / 0.1 pg/ml 4',6-diamidino-2- 

phenylindole (DAPI), and sealed with nail vamish. The stained chromosome preparations 

were examined under a fluorescence microscope and photographed.

2.2.5.8 Identification and analysis of genomic and protein sequences

(See also previous Section 2.2.5.1.) The next aim was further characterisation of the 

genomic sequence of the new gastric gene in human and mouse. The human PAC genomic 

clone was sequenced (Section 2.2.2.10) using the primers listed in Table 2.3 (Section

2.1.8.2). The resulting genomic sequences were assembled using DNASTAR’s SeqMan, 

as described in detail later in Section 5.1.2.3, but the clone turned out to contain only part 

of the gene.

The full human genomic clone was thus identifed and down-loaded from the Celera 

web-site. The mouse genomic sequence was identified and down-loaded piece-meal from 

the mouse Whole Genome Shotgun sequencing reads in the Trace Archive at Ensembl. 

Comparisons were again performed using BLAST and MultAlign; or by hand (!). This is 

explained in more detail later in Sections 5.1.2.4, 5.1.2.5 and 5.1.2.6. Thanks are due to 

Steve Bryce for his kind advice on these genomic searches.

The protein sequences for the human, mouse and cow were predicted using 

EditSeq, compared with ClustalW and analysed using the Network Protein Sequence 

Analysis programs and PSORT (Section 2.1.13.1), as explained in more detail later in 

Section 5.1.3. Searches for protein homology and motifs were performed using BLAST 

and the various protein databases and tools available at the website of the European 

Bioinformatics Institute (EBI).



103

Table 2.1: Clinico-pathological details of gastric adenocarcinoma samples

This table provides clinico-pathological information on the gastric adenocarcinomas used 

in this research (see Section 2.1.5.1). Tumours number 1 and 2 were used for SAGE, as 

was a sample of normal (non-neoplastic) gastric antral mucosa taken from a Whipple’s 

resection from a patient with pancreatic (but not gastric) adenocarcinoma. For SAGE, RT- 

PCR and Northern blotting, RNA was prepared from the frozen samples. For 

immunohistochemistry and in situ hybridisation, the formalin-fixed, paraffin-embedded 

tissue was used.

Background information on the significance of the tumour site, anatomical and 

histological subtypes, tumour grade (histological differentiation) and tumour stage is 

provided in the Introduction, Section 1.4. Note that here, T and N refer to classical tumour 

staging (local Tumour spread and presence of lymph Node metastases), as described in 

Table 1.1. However, throughout the rest of the paper, T and N indicate the SAGE Tumour 

and Normal samples.
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Tumour Anatomical Histological Histological Tumour
number Tumour site subtype subtype differentiation stage

1 Body Distal Intestinal Well T1N0

2 Antrum Distal Intestinal Moderate T3 NO

3 Antrum Distal Intestinal Moderate T3 N1

4 Antrum and 
body Distal Diffuse Poor T1 NO

5 Antrum Distal Diffuse Poor T3 N2

6
Gastro­
esophageal Proximal Intestinal and 

solid Poor T3 N2
junction (GEJ)

7 GEJ Proximal Diffuse and 
intestinal Poor T3N1

8 GEJ Proximal Intestinal, solid 
and basaloid Poor T2 NO
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Table 2.2: Oligonucleotide primers used in RT-PCR for SAGE validation

This table lists the oligonucleotide primers used to investigate the new gastric gene, 

foveolin, as described in Section 2.2.5 and Chapter 5.

The primers named human cDNA were designed from the sequence generated by 

assembling the down-loaded ESTs. They were used in various combinations for initial 

amplification and characterisation of the human cDNA sequence, by reverse-transcription 

polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE).

To validate and expand the SAGE profiles, selected transcripts were studied in a wider 

panel of 19 gastro-intestinal tumour and normal tissues and cell lines. Where the genes had 

been minimally characterised in the stomach, the method of choice was Northern blotting 

for mRNA. Prior to Northern hybridisation, reverse-transcription polymerase chain 

reaction (rtPCR) was performed, to confirm the initial transcript match and to provide a 

probe template for radio-labelling by PCR.
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N a m e O lig o n u c le o t id e  p r im e r  s e q u e n c e

gastrin sense GCCCAGCCTCTCATCATC

gastrin as GGGGACAGGGCTGAAGTG

TFF3 sense CAGTCCTGAGCTGCGTCCCG

TFF3 as CAGGCACGAAGAACTGTCCTCG

thymosin betalO longer sense GTGGGAGCACCAGGATCTC

thymosin betalO longer as GAATTTGGCAGTCCGATTG

prothymosin alpha upper ACACCAGCTCCGAAATCACC

prothymosin alpha lower TCATCCTCGTCGGTCTTCTG

prostate stem cell antigen sense CTGCTTGCCCTGTTGATGGC

prostate stem cell antigen as TGCGTTAGGATGTGCCTCAGG

Idl longer sense GGACGAGCAGCAGGTAAACG

Idl longer as CACACGAGTGGAATCCCACC

hsp90a sense ACCCAGACCCAAGACCAACCG

hsp90a as ATTTGAAATGAGCTCTCTCAG

NGAL (lipocalin 2) sense GGAC T C CAC C T CAGAC C TGAT C

NGAL (lipocalin 2) as CGATACACTGGTCGATTGGGAC
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Table 2.3: Oligonucleotide primers used in investigation of new gastric gene

This table lists the oligonucleotide primers used to investigate the new gastric gene, 

foveolin, as described in Section 2.2.5 and Chapter 5.

The primers named human cDNA were designed from the sequence generated by 

assembling the down-loaded ESTs. They were used in various combinations for initial 

amplification and characterisation of the human cDNA sequence, by reverse-transcription 

polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE).

The human cDNA primers were also used to “walk” into the introns during 

characterisation of the human genomic sequence, for which the primers named genomic 

were also used. Many of the latter, named upto307, turned out unfortunately to be located 

within PAC vector sequence, as described in Chapter 5.

The primers named mouse cDNA were also designed from the sequence generated 

by assembling the down-loaded ESTs. They were used in various combinations for initial 

amplification and characterisation of the mouse cDNA sequence, by reverse-transcription 

polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE).
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Name

human gastric specific cDNA
h u m a n  g astr ic  s p e c if ic  upper  

h u m a n  g astr ic  s p e c if ic  lo w e r  

h u m a n  g astr ic  s p e c if ic  00 1  se n se  

h u m a n  ga str ic  s p e c if ic  4 6 2  se n se  

h u m a n  g astr ic  s p e c if ic  5 3 2  se n se  

h u m a n  ga str ic  s p e c if ic  6 2 0  se n se  

h u m a n  g astr ic  s p e c if ic  109  as  

h u m a n  ga str ic  s p e c if ic  2 3 7  as  

h u m a n  ga str ic  s p e c if ic  3 0 7  as  

h u m a n  ga str ic  s p e c if ic  7 3 6  as  

h u m a n  ga str ic  sp e c if ic  R A C E  upper  

h u m a n  ga str ic  sp e c if ic  R A C E  lo w er

human gastric specific genomic only
h u m a n  ga str ic  sp e c if ic  g e n o m ic  3 ’ 1 as 

h u m a n  ga str ic  sp e c if ic  g e n o m ic  m id i as 

h u m an  ga str ic  sp e c if ic  c o n tig  4 6 2 -7 3 6  as2  

h u m a n  ga str ic  s p e c if ic  c o n tig  lo w -h ig h  a s2  

h u m a n  ga str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  a s l  

h u m a n  ga str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  as2  

h u m a n  ga str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  as3  

h u m an  ga str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  a s4  

h u m an  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as5  

h u m an  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  a s6  

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as7  

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as8  

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as9  

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 10 

h u m an  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  a s l l  

h u m an  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 12 

h u m an  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 13 

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 14  

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 15 

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 16  

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 17 

h u m a n  g a str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  as 18 

h u m a n  g a str ic  sp e c if ic  g e n o m ic  u p to 3 0 7  as 19 

h u m a n  g a str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  a s2 0  

h u m a n  g a str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  as21  

h u m a n  g a str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  a s2 2  

h u m a n  g a str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  a s23  

h u m an  g a str ic  s p e c if ic  g e n o m ic  u p to 3 0 7  a s2 4

mouse gastric specific cDNA
m o u s e  ga str ic  s p e c if ic  2 0  sen se  

m o u s e  g a str ic  s p e c if ic  7 1 0  as 

m o u s e  ga str ic  s p e c if ic  R A C E  sen se  

m o u s e  ga str ic  s p e c if ic  R A C E  as

Oligonucleotide primer sequence

TCCATTCAATCCCTTGATGC
CCGAACTTGCTCAGGTCATC
CCTCTGTCCACTGCATTTC
GGAT T C C AAC AT AC ATGGC
GACCAGTGTACTATGGATTGTGG
CATCTGAATATGCTGTGCAGA
CCAGCATTGTTGTTGTCATCATTG
GAGTCTGGTTGCAGCAAAGC
GGGCATGACTTCCTTGTTC
GCTAAATGATTTTATTGAAACTTAA
CCACCTCCCAAGGGCCTGATGTACTCAG
CCTCAGCCATGTATGTTGGAATCCCACG

GCCTTGATGACCATCCCTGC
GGGAATGACTGTGATCTTCTCG
GTGACCTCTCTGTACCTCAGTTTCC
GCGGTTGTAGAGGTAGGTGTG
GACATTTGTGAGGACAGACTGC
GCTGATAATTCCAGAGTTGGGTC
CAGCATTATTGAGGGTAT CTGC
TACACGCCATGATATGCTGC
CTCTCTTACCAATTAATATTGTC
CATTTACATTTCCCGAGTTTTAGG
ACATTTCCCGAGTTTTAGGTG
GGTCGTAAAACCTCCTTTGAAAAC
GGCAAGGCAAAAGGATGTT C
C CACAAT C C CTTGAACATAGTG
TAGT CAATT CGGGAGGAT CG
GAGGAGCGACTCAAGCCTTC
TACACGCCATGATATGCTGC
CCCTAAACAGCAGCAAAACG
GCAAAACGCTGACGGAACAG
TGTTTGCTCTTGCGGGAAGC
TGAAAGAT CAGACGCAAGAATG
CGCAGGTAAATGTGTCAAAATC
CGGAGTGGAAGAT CACAAAAC
CGGAGACGGAAAAACATAT CAG
GATGAAGGCAATTATACATCCG
C CATACGCTGAGAGAC C CT C
GCCATAAATACCTTGGATTCG
GGATACCAAGGCGAAGAATC

CTGATCCTCTGCTCCACCAC
GTGGGTTTATTGAGCCTTAAAGAAG
CGGAAATGGACAGCATTCGGTGAGCATC
CAGGTCCTCCACTCTGGTAGGGTTGACGG
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3 Setting up SAGE and its optimisation

3.1 Results
Before proceeding to the results of the gene expression profiling in the stomach, it is worth 

considering the method used in more detail. Serial analysis of gene expression (SAGE) is 

a large-scale mRNA expression profiling technology with immense potential for producing 

valuable data-sets. When this project began, however, SAGE was a new technique, 

developed in the USA. I was the first researcher to use SAGE locally. Its translation to 

our laboratory presented challenges: its set-up took time, effort and (very gradually 

acquired) expertise, mainly for the laboratory work but also, to a lesser extent, for the 

bioinformatics.

In this chapter, first the principles underlying SAGE are presented. Then the issues 

involved in the set up and optimisation of SAGE are discussed. During the course of the 

project, improved protocols were published in the literature and developed locally, and 

their integration into this project is also described. The chapter thus incorporates both my 

personal experience of SAGE and on-going developments in the field.

3.1.1 Principles underlying Serial Analysis o f  Gene Expression (SAGE)

Serial analysis of gene expression (SAGE) produces comprehensive, quantitative and 

reproducible gene expression profiles. It was originally described in 1995 by Velculescu et 

al from the Kinzler and Vogelstein laboratory in Johns Hopkins University (Velculescu et 

al. 1995; Zhang, L et al. 1997).

SAGE is based on generating clones of concatenated (linked) short sequence tags 

derived from mRNA from the target cells or tissue. Each tag is 9 or 10 bp long and 

represents a single mRNA. This short nucleotide sequence should, in theory, contain 

sufficient information to identify the transcript uniquely, providing that the tag is taken 

from a defined position within the transcript. For example, the 9 bp tags which were used 

in this project should be able to distinguish 262,144 (49 = 4 possible nucleotides at 9 

possible positions) transcripts, assuming that the distribution of nucleotides at the tag site is 

random. In theory, each clone insert could contain up to 40 tags joined serially, although 

in practice the inserts which I generated were usually significantly shorter (see Section

3.1.2.4). Sequencing of multiple concatenates therefore describes the pattern and 

abundance of mRNA, with an improvement in efficiency of up to 40-fold compared with 

conventional analysis of expressed sequence tags (ESTs), in which each clone insert
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contains only a single mRNA sequence. The boundaries between the tags are recognised 

by a 4 bp nucleotide sequence (CATG) corresponding to the recognition site of the M alll 

restriction enzyme used during SAGE. The mRNA transcript corresponding to the short 

SAGE tag is identified from the Genbank genetic databases using appropriate software.

Figure 3.1 provides a schematic diagram of how SAGE is put into practice. Figure 

3.2, Figure 3.3, Figure 3.4 and Figure 3.5 show representative examples of the many gel 

electrophoresis steps used in SAGE. The theory underlying SAGE, starting from the input 

mRNA through to obtaining the ditags, is as follows. Double stranded cDNA is 

synthesized from mRNA using a biotinylated oligo(dT) primer. The cDNA is then cleaved 

with the so-called Anchoring Enzyme, in this case Nlalll, which is a restriction 

endonuclease with a 4 bp recognition and cleavage site (CATG). On average Nlalll would 

be expected to cleave every 256 bp (44 = 4 possible nucleotides at 4 possible positions, 

assuming that the distribution of nucleotides is random). Most mRNA transcripts are 

considerably longer than 256 bp: their average length is 2.5 kb (Strachan et al. 1999) but 

range from a few hundred to many thousands of bases (Sambrook et al. 1987). M alll 

should therefore cleave most transcripts at least once. The 3’ end of the cleaved 

biotinylated cDNA is then captured by binding to streptavidin-coated magnetic beads. 

This process creates a unique site on each mRNA transcript that corresponds to the Nlalll 

restriction site which is the most 3’, that is, located closest to the polyA tail.

The cDNA is then divided in half and ligated via the anchoring restriction site to 

one of two oligonucleotide linkers containing a recognition site for BsmFl, the so-called 

Tagging Enzyme, which is a type IIS restriction enzyme. The latter cleave at a defined 

distance, up to 20 bp away from, their asymmetric recognition sites, leaving a sticky-end. 

The oligonucleotide linkers are designed so that cleavage of the ligation products with 

BsmFl releases the linker plus a short piece of the original cDNA, which is the SAGE tag. 

The released linker-tag combination is first blunt-ended at the residual sticky-end created 

with BsmFl. The two pools of linker-tags are then ligated to each other and amplified by 

PCR with linker-specific primers (Figure 3.3). As well as amplifying the tag sequences for 

further manipulation, this step serves two other functions. First, it enables orientation and 

punctuation of the tag sequences. The amplification products contain two tags (one ditag) 

linked tail to tail (3’ end to 3’ end), flanked by CATG, the recognition site of the 

Anchoring Enzyme Nlalll. Second, analysis of the ditags, which are formed before 

amplification, allows any PCR-induced bias to be avoided: repeated ditags potentially 

produced by biased PCR can be identified after sequencing and excluded from the final 

analysis.
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Cleavage of the PCR product with Nlalll releases the sticky-ended 22-26 bp ditags 

which are then isolated and concatenated (linked) by ligation (Figure 3.4). The 

concatemerised ditags are cloned (Figure 3.5) and sequenced (Figure 3.6). The SAGE 

sequences are then analysed using the SAGE program (Figure 3.7). Interesting tags can be 

further investigated using NCBI’s on-line bioinformatics tools (Figure 3.98 and 3.9). A 

detailed explanation of the SAGE software and on-line bioinformatics tools used is 

provided in Sections 2.2.3.2 and 3.1.3 and in the legends accompanying Figure 3.7, Figure

3.8 and Figure 3.9.

3.1.2 The laboratory work in SAGE was difficult and time-consuming

The laboratory work in SAGE proved difficult and took many months to establish. This 

problem was not limited to our laboratory and indeed there are many centres worldwide 

which have attempted but never succeeded with SAGE and which abandoned it in favour 

of cDNA or oligonucleotide microarrays. This is partly because, although the steps in 

SAGE are individually simple, when they are linked together, there are many possible 

sources of error. Unfortunately, there are only two main stages at which the success of the 

SAGE procedure can be easily ascertained: obtaining the 102 bp PCR product and then 

obtaining appropriately sized PCR products of the cloned concatemers. The various 

technical problems encountered and, where identified, their solutions, are discussed in the 

following sections.

3.1.2.1 The quantity and quality of input mRNA was crucial

Initially I used locally obtained clinical tissues and, even after a number of months, could 

not achieve the 102 bp PCR product. As far as was possible, I checked whether each stage 

of SAGE prior to the PCR step was working as expected. Where necessary, alternative 

methods were tried and, in some cases, substituted. Most of the individual steps appeared 

to be functional, but through these checks, general discussions in the laboratory, and 

consultation of the academic and commercial literature, it became obvious that degradation 

of the input RNA could well be a problem.

In order to get SAGE working in the first place, I therefore purchased mRNA from 

Clontech, derived from normal whole human stomach. This mRNA eventually yielded 

both the 102 bp PCR product (Figure 3.3) and then the sequenced cloned concatemers 

(Figure 3.6), six months after starting. This obviously gave me confidence that I could 

perform SAGE. My original hope had been that this sample could be used to represent 

“normal stomach”, but unfortunately further enquiry revealed that the Clontech mRNA was
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derived from samples containing the entire wall of the stomach, including mucosa, fatty 

submucosa, muscle and peritoneal surface, not just the mucosa, which is what defines the 

different areas of the gastro-intestinal tract (see Section 1.2.1) and from which carcinomas 

are derived (see Section 1.4.4). Clontech were also unable to specify from which area of 

the stomach the sample was taken, whereas my intention was to use mucosa from the distal 

stomach, the antrum, as the normal comparison for the distal tumours.

I therefore returned to my attempts to isolate and use mRNA from the local clinical 

samples for SAGE. It took a further eight months to start to obtain good quality clones 

from Tumour 1. Tumour 2 took only another two months but the normal sample was more 

tricky and took a further eight months. (Obviously the large-scale sequencing of the clones 

took much longer.)

The original SAGE protocol had recommended isolating total RNA with Qiagen’s 

RNeasy® Midi Kit then purifying the mRNA with Invitrogen’s M e s s a g e M a k e r ™  Kit. 

Other strategies were also attempted: Ambion’s Poly(A)Pure™ Kit was used to capture 

mRNA directly from powdered tissue lysates; Dynal’s Dynabeads® 01igo(dT)25 

(oligo(dT)-coated magnetic beads) were used to purify mRNA both from total RNA and 

directly from tissue lysates; and Miltenyi Biotec’s magnetic mRNA Isolation Kit (also 

containing oligo(dT)-coated magnetic beads) was applied to total RNA. None of these 

methods was successful in leading to a 102 bp PCR product.

However, most of these initial purification attempts had been undertaken without 

running analytical gels of the RNA from the clinical samples, partly to minimise sample 

loss and partly because, with some methods, the sample was taken from powdered tissue 

directly to mRNA without any intervening total RNA preparation. When the integrity of 

the input RNA was subsequently called into question, I proceeded to prepare total RNA 

from these tissues and check it by agarose gel electrophoresis. It became apparent that the 

RNA in a significant number of samples was in fact badly degraded, with smears, often 

weak, instead of strong, distinct ribosomal RNA bands (see Figure 3.2).

In retrospect, my initial omission of the analytical gels had obviously been a 

mistake, and would in any case have used only a tiny fraction of any total RNA sample. 

When I later extracted total RNA from cultured cell lines, gel electrophoresis always 

yielded clean ribosomal bands. The problem with the clinical tissues was therefore 

assumed to be due not to contamination with exogenous RNases, for example from my 

skin, which would be expected to affect all samples equally, but to endogenous RNases, in 

the gastric tissues themselves, which were presumably activated during and after surgery, 

before the sample could be dissected and snap-frozen. Their presence in abundance in the
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stomach, as in the pancreas (Sambrook et al. 1987), would not be unexpected given its 

normal digestive function and hence high enzyme content.

Thereafter every RNA sample was prepared in stages via total RNA so that its 

integrity could be checked by gel electrophoresis. T R I z o l ® Reagent was used successfully 

(Section 2.2.22) and careful RNase-free techniques were applied at all times (Section 

2 .2 .2 . 1).

3.1.2.2 Alternative components were tried in the pre-PCR steps of SAGE

For cDNA synthesis (Section 2.2.3.1.2), the original Johns Hopkins’ protocol used 

Invitrogen’s cDNA Synthesis Kit containing M-MLV reverse transcriptase. This enzyme 

has now been superceded by the same manufacturer’s Superscript II RNase H-  Reverse 

Transcriptase, which lacks RNase H activity, preventing degradation of RNA molecules 

during first-strand cDNA synthesis, but which retains full polymerase activity. It is thus 

said to be four-fold more efficient, is now recommended by the Johns Hopkins workers, 

and was used in my later experiments.

The restriction enzyme Nlalll is critical to SAGE where it is used in two separate 

steps to create the 22-26 bp ditags (Sections 2.2.3.1.3 and 2.2.3.1.11). Its activity, 

however, sometimes seemed to be low, to judge by the amount of enzyme and length of 

time required for complete digestion of the 102 bp ditags. This problem could be 

overcome by using more Nlalll for a longer time. Possible causes could include batch-to- 

batch variability and incorrect storage at temperatures above -70°C, although I took care to 

avoid the latter. Impurities in the DNA preparation have also been shown to inhibit Nlalll 

activity, and can be removed through the use of Qiagen spin columns (Angelastro et al. 

2000).

For binding of the biotinylated cDNA to a streptavidin-coated surface, the original 

SAGE protocol recommended Dynal’s Dynabeads® M-280 Streptavidin (Section

2.2.3.1.4). Promega’s Streptavidin MagneSphere® Paramagnetic Particles were also tried 

but did not result in any improvement.

For blunt-ending (polishing) the sticky ends of the SAGE tags (single linker plus 

tag) created using BsmFl, the original SAGE protocol recommended T4 DNA Polymerase 

(Section 2.2.3.1.7). I had already been trying other DNA polymerases, including Pfu DNA 

Polymerase, when a Johns Hopkins’ protocol update emerged with its preference for DNA 

Polymerase I Large Fragment (Klenow), which worked well.
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3.1.2.3 PCR amplification of the 102 bp ditags was difficult

Initially, PCR amplification of the 102 bp ditags was difficult to achieve and not robust, 

and thereafter it was very prone to cross-contamination (Section 2.2.3.1.9).

The Johns Hopkins’ protocol describes a complex and slightly unusual PCR 

reaction mixture, with high concentrations of MgCl2, nucleotides and primers (its final 

reaction mix contained 6.7 mM MgCl2, 1.5 mM nucleotides and 7 nM primers) and also 

including DMSO. It proved difficult to get the PCR working in the first place and then to 

optimise and maintain its performance. My previous experiences had suggested that the 

Qiagen kits worked well and their HotStarTaq kit yielded PCR product more reliably and 

in greater quantities than the Johns Hopkins recipe (its final, very different, reaction mix 

contained 2.75 mM MgCl2, 0.2 mM nucleotides and 1.75 nM primers).

Once the 102 bp ditag PCR product was obtained, PCR cross-contamination 

became a major problem, with undesirable ditag products appearing in the ligation and/or 

PCR negative control reactions. Its elimination took months and any SAGE libraries 

created in the interim had to be discarded since the PCR products thus obtained had not 

verifiably originated from the appropriate tissue sample. Cross-contamination was avoided 

by the use of: the Qiagen kit, with reactants newly opened each time; pre-PCR-only 

pipettes, pipette tips etc; and liberal use of Ambion’s DNAZap solution and/or ultraviolet 

light to decontaminate benching and equipment.

3.1.2.4 It proved difficult to obtain long concatemer inserts in most clones

Once the 102 bp ditag PCR product is obtained, a large-scale reaction is performed to 

obtain sufficient quantities from which the 22-26 bp ditags can then be obtained by 

digestion with M aIII. Thereafter the short ditags are isolated from the linker 

oligonucleotides and residual PCR products. The 22-26 bp ditags are ligated with the aim 

of producing long (>500 bp) concatemers which must then be efficiently separated out, 

cloned and sequenced. Purification of the ditags and of the concatemers involves, once 

again, polyacrylamide gel electrophoresis, examples of which are shown in Figure 3.4. 

Many of these steps caused problems, with the common end result being only a small 

number of clones containing only short concatemer inserts.

3.1.2.4,1 Problems with the generation o f long concatemers

Sometimes the problem was simply that long concatemers were not being generated, with 

most molecules remaining as single 22-26 bp ditags or forming only small multiples 

thereof. This usually related to the quantity and purity of the ditags.
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Part of the solution involved adjustment of the ditag ligation conditions with the 

aim of promoting the forward reaction. The various adjustments included: decreasing the 

reaction volume; adding polyethylene glycol (PEG) (which effectively also decreases the 

reaction volume); allowing the reaction to proceed for longer; and trying ligase enzymes 

from different suppliers and using them at higher concentrations.

Another part of the solution involved increasing the quantity and purity of the input 

ditags. The first Johns Hopkins’ protocol described only a single gel purification step: the 

pooled 102 bp ditag PCR products were directly Nlalll digested before being run out on 

the gel to give the 26 bp ditags for isolation, plus remaining linkers. A further purification 

stage involves running out the pooled 102 bp ditag PCR products for isolation prior to Nla 

III digestion. I had already added this step by the time the modification appeared in the 

next Johns Hopkins’ protocol.

In addition, contamination of the ditags with residual linker oligonucleotides may 

“poison” the ligation reaction, preventing further extension and also cloning of the 

concatemer chain. A novel approach to this problem involves the use of biotinylated 

primers for PCR of the 102 bp ditags (Powell 1998). After Nlalll digestion, the unwanted 

linkers and undigested PCR products bear biotin and can be removed by washing with 

streptavidin-coated beads (Powell 1998). This streptavidin-biotin purification step is 

usually performed in addition to the two gel purification steps. Although other researchers, 

including the current Johns Hopkins’ protocol, recommend this step, perhaps unexpectedly 

in my hands it did not effect any obvious improvement.

3.1.2.4.2 Problems with the separation out o f  long concatemers

In some experiments, it seemed that long concatemers were being generated but that their 

separation from the smaller species was poor, such that the eventual clone inserts mostly 

originated from the smaller (and therefore more easily cloned) fragments. This requires 

better separation by molecular weight. One modification is to use the same 8% PAGE 

separation as described in the original Johns Hopkins’ protocol but to heat the concatemer 

sample prior to its loading to denature and separate the smaller species (Kenzelmann et a l 

1999). In my hands, this did appear to provide slightly better results.

Others have used agarose gels, as described as an alternate procedure in the most 

recent Johns Hopkins protocol. Still other options include the use of various column 

formats, such as Amersham’s MicroSpin™ columns, containing Sephacryl™ HR resin 

(Sephacryl S-400 HR) for spin-column chromatography, or QIAquick® columns. Having 

tried all these, I found that the QIAquick® columns gave results as good as 8% PAGE, in a 

much shorter time and with less risk of sample loss.
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3.1.2.4.3 Problems with abundant contaminating clones lacking inserts

A further problem was that many of the selected resulting clones appeared to lack inserts. 

The Johns Hopkins’ protocol describes the cloning of concatemers using Invitrogen’s Zero 

Background™ Cloning Kit. The pZErO®-l vector in this kit contains a lethal gene which is 

disrupted by DNA insertion, so that in theory only positive recombinants should grow, 

with bacterial selection using the antibiotic Zeocin. However, I found that although most 

colonies did contain vector, judging by the success of PCR amplification, many lacked a 

sizeable insert. The lack of bacteria without vector suggested that antibiotic selection with 

Zeocin was indeed working, although this would have been one potential source of 

problems, since this antibiotic is labile and its activity is sensitive to light, pH, salt 

concentration and temperature. Sequencing of the vector-only clones confirmed the lack of 

even a small insert (such as a single 22-26 bp ditag). The reason for the survival of vector- 

only clones was therefore unclear, although nuclease contamination resulting in damage to, 

and inactivation of, the lethal gene would be one explanation. Discussions with Invitrogen 

shed no further light on the problem.

I therefore tried a second cloning vector, pGEM®-3Zf(+), from the ABI PRISM® 

BigDye™ Terminator Cycle Sequencing Ready Reaction Kit. Unlike pZErO®-l, bacteria 

containing this vector are selected for by ampicillin-resistance and positive recombinants 

are identified through blue/white colony selection following IPTG/X-gal induction. PCR 

was performed with the same M l3 forward and reverse primers as previously. 

Unfortunately, the original problem persisted: many white (i.e. selected) colonies lacked 

inserts of appropriate size.

Because the problem often seemed to be re-circularised vector lacking insert, 

treatment with calf intestinal alkaline phosphatase was also tried. This removes the 5’- 

phosphate from linearised vector and thus should inhibit vector self-ligation and re- 

circularisation without insert. However, in my hands, this treatment was ineffective.

I was therefore still faced with the problem of relatively inefficient SAGE 

concatemer cloning. From each 96-well plate of colony PCRs, thirty (if everything had 

worked well) and less than ten (if not, which was unfortunately much more common) 

colonies contained vector inserts of a size worth sequencing. This persisted despite months 

of attempted optimisation. Eventually I had to decide whether to continue to attempt to 

achieve better cloning (and in doing so not proceed with sequencing) or simply to accept 

that the cloning was relatively inefficient and to proceed with it as was and obtain some 

usable insert sequences. I chose the latter approach.
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3.1.2.5 Large-scale PCR and sequencing of cloned concatemer inserts

The original Johns Hopkins protocol described colony PCR reactions in single 

microcentrifuge tubes, followed by manual precipitations with isopropanol, to remove 

residual primers, then sequencing with one of the primers previously used for the PCR. 

Such individual reactions were time-consuming, so I changed to a large-scale format. For 

the colony PCR reactions, 96-well plates were used. For the DNA purification, PCR with 

Qiagen’s QIAquick 8 PCR Purification Kit (strips of 8 spin-type columns) was used with 

their QIAvac 6S (an 8 by 6 column gridded vacuum purification system). This purification 

method produced PCR product of which much less was needed for subsequent sequencing 

than with the isopropanol precipitation; larger amounts gave rise to poorer quality 

sequence, which was occasionally heterogeneous, presumably due to the contaminating 

presence of both primers, or possibly of more than one insert species.

3.1.3 Bioinformatics

By comparison with the difficulties encountered in the “wet-lab” part of SAGE, the 

problems in the bioinformatics were minor.

After sequencing the colony PCRs, the SAGE concatemer sequence files are 

analysed using the SAGE program in combination with NCBI’s Genbank databases and 

Microsoft Access and Excel database programs. This procedure is explained in detail in 

Figure 3.7 and its accompanying legend. Briefly, the creation of a SAGE file first requires 

specification of the project parameters: in these experiments, the anchoring enzyme is 

Nlalll, with its CATG recognition site; and the tag length is 9 bp. The SAGE program 

then builds a project database of all possible tags (49 = 262,144). The concatemer 

sequences can then be added. Finally a SAGE report can be generated: this lists the SAGE 

tags present with their absolute and percentage abundance, accompanied, where requested, 

by a list of matching genes from the SAGE GenBank Database(s). The SAGE report is 

saved in Microsoft Access database format for further numerical and statistical analysis 

with the SAGE program itself, Access and Excel.

It would be an understatement to say that the first SAGE program was not user- 

friendly and frequently produced error messages, but much improved versions became 

available during the course of the project. The format of the sequence files proved to be 

important. The output files from the ABI sequencer included annotation which interfered 

with the SAGE program. Spaces, for example after every tenth nucleotide, and numbers, 

for example after every 50th nucleotide, were present in the sequence files. These were not 

recognised and removed by the SAGE program but ended up within the tags, causing them
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either to be excluded from analysis or to be assigned an incorrect tag number. Since, at the 

time, it was not possible to obtain the .seq output files from the ABI sequencer directly in 

so-called plain format (in which annotation is absent), Dr Keith Vass kindly wrote a short 

program which operated on the local UNIX computer server within the GCG program 

package and which could be used to convert multiple sequence files simultaneously to 

plain format as required by the SAGE program. Nevertheless, this still required multiple 

file transfers from the PC to UNIX servers and back again.

The GenBank databases are large and unwieldy. The files which I used were the 

GenBank primate databases, containing only known and characterised genes, not ESTs. 

These are updated every two months, and took up only two files when I started, but now 

occupy nine. The files were initially obtained directly from NCBI in hard-copy CD-ROM 

format but soon thereafter became available for direct on-line file transfer by FTP (file 

transfer protocol). Unfortunately, the ever-increasing number of GenBank sequences 

means that three separate SAGE gene databases are now required, rather than the single 

gene database which was used initially, and each of these three needs to be linked 

separately to the SAGE files for analysis of each project.

Initially, I verified all putative tag-to-gene matches produced by the SAGE program 

manually by checking the reference mRNA/cDNA sequence for each gene. This was 

usually undertaken via the UniGene database, which was designed to bin all transcript 

sequences from a gene into a single cluster, facilitating transcript profiling. Figure 3.8 

shows the entry for the UniGene cluster for gastrin. The last (3’-most) CATG 

tetranucleotide was identified and the immediately adjacent, down-stream, SAGE tag was 

confirmed. Obviously, ensuring that the CATG recognition site of Nlalll is truly the most 

3’ requires that the mRNA/cDNA sequence contains a polyadenylation site (AAU/TAAA) 

down-stream. No incorrect matches generated by the SAGE program were ever identified. 

The UniGene database entries also provide a great deal of additional useful information on 

each gene, in terms of mRNA expression, chromosomal location and so on, as shown in 

Figure 3.8.

The SAGE program linked to the down-loaded and personally created GenBank 

databases was the only mechanism available at the start of this project for matching tags to 

genes. The advent of NCBI’s on-line SAGEmap database has helped greatly, because it 

provides access not only to curated mRNA/gene sequences, but also to the EST databases, 

which are far too large to down-load and use locally. SAGEmap can thus yield new, 

additional tag-to-gene matches, but unfortunately these may not always be correct. For 

example, some putative matching tags have turned out in the curated mRNA sequences to 

be located more 5’ than expected or in the reverse orientation. Matching genes resulting
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only from SAGEmap but not from the local SAGE databases therefore always require 

vigorous checking, although obviously some simply originate from uncharacterised ESTs. 

As an example, Figure 3.9 shows the SAGEmap entry for the tag matching to gastrin.

Using the SAGE program, analysis of individual SAGE libraries through 

generating a report was thus eventually a fairly simple task. However, subsequent 

comparison of SAGE libraries proved to be rather complex. The initial comparisons in the 

SAGE program were straightforward but these did not produce normalised data, which are 

required for assessment of fold-differences in tag numbers. Normalisation had to be 

performed later on the resulting database file using the Excel program. Statistical analysis 

of the comparative SAGE database files was also simple, but integration of this data with 

the absolute and normalised tag numbers for each library and with the gene matches 

required use of, and developing familiarity with, the Microsoft Access program.

3.1.4 Length o f  SAGE tags: 9 or 10 bp?

The only other problem related to the size of the tags. During SAGE, the tag length is 

determined at Step 2.2.3.1.6, when the cDNA tags are created and released from the 

magnetic beads by digestion with the tagging enzyme BsmFl. When the project started, the 

then-current SAGE protocol (version b) stipulated an incubation temperature of 37°C, 

which yielded tags predominantly of 9 bp length. Subsequent Johns Hopkins protocols 

(version c onwards) also reported this and recommended incubation instead at the higher 

temperature of 65°C in order to produce longer tags of 10 bp length or more. This 

temperature is now also recommended, but was not previously, on the product datasheet 

from New England Biolabs, as shown in Figure 3.10.

This is because BsmFl cleaves slightly differently under different conditions. At 

65°C, the enzyme cuts at 10/14 bp from its recognition site GGGAC, to yield a sticky-end 

(Figure 3.10), whereas the figure is 9/13 at 37°C. During SAGE, the digestion with BsmFl 

is followed by blunt-ending with a DNA polymerase. Even at 37°C, this should yield a 13 

bp fragment of which 10 bp should be the SAGE tag: the three nucleotides immediately 

beside the GGGAC of the BsmFl recognition site are actually ATG and form three-quarters 

of the recognition site of the M ain anchoring enzyme. However, it may be that some of 

the terminal nucleotides undergo hydrolysis during these manipulations, resulting in short 

tags.

The SAGE library which was created first, from Tumour 1, thus contained tags 

mainly of 9 bp. Although the later libraries were created using the higher incubation 

temperature and therefore contained longer tags, all three libraries were thus analysed in
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terms of 9 bp tags. Comparisons between my own gastric libraries were straightforward 

but all other libraries down-loaded for comparison had to be re-analysed in terms of 9 bp 

tags rather than the usual 10 bp. Further investigation using the on-line SAGEmap tag 

finder was also affected because the default is 10 bp tags, but these can be achieved simply 

by adding an extra A, C, G or T onto the 3’ end of the 9 bp tag.
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3.2 Discussion
Serial analysis of gene expression (SAGE™) is a patented large-scale mRNA profiling 

technology which produces comprehensive, quantitative and reproducible gene expression 

profiles but which is challenging to perform and interpret.

Like most other researchers, I found that SAGE was difficult and time- 

consuming to set up. SAGE is undoubtedly a valuable technique. However, although the 

individual stages are simple and involve well-established and relatively straightforward 

molecular biological techniques, their combination makes the method complex, and it 

proved to be tricky to set up. As has been clearly demonstrated by the large body of 

literature subsequently published on technical aspects of SAGE (individually referenced 

below and discussed in (Yamamoto et al. 2001)), the problem was not limited to this 

laboratory, where I was the first person to establish the method. Further evidence for the 

difficulty of SAGE is the long time-lag in publications using the technique. Very few 

papers emerged, except from the originating Johns Hopkins laboratories, for the first few 

years after SAGE was described and it has only really been from 2000 onwards that 

primary research papers have emerged, in contrast with reviews, of which there have been 

many discussing SAGE ever since its first description. Indeed, since the initial report in 

1995 by Velculescu et al, a number of conferences and workshops focussed entirely on 

SAGE and its methodology have been held due to popular demand, of which I attended the 

first, in Amsterdam in 1999.

Part of the difficulty in performing SAGE was the requirement for large 

amounts of high quality starting RNA. The original Johns Hopkins protocol requires a 

large quantity of input material: ideally, at least 2.5 pg mRNA, broadly equivalent to 250 

pg total RNA, 250 mg tissue or 2.5 x 107 cultured cells (technical notes, web-sites of 

Ambion and Qiagen). The protocol therefore cannot be used to generate expression 

profiles where RNA is limited, for example, from small tissue biopsies. The RNA must 

also be of high quality, but unfortunately RNA is labile and readily degraded enzymatically 

by ribonucleases (Simpson 1987) as well as by adverse physical and chemical conditions.

Extraction of RNA may thus be tricky even from cultured cells, the environment of 

which can be controlled by the researcher, but locally this procedure worked well. 

However, RNA purification from clinical material (that is, from patients), was much more 

difficult, as I found to my cost, in time and effort. Because RNA preparation from cells 

was successful, the problem with the clinical samples is unlikely to be due to 

contamination during extraction with exogenous ribonucleases.
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Instead, the problem is highly likely to be due to endogenous ribonucleases. This 

may relate partly to the specific tissue of origin. It is well-recognised that the pancreas and 

spleen are rich in ribonucleases (technical literature on the web-site of Ambion, a company 

which specialises in working with RNA). Although published literature on the levels of 

ribonucleases in gastric tissue is scanty, their presence in abundance might be predicted 

from the normal digestive functions of the stomach (see Section 1.2.1), which has 

previously been described as an “intractable tissue source rich in degradative enzymes” 

(Simpson 1987). Scientists with Ambion also report problems in extracting RNA from 

stomach. They do not know whether this relates to a high nuclease content or to poor 

samples (personal communication, Nicola Parsons, Ambion) but this is at least consistent 

with my findings. In addition, ribonucleases are also activated during and after surgery 

through tissue damage and death. The solution to obtaining good quality RNA for SAGE 

(or for other methods of studying gene expression) from clinical material, beyond the 

routine precautions taken to avoid ribonuclease contamination, is therefore probably to 

retrieve, dissect and sample tissue from the surgical specimen as swiftly as possible. 

Nevertheless, as I also found, an analytical agarose gel of the total RNA sample remains 

mandatory to verify RNA quality and quantity prior to further experiments. In addition, 

commercial products have since become available which are intended to prevent or 

minimise RNA degradation in clinical samples during transport and initial storage, such as 

RNAlater from Ambion. I have no personal experience of using these solutions, but they 

may well be helpful.

The original requirement for large amounts of high quality RNA has 

stimulated the development of new protocols using much less starting material.

Various technical modifications now enable SAGE to be applied to much smaller 

quantities of RNA: at least 100-fold, and possibly up to 5000-fold, less may be needed 

(Velculescu et al. 2000). Since my SAGE libraries had already been generated by the time 

these adaptations were described, I did not use them, but they probably now represent the 

methods of choice. SADE (a SAGE Adaptation for Downsized Extracts) uses Dynal’s 

oligo(dT)-coated magnetic beads to capture polyA+ mRNA directly from the total RNA or 

cell lysate (Virion et al. 1999). This procedure substitutes for mRNA purification then 

cDNA synthesis with biotinylated oligo(dT) followed by capture onto streptavidin-coated 

Dynabeads. All of the steps from mRNA isolation through to tag release are thus 

performed directly on the beads, which significantly reduces sample loss. Before 

managing to get SAGE proper working, I had independently thought of and tried this 

modification, which is not surprising since the beads were already commercially available 

from and advertised by Dynal. Unfortunately, however, no ditags resulted after PCR and
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the attempt was abandoned. Oligo(dT), in the form of a coating inside microcentrifuge 

tubes (Roche’s Streptavidin-Coated Tubes), is used to similar effect in the other 

adaptations microSAGE (Datson et al. 1999) and miniSAGE (Ye et a l 2000).

Further modifications include additional PCR steps. In SADE and microSAGE, the 

ditags generated by the first round of large-scale PCR amplification are re-amplified using 

extra PCR cycles (Datson et al. 1999; Virion et al. 1999). In contrast, SAGE-Lite (Peters 

et al. 1999) and PCR-SAGE (Neilson et al. 2000) have adapted Clontech’s SMART™ 

system to generate PCR-amplified cDNA, to increase the amount of input material before 

proceeding to SAGE proper.

Other technical modifications have improved the efficiency of intermediary 

SAGE reactions. Most of these adaptations were tested, and in some cases incorporated, 

in this project. They have been described and, where appropriate, discussed in detail, in 

the preceding Sections 2.2.3.1 and 3.1.2. The adaptations include the use of biotinylated 

primers for PCR of the 102 bp ditags to obtain purer 22-26 bp ditag preparations (Powell

1998) and heating the 22-26 bp ditag ligation reaction prior to gel separation of the 

concatemers (Angelastro et al. 2000), both with the aim of obtaining longer cloned 

concatemer sequences.

Qiagen spin columns have been used by myself and other researchers in preference 

to phenol/chloroform extraction and ethanol precipitation in various SAGE steps. 

Angelastro et al found that such columns not only are faster and simpler but also remove 

impurities and improve the efficiency of subsequent enzymatic reactions (Angelastro et al. 

2000).

More recently, it has been shown that the 22-26 bp ditags are vulnerable to 

denaturation under low-salt conditions or with slight increases in temperature (Margulies et 

al. 2001). AT-rich ditags have weaker intermolecular bonds and thus lower melting 

temperatures, so are more likely to denature, which may result in a GC-content bias. It has 

therefore been recommended that the the 22-26 bp ditags are kept not at room temperature 

but are instead kept on ice and centrifuged at 4°C (Margulies et al. 2001).

The technical difficulty involved in setting up SAGE is also reflected in the 

recent release of a full commercial SAGE kit and in the increasing detail in and size 

of the SAGE protocols. Invitrogen now sell a kit called I-SAGE™ which provides all of 

the numerous reagents required in a high quality form and uses Virion’s adaptation of 

Dynal’s oligo dT-coated magnetic beads (Virion et al. 1999). Although the RNA must still 

be of high quality, the amount required is around 10 to 100-fold less than for original 

SAGE protocol. SAGE’s complexity is also shown by the increasing length of the various 

versions of the Johns Hopkins protocol, especially its trouble-shooting section: the protocol
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is now a total of 27 pages long. Invitrogen’s I-SAGE™ manual contains 73 pages, but 

includes many novel and extremely useful verification steps to check the success of each 

stage of SAGE.

The software available for analysing SAGE data continues to improve. The

SAGE software from the Johns Hopkins laboratory has been regularly updated. 

Alternative programs for the analysis of tags have been developed, including eSAGE 

(Margulies et a l 2000) and USAGE (van Kampen et a l 2000), plus ExProView (Larsson 

et a l 2000) which provides direct visualisation of results. Of these, I have tried only 

eSAGE but since its statistical analysis produced some results which were clearly 

incorrect, with p-values over 1, for example, I did not persist with it. The statistical basis 

for designing and analysing SAGE experiments has also been investigated and discussed in 

detail (Audic et a l 1997; Kal et al 1999; Man et a l 2000; Stollberg et a l 2000).

Once the SAGE libraries have been produced and analysed, individual SAGE tags 

may be selected for further study. The National Center for Biotechnology Information 

(NCBI)’s web-based bioinformatics facilities continue to be extremely useful (Wheeler et 

al 2001). In particular, the relatively recent SAGEmap database both enables tag-to-gene 

matching across curated sequences and EST databases and permits the investigation of the 

expression of individual tags across numerous publicly available SAGE libraries (Lai et al

1999). Unigene remains a most valuable first port-of-call for information about individual 

transcripts (Wheeler et a l 2001). The developing Gene Ontology (the word is derived 

from Greek and literally means study of being) databases provide a further resource 

(Ashbumer et a l 2000). Most genes specifying core biological functions are shared by all 

eukaryotes and knowledge of these proteins can often be transferred between organisms. 

Three ontology datasets are being constucted and made available on the World Wide Web: 

biological process, molecular function and cellular component, which should ease the 

study of, in particular, less well-characterised genes (Ashbumer et a l 2000).

Tags either lacking a matching gene or with an incorrect match may be 

generated in error by SAGE. Occasional sequencing errors are inevitable during SAGE 

(Stollberg et a l 2000). SAGE results usually include a table which lists, amongst other 

library creation statistics, the absolute number of unique tags obtained (see next chapter, 

Table 4.1). This is usually regarded as a slight over-estimate of the tme number of different 

genes expressed and a correction which removes around 7% of tags is sometimes applied 

(Velculescu et a l 1995; Zhang, L et a l 1997; Velculescu et a l 2000), although obviously 

the figure varies according to the fidelity of the sequencing service used. Since such errors 

tend to be random, the tags expressed at high numbers are unlikely to be significantly 

affected; tags present only once are more suspect.
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A further source of potential problems arises when the ditags are split by the SAGE 

program into two tags. The assumption is that the tags are of equal length. However, if, 

say, one tag had been 10 bp long and the other 8 bp, then splitting an 18 bp (22 bp 

effectively, taking two nucleotides from the CATG sites on either side) ditag would lead to 

one correct tag and one incorrect one, with the last nucleotide being erroneous. This may 

explain some of the findings in the next chapter, where there are multiple tags, differing 

only in the last nucleotide, for some of the high abundance genes (see next chapter, Table 

4.2, e.g. for gastrin). I have not seen this problem identified or discussed elsewhere.

Lastly, the use in vivo of alternative polyadenylation cleavage sites downstream of 

a single polyadenylation signal may lead to more than one SAGE tag from what is in 

essence a single mRNA species. A recent paper calculated that 2.8% of human transcripts 

show two or more different SAGE tags corresponding to a single gene because of 

alternative cleavage site selection alone. Other forms of variant processing such as 

alternative exon splicing creates similar difficulties.

Further information on tags lacking a matching gene is provided by methods 

based on RT-PCR. Investigation of individual tags is relatively straightforward where the 

tag clearly corresponds to one gene but may be more difficult where either no matching 

gene or multiple matches exist. This problem can be addressed by RT-PCR using the short 

SAGE tag as a primer (Matsumura et al. 1999; van den Berg et al. 1999; Chen et a l 2000). 

This generates longer, more specific, 3' cDNA fragments which facilitate investigation of 

the gene, initially through sequencing and further on-line analysis, and which can also be 

used to check whether the tag is truly differentially expressed between samples of interest 

(van den Berg et a l 1999).

Conclusion. SAGE is an excellent method of large-scale mRNA expression 

profiling. Although the initial effort involved in setting up SAGE was considerable, 

requiring time, technical expertise and large amounts of high quality input RNA, the result 

has been a robust and reproducible technology, and the experience of establishing SAGE 

has given me an in-depth training in molecular biology and bioinformatics. SAGE 

produces libraries which are extremely valuable, providing data which are truly 

comprehensive and quantitative, and which enable the identification of novel genes, as I 

hope the next chapters will demonstrate: Chapter 4 describes the gene expression profiles 

of gastric carcinoma and normal stomach created by SAGE; and in Chapter 5 a novel gene 

which is highly expressed in the stomach is characterised in detail.
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Figure 3.1: Schematic diagram of serial analysis of gene expression (SAGE)

This diagram provides a simplified explanation of the SAGE method (Section 2.2.3).



■ mRNA -» biotinylated cDNA
CATG
GTAC

AAAAA
TTTTTbiotin

■ Nlalll digest (CATG), bind to beads, ligate to 
linker then BsmFl digest (XXXX)
linkerXXXXCATG
linkerXXXX

GTAC

AAAAA
TTTTTbiotin

strept
avidin

■ Ligate linker pairs then PCR
linkerl XXXXCATG C ATGXXXXI i n ker2
I i n ke r 1XXXXGTAC GT ACXXXXI i n ker2

■ Nlalll digest to give ditags and purify
■ ■ ■ ■ ■ c a t g

GTAC r  ■

■ Ligate ditags, purify concatemers then clone
c  ATG I c  ATG I CATG
GTAC 9 M B  GTAC B H M H B g TAC

■ Sequence clones then use computer 
software and Genbank databases to analyse 
tags



128

Figure 3.2: Gel electrophoresis of total RNA

The quality (and, to a lesser extent, yield) of total RNA was assessed by electrophoresis on 

a 1% agarose gel (Section 2.2.2.6), of which an example is shown here. The two lanes on 

the left hand side contain DNA molecular weight markers (100 bp ladder and AHindlll).

The total RNA run in the next four lanes contains two strong, distinct bands of 

ribosomal RNA visible at around 4718 and 1847 nucleotides, which represent the 28S and 

18S subunits. The light background smearing includes mRNA, which constitutes only 1- 

5% of total RNA. The low molecular weight bands comprise transfer RNA.

The total RNA run in the lane on the right hand side lacks the two distinct 

ribosomal bands but instead shows significant heavy smearing which indicates RNA 

degradation: this sample should therefore not be used for further analysis.



ribosomal RNA 
band at 4.7 kb

ribosomal RNA 
band at 1.8 kb
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Figure 3.3: Gel electrophoresis of small- and large-scale PCRs of 102 bp ditags

Mid-way through the SAGE procedure there is a PCR step which should result in 102 bp 

ditag PCR products (section 2.2.3.1.9). These contain a central SAGE ditag of 22-26 bp 

flanked on both sides by linker oligonucleotides of 40 bp. The PCR usually also produces 

a background band which runs at 80 bp and comprises ligated linker pairs only. The PCR 

products are analysed and isolated by electrophoresis on 12% polyacrylamide gels, of 

which examples are shown here. The two lanes on the left hand side contain DNA 

molecular weight markers (Markers V and VIII).

The upper picture shows the initial small-scale, analytical, gel. This is used to 

check whether the 102 bp ditag is present at all in the positive ligations (current test SAGE 

reaction and previous positive SAGE reaction). The two negative control lanes (ligation 

reaction without ligase enzyme, and no DNA) are used to exclude prior PCR cross­

contamination and must lack a PCR product.

The lower picture shows the gel of a large-scale PCR preparation (approximately 

100 PCR reactions loaded per gel). The 102 bp band is excised and fragmented then its 

ditag DNA is purified for further downstream manipulation. The PCR reactions had been 

purified using Qiagen columns before loading on the gel, hence the absence of lower 

molecular weight species such as primers.



desired 102 bp ditag band

background 80 bp band 
containing ligated linkers only

primers

<—  102 bp ditags

<—  background 
80 bp band
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Figure 3.4: Gel electrophoresis of 26 bp ditags and of concatemer ligation

The large-scale PCR preparation of the 102 bp SAGE ditag is digested with Nlalll. This 

releases the 22-26 bp SAGE ditag, leaving the residual 40 bp oligonucleotide linkers, plus 

partially and completely undigested larger species. These products were separated by 12% 

PAGE, of which an example is shown here, above. The two lanes on the left hand side 

contain DNA molecular weight markers (Markers V and VIII).

The band of 22-26 bp SAGE ditags is then excised and purified. The short ditags 

are then ligated, with the aim of producing long concatemers. These are separated by 8% 

PAGE, of which an example is shown here, below. The four lanes on the left contain DNA 

molecular weight markers (Markers V and VIII plus 1 kb and 100 bp ladders). The 

smeared concatemer DNA which is over 500 bp in size is excised and purified for 

subsequent cloning.



undigested 102 bp ditags

partially digested single 
linker plus 26 bp ditag

released linkers

26 bp ditags: for excision 
from gel & purification

long smear of concatemers 
(ligated 26 bp ditags):
portion > 500 bp for excision 
from gel & purification
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Figure 3.5: Gel electrophoresis of PCR products of cloned concatemers

Single bacterial colonies containing the cloned concatemers are picked and subjected to 

PCR amplification with primers specific to the vector on either side of the polylinker. The 

products are separated by electrophoresis on a 2% agarose gel, of which an example is 

shown here. The lane on the left hand side contains a DNA molecular weight marker (100 

bp ladder).

The aim is to achieve PCR products in most lanes of variable size but of at least 

500 bp, since these should contain at least 15 tags (around 200 bp of flanking vector plus 

12-13 bp per tag). Some colonies inevitably lack inserts, resulting in a 200 bp PCR 

product. Others often contain only short concatemer inserts. The longer PCR products are 

then purified for sequencing.



desired PCR product 
of vector with long 
cloned concatemer 
insert: here, 900 bp

non-desired PCR 
product of background 
vector without insert:
around 200 bp
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Figure 3.6: Sequence of cloned concatemer containing ditags separated by CATGs

This is an example of sequencing of the insert sequence. The insert is delineated by the 

first and last CATG sites. At the start and the end, there is vector sequence; and the last 

segment, which contains mostly Ns, represents the end of the sequence. The insert itself is 

composed of ditags joined serially and separated by the CATG tetranucleotide. At position 

481, the expected CATG is lacking but its expected place contains CTTG which 

presumably represents sequencing error.

When this sequence is put into the SAGE program, the ditags are identified, 

extracted and split into tags (simply by dividing the ditags down the middle). A catalogue 

of all tags present is then assembled.



A C A C T A T A G A A T A C T C A A G C T T G H H g A C C T T G G A T T T T T T A C A T ^ jg C  

AGGCTGGAGGGAAAGGG( ’M hMg CATCAAAAAGATTATTc B M i CCATTG 
TA r.Tr.GTGTCGTG— G TG G C CrTnG G G G TTTC A CB B B A GGTCAGGAG 

ATTAGAGGgrtWdGGAGTGGAGTGGCAGGTTM B S l GTGGTGCACACTCTGT 

CGCC— ACGCAGGGAGAATACGTAC— GTGAAACCCTGTTTGTTCC 

B M ir iTCCCCGTACAGAAGAGCACTM GCGGAGGTGGAGTTTCGC—  

AGGGAGGGAGTGCAATGG— lATGTAAAAAATTAGCCAGGM M r i GCAAA 

ACCCCGCACGTGTA— GTTGTGGTTAATTTTACAThfail«dTGAGATCCA 

GAATAGGTAGM W d TCCATTAAGCCTAGATGTGfcdHliMGTACCGTATTCTC

c c c t g c SEShEIa t c g g g c c c g g a g t t t t a c c c t t g a a t t a a a a t t a a g g c t  

g t t B M B c c c a t c g t c c t c a g c c t t c MBhMc c c c t t g c a g g t g c a g c a c B  

Ic t t c c c c a g c a c c g g t t g g H CCTgC C A C C G A C T T T T C G A T T j 
GCAGGTCGACTCTAAGGATCCCCGGTACCGAGCTCGAATTCCCCTATAGN 

GAGTCGGNTTACAATCNCTGGCCGGGTTTTTNAAANTNNNNNTNNNNNCN 

NNGGTANNTNTTTTCNCTNNNNNTTNNTTNNNTCNTNNNNTNNTNTNNNT 
NTNNNNNNTTNTCNNTNTNCCTTTCNNNNNCNNNTNTNNNNNNNNNNNNT 

CNTNCNNNCTNNNTNNNTNTNNNTNNNNNTTTNNNNCNNTNCTNNT 8 4 6

5 0

100
1 5 0

200
2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

5 5 0

6 0 0

6 5 0

7 0 0

7 5 0

8 0 0
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Figure 3.7: SAGE project report linked to genetic database

This is an example of a SAGE tag report including gene matches. The BOLD HEADINGS 
have been added to ease interpretation. For SAGE project files, first the parameters are 

specified: the anchoring enzyme is NlaWl, with its CATG recognition site; the tag length is 

9 bp; and the maximum ditag length, over which size any ditags are excluded from 

analysis, is 28 bp. The SAGE program then builds a project database of all possible tags 

(49 = 262,144). Thereafter, the concatemer sequences can be added. Thus the SAGE 

project has been created and used to form a SAGE report: in this case, the project contains 

987 sequences (files). 1806 duplicate ditags have been identified and excluded from 

further analysis. Other “excluded tags” comprise mainly sequences originating from the 

linker oligonucleotides. 8433 tags remain for full analysis in this report, which is saved not 

only as a text file but also as in Microsoft Access database format, which can then be used 

for further analyses such as comparisons with other SAGE libraries or calculations of 

statistical significance.

The tags are then listed, ranked by absolute tag count. For this example report, only 

tags present at an absolute abundance of 30 or more are included. Ordinarily, more tags 

would be reported, eventually down to one tag only. The overall % abundance is also 

listed. The “Tag BaseFour Number” is simply the number in the underlying tag database, 

where A A A A A A A A A  would be 1 and T T T T T T T T T  would be 4 9.

The report has been linked to a gene database. The gene databases are created 

separately from down-loaded Genbank files. When this report was created, the Genbank 

files used were the nine primate gene databases; though these should contain only 

characterised sequences not ESTs, they fill three separate Access databases, each of which 

needs to be linked separately to the SAGE files for analysis of each project. Thus the 

linked genes listed here represent only around one-third of all possibilities.

The number of matches to this tag in the entire database is indicated as “Tags 

Noted”. The number of tags identified at the 3' end of the sequence entry is indicated as 

“Tags Collected,” since in cDNA mode, as used here, only these can be SAGE tags. 

“Trailer” means the six adjacent nucleotides immediately 3’ to the tag, which, if the tag is 

longer than 9 bp, can be used better to identify the gene where there are multiple matches. 

The tag entry for gastrin, which is used as an example throughout this thesis, is 

highlighted. Class A tags were annotated in GenBank as mRNAs, Class B tags as ESTs, 

and Class C tags were not listed as either A or B.



DETAILS OF SAGE REPORT
D a t e :  0 6 - 2 8 - 2 0 0 1
R e p o r t  F i l e  N a m e  =  N : \ s a g e  n e w \ s a g e  s e c o n d  p r o j e c t s \ s a g e  n o r m a l  t r y 2 \ r e p - 1 3 . r p t

DETAILS OF SAGE PROJECT BEING REPORTED
P r o j e c t  #  1
P r o j e c t  F i l e  =  N : \ s a g e  n e w \ s a g e  s e c o n d  p r o j e c t s \ s a g e  n o r m a l  t r y 2 \ t r y 2 . s u m
S e a r c h N a m e  =  t r y 2

A n c h o r i n g  E n z y m e  =  N l a l l l  -  C A T G
T a g  L e n g t h  =  9
D i T a g  L e n g t h  =  2 8
T o t a l  F i l e s  =  9 8 7
T o t a l  T a g s  =  8 4 3 3
T o t a l  D u p l i c a t e  D i m e r s  =  1 8 0 6

T o t a l  t a g s  i n  s e l e c t e d  P r o j e c t s  =  8 4 3 3

MICROSOFT ACCESS FILE TO WHICH SAGE REPORT RESULTS BEING SAVED
T a g  A b u n d a n c e  R e p o r t
M S  A c c e s s  F i l e  N a m e  =  C : \ P R O G R A M  F I L E S \ S A G E 3 0 0 \ S A G E . M D B

LIST OF TAGS WHICH IF PRESENT WOULD BE EXCLUDED FROM FINAL ANALYSIS
E x c l u d e d  T a g s
T a g  S e q u e n c e  T a g  B a s e  F o u r  N u m b e r
C C T A T T A A  8 7  5 7 6 1
C C C G T A C A  8 7 4 1 8 1
C C C T A T T A A  8 9 3 2 9
C C C G T A C A  6 1 2 0 3 7
C C T A T T A A  3 5 1 4 7 3
C C C G T A C A  3 4  9 8  9 3
C C T A T T A A  6 1 3 6 1 7
C C C C G T A C A  8 7 7 4  9
C T A T T A A G  3 5 7  3 1 5
C C G T A C A T  3 5 0  9 9 6
C T A T T A A G  8 1 6 0  6 7
C C C G T A C A  1 0 0 5 2 5 3
C C T A T T A A  9 4 1 2  9 7
C C C G T A C A  9 3 9 7 1 7
C C T A T T A A  1 0 0 6 8 3 3
C C C G T A C A  8 0 8 6 4  5
C T A T T A A G  8 8 1 6 0 3
C C G T A C A T  8 7 5 2 8 4
A C T A T T A A  8 5 9 3 7 7
T C C G T A C A  9 0 6 9 4  9
G C T A T T A A  8 9 2 1 4  5
G C C G T A C A  8  9 0 5 6 5
T C T A T T A A  9 0 8 5 2 9
A C C G T A C A  8 5 7 7  9 7
C A T A T T A A  8 7 1 6 6 5
C T C G T A C A  8 8 2 3 7 3
C G T A T T A A  8 7  9 8 5 7
C T T A T T A A  8 8 3 9 5 3
C A C G T A C A  8 7 0 0 8 5
C G C G T A C A  8 7 8 2 7 7
C C A A T T A A  8 7 2 6 8 9
C C T G T A C A  8 7  6 2 2 9
C C C A T T A A  8 7 3 7 1 3
C C G G T A C A  8 7 5 2 0 5
C C G A T T A A  8 7  4  7  3 7
C C A G T A C A  8 7 3 1 5 7
C C A T T A A G  8 7 3 4 1 1
C C G T A C A T  8 7 5 2 8 4

T o t a l  t a g s  a f t e r  e x c l u d i n g  t a g s  =  8 4 3 3

NUMERICAL LIST OF TAGS PRESENT (REPORT REQUESTED FOR ONLY THOSE TAGS 
PRESENT IN PROJECT AT AN ABSOLUTE ABUNDANCE OF 30 OR MORE)

Count Percent Tag Sequence Tag BaseFour Number
6 5 9  7 . 8 1 4 5

G e n e s  i n  C l a s s  =  1
C u m u l a t i v e  G e n e  C o u n t

C T C C C C C A A  1 2 0 1 4  5
T a g s  i n  C l a s s  =  6 5 9
1  *  C u m u l a t i v e  T a g  C o u n t  =  6 5 9



1 8 1  2 . 1 4 6 3  A A G G G A G C A  1 0 7 8 9
G e n e s  i n  C l a s s  = 1  *  T a g s  i n  C l a s s  =  1 8 1
C u m u l a t i v e  G e n e  C o u n t  = 2  *  C u m u l a t i v e  T a g  C o u n t  =  8 4 0

1 4 3  1 . 6 9 5 7
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

1 1 2  1 . 3 2 8 1
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

1 0 1  1 . 1 9 7 6
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

9 2  1 . 0 9 0 9
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

8 5  1 . 0 0 7 9
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

8 0  0 . 9 4 8 6
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

7 7  0 . 9 1 3
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

7 1  0 . 8 4 1 9
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

6 2  0 . 7 3 5 2
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

5 4  0 . 6 4 0 3
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

4 9  0 . 5 8 1
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

4 7  0 . 5 5 7 3
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

4 6  0 . 5 4 5 4
4 6  0 . 5 4 5 4

G e n e s  i n  C l a s s  = 2  *
C u m u l a t i v e  G e n e  C o u n t  =

4 4  0 . 5 2 1 7
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

4 2  0 . 4 9 8
4 2  0 . 4 9 8

G e n e s  i n  C l a s s  = 2  *
C u m u l a t i v e  G e n e  C o u n t  =

3 6  0 . 4 2 6 8
3 6  0 . 4 2 6 8

G e n e s  i n  C l a s s  = 2  *
C u m u l a t i v e  G e n e  C o u n t  =

3 5  0 . 4 1 5
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

3 4  0 . 4 0 3 1
G e n e s  i n  C l a s s  = 1  *
C u m u l a t i v e  G e n e  C o u n t  =

C T G G C C C T C  1 2 5 2 7 8
T a g s  i n  C l a s s  =  1 4 3
3  *  C u m u l a t i v e  T a g  C o u n t  =

G C T G G A G G A  1 6 2 3 4  5
T a g s  i n  C l a s s  =  1 1 2
4  *  C u m u l a t i v e  T a g  C o u n t  =

T C C C T A T T A  2 1 8 9 4 1
T a g s  i n  C l a s s  =  1 0 1
5  *  C u m u l a t i v e  T a g  C o u n t  =

T C C C C G T A C  2 1 8 5 4  6
T a g s  i n  C l a s s  =  9 2
6  *  C u m u l a t i v e  T a g  C o u n t  =

A T G T A A A A A  6 0 4 1 7
T a g s  i n  C l a s s  =  8 5
7  *  C u m u l a t i v e  T a g  C o u n t  =

G G G C T G G G G  1 7 3 9 9 5
T a g s  i n  C l a s s  =  8 0
8  *  C u m u l a t i v e  T a g  C o u n t  =

T C A T T C T G A  2 1 6 9 5 3
T a g s  i n  C l a s s  =  7 7
9  *  C u m u l a t i v e  T a g  C o u n t  =

C C A C T G C A C  8 3 8 5 8
T a g s  i n  C l a s s  =  7 1
1 0  *  C u m u l a t i v e  T a g  C o u n t

C C C A T C G T C  8  6 8 9 4
T a g s  i n  C l a s s  =  6 2
1 1  *  C u m u l a t i v e  T a g  C o u n t

T G T G T T G A G  2 4  4  7 0 7
T a g s  i n  C l a s s  =  5 4
1 2  *  C u m u l a t i v e  T a g  C o u n t

C G C C G C C G G  1 0 4 0 2 7
T a g s  i n  C l a s s  =  4 9
1 3  *  C u m u l a t i v e  T a g  C o u n t

G C C G A G G A A  1 5 3 7  6 1
T a g s  i n  C l a s s  =  4 7
1 4  *  C u m u l a t i v e  T a g  C o u n t

C C C G T C C G G  8  8  9 2 3
G T A C G T A T T  1 8 1 9 6 8

T a g s  i n  C l a s s  =  9 2
1 6  *  C u m u l a t i v e  T a g  C o u n t

G A A A T A A A G  1 3 1 8 4 3
T a g s  i n  C l a s s  =  4 4
1 7  *  C u m u l a t i v e  T a g  C o u n t

A A A T C C T G G  3 4  5 1
G G C T G G G G G  1 7 1 6 9 1

T a g s  i n  C l a s s  =  8 4
1 9  *  C u m u l a t i v e  T a g  C o u n t

G T G A A A C C C  1 8 8 4  3 8
G T G A T C A G C  1 8  9 2 5 8

T a g s  i n  C l a s s  =  7 2
2 1  *  C u m u l a t i v e  T a g  C o u n t

A A G G T G G A G  1 1 1 7 1
T a g s  i n  C l a s s  =  3 5
2 2  *  C u m u l a t i v e  T a g  C o u n t

G C G G A G G T G  1 5 7 8 7 1
T a g s  i n  C l a s s  =  3 4
2 3  *  C u m u l a t i v e  T a g  C o u n t

9 8 3

1 0 9 5

1 1 9 6

1 2 8 8

1 3 7 3

1 4 5 3

1 5 3 0

1 6 0 1

1 6 6 3

1 7 1 7

1 7 6 6

1 8 1 3

1 9 0 5

1 9 4 9

2 0 3 3

2 1 0 5

2 1 4 0

2 1 7 4



3 2  0 . 3 7 9 4  T T C C C C C A A  2 5 1 2 1 7
3 2  0 . 3 7 9 4  T T G G T C C T C  2 5 6 8 6 2

G e n e s  i n  C l a s s  = 2  *  T a g s  i n  C l a s s  =  6 4
C u m u l a t i v e  G e n e  C o u n t  = 2 5  *  C u m u l a t i v e  T a g  C o u n t  =  2 2 3 8

G e n e s  i d e n t i f i e d  i n  p r o j e c t  =  2 5

GENETIC DATABASE TO WHICH THIS SAGE REPORT LINKED
DataBase Link
D a t a b a s e  =  n : \ s a g e  n e w \ s a g e  d a t a b a s e s \ a p r 0 1 \ a p r 0 1 _ 9 \ G E N E T A G . d u m

NUMERICAL LIST OF TAGS PRESENT WITH CORRESPONDING DATABASE MATCHES 
(REPORT REQUESTED AN ARBITRARY LIMIT OF 10 MATCHING GENE ENTRIES) 

Tag Count Abundance (%) Tag Sequence Tag Base Four Number
6 5 9

N o t e d  T a g s  =
7 . 8 1 4 5 C T C C C C C A A  1 2 0 1 4 5

C o l l e c t e d  T a g s  =  0

1 8 1
N o t e d
L 3 8 5 6 2

X 5 7 8 2 4

X 5 7 8 2 3

X 5 7 8 2 2

X 5 7 8 2 1

X 5 7 8 2 0

X 5 7 8 1 8

X 5 7 8 1 7

X 5 7 8 1 6

X 5 7 8 1 5 ,

2 . 1 4 6 3  
T a g s  =  4 5

A A G G G A G C A  1 0 7 8 9
C o l l e c t e d  T a g s  =  2 8

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  3 4 6
H u m a n  c l o n e  r e v l 6 / 2 0 F a b ,  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A ,

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 5 8
H u m a n  r e a r r a n g e d  immunoglobulin lambda light chain mRNA.

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 5 8
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 5 6
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 5 4
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 8 7
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 5 5
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 5 2
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 6 8
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

C l a s s  A ,  T r a i l e r  C C G T G G ,  P o s i t i o n  6 6 3
H u m a n  r e a r r a n g e d  i m m u n o g l o b u l i n  l a m b d a  l i g h t  c h a i n  m R N A .

1 4 3  1 . 6 9 5 7  C T G G C C C T C  1 2 5 2 7 8
N o t e d  T a g s  =  7  C o l l e c t e d  T a g s  =  2
X 5 2 0 0 3 ,  C l a s s  A ,  T r a i l e r  G G C A C C ,  P o s i t i o n  8 8  

H . s a p i e n s  pS2 p r o t e i n  g e n e .
X 0 0 4 7 4 ,  C l a s s  A ,  T r a i l e r  G G C A C C ,  P o s i t i o n  8 8

H u m a n  p S 2  m R N A  i n d u c e d  b y  e s t r o g e n  f r o m  h u m a n  b r e a s t  c a n c e r  c e l l

1 0 1 1 . 1 9 7 6 T C C C T A T T A  2 1 8  9 4 1
N o t e d T a g s  =  4 C o l l e c t e d  T a g s  =  0

8 5  1 . 0 0 7 9  A T G T A A A A A  6 0 4 1 7
N o t e d  T a g s  =  7  C o l l e c t e d  T a g s  =  1
A L 1 3 7 5 2 8 ,  C l a s s  A ,  T r a i l e r  G G A A A A ,  P o s i t i o n  4 0 6 4

H o m o  s a p i e n s  m R N A ;  c D N A  D K F Z p 4 3 4 P 1 8 1 8  ( f r o m  c l o n e  D K F Z p 4 3 4 P 1 8 1 i

8 0  0 . 9 4 8 6  G G G C T G G G G  1 7 3 9 9 5
N o t e d  T a g s  =  1 4  C o l l e c t e d  T a g s  =  2
Z 4 9 1 4 8 ,  C l a s s  A ,  T r a i l e r  T C C T C C ,  P o s i t i o n  5 7 9  

H . s a p i e n s  m R N A  f o r  ribosomal protein L29.
V 0 0 4 8 8 ,  C l a s s  C ,  T r a i l e r  A G G G A G ,  P o s i t i o n  1 0 2 0  

H u m a n  a l p h a - g l o b i n  g e r m  l i n e  g e n e .

7 7
N o t e d  T a g s  =

0 .  9 1 3 T C A T T C T G A  2 1 6 9 5 3
C o l l e c t e d  T a g s  =  0

7 1 0 . 8 4 1 9 C C A C T G C A C  8 3 8 5 8



N o t e d  T a g s  =  9 9 4  C o l l e c t e d  T a g s  =  2 8
X 8 3 3 0 1 ,  C l a s s  A ,  T r a i l e r  T C C A G C ,  P o s i t i o n  1 7 2 2  

H . s a p i e n s  S M A 5  m R N A .
X 8 3 2 9 9 ,  C l a s s  A ,  T r a i l e r  T C C A G C ,  P o s i t i o n  1 2 5 2

H . s a p i e n s  S M A 3  m R N A .
X 7 7  6 2 6 ,  C l a s s  C ,  T r a i l e r  T C C A G C ,  P o s i t i o n  4

H . s a p i e n s  s i m p l e  s e q u e n c e  r e p e a t  r e g i o n  c l o n e  9 q 3 f l 0 .
Z 4 6 6 3 2 ,  C l a s s  A ,  T r a i l e r  T C C A G C ,  P o s i t i o n  3 4 2 2

H . s a p i e n s  H S P D E 4 C 1  g e n e  f o r  3 ' , 5 ' - c y c l i c  A M P  p h o s p h o d i e s t e r a s e .
Z 7 7 9 8 5 ,  C l a s s  C ,  T r a i l e r  T C C A G C ,  P o s i t i o n  1 5 5

H . s a p i e n s  f l o w - s o r t e d  c h r o m o s o m e  6  H i n d l l l  f r a g m e n t ,  S C 6 p A 6 B 4 .  
Z 7 8 9 6 3 ,  C l a s s  C ,  T r a i l e r  T C C A G G ,  P o s i t i o n  1 3 8

H . s a p i e n s  f l o w - s o r t e d  c h r o m o s o m e  6  T a q I  f r a g m e n t ,  S C 6 p A l F l l .
A L 4 4 2 0 8 5 ,  C l a s s  A ,  T r a i l e r  T C C A C C ,  P o s i t i o n  2 1 3 6  

H o m o  s a p i e n s  m R N A ;  c D N A  D K F Z p 5 4 7 l 0 8 4  
A L 3 9 0 1 7 4 ,  C l a s s  A ,  T r a i l e r  T C C A G C ,  P o s i t i o n  

H o m o  s a p i e n s  m R N A ;  c D N A  D K F Z p 5 4 7 J 1 8 4  
A L 3 5 3 9 5 1 ,  C l a s s  A ,  T r a i l e r  T C C A G C ,  P o s i t i o n

H o m o  s a p i e n s  m R N A ;  c D N A  D K F Z p 7 6 l A 0 4 2 3  ( f r o m  c l o n e  D K F Z p 7 6 1 A 0 4 2 3 ) .  
A L 1 6 1 9 9 4 ,  C l a s s  A ,  T r a i l e r  T C C A G C ,  P o s i t i o n  1 4 0 5

H o m o  s a p i e n s  m R N A ;  c D N A  D K F Z p 5 6 4 A 0 7 7 2  ( f r o m  c l o n e  D K F Z p 5 6 4 A 0 7 7 2 ) ;

( f r o m  c l o n e  D K F Z p 5 4 7 I 0 8 4 ) .  
3 5 0 3

( f r o m  c l o n e  D K F Z p 5 4 7 J 1 8 4 ) .  
2 7 5 0

6 2  0 . 7 3 5 2  C C C A T C G T C  8  6 8  9 4
N o t e d  T a g s  =  6  C o l l e c t e d  T a g s  =  1
X 1 5 7 5 9 ,  C l a s s  A ,  T r a i l e r  C T A G A A ,  P o s i t i o n  6 1 9

H . s a p i e n s  m i t o c h o n d r i a l  m R N A  f o r  cytochrome c oxidase subunit II.
5 4  0 . 6 4 0 3  T G T G T T G A G  2 4 4 7 0 7

N o t e d  T a g s  =  8  C o l l e c t e d  T a g s  =  3
X 0 3 5 5 8 ,  C l a s s  A ,  T r a i l e r  A G C T T C ,  P o s i t i o n  1 2 8 0

H u m a n  m R N A  f o r  elongation factor 1 alpha s u b u n i t  ( E F - 1  a l p h a ) .
X I 6 8 7 2 ,  C l a s s  C ,  T r a i l e r  A C C T T C ,  P o s i t i o n  1 3 4 7

H u m a n  D N A  f o r  e l o n g a t i o n  f a c t o r  1 - a l p h a  ( c l o n e  l a m b d a - 9 ) .
X 1 6 8 6 9 ,  C l a s s  A ,  T r a i l e r  A G C T T C ,  P o s i t i o n  1 2 4 2

H u m a n  m R N A  f o r  e l o n g a t i o n  f a c t o r  1 - a l p h a  ( c l o n e  C E F 4 ) .

4  7  0 . 5 5 7  3  G C C G A G G A A  1 5 3 7  6 1
N o t e d  T a g s  =  3  C o l l e c t e d  T a g s  =  1
X 5 3 5 0 5 ,  C l a s s  A ,  T r a i l e r  G G C A T T ,  P o s i t i o n  7 9

H u m a n  m R N A  f o r  ribosomal protein S12.
4 6

N o t e d  T a g s  =
0 . 5 4 5 4 C C C G T C C G G  8 8  9 2 3

C o l l e c t e d  T a g s  =  0

4 6
N o t e d  T a g s  =

0 . 5 4 5 4 G T A C G T A T T  1 8 1 9 6 8
C o l l e c t e d  T a g s  =  0

4 4  0 . 5 2 1 7  G A A A T A A A G  1 3 1 8 4 3
N o t e d  T a g s  =  1 7  C o l l e c t e d  T a g s  =  4
A L 1 3 7 3 0 6 ,  C l a s s  A ,  T r a i l e r  T C T G T A ,  P o s i t i o n  1 5 6 0

H o m o  s a p i e n s  m R N A ;  c D N A  D K F Z p 5 8 6 K 1 4 1 7  ( f r o m  c l o n e  D K F Z p 5 8 6 K 1 4 1 7 ) .  
X 1 6 1 1 0  M 2 7 ,  C l a s s  C ,  T r a i l e r  C A C C C A ,  P o s i t i o n  2 2 9 1

H . s a p i e n s  I G H G 3  g e n e  f o r  immunoglobulin heavy chain constant region 
Y 1 4 7 3 7 ,  C l a s s  A ,  T r a i l e r  C A C C C A ,  P o s i t i o n  1 5 9 4

H o m o  s a p i e n s  m R N A  f o r  i m m u n o g l o b u l i n  l a m b d a  h e a v y  c h a i n .
Y 1 4 7 3 5 ,  C l a s s  A ,  T r a i l e r  C A C C C A ,  P o s i t i o n  1 5 5 2

H o m o  s a p i e n s  m R N A  f o r  i m m u n o g l o b u l i n  k a p p a  h e a v y  c h a i n .

4 2 0 . 4 9 8 A A A T C C T G G 3 4 5 1
N o t e d  T a g s  =  3  C o l l e c t e d  T a g s  =  2
X 5 1 6 9 8 ,  C l a s s  A ,  T r a i l e r  G T T T T C ,  P o s i t i o n  4 8 0

H . s a p i e n s  spasmolytic polypeptide ( S P )  m R N A .  
X 9 7 7 9 3 ,  C l a s s  C ,  T r a i l e r  G T T T T C ,  P o s i t i o n  1 8 1

H . s a p i e n s  S M L 1  g e n e  e x o n  4  a n d  f l a n k i n g  r e g i o n s

4 2
N o t e d  T a g s  =

0 .  4 9 8 G G C T G G G G G  1 7 1 6 9 1
C o l l e c t e d  T a g s  =  0

3 6  0 . 4 2 6 8  G T G A A A C C C  1 8 8 4 3 8
N o t e d  T a g s  =  4 1 6 7  C o l l e c t e d  T a g s  =  8 1
U 0 2 0 6 8 ,  C l a s s  A ,  T r a i l e r  C A T C T C ,  P o s i t i o n  9 6  

H u m a n  c l o n e  9  A l u  r e p e a t  m R N A  s e q u e n c e .  
A J 2 2 3 0 7 5 ,  C l a s s  A ,  T r a i l e r  T G T C T C ,  P o s i t i o n  3 4 7 0  

H o m o  s a p i e n s  m R N A  f o r  T R I P  p r o t e i n .
U 0 3 1 1 5 ,  C l a s s  C ,  T r a i l e r  C A T C T C ,  P o s i t i o n  7 7 6 0 1

H u m a n  V  b e t a  T - c e l l  r e c e p t o r  ( T C R B V )  g e n e  l o c u s  
U 7 9 6 5 2 ,  C l a s s  C ,  T r a i l e r  C  ,  P o s i t i o n  1 0 3 8



H u m a n  T r e a c h e r  C o l l i n s  s y n d r o m e  ( T C 0 F 1 )  g e n e ,  e x o n s  1 4 ,  1 5  a n d  1 6 .  
Y 1 5 7 2 4 ,  C l a s s  C ,  T r a i l e r  G T C T C T ,  P o s i t i o n  1 8 3 4 5

H o m o  s a p i e n s  S E R C A 3  g e n e ,  e x o n s  1 - 7  ( a n d  j o i n e d  C D S ) .
X 6 5 7 0 8 ,  C l a s s  C ,  T r a i l e r  T G T C T C ,  P o s i t i o n  6 6 5 1

H . s a p i e n s  R R M 1  g e n e  f o r  r i b o n u c l e o s i d e  d i p h o s p h a t e  r e d u c t a s e  M l  
Z 2 9 0 9 6 ,  C l a s s  C ,  T r a i l e r  T G T C T C ,  P o s i t i o n  1 9 3 1

H . s a p i e n s  ( h R P B 2 5 )  g e n e  f o r  R N A  p o l y m e r a s e  I I  s u b u n i t  e x o n  1 .  
A F 0 4 4 9 6 7 ,  C l a s s  C ,  T r a i l e r  C G T C T C ,  P o s i t i o n  1 2 0 9

H o m o  s a p i e n s  p o l i o  v i r u s  r e l a t e d  p r o t e i n  2  g e n e ,  e x o n s  8  a n d  9 .  
A F 0 4 4 9 6 2 ,  C l a s s  C ,  T r a i l e r  T G T C T C ,  P o s i t i o n  1 2 5 5

H o m o  s a p i e n s  p o l i o  v i r u s  r e l a t e d  p r o t e i n  2  g e n e ,  e x o n  2 .
X 7 1 8 7 4 ,  C l a s s  C ,  T r a i l e r  C G T C T C ,  P o s i t i o n  1 3 6 7 0

H . s a p i e n s  g e n e s  f o r  p r o t e a s o m e - l i k e  s u b u n i t  ( M E C L - 1 ) ,

3 6  0 . 4 2 6 8  G T G A T C A G C  1 8 9 2 5 8
N o t e d  T a g s  =  4  C o l l e c t e d  T a g s  =  3
A J 0 0 1 4 0 2 ,  C l a s s  A ,  T r a i l e r  T G C C T G ,  P o s i t i o n  3 5 5 8

Homo sapiens mRNA for MUC5AC protein ( t r a c h e a l ) ,  p a r t i a l .
A J 0 0 1 4 0 3 ,  C l a s s  C ,  T r a i l e r  T G C C T G ,  P o s i t i o n  9 0 8 5

H o m o  s a p i e n s  m N R A  f o r  M U C 5 A C  p r o t e i n  ( p l a c e n t a l ) .
Z 4 8 3 1 4 ,  C l a s s  A ,  T r a i l e r  T G C C T G ,  P o s i t i o n  3 1 6 6

H . s a p i e n s  m R N A  f o r  a p o m u c i n .

3 5  0 . 4 1 5  A A G G T G G A G  1 1 1 7 1
N o t e d  T a g s  =  1 1  C o l l e c t e d  T a g s  =  1
X 8 0 8 2 2 ,  C l a s s  A ,  T r a i l e r  G A G A T C ,  P o s i t i o n  4 0 3

H . s a p i e n s  m R N A  f o r  O R F .

3 4  0 . 4 0 3 1  G C G G A G G T G  1 5 7 8 7 1
N o t e d  T a g s  =  3  C o l l e c t e d  T a g s  =  1
A J 2 9 4 7 2 9 ,  C l a s s  A ,  T r a i l e r  G A C G G C ,  P o s i t i o n  1 0 3 2

H o m o  s a p i e n s  p a r t i a l  m R N A  f o r  i m m u n o g l o b u l i n  h e a v y  c h a i n  c o n s t a n t

3 2  0 . 3 7 9 4  T T C C C C C A A  2 5 1 2 1 7
N o t e d  T a g s  =  2  C o l l e c t e d  T a g s  =  0

3 2  0 . 3 7 9 4  T T G G T C C T C  2 5 6 8 6 2
N o t e d  T a g s  =  5  C o l l e c t e d  T a g s  =  1
Z 1 2 9 6 2  S 4 5 ,  C l a s s  A ,  T r a i l e r  T G C C C T ,  P o s i t i o n  3 4 8

H . s a p i e n s  m R N A  f o r  h o m o l o g u e  t o  y e a s t  ribosomal protein L41.
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Figure 3.8: UniGene cluster for gastrin

Putative SAGE tag-to-gene matches, and the resulting genes of interest, in this case gastrin, 

were further investigated through NCBI’s UniGene web-site and databases: 

http://www.ncbi.nlm.nih.gov/UniGene/index.html/.

In this case, the UniGene cluster number is Hs. (Homo sapiens) 2681. This number 

is arbitrary and occasionally changes, as the clusters are re-assigned, so the number cannot, 

unlike the gene name itself, be used as a permanent record. The symbol for the gene is 

GAS. Hyperlinks are provided to other databases: LocusLink; the OMIM (On-Line 

Mendelian Inheritance in Man) database, which provides further information on numerous 

individual genes; and HomoloGene, which describes homologous genes in the other model 

organisms included in the UniGene databases, including mouse, rat and cow amongst 

others. The latter are then described in more detail in the “Selected Model Organism 

Protein Similarities.”

Information is then provided on the gene’s chromosomal location and mRNA 

expression pattern. The latter is usually generated from the library source(s) of matching 

ESTs. Curated mRNA/Gene sequences are listed and can be displayed and used to verify a 

putative SAGE tag-to-gene match. The Genbank Accession Number of the original 

reference sequence usually starts, as here, with the characters NM_. Within the 

mRNA/cDNA sequence, the last (3’-most) CATG tetranucleotide is identified and the 

immediately adjacent, down-stream, SAGE tag confirmed. Obviously, ensuring that the 

CATG recognition site of NlalW is truly the most 3’ requires that the mRNA/cDNA 

sequence contains a polyadenylation site (AAU/TAAA) down-stream, as indicated in this 

list by the symbol A surrounded by a square.

Normally, these curated sequences would be followed by matching ESTs, but none 

are listed for gastrin. This is perhaps not surprising since most of the EST libraries are 

derived from cancers, which would not be expected to contain the highly differentiated 

antral tissue containing the G-cells from which gastrin is derived (see Section 1.2.2).

http://www.ncbi.nlm.nih.gov/UniGene/index.html/
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Figure 3.9: SAGEmap entry for the gastrin tag

Tags of interest resulting from SAGE could also be further investigated through NCBI’s 

SAGEmap web-site: http://www.ncbi.nlm.nih.gov/SAGE/. In this case, the tag matched to 

gastrin mRNA. The 9 bp tag (GCTGGAGGA), plus a terminal A, C, G or T, is entered 

into the query box at the top of the page, along with details of the sampled organism and 

Anchoring Enzyme used. The only reliable UniGene Cluster matching to the tag was for 

gastrin (see also Figure 3.8). At the bottom of the page is provided a list of all established 

cDNAs, or ESTs, matching to the tag, plus their orientation (5’ or 3’). In the middle of the 

page, SAGEmap also lists the on-line SAGE libraries in which the tag is present and its 

absolute and relative abundance therein.

For interest, the single library with a relatively high gastrin tag count (103 per 

million) is Duke mhh-1, which was derived from a medulloblastoma, that is, a primitive 

neuro-ectodermal tumour of the cerebellum. This is not surprising: gastrin mRNA has 

previously been demonstrated in 10 out of 11 medulloblastomas (Schaer et al. 1999). 

These tag levels are nevertheless a great deal lower than those in normal gastric antrum, 

where the gastrin tag count was 100-fold higher, at around 10,000 per million.

http://www.ncbi.nlm.nih.gov/SAGE/
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Figure 3.10: Datasheet from New England Biolabs on Tagging Enzyme BsmFl

During SAGE, the tag length is determined at Step 2.2.3.1.6, when the cDNA tags are 

created and released from the magnetic beads by digestion with the tagging enzyme BsmFl. 

As shown here, in the product datasheet from New England Biolabs, BsmFl cleaves 

slightly differently under different conditions. At 65°C, the enzyme cuts at 10/14 bp from 

its recognition site GGGAC, to yield a sticky-end, whereas the figure is 9/13 under other 

conditions, including the lower incubation temperature of 37°C. The latter was 

recommended in initial Johns Hopkins’ protocols, so SAGE tags generated in earlier 

libraries, at 37°C, are shorter than those created using the higher temperature of 65°C.



BsmF I uj m  f

#R0572S 100 units $60 (USA)
#R0572L 500 units $240 (USA)

5 ... G G G A C  (N)10A ... 3"
3 ... C C C T G (N)14a ... 5

Source: Bacillus stearothermophilus F (Z. Chen)

Reaction Buffer: (Supplied with enzyme) NEBuffer 4 + BSA
50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magne~"‘~
dithiothreitol (pH 7.9 @ 253C). Supplement with 100 pg/ml BSA Incubate at 65 C.

Ligation and Recutting: After 10-fold overdigestion with BsmF I, > 95% of the DNA 
fragments can be ligated and recut.

Concentration: 2,000 units/ml. Assayed on pBR322 DNA.

Storage Conditions: 50 mM NaCI, 10 mM Tris-HCI (pH 7.4), 1 mM dithiothreitol, 0.1 mM 
EDTA, 200 pg/ml BSA, and 50% glycerol. Store at -20°C.

Diluent Compatibility: Diluent A

Heat Inactivation: 80"C for 20 minutes.

Note: Occasionally, BsmF I has been shown to cleave the sequence GGGAC(9/13). The 
exact frequency of this occurrence has yet to be determined BsmF I is an isoschizomer of 
Fin I. Incubation at 37°C results in 50% activity.
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4 Large-scale expression profiling o f gastric carcinoma 

and normal stomach by SAGE and its validation
Having described how the method of serial analysis of gene expression was established 

locally, this chapter now presents the large-scale mRNA profiles of gastric adenocarcinoma 

and normal gastric antrum obtained using SAGE. The expression patterns of selected 

candidate genes were validated by Northern blotting and imunohistochemistry.

4.1 Results
4.1.1 Gastric SA GE profiles

4.1.1.1 Generation of gastric SAGE tag libraries

SAGE libraries were created from two gastric adenocarcinomas, of the same subtype 

(distal and intestinal) but from different patients, and from normal gastric antral mucosa. 

After excluding inappropriate tags (resulting from duplicate ditags or linker sequences), a 

total of 29,480 tags, or transcripts, derived from 10866 different genes (unique tags), was 

obtained. The libraries from Tumour 1, Tumour 2 and normal stomach contained 10,222, 

10,825 and 8,433 tags respectively, as shown in Table 4.1. To permit more direct 

comparison, each library was normalised to a total of 10,000 tags (at which level, a tag 

present ten times has an abundance of 0.1%). The normalised, rather than absolute, tag 

counts are used henceforth.

4.1.1.2 Global analysis of gastric SAGE libraries

Table 4.1 presents a global analysis of the three SAGE libraries. The most common tag 

overall was CTCCCCCAA, which was identified 781 times (7.8%) in normal stomach and 

which corresponds to immunoglobulin alpha (IgA). However, on average, only seven 

genes in each library were expressed at levels of 1% or over. In contrast, the vast majority 

(97-98%) of transcripts, including the classical house-keeping genes, were present at levels 

in single figures (below 0.1%). The figures for each library were similar.

4.1.1.3 Global comparison of SAGE libraries from gastric carcinomas and normal 

stomach

The definition used for the library comparisons was a difference in tag ratio of five-fold or 

more, with a p-value of 0.01 or less. When tags from the two tumours were pooled and 

compared with normal stomach, 106 tags were differentially expressed (0.97% of the total
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genes in the three libraries), of which 47 were higher in the tumours and 59 were higher in 

normal stomach. When compared individually with normal stomach, 76 tags (1.09%) and 

125 tags (1.53%) were differentially expressed in Tumours 1 and 2 respectively, of which 

85 tags were up-regulated in either tumour. The two tumours themselves differed by 64 

tags (0.75%). These results are in keeping with the histopathological appearances: tumour 

1 was better differentiated and of an earlier stage.

4.1.1.4 Global comparison of gastric libraries with other glandular epithelial tissues 

and mesothelium by digital SAGE

The normal gastric SAGE library was compared digitally with normal breast, colonic, 

ovarian, pancreatic and prostatic tissue and with normal mesothelium, which lines the 

peritoneal cavity. 55 genes (0.65% of the total genes in the normal gastric library) were 

specifically over-expressed in normal stomach.

The pooled gastric adenocarcinomas were compared with the tumour SAGE 

libraries from: ductal breast carcinoma; ovarian serous adenocarcinoma; colonic, 

pancreatic and prostatic adenocarcinomas; and malignant mesothelioma of epithelial type. 

20 genes (0.23% of the total genes in the pooled gastric tumour libraries) were specifically 

over-expressed in gastric carcinoma. Initially 22 genes were identified, but two were 

excluded after they were found in other SAGEmap tumour libraries. Eight gastric-specific 

genes were common to both tumour and normal comparisons.

Of the 47 tags more highly expressed in the pooled tumours than in normal 

stomach, only 5 were gastric-specific. In contrast, of the 59 genes more highly expressed 

in normal stomach compared with the pooled tumours, 33 were gastric-specific.

4.1.1.5 Investigation of individual SAGE tags

Table 4.2 contains the tags differentially expressed between the gastric carcinomas and 

normal stomach, plus the gastric-specific tags. The 20 most abundant tags in each library 

are also listed and included many ribosomal and mitochondrial proteins, of which many 

were more highly expressed in the tumours. Most other transcripts up-regulated in the 

tumours are expressed in many cell types and will henceforth be termed “widely 

expressed”. These included growth factors, signal transduction molecules, transcription 

factors, thymosins and genes involved in protein degradation and invasion. Conversely, 

most cytoskeletal proteins were down-regulated in the tumours.

Most genes which were more highly expressed in normal stomach than in gastric 

carcinoma play a role in normal gastric function, and many were gastric-specific compared 

with other epithelial libraries. The SAGE profiles were thus in part self-validating. Such
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genes included: gastrin; the anti-bacterial lysozyme; and gastric mucin (MUC5) and trefoil 

factors pS2 and spasmolytic polypeptide which protect glandular epithelia. Some genes 

were recently characterised: lipocalin 2 (neutrophil gelatinase-associated lipocalin), 

prostate stem cell antigen (PSCA) and a new gene called CA11. Others had not been 

reported in the stomach, such as aquaporin 5. Many differentially or specifically expressed 

tags corresponded only to uncharacterised cDNAs (i.e. ESTs), or lacked a match in the 

genetic databases entirely.

A few genes, such as intestinal trefoil factor, were up-regulated in gastric 

carcinoma, but were not widely expressed; instead, their normal location was the intestine 

(small and/or large).

4.1.2 Validation o f  gastric SA GE

4.1.2.1 Northern blotting

To validate and expand the SAGE profiles, selected transcripts were studied in a wider 

panel of 19 gastro-intestinal tumour and normal tissues and cell lines. Where the genes had 

been minimally characterised in the stomach, the method of choice was Northern blotting 

for mRNA, as shown in Figure 4.1. The Northern blots corroborated the SAGE profiles. 

Gastrin was expressed highly and only in the normal gastric antrum. The new gene CA11 

was expressed highly and only in normal stomach, in all three areas: antrum, body (fundus) 

and cardia. Prostate stem cell antigen (PSCA) was indeed present in normal gastric 

mucosa and in four of the eight gastric tumours. Lipocalin 2 was present in normal antrum 

and the two SAGE tumours, although its relative levels differed slightly from those 

expected.

As predicted, intestinal trefoil factor was identified in seven of the eight gastric 

tumours, and in normal colon and colonic adenocarcinoma. Of the widely expressed 

genes, thymosin beta 10 was indeed up-regulated in the gastric and cell lines but was also 

abundant in the tumour and normal oesophagus and colon. Idl was highly expressed in the 

two SAGE tumours, as predicted, but was also present in normal stomach, and was absent 

from the three cell lines. Prothymosin alpha tended to be more highly expressed in the 

tumours than in the normal samples but its relative levels in the SAGE samples were rather 

low. Overall, Northern blotting showed differences in expression levels between tumours, 

even of the same subtype.

4.1.2.2 Immunohistoehemistry

In addition, well-characterised genes were validated by immunohistoehemistry (IHC)
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where antibodies were available. IHC localises the target in tissue sections or cells and 

identifies the gene’s protein product rather than its mRNA transcript. Nevertheless, IHC 

corroborated the SAGE profiles. Figure 4.2 shows the three SAGE samples stained for 

gastrin, lysozyme, pS2, spasmolytic polypeptide and MUC5. Table 4.3 lists the IHC 

results for the full gastro-intestinal panel.

Lysozyme, pS2, spasmolytic polypeptide and MUC5 were highly expressed in 

normal mucosa from all areas of the stomach. Lysozyme, pS2 and MUC5 were present in 

all of the distal gastric carcinomas, whether of intestinal or diffuse histological subtype, 

although their levels varied and were generally lower than in normal tissue. The relative 

staining by IHC in the three SAGE samples paralleled their SAGE mRNA profiles, with 

one exception: SAGE had predicted lysozyme to be lacking in Tumour 2, but although 

some areas were indeed negative by IHC (Figure 4.2), positive staining was present 

elsewhere (Table 4.3).

The AGS cell line, which is derived from a gastric adenocarcinoma of intestinal 

type, also expressed lysozyme, pS2 and MUC5, suggesting that it represents a good in vitro 

model. Spasmolytic polypeptide, which was absent or very low in the SAGE tumours, was 

present in only two tumours in the wider panel, neither of distal, intestinal type. Gastrin 

was expressed only in the normal antrum, in the G-cells (Figure 4.2). All samples 

contained cytokeratin 8, as would be expected for simple glandular epithelial tissues, 

except for normal oesophagus and oesophageal squamous carcinoma, which are composed 

instead of stratified squamous epithelium. Overall, the IHC staining in the tumours, but 

not in the normal mucosa, was heterogeneous, both within and between cancers, even those 

of the same subtype.

4.1.2.3 SAGE tag-to-gene matching

The SAGE tag which represents each mRNA transcript is short, only 13 or 14 bp long 

(CATG + specific 9 or 10 bp tag), and may correspond to more than one gene. It is 

therefore important to check that the gene assigned to the tag is correct, ideally through 

validation studies. Initial searches of on-line cDNA libraries and the background literature 

are, however, helpful in assessing whether a tag-to-gene match is at least likely, and were 

used to choose our candidates. Northern blotting and EHC corroborated the SAGE profiles 

of all but one of our selected genes.

The single problematic tag was ACGCAGGGA, which was very high in the 

tumours but low in normal stomach (89, 79 and 6 respectively). Although the SAGE 

program did not generate a match, SAGEmap on-line assigned this tag to the Unigene 

cluster of heat shock protein 90 alpha (Hsp90a). However, by Northern blotting (Figure
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4.1), Hsp90a was present at low levels, with no difference between the SAGE samples. 

Further investigation showed that, of the three gene sequences in this cluster, one was a 

chimaera composed partly of Hsp90a and partly o f an unknown gene. The tag matched 

only the latter, which remains uncharacterised. In this instance, the problem with 

validation arose from the Unigene databases rather than the SAGE profiles, but Unigene 

remains an extremely useful tool in most cases.
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4.2 Discussion

4.2.1 Global analysis and comparison o f  gastric SAGE libraries 

Our data are internally consistent: the gastric SAGE profiles were corroborated by 

the validation studies. There was, however, heterogeneity within and between 

tumours. Validation by Northern blotting and immunohistoehemistry agreed with the 

SAGE profiles for 14 out of 15 transcripts. This correlation is at least as good as previous 

SAGE papers in which between 7% and 50% of differentially expressed tags were not 

corroborated (Zhang, L. et al. 1997; Hibi et al. 1998; de Waard et al. 1999; Waghray et al. 

2001). Moreover, although mRNA abundance can be a poor indicator of protein levels 

(Gygi et a l 1999; Pradet-Balade et al. 2001), we found that, for a given gene, the relative 

level of mRNA in different samples correlated well with the relative protein level as 

gauged by immunohistochemical staining (Figure 4.2). Moreover, while normal tissues 

from one site varied little, if at all, we found that gene expression varied significantly at 

both mRNA and protein levels within and between tumours of the same type (Figure 4.1, 

Figure 4.2, Table 4.2 and Table 4.3). Tumour heterogeneity is a well-recognised 

phenomenon (Zhang, L. et a l 1997; Hibi et a l 1998; Lai et a l 1999; Perou et a l 2000) 

which explains, at least in part, the reported difficulty in corroborating expression profiles.

Our data are consistent with the literature. The overall distribution of genes 

in each gastric library is similar to other SAGE libraries. Each of our three SAGE 

gene expression libraries yielded around 10,000 tags, or transcripts, derived from an 

average of 4,300 genes (Table 4.1). Only around 7 transcripts were expressed at levels of 

1% or more, and over 97% were expressed at levels of 0.1% or less. This pattern of 

distribution, and the underlying library creation statistics, agree with previous SAGE 

publications (Zhang, L. et a l 1997; Hibi et a l 1998; Nacht et a l 1999; Velculescu et a l 

1999; Hough et a l 2000; Waghray et al 2001).

Only 1% of transcripts were differentially expressed between gastric 

carcinoma and normal stomach. This figure for the pooled gastric tumour libraries is 

similar to previous SAGE papers comparing colonic, pancreatic, breast, ovarian, prostatic 

and lung carcinomas with normal tissues, although the criteria for differential expression 

varied (Zhang, L. et a l 1997; Hibi et a l 1998; Nacht et a l 1999; Velculescu et al 1999; 

Hough et a l 2000; Waghray et al 2001). When compared individually with normal 

stomach, the moderately differentiated gastric carcinoma contained more differentially 

expressed tags (T2: 125 tags) than the well-differentiated tumour (Tl: 76 tags), thus the
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molecular anatomy of the tumours is in keeping with their morphology. To our 

knowledge, this correlation between the tumours’ differentiation state and global mRNA 

profile has not previously been described, although it makes biological sense.

The correlate of the fact that only 1% of genes were differentially expressed 

between normal and malignant tissues is that the levels of 99% of transcripts were similar. 

These genes would presumably be unlikely to make good diagnostic or therapeutic targets, 

unless of course the corresponding protein differed in its abundance, stability or functional 

state.

Up to 0.65% of transcripts were gastric-specific. When normal stomach was 

compared with SAGE libraries from normal glandular epithelia (breast, colon, ovary, 

pancreas and prostate) and mesothelium, 55 gastric-specific genes (0.65%) emerged. In 

their paper on the “human transcriptome”, Velculescu et al re-analysed the SAGE data 

available in 1999 and suggested that tissue-specific genes in normal samples vary in 

abundance from 0.09% (keratinocytes) to 1.76% (colon) (Velculescu et a l 1999). Our 

figure is in keeping with this range.

Genes specifically over-expressed in gastric adenocarcinoma compared with 

adenocarcinomas of the breast, colon, ovary, pancreas and prostate and malignant 

mesothelioma were fewer in number: 20 genes (0.24%). Comparable data for tissue- 

specific genes in tumours, rather than in normal tissue, were not included in the “human 

transcriptome” SAGE paper and are difficult to find. However, this topic was studied 

using the data-mining tool called Digital Differential Display (DDD) on NCBI’s web-site 

(Wheeler et a l 2001). ESTs from adenocarcinomas of the breast, colon, lung, ovary, 

pancreas and prostate were analysed for genes specific for tumour type, by comparison 

with pooled normal and tumour libraries (Scheurle et a l 2000). Over 80 transcripts were 

specifically up-regulated in the six tumour types, which averages to around 16 genes per 

tissue (Scheurle et a l 2000). Again, this estimate is consistent with our figure.

That there were fewer tissue-specific genes in gastric carcinoma than in normal 

stomach, and in adenocarcinomas overall compared to their corresponding normal 

glandular epithelial tissues, makes biological sense and is in keeping with tumours in 

general reverting to a less specialised, that is, less differentiated state.

4.2.2 Investigation o f  individual SAGE tags in gastric libraries 

Ribosomal and mitochondrial genes were amongst the most abundant transcripts in 

all three libraries and were generally up-regulated in the tumours. This agrees with 

previous general expression profiles and comparisons of normal and malignant tissues by
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SAGE and microarrays (Zhang, L. et al. 1997; Hibi et al. 1998; de Waard et al. 1999; 

Velculescu et al. 1999; Perou et al. 2000), and with prior EST data (Adams et al. 1995). 

The data are also consistent with previous global comparisons of normal stomach and 

gastric carcinoma, including four differential display (DD) (Ebert et al. 2000; Jung et al. 

2000; Yoshikawa et al. 2000; Wang et al. 2001) and one membrane array (El-Rifai et al. 

2001) studies. In the DD study which identified the most differentially expressed 

transcripts, six out of 13 genes up-regulated in gastric carcinoma were ribosomal or 

mitochondrial (Jung et al. 2000). The single gene identified in another DD comparison of 

non-metastatic and metastatic gastric cancer cell lines was also mitochondrial (Salesiotis et 

al. 1995). That the most abundant transcripts overall were involved in protein synthesis 

and energy production, and that these activities were increased in malignancy, in which 

cells are less differentiated and abnormally proliferative, also makes biological sense.

There were marked differences in the abundances of transcripts for ribosomal 

proteins, which are thought to be present in near equal amounts in each ribosomal particle. 

Similar results have been seen in most other SAGE analyses (Yamamoto et al. 2001). The 

reasons are unclear but presumably might reflect different rates of turnover of each 

ribosomal subunit protein.

Most other transcripts up-regulated in the tumours were “widely expressed” 

and included transcription factors and genes involved in cell signalling and protein 

degradation. Only 5 of the 47 tags up-regulated in the pooled tumours were gastric- 

specific, compared with 33 of 59 tags more highly expressed in normal stomach. The up- 

regulation in tumours of widely expressed, or constitutive, transcripts is again in keeping 

with cellular de-differentiation during malignant transformation. The genes included 

transcription factors such as c-myc binding protein, zinc finger protein homologous to 

murine Zfp-36, and Idl.

Idl. Idl was highly expressed in the gastric carcinomas, but was also present at 

lower levels in normal stomach. Idl is a member of the ubiquitously expressed family of 

ID (inhibitor of differentiation) proteins which inhibit the basic helix-loop-helix 

transcription factors (Norton 2000). ID proteins are implicated in the regulation of tumour 

growth, angiogenesis, invasion and metastasis and increased Idl levels correlate with a 

more aggressive phenotype in breast carcinoma (Norton 2000). Up-regulation of Idl in 

gastric carcinoma could thus have been predicted but its absence from the gastric cancer 

cell lines is surprising.

Thymosins. Thymosin beta 10 and pro thymosin alpha were also up-regulated in 

the gastric tumours. Thymosins are small proteins which were originally isolated from the 

thymus and were considered to have an immune function (Huff et al. 2001). Prothymosin



158

alpha is now thought to play a role in cell proliferation, although its exact function remains 

unclear; its up-regulation in gastric cancer has been previously reported (Mitani et al. 

2000). The beta thymosins bind monomeric (globular) actin and thymosin beta 10 is 

known to be up-regulated in carcinomas compared with normal tissues, although the 

stomach has not previously been studied (Huff et al. 2001). Thymosins are interesting 

targets, against which drugs are already in development (Huff et al. 2001).

Intracellular trafficking and protein degradation. Coatomer and proteasome 

components were more highly expressed in the tumours. Vesicles bearing coatomer 

proteins cycle between the endoplasmic reticulum and Golgi complex (Wu et al. 2000), 

and contain newly synthesised proteins awaiting post-translational modification, so that 

coatomer up-regulation is in keeping with enhanced protein synthesis in tumours. The 

proteasome is the main cellular proteolytic machinery and could contribute to malignant 

transformation by altered degradation of, for example, APC (Schwartz et al. 1999).

Cell signalling. Other genes with well-recognised roles in carcinogenesis were 

also up-regulated in the tumours: collagenase I, which facilitates invasion; growth factors 

(hepatocyte growth factor) and their ligands (fibroblast growth factor receptor) (see Section

1.5.4); and signal transducers including guanylate kinase and putative serine/threonine 

protein kinases. The latter are interesting since they and the related tyrosine kinases are 

often over-expressed in cancers, may be relatively tissue-specific, and have proven to make 

excellent therapeutic targets, with STI571 for example (see Section 1.5.6) (Blume-Jensen 

et al. 2001).

Overall profile of gastric carcinoma. The genes more highly expressed in gastric 

tumours are mostly widely expressed, and many of them interact: for example, 

serine/threonine protein kinases are linked both to the cytoskeleton and to cascades which 

alter transcription down-stream, so that identification of the few critical underlying 

molecular events may be challenging (Hanahan et al. 2000). Our profiles are consistent 

with the general cancer literature (Hanahan et al. 2000) and with the cDNA membrane 

array study of gastric tumours, in which up-regulated transcripts included growth factors 

and genes involved in the cell cycle, adhesion and invasion (El-Rifai et al. 2001). This 

supports the existence of common molecular targets in cancers for diagnosis and therapy.

Unlike other widely expressed genes, most cytoskeletal proteins were highly 

expressed in normal stomach and were down-regulated in the tumours. Keratin 8 is 

an intermediate filament specific to simple glandular epithelia (Green et al. 2000). 

Intermediate filaments are anchored at the cell membrane through junctions, including 

desmosomes, of which desmoplakin and cadherins are major components (Green et al. 

2000). Alpha actinin, profilin, cofilin and gelsolin contribute to the actin microfilament
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cytoskeleton (Janke et a l 2000). All of these genes were abundant in normal stomach and 

down-regulated in the tumours. This altered expression pattern is shared with other 

carcinomas and indeed functional assays suggest that many cytoskeletal proteins act as 

tumour suppressor genes (Janke et a l 2000), as is the case with E-cadherin (see Section 

1.5.5). Where beta thymosins fit into this scheme is unclear: they are also actin-binding 

proteins but are up-regulated in tumours, and may enhance cell motility (Huff et a l 2001).

Most genes which were more highly expressed in normal stomach play a role 

in gastric function. Many were also gastric-specific. It is worth remembering the 

functions of the stomach (see Section 1.2.1). It acts as a reservoir for food and 

mechanically chums and mixes it with gastric juice containing: hydrochloric acid which is 

a sterilising agent, denatures proteins and activates digestive enzymes; the protease pepsin; 

intrinsic factor; and gastric lipase. The stomach is not a major absorptive site, but water, 

ions, short chain fatty acids and alcohol are absorbed. The stomach must also protect its 

mucosal lining from proteolytic and acid attack, and its activity is co-ordinated with the 

rest of the gut through neuro-hormonal mechanisms.

Gastrin. Gastrin is one such gut hormone. We found gastrin only in normal antral 

mucosa, and it was gastric-specific. This is as expected: gastrin is secreted by antral G- 

cells in response to food entering the stomach and it stimulates the gastric body mucosa to 

secrete acid and pepsinogen A (see Section 1.2.3). Gastrin is only occasionally identifiable 

in gastric adenocarcinomas although it is a major product of gastric carcinoid (neuro­

endocrine) tumours (Bemer et al 1991).

Mucosal immune defence. Defence against micro-organisms is an important role 

of the gut (Owen 1986). Immunoglobulins, especially IgA splice variants, and the anti­

bacterial proteins lysozyme and lipocalin 2, were abundant in normal stomach (the SAGE 

sample had a chronic gastritis, without dysplasia: see Section 1.3.1) and were mostly 

down-regulated in the tumours and gastric-specific. IgA and lysozyme are well- 

characterised and known to be highly expressed in gastritis and in carcinomas of intestinal 

type, especially when well differentiated as in Tumour 1 (Isaacson 1982). Lipocalins have 

been identified more recently and bind small lipophilic molecules, including bacterial- 

derived lipopolysaccharides (Friedl et a l 1999). Lipocalin 2 has been reported in normal 

glandular epithelia (Friedl et a l 1999) but not, until now, in cancers.

Mucins and trefoil peptides. The mucin MUC5 and trefoil factors pS2 (trefoil 

factor 1 or TFF1) and human spasmolytic polypeptide (TFF2) were highly expressed in 

normal stomach, were down-regulated in the tumours, especially in the less well 

differentiated Tumour 2, and were also gastric-specific. However, although pS2 emerges 

as specific to stomach compared with other normal tissues, it is also over-expressed in
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breast and other adenocarcinomas (Wong et al. 1999). Mucins are high molecular weight 

glycoproteins, and trefoil factors (TFF) are small peptides which are resistant to acid, 

enzymes and heat (Wong et al. 1999; Machado et al. 2000). Both are synthesised by 

glandular epithelia, where they are normally co-expressed in a site-specific manner. 

Mucins and TFFs act synergistically to protect and repair mucosal surfaces. In normal 

stomach, MUC5 and pS2 are co-localised in the superficial epithelium while spasmolytic 

polypeptide is present in the antral glands (with MUC6) (Machado et al. 2000), as seen in 

Figure 4.2. In a previous study of 96 gastric carcinomas, around 60% of tumours 

expressed pS2 and MUC5, but only 10% contained spasmolytic polypeptide (Machado et 

al. 2000), in keeping with our findings. Moreover, in a knockout mouse model, 

homozygous pS2-null mice develop hyperplasia, dysplasia and carcinoma of the gastric 

antrum, which suggests that pS2 is important in normal gastric function and may act as a 

gastric-specific tumour suppressor gene (Lefebvre et al. 1996). It is possible that some of 

the less well characterised genes identified in this study may play a similar role.

Pepsinogens. All three specimens contained pepsinogens, which are the inactive 

precursors of the gastric protease pepsin (Owen 1986). Perhaps the best-recognised form is 

pepsinogen A, which is normally secreted by the chief cells in the gastric body, whereas 

pepsinogen C is produced in all areas of the stomach (Konishi et al. 1995). Pepsinogens of 

either type are present in 20% of gastric carcinomas (Konishi et al. 1995). We found 

pepsinogen A only in Tumour 2 whereas pepsinogen C was present in normal gastric 

antrum and in Tumour 1. Both pepsinogens were gastric-specific.

Prostate stem cell antigen (PSCA). PSCA was expressed in normal stomach and 

down-regulated in gastric carcinomas. This agrees with a recent paper characterising 

PSCA, which was first identified as a protein over-expressed in prostate cancer 

(Bahrenberg et al. 2000). (Note that PSCA is a different gene from prostate-specific 

antigen (PSA)). Its function is unknown but a role in cell adhesion has been suggested 

(Bahrenberg et al. 2000).

Transport of water and ions. Aquaporin 5 was expressed in all three SAGE 

samples but more highly in normal antrum and Tumour 1. Fluid transport is a major 

function of the gut and over nine litres are absorbed or secreted across its epithelia daily 

(Ma et al. 1999). The aquaporins are integral membrane proteins which act as water 

channels, and at least seven family members are found in different parts of the gut (Ma et 

al. 1999). Aquaporin 5 has not previously been identified in the stomach but is present in 

the salivary glands (Ma et al. 1999). Proteolipid protein 2 (colonic epithelium-enriched A4 

protein) was also present in normal stomach and down-regulated in the tumours. In the rat, 

it is expressed in the intestine (Breitwieser et al. 1997). Proteolipid protein 2 shows
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features of an ion channel (Breitwieser et al. 1997), and although not previously described 

in the stomach or in humans, is abundant in gastric EST libraries in Unigene.

Most transcripts more highly expressed in normal stomach (Table 4.2) were thus 

involved in gastric function. In some cases, the genes were well characterised, and for 

others their role could be inferred from existing data on gastro-intestinal physiology. 

However, many new genes were identified as well as known genes with unexpected 

expression patterns.

New gastric gene CA11. One tag was expressed at very high levels in normal 

stomach, was absent from the tumours and was gastric-specific. Initially this tag matched 

only ESTs, which were used to create a cDNA probe for Northern blotting which 

confirmed the SAGE results. Simultaneously the gene was identified through DD by a 

Japanese group who named it CA11 (which does not indicate carbonic anhydrase) and 

reported the same expression pattern (Yoshikawa et al. 2000). CA11 is one of the most 

abundant transcripts in normal stomach, at levels similar to mucin, which suggests that it 

has an important role in normal gastric function. CA11 is a good example of the power of 

mRNA profiling in identifying novel genes, and its further characterisation is described in 

Chapter 5.

One gene expressed in the gastric carcinomas was thought until recently to be 

specific to ovarian and mesothelial tissues. Mesothelin was expressed in gastric 

carcinomas but was absent from normal stomach. Mesothelin is a glycoprotein which may 

function in cell adhesion (Chang et al. 1996). It is present in normal mesothelium and

malignant mesothelioma (Chang et al. 1996), and is also highly expressed in ovarian

carcinomas compared with non-transformed ovarian epithelium (Hough et al. 2000) and 

with other adenocarcinomas (Scheurle et al. 2000). Mesothelin has thus been proposed as 

an ovarian/mesothelial-specific marker, but this is contradicted by this study and others: 

mesothelin has recently been identified in gastric cancer tissues (El-Rifai et al. 2001) and 

cell lines (Hippo et al. 2001), in which its expression is associated with peritoneal

metastasis (Hippo et al. 2001). This is not surprising given the normal location of

mesothelin, which may represent a candidate therapeutic target.

Some genes more highly expressed in the gastric carcinomas were in keeping 

with acquisition of an intestinal phenotype. Intestinal trefoil factor was absent from 

normal stomach but was up-regulated in the gastric carcinomas; this, the third TFF, is 

normally expressed in the small intestine and colon (Wong et al. 1999). This expression 

pattern was shared with other genes. Sulfotransferase 1A1 is an enzyme which detoxifies 

xenobiotics and endogenous compounds (Harris et al. 2000), and is normally expressed 

mainly in the intestines. Butyrate response factor 2 is normally expressed in the colon
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where the short-chain fatty acid butyrate is produced by bacterial fermentation of luminal 

carbohydrates and acts as the main mucosal energy source (Gibson et a l 1999). The up- 

regulation in gastric carcinoma of transcripts normally associated with the distal gut, 

especially the colon, presumably reflects the histological intestinal tumour phenotype (see 

Section 1.4.5) (Lauren 1965; Fuchs et a l 1995). Once again, the molecular anatomy of the 

tumours is in keeping with their morphology.

Some tissue-specific genes associated with normal gastric antral mucosa are 

highly expressed in pancreatic adenocarcinomas. The three genes highlighted in a 

recent SAGE study as being up-regulated in pancreatic adenocarcinoma, compared with 

normal pancreatic ductal cells, were spasmolytic polypeptide, lipocalin 2 and PSCA 

(Argani et a l 2001). The DDD study additionally identified MUC5 and MUC1 as being 

over-expressed in pancreatic adenocarcinoma (Scheurle et a l 2000). These genes have 

been proposed as new markers of pancreatic cancer. In fact, all five were highly expressed 

in normal stomach (and were down-regulated in gastric carcinoma). Pancreatic 

adenocarcinomas have previously been shown to express antigens normally found in 

gastric antral mucosa, such as MUC5 and pepsinogen C (Sessa et a l 1990), and a gastric 

antral phenotype commonly develops in other mucinous tumours, of the ovary (Tenti et a l 

1992) and endocervix (Tenti et a l 1994).

Conversely, gastric mucosa may show metaplasia to the acinar (exocrine) tissue of 

the pancreas (Doglioni et a l  1993); such so-called pancreatic metaplasia, like the more 

common intestinal metaplasia (see Section 1.3.1) tends to occur in association with chronic 

gastritis. Interestingly, H. pylori infection has now been shown to be associated with an 

increased risk of pancreatic adenocarcinoma (as well as gastric carcinoma, obviously) 

(Stolzenberg-Solomon et a l  2001). The underlying mechanism is unclear but could be 

related to the increased gastrin levels frequently found in atrophic gastritis: as well as its 

stimulation of gastric acid secretion and motility, gastrin is trophic to most of the gut 

(Stolzenberg-Solomon et a l 2001).

The reasons why gastric carcinomas should frequently assume an intestinal 

phenotype, and why pancreatic carcinomas show features of normal gastric antral mucosa, 

are unclear but may reflect aberrant expression of the developmental homeobox genes 

(Beck et a l 2000). For distal gastric carcinomas, this presumably would act at an early 

stage in Correa’s carcinogenic pathway, from intestinal metaplasia onwards. In any case, 

these phenomena emphasise the need to examine many different cells and tissues when 

evaluating potential markers, preferably including techniques which enable localisation of 

the target gene.

Some tags which were highly, differentially or specifically expressed in the
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gastric SAGE libraries correspond to multiple genes. Many others lacked a match 

entirely. Both issues can be addressed through SAGEmap, Unigene and Genbank (Lai et 

a l 1999; Wheeler et a l 2001). For multiple matches, certain gene assignments can be 

judged more likely than others, based on their function and expression elsewhere, before 

selecting candidates for validation studies. Tags lacking matches to well characterised 

genes often correspond to ESTs, and new matches will emerge from the ever-expanding 

genetic databases (Lai et a l 1999; Wheeler et a l 2001). A new method which generates 

longer, more specific cDNA fragments from the short SAGE tags should also be useful 

(Chen et a l 2000).

Conclusion. These are the first global profiles of gene expression in gastric 

carcinoma and normal stomach created using serial analysis of gene expression (SAGE). 

Two libraries of gastric adenocarcinoma of distal, intestinal type, and one library of normal 

gastric antrum have been produced. Numerous transcripts have been identified which are: 

highly expressed; differentially expressed between normal and tumour stomach; or gastric- 

specific by comparison with normal and tumour breast, colon, ovary, pancreas, prostate 

and mesothelium. Selected genes have been validated in a wider panel of 19 gastro­

intestinal tissues by Northern blotting and immunohistochemistry.

The overall statistics of the three SAGE libraries agreed with previous publications, 

with 1% of genes being differentially expressed between gastric carcinoma and normal 

stomach. The SAGE profiles were corroborated by the validation studies. The most 

abundant transcripts included ribosomal and mitochondrial proteins, of which most were 

up-regulated in the tumours, as were other widely expressed genes including transcription 

factors, growth factors, and genes involved in signal transduction, protein turnover and cell 

invasion. This pattern is similar to other cancers, which supports the existence of common 

molecular targets for diagnosis and therapy. Most genes which were abundant or more 

highly expressed in normal stomach play a role in normal gastric function, including 

gastrin, lysozyme, mucins, trefoil factors and pepsinogens, of which some (up to 0.65%) 

were gastric-specific by comparison with other normal glandular tissues.

The molecular anatomy of the tumours correlated with their morphology. The 

expression profile of the well differentiated gastric carcinoma more closely resembled 

normal stomach than did the moderately differentiated tumour. Some genes up-regulated 

in the gastric carcinomas indicated the acquisition of an intestinal phenotype, which has 

long been recognised histologically. Some genes associated with normal gastric antrum 

were also abundant in, and had previously been proposed as specific markers of, pancreatic 

carcinoma. These expression profiles, unexpected in some cases, together with tumour
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heterogeneity, emphasise the need for candidates to be tested, and ideally localised, in a 

wide range of normal and diseased cells and tissues.

New candidate genes have been identified. Some transcripts had previously been 

characterised minimally or not at all in the stomach. Many SAGE tags with interesting 

expression patterns, some tumour-associated, lacked matching genes and await further 

characterisation and functional studies. These molecular portraits increase our knowledge 

about the genes involved in normal gastric function and in malignant change in the 

stomach, and provide a catalogue of candidates from which to develop markers for better 

diagnosis and therapy of gastric carcinoma.

In the next Chapter, 5, I go on to characterise in detail a novel gene which was 

highly expressed in normal stomach.
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Figure 4.1: Northern blotting of selected genes identified by SAGE

RNA was isolated from 19 gastro-intestinal tumor and normal tissues and cell lines, as 

indicated along the top row, of which further details are listed in Table 4.3.

The Northern blots corroborated the SAGE profiles. Gastrin was expressed highly 

and only in the normal gastric antrum. The new gene CA11 was expressed highly and only 

in normal stomach, in all three areas: antrum, body and cardia (see Section 1.2.1). Prostate 

stem cell antigen (PSCA) was indeed present in normal gastric mucosa and in four of the 

eight gastric tumours. Lipocalin 2 was present in normal antrum and the two SAGE 

tumours, although its relative levels differed slightly from those expected.

As predicted, intestinal trefoil factor was identified in seven of the eight gastric 

tumours, and in normal colon and colonic adenocarcinoma. Of the widely expressed 

genes, thymosin beta 10 was indeed up-regulated in the gastric and cell lines but was also 

abundant in the tumour and normal oesophagus and colon. Idl was highly expressed in the 

two SAGE tumours, as predicted, but was also present in normal stomach, and was absent 

from the three cell lines. Prothymosin alpha tended to be more highly expressed in the 

tumours than in the normal samples but its relative levels in the SAGE samples were rather 

low. Overall, Northern blotting showed differences in expression levels between tumours, 

even of the same subtype.
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Figure 4.2: Immunohistochemistry for selected genes identified by SAGE

Immunohistochemistry (IHC) was used to validate the better characterised genes where 

antibodies were available. IHC localises the target in tissue sections or cells and identifies 

the gene’s protein product rather than its mRNA transcript. Nevertheless, IHC 

corroborated the SAGE profiles.

A wide range of 19 gastro-intestinal tumour and normal tissues and cell lines was 

stained. These photomicrographs depict representative areas from the two distal, intestinal 

tumours (T1 and T2) and normal stomach (antrum) (N) which were subjected to SAGE. 

The three SAGE samples were stained for gastrin, lysozyme, pS2 (TFF1), spasmolytic 

polypeptide (TFF2) and MUC5. Spasm polypep stands for human spasmolytic polypeptide 

(TFF2). The magnification is the same throughout. The number in the bottom left-hand 

comer is the normalised SAGE tag count for comparison. Table 4.3 lists the IHC results 

for the full panel of 19 gastro-intestinal samples.

Lysozyme, pS2, spasmolytic polypeptide and MUC5 were highly expressed in 

normal mucosa from all areas of the stomach. pS2 (TFF1) and MUC5 are co-expressed in 

the superficial/foveolar epithelium, whereas spasmolytic polypeptide (TFF2) is located at 

the base of the glands, with fainter staining.

Lysozyme, pS2 and MUC5 were present in all of the distal gastric carcinomas, 

whether of intestinal or diffuse histological subtype, although their levels varied and were 

generally lower than in normal tissue. The relative staining by IHC in the three SAGE 

samples paralleled their SAGE mRNA profiles, with one exception. SAGE had predicted 

lysozyme to be lacking in Tumour 2, but although some areas were indeed negative by 

IHC, positive staining was present elsewhere: this variability is evident even in this single 

photomicrograph. Spasmolytic polypeptide, which was absent or very low in the SAGE 

tumours, was present in only two tumours in the wider panel, neither of distal, intestinal 

type. Overall, the IHC staining in the tumours, but not in the normal mucosa, was 

heterogeneous, both within and between cancers, even those of the same subtype.

Gastrin was expressed only in the normal antrum, in the G-cells in the lower parts 

of the glands, as seen here.
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Table 4.1: Summary of generation and overall analysis of SAGE tag libraries

Three SAGE tag libraries were generated. Two were from gastric adenocarcinomas, both 

of distal, intestinal type (T1 and T2, which simply stand for Tumours 1 and 2, and do not 

refer to the stage of the tumours: for further details, see Table 2.1). The third was from 

normal gastric antral (distal) mucosa (N), which had a chronic gastritis, without dysplasia.

Sequences indicated the number of cloned SAGE concatemer inserts which were 

sequenced. From these concatemers are derived the SAGE tags, which average around 

10,000 for each library. The % abundance of tags refers to those present at or over 1%, 

0.5% and 0.1%: in a library normalised to a total of 10,000 tags, these figures translate to 

an abundance of 100, 50 and 10 tags or over respectively.

The absolute number of unique tags obtained is also given. Because of inevitable 

sequencing errors, this is usually regarded as a slight over-estimate of the true number of 

different genes expressed and a correction which removes around 7% of tags is sometimes 

applied (Velculescu et a l 1995; Zhang, L et al 1997; Velculescu et a l 2000).
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Library Sequences Tags

Tags at

>1%

Tags at 

>0.5%

Tags at 

>0.1%

> Two 

tags

Unique

tags

Tumour 1 (Tl) 825 10222 7 21 124 1008 4284

Tumour 2 (T2) 690 10825 6 16 115 1008 5350

Normal (N) 987 8433 7 19 107 822 3671
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Table 4.2: Tags which were highly expressed, differentially expressed between gastric 

carcinomas and normal tissue, specifically expressed in the stomach, or otherwise of 

interest

The tags listed are 9 bp rather than 10 bp in length, although 10 bp tags are used in most 

SAGE publications. This is for technical reasons, as described in Section 3.1.4.

In the Gene Match column, where a tag is assigned to a gene, it clearly matches a 

well-characterised mRNA transcript or gene. Matching was performed using either the 

SAGE software with Genbank or SAGEmap, as described in Sections 2.2.3.2 and 3.1.3. 

An * asterisk indicates that gene expression has been validated by Northern blotting or 

immunohistochemistry. The genes have been sub-divided partly by function, for which 

further investigation will be enabled by the new Gene Ontology databases (Ashbumer et a l 

2000). The section “Multiple matches” contains tags for which there are numerous 

possible matching genes. The section “No matches” contains tags for which a matching 

well-characterised gene is lacking. For these tags, any matching ESTs have been listed, 

along with the tag abundance in other SAGE libraries. In some cases, the tag matches 

ESTs but not well-characterised cDNAs in a Unigene cluster.

In the next three columns, the two tumor and the normal samples are represented by 

T l, T2 and N respectively. The absolute tag counts are normalised to 10,000 total tags per 

library to permit direct comparison. At this scale, the classical housekeeping genes are at 

low single figure levels (0.01-0.1%). Genes expressed highly, differentially or (tissue-) 

specifically in the tumors are shaded in mid-grey whereas the equivalents in normal 

stomach are shaded in light grey. Genes which are highly or (tissue-)specifically expressed 

in both tumour and normal libraries but which are not differentially expressed are shaded in 

black. Tissue-specific expression is by digital comparison with other normal and tumorous 

glandular epithelial tissues, such as colon and breast, and mesothelium (see Section

4.1.1.4).

The 20 most abundant (“high”) tags in each of the tumour and normal libraries are 

then listed. Ts indicates both tumours.

Tags with differential expression between the tumours and normal stomach was 

defined as a difference of five-fold or more combined with a p-value of 0.01 or less. 

“Pool” indicates that the genes were differentially expressed in a comparison using the 

pooled tumours. “T either” indicates that the tag was differentially expressed only in an 

individual comparison between one or other tumour and normal gastric antrum.

Tags with tissue-specific differential gene expression were defined in the same 

way, as a difference of five-fold or more combined with a p-value of 0.01 or less.
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abundant tags expression expression
Tag Gene match  T 1 T 2 N J N  T N T N

GTGAAGGCA ribosomal protein S3a 26 55 8 T2 high T either
CCTTCGAGA ribosomal protein S5 1 10 1 T either
GCCGTGTCC ribosomal protein S6 17 39 7 T2 high T either
TCGTCTTTA ribosomal protein S7 2 7 0 T either
GCCGAGGAA 61 92 56 Ts high N high
GTGTTGCAC ribosomal protein SI3 2 14 0 T pool
CCGTCCAAG ribosomal protein SI6 31 53 15 T2 high
GCTCCGAGC ribosomal protein SI6 (possible second tag) 1 7 0 T either
TGGTGTTGA ribosomal protein SI8 44 159 8 T2 high T pool
GCTTTTAAG ribosomal protein S20 6 13 2 T either
CTGTTGGTG ribosomal protein S23 7 7 0 T pool
TAAGGAGCT ribosomal protein S26 6 10 0 T pool
CTCAGACAG ribosomal protein S27 4 1 1 0 T pool
CGCCGGAAC ribosomal protein L4 1 5 23
CTGCTATAC ribosomal protein L5 3 8 0 T either
TACAAGAGG ribosomal protein L6 1 7 0 T either
ATCAAGGGT ribosomal protein L9 5 18 4 T either
GTGTTAACC ribosomal protein L10 3 15 0 T pool
ACATCATCG ribosomal protein LI 2 1 13 2 T either
CCCGTCCGG ribosomal protein L13 15 24 55 N high
GGAGTGGAC ribosomal protein LI 8 0 10 0 T either
AAGGTGGAG ribosomal protein LI 8a 32 75 42 T2 high
AAGGTCGAG ribosomal protein L24 3 12 0 T pool
CCCATCCGA ribosomal protein L26 4 30 4 T either
GGGCTGGGG ribosomal protein L29 or others 19 16 95 N high
GGGTTGGGG ribosomal protein L29 or others 0 0 7
AAGGAGATG ribosomal protein L31 33 36 4 T pool
CGCCGCCGG 29 45 58 T2 high N high
GTTCGTGCC ribosomal protein L35a 10 10 1 T pool
TTACCATAT ribosomal protein L39 0 8 0 T either
TTGGTCCTC ribosomal protein L41 64 72 38 Tshigh
TTGGCCCTC homologue to yeast nbosomal protein L41 3 0 15
TGTGTTGAG 83 117 64 Tshigh N high
CGCCGCGGT translation initiation factor eIF-3 pi 10 subunit 2 2 26
GTGACAGAA eukaryotic translation initiation factor 4A, isoform 1 5 5 0
CCCCCTCCG small nuclear ribonucleoprotein (snRNP) Bl 2 1 0
GCCCAGCTG eukaryotic translation elongation factor 1 delta 1 0 7
GGCCCTGAG RNA polymerase 11 subunit 6 4 9

Mitochondrial proteins
CCCATCGTC 89 146 74 Tshigh N high
TGATTTCAC mitochondrial cytochrome oxidase III 9 35 0 T pool
CACTACTCA mitochondrial cytochrome b 0 37 0 T pool
CACCTAATT mitochondrial ATPase 6/8 68 89 23 Ts high
ACTAACACC mitochondrial NADH dehydrogenase 11 13 59 0 T2 high T pool
TTCATACAC mitochondrial DNA loop attachment sequence 23 48 8 T2 high T either
TCGAAGCCC mitochondrial DNA loop attachment sequence 6 23 0 T pool
GGGGACTGA low molecular mass ubiquinone-binding protein d50369 2 12 0 T either
TTGGAGATC NADH:ubiquinone oxidoreductase MLRQ subunit 9 0 0 T pool
ACCCTTGGC tag matches mitochondrial sequence 0 67 5 T2 high T pool
AGACCCACA tag matches mitochondrial sequence 0 12 0 T pool
ATTTGAGAA tag matches mitochondrial sequence 1 15 1 T either
CAAGCATCC tag matches mitochondrial sequence 54 37 4 T pool
CTCATAAGG tag matches mitochondrial sequence 20 4 0 T pool

Transcription factors and other nuclear proteins
CAGCAGAAG small EDRJC-rich factor 2 (SERF2) 10 9 2
CGTTCCTGC Idl* 10 5 0 T pool
CCTGTAATG exonuclease homolog RADI (S. pombe) 7 4 0
ATGGTGGGG zinc finger protein homologous to murine Zfp-36 4 4 0
CACCTGTAA homolog o f Xenopus Claspin 8 0 0 T either
GAAATGATG c-myc binding protein 1 6 0
ACCCCCCCG junD 4 1 0

Growth factors and signal transduction
TGGAGTGGA guanylate kinase 1 7 15 1 T pool
CCACTGCCC Homo sapiens cDNA FLJ11978 fis, clone HEMBB1001271, similar to 14 4 2 T either

BUB 1 human mitotic checkpoint serine/threonine-protein kinase________
CTGGCCCTT j 10 1 6
AGCCCGGGA oligophrenin-1 (GTPase regulator associated with focal adhesion kinase 7 5 2

ppl25(FAK))
TCACTGCAC FLJ14058, similar to 178885 serine/threonine-protein kinase 1 1 2  0 T pool
TAGGTTGTC tumor protein, translationaliy-controlled (histamine-releasing factor) 8 1 2
CCATTGCAT fibroblast growth factor receptor 6 4 1
GGAGGTGGG granulin (epithelin) 3 0 8
TTGCCCCCG AXL receptor tyrosine kinase 1 0 0

N pool

N pool 
N pool

N pool 

N pool

N pool

N spec

T spec N spec 
T spec

N pool
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abundant tags expression expression
Tag Gene match T l T2 N j  N T N T N

Protein folding, translocation and degradation
AGAATCGCT coatomer protein complex, subunit alpha 5 11 0 T pool |
CCCAAGCTA heat shock protein 27 2 2 9
TGCATCTGG heat shock 70kD protein 5 (glucose-regulated protein, 78kD) 3 0 9 N pool
GTGCTGGAC proteasome activator hPA subunit beta 4 6 1
GAGGTCCCT proteasome (prosome, macropain) subunit, alpha type, 6 . 3 7 0 T either
ACCCTTCCC signal sequence receptor, beta (translocon-associated protein beta) 4 4 0
GGCTGGGCC clathrin, light polypeptide 0 1 7 N pool

Thymosins
TTGGTGAAG thymosin beta 4 17 20 17
GGGGAAATC thymosin beta 10* 10 34 4 T pool
TCAGACGCA prothymosin alpha* 13 7 2

Cytoskeletal proteins
GGCTGGGGG profilin 13 8 50 N high
CGAGGGGCC actinin, alpha 4 3 5 25 N pool
CCTCCAGCT keratin 8 2 0 13 N pool
TCACCGGTC gelsolin 5 1 8
GAAGCAGGA non-muscle cofilin 1 I 11 N pool
GCCACGTGG villin-like protein 0 2 9 N pool
TCAGGGCTG actin, gamma 1 10 0 0 T either
ACAGCGGCA desmoplakin 0 0 6 N pool

Other widely expressed general cellular genes
CCCTGGGTT ferritin, light polypeptide 11 10 II
CCAAGGTGG peptidylprolyl isomerase A (cyclophilin A) 20 0 0 T pool T spec
GCGACCGTC aldolase A 6 9 9
TACCATCAA glyceraldehyde-3-phosphate dehydrogenase 1 2 0

Mucins, trefoil peptides and glycoprotein-related genes
CCTGGGAAG MUC1 11 3 18
GTGATCAGC MUC5* 2 9 43 N high N pool T spec N spec
GCGAACGTG MUC6___________________ _______  ____________________ 5 1 3
CTGGCCCTC |  127 21 170 Tl high N high T spec
AAATCCTGG spasmolytic polypeptide (TFF2: trefoil factor 2)* 3 1 50 N high N pool N spec
CTCCACCCG intestinal trefoil factor (TFF3: trefoil factor 3)* 13 1 0 T pool
GGAAAACAG galectin 4 0 5 11
GGGCCTGGG fucosyltransferase 6 (alpha (1,3) fucosyltransferase) 1 7 6

Immune defence
CTCCCCCAA |  186 18 781 Tl high N high N spec
CTCCCCAAA immunoglobulin alpha, IgA 1 0 18 N pool N spec
CTCCCCAAG similar to predominant tag for IgA or gamma-glutamylcysteine 1 0 28 N pool N spec

synthetase
CTCCCCCAC similar to predominant tag for IgA or ESTs___________________________ 0 0 8 N pool N spec
GCGGAGGTG 1 31 6 40 T spec N spec
TTCCCCCAA immunoglobulin alpha, IgA (last N lalll site but variant sequence) 9 0 38 N pool N spec
AAGGGAGCA immunoglobulin lambda light chain 31 18 215 N high N pool N spec
AAACCCCAA immunoglobulin lambda gene cluster or ESTs 1 0 13 N pool
AAAGGAGCA immunoglobulin lambda gene cluster or ESTs 0 0 8 N pool N spec
GAAACCCCA immunoglobulin kappa light chain VJ region 5 9 1
GTACGTATT |  104 1 55 T 1 high N high T spec N spec
GAAATAAAG immunoglobulin gamma 3 4 3 52 N high N pool
CAAACTAAC immunoglobulin mu 3 0 26 N pool N spec
GTGCGCTGA major histocompatibility complex, class I, C 0 0 18 N pool
TGCAGCACG major histocompatibility complex, class I 6 9 2
AACGCGGCC macrophage migration inhibitory factor_______________________________ 13 5 5
ATGTAAAAA 1 238 3 101 Tl high N high T spec N spec
TGCCCTCAG lipocalin 2 (neutrophil gelatinase associated lipocalin, NGAL)* 10 1 26 N spec

Proteases and anti-proteases_______________________________________
AGTGCTCTT |  37 2 19 T spec N spec
AACCTCCCC pepsinogen A 0 14 0 T pool T spec
GCGCTGGAG salivary alpha amylase 7 4 4
AAGGTAACA serine protease inhibitor, Kazal 1 (pancreatic secretory trypsin inhibitor) 5 3 6 N spec
TGCAGTCAC collagenase I 10 2 0 T either
GGAAAAGTG alpha-1 -antitrypsin 4 6 0
GGCCAGGTG procollagen (type III) N-endopeptidase 1 2 7
ATGAGCTGA cystatin B 1 2 0
CCCCAGTTG calpain 4, small subunit (30K) 1 0 7 N pool



Tag Gene match T l T2 N

20 most 
abundant tags 

T N

Differential 
expression 
T N

Tissue- 
specific 

expression 
T N

Detoxification
GGCCCAGGC 1 11 1 20 T spec N spec
TCTGTAATC sulfotransferase family, cytosolic, 1 A, phenol-preferring, member 1 4 7 0 T either
CACTGGCAA sulfotransferase family, cytosolic, 1C, member 1 1 0 8 N pool N spec
CCAACCGTG glyoxalase 1 2 0 8 N pool
AGGTCCTAG glutathione S-transferase pi 6 4 6

Transport o f water, ions and lipid
CGTGGGGCT aquaporin 5 8 1 8 N spec
CTTCCCCCA proteolipid protein 2 (colonic epithelium-enriched) (PLP2) 2 0 12 N pool N spec
TGGCCCCAG apolipoprotein C-I 0 0 6 N pool N spec
TGGTTGGTG plasmolipin 0 0 6 N pool

Gastrin, new gene C A 11 and PSCA
GCTGGAGGA gastrin* 0 0 133 N high N pool N spec
GCTGGAGGG similar to predominant tag for gastrin or ESTs 0 0 11 N pool N spec
TCATTCTGA new gastric gene C A 11 (= gene name, not carbonic anhydrase)* 0 1 91 N high N pool N spec
TCATTCTGG similar to predominant tag for C A11 or no match 0 0 13 N pool N spec
TCATTTTGA similar to predominant tag for CA11 or no match 0 0 11 N pool N spec
GCCCAGCAT prostate stem cell antigen* 3 1 24 N pool N spec

Other genes expressed in normal stomach
GCCGGGTGG basigin (EMMPRIN) 2 15 11
AAGGGAGCC olfactory receptor, family 1, subfamily E, member 1 0 2 11 N pool N spec
CAGGCCCCA S I00 calcium-binding protein A l 1 (calgizzarin) 3 0 12 N pool
GCCTCCTCC muscle specific gene M9 (despite name, tag expressed at similar levels in 1 0 7 N pool

breast and pancreatic cancer cell lines)
TGGCCATCT PP1201 protein (N-methyl-D-aspartate receptor-associated protein) 1 2 9 N pool

Tissue-specific genes more highly expressed in tumors
CCCCCTGCA mesothelin 9 2 0 T either
GGCCCTAGG butyrate response factor 2 (EGF-response factor 2) 7 6 1
TACCTCTGA S I00 calcium-binding protein P 36 2 13 T spec

Hypothetical proteins
TCCCTATTT hypothetical protein PR02214 7 2 14 N spec
CACCCACTG Homo sapiens HSPC323 mRNA, partial cds 0 1 8 N pool N spec
CGCCTGTAG Homo sapiens cDNA: FU21521 fis, clone COL05880 8 0 0 T either
CTACTGCAC hypothetical protein FLJ13087 10 4 0 T pool

Multiple matches__________________________________________________
GTGAAACCC 1212 178 43 Ts high N high T either
CCTGTAATC multiple matches____________________________________________________ 210 141 15 Tshigh T pool
CCACTGCAC | 192 100 84 Tshigh N high
GCGAAACCC multiple matches 72 35 24 Tl high
AGGTCAGGA multiple matches 64 52 6 Tshigh T pool
AACCCGGGA multiple matches 67 29 8 Tl high T pool
CCATTGCAC multiple matches 60 22 19 Tl high
CCTGTAGTC multiple matches 41 42 5 T2 high T pool
AACCCAGGA multiple matches 31 23 6 T either
GCAAAACCC multiple matches 40 16 4 T pool
GTGGCTCAC multiple matches including KIAA0414 protein 14 32 7 T either
GTGGTGGGC multiple matches including DK.FZp761F152 19 24 5 T either
CCACTGTAC multiple matches including FU 12320 fis, clone MAMMA1002082 23 7 4 T either
GAGAAACCC multiple matches 17 15 2 T pool
AGCCACCGC multiple matches including RAB, RAS oncogene iamily-like 2B 17 11 2 T pool
GTGAAACTC multiple matches including KIAA0328 protein 11 12 2 T either
TTGGTCAGG multiple matches 6 17 1 T pool
CCTATAATC multiple matches 7 16 0 T pool
CCTGTGGTC multiple matches 15 7 1 T pool
GTGGTGCGC multiple matches 11 8 1 T pool T spec
AGCCCAGGA multiple matches including FLJ 10940 fis, clone OVARC1001162 12 4 2 T spec
CCACTACAC multiple matches 11 6 0 T pool
GTAAAACCC multiple matches 6 10 0 T pool
AGCCACTGT multiple matches 8 7 0 T pool
AGGCTGAGG multiple matches including FU 14137 fis, clone MAMMA 1002764 5 6 1 T spec
GAAACTGAA multiple matches including eukaryotic initiation factor 2-associated 1 10 0 T either

protein, p67
GGCGACAGA multiple matches including RAB3B, member RAS oncogene family 8 1 0 T either
CAAAAAAAA multiple matches including ovarian carcinoma immunoreactive antigen 0 1 7 N pool
T T T T T T T T T multiple matches including Homo sapiens clone 23620 mRNA sequence 1 0 6 N spec
GAAATAAAA multiple matches including FLJ21286 fis, clone COL01915 0 0 6 N pool



Tissue-
20 most Differential specific

abundant tags expression expression
Tag Gene match  T l T2 N j  im t  N T N

No matches
TCCCTATTA 67 30 120 Tl high N high
TCCCCGTAC 68 20 109 Tl high N high
ACGCAGGGA matches ESTs only for histone deacetylase 3 and glucose phosphate 

isomerase (NOT heat shock protein 90*), tag moderately high in prostate 
and colon

89 79 6 Ts high T pool

TCTCCATAC Homo sapiens, clone MGC: 10923, mRNA, complete cds (no Unigene 
cluster), tag also high in prostate

76 0 0 Tl high T pool T spec

TTGGTTGGC weakly matches a few ESTs only in Unigene cluster for glycoprotein 
(transmembrane) nmb, tag essentially absent from other SAGE libraries

0 0 34 N pool N spec

GTGACCACG weakly matches ESTs only in Unigene cluster for glutamate receptor, N- 
methyl D-aspartate 2C, tag moderately high in breast and colon

22 10 0 T pool

TGTGTTGAA 11 13 6 T spec N spec
GAAGCCCCA no match, tag at similar levels in malignant mesothelioma SAGE library 22 3 6 N spec
TCCCCGTAT no match, tag low in other SAGE libraries 11 0 18 N spec
AATTAAATT weakly matches ESTs 28 0 0 T pool T spec
GGGAAGCAG matches EST only in Unigene cluster for FLJ12175, clone MAMMA 

1000713, weakly similar to L-ribulokinase; tag high in breast
2 0 26 N pool

CTTCCCCAA no match, tag low in other SAGE libraries 8 0 18 N spec
CTCCCCCAG no match, tag low in other SAGE libraries 7 0 19 N pool N spec
TTCTTGTGG matches many ESTs only in Unigene cluster for ribosomal protein SI 1 1 18 1 T pool
AACCCGGGG no match, tag lower in other SAGE libraries 10 5 4 T spec
TCCCCGTAG no match 2 0 17 N pool N spec
ATGGCAAGG matches ESTs only for DR 1-associated protein 1 (negative cofactor 2 

alpha)
5 10 1 T either

CCACTTGCA no match, tag low in other SAGE libraries 8 2 6 N spec
CCGACGGGC no match 1 13 2 T either
ACGCAAGGA weakly matches ESTs 6 8 I T spec
CTCCCCCCA no match, tag essentially absent from other SAGE libraries 3 0 12 N pool N spec
GTACCGTAT no match, tag essentially absent from other SAGE libraries 9 0 6 N spec
TTTAGGATG ESTs in Unigene clusters Hs. 128713 and Hs. 156077 (both contain only 

ESTs), tag essentially absent from other SAGE libraries
0 0 15 N pool N spec

TCCGCGAGA matches ESTs only for zinc finger protein homologous to Zfp-36 in 3 11 0 T pool

CCATCGTCC
mouse (second tag?) 
no match 3 10 1 T either

AAGGGAGTT no match, tag lower in other SAGE libraries 4 0 8 N spec
CTGGCCCTG no match, tag low in other SAGE libraries 4 0 8 N spec
AAGGGAGCG no match, tag essentially absent from other SAGE libraries 3 0 8 N pool N spec
GACTCTGGT no match, tag at similar levels in breast and prostate carcinoma 3 0 8 N pool
GCCATCCCC ESTs and possible match to mitochondrial sequence 1 10 0 T either
TCCCGGTAC no match, tag at similar levels in mesothelioma and ovanan carcinoma 3 0 8 N pool N spec
CTCGTTAAG no match (Unigene) 3 7 0 T either
GAGGGAGCA no match, tag low in other SAGE libraries 2 0 7 N spec
ATGATGGCA no match 0 8 0 T either
GCTGGAGGT no match, tag essentially absent from other SAGE libraries 0 1 7 N pool N spec
CCCCCCCAA no match, tag essentially absent from other SAGE libraries 1 0 6 N spec
GGGTTGGGG no good match, tag at similar levels in prostate carcinoma SAGE 

libraries
0 0 7 N pool N spec

GCTGGAGAA no match, tag low in other SAGE libraries 0 0 6 N pool N spec
GTGATCAGT no match, tag essentially absent from other SAGE libraries 0 0 6 N pool N spec
TCATTCTGC no match, tag essentially absent from other SAGE libraries 0 0 6 N pool N spec
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Table 4.3: Immunohistochemistry for selected genes in a range of gastro-intestinal 

tissues

This table summarises the results of immunohistochemical staining for candidate genes in 

a range of gastro-intestinal tissues. Further information about the gastric tumours is 

presented in Table 2.1. All four cell lines are derived from adenocarcinomas (see Section 

2.1.5.3).

The + and -  symbols are used to indicate the intensity of the staining, where -  

means no staining, + /- means focal weak staining, and +++ means the strongest positive 

staining. Figure 4.2 shows immunohistochemical staining in the tissues used for SAGE. 

Spasm polypep indicates human spasmolytic polypeptide (TFF2).
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Tissue or cell sample MUC5 pS2
Spasm

polypep Lysozyme

gastric tumour 1 distal, intestinal + +++ - +++

gastric tumour 2 distal, intestinal ++ +/- - ++

gastric tumour 3 distal, intestinal +/- + - +

gastric tumour 4 distal, diffuse ++ + - ++

gastric tumour 5 distal, diffuse ++ + +++ +++

gastric tumour 6 proximal, intestinal and 
solid

+ + + +

gastric tumour 7 proximal, diffuse and 
intestinal - + - -

gastric tumour 8 proximal, mixed - - - +/-

AGS gastric adherent cells + ++ - +++

KATO-III gastric spherical cells - +/- - ++

MKN-45 gastric spherical cells - + - ++

OE-19 esophageal adherent cells - + - ++

stomach normal antrum +++ +++ +++ +++

stomach normal body +++ +++ +++ ++

stomach normal cardia +++ ++ +++ +++

oesophagus normal squamous mucosa - - — +

oesophagus squamous carcinoma - - - -

small intestine normal - - - ++

colon normal mucosa - + /- - -

colon adenocarcinoma + +++ - ++
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5 Further investigation of new gastric gene

5.1 Results
As described in the previous chapter, one tag, TCATTCTGA, was very interesting. It was 

expressed at very high levels in normal stomach, but was absent from the gastric 

carcinomas, and comparison with the other glandular epithelial libraries showed that this 

tag was gastric-specific. When it was first noticed, this tag did not match to any known 

genes in the genetic databases, although subsequently the gene has been described in a 

single publication (Yoshikawa et al. 2000). In fact, this tag was one of the ten most 

abundant transcripts in the normal stomach: the others included gastrin, immunoglobulin 

alpha, lysozyme, gastric mucin (MUC5) and trefoil peptides. These other highly expressed 

genes are, not surprisingly, important in normal gastric function, suggesting a similar role 

for the unmatched transcript.

In this chapter, the matching transcript is first identified. The expression profile of 

the gene is then evaluated by Northern blotting and in situ hybridisation. The cDNA itself 

is further characterised, not only in its human form, but also in other species. A genomic 

clone is identified and used to map the gene to human chromosome 2. The genomic 

sequence for both the human and mouse is identified and compared. The gene at its 

mRNA and DNA levels is highly homologous between species. The predicted protein 

sequences are presented and compared. Lastly I speculate on the possible function of this 

gene and methods by which this could be further investigated.

5.1.1 Investigation o f  the new gastric gene at the RNA level

5.1.1.1 EST analysis

At the time of first identification, investigation through SAGEmap showed that this tag did 

not correspond to any known gene in Genbank. However, it did match ESTs, within a 

single human (Homo sapiens) gene cluster on NCBI’s UniGene database (Schuler 1997). 

At the time the cluster contained only eight EST sequences; this has since increased and 

Figure 3.1 shows the web-page of the corresponding current UniGene cluster. The eight 

ESTs were down-loaded from the web then analysed using the DNASTAR suite of 

programs, into which the sequences were imported through EditSeq.

Using the sequence assembly program SeqMan, it became obvious that the eight 

ESTs in fact overlapped, and they were merged to create a single likely cDNA sequence 

with a length of around 750 bp, as shown in Figure 5.2. The cDNA sequence was found to
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contain a start codon followed by a long open reading frame (ORF, or translatable protein 

sequence), suggesting that this represents a true protein-coding cDNA.

The cDNA sequence has been further characterised and details of this are presented 

later in Section 5.1.1.10 and thereafter. Initially, however, the sites of expression of the 

mRNA were studied. As expected, six of the original eight on-line ESTs originated from 

gastric tissue. Two of the ESTs, however, originated from a library comprising a pool of 

tissues from heart, melanocytes and pregnant uterus. It would of course be possible that 

this gene is also expressed in the heart, in melanocytic cells, or in the normal uterus. 

Although none of these three bear an obvious similarity to the stomach in terms of 

likelihood of shared tissue-specific gene expression, the uterus, like the stomach, is a 

glandular and thus secretory organ. An alternative explanation could be that the tissue 

labelled “pregnant uterus” from which the cDNA libraries of interest were created also 

contained foetal tissue, possibly including stomach, or placenta. I tried to find out whether 

the libraries contained only uterine tissue (the lining, the endometrium; and/or the uterine 

muscle coat, the myometrium) or also placental or foetal tissue, but the scientists who 

supplied the libraries to NCBI did not know these details, saying simply that the tissues 

had been so described by their pathology colleagues (personal communication, Marcello 

Bento Soares).

5.1.1.2 Creation of a cDNA probe for the new gastric gene by RT-PCR

Complementary single-stranded oligonucleotide primers were designed using the Vector 

NTI suite of programs. Reverse transcriptase polymerase chain reaction (RT-PCR) was 

then performed on a normal gastric mRNA sample. First, a small central cDNA fragment 

of around 100 bp was amplified, to confirm that the predicted central overlapping sequence 

was correct. Then, a near full-length cDNA fragment was amplified, purified and cloned 

into Invitrogen’s TOPO-TA vector. In addition, the IMAGE clones of the ESTs of the new 

gastric gene were obtained from HGMP in Cambridge (Lennon et al. 1996). Appropriate 

larger quantities of DNA were obtained from the clones by plasmid preparation. All clones 

were sequenced using appropriate primers (M l3 forward and reverse or Sp6, T3 or T7) for 

their flanking polylinkers to confirm their identity prior to use. These clones were then 

used to prepare probes for initial investigation of the expression profile of the gene through 

Northern blotting and in situ hybridisation.

5.1.1.3 Northern blotting for the new gastric gene

Northern blotting is a technique which identifies mRNA species that have been size- 

fractionated by gel electrophoresis. A probe for the new gastric gene was created by radio­
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labelling the near full-length cDNA fragment. Using the same Northern blots described in 

the previous chapter, this probe gave rise to a clean, single band running at approximately 

1 kb. This estimated size fits well with the predicted cDNA length of 750 bp plus a 

poly(A) tail, which on average contains around 200-250 adenylate residues (Strachan et al.

1999). As shown in the previous chapter, the new gene was expressed only, but at high 

levels, in normal stomach, in all of its anatomical areas, from the cardia though the body to 

the antrum (Figure 5.3). mRNA for the new gastric gene was absent from all of the other 

gastro-intestinal samples, including: gastric adenocarcinomas and gastro-oesophageal 

adenocarcinoma cell lines; normal squamous oesophagus, small intestine and colon, and 

their corresponding tumours, oesophageal squamous carcinoma and colonic 

adenocarcinoma (Figure 5.3).

The probe was then applied to two more, commercial, Northern blots: Invitrogen’s 

Northern Territory™ Human Normal Tissue Blot III, and OriGene Technologies’ Multiple 

Choice™ Northern Blot, as shown in Figure 5.4. Once more, foveolin was expressed only 

in normal stomach. Foveolin mRNA was absent from other gastro-intestinal tissues, 

including colon, appendix, gallbladder and liver. It was also absent from lymphoid organs, 

including tonsil, thymus, lymph node and spleen, and from genito-urinary organs including 

prostate, testis, ovary and placenta. Unfortunately, given the previous information from the 

on-line libraries, no uterine sample was present on these blots for assessment of possible 

expression of the new gastric gene.

5.1.1.4 Comparison of expression profiles with the Japanese study

After I had obtained these initial results, a single publication on this new gene emerged 

(Yoshikawa et al. 2000). This Japanese research group had also identified the gene as 

being expressed more highly in normal stomach than in gastric carcinoma, through an 

alternative expression profiling technology called differential display. They then went on 

to profile the gene’s expression pattern in various tissues. Using a PCR-based method 

called Rapid Amplification of cDNA Ends (RACE) applied to a commercial panel of 

cDNAs, mRNA for the new gene was identified at high levels in stomach, as expected but 

also, at lower levels, in placenta and uterus. (I also performed RACE, but with the aim of 

characterising the 5’ and 3‘ ends of the cDNA rather than for expression profiling 

purposes. This is discussed later in Section 5.1.1.10.) In contrast, by Northern blotting 

this group identified the mRNA in stomach only, not in placenta; again, their commercial 

blots lacked a uterine sample.

Thus my data, the on-line information, and the Japanese study agreed that the new 

gene was expressed v<ery highly in stomach. Although its expression outwith the stomach
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seemed to be limited, the on-line information and Japanese study seemed to suggest that it 

might also be expressed in uterus and, possibly, placenta. I therefore went on to examine 

the expression and localisation of the mRNA for the new gastric gene in tissues using a 

second method, in situ hybridisation.

5.1.1.5 In situ hybridisation (ISH) for the new gastric gene in normal stomach

In situ hybridisation (ISH) is a technique which identifies and localises mRNA within 

individual cells or tissue sections (McNicol et al. 1997). For ISH, a digoxigenin-labelled 

riboprobe (ribonucleotide probe) was prepared by in vitro transcription of the cloned near 

full-length cDNA fragment, using RNA polymerase sites on the polylinker at either end of 

the insert sequence.

In the positive control slides, the mRNA was clearly and cleanly localised by ISH 

to the superficial/foveolar zone of normal gastric mucosa, as shown in Figure 5.5 (see also 

Section 1.2.2). In normal gastric body mucosa, the superficial/foveolar epithelium 

occupies the upper quarter of the gastric glands; the superficial zone merely means the 

surface while the foveolae are simply the immediately adjacent gastric gland openings, or, 

literally, pits. The deeper parts of the gastric glands comprise the proliferative zone, which 

occupies the next quarter of the glands, and the gastric pits, which make up the lower half 

of the glands, and the mRNA was absent from these areas. Staining in gastric antral and 

cardiac mucosa was similarly limited to the superficial/foveolar zone which occupies the 

upper third of the glands in the antrum and around the upper half of the glands in the cardia 

(data not shown). Staining was absent from the negative control slides (Figure 5.5).

As discussed later in Section 5.1.1.10, BLAST sequence searches indicate that 

homologues of foveolin exist in other mammalian species, specifically in mouse, rat and 

cow. This riboprobe was therefore also applied to normal stomach from these species. 

(For the cow, the fourth stomach, the abomasum, was used: this is the most similar to the 

single stomach in non-ruminant mammals such as humans). Even though the probe used 

was for the human mRNA, positive staining was present in the superficial/foveolar 

epithelium in these other species, in a location identical to that in humans. Staining in the 

mouse gastric mucosa is shown in Figure 5.5.

5.1.1.6 What’s in a name: CA11 or foveolin?

The Japanese group had called the gene CA11 (Yoshikawa et al. 2000). The GenBank 

Accession Numbers for the two mRNAs are: NM_019617 and AB039886. However, this 

seemed an odd choice of name, since CA11 is already the accepted gene symbol for 

carbonic anhydrase type XI, which bears no relationship or homology to the new gene, by
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either UniGene clustering or BLAST analysis. Presumably the name related to the number 

of bands in their differential display or to the sample number. However, given its site of 

expression in the gastric mucosa, I have instead provisionally termed this gene foveolin.

5.1.1.7 In situ hybridisation (ISH) for foveolin combined with 

immunohistochemistry in normal stomach

Immunohistochemistry (IHC) is a technique which identifies and localises protein within 

individual cells or tissue sections, using specific antibodies. ISH for foveolin was 

combined with IHC, as described in the previous chapter, to compare its localisation with 

that of the other highly expressed normal gastric genes.

Gastric mucin (MUC5) and pS2 (trefoil factor 1 (TFF1)) were present in the 

superficial/foveolar epithelium in a similar though not identical location to that of foveolin 

(Figure 5.5). MUC5 and pS2 are usually co-localised and, outwith the stomach, are widely 

expressed in the gastro-intestinal tract and in other glandular epithelial organs including 

lung, breast, prostate, ovary and uterus (Williams et al. 1997). The similar locations of 

foveolin, MUC5 and pS2 in the stomach would provide support for the possibility that 

foveolin could also be present in these other tissues.

5.1.1.8 In situ hybridisation (ISH) for foveolin in other normal and diseased upper 

gastro-intestinal tissues

As already described, foveolin is highly expressed in the superficial/foveolar epithelium in 

all areas of normal stomach, but is absent from gastric carcinoma. The study of its 

expression was then extended to a wide panel of other normal and diseased gastro­

intestinal tissues including gastritis, duodenal ulcer and Barrett’s oesophagus (see Section 

1.3.)

In the stomach, foveolin expression was essentially unchanged in areas of gastritis, 

including that caused by H. pylori infection, or of gastric atrophy alone (see Section 1.3.1). 

Not surprisingly, in areas of ulceration, where by definition the epithelium is denuded, 

foveolin was absent. However, foveolin was also absent from areas of intestinal 

metaplasia (Figure 5.6) and dysplasia (Figure 5.6), as well as from carcinoma. As clearly 

seen in the figures, the change in phenotype from normal gastric epithelium to metaplastic 

intestinal or dysplastic epithelium was extremely abrupt, with an accompanying abrupt 

change in the presence or absence of staining for foveolin mRNA.

In the oesophagus, foveolin mRNA was found only in areas of gastric metaplasia, 

occurring within the generalised metaplastic glandular mucosa present in Barrett’s 

oesophagus (see Section 1.3.2). It was not present in normal oesophageal squamous
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mucosa or normal submucosal glands, nor was it found in intestinal metaplasia in Barrett’s 

oesophagus or in oesophageal squamous carcinoma or adenocarcinoma.

In the duodenum, foveolin mRNA was found only in small areas of gastric 

metaplasia (Figure 5.6), occurring at the tips of the small intestinal villi. Gastric 

metaplasia in the duodenum is a well-recognised phenomenon, which occurs in response to 

epithelial damage and ulceration in the presence of excess acid, usually in association with 

an antral-predominant H. pylori-associated chronic gastritis (see Section 1.3.1). Foveolin 

was not present in normal duodenal mucosa or submucosal Brunner’s glands, nor was it 

found in duodenal ulcers, except in focal gastric metaplastic epithelium at the ulcer edge.

Elsewhere in the small and large intestines, foveolin mRNA, not surprisingly, was 

present in ectopic gastric mucosa present in Meckel’s diverticula, which are congenital 

anomalies present in around 2% of the population. The Meckel’s diverticulum is a small 

pouch in the small intestine; around half contain ectopic body-type, hence acid-secreting, 

gastric mucosa (Cotran et al. 1994). Foveolin mRNA was also present in gastric pyloric 

metaplasia in the colon, which is a relatively rare phenomenon seen in inflammatory states 

such as inflammatory bowel disease (Cotran et a l 1994): this regenerative gastro-intestinal 

epithelium is now known as the ulcer-associated cell lineage (UACL) (Wong et a l  1999). 

Foveolin was therefore only expressed in the gut in native or metaplastic gastric 

epithelium.

5.1.1.9 In situ hybridisation (ISH) for foveolin in tissues outwith the gastro-intestinal 

tract

Having established that within the gut, foveolin is essentially specific to epithelium of 

gastric type, the next aim was to investigate whether foveolin is expressed outwith the gut, 

particularly in the uterus, placenta and other gynaecological tissues, as suggested by the 

Japanese study and on-line cDNA libraries, or in other glandular epithelia, as could be 

postulated on the basis of its similar location to MUC5 and TFF1.

ISH for foveolin mRNA was performed in a wide range of normal and abnormal 

gynaecological, glandular epithelial and other tissues, as listed in Section 2.1.5.2. Foveolin 

mRNA was found only in a subset of ovarian mucinous tumours, both benign 

(cystadenomas) and malignant (adenocarcinomas) (data not shown). No staining was 

found in any of the other tissues, and in particular, foveolin mRNA was not identified in 

any of the five uterine and three placental samples examined. The uterine tissue sections 

included normal endometrium, in proliferative and secretory phases of the menstrual cycle, 

and myometrium, as well as endometrial adenocarcinoma.
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5.1.1.10 Characterisation of human foveolin mRNA by 5’- and 3’-rapid amplification 

ofcDNA ends (RACE)

Having investigated where foveolin mRNA was expressed, I now wished to characterise 

the mRNA itself in more detail. Rapid amplification of cDNA ends (RACE) is a common 

method used to analyse, separately, the 5’- and 3’-ends of mRNAs. 5’- and 3’-RACE for 

human foveolin was therefore performed using Clontech’s kit. Oligonucleotide primers 

were designed using Vector NTI in accordance with advice given in the kit. For both 5’- 

and 3’-RACE reactions, PCR produced a single clear product band (data not shown). The 

PCR products were then purified and sequenced five times. The sequence files were 

analysed and assembled using SeqMan.

A composite diagram of these RACE results is presented in Figure 5.7. My 3’ 

RACE results for human were identical to the results of the Japanese study and to the on­

line, and locally sequenced, ESTs, which now numbered more than eight.

The 5’ RACE results were broadly similar to the on-line EST sequences. However, 

even the 5’ most of the on-line ESTs started at position 75 (CTCCTC...). In contrast, my 

5’ RACE included a further 11 bp upstream (ATGCTT...). In fact, all of my 5’-RACE 

sequences contained an additional 5’ ACGCGGGG, which was absent from both the 

sequence presented in the Japanese study and from the genomic sequence which is 

described later in Section 5.1.2.4; this is likely to represent artefact from the SMART™ 

(Switching Mechanism At 5' end of the RNA Transcript) cDNA synthesis methodology 

used in the Clontech RACE kit. In the Japanese study, although most 5’ RACE species 

were of similar length to mine (their primers were different and resulted in fragments of 79 

bp), the longest sequence, which was preferred, and was used for publication, included an 

additional upstream 50 bp (this fragment was thus 132 bp long) (Yoshikawa et a l 2000). 

As the Japanese group explained in their paper, the 5’ end of CA11 has some self- 

complementary sequences: because of the strong secondary structure, most cDNAs were 

thought to have lost their 5’ ends during first-strand cDNA synthesis (Yoshikawa et al

2000). This extra 5’ sequence contains an additional, in-frame, upstream ATG, that is, 

translation start site, which obviously would provide an alternative protein coding 

sequence.

In order to try to ascertain which ATG was likely to be functional, I went on to 

examine the foveolin mRNAs of other species and also to investigate its genomic 

sequence.
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5.1.1.11 Characterisation of mouse, rat and bovine foveolin mRNA by 5’- and 3’- 

rapid amplification of cDNA ends (RACE) and analysis of on-line sequences

The sequence of human foveolin mRNA was used with NCBI’s BLAST® (Basic Local 

Alignment Search Tool) to search for homologous sequences from other organisms. The 

programs used were: BLASTN, which compares a nucleotide query sequence against a 

nucleotide sequence database; and TBLASTX, which compares the six-frame translations 

of a nucleotide query sequence against the six-frame translations of a nucleotide sequence 

database (Wheeler et al. 2001). The default parameters were used. The nucleotide 

sequence databases used were: NR, which contains all characterised sequences from 

GenBank and other sources (EMBL+DDBJ+PDB); and dbEST which contains sequence 

data and other information on ESTs, from a number of organisms. Matching sequences 

were found in the databases from mouse and rat and, more recently, from cow.

Although initially the number of matching mouse sequences was small, they now 

number in their hundreds and constitute a single Uni Gene cluster, Mm.46414 (Mm = Mus 

musculus), for what has been named the RIKEN cDNA 2200002K21 gene. Most of the 10 

mRNA/Gene sequences and 478 ESTs originate from the RIKEN Mouse Gene 

Encyclopaedia Project, which is a Japanese effort to collect and sequence full-length 

complementary DNAs expressed in mouse tissues (Kawai et a l 2001). The mouse strain 

used throughout is C57BL/6J. The reference gene is Accession Number NM_025466.

This mRNA was highly represented in two mouse gastric libraries, constituting 

5.7% of library 489 (RIKEN full-length enriched, adult male stomach) and 4.0% of library 

217 (Mus musculus stomach C57BL/6J adult). Most of the on-line mRNAs and ESTs 

originate from stomach. The tongue is the origin of 1 out of the 10 mRNAs and 27 of the 

478 ESTs. Other EST sources include: 16 from pancreas, 17 from small intestine, 2 from 

caecum (the proximal colon) and 1 from ovary/uterus. The chromosomal location remains 

uncharacterised.

When the initial small number of matching mouse ESTs were identified, they were 

down-loaded from the NCBI web-site, assembled using SeqMan and used to create a 

putative single cDNA sequence. This was then used to design primers for 5’- and 3’- 

RACE, as before. mRNA was extracted from a sample of mouse stomach and RACE was 

performed, as before. This sequence is presented in Figure 5.7. The mouse RACE 

sequence was compared with the assembly of the down-loaded, more recently available 

sequences. The RACE reaction proved to be efficient and provided an additional 8 bp at 

the 5’ end compared to the longest of the on-line sequences. However, at the 3’ end, 7 out 

of 380 ESTs or mRNA sequences which assembled together, including the reference 

sequence NM_025466 which is 1220 bp long, ran significantly beyond the 3’ end of the
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RACE sequence. This rare but long additional 3’ sequence agreed with the mouse 

genomic sequence, which is described later in Section 5.1.2.5, and may represent a lack of 

cleavage beyond the 3’ AAUAAA polyadenylation site.

In contrast to the numerous matching mouse sequences, only two rat sequences 

emerged, within the single UniGene Cluster Rn. 43048 (where Rn indicates Rattus 

norvegicus). The ESTs were AI639014 and AI639511 (which are the GenBank Accession 

Numbers), from a pooled mixed-tissue library from the Sprague-Dawley rat strain. One of 

the ESTs is a 5’ read while the other is a 3’ read, so that, although it appears similar to the 

mouse cDNA, most of the rat sequence is single-copy and unconfirmed, and I have not yet 

performed rat RACE. The rat sequence is therefore not included in Figure 5.7.

Matching cow sequences have appeared in the databases only recently. These ESTs 

are BG937912, BG937850, BG937720, BG938026, BG937628 and BG937739, all from a 

cDNA library from bovine abomasum. The latter is the fourth stomach in the cow and 

most closely resembles the human stomach. No UniGene cluster yet exists for these 

sequences, which were down-loaded and assembled as described for the mouse ESTs. 

Although cow RACE has not yet been performed, the number of bovine sequences 

provides significant overlap and hence reasonable confidence in their accuracy. The 

putative cow cDNA is therefore included in Figure 5.7.

No other convincing homologies emerged with mRNAs from other, including 

lower, organisms, by either BLAST searching of the sequence databases, or use of NCBI’s 

HomoloGene database (Wheeler et al. 2001). The latter, however, lacked any curated 

records of the obvious links between this gene in the human, mouse, rat and cow databases; 

indeed, the only calculated orthologue was to a Drosophila protein called dec-1 

(Drosophila melanogaster defective chorion-1 fcl06 protein precursor mRNA) which 

showed no significant similarity using BLAST or other methods of comparison. 

HomoloGene may thus not yet be entirely reliable.

One reason for investigating these different species related to the debate about the 

5’ end of the mRNA, which was around 50 bp longer in the Japanese study than by my 

results. The longer mRNA yields an additional upstream (5’), and inframe, ATG, or start 

codon. It also agrees with the human genomic sequence, which is described later in 

Section 5.1.2.4. However, although the human, mouse and cow mRNA sequences are 

highly homologous around and downstream of the second ATG (position 106 in Figure 

5.7), upstream towards the first ATG the homology is much less. The results of these 

mRNA comparisons are echoed in the three translated protein sequences, which are 

described later in Section 5.1.3. While the varying levels of homology between the 

mRNAs can be easily seen by eye-balling the sequences, they are confirmed by BLAST
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analysis. The issue of which ATG in the human foveolin mRNA is likely to be functional 

is further debated in the discussion (Section 5.2).

Having thus examined both the expression and structure of foveolin mRNA in 

humans and other species, the next aim was to investigate its genomic structure.

5.1.2 Investigation o f  foveolin at the DNA level

5.1.2.1 Identification of a human genomic clone through probing a genomic library

The aim was to identify a clone containing the human foveolin genomic sequence. The 

human PAC library RPCI1 is a genomic library within PACs (plasmid artificial 

chromosomes) (Osoegawa et a l 2001). The library is spotted on seven high-density 

gridded filters and was obtained from HGMP (the Human Genome Mapping Project at 

Cambridge). The previously described radiolabelled cDNA probe was used to probe the 

PAC libraries. Unfortunately, some of the blots had been hybridised before and blots 1-4 

were found to have been irrevocably damaged by stripping. Luckily, the remaining intact 

blots (5-7) contained a single positive clone in blot 7, as shown in Figure 5.8. The clone 

identification number was 291-N4. This clone was obtained from HGMP and a DNA 

plasmid preparation was performed. The cloned PAC DNA was then used as a probe for 

fluorescent in situ hybridisation (FISH) and was also used for genomic sequencing.

5.1.2.2 Fluorescent in situ hybridisation (FISH) for the human foveolin gene

The UniGene cluster for the human gene describes a matching sequence tagged site (STS) 

(UniSTS entry: stSG31094) on Chromosome 2 (D2S292-D2S145). The genomic clone 

was therefore fluorescently labelled and used in fluorescent in situ hybridisation (FISH) 

along with chromosome paint for chromosome 2. The results are shown in Figure 5.9, 

which confirms the presence of two copies of the gene on chromosome 2, on the small arm 

close to the centromere, in agreement with the STS prediction. Significant genetic 

instability of this region has not been reported in the Mitelman Database of Recurrent 

Chromosome Aberrations in Cancer (Mitelman et a l 1997).

5.1.2.3 Sequencing of the partial human genomic clone

The genomic clone was then used to obtain genomic sequence. Initially, the primers used 

for the PAC sequencing PCRs were both forward and reverse primers from various sites 

along the length of the foveolin cDNA sequence. The resulting genomic sequences were 

assembled using SeqMan and intronic sequence was gradually built up and used to design 

further primers for walking backwards and forwards from the ends of the known sequence.



188

Using this method, around 4 kb of sequence from the 3’ end and mid-portion of the gene 

was obtained through laboratory effort. After a while, however, it became obvious that 

although long lengths of further sequence had been obtained, the next exon had not yet 

been reached. Further investigation confirmed that much of this sequence was actually of 

PAC vector origin. Thus, although the insert size is on average 110 kb (Osoegawa et al.

2001), I had been unfortunate in obtaining a clone in which the sequence of interest was at 

the extreme end of the insert, and in identifying only one positive clone.

I did not pursue this further, since by then on-line databases containing human 

genomic sequences had become available, and these were used instead.

5.1.2.4 Use of the on-line Celera genomic databases to obtain the full-length human 

genomic sequence

During my work on the PAC library and its positive clone, I had regularly interrogated the 

public NCBI databases in hopes that the human genomic sequence should become 

available for foveolin, saving further sequencing. The databases in question included not 

only the annotated NR database of known genes but also the more preliminary HTGS and 

GSS databases, containing Unfinished High Throughput Genomic Sequences and Genome 

Survey Sequences, including single-pass genomic data, respectively (Wheeler et al. 2001). 

No match emerged from these NCBI databases. Since this public effort is said to cover 

about 94% of the human genome, this was distinctly unlucky (Lander et al. 2001).

The more recently available commercial Celera human genomic databases (Venter 

et al. 2001), however, have been more successful in this regard and yielded a large 50 kb 

segment of genomic sequence. When this was down-loaded and analysed, its 3’ end was 

found to contain what appeared to be the full-length human genomic sequence of foveolin. 

This was then compared with the human mRNA sequence. The latter, together with the 

GT-AG rule, which means that introns almost always start with GT and end with AG 

(Strachan et al. 1999), enabled the identification of the exons and delineation of the intron- 

exon boundaries. Analysis of the Human Genome Sequence suggests that the GT-AG rule 

is followed in over 98% of confirmed introns (Lander et al. 2001). This annotated human 

genomic foveolin sequence is presented in Figure 5.10.

5.1.2.5 Use of NCBI’s Trace Archive databases to obtain the full-length mouse 

genomic sequence

By this time, NCBI’s on-line mouse genomic resources had become much more extensive, 

with Whole Genome Shotgun sequencing reads generated by the Mouse Sequencing 

Consortium available on-line via the Trace Archive at Ensembl. This database was
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interrogated with the mouse foveolin cDNA sequence. Numerous matching mouse 

genomic sequences emerged and were down-loaded and assembled using SeqMan. 

Sequence from the intronic ends of these assemblies was used to re-interrogate the 

databases. Eventually the full-length mouse gene was obtained, with the final assembly 

containing 68 separate sequences, of which a “strategy view” diagram is shown in Figure 

5.11.

Once again, this full-length mouse genomic sequence was compared with the 

mouse mRNA, and using the GT-AG rule, the exons and exon-intron boundaries were 

identified. This annotated mouse genomic sequence is presented in Figure 5.12.

5.1.2.6 Comparison of the human and mouse genomic sequences

The human and mouse genomic sequences and their exon-intron structure were then 

compared and the results are presented in Figure 5.13. As can be seen, the structure of 

these two genes is very similar. Both contain six exons, of similar length in both species.

5.1.3 Investigation o f  the new gastric gene at the protein level: the 

predicted foveolin proteins

The Open Reading Frames (ORFs), or translatable protein sequences, within the three 

human, mouse and cow mRNAs were translated using EditSeq. The resulting protein 

sequences are presented and compared in Figure 5.14. The alignments were performed 

using NCBI’s BLAST2 and Clustal W multiple sequence alignment at the EMBL 

European Bioinformatics Institute.

Because the cow mRNA sequence originates from ESTs, no other predicted protein 

sequence exists. This mouse protein sequence agrees with that predicted in the GenBank 

entry for the mouse reference mRNA sequence NM_025466. However, the human CA11 

GenBank entry predicts additional upstream amino acids corresponding to the extra 50 bp 

and upstream ATG. As with the mRNA sequences (see Sections 5.1.1.10 and 5.1.1.11), 

the strong homology shown by the proteins is lacking in the upstream segment if the first 

human ATG is used. (Since there is less upstream information for the cow sequence, the 

comparison simply includes an in-frame translation of the cow sequence which exists.) If 

the upstream segment in the human CA11 reference sequence is omitted, however, the 

three protein sequences are highly homologous.

The primary structure of the proteins was then studied using various of the Network 

Protein Sequence Analysis programs on-line at the Pole Bio-Informatique Lyonnais. Table

5.1 shows the physico-chemic al properties of the foveolin proteins from human, mouse and
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cow. The human protein is that generated using the second ATG site. It is clear that in 

this respect also the three proteins are very similar. All three species are predicted to 

contain a starting signal peptide; but this applies to the human sequence only if the second 

ATG is used rather than the first. Partly based on the presence of such a signal peptide, the 

proteins are also predicted to be extracellular, being either expressed on the outer surface of 

the cell membrane or secreted.

The secondary structure of the three foveolin proteins was then predicted as a 

consensus of the results from twelve methods within the Network Protein Sequence 

Analysis programs on-line at the Pole Bio-Informatique Lyonnais, as shown in Figure 5.15. 

Again, the three proteins are similar but unfortunately it is not possible to extrapolate from 

these secondary structures to arrive at the likely functions of the protein.

The predicted foveolin proteins were then compared against various protein 

databases using BLASTP which compares an amino acid query sequence against a protein 

sequence database and were further analysed with the Network Protein Sequence Analysis 

programs on-line. No similarities with any known proteins were detected, nor were there 

any obvious well-characterised protein motifs.
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5.2 Discussion
Large-scale mRNA expression profiling of gastric carcinoma and normal stomach by 

SAGE yielded one particularly interesting unknown transcript which has been further 

investigated here. The characterisation of a gene involves its study at the DNA, mRNA 

and protein levels. At the RNA level, Northern blotting confirms that the new gene is 

highly expressed in normal stomach, in all three zones, namely the cardia, body and 

antrum, but is absent from gastric carcinoma. In situ hybridisation confirms the presence 

of this mRNA in the stomach, where it is located in the superficial/foveolar (pit) epithelium 

of the gastric mucosa. The transcript was expressed outwith the stomach only in 

metaplastic gastric epithelium: in the gut this was found in Barrett’s oesophagus, duodenal 

mucosa or the ulcer-associated cell lineage (UACL); outwith the gut its presence was 

detected only in ovarian mucinous tumours. The mRNA was present in the stomach of 

other species, such as the mouse, in the same location as in humans.

During these studies, the transcript had also been identified by a Japanese research 

group who named it CA11. Since this name overlaps with that of carbonic anhydrase XI, 

to which the transcript bears no similarity, for the purposes of this thesis the gene has been 

re-named foveolin. The 5’ and 3’ ends of the mRNA have been characterised by Rapid 

Amplification of cDNA Ends (RACE). Homologous mouse and cow mRNAs have been 

identified, characterised and compared. The human gene has been partially cloned from a 

human genomic PAC library, and the full-length sequence has been obtained via the on­

line Celera genomic databases and characterised. The PAC clone was used to map the 

gene by fluorescent in situ hybridisation (FISH) to human chromosome 2. Fragments of 

the mouse genomic sequence were identified in NCBI’s on-line mouse genomic databases, 

assembled into the full-length sequence and characterised. The predicted protein product, 

like the mRNA and DNA sequences, is highly conserved between the human, mouse and 

cow species. The protein shows no homology to any known protein sequences or motifs, 

but bears an initial signal peptide and is therefore predicted to have an extracellular 

location, being either retained on the outer cell surface or secreted into the gastric lumen, 

much like gastric mucin (MUC5) and the trefoil peptide pS2 (TFF1), with which foveolin 

shares a similar location in the superficial and foveolar gastric epithelium. Except for the 

Japanese study, which presented only Northern blotting and RACE data for the human 

mRNA, this is the first detailed description of this new gene.

We believe that the results of our characterisation studies are valid. The new 

gastric gene, foveolin, is very highly expressed, mainly in normal stomach, and is absent
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from gastric carcinoma tissue and cell lines. These results agree with those of other 

researchers. Our Northern blotting (Figure 5.3 and Figure 5.4) and in situ hybridisation 

results (Figure 5.5 and Figure 5.6) are internally consistent and suggest that the mRNA is 

expressed only in native or metaplastic gastric epithelium. Only one other study of this 

gene has been published (Yoshikawa et a l 2000). Our results agree with almost of its data: 

the gene is expressed at high levels in normal stomach but is absent from gastric 

carcinomas and cell lines, and by Northern blotting, its mRNA is around 1 kb in size. The 

Japanese researchers found, as we did, that most tissues did not express the gene, 

including: small intestine, colon, liver, pancreas, trachea, lung, adrenal gland, kidney, 

prostate, testis, ovary, placenta, thyroid, heart, skeletal muscle, brain, spinal cord, 

peripheral blood lymphocytes, spleen, thymus, lymph node and bone marrow (Yoshikawa 

et a l 2000). Furthermore, most of the on-line cDNA libraries containing matching ESTs 

originate from stomach, whether from man or mouse.

However, the previous Japanese study and the site of origin of some of the 

ESTs in the on-line databases suggest that this gene may also be expressed outwith 

the gut, which conflicts with the results of our mRNA profiling by Northern blotting 

and in situ hybridisation. The Japanese study suggested that the gene is also expressed in 

uterus and placenta. Pregnant uterus was also a possible site of expression to judge by the 

on-line human ESTs, while matching mouse ESTs also originated from tongue, pancreas, 

small intestine, caecum and ovary/uterus (Wheeler et al. 2001).

By rapid amplification of cDNA ends (RACE), the Japanese group identified 

foveolin mRNA in samples from uterus and placenta (Yoshikawa et a l 2000). RACE is 

more commonly used (and was by us) only for characterisation of the 5’- and 3’-ends of 

cDNA. Because it is based on PCR, RACE is more sensitive than either Northern blotting 

or ISH, and would also be more sensitive to cross-contamination, perhaps especially when 

commercial sources of cDNA are used, as was done in this case. However, the results of 

the Japanese group were internally inconsistent: by Northern blotting, they found that 

placenta lacked detectable foveolin. Unfortunately, neither the Japanese group nor we 

have examined uterine tissue by Northern blotting.

Of the on-line human cDNA libraries containing foveolin sequences, the only ones 

which did not originate from the stomach were derived instead from pooled tissues 

including “pregnant uterus.” Foveolin could therefore be expressed in uterus or in 

accompanying placenta. However, it could also be present in any foetal (gastric) tissue 

present but we could not obtain further details of the exact nature of these samples 

(personal communication, Marcelo Bento Soares, NCBI).
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Of cDNA libraries containing foveolin in other species, the rat originated from a 

mixed-tissue pool and the cow originated only from abomasum, the fourth stomach. 

However, while most mouse ESTs were derived from stomach, a significant minority 

originated from other organs including tongue, pancreas, small intestine, caecum and 

ovary/uterus. Aside from the obvious possible explanation that these tissues do indeed 

express foveolin, another reason could be cross-contamination of these murine samples 

with gastric tissue, possibly during tissue dissection, since the mouse is relatively small.

In our studies, we found foveolin mRNA only in areas of native or metaplastic 

gastric epithelium. Expression outwith the gastro-intestinal tract was found only in ovarian 

mucinous tumours, which are well-recognised to show gastric and other forms of 

metaplasia. We examined a wide range of other tissues using ISH, including five sections 

of normal and abnormal uterine tissue, and including pancreas, small intestine and colon, 

but did not detect any foveolin.

These discrepancies mean that we cannot rule out the possibility that foveolin 

may not be truly gastric-specific, as we suggest, but may also be expressed at low 

levels in normal uterus and placenta, and possibly in other glandular tissues. It would 

therefore be appropriate to investigate the latter tissues further. Northern blotting of 

uterine tissue would be useful. RT-PCR or RACE could also be performed locally on 

appropriate samples. Lastly, if and when specific antibodies can be developed against 

foveolin, immunohistochemistry, and potentially Western blotting, would also be of use.

The phenomenon of gastric metaplasia in diverse tissues, including both 

inflammatory conditions of the gut and tumours of ovarian mucinous type, is 

intriguing. Metaplasia has been discussed many times already in this thesis (see Sections 

1.3.1, 1.3.2 and 4.2.2, amongst others). Metaplasia in the stomach, from normal gastric 

epithelium towards an intestinal phenotype, is associated with loss of foveolin expression 

(Figure 5.6). Such intestinal metaplasia occurs in the stomach as a result of chronic 

gastritis, especially when associated with H. pylori. Conversely, gastric metaplasia is well- 

recognised to occur in the duodenum in response to epithelial damage and ulceration 

caused by excess acid, and this is associated with the acquisition of foveolin expression 

(Figure 5.6). Gastric metaplasia in the duodenum is thought to be but one form of the 

ulcer-associated cell lineage (UACL) (Kushima et al. 1999), a reparative phenomenon 

unique to the gastro-intestinal tract (Wong et al. 1999); its appearance elsewhere, for 

example in the colon, is also characterised by expression of foveolin.

Expression outwith the gut was found only in ovarian mucinous tumours. 

Malignant, borderline and benign ovarian mucinous tumours are all well-recognised to 

show gastric metaplasia of both superficial/foveolar and pyloric glandular types, in around



194

80% of cases (Tenti et a l 1992; Boman et a l 2001). Immunohistochemical and in situ 

hybridisation studies have shown that ovarian mucinous tumours often contain gastric 

mucin (MUC5) and/or pepsinogen C (Tenti et a l 1992; Boman et a l 2001). Since 

foveolin has a similar location to MUC5 in the gastric mucosa, its presence in these 

tumours is of no surprise. Out of interest, as well as showing gastric metaplasia, the 

mucin-secreting cells lining these ovarian tumours may also exhibit intestinal, pancreatico- 

biliary or endocervical phenotypes (Tenti et a l 1992; Boman et a l 2001). This 

phenomenon was discussed in the previous chapter in relation to both pancreatic and 

ovarian adenocarcinomas (Section 4.2.2), and indeed, it has previously been suggested that 

ovarian and pancreatic adenocarcinomas (especially mucinous cystic or serous subtypes) 

may share common origins (Zamboni et a l 1999). In our hands, however, foveolin was 

absent from the normal pancreas and from pancreatic adenocarcinomas.

This is the first study to characterise the detailed structure of the human, 

mouse and bovine mRNAs and their predicted proteins, plus the human and mouse 

genomic sequences. Comparison between species shows that the genes are highly 

conserved. The high degree of homology between the human, mouse and bovine mRNAs, 

proteins and genes supports our supposition that foveolin is likely to be functionally 

important in the normal stomach.

However, there are two possible translation start sites in the human foveolin 

mRNA which raises a debate about which of the two is more likely to be functional. 

Translation of proteins starts at an ATG codon (Strachan et a l 1999). By RACE, the 

Japanese group showed that the 5’-end of the human mRNA was around 50 bp longer than 

estimated by my RACE results, and 60 bp longer than the on-line ESTs (Yoshikawa et a l 

2000). The extra 50 bp are consistent with the human genomic sequence which I later 

identified. This longer mRNA contains two such ATG codons, both in-frame with a long 

subsequent open reading frame. Normally translation is initiated at the upstream ATG: the 

“first ATG rule”. This time, however, I believe, unlike the Japanese group, that the second 

ATG is likely to be the functional one, for a number of reasons.

First, alignment of the human, mouse and cow mRNA sequences shows that they 

are highly conserved around and downstream of the second human ATG, but the upstream 

segment shows much less homology. Second, this upstream difference is even more 

marked in the protein sequence. Although full upstream data is lacking for cow foveolin, 

comparison of its postulated translated sequence with that of the mouse and human shows 

that the 50 bp upstream segment is not at all similar. These mRNA and protein results can 

be seen by eye-balling the sequences and are confirmed by BLAST2 analysis. Third, all
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three species are predicted to contain a starting signal peptide, but this appears in the 

human only when the second ATG is used.

Fourth, start codons do not exist in isolation. For any given ATG to be functional, 

it must be surrounded by what is described as an appropriate nucleotide context (Kozak 

1996). These desirable adjacent bases were first described by Marilyn Kozak and have 

hence been termed a Kozak sequence. The optimal context for initiation of translation in 

vertebrate mRNAs is regarded as ACCatgG (Kozak 1996). Within this consensus motif, 

nucleotides in two highly conserved positions exert the stongest effect: a G residue 

following the ATG codon (position +4) and a purine, preferably A, three nucleotides 

upstream (position -3) (Kozak 1996). However, this is not the whole story. The initiator 

context may vary according to whether the gene is located within sectors of DNA 

(isochores) which are GC-rich or GC-poor (Pesole et al. 1999). Genes located in GC-rich 

regions tend to require highly efficient translation and so are often house-keeping 

(constitutive, or to use the terminology of the previous chapter, “widely expressed”) genes, 

whereas those located in GC-poor regions tend to require finer modulation and hence are 

usually tissue-specific (Pesole et al. 1999). Clearly, from our data, foveolin is likely to fall 

within the latter group. Pesole et al go on to list the ten most common initiation heptamers 

in genes from each of four groups of isochores of increasing GC-content.

For human foveolin, the context of the first possible site, which was favoured by 

the Japanese researchers, is TCCatgC. Kozak’s preferred nucleotide is lacking from both 

of the key positions. None of the forty most common heptamers start with T and only two 

end with C, both in the groups with a higher GC-content (Pesole et al. 1999). The context 

of the second site is AAGatgA. Kozak’s preferred nucleotide is fullfilled at the start, at 

position -3, although position +4 is not. Indeed, this heptamer is one of the ten most 

common for (tissue-specific) genes in GC-poor (i.e. tissue-specific) isochores (Pesole et al.

1999). The second ATG is thus obviously favoured, and in fact contradiction of the first 

ATG rule is common in tissue-specific genes (60%) compared to house-keeping genes 

(30%) (Pesole et al. 1999).

The initiator context of the one and only ATG in the cow mRNA sequence is 

identical to that in the human and therefore favourable. The mouse mRNA sequence starts 

directly with the first ATG so its context cannot be fully assessed. However, the 

nucleotides at the second site are GCCatgA. Again, Kozak’s preferred purine nucleotide is 

fullfilled at the start, at position -3 , although position +4 is not; and again, this heptamer is 

one of the ten most common for (tissue-specific) genes in relatively GC-poor isochores 

(Pesole et al. 1999). Thus, the nucleotides immediately surrounding the second ATG in 

the human mRNA sequence constitute a good initiator context, which is also the case for
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the equivalent ATGs in the mouse and cow sequences, whereas the ATG 50 bp upstream in 

the human sequence definitely lacks a favourable context.

Assuming that the second ATG is functional, then the predicted protein has a signal 

peptide. A signal peptide comprises the first 20 or so amino acids at the N-terminal end of 

a protein, always includes a substantial proportion of hydrophobic amino acids (Strachan et 

al. 1999) and is present in around 20% of human genes (Lander et al. 2001). The signal 

peptide enables the protein to be guided from its site of synthesis on the cytoplasmic 

ribosomes to the lumen of the endoplasmic reticulum and thence for secretion, at which 

point the signal peptide is cleaved from the mature protein. The presence of such a signal 

peptide in the predicted foveolin protein thus means it is likely to be extracellular, being 

either retained on the outer cell surface or secreted into the gastric lumen, much like gastric 

mucin (MUC5) and the trefoil peptide pS2 (TFF1) (Wong et a l 1999; Corfield et a l 

2000).

The predicted foveolin protein has a length of around 185 amino acids in each 

species and a molecular weight of just over 20 kDa; these calculated figures include the 

signal peptide, which would be absent from the mature protein. For comparison, pS2 also 

bears a signal peptide and is secreted; the mature protein is 60 amino acids long with a 

molecular weight of 6.5 kDa (Jakowlew et al. 1984; Newton et al. 2000). Mucins, in 

contrast, are complex molecules, of high molecular weight, with extensive post- 

translational modification through the addition of carbohydrate moieties (Corfield et al. 

2000).

Foveolin is very highly expressed in normal stomach and is therefore likely to 

be important in its function; its exact role, however, remains unclear. In normal 

human gastric antrum, to judge by SAGE, foveolin was one of the ten most highly 

expressed genes: it represented 0.8% of mRNA. Its abundance has been even higher, up to 

5.7%, in normal mouse gastric cDNA libraries. Better characterised genes which have 

similar expression levels in normal stomach and which are likewise down-regulated in 

gastric carcinoma include gastrin, lysozyme, MUC5 and pS2 (see Section 4.2.2). These 

genes are all important in gastric function, providing supporting evidence for a similar role 

for foveolin.

Foveolin is located in the superficial/foveolar epithelium of the gastric mucosa. Its 

site in the stomach is similar but not identical to MUC5 and pS2 (see Figure 5.5) (Machado 

et a l 2000). MUC5 and pS2 tend to be co-localised in glandular mucosae, and play a role 

in mucosal protection, lubrication and repair (reviewed in (Williams et al. 1997; Wong et 

al. 1999; Corfield et al. 2000)). Outwith the superficial/foveolar epithelium of the gastric 

mucosa, MUC5 and pS2 are also co-expressed elsewhere in the normal and diseased
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gastro-intestinal tract including: the normal small intestine, colon and gall bladder; peptic 

and other ulcers, in the ulcer-associated cell lineage (UACL); intestinal metaplasia of the 

stomach and gastric metaplasia of Barrett’s oesophagus (Wong et al. 1999; Corfield et al

2000). Beyond the gut, these molecules are expressed in normal respiratory tract and 

uterus, where MUC5 is the main secretory mucin, and in adenocarcinomas of the breast, 

stomach, pancreas, ovary and uterus amongst others (Henry et al. 1991). Because of its 

similar location to MUC5 and pS2 in the stomach, it was at first thought that foveolin 

might also be present in these gynaecological and glandular tissues. However, as discussed 

above, our study, unlike that of the Japanese group (Yoshikawa et al. 2000), found no 

foveolin expression in any of these tissues, except in the well-recognised condition of 

gastric metaplasia.

The lack of any homology with any known proteins or recognised protein motifs by 

database searching hampers our efforts to propose the likely function of foveolin. 

However, although no structural evidence exists, one role in the normal stomach which 

could be postulated is that of protection against acid damage. I have tried and failed to 

identify any proteins known to have such a function to enable comparison with foveolin, so 

this remains entirely speculative.

Is down-regulation of foveolin in gastric carcinoma likely to be functionally 

important in tumorigenesis? Again, pS2 is used as an analogy. pS2 is expressed in most 

adenocarcinomas, including those of stomach, breast, pancreas, lung, uterus and ovary 

(Henry et al. 1991). In these tumours, the gene appears largely intact at the DNA level 

(Luqmani et al. 1989; Williams et al. 1997), but its expression at the mRNA and protein 

levels tends to be down-regulated in comparison with normal (Henry et al. 1991). This 

hold true for gastric carcinomas (Luqmani et al. 1989; Machado et al. 1996; Machado et al.

2000). Moreover, in a knockout mouse model, homozygous pS2-null mice develop 

hyperplasia, dysplasia and carcinoma of the gastric antral mucosa, which suggests that pS2 

is important in normal gastric function and may act as a gastric-specific tumour suppressor 

gene (Lefebvre et al. 1996). Purely on the basis of their similar expression patterns, a 

similar role could be postulated for foveolin.

However, foveolin could be located precisely on human chromosome 2 through the 

presence of a sequence tagged site (D2S292-D2S145) in the mRNA sequence and through 

FISH (Figure 5.9). Genetic instability at this locus has not been reported.in gastric 

carcinoma (Mitelman et al. 1997; Yoshikawa et al. 2000).

Characterisation and functional analysis of the foveolin protein is the next 

step. Characterisation and expression profiling of the mRNAs, investigation of the 

genomic sequence, and inter-species comparisons of foveolin are important but form only
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part of its analysis. The next steps would be to characterise foveolin further at the protein 

level and to investigate its likely function through its expression in cells in vitro and 

through in vivo experiments.

For protein characterisation, specific antibodies are required. These would be 

generated as rabbit polyclonals, using synthetic small peptides and full-size foveolin 

protein as immunogens. The latter would be generated by cloning full-length foveolin 

cDNA into a multiple cloning expression system. The cDNA, fused to a molecular tag, 

would be expressed in vitro in cells and, following large-scale production, the full-size 

foveolin protein would be retrieved, via its tag. The antibodies would be validated on 

protein extracts of normal stomach then used to characterise the foveolin protein and to 

profile its expression in various tissues by Western blotting and by immunohistochemistry. 

These results would be expected to be broadly similar to, and to confirm those from, 

Northern blotting and in situ hybridisation. In addition, however, Western blotting would 

provide an indication of the size of the mature foveolin protein, and immunohistochemistry 

would confirm whether the protein is secreted from the foveolar epithelium into the gastric 

lumen.

The sub-cellular location of foveolin would be studied by producing it in cells in 

vitro fused to the marker green fluorescent protein (GFP). The fusion protein would then 

be tracked by confocal microscopy. In order to investigate its biological function in vitro, 

foveolin would be expressed in gastric carcinoma cell lines, from which it is normally 

absent, to find out whether this alters cell morphology, or cell behaviour by invasion 

assays. Lastly, in vivo functional assays would be performed. Using the foveolin genomic 

sequences already generated, foveolin would be over-expressed, in transgenic mice, or 

inactivated, through mouse knock-out models. The phenotypic and functional 

consequences would be investigated, to check whether, for example, the gastric mucosa 

was morphologically different and whether acid levels were altered. The effect of H. 

pylori infection would also be studied. Based on its similar expression pattern, we have 

postulated that foveolin could, like pS2 (Lefebvre et al. 1996), play a role as a gastric- 

specific tumour suppressor gene. This hypothesis can only be investigated through the use 

of animal models, since such functional effects cannot be demonstrated by in vitro work 

alone.

Conclusion. Large-scale mRNA expression profiling of gastric adenocarcinoma 

and normal stomach by SAGE produced a number of candidate molecules. One was a 

novel gene which was highly and specifically expressed in normal stomach, at levels 

similar to gastrin, MUC5 and the trefoil peptides, which are important in normal gastric
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physiology. The gene is expressed in native or metaplastic gastric surface and foveolar 

epithelium and hence has been named foveolin. Although it appears to be gastric- 

predominant, foveolin may also be expressed at low levels in the uterus, although evidence 

for this is conflicting. Foveolin is not expressed in gastric adenocarcinomas or cell lines.

Foveolin mRNAs and their predicted proteins have been structurally characterised 

from human, mouse and cow, as have the human and mouse genomic sequences. The 

mRNAs are around 700-800 bp in length. The genes contain six exons which extend over 

around 6 kb. In the human, the gene maps by FISH to chromosome 2. The proteins are 

around 186 amino acids in length and just over 20 kDa in molecular weight. The 

sequences are highly homologous between species, again suggesting that it plays an 

important role in the stomach. Foveolin lacks homology to any known protein sequence 

or motif, so its function can only be postulated on the basis of its mucosal location: it could 

involve mucosal protection and possibly defence against gastric acid. This is supported by 

the fact that foveolin’s primary sequence contains a signal peptide, indicating that the 

protein is extracellular, either located on the cell surface or secreted. Its absence from 

gastric carcinomas suggests that it may act as a functional gastric tumour suppressor gene, 

analogous to pS2 (trefoil factor 1): pS2 is highly expressed in normal stomach and down- 

regulated in tumours and pS2 knock-out mice develop gastric dysplasia then carcinoma. 

Further characterisation of foveolin’s biological role is therefore required and likely to be 

worthwhile.
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Figure 5.1: UniGene cluster for the new gastric gene

When the short SAGE tag of interest was entered into SAGEmap, it matched a single 

UniGene cluster. At the time, this cluster contained only eight uncharacterised cDNAs, 

known as expressed sequence tags (ESTs). However, it now contains 2 mRNA/gene 

sequences and 15 EST sequences, which are used to provide the “Expression Information”. 

The mapping information relates to a single sequence tagged site (STS) present in the 

mRNA sequence. The eight matching ESTs were down-loaded and further analysed.
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Figure 5.2: Schematic diagram of the eight ESTs in the UniGene cluster

The eight ESTs in the matching UniGene cluster were down-loaded and assembled using 

SEQMAN. It became obvious that the ESTs overlapped and they were merged to create a 

single cDNA sequence with a length of around 750 base-pairs. Further analysis showed 

that the cDNA sequence contains a long open reading frame (ORF, or translatable protein 

sequence), suggesting this is a true gene. The cDNA fragment was amplified by 

polymerase chain reaction, cloned and used as a probe for Northern blotting and in situ 

hybridisation.
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Figure 5.3: Northern Blot for the new gastric gene with gastro-intestinal samples

The same Northern blot was used as in the previous chapter: RNA was isolated from 19 

gastro-intestinal tumor and normal tissues and cell lines, as indicated along the top row, of 

which further details are listed in Table 4.3. Hybridisation with a radio-labelled probe for 

foveolin mRNA showed its presence only in, but at high levels in, normal stomach, in all 

of its anatomical areas, namely the cardia, body and antrum. Foveolin was absent from all 

of the other gastro-intestinal samples, including: gastric adenocarcinomas and gastro- 

oesophageal adenocarcinoma cell lines; normal squamous oesophagus, small intestine and 

colon, and their corresponding tumours, oesophageal squamous carcinoma and colonic 

adenocarcinoma.
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Figure 5.4: Commercial Northern blots for the new gastric gene with a wide range of 

tissues

The probe was then applied to two more, commercial, Northern blots: Invitrogen’s 

Northern Territory™ Human Normal Tissue Blot III, and OriGene Technologies’ Multiple 

Choice™ Northern Blot. The tissues from which the total RNA originated are indicated 

along the top row.

The lower row shows that, again, foveolin was expressed only in normal stomach. 

Foveolin mRNA was again absent from other gastro-intestinal tissues, including colon, 

appendix, gallbladder and liver. It was also absent from lymphoid organs, including tonsil, 

thymus, lymph node and spleen, and from genito-urinary organs including prostate, testis, 

ovary and placenta.

In the upper row, hybridisation with a loading control probe for p-actin confirms 

the presence of good quantities of intact RNA in each sample, confirming that foveolin 

mRNA expression is truly absent.
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Figure 5.5: In situ hybridisation for the new gastric gene in normal stomach

a. In the positive control slides, mRNA for the new gene, foveolin, was localised to 

the superficial/foveolar zone of normal gastric gastric mucosa (see Section 1.2.2). The 

positive ISH staining is coloured blue-black. In normal gastric body mucosa, the 

superficial/foveolar epithelium occupies the upper quarter of the gastric glands. The 

deeper parts of the gastric glands comprise the proliferative zone, which occupies the next 

quarter of the glands, and the gastric pits, which make up the lower half of the glands, and 

these did not contain foveolin.

b. This negative control contains normal gastric body subjected to ISH but with the 

antisense probe omitted. Staining for foveolin mRNA is absent. Hybridisation with a 

further negative control, the sense probe, yields an identical appearance.

c. This gastric mucosa shows double-staining for foveolin (black) and pS2 (brown). 

Foveolin mRNA is once more stained blue-black by ISH, which was followed by (brown) 

immunohistochemical staining for pS2 (trefoil factor 1 (TFF1)). Like foveolin, pS2 is 

present in the superficial epithelium; but unlike foveolin, pS2 is also found in the deeper 

gastric glands and in the goblet cells of intestinal metaplasia (arrow).

d. Normal mouse gastric mucosa contains foveolin mRNA in the superficial/foveolar 

epithelium, identical to the human location.
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Figure 5.6: In situ hybridisation for foveolin in other normal and diseased upper 

gastro-intestinal tissues

a. Metaplastic epithelium in the stomach is usually of intestinal type and contains 

goblet cells which stain positively with the turquoise Alcian Blue stain for acidic mucins 

(see Sections 1.3.1 and 1.4.6). Foveolin mRNA staining is absent from intestinal 

metaplasia but remains in the adjacent remaining normal gastric epithelium. The change 

between the two types of epithelia is abrupt both in terms of foveolin ISH staining and 

histological appearance.

b. Unlike the adjacent normal gastric mucosa, dysplastic (cancerous) gastric epithelial 

cells cells (arrow) do not contain foveolin mRNA.

c. Foveolin mRNA is absent from normal duodenal epithelium which is of intestinal 

type, contains goblet cells and stains positively with the turquoise Alcian Blue. Blue-black 

staining for foveolin is present only in small (abnormal) foci of gastric metaplasia at the 

tips of the small intestinal villi.
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Figure 5.7: Foveolin cDNA sequences in human, mouse and cow

Here, the cDNA sequences for human, mouse and cow are presented and compared. These 

are composite results derived from my 3’ and 5’ RACE, the Japanese 3’ and 5’ RACE and 

the on-line sequences. Similar nucleotides are highlighted: those identical across all three 

sequences have a black background, whereas nucleotides shared by two sequences have a 

grey background.

Near the start of the mRNAs, the upstream (5’) ATGs in the human and mouse 

sequences are indicated in bold italic type. For the mouse, my 5’ RACE sequence starts at 

position 60 (GAGCAC...), but the immediately upstream 8 bp of genomic sequence 

contain another ATG, and are included here for the purposes of debate. This mouse 

mRNA is longer than any of the many on-line ESTs, but my other 5’ RACE sequence, for 

human foveolin, proved to be 50 bp short so it is possible that the same could apply here.

The ATG which is more likely to be functional (the second in the human and 

mouse sequences) (see Discussion Section 5.2) is indicated in bold type.

The exon boundaries, identified by comparison with the genomic sequnces (see 

Sections 5.1.2.4 and 5.1.2.5, and Figure 5.10 and Figure 5.12) are indicated by arrows.

The polyadenylation site AATAAA is indicated in bold type.
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Figure 5.8: Identification of a human foveolin clone through probing a genomic 

library

This figure illustrates the seventh high-density gridded filter of the genomic PAC library 

RPCI1, containing the single positive human foveolin genomic clone.

The human PAC library RPCI1 is a genomic library within PACs (plasmid artificial 

chromosomes) with an average insert size of about 110 kb (Osoegawa et a l 2001). The 

library is spotted on seven high-density gridded filters and was obtained from HGMP. The 

previously described radiolabelled cDNA probe was used to probe the PAC libraries. 

Unfortunately, some of the blots had been hybridised before and blots 1-4 were found to 

have been irrevocably damaged by stripping. Luckily, the remaining intact blots (5-7) 

contained a single positive clone in blot 7, as shown here.

At the bottom is a diagram explaining the orientation of the filter. Above is a low- 

power view of the scanned filter hybridised with the foveolin probe. At the top is a higher- 

power view of the single spot. Identification of the positive clone can be made from its 

position in the grid on the filter and from the orientation of the two positive spots within 

the 16-spotted square.

This clone was obtained and a DNA plasmid preparation was performed. The 

cloned PAC DNA was then used as a probe for fluorescent in situ hybridisation (FISH) and 

also for genomic sequencing.
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Figure 5.9: Fluorescent in situ hybridisation (FISH) for the human foveolin gene

This figure illustrates the results of fluorescent in situ hybridisation (FISH). The human 

foveolin gene can be seen with the green colour. Because this technique uses a metaphase 

spread of chromosomes which have already duplicated but not separated, four copies of the 

gene can be visualised. The UniGene cluster for the human gene describes a matching 

sequence tagged site (STS) (UniSTS entry: stSG31094) on Chromosome 2. The pink 

colour is so-called paint for chromosome 2 which confirms this as the gene’s location, on 

the small arm close to the centromere, in agreement with the STS prediction.
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Figure 5.10: The full sequence of the human foveolin gene

This figure shows the human genomic sequence of foveolin. This, the full sequence, was 

obtained by interrogating the Celera web-site, although its 3’ end (beyond position 5194, 

indicated with an arrow) had already been obtained using the PAC library and sequencing 

of the single resulting clone. The exons were identified by comparison with the known 

mRNA sequences and are highlighted in yellow.



TATCTATCTATCTA TCTA TCTATCTATCTATCTATCTATCTATCTGTCTGTCTGTCTGTCATGGAACATCTTCCAGACCAGCATTTCACAGG TCCACTGC 1 0 0  
AGAACTTCAGGCCCTTGTCCTTGGTATGACATGCAAAATGTGTGCTGGGCACTGCACCTGTGTACCAAGATGACTACTGGTGGCTGAGTTTAAACGTAGA 2 0 0  
GACCATGCTACCCACTCATTGACTTCTCAGTGACATGAAGTTTCCTAAAGCAGATGAAGGCCTCTTCACACATGTCTGCCCCTTACTCCAGGCTTATTAC 3 0 0  
CTTCTGTGGATAAAGAGTGAGTTTGAAAGAAATCAGTGGACACATTAAAAAATATCCAGTAATACTGCAGCTGTTCTAATCCACTCCTACCAACAGTTTT 4 0 0  
GAAGAGATGTTGATAGCGAATCAAGCTTTATAACCATGTGATCCCATCTTATGGTTTCAATCCATGGACAGGAGGAAAATTGTGGGCACGAAGTTTCCAA 5 0 0  
AGGGAAAATTTATAGATTGGTAGTTAATGAAATACAGTTTTCCTCCTTGGCAAATTTAATTTACTAGCTTCACTGTATAGGAAAAAGCAGGAAAAAAATT 6 0 0  
AAAACCAACTCACCTCCAAACCTGTTTTGAG CTTTTACTTGTCTGCCCAA TTGATAG TTTCTACTCTCTG CTTTTGATGAA AATATTTTTTATTA TTTTA 7 0 0  
ATGTAACTTCTGAAAACTAAATTATCTAGAAGCAAATAAAAAGATATTGCTTTTATAGTTCCCAGAAGGAAAAAACAAACACTAGGAAAGTTCTATCTAT 8 0 0  
CAGATGGGGGAGATGTGATGGAGGCAGTGATATTTGAGCTGAGCCTTGAACAATGAACAGGAGTCTACCAAGCGAGAGGCTAGCGGGTGGCCCTCCAAGA 9 0 0  
TAAAACAACAGCATGTACAAAGGCATGGAGACATACACATCTTGACTTTTCCAGGAATGGTGGGAACGCTGGTGGAGCTAGAATGTAGGTACATAGCATA 1 0 0 0  
AAGTGGCAGACGGGAAGCCTTTGGAAATCTTATTACATAGGACCCTGGATGCCATTCCAATGACTTTGAATTTTCTGTAGGCTGCCAGCGAAATTTCCAA 1 1 0 0  
GCGTGATAGAGTCATGTCTATCTATGCACTTCAGAAAGACAACCTCAGGGTTAATGAAGAAAATGCATTGGAATATAAGAAACTGGTGACCAGAGTGATC 1 2 0 0  
AATTGCATGACTGTTGTGAAAGTCCAGGTGAGGGGAGCTGTGGGCAAGGTCAGAGTTGAGAGGCATTTCAGAGATAAAATGACAGTAACTAAGTAGATGT 1 3 0 0  
CAGACTGAGAAGAAAGGGCTGTACCAGATATATGGTGCTATCATTAAGTGAGCTCAACATTGCAGAAAAGGGGTAGGTTTGGTGGGAGTTGCTCACAAAA 1 4  0 0  
CATGTTTAGTCTAAGCAAAACCATTGCCATGGGCTCAGATAAAAGTTAAGAAGTGGAAACCATTCCTACATTCCTATAGGAGCTGCTATCTGGAAGGCCT 1 5 0 0  
AGTATACACGTGGCTTTTCAGCTGTGATTTTGTTTGATTTTAGGGATTATTCTTTTTCTGAATCTGAGCAATGTTAGCGTGTAAAATACTCACGCCCACA 1 6 0 0  
GCTTTGACTGGGTGAGAAGTTATCATAAATCATATTGAGTTTGTTGTGATACCTTCAGCTTCAACAAGTGATGAGTCAGGTCAACTCCATGTGAAAGTTC 1 7 0 0  
CTTGCTAAGCATGCAGATATTCTGAAAGGTTTCCTGGTACACTGGCTCATGGCACAGATAGGAGAAATTGAGGAAGGTAAGTCTTTGACCCCACCTGATA 1 8 0 0  
ACACCTAGTTTGAGTCAACCTGGTTAAGTACAAATATGAGAAGGCTTCTCATTCAGGTCCATGCTTGCCTACTCCTCTGTCCACTGCTTTCGTGAAGACA 1 9 0 0  
AGATGAAGTTCACA ;TGAGTAGATTTTTCCTTTTGAATTTACCACCAAATGATTGGAGACTGTCAATATTCTGAGATTTAGGAGGTCTGCTTCTTATGGC 2 0 0 0  
CCCATCATGGAAAATTTGTTTTAAAAAAATTCTCTCTTCAAACACATGGACACAGAGAGGGGAACAACACACACTAGGTCCTGTTGGGGGGTGGAGAGTG 2 1 0 0  
AGGGGAGGGAACTTAGAGGACAGGTCAATAGGGGCAGCAAACCACCATGGCACACATATACCTATGTAACAAACCTGCACGTTCTGCACATGTATCCCTT 2 2 0 0  
TTTTTTAGAAGAAGAAATAATGAAAAAAAATCTTTTTTCTATTTATATAATCATGGCATTTATAAGCATCTCTATAGAGAAGGATAATTGTGCTGAGATT 2 3 0 0  
AGACAGCTGTCTGAGCACCTCACACTGACCTATTTTTAACAAAATGACTTTCCGCATCACCTGATTCCGGTCTCCATGCAGGGTAAGCAGTTCCTAAGCC 2 4 0 0  
CTAGAAAGTGCCGATCATCCCTCATTCTTGAATTCCTCCTTTTATTTACCAAAATTCCTGAGCATGTTCAGGAAAGATGAAAAGCTTATTATCAAAATAA 2 5 0 0  
GTGGCTGAGATAGACTTCTTGTCACATTTGTTACAGTAAAATGGGTCTCCAAGAAAGAAAGATTTGCCTTGGGCTCTAGCATGGCCATTTATTTAAGAAA 2 6 0 0  
GCATCTGAAACATGAAGCTACCACAGCATCTCTCCTGTGGTTCCAGACAGAAGCCTGAGAGTCTAGGAGGAGGTGGACCGAGAAACCCTGCCAAAGTAAC 2 7 0 0  
TAGTAGTGCCGGGTTTCTCACAACACGATGCAAAGGGGCTAGAATCAGATGACTATTTTCATGTTTCAACATACTACACACTGGAAAACGTTACGGCAGA 2 8 0 0  
CTCTACTTTATAATGGGGCTGCAAATGTAAAATGACTACCTAGAACTAGGTCCTCTTAATAGCAGCAAAGTTTAAAAGGGTCAGAGGGAGCTCCAGACAC 2 9 0 0  
AGGTTAGATTTGATTTCTCTCCTAGTTCTGCTGTGAACAAGAGGTATAAGTTTGGCCAACTCACTTAACCCCTGAAGCTCAGTTACCTTATCTGTAAAAT 3 0 0 0  
GATTGCATTGTACTAG GTGTTCTCTAAAATTTCTTCTACCTCTGACTTTTTAGGAGACTAATTTTTAACTCCTTTTTAAGCTATTGGGAGAAAAATTTAA 3 1 0 0  
T T T T T T T T C AAAAGTTACCTTGAATCT C T AGAGCAGTTCTCAAAACTAT T TT GTCCCAGGCAAAGGAAATGAGACTAGGTAC CCAGAATGAGGCA CCCTG 3 2 0 0  
CATAAAGCTCTGTGCTCTGAAAACCAATGTCAGGGACCCTGTGATAAATAATTAAACCAAGTATCCTGGGACACTGCTAGTGACATCGCCTCTGCTGATC 3 3 0 0  
ACTCTTGCCAGCGAGACACTCTATACTTGCTTTCTCATCATTGGCATCCAAACTGCCTACTAATCCATTGCTTTGGAAAGTTTTTTTTAATAAAAAGATT 3 4  0 0  
ATTTCTATTAGGAAGAAAACATCCCATGTTAAATAGGAAAATTAACTGAAATCATTTTCAGATGTGATTTTTAGCACTTATAGCCATCTCAAACCATAGT 3 5 0 0  
ATTCATTTATACTATGCTATTTATTGTAAAACTTCTTTTTTTTTCCAAG GAAAA TAAGA TAGTTTG CTTTATTTTAA AACAGTAA CTTTCTTA TATTGG G 3 6 0 0  
GCACTGACCAAAATTCAATACTGGTACAAATATGTTACCTAGGAGGTCAAAATATGTGCCAGGTGAATTTTCTGAATTTCTCTAAAGAGAGAATTTTAAA 3 7 0 0  
CCTTATAAAACAATTAGAAACAAGTGAGTGAGAGGTGAGCATCAACAACCTGTGTAACATAAGCCACAGTACAAATTTAAGCTGAATAACCAAGCCATGT 3 8 0 0  
CAGTTATCCCAAATCATTTTTGTTAATATTTAGGAGGATACACATATTTTCAATAACTTAAAAGTGAATCTTTACTCCTATCTCTTAATACTCGAAGAAG 3 9 0 0  
TATAACTTTCTTCTTTTACTAGATTTAAATAATCCAAATATCTACTCAAGGTAGGATGCTGTCATTAACTATAGCTGAGTTTATCCAAAATAGAAAAATC 4 0 0 0  
ATGAAGATTTATAAAGCATTTTAAAAATAATCATTTATAGCAAGTCCTTGAAAGCTCTAAATAAGAAAGGCAGTTCTCTACTTTCTAATAACACCTATGG 4 1 0 0  
TTTATATTACATAATATAATTCAACAAAACAGCATTCTGACCAATGATAATTTATAGGAAATTCATTTGCCAAGTATATGTTTTATTATAAAGTTAATAT 4 2 0 0  
TTTGACCAATCTTAAAAATTTTTAAACTCTATTCTGACATTTCCAGAAGTATTATCTTAGCAAAGTCATCTTTATGATACCACTTATTAAACTGAAGAGA 4 3 0 0  
AACAAGATGGTACATTCTGGGTTTTACTTTAAAAGGGATTTGATTCAATAATTTGATTTATCACTACTTGAAAATTACATTTTCTTCCTCAGTACTGGAT 4 4 0 0  
GGCAATGAGATGAAAGCAGCTTTCCTGGCTCTCAACTTCCCTTCTTCATCAATTTTTCCAGCGTTTCATAAGGCCTACACTAAAAATTCTAAAACTATAT 4 5 0 0  
ATCACATTAATATAATTACTTATAATTAATCAGCAATTTCACATTATCGTTAAAACCTTTATGGTTAAAAAATGCAAGGTAAGAGAAGAAAAAAACACAT 4 6 0 0  
TGAACTAGAACTGAACACATTGGTAAAATTAGTGAATACTTTTCATAAGCTTGGATAGAGGAAGAAAGAAGACATCATTTTGCCATGTAACAGGAGACCA 4 7 0 0  
A TG TTA TTTG TG A TTTC / ATTGTCTTTGCTGGACTTCTTGGAGTCTTTCTAGCTCCTGCCCTAGCTAACTAT "! AAG TCTCACCTTTTCAAGTTTGCTA 4 8 0 0  
CCAAAATGCATTTGCAAGGAAATGTGATATTAAATCACTCTCAATCTCTTATAAACTTC/'.1 .•AATATCAACGTCAATGATGACAACAACAATGCTGGAAGT 4 9 0 0  
GGGCAGCAGTCAGTGAGTGTCAACAATGAACACAATGTGGCCAATGTTGACAATAACAACGGATGGGACTCCTGGAATTCCATCTGGGATTATGGAAAT 5 0 0 0  
TAGGTAGTCAACGTGCAATTTTCACTTTATTGTTTAAAAATACGATTTCTTTTTAACAAAAAATGTGCATGTTAACCATAAAGAAATTAAAAATAAATTC 5 1 0 0  
TAATTACACATAGCATACAGTTATAAGTAAAGGTGACCATTTTGCTCATCCGATTTTGTTCCCTAGAGATAACTACTGTTAATAAGTGTTGCATGATCAG 5 2 0 0 - ^ -  
TTAAAATTCAAACCAACAAACACTATGTTCAAGGGATTGTGGGTATATACAACAAATATGAACATCCTTTTGCCTTGCCTGCAGATACCCTCAATAATGC 5 3 0 0  
TGAAAGACTTATACAACATTACTGCTTCCAAAGCTTAGACTATCTCACTTTGTTTTCAAAGGAGGTTTTACGACCTTCTAAAGAGATTGAAATTGACATT 5 4 0 0  
TCACCTAAAACTCGGGGAAATGTAAATGACAATATTAATTGGTAAGAGAGGAAAGAAGAAAGAAAGAAGGAAGGAAAGAAAGAAAGAAGGAAGGAAGGAA 5 5 0 0  
AGAAAGAAAGAAAGAAAGAAAGAGAGAGAAAGAAAGAAAAAGAAAAAAGAGAGAAAGAGAGAAGGAAAGAAAGAGAGAAGGAAAGGAAAAGAGAAGCAAA 5 6 0 0  
GAAAGAGAGGAGCAAAGAAAGGAACACTTAGCACTAGTTAGGAGACCCAACTCTGGAATTATCAGCTATATATTTAACAAACGTTATACTTTTAAATAGC 5 7  0 0  
AAACTCTTTATTGTTTCAATTTTATCTGGTCAATTGGAAAAATAATTTTTGTCTTATCTGTCTCCTTGAAATGTGAGGATCAAAGGAGACTAAAACATGA 5 8 0 0  
TAGCTTTTAAAGTCTATTTCAGTAAAACAGACTTATATAGAGGGGTTTTTATCATGCTGGAACCTGGAAATAAAGCAAACCAGTTAGATGCTCAGTCTCT 5 9 0 0  
GCCCTCACAGAATTGCAGTCTGTCCTCACAAATGTCAGCAATAGATATGATTGCCAAGCAGTGCCCCATCCAGTGCTCTTATCCCAGCTCATCACGATCT 6 0 0 0  
TGGAGTTCCCATTTCTCTCTGCAGGTGGAACTGACCTCTGATAAGAAAAGCTCCTCGGAGAACACATGCCTCACTATTTGCCATCTACTTTAACAl iGGCT 6 1 0 0  
TTGCTGCAACCAGACTCTTTCAAAAGAAGACATGCATTGTGCACAAAATGAACAAGGAAGTCATGCCCTCCATTCAATCCCTTGATGCACTGGTCAAGGA 6 2 0 0  
AAAGAAG :TAAAAATAAAAGGCTTTTTATTTTTGGTGAGGGGAGAGGTTTTACATCCTTCAGTAAATAACGAGAAGATCACAGTCATTCCCTCTTGACTA 6 3 0 0  
CAGTATGTTGTAGTGTGCAGCACAAAGGGGGAAGTTATTGGTGATTGCCTGAGGGAAGGCAACTTCTGCCACATCAAATGCTGTGGCTCACACCTACCTC 6 4  0 0  
TACAACCGCTGAGCAAAGCACTTGAAACCTTGACTGTTAGAGGAGCAAAGCTCTGGTCACACCAATAGGAGCCTCAGTACTTTGCCAAGGACATTTTTCT 6 5 0 0  
GCAAGAGTTAGTTAGGGTTATTAGATTTAGCAAATGAAAATAGAAGATATCCAGTTAGGTTTGAATTTTAGGTAAGCAGCAGGTCTTTTTAGTATAATAT 6 6 0 0  
ATCCTATGCAATATTTGGGATATACTAAAAAAAGATCCATTGTTTATCTGAAATTCAAATGTAACTGGGTATTGTATATTTTGTCTGGCCATACTAATCC 6 7 0 0  
AGGTGAGTGGAAAGAAGAGATCCATAATGTTTTAAAATATTTGCCTGAGTTCATATTCCTATAACTGATAAATGAGTACCTTTCATTGACAAGGTAGAGA 6 8 0 0  
AAATAAATAAACTGCATTCTCAGAAGATGATTATTACATAGTCTAATCCAAGGAATCTATGATGACCAAATGAGGTCCAAGTTGCAGAATAAATTAAGCC 6 9 0 0  
TCAGACTTCTGTGTTTATGAGAAGCTGAGGTTTCAAACCAGCTAAATCCCTTAGGACACTTAGAAATGCTAAGATATACAGAATAAGCTAGAAATGGCTC 7 0 0 0  
TTCTTCATCTTGATTATGGAAAAATTTAGCTGAGCAACACTCACTGTTGGCCTCGTATACCCCTCAAGTCAACAAACCACTGGGCTTGGCATTCATTCTC 7 1 0 0  
T C C C A T T C T T C C T T T C T A C C T C T C T T T T C C A C A C T C A CTTCAGGGTAAGGGACCAGGAGGACCACCTCCCAAGGGCCTGATGTACTCAGTCAACCCAAA 7 2 0 0  
CAAAGTCGATGACCTGAGCAAGTTCGGAAAAAACATTGCAAACATGTGTCGTGGGATTCCAACATACATGGCTGAGGAGATGCAAG ; TGAGTAGCATCCC 7 3 0 0  
TACTGTGCACCCCAAGTTAGTGCTGGTGGGATTGTCAGACTATCCTCGCGCGTGTCCATAGTGGGCACCAGTGATGCAGGGATGGTCATCAAGGCCAACA 7 4  0 0  
TTTGTGCA GTGCTTGCTCTGTGCCAGGTACTGTTCTATGTGCTTTA AGTGTG TTAACTCGGTTCTTCACAGCAATCTTA TAGGTTCTATTTTAATCCTAC 7 5 0 0  
TTTATGGATGAGGAAACTGAGGTACAGAGAGGTCACAAAATCCTTGCCTGGGTCAATTCCAAGCATTTTGGCTGTGGATTCTGTGCTCTTAAATATTATG 7 6 0 0  
GAACACTGCCTTTTAAGTGTGAATCAAGAGTAGACTCAAGTCATATTCAAAAGAATGCATGAATGGCTAAATGAAAGAAGAATGCTAATAGAATCTATTA 7 7 0 0  
ACTTTCTATAGCTCAGACAATCACTTAATTTCTGGACATTCAAAGAACAGCTGCACACAAACAAAGTGTCTACCTAGGGACCTAACTTAATGGCAATTTT 7 8 0 0  
CCAGATCTCTGAATTGATTGATTTCATCACAACAAGTAGATAAACCTTGACATTAGCACATAGCTAGTTTGGAAACCCCTACTCCCCCAATCCCCTCCAA 7 9 0 0

ACTATGGATTGTGGACATTTCCTTCTGTGGAGACACGGTGGAGAACTAAACAATTTTTTAAAGCCACTATGGATTTAGTCATCTGAATATGCTGTGCAGA 8 1 0 0  
AAAAATATGGGCTCCAGTGGTTTTTACCATGTCATTCTGAAATTTTTCTCTACTAGTTATGTTTGATTTCTTTAAGTTTCAATAAAATCATTTAGCATTG 8 2 0 0
AATTCAGTGTATACTCACATTTCTTACAATTTCTTATGACTTGGAATGCACAGGATCAAAAATGCAATGTGGTGGTGGCAAGTTGTTGAAGTGCATTAGA 8 3 0 0  
CTCAACTGCTAGCCTATATTCAAGACCTGTCTCCTGTAAAGAACCCCTTCAGGTGCTTCAGACACCACTAACCACAACCCTGGGAATGGTTCCAATACTC 8 4 0 0  
TCCAACTGCTCTGAAGGCTGCTCTATAGTTGTTGTGCACAGTAACGTTTCAGATCAGCAAGGACAGAAATTCACTCAGAGTCACATAAGCAAGAAAGGGT 8 5 0 0  
GGTTTATTGCAAGGATATAAGAATATCTCAAAAAATCTGAGGGCAAGAAAAGCAGCTGGTTATCAAAAAAACTACATCCAGGAACTCTGCTGACACCAAG 8 6 0 0  
ACCCA AGTCTGCTTCTCTCCCTGAAG CCACGCGTTACCTTTTCTCTCTTCTTCTCTAAA TTTTACTTCCCTCTTTTTCGCATATTGCGGATG GATTTTTT 8 7 0 0  
TGTGCTCATGGCACAGAATGGCTGACCCAAATTTTCAGCCTCATCTCTCGTGTTTACATGTCTTTCCAGTTCAAGAGGTAATAACTCATATTGAATCCCA 8 8 0 0  
ATTCCATTTTCCTTGATCCTGTTTGGCTCAAAGTTAGCAACTTCCATTCACTGATGGCCAGGAAAGTGAAAGGTCTCAGAGAAAATAGAGACTCTAAATA 8 9 0 0  
TTGTG TATTACAA TATAAAACTGTTAACTTTTCAAAGCTGCCCCCATACATCTTTTTTTAATCCCCAGTGCCATAG 8 9 7  6
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Figure 5.11: Strategy view of SeqMan assembly of the mouse genomic sequences

This is a “strategy view” diagram of the final assembly of the full-length mouse genomic 

sequence. This was achieved using Ensembl’s Trace Archive of Whole Genome Shotgun 

sequencing reads generated by the Mouse Sequencing Consortium on-line at 

http://www.ensembl.org/. This database was interrogated with the mouse foveolin cDNA 

sequence. Numerous matching mouse genomic sequences emerged and were down-loaded 

and assembled using SeqMan. Sequence from the overhanging intronic ends of these 

assemblies was used to re-interrogate the databases. Eventually the full-length mouse gene 

was obtained, with the final assembly containing 68 separate sequences, of which the 

longest represents an earlier, slightly shorter, assembled consensus sequence.

http://www.ensembl.org/
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Figure 5.12: The full sequence of the mouse foveolin gene

This figure shows the mouse genomic sequence of foveolin. This was obtained by 

interrogating the Ensembl Trace Server mouse genomic sequence databases and gradual 

assembly of the resulting matching sequences, as described in the legend for Figure 5.11. 

The exons were identified by comparison with the known mRNA sequences and are 

highlighted in yellow. It is possible that the first exon starts slightly more upstream, as 

discussed in the legend to Figure 5.7.



ATCTAGAGCAGTGGTTCTCATCCTGTGGGCCATGAGCCCTTTGGGGGGGTTGAACGACCCTTTCACAGGGGTCACATATCAGATATCCTGCATCTTAGCT 1 0 0  
ATTTACATTATGATTCATAACAGTAGCAAAATTAGTTAGGAAGTAGGAACAAAATAACGTTATGGTTGTGGTCACCACTATGTTAGAGGGTCGCAGCATT 2 0 0  
CAGGAGGGTTGAGAACTGTTGTTCTAGAGGCAAATAAGAAGACAGAGTTCCTTGATAGGGCCCAGAGGCAGTGAAAGAAGTTTCCACGTAGAAAGTGAAG 3 0 0  
AAGGTCTGGTGTCCGAAGCAGTGAGGAACTTAAAAAAAGAAAACCAAAAACATTGCCAACTAACAGTCCAGGAGAAGAGCGGGGCATGAAAGGCTGAGTT 4 0 0  
CCCATGGGATGCCTTGAATGGAATCAGAGTGTGGGAAAATTGGTGTGGCTGGAAGGCAGGTGCCGGGCATCTCAGACGCTGGTAGCTGGGGAAACAGGAA 5 0 0  
ACCCCTTTAGGATCCCAAGATGCCATTCCAATGAGCTTGAGATTTTTCTCATGGACTGCCAGTGAATGTTTCTACGCTCCGGAAATTAATGTTTACTKAT 6 0 0  
KTTCCATATTCTAGGGGAGAACCSTGGGARAAATGGAGGACATTCATTGAAATATCTGAGTCCTGGGATAAGGCAGGCTTGGTCCTACAACTCTGGTAAA 7 0 0  
AGTCCATCAGGAAGTGCCTTGACCAAGGCTGGAGTGGAGAGCTGTTGGTGAGATGTAAGGGCAAGGTTTAGTTGCTAGATATGTAGATGGCAAGATGGTG 8 0 0  
CTGCCAACAGCCCCCAGAGCTCTAACCCACTGAGAAACCCAGGAATGAATGATGGGAGATGGCTTTGGTGCCAGCTGCTAGTGACATGGCTGGAAAGCTG 9 0 0  
CACTGGCTTCGAGGCCAGACAATTCCTCAAGGAAACATCTGGCCAGGGTGCAAGGGCCAGTTTCCTTCCTTGGAGTTCCTTTCACAGCTAAGAACATCAT 1 0 0 0  
CCCCCAACCACTGGTTTTGTTAAAAAGTTTTCAGTATGACTTGAGCATGGTCAAGAAGCATAGAGAGGGGGAAATAAGGGTGGAAGGAGCTGGAGAAAGC 1 1 0 0  
TTACAATAGGACTGGGTAAAGGGAAGGAGAAGAAACCATTCCCGCATTCCCATAGGAGCCAGTACCAGGAAGGGCAGGTGTACACACAGATCTCATCTAA 1 2 0 0  
GGCCATGTTTGGTTTAGGGATTACTCTTCTCCTGAATCTGAGCAGCAGCAATACGTAAAATACCCACACCCATGGCTTCCATATTCCAGAACTTATCACA 1 3 0 0  
AACCGTGTAGAGTTTACTGAGATACCTTCGTCAGAGGATGAGTCAGAGGCCTCCTGCCTAAGGGCCCTACTGAGCAGGCAGCTAAAGGCTTCCGGGCCTC 1 4  0 0  
TGCAGCTCCACAGATACAGGAGAGGGAAGCAGATAAGCCGTGGACTCCACCTGAGCACACCTAGCTTGAGCAAAGCTGGTCAGGTACAAATAGCAGAGGG 1 5 0 0  
CTGAATGTCTGTGAGCACGCCGCCTGATCCTCTGCTCCACCACACTCCTGCCGCCATGAAGCTCACAGTAAGTCAGATCTTCCTTTTCAATGCAGCACCA 1 6 0 0  
TACAACATTAATAGTCAGGGGTGAGGGGGTCTGACTCTTACGGCACTGTTACCATAGTGGAAATATTCTCCTTCCTTTTCATGGAATCATGGTGTTTACA 1 7 0 0  
AGCATGTCCATAGAGAAGAAGAATTGCCCCGGAAGAGCCTGTCACAGGCTGAATACTGTAGAATTGTCTTTCACACCATCTGTTCCAAGGTTCTACTTAA 1 8 0 0  
GACGAGCAGTCTCTGGGCTCCA GAAAG AGTCTTTCTTAGCCTTGATCTCTTTCTTATTTCTG ATTTCTCCTTTCTTA TCCATG ATTTCCA CTTTTACCA G 1 9 0 0  
TTCTGGGCATGTTCCGGTCAGACTGGAAGATCACTGTTGTCAAAACTAGTCTTCAACACTCTTGGCTGTTAACATGAAAACAACGGTCCTTGGGCCCTGT 2 0 0 0  
GCAAGCATTTCTTGGAGAAAGTCTCTGGGGATGAAGCTATCTCAGTTTCCCCACTGAAGTCCTAGGATACAGAGGCTCAAACAGAGTGCACATATTCAAT 2 1 0 0  
TTCAGCATACTCTATTGGCGCTGCTTTATGAATCATATGAATTTATGGAATTGGAAATGTAAACTATGACCAAGAAGCGTCCACCTCAGAACAGGTTGGG 2 2 0 0  
TGGGGAACTCCAAGCACAGGCCAGAGGGCTGCGTTTCTCTTCTAGTTCTGTCTAGAGGAGTGATTCTCGACCTTCCTAATGCTGTGACCCTTTAATACAG 2 3 0 0  
TTCCTCA CGTTGTCGTGACTCCCAGCCATAAAATTACTTTCATTGCTACTGCATAACTGTAATTTTGCTACCATTATGAGTTGTAATGTAAATATCTGAT 2 4  0 0  
ATGCAAGATACCAGATAACCTAAGAAACGGTTGTTTGACCTTTAAAGGGGTCACAACCCACAGGTGGAGAACTACTGGTCTAGGGTCCTTTACAGTCCTT 2 5 0 0  
TAGCTGCCTCATTTACAGGAGATAACATCATGCTCAAAAACTCCCTCCACATTTGGCTTTTTGGGTTGTTTTGTTTTGTTTTTCAAGACAGGGTTTCTCT 2 6 0 0  
GTGTAGCCCTGGCTGTCCTGGAACTCACTTTGTAGACCAGGCTGGCCTCGAACTCAGAAATCCGCCTGCTTCTGCCTCCTGAGCGCTGGGATTAAAGGCG 2 7 0 0  
TGCGCCACCATGTCTGGCTCACATCTGGCTTTTTAAGAGACCGATTTTAACTCTCTTGCATTGAAAATAAATATAGTAGAAATGCTTAACCTACTAAGAC 2 8 0 0  
AATAAAAACAGGATTCCTTCTGCTAGGAAGAACACGTTCCAGACTAAGGAAAAAAACCTTTTCAGGGCTTTCATTACACTGTGCCATGCACTAATTTTAT 2 9 0 0  
GTTTTCTTCATCAGTTTTCAGTGTCTGAAATTCAGTGTCAAAATTCTAAGACTACATATGAATATCATTACAGTAACTCAGCAATTCTATGTTACCAGTA 3 0 0 0  
AGTTTTTCTGTAGTTTAAAAAAAAGGTGGAAGAAGAAAGCACAGATGGTTTAGCACATGGGTAAAATCAGTAACTATTTCTGATGAGCTTGGTGAAGATG 3 1 0 0  
CTGTAAACCATGCGACCACCAGTCCTGTTCTCTGTGCTTTCA ATGTTCGTCGTGGGTCTGCTTG GCCTCCTTGCAGCTCCTG GTTTTGCTTAC ;TAAGT 3 2 0 0  
CTCATTTTTCTGAAGTTCATTGTCAAAACTGCATTTACAGTGAAATGTGATCTTAAGTCACCCTCTGCTTCTTATGAACATITV ACGGTCAACATCAATG 3 3 0 0  
GTAATGATGGCAATGTAGACGGAAGTGGACAGCAGTCGGTGAGCATCAATGGTGTGCACAACGTGGCCAATATCGACAACAATAACGGCTGGGACTCCTG 3 4  0 0  
GAATAGCCTCTGGGACTATGAAAACGTATGTAATGGACACACAGGGTAAAGATATGGTGTAGCCACCACCCATTAAAATTTCTGAGGTGAATTCTAGCTG 3 5 0 0  
TTCATGAACATTAAAAGCTACTAGTAAAAGTGCCCATTCCACTCAAAACAATTTTACTTTTTTGCATATAATTATTGCTAATAAGTATTACACAATAGGT 3 6 0 0  
CGAAATTCAAAGGGATCAATAGTAAGGATAAAAACTATGTACAAAGACAAACACAGCATCCTTTGGTCTTCCCTGCAGAGAGTCTCCATGATGTTAAAGG 3 7 0 0  
TCCAATGTTTTATGGAGGCTGAATGAAATACGAATGCCTCTGTGATGGAAAAGGCCCAACATCTTATGGAGAATGAGTGAAGTATGAATGCTATTAGTTG 3 8 0 0  
TAAGAGAAGGCGATGCAAAGCAACACTTGGCACCACCTGCCAATTACTACTTTCCTATTTAAATGTAGTTTAAAAAGCAAAGCCTGTCTTCCCTGCCTCC 3 9 0 0  
TGGAAACACTGCGGATGGAGGTAGACCAAGGTATGACAGCCTTTAAAAGTTTGTCAGCAAAACACTTCCCCCATACACACATACACACACCCTCCTACTA 4 0 0 0  
CACTGGAACTGAAGCAAAGGCAGTGGGTTAGATATATCCACCCTCTAAGAGTTTGCAGGTCATCTATATATGATAGCCAGAGACACAACTGCAGGACAGC 4 1 0 0  
CAGACTCTGAGCACTCTCCCCAGCTCCTTGTAGCTCTGTTTCAGTGGTGACTTGTGACAAGAATCCTGGGGAACCTGTGCCTCACTGTTCTCTGTCTTCT 4 2 0 0  
TTAATAGAGTTTCGCTGCCACGAGACTCTTCTCCAAGAAGTCATGCATTGTGCACAGAATGAACAAGGATGCCATGCCCTCCCTTCAGGACCTCGATACA 4 3 0 0  
ATGGTCAAGGAACAGAAGGTAAAGTCCTGCCTTCTTCTTTGGAGTGACAGGAAGTCTTACAGTCTCCAGTACACAGTGAAGTCACCCCCATTCCCTCTTT 4 4 0 0  
GGTGGAGCATGACAGCATGTTTGTCATGATAAATGCCACAAACATGTAAAACTGTTCAGTGTCTGCCTGAATGGAGGGTGGCTTCCACTGTGTCAGATGC 4 5 0 0  
CGTGGCCCACATCTGCCTMTGCAGGGTTCCAGTAAAGCCACTGGCTATCTTGAGTGTCAGAGTACCCAAAGGTCTGCACACTTCAGTACAAGCCCTCCAT 4 6 0 0  
ATTTCAAGGGCACACTCCTACAGTCGTTGGGGTTATCAGAACTAGCAAACATAGAGACTGGATTTTCAGATGAAAAGAAATCCTTTTTAAAGTCTAAGTA 4 7 0 0  
TGCCTTATACAATGTTTGAGATATTCTCAATACTAAAAAAAAAAAATTGTTGCTTGCTTGAAAATCCAAATGTAACCAAGTGTCCTATATCCAGTGTCAA 4 8 0 0  
TCATGGCTGTAGTAGATGGGAAGAGGGAGCCCGTGGTTTTCACAGTCAGACGCCTGAGTTATTCTTCTAAGTGATAAATTGGTTCCTATAACAAGCAAGC 4 9 0 0  
TAGTGAATATAAATAAGCTCTATCTCAGAAGTTATCCTGTAGTGCTACCCTAGAATCTAAGAGAGCAAAAGTGCTTCAAATTTCAGAATAAGTTTTGCTT 5 0 0 0  
TGGACTTCTGTTTTTCTAAACAACTATAACTTCAAACCATCTAAGCCTCGTGGGACACTTAGAAATACCAAGCCATTCAAAGCTAGAATTGTTTCTTCAC 5 1 0 0  
CTTACTTGAAAACAAAATGACAACCAAAAATTGTCCCCACTGCCCTTGTACATCTTCAGATCAGTAAAGTCCTGGGCTCAGGGATCATTCACTTTCTTTC 5 2 0 0  
TTTCCTTTCACACTCAACTTCAGGGTAAAGGGCCTGGAjGGAGCTCCTCCCAAGGACTTGATGTACTCCGTCAACCCTACCAGAGTGGAGGACCTGAATAC 5 3 0 0  
ATTCGGACCAAAGATTGCTGGCATGTGCAGGGGCATCCCTACCTATGTGGCCGAGGAGATTCCAGGG'GTGTACCCTGAGATGCTGTATATCCCAATGCAG 5 4  0 0  
TACTGAGAGAGCCATCAGACACTCTAAAGTGTGACCACAGACGGACCAATCATGTGGATTATCAGAGCAAACACTTGCTTGCTCCTTGTCAGACAGTTGT 5 5 0 0  
CCATGCTTCAAAAGTTCATTAAAAAAAATAGTTCACAGGCTCCTCACAGAAACCTTAGTAGAATCCACAGCTTCTGCTCTTAGTCTTACTTTTTAGAAAC 5 6 0 0  
TGAGACCCAGAGAAAGGTCACAAAACTTTTGTCTGGCTCAGGTTCTATGTCTTTAACTTTATAGAATACCGTCTTTCTGGGTGGGTGGGCTCTAGAGTAA 5 7  0 0  
ACTTCAAGTGAGTTCAAGGAAAGCATGAGAAGTAGGGAAGACCAAATGAAAGGAGAATGCCAATGAAATCTATCGATTCTATAGCGCCAATGCTTAACTC 5 8 0 0  
CTAGGCGTTCAAAGAATAGTATCCACAAGGTGTCAGCCTAAGATCCTAATCTAACAGCAAGTTTTCAGATCTCTGAAGTGAAAAGAGAAAGCAAGAGAGG 5 9 0 0  
AACAGAGACAGAAACAGTAAGAGACAGAGAGGCAGAGACAAAGAGACAGGGAGAATAGAGAGGGATTAAAATTAATATATAGTTTAGAAATTACGACTCC 6 0 0 0  
TCACAGTCCCTGCAGAGTCCTAGGATAGGCACTGATTTGGACTTCTTTTCTTCTCACTA( GACCAAACCAGCCTTTGTACTCAAAGAAGTGCTACACAGC 6 1 0 0

CTTCTATGGGAGTCCAATGTGGCACCTGCCAGCCTGTATTCAGGACCTCTCCGCTATAAAGCATCCCTCCAGAGTTTTCAAATACTACAAAGCACAGCCT 6 4  0 0  
GGGTTTGGGCTCAGATAGGCCACTGCTGCCTGACTACATTACAGACAAACAAGTTTTAAAAGAAAGAAAAAAGAGCTCAGAGTGGCTGGAATCAGCAAGG 6 5 0 0  
GTGTTTTTCCTGCAAGGAGCCAGAAGTATCAATAATCACCCAAGGAGGAGACACTGGGAATGAGAGACTAGAACACACGCCTGCAGATACGGAGAACCTC 6 6 0 0  
AGATTGCCG CTCTCTCCCATA ACTGCACA CCCCCTTCTGTA AACTCTGCTTCTTTCTTTCA CCTGAA GATGG CCCTTGCTTTTTTTTA TTATAG GACAGG 6 7 0 0  
ATAACTAGACCAGAAAGTCAGCCTGACTCTCTACATTTATATGTCTTCCCAGTTCAAGAAATATTATTTACTGTTGAATGGCACTTCTATATTCCCTTGG 6 8 0 0  
TTCAATAGTCTACAGGATCCATCCATTGACAGGCCGAAGAGTGAGATCACATGATACCCAAGCACATGGGTCTTCCCTGAAGGAGAAGGATCCAGAAGGA 6 9 0 0  
GGTAGAGTCTTGATATTGTGCATTATAACAGGAACCCACACTTCGTTTTAAAAGTTGCTCCCATATGTTGTGTGGTCCCTAGAATCATCAGAGAAATCTT 7 0 0 0  
CCTCCATTCTTTTATGCTTACATGAGCTGTCTCTATGTAAGCCTAACAAAGTGAGCAAAACGTTGATTCCCACCACTTAGACAGTCATCTATATTGGTCA 7 1 0 0  
GTGTCTACCAGAAGGAGGTTTTCATAATTATCTTCATTATGTTGCAATTTCATCACTTTTTGCAAATTAGTGTTATTTCTGAAATATTCTGAAGCCCCTA 7 2 0 0  
AAGATCGCAGTGGTAGGAGGCTGGAGAGATGGCTCAGTGGTTAAGACCACCCACTTTTCCACTCTTCCAGATAACCCAGGCCCAACTGTCAGTCCCCACA 7 3 0 0  
TAGGAGCTCACAAACCATCCCTAACTCAGGTTCCAGGGGATCCAAAATCTTCTTCTGGCCTCTACACACACTAGACACATATGTGGTGCACTGACATTCA 7 4  0 0
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Figure 5.13: Comparison of the structure of the human and mouse foveolin genes

This figure compares the exons and introns of the human and mouse foveolin genes. The 

exons have a black background and the introns have a grey background. Both genes 

contain six exons, of similar length, again emphasising their high degree of homology. It 

is possible that the first exon of the mouse gene starts slightly more upstream, as discussed 

in the legend to Figure 5.7.



H u m a n

2 8 0 5 1 88 1 1 0 9 7  | 1 9 3 1  1 668  |

M o u s e

1 5 7 6 90 7 8 2 9 0 5 | 6 9 5  |
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Figure 5.14: Predicted primary sequence of the human, mouse and cow foveolin 

proteins

The Open Reading Frames (ORFs), or translatable protein sequences, within the three 

human, mouse and cow mRNAs were translated using EditSeq. Here, the resulting 

primary protein sequences are presented and compared. As discussed in the text in Section 

5.1.3, the translation start site used (amino acid position 18 with M in bold type, arrowed) 

is the second possible site for the human sequence. For the mouse sequence, the 

translation start site used is the main one in the on-line sequences but the second possible 

from my RACE results, which included further upstream nucleotides. For the cow 

sequence, the translation start site used is the first and only one found.

Amino acids which are identical in all three sequences have a black background; 

those which are identical in only two of the three sequences have a dark grey background; 

and those amino acids which are regarded as similar in terms of their physico-chemical 

properties, being, for example, polar or acidic, have a light grey background. The high 

degree of homology between the three sequences is clear, although the upstream amino 

acids, in italic type, are much less similar.

Using the Network Protein Sequence Analysis programs on-line at the Pole Bio- 

Informatique Lyonnais, all three proteins are predicted to contain a starting signal peptide. 

The likely post-translational cleavage site for this signal peptide in each protein is indicated 

by an arrow.
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Figure 5.15: Predicted secondary structure of the human, mouse and cow foveolin 

proteins

The secondary structure of the three foveolin proteins has been predicted as a consensus of 

the results from twelve methods within the Network Protein Sequence Analysis programs 

on-line at the Pole Bio-Informatique Lyonnais. The thin yellow lines are random coils, the 

mid-sized red lines are extended strands and the thick blue lines are alpha helices. Again, 

the three proteins are similar but unfortunately it is not possible to extrapolate from these 

secondary structures to arrive at the likely functions of the protein.



Human

60 80 160120

M o u s e

160 18049 80 100 120 14060

Cow

20 40 100 140 160 18060 80 120
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Table 5.1: Physico-chemical properties of predicted foveolin proteins

This table shows the physico-chemical profiles of the foveolin proteins from human, 

mouse and cow, predicted using the Network Protein Sequence Analysis programs on-line 

at the Pole Bio-Informatique Lyonnais. The human protein is that predicted from the 

second ATG site. It is clear that the properties of the three proteins are very similar.
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Information on predicted foveolin protein Human Mouse Cow

Molecular Weight (Daltons) 20330.04 20132.97 20519.59

Amino Acids 185 184 185

Strongly Basic (+) Amino Acids (K,R) 15 16 17

Strongly Acidic (-) Amino Acids (D,E) 17 17 19

Hydrophobic Amino Acids (A,I,L,F,W,V) 61 57 63

Polar Amino Acids (N,C,Q,S,T,Y) 59 55 52

Isoelectric Point 5.726 6.341 5.773

Charge at pH 7.0 -1.875 -0.875 -1.871
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6 Further overall discussion
The classical candidate gene approach to the identification of cancer-associated genes has 

been extremely successful. Many genes involved in the development, progression and 

metastasis of cancer have been identified in this way. Our understanding of tumour 

biology, in particular tumour suppressor genes and oncogenes, has greatly expanded over 

the past three decades, and the fruits of these labours are now reaching the clinic.

However, the average number of critical events affecting such genes which is 

predicted to lead to the acquisition of a malignant phenotype is only around six. Yet 

cancer cells obviously have many more changes at the DNA, RNA and protein levels than 

this. Overall, only a small proportion of genes changes significantly in expression in 

disease states, even when comparing cells at the opposing ends of the normal versus cancer 

spectrum. Although the exact figure obviously depends on the criteria used, only around 

1% of transcripts are significantly up- or down-regulated. This nevertheless represents a 

large number of genes, for example around 100 in this study of gastric carcinoma and 

normal stomach (see Section 4.2.1).

Thus in cancers a few molecular events are causative whereas most represent their 

consequence. Changes in expression resulting from these cancer-causing mutations are 

nevertheless interesting and useful because they may still yield diagnostic, prognostic and 

therapeutic targets. Such multiple expression changes presumably result from only a few 

critical genetic events through additional changes at the DNA level and through altered 

gene regulation via transcription factors, methylation and other epigenomic events. Large- 

scale gene expression profiling through DNA microarrays and SAGE has only been widely 

used over the past few years but has already produced hugely exciting potential and actual 

targets for improved cancer screening, diagnosis, prognostication and treatment, as 

discussed in Section 1.7.2.2. There, the example was given of diffuse large B-cell 

lymphoma, in which immuohistochemistry for CD 10 and bcl-6 can be used to identify 

patient subgroups with good and bad prognoses and therefore to direct more intensive 

therapy.

Clinical use of these candidates will almost certainly go hand-in-hand with more 

traditional techniques: for example, the expression of oestrogen receptors or c-erbB2 in 

breast cancer is currently assessed on histopathological sections of breast cancer tissue by 

immunohistochemical staining and microscopy. But the even greater numbers of potential 

targets now emerging need to be validated and functionally investigated both in vitro and 

in vivo.
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As Carlos Caldas and co-authors discussed in a recent review article (Caldas et a l 

2002), it is increasingly obvious that classical clinical and histopathological criteria used in 

the diagnosis and management of patients with cancer, whilst valuable, could be improved 

upon; and that this could be achieved by their supplementation (rather than replacement, at 

least in most cases) with the emerging molecular classifications. In order to improve 

treatments, the latter will need to be judged against tumour categories at the DNA, mRNA 

or protein levels. This presents a number of challenges.

Tumour material and clinical data will have to be collected carefully and 

efficiently. This has technical, cost and ethical implications. One technical issue is the 

preservation of the molecules of interest. Biological material starts to degrade as soon as it 

is handled during removal from the body. While degradation of biological molecules does 

affect DNA and protein, it is RNA which is most vulnerable, due to its intrinsically labile 

nature, as already discussed in Section 3.1.2.1 (Liotta et a l 2000). When specimens are 

intended for traditional histopathology, the focus is on preservation of the tissue 

morphology which is usually achieved by fixation in formalin and embedding in paraffin 

wax. Formalin cross-links and hence damages proteins; the process also promotes RNA 

fragmentation. While techniques which do not need full-length sequence, such as in situ 

hybridisation, or even RT-PCR, can succeed in such material, as shown in Section 5.1.1.8, 

formalin-fixed paraffin-embedded tissue does not represent a suitable substrate for the 

more stringent methods requiring intact RNA, such as SAGE or DNA microarray analysis. 

For these, freezing tissue works well but it compromises the morphology needed for 

accurate microscopic diagnosis. A possible compromise is emerging in the form of 

alcohol-based fixatives which may preserve both morphology and macromolecules 

including mRNA (Liotta et a l 2000).

The method of tissue or cell selection provides a further technical challenge (Liotta 

et a l 2000), with options including bulk and microdissected tissue. Bulk tissue provides 

larger quantities of RNA and is technically easier to produce. It was my choice for this 

project, because at the time SAGE required large quantities of input RNA (see Section 

3.1.2.1). The alternative is microdissected tissue which comprises a more select but 

smaller population of the exact cells desired, so that, for example, epithelial cells can be 

separated from stromal components. The most common method used currently is laser- 

assisted microdissection which permits the precise removal of pure cell populations from 

morphologically preserved tissue sections, in a rapid and practical manner (Goldsworthy et 

al 1999; Sirivatanauksom et a l 1999). Only small quantities of RNA are produced, but 

this problem can be solved by subsequent amplification. Microdissection is especially 

useful for studying premalignant disease, for example intestinal metaplasia or dysplasia,
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which by its nature is present in smaller amounts and is often focal and only identifiable 

histologically, not by gross examination (Liotta et a l 2000).

The ethical issues surrounding research on human tissues have become a minefield 

over recent years. In the UK there has been a recent sudden restriction in the availability of 

this basic resource (Furness 2001). This was first triggered by adverse publicity about 

inappropriate retention of whole organs at paediatric post-mortems, but the reaction has 

spread also to limit the use of tissues left over after routine diagnostic assessment of 

surgical resections, diagnostic biopsies, and even blood samples. Unquestionably, 

maintaining the autonomy of and obtaining informed consent from individual patients is 

important and necessary. However, the result of the media outcry has been that the 

regulatory authorities have swiftly imposed rather restrictive, oversimplified guidelines, 

which are bureaucratic and are now hampering clinical and translational cancer research.

Once the samples have been obtained and studied, the resulting large-scale gene 

expression profiles comprise a vast amount of data. Its storage, analysis, interpretation and 

use present a further challenge to scientists and clinicians. Bioinformatics is thus an 

expanding and important field of research, which is now the target of special funding.

In order to establish the diagnostic, prognostic and therapeutic importance of each 

of the emerging cancer gene candidates, analysis of hundreds of specimens from patients in 

different stages of disease will be needed. Selection of appropriate patient groups will 

therefore be vital. Clinical trials will need to include tissue collection as a key component 

thereby allowing current and future treatments to be evaluated by molecular methods. 

Such large-scale analysis of small numbers of targets in many tumour tissue samples is 

facilitated by the use of tissue arrays, in which around 300 cylindrical tissue cores of 0.6 

mm diameter can be distributed in a single standard 2 x 3 cm wax block (Kononen et a l 

1998). Parallel in situ detection of RNA and protein targets in each specimen is enabled 

and consecutive sections allow the rapid analysis of at least a hundred molecular markers 

in the same set of specimens.

Transfer to the real world of patient treatment will require the development of 

straightforward techniques for use in the clinical laboratory. Ideally these methods will 

involve a limited selection of predictive classifiers and so be suitable for high-throughput 

relatively automated analysis, in a manner akin to current immunohistochemical 

assessment of breast cancer. In this way, the exciting targets identified through large-scale 

tumour profiling can be translated to routine clinical diagnostic and prognostic use, 

resulting in improved care of cancer patients through individually tailored treatments.
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7 Conclusion (This conclusion is an amalgam of those from chapters 3, 4 and 5.)

This thesis describes: the first global profiles of gene expression in gastric 

carcinoma and normal stomach created using serial analysis of gene expression (SAGE); 

and the resulting identification and subsequent characterisation of a new gene which was 

highly and specifically expressed in the stomach and which is likely to play an important 

role in normal gastric function.

First, the SAGE technique of large-scale mRNA expression profiling had to be 

established locally. Although the initial effort involved in setting up SAGE was 

considerable, requiring time, technical expertise and large amounts of high quality input 

RNA, the result has been a robust and reproducible technology, and the experience of 

establishing SAGE has given me an in-depth training in molecular biology and 

bioinformatics. SAGE produces libraries which are extremely valuable, providing data 

which are truly comprehensive and quantitative, and which enable the identification of 

novel genes, as follows.

SAGE was used to produce two libraries of gastric adenocarcinoma of distal, 

intestinal type, and one library of normal gastric antrum. Numerous transcripts have been 

identified which are: highly expressed; differentially expressed between normal and 

tumour stomach; or gastric-specific by comparison with normal and tumour breast, colon, 

ovary, pancreas, prostate and mesothelium. Selected genes have been validated in a wider 

panel of 19 gastro-intestinal tissues by Northern blotting and immunohistochemistry.

The overall statistics of the three SAGE libraries agreed with previous publications, 

with 1% of genes being differentially expressed between gastric carcinoma and normal 

stomach. The SAGE profiles were corroborated by the validation studies. The most 

abundant transcripts included ribosomal and mitochondrial proteins, of which most were 

up-regulated in the tumours, as were other widely expressed genes including transcription 

factors, growth factors, and genes involved in signal transduction, protein turnover and cell 

invasion. This pattern is similar to other cancers, which supports the existence of common 

molecular targets for diagnosis and therapy. Most genes which were abundant or more 

highly expressed in normal stomach play a role in normal gastric function, including 

gastrin, lysozyme, mucins, trefoil factors and pepsinogens, of which some (up to 0.65%) 

were gastric-specific by comparison with other normal glandular tissues.

The molecular anatomy of the tumours correlated with their morphology. The 

expression profile of the well differentiated gastric carcinoma more closely resembled 

normal stomach than did the moderately differentiated tumour. Some genes up-regulated
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in the gastric carcinomas indicated the acquisition of an intestinal phenotype, which has 

long been recognised histologically. Some genes associated with normal gastric antrum 

were also abundant in, and had previously been proposed as specific markers of, pancreatic 

carcinoma. These expression profiles, unexpected in some cases, together with tumour 

heterogeneity, emphasise the need for candidates to be tested, and ideally localised, in a 

wide range of normal and diseased cells and tissues.

New candidate genes have been identified. Some transcripts had previously been 

characterised minimally or not at all in the stomach. Many SAGE tags with interesting 

expression patterns, some tumour-associated, lacked matching genes and await further 

characterisation and functional studies. Of the novel genes, one was highly and 

specifically expressed in normal stomach, at levels similar to gastrin, MUC5 and the trefoil 

factors, which are important in normal gastric physiology. The gene is expressed in native 

or metaplastic gastric surface and foveolar epithelium and hence has been named foveolin. 

Although it appears to be gastric-predominant, foveolin may also be expressed at low 

levels in the uterus, although evidence for this is conflicting. Foveolin is not expressed in 

gastric adenocarcinomas or cell lines.

Foveolin mRNAs and their predicted proteins have been structurally characterised 

from human, mouse and cow, and genomic sequences from the human and mouse have 

also been obtained. The mRNAs are around 700-800 bp in length. The genes contain six 

exons which extend over around 6 kb. In the human, the gene maps to chromosome 2. 

The proteins are around 186 amino acids in length and just over 20 kDa in molecular 

weight. The sequences are highly homologous between species, again suggesting that it 

plays an important role in the stomach. Foveolin lacks homology to any known protein 

sequence or motif, so its function can only be postulated on the basis of its mucosal 

location: it could involve mucosal protection and possibly defence against gastric acid. 

This is supported by the fact that foveolin’s primary sequence contains a signal peptide, 

indicating that the protein is extracellular, either located on the cell surface or secreted. Its 

absence from gastric carcinomas suggests that it may act as a functional gastric tumour 

suppressor gene, analogous to pS2 (trefoil factor 1): pS2 is highly expressed in normal 

stomach and down-regulated in tumours, and pS2 knock-out mice develop gastric 

dysplasia then carcinoma. Further characterisation of foveolin’s biological role is thus 

required and likely to be worthwhile.

These molecular portraits increase our knowledge about the genes involved in 

normal gastric function and in malignant change in the stomach, and provide a catalogue of 

candidates from which to develop markers for better diagnosis and therapy of gastric 

carcinoma.
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